by Perforce

IMSL® C Math Library

Version 2021.0

PERFORCE

ww.perforc

IMSL

by Perforce

Copyright 1970-2021 Rogue Wave Software, Inc., a Perforce company.

Visual Numerics, IMSL, and PV-WAVE are registered trademarks of Rogue Wave Software, Inc., a Perforce company.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this docu-
ment is subject to the terms and conditions of a Rogue Wave Software License Agreement, including, without limitation,
the Limited Warranty and Limitation of Liability.

ACKNOWLEDGMENTS

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft-
ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse
of the Documentation

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

IMSL by Perforce
https://www.imsl.com

Introduction
IMSL C Math Library 2
Organization of the Documentation 3
Finding the Right Function 5
Naming CONVENLIONSt e e e e 6
Getting Started and theimsl.hfile. o 7
Error Handling, Underflow, Overflow, and Document Examples............ 8
Memory Allocation for OUTPUL Arrays. ... 9
Printing ReSUITS 10
Complex Arithmetic 11
MisSINg Values o 12
Passing Data to User-Supplied Functions, 13
Return Values from User-Supplied Functions ..., 14
Thread Safe Usage 15
OpPenMP USage 16
Vendor Supplied Libraries Usage ... 18
Gt USa8 ittt 19
Matrix Storage MOdes 22
Linear Systems
FUNCHONS 31
USage NOTS. . o 33
NSOl BN 37
lin_sol_gen (complex) 47
liN_SOl_posdel. ... 55
lin_sol_posdef (complex) 62
lin_sol_gen_band 68
lin_sol_gen_band (Complex). 74

lin_sol_posdef band 80

lin_sol_posdef_band (complex) 85

lin_sol_gen_coordinate 90
lin_sol_gen_coordinate (complex). 101
SUPETIU . o 110
SUPEriU (COMPIEX) .« . 125
SUPETIU_SIMID ot e 141
suUperlu_smp (COMPIEX). . oo 154
lin_sol_posdef_coordinate 168
lin_sol_posdef_coordinate (complex)..............oo .. 177
sparse_cholesky Smp 186
sparse_cholesky_smp (complex). ... 196
lin_sol_gen_min_residual 206
N _soldef Cg ... 212
liN_least_squares_gen 219
NONNEE_least SQUAreS e 228
liN_ISQ_liN_CONSTraints 235
nonneg_matrix_factorization 241
N SV e o 246
lin_svd_gen (COMPIeX) 253
lin_sol_nonnegdef 260

Eigensystem Analysis

FUNCLIONS . o 267
Usage NOTES 268
arpack _SYMMELriC . .o 272
arpack general. ... 299
ST == 1 319
eig gen (COMPIEX) . .\ 323
S>3 P 327
eig_herm (COMPIEX) 331
Bl Sy M N Lttt 336
oS T =P 340
geneig (COMPIEX) .. oo 345

Interpolation and Approximation

FUNCHIONS .« o 349

Usage NOtesS . ..o 350
cub_spline_interp_e_Cnd. 360
cub_spline_interp_shape 369
cub_spline_tch ... 375
cub_spline_value 383
cub_spline_integral 387
SPHNE_INtEIP 389
SPHNE_KNOTS . 395
SPHNe_ 20 iNterp. 400
spline_value. ... 407
spline_integral. 411
spline_2d._value 414
spline_2d_integral 418
SpliNe_NA_INterp. ... 422
User_fCn_least_SqQUaresS.o 427
Spline_least_squares 436
spline_2d_least_squares. ... 443
cub_spline_smooth 449
spline_Isg_constrained 454
SMOOtN 1A _data. . ..o 463
scattered_2d_interp. . ..o 468
radial_scattered fit. 473
radial_evaluate 481
Quadrature
FUNCEIONS . 485
UsSage NOTeS . .o 486
11 (e] [= 489
INEICN_SINg T . o 494
11 502
INE N SINg DlS oo 507
INEfCN_alg o8, . . 513

INEFCN Nt 518

1 e T = PP 524

INE fCN fOUM e . o 530
INECN_CaUCNY . 536
N fCN_SMOOTN . . . o 541
INE FCN 20 o 546
INEICN_SING 20 . 552
INEICN_SING 30 . 561
INEICN_NYPer_reCt .. 571
N N gMIC . o 576
gauss_quad_rule ... 580
fen_derivative . ..o 585

Differential Equations

FUNCEIONS . o 589
Usage NOTES 590
0de_runge_KUtta 593
bvp_finite_difference 600
differential_algebraic_eqs.o 612
dea_petzold_gear. 629
ode_adams_Krogh 630
Introductionto pde_1d_mg ... 640
DA TA Mg o 643
modified_method_of lines. 678
feynman_kac. ... 695
feynman_kac_evaluate 730
fast_poiSSON_2d 734
Transforms
FUNCHIONS . o 741
UsSage NOtesS . ..o 742
T real 744
el NIt 749
I COmMpleX . 751
flt_complex_init ... 755

L COSING . o 758

L COSING NIt .« .o 761

T SINe 765
I SINe NIt . 768
I 2d_CoOmMPlEX . .o 772
CONVOIUTION L . e 777
CONVOIULION (COMPIEX). . oo 784
INverse_laplace ... 791

Nonlinear Equations

FUNCEIONS . o 800
Usage NOTES 801
ZEI0S_POIY .« 802
Zeros_poly (COMPIEX). . .. 807
ZErO _UNIVAriate . . . 812
ZeroS_fUNCLION . oo 816
ZBI0S _SYS RN . o e ettt 822
Optimization
FUNCIONS . o 827
Usage NOtesS . ..o 828
MIN_UNCON. « e et e e e e e e e e e s 831
MIN_UNCON_A@IIV .« ot 836
MIN_UNCON_GOIAeN .. e 841
MIN_UNCON_MUILIVAI .o 846
MIN_UNCON_POIYIOPE . . . oo e 855
NONIIN_least_SqQUAares. 860
FEAd MIDS. o oot 871
liNear_programming 881
L1101 1 888
PO 892
QUAAIAtIC PO .« oo e 898
SPArSE_lIN_Prog .. 904
SPArse_quadratic_ProOg . . oo et 918
MIN_CON BN liN . 933
bounded_least_SqQUares 941

vii

MIN_CON_POIYIOPE . oo e 951

MIN_CON_IIN_truSt_region e 962
constrained_NIp ... 968
JACObIaN L 979
Special Functions
FUNCEIONS . o 994
Usage NOTES 998
T 1001
BT 1003
B . 1006
BT 1008
Bl NV SO . o 1010
B INVRISE . o 1013
Dt . 1016
lOg Deta . . 1019
beta_incomplete 1021
BAMMIA . L e 1023
IO amMIMa L 1026
BaMmMa_iNCOMPIete. ... 1029
015 1032
DSI T 1034
Dessel O .. 1036
DeSSel T o 1039
DESS el X 1041
DESSEl YO . o 1044
DESSEl Yl 1047
OSSOl Y X o 1049
DeSSel 0 L 1051
Dessel_exp_l0 ... 1054
DESSel T 1056
DeSsel X T o 1058
PSSl X o 1060
Dessel KO, . 1062

viii

Dessel exp_KO .. 1065

eSSl KT 1067
Dessel exXpP_ K 1069
eSSl KX . ot 1071
elliptic_integral K . .. 1073
elliptic_integral_E ... 1075
elliptic_integral_RF ... 1077
elliptic_integral_RD. 1079
elliptic_integral_RJ. 1081
elliptic_integral_RC 1083
fresnelintegral_C. 1085
fresnelintegral S. 1087
AUy A 1089
airy Bl 1091
airy_Ai_derivative 1093
airy_Bi_derivative 1095
KelVin DerO .. 1097
KelVin DeiO. ..o 1099
KeVIN KeIO. o 1101
KeVIN KEIO . 1103
kelvin_berQ derivative. 1105
kelvin_beiQ_derivative 1107
kelvin_kerO derivative o 1109
kelvin_keiO derivative 1M
NOrMal COf 1113
normal inverse Caf 1116
chi_squared_cdf 1118
chi_squared_inverse_cdf. 1121
e 1123
Foinverse Caf. .. o 1125
Al 1127
tNVerse Caf . ..o 1130
BAMMA_CAl . 1132

binomial Caf ..o 1135

hypergeometric_cdf. 1137
POISSON_CAf . . 1140
Deta CAf . . 1142
beta inverse cdf 1144
bivariate_normal_cdf. 1146
CUMUIATIVE INTeIreST . . o 1149
cumulative_principal 1151
depreciation_db 1153
depreciation_ddb. 1156
depreciation_SIN. ... 1159
deprediation_Syd 1161
depreciation_vdb 1163
dollar_decimal 1166
dollar_fraction.o 1168
effeCtiVe rate . . 1170
fUtUre Value . . 1172
future_value_schedule 1174
INTEreSt_PaYMENT. . oot e e e 1176
INterest_rate_annuIity.o 1178
internal_rate of retUrn 1181
internal_rate_schedule 1184
modified_internal_rate 1187
net_present value 1189
NOMINAl rate . o 1191
nuMber_of_periods 1193
PAYIMINE. 1195
present Value . ..o 1197
present_value_schedule 1199
principal_payment 1201
ACCr_iNterest_ MatUrity. . . oot e e 1203
accr_interest_periodiC. ..o 1205

bond_equivalent_yield. 1208

CONVEXITY ottt e et e e e e e e e e e e 1210

COUPON_TAYS. .+ oottt e e e e e 1213
COUPON_NUMIDET ottt 1215
days_before_settlement. 1217
dayS_tO_NEXL_COUPON . vttt e e e e e e e e e e 1219
depreciation_amordegrC 1221
depreciation_amorling 1224
ISCOUNT_PIICE ottt 1227
AiSCOUNT rate . o 1229
diSCOUNTYIEIA . . oo 1231
AUratioN . .o 1233
INterest_rate_SeCUNtYt 1236
modified dUration 1238
NexXt_CoUpON_date 1241
Previous_CoUPON_date 1243
PG e et e e 1245
PrICE_MATtUIILY. « et e 1248
received_Maturity 1251
treasury_bill_price 1254
treasury_bill_yield. 1256
year_fraction 1258
Yield maturity . ..o 1260
yield_periodico 1263
Statistics and Random
Number Generation
FUNCEIONS . 1266
Usage NOteS . ..o 1267
SIMPle_StatiStiCS . .o 1269
table_oneway 1275
Chi_sqQuared_test 1280
COVAMANCES « ottt e e e e 1289
FREIESSION & ot ettt e e e e e e 1296

POIY_MeEreSSION .o 1306

random_seed_get 1322
random _Seed _Set. . ..o 1324
raNdomM_OPLION. . ..o 1325
random _UNIfOrm ..o 1327
random_NOrmMal . ..o 1330
FANAOM_POISSON .ottt e 1332
FANAOM_ZAMIMIA. . o oottt 1335
FranNdom _bDeta ... 1338
random_exponential. 1341
faure_Next_point 1343
Printing Functions
FUNCEIONS . o 1348
WHTE MAIIX .o e 1349
DA e 1356
WIITE_OPLIONS .ot 1358
Utilities
FUNCHIONS . o 1362
OUtPUL file 1364
VOIS ON L ettt e e 1368
CUINE. 1370
date_to_daysS. ..o 1372
days 0 _date . ..o 1374
EITON_OPUIONS .« .ttt 1376
B O YD o 1383
EITOI_MESSAEER .« ottt ettt et e e e e e e e 1384
IO _COAR. e 1386
initialize_error_handler 1388
set_user_fcn_return_flag. ... 1390
O L e 1395
OO 1397
fClOSE L 1399
OMP_OPIONS . ot 1400

Xii

CONSEANT .« oo 1402

MAaching (INTEZEI)ot e 1407
machine (float) 1410
SOOI e 1414
SOMT(INEEEEN) . ot et e 1417
VECTON NOIMN © ottt e e e e 1420
Vector_Norm (COMPIeX)o 1423
Mat MUl FECE .o 1427
mat_mul_rect (COMPIex) 1431
mat_ mul_rect band 1435
mat_mul_rect_band (complex) ... 1440
mat_mul_rect_coordinate. 1445
mat_mul_rect_coordinate (complex) 1450
mat_ add band 1456
mat_add_band (complex). ... 1460
mat_add_coordinate 1465
mat_add_coordinate (COMPIeX). 1469
MATEIX MO e e e 1474
Matrix_NOrm_bDand 1477
Matrix_Norm_coordinate 1481
generate_test_ band. 1485
generate_test_band (complex) ... 1488
generate_test_coordinate 1491
generate_test_coordinate (complex) ... 1496

Reference Material

GO NS ot 1501
USer ErmOrS o 1502
Complex Data Types and FUNCLIONS. . ..o 1506
Appendix A References 1511
Appendix B Alphabetical Summary of Functions............. .. 1532

Xiii

Product Support
Contacting IMSL SUPPOTT . ..o 1567

Index

Xiv

Introduction Table of Contents

Introduction

Table of Contents

IMSLC Math Libraryo 2
Organization of the Documentation i 3
Findingthe Right Function. 5
Naming ConVeNtioNS.ttt e e e 6
Getting Started and theimsl.hfile. 7
Error Handling, Underflow, Overflow, and Document Examples. 8
Memory Allocation for Output Arrayst 9
PrintingResults 10
Complex Arithmetic. 11
MissingValues 12
Passing Data to User-Supplied Functions 13
Return Values from User-Supplied Functions 14
Thread SafeUsage oo 15
OpenMP Usage . ..o 16
Vendor Supplied LibrariesUsage 18
CHFUSage. . oo 19
Matrix Storage Modes 22

Introduction IMSL C Math Library

IMSL C Math Library

The IMSL® C Math Library, a component of the IMSL® C Numerical Library, is a library of C functions useful in sci-
entific programming. Each function is designed and documented for use in research activities as well as by
technical specialists. A number of the example programs also show graphs of resulting output.

Introduction Organization of the Documentation

Organization of the Documentation

This manual contains a concise description of each function with at least one example demonstrating the use of
each function, including sample input and results. All information pertaining to a particular function is in one
place within a chapter.

Each chapter begins with a table of contents listing the functions included in the chapter followed by an introduc-
tion. Documentation of the functions consists of the following information:

m Section Name: Usually, the common root for the type float and type double versions of the
function is given.

m Purpose: A statement of the purpose of the function.
m Synopsis: The form for referencing the subprogram with required arguments listed.

m Required Arguments: A description of the required arguments in the order of their occurrence, as
follows:

m Input: Argument must be initialized; it is not changed by the function.

m Input/Output: Argument must be initialized; the function returns output through this argu-
ment. The argument cannot be a constant or an expression.

m Output: No initialization is necessary. The argument cannot be a constant or an expres-
sion; the function returns output through this argument.

m Return Value: The value returned by the function.

m Synopsis with Optional Arguments: The form for referencing the function with both required
and optional arguments listed.

m Optional Arguments: A description of the optional arguments in the order of their occurrence.

m Description: A description of the algorithm and references to detailed information. In many cases,
other IMSL functions with similar or complementary functions are noted.

m Examples: At least one application of this function showing input and optional arguments.

m Errors: Listing of any errors that may occur with a particular function. A discussion on error types is
given in the User Errors section of the Reference Material. The errors are listed by their type as
follows:

m Informational Errors: List of informational errors that may occur with the function.

m Alert Errors: List of alert errors that may occur with the function.

m Warning Errors: List of warning errors that may occur with the function.

Introduction Organization of the Documentation

m Fatal Errors: List of fatal errors that may occur with the function.

Introduction Finding the Right Function

Finding the Right Function

The IMSL C Math Library is organized into chapters; each chapter contains functions with similar computational
or analytical capabilities. To locate the right function for a given problem, you may use either the table of contents
located in each chapter introduction, or in Alphabetical Summary of Functions at the end of this manual.

Often the quickest way to use the IMSL C Math Library is to find an example similar to your problem and then
mimic the example. Each function in the document has at least one example demonstrating its application.

Introduction Naming Conventions

Naming Conventions

Most functions are available in both a type float and a type double version, with names of the two versions sharing
a common root. Some functions also are available in type int, or the IMSL-defined types f complex or d_complex
versions. A list of each type and the corresponding prefix of the function name in which multiple type versions
exist follows:

Type Prefix

float imsl f
double imsl d
int imsl i
f_complex imsl c_
d_complex imsl z

The section names for the functions only contain the common root to make finding the functions easier. For
example, the functions ims1 f 1lin sol genandimsl d lin sol gen can be found in section
lin sol genin Chapter 1,“Linear Systems.”

Where appropriate, the same variable name is used consistently throughout a chapter in the IMSL C Math
Library. For example, in the functions for eigensystem analysis, eval denotes the vector of eigenvalues and
n_eval denotes the number of eigenvalues computed or to be computed.

When writing programs accessing the IMSL C Math Library, the user should choose C names that do not conflict
with IMSL external names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the fol-

lowing rule is observed:

m Do not choose a name beginning with “ims1 " in any combination of uppercase or lowercase
characters.

Introduction Getting Started and the imsl.h file

Getting Started and the imsl.h file

Getting Started

To use any of the IMSL C Math Library functions, you first must write a program in C to call the function. Each
function conforms to established conventions in programming and documentation. We give first priority in devel-
opment to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions
makes it easy to use more than one function in a given application. Also, you will find that the design consistency
enables you to apply your experience with one IMSL C Math Library function to all other IMSL functions that you
use.

The imsl.h File

The include file <ims1.h>is used in all of the examples in this manual. This file contains prototypes for all IMSL-
defined functions; the spline structures, ImsL_f_ppoly, Imsl_d_ppoly, Imsl_f_spline, and Ims[_d_spline; enumerated
data types, Imsl_qguad, Ims|_write_options, Ims|_page_options, Ims|_ode, and Ims/_error; and the IMSL-defined data
types f.complex (which is the type float complex) and d_complex (which is the type double complex).

Introduction Error Handling, Underflow, Overflow, and Document Examples

Error Handling, Underflow, Overflow, and
Document Examples

The functions in the IMSL C Math Library attempt to detect and report errors and invalid input. This error-han-
dling capability provides automatic protection for the user without requiring the user to make any specific
provisions for the treatment of error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages being automatically printed by
the function. Moreover, errors of highest severity cause program execution to stop. The severity level, as well as
the general nature of the error, is designated by an “error type” with symbolic names IMSL FATAL,

IMSL WARNING, etc. See the User Errors section in the “Reference Material” for further details.

In general, the IMSL C Math Library codes are written so that computations are not affected by underflow, pro-
vided the system (hardware or software) replaces an underflow with the value zero. Normally, system error
messages indicating underflow can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages indicating over-
flow should be examined for programming errors such as incorrect input data, mismatch of argument types, or
improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the
algorithm.

Output from document examples can be system dependent and the user's results may vary depending upon the
system used.

Introduction Memory Allocation for Output Arrays

Memory Allocation for Output Arrays

Many functions return a pointer to an array containing the computed answers. By default, an array returned as
the value of a C Numerical Library function is stored in memory allocated by that function. To release this space,
use ims1l free. Toreturn the array in memory allocated by the calling program, use the optional argument

IMSL RETURN USER, float a[]

In this way, the allocation of space for the computed answers can be made either by the user or internally by the
function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user
or are to be allocated internally by the function. For example, in many functions in “Linear Systems,” the optional
arguments

IMSL INVERSE USER, float inva[] (Output)
IMSL_INVERSE,ﬂOGt **p _inva (Output)

specify two mutually exclusive optional arguments. If the first option is chosen, the inverse of the matrix is stored
in the user-provided array inva.

In the second option, float **p _inva refers to the address of a pointer to the inverse. The called function allo-
cates memory for the array and sets *p _inva to point to this memory. Typically, float *p_inva is declared,
&p_inva is used as an argument to this function. Use ims1 free (p_inva) to release the space.

Introduction Printing Results

Printing Results

Most functions in the IMSL C Math Library do not print any of the results; the output is returned in C variables.

The IMSL C Math Library contains some special functions just for printing arrays. For example, write matrixis
a convenient function for printing matrices of type float. See Printing Functions for detailed descriptions of these

functions.

10

Introduction Complex Arithmetic

Complex Arithmetic

Users can perform computations with complex arithmetic by using IMSL predefined data types. These types are

available in two floating-point precisions:
m f complex for single-precision complex values
m d complex for double-precision complex values

A description of complex data types and functions is given in the Reference Material.

11

Introduction Missing Values

Missing Values

Some of the functions in the IMSL C Math Library allow the data to contain missing values. These functions recog-
nize as a missing value the special value referred to as “not a number,” or NaN. The actual value is different on
different computers, but it can be obtained by reference to the IMSL function ims1 £ machine, described in

Chapter 12, “Utilities.”

The way that missing values are treated depends on the individual function and is described in the documenta-

tion for the function.

12

Introduction Passing Data to User-Supplied Functions

Passing Data to User-Supplied Functions

In some cases it may be advantageous to pass problem-specific data to a user-supplied function through the
IMSL C Math Library interface. This ability can be useful if a user-supplied function requires data that is local to
the user's calling function, and the user wants to avoid using global data to allow the user-supplied function to
access the data. Functions in IMSL C Math Library that accept user-supplied functions have an optional argu-
ment(s) that will accept an alternative user-supplied function, along with a pointer to the data, that allows user-
specified data to be passed to the function. The example below demonstrates this feature using the IMSL C Math
Library function ims1 £ min uncon and optional argument IMSL FCN W DATA.

Example

#include <imsl.h>
#include <math.h>
#include <stdio.h>

float fcn w data(float x, void *data);

int main ()
{
float a = -100.0;
float b = 100.0;
float fx, x;
float usr data[] = {5.0, 10.0};
x = imsl f min uncon (NULL, a, b,
IMSL FCN W DATA, fcn w data, usr data,
0);
fx = fcn w data(x, (void*)usr data);

printf ("The solution is: %8.4f\n", x);
printf ("The function evaluated at the solution is: %8.4f\n",
fx);
}

/*

* User function that accepts additional data in a (void*) pointer.
* This (void*) pointer can be cast to any type and dereferenced to
* get at any sort of data-type or structure that is needed.

* For example, to get at the data in this example

* *((float*)data) and usr data[0] contains the value 5.0
:/ *((float*)data+l) and usr data[l] contains the value 10.0
float fcn w data(float x, void *data)
{ float *usr data = (float*)data;

return exp(x) - usr data[0]*x + usr data[l];

13

Introduction

Return Values from User-Supplied Functions

Return Values from User-Supplied Functions

All values returned by user-supplied functions must be valid real numbers. It is the user's responsibility to check

that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

In addition to the techniques described below, it is also possible to instruct the IMSL C Numerical Library to

return control to the calling program in case an unrecoverable error occurs within a user-supplied function. See
function imsl set user fcn return flag for a description of this feature.

Example

#include <imsl.h>
#include <math.h>

void fcn(int, int, float[], float[]):;

int main ()

{
int m=3, n=1;
float *result, fx[3];
float xguess[]={1.0};

result = imsl f nonlin least squares(fcn, m, n, IMSL XGUESS,

xguess, 0);
fcn(m, n, result, £fx);
/* Print results */

imsl f write matrix ("The solution is",

1, 1, result, 0);

imsl f write matrix("The function values are", 1, 3, fx, 0);

}

void fcn (int m, int n, float x[],

{

float £[1])

do not want to return infinity to nonlin least squares

int 1i;
float y[3] = {2.0, 4.0, 3.
float t[3] = {1.0, 2.0, 3.
for (i=0; i<m; i++)
{
A check for x=0
if (x[0] == 0.0) {
f[i] = 10000.;
} else {

fli] = t[i]1/x[0]
}

- ylil;

*/

14

Introduction Thread Safe Usage

Thread Safe Usage

The IMSL C Math Library is thread safe based on OpenMP. That means it can be safely called from a multi-
threaded application if the calling program adheres to a few important guidelines. In particular, IMSL C Math
Library's implementation of error handling and I/0 must be understood.

Error Handling

C Math Library's error handling in a multithreaded application behaves similarly to how it behaves in a single-
threaded application. The major difference is that an error stack exists for each thread calling C Math Library
functions. The result of separate error stacks for each thread is greater control of the error handler options for
each thread. Each thread can set its own options for the C Math Library error handler using

imsl error options. For an example of setting error handler options for separate threads, see Chapter 12,
Utilities, Example 3 of ims1 error options.

Routines that Produce Output

A number of routines in C Math Library can be used to produce output. The function imsl output file can
be used to control the file to which the output is directed. In an application with a single thread of execution, a
single callto ims1 output file can be used to set the file to which the output will be directed. In a multi-
threaded application each thread must call ims1_output file to change the default setting of where output
will be directed. See the Utilities chapter, Example 2 of ims1 output file for more details.

15

Introduction OpenMP Usage

OpenMP Usage

Thread safety of the IMSL C Numerical Library is based on OpenMP. Users of the IMSL C Numerical Library are
also able to leverage shared-memory parallelism by means of native support for the OpenMP API specification
within parts of the Library. Those parts are flagged by the OpenMP icon shown below.

OpenMP

Parallelism in OpenMP is implemented by means of threads. In the OpenMP programming model, it is assumed
that memory is shared among threads, such as in multi-core machines. These threads are spawned by OpenMP
in response to directives embedded in source code.

The Library's use of OpenMP is largely transparent to the user. Codes that have been enhanced with OpenMP
directives will still work properly in serial execution environments. Error handling routines have been extended so
that the most severe error during a parallel run will be returned to the user.

OpenMP is used by the Library in these main ways:
1. Toimplement thread safety within the C Numerical Library.
2. To speed up computationally intensive functions by exploiting data parallelism in their processing.

3. To give users more control of scheduling by using the "schedule(runtime)" clause for the parallelized
for-loops. The scheduling option chosen, set by using the OMP_SCHEDULE environment variable, can
significantly affect the performance of user's program depending on the workload of the system
during execution. If OMP_SCHEDULE is not set, the default behavior depends on implementation.
Please refer to OpenMP specifications on schedule type and chunk.

4. To set and control the number of threads to use for parallel region and nested parallel region by
using the OMP_NUM_THREADS and OMP_NESTED environment variables. If OMP_NUM_THREADS
and OMP_NESTED are not set, the default behavior depends on the implementation. Thus, all com-
puting resources may be used, affecting other applications' performance on the system. Please refer
to OpenMP specifications for more information.

5. To parallelize the evaluation of user-supplied functions in routines that use them, e.g. in numerical
integration routines.

In the last case, the user must explicitly signal to the Library that the user-supplied functions themselves are
thread-safe, or by default the user’s function(s) will not evaluate in parallel. The utility ims1 omp options
allows the user to assert that all routines passed to the library are thread-safe.

16

Introduction OpenMP Usage

Thread safety implies that function(s) may be executed simultaneously by multiple threads and still function cor-
rectly. Requiring that user-supplied functions be thread-safe is crucial, because the different threads spawned by
OpenMP may call user-supplied functions simultaneously, and/or in an arbitrary order, and/or with differing
inputs. Care must therefore be taken to ensure that the parallelized algorithm acts in the same way as its serial
“ancestor”. Functions whose results depend on the order in which they are executed are not thread-safe and are
thus not good candidates for parallelization; neither are functions which access and modify global data.

Specifications of the OpenMP standards are provided at (http://www.openmp.org/specifications/).

17

http://www.openmp.org/specifications/

Introduction Vendor Supplied Libraries Usage

Vendor Supplied Libraries Usage

The IMSL C Numerical Library contains functions which may take advantage of functions in vendor supplied

libraries such as Intel's® Math Kernel Library (MKL) or Sun’s™ High Performance Library. Functions in the vendor
supplied libraries are finely tuned for performance to take full advantage of the environment for which they are
supplied. For these functions, the user of the IMSL C Numerical Library has the option of linking to code which is
based on either the IMSL legacy functions or the functions in the vendor supplied library. The following icon in the
function documentation alerts the reader when this is the case:

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in the
online README file of the product distribution.

18

Introduction C++ Usage

C++ Usage

IMSL C Numerical Library functions can be used in both C and C++ applications. It is also possible to wrap library
functions into C++ classes.

The function ims1 f int fcn sing computes the integral of a user defined function. For C++ usage the user
defined function is defined as a member function of the abstract class IntFcnSingFunction defined as
follows.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

class IntFcnSingFunction

{
public:

virtual float f (float x) = 0;
b5

The function ims1l f int fcn singiswrapped as the C++ class IntFenSing. This implementation uses
the optional argument, IMSL_FCN_W DATA, to call Local function whichin turn calls the method £ to
evaluate the user defined function. For simplicity, this implementation only wraps a single optional argument,
IMSL MAX SUBINTER, the maximum number of subintervals. More could be included in a similar manner.

#include <imsl.h>

class IntFcnSing

{
public:
int max subinter;
IntFcnSing () ;
float integrate (IntFcnSingFunction *F, float a, float b);

}i

static float local function(float x, void *data)

{

IntFcnSingFunction *F = (IntFcnSingFunction*)data;
return F->f (x);

}

IntFcnSing: :IntFcnSing ()
{

}

max_ subinter = 500;

float IntFcnSing::integrate (IntFcnSingFunction *F, float a, float b)

{
float result;

result = imsl f int fcn sing(NULL, a, b,

IMSL FCN W DATA, local function, F,
IMSL_MAX SUBINTER, max_ subinter,

19

Introduction C++ Usage

0)s
if (imsl _error type() >= 3)
{

}

return result;

throw imsl error message();

}

To use this IntFcnSing the user defined function must be defined as the method £ in a class that extends

IntFcnSingFunction. The following class, MyClass, defines the function f(x) =e" —ax,whereqisa

parameter

class MyClass : public IntFcnSingFunction

{

public:

MyClass () ;

float f (double Xx);
private:

float my parameter;

}i

MyClass: :MyClass ()
{

}

my parameter = 5.0;

float MyClass::f (float x)
{

}

return exp(x) - my parameter*x;

The following is an example of the use of these classes. Since the C++ throws an exception on fatal or terminal
IMSL errors, printing and stopping on these errors is turned off by a call to ims1 error options.Also, since
the user defined function is thread-safe, a call is made to ims1 omp options to declare this. With this setting,
the quadrature code will use OpenMP to evaluate the function in parallel. Both of these calls need be made once

per run.

The second part of this example sets the maximum number of subintevals to 5, an unrealistically small number,

to show the error handling.

int main ()
{
imsl error options (
IMSL SET PRINT, IMSL FATAL, O,
IMSL SET PRINT, IMSL TERMINAL, O,
IMSL SET STOP, IMSL FATAL, O,
IMSL SET STOP, IMSL TERMINAL, O,
0);
imsl omp options (IMSL SET FUNCTIONS THREAD SAFE, 1,

IntFcnSing *intFcnSing = new IntFcnSing();
MyClass *myClass = new MyClass () ;

float x = intFcnSing->integrate (myClass, -1.0, 1.0);

printf ("Solution in [-1,+1]: %g\n", X);

20

Introduction C++ Usage

try f{
intFcnSing->max subinter = 5;
x = intFcnSing -> integrate (myClass, -100.0, 1000.0);
printf ("Solution in [-100,1000]: %g\n", x);
} catch(char * exception) {
printf ("Exception raised: %s\n", exception);

}

Output

Integral over [-1,+1] = 2.3504

Exception raised: The maximum number of subintervals allowed "maxsub" = 5 has been

reached. Increase "maxsub".

21

Introduction Matrix Storage Modes

Matrix Storage Modes

In this section, the word matrix is used to refer to a mathematical object and the word array is used to refer to its
representation as a C data structure. In the following list of array types, the IMSL C Math Library functions require
input consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-
major order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For example, in solving linear
algebraic systems, the pointer is to the solution. For general, real eigenvalue problems, the pointer is to the eigen-
values. Normally, the input array values are not changed by the functions.

In the IMSL C Math Library, an array is a pointer to a contiguous block of data. They are not pointers to pointers to
the rows of the matrix. Typical declarations are:

float *a = {1, 2, 3, 4};
float b[2]1[2] = {1, 2, 3, 4};
float c[] = {1, 2, 3, 4};

General Mode

A general matrix is a square n x n matrix. The data type of a general array can be float, double, f complex, or
d_complex.

Rectangular Mode

A rectangular matrix is an m x n matrix. The data type of a rectangular array can be float, double, | complex, or
d_complex.

Symmetric Mode

A symmetric matrix is a square n x n matrix A, such that AT = A. (The matrix AT is the transpose of A)) The data type
of a symmetric array can be float or double.

Hermitian Mode

A Hermitian matrix is a square n x n matrix A, such that

22

Introduction Matrix Storage Modes

The matrix Ais the complex conjugate of A, and

A0 ="

is the conjugate transpose of A. For Hermitian matrices A = A. The data type of a Hermitian array can be f com-
plex or d_complex.

Sparse Coordinate Storage Format

Only the nonzero elements of a sparse matrix need to be communicated to a function. Sparse coordinate stor-
age format stores the value of each matrix entry along with that entry’s row and column index. The following four
non-homogeneous data structures are defined to support this concept:

typedef struct ({
int row;
int col;
float val;

} Imsl f sparse elem;

typedef struct ({
int row;
int col;
double wval;

} Imsl d sparse elem;

typedef struct ({

int row;

int col;

f complex val;
} Imsl c sparse elem;

typedef struct ({

int row;

int col;

d complex val;
} Imsl z sparse elem;

See the Complex Data Types and Functions in the Reference Material at the end of this manual for a discussion of
the complex data types f_complex and d_complex. Note that the only difference in these structures involves
changes in underlying data types. A sparse matrix is passed to functions that accept sparse coordinate format by
forming an array of one of these data types. The number of elements in that array will be equal to the number of
nonzeros in the sparse matrix.

23

Introduction Matrix Storage Modes

As an example consider the 6 x 6 matrix:

(2 0 0 0 0 0
0 9 =3 -1 0 0
4-l0 0 5 0 0 o0
-2 0 0 -7 -1 0
-1 0 0 -5 1 -3
-1 =2 0 0 0 6|

The matrix A has 15 nonzero elements, and the sparse coordinate representation would be

row 0 1 2 4 5
1 1 3 3 3 4 4 4 5 5

col 0 1 2 4 5
2 3 0 3 4 0 3 5 0 1

val 2 9 - - 5 - - - - - 1 - - - 6
3 1 2 7 1 1 5 3 1 2

row 4 3 0 5 1 2 4 3 1 4 3 5 4
5

col o 0 0 1 1 2 2 3 3 3 4 4 5 5
0

val - - - 2 - 9 5 - - - - 1 - 6 -
1 1 2 2 35 7 1 1 3

There are different ways this data could be used to initialize an array of type, for example, Ims/_f sparse_elem. Con-
sider the following program fragment:

#include <imsl.h>
int main ()

{

Imsl f sparse elem a[] = {
{0, 0, 2.0},
{1, 1, 9.0},
i, 2, =3.0%,
(i, 3, =1.0}%,
{2, 2, 5.0},
{3, 0, -2.0},
{3/ 3/ _7-0}1
{3, 4, -1.0},
{41 O/ _l'O}I
{4, 3, -5.0},
{4, 4, 1.0},
{4, 5, -3.0},
5, 0, =1.0}%,
15, 1, =2.0}%,
(5, 5, 6.0} }g

24

Introduction

Matrix Storage Modes

}

Both a and b represent the sparse matrix A, and the functions in this module would produce identical results

Imsl f sparse elem b[15];

b[0].row
b[l].row
b[2].row
b[3].row
b[4] .row
b[5].row
b[6].row
b[7].row
b[8].row
b[9].row
b[10].row
b[ll].row
b[12] .row
b[13].row
b[l4].row

b[0].col = 0;
bl[l].col = 1;

1; b[2].col = 2;
1; b[3].col = 3;
b[4].col = 2;

3; b[5].col = 0;
b[6].col = 3;

3; b[7].col = 4;
4; b[8].col = 0;
4; b[9].col = 3;
= b[l0].col = 4;
= 4; b[ll].col =
= 5; b[l2].col =
= 5; b[13] = 1;
= b[l4].col = 5;

.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val

O0OO0O0O0DO0CO0OO0O00O0D000O
RPFRPRRPRPRPRPRPRPOO0OJdJO D WNERE O
B WN PP O e e e e e e e e

regardless of which identifier was sent through the argument list.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to store the diagonal and

either the upper or lower triangle. As an example, consider the 5 x 5 linear system:

[(4,0) (1, -1)
0 (11)

0 0

(1,1) (4,0) (1,-1) 0

0 0

(4.0) (1. -1)
(L) (40) |

The Hermitian and symmetric positive definite system solvers in this library expect the diagonal and lower trian-
gle to be specified. The sparse coordinate form for the lower triangle is given by

row 0 1 2
col 0 1 2
val (4,0 (4,0 (4,0)

As before, an equivalent form would be

row 0 1 1
col 0 0 1
val (4,0 (1,1 (4,0)

3 1
3 0
(4,0) (11
2 2
1 2
(1,1 4,0)

The following program fragment will initialize both a and b to H.

#include <imsl.h>
int main ()

(1.1)

2 3
1 2
(1.1)
3 3
2 3
(4,0)

(1.1)

25

Introduction Matrix Storage Modes

Imsl c sparse elem a[] = {
{0, 0, {4.0, 0.0}},
{1, 1, {4.0, 0.0}},
{2, 2, {4.0, 0.0}},
{3, 3, {4.0, 0.0}},
{1, 0, {1.0, 1.0}},
{z, 1, {1.0, 1.0}},
{3, 2, {1.0, 1.0}}

}

Imsl c sparse elem b[7];

b[0] . .row = b[0].col = 0;

b[0].val = imsl cf convert (4.0, 0.0);
b[l].row = 1; b[l].col = 0;

b[l].val = imsl cf convert (1.0, 1.0);
b[2].row = b[2].col = 1;

b[2].val = imsl cf convert (4.0, 0.0);
b[3].row = 2; b[3].col = 1;

b[3].val = imsl cf convert (1.0, 1.0);
b[4] .row = b[4].col = 2;

b[4].val = imsl cf convert (4.0, 0.0);
b[5].row = 3; b[5].col = 2;

b[5].val = imsl cf convert (1.0, 1.0);
b[6] . .row = b[6].col = 3;

b[6].val = imsl cf convert (4.0, 0.0);

}
There are some important points to note here. H is not symmetric, but rather Hermitian. The functions that
accept Hermitian data understand this and operate assuming that

hljzhl]

The IMSL C Math Library cannot take advantage of the symmetry in matrices that are not positive definite. The
implication here is that a symmetric matrix that happens to be indefinite cannot be stored in this compact sym-
metric form. Rather, both upper and lower triangles must be specified and the sparse general solver called.

Band Storage Format

A band matrix is an M x N matrix with all of its nonzero elements “close” to the main diagonal. Specifically, values
Aj=0if/-j>nlcaorj-i>nuca.Theinteger m=nlca + nuca + 1 is the total band width. The diagonals,

other than the main diagonal, are called codiagonals. While any M x N matrix is a band matrix, band storage for-
mat is only useful when the number of nonzero codiagonals is much less than N.

In band storage format, the nlca lower codiagonals and the nuca upper codiagonals are stored in the rows of
an array of size M x N. The elements are stored in the same column of the array as they are in the matrix. The val-
ues Ajj inside the band width are stored in the linear array in positions [(i - j + nuca + 1) * n +/]. This results in

a row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5 x 5 matrix A with 1 lower and 2 upper codiagonals:

26

Introduction Matrix Storage Modes

0 0 0 Ays A4
In band storage format, the data would be arranged as

0 0 AO, 2 Al, 3 AZ, 4

0 Ay 4y, A3 A3 4

Aoo A1 Az 2 A3z Ag g
Ay o Ayy Az p Asz O

This data would then be stored contiguously, row-major order, in an array of length 20.

As an example, consider the following tridiagonal matrix:

101 0 0 O
52002 0 O
A=[0 6 30 3 O
0 0 7 40 4
0 0 0 8 50

The following declaration will store this matrix in band storage format:

float al[] = {

0.0, 1.0, 2.0, 3.0, 4.0,
10.0, 20.0, 30.0, 40.0, 50.0,
5.0, 6,0, 7.0, 8.0, 0.0

}i

As in the sparse coordinate representation, there is a space saving symmetric version of band storage. As an
example, look at the following 5 X 5 symmetric problem:

-Ao,o Ao;1 Ao,z 0 0
Aoy Ay Ay 413 0
A= 4o 2 A1 2 Ay y Ay 3 Ay g4
0 Ay 3 Ay 3 A3 3 434
0 0 Ay 4 A3 4 A4,4_

In band symmetric storage format, the data would be arranged as

27

Introduction Matrix Storage Modes

0 0 Ayo A3 44
0 Aoy Ay Aa3 434
Ao o Ay Ay a Az 3 Ay s

The following Hermitian example illustrates the procedure:

(8,0) (1,1) (1,1) 0 0

(I, -1) (80) (1,1) (1,1) 0

(1,-1) (1,-1) (8,0) (1,1) (1,1)
0 (1,-1) (1,-1) (80) (1,1)
0 0 (1,-1) (1,-1) (8,0)

The following program fragments would store H in h, using band symmetric storage format.

or equivalently

f complex
{0.0,
{0.0,
{8.0,

f comp
h[0] =
h[2] =

h[] = {

0.0}y, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
0.0}y, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}};
lex h[15];

h[1l] = h[5] = imsl cf convert (0.0, 0.0);

h[3] = h[4] = h[6] = h[7] = h[8] = h[9] =

imsl cf convert (1.0, 1.0);

h[10]

= h[11] = h[12] = h[13] = h[l4] =

imsl cf convert (8.0, 0.0);

Choosing Between Banded and Coordinate Forms

It is clear that any matrix can be stored in either sparse coordinate or band format. The choice depends on the
sparsity pattern of the matrix. A matrix with all nonzero data stored in bands close to the main diagonal would
probably be a good candidate for band format. If nonzero information is scattered more or less uniformly
through the matrix, sparse coordinate format is the best choice. As extreme examples, consider the following two
cases: (1) an n x n matrix with all elements on the main diagonal and the (0, n - 1) and (n - 1, 0) entries nonzero.
The sparse coordinate vector would be n + 2 units long. An array of length n(2n - 1) would be required to store
the band representation, nearly twice as much storage as a dense solver might require. (2) a tridiagonal matrix
with all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an array of length 3n is
needed. In sparse coordinate, format a vector of length 3n - 2 is required. But the problem is that, for example,
for float precision, each of those 3n - 2 units in coordinate format requires three times as much storage as any of

28

Introduction Matrix Storage Modes

the 3n units needed for band representation. This is due to carrying the row and column indices in coordinate
form. Band storage evades this requirement by being essentially an ordered list, and defining location in the orig-
inal matrix by position in the list.

Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in the format described in the Users’
Guide for the Harwell-Boeing Sparse Matrix Collection (via optional argument IMSL _CSC_FORMAT). The
scheme is column oriented, with each column held as a sparse vector, represented by a list of the row indices of
the entries in an integer array (“rowind” below) and a list of the corresponding values in a separate float (double,
f.complex, d_complex) array (“values” below). Data for each column are stored consecutively and the columns
are stored in order. A third array (“colptr” below) indicates the location in array “values” in which to place the
first nonzero value of each succeeding column of the original sparse matrix. So colptr [i] contains the index

of the first free location in array “values” in which to place the values from the i column of the original sparse
matrix. In other words, values [colptr [1]] holds the first nonzero value of the i-th column of the original
sparse matrix. Only entries in the lower triangle and diagonal are stored for symmetric and Hermitian matrices.
All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’'s one-based arrays.

As in the Harwell-Boeing user guide (link above), the storage scheme is illustrated with the following example: The
5 x5 matrix

1 -3 0 -10
0 0 -2 0 3
2 0 0 0 O
0 4 0 —40

50 =5 0 6

would be stored in the arrays colptr (location of first entry), rowind (row indices), and values (nonzero
entries) as follows:

Subscripts |0 1 2 3 4 5 6 7 8 9 10
Colptr 0 3 5 9 11

Rowind 0 2 4 0 3 1 4 0 3 1 4
Values 1 2 5 -3 4 -2 -5 -1 -4 3

The following program fragment shows the relation between CSC storage format and coordinate representation:

int main () {

int i, 3, k, n =5, nz, start, stop;
int colptr[] = { 0, 3, 5, 7, 9, 11 };
int rowind([] = { O, 2, 4, 0, 3, 1, 4, 0, 3, 1, 4 };
float values[] = { 1.0, 2.0, 5.0, -3.0, 4.0, -2.0,

29

http://math.nist.gov/MatrixMarket/collections/hb.html
http://math.nist.gov/MatrixMarket/collections/hb.html

Introduction Matrix Storage Modes

30

Linear Systems Functions

Linear Systems

Functions

Linear Equations with Full Matrices
Factor, Solve, and Inverse for General Matrices

Real matrices. e lin_sol_gen

Complexmatrices i lin_sol_gen (complex)
Factor, Solve, and Inverse for Positive Definite Matrices

Realmatrices. lin_sol_posdef

Complexmatricest lin_sol_posdef (complex)

Linear Equations with Band Matrices
Factor and Solve for Band Matrices

Realmatrices. lin_sol_gen_band

Complexmatrices lin_sol_gen_band (complex)
Factor and Solve for Positive Definite Matrices Symmetric

Realmatrices. lin_sol_posdef_band

Complexmatrices lin_sol_posdef _band (complex)

Linear Equations with General Sparse Matrices
Factor and Solve for Sparse Matrices |

Realmatrices. lin_sol_gen_coordinate

Complexmatrices lin_sol_gen_coordinate (complex)
Factor and Solve for Sparse Matrices |l

Real matrices. superlu

Complexmatrices e superlu (complex)
OpenMP-based parallel Factor and Solve for Sparse Matrices

Real Matrices. superlu_smp

ComplexMatrices superlu_smp (complex)
Factor and Solve for Positive Definite Matrices

Realmatrices. lin_sol_posdef_coordinate

Complexmatrices, lin_sol_posdef_coordinate (complex)
OpenMP-based parallel Factor and Solve for Positive Definite Matrices

Real Matrices. sparse_cholesky_smp

Complex Matrices sparse_cholesky smp (complex)
lterative Methods

Restarted generalized minimum residual

(GMRES)method lin_sol_gen_min_residual

37
47

55
62

68
74

80
85

90
101

110
125

141
154

168
177

186
196

206

31

Linear Systems Functions

Conjugate gradient method lin_sol_def _cg

Linear Least-squares with Full Matrices
Least-squares and QR decomposition

Least-squares solve, QR decomposition. lin_least_squares_gen

Non-negative least squares solution nonneg_least_squares

Linearconstraints i lin_Isq_lin_constraints
Non-Negative Matrix Factorization (NNMF)

Non-negative matrix factorization solution. nonneg_matrix_factorization
Singular Value Decompositions (SVD) and Generalized Inverse

Real matriX. e lin_svd_gen

Complexmatrix lin_svd_gen (complex)

Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices
Realmatrices. lin_sol_nonnegdef

212

219
228
235
241

246
253

260

32

Linear Systems Usage Notes

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified n x n matrix, b is a given right-
hand side n vector, and x is the solution n vector. Each entry of A and b must be specified by the user. The entire
vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used direct method for solving Ax = b
factors the matrix A into a product of triangular matrices and solves the resulting triangular systems of linear
equations. Functions that use direct methods for solving systems of linear equations all compute the solution to
Ax = b.Thus, if function ims1 £ superlu or afunction with the prefix“ims1l f 1in sol”is called with the
required arguments, a pointer to x is returned by default. Additional tasks, such as only factoring the matrix A into
a product of triangular matrices, can be done using keywords.

Matrix Factorizations

In some applications, it is desirable to just factor the n x n matrix A into a product of two triangular matrices. This
can be done by calling the appropriate function for solving the system of linear equations Ax = b. Suppose that in
addition to the solution x of a linear system of equations Ax = b, the LU factorization of A is desired. Use the key-
word IMSL FACTOR in the function ims1 f 1in sol gen to obtain access to the factorization. If only the
factorization is desired, use the keywords IMSL FACTOR_ ONLY and IMSL FACTOR. For function
imsl f superlu, use keyword IMSL RETURN SPARSE LU FACTOR in order to get the LU factorization. If
only the factorization is desired, then keywords IMSL RETURN SPARSE LU FACTOR and

IMSL FACTOR_ SOLVE with value 1 are required.

Besides the basic matrix factorizations, such as LU and LLT, additional matrix factorizations also are provided. For
a real matrix A, its QR factorization can be computed by the function ims1 £ 1lin least squares gen. Func-
tions for computing the singular value decomposition (SVD) of a matrix are discussed in a later section.

33

Linear Systems Usage Notes

Matrix Inversions

The inverse of an n x n nonsingular matrix can be obtained by using the keyword IMSL INVERSE in functions
for solving systems of linear equations. The inverse of a matrix need not be computed if the purpose is to solve
one or more systems of linear equations. Even with multiple right-hand sides, solving a system of linear equations
by computing the inverse and performing matrix multiplication is usually more expensive than the method dis-
cussed in the next section.

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector. It is most eco-
nomical to find the solution vectors by first factoring the coefficient matrix A into products of triangular matrices.
Then, the resulting triangular systems of linear equations are solved for each right-hand side. When A is a real
general matrix, access to the LU factorization of A is computed by using the keywords IMSL FACTOR and
IMSL FACTOR_ONLY infunction imsl f lin sol gen. The solution xy for the k-th right-hand side vector by

is then found by two triangular solves, Ly = by and Uxyk = yk. The keyword IMSL SOLVE_ONLY in the function

imsl f 1lin sol genisused to solve each right-hand side. These arguments are found in other functions
for solving systems of linear equations. For function ims1 f superlu, use the keywords

IMSL RETURN SPARSE LU FACTOR and IMSL FACTOR SOLVE with value 1 to get the LU factorization,
and then keyword IMSL_FACTOR_SOLVE with value 2 to get the solution for different right-hand sides.

Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations Apyxp X = b,

where m > n. A least-squares solution x minimizes the Euclidean length of the residual vector r = Ax — b. The func-
tion imsl f lin least squares gen computes a unigue least-squares solution for x when A has full
column rank. If A is rank-deficient, then the base solution for some variables is computed. These variables consist
of the resulting columns after the interchanges. The QR decomposition, with column interchanges or pivoting, is
computed such that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreas-
ing in magnitude, and P is the permutation matrix determined by the pivoting. The base solution xg is obtained

by solving R(PT)x = QTb for the base variables. For details, see the “Description” section of function
imsl f lin least squares_gen. The QR factorization of a matrix A such that AP = QR with P specified by
the user can be computed using keywords.

Least-squares problems with linear constraints and one right-hand side can be solved. These equations are
Amxn X =b,

subject to constraints and simple bounds

34

Linear Systems Usage Notes

b=Cx<b,

X=X <X
Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is the coefficient
matrix of the constraints. The vectors b, b, x; and x,, are the lower and upper bounds on the constraints and the

variables. This general problem is solved with ims1 f 1in 1lsg lin constraints.

For the special case of where there are only non-negative constraints, x > 0, solve the problem with

imsl f nonneg least squares.

Non-Negative Matrix Factorization

If the matrix Am x n = 0, factor it as a product of two matrices, Am x n = Fm x k Gk x n- 1he matrices Fand G are both

non-negative and k < min(m, n). The factors are computed so that the residual matrix £=A - £ G has a sum of
squares norm that is minimized. There are normalizations of Fy, x k and Gy x , described in the documentation of

imsl f nonneg matrix factorization.

Singular Value Decompositions and Generalized Inverses

The SVD of an m x n matrix A is a matrix decomposition A = USVT. With g = min(m, n), the factors Uqu and anq
are orthogonal matrices, and Sgxq is @ nonnegative diagonal matrix with nonincreasing diagonal terms. The func-

tionimsl f lin svd gen computes the singular values of A by default. Using keywords, part or all of the U
and V matrices, an estimate of the rank of A, and the generalized inverse of A, also can be obtained.

lll-Conditioning and Singularity

An m x n matrix A is mathematically singular if there is an x # 0 such that Ax = 0. In this case, the system of linear
equations Ax = b does not have a unique solution. On the other hand, a matrix A is numerically singular if it is
“close” to a mathematically singular matrix. Such problems are called il/-conditioned. If the numerical results with
an ill-conditioned problem are unacceptable, users can either use more accuracy if it is available (for type float
accuracy switch to double) or they can obtain an approximate solution to the system. One form of approximation
can be obtained using the SVD of A: If g = min(m, n) and

A:

i

T
SiiUiVi

s

q
=1

then the approximate solution is given by the following:

35

Linear Systems Usage Notes

k
— T

xk— ti,i<b Z/ll'>Vl'
=1

The scalars tj are defined below.

t;=

i

is;} if s;;> tol > 0
0 otherwise

The user specifies the value of tol. This value determines how “close” the given matrix is to a singular matrix. Fur-
ther restrictions may apply to the number of terms in the sum, k < g. For example, there may be a value of k < g
such that the scalars |(bTu;)l, i > k are smaller than the average uncertainty in the right-hand side b. This means

that these scalars can be replaced by zero; and hence, b is replaced by a vector that is within the stated uncer-
tainty of the problem.

36

Linear Systems lin_sol_gen

lin_sol_gen

Solves a real general system of linear equations Ax = b. Using optional arguments, any of several related compu-

tations can be performed. These extra tasks include computing the LU factorization of A using partial pivoting,

computing the inverse matrix A, solving ATx = b, or computing the solution of Ax = b given the LU factorization of

A

Synopsis
#include <ims1l.h>
float *ims1l f 1in sol gen(intn, floatal[],floatb[], ..., 0)

The type double functionis imsl d 1in sol gen.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[]1 (Input)
Array of size n X n containing the matrix.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was

computed, then NULL is returned.

37

Linear Systems lin_sol_gen

Synopsis with Optional Arguments
#include <ims1.h>

float *imsl £ 1in sol gen(intn,floatal],floatb[],
IMSL A COL DIM, inta col dim,
IMSL TRANSPOSE,
IMSL_RETURN_ USER, float x[],
IMSL FACTOR, int **p_pvt, float **p factor,
IMSL FACTOR USER,intpvt[],float factor([],
IMSL FAC COL DIM, intfac_col dim,
IMSL INVERSE, float **p inva,
IMSL_INVERSE_USER, float inval],
IMSL INV_COL DIM intinva_ col dim,
IMSL_CONDITION,ﬂOCI[*cond,
IMSL ITERATIVE REFINEMENT, int refine,
IMSL_FACTOR ONLY,
IMSL SOLVE_ONLY,
IMSL_INVERSE ONLY,
0)

Optional Arguments

IMSL A COL DIM inta _col dim (Input)
The column dimension of the array a.
Default: a_col dim=n

IMSL_TRANSPOSE
Solve ATx = b.
Default: Solve Ax = b

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, int **p pvt,float **p factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 f 1in sol gen. Typically,
int *p_pvt is declared, and &p_pvt is used as an argument.

38

Linear Systems lin_sol_gen

float **p factor (Output)
The address of a pointer to an array of size n x n containing the LU factorization of A with col-
umn pivoting. On return, the necessary space is allocated by ims1 f 1in sol gen.The
lower-triangular part of this array contains information necessary to construct L, and the
upper-triangular part contains U (see Example 2). Typically, float *p_factor is declared,
and &p_factor isused as an argument.

IMSL FACTOR USER,intpvt[],float factor[] (Input/Output)
intpvt [] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

float factor [] (Input/Output)
A user-allocated array of size n x n containing the LU factorization of A. The strictly lower-tri-
angular part of this array contains information necessary to construct L, and the upper-
triangular part contains U (see Example 2). If Ais not needed, factor and a can share the
same storage.

These parameters are input if IMSL _SOLVE is specified. They are output otherwise.

IMSL FAC COL DIM, int fac col dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col dim=n

IMSL INVERSE, float **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,

the necessary space is allocated by ims1 £ 1in sol gen. Typically, float *p inva is declared,
and &p_invais used as an argument.

IMSL INVERSE USER, float inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV_COL DIM, intinva_col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE ONLY.

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine = 0.

39

Linear Systems lin_sol_gen

IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol genis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 £ 1in sol gen. By default,
the solution to Ax = b is pointed to by ims1 f 1lin sol gen.I|f IMSL SOLVE ONLY is used,
argument IMSL FACTOR_USER is required. If iterative refinement of the solution is desired, argu-
ment a must be present. Otherwise, a is ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIsrequired. The argument b is then ignored, and the returned value of
imsl f 1lin sol genis NULL.

Description

The function ims1 f 1lin sol gen solves a system of linear algebraic equations with a real coefficient
matrix A. It first computes the LU factorization of A with partial pivoting such that L'/A = U. Let F be the matrix
p_factor returned by optional argument IMSL FACTOR. The triangular matrix U is stored in the upper trian-

gle of F. The strict lower triangle of F contains the information needed to reconstruct L™ using

-1
L :L}’l—an—l LIPI

The factors P; and L are defined by partial pivoting. P;is the identity matrix with rows jand p_pvt [i-1] inter-
changed. L is the identity matrix with 5, for j=/7+1, .., n, inserted below the diagonal in column /.

The factorization efficiency is based on a technique of “loop unrolling and jamming” by Dr. Leonard J. Harding of
the University of Michigan, Ann Arbor, Michigan. The solution of the linear system is then found by solving two
simpler systems, y = L"'b and x = U”'y. Additionally, the accuracy of the solution can be improved by iterative
refinement. IMSL uses mixed precision iterative refinement in single precision and fixed precision iterative refine-
ment in double precision. In double precision, the residuals b-Ax are computed with high accuracy using
algorithms based on Ogita, Rump and Oishi (2005). When the solution to the linear system or the inverse of the
matrix is sought, an estimate of the L1 condition number of A is computed using the same algorithm as in Don-
garra et al. (1979). If the estimated condition number is greater than 1/€ (where € is the machine precision), a
warning message is issued. This indicates that very small changes in A may produce large changes in the solution
x.The functionimsl f 1in sol gen failsif U, the upper triangular part of the factorization, has a zero diag-
onal element.

40

Linear Systems lin_sol_gen

Examples

Example 1

This example solves a system of three linear equations. This is the simplest use of the function. The equations fol-
low below:

#include <imsl.h>

int main ()

{

int n = 3;

float g

float all] = (1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0};

float b[] = {1.0, 4.0, -1.0};

/* Solve Ax = b for x */
x = imsl f 1lin sol gen (n, a, b, 0);
- /* Print x */
imsl f write matrix ("Solution, x, of Ax = Db", 1, 3, x, 0);

41

Linear Systems lin_sol_gen
}
Output
Solution, x, of AXx = b
1 2 3
=2 =2 3
Example 2

This example solves the transpose problem ATx = b and returns the LU factorization of A with partial pivoting. The

same data as the initial example is used, except the solution x = ATb is returned in an array allocated in the main
program. The L matrix is returned in implicit form.

#include <imsl.h>

int main ()
{
int n =3, pvt[3];
float factor[9];
float x[3];
float al] = {1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0};
float b[] = {1.0, 4.0, -1.0};
/* Solve trans(A)*x = b for x */
imsl f 1lin sol gen (n, a, b,
IMSL TRANSPOSE,
IMSL RETURN USER, x,
IMSL FACTOR USER, pvt, factor,
0);
/* Print x */
imsl f write matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);

/* Print factors and pivot sequence */

imsl f write matrix ("LU factors of A", n, n, factor, 0);
imsl i write matrix ("Pivot sequence", 1, n, pvt, 0);
}
Output
Solution, x, of trans(A)x = b
1 2 3
4 -4 1
LU factors of A
1 2 3
1 1 3 3
2 =1 1 0
3 =1 0 1

Pivot sequence

1 2 3

42

Linear Systems lin_sol_gen

1 3 3
Reconstruction of L1 and U from factor:
L'=L,P,L,P,

P; is the identity matrix with row / and row pvt[/-1] interchanged.

evt=1,3,3
row 1 and row pvt[0], or row 1, are
1 00 interchanged, which is still the identity
. matrix.
P = 1
0 01
row 2 and row pvt [1], or row 3, are
1 0 interchanged.
Pz - O O 1
|0 1

Ljis the identity matrix with Fy; for j=7+1, n, inserted below the diagonal in column /, where Fis factor:

1 33
factor=|-1 1 O
-1 0 1
second and third elements of
1 0 0 column 1 of factor are
_ | inserted below the diagonal in
Ll 110 column 1.
-1 0 1
third element of column 2 of
1 00 factor is inserted below the
L2 _ 1 0 diagonal in column 2.
0 0 1

Linear Systems lin_sol_gen

Uis the upper triangle of factor:

1 33
U=10 1
0 01

Example 3

This example computes the inverse of the 3 x 3 matrix A of the initial example and solves the same linear system.

The matrix product C = A"'Ais computed and printed. The function ims1_f mat mul rect is used to com-
pute C. The approximate result C =/ is obtained.

#include <imsl.h>

float al] = {1.0, 3.0, 3.0,

float bl]

Il
—_~—
—
o
~
IS
o
~
|
=
o
—
~.

int main ()

{

int n = 3;
float G
float *p_inva;
float B0

/* Solve Ax = b */
x = imsl f 1in sol gen (n, a, b,
IMSL INVERSE, &p_inva,
0);

/* Print solution */
imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Print input and inverse matrices */
imsl f write matrix ("Input A", n, n, a, 0);
imsl f write matrix ("Inverse of A", n, n, p_inva, 0);
/* Check result and print */
C = imsl f mat mul rect ("A*B",
IMSL A MATRIX, n, n, p inva,
IMSL B MATRIX, n, n, a,
0);
imsl f write matrix ("Product matrix, inv(A)*A",n,n,C,0);

}

Output
Solution, x, of Ax = b
1 2 3
=2 =2 3
Input A
1 2 3
1 1 3 3

44

Linear Systems lin_sol_gen

2 1 3 4
3 1 4 3
Inverse of A

1 2 3
1 7 =3 =3
2 =1 0 1
3 =1 1 0

Product matrix, inv (A)*A

1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

Example 4

This example computes the solution of two systems. Only the right-hand sides differ. The matrix and first right-

hand side are given in the initial example. The second right-hand side is the vector ¢ = [0.5, 0.3, 0.4]". The factor-
ization information is computed with the first solution and is used to compute the second solution. The
factorization work done in the first step is avoided in computing the second solution.

#include <imsl.h>

int main ()
{
int n =3, pvt[3];
float factor([9];
float W5y WY
float al] = {1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0},
float b[] = {1.0, 4.0, -1.0};
float c[] = {0.5, 0.3, 0.4};

/* Solve A*x = b for x */
x = imsl f lin sol gen (n, a, b,
IMSL FACTOR USER, pvt, factor,
0);

/* Print x */
imsl f write matrix ("Solution, x, of Ax = b", 1, n, Xx,

/* Solve for A*y = c for y */
y = imsl £ 1lin sol gen (n, a, c,
IMSL SOLVE ONLY,
IMSL FACTOR USER, pvt, factor,
0);
imsl f write matrix ("Solution, y, of Ay =c", 1, n, vy,

45

Linear Systems lin_sol_gen

Output
Solution, x, of Ax
1 2
=2 —2

Solution, y, of Ay
1 2
1.4 -0.1

Warning Errors

IMSL ILL CONDITIONED

IMSL ILL CONDITIONED 1

Fatal Errors

IMSL SINGULAR MATRIX

w W

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is too ill-conditioned for iterative
refinement to be effective.

The input matrix is singular.

46

Linear Systems lin_sol_gen (complex)

lin_sol_gen (complex)

Solves a complex general system of linear equations Ax = b. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, computing the inverse matrix A™', solving AHx = b, or computing the solution of Ax = b given the LU
factorization of A.

Synopsis
#include <ims1.h>
fcomplex *imsl ¢ 1lin sol gen (intn,fcomplexal],fcomplexb[], .., 0)

The type d_complex functionis imsl z 1lin sol gen.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexall (Input)
Array of size n X n containing the matrix.

fcomplexb[] (Input)
Array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was

computed, then NULL is returned.

47

Linear Systems lin_sol_gen (complex)

Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl c 1lin sol gen (intn,fcomplexall,fcomplexb[],
IMSL A COL DIM, inta col dim,
IMSL TRANSPOSE,
IMSL RETURN USER, fcomplexx[],
IMSL FACTOR, int **p pvt, fcomplex **p factor,
IMSL FACTOR USER,intpvt[],fcomplex factor[],
IMSL FAC COL DIM, intfac_col dim,
IMSL INVERSE, f complex **p inva,
IMSL INVERSE USER,fcomplex inval],
IMSL INV_COL DIM intinva_ col dim,
IMSL_CONDITION,f/OCI[*cond,
IMSL ITERATIVE REFINEMENT, int refine,
IMSL FACTOR ONLY,
IMSL SOLVE_ ONLY,
IMSL_INVERSE ONLY,
0)

Optional Arguments

IMSL A COL DIM inta _col dim (Input)
The column dimension of the array a.
Default: a_col dim=n

IMSL_TRANSPOSE
Solve AHx = b
Default: Solve Ax = b

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f complex **p_factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 ¢ 1lin sol gen. Typically,
int *p_pvt is declared, and &p_pvt is used as an argument.

48

Linear Systems lin_sol_gen (complex)

f.complex **p_factor (Output)
The address of a pointer to an array of size n x n containing the LU factorization of A with col-
umn pivoting. On return, the necessary space is allocated by ims1 ¢ 1in sol gen.The
lower-triangular part of this array contains information necessary to construct L, and the

upper-triangular part contains U. Typically, f complex *p factor is declared, and
&p_ factor isused as an argument.

IMSL FACTOR USER, int pvt[], f complex factor[] (Input/Output)
intpvt [] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

Jf.complex factor [] (Input/Output)
A user-allocated array of size n x n containing the LU factorization of A. The lower-triangular

part of this array contains information necessary to construct L, and the upper-triangular
part contains U.

These parameters are input if IMSL_SOLVE is specified. They are output otherwise. If A s
not needed, factor and a can share the same storage.
IMSL FAC COL DIM, intfac col dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col dim=n

IMSL INVERSE, fcomplex **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,

the necessary space is allocated by ims1 ¢ 1in sol gen. Typically, f complex *p invais
declared, and &p_invais used as an argument.

IMSL INVERSE USER,f complex inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV_COL DIM, intinva_col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)

A pointer to a scalar containing an estimate of the L4 norm condition number of the matrix A. Do not
use this option with IMSL SOLVE_ONLY.

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine=0.

49

Linear Systems lin_sol_gen (complex)

IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl ¢ 1lin sol genis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 ¢ 1in sol gen. By default,
the solution to Ax = b is pointed to by ims1 ¢ 1lin sol gen.|f IMSL SOLVE ONLY is used,
argument IMSL FACTOR_USER is required. If iterative refinement of the solution is desired, argu-
ment a must be present. Otherwise, a is ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIsrequired. Argumentb is then ignored, and the returned value of
imsl ¢ lin sol genis NULL.

Description

The function ims1 ¢ lin sol gen solves a system of linear algebraic equations with a complex coefficient
matrix A. It first computes the LU factorization of A with partial pivoting such that L™'/A = U. Let F be the matrix
p_factor returned by optional argument IMSL FACTOR. The triangular matrix U is stored in the upper trian-
gle of F. The strict lower triangle of F contains the information needed to reconstruct

L™t using

-1
L = Ln—lpn—l L1P1

The factors P; and L are defined by partial pivoting. P;is the identity matrix with rows /jand p_pvt [i-1] inter-
changed. Lj is the identity matrix with 5, for j=/7+1,.., n, inserted below the diagonal in column /.

The solution of the linear system is then found by solving two simpler systems, y = L'b and x = U 'y. Additionally,
the accuracy of the solution can be improved by iterative refinement. IMSL uses mixed precision iterative refine-
ment in single precision and fixed precision iterative refinement in double precision. In double precision, the
residuals b-Ax are computed with high accuracy using algorithms based on Ogita, Rump and QOishi (2005). When
the solution to the linear system or the inverse of the matrix is computed, an estimate of the L1 condition num-
ber of A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is
greater than 1/¢& (where € is the machine precision), a warning message is issued. This indicates that very small
changes in A may produce large changes in the solution x. The function ims1 ¢ 1in sol genfailsif U, the
upper-triangular part of the factorization, has a zero diagonal element.

50

Linear Systems lin_sol_gen (complex)

Examples

Example 1
This example solves a system of three linear equations. The equations are:

(1+i)x
1
+Q24+3)x*+3B -3i)x
3
=3+5i
2+ix
1
+(5+30)x
2
+(7 - 50)x
3
=22+ 10i
(-2+i)x
1
+(-4+4i)x
2
+(5+3i)x
3
=—-10+4i

#include <imsl.h>

f complex all = {{1.0,

f complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main ()
{
int n = 3;
f complex K2
/* Solve Ax = b for x */
x = imsl ¢ lin sol gen (n, a, b, 0);

/* Print x */
imsl ¢ write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

}

Linear Systems lin_sol_gen (complex)

Output
Solution, x, of Ax = Db
1 2 3
(1, -1) 2, 4) 3, -0)
Example 2

This example solves the conjugate transpose problem AMx = b and returns the LU factorization of A using partial
pivoting. This example differs from the first example in that the solution array is allocated in the main program.

#include <imsl.h>

f complex al] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
{2.0, 1.0}, {5.0, 3.0}, {7.0, =-5.0},
{-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main ()

{

int n =3, pvt[3];
f complex factor[9];
f complex x[3];

/* Solve ctrans (A)*x = b for x */
imsl ¢ lin sol gen (n, a, b,
~ T IMSL TRANSPOSE,
IMSL RETURN USER, x,
IMSL FACTOR USER, pvt, factor,
0);
/* Print x */
imsl ¢ write matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);

/* Print factors and pivot sequence */
imsl ¢ write matrix ("LU factors of A", n, n, factor, 0);
imsl i write matrix ("Pivot sequence", 1, n, pvt, 0);

}

Output
Solution, x, of ctrans(A)x = Db
1 2 3
(=9,79, 11.23) (2.96, -3.13) (1.85, 2.47)
LU factors of A
1 2 3
1 (-2.000, 1.000) (-4.000, 4.000) (5.000, 3.000)
2 (0.600, 0.800) (-1.200, 1.400) ¢ 2.200, 0.600)
3 (0.200, 0.600) (-1.118, 0.529) (4.824, 1.294)
Pivot sequence
1 2 3
3 3 3

52

Linear Systems lin_sol_gen (complex)

Example 3

This example computes the inverse of the 3 x 3 matrix A in the first example and also solves the linear system.

The product matrix C =AAis computed as a check. The approximate result is C = /.

#include <imsl.h>

f complex al] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
{2.0, 1.0}, {5.0, 3.0}, {7.0, =-5.0},
{-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main ()

{

int n = 3;

f complex WK G

f complex *p inva;
f complex “Cy

/* Solve Ax = b for x */
x = imsl c¢ 1lin sol gen (n, a, b,
IMSL INVERSE, &p inva,
0);

/* Print solution */
imsl ¢ write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Print input and inverse matrices */
imsl ¢ write matrix ("Input A", n, n, a, 0);
imsl ¢ write matrix ("Inverse of A", n, n, p _inva, 0);

/* Check and print result */
C = imsl ¢ mat mul rect ("A*B",
IMSL A MATRIX, n,n, p_inva,
IMSL B MATRIX, n,n, a,
0);
imsl ¢ write matrix ("Product, inv(A)*A", n, n, C, 0);

}
Output
Solution, x, of Ax = Db
1 2 3
(1, -1) 2, 4) (3, -0)
Input A

1 2 3
1 (1] 1) (2/ 3) (3, _3>
2 2, 1) | 5, 3) (7, -5)
3 (-2, 1) -4, 4) (5, 3)

Inverse of A

1 2 3
1 (1.330, 0.594) (-0.151, 0.028) (-0.604, 0.613)
2 (-0.632, -0.538) (0.160, 0.189) (0.142, -0.245)
3 (-0.189, 0.160) (0.193, -0.052) (0.024, 0.042)

Product, inv (A)*A

53

Linear Systems lin_sol_gen (complex)

1
1 (1, _0) (_OI
2 0, 0) « 1,
3 (-0, -0) -0,

Warning Errors

IMSL ILL CONDITIONED

IMSL ILL CONDITIONED 1

Fatal Errors

IMSL SINGULAR MATRIX

2 3
=0) (-0, 0)
0) (0, =0)
0) 1, 0)

The input matrix is too ill-conditioned. An estimate
of the reciprocal of the L1 condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is too ill-conditioned for iterative
refinement to be effective.

The input matrix is singular.

54

Linear Systems lin_sol_posdef

lin_sol_posdef

Solves a real symmetric positive definite system of linear equations Ax = b. Using optional arguments, any of sev-
eral related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = LLT, computing the inverse matrix A, or computing the solution of Ax = b given the Cholesky factor,
L.

Synopsis
#include <ims1l.h>
float *imsl f 1in sol posdef (intn,floatal], floatb[], .., 0)

The type double functionis imsl d 1in sol posdef.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size n X n containing the matrix.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the symmetric positive definite linear system Ax = b. To release this space, use
imsl free.If nosolution was computed, then NULL is returned.

55

Linear Systems lin_sol_posdef

Synopsis with Optional Arguments
#include <ims1.h>

float *imsl £ 1in sol posdef (intn,floatal],floatb[],
IMSL A COL DIM, inta col dim,
IMSL RETURN USER, floatx[1],
IMSL FACTOR, float **p factor,
IMSL FACTOR_USER, float factor[],
IMSL FAC COL DIM, int fac _col dim,
IMSL_INVERSE, float **p _inva,
IMSL INVERSE USER,float inval],
IMSL INV COL DIM, intinv_col dim,
IMSL_CONDITION,f/OGt *cond,
IMSL FACTOR ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE ONLY,
0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, float **p factor (Output)
The address of a pointer to an array of size n x n containing the LLT factorization of A. On return, the
necessary space is allocated by ims1 £ 1in sol posdef. The lower-triangular part of this
array contains L and the upper-triangular part contains LT. Typically, float *p factorisdeclared,
and &p_factor isused as an argument.

IMSL FACTOR USER, float factor[] (Input/Output)
A user-allocated array of size n x n containing the LLT factorization of A. The lower-triangular part of
this array contains L, and the upper-triangular part contains LT. If Ais not needed, a and factor can
share the same storage. If IMSL SOLVE is specified, it is input; otherwise, it is output.

56

Linear Systems lin_sol_posdef

IMSL FAC COL DIM, int fac col dim (Input)
The column dimension of the array containing the LLT factorization of A.
Default: fac_col dim=n

IMSL_INVERSE,f/OOt **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,
the necessary space is allocated by ims1 £ 1in sol posdef. Typically, float *p_inva'is
declared, and &p_inva is used as an argument.

IMSL INVERSE USER, float inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV_COL DIM, intinva_col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L4y norm condition number of the matrix A. Do not
use this option with IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the Cholesky factorization LLT of A. If IMSL,_FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol posdef is NULL.

IMSL SOLVE_ ONLY
Solve Ax = b given the LLT factorization previously computed by ims1 f 1lin sol posdef. By
default, the solutionto Ax = b is pointed to by ims1 £ 1lin sol posdef.|f
IMSL SOLVE ONLY isused, argument IMSL FACTOR USER isrequired and the argument a is
ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIs required. The argument b is then ignored, and the returned value of
imsl f lin sol posdef isNULL.

Description

The function ims1l f 1in sol posdef solves a system of linear algebraic equations having a symmetric
positive definite coefficient matrix A. The function first computes the Cholesky factorization LLT of A. The solution

of the linear system is then found by solving the two simpler systems, y = L' and x = L"Ty. When the solution to
the linear system or the inverse of the matrix is sought, an estimate of the L4 condition number of A is computed

57

Linear Systems lin_sol_

posdef

using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than 1/

(where € is the machine precision), a warning message is issued. This indicates that very small changes in A may
produce large changes in the solution x.

The function ims1 f 1lin sol posdef failsif L, the lower-triangular matrix in the factorization, has a zero

diagonal element.

Examples

Example 1

A system of three linear equations with a symmetric positive definite coefficient matrix is solved in this example.
The equations are listed below:

#include <imsl.

int main ()

- 3x

+ 2x

—3x

+ 10x

— 5x

=-78
2x

- 5x

+ 6x

h>

58

Linear Systems

lin_sol_posdef

}
Outp

Solution,

1
1

Example 2

int
float
float

float

n = 3;

*X;

all] = {1.0, -3.0, 2.0,
-3.0, 10.0, -5.0,
2.0, -5.0, 6.0};

b[] = {27.0, -78.0, 64.0};

/* Solve AX = b for x */

x = imsl f lin sol posdef (n, a, b, 0);

/* Print x */

imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

ut

x, of Ax = b
2 3
-4 7

This example solves the same system of three linear equations as in the initial example, but this time returns the

LLT factorization of A. The solution x is returned in an array allocated in the main program.

#include <imsl.h>

int main ()

{

}
Outp

Solution,

1
1

int
float
float

float

3.0, 10.0, -5.0,
2.0, =5.0, 6.0};
(27.0, -78.0, 64.0};

(on
I

/* Solve AX = b for x */

imsl f lin sol posdef (n, a, b,

- IMSL_RETURN USER, x,
IMSL FACTOR, &p factor,
0);

/* Print x */

imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Print Cholesky factor of A */

imsl f write matrix ("Cholesky factor L, and trans (L), of A"

ut

n, n, p factor, 0);

x, of Ax = b
2 3
-4 7

59

Linear Systems lin_sol_posdef

Cholesky factor L, and trans (L), of A

1 2 3
1 1 =3 2
2 -3 1 1
3 2 1 1

Example 3
This example solves the same system as in the initial example, but given the Cholesky factors of A.

#include <imsl.h>

int main ()

{

int n = 3;

float WX, Fapg

float factor[] = {1.0, -3.0, 2.0,
-3.0, 1.0, 1.0,
2.0, 1.0, 1.0};

float b[] = {27.0, -78.0, 64.0};

/* Solve Ax = b for x */
x = imsl f lin sol posdef (n, a, b,
~ T IMSL FACTOR USER, factor,
IMSL SOLVE ONLY,
0);

/* Print x */
imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

}

Output
Solution, x, of Ax = b
1 2 3
1 -4 7

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

60

Linear Systems lin_sol_posdef

IMSL SINGULAR MATRIX

IMSL SINGULAR TRI MATRIX

The input matrix is singular.

The input triangular matrix is singular. The index of
the first zero diagonal element is #.

61

Linear Systems lin_sol_posdef (complex)

lin_sol_posdef (complex)

Solves a complex Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = L or computing the solution to Ax = b given the Cholesky factor, L.

Synopsis
#include <ims1.h>
fcomplex *imsl c 1lin sol posdef (intn,fcomplexall,fcomplexb[], .., 0)

The type d_complex functionis imsl z 1lin sol posdef.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexal] (Input)
Array of size n x n containing the matrix.

fcomplexb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To release this space, use
imsl free.If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

62

Linear Systems lin_sol_posdef (complex)

fcomplex *imsl c 1lin sol posdef (intn,fcomplexall,fcomplexb[],
IMSL A COL DIM, inta col dim,
IMSL RETURN USER,fcomplexx[],
IMSL FACTOR, fcomplex **p factor,
IMSL FACTOR USER,fcomplex factor[],
IMSL FAC COL DIM, intfac_col dim,
IMSL_CONDITION,f/OCI[*cond,
IMSL_FACTOR_ONLY,
IMSL SOLVE_ONLY,
0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of size n containing the solution x.

IMSL FACTOR, f complex **p factor (Output)
The address of a pointer to an array of size n x n containing the LLH factorization of A. On return, the
necessary space is allocated by ims1 ¢ 1lin sol posdef. The lower-triangular part of this
array contains L, and the upper-triangular part contains LH. Typically, f complex *p factoris
declared, and &p_factor is used as an argument.

IMSL FACTOR USER, f complex factor [] (Input/Output)
A user-allocated array of size n x n containing the LLH factorization of A. The lower-triangular part of
this array contains L, and the upper-triangular part contains L™, If Ais not needed, a and factor
can share the same storage. If IMSL._SOLVE is specified, factor is input. Otherwise, it is output.

IMSL FAC COL DIM, intfac_col dim (Input)
The column dimension of the array containing the LLH factorization of A.
Default: fac_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. Do not
use this option with IMSL _SOLVE_ONLY.

63

Linear Systems lin_sol_posdef (complex)

IMSL FACTOR ONLY
Compute the Cholesky factorization LLH of A. If IMSL,_ FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl ¢ 1lin sol posdef is NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LL™ factorization previously computed by ims 1 ¢ 1lin sol posdef.By
default, the solution to Ax = b is pointed to by ims1 ¢ 1lin sol posdef.If
IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER isrequired and argument a is

ignored.

Description

The function ims1 ¢ lin sol posdef solves a system of linear algebraic equations having a Hermitian
positive definite coefficient matrix A. The function first computes the LLH factorization of A. The solution of the lin-

ear system is then found by solving the two simpler systems, y = L™'b and x = L™Hy. When the solution to the linear
system is required, an estimate of the L4 condition number of A is computed using the algorithm in Dongarra et

al. (1979). If the estimated condition number is greater than 1/& (where € is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large changes in the solution x. The
functionimsl c 1lin sol posdef failsif L, the lower-triangular matrix in the factorization, has a zero diago-

nal element.

Examples

Example 1

A system of five linear equations with a Hermitian positive definite coefficient matrix is solved in this example. The
equations are as follows:

2x
1
+H—1+1i)x

=1+5i
(-1 -1ix

+4x

64

Linear Systems lin_sol_posdef (complex)

+(1+2i)x

(1 -20x

+10x

+ 4ix

=1-16i

—4ix

+ 6x

+(1+i)x
5
=-3-3]
(1 —-idx
4
+9x
5
=25+ 16i

#include <imsl.h>

int main ()

{
int n = 5;
f complex *x;

f complex a[] = {
{2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
{-1.0,-1.0},{4.0,0.0}, {(1.0,2.0}, {0.0,0.0}, {0.0,0.0},
{0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
{0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
{6.0,0.0}, {0.0,0.0}, {0.0,0.0}, {21.0,-1.0},{9.0,0.0}

f complex b[]
{1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
ki
/* Solve Ax = b for x */
x = imsl ¢ lin sol posdef(n, a, b, 0);

Linear Systems lin_sol_posdef (complex)

/* Print x */
imsl ¢ write matrix("Solution, x, of Ax = b", 1, n, x, 0);

}

Output
Solution, x, of Ax = b
1 2 3
(2, 1) « 3, -0) (-1, -1)
4 5
(Or _2) (3, 2)
Example 2

This example solves the same system of five linear equations as in the first example. This time, the L. factoriza-
tion of A and the solution x is returned in an array allocated in the main program.

#include <imsl.h>

int main ()

{

int n=>5;

f complex x[5], *p factor;

f complex al]l] = {
{2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
{-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
{0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
{0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
{0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}

f complex b[] = {
{1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
i
/* Solve Ax = b for x */
imsl ¢ lin sol posdef (n, a, b,
- IMSL RETURN USER, x,
IMSL FACTOR, &p factor,
0);

/* Print x */

imsl ¢ write matrix("Solution, x, of Ax = b", 1, n, x, 0);

/* Print Cholesky factor of A */
imsl ¢ write matrix("Cholesky factor L, and ctrans(L), of A",

n, n, p factor, 0);

}

Output
Solution, x, of Ax = Db
1 2 3
(2! l) (3, _0) (_l/ _1)
4 5
(Or _2) (3/ 2)

66

Linear Systems lin_sol_posdef (complex)

Cholesky factor L, and ctrans (L), of A

1
1 1.414, 0.000) (
2 | -0.707, -0.707) (
3 0.000, 0.000) (
4 0.000, 0.000) (
5 (0.000, 0.000) (
4
1 0.000, -0.000) (
2 (0.000, -0.000) (
3 (0.000, 1.386) (
4 (2.020, 0.000) (
5 (0.495, -0.495) (

Warning Errors

IMSL_HERMITIAN DIAG REAL 1

IMSL_HERMITIAN DIAG REAL 2

IMSL ILL CONDITIONED

Fatal Errors

IMSL NONPOSITIVE MATRIX

IMSL HERMITIAN DIAG REAL

IMSL SINGULAR TRI MATRIX

ODOORr O

NO O OO

.707,
- 132,
ST,
.000,
.000,

.000,
.000,
.000,
.495,
.917,

2 3
0.707) (0.000, -0.000)
0.000) (0.577, 1.155)

-1.155) (2.887, 0.000)
0.000) (0.000, -1.386)
0.000) (0.000, 0.000)

5

-0.000)

-0.000)

-0.000)

0.495)
0.000)

The diagonal of a Hermitian matrix must be real. Its
imaginary part is set to zero.

The diagonal of a Hermitian matrix must be real.
The imaginary part will be used as zero in the
algorithm.

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #. The solution might not be accurate.

The leading # by # minor matrix of the input matrix
is not positive definite.

During the factorization the matrix has a large imag-
inary component on the diagonal. Thus, it cannot be
positive definite.

The triangular matrix is singular. The index of the
first zero diagonal term is #.

67

Linear Systems lin_sol_gen_band

lin_sol_gen_band

Solves a real general band system of linear equations, Ax = b. Using optional arguments, any of several related
computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, solving ATx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <ims1l.h>
float *imsl £ 1in sol gen band(intn,floatal],intnlca,intnuca,floatb[], .., 0)

The type double functionis imsl d l1in sol gen band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size (nlca+ nuca+ 1) x n containing the n x n banded coefficient matrix in band storage

mode.

intnlca (Input)
Number of lower codiagonals in a.

intnuca (Input)
Number of upper codiagonals in a.

floatb [1 (Input)
Array of size n containing the right-hand side.

68

Linear Systems lin_sol_gen_band

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

float *imsl f 1in sol gen band(intn,floata[],intnlca,intnuca, floatb[],

IMSL_TRANSPOSE,

IMSL RETURN USER, floatx[1],

IMSL FACTOR, int **p pvt,float **p factor,
IMSL FACTOR USER,intpvt[],float factor[],
IMSL CONDITION, float *condition,

IMSL FACTOR_ONLY,

IMSL_SOLVE_ONLY,

IMSL BLOCKING FACTOR,intblock factor,
0)

Optional Arguments

IMSL_TRANSPOSE
Solve ATx = b.
Default: Solve Ax = b.

IMSL RETURN USER,float x [] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, int **p pvt,float **p factor (Output)

int **p pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 f 1in sol gen band.
Typically, int *p_pvt is declared and &p_pvt is used as an argument.

float **p factor (Input/Output)
The address of a pointer to an array of size (2n/ca + nuca + 1) X n containing the LU factoriza-
tion of A with column pivoting. On return, the necessary space is allocated by
imsl f 1in sol gen band. Typically, float *p_ factorisdeclared and &p_factor
is used as an argument.

69

Linear Systems lin_sol_gen_band

IMSL FACTOR USER,intpvt[],float factor[] (Input/Output)
intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

float factor[] (Input/Output)
A user-allocated array of size (2n/ca + nuca + 1) X n containing the LU factorization of A. The
strictly lower triangular part of this array contains information necessary to construct L, and
the upper triangular part contains U. If A is not needed, factor and a can share the first
(nlca + nuca + 1) x n locations.

These parameters are “Input” if IMSL SOLVE ONLY is specified. They are “Output”
otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol gen bandis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 f 1in sol gen band. By
default, the solution to Ax = b is pointed to by ims1 £ 1in sol gen band.If
IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER is required and the argument a is
ignored.

IMSL BLOCKING FACTOR,intblock factor (Input)
The blocking factor. block factor must be set no larger than 32.
Default: block factor =1

Description

The function ims1 f 1in sol gen band solves a system of linear algebraic equations with a real band
matrix A. It first computes the LU factorization of A based on the blocked LU factorization algorithm given in Du
Croz et al. (1990). Level-3 BLAS invocations are replaced with inline loops. The blocking factor block factor
has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems, y = L'b and x = U "'y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L4 condition number of A is

computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition
number is greater than 1/& (where € is the machine precision), a warning message is issued. This indicates that

70

Linear Systems lin_sol_gen_band

very small changes in A may produce large changes in the solution x. The function
imsl f lin sol gen bandfails if U, the upper triangular part of the factorization, has a zero diagonal

element.

Examples

Example 1

This example demonstrates the simplest use of this function by solving a system of four linear equations. The
equations are as follows:

#include <imsl.h>

int main ()

{

int n = 4;

71

Linear Systems lin_sol_gen_band

int nuca = 1;
int nlca = 1;
float wR g

float al[] = {0.0, -1.0, -2.0, 2.0,
2.0, 1.0, -1.0, 1.0,
-3.0, 0.0, 2.0, 0.0};
float b[] = {3.0, 1.0, 11.0, -2.0};
x = imsl f 1lin sol gen band (n, a, nlca, nuca, b, 0)
imsl f write matrix ("Solution x, of Ax = b", 1, n,

}

Output
Solution x, of Ax = b
1 2 3 4
2 1 -3 4
Example 2

’

Xy

In this example, the problem Ax = b is solved using the data from the first example. This time, the factorizations

are returned and the problem Ax = b is solved without recomputing LU.

#include <imsl.h>

int main ()

{
int n = 4, nuca = 1, nlca = 1, *pivot = NULL;
float x[4], *factor = NULL;

/* Note that a is in band storage mode */
float al[] =

float b[] = { 3.0, 1.0, 11.0, -2.0 };

/* Solve Ax = b and return LU */

imsl f lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR, é&pivot, &factor,
IMSL RETURN USER, x,
0);

imsl f write matrix ("Solution of Ax = b", 1, n, x,

/* Use precomputed LU to solve trans(A)x = b */
/* The original matrix A is not needed */
imsl f 1lin sol gen band(n, (float*)0, nlca, nuca,
IMSL FACTOR USER, pivot, factor,
IMSL SOLVE ONLY,
IMSL TRANSPOSE,
IMSL RETURN USER, x,

b,

0);

72

Linear Systems lin_sol_gen_band

0);

imsl f write matrix("Solution of trans(A)x = b", 1, n, x, 0);

if (pivot)

imsl free(pivot):;
if (factor)

imsl free(factor);

}

Output
Solution of Ax = Db
1 2 3 4
2 1 =3 4
Solution of trans(A)x = Db

1 2 3 4

-6 -5 -1 -0
Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate

of the reciprocal of its L condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

73

Linear Systems lin_sol_gen_band (complex)

lin_sol_gen_band (complex)

Solves a complex general band system of linear equations Ax = b. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the LU factorization of A using par-

tial pivoting, solving AHx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <ims1.h>

fcomplex *imsl ¢ lin sol gen band (intn,fcomplexal],intnlca,intnuca,fcomplexb[],
.. 0)

The type double functionis imsl z 1in sol gen band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexall (Input)
Array of size (nlca + nuca + 1) X n containing the n x n banded coefficient matrix in band storage

mode.

intnlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

fcomplexb [] (Input)
Array of size n containing the right-hand side.

74

Linear Systems lin_sol_gen_band (complex)

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *ims1l ¢ 1lin sol gen band (intn, fcomplexa[],ntnlca,intnuca,fcomplexb[],

IMSL TRANSPOSE,

IMSL RETURN USER, fcomplex x[],

IMSL FACTOR, int **p pvt,fcomplex **p factor,
IMSL FACTOR USER,intpvt[],fcomplex factor[],
IMSL CONDITION, float *condition,
IMSL_FACTOR_ONLY,

IMSL_SOLVE_ONLY,

0)

Optional Arguments

IMSL_TRANSPOSE
Solve AHx = b
Default: Solve Ax = b.

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, int **p_ pvt, fcomplex **p factor (Output)

int **p_pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 ¢ 1in sol gen band.
Typically, int *p_pvt is declared and &p_pvt is used as an argument.

f.complex **p factor (Input/Output)
The address of a pointer to an array of size (2nica + nuca + 1) x n containing the LU factoriza-
tion of A with column pivoting. On return, the necessary space is allocated by
imsl ¢ lin sol gen band. Typically, f complex *p factor is declared and
&p_factor isused as an argument.

IMSL FACTOR USER,intpvt[],fcomplex factor[] (Input/Output)

75

Linear Systems lin_sol_gen_band (complex)

intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

fcomplex factor [] (Input/Output)
A user-allocated array of size (2nlca + nuca + 1) X n containing the LU factorization of A. If A is
not needed, factor and a can share the first (n/ca + nuca + 1) x n locations.
These parameters are “Input” if IMSL SOLVE ONLY is specified. They are “Output”
otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl ¢ 1lin sol gen bandis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 ¢ 1lin sol gen band. By
default, the solution to Ax = b is pointed to by ims1 ¢ 1in sol gen band.If
IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER is required and argument a is
ignored.

Description

The function ims1 ¢ lin sol gen band solves a system of linear algebraic equations with a complex
band matrix A. It first computes the LU factorization of A using scaled partial pivoting. Scaled partial pivoting dif-
fers from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same L.,
norm. The factorization fails if U has a zero diagonal element. This can occur only if A is singular or very close to a
singular matrix.

The solution of the linear system is then found by solving two simpler systems, y = L'b and x = U 'y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L4 condition number of A is
computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition
number is greater than 1/& (where € is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function

imsl ¢ lin sol gen bandfails if U, the upper triangular part of the factorization, has a zero diagonal ele-
ment. The function ims1 ¢ 1lin sol gen bandis based on the LINPACK subroutine CGBFA; see Dongarra
et al. (1979). CGBFA uses unscaled partial pivoting.

76

Linear Systems lin_sol_gen_band (complex)

Examples

Example 1

The following linear system is solved:

—2—3i 4 0 0 X0 —10—5i
6+i —0.5+3i —2+2i 0 [|*¥|_|95+55i
0 1+1i 3-3i 4-1|]|* 12 —-12i
0 0 2i 1—i X3 8i
#include <imsl.h>
int main ()
{
int n=4;
int nlca = 1;
int nuca = 1;

f complex P
/* Note that a is in band storage mode */

f complex al] =

{{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
=2.0, =3.0}, {(=0.5, 3.0}, (3.0, =3.0}, (1.0, =1.0J),
{6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

f complex Db[]
{{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b, 0);

imsl ¢ write matrix ("Solution, x, of Ax = b", n, 1, x, 0);

}

Output
Solution, x, of Ax = b
1 3, -0)
2 -1, 1)
3 3, 0)
4 -1, 1)
Example 2

This example solves the problem Ax = b using the data from the first example. This time, the factorizations are

returned and then the problem AHx = b is solved without recomputing LU.

#include <imsl.h>

int main ()

{

Linear Systems lin_sol_gen_band (complex)

int n = 4;
int nlca = 1;
int nuca = 1;
int *pivot;

f complex W e

f complex *factor;

/* Note that a is in band storage mode */
f complex all

{{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
{-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
{6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}1};

f complex b[] =

{=10.,0, =5.05, (9.9, 9.5}, (12.0, =12.0}, (0.0, ©.0}%}g

/* Solve Ax = b and return LU */

x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR, é&pivot, &factor,
0);

imsl ¢ write matrix ("solution of Ax = b", n, 1, x,
(0)) 7

imsl free (x);

/* Use precomputed LU to solve ctrans(A)x = b */
x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR USER, pivot, factor,
IMSL TRANSPOSE,

0);
imsl ¢ write matrix ("solution of ctrans(A)x = b", n, 1, x,
0);
}
Output
solution of Ax =
1 3, -0)
2 (=1, 1)
3 (3, 0)
4 =1, 1)
solution of ctrans(A)x = b
1 5.58, -2.91)
2 (-0.48, -4.67)
3 -6.19, 7.15)
4 12.60, 30.20)

Linear Systems lin_sol_gen_band (complex)

Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is singular.

79

Linear Systems lin_sol_posdef_band

lin_sol_posdef_band

Solves a real symmetric positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the RTR Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L4 condition number of A.

Synopsis
#include <ims1.h>

float *imsl £ 1in sol posdef band(intn,floatal[],intncoda, floatb[], .., 0)

The type double functionis ims1 d lin sol posdef band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size (ncoda + 1) x n containing the n X n positive definite band coefficient matrix in band sym-

metric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

floatb[1 (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, then NULL is returned.

80

Linear Systems lin_sol_posdef_band

Synopsis with Optional Arguments
#include <ims1.h>

float *imsl f 1in sol posdef band(intn,floatal[],intncoda, floatb[],

IMSL RETURN USER, floatx[],

IMSL FACTOR, float **p_ factor,
IMSL FACTOR USER, float factor([],
IMSL CONDITION, float *cond,

IMSL FACTOR ONLY,

IMSL SOLVE_ ONLY,

0)

Optional Arguments

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, float **p factor (Output)
The address of a pointer to an array of size (ncoda + 1) x n containing the LLT factorization of A. On
return, the necessary space is allocated by ims1 f 1lin sol posdef band. Typically,
float *p_factoris declared and &p_factor is used as an argument.

IMSL FACTOR USER, float factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) x n containing the LLT factorization of A in band symmetric
form. If Ais not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL SOLVE is specified. They are “Output” otherwise.

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the LLT factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL,_FACTOR or
IMSL FACTOR USERIsrequired. The argument b is then ignored, and the returned value of
imsl f 1lin sol posdef bandis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LLT factorization previously computed by
imsl f lin sol posdef band. By default, the solution to Ax = b is pointed to by
imsl f 1lin sol posdef band.If IMSL SOLVE ONLY is used, argument
IMSL FACTOR USERIsrequired and the argument a is ignored.

81

Linear Systems lin_sol_posdef_band

Description

The function imsl f 1in sol posdef band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the RTR Cholesky factorization of A. R is an upper
triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L condition

number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/e (where € is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function ims1 f 1lin sol posdef band failsif any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function ims1 f 1lin sol posdef bandis partially based on the LINPACK subroutines CPBFA and
SPBSL; see Dongarra et al. (1979).

Example 1

Solves a system of linear equations Ax = b, where

20 -1 0 6
o 4 2 1 -1
A=_p 5 7 —y|ado=1_y

0 1 -1 3 19

#include <imsl.h>

int main ()

{

int n = 4;
int ncoda = 2;
float wR g

/* Note that a is in band storage mode */

float al] = {0.0, 0.0, -1.0, 1.0,

0.0, 0.0, 2.0, =1.0,

2.0, 4.0, 7.0, 3.0};
float b[] = {6.0, -11.0, -11.0, 19.0};

x = imsl f lin sol posdef band (n, a, ncoda, b, 0);

imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

82

Linear Systems lin_sol_posdef_band

Output
Solution, x, of AXx = b
1 2 3 4
4 -6 2 9
Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated

space and an estimate of k4(A) is computed. Additionally, the RTR factorization is returned. Then, knowing that

Kq(A) = [IA]l lIA]], the condition number is computed directly and compared to the estimate from Higham's

method.

#include <imsl.h>
#include <stdio.h>

int main ()

{

int n = 4;
int ncoda = 2;
float all =
{0.0, 0.0, -1.0, 1.0,
0.0, 0.0, 2.0, -1.0,
2.0, 4.0, 7.0, 3.0};
float bl[] = {6.0, -11.0, -11.0, 19.0};
float x[4];
float e i[4];
float *factor;
float condition;
float column norm;
float inverse norm;
int i; B
int Jé

imsl f 1lin sol posdef band (n, a, ncoda, b,
IMSL FACTOR, &factor,
IMSL CONDITION, &condition,
IMSL RETURN USER, x,
0);

imsl f write matrix ("Solution, x, of Ax = b", 1, n,
0);

/* find one norm of inverse */
inverse norm = 0.0;

for (i=0; i<n; i++) {
for (§=0; j<n; j++) e i[§] = 0.0;
e i[i] = 1.0;

83

Linear Systems lin_sol_posdef_band

/* determine one norm of each column of inverse */
imsl £ 1in sol posdef band (n, a, ncoda, e i,

IMSL FACTOR USER, factor, B

IMSL SOLVE ONLY,

IMSL RETURN USER, x,

0);

column norm = imsl f vector norm (n, X,
IMSL ONE NORM,
0);

/* the max of the column norms is the norm of
inv (A) */
if (inverse norm < column norm)

inverse norm = column_norm;

}

/* by observation, one norm of A is 11 */

printf ("\nHigham’s condition estimate = %f\n", condition);
printf ("Direct condition estimate = $f\n",

11.0*inverse norm) ;

Output

Solution, x, of AXx = b
1 2 3
4 -6 2

O

Higham’s condition estimate = 8.650485
Direct condition estimate = 8.650485

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL SINGULAR MATRIX The input matrix is singular.

84

Linear Systems lin_sol_posdef_band (complex)

lin_sol_posdef_band (complex)

Solves a complex Hermitian positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the RHR Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L4 condition number of A.

Synopsis
#include <ims1.h>
fcomplex *imsl c 1lin sol posdef band(intn, fcomplexal],intncoda, fcomplexb[], .., 0)

The type double functionis ims1l z lin sol posdef band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexal] (Input)
Array of size (ncoda + 1) x n containing the n x n positive definite band coefficient matrix in band sym-
metric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

fcomplexb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, then NULL is returned.

85

Linear Systems lin_sol_posdef_band (complex)

Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl ¢ lin sol posdef band(intn,fcomplexal],intncoda, fcomplexb[],

IMSL RETURN USER,fcomplex x[],

IMSL FACTOR, f complex **p factor,
IMSL FACTOR_USER, f complex factor[],
IMSL CONDITION, float *condition,
IMSL _FACTOR_ONLY,

IMSL SOLVE_ONLY,

0)

Optional Arguments

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, fcomplex **p factor (Output)
The address of a pointer to an array of size (ncoda + 1) x n containing the RHR factorization of A. On
return, the necessary space is allocated by ims1 ¢ 1lin sol posdef band. Typically,
f.complex *p_factor isdeclared and &p factor is used as an argument.

IMSL FACTOR USER,fcomplex factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) x n containing the RMR factorization of A in band symmetric
form. If Ais not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL SOLVE is specified. They are “Output” otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the RHR factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL,_FACTOR or
IMSL FACTOR USERIsrequired. The argument b is then ignored, and the returned value of
imsl ¢ 1lin sol posdef band isNULL.

IMSL SOLVE ONLY
Solve Ax = b given the RMR factorization previously computed by
imsl c lin sol posdef band. By default, the solution to Ax = b is pointed to by
imsl c¢ lin sol posdef band.If IMSL SOLVE ONLY is used, argument
IMSL FACTOR USERIsrequired and the argument a is ignored.

86

Linear Systems lin_sol_posdef_band (complex)

Description

The function imsl ¢ 1lin sol posdef band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the RHR Cholesky factorization of A. Argument R is
an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L1 condition

number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/e (where € is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function ims1 ¢ 1lin sol posdef band failsif any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function ims1 ¢ 1lin sol posdef bandis based partially on the LINPACK sub-routines SPBFA and
CPBSL; see Dongarra et al. (1979).

Examples

Example 1

Solve a linear system Ax = b where

2 —1+i 0 0 0 1+5§
-1—i 4 1+2i O 0 12 —6i
A= 0 1—2i 10 4 0 and b = 1—16i
0 0 —4i 6 1+ —3-3i
0 0 0 1-i 9 25+ 16i
#include <imsl.h>
int main ()
{
int n=>5;
int ncoda = 1;

f complex *x;
/* Note that a is in band storage mode */

f complex al] =

{{¢.0, 0.0}, {-1.0, 1.0}, (1.0, 2.0}, {0.0, 4.0},
{1.0, 1.0},

{2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
{9.0, 0.0}};

f complex Db[] =

87

Linear Systems lin_sol_posdef_band (complex)

{i.0, 5,05, (12,0, =6.0}, {1L.0, =16.,0},{=3.0, =3.0},
{25.0, 16.0}};

x = imsl ¢ lin sol posdef band (n, a, ncoda, b, 0);

imsl ¢ write matrix ("Solution, x, of Ax = Db", n, 1, x, 0);

}

Output
Solution, x, of AX = b
1 2, 1)
2 3, -0)
3 (-1, -1)
4 0, -2)
5 (3y 2)

Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated
space and an estimate of k4(A) is computed. Additionally, the RMR factorization is returned. Then, knowing that
KW@=HAHImﬂnmheaNMNmnnumbechompumddwedWandcompamdtoﬁmesmnmefmnwthams
method.

#include <imsl.h>

#include <stdio.h>
#include <math.h>

int main ()

{

int n =5, ncoda =1, i, j;

/* Note that a is in band storage mode */
f complex al] =

{{6.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
{1.0, 1.0},
{2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
{9.0, 0.0}};

f complex DbI[] =

{{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
{25.0, 16.0}};

f complex x[5], e i[5], *factor;

float condition, column norm, inverse norm;

imsl ¢ lin sol posdef band (n, a, ncoda, b,
IMSL FACTOR, &factor,
IMSL:CONDITION, &condition,
IMSL RETURN USER, x,
0);

imsl ¢ write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Find one norm of inverse */
inverse norm = 0.0;

88

Linear Systems lin_sol_posdef_band (complex)

for (i=0; i<n; i++) {
for (3=0; j<n; j++) e i[j] = imsl cf convert (0.0, 0.0);
e i[i] = imsl cf convert (1.0, 0.0);

/* Determine one norm of each column of inverse */
imsl ¢ lin sol posdef band (n, a, ncoda, e i,
IMSL FACTOR USER, factor,
IMSL SOLVE ONLY,
IMSL RETURN USER, x,
0);

column norm = imsl ¢ vector norm (n, X,
IMSL ONE NORM,
0);

/* The max of the column norms is the norm of inv (A) */
if (inverse norm < column norm)
inverse norm = column norm;

}

/* By observation, one norm of A is 14+sqgrt(5) */

printf ("\nHigham’s condition estimate = %7.4f\n", condition);

printf ("Direct condition estimate = %7.4f\n",
(14.0+sgrt (5.0)) *inverse norm) ;

}

Output
Solution, x, of AX = b
1 2 3
(2, 1) « Ep -0) (-1, =1)
4 5
(0, -2) (3, 2)

Higham’s condition estimate = 19.3777
Direct condition estimate = 19.3777

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL SINGULAR MATRIX The input matrix is singular.

89

Linear Systems lin_sol_gen_coordinate

lin_sol_gen_coordinate

Solves a sparse system of linear equations Ax = b. Using optional arguments, any of several related computations
can be performed. These extra tasks include returning the LU factorization of A, computing the solution of Ax = b
given an LU factorization, setting drop tolerances, and controlling iterative refinement.

Synopsis
#include <ims1.h>
float *imsl f 1in sol gen coordinate (intn,intnz, ImsLf sparse_elem *a, float *b, .., 0)

The type double functionis imsl d 1in sol gen coordinate.

Required Arguments

intn (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1_ free.If no solu-
tion was computed, then NULL is returned.

90

Linear Systems lin_sol_gen_coordinate

Synopsis with Optional Arguments
#include <ims1.h>

Joat *imsl f 1lin sol gen coordinate (intn,intnz, Imsl f sparse elem *a, float *b,
r _ _ _ Y

IMSL RETURN SPARSE LU FACTOR,/mslf sparse_lu_factor *1u_ factor,
IMSL SUPPLY SPARSE LU FACTOR, /mslfsparse_lu_factor *1u factor,
IMSL FREE SPARSE LU FACTOR,

IMSL RETURN SPARSE LU IN COORD, Imslf sparse_elem **1u coordinate, int
row_pivots,intcol pivots,

IMSL SUPPLY SPARSE LU IN_ COORD,intnzlu, Imsl f sparse_elem *1u coordinate, int
*row pivots,int *col pivots,

IMSL_FACTOR_ONLY,

IMSL SOLVE_ONLY,

IMSL RETURN USER,floatx[],

IMSL TRANSPOSE,

IMSL CONDITION, float *condition,

IMSL PIVOTING STRATEGY, Ims/ pivotmethod,

IMSL NUMBER OF SEARCH ROWS, int num_search_row,

IMSL ITERATIVE REFINEMENT,

IMSL DROP TOLERANCE, float tolerance,

IMSL HYBRID FACTORIZATION, float density, int orde r bound,
IMSL STABILITY FACTOR,floats factor,

IMSL GROWTH FACTOR LIMIT,flootgf limit,

IMSL GROWTH FACTOR, float *gf,

IMSL SMALLEST PIVOT, float *small pivot

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,

IMSL CSC_FORMAT, int *col ptr,int *row_ind, float *values,
IMSL MEMORY BLOCK SIZE,intblock size,

0)

Optional Arguments

IMSL RETURN SPARSE LU FACTOR, Imsl f sparse_lu_factor *1u_ factor (Output)
The address of a structure of type Ims!_f sparse_lu_factor. The pointers within the structure are initial-
ized to point to the LU factorizationbyimsl f 1lin sol gen coordinate.

91

Linear Systems lin_sol_gen_coordinate

IMSL SUPPLY SPARSE LU FACTOR, Imsl f sparse_lu_factor *1u_ factor (Input)
The address of a structure of type Ims/_f sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by ims1 f 1lin sol gen coordinate withthe
IMSL RETURN SPARSE LU FACTOR option.

IMSL_FREE SPARSE LU FACTOR
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL RETURN SPARSE LU IN COORD, Imslf sparse_elem **1u coordinate,
int **row pivots,int **col pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in 1u_coordinate.
This is more compact than the internal representation encapsulated in Ims/_f sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL. RETURN LU IN COORD and
IMSL SUPPLY LU IN COORD s probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL SUPPLY SPARSE LU IN COORD,intnzlu, /msLf sparse elem *1u coordinate,
int *row pivots,int *col pivots (Input)
Supply the LU factorization in coordinate form. See IMSL. RETURN SPARSE LU IN COORD fora
description.

IMSL FACTOR ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL SUPPLY SPARSE LU FACTOR or IMSL SUPPLY SPARSE LU IN COORD.

IMSL RETURN USER,floatx[] (Output)
A user-allocated array of length n containing the solution x.

IMSL TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL CONDITION, float *condition,
Estimate the L4 condition number of A and return in the variable condition.

92

Linear Systems lin_sol_gen_coordinate

IMSL PIVOTING STRATEGY, Ims/ pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL. ROW MARKOWITZ,
IMSL COLUMN MARKOWITZ, or IMSL SYMMETRIC MARKOWITZ.
Default: IMSL SYMMETRIC MARKOWITZ.

IMSL NUMBER OF SEARCH ROWS, intnum_search row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search row =3.

IMSL ITERATIVE REFINEMENT,
Select this option if iterative refinement is desired.

IMSL DROP TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than
tolerance, it will be discarded.
Default: tolerance = 0.0.

IMSL HYBRID FACTORIZATION, float density, int orde r bound,
Enable the function to switch to a dense factorization method when the density of the active subma-
trix reaches 0.0 < density < 1.0 and the order of the active submatrix is less than or equal to
order bound.

IMSL_STABILITY_FACTOR,f/OOt s factor (Input)
The absolute value of the pivot element must be bigger than the largest element in absolute value in
its row divided by s factor.
Default: s factor =10.0.

IMSL GROWTH FACTOR LIMIT, flootgf limit (Input)
The computation stops if the growth factor exceeds gf limit.
Default: gf 1imit =1.0el6.

IMSL GROWTH FACTOR, float *gf (Output)
Argument gf is calculated as the largest element in absolute value at any stage of the Gaussian elim-
ination divided by the largest element in absolute value in A.

IMSL SMALLEST P IVOT, float * small pivot (Output)
A pointer to the value of the pivot element of smallest magnitude that occurred during the
factorization.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

93

Linear Systems lin_sol_gen_coordinate

IMSL CSC_FORMAT,int *col ptr,int*row_ ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main “Introduc-
tion” chapter of this manual for a discussion of this storage scheme.

IMSL_MEMORY BLOCK SIZE, intblocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize = nz.

Description

The function ims1 f 1lin sol gen coordinate solves a system of linear equations Ax = b, where Ais
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case,
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the

IMSL RETURN SPARSE LU FACTOR orthe IMSL RETURN LU IN COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL_SUPPLY SPARSE LU FACTORoOr IMSL SUPPLY SPARSE LU IN COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL_RETURN SPARSE LU FACTORis used, the final call to

imsl lin sol gen coordinate shouldinclude IMSL FREE SPARSE LU FACTOR to release the
heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward
elimination and back substitution so that the operations U'y = b and LTx = y are performed to obtain the solu-

tion. So, with one call to produce the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL CONDITION is used to calculate and return an estimation of the L condition number of A.

The algorithm used is due to Higham. Specification of IMSL CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solu-

tion to problems of the form Az=rand ATz =r.

94

Linear Systems lin_sol_gen_coordinate

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL. ROW MARKOWITZ or IMSL COLUMN MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL NUM_OF SEARCH ROWS.

The option IMSL DROP TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that

IMSL ITERATIVE REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.

Thefunctionimsl f 1in sol gen coordinate provides the option of switchingto a dense factorization
method at some point during the decomposition. This option is enabled by choosing

IMSL HYBRID FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete
fill-in. The other parameter, order bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

0(n?) nature of the dense factorization will cause performance degradation. Note that this option can significantly
increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

(10 0 0 0 O
0 10 -3 -1 0
0 0 15 0 0
-2 0 0 10 -1
-1 0 0 -5 1 -3
-1 -2 0 0 0 6|

Let xT = (1,2, 3,4, 5, 6) so that Ax = (10, 7, 45, 33, =34, 31)T. The number of nonzeros in Ais nz = 15.

#include <imsl.h>

int main ()
{
Imsl f sparse elem a[] =
{0, 0, 10.0,
1, 1, 10.0,
1, 2, =3.0,

95

Linear Systems lin_sol_gen_coordinate

1, 3, -1.0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, -5.0,
4, 4, 1.0,
4, 5, -3.0,
5, 0, -1.0,
5,6 1, -2.0,
5, 5, 6.0};

float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};

int n = 6;

int nz = 15;

float *x;

x = imsl f lin sol gen coordinate (n, nz, a, b,
0);

imsl f write matrix ("solution", 1, n, x,
0);

imsl free (x);

}

Output
solution
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

This examples sets A = £(1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved, using the same coefficient matrix A just factored. Maximum absolute errors and execution
time ratios are printed, showing that forward and back solves take approximately 10 percent of the computation
time of a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial
number of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that tim-
ing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl f sparse elem *a;

Imsl f sparse lu factor lu factor;

float *b;

float *x;

float *mod_ five;

float *mod ten;

float error factor solve;
float error solve;

double time factor solve;

96

Linear Systems lin_sol_gen_coordinate

double time solve;
int n = 1000;
int c = 10;

int i g

int nz;

int index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (float*) malloc (n*sizeof (*mod five)):;
mod_ten = (float*) malloc (n*sizeof (*mod ten)):;

for (i=0; i<n; i++) {
mod five[i] = (float) (i % 5);
mod ten[i] = (float) (i % 10);
}

/* Choose b so that x will approximate mod five */

b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,
0):

/* Time the factor/solve */
time factor solve = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);
time factor solve = imsl ctime() - time factor solve;

/* Compute max absolute error */

error factor solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
time solve = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL SOLVE ONLY,

0);

time solve = imsl ctime() - time solve;

Linear Systems lin_sol_gen_coordinate

error solve = imsl f vector norm (n, x,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, ¢&index,

0);

free (mod ten);
imsl free (b);
imsl free (x);

/* Print errors and ratio of execution times */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve);

printf ("time solve/time factor solve = $f\n",
time solve/time factor solve);

}

Output
absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04

time solve/time fator solve = 0.093750

Example 3

This example solves a system Ax = b, where A = £(500, 50). Then, the same system is solved using a large drop tol-
erance. Finally, using the factorization just computed, the same linear system is solved with iterative refinement.
Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl f sparse elem *a;

Imsl f sparse lu factor lu factor;

float *b;

float *x;

float *mod_five;

float error zero drop tol;
float error nonzero drop tol;
float error nonzero drop tol IR;
double time zero drop tol;
double time nonzero drop tol;
double time nonzero drop tol IR;
int nz nonzero drop tol;
int nz_zero drop tol;

int n = 500;

int e = 50¢

int i;

int nz;

int index;

98

Linear Systems lin_sol_gen_coordinate

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, c, &nz, 0);
for (i=0; i<nz; 1i++) af[i].val *= 0.05;

/* Set a predetermined solution */

mod five = (float*) malloc (n*sizeof (*mod five));
for (i=0; i<n; i++)
mod five[i] = (float) (i % 5);

/* Choose b so that x will approximate mod five */
b = imsl £ mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod five,

0);

/* Time the factor/solve */
time zero drop tol = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL_NUM NONZEROS_ IN FACTOR, &nz zero drop tol,
0);

time zero drop tol = imsl ctime() - time zero drop tol;

/* Compute max abolute error */

error zero drop tol = imsl f vector norm (n, x,
IMSL SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

imsl free (x);

/* Solve the same problem, with drop
tolerance = 0.005 */
time nonzero drop tol = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
IMSL DROP TOLERANCE, 0.005, -
IMSL NUM NONZEROS IN FACTOR, &nz nonzero drop tol,
0);

time nonzero drop tol = imsl ctime() - time nonzero drop tol;

/* Compute max abolute error */

error nonzero _drop tol = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

imsl free (x);

/* Solve the same problem with IR, use last
factorization */
time nonzero drop tol IR = imsl ctime();

x = imsl f 1lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu_ factor,
IMSL SOLVE ONLY,

IMSL ITERATIVE REFINEMENT,

99

Linear Systems lin_sol_gen_coordinate

0);
time nonzero drop tol IR = imsl ctime() - time nonzero drop tol IR;

/* Compute max abolute error */

error nonzero drop tol IR = imsl f vector norm (n, X,
IMSL SECOND VECTOR mod flve,
IMSL INF NORM &index,
0);

imsl free (x);
imsl free (b);

/* Print errors and ratio of execution times */
printf ("drop tolerance = 0.0\n");

printf ("\tabsolute error = %e\n", error zero drop tol);
printf ("\tfillin = %d\n\n", nz_zé}o_dfbp_t51);
printf ("drop tolerance = 0.005\n")

printf ("\tabsolute error = %e\n", error nonzero drop tol);

(
(
(
(
printf ("\tfillin = %d\n\n", nz nonzero drop_ tol);
(
(
(
(

printf ("drop tolerance = 0.005 (with IR)\n")

printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR);
printf ("\tfillin = %d\n\n", nz nonzero drop tol);
printf ("time nonzero drop tol/time zero drop tol = $f\n",

time nonzero _drop_ “tol/time zero drop “tol);
printf ("tlme nonzero_ drop tol IR/time zero _drop tol = %$f\n",
time nonzero drop “tol IR/tlme zZero drop “tol);

}
Output

drop tolerance = 0.0
absolute error = 3.814697e-06
fillin = 9530

drop tolerance = 0.005
absolute error = 2.699481e+00
fillin = 8656

drop tolerance = 0.005 (with IR)
absolute error = 1.907349%9e-06
fillin = 8656

time nonzero drop tol/time zero drop tol = 1.086957

time _nonzero drop tol IR/tlme Zero drop tol = 0.840580
Notice the absolute error when iterative refinement is not used. Also note that iterative refinement itself can be
quite expensive. In this case, for example, the IR solve took approximately as much time as the factorization. For
this problem the use of a drop high drop tolerance and iterative refinement was able to reduce fill-in by 10 per-
cent at a time cost double that of the default usage. In tight memory situations, such a trade-off may be
acceptable. Users should be aware that a drop tolerance can be chosen large enough, introducing large errors
into LU, to prevent convergence of iterative refinement.

100

Linear Systems lin_sol_gen_coordinate (complex)

lin_sol_gen_coordinate (complex)

Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A. Using optional arguments,
any of several related computations can be performed. These extra tasks include returning the LU factorization of
A, computing the solution of Ax = b given an LU factorization, setting drop tolerances, and controlling iterative
refinement.

Synopsis
#include <ims1.h>

fcomplex *imsl ¢ lin sol gen coordinate (intn, intnz, Imsl_c sparse_elem *a, f complex *b,
o)

The type double functionis imsl z 1in sol gen coordinate.

Required Arguments

intn (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

f.complex *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1_ free.If no solu-
tion was computed, then NULL is returned.

101

Linear Systems lin_sol_gen_coordinate (complex)

Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl c 1lin sol gen coordinate (intn,int nz, Imsl_c sparse_elem *a, f complex *b,
IMSL RETURN SPARSE LU FACTOR, /msl_c sparse_lu_factor *1u_ factor,
IMSL SUPPLY SPARSE LU FACTOR,/msl_c sparse_lu_factor *1u_factor,
IMSL FREE SPARSE LU FACTOR

IMSL RETURN SPARSE LU IN COORD, Imsl.c_sparse_elem **1u coordinate,
int **row_pivots,int **col pivots,

IMSL SUPPLY SPARSE LU IN COORD,intnzlu,/mslc_sparse_elem *1u coordinate,
int *row pivots,int *col pivots,

IMSL_FACTOR_ONLY,

IMSL SOLVE_ONLY,

IMSL RETURN USER,fcomplexx[],

IMSL TRANSPOSE,

IMSL CONDITION, float *condition,

IMSL PIVOTING STRATEGY, Imsl_pivot method,

IMSL NUMBER OF SEARCH ROWS, int num_search_row,

IMSL ITERATIVE REFINEMENT,

IMSL DROP TOLERANCE, float tolerance,

IMSL HYBRID FACTORIZATION, float density, int orde r bound,
IMSL GROWTH FACTOR LIMIT, floatgf limit,

IMSL GROWTH FACTOR, float *gf,

IMSL SMALLEST P IVOT, float * small pivot

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,

IMSL CSC_FORMAT, int *col ptr,int *row_ind, f complex *values,
IMSL_MEMORY BLOCK SIZE, intblock size

0)

Optional Arguments

IMSL RETURN SPARSE LU FACTOR, /msl_c_sparse_lu_factor *1u factor (Output)
The address of a structure of type Ims/_c_sparse_lu_factor. The pointers within the structure are initial-
ized to point to the LU factorization by ims1 ¢ 1lin sol gen coordinate.

102

Linear Systems lin_sol_gen_coordinate (complex)

IMSL SUPPLY SPARSE LU FACTOR, Imsl_c sparse_lu_factor *1u_factor (Input)
The address of a structure of type Ims/_c_sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by ims1l ¢ lin sol gen coordinate withthe
IMSL RETURN SPARSE LU FACTOR option.

IMSL_FREE SPARSE LU FACTOR
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL RETURN SPARSE LU IN COORD, Imsl.c_sparse_elem **1u coordinate,
int **row pivots,int **col pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in 1u_coordinate.
This is more compact than the internal representation encapsulated in Ims/_c_sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL. RETURN LU IN COORD and
IMSL SUPPLY LU IN COORD s probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL SUPPLY SPARSE LU IN_ COORD, intnzlu, Imsl_c sparse_elem *1u coordinate,
int *row pivots,int *col pivots (Input)
Supply the LU factorization in coordinate form. See IMSL. RETURN SPARSE LU IN COORD fora
description.

IMSL FACTOR ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL SUPPLY SPARSE LU FACTOR or IMSL SUPPLY SPARSE LU IN COORD.

IMSL RETURN_ USER, fcomplex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL CONDITION, float *condition,
Estimate the L4 condition number of A and return in the variable condition.

103

Linear Systems lin_sol_gen_coordinate (complex)

IMSL PIVOTING STRATEGY, Ims/ pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL. ROW MARKOWITZ,
IMSL COLUMN MARKOWITZ, or IMSL SYMMETRIC MARKOWITZ.
Default: IMSL SYMMETRIC MARKOWITZ.

IMSL NUMBER OF SEARCH ROWS, intnum_search row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search row=3

IMSL ITERATIVE REFINEMENT,
Select this option if iterative refinement is desired.

IMSL DROP TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than toler-
ance, it will be discarded.
Default: tolerance =0.0

IMSL HYBRID FACTORIZATION, floatdensity,intorder bound, (Input)
Enable the code to switch to a dense factorization method when the density of the active submatrix
reaches 0.0 < density < 1.0 and the order of the active submatrix is less than or equal to
order bound.

IMSL_GROWTH FACTOR_LIMIT, floatgf limit (Input)
The computation stops if the growth factor exceeds gf limit.
Default: gf limit =1.e16

IMSL GROWTH FACTOR, float *g£ (Output)
gf is calculated as the largest element in absolute value at any stage of the Gaussian elimination
divided by the largest element in absolute value in A.

IMSL SMALLEST PIVOT, float *small pivot (Output)
A pointer to the value of the pivot element of smallest magnitude.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT,int *col ptr,int*row_ ind, f complex *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main Introduction
chapter at the beginning of this manual for a discussion of this storage scheme.

IMSL MEMORY BLOCK SIZE, intblocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize =nz

104

Linear Systems lin_sol_gen_coordinate (complex)

Description

The function ims1 ¢ lin sol gen coordinate solves a system of linear equations Ax = b, where A is
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the

IMSL RETURN SPARSE LU FACTOR or the IMSL RETURN LU IN COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL,_SUPPLY SPARSE LU FACTORoOr IMSL SUPPLY SPARSE LU IN COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL_RETURN SPARSE LU FACTOR is used, the final call to

imsl 1lin sol gen coordinate shouldinclude IMSL FREE SPARSE LU FACTOR to release the
heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward
elimination and back substitution so that the operations U'y = b and LTx = y are performed to obtain the solu-

tion. So, with one call to produce the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL CONDITION is used to calculate and return an estimation of the Ly condition number of A.

The algorithm used is due to Higham. Specification of IMSL. CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solu-

tion to problems of the form Az=rand ATz =r.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL_ROW MARKOWITZ or IMSL COLUMN MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL. NUM OF SEARCH ROWS.

The option IMSL DROP TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that

IMSL ITERATIVE REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.

105

Linear Systems

lin_sol_gen_coordinate (complex)

The function imsl ¢ 1lin sol gen coordinate provides the option of switchingto a dense factorization
method at some point during the decomposition. This option is enabled by choosing

IMSL HYBRID FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete
fill-in. The other parameter, order bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

O(n>) nature of the dense factorization will cause performance degradation. Note that this option can significantly

increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

Let

so that

0
0

x'=(1+i2+2i,3+3i,4+4i,5+5i,6+ 6i)

Ax =3+ 17i,-19+ 5i, 6 + 18i, - 38 + 32i, -63 + 49i, -57 + 83i)"

#include <imsl.h>

int main ()

{

static Imsl c sparse elem al]

{0,

~

~

gD WWWNERRE

N N N N N SN SN SN N N~

~

~

RPOUDdWODDWONWNEO

N N N N N SN S SN SN SN N~

{10.0, 7.0},
{3.0, 2.0},

{-3.0, 0.0},
{-1.0, 2.0},
{4.0, 2.0},

{-2.0, -4.0},
{1.0, 6.0},

{-1.0, 3.0},
{-5.0, 4.0},
{-5.0, 0.0},
{12.0, 2.0},
{-7.0, 7.0},
{-1.0, 12.0}
{-2.0, 8.0},

[10+ 7i

2 —4i
—5+4i
| —1+12i —2+8i

Linear Systems lin_sol_gen_coordinate (complex)

}

5, 5, (3.0, 7.0}z

static £ complex b[] =
{{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
{-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
int n = 6;
int nz = 15;
f complex *x;

x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
0);

imsl ¢ write matrix ("solution", n, 1, x,
0);
imsl free (x);

Output
solution
1 1, 1)
2 25 2)
3 (3, 3)
4 4, 4)
5 (5, 5)
6 (6, 6)
Example 2

This example sets A= E (1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved using the same coefficient matrix A just factored. Maximum absolute errors and execution

time ratios are printed showing that forward and back solves take a small percentage of the computation time of
a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial number
of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that timing results
are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl c sparse elem *a;

Imsl c sparse lu factor lu factor;

f complex *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
double time factor solve, time solve;
int n = 1000, ¢ = 10, i, nz, index;

/* Get the coefficient matrix */
a = imsl c generate test coordinate (n, c, &nz, 0);

/* Set two different predetermined solutions */
mod five = (f complex*) malloc (n*sizeof (*mod five));
mod ten = (f complex*) malloc (n*sizeof (*mod ten));

107

Linear Systems lin_sol_gen_coordinate (complex)

for (i=0; i<n; i++) {
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 0.0);

}

/* Choose b so that x will approximate mod five */
b = imsl ¢ mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod five,

0);

/* Time the factor/solve */
time factor solve = imsl ctime();

x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);

time factor solve = imsl ctime() - time factor solve;

/* Compute max abolute error */

error factor solve = imsl c¢ vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */
b = imsl ¢ mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod ten,

0);

/* Use the previously computed factorization to solve Ax = b */
time solve = imsl ctime() ;

x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL SOLVE ONLY,

0);
time solve = imsl ctime () - time solve;
error solve = imsl ¢ vector norm (n, X,

IMSL SECOND VECTOR, mod_ten,
IMSL INF NORM, &index,
0);

imsl free (b)
imsl free (x)

’
r

/* Print errors and ratio of execution times */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve) ;

printf ("time solve/time factor solve = $f\n",
time solve/time factor solve);

108

Linear Systems lin_sol_gen_coordinate (complex)

|
Output

109

Linear Systems superlu

superlu

Computes the LU factorization of a general sparse matrix by a column method and solves the real sparse linear
system of equations Ax=5b.

Synopsis
#include <imsl .h>
float *ims1l £ superlu(intn,intnz, Imslfsparse_elemal],floatb[], .., 0)
void ims1l f superlu factor free (Imslf super_ lu_factor *factor)

The type double functions are ims1 d superluand imsl d superlu factor free.

Required Arguments

intn (Input)
The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f sparse_elem a [] (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims/_f sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

floatb[] (Input)
Array of length n containing the right-hand side.

110

Linear Systems superlu

Return Value

A pointer to the solution x of the sparse linear system Ax = b . To release this space, use ims1 free.If no

solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

loat *imsl f superlu (intn,intnz, Imsl f sparse elem al], floatb[],
_r 14

IMSL EQUILIBRATE, intequilibrate,

IMSL COLUMN ORDERING METHOD, Imsl_col ordering method,

IMSL COLPERM VECTOR, intpermc|],

IMSL TRANSPOSE, int transpose,

IMSL ITERATIVE REFINEMENT,int refine,

IMSL FACTOR_SOLVE,int factsol,

IMSL DIAG PIVOT THRESH, doublediag pivot thresh,

IMSL SYMMETRIC MODE, int symm mode,

IMSL PERFORMANCE TUNING, intsp_ienv[],

IMSL CSC_FORMAT, /ntHB col ptr[],intHB row ind[] float HB values[],
IMSL CSC_FORMAT,intHB col ptr[],intHB row ind[],floatHB values[],
IMSL SUPPLY SPARSE LU FACTOR, /msLfsuper_lu_factor lu factor supplied,
IMSL RETURN SPARSE LU FACTOR, /msLf super_lu_factor *1u_ factor returned,
IMSL CONDITION, float *condition,

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL_FORWARD ERROR BOUND, float *ferr,

IMSL BACKWARD_ ERROR, float *berr,

IMSL RETURN USER, floatx[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Input)
Specifies if the input matrix A should be equilibrated before factorization.

111

Linear Systems superlu

equilibrate

Description

0

Do not equilibrate A before factorization

1

Equilibrate A before factorization.

Default: equilibrate =0

IMSL COLUMN ORDERING METHOD, Imslcol ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

method

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the
input matrix.

IMSL MMD ATA

Minimum degree ordering on the structure of 474

IMSL_MMD AT PLUS A

Minimum degree ordering on the structure of

AT+ 4.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL COLPERM VECTOR. Vector permc is a
permutation of the numbers 0,1,..,n-1.

Default: method = IMSL._ COLAMD

IMSL COLPERM VECTOR, intpermc[] (Input)
Array of length n which defines the permutation matrix P. before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD withmethod = IMSL PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)
Indicates if the transposed problem A”x = b is to be solved. This option can be used in conjunction
with either of the options that supply the factorization.

112

Linear Systems superlu

transpose Description
0 Solve Ax =b.

1 Solve A'x =b.

Default: transpose =0

IMSL_ITERATIVE_REFINEMENT, intrefine (Iﬂput)
Indicates if iterative refinement is desired.

refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine =1

IMSL FACTOR SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system or both are to be computed.

fact sol Description

0 Compute the LU factorization of the input matrix A
and solve the system Ax = 5.

1 Only compute the LU factorization of the input
matrix and return.

The LU factorization is returned via optional argu-
ment IMSL RETURN SPARSE LU FACTOR.

Input argument b is ighored.

2 Only solve 4x = b given the LU factorization of A4 .

The LU factorization of 4 must be supplied via
optional argument
IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0

Linear Systems superlu

IMSL DIAG PIVOT THRESH, double diag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00<diag pivot thresh <1.0.

Default: diag_pivot thresh=1.0

IMSL SYMMETRIC MODE, int symm mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix
A is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold
(e.g. 0.0 or 0.01) via option IMSL,_ DIAG PIVOT THRESH and choose an (AT+A)-based column
permutation algorithm (e.g. column permutation method IMSL MMD AT PLUS A).

symm node Description

0 Do not use symmetric mode option.

1 Use symmetric mode option.

Default: symm mode =0

IMSL PERFORMANCE TUNING, int sp_ienv[] (Input)
Array of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

[Description of sp_ienv[i]

0 The panel size.
Default: sp_ienv[0] = 10

1 The relaxation parameter to control supernode amalgama-
tion.

Default: sp_ienv[1] = 5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] = 200

4 The minimum column dimension to be used for 2D block-
ing.

Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20

IMSL CSC_FORMAT,intHB col ptr[],intHB row ind[],floatHB values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the Introduction chapter
of this manual for a discussion of this storage scheme.

114

Linear Systems superlu

IMSL SUPPLY SPARSE LU FACTOR, Imsl f super_lu_factor 1u_factor supplied (Input)
A structure of type Imsl_f_super_lu_factor containing the LU factorization of the input matrix computed
with the IMSL RETURN SPARSE LU FACTOR option. See the Description section for a definition
of this structure. To free the memory allocated within this structure, use function
imsl_f_superlu_factor_free.

IMSL RETURN SPARSE LU FACTOR, Imslf super_lu_factor *1u factor returned (Output)
The address of a structure of type Ims/_f super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function imsl_f_superlu_factor _free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

min [(P,0,ADP) | /)]]

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD_ ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
Consider the sparse linear system of equations

Ax=b

Here, A isa general square, nonsingular n by n sparse matrix, and x and p are vectors of length 5 . All entries
in A, x and p are of real type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

115

Linear Systems superlu

1. Compute a triangular factorization P.D,AD_P,= LU . Here, D, and D, are positive definite diag-

onal matrices to equilibrate the system and P, and P, are permutation matrices to ensure
numerical stability and preserve sparsity. L is a unit lower triangular matrix and U is an upper tri-
angular matrix.

2. Solve Ax = p by evaluating

x=d"b=D,(P.(U(L7(P(D)))))

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of p by D..
Multiplying Pr<Drb) means permuting the rows of D,b .

Multiplying L_I(PrDrb)l means solving the triangular system of equations with matrix [by substitution.
Similarly, multiplying U (L (Pr'Drb> means solving the triangular system with U .

Function ims1 f_superlu handlesstep 1 above by default or if optional argument IMSL FACTOR_SOLVE is
used and set to 1. More precisely, before 4x = p is solved, the following steps are performed:
1. Equilibrate matrix A, i.e. compute diagonal matrices D, and D, sothat 4 = D,AD. is "better
A—1 A
conditioned”’than 4 ,i.e. 4 isless sensitive to perturbations in 4 than 4" isto perturbations in
A.
2. Order the columns of 4 toincrease the sparsity of the computed [and U factors, i.e. replace 4
by AP, where P. isa column permutation matrix.

3. Compute the LU factorization of AP, . For numerical stability, the rows of AP, are eventually per-
muted through the factorization process by scaled partial pivoting, leading to the decomposition

A= P.AP.= LU . The LU factorization is done by a left looking supernode-panel algorithm with 2-
D blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor
A,
1==n | U5l
where 4; and U; denote the j -th column of matrices A and U, respectively.
5. Estimate the reciprocal of the condition number of matrix A.
During the solution process, this information is used to perform the following steps:

1. Solve the system Ax = p using the computed triangular L and U factors.

116

Linear Systems superlu

2. lteratively refine the solution, again using the computed triangular factors. This is equivalent to New-

ton's method.

3. Compute forward and backward error bounds for the solution vector x .

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional

arguments of function ims1l f superlu.

Function ims1 f superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Ims/_f_super_lu_factor and two sub-structures. Following is a short description of

these structures:

typedef struct{
int nnz;
float *nzval;

int *rowind;
int *colptr;

} Imsl f hb format;

typedef struct{
int nnz;

int nsuper;
float *nzval;

int *nzval colptr;

int *rowind;

int *rowind colptr;

int *col to_ sup;

int *sup to col;

} Imsl f sc format;

typedef struct{
int nrow;

/* Number of nonzeros in the matrix */
/* Array of nonzero values packed by column
*
/
/* Array of row indices of the nonzeros */
/* colptr[j] stores the location in nzval[]
and rowind[] which starts column j. It
has ncol+l entries, and colptr[ncol]
points to the first free location in
arrays nzval[] and rowind[]. */

/* Number of nonzeros in the supernodal
matrix */

/* Index of the last supernode */

/* Array of nonzero values packed by column

*
/

/* Array of length ncol+l; nzval colptr[j]
stores the location in nzval which starts
column j. nzval colptr[ncol] points to
the first free location in arrays
nzval[] and nzval colptr[]. */

/* Array of compressed row indices of
rectangular supernodes */

/* Array of length ncol+l;
rowind colptr[sup to col[s]] stores the
location in rowind[] which starts
all columns in supernode s, and
rowind colptr[ncol] points to the first
free location in rowind[]. */

/* Array of length ncol+l; col to sup[j] is
the supernode number to which column j
belongs. Only the first ncol entries in
col to sup[] are defined. */

/* Array of length ncol+l; sup to col[s]
points to the starting column of the s-th
supernode. Only the first nsuper+2
entries in sup to col[] are defined, and
sup_to col[nsuper+l] = ncol+l. */

/* number of rows of matrix A */

117

Linear Systems superlu

int ncol; /* number of columns of matrix A */
int equilibration method; /* The method used to equilibrate A:
B 0 - No equilibration
1 - Row equilibration.
2 — Column equilibration
3 - Both row and column equilibration */

float *rowscale; /* Array of length nrow containing the row
scale factors for A */

float *columnscale; /* Array of length ncol containing the
column scale factors for A */

int *rowperm; /* Row permutation array of length nrow
describing the row permutation matrix Pr

*/

int *colperm; /* Column permutation array of length ncol
describing the column permutation matrix
Pc */

Imsl f hb format *U; /* The part of the U factor of A outside the

supernodal blocks, stored in Harwell-
Boeing format */
Imsl f sc format *L; /* The L factor of A, stored in supernodal
format as block lower triangular matrix
*
/

} Imsl f super lu factor;

Structure Ims/_d_super_lu_factor and its two sub-structures are defined similarly by replacing float by double,
Imsl_f_hb_format by Ims/_d_hb_format and Ims/_f sc_format by Ims/_d_sc_format in their definitions.

For a definition of supernodes and its use in sparse LU factorization, see the SuperlLU Users' guide (1999) and J.W.
Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

19 0 21 21 O
1221 0 0 O
A=(0 12 16 0 O
0 0 0 5 21
12 12 0 0 18

taken from the SuperlLU Users' guide (1999).

Factorization of this matrix via ims1 f superlu using natural column ordering, no equilibration and setting
sp_ienv[1]from its default value 5 to 1 results in the following LU decomposition:

118

Linear Systems superlu

A=LU=
1.00 19.00 21.00 21.00
0.63 1.00 21.00 —13.26 —13.26
0.57 1.00 23.58 7.58 .
1.00 5.00 21.00
0.63 0.57 -0.24 —-0.77 1.00 34.20

Considering the filled matrix £ (/ denoting the identity matrix)

19.00 21.00 21.00
0.63 21.00 —13.26 —13.26
F=L+U-1I= 0.57 2358 7.58
5.00 21.00

0.63 057 -024 -0.77 34.20

the supernodal structure of the factors of matrix A can be described by

Sl U3 I/I4
S1 Sp Sy Uy
S2 SZ I/I4

S3 83

S S S 83 83

where §;denotes a nonzero entry in the jth supernode and u; denotes a nonzero entry in the jth column of U
outside the supernodal block.

Therefore, in a supernodal storage scheme the supernodal part of matrix £ is stored as the lower block-diagonal
matrix

19.00
0.63 21.00 —13.26

L 0.57 23.58

snode —

5.00 21.00
0.63 0.57 -0.24 -077 34.20

and the part outside the supernodes as the upper triangular matrix

* 21.00 21.00
* —13.26

snode — * 7.58
*

119

Linear Systems superlu

This is in accordance with the output for structure Ims/[_f_super_lu_factor:

Equilibration method: 0

Scale vectors:
rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000

columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000

Permutation vectors:

colperm: 0 1 2 3 4

rowperm: 0 1 2 3 4

Harwell-Boeing matrix U:

nrow 5, ncol 5, nnz 11

nzval: 21.000000 -13.263157 7.578947 21.000000
rowind: 0 1 2 0

colptr: 0 0 0 1 4 4

Supernodal matrix L:

nrow 5, ncol 5, nnz 11, nsuper 2
nzval:
0 .900000e+001
0 .315789e-001
0 .315789e-001
1 .100000e+001
1 .714286e-001
1 .714286e-001
2 -1.326316e+001
2 2.357895e+001
2

3

3

4

4

oI oy oy

-2.410714e-001
5.000000e+000
-7.714285e-001
2.100000e+001
3.420000e+001

W WHANDES_ARNDRE &SP O

nzval colptr: 0 3 6 9 11 13
rowind: 0 1 4 1 2 4 3 4

rowind colptr: 0 3 6 6 8 8

col to sup: O 2
0

_to 112
sup_to col: 135

Function ims1 f superluis based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User's Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory

(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the

following conditions are met:

120

Linear Systems superlu

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6x6 matrix

(10 0 0 0 0
0 10 -3 -1 0
0 0 15 0 0
2 0 0 10 -1
-1 0 0 -5 1 -3
-1 2 0 0 0 6]

S oo O

is computed.
Lety =(1,2,3,4,56)T,sothat by: =Ay =(10,7,45,33, -34,31)T and by: = ATy = (-9, 8,39, 13, 1,217)
The LU factorization of A is used to solve the sparse linear systems Ax = by and ATx = b,.

#include <imsl.h>

int main () {
Imsl f sparse elem al]

Il
-
o
~
o
~
-
o
o
~

121

Linear Systems superlu

2, 2, 15,0,
3, 0, =2.,0,
3, 3, 10,0,
3, 4, =1.0,
4, 0, =1.0,
4, 3, -5.0,
4, 4, 1.0,

4, 5, =3.0,
5, 0, =1.0,
5, 1, =2.0,
5, 5, ©.,0}

float b1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };
int n = 6, nz = 15;

float *x = NULL;

x = imsl f superlu (n, nz, a, bl, 0);
imsl f write matrix ("solution to A*x = bl", 1, n, x, 0);
imsl free (x);

x = imsl f superlu (n, nz, a, b2, IMSL TRANSPOSE, 1, 0);
imsl f write matrix ("solution to A"T*x = b2", 1, n, x, 0);
imsl free (x);

}

Output
solution to A*x = Db
1 2 3 4 5
1 2 3 4 5
solution to A"T*x = b2
1 2 3 4 5
1 2 3 4 5
Example 2

This example uses the matrix A = £(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.

After the computations, the space allocated for the LU factorization is freed via function
imsl f superlu factor free.

#include <imsl.h>
int main () {

Imsl f sparse elem *a;

Imsl f super lu factor lu factor;
float *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
int n = 1000, ¢ = 10;

int i, nz, index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

122

Linear Systems superlu

/* Set two different predetermined solutions */

mod five = (float*) malloc (n*sizeof (*mod five)):;
mod ten = (float*) malloc (n*sizeof (*mod ten)) ;
for (i=0; i<n; i++) { a

mod five[i] = (float) (i % 5);

mod ten[i] = (float) (i % 10);

}

/* Choose b so that x will approximate mod five */
b = imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod five, 0);

/* Solve Ax = b */
x = imsl f superlu (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor, 0);

/* Compute max absolute error */
error factor solve = imsl f vector norm (n, x,
- IMSL_SECOND VECTOR, mod_ five,
IMSL_INF NORM, &index,
0);

imsl free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */
b = imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod_ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
x = imsl f superlu (n, nz, a, b,

IMSL SUPPLY SPARSE LU FACTOR, lu factor,

IMSL FACTOR SOLVE, 2, -

0);
error solve = imsl f vector norm (n, X,

- IMSL SECOND VECTOR, mod_ten,

IMSL_INF NORM, &index,

0);
imsl free (mo
imsl free (b)
imsl free (x)
imsl free (a)

/* Free sparse LU structure */
imsl f superlu factor free (&lu factor);

/* Print errors */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve);

123

Linear Systems superlu

Output

absolute error (factor/solve)

absolute error (solve)

Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

1.502037e-005
1.621246e-005

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“"rcond” = #.
The solution might not be accurate.

The input matrix is singular.

124

Linear Systems superlu (complex)

superlu (complex)

Computes the LU factorization of a general complex sparse matrix by a column method and solves the complex
sparse linear system of equations Ax = b .

Synopsis
#include <ims1.h>
f.complex *imsl c superlu (intn,intnz, Imsl_c sparse_elem a1, fcomplexb[], .., 0)
void ims1l ¢ superlu factor free (Imsl_c super_lu factor *factor)

The type double functions are ims1l z superluand imsl z superlu factor free.

Required Arguments

intn (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a [] (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims/_c_sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

fcomplexb[] (Input)
Array of length n containing the right-hand side.

125

Linear Systems superlu (complex)

Return Value

A pointer to the solution x of the sparse linear system Ax = b . To release this space, use ims1 free.If no
solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1 .h>

fcomplex *imsl c_ superlu (intn,intnz, Imsl_c sparse_elemall,fcomplexb[],

IMSL EQUILIBRATE, intequilibrate,

IMSL COLUMN ORDERING METHOD, Ims/ col ordering method,

IMSL COLPERM VECTOR, intpermc|],

IMSL TRANSPOSE, int transpose,

IMSL ITERATIVE REFINEMENT,int refine,

IMSL FACTOR_SOLVE, int factsol,

IMSL DIAG PIVOT THRESH, doublediag pivot thresh,

IMSL SYMMETRIC MODE, int symm mode,

IMSL PERFORMANCE TUNING,intsp ienv[],

IMSL CSC FORMAT, /ntHB col ptr[],intHB row ind[],fcomplex HB values|[],
IMSL SUPPLY SPARSE LU FACTOR, Imsl_c super_lu_factor lu_factor supplied,
IMSL RETURN SPARSE LU FACTOR,/mslc_super_lu_factor *1u factor returned,
IMSL CONDITION, float *condition,

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,

IMSL FORWARD ERROR BOUND, float *ferr,

IMSL BACKWARD ERROR, float *berr,

IMSL RETURN USER, f complex x[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Inputs)
Specifies if the input matrix A should be equilibrated before factorization.

126

Linear Systems superlu (complex)

equilibrate

Description

0

Do not equilibrate A before factorization

1

Equilibrate A before factorization.

Default: equilibrate =0

IMSL COLUMN ORDERING METHOD, Ims/_col ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

met hod

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the
input matrix..

IMSL_MMD ATA

Minimum degree ordering on the structure of 47 4

IMSL MMD AT PLUS A

Minimum degree ordering on the structure of

AT+ 4.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL COLPERM VECTOR. Vector permc is a
permutation of the numbers 0,1,...n-1.

Default: method = IMSL COLAMD

IMSL COLPERM VECTOR, intpermc[] (Input)
Array of length n which defines the permutation matrix P, before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD withmethod = IMSL PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)
Indicates if the problem A4x = b or one of the transposed problems 4’x = h or A”x = b isto be

solved.

127

Linear Systems superlu (complex)

transpose

Description

0

Solve Ax=5b.

1

Solve ATx=b.
This option can be used in conjunction with either
of the options that supply the factorization.

Solve A"x=1p.
This option can be used in conjunction with either
of the options that supply the factorization.

Default: transpose =0

IMSL ITERATIVE REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine

Description

0

No iterative refinement.

1

Do iterative refinement.

Default: refine =1

IMSL FACTOR_SOLVE, int factsol (Input)

Indicates if the LU factorization, the solution of a linear system or both are to be computed.

fact sol

Description

0

Compute the LU factorization of the input matrix A
and solve the system Ax =5 .

128

Linear Systems superlu (complex)

factsol

Description

1

Only compute the LU factorization of the input
matrix and return.

The LU factorization is returned via optional argu-
ment IMSL RETURN SPARSE LU FACTOR.

Input argument b is ignored.

Only solve 4x = b given the LU factorization of 4.

The LU factorization of 4 must be supplied via
optional argument

IMSL SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0

IMSL DIAG PIVOT_ THRESH, double diag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00<diag pivot thresh <1.0.

Default: diag pivot thresh=1.0.

IMSL SYMMETRIC MODE, int symm mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix
A is diagonally dominant or nearly so. The user should then define a small diagonal pivot, threshald

(e.g. 0.0 or 0.01) via optional argument IMSL. DIAG PIVOT THRESH and choose an

based column permutation algorithm (e.g. column permutation method IMSL MMD AT PLUS A).

synm node

Description

Do not use symmetric mode option.

Use symmetric mode option.

Default: symm mode =0

129

Linear Systems superlu (complex)

IMSL PERFORMANCE TUNING, /intsp ienv[] (Input)
Vector of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

i Description of sp_i env[i]

0 The panel size.
Default: sp_ienv[0] = 10

1 The relaxation parameter to control supernode amalga-
mation.

Default: sp_ienv[l] =5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] =200

4 The minimum column dimension to be used for 2D block-
ing.

Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20

IMSL CSC_FORMAT,/ntHB col ptr[],intHB row ind[],fcomplex HB values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the main Introduction
chapter of this manual for a discussion of this storage scheme.

IMSL SUPPLY SPARSE LU FACTOR,/mslc_super_lu_factor lu_factor supplied (Input)
A structure of type Ims/_c_super_lu_factor containing the LU factorization of the input matrix com-
puted with the IMSL_ RETURN_ SPARSE LU FACTOR option. See the Description section for a
definition of this structure. To free the memory allocated within this structure, use function
imsl_c_superlu_factor._free.

IMSL RETURN SPARSE LU FACTOR, /msLc_super_lu_factor *1u factor returned (Output)
The address of a structure of type Ims|_c_super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function ims/_c_superlu_factor_free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

130

Linear Systems superlu (complex)

min [(P,0ADP) | /)]]

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD_ ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER,fcomplex x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
Consider the sparse linear system of equations

Ax=0b

Here, A isa general square, nonsingular n by n sparse matrix, and x and p are vectors of length 5 . All entries
in A, x and b are of complex type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization P.D,AD_P.= LU . Here, D, and D, are positive definite diag-

onal matrices to equilibrate the system and P, and P, are permutation matrices to ensure
numerical stability and preserve sparsity. [is a unit lower triangular matrix and U is an upper tri-
angular matrix.

2. Solve Ax = b by evaluating

x=d"b=D(P(U (L7 (P(D1)))))

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of p by D..
Multiplying Pr<Drb> means permuting the rows of D,b .

Multiplying L71<P1'Drb)l means solving the triangular system of equations with matrix [by substitution.
Similarly, multiplying U (L <PrDrb> means solving the triangular system with U.

Function ims1 c_superlu handlesstep 1 above by default or if optional argument IMSL FACTOR_SOLVE is
used and set to 1. More precisely, before 4x = p is solved, the following steps are performed:

131

Linear Systems superlu (complex)

1. Equilibrate matrix 4, i.e. compute diagonal matrices D, and D, sothat 4 = D,AD, is “better
A=l

conditioned”than 4 ,ie. 4 isless sensitive to perturbations in ;1 than 4! is to perturbations in
A.

2. Order the columns of ,21 to increase the sparsity of the computed [and U factors, i.e. replace ,21
by AP, where P. isa column permutation matrix.

3. Compute the LU factorization of AP.. For numerical stability, the rows of AP, are eventually per-
muted through the factorization process by scaled partial pivoting, leading to the decomposition

A= P.AP.= LU The LU factorization is done by a left looking supernode-panel algorithm with 2-D
blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

- 14,1,
1<j=n || U],

where ;1_]. and U, denote the j-th column of matrices A and U, respectively.
5. Estimate the reciprocal of the condition number of matrix A.
During the solution process, this information is used to perform the following steps:
1. Solve the system A4x = b using the computed triangular L and U factors.

2. lteratively refine the solution, again using the computed triangular factors. This is equivalent to New-
ton's method.

3. Compute forward and backward error bounds for the solution vector x .

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional
arguments of function ims1 ¢ superlu.

Function ims1 c_superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Ims/_c_super_lu_factor and two sub-structures. Following is a short description of
these structures:

typedef struct{

int nnz; /* Number of nonzeros in the matrix */

f complex *nzval; /* Array of nonzero values packed by column
*/

int *rowind; /* Array of row indices of the nonzeros */

int *colptr; /* colptr[]j] stores the location in nzvall[]

and rowind[] which starts column j. It has

132

Linear Systems superlu (complex)

} Imsl c hb format;

typedef struct{
int nnz;

int nsuper;
f complex *nzval;

int *nzval colptr;

int *rowind;

int *rowind colptr;

int *col to_ sup;

int *sup to col;

} Imsl c sc format;

typedef struct({
int nrow;
int ncol;

ncol+l entries, and colptr[ncol] points to
the first free location in arrays nzvall[]
and rowind[]. */

/* Number of nonzeros in the supernodal
matrix */

/* Index of the last supernode */

/* Array of nonzero values packed by column

*
/

/* Array of length ncol+l; nzval colptr[j]
stores the location in nzval which starts
column j. nzval colptr[ncol] points to the
first free location in arrays nzval[] and
nzval colptr[]. */

/* Array of compressed row indices of
rectangular supernodes */

/* Array of length ncol+1l;
rowind colptr([sup to col[s]] stores the
location in rowind[] which starts
all columns in supernode s, and
rowind colptr[ncol] points to the first
free location in rowind[]. */

/* Array of length ncol+l; col to sup[j] is
the supernode number to which column j
belongs. Only the first ncol entries in
col to sup[] are defined. */

/* Array of length ncol+l; sup to col[s]
points to the starting column of the s-th
supernode. Only the first nsuper+2 entries
in sup to col[] are defined, and
sup_to col[nsuper+l] = ncol+l. */

/* number of rows of matrix A */
/* number of columns of matrix A */

int equilibration method; /* The method used to equilibrate A:

float *rowscale;
float *columnscale;

int *rowperm;

int *colperm;

Imsl ¢ hb format *U;

Imsl c sc format *L;

} Imsl c super lu factor;

0 - No equilibration

1 - Row equilibration.

2 — Column equilibration

3 - Both row and column equilibration */

/* Array of length nrow containing the row
scale factors for A */

/* Array of length ncol containing the
column scale factors for A */

/* Row permutation array of length nrow
describing the row permutation matrix Pr

*
/

/* Column permutation array of length ncol
describing the column permutation matrix
Pc */

/* The part of the U factor of A outside the
supernodal blocks, stored in Harwell-
Boeing format */

/* The L factor of A, stored in supernodal
format as block lower triangular matrix */

133

Linear Systems superlu (complex)

Structure Imsl_z_super_lu_factor and its two sub-structures are defined similarly by replacing float by double, f com-
plex by d_complex, Ims|_c_hb_format by Imsl_z_hb_format and Imsl_c_sc_format by Ims|_z_sc_format in their
definitions.

For a definition of supernodes and its use in sparse unsymmetric LU factorization, see the SuperLU Users’ guide
(1999) and J.W. Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

l1-i 0 1-7 1-i O
2 1-i O 0 0
A= 0 1+i 1—-i O 0
0 0 0 1+i 1—i
2 1+i O 0 2-i

Factorization of this matrix via ims1 ¢ superlu using natural column ordering, no equilibration, setting
sp_ienv([1]from its default value 5 to 1 and reducing the diagonal pivot thresh factor to 0.5 results in the fol-
lowing LU decomposition:

1 1—1i 1—-i 1—1i
1+i 1 1-i -2 =2
A=LU= i 1 1+i 2i
1 1+7i 1—i
1+7 i 2i 2 1 i

Considering the filled matrix F ([denoting the identity matrix),

-1 =i 1—1i
1+i 1-i -2 -2
F=L+U-1I1= i 1+i 2

1+i 1—-i
1+i i 2i 2 i
the supernodal structure of the factors of matrix A can be described by

Sl Z/l3 U4
S1 S2 Sy Uy
S2 S2 Uy

S3 83

S1 S2 S S3 83

where §;denotes a nonzero entry in the jth supernode and u; denotes a nonzero entry in the /-th column of U
outside the supernodal block.

134

Linear Systems superlu (complex)

Therefore, in a supernodal storage scheme the supernodal part of matrix £ is stored as the lower block-diagonal
matrix

1—i
1+i 1—-i -2
i 1+
1+i 1—1i
1+i i 2i 2 i

snode

and the part outside the supernodes as the upper triangular matrix

1= 1-i
* -2

snode — * 2i
%k
*

This is in accordance with the output for structure Ims/_c_super_lu_factor:

Equilibration method: 0

Scale vectors:

rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000

columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000

Permutation vectors:

colperm: 0 1 2 3 4

rowperm: 0 1 2 3 4

Harwell-Boeing matrix U:

nrow 5, ncol 5, nnz 11

nzval: (1.000000,-1.000000) (-2.000000,0.000000) (0.000000,2.000000)
(1.000000,-1.000000)

rowind: 0 1 2 0

colptr: 0 0 0 1 4 4

Supernodal matrix L:
nrow 5, ncol 5, nnz 11, nsuper 2

nzval:

0 0 (1.000000,-1.000000)
1 0 (1.000000,1.000000)
4 0 (1.000000,1.000000)
1 1 (1.000000,-1.000000)
2 1 (0.000000,1.000000)
4 1 (0.000000,1.000000)
1 2 (=2.000000,0.000000)
2 2 (1.000000,1.000000)
4 2 (0.000000,2.000000)
3 3 (1.000000,1.000000)
4 3 (2.000000,0.000000)
3 4 (1.000000,-1.000000)
4 4 (0.000000,1.000000)

135

Linear Systems superlu (complex)

nzval colptr: 0 3 6
12 4

_ 11 13
rowind: 0 1 4

9
3
036 688
2 2

5

4
rowind colptr:
col to sup: 0 1 1
sup to col: 0 1 3
Function ims1l ¢ superluis based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User's Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse complex 6x6 matrix

136

Linear Systems superlu (complex)

[10+ 7i 0 0 0 0 0
0 342 -3 —1+2i 0 0
= 0 0 44 2i 0 0 0
—2 —4j 0 0 1+6i —1+3i 0
—5+4i 0 0 -5 1242 —7+7i
| —1+12i —2+8 0 0 0 3+7i |

is computed. Let

yi=(1+0,2 +2i,3 + 30,4 +4i,5 + 5,6 + 6i)7
so that
b:=Ay =3 + 17i,-19 + 5i, 6 + 18i, 38 + 32i, -63 + 49i, -57 + 83i)"
b
1

:= A"y = (112 + 54i, -58 + 46i, 12i, =51 + 5i, 34 + 78i, =94 + 60i)"

and

b
2

= A"y = (54 - 112i, 46 - 58i, 12, 5 - 51i, 78 + 34i, 60 - 94i")
The LU factorization of A is used to solve the sparse complex linear systems Ax = b, ATx = b
1
and Afx = b

2

#include <imsl.h>

int main () {

Imsl ¢ sparse elem a[] = {0, O, {10.0, 7.0},
1, 1, {3.0, 2.0},
1, 2, {-3.0, 0.0},
1, 3, {-1.0, 2.0},
2, 2, {4.0, 2.0},
3, 0, {-2.0, -4.0},
3, 3, {1.0, 6.0},
3, 4, {-1.0, 3.0},
4, 0, {-5.0, 4.0},
4, 3, {-5.0, 0.0},
4, 4, {12.0, 2.0},
4, 5, {-7.0, 7.0},

137

Linear Systems

superlu (complex)

}

f complex b[] =

f complex bl[] =

f complex b2[] =

int n = 6,

nz =

{{3.0,
(=38.0,

5, 0
5, 1
5, 5
17.0},
32.0},

4

4

4

{-1.0, 12.0},
{-2.0, 8.0},
{3.0, 7.0}};

=19,0, 5.0}, (6.0,

=63.0, 49,0}, {=57.0,

18.0},
83.0}};

{{-112.0,54.0}, {-58.0,46.0}, {0.0,12.0},

(=51.0,5.,0%,

{{54.0,-112.0}, {46.0, -58.0}, {12.0,
-0,

{5

15¢

f complex *x = NULL;

=51.,0},

{34.0,78.0}, {-94.0,60.0}};

{78.0, 34.0}, {60.0,

x = imsl ¢ superlu (n, nz, a, b, 0);
imsl ¢ write matrix ("solution to A*x = b", n, 1,
imsl free (x);

x = imsl ¢ superlu (n, nz, a, bl, IMSL TRANSPOSE,
imsl ¢ write matrix ("solution to A"T*x = bl", n,
imsl free (x);

x = imsl c superlu (n, nz, a, b2, IMSL TRANSPOSE,
imsl ¢ write matrix ("solution to A"H*x = b2", n,
imsl free (x);

Output

o Ul W N

o Ul WN -

o U1 W N

solution to A*x

4
4
4
4
4
4

o Ul W N

solution to

o U WN -

4
4
4
4
4
4

solution to

o Ul W N

4
14
4
4
14
4

ANT*x

A H*x

o
b 2282bE

U WN O

o
222D

0.0},
-94.0}1};

138

Linear Systems superlu (complex)

Example 2

This example uses the matrix A = £(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.

After the computations, the space allocated for the LU factorization is freed via function

imsl c superlu factor free.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main ()

{
Imsl c sparse elem *a;
Imsl ¢ super lu factor lu factor;
f complex *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
int n = 1000, c = 10;
int i, nz, index;

/* Get the coefficient matrix */
a = imsl c generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (f complex*) malloc (n*sizeof (*mod five)):;
mod ten = (f complex*) malloc (n*sizeof (*mod ten));
for (i=0; i<n; i++) { a
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 9

}

/* Choose b so that x will approximate mod five */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,

0);

/* Solve Ax = b */

x = imsl ¢ superlu (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);

/* Compute max absolute error */

error factor solve = imsl c¢ vector norm (n, x,
IMSL SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod_ten,
0);

139

Linear Systems superlu (complex)

/* Use the previously computed factorization to solve AxXx = b */

x = imsl c¢ superlu (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, lu factor,
IMSL FACTOR SOLVE, 2,
0);

error solve = imsl c vector norm (n, X,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,

0);

free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);

/* Free sparse LU structure */
imsl c superlu factor free

/* Print errors */

printf ("absolute error
error factor solve);
printf ("absolute error

Output

absolute error (factor/solve)

absolute error (solve)

Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

(&1u factor);

(factor/solve) = %e\n",

= %e\n", error solve);

9.581565e-007
2.017575e-006

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“"rcond” = #.
The solution might not be accurate.

The input matrix is singular.

140

Linear Systems superlu_smp

superlu_smp

Computes the LU factorization of a general sparse matrix by a left-looking column method using OpenMP paral-
lelism, and solves the real sparse linear system of equations Ax = b .

Synopsis
#include <ims1.h>
float *ims1l f superlu smp (intn,intnz, Imslf sparse_elem a1, floatb[],..,0)
void ims1l f superlu smp factor free (Imslfsuper_lu_smp_factor *factor)

The type double functions are ims1 d superlu smpand imsl d superlu smp factor free.

Required Arguments

intn (Input)
The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f sparse_elem a [] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims1 f sparse_ elemstructure in the section Matrix Storage Modes in the
“Introduction” chapter of this manual.

floatb[] (Input)
An array of length n containing the right-hand side.

141

Linear Systems superlu_smp

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1 free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

Joat *imsl f superlu smp (intn,intnz, Imslfsparse elemal], floatb[],
_r _ P

IMSL EQUILIBRATE, intequilibrate,

IMSL_COLUMN ORDERING METHOD, /msl|_col ordering method,

IMSL COLPERM VECTOR, intpermc(],

IMSL TRANSPOSE, int transpose,

IMSL ITERATIVE REFINEMENT, int refine,

IMSL FACTOR_SOLVE, int factsol,

IMSL DIAG PIVOT THRESH, floatdiag pivot thresh,

IMSL SNODE PREDICTION, int snode prediction,

IMSL PERFORMANCE TUNING, intsp_ienv[],

IMSL CSC_FORMAT,/ntHB col ptr[],intHB row ind, floatHB values|[],
IMSL SUPPLY SPARSE LU FACTOR, /mslf super_lu_smp_factor *1u_factor supplied

!

IMSL_RETURN_S PARSE_LU_FACTOR,
Imsl_f super_lu_smp_factor *1u_factor returned,

IMSL CONDITION, float *condition,

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL FORWARD ERROR BOUND, float *ferr,

IMSL BACKWARD ERROR, float *berr,

IMSL RETURN USER, floatx[1],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Input)
Specifies if the input matrix A should be equilibrated before factorization.

142

Linear Systems superlu_smp

equilibrate |Description

0

Do not equilibrate A before factorization

1

Equilibrate A before factorization.

Default: equilibrate = 0.

IMSL COLUMN ORDERING METHOD, Ims/_col ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

net hod

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the input
matrix.

IMSL MMD ATA

Minimum degree ordering on the structure of AT A.

IMSL MMD AT PLUS A

Minimum degree ordering on the structure of AT +A.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc, which
is input by the user through the optional argument
IMSL_COLPERM VECTOR. Vector permc is a permuta-
tion of the numbers 0,1,..., n-1.

Default: method = IMSL COLAMD.

IMSL COLPERM VECTOR, intpermc[] (Input)

Array of length n that defines the permutation matrix P, before postordering. This argument is

required if IMSL,_COLUMN_ORDERING METHOD with method = IMSL_PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)
Indicates if the transposed problem ATx = b is to be solved. This option can be used in conjunction
with either of the options that supply the factorization.

transpose Description

0 Solve Ax = b.

1 Solve ATx = b.

Default: transpose = 0.

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

143

Linear Systems superlu_smp

refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine = 1.

IMSL FACTOR SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

factsol Description
0 Compute the LU factorization of the input matrix A and
solve the system Ax = b.
1 Only compute the LU factorization of the input matrix
and return.

The LU factorization is returned via the optional argu-
ment IMSL_RETURN SPARSE LU FACTOR.
Input argument b is ignored.

2 Only solve Ax = b given the LU factorization of A.
The LU factorization of A must be supplied via the
optional argument
IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number, or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0.

IMSL DIAG PIVOT THRESH, floatdiag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
0.0 <diag pivot thresh <1.0.
Default: diag _pivot thresh=1.0.

IMSL SNODE PREDICTION, int snode prediction (Input)
Indicates which scheme is used to predict the number of nonzeros in the L supernodes.

snode_predi ction Description

0 Use static scheme for the prediction of the
number of nonzeros in the L supernodes.

1 Use dynamic scheme for the prediction of the
number of nonzeros in the L supernodes.

Default: snode prediction =0.

144

Linear Systems

superlu_smp

IMSL PERFORMANCE TUNING, /intsp ienv[] (Input)
Array of length 8 containing parameters that allow the user to tune the performance of the matrix

factorization algorithm. The elements sp_ienv[i] must be positive for 1 =0,...,4 and different

from zero for 1 =5,6,7.

IMSL CSC_FORMAT,intHB col ptr[],intHB row ind[],floatHB values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

Description of sp_i env[i]

The panel size.
Default: sp_ienv[0] =10.

The relaxation parameter to control supernode amalgama-
tion.
Default: sp_ienv[1] =5.

The maximum allowable size for a supernode.
Default: sp_ienv[2] =100.

The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] =200.

The minimum column dimension to be used for 2D block-
ing.
Default: sp_ienv[4] = 40.

The size of the array nzval to store the values of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

This element of array sp_ienv is used only if a dynamic
scheme for the prediction of the sizes of the L supernodes
is used, i.e. if snode prediction=1.

Default: sp_ienv[5] =-20.

The size of the arrays rowind and nzval to store the col-
umns in U. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

Default: sp_ienv[6] =-20.

The size of the array rowind to store the subscripts of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

Default: sp_ienv[7] =-10.

145

Linear Systems superlu_smp

IMSL SUPPLY SPARSE LU FACTOR, Imsl f super_lu_smp_factor *1u_factor supplied (Input)
The address of a structure of type Imsl_f super_lu_smp_factor containing the LU factors of the input
matrix computed with the IMSL RETURN SPARSE LU FACTOR option. See the Description sec-
tion for a definition of this structure. To free the memory allocated within this structure, use function
imsl f superlu smp factor free.

IMSL RETURN SPARSE LU FACTOR, Imslfsuper_lu_smp_factor *1u_ factor returned (Out-
put)
The address of a structure of type Imsl_f super_lu_smp_factor containing the LU factorization of the
input matrix. See the Description section for a definition of this structure. To free the memory allo-
cated within this structure, use function ims1 f superlu smp factor free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

mjjni ||(PrDrADCPC>j||OO/ | UjHOO}.

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD_ ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

The steps ims1 f superlu_ smp uses to solve linear systems are identical to the steps described in the doc-
umentation of the serial version ims1 f superlu.

Function ims1 f superlu smp uses a supernodal storage scheme for the LU factorization of matrix A. In
contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,

146

Linear Systems superlu_smp

also pointers to the end of each column or supernode are needed. The factorization is contained in structure
Imsl_f super_lu_smp_factor and its two sub-structures Ims/_f hbp_format and Imsl|_f scp_format. Following is a short
description of these structures:

Table 1 - Structure Ims1 f hbp format

Parameter Data Type Description

nnz int The number of nonzeros in the matrix.
nzval float * Array of nonzero values packed by column.
rowind int * Array of row indices of the nonzeros.
colbeg int * Array of size ncol+1; colbeg[j] storesthe

locationin nzval[] and rowind[], which
starts column 5. Element colbeg[ncol]
points to the first free location in arrays
nzval[] and rowind[].

colend int * Array of size ncol; colend[]j] stores the
location in nzval[] and rowind[] which is
one past the last element of column 3.

Table 2 - Structure Ims1 f scp format

Parameter Data Type Description

nnz int The number of nonzeros in the supernodal
matrix.

nsuper int The number of supernodes minus one.

nzval float * Array of nonzero values packed by column.

nzval colbeg int * Array of size ncol+1; nzval colbeg[j]

points to the beginning of column j in
nzval[].Entry nzval colbeg[ncol]
points to the first free location in nzvall].

nzval colend int * Array of size ncol; nzval colend[7]
points to one past the last element of col-
umn jinnzvall].

rowind int * Array of compressed row indices of the rect-
angular supernodes.

rowind colbeg int * Array of size ncol+1; rowind colbeg[3]
points to the beginning of column 5 in
rowind[]. Element

rowind colbeg[ncol] points to the first
free location in rowind[].

rowind colend int * Array of size ncol; rowind colend[j]
points to one past the last element of col-
umn j in rowind[].

147

Linear Systems superlu_smp

Table 2 - Structure Imsl f scp format

col to sup

int * Array of size ncol+1;col to sup[j]isthe
supernode number to which column 5
belongs. Only the first ncol entries in

col to supl[] are defined.

sup_to colbeg

int * Array of size ncol+1; sup_to_colbeg[s]
points to the first column of the s-th super-
node; only the first nsuper+1 locations of
this array are used.

sup_to colend

int * Array of size ncol; sup to colend[s]
points to one past the last column of the s-
th supernode. Only the first nsuper+1 loca-
tions of this array are used.

Table 3 - Structure Imsl f super lu smp factor

Parameter

Data Type

Description

nrow

int

The number of rows of matrix A.

ncol

int

The number of columns of matrix A.

equilibration method

int

The method used to equilibrate A:
0 - No equilibration.

1 - Row equilibration.

2 - Column equilibration.

3 - Both row and column
equilibration.

rowscale

float *

Array of size nrow containing the row
scale factors for A.

columnscale

float *

Array of size ncol containing the col-
umn scale factors for A.

rowperm

int *

Row permutation array of size nrow
describing the row permutation matrix
Pr.

colperm

int *

Column permutation array of size
ncol describing the column permuta-
tion matrix Pg.

Imsl_f_ hbp_format *

The part of the U factor of A outside
the supernodal blocks, stored in Har-
well-Boeing format.

Imsl_f scp_format *

The L factor of A, stored in supernodal
format as block lower triangular
matrix.

Structure Imsl_d_super_lu_smp_factor and its two sub-structures are defined similarly by replacing float with double,

Imsl_f_hbp_format with Ims|_d_hbp_format, and Ims|_f_scp_format with Ims(_d_scp_format in their respective

definitions.

148

Linear Systems superlu_smp

In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.
Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the esti-
mated sizes of array rowind for the L and of arrays rowind and nzval for the U factor (see structures
Imsl_f scp_format and Imsl_f hbp_format above) must be predetermined by the user via elements 6 and 7 of the
performance tuning array sp_ienv.

In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic
prediction scheme for the size of the L supernodes can be used. The static version, which function

imsl f superlu smp uses by default, exploits the observation that for any row permutation P in PA = LU,
the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR fac-
torization A = QR. Furthermore, it can be shown that each fundamental supernode in L is always contained in a
fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array nzval inthe [
factor respectively can be estimated and allocated prior to the factorization based on the size of the H super-
nodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost
linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonze-
ros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting
optional argument IMSL SNODE PREDICTION to 1. This scheme still uses the supernode partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage.
Use of the dynamic scheme requires the user to define the size of array nzval in the L factor via element 5 of
the performance tuning array sp_ienv.

For a complete description of the parallel algorithm, see Demmel et al. (1999¢).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

149

Linear Systems superlu_smp

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6x6 matrix

[10 0 0 0 O
0 10 -3 -1 O
0O 0 15 0 O
-2 0 0 10 -1
-1 0 0 -5 1 -3
-1 -2 0 0 0 6]

is computed.
Lety=(1,2,3,4,56)T, so that by := Ay = (10,7,45,33,-34,31)" and b, :=ATy = (-9,8,39,13,1,21)".
The LU factorization of A is used to solve the sparse linear systems Ax = by and ATx = bs.

#include <imsl.h>

int main () {

Imsl f sparse elem a[] = { 0, 0, 10.0,
1, 1, 10.0,
1, 2, -3.0,
1, 3, =1,0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, =5.0,
4, 4, 1.0,
4, 5, -3.0,
5, 0, =1.0,
5, 1, -2.0,
5, 5, 6.0};

150

Linear Systems superlu_smp

float bl1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };
int n = 6, nz = 15;

float *x = NULL;

x = imsl f superlu smp (n, nz, a, bl, 0);
imsl f write matrix ("solution to A*x = bl", 1, n, x, 0);
imsl free (x);

x = imsl f superlu smp (n, nz, a, b2, IMSL TRANSPOSE, 1, 0);
imsl f write matrix ("solution to A"T*x = b2", 1, n, x, 0);
imsl free (x);

}

Output
solution to A*x = bl
1 2 3 4 5 6
1 2 3 4 5 6
solution to A"T*x = b2
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

This example uses the matrix A = £(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function

imsl f superlu smp factor free

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main () {

Imsl f sparse elem *a = NULL;

Imsl f super lu smp factor lu factor;

float *b = NULL, *x = NULL, *mod five = NULL, *mod ten = NULL;
float error factor solve, error solve;

int n = 1000, ¢ = 10;

int i, nz, index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (float*) malloc (n*sizeof (*mod five)):;
mod_ten = (float*) malloc (n*sizeof (*mod ten)):;
for (i1i=0; i<n; i++) {

mod five[i] = (float) (i % 5);

151

Linear Systems superlu_smp

mod ten[i] = (float) (i % 10);
}

/* Choose b so that x will approximate mod five */
b = (float *) imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five, 0);

/* Solve Ax = b */
x = imsl f superlu smp (n, nz, a, b,

IMSL RETURN SPARSE LU FACTOR, &lu factor, 0);

/* Compute max absolute error */

error factor solve = imsl f vector norm (n, x,
IMSL_ SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (float *) imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
x = imsl f superlu smp (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL FACTOR SOLVE, 2, -
0);
error solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod_ten,
IMSL_INF NORM, &index,
0);

free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);

/* Free sparse LU structure */
imsl f superlu smp factor free (&lu factor);

/* Print errors */
printf ("absolute error (factor/solve) = %e\n",
error factor solve);

printf ("absolute error (solve) = %e\n", error_solve);
}
Output
absolute error (factor/solve) = 1.096725e-005
absolute error (solve) = 5.435944e-005

152

Linear Systems superlu_smp

Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is singular.

153

Linear Systems superlu_smp (complex)

superlu_smp (complex)

Computes the LU factorization of a general complex sparse matrix by a left-looking column method using
OpenMP parallelism and solves the complex sparse linear system of equations Ax = b.

Synopsis
#include <imsl.h>
f.complex *imsl c superlu smp (intn, int nz, Imsl_c_sparse_elem a1, f complex b(],...,0)
void ims1l ¢ superlu smp factor free (Imsl_csuper_lu_smp_factor *factor)

The type d_complex functions are ims1 z superlu smpand imsl z superlu smp factor free.

Required Arguments

intn (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
main “Introduction” chapter of this manual for an explanation of the Imsl_c_sparse_elem structure.

fcomplexb 1 (Input)
An array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space,