ifif IMSL
 by Perforce

IMSL® C Numerical Library Function Catalog

Version 2021.0

PERFORCE

At the heart of the IMSL C Numerical Library is a
comprehensive set of pre-built mathematical and
statistical analysis functions that developers can
embed directly into their applications. Available for a
wide range of computing platforms, the robust,
scalable, portable and high performing IMSL analytics
allow developers to focus on their domain of expertise
and reduce development time.

COST-EFFECTIVENESS AND VALUE

The IMSL C Numerical Library significantly shortens application time to market and promotes standardization. Descriptive function names and variable argument lists have been implemented to simplify calling sequences. Using the IMSL C Library reduces costs associated with the design, development, documentation, testing and maintenance of applications. Robust, scalable, portable, and high performing analytics with IMSL forms the foundation for inherently reliable applications.

A RICH SET OF PREDICTIVE ANALYTICS FUNCTIONS

The library includes a comprehensive set of functions for machine learning, data mining, prediction, and classification, including:

- Time series models such as ARIMA, GARCH, and VARMA vector autoregression.
- Predictive models such as decision trees, random forest, stochastic gradient boosting, support vector machines, neural networks, linear and multinomial logistic regression, and Bayes classification.
- Data mining algorithms such as Kmeans and hierarchical clustering, Apriori market basket analysis and much more.
The IMSL C Library also includes functions for analyzing streaming data and working with big or distributed data.

A SUITE OF OPTIMIZATION FUNCTIONS

The library includes a suite of optimization methods for different problems including multivariate, derivative free, constrained or unconstrained, dense or sparse, linear or general objective functions. The library provides numerous functions for solving linear systems and systems of differential equations and offers broad coverage for mathematical analysis,
including transforms, convolutions, splines, quadrature, and more.

EMBEDDABILITY

Development is made easier because library code readily embeds into application code, with no additional infrastructure such as app/management consoles, servers, or programming environments needed.

Wrappers complicate development by requiring the developer to access external compilers and pass arrays or user-defined data types to ensure compatibility between the different languages. The IMSL C Library allows developers to write, build, compile and debug code in a single environment, and to easily embed analytic functions in applications and databases.

RELIABILITY

100\% pure C code maximizes robustness. It allows faster and easier debugging, through superior error handling that not only conveys the error condition, but also suggests corrective action if appropriate. The result is reduced application support cost due to the minimization of user error and data issues.

The IMSL C Library has been rigorously tested by Rogue Wave and seasoned by all industry verticals for over 40 years. You can expect consistent results across all supported platforms and languages, which makes platform migration and upgrade easy and efficient.

HIGH PERFORMANCE

The IMSL C Library integrates third-party, highperformance vendor BLAS libraries. For many linear algebra functions, work can be offloaded to the vendor library for enhanced performance. The calling sequences for the IMSL functions are unchanged, so there is no learning curve and users can be productive immediately.

The library is also designed to take advantage of symmetric multiprocessor (SMP) systems, both multi-

CPU and multi-core. Many algorithms leverage OpenMP directives on supported environments to distribute calculations across available resources. In areas such as linear algebra and Fast Fourier Transforms, third-party high-performance vendor libraries leverage SMP capabilities on a variety of systems.

SCALABILITY

The IMSL C Library supports scalability through:

- An enhanced ability to analyze timesequenced data, or streaming, real-time data that isn't stored.
- Improved algorithms that can analyze data sets too large to fit into memory or that exist on separate nodes.
- Memory management that ensures applications will not crash when they encounter a low memory condition.

USER FRIENDLY NOMENCLATURE

The IMSL C Library uses descriptive, explanatory function names for intuitive programming that:

- Are easy to identify and use, and prevent conflicts with other software.
- Provide a common root name for numerical functions that offer the choice of multiple precisions.

PROGRAMMING INTERFACE FLEXIBILITY

The IMSL C Library takes full advantage of the intrinsic characteristics and desirable features of the C language.

The functions support variable-length argument lists, where the concise set of required arguments contains only information necessary for usage. Optional arguments provide added functionality and power to each function. Memory allocation can be handled by the library or by the developer. Finally, user-defined functions are implemented with interfaces C developers will find natural.

THREAD SAFETY

The IMSL C Library is thread-safe. Thread safety allows the C Library to be used in multi-threaded applications where performance benefits can be realized through concurrent and/or parallel execution.

COMPREHENSIVE DOCUMENTATION

Documentation for the IMSL C Numerical Library is comprehensive, clearly written and standardized. The documentation, in multiple formats:

- Provides organized, easy-to-find information.
- Documents, explains, and provides references for algorithms.
- Gives at least one example of each function's usage, with sample input and result.

UNMATCHED PRODUCT SUPPORT

Behind every Rogue Wave license is a team of professionals ready to provide expert answers to questions about the IMSL Numerical Libraries.

Product support:

- Gives users direct access to Rogue Wave's resident staff of expert product support specialists.
- Provides prompt, two-way communication with solutions to a user's programming needs.
- Includes product maintenance updates.

PROFESSIONAL SERVICES

Rogue Wave offers expert consulting services for algorithm development as well as complete application development. Please contact Rogue Wave to learn more about its extensive experience in developing custom algorithms, building algorithms on scalable platforms, and full applications development.

Mathematical Functionality Overview

The IMSL C Numerical Library is a collection of the most commonly required numerical functions, tailored for a C programmer's needs. The mathematical functionality is organized into 12 sections. These capabilities range from solving systems of linear equations to optimization.

Linear Systems - including real and complex, full and sparse matrices, linear least squares, matrix decompositions, generalized inverses and vectormatrix operations. The least squares solvers may include non-negative and general linear constraints. Matrix decompositions now include non-negative, low-rank factorizations.

Eigensystems Analysis - including eigenvalues and eigenvectors of complex, real symmetric and complex Hermitian matrices.

Interpolation and Approximation - including constrained curve-fitting splines, cubic splines, leastsquares approximation and smoothing, and scattered data interpolation.

Integration and Differentiation - including univariate, multivariate, Gauss quadrature and quasi-Monte Carlo.

Differential Equations - using Adams-Gear and Runge-Kutta methods for stiff and non-stiff ordinary differential equations, with support for partial differential equations, including the Feynman-Kac solver. Also included are second-order ODE solvers, constrained DAE solvers, and a method of lines PDE solver.

Transforms - including real and complex, one- and two-dimensional Fast Fourier Transforms, as well as convolutions, correlations and Laplace transforms.

Nonlinear Equations - including zeros and root finding of polynomials, zeros of a function and root of a system of equations.

Optimization - including unconstrained linearly and nonlinearly constrained minimizations and linear and quadratic programming interior point algorithms.

Special Functions - including error and gamma functions, real order complex valued Bessel functions and statistical functions.

Financial Functions - including functions for Bond and cash-flow analysis.

Random Number Generation - including a generator for multivariate normal distributions and pseudorandom numbers from several distributions, including gamma, Poisson and beta. Also, support for low discrepancy series using a generalized Faure sequence.

Utilities - including CPU time used, machine, mathematical, physical constants, retrieval of machine constants and customizable errorhandling.

Statistical Functionality Overview

The statistical functionality is organized into thirteen sections. These capabilities range from analysis of variance to random number generation.

Basic Statistics - including univariate summary statistics, frequency tables, and rank and order statistics.
Regression - including linear (multivariate), polynomial, and nonlinear regression models as well as robust alternatives such as Lpnorm and Partial Least Squares. This section also contains stepwise and all best variable selection methods.

Correlation and Covariance - including sample variance-covariance, partial correlation and covariances, pooled variance-covariance and robust estimates of a covariance matrix and mean factor.

Analysis of Variance and Designed Experiments - analysis of standard factorial experiments, randomized complete block designs, Latin-square, lattice, split-plot and strip-plot and related experiments; analysis of hierarchical data, computation of false discovery rates and standard tests for multiple comparisons and homogeneity of variance.

Categorical and Discrete Data Analysis - including chi-squared analysis of a two-way contingency table, exact probabilities in a two-way contingency table, logistic regression for binomial or multinomial responses, and the analysis of categorical data using general linear models.

Nonparametric Statistics - including sign tests, Wilcoxon sum tests and Cochran Q test for related observations.

Tests of Goodness-of-Fit - including the chi-squared goodness-of-fit test, the Kolmogorov/Smirnov oneand two-sample tests for continuous distributions, the Shapiro-Wilk, Lilliefors, chi-squared, AndersonDarling, and Cramer-Von Mises tests for normality, Mardia's test for multivariate normality, and the runs, pairs-serial, d2, and triplets tests for randomness.

Time Series Analysis and Forecasting - analysis and forecasting of time series using a nonseasonal ARMA model, ARIMA with regression, Holt-Winters exponential smoothing, GARCH, Kalman filtering; various fitting and diagnostic utilities including portmanteau lack of fit test and difference of a seasonal or nonseasonal time series.

Multivariate Analysis - including principal component analysis, discriminant analysis, K-means and hierarchical cluster analysis, and factor analysis. Methods of factor analysis include principal factor, image analysis, unweighted least squares, generalized least squares, maximum likelihood, and various factor rotations.

Survival Analysis - including analysis of data using the Cox linear survival model, Kaplan-Meier survival estimates, actuarial survival tables, and non-parametric survival estimates.

Probability Distribution Functions and Inverses - including the cumulative distribution function (CDF), inverse CDF, and probability density function (PDF) for many common discrete and continuous distributions, as well as multivariate normal, non-central F, Chi-square, Beta, Students t, and others. This section also includes parameter estimation by maximum likelihood.

Random Number Generation - including generators for many univariate discrete and continuous distributions, as well as multivariate Normal, multinomial, Gaussian or Student's t copula, an ARMA or nonhomogeneous Poisson process, order statistics, permutations, and more. This section also allows a choice of pseudorandom number generators, including the Mersenne Twister.

Data Mining - including decision trees, vector auto-regression, Apriori analysis, cluster analysis, Kohonen selforganizing maps, support vector machine, ensemble models, genetic algorithms, PCA, factor analysis, feedforward neural networks, neural network data pre- and post-processing algorithms, and much more.

IMSL® Libraries are also available for Fortran and Java

IMSL ${ }^{\circledR}$ FORTRAN NUMERICAL LIBRARY

The IMSL® Fortran Numerical Library is the gold standard mathematical and statistical code library for Fortran programmers developing high performance computing applications. The IMSL Fortran Library contains highly accurate and reliable Fortran algorithms with full coverage of mathematics and statistics and complete backward compatibility.

The IMSL Fortran Library is a comprehensive library of mathematical and statistical algorithms available in one cohesive package. It combines the powerful and flexible interface features of the Fortran language with the performance benefits of both distributed memory and shared memory multiprocessing architectures.

JMSL ${ }^{\text {TM }}$ NUMERICAL LIBRARY FOR JAVA APPLICATIONS

The JMSL Numerical Library for Java applications is the broadest collection of mathematical, statistical, financial, data mining and charting classes available in 100% Java. It is the only Java programming solution that combines integrated charting with the reliable mathematical and statistical functionality of the industry-leading IMSL Numerical Library algorithms. This blend of advanced numerical analysis and visualization on the Java platform allows organizations to gain insight into valuable data and share analysis results across the enterprise quickly. The JMSL Library continues to be the leader, providing robust and portable data analysis and visualization technology for the Java platform, and a fast, scalable framework for tailored analytical applications.

ACCESS FROM PYTHON

The IMSL® C Library functions is also available within Python for rapid prototyping, and a collection of Python wrappers to the algorithms in the IMSL C Numerical Library are available on request. By using the same IMSL algorithms in the prototype as in the production code, developers can deliver accurate and consistent results in production application sooner rather than later. For more information, please contact info@roguewave.com.

IMSL C MATH LIBRARY

CHAPTER 1: LINEAR SYSTEMS

LINEAR EQUATIONS WITH FULL MATRICES

FUNCTION	DESCRIPTION
lin_sol_gen	Solves a real general system of linear equations $A x=b$.
lin_sol_gen (complex)	Solves a complex general system of linear equations $A x=b$.
lin_sol_posdef	Solves a real symmetric positive definite system of linear equations $A x=b$.
lin_sol_posdef (complex)	Solves a complex Hermitian positive definite system of linear equations $A x=b$.

LINEAR EQUATIONS WITH BAND MATRICES

$\left.\begin{array}{|l|l}\hline \text { FUNCTION } & \text { DESCRIPTION } \\ \hline \text { lin_sol_gen_band } & \text { Solves a real general band system of linear equations } A x=b . \\ \hline \text { lin_sol_gen_band (complex) } & \text { Solves a complex general band system of linear equations Ax } \\ \hline \text { lin_sol_posdef_band } & \begin{array}{l}\text { Solves a real symmetric positive definite system of linear } \\ \text { equations } A x=b\end{array} \\ \hline \text { lin band symmetric storage mode. }\end{array}\right\}$

LINEAR EQUATIONS WITH GENERAL SPARSE MATRICES

FUNCTION

lin_sol_gen_coordinate
lin_sol_gen_coordinate (complex)
superlu

superlu (complex)

superlu_smp
superlu_smp (complex)
lin_sol_posdef_coordinate

lin_sol_gen_posdef_coordinate (complex)

sparse_cholesky_smp
sparse_cholesky_smp (complex)
lin_sol_gen_min_residual
lin_sol_def_cg

DESCRIPTION

Solves a sparse system of linear equations $A x=b$.

Solves a system of linear equations $A x=b$, with sparse complex coefficient matrix A.

Computes the LU factorization of a general sparse matrix by a column method and solves the real sparse linear system of equations $A x=b$.
Computes the LU factorization of a general complex sparse matrix by a column method and solves the complex sparse linear system of equations $A x=b$.

Computes the LU factorization of a general sparse matrix by a left-looking column method using OpenMP parallelism, and solves the real sparse linear system of equations $A x=b$.
Computes the LU factorization of a general complex sparse matrix by a left-looking column method using OpenMP parallelism and solves the complex sparse linear system of equations $A x=b$.

Solves a sparse real symmetric positive definite system of linear equations $A x=b$.

Solves a sparse Hermitian positive definite system of linear equations $A x=b$.

Computes the Cholesky factorization of a sparse real symmetric positive definite matrix A by an OpenMP parallelized supernodal algorithm and solves the sparse real positive definite system of linear equations $A x=b$.
Computes the Cholesky factorization of a sparse (complex) Hermitian positive definite matrix A by an OpenMP parallelized supernodal algorithm and solves the sparse Hermitian positive definite system of linear equations $A x=b$.

Solves a linear system $A x=b$ using the restarted generalized minimum residual (GMRES) method.

Solves a real symmetric definite linear system using a conjugate gradient method.

ITERATIVE METHODS	DESCRIPTION
FUNCTION	Solves a linear system $A x=b$ using the restarted generalized minimum residual (GMRES) method.
lin_sol_gen_min_residual	Solves a real symmetric definite linear system using a conjugate gradient method.
lin_sol_def_cg	
LINEAR LEAST-SQUARES WITH FULL MATRICES	

CHAPTER 2: EIGENSYSTEM ANALYSIS

ORDINARY LINEAR EIGENSYSTEM PROBLEMS	
FUNCTION	DESCRIPTION
eig_gen	Computes the eigenexpansion of a real matrix A.
eig_gen (complex)	Computes the eigenexpansion of a complex matrix. A.
eig_sym	Computes the eigenexpansion of a real symmetric matrix A.
eig_herm (complex)	Computes the eigenexpansion of a complex Hermitian matrix A.

GENERALIZED LINEAR EIGENSYSTEM PROBLEMS

FUNCTION

eig_symgen
geneig
geneig (complex)

DESCRIPTION

Computes the generalized eigenexpansion of a system $A x=\lambda B x . A$ and B are real and symmetric. B is positive definite.

Computes the generalized eigenexpansion of a system $A x=\lambda B x$, with A and B real.

Computes the generalized eigenexpansion of a system $A x=\lambda B x$, with A and B complex.

EIGENVALUES AND EIGENVECTORS COMPUTED WITH ARPACK

FUNCTION

arpack_symmetric

DESCRIPTION

Computes some of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue problem $A x=\lambda B x$ using an implicitly restarted Arnoldi method (IRAM).

EIGENVALUES AND EIGENVECTORS COMPUTED WITH ARPACK (CONTINUED)

FUNCTION	DESCRIPTION
arpack_general	Computes some of the eigenvalues and eigenvectors of the generalized real nonsymmetric eigenvalue problem $A x=\lambda B x$ an implicitly restarted Arnoldi method (IRAM).

CHAPTER 3: INTERPOLATION AND APPROXIMATION

CUBIC SPLINE INTERPOLATION	
FUNCTION	DESCRIPTION
cub_spline_interp_e_cnd	Computes a cubic spline interpolant, specifying various end point conditions.
cub_spline_interp_shape	Computes a shape-preserving cubic spline.
cub_spline_tcb	Computes a tension-continuity-bias (TCB) cubic spline interpolant. This is also called a Kochanek-Bartels spline and is a generalization of the Catmull-Rom spline.

CUBIC SPLINE EVALUATION AND INTEGRATION

FUNCTION

cub_spline_value
cub_spline_integral

DESCRIPTION

Computes the value of a cubic spline or the value of one of its derivatives.

Computes the integral of a cubic spline.

SPLINE INTERPOLATION

FUNCTION	DESCRIPTION
spline_interp	Computes a spline interpolant.
spline_knots	Computes the knots for a spline interpolant.

spline_2d_interp

Computes a two-dimensional, tensor-product spline interpolant
from two-dimensional, tensor-product data.

SPLINE EVALUATION AND INTEGRATION	
FUNCTION	DESCRIPTION
spline_value	Computes the value of a spline or the value of one of its derivatives.
spline_integral	Computes the integral of a spline.
spline_2d_value	Computes the value of a tensor-product spline or the value of one of its partial derivatives.
spline_2d_integral	Evaluates the integral of a tensor-product spline on a rectangular domain.
MULTI-DIMENSIONAL INTERPOLATION	
FUNCTION	DESCRIPTION
spline_nd_interp	Performs multidimensional interpolation and differentiation for up to 7 dimensions.
LEAST-SQUARES APPROXIMATION AND SMOOTHING	
FUNCTION	DESCRIPTION
user_fcn_least_squares	Computes a least-squares fit using user-supplied functions.
spline_least_squares	Computes a least-squares spline approximation.
spline_2d_least_squares	Computes a two-dimensional, tensor-product spline approximant using least squares.
cub_spline_smooth	Computes a smooth cubic spline approximation to noisy data by using cross-validation to estimate the smoothing parameter or by directly choosing the smoothing parameter.

LEAST-SQUARES APPROXIMATION AND SMOOTHING (CONTINUED)

FUNCTION	DESCRIPTION
spline_Isq_constrained	Computes a least-squares constrained spline approximation.
smooth_1d_data	Smooth one-dimensional data by error detection.

SCATTERED DATA INTERPOLATION

FUNCTION
scattered_2d_interp

DESCRIPTION
Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables.

SCATTERED DATA LEAST SQUARES

FUNCTION

radial_scattered_fit
radial_evaluate

DESCRIPTION

Computes an approximation to scattered data in R^{n} for $n \geq 1$ using radial-basis functions.

Evaluates a radial basis fit.

CHAPTER 4: QUADRATURE

UNIVARIATE QUADRATURE

FUNCTION	DESCRIPTION
int_fcn_sing	Integrates a function, which may have end point singularities, using a globally adaptive scheme based on Gauss-Kronrod rules.
int_fcn_sing_1d	Integrates a function with a possible internal or endpoint singularity.
int_fcn	Integrates a function using a globally adaptive scheme based on
int_fcn_sing_pts	Integrates a function with singularity points given.

MULTIDIMENSIONAL QUADRATURE

MULTIDIMENSIONAL QUADRATURE (CONTINUED)

int_fcn_2d
int_fcn_sing_2d
int_fcn_sing_3d
int_fcn_hyper_rect
int_fcn_qmc

Computes a two-dimensional iterated integral.

Integrates a function of two variables with a possible internal or endpoint singularity.

Integrates a function of three variables with a possible internal or endpoint singularity.

Integrate a function on a hyper-rectangle,
$\int_{a_{0}}^{b_{0}} \ldots \int_{a_{n-1}}^{b_{n-1}} f\left(x_{0}, \ldots, x_{n-1}\right) d x_{n-1} \ldots d x_{0}$

Integrates a function over a hyper-rectangle using a quasi-Monte Carlo method.

GAUSS RULES AND THREE-TERM RECURRENCES

FUNCTION

gauss_quad_rule

DESCRIPTION
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions.

DIFFERENTIATION
FUNCTION
fcn_derivative

DESCRIPTION
Computes the first, second or third derivative of a user-supplied function.

CHAPTER 5: DIFFERENTIAL EQUATIONS

```
FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS
SOLUTION OF THE INITIAL VALUE PROBLEM FOR ODES
```

FUNCTION
ode_runge_kutta

DESCRIPTION
Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method.

SOLUTION OF THE BOUNDARY VALUE PROBLEM FOR ODES

FUNCTION
bvp_finite_difference

DESCRIPTION
Solves a (parameterized) system of differential equations with boundary conditions at two points, using a variable order, variable step size finite difference method with deferred corrections.

SOLUTION OF DIFFERENTIAL-ALGEBRAIC SYSTEMS

FUNCTION
differential_algebraic_eqs

DESCRIPTION
Solves a first order differential-algebraic system of equations, $g\left(t, y, y^{\prime}\right)=0$, with optional additional constraints and user-defined linear system solver.

```
FIRST-AND-SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
    SOLUTION OF THE INITIAL VALUE PROBLEM FOR ODES
    FUNCTION
    ode_adams_krogh
    DESCRIPTION
Solves an initial-value problem for a system of ordinary differential equations of order one or two using a variable order Adams method.
```


PARTIAL DIFFERENTIAL EQUATIONS

SOLUTION OF SYSTEMS OF PDES IN ONE DIMENSION

FUNCTION

DESCRIPTION

PARTIAL DIFFERENTIAL EQUATIONS (CONTINUED)

SOLUTION OF SYSTEMS OF PDES IN ONE DIMENSION
pde_1d_mg
modified_method_of_lines
feynman_kac

feynman_kac_evaluate

Solves a system of one-dimensional time-dependent partial differential equations using a moving-grid interface.

Solves a system of partial differential equations of the form $u_{t}=f\left(x, t, u, u_{x}, u_{x x}\right)$ using the method of lines.

Solves a generalized Feynman-Kac equation on a finite interval using Hermite quintic splines.

Computes the value of a Hermite quintic spline or the value of one of its derivatives.

SOLUTION OF A PDE IN TWO DIMENSIONS

FUNCTION

fast_poisson_2d

DESCRIPTION

Solves Poisson's or Helmholtz's equation on a two-dimensional rectangle using a fast Poisson solver based on the HODIE finitedifference scheme on a uniform mesh.

CHAPTER 6: TRANSFORMS

REAL TRIGONOMETRIC FFT
FUNCTION
fft_real
fft_real_init
Computes the discrete Fourier transform of a real sequence.
COMPLEX EXPONENTIAL FFT
FUNCTION
Computes the parameters for ims l_{-}f_fft_real.
fft_complex

REAL SINE AND COSINE FFTS

FUNCTION

fft_cosine
fft_cosine_init
fft_sine
fft_sine_init

DESCRIPTION

Computes the discrete Fourier cosine transformation of an even sequence.

Computes parameters needed by imsl_f_fft_cosine.

Computes the discrete Fourier sine transformation of an odd sequence.

Computes parameters needed by imsl_f_fft_cosine.

TWO-DIMENSIONAL FFTS

FUNCTION

fft_2d_complex

DESCRIPTION

Computes the complex discrete two-dimensional Fourier transform of a complex two-dimensional array.

CONVOLUTIONS AND CORRELATIONS

FUNCTION

convolution
convolution (complex)

DESCRIPTION

Computes the convolution of two real vectors.

Computes the convolution, and optionally, the correlation of two complex vectors.

LAPLACE TRANSFORM

FUNCTION
inverse_laplace

DESCRIPTION
Computes the inverse Laplace transform of a complex function.

CHAPTER 7: NONLINEAR EQUATIONS

ZEROS OF A POLYNOMIAL

FUNCTION

zeros_poly
zeros_poly (complex)

DESCRIPTION

Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage algorithm.

Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub three-stage algorithm.

ZEROS OF A FUNCTION

FUNCTION
zero_univariate
zero_function

DESCRIPTION
Finds a zero of a real univariate function.

Finds the real zeros of a real, continuous, univariate function.

ROOT OF A SYSTEM OF EQUATIONS

FUNCTION

zeros_sys_eqn

DESCRIPTION

Solves a system of n nonlinear equations $f(x)=0$ using a modified Powell hybrid algorithm.

CHAPTER 8: OPTIMIZATION

UNCONSTRAINED MINIMIZATION	
UNIVARIATE FUNCTION	DESCRIPTION
FUNCTION	Finds the minimum point of a smooth function $f(x)$ of a single variable using only function evaluations.
min_uncon	Finds the minimum point of a smooth function of a single variable using both function and first derivative evaluations.
min_uncon_deriv	Finds the minimum point of a nonsmooth function of a single variable using the golden selection search method.
min_uncon_golden	

MULTIVARIATE FUNCTION

FUNCTION

min_uncon_multivar
min_uncon_polytope

DESCRIPTION

Minimizes a function $f(x)$ of n variables using a quasi-Newton method.

Minimizes a function of n variables using a direct search polytope algorithm.

NONLINEAR LEAST SQUARES

FUNCTION
nonlin_least_squares

DESCRIPTION
Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm.

LINEARLY CONSTRAINED MINIMIZATION			
FUNCTION	DESCRIPTION		
read_mps	Reads an MPS file containing a linear programming problem or a quadratic programming problem.		
linear_programming	Solves a linear programming problem.		
Solves a linear programming problem using the revised simplex			
algorithm.			Solves a quadratic programming problem subject to linear
:---			
equality or inequality constraints.			

NONLINEARLY CONSTRAINED MINIMIZATION

FUNCTION

constrained_nlp

DESCRIPTION

Solves a general nonlinear programming problem using a sequential equality constrained quadratic programming method.

SERVICE ROUTINES

FUNCTION
jacobian

DESCRIPTION

Approximates the Jacobian of m functions in n unknowns using divided differences.

CHAPTER 9: SPECIAL FUNCTIONS

ERROR AND GAMMA FUNCTIONS	
ERROR FUNCTIONS	
FUNCTION	DESCRIPTION
erf	Evaluates the real error function $\operatorname{erf}(x)$.
erfc	Evaluates the real complementary error function $\operatorname{erfc}(x)$.
erf_inverse	Evaluates the real inverse error function $\operatorname{erf}^{-1}(x) .^{\text {. }}$
erfce	Evaluates the exponentially scaled complementary error function.
erfe	Evaluates a scaled function related to $\operatorname{erfc}(\mathrm{z})$.
erfc_inverse	Evaluates the real inverse complementary error function $\operatorname{erfc}^{-1}(x)$. $^{\text {a }}$ (
beta	Evaluates the real beta function $\beta(x, y)$.
log_beta	Evaluates the logarithm of the real beta function $\ln \beta(x, y)$.
beta_incomplete	Evaluates the real incomplete beta function $I_{x}=\beta_{x}(a, b) / \beta(a, b)$.
GAMMA FUNCTIONS	
FUNCTION	DESCRIPTION
gamma	Evaluates the real gamma function $\Gamma(x)$.
log_gamma	Evaluates the logarithm of the absolute value of the gamma function log $\|\Gamma(x)\|$.
gamma_incomplete	Evaluates the incomplete gamma function $\gamma(a, x)$.

PSI FUNCTIONS	
FUNCTION	DESCRIPTION
psi	Evaluates the derivative of the log gamma function.
psi1	Evaluates the second derivative of the log gamma function.
BESSEL FUNCTIONS	
FUNCTION	DESCRIPTION
bessel_J0	Evaluates the real Bessel function of the first kind of order zero $J_{0}(x)$.
bessel_1	Evaluates the real Bessel function of the first kind of order one $J_{1}(x)$.
bessel_Jx	Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.
bessel_Y0	Evaluates the real Bessel function of the second kind of order zero $Y_{0}(x)$.
bessel_Y1	Evaluates the real Bessel function of the second kind of order one $Y_{1}(x)$.
bessel_Yx	Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.
bessel_I0	Evaluates the real modified Bessel function of the first kind of order zero $I_{0}(x)$.
bessel_exp_10	Evaluates the exponentially scaled modified Bessel function of the first kind of order zero.
bessel_l1	Evaluates the real modified Bessel function of the first kind of order one $I_{1}(x)$.
bessel_exp_l1	Evaluates the exponentially scaled modified Bessel function of the first kind of order one.
bessel_lx	Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.

BESSEL FUNCTIONS (Continued)

FUNCTION	DESCRIPTION
bessel_K0	Evaluates the real modified Bessel function of the second kind of order zero $K_{0}(x)$.
bessel_exp_K0	Evaluates the exponentially scaled modified Bessel function of the second kind of order zero.
bessel_K1	Evaluates the exponentially scaled modified Bessel function of the second kind of order one.
bessel_exp_K1	Evaluates the exponentially scaled modified Bessel function of the second kind of order one.
bessel_Kx	Evaluates a sequence of modified Bessel functions of the second kind with real order and complex arguments.

ELLIPTIC INTEGRALS

FUNCTION

elliptic_integral_K
elliptic_integral_E
elliptic_integral_RF
elliptic_integral_RD
elliptic_integral_RJ
elliptic_integral_RC

DESCRIPTION

Evaluates the complete elliptic integral of the kind $K(X)$.

Evaluates the complete elliptic integral of the second kind $E(x)$.

Evaluates Carlson's elliptic integral of the first kind $R_{f}(x, y, z)$.

Evaluates Carlson's elliptic integral of the second kind $R_{D}(x, y, z)$.

Evaluates Carlson's elliptic integral of the third kind $R_{\mu}(x, y, z, \rho)$.
Evaluates an elementary integral from which inverse circular functions, logarithms, and inverse hyperbolic functions can be computed.

Evaluates the cosine Fresnel integral.
fresnel_integral_S Evaluates the sine Fresnel integral.

AIRY FUNCTIONS	
FUNCTION	DESCRIPTION
airy_Ai	Evaluates the Airy function.
airy_Bi	Evaluates the Airy function of the second kind.
airy_Ai_derivative	Evaluates the derivative of the Airy function.
airy_Bi_derivative	Evaluates the derivative of the Airy function of the second kind.
KELVIN FUNCTIONS	
FUNCTION	DESCRIPTION
kelvin_ber0	Evaluates the Kelvin function of the first kind, ber, of order zero.
kelvin_beio	Evaluates the Kelvin function of the first kind, bei, of order zero.
kelvin_ker0	Evaluates the Kelvin function of the second kind, ker, of order zero.
kelvin_kei0	Evaluates the Kelvin function of the second kind, kei, of order zero.
kelvin_ber0_derivative	Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.
kelvin_bei0_derivative	Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.
kelvin_ker0_derivative	Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

KELVIN FUNCTIONS (Continued)
FUNCTION
kelvin_keiO_derivative

DESCRIPTION

Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

STATISTICAL FUNCTIONS	DESCRIPTION
FUNCTION	Evaluates the standard normal (Gaussian) distribution function.
normal_cdf	Evaluates the inverse of the standard normal (Gaussian) distribution function.
normal_inverse_cdf	Evaluates the chi-squared distribution function.
chi_squared_cdf	Evaluates the inverse of the chi-squared distribution function.
chi_squared_inverse_cdf	Evaluates the inverse of the F distribution function.
F_cdf distribution function.	
F_inverse_cdf	Evaluates the Student's t distribution function.
t_cdf	Evaluates the inverse of the Student's t distribution function.
t_inverse_cdf	Evaluates the gamma distribution function.
gamma_cdf	Evaluates the binomial distribution function.
binomial_cdf	
hypergeometric_cdf	

STATISTICAL FUNCTIONS (Continued)	
FUNCTION	DESCRIPTION
beta_cdf	Evaluates the beta distribution function.
beta_inverse_cdf	Evaluates the inverse of the beta distribution function.
bivariate_normal_cdf	Evaluates the bivariate normal distribution function.
FINANCIAL FUNCTIONS	
FUNCTION	DESCRIPTION
cumulative_interest	Evaluates the cumulative interest paid between two periods.
cumulative_principal	Evaluates the cumulative principal paid between two periods.
depreciation_db	Evaluates the depreciation of an asset using the fixed-declining balance method.
depreciation_ddb	Evaluates the depreciation of an asset using the double-declining balance method.
depreciation_sln	Evaluates the depreciation of an asset using the straight-line method.
depreciation_syd	Evaluates the depreciation of an asset using the sum-of-years digits method.
depreciation_vdb	Evaluates the depreciation of an asset for any given period using the variable-declining balance method.
dollar_decimal	Converts a fractional price to a decimal price.
dollar_fraction	Converts a decimal price to a fractional price.
effective_rate	Evaluates the effective annual interest rate.

FINANCIAL FUNCTIONS (Continued)

FUNCTION	DESCRIPTION
future_value	Evaluates an investment's future value.
future_value_schedule	Evaluates the future value of an initial principal taking into consideration a schedule of compound interest rates.
interest_payment	Evaluates the interest payment for an investment for a given period.
interest_rate_annuity	Evaluates an annuity's interest rate per period.
internal_rate_of_return	Evaluates the internal rate of return for a schedule of cash flows.
internal_rate_schedule	Evaluates the internal rate of return for a schedule of cash flows. It is not necessary that the cash flows be periodic.
modified_internal_rate	Evaluates the modified internal rate of return for a schedule of periodic cash flows.
net_present_value	Evaluates an investment's net present value. The calculation is based on a schedule of periodic cash flows and a discount rate.
nominal_rate	Evaluates the nominal annual interest rate.
number_of_periods	Evaluates the number of periods for an investment for which periodic and constant payments are made and the interest rate is constant.
payment	Evaluates the periodic payment for an investment.
present_value	Evaluates the net present value of a stream of equal periodic cash flows, which are subject to a given discount rate.
present_value_schedule	Evaluates the present value for a schedule of cash flows. It is not necessary that the cash flows be periodic.
principal_payment	Evaluates the payment on the principal for a specified period.

BOND FUNCTIONS	DESCRIPTION
FUNCTION	Evaluates the interest that has accrued on a security, which pays interest at maturity.
accr_interest_maturity	Evaluates the interest that has accrued on a security, which pays interest periodically.
accr_interest_periodic	Evaluates a Treasury bill's bond-equivalent yield.
bond_equivalent_yield	Evaluates the convexity for a security.
convexity	Evalutes the number of days in the coupon period containing the
coupon_days	Evates the number of coupons payable between the
seupon_number date and the maturity date.	

FUNCTION	DESCRIPTION
interest_rate_security	Evaluates a fully invested security's interest rate.
modified_duration	Evaluates a security's modified Macauley duration assuming a par value of $\$ 100$.
next_coupon_date	Evaluates the first coupon date that follows the settlement date.
previous_coupon_date	Evaluates the coupon date that immediately precedes the settlement date.
price	Evaluates a security's price per $\$ 100$ face value. The security pays periodic interest.
price_maturity	Evaluates a security's price per \$100 face value. The security pays interest at maturity.
received_maturity	Evaluates the amount one receives when a fully invested security reaches the maturity date.
treasury_bill_price	Evaluates a Treasury bill's price per \$100 face value.
treasury_bill_yield	Evaluates a Treasury bill's yield.
year_fraction	Evaluates the fraction of a year represented by the number of whole days between two dates.
yield_maturity	Evaluates a security's annual yield. The security pays interest at maturity.
yield_periodic	Evaluates a security's yield. The security pays periodic interest.

CHAPTER 10: STATISTICS AND RANDOM NUMBER GENERATION

STATISTICS

FUNCTION	DESCRIPTION
simple_statistics	Computes basic univariate statistics.
table_oneway	Tallies observations into a one-way frequency table.
chi_squared_test	Performs a chi-squared goodness-of-fit test.
covariances	Fits a multiple linear regression model using least squares.
regression	Performs a polynomial least-squares regression.
poly_regression	Computes the ranks, normal scores, or exponential scores for a
ranks	vector of observations.

RANDOM NUMBERS

FUNCTION

random_seed_get
random_seed_set
random_option

DESCRIPTION

Retrieves the current value of the seed used in the IMSL random number generators.

Initializes a random seed for use in the IMSL random number generators.

Selects the uniform (0,1) multiplicative congruential pseudorandom number generator.

RANDOM NUMBERS (CONTINUED)	
FUNCTION	DESCRIPTION
random_uniform	Generates pseudorandom numbers from a uniform (0,1) distribution.
random_normal	Generates pseudorandom numbers from a standard normal distribution using an inverse CDF method.
random_poisson	Generates pseudorandom numbers from a Poisson distribution. distribution.
random_gamma	Generates pseudorandom numbers from a beta distribution.
random_beta	Generates pseudorandom numbers from a standard exponential distribution.
random_exponential	Computes a shuffled Faure sequence.

CHAPTER 11: PRINTING FUNCTIONS

PRINT

FUNCTION
write_matrix
page
write_options

DESCRIPTION
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Sets or retrieves the page width or length.

Sets or retrieves an option for printing a matrix.

CHAPTER 12: UTILITIES

SET OUTPUT FILES

FUNCTION	DESCRIPTION
output_file	Sets the output file or the error message output file.
version	Returns integer information describing the version of the library, license number, operating system, and compiler.

TIME AND DATE

FUNCTION
ctime
date_to_days
days_to_date

DESCRIPTION

Returns the number of CPU seconds used.

Computes the number of days from January 1,1900 , to the given date.

Gives the date corresponding to the number of days since January 1, 1900.

ERROR HANDLING

| FUNCTION | DESCRIPTION |
| :--- | :--- | :--- |
| error_options | Sets various error handling options. |
| error_type | Gets the type corresponding to the error message from the last
 function called. |
| error_message | Gets the text of the error message from the last function called. |

ERROR HANDLING (CONTINUED)	
FUNCTION	DESCRIPTION
error_code	Gets the code corresponding to the error message from the last function called.
initialize_error_handler	Initializes the IMSL C Numerical Library error handling system.
set_user_fcn_return_flag	Indicates a condition has occurred in a user-supplied function necessitating a return to the calling C Numerical Library function.
C RUNTIME LIBRARY	
FUNCTION	DESCRIPTION
free	Frees memory returned from an IMSL C Math Library function.
fopen	Opens a file using the C runtime library used by the IMSL C Math Library.
fclose	Closes a file opened by imsl_fopen.

OPEN MP

FUNCTION	DESCRIPTION
omp_options	Sets various OpenMP options.

CONSTANTS

FUNCTION	DESCRIPTION
constant	Returns the value of various mathematical and physical constants.

CONSTANTS (CONTINUED)	
FUNCTION	DESCRIPTION
machine (float)	Returns information describing the computer's floating-point arithmetic.
machine (integer)	Returns integer information describing the computer's arithmetic.
sort	Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.
sort_integer	Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.
COMPUTING VECTOR NORMS	
FUNCTION	DESCRIPTION
vector_norm	Computes various norms of a vector or the difference of two vectors.
vector_norm (complex)	Computes various norms of a vector or the difference of two vectors
LINEAR ALGEBRA SUPPORT	
FUNCTION	DESCRIPTION
mat_mul_rect	Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product.
mat_mul_rect (complex)	Computes the transpose of a matrix, the conjugate-transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product.
mat_mul_rect_band	Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in band form.
mat_mul_rect_band (complex)	Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices of complex type and stored in band form.

LINEAR ALGEBRA SUPPORT (CONTINUED)

FUNCTION	DESCRIPTION
mat_mul_rect_coordinate	Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in sparse coordinate form.
mat_mul_rect_coordinate	Computes the transpose of a matrix, a matrix-vector product or a matrix-matrix product, all matrices stored in sparse coordinate form.
(complex)	Adds two band matrices, both in band storage mode, $C \leftarrow \alpha A+\beta B$.
mat_add_band	Adds two band complex matrices, both in band storage mode, C \leftarrow
mat_add_band (complex)	Performs element-wise addition of two real matrices stored in
coordinate format, $C \leftarrow \alpha A+\beta B$.	

NUMERIC UTILITIES (CONTINUED)	DESCRIPTION
FUNCTION	Computes a trigonometric sine of a complex number.
c_sin	Computes an exponential function of a complex number.
c_exp	Computes a natural logarithm of a complex number.
c_log	Computes a complex number raised to a real power.
cf_power	Computes a real number raised to an integral power.
cc_power	Computes an integer raised to an integral power.
fi_power	

IMSL C STAT LIBRARY

CHAPTER 1: BASIC STATISTICS

SIMPLE SUMMARY STATISTICS

FUNCTION	DESCRIPTION
simple_statistics	Computes basic univariate statistics.
empirical_quantiles	Computes empirical quantiles. sample from a normal population.
normal_one_sample	Computes statistics for mean and variance inferences using samples from two normal populations.
normal_two_sample	

TABULATE, SORT, AND RANK

FUNCTION
table_oneway
table_twoway

sort_data

ranks

DESCRIPTION

Tallies observations into a one-way frequency table.

Tallies observations into a two-way frequency table.

Sorts observations by specified keys, with option to tally cases into a multi-way frequency table.

Computes the ranks, normal scores, or exponential scores for a vector of observations.

CHAPTER 2: REGRESSION

MULTIVARIATE LINEAR REGRESSION—MODEL FITTING
FUNCTION
DESCRIPTION
regressors_for_glm
Generates regressors for a general linear model.
Fits a multiple linear regression model using least squares.

MULTIVARIATE LINEAR REGRESSION — STATISTICAL INFERENCE AND DIAGNOSTICS

FUNCTION

regression_summary
regression_prediction
hypothesis_partial
hypothesis_scph
hypothesis_test

DESCRIPTION

Produces summary statistics for a regression model given the information from the fit.

Computes predicted values, confidence intervals, and diagnostics after fitting a regression model.

Constructs a completely testable hypothesis.

Sums of cross products for a multivariate hypothesis.

Tests for the multivariate linear hypothesis.

VARIABLE SELECTION

FUNCTION	DESCRIPTION
regression_selection	Selects the best multiple linear regression models.

VARIABLE SELECTION

FUNCTION
 regression_stepwise

DESCRIPTION

Builds multiple linear regression models using forward selection, backward selection or stepwise selection.

POLYNOMIAL AND NONLINEAR REGRESSION

FUNCTION

poly_regression
poly_prediction
nonlinear_regression
nonlinear_optimization

DESCRIPTION

Performs a polynomial least-squares regression.

Computes predicted values, confidence intervals, and diagnostics after fitting a polynomial regression model.

Fits a nonlinear regression model.

Fits a nonlinear regression model using Powell's algorithm.

ALTERNATIVES TO LEAST SQUARES

FUNCTION
Lnorm_regression
pls_regression

DESCRIPTION

Fits a multiple linear regression model using L_{p} criteria other than least squares.

Performs partial least squares (PLS) regression for one or more response variables and one or more predictor variables.

CHAPTER 3: CORRELATION AND COVARIANCE

VARIANCES, COVARIANCES, AND CORRELATIONS	
FUNCTION	DESCRIPTION
covariances	Computes the variance-covariance or correlation matrix.
partial_covariances	Computes a pooled variance-covariance matrix from the observations.
pooled_covariances	Computes partial correlations or covariances from the covariance or correlation matrix.
robust_covariances	Computes a robust estimate of a covariance matrix and mean vector.

CHAPTER 4: ANALYSIS OF VARIANCE AND DESIGNED EXPERIMENTS

GENERAL ANALYSIS	DESCRIPTION
FUNCTION	Analyzes a one-way classification model.
anova_oneway	Analyzes a one-way classification model with covariates.
ancovar	Analyzes a balanced factorial design with fixed effects. unequal numbers in the subgroups.
anova_factorial	Analyzes a balanced complete experimental design for a fixed, random, or mixed model.
anova_nested	DESCRIPTION
anova_balanced	Analyzes data from balanced and unbalanced completely randomized experiments.
DESIGNED EXPERIMENTS	Analyzes data from balanced and unbalanced randomized complete-block experiments.
FUNCTION	Analyzes data from latin-square experiments.
crd_factorial	Analyzes balanced and partially-balanced lattice experiments.
rcbd_factorial	Analyzes a wide variety of split-plot experiments with fixed, mixed
or random factors.	

DESIGNED EXPERIMENTS (CONTINUED)

DESCRIPTION

Analyzes data from split-split-plot experiments.

Analyzes data from strip-plot experiments.

Analyzes data from strip-split-plot experiments.

UTILITIES

FUNCTION
 homogeneity

DESCRIPTION
Conducts Bartlett's and Levene's tests of the homogeneity of variance assumption in analysis of variance.

Compares differences among averages using the SNK, LSD,
Tukey's, Duncan's and Bonferroni's multiple comparisons tests.
Calculates the False Discovery Rate (FDR) q-values corresponding to a set of p-values resulting from multiple simultaneous hypothesis tests.

Estimates missing observations in designed experiments using Yate's method.

CHAPTER 5: CATEGORICAL AND DISCRETE DATA ANALYSIS

STATISTICS IN THE TWO-WAY CONTINGENCY TABLE

FUNCTION
contingency_table
exact_enumeration

DESCRIPTION

Performs a chi-squared analysis of a two-way contingency table.

Computes exact probabilities in a two-way contingency table, using the total enumeration method.

Computes exact probabilities in a two-way contingency table using the network algorithm.

CATEGORICAL MODELS

FUNCTION

categorical_glm
logistic_regression
logistic_reg_predict

DESCRIPTION
Analyzes categorical data using logistic, Probit, Poisson, and other generalized linear models.

Fits a binomial or multinomial logistic regression model using iteratively reweighted least squares.

Predicts a binomial or multinomial outcome given an estimated model and new values of the independent variables.

CHAPTER 6: NONPARAMETRIC STATISTICS

ONE SAMPLE TESTS-NONPARAMETRIC STATISTICS	
FUNCTION	DESCRIPTION
sign_test	Performs a sign test.
wilcoxon_sign_rank	Performs a Wilcoxon signed rank test.
noether_cyclical_trend	Performs the Noether's test for cyclical trend.
cox_stuart_trends_test	Performs the Cox and Stuart sign test for trends in location and dispersion.
tie_statistics	Computes tie statistics for a sample of observations.
TWO OR MORE SAMPL	
FUNCTION	DESCRIPTION
wilcoxon_rank_sum	Performs a Wilcoxon rank sign test.
kruskal_wallis_test	Performs a Kruskal-Wallis test for identical population medians.
friedmans_test	Performs Friedman's test for a randomized complete block design.
cochran_q_test	Performs Cochran's Q test for related observations.
k_trends_test	Performs k-sample trends test against ordered alternatives.

CHAPTER 7: TESTS OF GOODNESS OF FIT

GENERAL GOODNESS-OF-FIT TESTS FOR A SPECIFIED DISTRIBUTION

FUNCTION
chi_squared_test
shapiro_wilk_normality_test
lilliefors_normality_test
chi_squared_normality_test
kolmogorov_one
kolmogorov_two
multivar_normality_test
ad_normality_test
cvm_normality_test

DESCRIPTION
Performs a chi-squared goodness-of-fit test.

Performs the Shapiro-Wilk test for normality.

Performs a Lilliefors test for normality.

Performs a chi-squared test for normality.

Performs a Kolmogorov-Smirnov's one-sample test for continuous distributions.

Performs a Kolmogorov-Smirnov's two-sample test.

Computes Mardia's multivariate measures of skewness and kurtosis and tests for multivariate normality.

Performs an Anderson-Darling test for normality.

Performs a Cramer-von Mises test for normality.

TESTS FOR RANDOMNESS

```
FUNCTION
randomness_test
```

DESCRIPTION
Performs a test for randomness.

CHAPTER 8: TIME SERIES ANALYSIS AND FORECASTING

ARIMA MODELS	
FUNCTION	DESCRIPTION
arma	Computes least-square estimates of parameters for an ARMA model.
max_arma	Exact maximum likelihood estimation of the parameters in a univariate ARMA (autoregressive, moving average) time series model.
arma_forecast	Computes forecasts and their associated probability limits for an ARMA model.
arima	Fits a univariate seasonal or non-seasonal ARIMA time series model.
regression_arima	Fits a univariate ARIMA (p, d, q) time series model with the inclusion of one or more regression variables.
AUTOMATIC ARIMA SELECTION AND FITTING UTILITIES	
FUNCTION	DESCRIPTION
auto_uni_ar	Automatic selection and fitting of a univariate autoregressive time series model. The lag for the model is automatically selected using Akaike's information criterion (AIC).
seasonal_fit	Estimates the optimum seasonality parameters for a time series using an autoregressive model, $\operatorname{AR}(p)$, to represent the time series.
ts_outlier_identification	Detects and determines outliers and simultaneously estimates the model parameters in a time series whose underlying outlierfree series follows a general seasonal or nonseasonal ARMA model.
ts_outlier_forecast	Computes forecasts, their associated probability limits and weights for an outlier contaminated time series whose underlying outlier free series follows a general seasonal or nonseasonal ARMA model.

AUTOMATIC ARIMA SELECTION AND FITTING UTILITIES (CONTINUED)	
FUNCTION	DESCRIPTION
auto_arima	Automatically identifies time series outliers, determines parameters of a multiplicative seasonal ARIMA $(p, 0, q) \times(0, d, 0)_{s}$ model and produces forecasts that incorporate the effects of outliers whose effects persist beyond the end of the series.
auto_parm	Estimates structural breaks in non-stationary univariate time series.
BAYESIAN TIME SERIES ESTIMATION	

MODEL CONSTRUCTION AND EVALUATION UTILITIES

| FUNCTION | DESCRIPTION |
| :--- | :--- | :--- |
| box_cox_transform | Performs a Box-Cox transformation. |
| difference | Computes the sample autocorrelation function of a stationary
 time series. |
| autocorrelation | Computes the sample cross-correlation function of two stationary
 time series. |
| crosscorrelation | Computes the multichannel cross-correlation function of two
 mutually stationary multichannel time series. |
| multi_crosscorrelation | Computes the sample partial autocorrelation function of a
 stationary time series |
| partial_autocorrelation | Performs lack-of-fit test for an univariate time series or transfer
 function given the appropriate correlation function. |
| lack_of_fit | |

MODEL CONSTRUCTION AND EVALUATION UTILITIES (CONTINUED)

FUNCTION	DESCRIPTION
estimate_missing	Estimates missing values in a time series.

EXPONENTIAL SMOOTHING METHODS

FUNCTION

hw_time_series

DESCRIPTION
Calculates parameters and forecasts using the Holt-Winters Multiplicative or Additive forecasting method for seasonal data.

GARCH MODELING

FUNCTION
garch

DESCRIPTION
Computes estimates of the parameters of a $\operatorname{GARCH}(p, q)$ model.

STATE-SPACE MODELS

FUNCTION	DESCRIPTION
kalman	Performs Kalman filtering and evaluates the likelihood function for the state-space model.

AUTO-REGRESSION AND ERROR CORRECTION

FUNCTION

vector_autoregression

DESCRIPTION
Estimates a vector auto-regressive time series model with optional moving average components.

CHAPTER 9: MULTIVARIATE ANALYSIS

HIERARCHICAL CLUSTER ANALYSIS	
FUNCTION	DESCRIPTION
dissimilarities	Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.
cluster_hierarchical	Performs a hierarchical cluster analysis given a distance matrix.
cluster_number	Computes cluster membership for a hierarchical cluster tree.

K-MEANS CLUSTER ANALYSIS

FUNCTION	DESCRIPTION
cluster_k_means	Performs a K-means (centroid) cluster analysis.

PRINCIPAL COMPONENT ANALYSIS

FUNCTION	DESCRIPTION
principal_components	Computes principal components.

FACTOR ANALYSIS

FUNCTION	DESCRIPTION
factor_analysis	Extracts initial factor-loading estimates in factor analysis with rotation options.

FACTOR ANALYSIS (CONTINUED)

FUNCTION DESCRIPTION
discriminant_analysis Performs discriminant function analysis.

CHAPTER 10: SURVIVAL AND RELIABILITY ANALYSIS

SURVIVAL ANALYSIS	DESCRIPTION
FUNCTION	Computes Kaplan-Meier estimates of survival probabilities in stratified samples.
kaplan_meier_estimates	Analyzes survival and reliability data using Cox's proportional hazards model.
prop_hazards_gen_lin	Analyzes censored survival data using a generalized linear model. parametric models.
survival_glm	DESCRIPTION
survival_estimates	Estimates a reliability hazard function using a nonparametric and hazard rates for the various approach.
RELIABILITY ANALYSIS	
FUNCTION	
nonparam_hazard_rate	DESCRIPTION
ACTUARIAL TABLES	Produces population and cohort life tables.
FUNCTION	
life_tables	

CHAPTER 11: PROBABILITY DISTRIBUTION FUNCTIONS AND INVERSES

DISCRETE RANDOM VARIABLES	
FUNCTION	DESCRIPTION
binomial_cdf	Evaluates the binomial distribution function.
binomial_pdf	Evaluates the binomial probability function.
geometric_cdf	Evaluates the discrete geometric cumulative distribution function.
geometric_inverse_cdf	Evaluates the inverse of the discrete geometric cumulative
geometric_pdf	Evaluates the discrete geometric probability density function.
hypergeometric_cdf	Evaluates the hypergeometric distribution function.
discrete_uniform_cdf	Evaluates the hypergeometric probability function.
poisson_cdf	Evaluates the discrete uniform probability density function.
discrete_uniform_inverse_cdf	Evaluates the discrete uniform cumulative distribution function.
distribution function.	
Evaluates the Poisson probability function.	

CONTINUOUS RANDOM VAR	
FUNCTION	DESCRIPTION
beta_cdf	Evaluates the beta probability distribution function.
beta_inverse_cdf	Evaluates the inverse of the beta distribution function.
non_central_beta_cdf	Evaluates the noncentral beta cumulative distribution function.
non_central_beta_inverse_cdf	Evaluates the inverse of the noncentral beta cumulative distribution function.
non_central_beta_pdf	Evaluates the noncentral beta probability density function.
bivariate_normal_cdf	Evaluates the bivariate normal distribution function.
chi_squared_cdf	Evaluates the chi-squared distribution function.
chi_squared_inverse_cdf	Evaluates the inverse of the chi-squared distribution function.
complementary_chi_squared_ cdf	Evaluates the complement of the chi-squared distribution.
complementary_F_cdf	Evaluates the complement of the F distribution function.
complementary_t_cdf	Evaluates the complement of the Student's t distribution function.
exponential_cdf	Evaluates the exponential cumulative distribution function.
exponential_inverse_cdf	Evaluates the inverse of the exponential cumulative distribution function.
exponential_pdf	Evaluates the exponential probability density function.

CONTINUOUS RANDOM VARIABLES (CONTINUED)	
FUNCTION	DESCRIPTION
F_cdf	Evaluates the F distribution function.
F_inverse_cdf	Evaluates the inverse of the F distribution function.
gamma_cdf	Evaluates the gamma distribution function.
gamma_inverse_cdf	Evaluates the inverse of the gamma distribution function.
lognormal_cdf	Evaluates the lognormal cumulative distribution function.
lognormal_inverse_cdf	Evaluates the inverse of the lognormal cumulative distribution function.
lognormal_pdf	Evaluates the lognormal probability density function.
multivariate_normal_cdf	Evaluates the cumulative distribution function for the multivariate normal distribution.
non_central_chi_sq	Evaluates the noncentral chi-squared distribution function.
non_central_chi_sq_inv	Evaluates the inverse of the noncentral chi-squared function.
non_central_chi_sq_pdf	Evaluates the noncentral chi-squared probability density function.
non_central_F_cdf	Evaluates the noncentral F cumulative distribution function.
complementary_non_central_ F_cdf	Evaluates the complementary noncentral F cumulative distribution function.
non_central_F_inverse_cdf	Evaluates the inverse of the noncentral F cumulative distribution function.

CONTINUOUS RANDOM VARIABLES (CONTINUED)	
FUNCTION	DESCRIPTION
non_central_F_pdf	Evaluates the noncentral F probability density function.
non_central_t_cdf	Evaluates the noncentral Student's t distribution function.
non_central_t_inv_cdf	Evaluates the inverse of the noncentral Student's t distribution function.
non_central_t_pdf	Evaluates the Pareto cumulative probability distribution function.
pareto_cdf	Evaluates the Pareto probability density function.
pareto_pdf	Evaluates the standard normal (Gaussian) distribution function.
normal_cdf	Evaluates the inverse of the standard normal (Gaussian) distribution function.
normal_inverse_cdf	Evaluates the Student's t distribution function.
t_cdf	Evaluates the inverse of the Student's t distribution function.
t_inverse_cdf	parametes maximum likelihood estimates (MLE) for the of several univariate probability distributions.

CHAPTER 12: RANDOM NUMBER GENERATION

UNIVARIATE DISCRETE DISTRIBUTIONS

FUNCTION	DESCRIPTION
random_binomial	Generates pseudorandom binomial numbers from a binomial distribution.
random_geometric	Generates pseudorandom numbers from a geometric distribution.
random_hypergeometric	Generates pseudorandom numbers from a hypergeometric distribution.
random_logarithmic	Generates pseudorandom numbers from a logarithmic distribution.
random_neg_binomial	Generates pseudorandom numbers from a negative binomial distribution.
random_poisson	Generates pseudorandom numbers from a Poisson distribution. distribution.
random_uniform_discrete	Generates pseudorandom numbers from a general discrete distribution using an alias method or, optionally, a table lookup method.
discrete_table_setup	Sets up a table to generate pseudorandom numbers from a general discrete distribution.

UNIVARIATE CONTINUOUS DISTRIBUTIONS

FUNCTION	DESCRIPTION
random_beta	Generates pseudorandom numbers from a beta distribution.
random_cauchy	Generates pseudorandom numbers from a Cauchy distribution.

UNIVARIATE CONTINUOUS DISTRIBUTIONS (CONTINUED)	
FUNCTION	DESCRIPTION
random_chi_squared	Generates pseudorandom numbers from a chi-squared distribution.
random_exponential	Generates pseudorandom numbers from a standard exponential distribution.
random_exponential_mix	Generates pseudorandom mixed numbers from a standard exponential distribution.
random_gamma	Generates pseudorandom numbers from a standard gamma distribution.
random_lognormal	Generates pseudorandom numbers from a lognormal distribution.
random_normal	Generates pseudorandom numbers from a standard normal distribution.
random_stable	Generates pseudorandom numbers from a stable distribution.
random_student_t	Generates pseudorandom numbers from a Student's t distribution.
random_triangular	Generates pseudorandom numbers from a triangular distribution.
random_uniform	Generates pseudorandom numbers from a uniform $(0,1)$ distribution.
random_von_mises	Generates pseudorandom numbers from a von Mises distribution.
random_weibull	Generates pseudorandom numbers from a Weibull distribution.
random_general_continuous	Generates pseudorandom numbers from a general continuous distribution.
continuous_table_setup	Sets up a table to generate pseudorandom numbers from a general continuous distribution.

MULTIVARIATE CONTINUOUS DISTRIBUTIONS	
FUNCTION	DESCRIPTION
random_normal_multivariate	Generates pseudorandom numbers from a multivariate normal distribution.
random_orthogonal_matrix	Generates a pseudorandom orthogonal matrix or a correlation matrix.
random_mvar_from_data	Generates pseudorandom numbers from a multivariate distribution determined from a given sample.
random_multinomial	Generates pseudorandom numbers from a multinomial distribution.
random_sphere	Generates pseudorandom points on a unit circle or K dimensional sphere.
random_table_twoway	Generates a pseudorandom two-way table.
random_mvar_gaussian_copul a	Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Gaussian Copula distribution.
random_mvar_t_copula	Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Student's t Copula distribution.
canonical_correlation	Given an input array of deviate values, generates a canonical correlation array.

ORDER STATISTICS

| FUNCTION | DESCRIPTION |
| :--- | :--- | :--- |
| random_order_normal | Generates pseudorandom order statistics from a standard
 normal distribution. |
| random_order_uniform | Generates pseudorandom order statistics from a uniform $(0,1)$
 distribution. |

STOCHASTIC PROCESSES	
FUNCTION	DESCRIPTION
random_arma	Generates a time series from a specific ARMA model.
random_npp	Generates pseudorandom numbers from a nonhomogeneous Poisson process.

SAMPLES AND PERMUTATIONS

FUNCTION

random_permutation
random_sample_indices
random_sample

DESCRIPTION

Generates a pseudorandom permutation.

Generates a simple pseudorandom sample of indices.

Generates a simple pseudorandom sample from a finite population.

UTILITY FUNCTIONS

FUNCTION
random_option
random_option_get
random_seed_get
random_substream_seed_get

DESCRIPTION

Selects the uniform $(0,1)$ multiplicative congruential pseudorandom number generator.

Retrieves the uniform $(0,1)$ multiplicative congruential pseudorandom number generator.

Retrieves the current value of the seed used in the IMSL random number generators.

Retrieves a seed for the congruential generators that do not do shuffling that will generate random numbers beginning 100,000 numbers farther along.

UTILITY FUNCTIONS (CONTINUED)	
FUNCTION	DESCRIPTION
random_seed_set	Initializes a random seed for use in the IMSL random number generators.
random_table_set	Sets the current table used in the shuffled generator.
random_table_get	Retrieves the current table used in the shuffled generator.
random_GFSR_table_set	Sets the current table used in the GFSR generator.
random_GFSR_table_get	Retrieves the current table used in the GFSR generator.
random_MT32_init	Initializes the 32-bit Mersenne Twister generator using an array.
random_MT32_table_get	Retrieves the current table used in the 32-bit Mersenne Twister generator.
random_MT32_table_set	Sets the current table used in the 32-bit Mersenne Twister generator.
random_MT64_init	Initializes the 64-bit Mersenne Twister generator using an array.
random_MT64_table_get	Retrieves the current table used in the 64-bit Mersenne Twister generator.
random_MT64_table_set	Sets the current table used in the 64-bit Mersenne Twister generator.

LOW-DISCREPANCY SEQUENCE

FUNCTION
faure_next_point

DESCRIPTION

Computes a shuffled Faure sequence.

CHAPTER 13: DATA MINING

APRIORI - MARKET BASKET ANALYSIS	
FUNCTION	DESCRIPTION
apriori	Computes the frequent itemsets in a transaction set.
aggr_apriori	Computes the frequent itemsets in a transaction set using aggregation.
write_apriori_itemsets	Prints frequent itemsets.
write_association_rules	Frees the memory allocated within a frequent itemsets structure.
free_apriori_itemsets	Frees the memory allocated within an association rules structure.
free_association_rules	

DECISION TREE

| FUNCTION | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| decision_tree | Generates a decision tree or a random forest of decision trees for
 a single response variable and two or more predictor variables |
| decision_tree_predict | Computes predicted values using a decision tree. |
| decision_tree_print | Frints a decision tree. |
| decision_tree_free | Presforms stochastic memory associated with a decision tree. boosting for decision trees. |
| gradient_boosting | |

GENETIC ALGORITHM DATA STRUCTURES	
FUNCTION	DESCRIPTION
ga_chromosome	Creates an Imsls_f_chromosome data structure containing unencoded and encoded phenotype information.
ga_copy_chromosome	Copies the contents of one chromosome into another chromosome.
ga_clone_chromosome	Clones an existing chromosome.
ga_individual	Creates an Ims/s_f_individual data structure from user supplied phenotypes.
ga_copy_individual	Copies the contents of one individual into another individual.
ga_clone_individual	Clones an existing individual.
ga_mutate	Performs the mutation operation on an individual's chromosome.
ga_decode	Decodes an individual's chromosome into its binary, nominal, integer and real phenotypes.
ga_encode	Encodes an individual's binary, nominal, integer and real phenotypes into its chromosome.
ga_free_individual	Frees memory allocated to an existing individual.
ga_population	Creates an $/ \mathrm{ms} / s_{\text {_f_population data structure from user supplied }}$ individuals.
ga_random_population	Creates an Ims/s_f_population data structure from randomly generated individuals.
ga_copy_population	Copies the contents of one population into another population.
ga_clone_population	Clones an existing population.

GENETIC ALGORITHM DATA STRUCTURES (CONTINUED)

FUNCTION
ga_grow_population
ga_merge_population
ga_free_population
genetic_algorithm

DESCRIPTION

Adds individuals to an existing population.

Creates a new population by merging two populations with identical chromosome structures.

Frees memory allocated to an existing population.

Optimizes a user defined fitness function using a tailored genetic algorithm.

NAIVE BAYES

FUNCTION	DESCRIPTION
naive_bayes_trainer	Trains a Naïve Bayes classifier.
naive_bayes_classification	Classifies unknown patterns using a previously trained Naïve Bayes classifier.
nb_classifier_free	Frees memory allocated to an Imsls_f_nb_classifier data structure.
nb_classifier_write	Writes a Naïve Bayes Classifier to an ASCll file for later retrieval using ims ls_f_nb_class ifier_read.
nb_classifier_read	Retrieves a Naïve Bayes Classifier from a file previously saved using ims ls_f_nb_classifier_write.

NEURAL NETWORK DATA STRUCTURES

FUNCTION

mlff_network_init

DESCRIPTION

Initializes a data structure for training a neural network.

NEURAL NETWORK DATA STRUCTURES (CONTINUED)

mlff_network
mlff_network_free
mlff_network_write
mlff_network_read
mlff_initialize_weights

Multilayered feedforward neural network.

Frees memory allocated for an Ims/s_f_NN_Network data structure.

Writes a trained neural network to an ASCII file.

Retrieves a neural network from a file previously saved.

Initializes weights for multilayered feedforward neural networks prior to network training using one of four user selected methods.

FORECASTING NEURAL NETWORKS

FUNCTION

mlff_network_trainer
mlff_network_forecast

DESCRIPTION

Trains a multilayered feedforward neural network.

Calculates forecasts for trained multilayered feedforward neural networks.

CLASSIFICATION NEURAL NETWORKS

FUNCTION

mlff_classification_trainer
mlff_pattern_classification

DESCRIPTION
Trains a multilayered feedforward neural network for classification.

Calculates classifications for trained multilayered feedforward neural networks.

PREPROCESSING FILTERS	
FUNCTION	DESCRIPTION
scale_filter	Scales or unscales continuous data prior to its use in neural network training, testing, or forecasting.
time_series_filter	Converts time series data to the format required for processing by a neural network.
time_series_class_filter	Converts time series data sorted within nominal classes in decreasing chronological order to a useful format for processing by a neural network.
unsupervised_nominal_filter	Converts nominal data into a series of binary encoded columns for input to a neural network. Optionally, it can also reverse the binary encoding, accepting a series of binary encoded columns and returning a single column of nominal classes.
unsupervised_ordinal_filter	Converts ordinal data into proportions. Optionally, it can also reverse encoding, accepting proportions and converting them into ordinal values.
SELF ORGANIZING MAPS	
FUNCTION	DESCRIPTION
kohonenSOM_trainer	Trains a Kohonen network.
kohonenSOM_forecast	Calculates forecasts using a trained Kohonen network.
SUPPORT VECTOR MACHINES	
FUNCTION	DESCRIPTION
support_vector_trainer	Trains a Support Vector Machines (SVM) classifier.
support_vector_classification	Classifies unknown patterns using a previously trained Support Vector Machines (SVM) model computed by support_vector_trainer.

SUPPORT VECTOR MACHINES

FUNCTION
svm_classifier_free

DESCRIPTION
Frees memory allocated to an
Imsls_f_svm_model/Imsls_d_svm_model data structure.

CHAPTER 14: PRINTING FUNCTIONS

PRINT

FUNCTION

write_matrix

DESCRIPTION
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

SET

DESCRIPTION
page
write_options

Sets or retrieves the page width or length.

Sets or retrieves an option for printing a matrix.

CHAPTER 15: UTILITIES

SET OUPUT FILES	DESCRIPTION
FUNCTION	Sets the output file or the error message output file.
output_file	Returns integer information describing the version of the library, license number, operating system, and compiler.
version	DesCRIPTION
ERROR HANDLING	Sets various error handling options.
FUNCTION	Gets the type corresponding to the error message from the last function called.
error_options	Gets the text of the error message from the last function called.
error_type	Returns the code corresponding to the error message from the last function called.
error_message	Initializes the IMSL C Stat Library error handling system.
initialize_error_handler	Indicates a condition has occurred in a user-supplied function
necessitating a return to the calling function.	

C RUNTIME LIBRARY	
FUNCTION	DESCRIPTION
free	Frees memory returned from an IMSL C Stat Library function.
fopen	Opens a file using the C runtime library used by the IMSL C Stat Library.
fclose	Closes a file opened by imsls_fopen.
ascii_read	Reads freely-formatted ASCII files.
OPENMP	
FUNCTION	DESCRIPTION
omp_options	Sets various OpenMP options.
CONSTANTS	
FUNCTION	DESCRIPTION
machine (integer)	Returns integer information describing the computer's arithmetic.
machine (float)	Returns information describing the computer's floating-point arithmetic.
data_sets	Retrieves a commonly analyzed data set.

MATHEMATICAL SUPPORT

FUNCTION	DESCRIPTION
mat_mul_rect	Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, a bilinear form, or any triple product.
permute_vector	Rearranges the elements of a vector as specified by a permutation.
permute_matrix	Permutes the rows or columns of a matrix.
impute_missing	Locates and optionally replaces dependent variable missing values with nearest neighbor estimates.
binomial_coefficient	Evaluates the binomial coefficient.
beta	Evaluates the real regularized incomplete beta function.
beta_incomplete	Evaluates the real regularized incomplete beta function.
log_beta	Evaluates the logarithm of the real beta function $\ln \beta(x, y)$.
gamma	Evaluates the real gamma function.
gamma_incomplete	Evaluates the incomplete gamma function $y(a, x)$.
log_gamma	Evaluates the logarithm of the absolute value of the gamma function $\log \|\Gamma(x)\|$.
ctime	Returns the number of CPU seconds used.

PERFORCE

Copyright 1970-2021 Rogue Wave Software, Inc., a Perforce company.

Visual Numerics, IMSL, PV-WAVE, JMSL, JWAVE, TS-WAVE, and PyIMSL are registered trademarks of Rogue Wave Software, Inc.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this document is subject to the terms and conditions of a Rogue Wave Software License Agreement, including, without limitation, the Limited Warranty and Limitation of Liability.

IMSL by Perforce
https://www.imsl.com

