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Introduction IMSL C Math Library

IMSL C Math Library

The IMSL® C Math Library, a component of the IMSL® C Numerical Library, is a library of C functions useful in sci-
entific programming. Each function is designed and documented for use in research activities as well as by
technical specialists. A number of the example programs also show graphs of resulting output.
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Organization of the Documentation

This manual contains a concise description of each function with at least one example demonstrating the use of
each function, including sample input and results. All information pertaining to a particular function is in one
place within a chapter.

Each chapter begins with a table of contents listing the functions included in the chapter followed by an introduc-
tion. Documentation of the functions consists of the following information:

m  Section Name: Usually, the common root for the type float and type double versions of the
function is given.

m  Purpose: A statement of the purpose of the function.
m  Synopsis: The form for referencing the subprogram with required arguments listed.

m  Required Arguments: A description of the required arguments in the order of their occurrence, as
follows:

m Input: Argument must be initialized; it is not changed by the function.

m  Input/Output: Argument must be initialized; the function returns output through this argu-
ment. The argument cannot be a constant or an expression.

m  Output: No initialization is necessary. The argument cannot be a constant or an expres-
sion; the function returns output through this argument.

m  Return Value: The value returned by the function.

m  Synopsis with Optional Arguments: The form for referencing the function with both required
and optional arguments listed.

m  Optional Arguments: A description of the optional arguments in the order of their occurrence.

m  Description: A description of the algorithm and references to detailed information. In many cases,
other IMSL functions with similar or complementary functions are noted.

m  Examples: At least one application of this function showing input and optional arguments.

m  Errors: Listing of any errors that may occur with a particular function. A discussion on error types is
given in the User Errors section of the Reference Material. The errors are listed by their type as
follows:

m Informational Errors: List of informational errors that may occur with the function.

m  Alert Errors: List of alert errors that may occur with the function.

m  Warning Errors: List of warning errors that may occur with the function.
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m  Fatal Errors: List of fatal errors that may occur with the function.
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Finding the Right Function

The IMSL C Math Library is organized into chapters; each chapter contains functions with similar computational
or analytical capabilities. To locate the right function for a given problem, you may use either the table of contents
located in each chapter introduction, or in Alphabetical Summary of Functions at the end of this manual.

Often the quickest way to use the IMSL C Math Library is to find an example similar to your problem and then
mimic the example. Each function in the document has at least one example demonstrating its application.
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Naming Conventions

Most functions are available in both a type float and a type double version, with names of the two versions sharing
a common root. Some functions also are available in type int, or the IMSL-defined types f complex or d_complex
versions. A list of each type and the corresponding prefix of the function name in which multiple type versions
exist follows:

Type Prefix

float imsl f
double imsl d
int imsl i
f_complex imsl c_
d_complex imsl z

The section names for the functions only contain the common root to make finding the functions easier. For
example, the functions ims1 f 1lin sol genandimsl d lin sol gen can be found in section
lin sol genin Chapter 1,“Linear Systems.”

Where appropriate, the same variable name is used consistently throughout a chapter in the IMSL C Math
Library. For example, in the functions for eigensystem analysis, eval denotes the vector of eigenvalues and
n_eval denotes the number of eigenvalues computed or to be computed.

When writing programs accessing the IMSL C Math Library, the user should choose C names that do not conflict
with IMSL external names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the fol-

lowing rule is observed:

m Do not choose a name beginning with “ims1 " in any combination of uppercase or lowercase
characters.
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Getting Started and the imsl.h file

Getting Started

To use any of the IMSL C Math Library functions, you first must write a program in C to call the function. Each
function conforms to established conventions in programming and documentation. We give first priority in devel-
opment to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions
makes it easy to use more than one function in a given application. Also, you will find that the design consistency
enables you to apply your experience with one IMSL C Math Library function to all other IMSL functions that you
use.

The imsl.h File

The include file <ims1.h>is used in all of the examples in this manual. This file contains prototypes for all IMSL-
defined functions; the spline structures, ImsL_f_ppoly, Imsl_d_ppoly, Imsl_f_spline, and Ims[_d_spline; enumerated
data types, Imsl_qguad, Ims|_write_options, Ims|_page_options, Ims|_ode, and Ims/_error; and the IMSL-defined data
types f.complex (which is the type float complex) and d_complex (which is the type double complex).
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Error Handling, Underflow, Overflow, and
Document Examples

The functions in the IMSL C Math Library attempt to detect and report errors and invalid input. This error-han-
dling capability provides automatic protection for the user without requiring the user to make any specific
provisions for the treatment of error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages being automatically printed by
the function. Moreover, errors of highest severity cause program execution to stop. The severity level, as well as
the general nature of the error, is designated by an “error type” with symbolic names IMSL FATAL,

IMSL WARNING, etc. See the User Errors section in the “Reference Material” for further details.

In general, the IMSL C Math Library codes are written so that computations are not affected by underflow, pro-
vided the system (hardware or software) replaces an underflow with the value zero. Normally, system error
messages indicating underflow can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages indicating over-
flow should be examined for programming errors such as incorrect input data, mismatch of argument types, or
improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the
algorithm.

Output from document examples can be system dependent and the user's results may vary depending upon the
system used.
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Memory Allocation for Output Arrays

Many functions return a pointer to an array containing the computed answers. By default, an array returned as
the value of a C Numerical Library function is stored in memory allocated by that function. To release this space,
use ims1l free. Toreturn the array in memory allocated by the calling program, use the optional argument

IMSL RETURN USER, float a[]

In this way, the allocation of space for the computed answers can be made either by the user or internally by the
function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user
or are to be allocated internally by the function. For example, in many functions in “Linear Systems,” the optional
arguments

IMSL INVERSE USER, float inva[] (Output)
IMSL_INVERSE,ﬂOGt **p _inva (Output)

specify two mutually exclusive optional arguments. If the first option is chosen, the inverse of the matrix is stored
in the user-provided array inva.

In the second option, float **p _inva refers to the address of a pointer to the inverse. The called function allo-
cates memory for the array and sets *p _inva to point to this memory. Typically, float *p_inva is declared,
&p_inva is used as an argument to this function. Use ims1 free (p_inva) to release the space.
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Printing Results

Most functions in the IMSL C Math Library do not print any of the results; the output is returned in C variables.

The IMSL C Math Library contains some special functions just for printing arrays. For example, write matrixis
a convenient function for printing matrices of type float. See Printing Functions for detailed descriptions of these

functions.

10
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Complex Arithmetic

Users can perform computations with complex arithmetic by using IMSL predefined data types. These types are

available in two floating-point precisions:
m f complex for single-precision complex values
m  d complex for double-precision complex values

A description of complex data types and functions is given in the Reference Material.

11
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Missing Values

Some of the functions in the IMSL C Math Library allow the data to contain missing values. These functions recog-
nize as a missing value the special value referred to as “not a number,” or NaN. The actual value is different on
different computers, but it can be obtained by reference to the IMSL function ims1 £ machine, described in

Chapter 12, “Utilities.”

The way that missing values are treated depends on the individual function and is described in the documenta-

tion for the function.

12
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Passing Data to User-Supplied Functions

In some cases it may be advantageous to pass problem-specific data to a user-supplied function through the
IMSL C Math Library interface. This ability can be useful if a user-supplied function requires data that is local to
the user's calling function, and the user wants to avoid using global data to allow the user-supplied function to
access the data. Functions in IMSL C Math Library that accept user-supplied functions have an optional argu-
ment(s) that will accept an alternative user-supplied function, along with a pointer to the data, that allows user-
specified data to be passed to the function. The example below demonstrates this feature using the IMSL C Math
Library function ims1 £ min uncon and optional argument IMSL FCN W DATA.

Example

#include <imsl.h>
#include <math.h>
#include <stdio.h>

float fcn w data(float x, void *data);

int main ()
{
float a = -100.0;
float b = 100.0;
float fx, x;
float usr data[] = {5.0, 10.0};
x = imsl f min uncon (NULL, a, b,
IMSL FCN W DATA, fcn w data, usr data,
0);
fx = fcn w data(x, (void*)usr data);

printf ("The solution is: %8.4f\n", x);
printf ("The function evaluated at the solution is: %8.4f\n",
fx);
}

/*

* User function that accepts additional data in a (void*) pointer.
* This (void*) pointer can be cast to any type and dereferenced to
* get at any sort of data-type or structure that is needed.

* For example, to get at the data in this example

* *((float*)data) and usr data[0] contains the value 5.0
:/ *((float*)data+l) and usr data[l] contains the value 10.0
float fcn w data(float x, void *data)
{ float *usr data = (float*)data;

return exp(x) - usr data[0]*x + usr data[l];

13
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Return Values from User-Supplied Functions

All values returned by user-supplied functions must be valid real numbers. It is the user's responsibility to check

that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

In addition to the techniques described below, it is also possible to instruct the IMSL C Numerical Library to

return control to the calling program in case an unrecoverable error occurs within a user-supplied function. See
function imsl set user fcn return flag for a description of this feature.

Example

#include <imsl.h>
#include <math.h>

void fcn(int, int, float[], float[]):;

int main ()

{
int m=3, n=1;
float *result, fx[3];
float xguess[]={1.0};

result = imsl f nonlin least squares(fcn, m, n, IMSL XGUESS,

xguess, 0);
fcn(m, n, result, £fx);
/* Print results */

imsl f write matrix ("The solution is",

1, 1, result, 0);

imsl f write matrix("The function values are", 1, 3, fx, 0);

}

void fcn (int m, int n, float x[],

{

float £[1])

do not want to return infinity to nonlin least squares

int 1i;
float y[3] = {2.0, 4.0, 3.
float t[3] = {1.0, 2.0, 3.
for (i=0; i<m; i++)
{
A check for x=0
if (x[0] == 0.0) {
f[i] = 10000.;
} else {

fli] = t[i]1/x[0]
}

- ylil;

*/

14
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Thread Safe Usage

The IMSL C Math Library is thread safe based on OpenMP. That means it can be safely called from a multi-
threaded application if the calling program adheres to a few important guidelines. In particular, IMSL C Math
Library's implementation of error handling and I/0 must be understood.

Error Handling

C Math Library's error handling in a multithreaded application behaves similarly to how it behaves in a single-
threaded application. The major difference is that an error stack exists for each thread calling C Math Library
functions. The result of separate error stacks for each thread is greater control of the error handler options for
each thread. Each thread can set its own options for the C Math Library error handler using

imsl error options. For an example of setting error handler options for separate threads, see Chapter 12,
Utilities, Example 3 of ims1 error options.

Routines that Produce Output

A number of routines in C Math Library can be used to produce output. The function imsl output file can
be used to control the file to which the output is directed. In an application with a single thread of execution, a
single callto ims1 output file can be used to set the file to which the output will be directed. In a multi-
threaded application each thread must call ims1_output file to change the default setting of where output
will be directed. See the Utilities chapter, Example 2 of ims1 output file for more details.
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OpenMP Usage

Thread safety of the IMSL C Numerical Library is based on OpenMP. Users of the IMSL C Numerical Library are
also able to leverage shared-memory parallelism by means of native support for the OpenMP API specification
within parts of the Library. Those parts are flagged by the OpenMP icon shown below.

OpenMP

Parallelism in OpenMP is implemented by means of threads. In the OpenMP programming model, it is assumed
that memory is shared among threads, such as in multi-core machines. These threads are spawned by OpenMP
in response to directives embedded in source code.

The Library's use of OpenMP is largely transparent to the user. Codes that have been enhanced with OpenMP
directives will still work properly in serial execution environments. Error handling routines have been extended so
that the most severe error during a parallel run will be returned to the user.

OpenMP is used by the Library in these main ways:
1. Toimplement thread safety within the C Numerical Library.
2. To speed up computationally intensive functions by exploiting data parallelism in their processing.

3. To give users more control of scheduling by using the "schedule(runtime)" clause for the parallelized
for-loops. The scheduling option chosen, set by using the OMP_SCHEDULE environment variable, can
significantly affect the performance of user's program depending on the workload of the system
during execution. If OMP_SCHEDULE is not set, the default behavior depends on implementation.
Please refer to OpenMP specifications on schedule type and chunk.

4. To set and control the number of threads to use for parallel region and nested parallel region by
using the OMP_NUM_THREADS and OMP_NESTED environment variables. If OMP_NUM_THREADS
and OMP_NESTED are not set, the default behavior depends on the implementation. Thus, all com-
puting resources may be used, affecting other applications' performance on the system. Please refer
to OpenMP specifications for more information.

5. To parallelize the evaluation of user-supplied functions in routines that use them, e.g. in numerical
integration routines.

In the last case, the user must explicitly signal to the Library that the user-supplied functions themselves are
thread-safe, or by default the user’s function(s) will not evaluate in parallel. The utility ims1 omp options
allows the user to assert that all routines passed to the library are thread-safe.
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Thread safety implies that function(s) may be executed simultaneously by multiple threads and still function cor-
rectly. Requiring that user-supplied functions be thread-safe is crucial, because the different threads spawned by
OpenMP may call user-supplied functions simultaneously, and/or in an arbitrary order, and/or with differing
inputs. Care must therefore be taken to ensure that the parallelized algorithm acts in the same way as its serial
“ancestor”. Functions whose results depend on the order in which they are executed are not thread-safe and are
thus not good candidates for parallelization; neither are functions which access and modify global data.

Specifications of the OpenMP standards are provided at (http://www.openmp.org/specifications/).
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Vendor Supplied Libraries Usage

The IMSL C Numerical Library contains functions which may take advantage of functions in vendor supplied

libraries such as Intel's® Math Kernel Library (MKL) or Sun’s™ High Performance Library. Functions in the vendor
supplied libraries are finely tuned for performance to take full advantage of the environment for which they are
supplied. For these functions, the user of the IMSL C Numerical Library has the option of linking to code which is
based on either the IMSL legacy functions or the functions in the vendor supplied library. The following icon in the
function documentation alerts the reader when this is the case:

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in the
online README file of the product distribution.
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C++ Usage

IMSL C Numerical Library functions can be used in both C and C++ applications. It is also possible to wrap library
functions into C++ classes.

The function ims1 f int fcn sing computes the integral of a user defined function. For C++ usage the user
defined function is defined as a member function of the abstract class IntFcnSingFunction defined as
follows.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

class IntFcnSingFunction

{
public:

virtual float f (float x) = 0;
b5

The function ims1l f int fcn singiswrapped as the C++ class IntFenSing. This implementation uses
the optional argument, IMSL_FCN_W DATA, to call Local function whichin turn calls the method £ to
evaluate the user defined function. For simplicity, this implementation only wraps a single optional argument,
IMSL MAX SUBINTER, the maximum number of subintervals. More could be included in a similar manner.

#include <imsl.h>

class IntFcnSing

{
public:
int max subinter;
IntFcnSing () ;
float integrate (IntFcnSingFunction *F, float a, float b);

}i

static float local function(float x, void *data)

{

IntFcnSingFunction *F = (IntFcnSingFunction*)data;
return F->f (x);

}

IntFcnSing: :IntFcnSing ()
{

}

max_ subinter = 500;

float IntFcnSing::integrate (IntFcnSingFunction *F, float a, float b)

{
float result;

result = imsl f int fcn sing(NULL, a, b,

IMSL FCN W DATA, local function, F,
IMSL_MAX SUBINTER, max_ subinter,
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0)s
if (imsl _error type() >= 3)
{

}

return result;

throw imsl error message();

}

To use this IntFcnSing the user defined function must be defined as the method £ in a class that extends

IntFcnSingFunction. The following class, MyClass, defines the function f(x) =e" —ax,whereqisa

parameter

class MyClass : public IntFcnSingFunction

{

public:

MyClass () ;

float f (double Xx);
private:

float my parameter;

}i

MyClass: :MyClass ()
{

}

my parameter = 5.0;

float MyClass::f (float x)
{

}

return exp(x) - my parameter*x;

The following is an example of the use of these classes. Since the C++ throws an exception on fatal or terminal
IMSL errors, printing and stopping on these errors is turned off by a call to ims1 error options.Also, since
the user defined function is thread-safe, a call is made to ims1 omp options to declare this. With this setting,
the quadrature code will use OpenMP to evaluate the function in parallel. Both of these calls need be made once

per run.

The second part of this example sets the maximum number of subintevals to 5, an unrealistically small number,

to show the error handling.

int main ()
{
imsl error options (
IMSL SET PRINT, IMSL FATAL, O,
IMSL SET PRINT, IMSL TERMINAL, O,
IMSL SET STOP, IMSL FATAL, O,
IMSL SET STOP, IMSL TERMINAL, O,
0);
imsl omp options (IMSL SET FUNCTIONS THREAD SAFE, 1,

IntFcnSing *intFcnSing = new IntFcnSing();
MyClass *myClass = new MyClass () ;

float x = intFcnSing->integrate (myClass, -1.0, 1.0);

printf ("Solution in [-1,+1]: %g\n", X);
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try f{
intFcnSing->max subinter = 5;
x = intFcnSing -> integrate (myClass, -100.0, 1000.0);
printf ("Solution in [-100,1000]: %g\n", x);
} catch(char * exception) {
printf ("Exception raised: %s\n", exception);

}

Output

Integral over [-1,+1] = 2.3504

Exception raised: The maximum number of subintervals allowed "maxsub" = 5 has been

reached. Increase "maxsub".
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Matrix Storage Modes

In this section, the word matrix is used to refer to a mathematical object and the word array is used to refer to its
representation as a C data structure. In the following list of array types, the IMSL C Math Library functions require
input consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-
major order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For example, in solving linear
algebraic systems, the pointer is to the solution. For general, real eigenvalue problems, the pointer is to the eigen-
values. Normally, the input array values are not changed by the functions.

In the IMSL C Math Library, an array is a pointer to a contiguous block of data. They are not pointers to pointers to
the rows of the matrix. Typical declarations are:

float *a = {1, 2, 3, 4};
float b[2]1[2] = {1, 2, 3, 4};
float c[] = {1, 2, 3, 4};

General Mode

A general matrix is a square n x n matrix. The data type of a general array can be float, double, f complex, or
d_complex.

Rectangular Mode

A rectangular matrix is an m x n matrix. The data type of a rectangular array can be float, double, | complex, or
d_complex.

Symmetric Mode

A symmetric matrix is a square n x n matrix A, such that AT = A. (The matrix AT is the transpose of A)) The data type
of a symmetric array can be float or double.

Hermitian Mode

A Hermitian matrix is a square n x n matrix A, such that
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The matrix Ais the complex conjugate of A, and

A0 ="

is the conjugate transpose of A. For Hermitian matrices A = A. The data type of a Hermitian array can be f com-
plex or d_complex.

Sparse Coordinate Storage Format

Only the nonzero elements of a sparse matrix need to be communicated to a function. Sparse coordinate stor-
age format stores the value of each matrix entry along with that entry’s row and column index. The following four
non-homogeneous data structures are defined to support this concept:

typedef struct ({
int row;
int col;
float val;

} Imsl f sparse elem;

typedef struct ({
int row;
int col;
double wval;

} Imsl d sparse elem;

typedef struct ({

int row;

int col;

f complex val;
} Imsl c sparse elem;

typedef struct ({

int row;

int col;

d complex val;
} Imsl z sparse elem;

See the Complex Data Types and Functions in the Reference Material at the end of this manual for a discussion of
the complex data types f_complex and d_complex. Note that the only difference in these structures involves
changes in underlying data types. A sparse matrix is passed to functions that accept sparse coordinate format by
forming an array of one of these data types. The number of elements in that array will be equal to the number of
nonzeros in the sparse matrix.
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As an example consider the 6 x 6 matrix:

(2 0 0 0 0 0
0 9 =3 -1 0 0
4-l0 0 5 0 0 o0
-2 0 0 -7 -1 0
-1 0 0 -5 1 -3
-1 =2 0 0 0 6|

The matrix A has 15 nonzero elements, and the sparse coordinate representation would be

row 0 1 2 4 5
1 1 3 3 3 4 4 4 5 5

col 0 1 2 4 5
2 3 0 3 4 0 3 5 0 1

val 2 9 - - 5 - - - - - 1 - - - 6
3 1 2 7 1 1 5 3 1 2

row 4 3 0 5 1 2 4 3 1 4 3 5 4
5

col o 0 0 1 1 2 2 3 3 3 4 4 5 5
0

val - - - 2 - 9 5 - - - - 1 - 6 -
1 1 2 2 35 7 1 1 3

There are different ways this data could be used to initialize an array of type, for example, Ims/_f sparse_elem. Con-
sider the following program fragment:

#include <imsl.h>
int main ()

{

Imsl f sparse elem a[] = {
{0, 0, 2.0},
{1, 1, 9.0},
i, 2, =3.0%,
(i, 3, =1.0}%,
{2, 2, 5.0},
{3, 0, -2.0},
{3/ 3/ _7-0}1
{3, 4, -1.0},
{41 O/ _l'O}I
{4, 3, -5.0},
{4, 4, 1.0},
{4, 5, -3.0},
5, 0, =1.0}%,
15, 1, =2.0}%,
(5, 5, 6.0} }g
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}

Both a and b represent the sparse matrix A, and the functions in this module would produce identical results

Imsl f sparse elem b[15];

b[0].row
b[l].row
b[2].row
b[3].row
b[4] .row
b[5].row
b[6].row
b[7].row
b[8].row
b[9].row
b[10].row
b[ll].row
b[12] .row
b[13].row
b[l4].row

b[0].col = 0;
bl[l].col = 1;

1; b[2].col = 2;
1; b[3].col = 3;
b[4].col = 2;

3; b[5].col = 0;
b[6].col = 3;

3; b[7].col = 4;
4; b[8].col = 0;
4; b[9].col = 3;
= b[l0].col = 4;
= 4; b[ll].col =
= 5; b[l2].col =
= 5; b[13] = 1;
= b[l4].col = 5;

.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val
.val

O0OO0O0O0DO0CO0OO0O00O0D000O
RPFRPRRPRPRPRPRPRPOO0OJdJO D WNERE O
B WN PP O e e e e e e e e

regardless of which identifier was sent through the argument list.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to store the diagonal and

either the upper or lower triangle. As an example, consider the 5 x 5 linear system:

[(4,0) (1, -1)
0 (11)

0 0

(1,1) (4,0) (1,-1) 0

0 0

(4.0) (1. -1)
(L) (40) |

The Hermitian and symmetric positive definite system solvers in this library expect the diagonal and lower trian-
gle to be specified. The sparse coordinate form for the lower triangle is given by

row 0 1 2
col 0 1 2
val (4,0 (4,0 (4,0)

As before, an equivalent form would be

row 0 1 1
col 0 0 1
val (4,0 (1,1 (4,0)

3 1
3 0
(4,0) (11
2 2
1 2
(1,1 4,0)

The following program fragment will initialize both a and b to H.

#include <imsl.h>
int main ()

(1.1)

2 3
1 2
(1.1)
3 3
2 3
(4,0)

(1.1)
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Imsl c sparse elem a[] = {
{0, 0, {4.0, 0.0}},
{1, 1, {4.0, 0.0}},
{2, 2, {4.0, 0.0}},
{3, 3, {4.0, 0.0}},
{1, 0, {1.0, 1.0}},
{z, 1, {1.0, 1.0}},
{3, 2, {1.0, 1.0}}

}

Imsl c sparse elem b[7];

b[0] . .row = b[0].col = 0;

b[0].val = imsl cf convert (4.0, 0.0);
b[l].row = 1; b[l].col = 0;

b[l].val = imsl cf convert (1.0, 1.0);
b[2].row = b[2].col = 1;

b[2].val = imsl cf convert (4.0, 0.0);
b[3].row = 2; b[3].col = 1;

b[3].val = imsl cf convert (1.0, 1.0);
b[4] .row = b[4].col = 2;

b[4].val = imsl cf convert (4.0, 0.0);
b[5].row = 3; b[5].col = 2;

b[5].val = imsl cf convert (1.0, 1.0);
b[6] . .row = b[6].col = 3;

b[6].val = imsl cf convert (4.0, 0.0);

}
There are some important points to note here. H is not symmetric, but rather Hermitian. The functions that
accept Hermitian data understand this and operate assuming that

hljzhl]

The IMSL C Math Library cannot take advantage of the symmetry in matrices that are not positive definite. The
implication here is that a symmetric matrix that happens to be indefinite cannot be stored in this compact sym-
metric form. Rather, both upper and lower triangles must be specified and the sparse general solver called.

Band Storage Format

A band matrix is an M x N matrix with all of its nonzero elements “close” to the main diagonal. Specifically, values
Aj=0if/-j>nlcaorj-i>nuca.Theinteger m=nlca + nuca + 1 is the total band width. The diagonals,

other than the main diagonal, are called codiagonals. While any M x N matrix is a band matrix, band storage for-
mat is only useful when the number of nonzero codiagonals is much less than N.

In band storage format, the nlca lower codiagonals and the nuca upper codiagonals are stored in the rows of
an array of size M x N. The elements are stored in the same column of the array as they are in the matrix. The val-
ues Ajj inside the band width are stored in the linear array in positions [(i - j + nuca + 1) * n +/]. This results in

a row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5 x 5 matrix A with 1 lower and 2 upper codiagonals:
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0 0 0 Ays A4
In band storage format, the data would be arranged as

0 0 AO, 2 Al, 3 AZ, 4

0 Ay 4y, A3 A3 4

Aoo A1 Az 2 A3z Ag g
Ay o Ayy Az p Asz O

This data would then be stored contiguously, row-major order, in an array of length 20.

As an example, consider the following tridiagonal matrix:

101 0 0 O
52002 0 O
A=[0 6 30 3 O
0 0 7 40 4
0 0 0 8 50

The following declaration will store this matrix in band storage format:

float al[] = {

0.0, 1.0, 2.0, 3.0, 4.0,
10.0, 20.0, 30.0, 40.0, 50.0,
5.0, 6,0, 7.0, 8.0, 0.0

}i

As in the sparse coordinate representation, there is a space saving symmetric version of band storage. As an
example, look at the following 5 X 5 symmetric problem:

-Ao,o Ao;1 Ao,z 0 0
Aoy Ay Ay 413 0
A= 4o 2 A1 2 Ay y Ay 3 Ay g4
0 Ay 3 Ay 3 A3 3 434
0 0 Ay 4 A3 4 A4,4_

In band symmetric storage format, the data would be arranged as
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0 0 Ayo A3 44
0 Aoy Ay Aa3 434
Ao o Ay Ay a Az 3 Ay s

The following Hermitian example illustrates the procedure:

(8,0) (1,1) (1,1) 0 0

(I, -1) (80) (1,1) (1,1) 0

(1,-1) (1,-1) (8,0) (1,1) (1,1)
0 (1,-1) (1,-1) (80) (1,1)
0 0 (1,-1) (1,-1) (8,0)

The following program fragments would store H in h, using band symmetric storage format.

or equivalently

f complex
{0.0,
{0.0,
{8.0,

f comp
h[0] =
h[2] =

h[] = {

0.0}y, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
0.0}y, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}};
lex h[15];

h[1l] = h[5] = imsl cf convert (0.0, 0.0);

h[3] = h[4] = h[6] = h[7] = h[8] = h[9] =

imsl cf convert (1.0, 1.0);

h[10]

= h[11] = h[12] = h[13] = h[l4] =

imsl cf convert (8.0, 0.0);

Choosing Between Banded and Coordinate Forms

It is clear that any matrix can be stored in either sparse coordinate or band format. The choice depends on the
sparsity pattern of the matrix. A matrix with all nonzero data stored in bands close to the main diagonal would
probably be a good candidate for band format. If nonzero information is scattered more or less uniformly
through the matrix, sparse coordinate format is the best choice. As extreme examples, consider the following two
cases: (1) an n x n matrix with all elements on the main diagonal and the (0, n - 1) and (n - 1, 0) entries nonzero.
The sparse coordinate vector would be n + 2 units long. An array of length n(2n - 1) would be required to store
the band representation, nearly twice as much storage as a dense solver might require. (2) a tridiagonal matrix
with all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an array of length 3n is
needed. In sparse coordinate, format a vector of length 3n - 2 is required. But the problem is that, for example,
for float precision, each of those 3n - 2 units in coordinate format requires three times as much storage as any of
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the 3n units needed for band representation. This is due to carrying the row and column indices in coordinate
form. Band storage evades this requirement by being essentially an ordered list, and defining location in the orig-
inal matrix by position in the list.

Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in the format described in the Users’
Guide for the Harwell-Boeing Sparse Matrix Collection (via optional argument IMSL _CSC_FORMAT). The
scheme is column oriented, with each column held as a sparse vector, represented by a list of the row indices of
the entries in an integer array (“rowind” below) and a list of the corresponding values in a separate float (double,
f.complex, d_complex) array (“values” below). Data for each column are stored consecutively and the columns
are stored in order. A third array (“colptr” below) indicates the location in array “values” in which to place the
first nonzero value of each succeeding column of the original sparse matrix. So colptr [i] contains the index

of the first free location in array “values” in which to place the values from the i column of the original sparse
matrix. In other words, values [colptr [1]] holds the first nonzero value of the i-th column of the original
sparse matrix. Only entries in the lower triangle and diagonal are stored for symmetric and Hermitian matrices.
All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’'s one-based arrays.

As in the Harwell-Boeing user guide (link above), the storage scheme is illustrated with the following example: The
5 x5 matrix

1 -3 0 -10
0 0 -2 0 3
2 0 0 0 O
0 4 0 —40

50 =5 0 6

would be stored in the arrays colptr (location of first entry), rowind (row indices), and values (nonzero
entries) as follows:

Subscripts |0 1 2 3 4 5 6 7 8 9 10
Colptr 0 3 5 9 11

Rowind 0 2 4 0 3 1 4 0 3 1 4
Values 1 2 5 -3 4 -2 -5 -1 -4 3

The following program fragment shows the relation between CSC storage format and coordinate representation:

int main () {

int i, 3, k, n =5, nz, start, stop;
int colptr[] = { 0, 3, 5, 7, 9, 11 };
int rowind([] = { O, 2, 4, 0, 3, 1, 4, 0, 3, 1, 4 };
float values[] = { 1.0, 2.0, 5.0, -3.0, 4.0, -2.0,
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Linear Systems

Functions

Linear Equations with Full Matrices
Factor, Solve, and Inverse for General Matrices

Real matrices. . . ... . e lin_sol_gen

Complexmatrices .. ....... ... i lin_sol_gen (complex)
Factor, Solve, and Inverse for Positive Definite Matrices

Realmatrices. . . ... lin_sol_posdef

Complexmatrices ............ ..t lin_sol_posdef (complex)

Linear Equations with Band Matrices
Factor and Solve for Band Matrices

Realmatrices. . . ... ... . lin_sol_gen_band

Complexmatrices .. ...... ... lin_sol_gen_band (complex)
Factor and Solve for Positive Definite Matrices Symmetric

Realmatrices. . ... . lin_sol_posdef_band

Complexmatrices ............ ... ... lin_sol_posdef _band (complex)

Linear Equations with General Sparse Matrices
Factor and Solve for Sparse Matrices |

Realmatrices. . ........ ... lin_sol_gen_coordinate

Complexmatrices ............ ... .. lin_sol_gen_coordinate (complex)
Factor and Solve for Sparse Matrices |l

Real matrices. . . ... superlu

Complexmatrices .. ...... ... e superlu (complex)
OpenMP-based parallel Factor and Solve for Sparse Matrices

Real Matrices. . . ... .. superlu_smp

ComplexMatrices . ....... ... superlu_smp (complex)
Factor and Solve for Positive Definite Matrices

Realmatrices. . ........ ... lin_sol_posdef_coordinate

Complexmatrices ............... ..., lin_sol_posdef_coordinate (complex)
OpenMP-based parallel Factor and Solve for Positive Definite Matrices

Real Matrices. . ... . sparse_cholesky_smp

Complex Matrices ........... ... ... . ... .. .. sparse_cholesky smp (complex)
lterative Methods

Restarted generalized minimum residual

(GMRES)method . . ........... ... . ... . ... lin_sol_gen_min_residual

37
47

55
62

68
74

80
85

90
101

110
125

141
154

168
177

186
196

206
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Conjugate gradient method .. ......... ... .. ... .. . . . lin_sol_def _cg

Linear Least-squares with Full Matrices
Least-squares and QR decomposition

Least-squares solve, QR decomposition. .................. lin_least_squares_gen

Non-negative least squares solution . . .. .................. nonneg_least_squares

Linearconstraints . .......... ... ... . i lin_Isq_lin_constraints
Non-Negative Matrix Factorization (NNMF)

Non-negative matrix factorization solution. . .. ... ....... nonneg_matrix_factorization
Singular Value Decompositions (SVD) and Generalized Inverse

Real matriX. . .. ... e lin_svd_gen

Complexmatrix . ......... ... lin_svd_gen (complex)

Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices
Realmatrices. . ... lin_sol_nonnegdef

212

219
228
235
241

246
253

260
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Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified n x n matrix, b is a given right-
hand side n vector, and x is the solution n vector. Each entry of A and b must be specified by the user. The entire
vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used direct method for solving Ax = b
factors the matrix A into a product of triangular matrices and solves the resulting triangular systems of linear
equations. Functions that use direct methods for solving systems of linear equations all compute the solution to
Ax = b.Thus, if function ims1 £ superlu or afunction with the prefix“ims1l f 1in sol”is called with the
required arguments, a pointer to x is returned by default. Additional tasks, such as only factoring the matrix A into
a product of triangular matrices, can be done using keywords.

Matrix Factorizations

In some applications, it is desirable to just factor the n x n matrix A into a product of two triangular matrices. This
can be done by calling the appropriate function for solving the system of linear equations Ax = b. Suppose that in
addition to the solution x of a linear system of equations Ax = b, the LU factorization of A is desired. Use the key-
word IMSL FACTOR in the function ims1 f 1in sol gen to obtain access to the factorization. If only the
factorization is desired, use the keywords IMSL FACTOR_ ONLY and IMSL FACTOR. For function
imsl f superlu, use keyword IMSL RETURN SPARSE LU FACTOR in order to get the LU factorization. If
only the factorization is desired, then keywords IMSL RETURN SPARSE LU FACTOR and

IMSL FACTOR_ SOLVE with value 1 are required.

Besides the basic matrix factorizations, such as LU and LLT, additional matrix factorizations also are provided. For
a real matrix A, its QR factorization can be computed by the function ims1 £ 1lin least squares gen. Func-
tions for computing the singular value decomposition (SVD) of a matrix are discussed in a later section.
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Matrix Inversions

The inverse of an n x n nonsingular matrix can be obtained by using the keyword IMSL INVERSE in functions
for solving systems of linear equations. The inverse of a matrix need not be computed if the purpose is to solve
one or more systems of linear equations. Even with multiple right-hand sides, solving a system of linear equations
by computing the inverse and performing matrix multiplication is usually more expensive than the method dis-
cussed in the next section.

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector. It is most eco-
nomical to find the solution vectors by first factoring the coefficient matrix A into products of triangular matrices.
Then, the resulting triangular systems of linear equations are solved for each right-hand side. When A is a real
general matrix, access to the LU factorization of A is computed by using the keywords IMSL FACTOR and
IMSL FACTOR_ONLY infunction imsl f lin sol gen. The solution xy for the k-th right-hand side vector by

is then found by two triangular solves, Ly = by and Uxyk = yk. The keyword IMSL SOLVE_ONLY in the function

imsl f 1lin sol genisused to solve each right-hand side. These arguments are found in other functions
for solving systems of linear equations. For function ims1 f superlu, use the keywords

IMSL RETURN SPARSE LU FACTOR and IMSL FACTOR SOLVE with value 1 to get the LU factorization,
and then keyword IMSL_FACTOR_SOLVE with value 2 to get the solution for different right-hand sides.

Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations Apyxp X = b,

where m > n. A least-squares solution x minimizes the Euclidean length of the residual vector r = Ax — b. The func-
tion imsl f lin least squares gen computes a unigue least-squares solution for x when A has full
column rank. If A is rank-deficient, then the base solution for some variables is computed. These variables consist
of the resulting columns after the interchanges. The QR decomposition, with column interchanges or pivoting, is
computed such that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreas-
ing in magnitude, and P is the permutation matrix determined by the pivoting. The base solution xg is obtained

by solving R(PT)x = QTb for the base variables. For details, see the “Description” section of function
imsl f lin least squares_gen. The QR factorization of a matrix A such that AP = QR with P specified by
the user can be computed using keywords.

Least-squares problems with linear constraints and one right-hand side can be solved. These equations are
Amxn X =b,

subject to constraints and simple bounds
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b=Cx<b,

X=X <X
Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is the coefficient
matrix of the constraints. The vectors b, b, x; and x,, are the lower and upper bounds on the constraints and the

variables. This general problem is solved with ims1 f 1in 1lsg lin constraints.

For the special case of where there are only non-negative constraints, x > 0, solve the problem with

imsl f nonneg least squares.

Non-Negative Matrix Factorization

If the matrix Am x n = 0, factor it as a product of two matrices, Am x n = Fm x k Gk x n- 1he matrices Fand G are both

non-negative and k < min(m, n). The factors are computed so that the residual matrix £=A - £ G has a sum of
squares norm that is minimized. There are normalizations of Fy, x k and Gy x , described in the documentation of

imsl f nonneg matrix factorization.

Singular Value Decompositions and Generalized Inverses

The SVD of an m x n matrix A is a matrix decomposition A = USVT. With g = min(m, n), the factors Uqu and anq
are orthogonal matrices, and Sgxq is @ nonnegative diagonal matrix with nonincreasing diagonal terms. The func-

tionimsl f lin svd gen computes the singular values of A by default. Using keywords, part or all of the U
and V matrices, an estimate of the rank of A, and the generalized inverse of A, also can be obtained.

lll-Conditioning and Singularity

An m x n matrix A is mathematically singular if there is an x # 0 such that Ax = 0. In this case, the system of linear
equations Ax = b does not have a unique solution. On the other hand, a matrix A is numerically singular if it is
“close” to a mathematically singular matrix. Such problems are called il/-conditioned. If the numerical results with
an ill-conditioned problem are unacceptable, users can either use more accuracy if it is available (for type float
accuracy switch to double) or they can obtain an approximate solution to the system. One form of approximation
can be obtained using the SVD of A: If g = min(m, n) and

A:

i

T
SiiUiVi

s

q
=1

then the approximate solution is given by the following:
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k
— T

xk— ti,i<b Z/ll'>Vl'
=1

The scalars tj  are defined below.

t;=

i

is;} if s;;> tol > 0
0  otherwise

The user specifies the value of tol. This value determines how “close” the given matrix is to a singular matrix. Fur-
ther restrictions may apply to the number of terms in the sum, k < g. For example, there may be a value of k < g
such that the scalars |(bTu;)l, i > k are smaller than the average uncertainty in the right-hand side b. This means

that these scalars can be replaced by zero; and hence, b is replaced by a vector that is within the stated uncer-
tainty of the problem.
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lin_sol_gen

Solves a real general system of linear equations Ax = b. Using optional arguments, any of several related compu-

tations can be performed. These extra tasks include computing the LU factorization of A using partial pivoting,

computing the inverse matrix A, solving ATx = b, or computing the solution of Ax = b given the LU factorization of

A

Synopsis
#include <ims1l.h>
float *ims1l f 1in sol gen(intn, floatal[],floatb[], ..., 0)

The type double functionis imsl d 1in sol gen.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[]1 (Input)
Array of size n X n containing the matrix.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was

computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

float *imsl £ 1in sol gen(intn,floatal],floatb[],
IMSL A COL DIM, inta col dim,
IMSL TRANSPOSE,
IMSL_RETURN_ USER, float x[],
IMSL FACTOR, int **p_pvt, float **p factor,
IMSL FACTOR USER,intpvt[],float factor([],
IMSL FAC COL DIM, intfac_col dim,
IMSL INVERSE, float **p inva,
IMSL_INVERSE_USER, float inval],
IMSL INV_COL DIM intinva_ col dim,
IMSL_CONDITION,ﬂOCI[ *cond,
IMSL ITERATIVE REFINEMENT, int refine,
IMSL_FACTOR ONLY,
IMSL SOLVE_ONLY,
IMSL_INVERSE ONLY,
0)

Optional Arguments

IMSL A COL DIM inta _col dim (Input)
The column dimension of the array a.
Default: a_col dim=n

IMSL_TRANSPOSE
Solve ATx = b.
Default: Solve Ax = b

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, int **p pvt,float **p factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 f 1in sol gen. Typically,
int *p_pvt is declared, and &p_pvt is used as an argument.
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float **p factor (Output)
The address of a pointer to an array of size n x n containing the LU factorization of A with col-
umn pivoting. On return, the necessary space is allocated by ims1 f 1in sol gen.The
lower-triangular part of this array contains information necessary to construct L, and the
upper-triangular part contains U (see Example 2). Typically, float *p_factor is declared,
and &p_factor isused as an argument.

IMSL FACTOR USER,intpvt[],float factor[] (Input/Output)
intpvt [] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

float factor [] (Input/Output)
A user-allocated array of size n x n containing the LU factorization of A. The strictly lower-tri-
angular part of this array contains information necessary to construct L, and the upper-
triangular part contains U (see Example 2). If Ais not needed, factor and a can share the
same storage.

These parameters are input if IMSL _SOLVE is specified. They are output otherwise.

IMSL FAC COL DIM, int fac col dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col dim=n

IMSL INVERSE, float **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,

the necessary space is allocated by ims1 £ 1in sol gen. Typically, float *p inva is declared,
and &p_invais used as an argument.

IMSL INVERSE USER, float inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV_COL DIM, intinva_col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE ONLY.

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine = 0.
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IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol genis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 £ 1in sol gen. By default,
the solution to Ax = b is pointed to by ims1 f 1lin sol gen.I|f IMSL SOLVE ONLY is used,
argument IMSL FACTOR_USER is required. If iterative refinement of the solution is desired, argu-
ment a must be present. Otherwise, a is ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIsrequired. The argument b is then ignored, and the returned value of
imsl f 1lin sol genis NULL.

Description

The function ims1 f 1lin sol gen solves a system of linear algebraic equations with a real coefficient
matrix A. It first computes the LU factorization of A with partial pivoting such that L'/A = U. Let F be the matrix
p_factor returned by optional argument IMSL FACTOR. The triangular matrix U is stored in the upper trian-

gle of F. The strict lower triangle of F contains the information needed to reconstruct L™ using

-1
L :L}’l—an—l LIPI

The factors P; and L are defined by partial pivoting. P;is the identity matrix with rows jand p_pvt [i-1] inter-
changed. L is the identity matrix with 5, for j=/7+1, .., n, inserted below the diagonal in column /.

The factorization efficiency is based on a technique of “loop unrolling and jamming” by Dr. Leonard J. Harding of
the University of Michigan, Ann Arbor, Michigan. The solution of the linear system is then found by solving two
simpler systems, y = L"'b and x = U”'y. Additionally, the accuracy of the solution can be improved by iterative
refinement. IMSL uses mixed precision iterative refinement in single precision and fixed precision iterative refine-
ment in double precision. In double precision, the residuals b-Ax are computed with high accuracy using
algorithms based on Ogita, Rump and Oishi (2005). When the solution to the linear system or the inverse of the
matrix is sought, an estimate of the L1 condition number of A is computed using the same algorithm as in Don-
garra et al. (1979). If the estimated condition number is greater than 1/€ (where € is the machine precision), a
warning message is issued. This indicates that very small changes in A may produce large changes in the solution
x.The functionimsl f 1in sol gen failsif U, the upper triangular part of the factorization, has a zero diag-
onal element.
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Examples

Example 1

This example solves a system of three linear equations. This is the simplest use of the function. The equations fol-
low below:

#include <imsl.h>

int main ()

{

int n = 3;

float g

float all] = (1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0};

float b[] = {1.0, 4.0, -1.0};

/* Solve Ax = b for x */
x = imsl f 1lin sol gen (n, a, b, 0);
- /* Print x */
imsl f write matrix ("Solution, x, of Ax = Db", 1, 3, x, 0);
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}
Output
Solution, x, of AXx = b
1 2 3
=2 =2 3
Example 2

This example solves the transpose problem ATx = b and returns the LU factorization of A with partial pivoting. The

same data as the initial example is used, except the solution x = ATb is returned in an array allocated in the main
program. The L matrix is returned in implicit form.

#include <imsl.h>

int main ()
{
int n =3, pvt[3];
float factor[9];
float x[3];
float al] = {1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0};
float b[] = {1.0, 4.0, -1.0};
/* Solve trans(A)*x = b for x */
imsl f 1lin sol gen (n, a, b,
IMSL TRANSPOSE,
IMSL RETURN USER, x,
IMSL FACTOR USER, pvt, factor,
0);
/* Print x */
imsl f write matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);

/* Print factors and pivot sequence */

imsl f write matrix ("LU factors of A", n, n, factor, 0);
imsl i write matrix ("Pivot sequence", 1, n, pvt, 0);
}
Output
Solution, x, of trans(A)x = b
1 2 3
4 -4 1
LU factors of A
1 2 3
1 1 3 3
2 =1 1 0
3 =1 0 1

Pivot sequence

1 2 3
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1 3 3
Reconstruction of L1 and U from factor:
L'=L,P,L,P,

P; is the identity matrix with row / and row pvt[/-1] interchanged.

evt=1,3,3
row 1 and row pvt[0], or row 1, are
1 00 interchanged, which is still the identity
. matrix.
P = 1
0 01
row 2 and row pvt [1], or row 3, are
1 0 interchanged.
Pz - O O 1
|0 1

Ljis the identity matrix with Fy; for j=7+1, n, inserted below the diagonal in column /, where Fis factor:

1 33
factor=|-1 1 O
-1 0 1
second and third elements of
1 0 0 column 1 of factor are
_ | inserted below the diagonal in
Ll 110 column 1.
-1 0 1
third element of column 2 of
1 00 factor is inserted below the
L2 _ 1 0 diagonal in column 2.
0 0 1
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Uis the upper triangle of factor:

1 33
U=10 1
0 01

Example 3

This example computes the inverse of the 3 x 3 matrix A of the initial example and solves the same linear system.

The matrix product C = A"'Ais computed and printed. The function ims1_f mat mul rect is used to com-
pute C. The approximate result C =/ is obtained.

#include <imsl.h>

float al] = {1.0, 3.0, 3.0,

float bl]

Il
—_~—
—
o
~
IS
o
~
|
=
o
—
~.

int main ()

{

int n = 3;
float G
float *p_inva;
float B0

/* Solve Ax = b */
x = imsl f 1in sol gen (n, a, b,
IMSL INVERSE, &p_inva,
0);

/* Print solution */
imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Print input and inverse matrices */
imsl f write matrix ("Input A", n, n, a, 0);
imsl f write matrix ("Inverse of A", n, n, p_inva, 0);
/* Check result and print */
C = imsl f mat mul rect ("A*B",
IMSL A MATRIX, n, n, p inva,
IMSL B MATRIX, n, n, a,
0);
imsl f write matrix ("Product matrix, inv(A)*A",n,n,C,0);

}

Output
Solution, x, of Ax = b
1 2 3
=2 =2 3
Input A
1 2 3
1 1 3 3
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2 1 3 4
3 1 4 3
Inverse of A

1 2 3
1 7 =3 =3
2 =1 0 1
3 =1 1 0

Product matrix, inv (A)*A

1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

Example 4

This example computes the solution of two systems. Only the right-hand sides differ. The matrix and first right-

hand side are given in the initial example. The second right-hand side is the vector ¢ = [0.5, 0.3, 0.4]". The factor-
ization information is computed with the first solution and is used to compute the second solution. The
factorization work done in the first step is avoided in computing the second solution.

#include <imsl.h>

int main ()
{
int n =3, pvt[3];
float factor([9];
float W5y WY
float al] = {1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0},
float b[] = {1.0, 4.0, -1.0};
float c[] = {0.5, 0.3, 0.4};

/* Solve A*x = b for x */
x = imsl f lin sol gen (n, a, b,
IMSL FACTOR USER, pvt, factor,
0);

/* Print x */
imsl f write matrix ("Solution, x, of Ax = b", 1, n, Xx,

/* Solve for A*y = c for y */
y = imsl £ 1lin sol gen (n, a, c,
IMSL SOLVE ONLY,
IMSL FACTOR USER, pvt, factor,
0);
imsl f write matrix ("Solution, y, of Ay =c", 1, n, vy,
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Output
Solution, x, of Ax
1 2
=2 —2

Solution, y, of Ay
1 2
1.4 -0.1

Warning Errors

IMSL ILL CONDITIONED

IMSL ILL CONDITIONED 1

Fatal Errors

IMSL SINGULAR MATRIX

w W

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is too ill-conditioned for iterative
refinement to be effective.

The input matrix is singular.
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lin_sol_gen (complex)

Solves a complex general system of linear equations Ax = b. Using optional arguments, any of several related

computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, computing the inverse matrix A™', solving AHx = b, or computing the solution of Ax = b given the LU
factorization of A.

Synopsis
#include <ims1.h>
fcomplex *imsl ¢ 1lin sol gen (intn,fcomplexal],fcomplexb[], .., 0)

The type d_complex functionis imsl z 1lin sol gen.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexall (Input)
Array of size n X n containing the matrix.

fcomplexb[] (Input)
Array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was

computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl c 1lin sol gen (intn,fcomplexall,fcomplexb[],
IMSL A COL DIM, inta col dim,
IMSL TRANSPOSE,
IMSL RETURN USER, fcomplexx[],
IMSL FACTOR, int **p pvt, fcomplex **p factor,
IMSL FACTOR USER,intpvt[],fcomplex factor[],
IMSL FAC COL DIM, intfac_col dim,
IMSL INVERSE, f complex **p inva,
IMSL INVERSE USER,fcomplex inval],
IMSL INV_COL DIM intinva_ col dim,
IMSL_CONDITION,f/OCI[ *cond,
IMSL ITERATIVE REFINEMENT, int refine,
IMSL FACTOR ONLY,
IMSL SOLVE_ ONLY,
IMSL_INVERSE ONLY,
0)

Optional Arguments

IMSL A COL DIM inta _col dim (Input)
The column dimension of the array a.
Default: a_col dim=n

IMSL_TRANSPOSE
Solve AHx = b
Default: Solve Ax = b

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f complex **p_factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 ¢ 1lin sol gen. Typically,
int *p_pvt is declared, and &p_pvt is used as an argument.
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f.complex **p_factor (Output)
The address of a pointer to an array of size n x n containing the LU factorization of A with col-
umn pivoting. On return, the necessary space is allocated by ims1 ¢ 1in sol gen.The
lower-triangular part of this array contains information necessary to construct L, and the

upper-triangular part contains U. Typically, f complex *p factor is declared, and
&p_ factor isused as an argument.

IMSL FACTOR USER, int pvt[], f complex factor[] (Input/Output)
intpvt [] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

Jf.complex factor [] (Input/Output)
A user-allocated array of size n x n containing the LU factorization of A. The lower-triangular

part of this array contains information necessary to construct L, and the upper-triangular
part contains U.

These parameters are input if IMSL_SOLVE is specified. They are output otherwise. If A s
not needed, factor and a can share the same storage.
IMSL FAC COL DIM, intfac col dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col dim=n

IMSL INVERSE, fcomplex **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,

the necessary space is allocated by ims1 ¢ 1in sol gen. Typically, f complex *p invais
declared, and &p_invais used as an argument.

IMSL INVERSE USER,f complex inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV_COL DIM, intinva_col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)

A pointer to a scalar containing an estimate of the L4 norm condition number of the matrix A. Do not
use this option with IMSL SOLVE_ONLY.

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine=0.
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IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl ¢ 1lin sol genis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 ¢ 1in sol gen. By default,
the solution to Ax = b is pointed to by ims1 ¢ 1lin sol gen.|f IMSL SOLVE ONLY is used,
argument IMSL FACTOR_USER is required. If iterative refinement of the solution is desired, argu-
ment a must be present. Otherwise, a is ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIsrequired. Argumentb is then ignored, and the returned value of
imsl ¢ lin sol genis NULL.

Description

The function ims1 ¢ lin sol gen solves a system of linear algebraic equations with a complex coefficient
matrix A. It first computes the LU factorization of A with partial pivoting such that L™'/A = U. Let F be the matrix
p_factor returned by optional argument IMSL FACTOR. The triangular matrix U is stored in the upper trian-
gle of F. The strict lower triangle of F contains the information needed to reconstruct

L™t using

-1
L = Ln—lpn—l L1P1

The factors P; and L are defined by partial pivoting. P;is the identity matrix with rows /jand p_pvt [i-1] inter-
changed. Lj is the identity matrix with 5, for j=/7+1,.., n, inserted below the diagonal in column /.

The solution of the linear system is then found by solving two simpler systems, y = L'b and x = U 'y. Additionally,
the accuracy of the solution can be improved by iterative refinement. IMSL uses mixed precision iterative refine-
ment in single precision and fixed precision iterative refinement in double precision. In double precision, the
residuals b-Ax are computed with high accuracy using algorithms based on Ogita, Rump and QOishi (2005). When
the solution to the linear system or the inverse of the matrix is computed, an estimate of the L1 condition num-
ber of A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is
greater than 1/¢& (where € is the machine precision), a warning message is issued. This indicates that very small
changes in A may produce large changes in the solution x. The function ims1 ¢ 1in sol genfailsif U, the
upper-triangular part of the factorization, has a zero diagonal element.
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Examples

Example 1
This example solves a system of three linear equations. The equations are:

(1+i)x
1
+Q24+3)x*+3B -3i)x
3
=3+5i
2+ix
1
+(5+30)x
2
+(7 - 50)x
3
=22+ 10i
(-2+i)x
1
+(-4+4i)x
2
+(5+3i)x
3
=—-10+4i

#include <imsl.h>

f complex all = {{1.0,

f complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main ()
{
int n = 3;
f complex K2
/* Solve Ax = b for x */
x = imsl ¢ lin sol gen (n, a, b, 0);

/* Print x */
imsl ¢ write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

}
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Output
Solution, x, of Ax = Db
1 2 3
( 1, -1) 2, 4) 3, -0)
Example 2

This example solves the conjugate transpose problem AMx = b and returns the LU factorization of A using partial
pivoting. This example differs from the first example in that the solution array is allocated in the main program.

#include <imsl.h>

f complex al] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
{2.0, 1.0}, {5.0, 3.0}, {7.0, =-5.0},
{-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main ()

{

int n =3, pvt[3];
f complex factor[9];
f complex x[3];

/* Solve ctrans (A)*x = b for x */
imsl ¢ lin sol gen (n, a, b,
~ T IMSL TRANSPOSE,
IMSL RETURN USER, x,
IMSL FACTOR USER, pvt, factor,
0);
/* Print x */
imsl ¢ write matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);

/* Print factors and pivot sequence */
imsl ¢ write matrix ("LU factors of A", n, n, factor, 0);
imsl i write matrix ("Pivot sequence", 1, n, pvt, 0);

}

Output
Solution, x, of ctrans(A)x = Db
1 2 3
( =9,79, 11.23) ( 2.96, -3.13) ( 1.85, 2.47)
LU factors of A
1 2 3
1 ( -2.000, 1.000) ( -4.000, 4.000) ( 5.000, 3.000)
2 ( 0.600, 0.800) ( -1.200, 1.400) ¢ 2.200, 0.600)
3 ( 0.200, 0.600) ( -1.118, 0.529) ( 4.824, 1.294)
Pivot sequence
1 2 3
3 3 3
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Example 3

This example computes the inverse of the 3 x 3 matrix A in the first example and also solves the linear system.

The product matrix C =AAis computed as a check. The approximate result is C = /.

#include <imsl.h>

f complex al] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
{2.0, 1.0}, {5.0, 3.0}, {7.0, =-5.0},
{-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main ()

{

int n = 3;

f complex WK G

f complex *p inva;
f complex “Cy

/* Solve Ax = b for x */
x = imsl c¢ 1lin sol gen (n, a, b,
IMSL INVERSE, &p inva,
0);

/* Print solution */
imsl ¢ write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Print input and inverse matrices */
imsl ¢ write matrix ("Input A", n, n, a, 0);
imsl ¢ write matrix ("Inverse of A", n, n, p _inva, 0);

/* Check and print result */
C = imsl ¢ mat mul rect ("A*B",
IMSL A MATRIX, n,n, p_inva,
IMSL B MATRIX, n,n, a,
0);
imsl ¢ write matrix ("Product, inv(A)*A", n, n, C, 0);

}
Output
Solution, x, of Ax = Db
1 2 3
( 1, -1) 2, 4) ( 3, -0)
Input A

1 2 3
1 ( 1] 1) ( 2/ 3) ( 3, _3>
2 2, 1) | 5, 3) ( 7, -5)
3 ( -2, 1) -4, 4) ( 5, 3)

Inverse of A

1 2 3
1 ( 1.330, 0.594) ( -0.151, 0.028) ( -0.604, 0.613)
2 ( -0.632, -0.538) ( 0.160, 0.189) ( 0.142, -0.245)
3 ( -0.189, 0.160) ( 0.193, -0.052) ( 0.024, 0.042)

Product, inv (A)*A
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1
1 ( 1, _0) ( _OI
2 0, 0) « 1,
3 ( -0, -0) -0,

Warning Errors

IMSL ILL CONDITIONED

IMSL ILL CONDITIONED 1

Fatal Errors

IMSL SINGULAR MATRIX

2 3
=0) ( -0, 0)
0) ( 0, =0)
0) 1, 0)

The input matrix is too ill-conditioned. An estimate
of the reciprocal of the L1 condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is too ill-conditioned for iterative
refinement to be effective.

The input matrix is singular.
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lin_sol_posdef

Solves a real symmetric positive definite system of linear equations Ax = b. Using optional arguments, any of sev-
eral related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = LLT, computing the inverse matrix A, or computing the solution of Ax = b given the Cholesky factor,
L.

Synopsis
#include <ims1l.h>
float *imsl f 1in sol posdef (intn,floatal], floatb[], .., 0)

The type double functionis imsl d 1in sol posdef.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size n X n containing the matrix.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the symmetric positive definite linear system Ax = b. To release this space, use
imsl free.If nosolution was computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

float *imsl £ 1in sol posdef (intn,floatal],floatb[],
IMSL A COL DIM, inta col dim,
IMSL RETURN USER, floatx[1],
IMSL FACTOR, float **p factor,
IMSL FACTOR_USER, float factor[],
IMSL FAC COL DIM, int fac _col dim,
IMSL_INVERSE, float **p _inva,
IMSL INVERSE USER,float inval],
IMSL INV COL DIM, intinv_col dim,
IMSL_CONDITION,f/OGt *cond,
IMSL FACTOR ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE ONLY,
0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, float **p factor (Output)
The address of a pointer to an array of size n x n containing the LLT factorization of A. On return, the
necessary space is allocated by ims1 £ 1in sol posdef. The lower-triangular part of this
array contains L and the upper-triangular part contains LT. Typically, float *p factorisdeclared,
and &p_factor isused as an argument.

IMSL FACTOR USER, float factor[] (Input/Output)
A user-allocated array of size n x n containing the LLT factorization of A. The lower-triangular part of
this array contains L, and the upper-triangular part contains LT. If Ais not needed, a and factor can
share the same storage. If IMSL SOLVE is specified, it is input; otherwise, it is output.
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IMSL FAC COL DIM, int fac col dim (Input)
The column dimension of the array containing the LLT factorization of A.
Default: fac_col dim=n

IMSL_INVERSE,f/OOt **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,
the necessary space is allocated by ims1 £ 1in sol posdef. Typically, float *p_inva'is
declared, and &p_inva is used as an argument.

IMSL INVERSE USER, float inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV_COL DIM, intinva_col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L4y norm condition number of the matrix A. Do not
use this option with IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the Cholesky factorization LLT of A. If IMSL,_FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol posdef is NULL.

IMSL SOLVE_ ONLY
Solve Ax = b given the LLT factorization previously computed by ims1 f 1lin sol posdef. By
default, the solutionto Ax = b is pointed to by ims1 £ 1lin sol posdef.|f
IMSL SOLVE ONLY isused, argument IMSL FACTOR USER isrequired and the argument a is
ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIs required. The argument b is then ignored, and the returned value of
imsl f lin sol posdef isNULL.

Description

The function ims1l f 1in sol posdef solves a system of linear algebraic equations having a symmetric
positive definite coefficient matrix A. The function first computes the Cholesky factorization LLT of A. The solution

of the linear system is then found by solving the two simpler systems, y = L' and x = L"Ty. When the solution to
the linear system or the inverse of the matrix is sought, an estimate of the L4 condition number of A is computed
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posdef

using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than 1/

(where € is the machine precision), a warning message is issued. This indicates that very small changes in A may
produce large changes in the solution x.

The function ims1 f 1lin sol posdef failsif L, the lower-triangular matrix in the factorization, has a zero

diagonal element.

Examples

Example 1

A system of three linear equations with a symmetric positive definite coefficient matrix is solved in this example.
The equations are listed below:

#include <imsl.

int main ()

- 3x

+ 2x

—3x

+ 10x

— 5x

=-78
2x

- 5x

+ 6x

h>
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}
Outp

Solution,

1
1

Example 2

int
float
float

float

n = 3;

*X;

all] = {1.0, -3.0, 2.0,
-3.0, 10.0, -5.0,
2.0, -5.0, 6.0};

b[] = {27.0, -78.0, 64.0};

/* Solve AX = b for x */

x = imsl f lin sol posdef (n, a, b, 0);

/* Print x */

imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

ut

x, of Ax = b
2 3
-4 7

This example solves the same system of three linear equations as in the initial example, but this time returns the

LLT factorization of A. The solution x is returned in an array allocated in the main program.

#include <imsl.h>

int main ()

{

}
Outp

Solution,

1
1

int
float
float

float

3.0, 10.0, -5.0,
2.0, =5.0, 6.0};
(27.0, -78.0, 64.0};

(on
I

/* Solve AX = b for x */

imsl f lin sol posdef (n, a, b,

- IMSL_RETURN USER, x,
IMSL FACTOR, &p factor,
0);

/* Print x */

imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Print Cholesky factor of A */

imsl f write matrix ("Cholesky factor L, and trans (L), of A"

ut

n, n, p factor, 0);

x, of Ax = b
2 3
-4 7
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Cholesky factor L, and trans (L), of A

1 2 3
1 1 =3 2
2 -3 1 1
3 2 1 1

Example 3
This example solves the same system as in the initial example, but given the Cholesky factors of A.

#include <imsl.h>

int main ()

{

int n = 3;

float WX, Fapg

float factor[ ] = {1.0, -3.0, 2.0,
-3.0, 1.0, 1.0,
2.0, 1.0, 1.0};

float b[ ] = {27.0, -78.0, 64.0};

/* Solve Ax = b for x */
x = imsl f lin sol posdef (n, a, b,
~ T IMSL FACTOR USER, factor,
IMSL SOLVE ONLY,
0);

/* Print x */
imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

}

Output
Solution, x, of Ax = b
1 2 3
1 -4 7

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is
not positive definite.
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IMSL SINGULAR MATRIX

IMSL SINGULAR TRI MATRIX

The input matrix is singular.

The input triangular matrix is singular. The index of
the first zero diagonal element is #.
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lin_sol_posdef (complex)

Solves a complex Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = L or computing the solution to Ax = b given the Cholesky factor, L.

Synopsis
#include <ims1.h>
fcomplex *imsl c 1lin sol posdef (intn,fcomplexall,fcomplexb[], .., 0)

The type d_complex functionis imsl z 1lin sol posdef.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexal] (Input)
Array of size n x n containing the matrix.

fcomplexb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To release this space, use
imsl free.If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
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fcomplex *imsl c 1lin sol posdef (intn,fcomplexall,fcomplexb[],
IMSL A COL DIM, inta col dim,
IMSL RETURN USER,fcomplexx[],
IMSL FACTOR, fcomplex **p factor,
IMSL FACTOR USER,fcomplex factor[],
IMSL FAC COL DIM, intfac_col dim,
IMSL_CONDITION,f/OCI[ *cond,
IMSL_FACTOR_ONLY,
IMSL SOLVE_ONLY,
0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of size n containing the solution x.

IMSL FACTOR, f complex **p factor (Output)
The address of a pointer to an array of size n x n containing the LLH factorization of A. On return, the
necessary space is allocated by ims1 ¢ 1lin sol posdef. The lower-triangular part of this
array contains L, and the upper-triangular part contains LH. Typically, f complex *p factoris
declared, and &p_factor is used as an argument.

IMSL FACTOR USER, f complex factor [] (Input/Output)
A user-allocated array of size n x n containing the LLH factorization of A. The lower-triangular part of
this array contains L, and the upper-triangular part contains L™, If Ais not needed, a and factor
can share the same storage. If IMSL._SOLVE is specified, factor is input. Otherwise, it is output.

IMSL FAC COL DIM, intfac_col dim (Input)
The column dimension of the array containing the LLH factorization of A.
Default: fac_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. Do not
use this option with IMSL _SOLVE_ONLY.
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IMSL FACTOR ONLY
Compute the Cholesky factorization LLH of A. If IMSL,_ FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl ¢ 1lin sol posdef is NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LL™ factorization previously computed by ims 1 ¢ 1lin sol posdef.By
default, the solution to Ax = b is pointed to by ims1 ¢ 1lin sol posdef.If
IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER isrequired and argument a is

ignored.

Description

The function ims1 ¢ lin sol posdef solves a system of linear algebraic equations having a Hermitian
positive definite coefficient matrix A. The function first computes the LLH factorization of A. The solution of the lin-

ear system is then found by solving the two simpler systems, y = L™'b and x = L™Hy. When the solution to the linear
system is required, an estimate of the L4 condition number of A is computed using the algorithm in Dongarra et

al. (1979). If the estimated condition number is greater than 1/& (where € is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large changes in the solution x. The
functionimsl c 1lin sol posdef failsif L, the lower-triangular matrix in the factorization, has a zero diago-

nal element.

Examples

Example 1

A system of five linear equations with a Hermitian positive definite coefficient matrix is solved in this example. The
equations are as follows:

2x
1
+H—1+1i)x

=1+5i
(-1 -1ix

+4x
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+(1+2i)x

(1 -20x

+10x

+ 4ix

=1-16i

—4ix

+ 6x

+(1+i)x
5
=-3-3]
(1 —-idx
4
+9x
5
=25+ 16i

#include <imsl.h>

int main ()

{
int n = 5;
f complex *x;

f complex a[] = {
{2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
{-1.0,-1.0},{4.0,0.0}, {(1.0,2.0}, {0.0,0.0}, {0.0,0.0},
{0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
{0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
{6.0,0.0}, {0.0,0.0}, {0.0,0.0}, {21.0,-1.0},{9.0,0.0}

f complex b[]
{1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
ki
/* Solve Ax = b for x */
x = imsl ¢ lin sol posdef(n, a, b, 0);
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/* Print x */
imsl ¢ write matrix("Solution, x, of Ax = b", 1, n, x, 0);

}

Output
Solution, x, of Ax = b
1 2 3
( 2, 1) « 3, -0) ( -1, -1)
4 5
( Or _2) ( 3, 2)
Example 2

This example solves the same system of five linear equations as in the first example. This time, the L. factoriza-
tion of A and the solution x is returned in an array allocated in the main program.

#include <imsl.h>

int main ()

{

int n=>5;

f complex x[5], *p factor;

f complex al]l] = {
{2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
{-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
{0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
{0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
{0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}

f complex b[] = {
{1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
i
/* Solve Ax = b for x */
imsl ¢ lin sol posdef (n, a, b,
- IMSL RETURN USER, x,
IMSL FACTOR, &p factor,
0);

/* Print x */

imsl ¢ write matrix("Solution, x, of Ax = b", 1, n, x, 0);

/* Print Cholesky factor of A */
imsl ¢ write matrix("Cholesky factor L, and ctrans(L), of A",

n, n, p factor, 0);

}

Output
Solution, x, of Ax = Db
1 2 3
( 2! l) ( 3, _0) ( _l/ _1)
4 5
( Or _2) ( 3/ 2)
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Cholesky factor L, and ctrans (L), of A

1
1 1.414, 0.000) (
2 | -0.707, -0.707) (
3 0.000, 0.000) (
4 0.000, 0.000) (
5 ( 0.000, 0.000) (
4
1 0.000, -0.000) (
2 ( 0.000, -0.000) (
3 ( 0.000, 1.386) (
4 ( 2.020, 0.000) (
5 ( 0.495, -0.495) (

Warning Errors

IMSL_HERMITIAN DIAG REAL 1

IMSL_HERMITIAN DIAG REAL 2

IMSL ILL CONDITIONED

Fatal Errors

IMSL NONPOSITIVE MATRIX

IMSL HERMITIAN DIAG REAL

IMSL SINGULAR TRI MATRIX

ODOORr O

NO O OO

.707,
- 132,
ST,
.000,
.000,

.000,
.000,
.000,
.495,
.917,

2 3
0.707) ( 0.000, -0.000)
0.000) ( 0.577, 1.155)

-1.155) ( 2.887, 0.000)
0.000) ( 0.000, -1.386)
0.000) ( 0.000, 0.000)

5

-0.000)

-0.000)

-0.000)

0.495)
0.000)

The diagonal of a Hermitian matrix must be real. Its
imaginary part is set to zero.

The diagonal of a Hermitian matrix must be real.
The imaginary part will be used as zero in the
algorithm.

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #. The solution might not be accurate.

The leading # by # minor matrix of the input matrix
is not positive definite.

During the factorization the matrix has a large imag-
inary component on the diagonal. Thus, it cannot be
positive definite.

The triangular matrix is singular. The index of the
first zero diagonal term is #.
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lin_sol_gen_band

Solves a real general band system of linear equations, Ax = b. Using optional arguments, any of several related
computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, solving ATx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <ims1l.h>
float *imsl £ 1in sol gen band(intn,floatal],intnlca,intnuca,floatb[], .., 0)

The type double functionis imsl d l1in sol gen band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size (nlca+ nuca+ 1) x n containing the n x n banded coefficient matrix in band storage

mode.

intnlca (Input)
Number of lower codiagonals in a.

intnuca (Input)
Number of upper codiagonals in a.

floatb [1 (Input)
Array of size n containing the right-hand side.
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Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

float *imsl f 1in sol gen band(intn,floata[],intnlca,intnuca, floatb[],

IMSL_TRANSPOSE,

IMSL RETURN USER, floatx[1],

IMSL FACTOR, int **p pvt,float **p factor,
IMSL FACTOR USER,intpvt[],float factor[],
IMSL CONDITION, float *condition,

IMSL FACTOR_ONLY,

IMSL_SOLVE_ONLY,

IMSL BLOCKING FACTOR,intblock factor,
0)

Optional Arguments

IMSL_TRANSPOSE
Solve ATx = b.
Default: Solve Ax = b.

IMSL RETURN USER,float x [] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, int **p pvt,float **p factor (Output)

int **p pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 f 1in sol gen band.
Typically, int *p_pvt is declared and &p_pvt is used as an argument.

float **p factor (Input/Output)
The address of a pointer to an array of size (2n/ca + nuca + 1) X n containing the LU factoriza-
tion of A with column pivoting. On return, the necessary space is allocated by
imsl f 1in sol gen band. Typically, float *p_ factorisdeclared and &p_factor
is used as an argument.
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IMSL FACTOR USER,intpvt[],float factor[] (Input/Output)
intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

float factor[] (Input/Output)
A user-allocated array of size (2n/ca + nuca + 1) X n containing the LU factorization of A. The
strictly lower triangular part of this array contains information necessary to construct L, and
the upper triangular part contains U. If A is not needed, factor and a can share the first
(nlca + nuca + 1) x n locations.

These parameters are “Input” if IMSL SOLVE ONLY is specified. They are “Output”
otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol gen bandis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 f 1in sol gen band. By
default, the solution to Ax = b is pointed to by ims1 £ 1in sol gen band.If
IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER is required and the argument a is
ignored.

IMSL BLOCKING FACTOR,intblock factor (Input)
The blocking factor. block factor must be set no larger than 32.
Default: block factor =1

Description

The function ims1 f 1in sol gen band solves a system of linear algebraic equations with a real band
matrix A. It first computes the LU factorization of A based on the blocked LU factorization algorithm given in Du
Croz et al. (1990). Level-3 BLAS invocations are replaced with inline loops. The blocking factor block factor
has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems, y = L'b and x = U "'y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L4 condition number of A is

computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition
number is greater than 1/& (where € is the machine precision), a warning message is issued. This indicates that

70



Linear Systems lin_sol_gen_band

very small changes in A may produce large changes in the solution x. The function
imsl f lin sol gen bandfails if U, the upper triangular part of the factorization, has a zero diagonal

element.

Examples

Example 1

This example demonstrates the simplest use of this function by solving a system of four linear equations. The
equations are as follows:

#include <imsl.h>

int main ()

{

int n = 4;
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int nuca = 1;
int nlca = 1;
float wR g

float al[] = {0.0, -1.0, -2.0, 2.0,
2.0, 1.0, -1.0, 1.0,
-3.0, 0.0, 2.0, 0.0};
float b[] = {3.0, 1.0, 11.0, -2.0};
x = imsl f 1lin sol gen band (n, a, nlca, nuca, b, 0)
imsl f write matrix ("Solution x, of Ax = b", 1, n,

}

Output
Solution x, of Ax = b
1 2 3 4
2 1 -3 4
Example 2

’

Xy

In this example, the problem Ax = b is solved using the data from the first example. This time, the factorizations

are returned and the problem Ax = b is solved without recomputing LU.

#include <imsl.h>

int main ()

{
int n = 4, nuca = 1, nlca = 1, *pivot = NULL;
float x[4], *factor = NULL;

/* Note that a is in band storage mode */
float al[] =

float b[] = { 3.0, 1.0, 11.0, -2.0 };

/* Solve Ax = b and return LU */

imsl f lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR, é&pivot, &factor,
IMSL RETURN USER, x,
0);

imsl f write matrix ("Solution of Ax = b", 1, n, x,

/* Use precomputed LU to solve trans(A)x = b */
/* The original matrix A is not needed */
imsl f 1lin sol gen band(n, (float*)0, nlca, nuca,
IMSL FACTOR USER, pivot, factor,
IMSL SOLVE ONLY,
IMSL TRANSPOSE,
IMSL RETURN USER, x,

b,

0);
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0);

imsl f write matrix("Solution of trans(A)x = b", 1, n, x, 0);

if (pivot)

imsl free(pivot):;
if (factor)

imsl free(factor);

}

Output
Solution of Ax = Db
1 2 3 4
2 1 =3 4
Solution of trans(A)x = Db

1 2 3 4

-6 -5 -1 -0
Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate

of the reciprocal of its L condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.
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lin_sol_gen_band (complex)

Solves a complex general band system of linear equations Ax = b. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the LU factorization of A using par-

tial pivoting, solving AHx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <ims1.h>

fcomplex *imsl ¢ lin sol gen band (intn,fcomplexal],intnlca,intnuca,fcomplexb[],
.. 0)

The type double functionis imsl z 1in sol gen band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexall (Input)
Array of size (nlca + nuca + 1) X n containing the n x n banded coefficient matrix in band storage

mode.

intnlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

fcomplexb [] (Input)
Array of size n containing the right-hand side.
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Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *ims1l ¢ 1lin sol gen band (intn, fcomplexa[],ntnlca,intnuca,fcomplexb[],

IMSL TRANSPOSE,

IMSL RETURN USER, fcomplex x[],

IMSL FACTOR, int **p pvt,fcomplex **p factor,
IMSL FACTOR USER,intpvt[],fcomplex factor[],
IMSL CONDITION, float *condition,
IMSL_FACTOR_ONLY,

IMSL_SOLVE_ONLY,

0)

Optional Arguments

IMSL_TRANSPOSE
Solve AHx = b
Default: Solve Ax = b.

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, int **p_ pvt, fcomplex **p factor (Output)

int **p_pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by ims1 ¢ 1in sol gen band.
Typically, int *p_pvt is declared and &p_pvt is used as an argument.

f.complex **p factor (Input/Output)
The address of a pointer to an array of size (2nica + nuca + 1) x n containing the LU factoriza-
tion of A with column pivoting. On return, the necessary space is allocated by
imsl ¢ lin sol gen band. Typically, f complex *p factor is declared and
&p_factor isused as an argument.

IMSL FACTOR USER,intpvt[],fcomplex factor[] (Input/Output)
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intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

fcomplex factor [] (Input/Output)
A user-allocated array of size (2nlca + nuca + 1) X n containing the LU factorization of A. If A is
not needed, factor and a can share the first (n/ca + nuca + 1) x n locations.
These parameters are “Input” if IMSL SOLVE ONLY is specified. They are “Output”
otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL _FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl ¢ 1lin sol gen bandis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LU factorization previously computed by ims1 ¢ 1lin sol gen band. By
default, the solution to Ax = b is pointed to by ims1 ¢ 1in sol gen band.If
IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER is required and argument a is
ignored.

Description

The function ims1 ¢ lin sol gen band solves a system of linear algebraic equations with a complex
band matrix A. It first computes the LU factorization of A using scaled partial pivoting. Scaled partial pivoting dif-
fers from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same L.,
norm. The factorization fails if U has a zero diagonal element. This can occur only if A is singular or very close to a
singular matrix.

The solution of the linear system is then found by solving two simpler systems, y = L'b and x = U 'y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L4 condition number of A is
computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition
number is greater than 1/& (where € is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function

imsl ¢ lin sol gen bandfails if U, the upper triangular part of the factorization, has a zero diagonal ele-
ment. The function ims1 ¢ 1lin sol gen bandis based on the LINPACK subroutine CGBFA; see Dongarra
et al. (1979). CGBFA uses unscaled partial pivoting.

76



Linear Systems lin_sol_gen_band (complex)

Examples

Example 1

The following linear system is solved:

—2—3i 4 0 0 X0 —10—5i
6+i —0.5+3i —2+2i 0 [|*¥|_|95+55i
0 1+1i 3-3i 4-1|]|* 12 —-12i
0 0 2i 1—i X3 8i
#include <imsl.h>
int main ()
{
int n=4;
int nlca = 1;
int nuca = 1;

f complex P
/* Note that a is in band storage mode */

f complex al] =

{{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
=2.0, =3.0}, {(=0.5, 3.0}, (3.0, =3.0}, (1.0, =1.0J),
{6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

f complex Db[]
{{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b, 0);

imsl ¢ write matrix ("Solution, x, of Ax = b", n, 1, x, 0);

}

Output
Solution, x, of Ax = b
1 3, -0)
2 -1, 1)
3 3, 0)
4 -1, 1)
Example 2

This example solves the problem Ax = b using the data from the first example. This time, the factorizations are

returned and then the problem AHx = b is solved without recomputing LU.

#include <imsl.h>

int main ()

{
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int n = 4;
int nlca = 1;
int nuca = 1;
int *pivot;

f complex W e

f complex *factor;

/* Note that a is in band storage mode */
f complex all

{{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
{-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
{6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}1};

f complex b[] =

{=10.,0, =5.05, (9.9, 9.5}, (12.0, =12.0}, (0.0, ©.0}%}g

/* Solve Ax = b and return LU */

x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR, é&pivot, &factor,
0);

imsl ¢ write matrix ("solution of Ax = b", n, 1, x,
(0)) 7

imsl free (x);

/* Use precomputed LU to solve ctrans(A)x = b */
x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR USER, pivot, factor,
IMSL TRANSPOSE,

0);
imsl ¢ write matrix ("solution of ctrans(A)x = b", n, 1, x,
0);
}
Output
solution of Ax =
1 3, -0)
2 ( =1, 1)
3 ( 3, 0)
4 =1, 1)
solution of ctrans(A)x = b
1 5.58, -2.91)
2 ( -0.48, -4.67)
3 -6.19, 7.15)
4 12.60, 30.20)
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Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is singular.
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lin_sol_posdef_band

Solves a real symmetric positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the RTR Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L4 condition number of A.

Synopsis
#include <ims1.h>

float *imsl £ 1in sol posdef band(intn,floatal[],intncoda, floatb[], .., 0)

The type double functionis ims1 d lin sol posdef band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size (ncoda + 1) x n containing the n X n positive definite band coefficient matrix in band sym-

metric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

floatb[1 (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

float *imsl f 1in sol posdef band(intn,floatal[],intncoda, floatb[],

IMSL RETURN USER, floatx[],

IMSL FACTOR, float **p_ factor,
IMSL FACTOR USER, float factor([],
IMSL CONDITION, float *cond,

IMSL FACTOR ONLY,

IMSL SOLVE_ ONLY,

0)

Optional Arguments

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, float **p factor (Output)
The address of a pointer to an array of size (ncoda + 1) x n containing the LLT factorization of A. On
return, the necessary space is allocated by ims1 f 1lin sol posdef band. Typically,
float *p_factoris declared and &p_factor is used as an argument.

IMSL FACTOR USER, float factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) x n containing the LLT factorization of A in band symmetric
form. If Ais not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL SOLVE is specified. They are “Output” otherwise.

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the LLT factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL,_FACTOR or
IMSL FACTOR USERIsrequired. The argument b is then ignored, and the returned value of
imsl f 1lin sol posdef bandis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LLT factorization previously computed by
imsl f lin sol posdef band. By default, the solution to Ax = b is pointed to by
imsl f 1lin sol posdef band.If IMSL SOLVE ONLY is used, argument
IMSL FACTOR USERIsrequired and the argument a is ignored.
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Description

The function imsl f 1in sol posdef band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the RTR Cholesky factorization of A. R is an upper
triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L condition

number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/e (where € is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function ims1 f 1lin sol posdef band failsif any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function ims1 f 1lin sol posdef bandis partially based on the LINPACK subroutines CPBFA and
SPBSL; see Dongarra et al. (1979).

Example 1

Solves a system of linear equations Ax = b, where

20 -1 0 6
o 4 2 1 -1
A=\_p 5 7 —y|ado=1_y

0 1 -1 3 19

#include <imsl.h>

int main ()

{

int n = 4;
int ncoda = 2;
float wR g

/* Note that a is in band storage mode */

float al] = {0.0, 0.0, -1.0, 1.0,

0.0, 0.0, 2.0, =1.0,

2.0, 4.0, 7.0, 3.0};
float b[] = {6.0, -11.0, -11.0, 19.0};

x = imsl f lin sol posdef band (n, a, ncoda, b, 0);

imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);
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Output
Solution, x, of AXx = b
1 2 3 4
4 -6 2 9
Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated

space and an estimate of k4(A) is computed. Additionally, the RTR factorization is returned. Then, knowing that

Kq(A) = [IA]l lIA]], the condition number is computed directly and compared to the estimate from Higham's

method.

#include <imsl.h>
#include <stdio.h>

int main ()

{

int n = 4;
int ncoda = 2;
float all =
{0.0, 0.0, -1.0, 1.0,
0.0, 0.0, 2.0, -1.0,
2.0, 4.0, 7.0, 3.0};
float bl[] = {6.0, -11.0, -11.0, 19.0};
float x[4];
float e i[4];
float *factor;
float condition;
float column norm;
float inverse norm;
int i; B
int Jé

imsl f 1lin sol posdef band (n, a, ncoda, b,
IMSL FACTOR, &factor,
IMSL CONDITION, &condition,
IMSL RETURN USER, x,
0);

imsl f write matrix ("Solution, x, of Ax = b", 1, n,
0);

/* find one norm of inverse */
inverse norm = 0.0;

for (i=0; i<n; i++) {
for (§=0; j<n; j++) e i[§] = 0.0;
e i[i] = 1.0;
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/* determine one norm of each column of inverse */
imsl £ 1in sol posdef band (n, a, ncoda, e i,

IMSL FACTOR USER, factor, B

IMSL SOLVE ONLY,

IMSL RETURN USER, x,

0);

column norm = imsl f vector norm (n, X,
IMSL ONE NORM,
0);

/* the max of the column norms is the norm of
inv (A) */
if (inverse norm < column norm)

inverse norm = column_norm;

}

/* by observation, one norm of A is 11 */

printf ("\nHigham’s condition estimate = %f\n", condition);
printf ("Direct condition estimate = $f\n",

11.0*inverse norm) ;

Output

Solution, x, of AXx = b
1 2 3
4 -6 2

O

Higham’s condition estimate = 8.650485
Direct condition estimate = 8.650485

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL SINGULAR MATRIX The input matrix is singular.
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lin_sol_posdef_band (complex)

Solves a complex Hermitian positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the RHR Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L4 condition number of A.

Synopsis
#include <ims1.h>
fcomplex *imsl c 1lin sol posdef band(intn, fcomplexal],intncoda, fcomplexb[], .., 0)

The type double functionis ims1l z lin sol posdef band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

fcomplexal] (Input)
Array of size (ncoda + 1) x n containing the n x n positive definite band coefficient matrix in band sym-
metric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

fcomplexb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl ¢ lin sol posdef band(intn,fcomplexal],intncoda, fcomplexb[],

IMSL RETURN USER,fcomplex x[],

IMSL FACTOR, f complex **p factor,
IMSL FACTOR_USER, f complex factor[],
IMSL CONDITION, float *condition,
IMSL _FACTOR_ONLY,

IMSL SOLVE_ONLY,

0)

Optional Arguments

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, fcomplex **p factor (Output)
The address of a pointer to an array of size (ncoda + 1) x n containing the RHR factorization of A. On
return, the necessary space is allocated by ims1 ¢ 1lin sol posdef band. Typically,
f.complex *p_factor isdeclared and &p factor is used as an argument.

IMSL FACTOR USER,fcomplex factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) x n containing the RMR factorization of A in band symmetric
form. If Ais not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL SOLVE is specified. They are “Output” otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the RHR factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL,_FACTOR or
IMSL FACTOR USERIsrequired. The argument b is then ignored, and the returned value of
imsl ¢ 1lin sol posdef band isNULL.

IMSL SOLVE ONLY
Solve Ax = b given the RMR factorization previously computed by
imsl c lin sol posdef band. By default, the solution to Ax = b is pointed to by
imsl c¢ lin sol posdef band.If IMSL SOLVE ONLY is used, argument
IMSL FACTOR USERIsrequired and the argument a is ignored.
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Description

The function imsl ¢ 1lin sol posdef band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the RHR Cholesky factorization of A. Argument R is
an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L1 condition

number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/e (where € is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function ims1 ¢ 1lin sol posdef band failsif any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function ims1 ¢ 1lin sol posdef bandis based partially on the LINPACK sub-routines SPBFA and
CPBSL; see Dongarra et al. (1979).

Examples

Example 1

Solve a linear system Ax = b where

2 —1+i 0 0 0 1+5§
-1—i 4 1+2i O 0 12 —6i
A= 0 1—2i 10 4 0 and b = 1—16i
0 0 —4i 6 1+ —3-3i
0 0 0 1-i 9 25+ 16i
#include <imsl.h>
int main ()
{
int n=>5;
int ncoda = 1;

f complex *x;
/* Note that a is in band storage mode */

f complex al] =

{{¢.0, 0.0}, {-1.0, 1.0}, (1.0, 2.0}, {0.0, 4.0},
{1.0, 1.0},

{2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
{9.0, 0.0}};

f complex Db[] =
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{i.0, 5,05, (12,0, =6.0}, {1L.0, =16.,0},{=3.0, =3.0},
{25.0, 16.0}};

x = imsl ¢ lin sol posdef band (n, a, ncoda, b, 0);

imsl ¢ write matrix ("Solution, x, of Ax = Db", n, 1, x, 0);

}

Output
Solution, x, of AX = b
1 2, 1)
2 3, -0)
3 ( -1, -1)
4 0, -2)
5 ( 3y 2)

Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated
space and an estimate of k4(A) is computed. Additionally, the RMR factorization is returned. Then, knowing that
KW@=HAHImﬂnmheaNMNmnnumbechompumddwedWandcompamdtoﬁmesmnmefmnwthams
method.

#include <imsl.h>

#include <stdio.h>
#include <math.h>

int main ()

{

int n =5, ncoda =1, i, j;

/* Note that a is in band storage mode */
f complex al] =

{{6.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
{1.0, 1.0},
{2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
{9.0, 0.0}};

f complex DbI[] =

{{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
{25.0, 16.0}};

f complex x[5], e i[5], *factor;

float condition, column norm, inverse norm;

imsl ¢ lin sol posdef band (n, a, ncoda, b,
IMSL FACTOR, &factor,
IMSL:CONDITION, &condition,
IMSL RETURN USER, x,
0);

imsl ¢ write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Find one norm of inverse */
inverse norm = 0.0;

88



Linear Systems lin_sol_posdef_band (complex)

for (i=0; i<n; i++) {
for (3=0; j<n; j++) e i[j] = imsl cf convert (0.0, 0.0);
e i[i] = imsl cf convert (1.0, 0.0);

/* Determine one norm of each column of inverse */
imsl ¢ lin sol posdef band (n, a, ncoda, e i,
IMSL FACTOR USER, factor,
IMSL SOLVE ONLY,
IMSL RETURN USER, x,
0);

column norm = imsl ¢ vector norm (n, X,
IMSL ONE NORM,
0);

/* The max of the column norms is the norm of inv (A) */
if (inverse norm < column norm)
inverse norm = column norm;

}

/* By observation, one norm of A is 14+sqgrt(5) */

printf ("\nHigham’s condition estimate = %7.4f\n", condition);

printf ("Direct condition estimate = %7.4f\n",
(14.0+sgrt (5.0)) *inverse norm) ;

}

Output
Solution, x, of AX = b
1 2 3
( 2, 1) « Ep -0) ( -1, =1)
4 5
( 0, -2) ( 3, 2)

Higham’s condition estimate = 19.3777
Direct condition estimate = 19.3777

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL SINGULAR MATRIX The input matrix is singular.
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lin_sol_gen_coordinate

Solves a sparse system of linear equations Ax = b. Using optional arguments, any of several related computations
can be performed. These extra tasks include returning the LU factorization of A, computing the solution of Ax = b
given an LU factorization, setting drop tolerances, and controlling iterative refinement.

Synopsis
#include <ims1.h>
float *imsl f 1in sol gen coordinate (intn,intnz, ImsLf sparse_elem *a, float *b, .., 0)

The type double functionis imsl d 1in sol gen coordinate.

Required Arguments

intn (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1_ free.If no solu-
tion was computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

Joat *imsl f 1lin sol gen coordinate (intn,intnz, Imsl f sparse elem *a, float *b,
_r_ _ _ _ Y

IMSL RETURN SPARSE LU FACTOR,/mslf sparse_lu_factor *1u_ factor,
IMSL SUPPLY SPARSE LU FACTOR, /mslfsparse_lu_factor *1u factor,
IMSL FREE SPARSE LU FACTOR,

IMSL RETURN SPARSE LU IN COORD, Imslf sparse_elem **1u coordinate, int
**row_pivots,int**col pivots,

IMSL SUPPLY SPARSE LU IN_ COORD,intnzlu, Imsl f sparse_elem *1u coordinate, int
*row pivots,int *col pivots,

IMSL_FACTOR_ONLY,

IMSL SOLVE_ONLY,

IMSL RETURN USER,floatx[],

IMSL TRANSPOSE,

IMSL CONDITION, float *condition,

IMSL PIVOTING STRATEGY, Ims/ pivotmethod,

IMSL NUMBER OF SEARCH ROWS, int num_search_row,

IMSL ITERATIVE REFINEMENT,

IMSL DROP TOLERANCE, float tolerance,

IMSL HYBRID FACTORIZATION, float density, int orde r bound,
IMSL STABILITY FACTOR,floats factor,

IMSL GROWTH FACTOR LIMIT,flootgf limit,

IMSL GROWTH FACTOR, float *gf,

IMSL SMALLEST PIVOT, float *small pivot

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,

IMSL CSC_FORMAT, int *col ptr,int *row_ind, float *values,
IMSL MEMORY BLOCK SIZE,intblock size,

0)

Optional Arguments

IMSL RETURN SPARSE LU FACTOR, Imsl f sparse_lu_factor *1u_ factor (Output)
The address of a structure of type Ims!_f sparse_lu_factor. The pointers within the structure are initial-
ized to point to the LU factorizationbyimsl f 1lin sol gen coordinate.
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IMSL SUPPLY SPARSE LU FACTOR, Imsl f sparse_lu_factor *1u_ factor (Input)
The address of a structure of type Ims/_f sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by ims1 f 1lin sol gen coordinate withthe
IMSL RETURN SPARSE LU FACTOR option.

IMSL_FREE SPARSE LU FACTOR
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL RETURN SPARSE LU IN COORD, Imslf sparse_elem **1u coordinate,
int **row pivots,int **col pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in 1u_coordinate.
This is more compact than the internal representation encapsulated in Ims/_f sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL. RETURN LU IN COORD and
IMSL SUPPLY LU IN COORD s probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL SUPPLY SPARSE LU IN COORD,intnzlu, /msLf sparse elem *1u coordinate,
int *row pivots,int *col pivots (Input)
Supply the LU factorization in coordinate form. See IMSL. RETURN SPARSE LU IN COORD fora
description.

IMSL FACTOR ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL SUPPLY SPARSE LU FACTOR or IMSL SUPPLY SPARSE LU IN COORD.

IMSL RETURN USER,floatx[] (Output)
A user-allocated array of length n containing the solution x.

IMSL TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL CONDITION, float *condition,
Estimate the L4 condition number of A and return in the variable condition.
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IMSL PIVOTING STRATEGY, Ims/ pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL. ROW MARKOWITZ,
IMSL COLUMN MARKOWITZ, or IMSL SYMMETRIC MARKOWITZ.
Default: IMSL SYMMETRIC MARKOWITZ.

IMSL NUMBER OF SEARCH ROWS, intnum_search row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search row =3.

IMSL ITERATIVE REFINEMENT,
Select this option if iterative refinement is desired.

IMSL DROP TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than
tolerance, it will be discarded.
Default: tolerance = 0.0.

IMSL HYBRID FACTORIZATION, float density, int orde r bound,
Enable the function to switch to a dense factorization method when the density of the active subma-
trix reaches 0.0 < density < 1.0 and the order of the active submatrix is less than or equal to
order bound.

IMSL_STABILITY_FACTOR,f/OOt s factor (Input)
The absolute value of the pivot element must be bigger than the largest element in absolute value in
its row divided by s factor.
Default: s factor =10.0.

IMSL GROWTH FACTOR LIMIT, flootgf limit (Input)
The computation stops if the growth factor exceeds gf limit.
Default: gf 1imit =1.0el6.

IMSL GROWTH FACTOR, float *gf (Output)
Argument gf is calculated as the largest element in absolute value at any stage of the Gaussian elim-
ination divided by the largest element in absolute value in A.

IMSL SMALLEST P IVOT, float * small pivot (Output)
A pointer to the value of the pivot element of smallest magnitude that occurred during the
factorization.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.
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IMSL CSC_FORMAT,int *col ptr,int*row_ ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main “Introduc-
tion” chapter of this manual for a discussion of this storage scheme.

IMSL_MEMORY BLOCK SIZE, intblocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize = nz.

Description

The function ims1 f 1lin sol gen coordinate solves a system of linear equations Ax = b, where Ais
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case,
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the

IMSL RETURN SPARSE LU FACTOR orthe IMSL RETURN LU IN COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL_SUPPLY SPARSE LU FACTORoOr IMSL SUPPLY SPARSE LU IN COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL_RETURN SPARSE LU FACTORis used, the final call to

imsl lin sol gen coordinate shouldinclude IMSL FREE SPARSE LU FACTOR to release the
heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward
elimination and back substitution so that the operations U'y = b and LTx = y are performed to obtain the solu-

tion. So, with one call to produce the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL CONDITION is used to calculate and return an estimation of the L condition number of A.

The algorithm used is due to Higham. Specification of IMSL CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solu-

tion to problems of the form Az=rand ATz =r.
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The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL. ROW MARKOWITZ or IMSL COLUMN MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL NUM_OF SEARCH ROWS.

The option IMSL DROP TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that

IMSL ITERATIVE REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.

Thefunctionimsl f 1in sol gen coordinate provides the option of switchingto a dense factorization
method at some point during the decomposition. This option is enabled by choosing

IMSL HYBRID FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete
fill-in. The other parameter, order bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

0(n?) nature of the dense factorization will cause performance degradation. Note that this option can significantly
increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

(10 0 0 0 O
0 10 -3 -1 0
0 0 15 0 0
-2 0 0 10 -1
-1 0 0 -5 1 -3
-1 -2 0 0 0 6|

Let xT = (1,2, 3,4, 5, 6) so that Ax = (10, 7, 45, 33, =34, 31)T. The number of nonzeros in Ais nz = 15.

#include <imsl.h>

int main ()
{
Imsl f sparse elem a[] =
{0, 0, 10.0,
1, 1, 10.0,
1, 2, =3.0,
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1, 3, -1.0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, -5.0,
4, 4, 1.0,
4, 5, -3.0,
5, 0, -1.0,
5,6 1, -2.0,
5, 5, 6.0};

float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};

int n = 6;

int nz = 15;

float *x;

x = imsl f lin sol gen coordinate (n, nz, a, b,
0);

imsl f write matrix ("solution", 1, n, x,
0);

imsl free (x);

}

Output
solution
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

This examples sets A = £(1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved, using the same coefficient matrix A just factored. Maximum absolute errors and execution
time ratios are printed, showing that forward and back solves take approximately 10 percent of the computation
time of a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial
number of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that tim-
ing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl f sparse elem *a;

Imsl f sparse lu factor lu factor;

float *b;

float *x;

float *mod_ five;

float *mod ten;

float error factor solve;
float error solve;

double time factor solve;
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double time solve;
int n = 1000;
int c = 10;

int i g

int nz;

int index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (float*) malloc (n*sizeof (*mod five)):;
mod_ten = (float*) malloc (n*sizeof (*mod ten)):;

for (i=0; i<n; i++) {
mod five[i] = (float) (i % 5);
mod ten[i] = (float) (i % 10);
}

/* Choose b so that x will approximate mod five */

b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,
0):

/* Time the factor/solve */
time factor solve = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);
time factor solve = imsl ctime() - time factor solve;

/* Compute max absolute error */

error factor solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
time solve = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL SOLVE ONLY,

0);

time solve = imsl ctime() - time solve;
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error solve = imsl f vector norm (n, x,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, ¢&index,

0);

free (mod ten);
imsl free (b);
imsl free (x);

/* Print errors and ratio of execution times */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve);

printf ("time solve/time factor solve = $f\n",
time solve/time factor solve);

}

Output
absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04

time solve/time fator solve = 0.093750

Example 3

This example solves a system Ax = b, where A = £(500, 50). Then, the same system is solved using a large drop tol-
erance. Finally, using the factorization just computed, the same linear system is solved with iterative refinement.
Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl f sparse elem *a;

Imsl f sparse lu factor lu factor;

float *b;

float *x;

float *mod_five;

float error zero drop tol;
float error nonzero drop tol;
float error nonzero drop tol IR;
double time zero drop tol;
double time nonzero drop tol;
double time nonzero drop tol IR;
int nz nonzero drop tol;
int nz_zero drop tol;

int n = 500;

int e = 50¢

int i;

int nz;

int index;
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/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, c, &nz, 0);
for (i=0; i<nz; 1i++) af[i].val *= 0.05;

/* Set a predetermined solution */

mod five = (float*) malloc (n*sizeof (*mod five));
for (i=0; i<n; i++)
mod five[i] = (float) (i % 5);

/* Choose b so that x will approximate mod five */
b = imsl £ mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod five,

0);

/* Time the factor/solve */
time zero drop tol = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL_NUM NONZEROS_ IN FACTOR, &nz zero drop tol,
0);

time zero drop tol = imsl ctime() - time zero drop tol;

/* Compute max abolute error */

error zero drop tol = imsl f vector norm (n, x,
IMSL SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

imsl free (x);

/* Solve the same problem, with drop
tolerance = 0.005 */
time nonzero drop tol = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
IMSL DROP TOLERANCE, 0.005, -
IMSL NUM NONZEROS IN FACTOR, &nz nonzero drop tol,
0);

time nonzero drop tol = imsl ctime() - time nonzero drop tol;

/* Compute max abolute error */

error nonzero _drop tol = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

imsl free (x);

/* Solve the same problem with IR, use last
factorization */
time nonzero drop tol IR = imsl ctime();

x = imsl f 1lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu_ factor,
IMSL SOLVE ONLY,

IMSL ITERATIVE REFINEMENT,
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0);
time nonzero drop tol IR = imsl ctime() - time nonzero drop tol IR;

/* Compute max abolute error */

error nonzero drop tol IR = imsl f vector norm (n, X,
IMSL SECOND VECTOR mod flve,
IMSL INF NORM &index,
0);

imsl free (x);
imsl free (b);

/* Print errors and ratio of execution times */
printf ("drop tolerance = 0.0\n");

printf ("\tabsolute error = %e\n", error zero drop tol);
printf ("\tfillin = %d\n\n", nz_zé}o_dfbp_t51);
printf ("drop tolerance = 0.005\n")

printf ("\tabsolute error = %e\n", error nonzero drop tol);

(
(
(
(
printf ("\tfillin = %d\n\n", nz nonzero drop_ tol);
(
(
(
(

printf ("drop tolerance = 0.005 (with IR)\n")

printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR);
printf ("\tfillin = %d\n\n", nz nonzero drop tol);
printf ("time nonzero drop tol/time zero drop tol = $f\n",

time nonzero _drop_ “tol/time zero drop “tol);
printf ("tlme nonzero_ drop tol IR/time zero _drop tol = %$f\n",
time nonzero drop “tol IR/tlme zZero drop “tol);

}
Output

drop tolerance = 0.0
absolute error = 3.814697e-06
fillin = 9530

drop tolerance = 0.005
absolute error = 2.699481e+00
fillin = 8656

drop tolerance = 0.005 (with IR)
absolute error = 1.907349%9e-06
fillin = 8656

time nonzero drop tol/time zero drop tol = 1.086957

time _nonzero drop tol IR/tlme Zero drop tol = 0.840580
Notice the absolute error when iterative refinement is not used. Also note that iterative refinement itself can be
quite expensive. In this case, for example, the IR solve took approximately as much time as the factorization. For
this problem the use of a drop high drop tolerance and iterative refinement was able to reduce fill-in by 10 per-
cent at a time cost double that of the default usage. In tight memory situations, such a trade-off may be
acceptable. Users should be aware that a drop tolerance can be chosen large enough, introducing large errors
into LU, to prevent convergence of iterative refinement.
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lin_sol_gen_coordinate (complex)

Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A. Using optional arguments,
any of several related computations can be performed. These extra tasks include returning the LU factorization of
A, computing the solution of Ax = b given an LU factorization, setting drop tolerances, and controlling iterative
refinement.

Synopsis
#include <ims1.h>

fcomplex *imsl ¢ lin sol gen coordinate (intn, intnz, Imsl_c sparse_elem *a, f complex *b,
o)

The type double functionis imsl z 1in sol gen coordinate.

Required Arguments

intn (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

f.complex *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1_ free.If no solu-
tion was computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl c 1lin sol gen coordinate (intn,int nz, Imsl_c sparse_elem *a, f complex *b,
IMSL RETURN SPARSE LU FACTOR, /msl_c sparse_lu_factor *1u_ factor,
IMSL SUPPLY SPARSE LU FACTOR,/msl_c sparse_lu_factor *1u_factor,
IMSL FREE SPARSE LU FACTOR

IMSL RETURN SPARSE LU IN COORD, Imsl.c_sparse_elem **1u coordinate,
int **row_pivots,int **col pivots,

IMSL SUPPLY SPARSE LU IN COORD,intnzlu,/mslc_sparse_elem *1u coordinate,
int *row pivots,int *col pivots,

IMSL_FACTOR_ONLY,

IMSL SOLVE_ONLY,

IMSL RETURN USER,fcomplexx[],

IMSL TRANSPOSE,

IMSL CONDITION, float *condition,

IMSL PIVOTING STRATEGY, Imsl_pivot method,

IMSL NUMBER OF SEARCH ROWS, int num_search_row,

IMSL ITERATIVE REFINEMENT,

IMSL DROP TOLERANCE, float tolerance,

IMSL HYBRID FACTORIZATION, float density, int orde r bound,
IMSL GROWTH FACTOR LIMIT, floatgf limit,

IMSL GROWTH FACTOR, float *gf,

IMSL SMALLEST P IVOT, float * small pivot

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,

IMSL CSC_FORMAT, int *col ptr,int *row_ind, f complex *values,
IMSL_MEMORY BLOCK SIZE, intblock size

0)

Optional Arguments

IMSL RETURN SPARSE LU FACTOR, /msl_c_sparse_lu_factor *1u factor (Output)
The address of a structure of type Ims/_c_sparse_lu_factor. The pointers within the structure are initial-
ized to point to the LU factorization by ims1 ¢ 1lin sol gen coordinate.
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IMSL SUPPLY SPARSE LU FACTOR, Imsl_c sparse_lu_factor *1u_factor (Input)
The address of a structure of type Ims/_c_sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by ims1l ¢ lin sol gen coordinate withthe
IMSL RETURN SPARSE LU FACTOR option.

IMSL_FREE SPARSE LU FACTOR
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL RETURN SPARSE LU IN COORD, Imsl.c_sparse_elem **1u coordinate,
int **row pivots,int **col pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in 1u_coordinate.
This is more compact than the internal representation encapsulated in Ims/_c_sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL. RETURN LU IN COORD and
IMSL SUPPLY LU IN COORD s probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL SUPPLY SPARSE LU IN_ COORD, intnzlu, Imsl_c sparse_elem *1u coordinate,
int *row pivots,int *col pivots (Input)
Supply the LU factorization in coordinate form. See IMSL. RETURN SPARSE LU IN COORD fora
description.

IMSL FACTOR ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL SUPPLY SPARSE LU FACTOR or IMSL SUPPLY SPARSE LU IN COORD.

IMSL RETURN_ USER, fcomplex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL CONDITION, float *condition,
Estimate the L4 condition number of A and return in the variable condition.
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IMSL PIVOTING STRATEGY, Ims/ pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL. ROW MARKOWITZ,
IMSL COLUMN MARKOWITZ, or IMSL SYMMETRIC MARKOWITZ.
Default: IMSL SYMMETRIC MARKOWITZ.

IMSL NUMBER OF SEARCH ROWS, intnum_search row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search row=3

IMSL ITERATIVE REFINEMENT,
Select this option if iterative refinement is desired.

IMSL DROP TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than toler-
ance, it will be discarded.
Default: tolerance =0.0

IMSL HYBRID FACTORIZATION, floatdensity,intorder bound, (Input)
Enable the code to switch to a dense factorization method when the density of the active submatrix
reaches 0.0 < density < 1.0 and the order of the active submatrix is less than or equal to
order bound.

IMSL_GROWTH FACTOR_LIMIT, floatgf limit (Input)
The computation stops if the growth factor exceeds gf limit.
Default: gf limit =1.e16

IMSL GROWTH FACTOR, float *g£ (Output)
gf is calculated as the largest element in absolute value at any stage of the Gaussian elimination
divided by the largest element in absolute value in A.

IMSL SMALLEST PIVOT, float *small pivot (Output)
A pointer to the value of the pivot element of smallest magnitude.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT,int *col ptr,int*row_ ind, f complex *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main Introduction
chapter at the beginning of this manual for a discussion of this storage scheme.

IMSL MEMORY BLOCK SIZE, intblocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize =nz
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Description

The function ims1 ¢ lin sol gen coordinate solves a system of linear equations Ax = b, where A is
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the

IMSL RETURN SPARSE LU FACTOR or the IMSL RETURN LU IN COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL,_SUPPLY SPARSE LU FACTORoOr IMSL SUPPLY SPARSE LU IN COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL_RETURN SPARSE LU FACTOR is used, the final call to

imsl 1lin sol gen coordinate shouldinclude IMSL FREE SPARSE LU FACTOR to release the
heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward
elimination and back substitution so that the operations U'y = b and LTx = y are performed to obtain the solu-

tion. So, with one call to produce the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL CONDITION is used to calculate and return an estimation of the Ly condition number of A.

The algorithm used is due to Higham. Specification of IMSL. CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solu-

tion to problems of the form Az=rand ATz =r.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL_ROW MARKOWITZ or IMSL COLUMN MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL. NUM OF SEARCH ROWS.

The option IMSL DROP TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that

IMSL ITERATIVE REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.
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The function imsl ¢ 1lin sol gen coordinate provides the option of switchingto a dense factorization
method at some point during the decomposition. This option is enabled by choosing

IMSL HYBRID FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete
fill-in. The other parameter, order bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

O(n>) nature of the dense factorization will cause performance degradation. Note that this option can significantly

increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

Let

so that

0
0

x'=(1+i2+2i,3+3i,4+4i,5+5i,6+ 6i)

Ax =3+ 17i,-19+ 5i, 6 + 18i, - 38 + 32i, -63 + 49i, -57 + 83i)"

#include <imsl.h>

int main ()

{

static Imsl c sparse elem al]

{0,

~

~

gD WWWNERRE

N N N N N SN SN SN N N~

~

~

RPOUDdWODDWONWNEO

N N N N N SN S SN SN SN N~

{10.0, 7.0},
{3.0, 2.0},

{-3.0, 0.0},
{-1.0, 2.0},
{4.0, 2.0},

{-2.0, -4.0},
{1.0, 6.0},

{-1.0, 3.0},
{-5.0, 4.0},
{-5.0, 0.0},
{12.0, 2.0},
{-7.0, 7.0},
{-1.0, 12.0}
{-2.0, 8.0},

[ 10+ 7i

2 —4i
—5+4i
| —1+12i —2+8i
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}

5, 5, (3.0, 7.0}z

static £ complex b[] =
{{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
{-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
int n = 6;
int nz = 15;
f complex *x;

x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
0);

imsl ¢ write matrix ("solution", n, 1, x,
0);
imsl free (x);

Output
solution
1 1, 1)
2 25 2)
3 ( 3, 3)
4 4, 4)
5 ( 5, 5)
6 ( 6, 6)
Example 2

This example sets A= E (1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved using the same coefficient matrix A just factored. Maximum absolute errors and execution

time ratios are printed showing that forward and back solves take a small percentage of the computation time of
a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial number
of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that timing results
are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl c sparse elem *a;

Imsl c sparse lu factor lu factor;

f complex *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
double time factor solve, time solve;
int n = 1000, ¢ = 10, i, nz, index;

/* Get the coefficient matrix */
a = imsl c generate test coordinate (n, c, &nz, 0);

/* Set two different predetermined solutions */
mod five = (f complex*) malloc (n*sizeof (*mod five));
mod ten = (f complex*) malloc (n*sizeof (*mod ten));
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for (i=0; i<n; i++) {
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 0.0);

}

/* Choose b so that x will approximate mod five */
b = imsl ¢ mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod five,

0);

/* Time the factor/solve */
time factor solve = imsl ctime();

x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);

time factor solve = imsl ctime() - time factor solve;

/* Compute max abolute error */

error factor solve = imsl c¢ vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */
b = imsl ¢ mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod ten,

0);

/* Use the previously computed factorization to solve Ax = b */
time solve = imsl ctime() ;

x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL SOLVE ONLY,

0);
time solve = imsl ctime () - time solve;
error solve = imsl ¢ vector norm (n, X,

IMSL SECOND VECTOR, mod_ten,
IMSL INF NORM, &index,
0);

imsl free (b)
imsl free (x)

’
r

/* Print errors and ratio of execution times */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve) ;

printf ("time solve/time factor solve = $f\n",
time solve/time factor solve);
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|
Output
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superlu

Computes the LU factorization of a general sparse matrix by a column method and solves the real sparse linear
system of equations Ax=5b.

Synopsis
#include <imsl .h>
float *ims1l £ superlu(intn,intnz, Imslfsparse_elemal],floatb[], .., 0)
void ims1l f superlu factor free (Imslf super_ lu_factor *factor)

The type double functions are ims1 d superluand imsl d superlu factor free.

Required Arguments

intn (Input)
The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f sparse_elem a [ ] (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims/_f sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

floatb[] (Input)
Array of length n containing the right-hand side.
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Return Value

A pointer to the solution x of the sparse linear system Ax = b . To release this space, use ims1 free.If no

solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

loat *imsl f superlu (intn,intnz, Imsl f sparse elem al], floatb[],
_r 14

IMSL EQUILIBRATE, intequilibrate,

IMSL COLUMN ORDERING METHOD, Imsl_col ordering method,

IMSL COLPERM VECTOR, intpermc|],

IMSL TRANSPOSE, int transpose,

IMSL ITERATIVE REFINEMENT,int refine,

IMSL FACTOR_SOLVE,int factsol,

IMSL DIAG PIVOT THRESH, doublediag pivot thresh,

IMSL SYMMETRIC MODE, int symm mode,

IMSL PERFORMANCE TUNING, intsp_ienv[],

IMSL CSC_FORMAT, /ntHB col ptr[],intHB row ind[] float HB values[],
IMSL CSC_FORMAT,intHB col ptr[],intHB row ind[],floatHB values[],
IMSL SUPPLY SPARSE LU FACTOR, /msLfsuper_lu_factor lu factor supplied,
IMSL RETURN SPARSE LU FACTOR, /msLf super_lu_factor *1u_ factor returned,
IMSL CONDITION, float *condition,

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL_FORWARD ERROR BOUND, float *ferr,

IMSL BACKWARD_ ERROR, float *berr,

IMSL RETURN USER, floatx[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Input)
Specifies if the input matrix A should be equilibrated before factorization.
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equilibrate

Description

0

Do not equilibrate A before factorization

1

Equilibrate A before factorization.

Default: equilibrate =0

IMSL COLUMN ORDERING METHOD, Imslcol ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

method

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the
input matrix.

IMSL MMD ATA

Minimum degree ordering on the structure of 474

IMSL_MMD AT PLUS A

Minimum degree ordering on the structure of

AT+ 4.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL COLPERM VECTOR. Vector permc is a
permutation of the numbers 0,1,..,n-1.

Default: method = IMSL._ COLAMD

IMSL COLPERM VECTOR, intpermc[] (Input)
Array of length n which defines the permutation matrix P. before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD withmethod = IMSL PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)
Indicates if the transposed problem A”x = b is to be solved. This option can be used in conjunction
with either of the options that supply the factorization.
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transpose Description
0 Solve Ax =b.

1 Solve A'x =b.

Default: transpose =0

IMSL_ITERATIVE_REFINEMENT, intrefine (Iﬂput)
Indicates if iterative refinement is desired.

refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine =1

IMSL FACTOR SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system or both are to be computed.

fact sol Description

0 Compute the LU factorization of the input matrix A
and solve the system Ax = 5.

1 Only compute the LU factorization of the input
matrix and return.

The LU factorization is returned via optional argu-
ment IMSL RETURN SPARSE LU FACTOR.

Input argument b is ighored.

2 Only solve 4x = b given the LU factorization of A4 .

The LU factorization of 4 must be supplied via
optional argument
IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0
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IMSL DIAG PIVOT THRESH, double diag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00<diag pivot thresh <1.0.

Default: diag_pivot thresh=1.0

IMSL SYMMETRIC MODE, int symm mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix
A is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold
(e.g. 0.0 or 0.01) via option IMSL,_ DIAG PIVOT THRESH and choose an (AT+A)-based column
permutation algorithm (e.g. column permutation method IMSL MMD AT PLUS A).

symm node Description

0 Do not use symmetric mode option.

1 Use symmetric mode option.

Default: symm mode =0

IMSL PERFORMANCE TUNING, int sp_ienv[] (Input)
Array of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

[ Description of sp_ienv[i]

0 The panel size.
Default: sp_ienv[0] = 10

1 The relaxation parameter to control supernode amalgama-
tion.

Default: sp_ienv[1] = 5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] = 200

4 The minimum column dimension to be used for 2D block-
ing.

Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20

IMSL CSC_FORMAT,intHB col ptr[],intHB row ind[],floatHB values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the Introduction chapter
of this manual for a discussion of this storage scheme.
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IMSL SUPPLY SPARSE LU FACTOR, Imsl f super_lu_factor 1u_factor supplied (Input)
A structure of type Imsl_f_super_lu_factor containing the LU factorization of the input matrix computed
with the IMSL RETURN SPARSE LU FACTOR option. See the Description section for a definition
of this structure. To free the memory allocated within this structure, use function
imsl_f_superlu_factor_free.

IMSL RETURN SPARSE LU FACTOR, Imslf super_lu_factor *1u factor returned (Output)
The address of a structure of type Ims/_f super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function imsl_f_superlu_factor _free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

min [(P,0,ADP) | /)] ]

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD_ ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
Consider the sparse linear system of equations

Ax=b

Here, A isa general square, nonsingular n by n sparse matrix, and x and p are vectors of length 5 . All entries
in A, x and p are of real type.

Gaussian elimination, applied to the system above, can be shortly described as follows:
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1. Compute a triangular factorization P.D,AD_P,= LU . Here, D, and D, are positive definite diag-

onal matrices to equilibrate the system and P, and P, are permutation matrices to ensure
numerical stability and preserve sparsity. L is a unit lower triangular matrix and U is an upper tri-
angular matrix.

2. Solve Ax = p by evaluating

x=d"b=D,(P.(U(L7(P(D)))))

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of p by D..
Multiplying Pr<Drb) means permuting the rows of D,b .

Multiplying L_I(PrDrb)l means solving the triangular system of equations with matrix [ by substitution.
Similarly, multiplying U (L (Pr'Drb> means solving the triangular system with U .

Function ims1 f_superlu handlesstep 1 above by default or if optional argument IMSL FACTOR_SOLVE is
used and set to 1. More precisely, before 4x = p is solved, the following steps are performed:
1. Equilibrate matrix A, i.e. compute diagonal matrices D, and D, sothat 4 = D,AD. is "better
A—1 A
conditioned”’than 4 ,i.e. 4 isless sensitive to perturbations in 4 than 4" isto perturbations in
A.
2. Order the columns of 4 toincrease the sparsity of the computed [ and U factors, i.e. replace 4
by AP, where P. isa column permutation matrix.

3. Compute the LU factorization of AP, . For numerical stability, the rows of AP, are eventually per-
muted through the factorization process by scaled partial pivoting, leading to the decomposition

A= P.AP.= LU . The LU factorization is done by a left looking supernode-panel algorithm with 2-
D blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor
A,
1==n | U5l
where 4; and U; denote the j -th column of matrices A and U, respectively.
5. Estimate the reciprocal of the condition number of matrix A.
During the solution process, this information is used to perform the following steps:

1. Solve the system Ax = p using the computed triangular L and U factors.
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2. lteratively refine the solution, again using the computed triangular factors. This is equivalent to New-

ton's method.

3. Compute forward and backward error bounds for the solution vector x .

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional

arguments of function ims1l f superlu.

Function ims1 f superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Ims/_f_super_lu_factor and two sub-structures. Following is a short description of

these structures:

typedef struct{
int nnz;
float *nzval;

int *rowind;
int *colptr;

} Imsl f hb format;

typedef struct{
int nnz;

int nsuper;
float *nzval;

int *nzval colptr;

int *rowind;

int *rowind colptr;

int *col to_ sup;

int *sup to col;

} Imsl f sc format;

typedef struct{
int nrow;

/* Number of nonzeros in the matrix */
/* Array of nonzero values packed by column
*
/
/* Array of row indices of the nonzeros */
/* colptr[j] stores the location in nzval[]
and rowind[] which starts column j. It
has ncol+l entries, and colptr[ncol]
points to the first free location in
arrays nzval[] and rowind[]. */

/* Number of nonzeros in the supernodal
matrix */

/* Index of the last supernode */

/* Array of nonzero values packed by column

*
/

/* Array of length ncol+l; nzval colptr[j]
stores the location in nzval which starts
column j. nzval colptr[ncol] points to
the first free location in arrays
nzval[] and nzval colptr[]. */

/* Array of compressed row indices of
rectangular supernodes */

/* Array of length ncol+l;
rowind colptr[sup to col[s]] stores the
location in rowind[] which starts
all columns in supernode s, and
rowind colptr[ncol] points to the first
free location in rowind[]. */

/* Array of length ncol+l; col to sup[j] is
the supernode number to which column j
belongs. Only the first ncol entries in
col to sup[] are defined. */

/* Array of length ncol+l; sup to col[s]
points to the starting column of the s-th
supernode. Only the first nsuper+2
entries in sup to col[] are defined, and
sup_to col[nsuper+l] = ncol+l. */

/* number of rows of matrix A */
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int ncol; /* number of columns of matrix A */
int equilibration method; /* The method used to equilibrate A:
B 0 - No equilibration
1 - Row equilibration.
2 — Column equilibration
3 - Both row and column equilibration */

float *rowscale; /* Array of length nrow containing the row
scale factors for A */

float *columnscale; /* Array of length ncol containing the
column scale factors for A */

int *rowperm; /* Row permutation array of length nrow
describing the row permutation matrix Pr

*/

int *colperm; /* Column permutation array of length ncol
describing the column permutation matrix
Pc */

Imsl f hb format *U; /* The part of the U factor of A outside the

supernodal blocks, stored in Harwell-
Boeing format */
Imsl f sc format *L; /* The L factor of A, stored in supernodal
format as block lower triangular matrix
*
/

} Imsl f super lu factor;

Structure Ims/_d_super_lu_factor and its two sub-structures are defined similarly by replacing float by double,
Imsl_f_hb_format by Ims/_d_hb_format and Ims/_f sc_format by Ims/_d_sc_format in their definitions.

For a definition of supernodes and its use in sparse LU factorization, see the SuperlLU Users' guide (1999) and J.W.
Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

19 0 21 21 O
1221 0 0 O
A=(0 12 16 0 O
0 0 0 5 21
12 12 0 0 18

taken from the SuperlLU Users' guide (1999).

Factorization of this matrix via ims1 f superlu using natural column ordering, no equilibration and setting
sp_ienv[1]from its default value 5 to 1 results in the following LU decomposition:
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A=LU=
1.00 19.00 21.00  21.00
0.63 1.00 21.00 —13.26 —13.26
0.57 1.00 23.58  7.58 .
1.00 5.00 21.00
0.63 0.57 -0.24 —-0.77 1.00 34.20

Considering the filled matrix £ (/ denoting the identity matrix)

19.00 21.00 21.00
0.63 21.00 —13.26 —13.26
F=L+U-1I= 0.57 2358 7.58
5.00 21.00

0.63 057 -024 -0.77 34.20

the supernodal structure of the factors of matrix A can be described by

Sl U3 I/I4
S1 Sp Sy Uy
S2 SZ I/I4

S3 83

S S S 83 83

where §;denotes a nonzero entry in the jth supernode and u; denotes a nonzero entry in the jth column of U
outside the supernodal block.

Therefore, in a supernodal storage scheme the supernodal part of matrix £ is stored as the lower block-diagonal
matrix

19.00
0.63 21.00 —13.26

L 0.57 23.58

snode —

5.00 21.00
0.63 0.57 -0.24 -077 34.20

and the part outside the supernodes as the upper triangular matrix

* 21.00 21.00
* —13.26

snode — * 7.58
*
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This is in accordance with the output for structure Ims/[_f_super_lu_factor:

Equilibration method: 0

Scale vectors:
rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000

columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000

Permutation vectors:

colperm: 0 1 2 3 4

rowperm: 0 1 2 3 4

Harwell-Boeing matrix U:

nrow 5, ncol 5, nnz 11

nzval: 21.000000 -13.263157 7.578947 21.000000
rowind: 0 1 2 0

colptr: 0 0 0 1 4 4

Supernodal matrix L:

nrow 5, ncol 5, nnz 11, nsuper 2
nzval:
0 .900000e+001
0 .315789e-001
0 .315789e-001
1 .100000e+001
1 .714286e-001
1 .714286e-001
2 -1.326316e+001
2 2.357895e+001
2

3

3

4

4

oI oy oy

-2.410714e-001
5.000000e+000
-7.714285e-001
2.100000e+001
3.420000e+001

W WHANDES_ARNDRE &SP O

nzval colptr: 0 3 6 9 11 13
rowind: 0 1 4 1 2 4 3 4

rowind colptr: 0 3 6 6 8 8

col to sup: O 2
0

_to 112
sup_to col: 135

Function ims1 f superluis based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User's Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory

(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the

following conditions are met:
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(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6x6 matrix

(10 0 0 0 0
0 10 -3 -1 0
0 0 15 0 0
2 0 0 10 -1
-1 0 0 -5 1 -3
-1 2 0 0 0 6]

S oo O

is computed.
Lety =(1,2,3,4,56)T,sothat by: =Ay =(10,7,45,33, -34,31)T and by: = ATy = (-9, 8,39, 13, 1,217)
The LU factorization of A is used to solve the sparse linear systems Ax = by and ATx = b,.

#include <imsl.h>

int main () {
Imsl f sparse elem al]

Il
-
o
~
o
~
-
o
o
~
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2, 2, 15,0,
3, 0, =2.,0,
3, 3, 10,0,
3, 4, =1.0,
4, 0, =1.0,
4, 3, -5.0,
4, 4, 1.0,

4, 5, =3.0,
5, 0, =1.0,
5, 1, =2.0,
5, 5, ©.,0}

float b1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };
int n = 6, nz = 15;

float *x = NULL;

x = imsl f superlu (n, nz, a, bl, 0);
imsl f write matrix ("solution to A*x = bl", 1, n, x, 0);
imsl free (x);

x = imsl f superlu (n, nz, a, b2, IMSL TRANSPOSE, 1, 0);
imsl f write matrix ("solution to A"T*x = b2", 1, n, x, 0);
imsl free (x);

}

Output
solution to A*x = Db
1 2 3 4 5
1 2 3 4 5
solution to A"T*x = b2
1 2 3 4 5
1 2 3 4 5
Example 2

This example uses the matrix A = £(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.

After the computations, the space allocated for the LU factorization is freed via function
imsl f superlu factor free.

#include <imsl.h>
int main () {

Imsl f sparse elem *a;

Imsl f super lu factor lu factor;
float *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
int n = 1000, ¢ = 10;

int i, nz, index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);
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/* Set two different predetermined solutions */

mod five = (float*) malloc (n*sizeof (*mod five)):;
mod ten = (float*) malloc (n*sizeof (*mod ten)) ;
for (i=0; i<n; i++) { a

mod five[i] = (float) (i % 5);

mod ten[i] = (float) (i % 10);

}

/* Choose b so that x will approximate mod five */
b = imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,

IMSL X VECTOR, n, mod five, 0);

/* Solve Ax = b */
x = imsl f superlu (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor, 0);

/* Compute max absolute error */
error factor solve = imsl f vector norm (n, x,
- IMSL_SECOND VECTOR, mod_ five,
IMSL_INF NORM, &index,
0);

imsl free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */
b = imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod_ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
x = imsl f superlu (n, nz, a, b,

IMSL SUPPLY SPARSE LU FACTOR, lu factor,

IMSL FACTOR SOLVE, 2, -

0);
error solve = imsl f vector norm (n, X,

- IMSL SECOND VECTOR, mod_ten,

IMSL_INF NORM, &index,

0);
imsl free (mo
imsl free (b)
imsl free (x)
imsl free (a)

/* Free sparse LU structure */
imsl f superlu factor free (&lu factor);

/* Print errors */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve);
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Output

absolute error (factor/solve)

absolute error (solve)

Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

1.502037e-005
1.621246e-005

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“"rcond” = #.
The solution might not be accurate.

The input matrix is singular.
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superlu (complex)

Computes the LU factorization of a general complex sparse matrix by a column method and solves the complex
sparse linear system of equations Ax = b .

Synopsis
#include <ims1.h>
f.complex *imsl c superlu (intn,intnz, Imsl_c sparse_elem a1, fcomplexb[], .., 0)
void ims1l ¢ superlu factor free (Imsl_c super_lu factor *factor)

The type double functions are ims1l z superluand imsl z superlu factor free.

Required Arguments

intn (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a [] (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims/_c_sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

fcomplexb[] (Input)
Array of length n containing the right-hand side.
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Return Value

A pointer to the solution x of the sparse linear system Ax = b . To release this space, use ims1 free.If no
solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1 .h>

fcomplex *imsl c_ superlu (intn,intnz, Imsl_c sparse_elemall,fcomplexb[],

IMSL EQUILIBRATE, intequilibrate,

IMSL COLUMN ORDERING METHOD, Ims/ col ordering method,

IMSL COLPERM VECTOR, intpermc|],

IMSL TRANSPOSE, int transpose,

IMSL ITERATIVE REFINEMENT,int refine,

IMSL FACTOR_SOLVE, int factsol,

IMSL DIAG PIVOT THRESH, doublediag pivot thresh,

IMSL SYMMETRIC MODE, int symm mode,

IMSL PERFORMANCE TUNING,intsp ienv[],

IMSL CSC FORMAT, /ntHB col ptr[],intHB row ind[],fcomplex HB values|[],
IMSL SUPPLY SPARSE LU FACTOR, Imsl_c super_lu_factor lu_factor supplied,
IMSL RETURN SPARSE LU FACTOR,/mslc_super_lu_factor *1u factor returned,
IMSL CONDITION, float *condition,

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,

IMSL FORWARD ERROR BOUND, float *ferr,

IMSL BACKWARD ERROR, float *berr,

IMSL RETURN USER, f complex x[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Inputs)
Specifies if the input matrix A should be equilibrated before factorization.
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equilibrate

Description

0

Do not equilibrate A before factorization

1

Equilibrate A before factorization.

Default: equilibrate =0

IMSL COLUMN ORDERING METHOD, Ims/_col ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

met hod

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the
input matrix..

IMSL_MMD ATA

Minimum degree ordering on the structure of 47 4

IMSL MMD AT PLUS A

Minimum degree ordering on the structure of

AT+ 4.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL COLPERM VECTOR. Vector permc is a
permutation of the numbers 0,1,...n-1.

Default: method = IMSL COLAMD

IMSL COLPERM VECTOR, intpermc[] (Input)
Array of length n which defines the permutation matrix P, before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD withmethod = IMSL PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)
Indicates if the problem A4x = b or one of the transposed problems 4’x = h or A”x = b isto be

solved.
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transpose

Description

0

Solve Ax=5b.

1

Solve ATx=b.
This option can be used in conjunction with either
of the options that supply the factorization.

Solve A"x=1p.
This option can be used in conjunction with either
of the options that supply the factorization.

Default: transpose =0

IMSL ITERATIVE REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine

Description

0

No iterative refinement.

1

Do iterative refinement.

Default: refine =1

IMSL FACTOR_SOLVE, int factsol (Input)

Indicates if the LU factorization, the solution of a linear system or both are to be computed.

fact sol

Description

0

Compute the LU factorization of the input matrix A
and solve the system Ax =5 .
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factsol

Description

1

Only compute the LU factorization of the input
matrix and return.

The LU factorization is returned via optional argu-
ment IMSL RETURN SPARSE LU FACTOR.

Input argument b is ignored.

Only solve 4x = b given the LU factorization of 4.

The LU factorization of 4 must be supplied via
optional argument

IMSL SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0

IMSL DIAG PIVOT_ THRESH, double diag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00<diag pivot thresh <1.0.

Default: diag pivot thresh=1.0.

IMSL SYMMETRIC MODE, int symm mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix
A is diagonally dominant or nearly so. The user should then define a small diagonal pivot, threshald

(e.g. 0.0 or 0.01) via optional argument IMSL. DIAG PIVOT THRESH and choose an

based column permutation algorithm (e.g. column permutation method IMSL MMD AT PLUS A).

synm node

Description

Do not use symmetric mode option.

Use symmetric mode option.

Default: symm mode =0

129



Linear Systems superlu (complex)

IMSL PERFORMANCE TUNING, /intsp ienv[] (Input)
Vector of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

i Description of sp_i env[i]

0 The panel size.
Default: sp_ienv[0] = 10

1 The relaxation parameter to control supernode amalga-
mation.

Default: sp_ienv[l] =5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] =200

4 The minimum column dimension to be used for 2D block-
ing.

Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20

IMSL CSC_FORMAT,/ntHB col ptr[],intHB row ind[],fcomplex HB values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the main Introduction
chapter of this manual for a discussion of this storage scheme.

IMSL SUPPLY SPARSE LU FACTOR,/mslc_super_lu_factor lu_factor supplied (Input)
A structure of type Ims/_c_super_lu_factor containing the LU factorization of the input matrix com-
puted with the IMSL_ RETURN_ SPARSE LU FACTOR option. See the Description section for a
definition of this structure. To free the memory allocated within this structure, use function
imsl_c_superlu_factor._free.

IMSL RETURN SPARSE LU FACTOR, /msLc_super_lu_factor *1u factor returned (Output)
The address of a structure of type Ims|_c_super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function ims/_c_superlu_factor_free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor
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min [(P,0ADP) | /)] ]

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD_ ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER,fcomplex x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
Consider the sparse linear system of equations

Ax=0b

Here, A isa general square, nonsingular n by n sparse matrix, and x and p are vectors of length 5 . All entries
in A, x and b are of complex type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization P.D,AD_P.= LU . Here, D, and D, are positive definite diag-

onal matrices to equilibrate the system and P, and P, are permutation matrices to ensure
numerical stability and preserve sparsity. [ is a unit lower triangular matrix and U is an upper tri-
angular matrix.

2. Solve Ax = b by evaluating

x=d"b=D(P(U (L7 (P(D1)))))

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of p by D..
Multiplying Pr<Drb> means permuting the rows of D,b .

Multiplying L71<P1'Drb)l means solving the triangular system of equations with matrix [ by substitution.
Similarly, multiplying U (L <PrDrb> means solving the triangular system with U.

Function ims1 c_superlu handlesstep 1 above by default or if optional argument IMSL FACTOR_SOLVE is
used and set to 1. More precisely, before 4x = p is solved, the following steps are performed:
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1. Equilibrate matrix 4, i.e. compute diagonal matrices D, and D, sothat 4 = D,AD, is “better
A=l

conditioned”than 4 ,ie. 4 isless sensitive to perturbations in ;1 than 4! is to perturbations in
A.

2. Order the columns of ,21 to increase the sparsity of the computed [ and U factors, i.e. replace ,21
by AP, where P. isa column permutation matrix.

3. Compute the LU factorization of AP.. For numerical stability, the rows of AP, are eventually per-
muted through the factorization process by scaled partial pivoting, leading to the decomposition

A= P.AP.= LU The LU factorization is done by a left looking supernode-panel algorithm with 2-D
blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

- 14,1,
1<j=n || U],

where ;1_]. and U, denote the j-th column of matrices A and U, respectively.
5. Estimate the reciprocal of the condition number of matrix A.
During the solution process, this information is used to perform the following steps:
1. Solve the system A4x = b using the computed triangular L and U factors.

2. lteratively refine the solution, again using the computed triangular factors. This is equivalent to New-
ton's method.

3. Compute forward and backward error bounds for the solution vector x .

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional
arguments of function ims1 ¢ superlu.

Function ims1 c_superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Ims/_c_super_lu_factor and two sub-structures. Following is a short description of
these structures:

typedef struct{

int nnz; /* Number of nonzeros in the matrix */

f complex *nzval; /* Array of nonzero values packed by column
*/

int *rowind; /* Array of row indices of the nonzeros */

int *colptr; /* colptr[]j] stores the location in nzvall[]

and rowind[] which starts column j. It has
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} Imsl c hb format;

typedef struct{
int nnz;

int nsuper;
f complex *nzval;

int *nzval colptr;

int *rowind;

int *rowind colptr;

int *col to_ sup;

int *sup to col;

} Imsl c sc format;

typedef struct({
int nrow;
int ncol;

ncol+l entries, and colptr[ncol] points to
the first free location in arrays nzvall[]
and rowind[]. */

/* Number of nonzeros in the supernodal
matrix */

/* Index of the last supernode */

/* Array of nonzero values packed by column

*
/

/* Array of length ncol+l; nzval colptr[j]
stores the location in nzval which starts
column j. nzval colptr[ncol] points to the
first free location in arrays nzval[] and
nzval colptr[]. */

/* Array of compressed row indices of
rectangular supernodes */

/* Array of length ncol+1l;
rowind colptr([sup to col[s]] stores the
location in rowind[] which starts
all columns in supernode s, and
rowind colptr[ncol] points to the first
free location in rowind[]. */

/* Array of length ncol+l; col to sup[j] is
the supernode number to which column j
belongs. Only the first ncol entries in
col to sup[] are defined. */

/* Array of length ncol+l; sup to col[s]
points to the starting column of the s-th
supernode. Only the first nsuper+2 entries
in sup to col[] are defined, and
sup_to col[nsuper+l] = ncol+l. */

/* number of rows of matrix A */
/* number of columns of matrix A */

int equilibration method; /* The method used to equilibrate A:

float *rowscale;
float *columnscale;

int *rowperm;

int *colperm;

Imsl ¢ hb format *U;

Imsl c sc format *L;

} Imsl c super lu factor;

0 - No equilibration

1 - Row equilibration.

2 — Column equilibration

3 - Both row and column equilibration */

/* Array of length nrow containing the row
scale factors for A */

/* Array of length ncol containing the
column scale factors for A */

/* Row permutation array of length nrow
describing the row permutation matrix Pr

*
/

/* Column permutation array of length ncol
describing the column permutation matrix
Pc */

/* The part of the U factor of A outside the
supernodal blocks, stored in Harwell-
Boeing format */

/* The L factor of A, stored in supernodal
format as block lower triangular matrix */
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Structure Imsl_z_super_lu_factor and its two sub-structures are defined similarly by replacing float by double, f com-
plex by d_complex, Ims|_c_hb_format by Imsl_z_hb_format and Imsl_c_sc_format by Ims|_z_sc_format in their
definitions.

For a definition of supernodes and its use in sparse unsymmetric LU factorization, see the SuperLU Users’ guide
(1999) and J.W. Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

l1-i 0 1-7 1-i O
2 1-i O 0 0
A= 0 1+i 1—-i O 0
0 0 0 1+i 1—i
2 1+i O 0 2-i

Factorization of this matrix via ims1 ¢ superlu using natural column ordering, no equilibration, setting
sp_ienv([1]from its default value 5 to 1 and reducing the diagonal pivot thresh factor to 0.5 results in the fol-
lowing LU decomposition:

1 1—1i 1—-i 1—1i
1+i 1 1-i -2 =2
A=LU= i 1 1+i 2i
1 1+7i 1—i
1+7 i 2i 2 1 i

Considering the filled matrix F ([ denoting the identity matrix),

-1 =i 1—1i
1+i 1-i -2 -2
F=L+U-1I1= i 1+i 2

1+i 1—-i
1+i i 2i 2 i
the supernodal structure of the factors of matrix A can be described by

Sl Z/l3 U4
S1 S2 Sy Uy
S2 S2 Uy

S3 83

S1 S2 S S3 83

where §;denotes a nonzero entry in the jth supernode and u; denotes a nonzero entry in the /-th column of U
outside the supernodal block.
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Therefore, in a supernodal storage scheme the supernodal part of matrix £ is stored as the lower block-diagonal
matrix

1—i
1+i 1—-i -2
i 1+
1+i 1—1i
1+i i 2i 2 i

snode

and the part outside the supernodes as the upper triangular matrix

1= 1-i
* -2

snode — * 2i
%k
*

This is in accordance with the output for structure Ims/_c_super_lu_factor:

Equilibration method: 0

Scale vectors:

rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000

columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000

Permutation vectors:

colperm: 0 1 2 3 4

rowperm: 0 1 2 3 4

Harwell-Boeing matrix U:

nrow 5, ncol 5, nnz 11

nzval: (1.000000,-1.000000) (-2.000000,0.000000) (0.000000,2.000000)
(1.000000,-1.000000)

rowind: 0 1 2 0

colptr: 0 0 0 1 4 4

Supernodal matrix L:
nrow 5, ncol 5, nnz 11, nsuper 2

nzval:

0 0 (1.000000,-1.000000)
1 0 (1.000000,1.000000)
4 0 (1.000000,1.000000)
1 1 (1.000000,-1.000000)
2 1 (0.000000,1.000000)
4 1 (0.000000,1.000000)
1 2 (=2.000000,0.000000)
2 2 (1.000000,1.000000)
4 2 (0.000000,2.000000)
3 3 (1.000000,1.000000)
4 3 (2.000000,0.000000)
3 4 (1.000000,-1.000000)
4 4 (0.000000,1.000000)

135



Linear Systems superlu (complex)

nzval colptr: 0 3 6
12 4

_ 11 13
rowind: 0 1 4

9
3
036 688
2 2

5

4
rowind colptr:
col to sup: 0 1 1
sup to col: 0 1 3
Function ims1l ¢ superluis based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User's Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse complex 6x6 matrix
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[ 10+ 7i 0 0 0 0 0
0 342 -3 —1+2i 0 0
= 0 0 44 2i 0 0 0
—2 —4j 0 0 1+6i —1+3i 0
—5+4i 0 0 -5 1242 —7+7i
| —1+12i —2+8 0 0 0 3+7i |

is computed. Let

yi=(1+0,2 +2i,3 + 30,4 +4i,5 + 5,6 + 6i)7
so that
b:=Ay =3 + 17i,-19 + 5i, 6 + 18i, 38 + 32i, -63 + 49i, -57 + 83i)"
b
1

:= A"y = (112 + 54i, -58 + 46i, 12i, =51 + 5i, 34 + 78i, =94 + 60i)"

and

b
2

= A"y = (54 - 112i, 46 - 58i, 12, 5 - 51i, 78 + 34i, 60 - 94i")
The LU factorization of A is used to solve the sparse complex linear systems Ax = b, ATx = b
1
and Afx = b

2

#include <imsl.h>

int main () {

Imsl ¢ sparse elem a[] = {0, O, {10.0, 7.0},
1, 1, {3.0, 2.0},
1, 2, {-3.0, 0.0},
1, 3, {-1.0, 2.0},
2, 2, {4.0, 2.0},
3, 0, {-2.0, -4.0},
3, 3, {1.0, 6.0},
3, 4, {-1.0, 3.0},
4, 0, {-5.0, 4.0},
4, 3, {-5.0, 0.0},
4, 4, {12.0, 2.0},
4, 5, {-7.0, 7.0},
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}

f complex b[] =

f complex bl[] =

f complex b2[] =

int n = 6,

nz =

{{3.0,
(=38.0,

5, 0
5, 1
5, 5
17.0},
32.0},

4

4

4

{-1.0, 12.0},
{-2.0, 8.0},
{3.0, 7.0}};

=19,0, 5.0}, (6.0,

=63.0, 49,0}, {=57.0,

18.0},
83.0}};

{{-112.0,54.0}, {-58.0,46.0}, {0.0,12.0},

(=51.0,5.,0%,

{{54.0,-112.0}, {46.0, -58.0}, {12.0,
-0,

{5

15¢

f complex *x = NULL;

=51.,0},

{34.0,78.0}, {-94.0,60.0}};

{78.0, 34.0}, {60.0,

x = imsl ¢ superlu (n, nz, a, b, 0);
imsl ¢ write matrix ("solution to A*x = b", n, 1,
imsl free (x);

x = imsl ¢ superlu (n, nz, a, bl, IMSL TRANSPOSE,
imsl ¢ write matrix ("solution to A"T*x = bl", n,
imsl free (x);

x = imsl c superlu (n, nz, a, b2, IMSL TRANSPOSE,
imsl ¢ write matrix ("solution to A"H*x = b2", n,
imsl free (x);

Output

o Ul W N

o Ul WN -

o U1 W N

solution to A*x

4
4
4
4
4
4

o Ul W N

solution to

o U WN -

4
4
4
4
4
4

solution to

o Ul W N

4
14
4
4
14
4

ANT*x

A H*x

o
b 2282bE

U WN O

o
222D

0.0},
-94.0}1};
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Example 2

This example uses the matrix A = £(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.

After the computations, the space allocated for the LU factorization is freed via function

imsl c superlu factor free.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main ()

{
Imsl c sparse elem *a;
Imsl ¢ super lu factor lu factor;
f complex *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
int n = 1000, c = 10;
int i, nz, index;

/* Get the coefficient matrix */
a = imsl c generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (f complex*) malloc (n*sizeof (*mod five)):;
mod ten = (f complex*) malloc (n*sizeof (*mod ten));
for (i=0; i<n; i++) { a
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 9

}

/* Choose b so that x will approximate mod five */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,

0);

/* Solve Ax = b */

x = imsl ¢ superlu (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);

/* Compute max absolute error */

error factor solve = imsl c¢ vector norm (n, x,
IMSL SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod_ten,
0);
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/* Use the previously computed factorization to solve AxXx = b */

x = imsl c¢ superlu (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, lu factor,
IMSL FACTOR SOLVE, 2,
0);

error solve = imsl c vector norm (n, X,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,

0);

free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);

/* Free sparse LU structure */
imsl c superlu factor free

/* Print errors */

printf ("absolute error
error factor solve);
printf ("absolute error

Output

absolute error (factor/solve)

absolute error (solve)

Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

(&1u factor);

(factor/solve) = %e\n",

= %e\n", error solve);

9.581565e-007
2.017575e-006

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L condition number is

“"rcond” = #.
The solution might not be accurate.

The input matrix is singular.
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superlu_smp

Computes the LU factorization of a general sparse matrix by a left-looking column method using OpenMP paral-
lelism, and solves the real sparse linear system of equations Ax = b .

Synopsis
#include <ims1.h>
float *ims1l f superlu smp (intn,intnz, Imslf sparse_elem a1, floatb[],..,0)
void ims1l f superlu smp factor free (Imslfsuper_lu_smp_factor *factor)

The type double functions are ims1 d superlu smpand imsl d superlu smp factor free.

Required Arguments

intn (Input)
The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f sparse_elem a [] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims1 f sparse_ elemstructure in the section Matrix Storage Modes in the
“Introduction” chapter of this manual.

floatb[] (Input)
An array of length n containing the right-hand side.
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Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1 free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

Joat *imsl f superlu smp (intn,intnz, Imslfsparse elemal], floatb[],
_r _ P

IMSL EQUILIBRATE, intequilibrate,

IMSL_COLUMN ORDERING METHOD, /msl|_col ordering method,

IMSL COLPERM VECTOR, intpermc(],

IMSL TRANSPOSE, int transpose,

IMSL ITERATIVE REFINEMENT, int refine,

IMSL FACTOR_SOLVE, int factsol,

IMSL DIAG PIVOT THRESH, floatdiag pivot thresh,

IMSL SNODE PREDICTION, int snode prediction,

IMSL PERFORMANCE TUNING, intsp_ienv[],

IMSL CSC_FORMAT,/ntHB col ptr[],intHB row ind, floatHB values|[],
IMSL SUPPLY SPARSE LU FACTOR, /mslf super_lu_smp_factor *1u_factor supplied

!

IMSL_RETURN_S PARSE_LU_FACTOR,
Imsl_f super_lu_smp_factor *1u_factor returned,

IMSL CONDITION, float *condition,

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL FORWARD ERROR BOUND, float *ferr,

IMSL BACKWARD ERROR, float *berr,

IMSL RETURN USER, floatx[1],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Input)
Specifies if the input matrix A should be equilibrated before factorization.
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equilibrate |Description

0

Do not equilibrate A before factorization

1

Equilibrate A before factorization.

Default: equilibrate = 0.

IMSL COLUMN ORDERING METHOD, Ims/_col ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

net hod

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the input
matrix.

IMSL MMD ATA

Minimum degree ordering on the structure of AT A.

IMSL MMD AT PLUS A

Minimum degree ordering on the structure of AT +A.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc, which
is input by the user through the optional argument
IMSL_COLPERM VECTOR. Vector permc is a permuta-
tion of the numbers 0,1,..., n-1.

Default: method = IMSL COLAMD.

IMSL COLPERM VECTOR, intpermc[] (Input)

Array of length n that defines the permutation matrix P, before postordering. This argument is

required if IMSL,_COLUMN_ORDERING METHOD with method = IMSL_PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)
Indicates if the transposed problem ATx = b is to be solved. This option can be used in conjunction
with either of the options that supply the factorization.

transpose Description

0 Solve Ax = b.

1 Solve ATx = b.

Default: transpose = 0.

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.
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refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine = 1.

IMSL FACTOR SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

factsol Description
0 Compute the LU factorization of the input matrix A and
solve the system Ax = b.
1 Only compute the LU factorization of the input matrix
and return.

The LU factorization is returned via the optional argu-
ment IMSL_RETURN SPARSE LU FACTOR.
Input argument b is ignored.

2 Only solve Ax = b given the LU factorization of A.
The LU factorization of A must be supplied via the
optional argument
IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number, or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0.

IMSL DIAG PIVOT THRESH, floatdiag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
0.0 <diag pivot thresh <1.0.
Default: diag _pivot thresh=1.0.

IMSL SNODE PREDICTION, int snode prediction (Input)
Indicates which scheme is used to predict the number of nonzeros in the L supernodes.

snode_predi ction Description

0 Use static scheme for the prediction of the
number of nonzeros in the L supernodes.

1 Use dynamic scheme for the prediction of the
number of nonzeros in the L supernodes.

Default: snode prediction =0.
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IMSL PERFORMANCE TUNING, /intsp ienv[] (Input)
Array of length 8 containing parameters that allow the user to tune the performance of the matrix

factorization algorithm. The elements sp_ienv[i] must be positive for 1 =0,...,4 and different

from zero for 1 =5,6,7.

IMSL CSC_FORMAT,intHB col ptr[],intHB row ind[],floatHB values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

Description of sp_i env[i ]

The panel size.
Default: sp_ienv[0] =10.

The relaxation parameter to control supernode amalgama-
tion.
Default: sp_ienv[1] =5.

The maximum allowable size for a supernode.
Default: sp_ienv[2] =100.

The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] =200.

The minimum column dimension to be used for 2D block-
ing.
Default: sp_ienv[4] = 40.

The size of the array nzval to store the values of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

This element of array sp_ienv is used only if a dynamic
scheme for the prediction of the sizes of the L supernodes
is used, i.e. if snode prediction=1.

Default: sp_ienv[5] =-20.

The size of the arrays rowind and nzval to store the col-
umns in U. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

Default: sp_ienv[6] =-20.

The size of the array rowind to store the subscripts of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

Default: sp_ienv[7] =-10.
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IMSL SUPPLY SPARSE LU FACTOR, Imsl f super_lu_smp_factor *1u_factor supplied (Input)
The address of a structure of type Imsl_f super_lu_smp_factor containing the LU factors of the input
matrix computed with the IMSL RETURN SPARSE LU FACTOR option. See the Description sec-
tion for a definition of this structure. To free the memory allocated within this structure, use function
imsl f superlu smp factor free.

IMSL RETURN SPARSE LU FACTOR, Imslfsuper_lu_smp_factor *1u_ factor returned (Out-
put)
The address of a structure of type Imsl_f super_lu_smp_factor containing the LU factorization of the
input matrix. See the Description section for a definition of this structure. To free the memory allo-
cated within this structure, use function ims1 f superlu smp factor free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

mjjni ||(PrDrADCPC>j||OO/ | UjHOO}.

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD_ ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

The steps ims1 f superlu_ smp uses to solve linear systems are identical to the steps described in the doc-
umentation of the serial version ims1 f superlu.

Function ims1 f superlu smp uses a supernodal storage scheme for the LU factorization of matrix A. In
contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,
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also pointers to the end of each column or supernode are needed. The factorization is contained in structure
Imsl_f super_lu_smp_factor and its two sub-structures Ims/_f hbp_format and Imsl|_f scp_format. Following is a short
description of these structures:

Table 1 - Structure Ims1 f hbp format

Parameter Data Type Description

nnz int The number of nonzeros in the matrix.
nzval float * Array of nonzero values packed by column.
rowind int * Array of row indices of the nonzeros.
colbeg int * Array of size ncol+1; colbeg[j] storesthe

locationin nzval[] and rowind[], which
starts column 5. Element colbeg[ncol]
points to the first free location in arrays
nzval[] and rowind[].

colend int * Array of size ncol; colend[]j] stores the
location in nzval[] and rowind[] which is
one past the last element of column 3.

Table 2 - Structure Ims1 f scp format

Parameter Data Type Description

nnz int The number of nonzeros in the supernodal
matrix.

nsuper int The number of supernodes minus one.

nzval float * Array of nonzero values packed by column.

nzval colbeg int * Array of size ncol+1; nzval colbeg[j]

points to the beginning of column j in
nzval[].Entry nzval colbeg[ncol]
points to the first free location in nzvall].

nzval colend int * Array of size ncol; nzval colend[7]
points to one past the last element of col-
umn jinnzvall].

rowind int * Array of compressed row indices of the rect-
angular supernodes.

rowind colbeg int * Array of size ncol+1; rowind colbeg[3]
points to the beginning of column 5 in
rowind[]. Element

rowind colbeg[ncol] points to the first
free location in rowind[].

rowind colend int * Array of size ncol; rowind colend[j]
points to one past the last element of col-
umn j in rowind[].
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Table 2 - Structure Imsl f scp format

col to sup

int * Array of size ncol+1;col to sup[j]isthe
supernode number to which column 5
belongs. Only the first ncol entries in

col to supl[] are defined.

sup_to colbeg

int * Array of size ncol+1; sup_to_colbeg[s]
points to the first column of the s-th super-
node; only the first nsuper+1 locations of
this array are used.

sup_to colend

int * Array of size ncol; sup to colend[s]
points to one past the last column of the s-
th supernode. Only the first nsuper+1 loca-
tions of this array are used.

Table 3 - Structure Imsl f super lu smp factor

Parameter

Data Type

Description

nrow

int

The number of rows of matrix A.

ncol

int

The number of columns of matrix A.

equilibration method

int

The method used to equilibrate A:
0 - No equilibration.

1 - Row equilibration.

2 - Column equilibration.

3 - Both row and column
equilibration.

rowscale

float *

Array of size nrow containing the row
scale factors for A.

columnscale

float *

Array of size ncol containing the col-
umn scale factors for A.

rowperm

int *

Row permutation array of size nrow
describing the row permutation matrix
Pr.

colperm

int *

Column permutation array of size
ncol describing the column permuta-
tion matrix Pg.

Imsl_f_ hbp_format *

The part of the U factor of A outside
the supernodal blocks, stored in Har-
well-Boeing format.

Imsl_f scp_format *

The L factor of A, stored in supernodal
format as block lower triangular
matrix.

Structure Imsl_d_super_lu_smp_factor and its two sub-structures are defined similarly by replacing float with double,

Imsl_f_hbp_format with Ims|_d_hbp_format, and Ims|_f_scp_format with Ims(_d_scp_format in their respective

definitions.
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In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.
Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the esti-
mated sizes of array rowind for the L and of arrays rowind and nzval for the U factor (see structures
Imsl_f scp_format and Imsl_f hbp_format above) must be predetermined by the user via elements 6 and 7 of the
performance tuning array sp_ienv.

In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic
prediction scheme for the size of the L supernodes can be used. The static version, which function

imsl f superlu smp uses by default, exploits the observation that for any row permutation P in PA = LU,
the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR fac-
torization A = QR. Furthermore, it can be shown that each fundamental supernode in L is always contained in a
fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array nzval inthe [
factor respectively can be estimated and allocated prior to the factorization based on the size of the H super-
nodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost
linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonze-
ros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting
optional argument IMSL SNODE PREDICTION to 1. This scheme still uses the supernode partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage.
Use of the dynamic scheme requires the user to define the size of array nzval in the L factor via element 5 of
the performance tuning array sp_ienv.

For a complete description of the parallel algorithm, see Demmel et al. (1999¢).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6x6 matrix

[10 0 0 0 O
0 10 -3 -1 O
0O 0 15 0 O
-2 0 0 10 -1
-1 0 0 -5 1 -3
-1 -2 0 0 0 6]

is computed.
Lety=(1,2,3,4,56)T, so that by := Ay = (10,7,45,33,-34,31)" and b, :=ATy = (-9,8,39,13,1,21)".
The LU factorization of A is used to solve the sparse linear systems Ax = by and ATx = bs.

#include <imsl.h>

int main () {

Imsl f sparse elem a[] = { 0, 0, 10.0,
1, 1, 10.0,
1, 2, -3.0,
1, 3, =1,0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, =5.0,
4, 4, 1.0,
4, 5, -3.0,
5, 0, =1.0,
5, 1, -2.0,
5, 5, 6.0};
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float bl1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };
int n = 6, nz = 15;

float *x = NULL;

x = imsl f superlu smp (n, nz, a, bl, 0);
imsl f write matrix ("solution to A*x = bl", 1, n, x, 0);
imsl free (x);

x = imsl f superlu smp (n, nz, a, b2, IMSL TRANSPOSE, 1, 0);
imsl f write matrix ("solution to A"T*x = b2", 1, n, x, 0);
imsl free (x);

}

Output
solution to A*x = bl
1 2 3 4 5 6
1 2 3 4 5 6
solution to A"T*x = b2
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

This example uses the matrix A = £(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function

imsl f superlu smp factor free

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main () {

Imsl f sparse elem *a = NULL;

Imsl f super lu smp factor lu factor;

float *b = NULL, *x = NULL, *mod five = NULL, *mod ten = NULL;
float error factor solve, error solve;

int n = 1000, ¢ = 10;

int i, nz, index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (float*) malloc (n*sizeof (*mod five)):;
mod_ten = (float*) malloc (n*sizeof (*mod ten)):;
for (i1i=0; i<n; i++) {

mod five[i] = (float) (i % 5);
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mod ten[i] = (float) (i % 10);
}

/* Choose b so that x will approximate mod five */
b = (float *) imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five, 0);

/* Solve Ax = b */
x = imsl f superlu smp (n, nz, a, b,

IMSL RETURN SPARSE LU FACTOR, &lu factor, 0);

/* Compute max absolute error */

error factor solve = imsl f vector norm (n, x,
IMSL_ SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (float *) imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
x = imsl f superlu smp (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL FACTOR SOLVE, 2, -
0);
error solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod_ten,
IMSL_INF NORM, &index,
0);

free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);

/* Free sparse LU structure */
imsl f superlu smp factor free (&lu factor);

/* Print errors */
printf ("absolute error (factor/solve) = %e\n",
error factor solve);

printf ("absolute error (solve) = %e\n", error_solve);
}
Output
absolute error (factor/solve) = 1.096725e-005
absolute error (solve) = 5.435944e-005

152



Linear Systems superlu_smp

Warning Errors

IMSL ILL CONDITIONED

Fatal Errors

IMSL SINGULAR MATRIX

The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #. The solution might not be accurate.

The input matrix is singular.
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superlu_smp (complex)

Computes the LU factorization of a general complex sparse matrix by a left-looking column method using
OpenMP parallelism and solves the complex sparse linear system of equations Ax = b.

Synopsis
#include <imsl.h>
f.complex *imsl c superlu smp (intn, int nz, Imsl_c_sparse_elem a1, f complex b(],...,0)
void ims1l ¢ superlu smp factor free (Imsl_csuper_lu_smp_factor *factor)

The type d_complex functions are ims1 z superlu smpand imsl z superlu smp factor free.

Required Arguments

intn (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
main “Introduction” chapter of this manual for an explanation of the Imsl_c_sparse_elem structure.

fcomplexb 1 (Input)
An array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1 free. If no solution
was computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *ims1 ¢ superlu smp (intn,intnz, Ims__c sparse_elem a ], fcomplexb[],
p _C_ _ P P

IMSL EQUILIBRATE, intequilibrate,

IMSL COLUMN ORDERING METHOD, Ims/_col ordering method,

IMSL COLPERM VECTOR, intpermc|],

IMSL TRANSPOSE, int transpose,

IMSL ITERATIVE REFINEMENT, int refine,

IMSL FACTOR_SOLVE,int factsol,

IMSL_DIAG PIVOT THRESH, floatdiag pivot thresh,

IMSL SNODE PREDICTION, int snode prediction,

IMSL PERFORMANCE TUNING, int Sp_ienv [1,

IMSL CSC FORMAT, intHB col ptr[],intHB row ind[] , f.complex HB values|[],

IMSL _SUPPLY SPARSE LU FACTOR,
Imsl_c_super_lu_smp_factor *1u_factor supplied,

IMSL RETURN SPARSE LU FACTOR,
Imsl_c_super_lu_smp_factor *1u_factor returned,

IMSL CONDITION, float *condition,

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL_FORWARD ERROR BOUND, float *ferr,

IMSL BACKWARD ERROR, float *berr,

IMSL RETURN USER,fcomplex x[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Inputs)
Specifies if the input matrix A should be equilibrated before factorization.

equi l i brate |Description

0 Do not equilibrate A before factorization.

1 Equilibrate A before factorization.

Default: equilibrate =0
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IMSL COLUMN ORDERING METHOD, Ims/_col ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

nmet hod

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the
input matrix.

IMSL_MMD ATA

Minimum degree ordering on the structure of ATA.

IMSL MMD AT PLUS A

Minimum degree ordering on the structure of AT
+A.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL COLPERM VECTOR. Vector permc is a

permutation of the numbers 0,1,...,n-1.

Default: method = IMSL COLAMD

IMSL COLPERM VECTOR, intpermc[] (Input)
An array of length n which defines the permutation matrix P, before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD withmethod = IMSL PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)
Indicates if the problem Ax = b or one of the transposed problems ATx = b or Afx = b is to be solved.

transpose

Description

Solve Ax = b.

Solve ATx = b.
This option can be used in conjunction with either
of the options that supply the factorization.

Solve AMx = b.
This option can be used in conjunction with either
of the options that supply the factorization.

Default: transpose = 0.

IMSL ITERATIVE REFINEMENT, intrefine (Input)

Indicates if iterative refineme

nt is desired.
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refine Description
0 No iterative refinement.
1 Do iterative refinement.

Default: refine = 1.

IMSL FACTOR SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

fact sol Description

0 Compute the LU factorization of the input matrix A
and solve the system Ax = b.

1 Only compute the LU factorization of the input
matrix and return.

The LU factorization is returned via optional argu-
ment IMSL_RETURN SPARSE LU FACTOR.

Input argument b is ignored.

2 Only solve Ax = b given the LU factorization of A.
The LU factorization of A must be supplied via
optional argument

IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number, or
computation of the reciprocal pivot growth factor is
required.

Default; factsol =0.

IMSL DIAG PIVOT THRESH, floatdiag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
0.0 <diag pivot thresh < 1.0.
Default: diag_pivot thresh=1.0.

IMSL SNODE PREDICTION, int snode prediction (Input)
Indicates which scheme is used to predict the number of nonzeros in the L supernodes.
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snode_prediction Description

0 Use static scheme for the prediction of the
number of nonzeros in the L supernodes.

1 Use dynamic scheme for the prediction of the
number of nonzeros in the L supernodes.

Default: snode prediction =0.

IMSL PERFORMANCE TUNING, intsp_ienv[] (Input)
An array of length 8 containing parameters that allow the user to tune the performance of the matrix
factorization algorithm. The elements sp _ienv[i] must be positive for 1 =0,...,4 and different
from zero for i =5,6,7.

[ Description of sp_i env[i]

0 The panel size.
Default: sp_ienv[0] =10.

1 The relaxation parameter to control supernode amalga-
mation.
Default: sp_ienv[1] =5.

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] =100.

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3]=200.

4 The minimum column dimension to be used for 2D block-
ing.

Default: sp_ienv[4] = 40.

5 The size of the array nzval to store the values of the L
supernodes. A negative number represents the fills
growth factor, i.e. the product of its absolute magnitude
and the number of nonzeros in the original matrix A will
be used to allocate storage. A positive number represents
the number of nonzeros for which storage will be allo-
cated.

This element of array sp_ienv is used only if a dynamic
scheme for the prediction of the sizes of the L supernodes
is used, i.e. if snode prediction=1.

Default: sp_ienv[5] =-20.
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IMSL CSC FORMAT,intHB col ptr[],intHB row ind[],fcomplex HB values[]
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

Description of sp_i env[i]

The size of the arrays rowind and nzval to store the col-
umns in U. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used
to allocate storage. A positive number represents the
number of nonzeros for which storage will be allocated.
Default: sp_ienv[6] =-20.

The size of the array rowind to store the subscripts of the
L supernodes. A negative number represents the fills
growth factor, i.e. the product of its absolute magnitude
and the number of nonzeros in the original matrix A will
be used to allocate storage. A positive number represents
the number of nonzeros for which storage will be allo-
cated.

Default: sp_ienv[7] =-10.

IMSL SUPPLY SPARSE LU FACTOR, /mslc super_lu_smp_factor *1u_ factor supplied (Input)
The address of a structure of type Ims|_c_super_lu_smp_factor containing the LU factors of the input
matrix computed with the IMSL RETURN SPARSE LU FACTOR option. See the Description sec-
tion for a definition of this structure. To free the memory allocated within this structure, use function

imsl c superlu smp factor free.

IMSL RETURN SPARSE LU FACTOR, /msl_c_super_lu_smp_factor *1u_ factor returned
(Output)

The address of a structure of type Ims/_c_super_lu_smp_factor containing the LU factorization of the
input matrix. See the Description section for a definition of this structure. To free the memory allo-

cated within this structure, use function ims1l ¢ superlu smp factor free.

IMSL CONDITION, float *condition (Output)

The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor:

m}n{ ||<PVD,ADCPC)J,||OO/ I Uj||oo} .

If recip pivot growth is much lessthan 1, the stability of the LU factorization could be poor.
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IMSL FORWARD ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER,fcomplex x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

The steps ims1l ¢ superlu_smp uses to solve linear systems are identical to the steps described in the doc-
umentation of the serial version imsl ¢ superlu.

Function imsl ¢ superlu_smp uses a supernodal storage scheme for the LU factorization of matrix A. In
contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,
also pointers to the end of each column or supernode are needed. The factorization is contained in structure
Imsl_c_super_lu_smp_factor and its two sub-structures Ims/_c_hbp_format and Ims/_c_scp_format. Following is a
short description of these structures:

Table 4 - Structure Imsl ¢ hbp format

Parameter Data Type |Description

nnz int The number of nonzeros in the matrix.
nzval f complex * Array of nonzero values packed by column.
rowind int * Array of row indices of the nonzeros.
colbeg int * Array of size ncol+1; colbeg[j] stores the

locationin nzval[] and rowind[], which
starts column 5. Element colbeg[ncol]
points to the first free location in arrays
nzval[] and rowind[].

colend int * Array of size ncol; colend[]j] stores the
locationinnzval[] and rowind[], whichis
one past the last element of column 3.
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Table 5 - Structure Imsl ¢ scp format

Parameter

Data Type

Description

nnz

int

The number of nonzeros in the supernodal
matrix.

nsuper

int

The number of supernodes minus one.

nzval

f complex *

Array of nonzero values packed by column.

nzval colbeg

int *

Array of size ncol+1; nzval colbeg[j]
points to the beginning of column jin
nzval[].Entry nzval colbeg[ncol]
points to the first free location in nzvall].

nzval colend

int x

Array of size ncol; nzval colend[]]
points to one past the last element of col-
umn jinnzvall[].

rowind

int *

Array of compressed row indices of the rect-
angular supernodes.

rowind colbeg

int x

Array of size ncol+1; rowind colbeg[]]
points to the beginning of column j in
rowind[]. Element

rowind colbeg[ncol] points to the first
free location in rowind[].

rowind colend

int x

Array of size ncol; rowind colend[j]
points to one past the last element of col-
umn j in rowind[].

col to sup

int x

Array of sizencol+1;col to sup[j]isthe
supernode number to which column 5
belongs. Only the first ncol entries in

col to supl[] are defined.

sup_to colbeg

int x

Array of size ncol+1; sup_to_colbeg[s]
points to the first column of the s-th super-
node; only the first nsuper+1 locations of
this array are used.

sup to colend

int x

Array of size ncol; sup_to colend[s]
points to one past the last column of the s-
th supernode. Only the first nsuper+1 loca-
tions of this array are used.

Table 6 - Structure Ims1l ¢ super lu smp factor

Parameter Data Type Description
nrow int The number of rows of matrix A.
ncol int The number of columns of matrix A.
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Table 6 - Structure Imsl c super lu smp factor

Parameter Data Type Description

equilibration method |int The method used to equilibrate A:
0 - No equilibration.

1 - Row equilibration.

2 - Column equilibration.

3 - Both row and column
equilibration.

rowscale float * Array of size nrow containing the row
scale factors for A.

columnscale float * Array of size ncol containing the col-
umn scale factors for A.

rowperm int * Row permutation array of size nrow
describing the row permutation matrix
Py.

colperm int * Column permutation array of size

ncol describing the column permuta-
tion matrix Pg.

U Imsl_c_hbp_format * The part of the U factor of A outside
the supernodal blocks, stored in Har-
well-Boeing format.

L Imsl_c_scp_format * The L factor of A, stored in supernodal
format as block lower triangular
matrix.

Structure Imsl_z_super_lu_smp_factor and its two sub-structures are defined similarly by replacing float with double,
f complex with d_complex, Imsl_c_hbp_format with Ims|_z_hbp_format, and Ims/_c_scp_format with Ims/_z_scp_format
in their respective definitions.

In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.
Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the esti-
mated sizes of array rowind for the L and of arrays rowind and nzval for the U factor (see structures
Imsl_c_scp_format and Imsl_c_hbp_format above) must be predetermined by the user via elements 6 and 7 of the

performance tuning array sp_ienv.

In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic
prediction scheme for the size of the L supernodes can be used. The static version, which function

imsl c superlu smp uses by default, exploits the observation that for any row permutation P in PA = LU,
the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR fac-
torization A = QR. Furthermore, it can be shown that each fundamental supernode in L is always contained in a
fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array nzval inthe L
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factor respectively can be estimated and allocated prior to the factorization based on the size of the H super-
nodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost
linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonze-
ros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting
optional argument IMSL SNODE PREDICTION to 1. This scheme still uses the supernode partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage.
Use of the dynamic scheme requires the user to define the size of array nzval in the L factor via element 5 of
the performance tuning array sp_ienv.

For a complete description of the parallel algorithm, see Demmel et al. (1999¢).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Examples

Example 1

The LU factorization of the sparse complex 6x6 matrix

is computed. Let

so that

and

The LU factorization of A is used to solve the sparse complex linear systems Ax=b, ATx=b4, and AHx=b,.

[ 10+ 7i 0
0 3+2i
3 0 0
4= -2 —4i 0
—5+4j 0
| —1+12i —2+8i

0 0

-3 —1+2i
442 0

0 1+6i

0 -5

0 0

0
0
0

—-1+3i

12 +2i
0

v = (14, 242i, 3+3i, 4+4i, 5+5i, 6+6i)"

0
0
0
0
=7+7i

3+7i |

b= Ay = (3+17i, -19+5i, 6+18i, ~38+32i, -63+49i, -57+83i)T

by = A"y = (-112+54i, -58+46i, 12i, -51+5i, 34+78i, -94+60i)"

#include <imsl.h>

int main () {

Imsl ¢ sparse elem a[] = {0, 0, {10.0, 7.0},
1, 1, {3.0, 2.0},
1, 2, {-3.0, 0.0},
1, 3, {-1.0, 2.0},
2, 2, {4.0, 2.0},
3, 0, {-2.0, -4.0},
3, 3, {1.0, 6.0},
3, 4, {-1.0, 3.0},
4, 0, {-5.0, 4.0},
4, 3, {-5.0, 0.0},
4, 4, {12.0, 2.0},
4, 5, {-7.0, 7.0},
5, 0, {-1.0, 12.0},
5,61, {-2.0, 8.0},
5, 5, {3.0, 7.0}};
f complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0,
{-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};

f complex bl[] =

{{-112.0,54.0},

{-58.0,46.0},

18.0},

by = A"y = (54-112i, 46-58i, 12, 5-51i, 78+34i, 60-94i)"

{0.0,12.0},
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{-51.0,5.0}, {34.0,78.0}, {-94.0,60.0}1};

f complex b2[] = {{54.0,-112.0}, {46.0, -58.0}, {12.0, 0.0},
{5.0, -51.0}, {78.0, 34.0}, {60.0, -94.0}};

int n = 6, nz = 15;
f complex *x = NULL;

x = imsl ¢ superlu smp (n, nz, a, b, 0);
imsl ¢ write matrix ("solution to A*x = Db", n, 1, x, 0);
imsl free (x);

x = imsl ¢ superlu smp (n, nz, a, bl, IMSL TRANSPOSE, 1, 0);
imsl ¢ write matrix ("solution to A"T*x = bl", n, 1, x, 0);
imsl free (x);

x = imsl ¢ superlu smp (n, nz, a, b2, IMSL TRANSPOSE, 2, 0);
imsl ¢ write matrix ("solution to A"H*x = b2", n, 1, x, 0);
imsl free (x);

Output
solution to A*x = Db

1 1, 1)
2 ( 2, 2)
3 3, 3)
4 4, 4)
5 ( o 5)
6 ( 6, 6)

solution to A"T*x = bl
1 < 1, 1)
2 ( 2, 2)
3 Sy 3)
4 4, 4)
5 ( 5, 5)
6 ( 6l 6)

solution to A"H*x = b2
1 ¢ 1, 1)
2 ( 2, 2)
3 3z 3)
4 ay 4)
5 ( 5, 5)
6 ( 6, 6)

Example 2

This example uses the matrix A = £(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function

imsl c superlu smp factor free

#include <imsl.h>
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#include <stdlib.h>
#include <stdio.h>

int main ()
{
Imsl c sparse elem *a = NULL;
Imsl ¢ super lu smp factor lu factor;
f complex *b = NULL, *x = NULL, *mod five = NULL, *mod ten = NULL;
float error factor solve, error solve; -
int n = 1000, ¢ = 10;
int i, nz, index;
/* Get the coefficient matrix */
a = imsl c generate test coordinate (n, ¢, &nz, 0);
/* Set two different predetermined solutions */

mod five = (f complex*) malloc (n*sizeof (*mod five)):;
mod ten = (f complex*) malloc (n*sizeof (*mod ten));
for (i=0; i<n; i++) { a
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 0.0);

}

/* Choose b so that x will approximate mod five */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,

0);

/* Solve Ax = b */

x = imsl c superlu smp (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);

/* Compute max absolute error */

error factor solve = imsl c¢ vector norm (n, X,
IMSL, SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

free (mod five);

imsl free (b);

imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (f complex *) imsl c mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod_ten,
0);

/* Use the previously computed factorization to solve Ax = b */
x = imsl c superlu smp (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL FACTOR SOLVE, 2, -
0);
error solve = imsl ¢ vector norm (n, X,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,
0);
free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);
/* Free sparse LU structure */
imsl ¢ superlu smp factor free (&lu factor);
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/* Print errors */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve);
}
Output
absolute error (factor/solve) = 9.581556e-007
absolute error (solve) = 2.017572e-006

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is

“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.
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lin_sol_posdef_coordinate

Solves a sparse real symmetric positive definite system of linear equations A = b. Using optional arguments, any
of several related computations can be performed. These extra tasks include returning the symbolic factorization
of A, returning the numeric factorization of A, and computing the solution of Ax = b given either the symbolic or

numeric factorizations.

Synopsis
#include <ims1.h>
float *imsl f 1in sol posdef coordinate (intn,intnz, Imsl.f sparse_elem *a, float *Db, ..., 0)
void ims1l free symbolic factor (Imsl_symbolic factor *sym factor)
void imsl f free numeric factor (Ims_f numeric factor *num factor)

The type double functions are ims1 d 1in sol posdef coordinate and

imsl d free numeric_ factor.

Required Arguments

intn (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in lower triangle of the matrix.

Imsl_f sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the lower triangle of

the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space,
use imsl free. If no solution was computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

Joat *imsl f 1lin sol posdef coordinate (intn,intnz, Imsl f sparse_elem *a, float *b,
_r_ _ _ _ 14

IMSL RETURN SYMBOLIC_ FACTOR, /ms/_symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC FACTOR, /msl.symbolic_factor *sym factor,
IMSL SYMBOLIC FACTOR ONLY,

IMSL RETURN NUMERIC FACTOR, Imsl_f numeric_factor *num_factor,
IMSL_SUPPLY NUMERIC FACTOR, Imsl_f numeric factor *num_ factor,
IMSL NUMERIC FACTOR ONLY,

IMSL SOLVE_ ONLY,

IMSL MULTIFRONTAL FACTORIZATION,

IMSL RETURN USER, floatx[],

IMSL SMALLEST DIAGONAL ELEMENT, float *small element,
IMSL_LARGEST_DIAGONAL_ELEMENT,f/oat *largest element,
IMSL NUM NONZEROS IN FACTOR, /Nt *num nonzeros,

IMSL CSC_FORMAT, int *col ptr,int *row_ind, float *values,

0)

Optional Arguments

IMSL RETURN SYMBOLIC FACTOR, ImslL.symbolic_factor *sym factor (Output)
A pointer to a structure of type Ims/_symbolic_factor containing, on return, the symbolic factorization
of the input matrix. A detailed description of the Ims/_symbolic_factor structure is given in the follow-
ing table:
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Parameter

Data Type

Description

nzsub

int xx*

A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub

int x>

A pointer to an array of length n + 1 contain-
ing indices for *nzsub. The row subscripts
for the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub) [ (*xnzsub) [§]].

maxsub

int

The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

x1lnz

int x>

A pointer to an array of length n + 1 contain-
ing the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL RETURN NUMERIC FACTOR). For
column j of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*x1nz) [§] and (*x1nz) [§ + 1]
respectively.

maxlnz

int

The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm

int x>

A pointer to an array of length n containing
the permutation vector.

invp

int x*

A pointer to an array of length n containing
the inverse permutation vector.

multifrontal space

int

The required size of working storage for the
stack of frontal matrices. If no multifrontal
factorization is used, then this variable is set
to zero.

To free the memory allocated within this structure, use function
imsl free symbolic factor.

IMSL SUPPLY SYMBOLIC FACTOR, /mslL.symbolic_factor *sym factor (Input)
A pointer to a structure of type Ims/_symbolic_factor. This structure contains the symbolic factorization

of the input matrix computed by ims1 f 1in sol posdef coordinate withthe

IMSL RETURN_ SYMBOLIC_ FACTOR option. The structure is described in the
IMSL RETURN SYMBOLIC FACTOR optional argument description. To free the memory allocated
within this structure, use function ims1l free symbolic factor.

IMSL SYMBOLIC FACTOR ONLY,

Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

170



Linear Systems lin_sol_posdef_coordinate

IMSL RETURN NUMERIC FACTOR, /mslf numeric factor *num_ factor (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Ims/_f_numeric_factor structure is given in the follow-
ing table:

Parameter Data Type Description

nzsub int *>* A pointer to an array containing the row subscripts for
the non-zero off-diagonal elements of the Cholesky fac-
tor. This array is allocated to be of length nz but all
elements of the array may not be used.

xnzsub int ** A pointer to an array of length n + 1 containing indices
for nzsub. The row subscripts for the non-zeros in col-
umn j of the cholesky factor are stored consecutively
beginning with nzsub [xnzsub[j]1].

x1lnz int ** A pointer to an array of length n + 1 containing the start-
ing and stopping indices to use to extract the non-zero
off-diagonal elements from array alnz. For column j of
the factor matrix, the starting and stopping indices of
alnz are stored in xlnz[j] and xlnz[j + 1]
respectively.

alnz float ** A pointer to an array containing the non-zero off-diago-
nal elements of the Cholesky factor.

perm int xx A pointer to an array of length n containing the permuta-
tion vector.

diag float ** A pointer to an array of length n containing the diagonal
elements of the Cholesky factor.

Let L be the Cholesky factor of 0 and num_nonzeros be the number of nonzeros in L. In the struc-
ture described above, the diagonal elements of L are stored in diag. The off-diagonal non-zero
elements of L are stored in alnz. The starting and stopping indices to use to extract the non-zero
elements of L from alnz for columnjare stored in x1nz [j] and x1nz [j+ 7] respectively. The row
indices of the non-zero elements of L are contained in nzsub. xnzsub [i] contains the index of
nzsub from which one should start to extract the row indices for L for column /. This is best illus-
trated by the following code fragment which reconstructs the lower triangle of the factor matrix L
from the components of the above structure:

Imsl f numeric factor numfctr;

for (1 = 0; 1 < n; i++){

L[i][i] = (*numfctr.diag) [i];
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if ((*numfctr.xlnz)[i] > (num nonzeros-n)) continue;
start = (*numfctr.xlnz) [i]-1;
stop = (*numfctr.xlnz) [i+1]-1;
k = (*numfctr.xnzsub) [1]-1;
for (j = start; j < stop; j++){
L[ (*numfctr.nzsub) [k]-1][i] = (*numfctr.alnz)[]];
k++;

}

To free the memory allocated within this structure, use function

imsl f free numeric factor.

IMSL SUPPLY NUMERIC FACTOR, /mslf numeric factor *num_factor (Input)
A pointer to a structure of type Ims/_f_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by ims1 f 1in sol posdef coordinate withthe
IMSL RETURN NUMERIC FACTOR option. The structure is described in the
IMSL RETURN NUMERIC FACTOR optional argument description.
To free the memory allocated within this structure, use function

imsl f free numeric factor.

IMSL NUMERIC FACTOR ONLY,
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL SOLVE ONLY,

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR

IMSL MULTIFRONTAL FACTORIZATION,

Perform the numeric factorization using a multifrontal technique. By default, a standard factorization
is computed based on a sparse compressed storage scheme.

IMSL RETURN USER,floatx[] (Output)
A user-allocated array of length n containing the solution x.

IMSL SMALLEST DIAGONAL ELEMENT, float *small element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl f 1lin sol posdef coordinate
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IMSL LARGEST DIAGONAL ELEMENT, float *large element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl f lin sol posdef coordinate.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT, int *col ptr,int *row_ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the “Matrix Storage
Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage
scheme.

Description

The functionimsl f 1in sol posdef coordinate solves asystem of linear algebraic equations having
a sparse symmetric positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization
of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The
solution of the linear system is then found using the numeric factor.

The symboalic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse data structure for the Cholesky factor, L. This step only requires the “pattern” of the sparse
coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the
val fieldinthe Ims1l f sparse elemstructure isignored. If an application generates different sparse sym-
metric positive definite coefficient matrices that all have the same sparsity pattern, then by using

IMSL RETURN SYMBOLIC FACTORand IMSL SUPPLY SYMBOLIC FACTOR, the symbolic factorization
need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT=LLT

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is per-
formed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981).
Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be
faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed descrip-
tion of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu
(1986, 1989).
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If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the

IMSL SOLVE_ ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly
1
=Pb

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As an example consider the 5 x 5 coefficient matrix:

10 0 1 0 2
0 20 0 0 3
a=(1 0 30 4 O
0 0 4 40 5
2 3 0 5 50

Let xT = (5, 4, 3,2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of nonzeros in the lower triangle of Ais nz =
10. The sparse coordinate form for the lower triangle is given by the following:

row O 1 2 2 3 3 4 4 4 4
col 0 1 0 2 2 3 0 1 3 4
val 10 20 1 30 4 40 2 3 5 50
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Since this representation is not unigue, an equivalent form would be as follows:

row 3 4 4 4 0 1 2 2 3 4
col 3 0 1 3 0 1 0 2 2 4
val 40 2 3 5 10 20 1 30 4 50

#include <imsl.h>

int main ()
{
Imsl f sparse elem a[] =
{ 10.0,
20.0,

SRR D WWN DN R O
SR I
S WRPROWNDNOR O

~ ~

N N N N N SN SN~

float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
int n=>5;

int nz = 10;

float *x;

x = imsl f lin sol posdef coordinate (n, nz, a, b,
0);

imsl f write matrix ("solution", 1, n, X,
0);

imsl free (x);

}

Output
solution
1 2 3 4 5
5 4 3 2 1
Example 2

In this example, set A = £(2500, 50). Then solve the system Ax = b; and return the numeric factorization resulting
from that call. Then solve the system Ax = b, using the numeric factorization just computed. The ratio of execu-
tion time is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>

int main ()

{
Imsl f sparse elem “ag
Imsl f numeric factor numeric factor;
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}

float o g
float *b 2;
float S5z dlg
float ®% 28
int n;

int leg

int nz;
double time 1;
double time 2;
ic = 50;

m = dlewileg

/* Generate two right hand sides */

b 1 = imsl f random uniform (n*sizeof(*b 1),
0);

b 2 = imsl f random uniform (n*sizeof (*b 2),
(0)) 7

/* Build coefficient matrix a */

a = imsl f generate test coordinate (n, ic, é&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Now solve Ax 1 = b 1 and return the numeric
factorization */

time 1 = imsl ctime ();

x 1 = imsl f lin sol posdef coordinate (n, nz, a,
IMSL RETURN NUMERIC FACTOR, &numeric_ factor,
0);

time 1 = imsl ctime () - time 1;

/* Now solve Ax 2 = b 2 given the numeric
factorization */
time 2 = imsl ctime ();

x 2 = imsl f lin sol posdef coordinate (n, nz, a,
IMSL SUPPLY NUMERIC FACTOR, &numeric_ factor,
IMSL SOLVE ONLY,

0);

time 2 = imsl ctime () - time 2;
printf ("time 2/time 1 = $1f\n", time 2/time 1);

Output

time 2/time 1 = 0.037037
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lin_sol_posdef_coordinate (complex)

Solves a sparse Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include returning the symbolic factorization of
A, returning the numeric factorization of A, and computing the solution of Ax = b given either the symboalic or

numeric factorizations.

Synopsis
#include <ims1.h>

fcomplex *imsl ¢ lin sol posdef coordinate (intn,intnz, /msl_c sparse_elem *a,
f.complex *D, ..., 0)

void ims1l free symbolic factor (Ims/_symbolic factor *sym factor)
void ims1l ¢ free numeric factor (Ims_c_numeric_factor *num_ factor)

The type d_complex functions are ims1 z 1lin sol posdef coordinate and

imsl z free numeric factor.

Required Arguments

intn (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in lower triangle of the

matrix.

f.complex *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. To release this space, use
imsl free.If no solution was computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl ¢ 1lin sol posdef coordinate (intn,intnz, /msl_c sparse_elem *a,
f.complex *D,

IMSL RETURN SYMBOLIC FACTOR, /msl.symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC_ FACTOR, /ms/_symbolic_factor *sym factor,
IMSL SYMBOLIC FACTOR ONLY,
IMSL_RETURN NUMERIC FACTOR, Ims/_c_numeric_factor *num_factor,
IMSL SUPPLY NUMERIC FACTOR, Imsl_c_numeric_factor *num_ factor,
IMSL NUMERIC FACTOR ONLY,
IMSL_SOLVE_ONLY,
IMSL MULTIFRONTAL FACTORIZATION,
IMSL RETURN USER, f complex x[],
IMSL SMALLEST DIAGONAL ELEMENT, float *smal 1 element,
IMSL LARGEST DIAGONAL ELEMENT, float *largest element,
IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,
IMSL CSC_FORMAT, int *col ptr, int *row ind, float *values,
0)

Optional Arguments

IMSL RETURN SYMBOLIC FACTOR, /msl_symbolic factor *sym factor (Output)
A pointer to a structure of type Ims/_symbolic_factor containing, on return, the symbolic factorization
of the input matrix. A detailed description of the Ims/_symbolic_factor structure is given in the follow-
ing table:
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Parameter

Data Type

Description

nzsub

int x>

A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub

int x>

A pointer to an array of length n + 1 contain-
ing indices for *nzsub. The row subscripts
for the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub) [ (*xnzsub) [j]].

maxsub

int

The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

x1lnz

int xx*

A pointer to an array of length n + 1 contain-
ing the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL RETURN NUMERIC FACTOR). For
column j of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*x1nz) [§] and (*x1nz) [§+1] respectively.

maxlnz

int

The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm

int xx*

A pointer to an array of length n containing
the permutation vector.

invp

int x>

A pointer to an array of length n containing
the inverse permutation vector.

multifrontal space

int

The required size of working storage for the
stack of frontal matrices. If no multifrontal
factorization is used, then this variable is set
to zero.

To free the memory allocated within this structure, use function

imsl free symbolic factor.

IMSL SUPPLY SYMBOLIC FACTOR, /msl_symbolic factor *sym factor (Input)
A pointer to a structure of type Ims/_symbolic_factor. This structure contains the symbolic factorization

of the input matrix computed by ims1 ¢ 1lin sol posdef coordinate withthe

IMSL RETURN SYMBOLIC FACTOR option. The structure is described in the
IMSL RETURN SYMBOLIC FACTOR optional argument description. To free the memory allocated
within this structure, use function ims1l free symbolic factor.

IMSL SYMBOLIC FACTOR ONLY,

Compute the symbolic factorization of the input matrix and return. The argument b is ignored.
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IMSL RETURN NUMERIC FACTOR, /msl_c_numeric factor *num_factor (Output)
A pointer to a structure of type Ims/_c_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Ims/_c_numeric_factor structure is given in the follow-
ing table:

Parameter |Data Type Description

nzsub int ** A pointer to an array containing the
row subscripts for the non-zero off-
diagonal elements of the Cholesky fac-
tor. This array is allocated to be of
length nz but all elements of the array
may not be used.

xnzsub int ** A pointer to an array of length n + 1
containing indices for nzsub. The row
subscripts for the non-zeros in column
j of the Cholesky factor are stored con-
secutively beginning with
nzsub[xnzsub[j]].

x1lnz int ** A pointer to an array of length n + 1
containing the starting and stopping
indices to use to extract the non-zero
off-diagonal elements from array
alnz. For column of the factor
matrix, the starting and stopping indi-
cesof alnz are storedin xlnz[j] and
x1lnz[j + 1] respectively.

alnz f complex ** A pointer to an array containing the
non-zero off-diagonal elements of the
Cholesky factor.

perm int *x A pointer to an array of length n con-
taining the permutation vector.

diag f complex ** A pointer to an array of length n con-
taining the diagonal elements of the
Cholesky factor.

Let L be the Cholesky factor of g and num_nonzeros be the number of nonzeros in L. In the struc-
ture described above, the diagonal elements of L are stored in diag. The off-diagonal non-zero
elements of L are stored in alnz. The starting and stopping indices to use to extract the non-zero
elements of L from alnz for columnjare stored in x1nz [j] and x1nz [j + 7] respectively. The row
indices of the elements of L which are non-zero are contained in nzsub. xnzsub [/] contains the
index of nzsub from which one should start to extract the row indices for L for column /. This is best
illustrated by the following code fragment which reconstructs the lower triangle of the factor matrix L
from the components of the above structure:

Imsl c numeric factor numfctr;
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for (1 = 0; i < n; i++){

L[i][i] = (*numfctr.diag) [i];

if ((*numfctr.xlnz) [i] > (num nonzeros-n)) continue;

start = (*numfctr.xlnz) [1]-1;
stop = (*numfctr.xlnz) [i+1]-1;
k = (*numfctr.xnzsub) [1]-1;

for (j = start; j < stop; j++){

L[ (*numfctr.nzsub) [k]-1][i] = (*numfctr.alnz) []];

k++;

}

To free the memory allocated within this structure, use function

imsl c free numeric factor.

IMSL SUPPLY NUMERIC FACTOR, Ims_c_numeric_factor *num factor (Input)

A pointer to a structure of type Imsl_c_numeric_factor. This structure contains the numeric factoriza-

tion of the input matrix computed by imsl ¢ 1in sol posdef coordinate withthe

IMSL RETURN NUMERIC FACTOR option. The structure is described in the
IMSL RETURN NUMERIC FACTOR optional argument desription.

To free the memory allocated within this structure, use function

imsl c free numeric factor.

IMSL NUMERIC FACTOR ONLY,

Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL SOLVE_ONLY,

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either

IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR

IMSL MULTIFRONTAL FACTORIZATION,

Perform the numeric factorization using a multifrontal technique. By default a standard factorization

is computed based on a sparse compressed storage scheme.

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.
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IMSL SMALLEST DIAGONAL ELEMENT, float *small element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl ¢ lin sol posdef coordinate.

IMSL LARGEST DIAGONAL ELEMENT, float *large element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl ¢ lin sol posdef coordinate.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT,int *col ptr,int*row_ ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the “Matrix Storage
Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage
scheme.

Description

The function ims1l ¢ lin sol posdef coordinate solves a system of linear algebraic equations having
a sparse Hermitian positive definite coefficient matrix A. In this function’s default use, a symbolic factorization of a
permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution
of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse data structure for the Cholesky factor, L. This step only requires the “pattern” of the sparse
coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the
val fieldinthe Ims1l c sparse elemstructure is ignored. If an application generates different sparse Her-
mitian positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL_RETURN SYMBOLIC FACTORand IMSL SUPPLY SYMBOLIC_ FACTOR, the symbolic factorization
need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT =LIH

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is per-
formed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981).
Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be
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faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed descrip-

tion of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu
(1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the

IMSL SOLVE_ ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly
1
= Pb

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1
As a simple example of default use, consider the following Hermitian positive definite matrix
2 -1+i 0

A=|-1-i 4 1+2i
0 1-2i 10

Let xT = (1+1/ 2 +2i 3+3j)sothat Ax = (=2 + 2/, 5 +15/, 36 + 28/)T. The number of nonzeros in the lower triangle
isnz = 5.
#include <imsl.h>

int main ()

{

Imsl ¢ sparse elem a[] = {0, 0, {2.0, 0.0},
1, 1, {4.0, 0.0},
2, 2, {10.0, 0.0},
1, 0, {-1.0, -1.0},
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}

2, 1, (1.0, =2.0]}¢

f complex Db {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}

int n = 3;
int nz = 5;

f complex *x;

x = imsl ¢ lin sol posdef coordinate (n, nz, a, b, 0);
imsl ¢ write matrix ("Solution, x, of Ax = b", n, 1, Xx,

imsl free (x);

Output
Solution, x, of AX = b
1 1, 1)
2 25 2)
3 3, 3)
Example 2

ki

Set A = E(2500, 50). Then solve the system Ax = b4 and return the numeric factorization resulting from that call.

Then solve the system Ax = b, using the numeric factorization just computed. Absolute errors and execution time

are pr

inted.

#include <imsl.h>
#include <stdio.h>

int main ()

{

Imsl c sparse elem *a;

Imsl ¢ numeric factor numeric factor;

f complex B b 1[2500], b 2[2500], *x 1, *x 2;
int n, ic, nz, i, index;

double time 1, time 2;

float *rand vec;

ile = 50¢

n = ic*ig;

index = 0;

/* Generate two right hand sides */
rand vec = imsl f random uniform (4*n*sizeof (*rand vec),

0);

for (1=0; i<n; i++) {
b 1[i].re = rand vec[index++];
b 1[i].im = rand vec[index++];
b 2[1i].re = rand vec[index++];
b 2[i].im = rand vec[index++];

/* Build coefficient matrix a */
a = imsl c generate test coordinate (n, ic, é&nz,
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IMSL SYMMETRIC STORAGE,
0)

/* Now solve Ax 1 = b 1 and return the numeric factorization */
time 1 = imsl ctime ();

x 1 = imsl c lin sol posdef coordinate (n, nz, a, b 1,
IMSL RETURN NUMERIC FACTOR, &numeric factor,
0);

time 1 = imsl ctime () - time 1;

/* Now solve Ax 2 = b 2 given the numeric factorization */
time 2 = imsl ctime ();

x 2 = imsl c lin sol posdef coordinate (n, nz, a, b_2,
IMSL SUPPLY NUMERIC FACTOR, &numeric factor,
IMSL SOLVE ONLY,
0);

time 2 = imsl ctime () - time 2;

printf ("time 2/time 1 = $1f\n", time 2/time 1);
}

Output

time 2/time 1 = 0.096386
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sparse_cholesky_smp

Computes the Cholesky factorization of a sparse real symmetric positive definite matrix A by an OpenMP paral-
lelized supernodal algorithm and solves the sparse real positive definite system of linear equations Ax = b.

Synopsis
#include <imsl .h>
float *ims1l f sparse cholesky smp (intn,intnz, Imsl_fsparse_elemall,floatb[], ..., 0)
void imsl free snodal symbolic factor (Ims/_snodal_symbolic_factor *sym factor)
void ims1l f free numeric factor (Imsl_f numeric factor *num_ factor)

The type double functions are ims1 d sparse cholesky smpandimsl d free numeric factor.

Required Arguments

intn (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_f sparse_elem a [] (Input)
An array of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

floatb[1 (Input)
An array of length n containing the right-hand side.
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Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space,

use imsl free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *ims1l f sparse cholesky smp (intn,intnz, Imsl.f sparse elem al], floatb[],

IMSL CSC_FORMAT, intcol ptr[],introw _indl[],floatvalues]|],

IMSL PREORDERING, int preorder,

IMSL RETURN SYMBOLIC_ FACTOR, /msl_snodal_symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC FACTOR, /msl_snodal symbolic_factor *sym factor,

IMSL SYMBOLIC FACTOR ONLY,

IMSL RETURN NUMERIC FACTOR, Imsl_f numeric_factor *num_ factor,
IMSL SUPPLY NUMERIC_ FACTOR, /mslf numeric factor *num_ factor,

IMSL NUMERIC FACTOR_ONLY,

IMSL SOLVE_ONLY,

IMSL SMALLEST DIAGONAL ELEMENT, float *smal lest element,
IMSL LARGEST DIAGONAL ELEMENT, f/oat *largest element,

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,
IMSL RETURN USER, floatx[],

0)

Optional Arguments

IMSL CSC_FORMAT,intcol ptr[],introw ind[], float values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

pr eor der

Method

0

George and Liu's Quotient Minimum
Degree algorithm.

A variant of George and Liu’'s Quotient
Minimum Degree algorithm using a pre-
processing phase and external degrees.
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Default: preorder = 0.

IMSL RETURN SYMBOLIC FACTOR,/msl_snodal_symbolic factor *sym factor (Output)
A pointer to a structure of type Ims/_snodal_symbolic_factor containing, on return, the supernodal

symbolic factorization of the input matrix. A detailed description of the Ims/_snodal_symbolic_factor
structure is given in the following table:

Table 7 - Structure Imsl snodal symbolic factor

Parameter

Data Type

Description

nzsub

int x>

A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub

int xx*

A pointer to an array of length n+1 containing
indices for *nzsub. The row subscripts for
the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub) [ (*xnzsub) [j]1].

maxsub

int

The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

x1lnz

int x>

A pointer to an array of length n+1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL RETURN NUMERIC FACTOR). For
column j of the factor matrix, the starting
and stopping indices of *alnz are stored in
(*x1nz) [§1 and (*x1nz) [j+1] respectively.

maxlnz

int

The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm

int x>

A pointer to an array of length n containing
the permutation vector.

invp

int xx*

A pointer to an array of length n containing
the inverse permutation vector.

multifrontal space

int

This variable is not used in the current
implementation.

nsuper

int

The number of supernodes in the Cholesky
factor.

snode

int x>

A pointer to an array of length n. Element
(*snode) [§] contains the number of the
fundamental supernode to which column 5
belongs.

snode ptr

int x>

A pointer to an array of length nsuper+1
containing the start column of each
supernode.
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Table 7 - Structure Imsl snodal symbolic factor

nleaves int The number of leaves in the postordered
elimination tree of the symmetrically per-
muted input matrix A.

etree leaves int ** A pointer to an array of length nleaves+1
containing the leaves of the elimination tree.

To free the memory allocated within this structure, use function
imsl free snodal symbolic factor.

IMSL SUPPLY SYMBOLIC FACTOR, /mslLsnodal symbolic_factor *sym factor (Input)
A pointer to a structure of type Imsl_snodal_symbolic_factor. This structure contains the symbolic fac-
torization of the input matrix computed by ims1 f sparse cholesky smp withthe
IMSL RETURN SYMBOLIC FACTOR option. The structure is described in the
IMSL RETURN SYMBOLIC FACTOR optional argument description.
To free the memory allocated within this structure, use function
imsl free snodal symbolic factor.

IMSL SYMBOLIC FACTOR ONLY, (Input)
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL RETURN NUMERIC FACTOR, ImsLf numeric_factor *num factor (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Ims/_f numeric_factor structure is given in the
IMSL RETURN NUMERIC FACTOR optional argument description of function

imsl f lin sol posdef coordinate. To free the memory allocated within this structure, use
function imsl f free numeric factor.

IMSL SUPPLY NUMERIC_ FACTOR, /msLf numeric factor *num_factor (Input)
A pointer to a structure of type Ims/_f_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by ims1 f sparse cholesky smp withthe
IMSL RETURN NUMERIC FACTOR option. The structure is described in the
IMSL RETURN NUMERIC FACTOR optional argument description of function
imsl f lin sol posdef coordinate.
To free the memory allocated within this structure, use function
imsl f free numeric_ factor.

IMSL NUMERIC FACTOR ONLY, (Input)
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY, (Input)

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR.
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IMSL SMALLEST DIAGONAL ELEMENT, floot *smallest element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl f sparse cholesky smp.

IMSL LARGEST DIAGONAL ELEMENT, float *largest element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl f sparse cholesky smp.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

Description

The function ims1 f sparse cholesky smp solves a system of linear algebraic equations having a sparse
symmetric positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization of a per-
mutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP
parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse supernodal data structure for the Cholesky factor, L. This step only requires the “pattern” of
the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements them-
selves. Thus, the val field inthe Ims1l f sparse elemstructure isignored. If an application generates
different sparse symmetric positive definite coefficient matrices that all have the same sparsity pattern, then by
using IMSL RETURN SYMBOLIC FACTOR and IMSL SUPPLY SYMBOLIC FACTOR, the symbolic factor-
ization needs only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT=LLT

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking
and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).
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If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the
IMSL SOLVE_ ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly
1
=Pb

The permutation information, P, is carried in the numeric factor structure Ims/[_f_numeric_factor.

Examples

Example 1

Consider the 5 x 5 coefficient matrix A,

(10 0 1 0 2]
0 200 0 3
A=11 0 30 4 0
0 0 4 40 5
' 2 3 0 5 50]

The number of nonzeros in the lower triangle of Ais nz = 10. We construct the solution x"=(5,4,3,2 1)tothe
system Ax = b by setting b := Ax = (55, 83, 103, 97, 82)". The solution is computed and printed.

#include <imsl.h>

int main ()
{
Imsl f sparse elem a[] =
{0, 0, 10.0,
1, 1, 20,0,
2, 0, 1.0,
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}

2, 2, 30.0,

3, 2, 4.0,

3, 8, 4050,

4, 0, 2.0,

4, 1, 3.0,

as 8, 550,

4, 4, 50.0};
float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
int n =25, nz = 10;
float *x = NULL;

= imsl f sparse cholesky smp (n, nz, a, b, 0);

imsl f write matrix ("solution", 1, n, x, 0);
imsl free (x);

Output
solution
1 2 3 4 5
5 4 3 2 1
Example 2

This example shows how a symbolic factor can be re-used. At first, the system Ax = b with A = £(2500, 50) is solved

and the symbolic factorization of A is returned. Then, the system Cy = d with C = A+2%/, | the identity matrix, is

solved using the symbolic factorization just computed. This is possible because A and C have the same nonzero
structure and therefore also the same symbolic factorization. The solution errors are printed.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main ()

{

Imsl f sparse elem *a = NULL, *c = NULL;

Imsl snodal symbolic factor symbolic factor;
float *b = NULL, *d = NULL, *x = NULL, *y = NULL;
float *mod vector = NULL;

int n, ic, nz, i, index;

float error 1, error 2;

ic = 50;
n = i@ * deg
mod vector = (float*) malloc (n * sizeof (float));

/* Build coefficient matrix A */

a = (Imsl f sparse elem *) imsl f generate test coordinate (n, ic,
&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Build coefficient matrix C */
¢ = (Imsl f sparse elem*) malloc (nz * sizeof (Imsl f sparse elem));
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for (i = 0; i < nz; i++) cl[i] = alil;
for (i = 0; i < n; i++)
cli].val = 6.0;

/* Form right hand side b */
for (i = 0; 1 < n; i++)
mod vector([i] = (float) (i % 5);

b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod vector,
IMSL_SYMMETRIC STORAGE,
0);

/* Form right hand side d */
d = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, c,
IMSL X VECTOR, n, mod_vector,
IMSL SYMMETRIC STORAGE,
0);

/* Solve Ax = b and return the symbolic factorization */
x = imsl f sparse cholesky smp (n, nz, a, b,

IMSL RETURN SYMBOLIC FACTOR, &symbolic_factor o

0);

/* Compute solution error |x - mod vector| */
error 1 = imsl f vector norm (n, Xx,
IMSL SECOND VECTOR, mod vector,
IMSL INF NORM, &index,
0);

/* Solve Cy = d given the symbolic factorization */
y = imsl f sparse cholesky smp (n, nz, c, d,
IMSL SUPPLY SYMBOLIC FACTOR, &symbolic factor,
0);

/* Compute solution error |y - mod vector| */
error 2 = imsl f vector norm (n, vy,

IMSL SECOND VECTOR, mod vector,

IMSL_INF NORM, &index,

0);
printf ("Solution error |x - mod vector| = $e\n", error 1);
printf ("Solution error |y - mod vector| = %e\n", error 2);
/* Free allocated memory */
if (b) imsl free(b);
if (d) imsl free(d);
if (x) imsl free(x);
if (y) imsl free(y):
if (mod vector) free(mod vector);
if (a) imsl free(a);
(c

if (c) free(c);
imsl free snodal symbolic factor (&symbolic factor);
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Output
Solution error |x - mod vector| = 4.529953e-005
Solution error |y - mod vector| = 2.861023e-006
Example 3

In this example, set A = £(2500, 50). First solve the system Ax = by and return the numeric factorization resulting

from that call. Then solve the system Ax = b, using the numeric factorization just computed. The ratio of execu-

tion times is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <omp.h>

int main ()

{

int n, ic, nz;

float *b 1 = NULL, *b 2 = NULL, *x 1 = NULL, *x 2
double time 1, time 2;

Imsl f sparse elem *a = NULL;

Imsl f numeric factor numeric factor;

ic = 50;
m = de ¥ dep

/* Generate two right hand sides */
imsl random seed set (1234567);

b 1 = imsl f random uniform (n, 0);
b 2 imsl f random uniform (n, 0);

/* Build coefficient matrix a */

a = imsl f generate test coordinate (n, ic, é&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Now solve Ax 1 = b 1 and return the numeric
factorization */

time 1 = omp get wtime();

x 1 = imsl f sparse cholesky smp (n, nz, a, b 1,
IMSL RETURN NUMERIC FACTOR, &numeri c_factor,
0);

time 1 = omp get wtime() - time 1;

/* Now solve Ax 2 = b 2 given the numeric
factorization */
time 2 = omp get wtime();

x 2 = imsl f sparse cholesky smp (n, nz, a, b 2,
IMSL SUPPLY NUMERIC FACTOR, &numeric_ factor,
IMSL SOLVE ONLY,
(0))

NULL;
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time 2 = omp get wtime() - time 2;
printf ("time 2/time 1 = $1f\n", time 2/time 1);

/* Free allocated memory */

if (x 1) imsl free(x 1);

if (x 2) imsl free(x 2);

if (b_1) imsl free(b_ 1),

if (b _2) imsl free(b 2);

if (a) imsl free(a);

imsl f free numeric factor (&numeric factor);

}
Output

time 2/time 1 = 0.029411

Fatal Errors

IMSL BAD SQUARE ROOT A zero or negative square root has occurred

during the factorization. The coefficient
matrix is not positive definite.
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sparse_cholesky_smp (complex)

OpenMP

more...

Computes the Cholesky factorization of a sparse Hermitian positive definite matrix A by an OpenMP parallelized
supernodal algorithm and solves the sparse Hermitian positive definite system of linear equations Ax = b.

Synopsis
#include <ims1.h>

f.complex *imsl c sparse cholesky smp (intn,intnz,Imsl_c sparse_elem a[],fcomplexb[],
... 0)

void ims1l free snodal symbolic factor (Imsl_snodal_symbolic factor *sym factor)
void ims1l ¢ free numeric_ factor (Ims/_c_numeric factor *num factor)

The type d_complex functions are ims1 z sparse cholesky smp and

imsl z free numeric factor.

Required Arguments

intn (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

fcomplexb 1 (Input)
An array of length n containing the right-hand side.
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Return Value

A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. To release this space, use

imsl free.If no solution was computed, t

hen NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

fcomplex *imsl c sparse cholesky smp (intn,intnz, ImsL.c_sparse_elem al],fcomplexb[],

IMSL CSC_FORMAT,intcol ptr[],introw ind[],fcomplex values|[],

IMSL PREORDERING, in

IMSL RETURN SYMBOLIC_ FACTOR, /msl_snodal_symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC FACTOR, /msl_snodal symbolic_factor *sym factor,

tpreorder,

IMSL SYMBOLIC FACTOR ONLY,

IMSL RETURN NUMERIC FACTOR, Imsl_c_numeric_factor *num_ factor,
IMSL SUPPLY NUMERIC_ FACTOR, /msl_c_numeric factor *num_factor,

IMSL NUMERIC FACTOR_ONLY,

IMSL SOLVE_ONLY,

IMSL SMALLEST DIAGONAL ELEMENT, float *smal lest element,
IMSL LARGEST DIAGONAL ELEMENT, f/oat *largest element,

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,
IMSL RETURN USER, f complex x[],

0)

Optional Arguments

IMSL CSC_FORMAT, intcol ptr[],introw ind[],fcomplex values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as describedin the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

pr eor der

Method

0

George and Liu's Quotient Minimum
Degree algorithm.

A variant of George and Liu’'s Quotient
Minimum Degree algorithm using a pre-
processing phase and external degrees.
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Default: preorder = 0.

IMSL RETURN SYMBOLIC FACTOR,/msl_snodal_symbolic factor *sym factor (Output)
A pointer to a structure of type Ims/_snodal_symbolic_factor containing, on return, the supernodal

symbolic factorization of the input matrix. A detailed description of the Ims/_snodal_symbolic_factor
structure is given in the following table:

Table 8 - Strucuture Imsl snodal symbolic factor

Parameter

Data Type

Description

nzsub

int x>

A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub

int xx*

A pointer to an array of length n+1 containing
indices for *nzsub. The row subscripts for
the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub) [ (*xnzsub) [j]1].

maxsub

int

The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

x1lnz

int x>

A pointer to an array of length n+1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL RETURN NUMERIC FACTOR). For
column j of the factor matrix, the starting
and stopping indices of *alnz are stored in
(*x1nz) [3] and (*x1nz) [J+1] respectively.

maxlnz

int

The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm

int x>

A pointer to an array of length n containing
the permutation vector.

invp

int x>

A pointer to an array of length n containing
the inverse permutation vector.

multifrontal space

int

This variable is not used in the current
implementation.

nsuper

int

The number of supernodes in the Cholesky
factor.

snode

int xx*

A pointer to an array of length n. Element
(*snode) [§] contains the number of the
fundamental supernode to which column j

belongs.

snode ptr

int x>

A pointer to an array of length nsuper+1
containing the start column of each
supernode.
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Table 8 - Strucuture Imsl snodal symbolic factor

nleaves int The number of leaves in the postordered
elimination tree of the symmetrically per-
muted input matrix A.

etree leaves int ** A pointer to an array of length nleaves+1
containing the leaves of the elimination tree.

To free the memory allocated within this structure, use function
imsl free snodal symbolic factor.

IMSL SUPPLY SYMBOLIC FACTOR, /mslLsnodal symbolic_factor *sym factor (Input)

A pointer to a structure of type Imsl_snodal_symbolic_factor. This structure contains the symbolic fac-
torization of the input matrix computed by ims1 ¢ sparse cholesky smp with the

IMSL RETURN SYMBOLIC FACTOR option. The structure is described in the

IMSL RETURN SYMBOLIC FACTOR optional argument description.

To free the memory allocated within this structure, use function

imsl free snodal symbolic factor.

IMSL_SYMBOLIC_ FACTOR_ONLY, (Input)

Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL RETURN NUMERIC FACTOR, Imslc_numeric_factor *num_ factor (Output)

A pointer to a structure of type Ims/_c_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Ims/_c_numeric_factor structure is given in the
IMSL RETURN NUMERIC FACTOR optional argument description of function

imsl ¢ lin sol posdef coordinate (complex).To freethe memory allocated within this
structure, use function ims1l ¢ free numeric factor.

IMSL SUPPLY NUMERIC FACTOR,/mslLc_numeric_factor *num_factor (Input)

A pointer to a structure of type Imsl_c_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by ims1 c sparse cholesky smp with the

IMSL RETURN NUMERIC FACTOR option. The structure is described in the

IMSL RETURN NUMERIC FACTOR optional argument description of function

imsl lin sol posdef coordinate (complex).

To free the memory allocated within this structure, use function

imsl c free numeric factor.
IMSL NUMERIC FACTOR ONLY, (Input)

Compute the numeric factorization of the input matrix and return. The argument b is ignored.
IMSL SOLVE ONLY, (Input)

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR.
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IMSL SMALLEST DIAGONAL ELEMENT, floot *smallest element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl c sparse cholesky smp.

IMSL LARGEST DIAGONAL ELEMENT, float *largest element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl c sparse cholesky smp.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

Description

The function ims1l c_sparse cholesky smp solves a system of linear algebraic equations having a sparse
Hermitian positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization of a per-
mutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP
parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse supernodal data structure for the Cholesky factor, L. This step only requires the “pattern” of
the sparse coefficient matrix, i.e., the locations of the nonzero elements but not any of the elements themselves.
Thus, the val field inthe Ims1l c_sparse_ elemstructure isignored. If an application generates different
sparse Hermitian positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL_RETURN SYMBOLIC FACTORand IMSL SUPPLY SYMBOLIC_ FACTOR, the symbolic factorization
needs only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT = LIH

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking
and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).
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If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the

IMSL SOLVE_ ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly
1
=Pb

The permutation information, P, is carried in the numeric factor structure /Ims/_c_numeric_factor.

Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite matrix

2 -1+i 0
A=|—-1-1i 4 1+2i
0 1-2i 10

We construct the solution x" = (1 +, 2 + 2/, 3 + 3i) to the system Ax = b by setting

b:=Ax = (=2 + 2i,5 +15j, 36 + 28/)T. The number of nonzeros in the lower triangle is nz = 5. The solution is com-
puted and printed.

#include <imsl.h>

int main ()
{
int n = 3, nz g
f complex b[] {-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};
f complex *x = NULL;
Imsl c sparse elem a[] = {0, 0, {2.0, 0.0},

5
{

1, 1, {4.0, 0.0},
2, 2, {10.0, 0.0},
1, 0, {-1.0, -1.0},
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2, 1, {1.0, -2.0}};
x = imsl c sparse cholesky smp (n, nz, a, b, 0);
imsl ¢ write matrix ("Solution, x, of Ax = b", n, 1, x, 0);

imsl free (x);

}

Output
Solution, x, of Ax = b
1 ( 1, 1)
2 2, 2)
3 3, 3)
Example 2

This example shows how a symbolic factor can be re-used. Consider matrix A, a Hermitian positive definite matrix
with value 6 on the diagonal and value -1-/ on its lower codiagonal and the lower band at distance 50 from the
diagonal. At first, the system Ax = b is solved and the symbolic factorization of A is returned. Then, the system

Cy = d with C = A+4%*/, | the identity matrix, is solved using the symbolic factorization just computed. This is possi-
ble because A and C have the same nonzero structure and therefore also the same symbolic factorization. The
solution errors are printed.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main ()
{
int n, ic, nz, i, index;
float error 1, error 2;
f complex *b = NULL, *d = NULL, *x = NULL, *y = NULL;
f complex *mod vector = NULL;
Imsl c sparse elem *a = NULL, *c = NULL;
Imsl snodal symbolic factor symbolic factor;

ic = 50;
n=4ic * ic;
mod_vector = (f complex*) malloc (n * sizeof (f complex));

/* Build coefficient matrix A */
a = imsl c generate test coordinate (n, ic,

&nz,

IMSL SYMMETRIC STORAGE,

0):
/* Build coefficient matrix C */
c = (Imsl c sparse elem *) malloc (nz * sizeof (Imsl c sparse elem));
for

0; i<nz; i++)
1 = alil;
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for (i=0; i<n; 1i++)

{

10.0;
0.0;

cl[i] .val.re
cl[i].val.im

}

/* Form right hand side b */
for (i = 0; i < n; i++)
{
mod vector[i].re = (float) (i % 5);
mod vector([i].im = 0.0;

o~
|

(f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a, -

IMSL X VECTOR, n, mod vector,

IMSL SYMMETRIC STORAGE,

0);

/* Form right hand side d */
d = (f complex *) imsl c mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, c, B
IMSL, X VECTOR, n, mod vector,
IMSL SYMMETRIC STORAGE,
0);

/* Solve Ax = b and return the symbolic factorization */
x = imsl c sparse cholesky smp (n, nz, a, b,

IMSL RETURN SYMBOLIC FACTOR, &symbolic factor,

0);

/* Compute error |x-mod vector| */
error 1 = imsl c vector norm (n, X,
IMSL SECOND VECTOR, mod vector,
IMSL_INF NORM, &index,
0);

/* Solve Cy = d given the symbolic factorization */
y = imsl c sparse cholesky smp (n, nz, c, d,
IMSL SUPPLY SYMBOLIC FACTOR, &symbolic factor,
0);

/* Compute error |y-mod vector| */

error 2 = imsl c vector norm (n, vy,
IMSL SECOND VECTOR, mod vector,
IMSL_INF NORM, &index,

0);
printf ("Solution error |x - mod vector| = %$e\n", error 1);
printf ("Solution error |y - mod vector| = %e\n", error 2);

/* Free allocated memory */

if (mod vector) free(mod vector);

if (a) imsl free (a);

if (c) free (c);

if (b) imsl free (b);

if (d) imsl free (d);

if (y) imsl free (y):;

if (x) imsl free (x);

imsl free snodal symbolic factor (&symbolic factor);
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Output

2.885221e-006
2.386146e-006

Solution error |x - mod vector|
Solution error |y - mod vector|

Example 3

In this example, set A = £(2500, 50). First solve the system Ax = by and return the numeric factorization resulting
from that call. Then solve the system Ax = b, using the numeric factorization just computed. The ratio of execu-
tion times is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <omp.h>

int main ()
{
int n, ic, nz, i, index;
float *rand vec = NULL;
double time 1, time 2;
f complex b 1[2500], b 2[2500], *x 1 = NULL, *x 2 = NULL;
Imsl c _sparse _elem *a = NULL;
Imsl_c_numerlc_factor numerlc_factor;

ic = 50;
n = ic * ic;
index = 0;

/* Generate two right hand sides */
imsl random seed set (1234567);
rand vec = imsl f random uniform (4 * n, 0);

for (1 = 0; 1 < n; 1i++) {
b 1[1i].re = rand vec[index++];
b 1[i].im = rand:vec[index++];
b 2[i].re = rand vec[index++];
b 2[i].im = rand vec[index++];

/* Build coefficient matrix a */

a = imsl c generate test coordinate (n, ic, é&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Now solve Ax 1 = b 1 and return the numeric factorization */
time 1 = omp get wtime();

x 1 = imsl c sparse cholesky smp (n, nz, a, b 1,
IMSL RETURN NUMERIC FACTOR, &numeric factor,
0)s

time 1 = omp get wtime() - time 1;

/* Now solve Ax 2 = b 2 given the numeric factorization */
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time 2 = omp get wtime();

x 2 = imsl c sparse cholesky smp (n, nz, a, b 2,
IMSL SUPPLY NUMERIC FACTOR, &numeric factor,
IMSL SOLVE ONLY,
0);

time 2 = omp get wtime () - time 2;

printf ("time 2/time 1 = $1f\n", time 2/time 1);
/* Free memory */

if (rand vec) imsl free(rand vec);

if (x 1) imsl free(x 1);

if (x 2) imsl free(x 2);

if (a) imsl free(a);

imsl c free numeric factor (&numeric factor);

Output

time 2/time 1 = 0.025771

Fatal Errors

IMSL_BAD SQUARE ROOT A zero or negative square root has occurred
during the factorization. The coefficient
matrix is not positive definite.
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lin_sol_gen_min_residual

Solves a linear system Ax = b using the restarted generalized minimum residual (GMRES) method.

Synopsis
#include <imsl.h>

float *imsl f 1lin sol gen min residual (intn,void amultp (float *p, float *z), float *b, ...,
0)

The type double function is imsl_d_lin_sol_gen_min_residual.

Required Arguments

intn (Input)
Number of rows in the matrix.

void amultp (float *p, float *z) (Input)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <ims1.h>
float *imsl f 1in sol gen min residual (intn, void amultp (), float *b,

IMSL RETURN USER, floatx[1],
IMSL MAX ITER,int*maxit,
IMSL REL ERR,floagt tolerance,
IMSL PRECOND, void precond (),
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IMSL MAX KRYLOV SUBSPACE DIV, int kdmax,

IMSL HOUSEHOLDER REORTHOG,
IMSL FCN W DATA, void amultp (), void *data,

IMSL PRECOND W DATA, void precond (), void *data,
0)

Optional Arguments

IMSL RETURN USER,floatx [] (Output)
A user-allocated array of length n containing the solution x.

IMSL MAX ITER,/nt*maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of GMRES iterations allowed. On exit,
the number of iterations used is returned.
Default: maxit = 1000

IMSL REL ERR, float tolerance (Input)
The algorithm attempts to generate x such that [|b - Ax|l, < Tl|bll,, where T= tolerance.
Default: tolerance = sqrt (imsl f machine (4))

IMSL PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z= M “'r, where M is the preconditioning matrix.

IMSL MAX KRYLOV_ SUBSPACE DIM, int kdmax, (Input)
The maximum Krylov subspace dimension, i.e., the maximum allowable number of GMRES iterations
allowed before restarting.
Default: kdmax = imsl i min(n, 20)

IMSL HOUSEHOLDER REORTHOG,
Perform orthogonalization by Householder transformations, replacing the Gram-Schmidt process.

IMSL FCN W _DATA, void amultp (float *p, float * z, void *data), void *data, (Input)
User supplied function which computes z = Ap, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL PRECOND W DATA, void precond (float *r, float *z, void *data), void *data (Input)
User supplied function which sets z= M "'r, where M is the preconditioning matrix, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions section in the introduction to this
manual for more details.
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Description

The function ims1 f 1lin sol gen min residual, based on the FORTRAN subroutine GMRES by H.F.
Walker, solves the linear system Ax = b using the GMRES method. This method is described in detail by Saad and
Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution xg and an initial residual rg = b - Axg. At iteration m, a
correction zy, is determined in the Krylov subspace
k™ (v) = span (v, Av, ..., A™ 1)

v = rg which solves the least-squares problem

(ze®o0) lo-a(x+2)l,
Then at iteration m, Xy, = Xg + Zn.

Orthogonalization by Householder transformations requires less storage but more arithmetic than Gram-
Schmidt. However, Walker (1988) reports numerical experiments which suggest the Householder approach is
more stable, especially as the limits of residual reduction are reached.

Examples

Example 1

As an example, consider the following matrix:

[10 0 0 0 0 O
0 10 -3 -1 0 O
0O o0 15 0 0 O
-2 0 0 10 -1 O
-1 0 0 -5 1 -3

-1 -2 0 0 0 6]

Let xT = (1,2, 3,4, 5, 6) so that Ax = (10, 7, 45, 33, =34, 31)T. The function
imsl f mat mul rect coordinate is used to form the product Ax.

#include <imsl.h>

void amultp (float*, float*);

int main ()

{
float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
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int n = 6;
float *x;

x = imsl f lin sol gen min residual (n, amultp, b,
0);

imsl f write matrix ("Solution, x, to Ax = Db", 1, n, x, 0);

}

void amultp (float *p, float *z)
{

Imsl f sparse elem a[] = {0, 0, 10.0,
1, 1, 10.0,
1, 2, -3.0,
1, 3, -1.0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, =5.0,
4, 4, 1.0,
4, 5, -3.0,
5, 0, =1.0,
5, 1, -2.0,
5, 5, 6.0};

int n = 6;

int nz = 15;

imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, p,
IMSL RETURN USER VECTOR, z,

0)s
}
Output
Solution, x, to AXx = b
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

In this example, the same system given in the first example is solved. This time a preconditioner is provided. The
preconditioned matrix is chosen as the diagonal of A.

#include <imsl.h>
#include <stdio.h>

void amultp (float*, float*);
void precond (float*, float¥*);

int main ()

{
float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
int n = 6;
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float *x;
int maxit = 1000;

x = imsl f lin sol gen min residual (n, amultp, b,
IMSL MAX ITER, &maxit,
IMSL PRECOND, precond,
0);

imsl f write matrix ("Solution, x, to Ax = Db", 1, n, x, 0);
printf ("\nNumber of iterations taken = %d\n", maxit);

}

/* Set z = Ap */
void amultp (float *p, float *z)
{

static Imsl f sparse elem a[] =
{0, 0, 10.

~
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imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, p,
IMSL RETURN USER VECTOR, z,
0);
}

/* Solve Mz = r */
void precond (float *r, float *z)
{
static float diagonal inverse[] =

{0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0};

int n 6;

int i;

for (i=0; i<n; i++)
z[i] = diagonal inverse[i]*r[i];

}
Output
Solution, x, to AXx = b

1 2 3 4 5 6
1 2 3 4 5 6
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Number of iterations taken =

Fatal Errors

IMSL_STOP USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
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lin_sol_def_cg

Solves a real symmetric definite linear system using a conjugate gradient method. Using optional arguments, a
preconditioner can be supplied.

Synopsis
#include <ims1l.h>
float *imsl f 1in sol def cg(intn,void amultp (), float *b, ..., 0)

The type double functionis ims1 d lin sol def cag.

Required Arguments

intn (Input)
Number of rows in the matrix.

void amultp (float *p, float * z)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was

computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl f 1in sol def cg(intn,void amultp (), float *b,
IMSL RETURN USER, floatx[1],
IMSL_MAX_ ITER,/int *maxit,
IMSL REL ERR, floatrelative error,
IMSL PRECOND, void precond (),
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IMSL JACOBI, float *diagonal,

IMSL FCN W _DATA, void amultp (), void data,

IMSL PRECOND W DATA, void precond (), void *data,
0)

Optional Arguments

IMSL RETURN USER, floatx[] (Output)
A user-allocated array of length n containing the solution x.

IMSL MAX ITER,/nt*maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of iterations allowed. On exit, the num-
ber of iterations used is returned.

IMSL REL ERR, floatrelative_error (Input)
The relative error desired.
Default: relative_error = sgrt(imsl_f_machine(4))

IMSL PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z= M "', where M is the preconditioning matrix.

IMSL JACOBI, float diagonal[] (Input)
Use the Jacobi preconditioner, i.e. M = diag(A). The user-supplied vector diagonal should be set so
that diagonal[i] = Aj;.

IMSL FCN W _DATA, void amultp (float *p, float * z, void *data), void *data, (Input)
User supplied function which computes z = Ap, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL PRECOND W DATA, void precond (float *r, float * z, void *data), void *data, (Input)
User supplied function which sets z= M "'r, where M is the preconditioning matrix, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

Description

The function ims1 f 1lin sol def cgsolvesthe symmetric definite linear system Ax = b using the conju-
gate gradient method with optional preconditioning. This method is described in detail by Golub and Van Loan
(1983, Chapter 10), and in Hageman and Young (1981, Chapter 7).
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The preconditioning matrix M is a matrix that approximates A, and for which the linear system Mz = r is easy to
solve. These two properties are in conflict; balancing them is a topic of much current research. In the default use
ofimsl f 1lin sol def cg, M=/ Ifthe option IMSL JACOBI is selected, M is set to the diagonal of A.

The number of iterations needed depends on the matrix and the error tolerance. As a rough guide,
maxit =vVn for n>>1
See the references mentioned above for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let T be the desired relative error. Then the
algorithm used is as follows:

A= -1
Py~ *o
ry=b—Ap
for k=1, ... ,maxit
ZkZMill’k
if k=1, then
ﬁk: 1
Pr =z
else
T T
B = <Zk’”k> / <Zk71rk71>
Py =z T Brpy
endif
z, = Ap

W = <Ziz712k71> / <Zl{pk>

Xk = Xt Py

Te =Tk ™ X%k

if (lzll, =e(1=2) ) then
recompute A
if <||zk||2§1(1 —/1)||xk||2> exit

endif
endfor

Here X is an estimate of Ayax(G), the largest eigenvalue of the iteration matrix G =/~ M ' A. The stopping crite-
rion is based on the result (Hageman and Young 1981, pp. 148-151)
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e =1l _ 1 [EAlY
||x||M N I_Amax<G) ”xk”M
where
1x11%, = x" Mx

It is also known that

imax<T1> S/lmax<TZ> s . S’lmax<G> <1

where the T, are the symmetric, tridiagonal matrices

Hy @
T = Wy Uy 3
" w3 U3

with Mk= 1- Bk/O(k_1 - 1/0(k, My =T1- T/ and

o =By /oy

Usually the eigenvalue computation is needed for only a few of the iterations.

Examples

Example 1

In this example, the solution to a linear system is found. The coefficient matrix is stored as a full matrix.

#include <imsl.h>
static void amultp (float*, float*);
int main ()
{
int n = 3;
float b[] = {27.0, -78.0, 64.0};
float *x;

x = imsl f lin sol def cg (n, amultp, b, 0);

imsl f write matrix ("x", 1, n, x, 0);
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static void amultp

{

static float al]

int n

imsl f mat mul rect
IMSL A MATRIX, n, n, a,
IMSL X VECTOR, n, p,
IMSL RETURN USER, z,

Output

Example 2

=3.0,
2.0,

:3;

0);

(float *p, float *z)

~ W

In this example, two different preconditioners are used to find the solution of a linear system which occursin a

finite difference solution of Laplace’s equation on a regular ¢ x ¢ grid, ¢ = 100. The matrix is A = £ (c?, ¢). For the

first solution, select Jacobi preconditioning and supply the diagonal, so M = diag (A). The number of iterations

performed and the maximum absolute error are printed. Next, use a more complicated preconditioning matrix,

M, consisting of the symmetric tridiagonal part of A.

Notice that the symmetric positive definite band solver is used to factor M once, and subsequently just perform

forward and back solves. Again, the number of iterations performed and the maximum absolute error are
printed. Note the substantial reduction in iterations.

#include <imsl.h>
#include <stdio.h>

#include <stdlib.h>

static void amultp

static void precond
static Imsl f sparse elem *a;
static int n = 2500;

static int ¢ = 50;
static int nz;

int main ()

{

int maxit = 1000;
int 1i;

int index;

float
float
float
float
float

*b;

*X;

*mod five;
*diagonal;
norm;
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n = @¥cg

mod five = (float*) malloc (n*sizeof (*mod five));
diagonal = (float*) malloc (n*sizeof (*diagonal)) ;
b = (float*) malloc (n*sizeof (*b));

/* Generate coefficient matrix */
a = imsl f generate test coordinate (n, c, é&nz,
0);

/* Set a predetermined answer and diagonal */
for (1=0; i<n; i++) {
mod five[i] = (float) (i % 5);
diagonal[i] = 4.0;
}

/* Get right hand side */
amultp (mod five, b);

/* Solve with jacobi preconditioning */
x = imsl f lin sol def cg (n, amultp, b,
IMSL MAX ITER, &maxit,
IMSL JACOBI, diagonal,
0)s

/* Find max absolute error, print results */
norm = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL_INF NORM, &index,
0);
printf ("iterations = %d, norm = %e\n", maxit, norm);
imsl free (x);

/* Solve same system, with different preconditioner */
x = imsl f 1lin sol def cg (n, amultp, b,

IMSL MAX ITER, &maxit,

IMSL PRECOND, precond,

0);

norm = imsl f vector norm (n, x,
IMSL SECOND VECTOR, mod_five,
IMSL_INF NORM, &index,
0);
printf ("iterations = %d, norm = %e\n", maxit, norm);

}

/* Set z = Ap */

static void amultp (float *p, float *z)

{

imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, p,
IMSL RETURN USER VECTOR, z,
0);

}

/* Solve Mz = r */
static void precond (float *r, float *z)

{

static float *m;
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static float *factor;
static int first = 1;
float *null = (float*) 0;

if (first) {
/* Factor the first time through */
m = imsl f generate test band (n, 1,
IMSL SYMMETRIC STORAGE,
0);

imsl f lin sol posdef band (n, m, 1, null,
IMSL FACTOR, &factor,
IMSL FACTOR ONLY,
0);
first = 1;
}

/* Perform the forward and back solves */
imsl £ 1lin sol posdef band (n, m, 1, r,
IMSL FACTOR USER, factor,
IMSL SOLVE ONLY,
IMSL RETURN USER, z,
0);
}

Output

iterations = 115, norm = 1.382828e-05
iterations = 75, norm = 7.319450e-05

Fatal Errors

IMSL STOP USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".

218



Linear Systems lin_least_squares_gen

lin_least_squares_gen

Solves a linear least-squares problem Ax = b. Using optional arguments, the QR factorization of A, AP = QR, and the
solve step based on this factorization can be computed.

Synopsis
#include <imsl.h>
float *imsl f 1in least squares_gen (intm, intn,floatal],floatb[], .., 0)

The type double procedure is ims1l d 1lin least squares_gen.

Required Arguments

intm (Input)
Number of rows in the matrix.

intn (Input)
Number of columns in the matrix.

floata[] (Input)
Array of size m x n containing the matrix.

floatb[] (Input)
Array of size m containing the right-hand side.

Return Value

If no optional arguments are used, function ims1 f 1in least squares gen returns a pointer to the
solution x of the linear least-squares problem Ax = b. To release this space, use ims1 free. If no value can be

computed, then NULL is returned.
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Synopsis with Optional Arguments
#include <ims1.h>

float *imsl f 1in least squares gen (intm, intn,floatal], floatb[],
IMSL A COL DIM, inta_col dim,
IMSL RETURN USER, floatx[1],
IMSL BASIS, float tol,int *kbasis,
IMSL RESIDUAL, float **p res,
IMSL RESIDUAL USER,float res|[],
IMSL FACTOR, float **p_graux, float **p_qr,
IMSL FACTOR USER, float graux[], floatqr[],
IMSL FAC COL DIM, intgr col dim,
IMSL Q,float **p g,
IMSL_Q USER, floatql[],
IMSL Q COL DIM, intg col dim,
IMSL PIVOT, intpvt[],
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments

IMSL A COL DIM inta _col dim (Input)
The column dimension of the array a.
Default: a_col dim=n

IMSL RETURN USER,float x [] (Output)
A user-allocated array of size n containing the least-squares solution x. If IMSL_RETURN_USER is
used, the return value of the function is a pointer to the array x.

IMSL BASIS, float tol,int *kbasis (Input, Input/Output)

float tol (Input)
Nonnegative tolerance used to determine the subset of columns of A to be included in the
solution.
Default: tol =sgrt (ims1_ f machine(4))

int *kbasis (Input/Output)
Integer containing the number of columns used in the solution. kbasis = kif [req k1l
< |toll*|rq 11. For more information on the use of this option, see Description section.
Default: kbasis = min(m, n)
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IMSL RESIDUAL, float **p res (Output)
The address of a pointer to an array of size m containing the residual vector b — Ax. On return, the
necessary space is allocated by the function. Typically, float *p_res is declared, and &p_res is
used as an argument.

IMSL RESIDUAL USER, f/OCII res[] (Output)
A user-allocated array of size m containing the residual vector b — Ax.

IMSL FACTOR, float **p_graux, float **p_gr (Output)

float **p _graux (Input/Output)
The address of a pointer graux to an array of size n containing the scalars Ty of the House-
holder transformations in the first min (m, n) positions. On return, the necessary space is

allocated by the function. Typically, float *graux is declared, and &graux is used as an
argument.

float **p_gr (Input/Output)
The address of a pointer to an array of size m x n containing the Householder transforma-
tions that define the decomposition. The strictly lower-triangular part of this array contains
the information to construct Q, and the upper-triangular part contains R. On return, the nec-

essary space is allocated by the function. Typically, float *qzr is declared, and &qr is used as
an argument.

IMSL FACTOR_USER, float graux[], float gr [] (Input/Output)

float graux [] (Input/Output)
A user-allocated array of size n containing the scalars 1y of the Householder transformations
in the first min (m, n) positions.

float ar [ 1 (Input/Output)
A user-allocated array of size m x n containing the Householder transformations that define
the decomposition. The strictly lower-triangular part of this array contains the information to
construct Q. The upper-triangular part contains R. If the data in a is not needed, gr can
share the same storage locations as a by using a instead of the separate argument gr.

These parameters are “Input” if IMSL_SOLVE is specified; “Output” otherwise.
IMSL FAC COL DIM, intgr col dim (Input)
The column dimension of the array containing QR factorization.
Default: gr _col dim=n

IMSL Q, float **p g (Output)
The address of a pointer to an array of size m x m containing the orthogonal matrix of the factoriza-
tion. On return, the necessary space is allocated by the function. Typically, float *q is declared, and
&g is used as an argument.

IMSL Q USER,floatg[] (Output)
A user-allocated array of size m x m containing the orthogonal matrix Q of the QR factorization.
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IMSL Q COL DIM, intg col dim (Input)
The column dimension of the array containing the Q matrix of the factorization.
Default: g col dim=m

IMSL PIVOT,intpvt[] (Input/Output)
Array of size n containing the desired variable order and usage information. The argument is used
with IMSL FACTOR ONLY or IMSL SOLVE ONLY.

On input, if pvt [k — 11> 0, then column k of A is an initial column. If pvt [k — 1] = 0, then the col-
umn of Ais a free column and can be interchanged in the column pivoting. If pvt [k — 1] <0, then
column k of Ais a final column. If all columns are specified as initial (or final) columns, then no pivot-
ing is performed. (The permutation matrix P is the identity matrix in this case.)

On output, pvt [k — 1] contains the index of the column of the original matrix that has been inter-
changed into column k.
Default: pvt [k —1]1=0,k=1,..,n

IMSL FACTOR ONLY
Compute just the QR factorization of the matrix AP with the permutation matrix P defined by pvt
and by further pivoting involving free columns. If IMSL. FACTOR ONLY is used, the additional argu-
ments IMSL PIVOT and IMSL FACTOR are required. In that case, the required argument b is
ignored, and the returned value of the function is NULL.

IMSL SOLVE ONLY
Compute the solution to the least-squares problem Ax = b given the QR factorization previously com-
puted by this function. If IMSL._SOLVE ONLY is used, arguments IMSL FACTOR_USER,
IMSL PIVOT, and IMSL BASIS are required, and the required argument a is ignored.

Description

The function ims1 f 1lin least squares_gen solves a system of linear least-squares problems Ax = b
with column pivoting. It computes a QR factorization of the matrix AP, where P is the permutation matrix defined
by the pivoting, and computes the smallest integer k satisfying [risq k+1| < [to/|*|rq 1] to the output variable

kbasis. Householder transformations

Oy =~y O

k=1,..,min(m — 1, n)are used to compute the factorization. The decomposition is computed in the form
Qmin(m-1, n)-Q1AP = R, s0 AP = QR where Q = Q1...Qmjin(m-1, n)- SiNce each Householder vector vy has zeros in the

first k — 1 entries, it is stored as part of column & of gr. The upper-trapezoidal matrix R is stored in the upper-
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trapezoidal part of the first min (m, n) rows of gr. The solution x to the least-squares problem is computed by

solving the upper-triangular system of linear equations R(1:k, 1:k) y (1:k) = (QTh) (1:k) with k = kbasis. The solu-
tion is completed by setting y(k + 1 : n) to zero and rearranging the variables, x = Py.

When IMSL FACTOR_ONLY is specified, the function computes the QR factorization of AP with P defined by the
input pvt and by column pivoting among “free” columns. Before the factorization, initial columns are moved to
the beginning of the array a and the final columns to the end. Both initial and final columns are not permuted
further during the computation. Just the free columns are moved.

If IMSL SOLVE ONLY is specified, then the function computes the least-squares solution to Ax = b given the QR
factorization previously defined. There are kbasis columns used in the solution. Hence, in the case that all col-
umns are free, x is computed as described in the default case.

Examples

Example 1

This example illustrates the least-squares solution of four linear equations in three unknowns using column piv-
oting. The problem is equivalent to least-squares quadratic polynomial fitting to four data values. Write the
polynomial as p(t) = x1 + txy + t°x3 and the data pairs (¢, by), ;= 2,/ =1, 2, 3, 4. A pointer to the solution to Ax = b is

returned by the function ims1 f 1in least squares gen

#include <imsl.h>

float al] = {1.0, 2.0, 4.0,
1.0, 4.0, 16.0,
1.0, 6.0, 36.0,
1.0, 8.0, 64.0};

float bl] {4.999, 9.001, 12.999, 17.001};

int main ()
{
int m= 4, n= 3;
float W e
/* Solve Ax = b for x */

x = imsl f lin least squares gen (m, n, a, b, 0);
/* Print x */

imsl f write matrix ("Solution vector", 1, n, x, 0);

}

Output
Solution vector
1 2 3
0.999 2.000 0.000
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Example 2

This example uses the same coefficient matrix A as in the initial example. It computes the QR factorization of A

with column pivoting. The final and free columns are specified by pvt and the column pivoting is done only

among the free columns.

#include <imsl.h>

float al] =

int pvt(]

int main ()
{
int
float
float
float

m= 4, n= 3;
*X, *b;

*p _graux, *p qgr;
*p_dar

/* Compute the QR factorization */
/* of A with partial column */
/* pivoting */

x = imsl f lin least squares gen (m, n, a, b,

IMSL PIVOT, pvt,

IMSL FACTOR, &p graux, &p dJr,
IMSL Q, &p g,

IMSL FACTOR ONLY,

0) 7

/* Print Q */

imsl f write matrix ("The matrix Q", m, m, p gq, 0);

/* Print R */

imsl f write matrix ("The matrix R", m, n, p qr,
IMSL PRINT UPPER,

imsl i write matrix ("The

}
Output

-0.1826
-0.3651
-0.5477
-0.7303

SN

The

-10.95

N

0);

The matrix Q

2 3
-0.8165 0.5000
-0.4082 -0.5000

0.0000 -0.5000

0.4082 0.5000
matrix R

2 3

-1.83 -73.03

-0.82 16.33

/* Print pivots */

Pivot Sequence", 1, n, pvt, 0);

-0.2236
0.6708
-0.6708
0.2236
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3 8.00
The Pivot Sequence

1 2 3
2 1 3

Example 3

This example computes the QR factorization with column pivoting for the matrix A of the initial example. It com-

putes the least-squares solutions to Ax = bj fori=1, 2, 3.

#include <imsl.h>
#include <stdio.h>

float all] = {1.0, 2.0, 4.0,
1.0, 4.0, 16.0,
1.0, 6.0, 36.0,
1.0, 8.0, 64.0};
float b[] = {4.999, 9.001, 12.999, 17.001,

2.0, 3.142, 5.11, 0.0,
1.34, 8.112, 3.76, 10.99};

int pvt[] = {0, 0, 0};

int main ()

{
int m=4, n= 3;
int i, k = 3;
float *p graux, *p_gr;
float tol = 1l.e-4;
int *kbasis;
float *x, *p_ res;

/* Factor A with the given pvt */
/* setting all variables to */
/* be imsl free */
imsl £ lin least squares gen (m, n, a, b,
IMSL BASIS, tol, &kbasis,
IMSL PIVOT, pvt,
IMSL FACTOR, é&p graux, &p dJr,
IMSL FACTOR ONLY, -
0);

/* Print some factorization */
/* information*/
printf ("Number of Columns in the base\n%2d", kbasis);

imsl f write matrix ("Upper triangular R Matrix", m, n, p qgr,

IMSL PRINT UPPER,
0);

imsl i write matrix ("The output column order ", 1, n, pvt,
0);

/* Solve Ax = b for each x */
/* given the factorization */
for (i =0; i < k; i++) {
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x = imsl f lin least squares gen (m,
IMSL BASIS, tol, &kbasis,

IMSL PIVOT, pvt,

IMSL FACTOR USER, p graux, p_dgr,
IMSL RESIDUAL, &p res,

IMSL SOLVE_ONLY,
0);

/* Print right-hand side, b */

/* and solution, x */

imsl f write matrix ("Right-hand side, b ",

(O

imsl f write matrix ("Solution, x ",

/* Print residuals, b - Ax */

imsl f write matrix ("Residual, b - Ax ",

0)s
}
Output

Number of Columns in the base
3
Upper triangular R Matrix

0.36

2
1 -75.26 -10.63 -1.59
2 -2.65 -1.15
3
The output column order
1 2 3
3 2 1
Right-hand side, b
1 2 3
5 9 13
Solution, x
1 2 3
0.999 2.000 0.000
Residual, b - Ax
1 2 3
-0.0004 0.0012 -0.0012
Right-hand side, b
1 2 3
2.000 3.142 5.110
Solution, x
1 2 3
-4.244 3.706 -0.391
Residual, b - Ax
1 2 3
0.395 -1.186 1.186

Right-hand side, b

0.0004

0.000

-0.395

m,

i*m],

0);

p_res,

&b[i*m],
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1 2 3
1.34 8.11 3.76

Solution, x

1 2 3
0.4735 0.9437 0.0286
Residual, b - Ax

1 2 3
-1.135 3.406 -3.406

Fatal Errors

IMSL SINGULAR TRI MATRIX

4
10,99

4
1.135

The input triangular matrix is singular. The index of

the first zero diagonal term is #.
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nonneg_least_squares

Compute the non-negative least squares (NNLS) solution of an m x n real linear least squares system, Ax = b,

x>0.

Synopsis

#include <imsl.h>

float *ims1l f nonneg least squares (intm, intn,floatall,floatb[],..., 0)

The type double function is ims1l d nonneg least squares.

Required Arguments

intm (Input)
The number of rows in the matrix.

intn (Input)
The number of columns in the matrix.

floata[] (Input)
An array of length m X n containing the matrix.

floatb [1 (Input)
An array of length m containing the right-hand side vector.

Return Value

An array of length n containing the approximate solution vector, x > 0.

Synopsis with Optional Arguments

#include <imsl.h>

float *ims1l f nonneg least squares (intm, intn,floatal],floatb[],

IMSL_ITMAX, int itmax,
IMSL_DROP MAX POS_DUAL, intmaxdual,
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IMSL DROP TOLERANCE, float tol,

IMSL SUPPLY WORK ARRAYS,intlwork, floatwork [],int 1iwork, int iwork([],
IMSL OPTIMIZED,int*iflag,

IMSL DUAL SOLUTION, float **dual,

IMSL DUAL SOLUTION USER, floatuduall[],

IMSL RESIDUAL NORM, float *rnorm,

IMSL RETURN USER, floatx[1],

0)

Optional Arguments

IMSL ITMAX, intitmax (Input)
The number of times a constraint is added or dropped should not exceed this maximum value. An
approximate solution x > 0 is returned when the maximum number is reached.
Default: itmax =3 X n.

IMSL DROP_MAX POS DUAL, intmaxdual (Input)
Indicates how a variable is moved from its constraint to a positive value, or dropped, when its current
dual value is positive. By dropping the variable corresponding to the first computed positive dual
value, instead of the maximum, better runtime efficiency usually results by avoiding work in the early
stages of the algorithm.
Ifmaxdual =0, the first encountered positive dual is used. Otherwise, the maximum positive dual, is
used. The results for x = 0 will usually vary slightly depending on the choice.
Default: maxdual =0

IMSL_DROP_TOLERANCE,ﬂOOt tol (Input)
This is a rank-determination tolerance. A candidate column

o= [a]

has values eliminated below the first entry of d . The resulting value must satisfy the relative
condition

ldll,>tol > llcll

Otherwise the constraint remains satisfied because the column g is linearly dependent on previously
dropped columns.
Default: tol = sqrt(imsl f machine (3))
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IMSL SUPPLY WORK ARRAYS,intlwork, floatwork[],int liwork, int iwork[] (Input/Output)
The use of this optional argument will increase efficiency and avoid memory fragmentation run-time
failures for large problems by allowing the user to provide the sizes and locations of the working
arrays work and iwork. With maxt as the maximum number of threads that will be active, itis
required that:

lwork >maxt* (m* (n+2) + n),and liwork>maxt*n.
Without the use of OpenMP and parallel threading, maxt=1.
IMSL OPTIMIZED, int *flag (Output)
A 0-1 flag noting whether or not the optimum residual norm was obtained. A value of 1 indicates the

optimum residual norm was obtained. A value of 0 occurs if the maximum number of iterations was
reached.

flag Description

0 the maximum number of iterations was reached.

1 the optimum residual norm was obtained.

IMSL DUAL SOLUTION, float **dual (Output)
An array of length n containing the dual vector, w = AT<Ax - b). This may not be optimal (all com-
ponents may not satisfy w < (), if the maximum number of iterations occurs first.

IMSL DUAL SOLUTION USER,floatdual[] (Output)
Storage for dual provided by the user. See IMSL. DUAL SOLUTION.

IMSL RESIDUAL NORUY, f/oat *rnorm (Output)
The value of the residual vector norm, ||Ax=b||

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the approximate solution vector, x >0 .

Description

Function ims1 f nonneg least squares computes the constrained least squares solution of 4Ax = b,
by minimizing [|Ax-bl|

2
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subjectto x > 0. It uses the algorithm NNLS found in Charles L. Lawson and Richard J. Hanson, Solving Least
Squares Problems, SIAM Publications, Chap. 23, (1995). The functionality for multiple threads and the constraint
dropping strategy are new features. The original NNLS algorithm was silent about multiple threads; all dual com-
ponents were computed when only one was used. Using the first encountered eligible variable to make non-
active usually improves performance. An optimum solution is obtained in either approach. There is no restriction
on the relative sizes of m and n.

Examples

Example 1

A model function of exponentials is

The exponential function argument parameters
lz = 1, l3 =5

are fixed. The coefficients
c;20,j=1,2,3
are estimated by sampling data values,

f(z,-), i=1,.21

using non-negative least squares. The values used for the data are

t;=0.25i,i=0,..20

with

= 1, Cy = 02, 3 = 0.3
#include <imsl.h>
#include <math.h>

#define M 21
#define N 3

int main () {
int i;
float a[M] [N], b[M], *c;

for (i = 0; 1 < M; i++) {
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/* Generate exponential values. This model is

y(t) = c 0 + c l*exp(-t) + c 2%exp(-5*t) */
al[i]l[0] = 1.0;
afi] [1] = exp(-(1i*0.25));
alil[2] = exp(-(1*0.25)*5.0);

/* Compute sample values */
b[i] = a[i]l[0] + 0.2*a[i]l[1] + 0.3*a[i]l[2];
}

/* Solve for coefficients, constraining values
to be non-negative. */
c = imsl f nonneg least squares(M, N, &a[0][0], b, 0);

/* With noise level = 0, solution should be (1, 0.2, 0.3) */
imsl f write matrix("Coefficients", 1, N, c, 0);

}

Output
Coefficients
1 2 3
1.0 0.2 0.3
Example 2

The model function of exponentials is

f(t) =c +czexp<—/12t> +c3exp<—/13t> +n(t),tZ 0

The values Ay, A3 are the same as in Example 1. The function n (t) represents normally distributed random noise

with a standard deviation ¢ = 10 . A simulation is done with ns = 10001 samples for n (). The resulting problem
is solved using OpenMP. To check that the OpenMP results are correct, a loop computes the solutions without
OpenMP followed by the same loop using OpenMP. The residual norms agree, showing that the routine returns

the same values using OpenMP as without using OpenMP.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>

#define M 21
#define N 3
#define NS 10001

int main () {
#define BS(i_,Jj_) bs[(i_)*M + (j_)]
#define X(i ,J ) x[(1 )*N + (3 )]
int thread safe=1, seed=123457, i, *iwork, j, lwork, liwork, maxt;

float b[M], *work, sigma=1.0e-3, a[M][N], rseq[NS], rpar[NS],
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“og, kg

/* Allocate work memory for all threads that are
used in the loops below. */

maxt = omp get max threads();

lwork = maxt* (M* (N+2) +N) ;

liwork = maxt*N;

work = (float *) malloc (lwork * sizeof (float));
iwork = (int *) malloc (liwork * sizeof (int));

x = (float *) malloc (NS*N * sizeof (float));

bs = (float *) malloc (NS*M * sizeof (float)):;

for (1 = 0; 1 < M; i++) {
/* Generate matrix values.
This model is y(t) =
c 0 + c 1*exp(-t) + c 2*exp(-5*t) + n(t) */

alilf0] = 1.0;
afi]l[1] = exp(-(i*0.25));
alil[2] = exp(-(1i*0.25)*5.0);

}

/* Solve for coefficients, constraining values to be non-negative.
First use a sequential for loop. Then a parallel for loop.
Record the residual norms and compare them. */

imsl random seed set (seed);
/* First the sequential loop.
Working memory is not included as an argument. */
for (j = 0; j < NS; j++) {
imsl f random normal (M, IMSL RETURN USER, b, 0);

/* Add normal pdf noise at the level sigma. */

for (i=0; 1i<M; i++) {
b[i] = sigma*b[i] + a[i]l[0] + 0.2*a[i][1l] + 0.3*afl[i][2];
BS(j,1i) = blil;

}

imsl f nonneg least squares (M, N, &a[0][0], &BS(j,0),
IMSL RETURN USER, &X(3,0),
IMSL RESIDUAL NORM, &rseqlijl,
0); -
}

/* Then the parallel for loop using OpenMP.
Working memory is an optional argument. This is not required
but helps prevent memory fragmentation. */

/* Reset x for output for the OpenMP loop. */
for (i = 0; i < NS*N; i++)
x[1] = 0.0;

#pragma omp parallel for private (j)
for (j = 0; j < NS; j++) {
imsl f nonneg least squares (M, N, &a[0][0], &BS(j,0),
IMSL RETURN USER, &X(3j,0),
IMSL RESIDUAL NORM, &rpar(jl,
IMSL SUPPLY WORK ARRAYS, lwork, work, liwork, iwork,
0);
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/* Check that residual norms agree exactly for both loops. They
should because the same problems are solved - one set
sequentially and the next set in parallel. */

for (j = 0; j < NS; j++) {

/* Since the two loops solve the same set of problems, the
residual norms must agree exactly. */

if (rpar[j] !'= rseqljl)
thread safe = 0;
break;

}
if (thread safe)

printf ("imsl f nonneg least squares is thread-safe.\n");
else

printf ("imsl f nonneg least squares is not thread-safe.\n");

system ("pause") ;

}
Output

imsl f nonneg least squares is thread-safe.

Warning Errors

IMSL MAX NNLS ITER REACHED The maximum number of iterations was reached.
The best answer will be returned. “itmax” = # was
used. A larger value may help the algorithm
complete.
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lin_Isg_lin_constraints

Solves a linear least-squares problem with linear constraints.

Synopsis
#include <ims1.h>

float*imsl f 1in 1sg lin constraints (intnra,intnca, intncon,floatall, floatb[],
float c[1, float b1 [1, floatbu[],int con typel],float x1b[], float xub[], .., 0)

The type double functionis imsl d lin 1sg lin constraints.

Required Arguments

intnra (Input)
Number of least-squares equations.

intnca (Input)
Number of variables.

int ncon (Input)
Number of constraints.

floata[] (Input)
Array of size nra X nca containing the coefficients of the nra least-squares equations.

floatb[1 (Input)
Array of length nra containing the right-hand sides of the least-squares equations.

floatc[1 (Input)
Array of size ncon x nca containing the coefficients of the ncon constraints.

floatb1[]1 (Input)
Array of length ncon containing the lower limit of the general constraints. If there is no lower limit on

the i-th constraint, then b1[1] will not be referenced.

floatbul] (Input)
Array of length ncon containing the upper limit of the general constraints. If there is no upper limit

on the j/-th constraint, then bu[i] will not be referenced. If there is no range constraint, bl and bu

can share the same storage.
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intcon_typel] (Input)
Array of length ncon indicating the type of constraints exclusive of simple bounds, where
con_type[i]=0, 1, 2, 3 indicates =, <=, >= and range constraints, respectively.

float x1b[]1 (Input)
Array of length nca containing the lower bound on the variables. If there is no lower bound on the
i-th variable, then x1b[i] should be set to 1.0e30.

float xub [1 (Input)
Array of length nca containing the upper bound on the variables. If there is no lower bound on the
i-th variable, then xub[i] should be set to —1.0e30.

Return Value

A pointer to the to a vector of length nca containing the approximate solution. To release this space, use
imsl free.If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

float *imsl f 1in 1sqg lin constraints (intnra,intnca,intncon, floatall, floatb[],
floatc 1, floatbl ], floatbul],intcon typel[],floatx1lb[], float xub[],
IMSL RETURN USER, floatx[1,
IMSL RESIDUAL, float **residual,
IMSL RESIDUAL USER,float residual user[],
IMSL PRINT,
IMSL ITMAX, intmax iter,
IMSL_REL FCN TOL,float rel tol,
IMSL _ABS_ FCN_TOL, float abs_tol,
0)

Optional Arguments

IMSL RETURN USER,floatx[] (Output)
Store the solution in the user supplied vector x of length nca.

IMSL RESIDUAL, float **residual (Output)
The address of a pointer to an array containing the residuals b — Ax of the least-squares equations at
the approximate solution.
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IMSL RESIDUAL USER,flogt residual user[] (Output)
Store the residuals in the user-supplied vector of length nra.

IMSL PRINT,
Debug output flag. Choose this option if more detailed output is desired.

IMSL ITMAX, intmax iter (Input)
Set the maximum number of add/drop iterations.
Default max _iter = 5*max(nra, nca)

IMSL REL FCN_TOL, float rel tol (Input)
Relative rank determination tolerance to be used.
Default: rel tol = sqgrt(imsl f machine(4))

IMSL ABS FCN_TOL, float abs_tol (Input)
Absolute rank determination tolerance to be used.
Default: abs_tol = sqgrt(imsl f machine(4))

Description

The function ims1 f 1in 1sg lin constraints solves linear least-squares problems with linear con-
straints. These are systems of least-squares equations of the form

Ax=b
subject to
b <Cx <b,
X =X < Xy

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is the coefficient
matrix of the constraints. The vectors by, b, x; and x, are the lower and upper bounds on the constraints and the

variables, respectively. The system is solved by defining dependent variables y = Cx and then solving the least-
squares system with the lower and upper bounds on x and y. The equation Cx — y = 0 is a set of equality con-
straints. These constraints are realized by heavy weighting, i.e., a penalty method, Hanson (1986, pp. 826-834).

Examples

Example 1
In this example, the following problem is solved in the least-squares sense:

3x
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Subject to

+ 2x

+x

=33
4x

+2x

+x

2x

+2x

+x

=13

+x

+Xx
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0 <xq < 0.5
0<x,=<05
0<x3=<05
#include <imsl.h>
int main ()
{
int nra = 4;
int nca = 3;
int ncon = 1;
float *x;
float afl] = {3.0, 2.0, 1.0,
A0, 2.0, 1500,
2.0, 2.0, 1.0,
1.0, 1.0, 1.0};
float Db[] = {3.3, 2.3, 1.3, 1.0};
float «c¢[] = {1.0, 1.0, 1.0};
float x1b[] = {0.0, 0.0, 0.0};
float xub[] = {0.5, 0.5, 0.5};
int con_typel[] = {1};
float bec[] = {1.0};
x = imsl f lin 1sg lin constraints (nra, nca, ncon,
bc, bc, con type, xlb, xub,
0);
imsl f write matrix ("Solution", 1, nca, X,
0)) 7
}
Output
Solution
1 2 3
0.5 0.3 0.2
Example 2

Cy

The same problem solved in the first example is solved again. This time residuals of the least-squares equations
at the approximate solution are returned, and the norm of the residual vector is printed. Both the solution and

residuals are returned in user-supplied space.

#include <imsl.h>
#include <stdio.h>

int main ()

{

int nra = 4;
int nca = 3;
int ncon = 1;

float x[3];

float residuall4];

float afl] = {3.0, 2.0, 1.0,
4.0, 2.0, 1.0,
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2.0, 2.0, 1.0,

1.0, 1.0, 1.0};
float Db[] = {3.3, 2.3, 1.3, 1.0};
float «c¢[] = {1.0, 1.0, 1.0};
float x1b[] = {0.0, 0.0, 0.0};
float =xub[] = {0.5, 0.5, 0.5};
int con_typel[] = {1};
float Dbc[] = {1.0};

imsl £ lin 1sq lin constraints (nra, nca, ncon, a,
bc, bc, con type, x1lb, xub,
IMSL RETURN USER, x,
IMSL RESIDUAL USER, residual,

0);
imsl f write matrix ("Solution", 1, nca, x, 0);
imsl f write matrix ("Residual", 1, nra, residual,
printf ("\n\nNorm of residual = %f\n",

imsl f vector norm (nra, residual, 0));

Output
Solution
1 2 3
0.5 0.3 0.2
Residual
1 2 3 4
-1.0 0.5 0.5 -0.0

Norm of residual = 1.224745

Fatal Errors

0);

IMSL BAD COLUMN ORDER

IMSL BAD POLARITY FLAGS

IMSL TOO MANY ITN

The input order of columns must be between 1 and
“nvar” while input order = # and “nvar” = # are
given.

The bound polarity flags must be positive while
component # flag “ibb[#]".

Maximum numbers of iterations exceeded.
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nonneg_matrix_factorization

OpenMP

more. ..

Given an m x n real matrix 4 > 0, and an integer k < min(m, n) , compute a factorization 4 = FG. The
matrix factors F,x = 0, Gy«, = 0 are computed to minimize the Frobenius, or sum of squares, norm of the

error matrix: £ = {ei,f} =A-FG

Synopsis

#include <imsl.h>

floatims1l f nonneg matrix factorization (intm, intn,intk, floatal],float £[],floatgl[],
... 0)

The type double function is imsl_d_nonneg_matrix_factorization.

Required Arguments

intm (Input)
The number of rows in the matrix.

intn (Input)
The number of columns in the matrix.

intk (Input)
The number of columns in the matrix £ and rows in the matrix G.

floata[] (Input)
An array of length m X n containing the A matrix.

float £[1 (Input/Output)
An array of length m X k containing the F matrix. If IMSL._ INITIAL FACTORS is used, the sweeps

begin using the input values for £, >0 .

float g1 (Output)
An array of length k X n containing the G matrix.
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Return Value

A scalar containing the Frobenius norm of the error matrix

5 12
E:error = E e

i,j

Synopsis with Optional Arguments

#include <ims1l.h>

float ims1l f nonneg matrix factorization (intm, intn,intk, floatal],float £11],floatg|

IMSL_WEIGHT,f/OClt wl],

IMSL INITIAL FACTORS,int factors,
IMSL ITMAX,intitmax,

IMSL RESIDUAL ERROR, floaterr,

IMSL RELATIVE ERROR, flogt rerr,

IMSL STOPPING CRITERION,int *reason,
IMSL NSTEPS TAKEN,int *nsteps,

0)

Optional Arguments

IMSL WEIGHT, floatw[] (Input)

1,

An array of length m X n containing the matrix W = 0 of weights that will be applied to the entries of

A = 0 during the solution sweeps. The factorization obtained is FG =W o A where the weights are
applied element-wise.
Default: Weights are not applied, or equivalently, the weights all have value 1.

IMSL INITIAL FACTORS,int factors (Input)
A flag that signifies if the matrix F is given an input estimate. If factors =0, start sweeps using

1
F=|k
0
Otherwise, use initial values in £ as the matrix F to start the sweeps.
Default: factors =0

IMSL ITMAX, intitmax (Input)
The maximum number of sweeps allowed for alternately solving for G = 0, then f = 0.
Default: itmax=2* (m+n+1)
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IMSL RESIDUAL ERROR, floaterr (Input)
A scalar that will stop the sweeps at the first one satisfying error < err.
Default: err=0

IMSL RELATIVE ERROR, float rerr (Input)
A scalar that will stop the sweeps at the first one satisfying

errOFier—p — €I0Tjtgr—1 < 1err X errotigy, iter > 2.
This test is made after three values of the error matrix norm have been computed. The sequence
{errorier} is decreasing with increasing values of the iteration counter, fter. If erroriter = €rrofiter—1

occurs, the sweeps stop.

Default: rerr = (ims l_f_machine(B))0'4.

IMSL STOPPING CRITERION,int*reason (Output)
This flag has the value 0,1,2 or 3 depending on which of the following conditions stopped the
sweeps:

Description
0 Errors in user input occurred
1 Reached maximum iterations
2 Residual norm is small
3 Relative error convergence

IMSL NSTEPS TAKEN,int *nsteps (Output)
The last value of the iteration count, jter, that gives the number of sweeps.

Description

Function imsl f nonneg matrix factorization computesanapproximation 4 = FG, or with
weights, W o A = FG; the factors are constrained: .« = 0, G, = 0. The matrix factors F,x, = 0, G, = O are

computed to minimize the Frobenius or sum of squares, norm of the error matrix: E= {e[’ _,-} =A-FG

The algorithm is based on Alternating Least Squares, presented by P. Paatero and U. Tapper,
“Positive Matrix Factorization, etc.” Environmetrics, (5), p. 111-126 (1994).

Each constrained least squares problem is solved using ims1 f nonneg least squares. This process alter-
nates between computing the batch of » columns of G and then the batch of m rows of F'. This constitutes a
“sweep.”
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There is no restriction on the relative sizes of g and x . The restrictions on the integer k are
0<k< min(m, n) .When an initial matrix G is to be used, instead of an initial F, repose the factorization in

transposed form A7 = GTFT, or with weights, AT o W' = GTFT.

The matrix factors F, G are not unigue. In the function, the output rows of G are scaled to have sum equal to
the value 1. The scaled columns of F are sorted so the column sums are non-increasing. This sort order is then
applied to the rows of G .

Example

Five customers, Beth, Dick, Fred, Joe and Kay make purchases at a convenience store.

Beth 3 8 1
Dick 2 5 1

Fred 5 1 10

Joe 20 40 2 1
Kay 10 1 10 1

This matrix 4sxs of customers versus items purchased is approximated by a non-negative matrix factorization,

using k=2: A = FG . The example is taken from one due to H. Jin and M. Saunders, “Exploring Nonnegative
Matrix Factorization,” A Workshop on Algorithms for Massive Data Sets, Stanford University, June 25-28, (2008).

#include <imsl.h>
#include <stdio.h>

#define M 5
#define N 5
#define K 2

int main () {
float a[M] [N]= {

{o, 3,8 0,1},
{ OI 2/ 5/ ll O}I
{> 0,1, 10, 0},
{ 0, 20, 40, 2, 1},
{10, 0, 1, 10, 1}

)i
float error, f[M*K], g[K*N];
int nsteps, reason;

/* Solve for factors, constraining values to be non-negative.
Get reason for stopping and number of sweeps. */
error = imsl f nonneg matrix factorization(M, N, K, &a[0][0], £, g,
IMSL STOPPING CRITERION, &reason,
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IMSL NSTEPS TAKEN, &nsteps,
0)

imsl f write matrix("Matrix Factor F", M, K, £, 0);
imsl f write matrix("Matrix Factor G", K, N, g, 0);

printf ("\nFrobenius Norm of E=A-F*G is %e\n", error);
printf ("Reason for stopping sweeps: %d\n", reason);
printf ("Number of sweeps taken: $d\n", nsteps);

Output
Matrix Factor F

1 2
1 11.96 0.00
2 7.51 0.94
3 0.33 16.61
4 62.90 0.13
5 0.00 21.35

Matrix Factor G

1 2 3 4 5
1 0.0000 0.3150 0.6373 0.0298 0.0178
2 0.4048 0.0000 0.0473 0.5190 0.0288

Frobenius Norm of E=A-F*G is 3.195350e+000
Reason for stopping sweeps: 3
Number of sweeps taken: 10
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lin_svd_gen

Computes the SVD, A = USVT, of a real rectangular matrix A. An approximate generalized inverse and rank of A
also can be computed.

Synopsis
#include <ims1l.h>
float *ims1l £ 1in svd gen(intm, intn,floatal], .., 0)

The type double functionis imsl d 1in svd gen.

Required Arguments

intm (Input)
Number of rows in the matrix.

intn (Input)
Number of columns in the matrix.

floata[] (Input)
Array of size m X n containing the matrix.

Return Value

If no optional arguments are used, ims1 f 1in svd gen returns a pointer to an array of size min (m, n) con-
taining the ordered singular values of the matrix. To release this space, use ims1 free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
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float *imsl £ 1in svd gen (intm, intn, floatal],
IMSL_METHOD,M{imeth
IMSL A COL DIM, inta col dim,
IMSL_RETURN USER,floats[],
IMSL RANK, float tol, int *rank,
IMSL U, float **p_u,
IMSL_U USER, floatul[],
IMSL U COL DIM, intu_col dim,
IMSL V, float **p v,
IMSL_V_USER, floatv[],
IMSL V_COL DIM, intv_col dim,
IMSL INVERSE, float **p gen inva,
IMSL INVERSE USER, floatgen invall,
IMSL INV _COL DIM, intgen inva col dim,
0)

Optional Arguments

NOTE:

IMSL METHOD, int imeth (Input)
The method used in the computation of the singular values and vectors.

Computational Method
imeth IMSL LAPACK
0 Uses QR method to deter- Uses QR method if singular vectors are
mine singular values and de-sired and the dqds algorithm (Fer-
singular vectors. nando and Parlett, 1994) otherwise.
1 Uses the same algorithm as  |Uses the dqds algorithm (Fernando and
for imeth = 0. Parlett, 1994) if singular values only are
desired and a divide-and-conquer algo-
rithm if singular vectors are desired.

Default: imeth =0

The LAPACK algorithms can be used if a vendor supplied library thatsupports LAPACK is
available. Examples are Intel's® Math Kernel Library (MKL) or Sun's™ High Performance
Library. Otherwise, only the native IMSL algorithm is available.
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IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, float s [] (Output)
A user-allocated array of size min (m, n) containing the singular values of A in nonincreasing order. If
IMSL RETURN USERIsused, thereturnvalue of imsl £ 1in svd geniss.

IMSL RANK, float tol, int *rank (Input/Output)

float tol (Input)
Scalar containing the tolerance used to determine when a singular value is negligible and
replaced by the value zero. If tol > 0, then a singular value s;; is considered negligible if

Sij < tol.lftol <0, thenasingularvalue sj;is considered negligible if sjj < [tol]*||Allw. I
this case, [tol]| should be an estimate of relative error or uncertainty in the data.
Default: tol = 100.0 * ims1 f machine(4)
int *rank (Output)
Integer containing an estimate of the rank of A.
IMSL U, float **p u (Output)
The address of a pointer to an array of size m x min (m, n) containing the min (m, n) left singular vec-
tors of A. On return, the necessary space is allocated by ims1 £ 1in svd gen. Typically,
float *p_uis declared, and &p_u is used as an argument.

IMSL U USER,floatul] (Output)
The address of a pointer to an array of size m x min (m, n) containing the min (m, n) left singular vec-
tors of A. The left singular vectors can be returned using the storage locations of the array a. Note
that the return of the left and right singular vectors cannot use the storage locations of a
simultaneously.

IMSL U COL DIM, intu_col dim (Input)
The column dimension of the array containing the left singular vectors.
Default: u_col dim=min (m, n)

IMSL V, float **p_ v (Output)
The address of a pointer to array of size n X min (m, n) containing the right singular vectors of A. On
return, the necessary space is allocated by ims1 £ 1in svd gen. Typically, float *p v is
declared, and &p_ v is used as an argument.

IMSL V USER,floatv[] (Output)
The address of a pointer to array of size n x min (m, n) containing the right singular vectors of A. The
right singular vectors can be returned using the storage locations of the array a. Note that the return
of the left and right singular vectors cannot use the storage locations of a simultaneously.
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IMSL V_COL DIM, intv_col dim (Input)
The column dimension of the array containing the right singular vectors.
Default: v_col dim=min (m, n)

IMSL INVERSE, float **p gen inva (Output)
The address of a pointer to an array of size n x m containing the generalized inverse of the matrix A.
On return, the necessary space is allocated by ims1 f 1lin svd gen. Typically,
float *p_gen invaisdeclared, and &p gen invaisused as an argument.

IMSL INVERSE USER, floatgen inval[] (Output)
A user-allocated array of size n x m containing the general inverse of the matrix A.

IMSL INV _COL DIM intgen inva col dim (Input)
The column dimension of the array containing the general inverse of the matrix A.
Default: gen_inva col dim=m

Description

The function ims1 f 1lin svd gen computes the singular value decomposition of a real matrix A. It first
reduces the matrix A to a bidiagonal matrix B by pre- and post-multiplying Householder transformations. Then,
the singular value decomposition of B is computed using the implicit-shifted QR algorithm. An estimate of the
rank of the matrix A is obtained by finding the smallest integer k such that s < tol or Skk = [tol|*||All . Since

Si+1,i+1 < Sjjs it follows that all the s;; satisfy the same inequality for / =k, .., min (m, n) — 1. The rank'is set to the
value k — 1. If A= USVT, its generalized inverse is A* = VS* UT. Here,
St= diag(sill, e szli, 0, ..., 0>

Only singular values that are not negligible are reciprocated. If IMSL INVERSE or IMSL INVERSE USERIsS
specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is
then computed. The function ims1 f 1in svd gen failsif the QR algorithm does not converge after 30 iter-
ations isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a real 6 x 4 matrix.

#include <imsl.h>

float af[] = {1.0, 2.0, 1.0, 4.0,
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3.0, 2.0, 1.0, 3.0,
4.0, 3.0, 1.0, 4.0,
2,0, 1,0, 3.0, 1,0,
1.0, 5.0, 2.0, 2.0,
1.0, 2.0, 2.0, 3.0};
int main ()
{
int m= 6, n= 4;
float &isk

/* Compute singular values */

s = imsl £ lin svd gen (m, n, a, 0);
/* Print singular values */
imsl f write matrix ("Singular values", 1, n, s, 0);

}

Output
Singular values
1 2 3 4
11.49 3.27 2.65 2.09
Example 2

This example computes the singular value decomposition of the 6 x 4 real matrix A. The singular values are
returned in the user-provided array. The matrices U and V are returned in the space provided by the function

imsl f lin svd gen.

#include <imsl.h>

float af[] = {1.0, 2.0, 1.0, 4.0,
3,0, 2,0, 1.0, 3.0,
4.0, 3.0, 1.0, 4.0,
2.0, 1.0, 3.0, 1.0,
1.0, 5,0, 2,0, 2,0,
1.0, 2.0, 2.0, 3.0},
int main ()
{
int m= 6, n=4;
float s[4], *p u, *p v;

/* Compute SVD */
imsl f lin svd gen (m, n, a,
IMSL RETURN USER, s,
IMSL U, &p u,
IMSL V, &p_v,
0);

/* Print decomposition*/

imsl f write matrix ("Singular values, S", 1, n, s, 0);
imsl f write matrix ("Left singular vectors, U", m, n, p u, 0);
imsl f write matrix ("Right singular vectors, V", n, n, p v, 0);
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Output
Singular values, S
1 2 3 4
11.49 3.27 2.65 2.09
Left singular vectors, U
1 2 3 4
1 -0.3805 -0.1197 -0.4391 0.5654
2 -0.4038 -0.3451 0.0566 -0.2148
3 -0.5451 -0.4293 -0.0514 -0.4321
4 -0.2648 0.0683 0.8839 0.2153
5 -0.4463 0.8168 -0.1419 -0.3213
6 -0.3546 0.1021 0.0043 0.5458
Right singular vectors, V
1 2 3 4
1 -0.4443 -0.5555 0.4354 -0.5518
2 -0.5581 0.6543 -0.2775 -0.4283
3 -0.3244 0.3514 0.7321 0.4851
4 -0.6212 -0.3739 -0.4444 0.5261
Example 3

This example computes the rank and generalized inverse of a 3 x 2 matrix A. The rank and the 2 x 3 generalized

inverse matrix A* are printed.

#include <imsl.h>
#include <stdio.h>

float al] =
{1.0, 0.0,
1.0, 1.0,
100.0, -50.0};
int main ()
{
int m= 3, n= 2;
float tol;
float gen inval[6];
float &Isk
int rank;

/* Compute generalized inverse */
tol = 1.e-4;

s = imsl f 1lin svd gen (m, n, a,
IMSL RANK, tol, &rank,
IMSL:INVERSE_USER, gen_inva,
IMSL INV_COL DIM, m,

0);

/* Print rank, singular values and */

/* generalized inverse. */

printf ("Rank of matrix = %$2d", rank);

imsl f write matrix ("Singular values", 1, n, s, 0);

imsl f write matrix ("Generalized inverse", n, m, gen inva,
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IMSL A COL DIM, m,
0);
}

Output

Rank of matrix = 2
Singular values

1 2
111.8 1.4
Generalized inverse
1 2
1 0.100 0.300
2 0.200 0.600

Fatal Errors

IMSL SLOWCONVERGENT MATRIX

IMSL UPDATE PROCESS FAILED

0.006
-0.008

Convergence cannot be reached after 30 iterations.

The algorithm failed to compute a singular value.
The update process of divide-and-conquer failed.
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lin_svd_gen (complex)

Computes the SVD, A = USW, of a complex rectangular matrix A. An approximate generalized inverse and rank of
A also can be computed.

Synopsis
#include <ims1.h>
fcomplex *imsl c lin svd gen (intm,intn,fcomplexal], .., 0)

The type d_complex functionis ims1 z lin svd gen.

Required Arguments

intm (Input)
Number of rows in the matrix.

intn (Input)
Number of columns in the matrix.

fcomplexal] (Input)
Array of size m x n containing the matrix.

Return Value

Using only required arguments, ims1 ¢ 1lin svd gen returns a pointer to a complex array of length
min (m, n) containing the singular values of the matrix. To release this space, use ims1 free.If no value can be
computed then NULL is returned.
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Synopsis with Optional Arguments

#include <ims1l .h>

fcomplex *imsl ¢ lin svd gen (intm, intn, f complexal],

IMSL METHOD, int imeth,

IMSL A COL DIM, inta col dim,
IMSL_RETURN_USER,fcomplexs[],

IMSL RANK, float tol, int *rank,
IMSL U, fcomplex **p u,

IMSL U USER,fcomplexul],
IMSL U COL DIM, intu _col dim,
IMSL V, fcomplex **p v,

IMSL V_USER,fcomplexv[],

IMSL V_COL DIM, intv_col dim,

IMSL INVERSE, f complex **p gen inva,
IMSL INVERSE USER,fcomplexgen inval],
IMSL INV COL DIM, intgen inva col dim,
0)

Optional Arguments

IMSL METHOD, int imeth (Input)
The method used in the computation of the singular values and vectors.

Default: imeth =0

Computational Method

imeth IMSL LAPACK

0 Uses QR method to determine Uses QR method if singular vectors are de-
singular values and singular sired and the dqds algorithm (Fernando and
vectors. Parlett, 1994) otherwise.

Uses the same algorithm as for |Uses the dqds algorithm (Fernando and Par-
imeth =0. lett, 1994) if singular values only are desired
and a divide-and-conquer algorithm if singu-
lar vectors are desired.
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NOTE: The LAPACK algorithms can be used if a vendor supplied library thatsupports LAPACK s
available. Examples are Intel's® Math Kernel Library (MKL) or Sun's™ High Performance
Library. Otherwise, only the native IMSL algorithm is available.

IMSL RETURN USER,fcomplex s [] (Output)
A user-allocated array of length min (m, n) containing the singular values of A in nonincreasing order.
The complex entries are all real. If IMSL_RETURN_USER is used, the return value of
imsl ¢ lin svd geniss.

IMSL RANK, float tol, int *rank (Input/Output)

float tol (Input)
Scalar containing the tolerance used to determine when a singular value is negligible and
replaced by the value zero. If tol > 0, then a singular value s;; is considered negligible if

Sij < tol.Iftol <0, thenasingularvalue sjis considered negligible if 5j; < [tol|*[Allw. IN

this case, [tol| should be an estimate of relative error or uncertainty in the data.
Default: tol = 100.0 * ims1 f machine(4)

int *rank (Output)
Integer containing an estimate of the rank of A.
IMSL U, fcomplex **p u (Output)
The address of a pointer to an array of size m x min (m, n) containing the min (m, n) left singular vec-
tors of A. On return, the necessary space is allocated by ims1 ¢ 1in svd gen. Typically,
f.complex *p_u is declared, and &p_u is used as an argument.

IMSL U USER, fcomplexu[] (Output)
The address of a pointer to an array of size m x min (m, n) containing the min (m, n) left singular vec-
tors of A. The left singular vectors can be returned using the storage locations of the array a. Note
that the return of the left and right singular vectors cannot use the storage locations of a
simultaneously.

IMSL U _COL_DIM, intu_col dim (Input)
The column dimension of the array containing the left singular vectors.
Default: u_col dim=min (m, n)

IMSL V, fcomplex **p v (Output)
The address of a pointer to array of size n x min (m, n) containing the right singular vectors of A. On
return, the necessary space is allocated by ims1 ¢ 1lin svd gen. Typically, f complex *p_ v is
declared, and &p_v is used as an argument.
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IMSL V USER, fcomplexv[] (Output)
The address of a pointer to array of size n x min (m, n) containing the right singular vectors of A. The
right singular vectors can be returned using the storage locations of the array a. Note that the return
of the left and right singular vectors cannot use the storage locations of a simultaneously.

IMSL V_COL DIM, intv_col dim (Input)
The column dimension of the array containing the right singular vectors.
Default: v_col dim= min (m, n)

IMSL INVERSE, fcomplex **p gen inva (Output)
The address of a pointer to an array of size n x m containing the generalized inverse of the matrix A.
On return, the necessary space is allocated by ims1 ¢ 1lin svd gen. Typically,
f.complex *p_gen_invais declared, and &p_gen invais used as an argument.

IMSL INVERSE USER,fcomplexgen inva[] (Output)
A user-allocated array of size n x m containing the general inverse of the matrix A.

IMSL INV COL DIM, intgen inva col dim (Input)
The column dimension of the array containing the general inverse of the matrix A.
Default: gen _inva col dim=m

IMSL A COL DIM inta col dim (Input)
The column dimension of the array a.
Default: a_col dim=n

Description

The functionimsl ¢ lin svd gen computes the singular value decomposition of a complex matrix A. It first
reduces the matrix A to a bidiagonal matrix B by pre- and post-multiplying Householder transformations. Then,
the singular value decomposition of B is computed using the implicit-shifted QR algorithm. An estimate of the
rank of the matrix A is obtained by finding the smallest integer k such that sy, < tol or Skk = [tol|*||All . Since

Si+1,i+1 < Sij, it follows that all the s;; satisfy the same inequality for / = k, .., min (m, n) — 1. The rank is set to the

value k — 1. If A= USVH, its generalized inverse is A" = V5* UH,
Here,
+_ -1 -1
S = dlag(Sl’ 1> -+ ,Si, 0> 0, ee s 0>

Only singular values that are not negligible are reciprocated. If IMSL INVERSE or IMSL INVERSE USERIS
specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is
then computed. The function ims1 ¢ 1in svd gen fails if the QR algorithm does not converge after 30 iter-
ations isolating an individual singular value.
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Examples

Example 1

This example computes the singular values of a 6 x 3 complex matrix.

#include <imsl.h>
int main ()

{

int m= 6, n= 3;

f complex wGe

f complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
{3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
{4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
{2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
{1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
{1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};

/* Compute singular values */
s = imsl ¢ lin svd gen (m, n, a, 0);

/* Print singular values */
imsl ¢ write matrix ("Singular values", 1, n, s, 0);

}

Output
Singular values
1 2 3
( 11.77, 0.00) ( 9.30, 0.00) ( 4.99, 0.00)
Example 2

This example computes the singular value decomposition of the 6 x 3 complex matrix A. The singular values are

returned in the user-provided array. The matrices U and V are returned in the space provided by the function

imsl c lin svd gen

#include <imsl.h>

int main ()

{

int m= 6, n= 3;

f complex s[31], *p_u p v

f complex a[] = {{1.0, 0}, {3.0, 2.0}, {1.0,-4.0},
{3. O,—2.0}, {2.0,-4.0}, {l.O, 3.0},
{4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
{2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
{1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
{1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};

/* Compute SVD of a */
imsl ¢ 1lin svd gen (m, n, a,
- IMSL RETURN USER, s,
IMSL U, &p u,
IMSL V, &p_v,
0);
/* Print decomposition factors

*/
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imsl ¢ write matrix ("Singular values, S",

Output
Singular values, S
1 2
( 11.77, 0.00) ( 9.30, 0.00) ( 4.
Left singular vectors, U
1 2
1 ( 0.1968, 0.2186) ( 0.5011, 0.0217) ( -0
2 | 0.3443, -0.3542) ( -0.2933, 0.0248) ( 0
3 0.1457, 0.2307) ( -0.5424, 0.1381) ( -0
4 ( 0.3016, -0.0844) ( 0.2157, 0.2659) ( -0
5 ( 0.2283, -0.6008) ( -0.1325, 0.1433) ( 0
6 ( 0.2876, -0.0350) ( 0.4377, -0.0400) ( 0
Right singular vectors, V
1 2
1 ( 0.6616, 0.0000) ( -0.2651, 0.0000) ( -0.
2 0.7355, 0.0379) ( 0.3850, -0.0707) ( 0.
3 0.0507, =-0.1317) ( 0.1724, 0.8642) ( -0.
Example 3

1,
imsl ¢ write matrix ("Left singular vectors, U", m, n, p u, O
imsl ¢ write matrix ("Right singular vectors, V", n, n, p v,

n, s, 0);

’

) 2
0)

3

99, 0.00)

3
.2007, -0.1003)
.1155, -0.2338)
.4361, -0.4407)
.0523, -0.0894)
.3152, -0.0090)
.0458, -0.6205)

3
7014, 0.0000)
5482, 0.0624)
0173, -0.45009)

This example computes the rank and generalized inverse of a 6 X 4 matrix A. The rank and the 4 x 6 generalized

inverse matrix A* are printed.

#include <imsl.h>
#include <stdio.h>

int main ()
{
int
float
f complex

m = 6,
tol;
gen inv([24],

n = 4, rank;

*g;

f complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, {1.0,0.0},
{3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, {0.0,1.0},
{4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, {0.0,0.0},
{2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, {2.0,1.0},
{1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, {1.0,3.1},
{1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}, {1.4,1.9}};

/* Factor a */

tol = 1.e-4;

s = imsl ¢ lin svd gen (m, n, a,

IMSL RANK, tol, &rank,
IMSL_ INVERSE USER, gen inv,
IMSL_INV_COL DIM, m,

0);
/* Print rank and generalized inverse matrix */
printf ("Rank = %2d", rank);
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imsl ¢ write matrix ("Singular values",

0)

imsl c write matrix ("Generalized inverse", n, m, gen inv,

IMSL_A COL_DIM, m,

0);
}
Output

Rank = 4

Singular values

1 2
( 12.13, 0.00) ( 9.53, 0.00) (
4

( 1.74, 0.00)

Generalized inverse

1 2
1 ( 0.0266, -0.0164) ( -0.0185, -0.0453)
2 ( 0.0061, -0.0280) ( 0.0820, 0.11506)
3 ( -0.0019, 0.0572) ( 0.1174, -0.0812)
4 ( 0.0380, -0.0298) ( -0.0758, 0.2158)
4 5

1 ( -0.0220, 0.0428) ( -0.0003, 0.0709)
2 ( 0.0959, -0.0885) ( -0.0187, =-0.0287)
3 ( -0.0234, -0.1033) ( -0.0769, -0.0103)
4 0.2918, 0.0763) ( 0.0881, -0.2070)

Fatal Errors

IMSL SLOWCONVERGENT MATRIX

IMSL UPDATE PROCESS FAILED

Convergence cannot be reached after 30 iterations.

The algorithm failed to compute a singular value.
The update process of divide-and-conquer failed.

1,

n,

—_~ o~~~

Sy

SOy

.0720,
.0410,
.0499,
.0356,

.0254,
.0218,
.0810,
21531,

.00)

.0700)
.0242)
.0463)
.0557)

.1050)
.1109)
.1074)
.0814)
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lin_sol_nonnegdef

Solves a real symmetric nonnegative definite system of linear equations Ax = b. Using options, computes a Chole-

sky factorization of the matrix A, such that A= RTR = LLT. Computes the solution to Ax = b given the Cholesky

factor.

Synopsis
#include <ims1.h>

float *imsl f 1in sol nonnegdef (intn,floatal],floatb[], .., 0)

The type double functionis imsl d 1in sol nonnegdef.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size n x n containing the matrix.

floatb[1 (Input)
Array of size n containing the right-hand side.

Return Value

Using required arguments, ims1 f 1lin sol nonnegdef returns a pointer to a solution x of the linear sys-
tem. To release this space, use ims1 free. If novalue can be computed, NULL is returned.

Synopsis with Optional Arguments

#include <ims1l.h>

float *imsl f 1in sol nonnegdef (intn,floata[],floatb[],

IMSL RETURN_USER, floatx[],
IMSL A COL DIM,inta_col dim,
IMSL FACTOR, float **p_ factor,
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IMSL FACTOR_USER, float factor[],
IMSL FAC COL DIM, intfac_col dim,
IMSL INVERSE, float **p inva,

IMSL INVERSE USER,floatinval],
IMSL INV_COL DIM, intinv_col dim,
IMSL_TOLERANCE,f/OC/[ tol,

IMSL FACTOR ONLY,

IMSL SOLVE_ ONLY,

IMSL INVERSE ONLY,

0)

Optional Arguments

IMSL RETURN USER, floatx[] (Output)
A user-allocated array of length n containing the solution x. When this option is specified, no storage
is allocated for the solution, and ims1 f 1in sol nonnegdef returns a pointer to the array x.

IMSL A COL DIM inta _col dim (Input)
The column dimension of the array a.
Default:a_col dim=n

IMSL FACTOR, float **p factor (Output)
The address of a pointer to an array of size n X n containing the LLT factorization of A. When this
option is specified, the space for the factor matrix is allocated by ims1 f 1in sol nonnegdef.
The lower-triangular part of the factor array contains L, and the upper-triangular part contains LTR.
Typically, float *p_factor is declared, and &p_factor is used as an argument.

IMSL FACTOR USER, float factor[] (Input/Output)
A user-allocated array of size n x n containing the LLT factorization of A. The lower-triangular part of
factor contains L, and the upper-triangular part contains LT. If a is not needed, a and factor can
be the same storage locations. If IMSL _SOLVE is specified, this parameter is input; otherwise, it is
output.

IMSL FAC COL DIM, int fac col dim (Input)
The column dimension of the array containing the LLT factorization.
Default: fac_col dim=n

IMSL INVERSE, float **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of A. The space for this array
is allocated by ims1l f 1in sol nonnegdef. Typically, float *p_ inva is declared, and
&p_invaisused as an argument.
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IMSL INVERSE USER, float inval[] (Output)
A user-allocated array of size n x n containing the inverse of A. If a is not needed, a and factor can

be the same storage locations. The storage locations for A cannot be the factorization and the
inverse of A at the same time.

IMSL INV_COL DIM, intinva_col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n
IMSL TOLERANCE, float tol (Input)
Tolerance used in determining linear dependence. See the documentation for ~imsl1 f machine

(imsl f machine (float))in Chapter 12, “Utilities.
Default: tol =100* ims1l f machine (4)

IMSL FACTOR ONLY
Compute the LLT factorization of A only. The argument b is ignored, and either the optional argument

IMSL FACTOR or IMSL FACTOR USERIs required.

IMSL SOLVE_ONLY
Solve Ax = b using the factorization previously computed by this function. The argument a is ignored,
and the optional argument IMSL_FACTOR_USER is required.

IMSL INVERSE ONLY
Compute the inverse of A only. The argument b is ignored, and either the optional argument

IMSL INVERSE or IMSL INVERSE USER is required.

Description

The function ims1l £ 1in sol nonnegdef solves a system of linear algebraic equations having a symmet-

ric nonnegative definite (positive semidefinite) coefficient matrix. It first computes a Cholesky (LLT or RTR)
factorization of the coefficient matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds sequentially by columns. The i-th
column is declared to be linearly dependent on the first / — 1 columns if

i—1

2
lay = il < ela

J=1
where € (specified in tol) may be set by the user. When a linear dependence is declared, all elements in the /-th
row of R (column of L) are set to zero.
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Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for checking for matrices that
are not nonnegative definite also are incorporated. The function ims1 f 1in sol nonnegdef declaresA
to not be nonnegative definite and issues an error message if either of the following conditions are satisfied:

l. a,— Zj;llr_?. < —e¢la,l

1

i—1
2. r;=0 and la,— Yrr,l>eJaa,.k>i

Healy's (1968) algorithm and the function ims1 f 1in sol nonnegdef permit the matrices Aand R to
occupy the same storage. Barrett and Healy (1978) in their remark neglect this fact. The function
imsl f lin sol nonnegdef uses
i-1 o
2t
j=1

for gjj in the above condition 2 to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive definite, then the resulting
inverse is a symmetric g, inverse of A. For a matrix G to be a g, inverse of a matrix A, G must satisfy conditions 1

and 2 for the Moore-Penrose inverse, but generally fail conditions 3 and 4. The four conditions for G to be a
Moore-Penrose inverse of A are as follows:

1. AGA=A
2. GAG=G
3. AGis symmetric

4. GAis symmetric

The solution of the linear system Ax = b is computed by solving the factored version of the linear system RTRx = b
as two successive triangular linear systems. In solving the triangular linear systems, if the elements of a row of R
are all zero, the corresponding element of the solution vector is set to zero. For a detailed description of the algo-
rithm, see Section 2 in Sallas and Lionti (1988).

Examples
Example 1

A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83-86 and 104-105) discusses
the computations for the factorization and solution to this problem.
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#include <imsl.h>

int main ()

{

int n = 4;
float WK P
float al] = {36.0, 12.0, 30.0, 6.0,
12.0, 20.0, 2.0, 10.0,
30.0, 2.0, 29.0, 1.0,
6.0, 10.0, 1.0, 14.0};
float b[] = {18.0, 22.0, 7.0, 20.0};

/* Solve Ax = b for x */
x = imsl f 1in sol nonnegdef(n, a, b, 0);

/* Print solution, x, of Ax = b */
imsl f write matrix("Solution, x", 1, n, x, 0);

}

Output
Solution, x
1 2 3 4
0.167 0.500 0.000 1.000
Example 2

The symmetric nonnegative definite matrix in the initial example is used to compute the factorization only in the
firstcallto 1in sol nonnegdef. The space needed for the factor is provided by the user. On the second call,

both the LLT factorization and the right-hand side vector in the first example are used as the input to compute a
solution x. It also illustrates another way to obtain the solution array x
#include <imsl.h>

int main ()

{

int n =4, a col dim = 6;
float factor[36], x[5];
float al]l] = {36.0, 12.0, 30.0, 6.0,

12.0, 20.0, 2.0, 10.0,
30.0, 2.0, 29.0, 1.0,
6.0, 10.0, 1.0, 14.0};
float b[] = {18.0, 22.0, 7.0, 20.0};
/* Factor A */
imsl £ 1lin sol nonnegdef (n, a, b,
- IMSL FACTOR USER, factor,
IMSL FAC COL DIM, a col dim,
IMSL_FACTOR ONLY,
0);
/* NULL is returned in */
/* this case. Another */
/* way to obtain the wf
/* factor is to use the */
/* IMSL FACTOR option. */
imsl f write matrix("factor", n, n, factor,
IMSL A COL DIM, a col dim,
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0);
/* Get the solution using */
/* the factorized matrix. */
imsl f lin sol nonnegdef (n, a, b,
- T IMSL, FACTOR USER, factor,
IMSL FAC COL DIM, a col dim,
IMSL RETURN USER, x,
IMSL SOLVE ONLY,
0);
imsl f write matrix("Solution, x, of Ax = b", 1, n, x, 0);

Output
Factor
1 2 3 4
1 6 2 5 1
2 2 4 =2 2
3 5 -2 0 0
4 1 2 0 3
Solution, x, of AXx = b
1 2 3 4
0.167 0.500 0.000 1.000
Example 3

This example uses the IMSL INVERSE option to compute the symmetric g inverse of the symmetric nonnega-
tive matrix in the first example. Maindonald (1984, p. 106) discusses the computations for this problem.
#include <imsl.h>

int main ()

{

int n = 4;
float *p a inva, *p a inva a, *p_ inva;
float al] =

{36.0, 12.0, 30.0, 6.0,
12.0, 20.0, 2.0, 10.0,
30,0, 2,0, 29,0, 1.0,

6.0, 10.0, 1.0, 14.0};

/* Get g2 inverse(a) */

imsl f lin sol nonnegdef (n, a, NULL,
IMSL INVERSE, &p inva,
IMSL INVERSE ONLY,
0);

/* Form a*g2 inverse(a) */
p a inva = imsl f mat mul rect ("A*B",
~ TIMSL A MATRIX, n, n, a,
IMSL B MATRIX, n, n, p_ inva,
0);

/* Form a*g2 inverse (a)*a */
p_a inva a = imsl f mat mul rect ("A*B",
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IMSL A MATRIX, n, n, p_a inva,
IMSL B MATRIX, n, n, a,
0);

imsl f write matrix("The g2 inverse of a", n, n, p inva,
0);

imsl f write matrix("a*g2 inverse (a)\nviolates condition 3 of"
" the M-P inverse", n, n, p_a inva,
0);

imsl f write matrix("a = a*g2 inverse(a)*a\ncondition 1 of"

" the M-P inverse", n, n, p a inva a,

0);
}
Output
The g2 inverse of a
1 2 3 4
1 0.0347 -0.0208 0.0000 0.0000
2 -0.0208 0.0903 0.0000 -0.0556
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 -0.0556 0.0000 0.1111

a*g2_ inverse (a)
violates condition 3 of the M-P inverse

1 2 3 4
1 1.0 -0.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 1.0 -0.5 0.0 0.0
4 0.0 -0.0 0.0 1.0
a = a*g2 inverse (a)*a
condition 1 of the M-P inverse
1 2 3 4
1 36 12 30 6
2 12 20 2 10
3 30 2 29 1
4 6 10 1 14

Warning Errors

IMSL INCONSISTENT EQUATIONS 2  The linear system of equations is inconsistent..

IMSL NOT NONNEG DEFINITE The matrix A is not nonnegative definite.
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Eigensystem Analysis

Functions

Ordinary Linear Eigensystem Problems
General Matrices

Eigenvalues and eigenvectors. . . . ... ... eig_gen

Eigenvalues and eigenvectors. ... ............ . ... .. ... eig_gen (complex)
Real Symmetric Matrices

Eigenvalues and eigenvectors. . . . ... ... eig_sym
Complex Hermitian Matrices

Eigenvalues and eigenvectors. . . . ........ ... ... . .. eig_herm (complex)

Generalized Linear Eigensystem Problems
Real Symmetric Matrices and B Positive Definite

Eigenvalues and eigenvector. . . . ........ ... . . eig_symgen
General Matrices

Real matrices. . . . ... .. geneig

Complexmatrices ... ... e geneig (complex)

Eigenvalues and Eigenvectors computed with ARPACK
Symmetric and General Problems
Real Symmetric Problem Ax=ABX . ............ccccciveii... arpack_symmetric
Real General Problem Ax=ABx ........ ... ... ... ........... arpack_general
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Usage Notes

An ordinary linear eigensystem problem is represented by the equation Ax = Ax where A denotes an n X n matrix.
The value A is an eigenvalue and x # 0O is the corresponding eigenvector. The eigenvector is determined up to a sca-
lar factor. In all functions, we have chosen this factor so that x has Euclidean length one, and the component of x
of largest magnitude is positive. The eigenvalues and corresponding eigenvectors are sorted then returned in the
order of largest to smallest complex magnitude. If x is a complex vector, this component of largest magnitude is
scaled to be real and positive. The entry where this component occurs can be arbitrary for eigenvectors having
nonunigue maximum magnitude values.

A generalized linear eigensystem problem is represented by Ax = ABx where Aand B are n X n matrices. The value
Ais a generalized eigenvalue, and x is the corresponding generalized eigenvector. The generalized eigenvectors
are normalized in the same manner as the ordinary eigensystem problem.

Error Analysis and Accuracy

The remarks in this section are for ordinary eigenvalue problems. Except in special cases, functions will not return
the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem Ax = Ax. Typically, the computed pair

%, )
are an exact eigenvector-eigenvalue pair for a "nearby” matrix A + £. Information about £ is known only in terms
of bounds of the form [|E]l; < f(n) l|All,€. The value of f(n) depends on the algorithm, but is typically a small frac-

tional power of n. The parameter € is the machine precision. By a theorem due to Bauer and Fike (see Golub and
Van Loan 1989, p. 342),

min|A— 2 <x(X)Ell, for all in o(4)
where a(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of eigenvectors, ||- ||, is Euclid-

ean length, and k(X) is the condition number of X defined as k(X) = IIXIIZIIX1 II5. If Ais a real symmetric or complex
Hermitian matrix, then its eigenvector matrix X is respectively orthogonal or unitary. For these matrices, k(X) = 1.

The accuracy of the computed eigenvalues

and eigenvectors

can be checked by computing their performance index T. The performance index is defined to be
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7 = max

1=z nell Al %5,
where € is again the machine precision.

The performance index T is related to the error analysis because

HE)NCj”z = HA?NCj_zj?NCsz
where E is the “nearby” matrix discussed above.

While the exact value of T is precision and data dependent, the performance of an eigensystem analysis function
is defined as excellentif T < 1, good if T < T < 100, and poor if T > 100. This is an arbitrary definition, but large val-
ues of T can serve as a warning that there is a significant error in the calculation.

If the condition number k(X) of the eigenvector matrix X is large, there can be large errors in the eigenvalues even
if Tis small. In particular, it is often difficult to recognize near multiple eigenvalues or unstable mathematical
problems from numerical results. This facet of the eigenvalue problem is often difficult for users to understand.
Suppose the accuracy of an individual eigenvalue is desired. This can be answered approximately by computing
the condition number of an individual eigenvalue (see Golub and Van Loan 1989, pp. 344 - 345). For matrices A,
such that the computed array of normalized eigenvectors X is invertible, the condition number of A is

;= lleix ]

the Euclidean length of the j-th row of X' Users can choose to compute this matrix using function
imsl ¢ lin sol genin Chapter 1, “Linear Systems.” An approximate bound for the accuracy of a computed
eigenvalue is then given by kjel|All. To compute an approximate bound for the relative accuracy of an eigenvalue,

divide this bound by [A;l.

Reformulating Generalized Eigenvalue Problems
The eigenvalue problem Ax = ABx is often difficult for users to analyze because it is frequently ill-conditioned.

Occasionally, changes of variables can be performed on the given problem to ease this ill-conditioning. Suppose

that Biis singular, but A is nonsingular. Define the reciprocal = A"'. Then assuming A is definite, the roles of A and
B are interchanged so that the reformulated problem Bx = wAx is solved. Those generalized eigenvalues pj =0

correspond to eigenvalues Aj = co. The remaining Aj = uj’1. The generalized eigenvectors for Aj correspond to
those for Hj.
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Now suppose that B is nonsingular. The user can solve the ordinary eigenvalue problem Cx = Ax where C= BA.

The matrix Cis subject to perturbations due to ill-conditioning and rounding errors when computing B8™'A. Com-
puting the condition numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy of
results for the generalized problem.

There is another method that users can consider to reduce the generalized problem to an alternate ordinary
problem. This technique is based on first computing a matrix decomposition B = PQ where both P and Q are
matrices that are “simple” to invert. Then, the given generalized problem is equivalent to the ordinary eigenvalue
problem Fy = Ay. The matrix F = P'AQ" and the unnormalized eigenvectors of the generalized problem are given
by x = Q'y. An example of this reformulation is used in the case where A and B are real and symmetric, with B
positive definite. The function ims1 f eig symgen uses P =R' and Q = Rwhere R is an upper-triangular matrix

obtained from a Cholesky decomposition, 8= RTR. The matrix F = RTAR" is symmetric and real. Computation of
the eigenvalue-eigenvector expansion for Fis based on function imsl f eig sym.

Eigenvalue Computation With ARPACK-Based Functions

ARPACK consists of a set of Fortran 77 subroutines that use the implicitly restarted Arnoldi method, described in
Sorensen (1992), to solve eigenvalue problems. ARPACK is well suited for large sparse or structured matrices A
where structured means that a matrix-vector product w < Av requires O(n) rather than the usual 0(n?) floating
point operations.

A full description of the ARPACK features can be found in the ARPACK Users' Guide written by Lehoucg, Sorensen,
and Yang (1998).

The original APl for ARPACK uses a reverse communication interface. This interface can be used as illustrated in
the ARPACK Users' Guide. In order to simplify the usage of the ARPACK algorithms, CNL instead applies a forward
communication interface based on user-defined functions for matrix-vector products or linear solving steps
required by the algorithms in ARPACK. It is not necessary that the linear operators be expressed as dense or
sparse matrices. That is permitted, but for some problems the best approach is the ability to form a product of
the operator with a vector.

Function imsl d arpack symmetric, based on ARPACK routines DSAUPD and DSEUPD, computes some of
the eigenvalues and corresponding eigenvectors of generalized real symmetric eigenproblems of the form

Ax = A\Bx. For B = [, the problem reduces to the standard eigenproblem. In the symmetric case, the Arnoldi
method specializes to a variant of the Lanczos method.

In below paragraph, add the link to the new arpack_general routine once it’s in the chapter.

Similarly, function ims1 d arpack general, which is based on ARPACK routines DNAUPD and DNEUPD, com-
putes eigenvalues and eigenvectors of generalized real eigenproblems of the form Ax = ABx with a real general
matrix A and a positive definite or positive semi-definite matrix B.
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The Lanczos and Arnoldi methods usually work very well for the computation of non-clustered eigenvalues at the
periphery of the spectrum. Therefore, the eigenvalues of largest or smallest magnitude can be determined by

applying both methods directly to problem Cx = B™" Ax = Ax. The user has to provide operator products

w = Ax, w = Bx, and w = B 'x. Here, x is an input vector and w the result of applying the linear operators 4, B
or B to x. Usually, matrix B is not directly inverted. Instead, a factorization of B is computed, and the linear sys-
tem Bw = x is solved using the factored form of B. In the case of the standard problem, B = I, only the product
w = Ax has to be provided.

In the special case that B is positive definite and well-conditioned, one may compute the Cholesky decomposition
B = R"R and then solve the standard eigenvalue problem Cy = RT ARy = Ay. The product operation required
by the Lanczos or Arnoldi algorithm, w = Cx, is performed in steps: Solve Rz = x for z, compute y = Az, and
solve RT w = y for w. The eigenvectors y of C are transformed to those of the generalized problem, x, by solving
Rx =y forx.

For a generalized problem, if eigenvalues from a cluster or from the interior of the spectrum are sought, a shift
and invert spectral transformation can often be applied efficiently. Here, for a given shift value ¢; the problem is

equivalently transformed into the standard eigenvalue problem Cx = (4 - oB) 'Bx = vx. The matrix pencil
A - oBis assumed to be non-singular. The purpose of the user-defined function is to provide results for the

operator products w = Bxand w = (4 - o-B)"'x. Usually, the inverse matrix product will be computed by solving
linear systems, where the matrix pencil is the coefficient matrix. The back-transformed eigenvalues A of the origi-
nal problem satisfy Aj = o+ vj'1. This relation shows that if eigenvalues of largest magnitude of matrix C are

computed, then also eigenvalues for the original problem are found that are closest to the shift oin absolute
value.
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arpack_symmetric

more. ..

Computes some of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue problem
Ax = N\Bx using an implicitly restarted Arnoldi method (IRAM). The algorithm can also be used for the standard

caseB=1

NOTE: Function arpack symmetric is available in double precision only.

Synopsis
#include <ims1.h>

double *ims1l d arpack symmetric (void fcn (), intn,intnev, .., 0)

Required Arguments

void £cn (int n, double x [ 1, int task, double y[1) (Input)
User-supplied function to return matrix-vector operations or solutions of linear systems.

int n (Input)
The dimension of the problem.

double x [ ] (Input)
An array of size n containing the vector to which the operator will be applied.

int task (Input)
An enumeration type which specifies the operation to be performed. Variable task is an

enumerated integer value associated with enum type Ims1l arpack task. Table 9 lists
the following possible values:
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Table 9 - Enum type Imsl_arpack_task

task Description

IMSL ARPACK PREPARE Take initial steps to prepare for the operations to follow.
These steps can include defining data for the matrices, fac-
torizations for upcoming linear system solves or recording
the vectors used in the operations.

IMSL_ARPACK_A X y=Ax
IMSL_ARPACK_B_X y =Bx
IMSL_ARPACK_INV_SHIFT_X y=(4 - oBy'x, Bgeneralor =1
IMSL_ARPACK_INV_B X _ B

_ _INV_B_ y=B"x

double y [ 1 (Output)

An array of size n containing the result of a matrix-vector operation or the solution of a linear
system.

intn (Input)

The dimension of the problem.

intnev (Input)

The number of eigenvalues to be computed.

Return Value

A pointer to the nev eigenvalues of the symmetric eigenvalue problem. To release this space, use ims1 free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

double *imsl d arpack symmetric (void fcn (), intn,intnev,
IMSL XGUESS, double xguess|[],
IMSL ITMAX,intitmax,
IMSL TOLERANCE, double tol,
IMSL SHIFT, double shift,
IMSL EIGVAL_LOCATION, Imslarpack eigval_location eigval loc,
IMSL EIG PROBLEM TYPE, Imsl_arpack problem_type problem type,
IMSL EIG SOLVE_ MODE, Imsl_arpack_solve_mode mode,
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IMSL_NUM LANCZOS_ VECTORS, int ncv,
IMSL_NUM ACCURATE EIGVALS,int*n_acc,
IMSL VECTORS, double **evec,

IMSL VECTORS USER, double evecul],
IMSL_EVECU COL_DIM,intevecu col dim,
IMSL_RETURN_ USER, double evalul],
IMSL_FCN _W_DATA, void fcn (), void *data,
0)

Optional Arguments

IMSL XGUESS, double xguess[] (Input)
A non-zero vector of size n containing the starting vector for the implicitly restarted Arnoldi method.

By default, a random starting vector is computed internally.

IMSL ITMAX, intitmax (Input)
The maximum number of Arnoldi iterations.
Default: itmax = 1000.

IMSL TOLERANCE, double tol (Input)
Tolerance value used in the criterion for the acceptability of the relative accuracy of the Ritz values.
Default: tol = imsl f machine (3).

IMSL SHIFT, double shift (Input)
The shift value used in the shift-invert spectral transformations.
Default: shift =0.

IMSL EIGVAL_ LOCATION, Imslarpack eigval_location eigval loc (Input)
An enumeration type which specifies the location of the eigenvalues to compute.
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Table 10 - Enum type Imsl_arpack_eigval_location

eigval_loc Description

IMSL ARPACK LARGEST ALGEBRAIC |Compute algebraically largest eigenvalues.

IMSL ARPACK SMALLEST ALGEBRAIC |Compute algebraically smallest eigenvalues.

IMSL ARPACK LARGEST MAGNITUDE |Compute eigenvalues of largest magnitude.

IMSL ARPACK SMALLEST MAGNITUDE |Compute eigenvalues of smallest magnitude.

IMSL ARPACK BOTH ENDS Compute eigenvalues from both ends of the
spectrum.

For computational modes that use a spectral transformation the eigenvalue location refers to the
transformed—not the original—problem. See the Description section for an example.
Default: eigval loc =IMSL ARPACK LARGEST ALGEBRAIC.

IMSL EIG PROBLEM TYPE, Imslarpack problem_type problem type (Input)
An enumeration type that indicates if a standard or generalized eigenvalue problem is to be solved.

Table 11 - Enum type Imsl_arpack_problem_type

problem_type Description
IMSL_ARPACK_STANDARD Solve standard problem, Ax = Ax.
IMSL_ARPACK_GENERALIZED Solve generalized problem, Ax = ABx.

Default: problem type = IMSL ARPACK STANDARD.

IMSL EIG SOLVE_MODE, Ims/_arpack solve_mode mode (Input)
An enumeration type indicating which computational mode is used for the eigenvalue computation.
Variables problem type and mode together define the tasks that must be provided in the user-
supplied function. The following table describes the values variable mode can take, the feasible com-
binations with variable problem type and the related tasks:

Table 12 - Mode/problem type combinations

mode problem_type Required tasks

IMSL ARPACK REGULAR IMSL ARPACK STANDARD y = Ax

IMSL_ARPACK REGULAR INVERSE |IMSL ARPACK GENERALIZED y=Ax,y=Bx,y=B"x
IMSL_ARPACK SHIFT INVERT IMSL,_ ARPACK_STANDARD y=(4-d)'x

IMSL ARPACK SHIFT INVERT IMSL ARPACK GENERALIZED y=Bx,y=(4-oB)'x
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Table 12 - Mode/problem type combinations

mode problem_type Required tasks
IMSL_ARPACK_ BUCKLING IMSL_ARPACK GENERALIZED y=Ax,y=(4- oB)'x
IMSL ARPACK CAYLEY IMSL ARPACK GENERALIZED y=Ax,y=Bx,y=(4- aB)'1x

Default: mode = IMSL, ARPACK REGULAR.

IMSL NUM LANCZOS VECTORS, int ncv (Input)
The number of Lanczos vectors generated in each iteration of the Arnoldi method. It is required that
nev +1 <= ncv <= n.Avaluencv >= min(2*nev, n) isrecommended.

Default: ncv = min (2*nev, n).

IMSL NUM ACCURATE EIGVALS,int*n_acc (Output)
The number of eigenvalues that the algorithm was able to compute accurately. This number can be
smaller than nev.

IMSL VECTORS, double **evec (Output)
The address of a pointer to an array of size n X newv containing the B-orthonormalized eigenvectors
of the eigenvalue problem in the first n_acc columns. Typically, double *evec is declared, and
&evec is used as an argument.

IMSL VECTORS USER, double evecu[] (Output)
A user-defined array of size n X nev containing the B-orthonormalized eigenvectors of the eigen-
value problem in the first n_acc columns.

IMSL EVECU COL DIM, intevecu col dim (Input)
The column dimension of evecu.
Default: evecu _col dim=nev

IMSL RETURN USER, double evalu[] (Output)
An array of size nev containing the accurately computed eigenvalues in the first n_acc locations.

IMSL FCN W DATA, void fcn (intn, double x [ 1, int task, double y [ 1), void *data, (Input/Output)
User-supplied function to return matrix-vector operations or solutions of linear systems, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

NOTE: The possibility to supply user-data via IMSL_FCN_W_DATA is an important feature of
arpack_symmetric. It allows the user to transfer problem-specific data to the algorithm without the
need to define global data. See the documentation examples (Example 2, Example 3, and Example 4)
for use cases.
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Description

Function imsl d arpack symmetric, whichis based on ARPACK subroutines DSAUPD and DSEUPD (see
the ARPACK Users' Guide, Lehoucq et al. (1998)), computes selected eigenvalue-eigenvector pairs for generalized
symmetric eigenvalue problems of the form

Ax = N\Bx.

Here, A and B are symmetric matrices. For B = [, the generalized problem reduces to the standard symmetric

eigenvalue problem.

The ARPACK routine DSAUPD implements a variant of the Lanczos method and uses reverse communication to
obtain the required matrix-vector products or solutions of linear systems for the iterations. Responses to these
requests are made by calling the user-defined function £cn. User data can be made available for the evaluations
by optional argument IMSL FCN_W_DATA.

For a given problem, the requested responses depend on the settings of optional arguments IMSL EIG PROB-
LEM TYPE and IMSL EIG SOLVE MODE. For each response, a corresponding task must be defined in the user-
defined function £cn. The Mode/problem type combinations table under optional argument

IMSL EIG SOLVE_ MODE shows which tasks have to be defined for a certain problem.

The following code snippet shows the complete list of tasks available for £cn and their meaning:

void fcn(int n, double x[], int itask, double yI[])
{
switch (itask) {
/*
* Define responses to different tasks for the generalized
* eigenvalue problem
2 A*x = lambda * B * x,
* which includes the ordinary case B = I.
*/
case IMSL ARPACK PREPARE:
/*
* Take initial steps to prepare for the operations
* that follow. Note that arpack symmetric internally
* always calls fcn with this enum value, even if it is
* not required by the user.
=)
break;
case IMSL ARPACK A X:
/*
* Compute matrix-vector product y
*/
break;
case IMSL ARPACK B X:
/*
* Compute matrix-vector product y = B * x
=
break;
case IMSL ARPACK INV SHIFT X:
/*

Il
p=]

*
X
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* Compute matrix-vector product
= y = inv(A - sigma * B) * x.
* Usually, matrix A - sigma * B is not directly inverted.
* Instead, a factorization of A - sigma * B is determined,
* and the factors are used to compute y via backsolves.
*
* Example:
* If an LU factorization of A - sigma * B exists, then
& A - sigma * B =P * L * U,
* P a permutation matrix. Vector y can then be determined
* as solution of the linear system
& L *U * y = trans(P) * x.
* The LU factorization only has to be computed once, for
* example outside of fcn or within IMSL ARPACK PREPARE.
*
/

break;

case IMSL ARPACK INV B X:

/*
* Compute matrix-vector product

& y = inv(B) * x.

* Usually, matrix B is not directly inverted.

* 1Instead, a factorization of B is determined, and the

* factors are used to compute y via backsolves.

*

* Example:

* If matrix B is positive definite, then a Cholesky

* factorization B = L * trans (L) exists. Vector y can then
* be determined by solving the linear system

% L * trans(L) * y = x.

* The Cholesky factorization only has to be computed once,
* for example outside of fcn or within IMSL ARPACK PREPARE.
*
/

break;

default:

/*

* Define error conditions, if necessary.

*
/

break;

Internally, ims1 d arpack symmetric first determines the eigenvalues for the problem specified by
optional arguments IMSL EIG SOLVE MODE and IMSL EIG PROBLEM TYPE.

Table 13 shows the matrices whose eigenvalues are determined for a given combination of these optional

arguments.
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Table 13 - Matrices for a given mode/problem_type combination

mode problem_type Matrix

IMSL ARPACK REGULAR IMSL ARPACK_ STANDARD A

IMSL ARPACK REGULAR INVERSE |IMSL ARPACK GENERALIZED B-1A

IMSL ARPACK SHIFT INVERT IMSL ARPACK STANDARD (A _ d)-'l

IMSL ARPACK SHIFT INVERT IMSL ARPACK GENERALIZED (A _ 0B)-1B

IMSL ARPACK BUCKLING IMSL ARPACK GENERALIZED (A _ OB)-1A
IMSL_ARPACK CAYLEY IMSL_ARPACK GENERALIZED (A-oB)(4 + oB)

Note that the eigenvalue location defined by optional argument IMSL EIGVAL LOCATION always refers to the
matrices of Table 13.

For example, for mode=IMSL ARPACK SHIFT INVERT, problem type=IMSL ARPACK STANDARD,
and eigval loc=IMSL ARPACK LARGEST MAGNITUDE, the eigenvalues of largest magnitude of the

shift-inverted matrix (4 - of)" are computed. Because of the relationship

4= on'x=vy i=yto,

these eigenvalues correspond to the eigenvalues of the original problem Ax = Ax that are closest to the shift oin
absolute value.

Inasecondstep, imsl d arpack symmetric internally transforms the eigenvalues back to the eigenvalues
of the original problem Ax = ABx or Ax = Ax and computes eigenvectors, if required.

Besides matrices 4 and B always being symmetric, the modes for the generalized eigenproblem require some
additional matrix properties summarized in Table 14:
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Table 14 - Generalized eigenproblem additional matrix properties

mode Matrix properties

IMSL ARPACK REGULAR INVERSE B positive definite

IMSL_ARPACK_SHIFT_INVERT B positive semi-definite
IMSL_ARPACK_BUCKLING A positive semi-definite, B indefinite
IMSL_ARPACK_CAYLEY B positive semi-definite

Copyright notice for ARPACK

Copyright (c) 1996-2008 Rice University. Developed by D.C. Sorensen, R.B. Lehoucg, C. Yang, and K. Maschhoff.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer listed in this license in the documentation and/or other materials provided with the distribu-
tion.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or pro-
mote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 1S" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Examples

Example 1

Eigenvalues and eigenfunctions of the Laplacian operator
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defined by
-Au = Au

on the unit square [0,1] x [0,1] with zero Dirichlet boundary values, are approximated.

The full set of eigenvalues and their eigenfunctions are given by the sequence

Amn = (m2 + nz)nz, Upy n(X,Y) = 28in(m 7 x)sin(n 7 y),

where m,n are positive integers.

This provides a check on the accuracy of the numerical results. Equally spaced divided differences on the unit
square are used to approximate — Au. A few eigenvalues of smallest magnitude and their eigenvectors are
requested. The problem reduces to a symmetric matrix eigenvalue computation. The user function code provides
the second order divided difference operator applied to an input vector under task IMSL. ARPACK A X.

#include <stdio.h>
#include <stdlib.h>
#include <imsl.h>

static void fcn(int n, double x[], int iact, double result[]):;
static void tx(int nx, double x[], double yI[]);

static void ax(int nx, double v[], double w[]);

static void daxpy(int n, double alpha, double x[], double y[]);

int main () {
int n, nx, nev, n_acc, i, Jj;

double *eigvals = NULL, *evecu = NULL, *res = NULL;

nx = 10;
n = nx * nx;
nev = 5;

/* Allocate memory for eigenvectors */

evecu = (double *)malloc(n * nev * sizeof (double));
/* Allocate memory for auxiliary array */
res = (double *)malloc((2 * n + nev) * sizeof (double));

eigvals = imsl d arpack symmetric(fcn, n, nev,
IMSL EIGVAL fOCATIOﬁ, IMSL ARPACK SMALLEST MAGNITUDE,
IMSL NUM ACCURATE EIGVALS, &n_acc, -
IMSL VECTORS USER, evecu,
0);

printf ("Number of requested eigenvalues : %d\n", nev);
printf ("Number of accurate (converged) eigenvalues : %d\n", n acc);
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for (1 = 0; 1 < n_acc; i++) {

/*

* Compute the residual norm || A * x - lambda * x || for the
* n_acc accurately computed eigenvalues and eigenvectors.

*/

/* Compute A * x - lambda * x */
for (J = 0; j < n; j++) {
res[nev + j] = evecul[j * nev + i];
}
ax (nx, &r nev], &res[nev + n]);
= J < n; j++) |
[n + n + j] -= eigvals[i] * res[nev + Jj];

es |
for (3J 0;
res [nev

}

/* Compute relative residuals */

res[i] = imsl d vector norm(n, &res[nev + n], 0);

if (eigvals[i] != 0.0) {

res[i] /= eigvals[i];

}

}

/%
* Display eigenvalues and residuals
*/

printf ("\n Smallest Laplacian eigenvalues\n") ;

printf ("%$14s%25s\n", "Eigenvalues", "Relative residuals");
for (1 = 0; 1 < n _acc; i++) |

printf ("%$14.81£%20.81f\n", eigvals[i], res[il]);
}

/* Print first 2D Laplacian eigenfunction at Grid Points */

for (3 = 0; j < n; j++) {
res[j] = evecul[] * nev];

}

imsl d write matrix("First 2D Laplacian Eigenfunction at Grid Points",
nx, nx, res, 0);

if (eigvals)

imsl free(eigvals);
if (evecu)

free (evecu) ;
if (res)

free (res);

}

static void fecn(int n, double x[], int itask, double y[])
{

int nx = 10; /* n = nx * nx */

switch (itask) {
case IMSL ARPACK PREPARE:
/* Nothing to prepare, but formally handle this case */
break;
case IMSL ARPACK A X:
ax(nx, x, y);
break;
default:
imsl set user fcn return flag(l);
break;
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/*
*  Matrix-vector function
*
& The matrix used is the 2 dimensional discrete Laplacian on the
L3 unit square with zero Dirichlet boundary condition.
*
& Computes y <- A * x, where A is the nx*nx by nx*nx block
w3 tridiagonal matrix
*
& | T -I |
* | -T T -I |
* A= | -I T |
* ! coo =T |
* | -I T |
*
B Function tx () is called to compute y <- T * x.
=
static void ax(int nx, double x[], double y[]) {
int i1, j, lo, n2;
double h2;
tx(nx, x, y);
daxpy(nx, -1.0, &x[nx], V);
for (j = 2; jJ <= nx - 1; J++) {
lo = (j - 1) *nx;
tx (nx, &x[lo], &yllo]);
daxpy(nx, -1.0, &x[lo - nx], &yl[lol);
daxpy(nx, -1.0, &x[lo + nx], &yl[lo]);
}
lo = (nx - 1) * nx;
tx (nx, &x[lo], &yl[lo]);
daxpy (nx, -1.0, &x[lo - nx], &yl[lol);
/%
* Scale the vector w by (1 / (h * h)), where h is the
* mesh size.
=
n2 = nx * nx;
h2 = 1.0 / ((double) ((nx + 1)*(nx + 1)));
for (i = 0; i < n2; i++) {
yl[i] /= h2;
}
}
static void tx(int nx, double x[], double y[]) {
int j;
double dd, dl, du;
/%

L3 Compute the matrix vector multiplication y <- T * x
i where T is an nx by nx tridiagonal matrix with dd on the
& diagonal, dl on the subdiagonal, and du on the superdiagonal.

=
dd = 4.0;
dl = -1.0;
du = -1.0;
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}

static void daxpy(int n,

y[nx - 1] = dl * x[nx - 2]

int 1i;

Output

Number of requested eigenvalues

Number of accurate

=

=
OWOJoOUI b WN

OWOJoOUI b WN

Smallest Laplacian eigenvalues

Eigenvalues
19.60540077
48.21934544
48.21934544
76.83329011
93.32640277

First 2D Laplacian Eigenfunction at Grid Points

1
.0144
.0277
.0387
.0466
.0507
.0507
.0466
.0387
L0277
.0144

eololoNolNoloNoloNoNe)

6
.0507
.0973
.1360
.1637
.1781
.1781
.1637
.1360
.0973
.0507

eololoNoNoloNololoNe)

x[0] +

du * x[1];

j <= nx - 1; j++)

] =dl *

y <- alpha * x + vy

i < n;

i+4+) {

alpha * x[1];

(converged)

{
x[J - 2] + dd * x[]

double alpha,

5

eigenvalues

Relative residuals

eololoNolNoloNoloNoNe)

eoNoloNolNoloNoloNoNe)

.00000000
.00000000
.00000000
.00000000
.00000000

OO O OO

2
.0277
.0531
.0743
.0894
.0973
.0973
.0894
.0743
.0531
.0277

5
.0466
.0894
.1250
.1504
.1637
.1637
.1504

.1250
.0894

.0466

eololoNolNoloNololoNe)

eoNoloNolNoloNololoNe)

3

.0387
.0743
.1038
.1250
.1360
.1360
.1250
.1038
.0743
.0387

8

.0387
.0743
.1038
.1250
.1360
.1360
.1250
.1038
.0743
.0387

+ dd * x[nx - 1];

double x[],

eololoNolNoloNoloNoNe)

eoNoloNolNoloNoloNoNe)

4

.0466
.0894
.1250
.1504
.1637
.1637
.1504
.1250
.0894
.0466

9

.0277
.0531
.0743
.0894
.0973
.0973
.0894
.0743
.0531
.0277

+ du * x[3];

double y[])

clolololololoNolNoNe]

clolololololoNolNoNe]

{

.0507
.0973
.1360
.1637
.1781
.1781
.1637
.1360
.0973
.0507

10

.0144
.0277
.0387
.0466
.0507
.0507
.0466
.0387
.0277
.0144
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Example 2

In this example, the eigenvalues and eigenfunctions of the 1D Laplacian operator

2

d“u
-~ = lu

di?

on the unit interval [0,1] with boundary conditions u(0) =u(1) = 0 are approximated. Equally spaced divided dif-
ferences are used for the operator, which yields a symmetric tri-diagonal matrix. The eigenvalues and (normed)
eigenfunctions are

A, = e, u(x) =\2sin(ntx), n=12, ...

This example shows that using inverse iteration for approximating the largest reciprocals of eigenvalues is more
efficient than directly computing the smallest magnitude eigenvalues by matrix-vector products.

By using mode IMSL ARPACK SHIFT INVERT, the algorithm first computes the largest eigenvalues of the
shift-inverse matrix (4 - o), here with o= 0. These eigenvalues are then transformed back to the smallest
eigenvalues of 4 - of = A, a positive definite matrix. When user-defined function fcn is entered with task
IMSL ARPACK PREPARE, the LU factorization of the shifted matrix 4 - of is computed. When fcn is later
entered with task IMSL._ARPACK INV_ SHIFT X, the LU factorization is available to efficiently compute y =
(A-ol)'x=A"xvia LUy =x.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <imsl.h>

static void ax(int nx, double x[], double yI[]);
static void fcn w data(int n, double x[], int itask, double y[],
void *data) ;

typedef struct ({
double shift;
double *band matrix;
int *ipvt;
double *factor;

} imsl arpack data;

int main () {
int n, nev, ncv, n acc, i, j;
int *ipvt = NULL;
double shift = 0.0;
double *a matrix = NULL, *factor = NULL, *eigvals = NULL;
double *evecu = NULL, *res = NULL;
imsl arpack data usr data;

n = 100;
nev = 4;
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ncv = 10;
shift = 0.0;

/* Allocate memory for eigenvectors */
evecu = (double *)malloc(n * nev * sizeof (double)) ;

/* Allocate arrays needed in the LU factorization */

ipvt = (int *)malloc(n * sizeof (int));
a matrix = (double *)malloc(3 * n * sizeof (double));
factor = (double *)malloc(4 * n * sizeof (double)) ;

/* Allocate memory for auxiliary array */
res = (double *)malloc((2 * n + nev) * sizeof (double));

if (!evecu || !ipvt || !'a matrix || !factor || !res) {
printf ("Memory allocation error\n");
goto FREE_SPACE ;

}

usr data.band matrix = a matrix;
usr data.ipvt = ipvt;

usr data.factor = factor;

usr data.shift = shift;

eigvals = imsl d arpack symmetric (NULL, n, nev,
IMSL EIG SOLVE MODE, IMSL ARPACK SHIFT INVERT,
IMSL NUM LANCZOS VECTORS, ncv, B
IMSL NUM ACCURATE EIGVALS, &n_acc,
IMSL FCN W DATA, fcn w data, &usr data,
IMSL VECTORS USER, evecu,
IMSL SHIFT, shift,

0);
printf ("Number of requested eigenvalues : %d\n", nev);
printf ("Number of accurate (converged) eigenvalues : %d\n", n_acc);

for (1 = 0; 1 < n acc; i++) {
VA B

* Compute the residual norm || A * x - lambda * x ||

* n _acc accurately computed eigenvalues and eigenvectors.

*/

/* Compute A * x - lambda * x */
for (3 = 0; j < n; J++) {
res[nev + j] = evecu[]j * nev + 1i];
t
ax (n, &res[nev], &res[nev + n]);
for (3 = 0; j < n; j++) {
res[nev + n + j] -= eigvals[i] * res[nev + jl;
}
/* Compute relative residuals */
res[i] = imsl d vector norm(n, &res[nev + n], 0);
if (fabs(eigvals[i]) != 0.0) {
res[i] /= fabs(eigvals[i]);
}
}

/%
* Display eigenvalues and residuals

*/
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printf ("\n Largest Laplacian eigenvalues near zero shift\n");
printf ("$14s%25s\n", "Eigenvalues", "Relative residuals");
for (1 = 0; 1 < n _acc; it++) |
printf ("%$14.81£%20.81f\n", eigvals[i], res[i]);
}

FREE SPACE:

if (eigvals)

imsl free(eigvals);
if (ipvt)

free (ipvt) ;
if (a _matrix)

free (a_matrix);
if (factor)

free (factor) ;
if (res)

free (res);
if (evecu)

free (evecu) ;

}

static void fcn w data(int n, double x[], int itask, double y[],
void *data)
{
int j;
int *ipvt = NULL;
double shift, h2;
double *a matrix = NULL, *factor = NULL;

imsl arpack data *usr data = (imsl arpack data *)data;
shift = usr data->shift;

a matrix = usr data->band matrix;

ipvt = usr data->ipvt;

factor = usr data->factor;

switch (itask) {
case IMSL ARPACK PREPARE:
/* Create symmetric tridiagonal matrix in band storage format */

h2 = 1.0 / (((double)(n + 1)) * (n + 1));
for (j = 1; J <= n; j++) {
a matrix[j - 1] = -1.0 / h2;
a matrix[n + j - 1] = 2.0 / h2 - shift;
a matrix[2 * n + j - 1] = a matrix[]j - 1];

}

/* Compute LU factorization of tridiagonal matrix */
imsl d lin sol gen band(n, a matrix, 1, 1, NULL,
IMSL FACTOR USER, ipvt, factor,
IMSL FACTOR ONLY,
0);
if (imsl error type() != 0) {
imsl set user fcn return flag(l);
}
break;
case IMSL ARPACK INV_SHIFT X:
/* Solve (A - shift * I) y = x */
imsl d lin sol gen band(n, NULL, 1, 1, x,
IMSL FACTOR USER, ipvt, factor,
IMSL RETURN USER, vy,
IMSL SOLVE ONLY,
0):
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if (imsl _error type() != 0) {
imsl set user fcn return flag(2);
}

break;

default:
imsl set user fcn return flag(3);
break;

/%
& Matrix-vector function
w The matrix is the 1 dimensional discrete Laplacian on the
w8 interval [0, 1] with zero Dirichlet boundary condition.
)
static void ax (int n, double x[], double y[]) {
int i;
double h2;
y[0] = 2.0 * x[0] - x[1];
for (i = 1; i <= n - 2; i++) {
y[i] = -x[1 - 1] + 2.0 * x[i] - x[1 + 1];
}
y[ln - 1] = -x[n - 2] + 2.0 * x[n - 1];
/*
© Scale the vector y by (1 / h ~ 2).
)
h2 = 1.0 / (((double)(n + 1)) * (n + 1));
for (i = 0; 1 < n; i++) {
y[i] /= h2;
}
}
Output
Number of requested eigenvalues : 4
Number of accurate (converged) eigenvalues : 4

Largest Laplacian eigenvalues near zero shift

Eigenvalues Relative residuals
9.86880868 0.00000000
39.46568728 0.00000000
88.76200274 0.00000000
157.71006404 0.00000000
Example 3

In this example, a generalized problem is solved using the regular inverse mode. The problem comes from using
equally spaced linear finite element test functions to approximate eigenvalues and eigenfunctions of the 1D

Laplacian operator —A = -d?/dx?, defined by

-Au = Au,
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on the unit interval [0,1] with boundary conditions u(0) =u(1)=0. This is Example 2 but solved using finite ele-

ments and the eigenvalues scaled by 1/ 77 so that An = n?, n=12,....1nmatrix notation, we have the matrix

problem Ax =

ABx, with both A and B tri-diagonal and symmetric. The matrix B is non-singular.

The user function fcn requires the solution of a tri-diagonal system of linear equations with the input vector x
as right-hand side, By = x. When fcn is entered with task IMSL_ARPACK PREPARE, the LU factorization of
matrix B is computed. When fcn is later called with task IMSL._ ARPACK _INV_ SHIFT X, the LU factorization

is available to efficiently compute y = B 'x.

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<math.h>
<imsl.h>

static void ax (int nx, double x[], double y[]);

static void bx(int n, double x[], double yI[]):

static void fcn w data(int n, double x[], int itask, double y[],
void *data) ;

typedef struct {
double *band matrix;
int *ipvt;
double *factor;

} imsl arpack data;

int main () {
int n, nev, ncv, n acc, i, J;
int *ipvt = NULL;
double *a matrix = NULL, *factor = NULL, *eigvals = NULL;
double *evecu = NULL, *res = NULL;
imsl arpack data usr data;

n =

100;
nev =
ncv =

4;
10;

/* Allocate memory for eigenvectors */

evecu

= (double *)malloc(n * nev * sizeof (double));

/* Allocate arrays needed in the LU factorization */

ipvt = (int *)malloc(n * sizeof (int));
a matrix = (double *)malloc(3 * n * sizeof (double));
factor = (double *)malloc(4 * n * sizeof (double)) ;

/* Allocate memory for auxiliary array */

res =

if (!evecu || !ipvt || !a matrix || !factor

(double *)malloc((nev + 3 * n) * sizeof (double))

lres) {

printf ("Memory allocation error\n");
goto FREE SPACE;

}

usr data.band matrix = a matrix;
usr data.ipvt = ipvt;
usr data.factor = factor;
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eigvals = imsl d arpack symmetric (NULL,
IMSL EIGVAL LOCATION, IMSL ARPACK SMALLEST MAGNITUDE,
IMSL EIG PROBLEM TYPE, IMSL ARPACK GENERALIZED,

IMSL EIG SOLVE MODE, IMSL ARPACK REGULAR INVERSE,

IMSL NUM LANCZOS VECTORS, ncv,
IMSL_NUM ACCURATE EIGVALS, &n_acc,

n,

nev,

IMSL FCN W DATA, fcn w data, &usr data,

IMSL VECTORS USER, evecu,

0);
printf ("Number of requested eigenvalues %d\n", nev);
printf ("Number of accurate (converged) eigenvalues : %d\n", n_acc);
for (1 = 0; 1 < n acc; 1i++) {

A -

* Compute the residual norm || A * x - lambda * B * x ||

}

/*
* Display eigenvalues and residuals
%

printf ("\n Smallest Laplacian eigenvalues\n") ;

* for the n acc accurately computed eigenvalues and

* eigenvectors.

*/

/* Compute A * x - lambda * B * x */
for (j = 0; j < n; Jj++) {

res[j + nev] = evecu[] * nev + 1i]
}
ax (n, &res[nev]
bx (n, &res|[nev]

&res[nev + nl);
&res[nev + 2 * n]);

4
4

for (j = 0; Jj < n; j++) {

~.

Iz

res[nev + n + j] -= eigvals[i] * res[nev + 2 * n + j];

}

/* Compute relative residuals */

res[i] = imsl d vector norm(n, &res[nev + n],

if (fabs(eigvals[i]) != 0.0) {
res[i] /= fabs(eigvals[i]);

}

0);

printf ("%$14s%25s\n", "Eigenvalues", "Relative residuals");

for

}

(1 = 0; 1 < n acc; 1i++) {

printf ("%14.81£%20.81f\n", eigvals[i], res[i]);

FREE SPACE:
if (eigvals)
imsl free (eigvals);
if (ipvt)
free (ipvt) ;
if (a_matrix)
free (a matrix);
if (factor)
free (factor) ;
if (evecu)
free (evecu) ;
if (res)
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free (res);

}

static void fcn w data(int n, double x[], int itask, double y[],
void *data)
{

int j;

int *ipvt = NULL;

double h, rl, r2;

double *b matrix = NULL, *factor = NULL;
double pi = 3.1415926535897932384;

imsl arpack data *usr data = (imsl arpack data *)data;
b matrix = usr data->band matrix;

ipvt = usr data->ipvt; -

factor = usr data->factor;

switch (itask) {
case IMSL ARPACK PREPARE:
/* Create symmetric tridiagonal matrix B */
h=pi/ (n+ 1);
rl = (2.0 / 3.0) * h;
r2 (1.0 / 6.0) * h;
for (j = 0; j < n; j++) {
] = .

b matrix[] r2;
b matrix[n + j] = rl;
b matrix([2 * n + j] = r2;

}

/* Compute LU factorization of tridiagonal matrix B */
imsl d lin sol gen band(n, b matrix, 1, 1, NULL,
IMSL FACTOR USER, ipvt, factor,
IMSL FACTOR ONLY,
0);
if (imsl error type() != 0) {
imsl set user fcn return flag(1l);
}
break;
case IMSL ARPACK A X:
ax(n, %, y);
break;
case IMSL ARPACK B X:
bx(n, x, y);
break;
case IMSL ARPACK INV B X:
/* Solve B * y = x */
imsl d lin sol gen band(n, NULL, 1, 1, x,
IMSL FACTOR USER, ipvt, factor,
IMSL RETURN USER, vy,
IMSL SOLVE ONLY,
0);
if (imsl _error type() != 0) {
imsl set user fcn return flag(2);
}
break;
default:
imsl set user fcn return flag(3);
break;
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/%
* Matrix-vector function
*
* The matrix is the 1 - dimensional mass matrix
* on the interval [0, 1].
=4
static void bx(int n, double x[], double y[]) {
int j;
double h;
double pi = 3.1415926535897932384;
y[0] = 4.0 * x[0] + x[1];
for (jJ = 1; J <n - 1; j++) {
v[j] = x[J - 1] + 4.0 * x[j] + x[j + 1];
}
y[ln - 1] = x[n - 2] + 4.0 * x[n - 1];
/%
w Scale the vector w by h.
=/
h=pi/ ((n +1) * 6.0);
for (jJ = 0; J < n; Jj++) {
y[j] *= h;
}
}
/%
* Matrix-vector function
*
* The matrix used is the stiffness matrix obtained from the finite
* element discretization of the 1 - dimensional discrete Laplacian
*

on the interval [0, 1] with zero Dirichlet boundary condition
* using piecewise linear elements.

=

static void ax(int n, double x[], double y[]) {
int j;
double h;
double pi = 3.1415926535897932384;
y[0] = 2.0 * x[0] - x[1];
for (j = 1; J <n - 1; j++) {

v[j] = -x[3 - 1] + 2.0 * x[]J] - x[] + 1];
}
y[ln - 1] = -x[n - 2] + 2.0 * x[n - 1];
/%
* Scale the vector w by (1 / h).
=
h=pi/ (n+1);
for (3 = 0; j < n; J++) {
y[3l /= h;

}

}

Output
Number of requested eigenvalues : 4
Number of accurate (converged) eigenvalues : 4
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Smallest Laplacian eigenvalues

Eigenvalues Relative residuals
1.00008063 0.00000000
4.00129018 0.00000000
9.00653261 0.00000000

16.02065092 0.00000000

Example 4

In this example, a generalized problem Ax = ABx, with both A and B tri-diagonal and symmetric and B non-singu-
lar, is solved using the shift-invert spectral transformation mode. The problem stems from using equally spaced
linear finite element test functions to approximate eigenvalues and eigenfunctions of the 1D Laplacian operator

~A=-d?/dx?, defined by
-Au = Au,

on the unit interval [0,1] with boundary conditions u(0) =u(1)=0. This is Example 2, but solved using finite
elements.

The algorithm iteratively computes the eigenvalues v of largest magnitude of the transformed system

(4-oB)™" Bx = wx

where

and the shift parameter o= 0.

These eigenvalues are then transformed back to the eigenvalues of smallest magnitude of the original system,

A= 1/v, and associated eigenvectors are determined.The user function f£cn requires the solution of a tri-diago-
nal system of linear equations with the input vector x as right-hand side, (4 - oB) y=x, where o= 0. When fcn
is entered with task IMSL ARPACK_ PREPARE, the LU factorization of matrix A is computed. When fcn is later
called with task IMSL._ ARPACK_INV_SHIFT X, the LU factorization is available to efficiently compute y=(4 -

oB)'x = Ax.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <imsl.h>

static void ax (int nx, double x[], double y[]);

static void bx (int n, double x[], double y[]);

static void fcn w data(int n, double x[], int itask, double y[],
void *data) ;

typedef struct {
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double *band matrix;
int *ipvt; -
double *factor;
double shift;

} imsl arpack data;

int main () {
int n, nev, ncv, n acc, i, j;
int *ipvt = NULL;
double shift = 0.0;
double *a matrix = NULL, *factor = NULL, *eigvals = NULL;
double *evecu = NULL, *res = NULL;
imsl arpack data usr data;

n = 100;
nev = 4;
ncv = 10;

/* Allocate memory for eigenvectors */
evecu = (double *)malloc(n * nev * sizeof (double)) ;

/* Allocate arrays needed in the LU factorization */

ipvt = (int *)malloc(n * sizeof (int));
a matrix = (double *)malloc(3 * n * sizeof (double))
factor = (double *)malloc(4 * n * sizeof (double)) ;

/* Allocate memory for auxiliary array */
res = (double *)malloc((nev + 3 * n) * sizeof (double));

'res) {

if (levecu || !ipvt || 'a matrix || !factor
printf ("Memory allocation error\n");
goto FREE SPACE;

}

usr data.band matrix = a matrix;
usr data.ipvt = ipvt;

usr data.factor = factor;

usr data.shift = shift;

eigvals = imsl d arpack symmetric (NULL, n, nev,
IMSL EIGVAL LOCATION, IMSL ARPACK LARGEST MAGNITUDE,
IMSL EIG_PROBLEM TYPE, IMSL ARPACK GENERALIZED,
IMSL EIG SOLVE MODE, IMSIL ARPACK SHIFT INVERT,
IMSL SHIFT, shift, - - -
IMSL NUM LANCZOS VECTORS, ncv,
IMSL NUM ACCURATE EIGVALS, &n_acc,
IMSL FCN W DATA, fcn w data, &usr data,
IMSL VECTORS USER, evecu,

0);
printf ("Number of requested eigenvalues : %$d\n", nev);
printf ("Number of accurate (converged) eigenvalues : %d\n", n_acc);

for (i = 0; 1 < n acc; i++) {
A B
* Compute the residual norm || A * x - lambda * B * x ||
* for the n acc accurately computed eigenvalues and
* eigenvectors.

*/
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/* Compute A * x - lambda * B * x */
for (jJ = 0; J < n; Jj++) {
res[j + nev] = evecul[] * nev + i];
}
ax (n, &res[nev], &res[nev + n]);
bx (n, &res|[nev], &res[nev + 2 * n]);

for (jJ = 0; J < n; Jj++) {
res[nev + n + j] -= eigvals[i] * res[nev + 2 * n + Jj];

~.

}

/* Compute relative residuals */
res[i] = imsl d vector norm(n, &res[nev + n], 0);
if (fabs(eigvals[i]) != 0.0) {
res[i] /= fabs(eigvals[i]);
}
}

/*
* Display eigenvalues and residuals
&V
printf ("\n Smallest Laplacian eigenvalues\n") ;

printf ("%$14s%25s\n", "Eigenvalues", "Relative residuals");
for (i = 0; i < n _acc; i++) {

printf ("%$14.81£%20.81f\n", eigvals[i], res[i]);
}

FREE SPACE:

if (eigvals)

imsl free (eigvals);
if (ipvt)

free (ipvt) ;
if (a_matrix)

free (a_matrix);
if (factor)

free (factor) ;
if (evecu)

free (evecu) ;
if (res)

free (res);

}

static void fcn w data(int n, double x[], int itask, double y[],
void *data)
{

int j;

int *ipvt = NULL;

double h, rl, r2, shift;

double *b matrix = NULL, *factor = NULL;

imsl arpack data *usr data = (imsl arpack data *)data;
b matrix = usr data->band matrix;

ipvt = usr data->ipvt;

factor = usr data->factor;

shift = usr data->shift;

switch (itask) {

case IMSL ARPACK PREPARE:
/* Create symmetric tridiagonal matrix (A - shift * B) */
h=1.0/ (n+ 1);

295



Eigensystem Analysis arpack_symmetric

rl (2.0 / 3.0) * h;

r2 = (1.0 / 6.0) * h;

for (J = 1; J <= n; Jj++) {
b matrix[j - 1] = -1.0 / h - shift * r2;
b matrix[n + jJ - 1] = 2.0 / h - shift * rl;
b matrix[2 * n + j - 1] = b matrix[j - 1];

}

/* Compute LU factorization of tridiagonal matrix */
imsl d lin sol gen band(n, b matrix, 1, 1, NULL,
IMSL FACTOR USER, ipvt, factor,
IMSL FACTOR ONLY,
0);
if (imsl error type() != 0) {
imsl set user fcn return flag(l);
}

break;
case IMSL ARPACK B X:
bx(n, x, y);
break;
case IMSL ARPACK INV_ SHIFT X:
/* Solve (A - shift * B) * y = x */
imsl d 1lin sol gen band(n, NULL, 1, 1, x,
IMSL FACTOR USER, ipvt, factor,
IMSL_RETURN USER, vy,
IMSL SOLVE ONLY,
0);
if (imsl _error type() != 0) {
imsl set user fcn return flag(2);
}

break;
default:
imsl set user fcn return flag(3);
break;
}
}
/%
w Matrix-vector function B*x
w The matrix used is the 1 - dimensional mass matrix
& on the interval [0, 1].
w )
static void bx(int n, double x[], double yI[]) {
int j;
double h;
y[0] = 4.0 * x[0] + x[1];
for (3 =1; J <n - 1; j++) {
v[j]l = x[J - 1] + 4.0 * x[J] + x[J + 11;
}
y[n - 1] = x[n - 2] + 4.0 * x[n - 1];
/%
3 Scale the vector w by h.
)
h=1.0/ (6.0 * (n+ 1));
for (3 = 0; j < n; J++) {
y[J] *= h;

}
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/*

w Matrix-vector function A*x
*
w The matrix is the finite element discretization of the
& 1 - dimensional discrete Laplacian on [0, 1] with zero
o Dirichlet boundary condition using piecewise linear
& elements.
=/
static void ax (int n, double x[], double y[]) {

int j;

double h;

y[0] = 2.0 * x[0] - x[1];

for (j = 1; J <n - 1; j++) {

y[jl = -x[3 - 1] + 2.0 * x[J] - x[]J + 1];

}

y[ln - 1] = -x[n - 2] + 2.0 * x[n - 1];

/*

* Scale the vector w by (1 / h)

=

h=1.0/ ((double) (n + 1));

for (3 = 0; j < n; J++) {

y[3l /= h;

}

}
Output

Number of requested eigenvalues : 4
Number of accurate (converged) eigenvalues : 4

Smallest Laplacian eigenvalues

Eigenvalues Relative residuals
9.87040017 0.00000000
39.49115121 0.00000000
88.89091388 0.00000000
158.11748683 0.00000000

Warning Errors

IMSL ARPACK MAX ITER REACHED The maximum number of iterations has been reached. All
possible eigenvalues have been found. Variable "n_acc"
returns the number of wanted converged Ritz values.

IMSL ARPACK NO_ SHIFTS APPLIED No shifts could be applied during a cycle of the implicitly
restarted Arnoldi iteration. One possibility is to increase the
size of "ncv" = # relative to "nev" = #.
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Fatal Errors

IMSL START VECTOR ZERO

IMSL UNABLE TO BUILD ARNOLDI

IMSL_SYMM TRIDIAG QL QR ERROR

IMSL_ARPACK NO EIGVALS_ FOUND

IMSL DIFF N CONV RITZ VALUES

The starting vector "xguess" is zero. Use a non-zero vector
instead.

The algorithm was not able to build an Arnoldi factorization.
The size of the current Arnoldi factorization is #. Use of a dif-
ferent starting vector "xguess" may help.

The eigenvalue calculation via the symmetric tridiagonal QL or
QR algorithm during the post-processing phase of the implic-
itly restarted Arnoldi method failed.

The implicitly restarted Arnoldi method did not find any
eigenvalues to sufficient accuracy. Use of a different starting
vector "xguess", a larger iteration number "itmax", a different
number "ncv" of Arnoldi vectors or a different problem type
and/or solve mode may help.

The number of converged Ritz values computed by the itera-
tively restarted Arnoldi method differs from the number of
converged Ritz values determined during the post-processing
phase.
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arpack_general

more. ..

Computes some of the eigenvalues and eigenvectors of the generalized nonsymmetric eigenvalue problem
Ax = N\Bx using an implicitly restarted Arnoldi method (IRAM). The algorithm can also be used for the standard

case B =1 The matrices A, B are real, but eigenvalues may be complex and occur in conjugate pairs.

NOTE: Function arpack general is available in double precision only.

Synopsis
#include <ims1.h>

d_complex *ims1l d arpack general (voidfcn (), intn, intnev, .., 0)

Required Arguments

void £cn (int n, double x [ 1, int task, double y[1) (Input)
User-supplied function to return matrix-vector operations or solutions of linear systems.

int n (Input)
The dimension of the problem.

double x [ ] (Input)
An array of size n containing the vector to which the operator will be applied.

int task (Input)
An enumeration type which specifies the operation to be performed. Variable task is an

enumerated integer value associated with enum type Ims1l arpack task. Table 15
describes the possible values.

299



Eigensystem Analysis arpack_general

Table 15 - Enum type Imsl_arpack_task

task

Description

IMSL ARPACK PREPARE

Take initial steps to prepare for the operations to follow.
These steps can include defining data for the matrices, fac-
torizations for upcoming linear system solves or recording
the vectors used in the operations.

IMSL_ARPACK A X y =Ax
IMSL ARPACK B X y =Bx
IMSL_ARPACK_INV_SHIFT X V=4 - oBy'x, oreal,
or
y = Re{(A - oB)"x}, ccomplex,
or

y = Im{(A - oB)'x}, ocomplex,

Bgeneralor =1

IMSL ARPACK INV B X

y=B"x

double y [ 1 (Output)

An array of size n containing the result of a matrix-vector operation or the solution of a linear

system.

intn (Input)

The dimension of the problem.

intnev (Input)

The number of eigenvalues to be computed. Itis required that 0 < nev < n - 1.

Return Value

A pointer to the newv eigenvalues of the general eigenvalue problem. Complex conjugate eigenvalues are stored

consecutively, with the eigenvalue with positive imaginary part in the first place. To release this space, use

imsl free.Ifnovalue can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <ims1l.h>

d_complex *imsl d_arpack general (void fcn (), intn, int nev,

IMSL XGUESS, double xguess[],
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IMSL ITMAX,intitmax,

IMSL TOLERANCE, double tol,

IMSL SHIFT, d complex shift,

IMSL EIGVAL_ LOCATION, /mslLarpack eigval_location eigval loc,
IMSL EIG PROBLEM TYPE, Imsl_arpack problem_type problem type,
IMSL EIG SOLVE_ MODE, Imsl_arpack_solve_mode mode,

IMSL NUM ARNOLDI_ VECTORS, intncv,

IMSL NUM ACCURATE EIGVALS,int*n_acc,

IMSL VECTORS, double **evec,

IMSL VECTORS USER, double evecul],

IMSL EVECU COL_DIM, intevecu col dim,

IMSL RETURN USER, d_complex evalul],

IMSL_FCN_W_DATA, void fcn (), void *data,

0)

Optional Arguments

IMSL XGUESS, double xguess[] (Input)
A non-zero vector of size n containing the starting vector for the implicitly restarted Arnoldi method.

By default, a random starting vector is computed internally.

IMSL ITMAX, intitmax (Input)
The maximum number of Arnoldi iterations.
Default: itmax = 1000.

IMSL TOLERANCE, double tol (Input)
Tolerance value used in the criterion for the acceptability of the relative accuracy of the Ritz values.
Default: tol = imsl f machine (3).

IMSL SHIFT, d_complex shift (Input)
The shift value used in the shift-invert spectral transformations.
Default: shift ={0, 0}.

IMSL EIGVAL_ LOCATION, Imslarpack eigval_location eigval loc (Input)
An enumeration type which specifies the location of the eigenvalues to compute.
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Table 16 - Enum type Imsl_arpack_eigval_location

eigval_loc

Description

IMSL ARPACK LARGEST MAGNITUDE

Compute eigenvalues of largest magnitude.

IMSL ARPACK SMALLEST MAGNITUDE |Compute eigenvalues of smallest magnitude.

IMSL ARPACK LARGEST REAL PART

Compute eigenvalues of largest algebraic real part.

IMSL ARPACK SMALLEST REAL PART |Compute eigenvalues of smallest algebraic real part.

IMSL ARPACK LARGEST IMAG PART

Compute eigenvalues of largest imaginary part
magnitude.

IMSL ARPACK SMALLEST IMAG PART |Compute eigenvalues of smallestimaginary part

magnitude.

For computational modes that use a spectral transformation the eigenvalue location refers to the
transformed—not the original—problem. See the Description section for an example.

Default: eigval loc =IMSL AR

PACK LARGEST MAGNITUDE

IMSL EIG PROBLEM TYPE, Imslarpack problem_type problem type (Input)
An enumeration type that indicates if a standard or generalized eigenvalue problem is to be solved.

Table 17 - Enum type Imsl_arpack_problem_type

problem_type

Description

IMSL ARPACK_ STANDARD

Solve standard problem, Ax = \x.

IMSL ARPACK GENERALIZED

Solve generalized problem, Ax = ABx.

Default: problem type = IMSL ARPACK STANDARD.

IMSL EIG SOLVE_ MODE, Imsl_arpack_solve_mode mode (Input)
An enumeration type indicating which computational mode is used for the eigenvalue computation.
Variables problem type and mode together define the tasks that must be provided in the user-
supplied function. The following table describes the values variable mode can take, the feasible com-

binations with variable problem t

Table 18 - Mode/problem type

ype and the related tasks:

combinations

mode problem_type Required tasks

IMSL ARPACK REGULAR IMSL ARPACK STANDARD y= Ax

IMSL ARPACK REGULAR INVERSE IMSL ARPACK GENERALIZED y= Ax’y = Bx’y = B'1x
IMSL ARPACK SHIFT INVERT IMSL ARPACK STANDARD y= (A _ 0{)-1)(?

IMSL ARPACK SHIFT INVERT IMSL ARPACK GENERALIZED y= Bx,y - (A _ OB)-1X
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Table 18 - Mode/problem type combinations

mode problem_type Required tasks

IMSL_ARPACK REAL_SHIFT INVERT|IMSI, ARPACK GENERALIZED y=Ax,y = Bx,
y=Re{(A - oB)'x}

IMSL_ARPACK IMAG SHIFT INVERT|IMSL ARPACK GENERALIZED y=Ax,y = Bx,
y=Im{(A - oB)'x}

Default: mode = IMSL ARPACK REGULAR.

IMSL_NUM ARNOLDI VECTORS, int ncv (Input)
The number of Arnoldi vectors generated in each iteration of the Arnoldi method. It is required that
nev + 2 <= ncv <= n.Avaluencv >= min(2*nev + 1, n) isrecommended.

Default: ncv = min (2*nev + 1, n).

IMSL _NUM ACCURATE EIGVALS,int*n_acc (Output)
The number of eigenvalues that the algorithm was able to compute accurately. This number can be
smaller than nev.

IMSL VECTORS, double **evec (Output)
The address of a pointer to an array of sizen x (nev+1) containing the B-orthonormalized eigen-
vectors corresponding to the n_acc converged eigenvalues. Typically, double *evec is declared,
and &evec is used as an argument. For a closer description of the array content, see optional argu-
ment IMSL_VECTORS_USER.

IMSL VECTORS USER, double evecu[] (Output)
Auser-defined array of sizen x (nev+1) containingthe n_acc B-orthonormalized eigenvectors
of the eigenvalue problem in compact form. The eigenvectors are stored column-wise in the same
order as the eigenvalues. An eigenvector corresponding to a real eigenvalue is real and represented
by a single column. For a complex conjugate pair of eigenvalues, the real and imaginary parts of the
eigenvector related to the eigenvalue with positive imaginary part are stored in two consecutive col-
umns of array evecu. If an eigenvalue is complex and has no complex conjugate counterpart due to
the choice of nev, then the corresponding eigenvector is stored in two consecutive columns of
evecu.

IMSL EVECU COL _DIM, intevecu_col dim (Input)
The column dimension of evecu.
Default: evecu _col dim=nev + 1

IMSL RETURN USER, d_complex evalu[] (Output)
An array of size nev containing the accurately computed eigenvalues in the first n_acc locations.
Complex conjugate pairs of eigenvalues are stored consecutively in evalu.
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IMSL FCN W DATA, void fcn (intn, double x [ 1, int task, double y [ 1), void *data, (Input/Output)
User-supplied function to return matrix-vector operations or solutions of linear systems, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function.

NOTE: The possibility to supply user-data via IMSIL, FCN_W_DATA is an important feature of
arpack general. It allows the user to transfer problem-specific data to the algorithm without the
need to define global data. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

Description

Function ims1l d arpack general, whichis based on ARPACK subroutines DNAUPD and DNEUPD (see the
ARPACK Users' Guide, Lehoucq et al. (1998)), computes selected eigenvalue-eigenvector pairs for generalized
nonsymmetric eigenvalue problems of the form

Ax = N\Bx.

Here, A is a real general and B a positive semi-definite matrix. For B = [, the generalized problem reduces to the

standard nonsymmetric eigenvalue problem.

The ARPACK routine DNAUPD implements a variant of the Arnoldi method and uses reverse communication to
obtain the required matrix-vector products or solutions of linear systems for the iterations. Responses to these
requests are made by calling the user-defined function £cn. User data can be made available for the evaluations

by optional argument IMSL FCN_W_DATA.

For a given problem, the requested responses depend on the settings of optional arguments

IMSL EIG PROBLEM TYPE and IMSL EIG SOLVE MODE. For each response, a corresponding task must be
defined in the user-defined function £cn. The Mode/problem type combinations table under optional argument
IMSL EIG SOLVE_ MODE shows which tasks have to be defined for a certain problem.

The following code snippet shows the complete list of tasks available for £cn and their meaning:

void fcn(int n, double x[], int itask, double yI[])
{
switch (itask) {
/*
* Define responses to different tasks for the generalized
* eigenvalue problem
2 A*x = lambda * B * x,
* which includes the ordinary case B = I.
*/
case IMSL ARPACK PREPARE:
/*
* Take initial steps to prepare for the operations
* that follow. Note that arpack general internally
* always calls fcn with this enum value, even if it is
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* not required by the user.

v
break;
case IMSL ARPACK A X:
/*
* Compute matrix-vector product y = A * x
=)
break;
case IMSL ARPACK B X:
/*
* Compute matrix-vector product y = B * x
*/
break;
case IMSL ARPACK INV SHIFT X:
/* B - B
* Compute the matrix-vector product
% z = inv(A - sigma * B) * x,
* and return
* y = 2, if mode = IMSL ARPACK SHIFT INVERT, sigma real,
% y = Re{z}, 1if mode = IMSL ARPACK REAL SHIFT INVERT, sigma complex,
U y = Im{z}, if mode = IMSL ARPACK IMAG SHIFT INVERT, sigma complex.
*
* Usually, matrix A - sigma * B is not directly inverted.
* Instead, a factorization of A - sigma * B is determined,
* and the factors are used to compute z via backsolves.
*
* Example:
* If an LU factorization of A - sigma * B exists, then
* A - sigma * B =P * L * U,
* P a permutation matrix. Vector z can then be determined
* as solution of the linear system
% L * U * z = trans(P) * x.
* The LU factorization only has to be computed once, for
* example outside of fcn or within IMSL ARPACK PREPARE.
v
break;
case IMSL ARPACK INV B X:
/*
* Compute matrix-vector product
B y = inv (B) * x.
* Usually, matrix B is not directly inverted.
* 1Instead, a factorization of B is determined, and the
* factors are used to compute y via backsolves.
*
* Example:
* If matrix B is positive definite, then a Cholesky
* factorization B = L * trans (L) exists. Vector y can then
* be determined by solving the linear system
& L * trans(L) * y = x.
* The Cholesky factorization only has to be computed once,
* for example outside of fcn or within IMSL ARPACK PREPARE.
v
break;
default:
/*
* Define error conditions, if necessary.
=
break;
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Internally, ims1 d arpack general first determines the eigenvalues for the problem specified by optional
arguments IMSL EIG SOLVE MODE and IMSL EIG PROBLEM TYPE.

Table 19 shows the matrices whose eigenvalues are determined for a given combination of these optional
arguments.

Table 19 - Matrices for a given mode/problem_type combination

mode problem_type Matrix

IMSL ARPACK REGULAR IMSL ARPACK_ STANDARD A

IMSL ARPACK REGULAR INVERSE IMSL ARPACK GENERALIZED ZTL4

IMSL ARPACK SHIFT INVERT IMSL ARPACK_ STANDARD 64__ab4 oreal

IMSL ARPACK SHIFT INVERT

IMSL ARPACK GENERALIZED

(A - oB)'B, oreal

IMSL ARPACK REAL SHIFT INVERT |IMSL ARPACK GENERALIZED

Re{(A - oB)'B}, ocomplex
Im{(A - oB)'B}, ocomplex

IMSL ARPACK IMAG SHIFT INVERT |IMSL ARPACK GENERALIZED

Note that the eigenvalue location defined by optional argument IMSL EIGVAL LOCATION always refers to the
matrices of Table 19.

For example, for mode=IMSL ARPACK SHIFT INVERT, problem type=IMSL ARPACK STANDARD,
andeigval loc=IMSL ARPACK LARGEST MAGNITUDE, the eigenvalues of largest magnitude of the

shift-inverted matrix (4 — o) are computed. Because of the relationship

A4~ oD ' x= vy

these eigenvalues correspond to the eigenvalues of the original problem Ax = Ax that are closest to the shift oin
absolute value.

In a second step, implemented via ARPACK routine DNEUPD, ims1 d arpack general internally trans-
forms the eigenvalues back to the eigenvalues of the original problem Ax = ABx or Ax = A\x and computes
eigenvectors, if required.

Besides matrix 4 being real and general, the modes for the generalized eigenproblem require some additional

properties of matrix B that are summarized in Table 20:
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Table 20 - Generalized eigenproblem additional matrix properties

mode Matrix properties
IMSL ARPACK REGULAR INVERSE B posit]ve definite
IMSL ARPACK SHIFT INVERT B positive semi-definite

IMSL ARPACK REAL SHIFT INVERT B posit]ve semi-definite

IMSL ARPACK IMAG SHIFT INVERT B posit]ve semi-definite

If the nonsymmetric problem has complex eigenvalues in conjugate pairs, the eigenvectors are returned in a
compact representation: If the eigenvalue A; has a positive imaginary part, the complex eigenvector is con-

structed from the relation w; =v; + iv; , 1. The real vectors v; v; , | are consecutive columns of the arrays evec

or evecu. The eigenvalue-eigenvector relationship is ij =Nw;. Since Alis real, A ;is also an eigenvalue:

Aw;

;= kjo‘ For purposes of checking results, the complex residual rp= ij— A :w: should be small in norm

7
relative to the norm of A. Since the norms of 7; and 7j are identical, a check of the alternate relationship is not

necessary. In the case of a real eigenvalue, the associated eigenvector is real and represented by a single column

in evec or evecu.

Copyright notice for ARPACK

Copyright (c) 1996-2008 Rice University. Developed by D.C. Sorensen, R.B. Lehoucg, C. Yang, and K. Maschhoff.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer listed in this license in the documentation and/or other materials provided with the distribu-
tion.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or pro-
mote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
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QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Examples

Example 1

The generalized eigenvalue problem Ax = ABx is solved using shift-invert strategies. The matrix A is tri-diagonal
with the values 2 on the diagonal, -2 on the sub-diagonal and 3 on the super-diagonal. The matrix B is tri-diagonal
positive definite with the values 4 on the diagonal and 1 on the off-diagonals. A complex shift o= 0.4 + 0.6 is

used. Two strategies of shift-invert are illustrated, y = Re{(A4 - oB)'Bx} and y = Im{(A-0B)'Bx}. In each case,
nev=6 eigenvalues are obtained, each with 3 pairs of complex conjugate values.

#include <math.h>
#include <imsl.h>
#include <omp.h>

#include <stdio.h>

static void ax (int n, double x[], double y[]);

static void bx(int n, double x[], double yI[]):

static void fcn w data(int n, double x[], int itask, double y[],
void *data) ;

static void compute residuals fcn(
void(*fcn) (int n, double x[], int itask, double y[], void *data),
int problem type, int n, int nev, int nconv, d complex eigvals[],
double evecu[], double ax[], void *data) ;

typedef struct ({
d complex *band matrix;
int *ipvt; N
d complex *factor;
d complex *work;
d complex sigma;
int shift strategy;
} imsl arpack data;

int main () {
int n, nev, ncv, n acc, i, j;
int *ipvt = NULL;
d complex sigma = { 0.4, 0.6 };
d_complex *a matrix = NULL, *factor = NULL, *eigvals = NULL;
d_complex *work = NULL;
double *evecu = NULL, *rwork = NULL;
imsl arpack data usr data;
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Imsl arpack solve mode mode[] = {
IMSL ARPACK REAL SHIFT INVERT, IMSL ARPACK IMAG SHIFT INVERT

ki

n = 100;
nev = 6;
ncv = 30;

eigvals = (d complex *)malloc(nev * sizeof (d complex));
evecu = (double *)malloc(n * (nev + 1) * sizeof (double))
rwork (double *)malloc((nev + 3 * n) * sizeof (double))

/* Allocate arrays needed in the LU factorization */

ipvt = (int *)malloc(n * sizeof (int));

a matrix = (d complex *)malloc(3 * n * sizeof(d complex));
factor = (d _complex *)malloc(4 * n * sizeof (d complex));
work = (d _complex *)malloc(2 * n * sizeof (d complex));

if (!eigvals || l!evecu || !'rwork || !ipvt || !a matrix || !factor
|| 'work) {
printf ("Memory allocation error\n");
goto FREE SPACE;

}

usr data.band matrix = a matrix;
usr data.ipvt = ipvt;

usr data.factor = factor;

usr data.sigma = sigma;

usr data.work = work;

for (1 = 0; 1 <= 1; i++) {

usr data.shift strategy = 1i;

imsl d arpack general (NULL, n, nev,
IMSL EIG PROBLEM TYPE, IMSIL ARPACK GENERALIZED,
IMSL EIG SOLVE MODE, mode[iT], -
IMSL SHIFT, sigma,
IMSL NUM ARNOLDI VECTORS, ncv,
IMSL NUM ACCURATE EIGVALS, &n_acc,
IMSL FCN W DATA, fcn w data, &usr data,
IMSL VECTORS USER, evecu,
IMSL RETURN USER, eigvals,

0);
printf ("\nNumber of requested eigenvalues : %d\n", nev);
printf ("Number of accurate (converged) eigenvalues : %d\n\n",
n acc);

compute residuals fcn(fcn w data, 1, n, nev, n acc, eigvals,
evecu, rwork, é&usr data);

/*
* Display eigenvalues and corresponding residuals
* || A * x - lambda * B * x || / |lambda|
*/
1E (1 = 0) {
printf (" Largest magnitude eigenvalues, real shift\n");
printf (" ========================================= \n") ;
}
else {
printf (" Largest magnitude eigenvalues, imaginary shift"
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ll\n") ;
printf ("
n\nn) g

}

printf ("%$30s%26s\n", "Eigenvalues (Real, Imag)",
"Relative residuals");
for (j = 0; j < n acc; Jj++) {
printf (" (%$14.81f, %14.81f)%20.81f\n", eigvals[j].re,
eigvals[j].im, rwork[j]):

}

FREE SPACE:

if (eigvals)

free (eigvals) ;
if (ipvt)

free (ipvt);
if (a_matrix)

free (a_matrix);
if (factor)

free (factor) ;
if (work)

free (work) ;
if (rwork)

free (rwork) ;
if (evecu)

free (evecu) ;

}

static void fcn w data(int n, double x[], int itask, double y[],
void *data)
{
int j, shift strategy;
int *ipvt = NULL;
d complex *c matrix = NULL, *factor = NULL, *work = NULL;
d complex cl, cdiag, cu;
d complex sigma;

imsl arpack data *usr data = (imsl arpack data *)data;
c matrix = usr data->band matrix;

ipvt = usr data->ipvt;

factor = usr data->factor;

sigma = usr data->sigma;

work = usr data->work;

shift strategy = usr data->shift strategy;

switch (itask) {
case IMS L_ARPACK_PRE PARE :

/%
* Create tridiagonal matrix
% C := A - shift * B
* 1in complex arithmetic.
*
/
cl = imsl zd convert(-2.0 - sigma.re, -sigma.im);
cdiag = imsl zd convert (2.0 - 4.0 * sigma.re, -4.0 * sigma.im);
cu = imsl zd convert (3.0 - sigma.re, -sigma.im);

for (J = 1; j <= n; j++) {
¢ matrix[j - 1] = cu;
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c matrix|

n +
c matrix[2 *

3 - 1] = cdiag;
n+ j

}

/* Compute LU factorization of tridiagonal matrix */
imsl z lin sol gen band(n, ¢ matrix, 1, 1, NULL,
IMSL FACTOR USER, ipvt, factor,
IMSL FACTOR ONLY,
0);
if (imsl _error type() != 0) {
imsl set user fcn return flag(l);
}
break;
case IMSL ARPACK A X:
ax(n, x, y)i
break;
case IMSL ARPACK B X:
bx(n, x, y);

break;
case IMSL ARPACK INV SHIFT X:
/*
* Solve (A - sigma * M) * y = x in complex arithmetic
v
for (3 = 0; j < n; j++) {
work[j] = imsl zd convert(x[j], 0.0);

imsl z lin sol gen band(n, NULL, 1, 1, work,
IMSL FACTOR USER, ipvt, factor,
IMSL RETURN USER, &work[n],
IMSL SOLVE ONLY,
0);
if (imsl error type() != 0) {
imsl set user fcn return flag(2);

}

if (shift strategy == 0) {
for (J = 0; J < n; Jj++) {
y[j] = work[n + j].re;
}
}
else if (shift strategy == 1) {
for (j = 0; j < n; j++) {
y[j] = work[n + J].im;
}
}
break;
default:
imsl set user fcn return flag(3);
break;

/%

i Matrix-vector multiplication function

*

L3 Computes the matrix vector multiplication y <- M*x, where M is
L3 an n by n symmetric tridiagonal matrix with 4 on the diagonal, 1
& on the subdiagonal and superdiagonal.

*
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static void bx (int n, double x[], double y[]) {

* ok F * ¥

*
*

/

int j;

.0 * x[J - 11 + x[J1;

y[n - 1] = x[n - 2] + 4.0 * x[n - 1];

Matrix-vector multiplication function

Compute the matrix vector multiplication y <- A*x where A is an

n by n symmetric tridiagonal matrix with 2 on the diagonal, -2
on the subdiagonal and 3 on the superdiagonal.

static void ax(int n, double x[], double y[]) {

* ok K % % o

*

*/

int j;

Compute residuals
|| A * x — lambda * B * x || / |lambdal,
including the case B = I.

problem type = 0 (standard) --> size(rwork) >= nev + 2 * n
problem type = 1 (generalized) --> size(rwork) >= nev + 3 * n

static void compute residuals fcn (

void (*fcn) (int n, double x[], int itask, double y[], void *data),

int problem type, int n, int nev, int nconv, d complex eigvals[],
double evecu[], double rwork[], void *data) {

int first, i, 3j;

double temp;

~
*

The following computations assume that complex conjugate
pairs of eigenvalues are stored consecutively and that the
imaginary part of the first eigenvalue is > 0, as
guaranteed by arpack general.

The computed residuals are stored in rwork[O:nconv-1].
This example actually uses the general case only, but
contains also the standard case if the user wants to
compute residuals for his own standard problems.

X 3k X o % X X X X

/

first = 1;
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if (problem type == 0) { /* standard problem */

/*

* Compute the residual norm

*

% |l A * x — lambda * x ||

*

% for the n _acc accurately computed eigenvalues and

= eigenvectors.

*/

for (1 = 0; 1 < nconv; 1i++) {

if (eigvals[i].im == 0.0) {

/*
* Ritz value is real.
*/

/* Copy eigenvectors into ax */
for (jJ = 0; j < n; Jj++) {
rwork[nev + j] = evecul] * (nev + 1) + 1i];
}
fen (n, &rwork[nev], IMSL ARPACK A X, &rwork[nev + n],

data) ;
for (jJ = 0; J < n; Jj++) {
rwork[nev + n + j] -= eigvals[i].re * rwork[nev + j];
}
rwork[i] = imsl d vector norm(n, &rwork[nev + n], 0);
if (fabs(eigvals[i].re) != 0.0) {

rwork[i] /= fabs(eigvals[i].re);
}
}
else if (first) {
/*
& Compute real part of A * x - lambda * x,
*

* A * x re - lambda re * x re + lambda im * x im

*/

for (jJ = 0; J < n; Jj++) {
rwork[nev + j] = evecul] * (nev + 1) + 1i];

}

fen (n, &rwork[nev], IMSL ARPACK A X, &rwork[nev + n],
data) ;

for (3 = 0; j < n; j++) {
rwork[nev + n + j] -= eigvals[i].re *
evecul[j * (nev + 1) + i];
rwork[nev + n + j] += eigvals[i].im *
evecul[] * (nev + 1) + i + 1];
}
/*
* Compute
% || A * x re - lambda re * x re + lambda im * x im ||
w
rwork[i] = imsl d vector norm(n, &rwork[nev + n], 0);
/*
& Compute imaginary part of A * x - lambda * x,
*
2 A * x im - lambda im * x re - lambda re * x im
A
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for (j = 0; j < n; j++) {
rwork[nev + j] = evecul] * (nev + 1) + 1 + 1];

}

fcn (n, &rwork[nev], IMSL ARPACK A X, &rwork[nev + n],
data) ;

for (3 = 0; j < n; j++) {
rwork[nev + n + j] -= eigvals[i].im *
evecul[] * (nev + 1) + 1i];
rwork[nev + n + j] -= eigvals[i].re *
evecul[] * (nev + 1) + i + 1];
}
/*
* Compute || A * x - lambda * x ||
=/
rwork[i] = hypot (rwork[i], imsl d vector norm(n,
&rwork[nev + nl, 0));
/*
* Compute res := || A*x - lambda * x || / || lambda ||
*

temp = hypot (eigvals[i].re, eigvals[i].im);
if (temp != 0.0) {
rwork[i] /= temp;

}
/*
& Take into account that
% || A * x - lambda * x || =
u || conj (A * x - lambda * x) ||
*
rwork[i + 1] = rwork([i];
first = 0;
}
else {
first = 1;

else { /* generalized problem */

ks Compute the residual norm

*
* || A * x — lambda * B * x || / | lambda |
*
& for the n _acc accurately computed eigenvalues and
= eigenvectors.
=
for (1 = 0; 1 < nconv; 1i++) {
if (eigvals[i].im == 0.0) {
/*
* Ritz value is real.
=y

/* Copy eigenvectors into rwork */

for (j = 0; j < n; Jj++) {
rwork[nev + Jj] = evecul[] * (nev + 1) + i];

}

fen (n, &rwork[nev], IMSL ARPACK A X, &rwork[nev + n],
data) ;

fcn(n, &rwork[nev], IMSL ARPACK B X, &rwork[nev + 2 * n],
data) ;
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for (J = 0; j < n; j++) {

rwork[nev + n + j] -= eigvals[i].re *

rwork[nev + 2 * n + jl;

}
rwork[i] = imsl d vector norm(n, &rwork[nev + n], 0);
if (fabs(eigvals[i].re) != 0.0) {

rwork[i] /= fabs(eigvals[i].re);
}

}

else if (first) {

/*
& Ritz value is complex.
*/
/*
* Compute real part of A * x - lambda * B * x,
*
2 A * x re - lambda re * B * x re +
s lambda im * B * x im
v
for (3 = 0; j < n; J++) {
rwork[nev + j] = evecul] * (nev + 1) + 1i];

}
fen (n, &rwork[nev], IMSL ARPACK A X, &rwork[nev + n],

data) ;

fcn(n, &rwork[nev], IMSL ARPACK B X, &rwork[nev + 2 * n],
data) ;

for (j = 0; j < n; j++) {
rwork[nev + n + j] -= eigvals[i].re *

rwork[nev + 2 * n + J];

}
for (jJ = 0; J < n; Jj++) {
rwork[nev + j] = evecul] * (nev + 1) + 1 + 1];

}

fcn(n, &rwork[nev], IMSL ARPACK B X, &rwork[nev + 2 * n],

data) ;
for (3 = 0; j < n; j++) {
rwork[nev + n + Jj] += eigvals[i].im *
rwork[nev + 2 * n + J];

}

/*

& Compute

w || A * x re - lambda re * B * x re +

e lambda im * B * x im ||

v
rwork[i] = imsl d vector norm(n, &rwork[nev + n], 0);
/*

& Compute imaginary part of A*x - lambda * B * x,
*

* A * x im - lambda im * B * x re

* - lambda re * B * x im

*/

for (3 = 0; J < n; Jj++) |

rwork[nev + j] = eveculj * (nev + 1) + i + 1];

}
fen (n, &rwork[nev], IMSL ARPACK A X, &rwork[nev + n],

data) ;

fcn(n, &rwork[nev], IMSL ARPACK B X, &rwork[nev + 2 * n],

data) ;
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for (J = 0; j < n; j++) {
rwork[nev + n + j] -= eigvals[i].re *
rwork[nev + 2 * n + jl;

n;
j1 = evecul[j * (nev + 1) + 1i];

fcn(n, &rwork[nev], IMSL ARPACK B X, &rwork[nev + 2 * n],

data) ;
for (j = 0; J < n; j++) {
rwork[nev + n + j] -= eigvals[i].im *
rwork[nev + 2 * n + j];
}
/*
* Compute || A * x - lambda * x ||
%)
rwork[i] = hypot (rwork[i], imsl d vector norm(n,
&rwork[nev + n], 0));
/*
* Compute res := || A*x - lambda * x || / || lambda ||
w
temp = hypot (eigvals[i].re, eigvals[i].im);
if (temp !'= 0.0) {
rwork[i] /= temp;
}
/*
& Take into account that
& || A * x - lambda * x || =
% || conj (A * x — lambda * x) ||
w
rwork[i + 1] = rwork[i];
first = 0;
}
else {
first = 1;
}
}
}
}
Output
Number of requested eigenvalues : 6
Number of accurate (converged) eigenvalues : 6

Largest magnitude eigenvalues, real shift

Eigenvalues (Real, Imag) Relative residuals

( 0.50000000, 0.59581177) 0.00000000

( 0.50000000, -0.59581177) 0.00000000

( 0.50000000, 0.63311769) 0.00000000

( 0.50000000, -0.63311769) 0.00000000

( 0.50000000, 0.55827553) 0.00000000

( 0.50000000, -0.55827553) 0.00000000
Number of requested eigenvalues : 6

Number of accurate (converged) eigenvalues : 6
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Largest magnitude eigenvalues, imaginary shift

Eigenvalues (Real, Imag)

( 0.50000000, 0.59581177)
( 0.50000000, -0.59581177)
( 0.50000000, 0.63311769)
( 0.50000000, -0.63311769)
( 0.50000000, 0.55827553)
( 0.50000000, -0.55827553)

Warning Errors

IMSL ARPACK MAX ITER REACHED

IMSL ARPACK NO SHIFTS APPLIED

Fatal Errors

IMSL_START VECTOR ZERO

IMSL UNABLE TO BUILD ARNOLDI

IMSL_QOR CONVERGENCE ERROR

IMSL QR _CONVERGENCE ERROR 1
IMSL_SCHUR FORM REORD ERROR

IMSL EIGVEC COMPUTATION_ ERROR

IMSL_SYMM TRIDIAG QL QR ERROR

Relative residuals
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

OO OO O

The maximum number of iterations has been reached. All
possible eigenvalues have been found. Variable "n_acc"
returns the number of wanted converged Ritz values.

No shifts could be applied during a cycle of the implicitly
restarted Arnoldi iteration. One possibility is to increase the
size of "ncv" = # relative to "nev" = #.

The starting vector "xguess" is zero. Use a non-zero vector
instead.

The algorithm was not able to build an Arnoldi factorization.
The size of the current Arnoldi factorization is #. Use of a dif-
ferent starting vector "xguess" may help.

The iteration for an eigenvalue failed to converge during the
processing of the implicitly restarted Arnoldi method.

The iteration for an eigenvalue failed to converge during the
postprocessing phase of the implicitly restarted Arnoldi
method.

Reordering of the Schur form failed because some eigenval-
ues are too close to separate (the problem is very ill-
conditioned).

The eigenvector computation during the postprocessing
phase of the implicitly restarted Arnoldi method failed.

The eigenvalue calculation via the symmetric tridiagonal QL or
QR algorithm during the post-processing phase of the implic-
itly restarted Arnoldi method failed.
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IMSL_ARPACK NO EIGVALS FOUND

IMSL DIFF N CONV RITZ VALUES

IMSL_RAYLEIGH DENOM ZERO

The implicitly restarted Arnoldi method did not find any
eigenvalues to sufficient accuracy. Use of a different starting
vector "xguess", a larger iteration number "itmax", a different
number "ncv" of Arnoldi vectors or a different problem type
and/or solve mode may help.

The number of converged Ritz values computed by the itera-
tively restarted Arnoldi method differs from the number of
converged Ritz values determined during the post-processing
phase.

The denominator of the Rayleigh quotient of the generalized
eigenvector w, numbered #, is equal to zero. More specifically,
the B-norm of the eigenvector, sqrt(ctrans(w)*B*w), is zero.
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eig_gen

Computes the eigenexpansion of a real matrix A.

Synopsis
#include <ims1.h>
fcomplex *ims1l f eig gen(intn,float *a, .., 0)

The type d_complex functionis ims1 d eig gen.

Required Arguments

int n (INnput)
Number of rows and columns in the matrix.

float *a (Input)
An array of size n X n containing the matrix.

Return Value

A pointer to the n complex eigenvalues of the matrix. To release this space, use ims1 free. If no value can be

computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

fcomplex *imsl f eig gen (intn, float *a,
IMSL VECTORS, f complex **evec,
IMSL VECTORS USER, fcomplex evecul],
IMSL RETURN USER,f complex evalul],
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IMSL A COL DIM, inta col dim,
IMSL EVECU COL DIM, intevecu col dim,
0)

Optional Arguments

IMSL VECTORS, f complex **evec (Output)
The address of a pointer to an array of size n X n containing eigenvectors of the matrix. On return,

the necessary space is allocated by the function. Typically, f complex *evec is declared, and &evec
is used as an argument.

IMSL VECTORS USER, f complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n X ncontaining the matrix of eigenvectors is

returned in the space evecu.

IMSL RETURN USER, f complex evalul[] (Output)
Store the neigenvalues in the space evalu.

IMSL A COL DIM inta _col dim (Input)
The column dimension of a.
Default:a_col dim=n

IMSL EVECU COL DIM, intevecu_col dim (Input)
The column dimension of evecu.
Default: evecu col dim=n

Description

Function ims1 f eig gen computes the eigenvalues of a real matrix by a two-phase process. The matrix is
reduced to upper Hessenberg form by elementary orthogonal or Gauss similarity transformations. Then, eigen-
values are computed using a QR or combined LR-QR algorithm (Golub and Van Loan 1989, pp. 373 - 382, and
Watkins and Elsner 1990). The combined LR-QR algorithm is based on an implementation by Jeff Haag and David
Watkins. Eigenvectors are then calculated as required. When eigenvectors are computed, the QR algorithm is
used to compute the eigenexpansion. When only eigenvalues are required, the combined LR-QR algorithm is

used.

320



Eigensystem Analysis eig_gen

Examples

Example 1

#include <imsl.h>

int main ()

{

int n = 3;

float al] = {8.0, -1.0, =-5.0,
-4.0, 4.0, -2.0,
18,0, =5.0, =7.0}¢

f complex *eval;

/* Compute eigenvalues of A */
eval = imsl f eig gen (n, a, 0);

/* Print eigenvalues */

imsl ¢ write matrix ("Eigenvalues", 1, n, eval, 0);
}
Output
Eigenvalues
1 2 3
( 2, 4) ( 2, -4) 1, 0)
Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main ()
{
int n
float all o
.0, 4.0, -2.0,
0, =5.0, =7.0}2
f complex *eval;
f complex “*evec;
/* Compute eigenvalues of A */
eval = imsl f eig gen (n, a,
IMSL VECTORS, &evec,
0);
/* Print eigenvalues and eigenvectors */
imsl ¢ write matrix ("Eigenvalues", 1, n, eval, 0);

imsl:c_write_matrix ("Eigenvectors", n, n, evec, 0);
}
Output
Eigenvalues
1 2 3
( 2, 4) | 2, -4) ( 1, 0)
Eigenvectors

321



Eigensystem Analysis eig_gen

1
1 ( 0.3162, 0.3162) ( 0.3162,
2 ( 0.0000, 0.6325) ( 0.0000,
3 ( 0.6325, 0.0000) ( 0.6325,

Warning Errors

IMSL SLOW CONVERGENCE GEN

2 3
-0.3162) ( 0.4082, 0.0000)
-0.6325) ( 0.8165, 0.0000)

0.0000) ( 0.4082, 0.0000)

The iteration for an eigenvalue did not converge
after # iterations.
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eig_gen (complex)

Computes the eigenexpansion of a complex matrix A.

Synopsis

#include <imsl.h>

f.complex *imsl c_eig gen (intn, f complex *a, ..., 0)

The type d_complex procedure is imsl z eig gen.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

f.complex *a (Input)
Array of size n Xn containing the matrix.

Return Value

A pointer to the n complex eigenvalues of the matrix. To release this space, use ims1 free. If no value can be

computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

f.complex *imsl c_eig gen (intn, f complex *a

IMSL VECTORS, f complex **evec,

IMSL VECTORS USER, fcomplex evecul],
IMSL RETURN USER, fcomplex evalul[],
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IMSL A COL DIM, inta col dim,
IMSL EVECU COL DIM, intevecu col dim,
0)

Optional Arguments

IMSL VECTORS, f complex **evec (Output)
The address of a pointer to an array of size n Xn containing eigenvectors of the matrix. On return,

the necessary space is allocated by the function. Typically, f complex *evecu is declared, and
gevecu is used as an argument.

IMSL VECTORS USER, f complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n X n containing the matrix of eigenvectors is

returned in the space evecu.

IMSL RETURN USER, f complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL A COL DIM inta _col dim (Input)
The column dimension of A.
Default:a_col dim=n

IMSL EVECU COL DIM, intevecu_col dim (Input)
The column dimension of evecu.
Default: evecu col dim=n

Description

The function ims1 c eig gen computes the eigenvalues of a complex matrix by a two-phase process. The
matrix is reduced to upper Hessenberg form by elementary Gauss transformations. Then, the eigenvalues are
computed using an explicitly shifted LR algorithm. Eigenvectors are calculated during the iterations for the eigen-

values (Martin and Wilkinson 1971).

Examples

Example 1

#include <imsl.h>

int main ()

{
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eig_gen (complex)

int
f complex

f complex

n = 4;

a[] = { {519}1 {515}1 {_61_6}1 {_71_7}1
{313}1 {6110}1 {_51_5}/ {_61_6}1
{212}/ {313}1 {_1/ 3}/ {_51_5}1
{lll}l {212}1 {_31_3}1 { OI 4} };

*eval;

/* Compute eigenvalues */

eval = imsl c eig gen (n, a, 0);

/* Print eigenvalues */

imsl ¢ write matrix ("Eigenvalues", 1, n, eval, 0);

}

Output
( 4,
( 1,
Example 2

Eigenvalues
1 2 3
8) ( 3, 7) 2, 6)
4
o))

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main ()

{

int n = 4;
f_complex all = { {519}1 {5,5}, {_61_6}1 {=7,-7},

{313}1 {6110}1 {_51_5}1 {_61_6}1

{212}/ {313}1 {-1, 3}/ {-5,-5},

{1,1}, {212}1 {_31_3}1 { OI 41 };
f complex *eval;
f complex *evec;

/* Compute eigenvalues and eigenvectors */

eval = imsl c eig gen (n, a,

IMSL VECTORS, &evec,
0);
/* Print eigenvalues and eigenvectors */

imsl c write matrix ("Eigenvalues", 1, n, eval, 0);
imsl ¢ write matrix ("Eigenvectors", n, n, evec, 0);

}

Output
( 4,
( 1,

1 ( 0.5773,

Eigenvalues
1 2 3
8) ( 3, 7) 2, 6)
4
5)
Eigenvectors
1 2 3

-0.0000) ( 0.5774 0.0000) ( 0.3780, -0.0000)

325



Eigensystem Analysis eig_gen (complex)

(
(

SN

0.5773, =-0.0000) ( 0.5773,
0.5774, 0.0000) ( -0.0000,
-0.0000, -0.0000) ( 0.5774,
4
0.7559, 0.0000)
0.3780, 0.0000)
0.3780, 0.0000)
0.3780, 0.0000)

Fatal Errors

IMSL SLOW CONVERGENCE GEN

-0.0000) ( 0.7559, 0.0000)
-0.0000) ( 0.3780, 0.0000)
0.0000) ( 0.3780, -0.0000)

The iteration for an eigenvalue did not converge
after # iterations.
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eig_sym

Computes the eigenexpansion of a real symmetric matrix A.

Synopsis
#include <imsl.h>
float *ims1l f eig sym(intn, float *a, ..., 0)

The type double procedure is ims1l d eig sym.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

float *a (Input)
Array of size n X n containing the symmetric matrix.

Return Value

A pointer to the computed eigenvalues of the symmetric matrix in decreasing order of magnitude. To release this
space, use ims1 free.If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>

float *ims1l f eig sym(intn, float *a,
IMSL VECTORS, float **evec,
IMSL VECTORS USER, floatevecul],
IMSL RETURN USER, floatevalul[],
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IMSL RANGE, float elow, float ehigh,

IMSL EXTREME VALUES,intsmall,intn extreme,
IM