
IMSL® C Math Library
Version 2021.0

Copyright 1970-2021 Rogue Wave Software, Inc., a Perforce company.

Visual Numerics, IMSL, and PV-WAVE are registered trademarks of Rogue Wave Software, Inc., a Perforce company.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this docu-
ment is subject to the terms and conditions of a Rogue Wave Software License Agreement, including, without limitation,
the Limited Warranty and Limitation of Liability.
IMSL by Perforce
https://www.imsl.com

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft-
ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse
of the Documentation

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

Contents

Introduction

IMSL C Math Library . 2

Organization of the Documentation . 3

Finding the Right Function . 5

Naming Conventions . 6

Getting Started and the imsl.h file . 7

Error Handling, Underflow, Overflow, and Document Examples. 8

Memory Allocation for Output Arrays . 9

Printing Results . 10

Complex Arithmetic . 11

Missing Values . 12

Passing Data to User-Supplied Functions . 13

Return Values from User-Supplied Functions . 14

Thread Safe Usage . 15

OpenMP Usage . 16

Vendor Supplied Libraries Usage . 18

C++ Usage . 19

Matrix Storage Modes . 22

Linear Systems
Functions . 31

Usage Notes. 33

lin_sol_gen . 37

lin_sol_gen (complex) . 47

lin_sol_posdef. 55

lin_sol_posdef (complex) . 62

lin_sol_gen_band . 68

lin_sol_gen_band (complex). 74

lin_sol_posdef_band . 80

lin_sol_posdef_band (complex) . 85

lin_sol_gen_coordinate . 90

lin_sol_gen_coordinate (complex) . 101

superlu. 110

superlu (complex) . 125

superlu_smp . 141

superlu_smp (complex). 154

lin_sol_posdef_coordinate . 168

lin_sol_posdef_coordinate (complex) . 177

sparse_cholesky_smp . 186

sparse_cholesky_smp (complex) . 196

lin_sol_gen_min_residual . 206

lin_sol_def_cg . 212

lin_least_squares_gen . 219

nonneg_least_squares . 228

lin_lsq_lin_constraints . 235

nonneg_matrix_factorization . 241

lin_svd_gen . 246

lin_svd_gen (complex) . 253

lin_sol_nonnegdef . 260

Eigensystem Analysis
Functions . 267

Usage Notes . 268

arpack_symmetric . 272

arpack_general . 299

eig_gen . 319

eig_gen (complex) . 323

eig_sym . 327

eig_herm (complex) . 331

eig_symgen . 336

geneig. 340

geneig (complex) . 345

Interpolation and Approximation
iv

Functions . 349

Usage Notes . 350

cub_spline_interp_e_cnd. 360

cub_spline_interp_shape . 369

cub_spline_tcb . 375

cub_spline_value . 383

cub_spline_integral . 387

spline_interp . 389

spline_knots . 395

spline_2d_interp . 400

spline_value. 407

spline_integral. 411

spline_2d_value . 414

spline_2d_integral . 418

spline_nd_interp . 422

user_fcn_least_squares . 427

spline_least_squares . 436

spline_2d_least_squares . 443

cub_spline_smooth . 449

spline_lsq_constrained . 454

smooth_1d_data. 463

scattered_2d_interp. 468

radial_scattered_fit. 473

radial_evaluate . 481

Quadrature
Functions . 485

Usage Notes . 486

int_fcn_sing . 489

int_fcn_sing_1d . 494

int_fcn. 502

int_fcn_sing_pts . 507

int_fcn_alg_log. 513

int_fcn_inf. 518
v

int_fcn_trig . 524

int_fcn_fourier. 530

int_fcn_cauchy . 536

int_fcn_smooth . 541

int_fcn_2d . 546

int_fcn_sing_2d . 552

int_fcn_sing_3d . 561

int_fcn_hyper_rect . 571

int_fcn_qmc . 576

gauss_quad_rule . 580

fcn_derivative . 585

Differential Equations
Functions . 589

Usage Notes . 590

ode_runge_kutta . 593

bvp_finite_difference . 600

differential_algebraic_eqs. 612

dea_petzold_gear. 629

ode_adams_krogh . 630

Introduction to pde_1d_mg . 640

pde_1d_mg . 643

modified_method_of_lines . 678

feynman_kac . 695

feynman_kac_evaluate . 730

fast_poisson_2d . 734

Transforms
Functions . 741

Usage Notes . 742

fft_real . 744

fft_real_init . 749

fft_complex . 751

fft_complex_init . 755

fft_cosine . 758
vi

fft_cosine_init . 761

fft_sine . 765

fft_sine_init . 768

fft_2d_complex . 772

convolution . 777

convolution (complex). 784

inverse_laplace . 791

Nonlinear Equations
Functions . 800

Usage Notes . 801

zeros_poly . 802

zeros_poly (complex). 807

zero_univariate . 812

zeros_function . 816

zeros_sys_eqn. 822

Optimization
Functions . 827

Usage Notes . 828

min_uncon. 831

min_uncon_deriv . 836

min_uncon_golden . 841

min_uncon_multivar . 846

min_uncon_polytope . 855

nonlin_least_squares. 860

read_mps. 871

linear_programming . 881

transport . 888

lin_prog . 892

quadratic_prog . 898

sparse_lin_prog . 904

sparse_quadratic_prog . 918

min_con_gen_lin . 933

bounded_least_squares . 941
vii

min_con_polytope . 951

min_con_lin_trust_region . 962

constrained_nlp . 968

jacobian . 979

Special Functions
Functions . 994

Usage Notes . 998

erf .1001

erfc . 1003

erfce . 1006

erfe . 1008

erf_inverse. .1010

erfc_inverse .1013

beta .1016

log_beta .1019

beta_incomplete .1021

gamma . 1023

log_gamma . 1026

gamma_incomplete . 1029

psi . 1032

psi1 . 1034

bessel_J0 . 1036

bessel_J1 . 1039

bessel_Jx .1041

bessel_Y0 . 1044

bessel_Y1 . 1047

bessel_Yx . 1049

bessel_I0 .1051

bessel_exp_I0 . 1054

bessel_I1 . 1056

bessel_exp_I1 . 1058

bessel_Ix . 1060

bessel_K0. 1062
viii

bessel_exp_K0 . 1065

bessel_K1. 1067

bessel_exp_K1 . 1069

bessel_Kx .1071

elliptic_integral_K . 1073

elliptic_integral_E . 1075

elliptic_integral_RF . 1077

elliptic_integral_RD. 1079

elliptic_integral_RJ. .1081

elliptic_integral_RC . 1083

fresnel_integral_C. 1085

fresnel_integral_S . 1087

airy_Ai . 1089

airy_Bi .1091

airy_Ai_derivative . 1093

airy_Bi_derivative . 1095

kelvin_ber0 . 1097

kelvin_bei0. 1099

kelvin_ker0. 1101

kelvin_kei0 .1103

kelvin_ber0_derivative .1105

kelvin_bei0_derivative .1107

kelvin_ker0_derivative .1109

kelvin_kei0_derivative . 1111

normal_cdf . 1113

normal_inverse_cdf . 1116

chi_squared_cdf . 1118

chi_squared_inverse_cdf. 1121

F_cdf .1123

F_inverse_cdf. .1125

t_cdf .1127

t_inverse_cdf .1130

gamma_cdf .1132
ix

binomial_cdf .1135

hypergeometric_cdf. .1137

poisson_cdf .1140

beta_cdf .1142

beta_inverse_cdf .1144

bivariate_normal_cdf .1146

cumulative_interest .1149

cumulative_principal . 1151

depreciation_db .1153

depreciation_ddb. .1156

depreciation_sln .1159

depreciation_syd . 1161

depreciation_vdb .1163

dollar_decimal .1166

dollar_fraction. .1168

effective_rate .1170

future_value .1172

future_value_schedule .1174

interest_payment .1176

interest_rate_annuity. .1178

internal_rate_of_return . 1181

internal_rate_schedule .1184

modified_internal_rate .1187

net_present_value .1189

nominal_rate . 1191

number_of_periods .1193

payment. .1195

present_value .1197

present_value_schedule .1199

principal_payment .1201

accr_interest_maturity. 1203

accr_interest_periodic . 1205

bond_equivalent_yield. 1208
x

convexity .1210

coupon_days. .1213

coupon_number .1215

days_before_settlement .1217

days_to_next_coupon .1219

depreciation_amordegrc .1221

depreciation_amorlinc . 1224

discount_price . 1227

discount_rate . 1229

discount_yield .1231

duration . 1233

interest_rate_security . 1236

modified_duration . 1238

next_coupon_date .1241

previous_coupon_date . 1243

price . 1245

price_maturity. 1248

received_maturity .1251

treasury_bill_price . 1254

treasury_bill_yield. 1256

year_fraction . 1258

yield_maturity . 1260

yield_periodic . 1263

Statistics and Random
Number Generation

Functions . 1266

Usage Notes . 1267

simple_statistics . 1269

table_oneway . 1275

chi_squared_test . 1280

covariances . 1289

regression . 1296

poly_regression . 1306
xi

ranks. .1315

random_seed_get . 1322

random_seed_set. 1324

random_option. 1325

random_uniform . 1327

random_normal . 1330

random_poisson . 1332

random_gamma . 1335

random_beta . 1338

random_exponential .1341

faure_next_point . 1343

Printing Functions
Functions . 1348

write_matrix . 1349

page . 1356

write_options . 1358

Utilities
Functions . 1362

output_file . 1364

version . 1368

ctime. 1370

date_to_days . 1372

days_to_date . 1374

error_options . 1376

error_type . 1383

error_message . 1384

error_code. 1386

initialize_error_handler . 1388

set_user_fcn_return_flag . 1390

free . 1395

fopen . 1397

fclose . 1399

omp_options . 1400
xii

constant. 1402

machine (integer) . 1407

machine (float) .1410

sort .1414

sort (integer) .1417

vector_norm . 1420

vector_norm (complex) . 1423

mat_mul_rect . 1427

mat_mul_rect (complex) .1431

mat_mul_rect_band . 1435

mat_mul_rect_band (complex) . 1440

mat_mul_rect_coordinate . 1445

mat_mul_rect_coordinate (complex) . 1450

mat_add_band . 1456

mat_add_band (complex) . 1460

mat_add_coordinate . 1465

mat_add_coordinate (complex). 1469

matrix_norm . 1474

matrix_norm_band . 1477

matrix_norm_coordinate .1481

generate_test_band. 1485

generate_test_band (complex) . 1488

generate_test_coordinate .1491

generate_test_coordinate (complex) . 1496

Reference Material
Contents .1501

User Errors . 1502

Complex Data Types and Functions. 1506

Appendix A References . 1511

Appendix B Alphabetical Summary of Functions 1532
xiii

Product Support
Contacting IMSL Support . 1567

Index
xiv

 Introduction Table of Contents
Introduction

Table of Contents

IMSL C Math Library . 2
Organization of the Documentation . 3
Finding the Right Function. 5
Naming Conventions . 6
Getting Started and the imsl.h file. 7
Error Handling, Underflow, Overflow, and Document Examples 8
Memory Allocation for Output Arrays . 9
Printing Results . 10
Complex Arithmetic. 11
Missing Values . 12
Passing Data to User-Supplied Functions . 13
Return Values from User-Supplied Functions . 14
Thread Safe Usage . 15
OpenMP Usage . 16
Vendor Supplied Libraries Usage . 18
C++ Usage. 19
Matrix Storage Modes . 22
1

 Introduction IMSL C Math Library
IMSL C Math Library
The IMSL® C Math Library, a component of the IMSL® C Numerical Library, is a library of C functions useful in sci-
entific programming. Each function is designed and documented for use in research activities as well as by
technical specialists. A number of the example programs also show graphs of resulting output.
2

 Introduction Organization of the Documentation
Organization of the Documentation
This manual contains a concise description of each function with at least one example demonstrating the use of
each function, including sample input and results. All information pertaining to a particular function is in one
place within a chapter.

Each chapter begins with a table of contents listing the functions included in the chapter followed by an introduc-
tion. Documentation of the functions consists of the following information:

 Section Name: Usually, the common root for the type float and type double versions of the
function is given.

 Purpose: A statement of the purpose of the function.

 Synopsis: The form for referencing the subprogram with required arguments listed.

 Required Arguments: A description of the required arguments in the order of their occurrence, as
follows:

 Input: Argument must be initialized; it is not changed by the function.

 Input/Output: Argument must be initialized; the function returns output through this argu-
ment. The argument cannot be a constant or an expression.

 Output: No initialization is necessary. The argument cannot be a constant or an expres-
sion; the function returns output through this argument.

 Return Value: The value returned by the function.

 Synopsis with Optional Arguments: The form for referencing the function with both required
and optional arguments listed.

 Optional Arguments: A description of the optional arguments in the order of their occurrence.

 Description: A description of the algorithm and references to detailed information. In many cases,
other IMSL functions with similar or complementary functions are noted.

 Examples: At least one application of this function showing input and optional arguments.

 Errors: Listing of any errors that may occur with a particular function. A discussion on error types is
given in the User Errors section of the Reference Material. The errors are listed by their type as
follows:

 Informational Errors: List of informational errors that may occur with the function.

 Alert Errors: List of alert errors that may occur with the function.

 Warning Errors: List of warning errors that may occur with the function.
3

 Introduction Organization of the Documentation
 Fatal Errors: List of fatal errors that may occur with the function.
4

 Introduction Finding the Right Function
Finding the Right Function
The IMSL C Math Library is organized into chapters; each chapter contains functions with similar computational
or analytical capabilities. To locate the right function for a given problem, you may use either the table of contents
located in each chapter introduction, or in Alphabetical Summary of Functions at the end of this manual.

Often the quickest way to use the IMSL C Math Library is to find an example similar to your problem and then
mimic the example. Each function in the document has at least one example demonstrating its application.
5

 Introduction Naming Conventions
Naming Conventions
Most functions are available in both a type float and a type double version, with names of the two versions sharing
a common root. Some functions also are available in type int, or the IMSL-defined types f_complex or d_complex
versions. A list of each type and the corresponding prefix of the function name in which multiple type versions
exist follows:

The section names for the functions only contain the common root to make finding the functions easier. For
example, the functions imsl_f_lin_sol_gen and imsl_d_lin_sol_gen can be found in section
lin_sol_gen in Chapter 1, “Linear Systems.”

Where appropriate, the same variable name is used consistently throughout a chapter in the IMSL C Math
Library. For example, in the functions for eigensystem analysis, eval denotes the vector of eigenvalues and
n_eval denotes the number of eigenvalues computed or to be computed.

When writing programs accessing the IMSL C Math Library, the user should choose C names that do not conflict
with IMSL external names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the fol-
lowing rule is observed:

 Do not choose a name beginning with “imsl_” in any combination of uppercase or lowercase
characters.

Type Prefix

float imsl_f_
double imsl_d_
int imsl_i_
f_complex imsl_c_
d_complex imsl_z_
6

 Introduction Getting Started and the imsl.h file
Getting Started and the imsl.h file

Getting Started
To use any of the IMSL C Math Library functions, you first must write a program in C to call the function. Each
function conforms to established conventions in programming and documentation. We give first priority in devel-
opment to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions
makes it easy to use more than one function in a given application. Also, you will find that the design consistency
enables you to apply your experience with one IMSL C Math Library function to all other IMSL functions that you
use.

The imsl.h File
The include file <imsl.h> is used in all of the examples in this manual. This file contains prototypes for all IMSL-
defined functions; the spline structures, Imsl_f_ppoly, Imsl_d_ppoly, Imsl_f_spline, and Imsl_d_spline; enumerated
data types, Imsl_quad, Imsl_write_options, Imsl_page_options, Imsl_ode, and Imsl_error; and the IMSL-defined data
types f_complex (which is the type float complex) and d_complex (which is the type double complex).
7

 Introduction Error Handling, Underflow, Overflow, and Document Examples
Error Handling, Underflow, Overflow, and
Document Examples
The functions in the IMSL C Math Library attempt to detect and report errors and invalid input. This error-han-
dling capability provides automatic protection for the user without requiring the user to make any specific
provisions for the treatment of error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages being automatically printed by
the function. Moreover, errors of highest severity cause program execution to stop. The severity level, as well as
the general nature of the error, is designated by an “error type” with symbolic names IMSL_FATAL,
IMSL_WARNING, etc. See the User Errors section in the “Reference Material” for further details.

In general, the IMSL C Math Library codes are written so that computations are not affected by underflow, pro-
vided the system (hardware or software) replaces an underflow with the value zero. Normally, system error
messages indicating underflow can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages indicating over-
flow should be examined for programming errors such as incorrect input data, mismatch of argument types, or
improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the
algorithm.

Output from document examples can be system dependent and the user’s results may vary depending upon the
system used.
8

 Introduction Memory Allocation for Output Arrays
Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. By default, an array returned as
the value of a C Numerical Library function is stored in memory allocated by that function. To release this space,
use imsl_free. To return the array in memory allocated by the calling program, use the optional argument

IMSL_RETURN_USER, float a[]

In this way, the allocation of space for the computed answers can be made either by the user or internally by the
function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user
or are to be allocated internally by the function. For example, in many functions in “Linear Systems,” the optional
arguments

IMSL_INVERSE_USER, float inva[] (Output)

IMSL_INVERSE, float **p_inva (Output)

specify two mutually exclusive optional arguments. If the first option is chosen, the inverse of the matrix is stored
in the user-provided array inva.

In the second option, float **p_inva refers to the address of a pointer to the inverse. The called function allo-
cates memory for the array and sets *p_inva to point to this memory. Typically, float *p_inva is declared,
&p_inva is used as an argument to this function. Use imsl_free(p_inva) to release the space.
9

 Introduction Printing Results
Printing Results
Most functions in the IMSL C Math Library do not print any of the results; the output is returned in C variables.

The IMSL C Math Library contains some special functions just for printing arrays. For example, write_matrix is
a convenient function for printing matrices of type float. See Printing Functions for detailed descriptions of these
functions.
10

 Introduction Complex Arithmetic
Complex Arithmetic
Users can perform computations with complex arithmetic by using IMSL predefined data types. These types are
available in two floating-point precisions:

 f_complex for single-precision complex values

 d_complex for double-precision complex values

A description of complex data types and functions is given in the Reference Material.
11

 Introduction Missing Values
Missing Values
Some of the functions in the IMSL C Math Library allow the data to contain missing values. These functions recog-
nize as a missing value the special value referred to as “not a number,” or NaN. The actual value is different on
different computers, but it can be obtained by reference to the IMSL function imsl_f_machine, described in
Chapter 12, “Utilities.”

The way that missing values are treated depends on the individual function and is described in the documenta-
tion for the function.
12

 Introduction Passing Data to User-Supplied Functions
Passing Data to User-Supplied Functions
In some cases it may be advantageous to pass problem-specific data to a user-supplied function through the
IMSL C Math Library interface. This ability can be useful if a user-supplied function requires data that is local to
the user's calling function, and the user wants to avoid using global data to allow the user-supplied function to
access the data. Functions in IMSL C Math Library that accept user-supplied functions have an optional argu-
ment(s) that will accept an alternative user-supplied function, along with a pointer to the data, that allows user-
specified data to be passed to the function. The example below demonstrates this feature using the IMSL C Math
Library function imsl_f_min_uncon and optional argument IMSL_FCN_W_DATA.

Example

 #include <imsl.h>
 #include <math.h>
 #include <stdio.h>
 float fcn_w_data(float x, void *data);
 int main()
 {

 float a = -100.0;
 float b = 100.0;
 float fx, x;
 float usr_data[] = {5.0, 10.0};
 x = imsl_f_min_uncon (NULL, a, b,

IMSL_FCN_W_DATA, fcn_w_data, usr_data,
 0);

 fx = fcn_w_data(x, (void*)usr_data);
 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n",

fx);
 }
 /*
* User function that accepts additional data in a (void*) pointer.

 * This (void*) pointer can be cast to any type and dereferenced to
* get at any sort of data-type or structure that is needed.
* For example, to get at the data in this example

 * *((float*)data) and usr_data[0] contains the value 5.0
 * *((float*)data+1) and usr_data[1] contains the value 10.0
 */
 float fcn_w_data(float x, void *data)
 {

 float *usr_data = (float*)data;
 return exp(x) - usr_data[0]*x + usr_data[1];

 }
13

 Introduction Return Values from User-Supplied Functions
Return Values from User-Supplied Functions
All values returned by user-supplied functions must be valid real numbers. It is the user’s responsibility to check
that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.
In addition to the techniques described below, it is also possible to instruct the IMSL C Numerical Library to
return control to the calling program in case an unrecoverable error occurs within a user-supplied function. See
function imsl_set_user_fcn_return_flag for a description of this feature.

Example
 #include <imsl.h>
 #include <math.h>
 void fcn(int, int, float[], float[]);
 int main()
 {

 int m=3, n=1;
 float *result, fx[3];
 float xguess[]={1.0};
 result = imsl_f_nonlin_least_squares(fcn, m, n, IMSL_XGUESS,

xguess, 0);
 fcn(m, n, result, fx);
 /* Print results */
 imsl_f_write_matrix("The solution is", 1, 1, result, 0);
 imsl_f_write_matrix("The function values are", 1, 3, fx, 0);

 }
 void fcn(int m, int n, float x[], float f[])
 {

 int i;
 float y[3] = {2.0, 4.0, 3.0};
 float t[3] = {1.0, 2.0, 3.0};
 for (i=0; i<m; i++)
 {

 /* check for x=0
do not want to return infinity to nonlin_least_squares */

 if (x[0] == 0.0) {
 f[i] = 10000.;

 } else {
 f[i] = t[i]/x[0] - y[i];

 }
 }

 }
14

 Introduction Thread Safe Usage
Thread Safe Usage
The IMSL C Math Library is thread safe based on OpenMP. That means it can be safely called from a multi-
threaded application if the calling program adheres to a few important guidelines. In particular, IMSL C Math
Library’s implementation of error handling and I/O must be understood.

Error Handling
C Math Library’s error handling in a multithreaded application behaves similarly to how it behaves in a single-
threaded application. The major difference is that an error stack exists for each thread calling C Math Library
functions. The result of separate error stacks for each thread is greater control of the error handler options for
each thread. Each thread can set its own options for the C Math Library error handler using
imsl_error_options. For an example of setting error handler options for separate threads, see Chapter 12,
Utilities, Example 3 of imsl_error_options.

Routines that Produce Output
A number of routines in C Math Library can be used to produce output. The function imsl_output_file can
be used to control the file to which the output is directed. In an application with a single thread of execution, a
single call to imsl_output_file can be used to set the file to which the output will be directed. In a multi-
threaded application each thread must call imsl_output_file to change the default setting of where output
will be directed. See the Utilities chapter, Example 2 of imsl_output_file for more details.
15

 Introduction OpenMP Usage
OpenMP Usage
Thread safety of the IMSL C Numerical Library is based on OpenMP. Users of the IMSL C Numerical Library are
also able to leverage shared-memory parallelism by means of native support for the OpenMP API specification
within parts of the Library. Those parts are flagged by the OpenMP icon shown below.

Parallelism in OpenMP is implemented by means of threads. In the OpenMP programming model, it is assumed
that memory is shared among threads, such as in multi-core machines. These threads are spawned by OpenMP
in response to directives embedded in source code.

The Library’s use of OpenMP is largely transparent to the user. Codes that have been enhanced with OpenMP
directives will still work properly in serial execution environments. Error handling routines have been extended so
that the most severe error during a parallel run will be returned to the user.

OpenMP is used by the Library in these main ways:

1. To implement thread safety within the C Numerical Library.

2. To speed up computationally intensive functions by exploiting data parallelism in their processing.

3. To give users more control of scheduling by using the "schedule(runtime)" clause for the parallelized
for-loops. The scheduling option chosen, set by using the OMP_SCHEDULE environment variable, can
significantly affect the performance of user's program depending on the workload of the system
during execution. If OMP_SCHEDULE is not set, the default behavior depends on implementation.
Please refer to OpenMP specifications on schedule type and chunk.

4. To set and control the number of threads to use for parallel region and nested parallel region by
using the OMP_NUM_THREADS and OMP_NESTED environment variables. If OMP_NUM_THREADS
and OMP_NESTED are not set, the default behavior depends on the implementation. Thus, all com-
puting resources may be used, affecting other applications' performance on the system. Please refer
to OpenMP specifications for more information.

5. To parallelize the evaluation of user-supplied functions in routines that use them, e.g. in numerical
integration routines.

In the last case, the user must explicitly signal to the Library that the user-supplied functions themselves are
thread-safe, or by default the user’s function(s) will not evaluate in parallel. The utility imsl_omp_options
allows the user to assert that all routines passed to the library are thread-safe.
16

 Introduction OpenMP Usage
Thread safety implies that function(s) may be executed simultaneously by multiple threads and still function cor-
rectly. Requiring that user-supplied functions be thread-safe is crucial, because the different threads spawned by
OpenMP may call user-supplied functions simultaneously, and/or in an arbitrary order, and/or with differing
inputs. Care must therefore be taken to ensure that the parallelized algorithm acts in the same way as its serial
“ancestor”. Functions whose results depend on the order in which they are executed are not thread-safe and are
thus not good candidates for parallelization; neither are functions which access and modify global data.

Specifications of the OpenMP standards are provided at (http://www.openmp.org/specifications/).
17

http://www.openmp.org/specifications/

 Introduction Vendor Supplied Libraries Usage
Vendor Supplied Libraries Usage
The IMSL C Numerical Library contains functions which may take advantage of functions in vendor supplied

libraries such as Intel’s® Math Kernel Library (MKL) or Sun’s™ High Performance Library. Functions in the vendor
supplied libraries are finely tuned for performance to take full advantage of the environment for which they are
supplied. For these functions, the user of the IMSL C Numerical Library has the option of linking to code which is
based on either the IMSL legacy functions or the functions in the vendor supplied library. The following icon in the
function documentation alerts the reader when this is the case:

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in the
online README file of the product distribution.
18

 Introduction C++ Usage
C++ Usage
IMSL C Numerical Library functions can be used in both C and C++ applications. It is also possible to wrap library
functions into C++ classes.

The function imsl_f_int_fcn_sing computes the integral of a user defined function. For C++ usage the user
defined function is defined as a member function of the abstract class IntFcnSingFunction defined as
follows.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
class IntFcnSingFunction
{
public:
 virtual float f(float x) = 0;
};

The function imsl_f_int_fcn_sing is wrapped as the C++ class IntFcnSing. This implementation uses
the optional argument, IMSL_FCN_W_DATA, to call local_function which in turn calls the method f to
evaluate the user defined function. For simplicity, this implementation only wraps a single optional argument,
IMSL_MAX_SUBINTER, the maximum number of subintervals. More could be included in a similar manner.

#include <imsl.h>
class IntFcnSing
{
public:
 int max_subinter;
 IntFcnSing();
 float integrate(IntFcnSingFunction *F, float a, float b);
};
static float local_function(float x, void *data)
{
 IntFcnSingFunction *F = (IntFcnSingFunction*)data;
 return F->f(x);
}
IntFcnSing::IntFcnSing()
{
 max_subinter = 500;
}
float IntFcnSing::integrate(IntFcnSingFunction *F, float a, float b)
{
 float result;
 result = imsl_f_int_fcn_sing(NULL, a, b,
 IMSL_FCN_W_DATA, local_function, F,
 IMSL_MAX_SUBINTER, max_subinter,
19

 Introduction C++ Usage
 0);
 if (imsl_error_type() >= 3)
 {
 throw imsl_error_message();
 }
 return result;
}

To use this IntFcnSing the user defined function must be defined as the method f in a class that extends

IntFcnSingFunction. The following class, MyClass, defines the function , where a is a
parameter.

class MyClass : public IntFcnSingFunction
{
public:
 MyClass();
 float f(double x);
private:
 float my_parameter;
};
MyClass::MyClass()
{
 my_parameter = 5.0;
}
float MyClass::f(float x)
{
 return exp(x) - my_parameter*x;
}

The following is an example of the use of these classes. Since the C++ throws an exception on fatal or terminal
IMSL errors, printing and stopping on these errors is turned off by a call to imsl_error_options. Also, since
the user defined function is thread-safe, a call is made to imsl_omp_options to declare this. With this setting,
the quadrature code will use OpenMP to evaluate the function in parallel. Both of these calls need be made once
per run.

The second part of this example sets the maximum number of subintevals to 5, an unrealistically small number,
to show the error handling.

int main()
{
 imsl_error_options(
 IMSL_SET_PRINT, IMSL_FATAL, 0,
 IMSL_SET_PRINT, IMSL_TERMINAL, 0,
 IMSL_SET_STOP, IMSL_FATAL, 0,
 IMSL_SET_STOP, IMSL_TERMINAL, 0,
 0);
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 IntFcnSing *intFcnSing = new IntFcnSing();
 MyClass *myClass = new MyClass();
 float x = intFcnSing->integrate(myClass, -1.0, 1.0);
 printf("Solution in [-1,+1]: %g\n", x);

f x = ex − ax
20

 Introduction C++ Usage
 try {
 intFcnSing->max_subinter = 5;
 x = intFcnSing -> integrate (myClass, -100.0, 1000.0);
 printf("Solution in [-100,1000]: %g\n", x);
 } catch(char * exception) {
 printf("Exception raised: %s\n", exception);
 }
}

Output
Integral over [-1,+1] = 2.3504
Exception raised: The maximum number of subintervals allowed "maxsub" = 5 has been
reached. Increase "maxsub".
21

 Introduction Matrix Storage Modes
Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the word array is used to refer to its
representation as a C data structure. In the following list of array types, the IMSL C Math Library functions require
input consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-
major order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For example, in solving linear
algebraic systems, the pointer is to the solution. For general, real eigenvalue problems, the pointer is to the eigen-
values. Normally, the input array values are not changed by the functions.

In the IMSL C Math Library, an array is a pointer to a contiguous block of data. They are not pointers to pointers to
the rows of the matrix. Typical declarations are:

 float *a = {1, 2, 3, 4};
 float b[2][2] = {1, 2, 3, 4};
 float c[] = {1, 2, 3, 4};

General Mode
A general matrix is a square n × n matrix. The data type of a general array can be float, double, f_complex, or
d_complex.

Rectangular Mode
A rectangular matrix is an m × n matrix. The data type of a rectangular array can be float, double, f_complex, or
d_complex.

Symmetric Mode
A symmetric matrix is a square n × n matrix A, such that AT = A. (The matrix AT is the transpose of A.) The data type
of a symmetric array can be float or double.

Hermitian Mode
A Hermitian matrix is a square n × n matrix A, such that
22

 Introduction Matrix Storage Modes
The matrix Ā is the complex conjugate of A, and

is the conjugate transpose of A. For Hermitian matrices AH = A. The data type of a Hermitian array can be f_com-
plex or d_complex.

Sparse Coordinate Storage Format
Only the nonzero elements of a sparse matrix need to be communicated to a function. Sparse coordinate stor-
age format stores the value of each matrix entry along with that entry’s row and column index. The following four
non-homogeneous data structures are defined to support this concept:

 typedef struct {
 int row;
 int col;
 float val;
 } Imsl_f_sparse_elem;
 typedef struct {
 int row;
 int col;
 double val;
 } Imsl_d_sparse_elem;
 typedef struct {
 int row;
 int col;
 f_complex val;
 } Imsl_c_sparse_elem;
 typedef struct {
 int row;
 int col;
 d_complex val;
 } Imsl_z_sparse_elem;

See the Complex Data Types and Functions in the Reference Material at the end of this manual for a discussion of
the complex data types f_complex and d_complex. Note that the only difference in these structures involves
changes in underlying data types. A sparse matrix is passed to functions that accept sparse coordinate format by
forming an array of one of these data types. The number of elements in that array will be equal to the number of
nonzeros in the sparse matrix.

AH = A
─T = A

AH ≡ A
─T
23

 Introduction Matrix Storage Modes
As an example consider the 6 × 6 matrix:

The matrix A has 15 nonzero elements, and the sparse coordinate representation would be

Since this representation does not rely on order, an equivalent form would be

There are different ways this data could be used to initialize an array of type, for example, Imsl_f_sparse_elem. Con-
sider the following program fragment:

 #include <imsl.h>
 int main()
 {

 Imsl_f_sparse_elem a[] = {
 {0, 0, 2.0},
 {1, 1, 9.0},
 {1, 2, -3.0},
 {1, 3, -1.0},

 {2, 2, 5.0},
 {3, 0, -2.0},
 {3, 3, -7.0},
 {3, 4, -1.0},
 {4, 0, -1.0},
 {4, 3, -5.0},
 {4, 4, 1.0},
 {4, 5, -3.0},
 {5, 0, -1.0},
 {5, 1, -2.0},
 {5, 5, 6.0} };

row 0 1
1 1

2
3 3 3 4 4

4
4 5 5

5

col 0 1
2 3

2
0 3 4 0 3

4
5 0 1

5

val 2 9 -
3

-
1

5 -
2

-
7

-
1

-
1

-
5

1 -
3

-
1

-
2

6

row
5

4 3 0 5 1 2 1 4 3 1 4 3 5 4

col
0

0 0 0 1 1 2 2 3 3 3 4 4 5 5

val -
1

-
1

-
2

2 -
2

9 5 -
3

-
5

-
7

-
1

1 -
1

6 -
3

A =

2 0 0 0 0 0
0 9 −3 −1 0 0
0 0 5 0 0 0
−2 0 0 −7 −1 0
−1 0 0 −5 1 −3
−1 −2 0 0 0 6
24

 Introduction Matrix Storage Modes
 Imsl_f_sparse_elem b[15];
 b[0].row = b[0].col = 0; b[0].val = 2.0;
 b[1].row = b[1].col = 1; b[1].val = 9.0;
 b[2].row = 1; b[2].col = 2; b[2].val = -3.0;
 b[3].row = 1; b[3].col = 3; b[3].val = -1.0;
 b[4].row = b[4].col = 2; b[4].val = 5.0;
 b[5].row = 3; b[5].col = 0; b[5].val = -2.0;

 b[6].row = b[6].col = 3; b[6].val = -7.0;
 b[7].row = 3; b[7].col = 4; b[7].val = -1;
 b[8].row = 4; b[8].col = 0; b[8].val = -1.0;
 b[9].row = 4; b[9].col = 3; b[9].val = -5.0;
 b[10].row = b[10].col = 4; b[10].val = 1.0;
 b[11].row = 4; b[11].col = 5; b[11].val = -3.0;
 b[12].row = 5; b[12].col = 0; b[12].val = -1.0;
 b[13].row = 5; b[13] = 1; b[13].val = -2.0;
 b[14].row = b[14].col = 5; b[14].val = 6.0;

 }
Both a and b represent the sparse matrix A, and the functions in this module would produce identical results
regardless of which identifier was sent through the argument list.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to store the diagonal and
either the upper or lower triangle. As an example, consider the 5 × 5 linear system:

The Hermitian and symmetric positive definite system solvers in this library expect the diagonal and lower trian-
gle to be specified. The sparse coordinate form for the lower triangle is given by

As before, an equivalent form would be

The following program fragment will initialize both a and b to H.

 #include <imsl.h>
 int main()

row 0 1 2 3 1 2 3

col 0 1 2 3 0 1 2

val (4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1)

row 0 1 1 2 2 3 3

col 0 0 1 1 2 2 3

val (4,0) (1,1) (4,0) (1,1) (4,0) (1,1) (4,0)

H =

4, 0 1, − 1 0 0

1, 1 4, 0 1, − 1 0

0 1, 1 4, 0 1, − 1

0 0 1, 1 4, 0
25

 Introduction Matrix Storage Modes
 {
 Imsl_c_sparse_elem a[] = {

 {0, 0, {4.0, 0.0}},
 {1, 1, {4.0, 0.0}},
 {2, 2, {4.0, 0.0}},
 {3, 3, {4.0, 0.0}},
 {1, 0, {1.0, 1.0}},
 {2, 1, {1.0, 1.0}},
 {3, 2, {1.0, 1.0}}

 }
 Imsl_c_sparse_elem b[7];
 b[0].row = b[0].col = 0;
 b[0].val = imsl_cf_convert (4.0, 0.0);
 b[1].row = 1; b[1].col = 0;
 b[1].val = imsl_cf_convert (1.0, 1.0);
 b[2].row = b[2].col = 1;
 b[2].val = imsl_cf_convert (4.0, 0.0);
 b[3].row = 2; b[3].col = 1;
 b[3].val = imsl_cf_convert (1.0, 1.0);
 b[4].row = b[4].col = 2;
 b[4].val = imsl_cf_convert (4.0, 0.0);
 b[5].row = 3; b[5].col = 2;
 b[5].val = imsl_cf_convert (1.0, 1.0);
 b[6].row = b[6].col = 3;
 b[6].val = imsl_cf_convert (4.0, 0.0);

 }
There are some important points to note here. H is not symmetric, but rather Hermitian. The functions that
accept Hermitian data understand this and operate assuming that

The IMSL C Math Library cannot take advantage of the symmetry in matrices that are not positive definite. The
implication here is that a symmetric matrix that happens to be indefinite cannot be stored in this compact sym-
metric form. Rather, both upper and lower triangles must be specified and the sparse general solver called.

Band Storage Format
A band matrix is an M × N matrix with all of its nonzero elements “close” to the main diagonal. Specifically, values
Aij = 0 if i - j > nlca or j – i > nuca. The integer m = nlca + nuca + 1 is the total band width. The diagonals,

other than the main diagonal, are called codiagonals. While any M × N matrix is a band matrix, band storage for-
mat is only useful when the number of nonzero codiagonals is much less than N.

In band storage format, the nlca lower codiagonals and the nuca upper codiagonals are stored in the rows of
an array of size M × N. The elements are stored in the same column of the array as they are in the matrix. The val-
ues Aij inside the band width are stored in the linear array in positions [(i - j + nuca + 1) * n + j]. This results in

a row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5 × 5 matrix A with 1 lower and 2 upper codiagonals:

hi j = h
─
i j
26

 Introduction Matrix Storage Modes
In band storage format, the data would be arranged as

This data would then be stored contiguously, row-major order, in an array of length 20.

As an example, consider the following tridiagonal matrix:

The following declaration will store this matrix in band storage format:

 float a[] = {
 0.0, 1.0, 2.0, 3.0, 4.0,
 10.0, 20.0, 30.0, 40.0, 50.0,
 5.0, 6.0, 7.0, 8.0, 0.0

 };

As in the sparse coordinate representation, there is a space saving symmetric version of band storage. As an
example, look at the following 5 × 5 symmetric problem:

In band symmetric storage format, the data would be arranged as

A =

A0, 0 A0, 1 A0, 2 0 0

A1, 0 A1, 1 A1, 2 A1, 3 0

0 A2, 1 A2, 2 A2, 3 A2, 4
0 0 A3, 2 A3, 3 A3, 4
0 0 0 A4, 3 A4, 4

0 0 A0, 2 A1, 3 A2, 4
0 A0, 1 A1, 2 A2, 3 A3, 4
A0, 0 A1, 1 A2, 2 A3, 3 A4, 4
A1, 0 A2, 1 A3, 2 A4, 3 0

A =

10 1 0 0 0
5 20 2 0 0
0 6 30 3 0
0 0 7 40 4
0 0 0 8 50

A =

A0, 0 A0, 1 A0, 2 0 0

A0, 1 A1, 1 A1, 2 A1, 3 0

A0, 2 A1, 2 A2, 2 A2, 3 A2, 4
0 A1, 3 A2, 3 A3, 3 A3, 4
0 0 A2, 4 A3, 4 A4, 4
27

 Introduction Matrix Storage Modes
The following Hermitian example illustrates the procedure:

The following program fragments would store H in h, using band symmetric storage format.

 f_complex h[] = {
 {0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
 {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
 {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}};

or equivalently

 f_complex h[15];
 h[0] = h[1] = h[5] = imsl_cf_convert (0.0, 0.0);
 h[2] = h[3] = h[4] = h[6] = h[7] = h[8] = h[9] =

imsl_cf_convert (1.0, 1.0);
 h[10] = h[11] = h[12] = h[13] = h[14] =

imsl_cf_convert (8.0, 0.0);

Choosing Between Banded and Coordinate Forms
It is clear that any matrix can be stored in either sparse coordinate or band format. The choice depends on the
sparsity pattern of the matrix. A matrix with all nonzero data stored in bands close to the main diagonal would
probably be a good candidate for band format. If nonzero information is scattered more or less uniformly
through the matrix, sparse coordinate format is the best choice. As extreme examples, consider the following two
cases: (1) an n × n matrix with all elements on the main diagonal and the (0, n - 1) and (n - 1, 0) entries nonzero.
The sparse coordinate vector would be n + 2 units long. An array of length n(2n - 1) would be required to store
the band representation, nearly twice as much storage as a dense solver might require. (2) a tridiagonal matrix
with all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an array of length 3n is
needed. In sparse coordinate, format a vector of length 3n - 2 is required. But the problem is that, for example,
for float precision, each of those 3n - 2 units in coordinate format requires three times as much storage as any of

0 0 A0, 2 A1, 3 A2, 4
0 A0, 1 A1, 2 A2, 3 A3, 4
A0, 0 A1, 1 A2, 2 A3, 3 A4, 4

H =

8, 0 1, 1 1, 1 0 0

1, − 1 8, 0 1, 1 1, 1 0

1, − 1 1, − 1 8, 0 1, 1 1, 1

0 1, − 1 1, − 1 8, 0 1, 1

0 0 1, − 1 1, − 1 8, 0
28

 Introduction Matrix Storage Modes
the 3n units needed for band representation. This is due to carrying the row and column indices in coordinate
form. Band storage evades this requirement by being essentially an ordered list, and defining location in the orig-
inal matrix by position in the list.

Compressed Sparse Column (CSC) Format
Functions that accept data in coordinate format can also accept data stored in the format described in the Users’
Guide for the Harwell-Boeing Sparse Matrix Collection (via optional argument IMSL_CSC_FORMAT). The
scheme is column oriented, with each column held as a sparse vector, represented by a list of the row indices of
the entries in an integer array (“rowind” below) and a list of the corresponding values in a separate float (double,
f_complex, d_complex) array (“values” below). Data for each column are stored consecutively and the columns
are stored in order. A third array (“colptr” below) indicates the location in array “values” in which to place the
first nonzero value of each succeeding column of the original sparse matrix. So colptr[i] contains the index

of the first free location in array “values” in which to place the values from the ith column of the original sparse
matrix. In other words, values[colptr[i]] holds the first nonzero value of the i-th column of the original
sparse matrix. Only entries in the lower triangle and diagonal are stored for symmetric and Hermitian matrices.
All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’s one-based arrays.

As in the Harwell-Boeing user guide (link above), the storage scheme is illustrated with the following example: The
5 × 5 matrix

would be stored in the arrays colptr (location of first entry), rowind (row indices), and values (nonzero
entries) as follows:

The following program fragment shows the relation between CSC storage format and coordinate representation:

int main() {
 int i, j, k, n = 5, nz, start, stop;
 int colptr[] = { 0, 3, 5, 7, 9, 11 };
 int rowind[] = { 0, 2, 4, 0, 3, 1, 4, 0, 3, 1, 4 };
 float values[] = { 1.0, 2.0, 5.0, -3.0, 4.0, -2.0,

Subscripts 0 1 2 3 4 5 6 7 8 9 10

Colptr 0 3 5 7 9 11

Rowind 0 2 4 0 3 1 4 0 3 1 4

Values 1 2 5 -3 4 -2 -5 -1 -4 3 6

1 −3 0 −1 0
0 0 −2 0 3
2 0 0 0 0
0 4 0 −4 0
5 0 −5 0 6
29

http://math.nist.gov/MatrixMarket/collections/hb.html
http://math.nist.gov/MatrixMarket/collections/hb.html

 Introduction Matrix Storage Modes
 -5.0, -1.0, -4.0, 3.0, 6.0 };
 Imsl_f_sparse_elem a[11];
 k = 0;
 for (i = 0; i < n; i++) {
 start = colptr[i];
 stop = colptr[i + 1];
 for (j = start; j < stop; j++) {
 a[k].row = rowind[j];
 a[k].col = i;
 a[k++].val = values[j];
 }
 }
 nz = k;
}

30

 Linear Systems Functions
Linear Systems

Functions
Linear Equations with Full Matrices

Factor, Solve, and Inverse for General Matrices
Real matrices. lin_sol_gen 37
Complex matrices . lin_sol_gen (complex) 47

Factor, Solve, and Inverse for Positive Definite Matrices
Real matrices. lin_sol_posdef 55
Complex matrices .lin_sol_posdef (complex) 62

Linear Equations with Band Matrices
Factor and Solve for Band Matrices

Real matrices. lin_sol_gen_band 68
Complex matrices . lin_sol_gen_band (complex) 74

Factor and Solve for Positive Definite Matrices Symmetric
Real matrices. lin_sol_posdef_band 80
Complex matrices .lin_sol_posdef_band (complex) 85

Linear Equations with General Sparse Matrices
Factor and Solve for Sparse Matrices I

Real matrices. lin_sol_gen_coordinate 90
Complex matrices .lin_sol_gen_coordinate (complex) 101

Factor and Solve for Sparse Matrices II
Real matrices. .superlu 110
Complex matrices . superlu (complex) 125

OpenMP-based parallel Factor and Solve for Sparse Matrices
Real Matrices. superlu_smp 141
Complex Matrices . superlu_smp (complex) 154

Factor and Solve for Positive Definite Matrices
Real matrices. .lin_sol_posdef_coordinate 168
Complex matrices . lin_sol_posdef_coordinate (complex) 177

OpenMP-based parallel Factor and Solve for Positive Definite Matrices
Real Matrices. .sparse_cholesky_smp 186
Complex Matrices . sparse_cholesky_smp (complex) 196

Iterative Methods
Restarted generalized minimum residual

(GMRES) method . lin_sol_gen_min_residual 206
31

 Linear Systems Functions
Conjugate gradient method . lin_sol_def_cg 212

Linear Least-squares with Full Matrices
Least-squares and QR decomposition

Least-squares solve, QR decomposition lin_least_squares_gen 219
Non-negative least squares solution . nonneg_least_squares 228
Linear constraints . lin_lsq_lin_constraints 235

Non-Negative Matrix Factorization (NNMF)
Non-negative matrix factorization solution. nonneg_matrix_factorization 241

Singular Value Decompositions (SVD) and Generalized Inverse
Real matrix. lin_svd_gen 246
Complex matrix . lin_svd_gen (complex) 253

Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices
Real matrices. lin_sol_nonnegdef 260
32

 Linear Systems Usage Notes
Usage Notes

Solving Systems of Linear Equations
A square system of linear equations has the form Ax = b, where A is a user-specified n × n matrix, b is a given right-
hand side n vector, and x is the solution n vector. Each entry of A and b must be specified by the user. The entire
vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used direct method for solving Ax = b
factors the matrix A into a product of triangular matrices and solves the resulting triangular systems of linear
equations. Functions that use direct methods for solving systems of linear equations all compute the solution to
Ax = b. Thus, if function imsl_f_superlu or a function with the prefix “imsl_f_lin_sol” is called with the
required arguments, a pointer to x is returned by default. Additional tasks, such as only factoring the matrix A into
a product of triangular matrices, can be done using keywords.

Matrix Factorizations
In some applications, it is desirable to just factor the n × n matrix A into a product of two triangular matrices. This
can be done by calling the appropriate function for solving the system of linear equations Ax = b. Suppose that in
addition to the solution x of a linear system of equations Ax = b, the LU factorization of A is desired. Use the key-
word IMSL_FACTOR in the function imsl_f_lin_sol_gen to obtain access to the factorization. If only the
factorization is desired, use the keywords IMSL_FACTOR_ONLY and IMSL_FACTOR. For function
imsl_f_superlu, use keyword IMSL_RETURN_SPARSE_LU_FACTOR in order to get the LU factorization. If
only the factorization is desired, then keywords IMSL_RETURN_SPARSE_LU_FACTOR and
IMSL_FACTOR_SOLVE with value 1 are required.

Besides the basic matrix factorizations, such as LU and LLT, additional matrix factorizations also are provided. For
a real matrix A, its QR factorization can be computed by the function imsl_f_lin_least_squares_gen. Func-
tions for computing the singular value decomposition (SVD) of a matrix are discussed in a later section.
33

 Linear Systems Usage Notes
Matrix Inversions
The inverse of an n × n nonsingular matrix can be obtained by using the keyword IMSL_INVERSE in functions
for solving systems of linear equations. The inverse of a matrix need not be computed if the purpose is to solve
one or more systems of linear equations. Even with multiple right-hand sides, solving a system of linear equations
by computing the inverse and performing matrix multiplication is usually more expensive than the method dis-
cussed in the next section.

Multiple Right-Hand Sides
Consider the case where a system of linear equations has more than one right-hand side vector. It is most eco-
nomical to find the solution vectors by first factoring the coefficient matrix A into products of triangular matrices.
Then, the resulting triangular systems of linear equations are solved for each right-hand side. When A is a real
general matrix, access to the LU factorization of A is computed by using the keywords IMSL_FACTOR and
IMSL_FACTOR_ONLY in function imsl_f_lin_sol_gen. The solution xk for the k-th right-hand side vector bk

is then found by two triangular solves, Lyk = bk and Uxkk = yk. The keyword IMSL_SOLVE_ONLY in the function

imsl_f_lin_sol_gen is used to solve each right-hand side. These arguments are found in other functions
for solving systems of linear equations. For function imsl_f_superlu, use the keywords
IMSL_RETURN_SPARSE_LU_FACTOR and IMSL_FACTOR_SOLVE with value 1 to get the LU factorization,
and then keyword IMSL_FACTOR_SOLVE with value 2 to get the solution for different right-hand sides.

Least-Squares Solutions and QR Factorizations
Least-squares solutions are usually computed for an over-determined system of linear equations Am×n x = b,

where m > n. A least-squares solution x minimizes the Euclidean length of the residual vector r = Ax − b. The func-
tion imsl_f_lin_least_squares_gen computes a unique least-squares solution for x when A has full
column rank. If A is rank-deficient, then the base solution for some variables is computed. These variables consist
of the resulting columns after the interchanges. The QR decomposition, with column interchanges or pivoting, is
computed such that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreas-
ing in magnitude, and P is the permutation matrix determined by the pivoting. The base solution xB is obtained

by solving R(PT)x = QTb for the base variables. For details, see the “Description” section of function
imsl_f_lin_least_squares_gen. The QR factorization of a matrix A such that AP = QR with P specified by
the user can be computed using keywords.

Least-squares problems with linear constraints and one right-hand side can be solved. These equations are

Am×n x = b,

subject to constraints and simple bounds
34

 Linear Systems Usage Notes
bl ≤ Cx ≤ bu

xl ≤ x ≤ xu

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is the coefficient
matrix of the constraints. The vectors bl, bu, xl and xu are the lower and upper bounds on the constraints and the

variables. This general problem is solved with imsl_f_lin_lsq_lin_constraints.

For the special case of where there are only non-negative constraints, x ≥ 0, solve the problem with
imsl_f_nonneg_least_squares.

Non-Negative Matrix Factorization
If the matrix Am × n ≥ 0, factor it as a product of two matrices, Am × n = Fm × k Gk × n. The matrices F and G are both

non-negative and k ≤ min(m, n). The factors are computed so that the residual matrix E = A - F G has a sum of
squares norm that is minimized. There are normalizations of Fm × k and Gk × n described in the documentation of

imsl_f_nonneg_matrix_factorization.

Singular Value Decompositions and Generalized Inverses
The SVD of an m × n matrix A is a matrix decomposition A = USVT. With q = min(m, n), the factors Um×q and Vn×q

are orthogonal matrices, and Sq×q is a nonnegative diagonal matrix with nonincreasing diagonal terms. The func-

tion imsl_f_lin_svd_gen computes the singular values of A by default. Using keywords, part or all of the U
and V matrices, an estimate of the rank of A, and the generalized inverse of A, also can be obtained.

Ill-Conditioning and Singularity
An m × n matrix A is mathematically singular if there is an x ≠ 0 such that Ax = 0. In this case, the system of linear
equations Ax = b does not have a unique solution. On the other hand, a matrix A is numerically singular if it is
“close” to a mathematically singular matrix. Such problems are called ill-conditioned. If the numerical results with
an ill-conditioned problem are unacceptable, users can either use more accuracy if it is available (for type float
accuracy switch to double) or they can obtain an approximate solution to the system. One form of approximation
can be obtained using the SVD of A: If q = min(m, n) and

then the approximate solution is given by the following:

A =∑
i=1

q

si,i uivi
T

35

 Linear Systems Usage Notes
The scalars ti,i are defined below.

The user specifies the value of tol. This value determines how “close” the given matrix is to a singular matrix. Fur-
ther restrictions may apply to the number of terms in the sum, k ≤ q. For example, there may be a value of k ≤ q

such that the scalars |(bTui)|, i > k are smaller than the average uncertainty in the right-hand side b. This means

that these scalars can be replaced by zero; and hence, b is replaced by a vector that is within the stated uncer-
tainty of the problem.

xk =∑
i=1

k

ti,i b
Tui vi

ti,i =
si,i
−1 if si,i ≥ tol > 0
0 otherwise
36

 Linear Systems lin_sol_gen
lin_sol_gen

more...

Solves a real general system of linear equations Ax = b. Using optional arguments, any of several related compu-
tations can be performed. These extra tasks include computing the LU factorization of A using partial pivoting,

computing the inverse matrix A-1, solving ATx = b, or computing the solution of Ax = b given the LU factorization of
A.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_gen (int n, float a[], float b[], …, 0)

The type double function is imsl_d_lin_sol_gen.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)
Array of size n × n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use imsl_free. If no solution was
computed, then NULL is returned.
37

 Linear Systems lin_sol_gen
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_gen (int n, float a[], float b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_TRANSPOSE,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, int **p_pvt, float **p_factor,
IMSL_FACTOR_USER, int pvt[], float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE
Solve ATx = b.
Default: Solve Ax = b

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, float **p_factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by imsl_f_lin_sol_gen. Typically,
int *p_pvt is declared, and &p_pvt is used as an argument.
38

 Linear Systems lin_sol_gen
float **p_factor (Output)
The address of a pointer to an array of size n × n containing the LU factorization of A with col-
umn pivoting. On return, the necessary space is allocated by imsl_f_lin_sol_gen. The
lower-triangular part of this array contains information necessary to construct L, and the
upper-triangular part contains U (see Example 2). Typically, float *p_factor is declared,
and &p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

int pvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

float factor[] (Input/Output)
A user-allocated array of size n × n containing the LU factorization of A. The strictly lower-tri-
angular part of this array contains information necessary to construct L, and the upper-
triangular part contains U (see Example 2). If A is not needed, factor and a can share the
same storage.

These parameters are input if IMSL_SOLVE is specified. They are output otherwise.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the matrix A. On return,
the necessary space is allocated by imsl_f_lin_sol_gen. Typically, float *p_inva is declared,
and &p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n × n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. This
option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_ITERATIVE_REFINEMENT, int refine (Input)
Indicates if iterative refinement is desired.

Default: refine = 0.

refine Description

0 No iterative refinement.

1 Do iterative refinement.
39

 Linear Systems lin_sol_gen
IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the
returned value of imsl_f_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by imsl_f_lin_sol_gen. By default,
the solution to Ax = b is pointed to by imsl_f_lin_sol_gen. If IMSL_SOLVE_ONLY is used,
argument IMSL_FACTOR_USER is required. If iterative refinement of the solution is desired, argu-
ment a must be present. Otherwise, a is ignored.

IMSL_INVERSE_ONLY
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either IMSL_INVERSE or
IMSL_INVERSE_USER is required. The argument b is then ignored, and the returned value of
imsl_f_lin_sol_gen is NULL.

Description
The function imsl_f_lin_sol_gen solves a system of linear algebraic equations with a real coefficient

matrix A. It first computes the LU factorization of A with partial pivoting such that L-1A = U. Let F be the matrix
p_factor returned by optional argument IMSL_FACTOR. The triangular matrix U is stored in the upper trian-

gle of F. The strict lower triangle of F contains the information needed to reconstruct L-1 using

The factors Pi and Li are defined by partial pivoting. Pi is the identity matrix with rows i and p_pvt[i-1] inter-

changed. Li is the identity matrix with Fji , for j = i + 1, …, n, inserted below the diagonal in column i.

The factorization efficiency is based on a technique of “loop unrolling and jamming” by Dr. Leonard J. Harding of
the University of Michigan, Ann Arbor, Michigan. The solution of the linear system is then found by solving two

simpler systems, y = L-1b and x = U-1y. Additionally, the accuracy of the solution can be improved by iterative
refinement. IMSL uses mixed precision iterative refinement in single precision and fixed precision iterative refine-
ment in double precision. In double precision, the residuals b-Ax are computed with high accuracy using
algorithms based on Ogita, Rump and Oishi (2005). When the solution to the linear system or the inverse of the
matrix is sought, an estimate of the L1 condition number of A is computed using the same algorithm as in Don-

garra et al. (1979). If the estimated condition number is greater than 1∕ε (where ε is the machine precision), a
warning message is issued. This indicates that very small changes in A may produce large changes in the solution
x. The function imsl_f_lin_sol_gen fails if U, the upper triangular part of the factorization, has a zero diag-
onal element.

L−1 = Ln−1Pn−1 … L1P1
40

 Linear Systems lin_sol_gen
Examples

Example 1

This example solves a system of three linear equations. This is the simplest use of the function. The equations fol-
low below:

x

1

 + 3x

2

 + 3x

3

 = 1

x

1

 + 3x

2

 + 4x

3

 = 4

x

1

 + 4x

2

 + 3x

3

 = −1

#include <imsl.h>
int main()
{
 int n = 3;
 float *x;
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};
 float b[] = {1.0, 4.0, -1.0};
 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_gen (n, a, b, 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
41

 Linear Systems lin_sol_gen
}

Output

Solution, x, of Ax = b
 1 2 3
-2 -2 3

Example 2

This example solves the transpose problem ATx = b and returns the LU factorization of A with partial pivoting. The

same data as the initial example is used, except the solution x = A-Tb is returned in an array allocated in the main
program. The L matrix is returned in implicit form.

#include <imsl.h>
int main()
{
 int n = 3, pvt[3];
 float factor[9];
 float x[3];
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};
 float b[] = {1.0, 4.0, -1.0};
 /* Solve trans(A)*x = b for x */
 imsl_f_lin_sol_gen (n, a, b,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);
 /* Print factors and pivot sequence */
 imsl_f_write_matrix ("LU factors of A", n, n, factor, 0);
 imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}

Output

Solution, x, of trans(A)x = b
 1 2 3
 4 -4 1
 LU factors of A
 1 2 3
1 1 3 3
2 -1 1 0
3 -1 0 1
Pivot sequence
 1 2 3
42

 Linear Systems lin_sol_gen
 1 3 3

Reconstruction of L-1 and U from factor:

Pi is the identity matrix with row i and row pvt[i-1] interchanged.

Li is the identity matrix with Fji, for j = i + 1, n, inserted below the diagonal in column i, where F is factor:

pvt = 1, 3, 3

 row 1 and row pvt[0], or row 1, are
interchanged, which is still the identity
matrix.

 row 2 and row pvt[1], or row 3, are
interchanged.

 second and third elements of
column 1 of factor are
inserted below the diagonal in
column 1.

 third element of column 2 of
factor is inserted below the
diagonal in column 2.

L−1 = L2P2L1P1

P1 =
1 0 0
0 1 0
0 0 1

P2 =
1 0 0
0 0 1
0 1 0

factor =
1 3 3
−1 1 0
−1 0 1

L1 =
1 0 0
−1 1 0
−1 0 1

L2 =
1 0 0
0 1 0
0 0 1

L−1 = L2P2L1P1 =
1 0 0
−1 0 1
−1 1 0
43

 Linear Systems lin_sol_gen
U is the upper triangle of factor:

Example 3

This example computes the inverse of the 3 × 3 matrix A of the initial example and solves the same linear system.

The matrix product C = A-1A is computed and printed. The function imsl_f_mat_mul_rect is used to com-
pute C. The approximate result C = I is obtained.

#include <imsl.h>
float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};
float b[] = {1.0, 4.0, -1.0};
int main()
{
 int n = 3;
 float *x;
 float *p_inva;
 float *C;
 /* Solve Ax = b */
 x = imsl_f_lin_sol_gen (n, a, b,
 IMSL_INVERSE, &p_inva,
 0);
 /* Print solution */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
 /* Print input and inverse matrices */
 imsl_f_write_matrix ("Input A", n, n, a, 0);
 imsl_f_write_matrix ("Inverse of A", n, n, p_inva, 0);
 /* Check result and print */
 C = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, p_inva,
 IMSL_B_MATRIX, n, n, a,
 0);
 imsl_f_write_matrix ("Product matrix, inv(A)*A",n,n,C,0);
}

Output

 Solution, x, of Ax = b
 1 2 3
 -2 -2 3
 Input A
 1 2 3
1 1 3 3

U =
1 3 3
0 1 0
0 0 1
44

 Linear Systems lin_sol_gen
2 1 3 4
3 1 4 3
 Inverse of A
 1 2 3
1 7 -3 -3
2 -1 0 1
3 -1 1 0
 Product matrix, inv(A)*A
 1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

Example 4

This example computes the solution of two systems. Only the right-hand sides differ. The matrix and first right-

hand side are given in the initial example. The second right-hand side is the vector c = [0.5, 0.3, 0.4]T. The factor-
ization information is computed with the first solution and is used to compute the second solution. The
factorization work done in the first step is avoided in computing the second solution.

#include <imsl.h>
int main()
{
 int n = 3, pvt[3];
 float factor[9];
 float *x,*y;
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};
 float b[] = {1.0, 4.0, -1.0};
 float c[] = {0.5, 0.3, 0.4};
 /* Solve A*x = b for x */
 x = imsl_f_lin_sol_gen (n, a, b,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
 /* Solve for A*y = c for y */
 y = imsl_f_lin_sol_gen (n, a, c,
 IMSL_SOLVE_ONLY,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 imsl_f_write_matrix ("Solution, y, of Ay = c", 1, n, y, 0);
}

45

 Linear Systems lin_sol_gen
Output

 Solution, x, of Ax = b
 1 2 3
 -2 -2 3
 Solution, y, of Ay = c
 1 2 3
 1.4 -0.1 -0.2

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_ILL_CONDITIONED_1 The input matrix is too ill-conditioned for iterative
refinement to be effective.

IMSL_SINGULAR_MATRIX The input matrix is singular.
46

 Linear Systems lin_sol_gen (complex)
lin_sol_gen (complex)

more...

Solves a complex general system of linear equations Ax = b. Using optional arguments, any of several related
computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, computing the inverse matrix A-1, solving AHx = b, or computing the solution of Ax = b given the LU
factorization of A.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[], …, 0)

The type d_complex function is imsl_z_lin_sol_gen.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size n × n containing the matrix.

f_complex b[] (Input)
Array of length n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use imsl_free. If no solution was
computed, then NULL is returned.
47

 Linear Systems lin_sol_gen (complex)
Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_TRANSPOSE,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, f_complex **p_inva,
IMSL_INVERSE_USER, f_complex inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE
Solve AHx = b
Default: Solve Ax = b

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by imsl_c_lin_sol_gen. Typically,
int *p_pvt is declared, and &p_pvt is used as an argument.
48

 Linear Systems lin_sol_gen (complex)
f_complex **p_factor (Output)
The address of a pointer to an array of size n × n containing the LU factorization of A with col-
umn pivoting. On return, the necessary space is allocated by imsl_c_lin_sol_gen. The
lower-triangular part of this array contains information necessary to construct L, and the
upper-triangular part contains U. Typically, f_complex *p_factor is declared, and
&p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)

int pvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

f_complex factor[] (Input/Output)
A user-allocated array of size n × n containing the LU factorization of A. The lower-triangular
part of this array contains information necessary to construct L, and the upper-triangular
part contains U.
These parameters are input if IMSL_SOLVE is specified. They are output otherwise. If A is
not needed, factor and a can share the same storage.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, f_complex **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the matrix A. On return,
the necessary space is allocated by imsl_c_lin_sol_gen. Typically, f_complex *p_inva is
declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, f_complex inva[] (Output)
A user-allocated array of size n × n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. Do not
use this option with IMSL_SOLVE_ONLY.

IMSL_ITERATIVE_REFINEMENT, int refine (Input)
Indicates if iterative refinement is desired.

Default: refine= 0.

refine Description

0 No iterative refinement.

1 Do iterative refinement.
49

 Linear Systems lin_sol_gen (complex)
IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the
returned value of imsl_c_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by imsl_c_lin_sol_gen. By default,
the solution to Ax = b is pointed to by imsl_c_lin_sol_gen. If IMSL_SOLVE_ONLY is used,
argument IMSL_FACTOR_USER is required. If iterative refinement of the solution is desired, argu-
ment a must be present. Otherwise, a is ignored.

IMSL_INVERSE_ONLY
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either IMSL_INVERSE or
IMSL_INVERSE_USER is required. Argument b is then ignored, and the returned value of
imsl_c_lin_sol_gen is NULL.

Description
The function imsl_c_lin_sol_gen solves a system of linear algebraic equations with a complex coefficient

matrix A. It first computes the LU factorization of A with partial pivoting such that L-1A = U. Let F be the matrix
p_factor returned by optional argument IMSL_FACTOR. The triangular matrix U is stored in the upper trian-
gle of F. The strict lower triangle of F contains the information needed to reconstruct

L-1 using

The factors Pi and Li are defined by partial pivoting. Pi is the identity matrix with rows i and p_pvt[i-1] inter-

changed. Li is the identity matrix with Fji , for j = i + 1,…, n, inserted below the diagonal in column i.

The solution of the linear system is then found by solving two simpler systems, y = L-1b and x = U -1y. Additionally,
the accuracy of the solution can be improved by iterative refinement. IMSL uses mixed precision iterative refine-
ment in single precision and fixed precision iterative refinement in double precision. In double precision, the
residuals b-Ax are computed with high accuracy using algorithms based on Ogita, Rump and Oishi (2005). When
the solution to the linear system or the inverse of the matrix is computed, an estimate of the L1 condition num-

ber of A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is
greater than 1∕ɛ (where ɛ is the machine precision), a warning message is issued. This indicates that very small
changes in A may produce large changes in the solution x. The function imsl_c_lin_sol_gen fails if U, the
upper-triangular part of the factorization, has a zero diagonal element.

L−1 = Ln−1Pn−1 … L1P1
50

 Linear Systems lin_sol_gen (complex)
Examples

Example 1

This example solves a system of three linear equations. The equations are:

(1 + i) x

1

 + (2 + 3i) x2 + (3 − 3i) x

3

 = 3 + 5i

(2 + i) x

1

 + (5 + 3i) x

2

 + (7 − 5i) x

3

 = 22 + 10i

(−2 + i) x

1

 + (−4 + 4i) x

2

 + (5 + 3i) x

3

 = −10 + 4i

#include <imsl.h>
f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};
f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};
int main()
{
 int n = 3;
 f_complex *x;
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_gen (n, a, b, 0);
 /* Print x */
 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

51

 Linear Systems lin_sol_gen (complex)
Output

 Solution, x, of Ax = b
 1 2 3
(1, -1) (2, 4) (3, -0)

Example 2

This example solves the conjugate transpose problem AHx = b and returns the LU factorization of A using partial
pivoting. This example differs from the first example in that the solution array is allocated in the main program.

#include <imsl.h>
f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};
f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};
int main()
{
 int n = 3, pvt[3];
 f_complex factor[9];
 f_complex x[3];
 /* Solve ctrans(A)*x = b for x */
 imsl_c_lin_sol_gen (n, a, b,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 /* Print x */
 imsl_c_write_matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);
 /* Print factors and pivot sequence */
 imsl_c_write_matrix ("LU factors of A", n, n, factor, 0);
 imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}

Output

 Solution, x, of ctrans(A)x = b
 1 2 3
(-9.79, 11.23) (2.96, -3.13) (1.85, 2.47)
 LU factors of A
 1 2 3
1 (-2.000, 1.000) (-4.000, 4.000) (5.000, 3.000)
2 (0.600, 0.800) (-1.200, 1.400) (2.200, 0.600)
3 (0.200, 0.600) (-1.118, 0.529) (4.824, 1.294)
Pivot sequence
 1 2 3
 3 3 3
52

 Linear Systems lin_sol_gen (complex)
Example 3

This example computes the inverse of the 3 × 3 matrix A in the first example and also solves the linear system.

The product matrix C = A-1A is computed as a check. The approximate result is C = I.

#include <imsl.h>
f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};
f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};
int main()
{
 int n = 3;
 f_complex *x;
 f_complex *p_inva;
 f_complex *C;
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_gen (n, a, b,
 IMSL_INVERSE, &p_inva,
 0);
 /* Print solution */
 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
 /* Print input and inverse matrices */
 imsl_c_write_matrix ("Input A", n, n, a, 0);
 imsl_c_write_matrix ("Inverse of A", n, n, p_inva, 0);
 /* Check and print result */
 C = imsl_c_mat_mul_rect ("A*B",
 IMSL_A_MATRIX, n,n, p_inva,
 IMSL_B_MATRIX, n,n, a,
 0);
 imsl_c_write_matrix ("Product, inv(A)*A", n, n, C, 0);
}

Output

 Solution, x, of Ax = b
 1 2 3
(1, -1) (2, 4) (3, -0)
 Input A
 1 2 3
1 (1, 1) (2, 3) (3, -3)
2 (2, 1) (5, 3) (7, -5)
3 (-2, 1) (-4, 4) (5, 3)
 Inverse of A
 1 2 3
1 (1.330, 0.594) (-0.151, 0.028) (-0.604, 0.613)
2 (-0.632, -0.538) (0.160, 0.189) (0.142, -0.245)
3 (-0.189, 0.160) (0.193, -0.052) (0.024, 0.042)
 Product, inv(A)*A
53

 Linear Systems lin_sol_gen (complex)
 1 2 3
1 (1, -0) (-0, -0) (-0, 0)
2 (0, 0) (1, 0) (0, -0)
3 (-0, -0) (-0, 0) (1, 0)

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of the L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_ILL_CONDITIONED_1 The input matrix is too ill-conditioned for iterative
refinement to be effective.

IMSL_SINGULAR_MATRIX The input matrix is singular.
54

 Linear Systems lin_sol_posdef
lin_sol_posdef

more...

Solves a real symmetric positive definite system of linear equations Ax = b. Using optional arguments, any of sev-
eral related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = LLT, computing the inverse matrix A-1, or computing the solution of Ax = b given the Cholesky factor,
L.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_posdef (int n, float a[], float b[], …, 0)

The type double function is imsl_d_lin_sol_posdef.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)
Array of size n × n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the symmetric positive definite linear system Ax = b. To release this space, use
imsl_free. If no solution was computed, then NULL is returned.
55

 Linear Systems lin_sol_posdef
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_posdef (int n, float a[], float b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n × n containing the LLT factorization of A. On return, the
necessary space is allocated by imsl_f_lin_sol_posdef. The lower-triangular part of this
array contains L and the upper-triangular part contains LT. Typically, float *p_factor is declared,
and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n × n containing the LLT factorization of A. The lower-triangular part of
this array contains L, and the upper-triangular part contains LT. If A is not needed, a and factor can
share the same storage. If IMSL_SOLVE is specified, it is input; otherwise, it is output.
56

 Linear Systems lin_sol_posdef
IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LLT factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the matrix A. On return,
the necessary space is allocated by imsl_f_lin_sol_posdef. Typically, float *p_inva is
declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n × n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. Do not
use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the Cholesky factorization LLT of A. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the
returned value of imsl_f_lin_sol_posdef is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LLT factorization previously computed by imsl_f_lin_sol_posdef. By
default, the solution to Ax = b is pointed to by imsl_f_lin_sol_posdef. If
IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument a is
ignored.

IMSL_INVERSE_ONLY
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either IMSL_INVERSE or
IMSL_INVERSE_USER is required. The argument b is then ignored, and the returned value of
imsl_f_lin_sol_posdef is NULL.

Description
The function imsl_f_lin_sol_posdef solves a system of linear algebraic equations having a symmetric

positive definite coefficient matrix A. The function first computes the Cholesky factorization LLT of A. The solution

of the linear system is then found by solving the two simpler systems, y = L-1b and x = L-Ty. When the solution to
the linear system or the inverse of the matrix is sought, an estimate of the L1 condition number of A is computed
57

 Linear Systems lin_sol_posdef
using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than 1/ɛ
(where ɛ is the machine precision), a warning message is issued. This indicates that very small changes in A may
produce large changes in the solution x.

The function imsl_f_lin_sol_posdef fails if L, the lower-triangular matrix in the factorization, has a zero
diagonal element.

Examples

Example 1

A system of three linear equations with a symmetric positive definite coefficient matrix is solved in this example.
The equations are listed below:

x

1

 − 3x

2

 + 2x

3

 = 27

−3x

1

 + 10x

2

 − 5x

3

 = −78

2x

1

 − 5x

2

 + 6x

3

 = 64

#include <imsl.h>
int main()
58

 Linear Systems lin_sol_posdef
{
 int n = 3;
 float *x;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 float b[] = {27.0, -78.0, 64.0};
 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b, 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output

Solution, x, of Ax = b
 1 2 3
 1 -4 7

Example 2

This example solves the same system of three linear equations as in the initial example, but this time returns the

LLT factorization of A. The solution x is returned in an array allocated in the main program.

#include <imsl.h>
int main()
{
 int n = 3;
 float x[3], *p_factor;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 float b[] = {27.0, -78.0, 64.0};
 /* Solve Ax = b for x */
 imsl_f_lin_sol_posdef (n, a, b,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR, &p_factor,
 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
 /* Print Cholesky factor of A */
 imsl_f_write_matrix ("Cholesky factor L, and trans(L), of A",
 n, n, p_factor, 0);
}

Output

Solution, x, of Ax = b
1 2 3
1 -4 7
59

 Linear Systems lin_sol_posdef
Cholesky factor L, and trans(L), of A
 1 2 3
1 1 -3 2
2 -3 1 1
3 2 1 1

Example 3

This example solves the same system as in the initial example, but given the Cholesky factors of A.

#include <imsl.h>
int main()
{
 int n = 3;
 float *x, *a;
 float factor[] = {1.0, -3.0, 2.0,
 -3.0, 1.0, 1.0,
 2.0, 1.0, 1.0};
 float b[] = {27.0, -78.0, 64.0};
 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output

Solution, x, of Ax = b
1 2 3
1 -4 7

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is
not positive definite.
60

 Linear Systems lin_sol_posdef
IMSL_SINGULAR_MATRIX The input matrix is singular.

IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of
the first zero diagonal element is #.
61

 Linear Systems lin_sol_posdef (complex)
lin_sol_posdef (complex)

more...

Solves a complex Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = LLH or computing the solution to Ax = b given the Cholesky factor, L.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[], …, 0)

The type d_complex function is imsl_z_lin_sol_posdef.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size n × n containing the matrix.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To release this space, use
imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
62

 Linear Systems lin_sol_posdef (complex)
f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, f_complex **p_factor,
IMSL_FACTOR_USER, f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of size n containing the solution x.

IMSL_FACTOR, f_complex **p_factor (Output)
The address of a pointer to an array of size n × n containing the LLH factorization of A. On return, the
necessary space is allocated by imsl_c_lin_sol_posdef. The lower-triangular part of this
array contains L, and the upper-triangular part contains LH. Typically, f_complex *p_factor is
declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)
A user-allocated array of size n × n containing the LLH factorization of A. The lower-triangular part of
this array contains L, and the upper-triangular part contains LH. If A is not needed, a and factor
can share the same storage. If IMSL_SOLVE is specified, factor is input. Otherwise, it is output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LLH factorization of A.
Default: fac_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. Do not
use this option with IMSL_SOLVE_ONLY.
63

 Linear Systems lin_sol_posdef (complex)
IMSL_FACTOR_ONLY
Compute the Cholesky factorization LLH of A. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the
returned value of imsl_c_lin_sol_posdef is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LLH factorization previously computed by imsl_c_lin_sol_posdef. By
default, the solution to Ax = b is pointed to by imsl_c_lin_sol_posdef. If
IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and argument a is
ignored.

Description
The function imsl_c_lin_sol_posdef solves a system of linear algebraic equations having a Hermitian

positive definite coefficient matrix A. The function first computes the LLH factorization of A. The solution of the lin-

ear system is then found by solving the two simpler systems, y = L-1b and x = L-Hy. When the solution to the linear
system is required, an estimate of the L1 condition number of A is computed using the algorithm in Dongarra et

al. (1979). If the estimated condition number is greater than 1∕ɛ (where ɛ is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large changes in the solution x. The
function imsl_c_lin_sol_posdef fails if L, the lower-triangular matrix in the factorization, has a zero diago-
nal element.

Examples

Example 1

A system of five linear equations with a Hermitian positive definite coefficient matrix is solved in this example. The
equations are as follows:

2x

1

 +(−1 + i)x

2

 = 1 +5i

(−1 − i)x

1

 +4x
64

 Linear Systems lin_sol_posdef (complex)
2

 + (1 + 2i)x

3

 = 12 − 6i

(1 − 2i)x

2

 +10x

3

 + 4ix

4

 = 1 − 16i

−4ix

3

 + 6x

4

 + (1 + i)x

5

 = −3 − 3i

(1 − i)x

4

 + 9x

5

 = 25 + 16i

#include <imsl.h>
int main()
{
 int n = 5;
 f_complex *x;
 f_complex a[] = {
 {2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
 {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
 {0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}
 };
 f_complex b[] = {
 {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
 };
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_posdef(n, a, b, 0);
65

 Linear Systems lin_sol_posdef (complex)
 /* Print x */
 imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}

Output

 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)
 4 5
(0, -2) (3, 2)

Example 2

This example solves the same system of five linear equations as in the first example. This time, the LLH factoriza-
tion of A and the solution x is returned in an array allocated in the main program.

#include <imsl.h>
int main()
{
 int n = 5;
 f_complex x[5], *p_factor;
 f_complex a[] = {
 {2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
 {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
 {0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}
 };
 f_complex b[] = {
 {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
 };
 /* Solve Ax = b for x */
 imsl_c_lin_sol_posdef(n, a, b,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR, &p_factor,
 0);
 /* Print x */
 imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
 /* Print Cholesky factor of A */
 imsl_c_write_matrix("Cholesky factor L, and ctrans(L), of A",
 n, n, p_factor, 0);
}

Output

 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)
 4 5
(0, -2) (3, 2)
66

 Linear Systems lin_sol_posdef (complex)
 Cholesky factor L, and ctrans(L), of A
 1 2 3
1 (1.414, 0.000) (-0.707, 0.707) (0.000, -0.000)
2 (-0.707, -0.707) (1.732, 0.000) (0.577, 1.155)
3 (0.000, 0.000) (0.577, -1.155) (2.887, 0.000)
4 (0.000, 0.000) (0.000, 0.000) (0.000, -1.386)
5 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
 4 5
1 (0.000, -0.000) (0.000, -0.000)
2 (0.000, -0.000) (0.000, -0.000)
3 (0.000, 1.386) (0.000, -0.000)
4 (2.020, 0.000) (0.495, 0.495)
5 (0.495, -0.495) (2.917, 0.000)

Warning Errors

Fatal Errors

IMSL_HERMITIAN_DIAG_REAL_1 The diagonal of a Hermitian matrix must be real. Its
imaginary part is set to zero.

IMSL_HERMITIAN_DIAG_REAL_2 The diagonal of a Hermitian matrix must be real.
The imaginary part will be used as zero in the
algorithm.

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_NONPOSITIVE_MATRIX The leading # by # minor matrix of the input matrix
is not positive definite.

IMSL_HERMITIAN_DIAG_REAL During the factorization the matrix has a large imag-
inary component on the diagonal. Thus, it cannot be
positive definite.

IMSL_SINGULAR_TRI_MATRIX The triangular matrix is singular. The index of the
first zero diagonal term is #.
67

 Linear Systems lin_sol_gen_band
lin_sol_gen_band

more...

Solves a real general band system of linear equations, Ax = b. Using optional arguments, any of several related
computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, solving ATx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca, int nuca, float b[], …, 0)

The type double function is imsl_d_lin_sol_gen_band.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)
Array of size (nlca+ nuca+ 1) × n containing the n × n banded coefficient matrix in band storage
mode.

int nlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

float b[] (Input)
Array of size n containing the right-hand side.
68

 Linear Systems lin_sol_gen_band
Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use imsl_free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca, int nuca, float b[],

IMSL_TRANSPOSE,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, int **p_pvt, float **p_factor,
IMSL_FACTOR_USER, int pvt[], float factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_BLOCKING_FACTOR, int block_factor,
0)

Optional Arguments
IMSL_TRANSPOSE

Solve ATx = b.
Default: Solve Ax = b.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, float **p_factor (Output)

int **p_pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by imsl_f_lin_sol_gen_band.
Typically, int *p_pvt is declared and &p_pvt is used as an argument.

float **p_factor (Input/Output)
The address of a pointer to an array of size (2nlca + nuca + 1) × n containing the LU factoriza-
tion of A with column pivoting. On return, the necessary space is allocated by
imsl_f_lin_sol_gen_band. Typically, float *p_factor is declared and &p_factor
is used as an argument.
69

 Linear Systems lin_sol_gen_band
IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

int pvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

float factor[] (Input/Output)
A user-allocated array of size (2nlca + nuca + 1) × n containing the LU factorization of A. The
strictly lower triangular part of this array contains information necessary to construct L, and
the upper triangular part contains U. If A is not needed, factor and a can share the first
(nlca + nuca + 1) × n locations.
These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are “Output”
otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. This
option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the
returned value of imsl_f_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by imsl_f_lin_sol_gen_band. By
default, the solution to Ax = b is pointed to by imsl_f_lin_sol_gen_band. If
IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument a is
ignored.

IMSL_BLOCKING_FACTOR, int block_factor (Input)
The blocking factor. block_factor must be set no larger than 32.
Default: block_factor = 1

Description
The function imsl_f_lin_sol_gen_band solves a system of linear algebraic equations with a real band
matrix A. It first computes the LU factorization of A based on the blocked LU factorization algorithm given in Du
Croz et al. (1990). Level-3 BLAS invocations are replaced with inline loops. The blocking factor block_factor
has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems, y = L-1b and x = U -1y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L1 condition number of A is

computed using Higham’s modifications to Hager’s method, as given in Higham (1988). If the estimated condition
number is greater than 1/ɛ (where ɛ is the machine precision), a warning message is issued. This indicates that
70

 Linear Systems lin_sol_gen_band
very small changes in A may produce large changes in the solution x. The function
imsl_f_lin_sol_gen_band fails if U, the upper triangular part of the factorization, has a zero diagonal
element.

Examples

Example 1

This example demonstrates the simplest use of this function by solving a system of four linear equations. The
equations are as follows:

2x

1

 − x

2

 = 3

−3x

1

 + x

2

 − 2x

3

 = 1

−x

3

 + 2x

4

 = 11

2x

3

 + x

4

 = −2

#include <imsl.h>
int main ()
{
 int n = 4;
71

 Linear Systems lin_sol_gen_band
 int nuca = 1;
 int nlca = 1;
 float *x;
 /* Note that a is in band storage mode */
 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};
 float b[] = {3.0, 1.0, 11.0, -2.0};
 x = imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b, 0);
 imsl_f_write_matrix ("Solution x, of Ax = b", 1, n, x, 0);
}

Output

 Solution x, of Ax = b
 1 2 3 4
 2 1 -3 4

Example 2

In this example, the problem Ax = b is solved using the data from the first example. This time, the factorizations

are returned and the problem ATx = b is solved without recomputing LU.

#include <imsl.h>
int main()
{
 int n = 4, nuca = 1, nlca = 1, *pivot = NULL;
 float x[4], *factor = NULL;
 /* Note that a is in band storage mode */
 float a[] = {
 0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0
 };
 float b[] = { 3.0, 1.0, 11.0, -2.0 };
 /* Solve Ax = b and return LU */
 imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR, &pivot, &factor,
 IMSL_RETURN_USER, x,
 0);
 imsl_f_write_matrix ("Solution of Ax = b", 1, n, x, 0);
 /* Use precomputed LU to solve trans(A)x = b */
 /* The original matrix A is not needed */
 imsl_f_lin_sol_gen_band(n, (float*)0, nlca, nuca, b,
 IMSL_FACTOR_USER, pivot, factor,
 IMSL_SOLVE_ONLY,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
72

 Linear Systems lin_sol_gen_band
 0);
 imsl_f_write_matrix("Solution of trans(A)x = b", 1, n, x, 0);
 if (pivot)
 imsl_free(pivot);
 if (factor)
 imsl_free(factor);
}

Output

 Solution of Ax = b
 1 2 3 4
 2 1 -3 4
 Solution of trans(A)x = b
 1 2 3 4
 -6 -5 -1 -0

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_SINGULAR_MATRIX The input matrix is singular.
73

 Linear Systems lin_sol_gen_band (complex)
lin_sol_gen_band (complex)

more...

Solves a complex general band system of linear equations Ax = b. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the LU factorization of A using par-

tial pivoting, solving AHx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[], int nlca, int nuca, f_complex b[],

…, 0)

The type double function is imsl_z_lin_sol_gen_band.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size (nlca + nuca + 1) × n containing the n × n banded coefficient matrix in band storage
mode.

int nlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

f_complex b[] (Input)
Array of size n containing the right-hand side.
74

 Linear Systems lin_sol_gen_band (complex)
Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use imsl_free. If no solution was
computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[],int nlca, int nuca, f_complex b[],

IMSL_TRANSPOSE,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_TRANSPOSE

Solve AHx = b
Default: Solve Ax = b.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)

int **p_pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factor-
ization. On return, the necessary space is allocated by imsl_c_lin_sol_gen_band.
Typically, int *p_pvt is declared and &p_pvt is used as an argument.

f_complex **p_factor (Input/Output)
The address of a pointer to an array of size (2nlca + nuca + 1) × n containing the LU factoriza-
tion of A with column pivoting. On return, the necessary space is allocated by
imsl_c_lin_sol_gen_band. Typically, f_complex *p_factor is declared and
&p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)
75

 Linear Systems lin_sol_gen_band (complex)
int pvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

f_complex factor[] (Input/Output)
A user-allocated array of size (2nlca + nuca + 1) × n containing the LU factorization of A. If A is
not needed, factor and a can share the first (nlca + nuca + 1) × n locations.
These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are “Output”
otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. This
option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the
returned value of imsl_c_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by imsl_c_lin_sol_gen_band. By
default, the solution to Ax = b is pointed to by imsl_c_lin_sol_gen_band. If
IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and argument a is
ignored.

Description
The function imsl_c_lin_sol_gen_band solves a system of linear algebraic equations with a complex
band matrix A. It first computes the LU factorization of A using scaled partial pivoting. Scaled partial pivoting dif-
fers from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same L∞

norm. The factorization fails if U has a zero diagonal element. This can occur only if A is singular or very close to a
singular matrix.

The solution of the linear system is then found by solving two simpler systems, y = L-1b and x = U -1y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L1 condition number of A is

computed using Higham’s modifications to Hager’s method, as given in Higham (1988). If the estimated condition
number is greater than 1/ɛ (where ɛ is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function
imsl_c_lin_sol_gen_band fails if U, the upper triangular part of the factorization, has a zero diagonal ele-
ment. The function imsl_c_lin_sol_gen_band is based on the LINPACK subroutine CGBFA; see Dongarra
et al. (1979). CGBFA uses unscaled partial pivoting.
76

 Linear Systems lin_sol_gen_band (complex)
Examples

Example 1

The following linear system is solved:

#include <imsl.h>
int main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *x;
 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex b[] =
 {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};
 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 0);
 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
}

Output

 Solution, x, of Ax = b
1 (3, -0)
2 (-1, 1)
3 (3, 0)
4 (-1, 1)

Example 2

This example solves the problem Ax = b using the data from the first example. This time, the factorizations are

returned and then the problem AHx = b is solved without recomputing LU.

#include <imsl.h>
int main()
{

−2 − 3i 4 0 0
6 + i −0.5 + 3i −2 + 2i 0
0 1 + i 3 − 3i −4 − 1
0 0 2i 1 − i

x0
x1
x2
x3

=

−10 − 5i
9.5 + 5.5i
12 − 12i
8i
77

 Linear Systems lin_sol_gen_band (complex)
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 int *pivot;
 f_complex *x;
 f_complex *factor;
 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex b[] =
 {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};
 /* Solve Ax = b and return LU */
 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR, &pivot, &factor,
 0);
 imsl_c_write_matrix ("solution of Ax = b", n, 1, x,
 0);
 imsl_free (x);
 /* Use precomputed LU to solve ctrans(A)x = b */
 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR_USER, pivot, factor,
 IMSL_TRANSPOSE,
 0);
 imsl_c_write_matrix ("solution of ctrans(A)x = b", n, 1, x,
 0);
}

Output

 solution of Ax = b
1 (3, -0)
2 (-1, 1)
3 (3, 0)
4 (-1, 1)
solution of ctrans(A)x = b
1 (5.58, -2.91)
2 (-0.48, -4.67)
3 (-6.19, 7.15)
4 (12.60, 30.20)
78

 Linear Systems lin_sol_gen_band (complex)
Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_SINGULAR_MATRIX The input matrix is singular.
79

 Linear Systems lin_sol_posdef_band
lin_sol_posdef_band

more...

Solves a real symmetric positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the RTR Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L1 condition number of A.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[], …, 0)

The type double function is imsl_d_lin_sol_posdef_band.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)
Array of size (ncoda + 1) × n containing the n × n positive definite band coefficient matrix in band sym-
metric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use imsl_free. If no solution was
computed, then NULL is returned.
80

 Linear Systems lin_sol_posdef_band
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[],

IMSL_RETURN_USER, float x[],
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size (ncoda + 1) × n containing the LLT factorization of A. On
return, the necessary space is allocated by imsl_f_lin_sol_posdef_band. Typically,
float *p_factor is declared and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) × n containing the LLT factorization of A in band symmetric
form. If A is not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL_SOLVE is specified. They are “Output” otherwise.

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. This
option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LLT factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or
IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of
imsl_f_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LLT factorization previously computed by
imsl_f_lin_sol_posdef_band. By default, the solution to Ax = b is pointed to by
imsl_f_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and the argument a is ignored.
81

 Linear Systems lin_sol_posdef_band
Description
The function imsl_f_lin_sol_posdef_band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the RTR Cholesky factorization of A. R is an upper
triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L1 condition

number of A is computed using Higham’s modifications to Hager’s method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/ɛ (where ɛ is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function imsl_f_lin_sol_posdef_band fails if any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function imsl_f_lin_sol_posdef_band is partially based on the LINPACK subroutines CPBFA and
SPBSL; see Dongarra et al. (1979).

Example 1
Solves a system of linear equations Ax = b, where

#include <imsl.h>
int main()
{
 int n = 4;
 int ncoda = 2;
 float *x;
 /* Note that a is in band storage mode */
 float a[] = {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};
 x = imsl_f_lin_sol_posdef_band (n, a, ncoda, b, 0);
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

A =

2 0 −1 0
0 4 2 1
−1 2 7 −1
0 1 −1 3

and b =

6
−11
−11
19
82

 Linear Systems lin_sol_posdef_band
Output
 Solution, x, of Ax = b
 1 2 3 4
 4 -6 2 9

Example 2
This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated

space and an estimate of κ1(A) is computed. Additionally, the RTR factorization is returned. Then, knowing that

κ1(A) = ∥A∥ ∥A-1∥, the condition number is computed directly and compared to the estimate from Higham’s

method.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int n = 4;
 int ncoda = 2;
 float a[] =
 {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};
 float x[4];
 float e_i[4];
 float *factor;
 float condition;
 float column_norm;
 float inverse_norm;
 int i;
 int j;
 imsl_f_lin_sol_posdef_band (n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x,
 0);
 /* find one norm of inverse */
 inverse_norm = 0.0;
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) e_i[j] = 0.0;
 e_i[i] = 1.0;
83

 Linear Systems lin_sol_posdef_band
 /* determine one norm of each column of inverse */
 imsl_f_lin_sol_posdef_band (n, a, ncoda, e_i,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, x,
 0);
 column_norm = imsl_f_vector_norm (n, x,
 IMSL_ONE_NORM,
 0);
 /* the max of the column norms is the norm of
 inv(A) */
 if (inverse_norm < column_norm)
 inverse_norm = column_norm;
 }
 /* by observation, one norm of A is 11 */
 printf ("\nHigham’s condition estimate = %f\n", condition);
 printf ("Direct condition estimate = %f\n",
 11.0*inverse_norm);
}

Output
 Solution, x, of Ax = b
 1 2 3 4
 4 -6 2 9
Higham’s condition estimate = 8.650485
Direct condition estimate = 8.650485

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #.
The solution might not be accurate.

IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.
84

 Linear Systems lin_sol_posdef_band (complex)
lin_sol_posdef_band (complex)

more...

Solves a complex Hermitian positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the RHR Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L1 condition number of A.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda, f_complex b[], …, 0)

The type double function is imsl_z_lin_sol_posdef_band.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size (ncoda + 1) × n containing the n × n positive definite band coefficient matrix in band sym-
metric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use imsl_free. If no solution was
computed, then NULL is returned.
85

 Linear Systems lin_sol_posdef_band (complex)
Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda, f_complex b[],

IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, f_complex **p_factor,
IMSL_FACTOR_USER, f_complex factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_RETURN_USER, f_complex x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_FACTOR, f_complex **p_factor (Output)
The address of a pointer to an array of size (ncoda + 1) × n containing the RHR factorization of A. On
return, the necessary space is allocated by imsl_c_lin_sol_posdef_band. Typically,
f_complex *p_factor is declared and &p_factor is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) × n containing the RHR factorization of A in band symmetric
form. If A is not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL_SOLVE is specified. They are “Output” otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number of the matrix A. This
option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the RHR factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or
IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of
imsl_c_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the RHR factorization previously computed by
imsl_c_lin_sol_posdef_band. By default, the solution to Ax = b is pointed to by
imsl_c_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and the argument a is ignored.
86

 Linear Systems lin_sol_posdef_band (complex)
Description
The function imsl_c_lin_sol_posdef_band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the RHR Cholesky factorization of A. Argument R is
an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L1 condition

number of A is computed using Higham’s modifications to Hager’s method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/ɛ (where ɛ is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function imsl_c_lin_sol_posdef_band fails if any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function imsl_c_lin_sol_posdef_band is based partially on the LINPACK sub­routines SPBFA and
CPBSL; see Dongarra et al. (1979).

Examples

Example 1

Solve a linear system Ax = b where

#include <imsl.h>
int main()
{
 int n = 5;
 int ncoda = 1;
 f_complex *x;
 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
 {1.0, 1.0},
 {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
 {9.0, 0.0}};
 f_complex b[] =

A =

2 −1 + i 0 0 0
−1 − i 4 1 + 2i 0 0
0 1 − 2i 10 4i 0
0 0 −4i 6 1 + i
0 0 0 1 − i 9

and b =

1 + 5i
12 − 6i
1 − 16i
−3 − 3i
25 + 16i
87

 Linear Systems lin_sol_posdef_band (complex)
 {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
 {25.0, 16.0}};
 x = imsl_c_lin_sol_posdef_band (n, a, ncoda, b, 0);
 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
}

Output

 Solution, x, of Ax = b
1 (2, 1)
2 (3, -0)
3 (-1, -1)
4 (0, -2)
5 (3, 2)

Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated

space and an estimate of κ1(A) is computed. Additionally, the RHR factorization is returned. Then, knowing that

κ1(A) = ∥A∥ ∥A-1∥, the condition number is computed directly and compared to the estimate from Higham’s

method.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 int n = 5, ncoda = 1, i, j;
 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
 {1.0, 1.0},
 {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
 {9.0, 0.0}};
 f_complex b[] =
 {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
 {25.0, 16.0}};
 f_complex x[5], e_i[5], *factor;
 float condition, column_norm, inverse_norm;
 imsl_c_lin_sol_posdef_band (n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);
 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
 /* Find one norm of inverse */
 inverse_norm = 0.0;
88

 Linear Systems lin_sol_posdef_band (complex)
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) e_i[j] = imsl_cf_convert (0.0, 0.0);
 e_i[i] = imsl_cf_convert (1.0, 0.0);
 /* Determine one norm of each column of inverse */
 imsl_c_lin_sol_posdef_band (n, a, ncoda, e_i,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, x,
 0);
 column_norm = imsl_c_vector_norm (n, x,
 IMSL_ONE_NORM,
 0);
 /* The max of the column norms is the norm of inv(A) */
 if (inverse_norm < column_norm)
 inverse_norm = column_norm;
 }
 /* By observation, one norm of A is 14+sqrt(5) */
 printf ("\nHigham’s condition estimate = %7.4f\n", condition);
 printf ("Direct condition estimate = %7.4f\n",
 (14.0+sqrt(5.0))*inverse_norm);
}

Output

 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)
 4 5
(0, -2) (3, 2)
Higham’s condition estimate = 19.3777
Direct condition estimate = 19.3777

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #.
The solution might not be accurate.

IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.
89

 Linear Systems lin_sol_gen_coordinate
lin_sol_gen_coordinate

more...

Solves a sparse system of linear equations Ax = b. Using optional arguments, any of several related computations
can be performed. These extra tasks include returning the LU factorization of A, computing the solution of Ax = b
given an LU factorization, setting drop tolerances, and controlling iterative refinement.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem *a, float *b, ..., 0)

The type double function is imsl_d_lin_sol_gen_coordinate.

Required Arguments
int n (Input)

Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use imsl_free. If no solu-
tion was computed, then NULL is returned.
90

 Linear Systems lin_sol_gen_coordinate
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem *a, float *b,

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor,
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor,
IMSL_FREE_SPARSE_LU_FACTOR,
IMSL_RETURN_SPARSE_LU_IN_COORD, Imsl_f_sparse_elem **lu_coordinate, int

**row_pivots, int **col_pivots,
IMSL_SUPPLY_SPARSE_LU_IN_COORD, int nzlu, Imsl_f_sparse_elem *lu_coordinate, int

*row_pivots, int *col_pivots,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_RETURN_USER, float x[],
IMSL_TRANSPOSE,
IMSL_CONDITION, float *condition,
IMSL_PIVOTING_STRATEGY, Imsl_pivot method,
IMSL_NUMBER_OF_SEARCH_ROWS, int num_search_row,
IMSL_ITERATIVE_REFINEMENT,
IMSL_DROP_TOLERANCE, float tolerance,
IMSL_HYBRID_FACTORIZATION, float density, int order_bound,
IMSL_STABILITY_FACTOR, float s_factor,
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit,
IMSL_GROWTH_FACTOR, float *gf,
IMSL_SMALLEST_PIVOT, float *small_pivot
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values,
IMSL_MEMORY_BLOCK_SIZE, int block_size,
0)

Optional Arguments
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor (Output)

The address of a structure of type Imsl_f_sparse_lu_factor. The pointers within the structure are initial-
ized to point to the LU factorization by imsl_f_lin_sol_gen_coordinate.
91

 Linear Systems lin_sol_gen_coordinate
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor (Input)
The address of a structure of type Imsl_f_sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by imsl_f_lin_sol_gen_coordinate with the
IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD, Imsl_f_sparse_elem **lu_coordinate,
int **row_pivots, int **col_pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in lu_coordinate.
This is more compact than the internal representation encapsulated in Imsl_f_sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL_RETURN_LU_IN_COORD and
IMSL_SUPPLY_LU_IN_COORD is probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL_SUPPLY_SPARSE_LU_IN_COORD, int nzlu, Imsl_f_sparse_elem *lu_coordinate,
int *row_pivots, int *col_pivots (Input)
Supply the LU factorization in coordinate form. See IMSL_RETURN_SPARSE_LU_IN_COORD for a
description.

IMSL_FACTOR_ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL_CONDITION, float *condition,
Estimate the L1 condition number of A and return in the variable condition.
92

 Linear Systems lin_sol_gen_coordinate
IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL_ROW_MARKOWITZ,
IMSL_COLUMN_MARKOWITZ, or IMSL_SYMMETRIC_MARKOWITZ.
Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUMBER_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search_row = 3.

IMSL_ITERATIVE_REFINEMENT,
Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than
tolerance, it will be discarded.
Default: tolerance = 0.0.

IMSL_HYBRID_FACTORIZATION, float density, int order_bound,
Enable the function to switch to a dense factorization method when the density of the active subma-
trix reaches 0.0 ≤ density ≤ 1.0 and the order of the active submatrix is less than or equal to
order_bound.

IMSL_STABILITY_FACTOR, float s_factor (Input)
The absolute value of the pivot element must be bigger than the largest element in absolute value in
its row divided by s_factor.
Default: s_factor = 10.0.

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.0e16.

IMSL_GROWTH_FACTOR, float *gf (Output)
Argument gf is calculated as the largest element in absolute value at any stage of the Gaussian elim-
ination divided by the largest element in absolute value in A.

IMSL_SMALLEST_PIVOT, float *small_pivot (Output)
A pointer to the value of the pivot element of smallest magnitude that occurred during the
factorization.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.
93

 Linear Systems lin_sol_gen_coordinate
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main “Introduc-
tion” chapter of this manual for a discussion of this storage scheme.

IMSL_MEMORY_BLOCK_SIZE, int blocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize = nz.

Description
The function imsl_f_lin_sol_gen_coordinate solves a system of linear equations Ax = b, where A is
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case,
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the
IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to
imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR to release the
heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward

elimination and back substitution so that the operations UTy = b and LTx = y are performed to obtain the solu-

tion. So, with one call to produce the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the L1 condition number of A.

The algorithm used is due to Higham. Specification of IMSL_CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham’s method requires solu-

tion to problems of the form Az = r and ATz = r.
94

 Linear Systems lin_sol_gen_coordinate
The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that
IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.

The function imsl_f_lin_sol_gen_coordinate provides the option of switching to a dense factorization
method at some point during the decomposition. This option is enabled by choosing
IMSL_HYBRID_FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete
fill-in. The other parameter, order_bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

O(n3) nature of the dense factorization will cause performance degradation. Note that this option can significantly
increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, -34, 31)T. The number of nonzeros in A is nz = 15.

#include <imsl.h>
int main()
{
 Imsl_f_sparse_elem a[] =
 {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,

A =

10 0 0 0 0 0
0 10 −3 −1 0 0
0 0 15 0 0 0
−2 0 0 10 −1 0
−1 0 0 −5 1 −3
−1 −2 0 0 0 6
95

 Linear Systems lin_sol_gen_coordinate
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 0);
 imsl_f_write_matrix ("solution", 1, n, x,
 0);
 imsl_free (x);
}

Output

 solution
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2

This examples sets A = E(1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved, using the same coefficient matrix A just factored. Maximum absolute errors and execution
time ratios are printed, showing that forward and back solves take approximately 10 percent of the computation
time of a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial
number of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that tim-
ing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_lu_factor lu_factor;
 float *b;
 float *x;
 float *mod_five;
 float *mod_ten;
 float error_factor_solve;
 float error_solve;
 double time_factor_solve;
96

 Linear Systems lin_sol_gen_coordinate
 double time_solve;
 int n = 1000;
 int c = 10;
 int i;
 int nz;
 int index;
 /* Get the coefficient matrix */
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
 /* Set two different predetermined solutions */
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 mod_ten = (float*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 mod_ten[i] = (float) (i % 10);
 }
 /* Choose b so that x will approximate mod_five */
 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);
 /* Time the factor/solve */
 time_factor_solve = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 time_factor_solve = imsl_ctime() - time_factor_solve;
 /* Compute max absolute error */
 error_factor_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (mod_five);
 imsl_free (b);
 imsl_free (x);
 /* Get new right hand side -- b = A * mod_ten */
 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);
 /* Use the previously computed factorization
 to solve Ax = b */
 time_solve = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_solve = imsl_ctime() - time_solve;
97

 Linear Systems lin_sol_gen_coordinate
 error_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 free (mod_ten);
 imsl_free (b);
 imsl_free (x);
 /* Print errors and ratio of execution times */
 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
 printf ("time_solve/time_factor_solve = %f\n",
 time_solve/time_factor_solve);
}

Output

absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04
time_solve/time_fator_solve = 0.093750

Example 3

This example solves a system Ax = b, where A = E (500, 50). Then, the same system is solved using a large drop tol-
erance. Finally, using the factorization just computed, the same linear system is solved with iterative refinement.
Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_lu_factor lu_factor;
 float *b;
 float *x;
 float *mod_five;
 float error_zero_drop_tol;
 float error_nonzero_drop_tol;
 float error_nonzero_drop_tol_IR;
 double time_zero_drop_tol;
 double time_nonzero_drop_tol;
 double time_nonzero_drop_tol_IR;
 int nz_nonzero_drop_tol;
 int nz_zero_drop_tol;
 int n = 500;
 int c = 50;
 int i;
 int nz;
 int index;
98

 Linear Systems lin_sol_gen_coordinate
 /* Get the coefficient matrix */
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
 for (i=0; i<nz; i++) a[i].val *= 0.05;
 /* Set a predetermined solution */
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 for (i=0; i<n; i++)
 mod_five[i] = (float) (i % 5);
 /* Choose b so that x will approximate mod_five */
 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);
 /* Time the factor/solve */
 time_zero_drop_tol = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_zero_drop_tol,
 0);
 time_zero_drop_tol = imsl_ctime() - time_zero_drop_tol;
 /* Compute max abolute error */
 error_zero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 imsl_free (x);
 /* Solve the same problem, with drop
 tolerance = 0.005 */
 time_nonzero_drop_tol = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_DROP_TOLERANCE, 0.005,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_nonzero_drop_tol,
 0);
 time_nonzero_drop_tol = imsl_ctime() - time_nonzero_drop_tol;
 /* Compute max abolute error */
 error_nonzero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 imsl_free (x);
 /* Solve the same problem with IR, use last
 factorization */
 time_nonzero_drop_tol_IR = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 IMSL_ITERATIVE_REFINEMENT,
99

 Linear Systems lin_sol_gen_coordinate
 0);
 time_nonzero_drop_tol_IR = imsl_ctime() - time_nonzero_drop_tol_IR;
 /* Compute max abolute error */
 error_nonzero_drop_tol_IR = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 imsl_free (x);
 imsl_free (b);
 /* Print errors and ratio of execution times */
 printf ("drop tolerance = 0.0\n");
 printf ("\tabsolute error = %e\n", error_zero_drop_tol);
 printf ("\tfillin = %d\n\n", nz_zero_drop_tol);
 printf ("drop tolerance = 0.005\n");
 printf ("\tabsolute error = %e\n", error_nonzero_drop_tol);
 printf ("\tfillin = %d\n\n", nz_nonzero_drop_tol);
 printf ("drop tolerance = 0.005 (with IR)\n");
 printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR);
 printf ("\tfillin = %d\n\n", nz_nonzero_drop_tol);
 printf ("time_nonzero_drop_tol/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol/time_zero_drop_tol);
 printf ("time_nonzero_drop_tol_IR/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol_IR/time_zero_drop_tol);
}

Output

drop tolerance = 0.0
 absolute error = 3.814697e-06
 fillin = 9530
drop tolerance = 0.005
 absolute error = 2.699481e+00
 fillin = 8656
drop tolerance = 0.005 (with IR)
 absolute error = 1.907349e-06
 fillin = 8656
time_nonzero_drop_tol/time_zero_drop_tol = 1.086957
time_nonzero_drop_tol_IR/time_zero_drop_tol = 0.840580

Notice the absolute error when iterative refinement is not used. Also note that iterative refinement itself can be
quite expensive. In this case, for example, the IR solve took approximately as much time as the factorization. For
this problem the use of a drop high drop tolerance and iterative refinement was able to reduce fill-in by 10 per-
cent at a time cost double that of the default usage. In tight memory situations, such a trade-off may be
acceptable. Users should be aware that a drop tolerance can be chosen large enough, introducing large errors
into LU, to prevent convergence of iterative refinement.
100

 Linear Systems lin_sol_gen_coordinate (complex)
lin_sol_gen_coordinate (complex)

more...

Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A. Using optional arguments,
any of several related computations can be performed. These extra tasks include returning the LU factorization of
A, computing the solution of Ax = b given an LU factorization, setting drop tolerances, and controlling iterative
refinement.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz, Imsl_c_sparse_elem *a, f_complex *b,

..., 0)

The type double function is imsl_z_lin_sol_gen_coordinate.

Required Arguments
int n (Input)

Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

f_complex *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use imsl_free. If no solu-
tion was computed, then NULL is returned.
101

 Linear Systems lin_sol_gen_coordinate (complex)
Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz, Imsl_c_sparse_elem *a, f_complex *b,

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor,
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor,
IMSL_FREE_SPARSE_LU_FACTOR,
IMSL_RETURN_SPARSE_LU_IN_COORD, Imsl_c_sparse_elem **lu_coordinate,

int **row_pivots, int **col_pivots,
IMSL_SUPPLY_SPARSE_LU_IN_COORD, int nzlu, Imsl_c_sparse_elem *lu_coordinate,

int *row_pivots, int *col_pivots,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_RETURN_USER, f_complex x[],
IMSL_TRANSPOSE,
IMSL_CONDITION, float *condition,
IMSL_PIVOTING_STRATEGY, Imsl_pivot method,
IMSL_NUMBER_OF_SEARCH_ROWS, int num_search_row,
IMSL_ITERATIVE_REFINEMENT,
IMSL_DROP_TOLERANCE, float tolerance,
IMSL_HYBRID_FACTORIZATION, float density, int order_bound,
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit,
IMSL_GROWTH_FACTOR, float *gf,
IMSL_SMALLEST_PIVOT, float *small_pivot
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, f_complex *values,
IMSL_MEMORY_BLOCK_SIZE, int block_size,
0)

Optional Arguments
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor (Output)

The address of a structure of type Imsl_c_sparse_lu_factor. The pointers within the structure are initial-
ized to point to the LU factorization by imsl_c_lin_sol_gen_coordinate.
102

 Linear Systems lin_sol_gen_coordinate (complex)
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor (Input)
The address of a structure of type Imsl_c_sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by imsl_c_lin_sol_gen_coordinate with the
IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD, Imsl_c_sparse_elem **lu_coordinate,
int **row_pivots, int **col_pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in lu_coordinate.
This is more compact than the internal representation encapsulated in Imsl_c_sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL_RETURN_LU_IN_COORD and
IMSL_SUPPLY_LU_IN_COORD is probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL_SUPPLY_SPARSE_LU_IN_COORD, int nzlu, Imsl_c_sparse_elem *lu_coordinate,
int *row_pivots, int *col_pivots (Input)
Supply the LU factorization in coordinate form. See IMSL_RETURN_SPARSE_LU_IN_COORD for a
description.

IMSL_FACTOR_ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL_CONDITION, float *condition,
Estimate the L1 condition number of A and return in the variable condition.
103

 Linear Systems lin_sol_gen_coordinate (complex)
IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL_ROW_MARKOWITZ,
IMSL_COLUMN_MARKOWITZ, or IMSL_SYMMETRIC_MARKOWITZ.
Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUMBER_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search_row = 3

IMSL_ITERATIVE_REFINEMENT,
Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than toler-
ance, it will be discarded.
Default: tolerance = 0.0

IMSL_HYBRID_FACTORIZATION, float density, int order_bound, (Input)
Enable the code to switch to a dense factorization method when the density of the active submatrix
reaches 0.0 ≤ density ≤ 1.0 and the order of the active submatrix is less than or equal to
order_bound.

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.e16

IMSL_GROWTH_FACTOR, float *gf (Output)
gf is calculated as the largest element in absolute value at any stage of the Gaussian elimination
divided by the largest element in absolute value in A.

IMSL_SMALLEST_PIVOT, float *small_pivot (Output)
A pointer to the value of the pivot element of smallest magnitude.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, f_complex *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main Introduction
chapter at the beginning of this manual for a discussion of this storage scheme.

IMSL_MEMORY_BLOCK_SIZE, int blocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize = nz
104

 Linear Systems lin_sol_gen_coordinate (complex)
Description
The function imsl_c_lin_sol_gen_coordinate solves a system of linear equations Ax = b, where A is
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the
IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to
imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR to release the
heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward

elimination and back substitution so that the operations UTy = b and LTx = y are performed to obtain the solu-

tion. So, with one call to produce the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the L1 condition number of A.

The algorithm used is due to Higham. Specification of IMSL_CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham’s method requires solu-

tion to problems of the form Az = r and ATz = r.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that
IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.
105

 Linear Systems lin_sol_gen_coordinate (complex)
The function imsl_c_lin_sol_gen_coordinate provides the option of switching to a dense factorization
method at some point during the decomposition. This option is enabled by choosing
IMSL_HYBRID_FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete
fill-in. The other parameter, order_bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

O(n3) nature of the dense factorization will cause performance degradation. Note that this option can significantly
increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

Let

xT = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)

so that

Ax = (3 + 17i, -19 + 5i, 6 + 18i, - 38 + 32i, -63 + 49i, -57 + 83i)T

#include <imsl.h>
int main()
{
 static Imsl_c_sparse_elem a[] =
 {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},

A =

10 + 7i 0 0 0 0 0
0 3 + 2i −3 −1 + 2i 0 0
0 0 4 + 2i 0 0 0

−2 − 4i 0 0 1 + 6i −1 + 3i 0
−5 + 4i 0 0 −5 12 + 2i −7 + 7i
−1 + 12i −2 + 8i 0 0 0 3 + 7i
106

 Linear Systems lin_sol_gen_coordinate (complex)
 5, 5, {3.0, 7.0}};
 static f_complex b[] =
 {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
 {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
 int n = 6;
 int nz = 15;
 f_complex *x;
 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 0);
 imsl_c_write_matrix ("solution", n, 1, x,
 0);
 imsl_free (x);
}

Output

 solution
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)

Example 2

This example sets A = E (1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved using the same coefficient matrix A just factored. Maximum absolute errors and execution
time ratios are printed showing that forward and back solves take a small percentage of the computation time of
a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial number
of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that timing results
are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_sparse_lu_factor lu_factor;
 f_complex *b, *x, *mod_five, *mod_ten;
 float error_factor_solve, error_solve;
 double time_factor_solve, time_solve;
 int n = 1000, c = 10, i, nz, index;
 /* Get the coefficient matrix */
 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);
 /* Set two different predetermined solutions */
 mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
 mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
107

 Linear Systems lin_sol_gen_coordinate (complex)
 for (i=0; i<n; i++) {
 mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
 mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
 }
 /* Choose b so that x will approximate mod_five */
 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);
 /* Time the factor/solve */
 time_factor_solve = imsl_ctime();
 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 time_factor_solve = imsl_ctime() - time_factor_solve;
 /* Compute max abolute error */
 error_factor_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 imsl_free (b);
 imsl_free (x);
 /* Get new right hand side -- b = A * mod_ten */
 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);
 /* Use the previously computed factorization to solve Ax = b */
 time_solve = imsl_ctime();
 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_solve = imsl_ctime() - time_solve;
 error_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 imsl_free (b);
 imsl_free (x);
 /* Print errors and ratio of execution times */
 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
 printf ("time_solve/time_factor_solve = %f\n",
 time_solve/time_factor_solve);
108

 Linear Systems lin_sol_gen_coordinate (complex)
}

Output

absolute error (factor/solve) = 2.389053e-06
absolute error (solve) = 7.656095e-06
time_solve/time_factor_solve = 0.070313
109

 Linear Systems superlu
superlu

more...

Computes the LU factorization of a general sparse matrix by a column method and solves the real sparse linear
system of equations .

Synopsis
#include <imsl.h>
float *imsl_f_superlu (int n, int nz, Imsl_f_sparse_elem a[], float b[], …, 0)

void imsl_f_superlu_factor_free (Imsl_f_super_lu_factor *factor)

The type double functions are imsl_d_superlu and imsl_d_superlu_factor_free.

Required Arguments
int n (Input)

The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f_sparse_elem a[] (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Imsl_f_sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

float b[] (Input)
Array of length n containing the right-hand side.

Ax = b
110

 Linear Systems superlu
Return Value
A pointer to the solution of the sparse linear system . To release this space, use imsl_free. If no
solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_superlu (int n, int nz, Imsl_f_sparse_elem a[], float b[],

IMSL_EQUILIBRATE, int equilibrate,
IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method,
IMSL_COLPERM_VECTOR, int permc[],
IMSL_TRANSPOSE, int transpose,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_SOLVE, int factsol,
IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh,
IMSL_SYMMETRIC_MODE, int symm_mode,
IMSL_PERFORMANCE_TUNING, int sp_ienv[],
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind [], float HB_values[],
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], float HB_values[],
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor lu_factor_supplied,
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor *lu_factor_returned,
IMSL_CONDITION, float *condition,
IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
IMSL_FORWARD_ERROR_BOUND, float *ferr,
IMSL_BACKWARD_ERROR, float *berr,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments
IMSL_EQUILIBRATE, int equilibrate (Input)

Specifies if the input matrix A should be equilibrated before factorization.

x Ax = b
111

 Linear Systems superlu
Default: equilibrate = 0

IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

Default: method = IMSL_COLAMD
IMSL_COLPERM_VECTOR, int permc[] (Input)

Array of length n which defines the permutation matrix before postordering. This argument is
required if IMSL_COLUMN_ORDERING_METHOD with method = IMSL_PERMC is used. Other-
wise, it is ignored.

IMSL_TRANSPOSE, int transpose (Input)
Indicates if the transposed problem is to be solved. This option can be used in conjunction
with either of the options that supply the factorization.

equilibrate Description

0 Do not equilibrate A before factorization

1 Equilibrate A before factorization.

method Description

IMSL_NATURAL Natural ordering, i.e.the column ordering of the
input matrix.

IMSL_MMD_ATA Minimum degree ordering on the structure of
.

IMSL_MMD_AT_PLUS_A Minimum degree ordering on the structure of
 .

IMSL_COLAMD Column approximate minimum degree ordering.

IMSL_PERMC Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL_COLPERM_VECTOR. Vector permc is a
permutation of the numbers 0,1,…,n-1.

ATA

AT + A

Pc

ATx = b
112

 Linear Systems superlu
Default: transpose = 0

IMSL_ITERATIVE_REFINEMENT, int refine (Input)
Indicates if iterative refinement is desired.

Default: refine = 1

IMSL_FACTOR_SOLVE, int factsol (Input)
Indicates if the LU factorization, the solution of a linear system or both are to be computed.

Default: factsol = 0

transpose Description

0 Solve .

1 Solve .

refine Description

0 No iterative refinement.

1 Do iterative refinement.

factsol Description

0 Compute the LU factorization of the input matrix A
and solve the system .

1 Only compute the LU factorization of the input
matrix and return.
The LU factorization is returned via optional argu-
ment IMSL_RETURN_SPARSE_LU_FACTOR.
Input argument b is ignored.

2 Only solve given the LU factorization of .
The LU factorization of must be supplied via
optional argument
IMSL_SUPPLY_SPARSE_LU_FACTOR.
Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

Ax = b

ATx = b

Ax = b

Ax = b A
A

113

 Linear Systems superlu
IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
0.0 diag_pivot_thresh 1.0.
Default: diag_pivot_thresh = 1.0

IMSL_SYMMETRIC_MODE, int symm_mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix

 is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold
(e.g. 0.0 or 0.01) via option IMSL_DIAG_PIVOT_THRESH and choose an (AT+A)-based column
permutation algorithm (e.g. column permutation method IMSL_MMD_AT_PLUS_A).

Default: symm_mode = 0

IMSL_PERFORMANCE_TUNING, int sp_ienv[] (Input)
Array of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], float HB_values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the Introduction chapter
of this manual for a discussion of this storage scheme.

symm_mode Description

0 Do not use symmetric mode option.

1 Use symmetric mode option.

i Description of sp_ienv[i]
0 The panel size.

Default: sp_ienv[0] = 10
1 The relaxation parameter to control supernode amalgama-

tion.
Default: sp_ienv[1] = 5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] = 200

4 The minimum column dimension to be used for 2D block-
ing.
Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20

≤ ≤

A

114

 Linear Systems superlu
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor lu_factor_supplied (Input)
A structure of type Imsl_f_super_lu_factor containing the LU factorization of the input matrix computed
with the IMSL_RETURN_SPARSE_LU_FACTOR option. See the Description section for a definition
of this structure. To free the memory allocated within this structure, use function
imsl_f_superlu_factor_free.

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_super_lu_factor *lu_factor_returned (Output)
The address of a structure of type Imsl_f_super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function imsl_f_superlu_factor_free.

IMSL_CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth (Output)
The reciprocal pivot growth factor

If recip_pivot_growth is much less than 1, the stability of the LU factorization could be poor.

IMSL_FORWARD_ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_BACKWARD_ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
Consider the sparse linear system of equations

Here, is a general square, nonsingular by sparse matrix, and and are vectors of length . All entries
in , and are of real type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

min
j ∥ PrDrADcPc j∥∞ /∥U j∥∞

Ax = b

A n n x b n
A x b
115

 Linear Systems superlu
1. Compute a triangular factorization . Here, and are positive definite diag-

onal matrices to equilibrate the system and and are permutation matrices to ensure
numerical stability and preserve sparsity. is a unit lower triangular matrix and is an upper tri-
angular matrix.

2. Solve by evaluating

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of by .
Multiplying means permuting the rows of .

Multiplying means solving the triangular system of equations with matrix by substitution.
Similarly, multiplying means solving the triangular system with .

Function imsl_f_superlu handles step 1 above by default or if optional argument IMSL_FACTOR_SOLVE is
used and set to 1. More precisely, before is solved, the following steps are performed:

1. Equilibrate matrix , i.e. compute diagonal matrices and so that is “better

conditioned” than , i.e. is less sensitive to perturbations in than is to perturbations in
 .

2. Order the columns of to increase the sparsity of the computed and factors, i.e. replace

by where is a column permutation matrix.

3. Compute the LU factorization of . For numerical stability, the rows of are eventually per-
muted through the factorization process by scaled partial pivoting, leading to the decomposition

 . The LU factorization is done by a left looking supernode-panel algorithm with 2-
D blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

where and denote the -th column of matrices and , respectively.

5. Estimate the reciprocal of the condition number of matrix .

During the solution process, this information is used to perform the following steps:

1. Solve the system using the computed triangular L and U factors.

PrDrADcPc = LU Dr Dc
Pr Pc

L U

Ax = b

x = A−1b = Dc Pc U
−1 L−1 Pr Drb

b Dr
Pr Drb Drb
L−1 PrDrb L

U−1 L−1 PrDrb U

Ax = b

A Dr Dc A
^
= DrADc

A A
^ −1

A
^

A−1

A

A
^

L U A
^

A
^
Pc Pc

A
^
Pc A

^
Pc

A
~
: = PrA

^
Pc = LU

min
1≤ j ≤ n

∥A~ j∥∞
∥U j∥∞

A
~

j U j j A
~

U

A
~

Ax = b
116

 Linear Systems superlu
2. Iteratively refine the solution, again using the computed triangular factors. This is equivalent to New-
ton’s method.

3. Compute forward and backward error bounds for the solution vector .

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional
arguments of function imsl_f_superlu.

Function imsl_f_superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Imsl_f_super_lu_factor and two sub-structures. Following is a short description of
these structures:

typedef struct{
 int nnz; /* Number of nonzeros in the matrix */
 float *nzval; /* Array of nonzero values packed by column
 */
 int *rowind; /* Array of row indices of the nonzeros */
 int *colptr; /* colptr[j] stores the location in nzval[]
 and rowind[] which starts column j. It
 has ncol+1 entries, and colptr[ncol]
 points to the first free location in
 arrays nzval[] and rowind[]. */
} Imsl_f_hb_format;
typedef struct{
 int nnz; /* Number of nonzeros in the supernodal
 matrix */
 int nsuper; /* Index of the last supernode */
 float *nzval; /* Array of nonzero values packed by column
 */
 int *nzval_colptr; /* Array of length ncol+1; nzval_colptr[j]
 stores the location in nzval which starts
 column j. nzval_colptr[ncol] points to
 the first free location in arrays
 nzval[] and nzval_colptr[]. */
 int *rowind; /* Array of compressed row indices of
 rectangular supernodes */
 int *rowind_colptr; /* Array of length ncol+1;
 rowind_colptr[sup_to_col[s]] stores the
 location in rowind[] which starts
 all columns in supernode s, and
 rowind_colptr[ncol] points to the first
 free location in rowind[]. */
 int *col_to_sup; /* Array of length ncol+1; col_to_sup[j] is
 the supernode number to which column j
 belongs. Only the first ncol entries in
 col_to_sup[] are defined. */
 int *sup_to_col; /* Array of length ncol+1; sup_to_col[s]
 points to the starting column of the s-th
 supernode. Only the first nsuper+2
 entries in sup_to_col[] are defined, and
 sup_to_col[nsuper+1] = ncol+1. */
} Imsl_f_sc_format;
typedef struct{
 int nrow; /* number of rows of matrix A */

x

117

 Linear Systems superlu
 int ncol; /* number of columns of matrix A */
 int equilibration_method; /* The method used to equilibrate A:
 0 – No equilibration
 1 – Row equilibration.
 2 – Column equilibration
 3 – Both row and column equilibration */
 float *rowscale; /* Array of length nrow containing the row
 scale factors for A */
 float *columnscale; /* Array of length ncol containing the
 column scale factors for A */
 int *rowperm; /* Row permutation array of length nrow
 describing the row permutation matrix Pr
 */
 int *colperm; /* Column permutation array of length ncol
 describing the column permutation matrix
 Pc */
 Imsl_f_hb_format *U; /* The part of the U factor of A outside the
 supernodal blocks, stored in Harwell-
 Boeing format */
 Imsl_f_sc_format *L; /* The L factor of A, stored in supernodal
 format as block lower triangular matrix
 */
} Imsl_f_super_lu_factor;

Structure Imsl_d_super_lu_factor and its two sub-structures are defined similarly by replacing float by double,
Imsl_f_hb_format by Imsl_d_hb_format and Imsl_f_sc_format by Imsl_d_sc_format in their definitions.

For a definition of supernodes and its use in sparse LU factorization, see the SuperLU Users’ guide (1999) and J.W.
Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

taken from the SuperLU Users’ guide (1999).

Factorization of this matrix via imsl_f_superlu using natural column ordering, no equilibration and setting
sp_ienv[1] from its default value 5 to 1 results in the following LU decomposition:

A =

19 0 21 21 0
12 21 0 0 0
0 12 16 0 0
0 0 0 5 21
12 12 0 0 18
118

 Linear Systems superlu
Considering the filled matrix F (I denoting the identity matrix)

the supernodal structure of the factors of matrix A can be described by

where denotes a nonzero entry in the th supernode and denotes a nonzero entry in the th column of
outside the supernodal block.

Therefore, in a supernodal storage scheme the supernodal part of matrix F is stored as the lower block-diagonal
matrix

and the part outside the supernodes as the upper triangular matrix

A = LU =
1.00
0.63 1.00

0.57 1.00
1.00

0.63 0.57 −0.24 −0.77 1.00

19.00 21.00 21.00
21.00 −13.26 −13.26

23.58 7.58
5.00 21.00

34.20

.

F = L + U − I =

19.00 21.00 21.00
0.63 21.00 −13.26 −13.26

0.57 23.58 7.58
5.00 21.00

0.63 0.57 −0.24 −0.77 34.20

s1 u3 u4
s1 s2 s2 u4

s2 s2 u4
s3 s3

s1 s2 s2 s3 s3

si i ui i U

Lsnode =

19.00
0.63 21.00 −13.26

0.57 23.58
5.00 21.00

0.63 0.57 −0.24 −077 34.20

Usnode =

* 21.00 21.00
* −13.26

* 7.58
*

*

119

 Linear Systems superlu
This is in accordance with the output for structure Imsl_f_super_lu_factor:

Equilibration method: 0

Scale vectors:
rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000
columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000
Permutation vectors:
colperm: 0 1 2 3 4
rowperm: 0 1 2 3 4
Harwell-Boeing matrix U:
nrow 5, ncol 5, nnz 11
nzval: 21.000000 -13.263157 7.578947 21.000000
rowind: 0 1 2 0
colptr: 0 0 0 1 4 4
Supernodal matrix L:
nrow 5, ncol 5, nnz 11, nsuper 2
nzval:
0 0 1.900000e+001
1 0 6.315789e-001
4 0 6.315789e-001
1 1 2.100000e+001
2 1 5.714286e-001
4 1 5.714286e-001
1 2 -1.326316e+001
2 2 2.357895e+001
4 2 -2.410714e-001
3 3 5.000000e+000
4 3 -7.714285e-001
3 4 2.100000e+001
4 4 3.420000e+001

nzval_colptr: 0 3 6 9 11 13

rowind: 0 1 4 1 2 4 3 4

rowind_colptr: 0 3 6 6 8 8

col_to_sup: 0 1 1 2 2
sup_to_col: 0 1 3 5

Function imsl_f_superlu is based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User’s Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
120

 Linear Systems superlu
(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6×6 matrix

is computed.

Let y = (1, 2, 3, 4, 5, 6)T, so that b1: = Ay = (10, 7, 45, 33, -34, 31)T and b2: = ATy = (-9, 8, 39, 13, 1, 21T)

The LU factorization of A is used to solve the sparse linear systems Ax = b1 and ATx = b2.

#include <imsl.h>
int main(){
 Imsl_f_sparse_elem a[] = { 0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,

A =

10 0 0 0 0 0
0 10 −3 −1 0 0
0 0 15 0 0 0
−2 0 0 10 −1 0
−1 0 0 −5 1 −3
−1 −2 0 0 0 6
121

 Linear Systems superlu
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

 float b1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };
 int n = 6, nz = 15;
 float *x = NULL;
 x = imsl_f_superlu (n, nz, a, b1, 0);
 imsl_f_write_matrix ("solution to A*x = b1", 1, n, x, 0);
 imsl_free (x);
 x = imsl_f_superlu (n, nz, a, b2, IMSL_TRANSPOSE, 1, 0);
 imsl_f_write_matrix ("solution to A^T*x = b2", 1, n, x, 0);
 imsl_free (x);
}

Output

 solution to A*x = b
 1 2 3 4 5 6
 1 2 3 4 5 6
 solution to A^T*x = b2
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function
imsl_f_superlu_factor_free.

#include <imsl.h>
int main(){
 Imsl_f_sparse_elem *a;
 Imsl_f_super_lu_factor lu_factor;
 float *b, *x, *mod_five, *mod_ten;
 float error_factor_solve, error_solve;
 int n = 1000, c = 10;
 int i, nz, index;
 /* Get the coefficient matrix */
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
122

 Linear Systems superlu
 /* Set two different predetermined solutions */
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 mod_ten = (float*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 mod_ten[i] = (float) (i % 10);
 }
 /* Choose b so that x will approximate mod_five */
 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five, 0);
 /* Solve Ax = b */
 x = imsl_f_superlu (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 0);
 /* Compute max absolute error */
 error_factor_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 imsl_free (mod_five);
 imsl_free (b);
 imsl_free (x);
 /* Get new right hand side -- b = A * mod_ten */
 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);
 /* Use the previously computed factorization
 to solve Ax = b */
 x = imsl_f_superlu (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, lu_factor,
 IMSL_FACTOR_SOLVE, 2,
 0);
 error_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 imsl_free (mod_ten);
 imsl_free (b);
 imsl_free (x);
 imsl_free (a);
 /* Free sparse LU structure */
 imsl_f_superlu_factor_free (&lu_factor);
 /* Print errors */
 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
}

123

 Linear Systems superlu
Output

absolute error (factor/solve) = 1.502037e-005
absolute error (solve) = 1.621246e-005

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #.
The solution might not be accurate.

IMSL_SINGULAR_MATRIX The input matrix is singular.
124

 Linear Systems superlu (complex)
superlu (complex)

more...

Computes the LU factorization of a general complex sparse matrix by a column method and solves the complex
sparse linear system of equations .

Synopsis
#include <imsl.h>
f_complex *imsl_c_superlu (int n, int nz, Imsl_c_sparse_elem a[], f_complex b[], …, 0)

void imsl_c_superlu_factor_free (Imsl_c_super_lu_factor *factor)

The type double functions are imsl_z_superlu and imsl_z_superlu_factor_free.

Required Arguments
int n (Input)

The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a[] (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Imsl_c_sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

f_complex b[] (Input)
Array of length n containing the right-hand side.

Ax = b
125

 Linear Systems superlu (complex)
Return Value
A pointer to the solution of the sparse linear system . To release this space, use imsl_free. If no
solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

f_complex *imsl_c_superlu (int n, int nz, Imsl_c_sparse_elem a[], f_complex b[],
IMSL_EQUILIBRATE, int equilibrate,
IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method,
IMSL_COLPERM_VECTOR, int permc[],
IMSL_TRANSPOSE, int transpose,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_SOLVE, int factsol,
IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh,
IMSL_SYMMETRIC_MODE, int symm_mode,
IMSL_PERFORMANCE_TUNING, int sp_ienv[],
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], f_complex HB_values[],
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_super_lu_factor lu_factor_supplied,
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_super_lu_factor *lu_factor_returned,
IMSL_CONDITION, float *condition,
IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
IMSL_FORWARD_ERROR_BOUND, float *ferr,
IMSL_BACKWARD_ERROR, float *berr,
IMSL_RETURN_USER, f_complex x[],
0)

Optional Arguments
IMSL_EQUILIBRATE, int equilibrate (Inputs)

Specifies if the input matrix A should be equilibrated before factorization.

x Ax = b
126

 Linear Systems superlu (complex)
Default: equilibrate = 0

IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

Default: method = IMSL_COLAMD
IMSL_COLPERM_VECTOR, int permc[] (Input)

Array of length n which defines the permutation matrix before postordering. This argument is
required if IMSL_COLUMN_ORDERING_METHOD with method = IMSL_PERMC is used. Other-
wise, it is ignored.

IMSL_TRANSPOSE, int transpose (Input)
Indicates if the problem or one of the transposed problems or is to be
solved.

equilibrate Description

0 Do not equilibrate A before factorization

1 Equilibrate A before factorization.

method Description

IMSL_NATURAL Natural ordering, i.e.the column ordering of the
input matrix..

IMSL_MMD_ATA Minimum degree ordering on the structure of
.

IMSL_MMD_AT_PLUS_A Minimum degree ordering on the structure of
 .

IMSL_COLAMD Column approximate minimum degree ordering.

IMSL_PERMC Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL_COLPERM_VECTOR. Vector permc is a
permutation of the numbers 0,1,…,n-1.

ATA

AT + A

Pc

Ax = b ATx = b AHx = b
127

 Linear Systems superlu (complex)
Default: transpose = 0

IMSL_ITERATIVE_REFINEMENT, int refine (Input)
Indicates if iterative refinement is desired.

Default: refine = 1

IMSL_FACTOR_SOLVE, int factsol (Input)
Indicates if the LU factorization, the solution of a linear system or both are to be computed.

transpose Description

0 Solve .

1 Solve .
This option can be used in conjunction with either
of the options that supply the factorization.

2 Solve .
This option can be used in conjunction with either
of the options that supply the factorization.

refine Description

0 No iterative refinement.

1 Do iterative refinement.

factsol Description

0 Compute the LU factorization of the input matrix A
and solve the system .

Ax = b

ATx = b

AHx = b

Ax = b
128

 Linear Systems superlu (complex)
Default: factsol = 0

IMSL_DIAG_PIVOT_THRESH, double diag_pivot_thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
0.0 diag_pivot_thresh 1.0.
Default: diag_pivot_thresh = 1.0.

IMSL_SYMMETRIC_MODE, int symm_mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix

 is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold
(e.g. 0.0 or 0.01) via optional argument IMSL_DIAG_PIVOT_THRESH and choose an -
based column permutation algorithm (e.g. column permutation method IMSL_MMD_AT_PLUS_A).

Default: symm_mode = 0

1 Only compute the LU factorization of the input
matrix and return.
The LU factorization is returned via optional argu-
ment IMSL_RETURN_SPARSE_LU_FACTOR.
Input argument b is ignored.

2 Only solve given the LU factorization of .
The LU factorization of must be supplied via
optional argument
IMSL_SUPPLY_SPARSE_LU_FACTOR.
Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

symm_mode Description

0 Do not use symmetric mode option.

1 Use symmetric mode option.

factsol Description

Ax = b A
A

≤ ≤

A
AT + A
129

 Linear Systems superlu (complex)
IMSL_PERFORMANCE_TUNING, int sp_ienv[] (Input)
Vector of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], f_complex HB_values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the main Introduction
chapter of this manual for a discussion of this storage scheme.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_super_lu_factor lu_factor_supplied (Input)
A structure of type Imsl_c_super_lu_factor containing the LU factorization of the input matrix com-
puted with the IMSL_RETURN_SPARSE_LU_FACTOR option. See the Description section for a
definition of this structure. To free the memory allocated within this structure, use function
imsl_c_superlu_factor_free.

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_super_lu_factor *lu_factor_returned (Output)
The address of a structure of type Imsl_c_super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function imsl_c_superlu_factor_free.

IMSL_CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth (Output)
The reciprocal pivot growth factor

i Description of sp_ienv[i]
0 The panel size.

Default: sp_ienv[0] = 10
1 The relaxation parameter to control supernode amalga-

mation.
Default: sp_ienv[1] = 5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] = 200

4 The minimum column dimension to be used for 2D block-
ing.
Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20
130

 Linear Systems superlu (complex)
If recip_pivot_growth is much less than 1, the stability of the LU factorization could be poor.

IMSL_FORWARD_ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_BACKWARD_ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
Consider the sparse linear system of equations

Here, is a general square, nonsingular by sparse matrix, and and are vectors of length . All entries
in , and are of complex type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization . Here, and are positive definite diag-

onal matrices to equilibrate the system and and are permutation matrices to ensure
numerical stability and preserve sparsity. is a unit lower triangular matrix and is an upper tri-
angular matrix.

2. Solve by evaluating

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of by .
Multiplying means permuting the rows of .

Multiplying means solving the triangular system of equations with matrix by substitution.
Similarly, multiplying means solving the triangular system with .

Function imsl_c_superlu handles step 1 above by default or if optional argument IMSL_FACTOR_SOLVE is
used and set to 1. More precisely, before is solved, the following steps are performed:

min
j ∥ PrDrADcPc j∥∞ /∥U j∥∞

Ax = b

A n n x b n
A x b

PrDrADcPc = LU Dr Dc
Pr Pc

L U

Ax = b

x = A−1b = Dc Pc U
−1 L−1 Pr Drb

b Dr
Pr Drb Drb
L−1 PrDrb L

U−1 L−1 PrDrb U

Ax = b
131

 Linear Systems superlu (complex)
1. Equilibrate matrix , i.e. compute diagonal matrices and so that is “better

conditioned” than , i.e. is less sensitive to perturbations in than is to perturbations in
 .

2. Order the columns of to increase the sparsity of the computed and factors, i.e. replace

by where is a column permutation matrix.

3. Compute the LU factorization of . For numerical stability, the rows of are eventually per-
muted through the factorization process by scaled partial pivoting, leading to the decomposition

. The LU factorization is done by a left looking supernode-panel algorithm with 2-D
blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

where and denote the -th column of matrices and , respectively.

5. Estimate the reciprocal of the condition number of matrix .

During the solution process, this information is used to perform the following steps:

1. Solve the system using the computed triangular L and U factors.

2. Iteratively refine the solution, again using the computed triangular factors. This is equivalent to New-
ton’s method.

3. Compute forward and backward error bounds for the solution vector .

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional
arguments of function imsl_c_superlu.

Function imsl_c_superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Imsl_c_super_lu_factor and two sub-structures. Following is a short description of
these structures:

typedef struct{
 int nnz; /* Number of nonzeros in the matrix */
 f_complex *nzval; /* Array of nonzero values packed by column
 */
 int *rowind; /* Array of row indices of the nonzeros */
 int *colptr; /* colptr[j] stores the location in nzval[]
 and rowind[] which starts column j. It has

A Dr Dc A
^
= DrADc

A A
^ −1

A
^

A−1

A

A
^

L U A
^

A
^
Pc Pc

A
^
Pc A

^
Pc

A
~
: = PrA

^
Pc = LU

min
1≤ j≤n

∥A~ j∥∞
∥U j∥∞

A
~

j U j j A
~

U

A
~

Ax = b

x

132

 Linear Systems superlu (complex)
 ncol+1 entries, and colptr[ncol] points to
 the first free location in arrays nzval[]
 and rowind[]. */
} Imsl_c_hb_format;
typedef struct{
 int nnz; /* Number of nonzeros in the supernodal
 matrix */
 int nsuper; /* Index of the last supernode */
 f_complex *nzval; /* Array of nonzero values packed by column
 */
 int *nzval_colptr; /* Array of length ncol+1; nzval_colptr[j]
 stores the location in nzval which starts
 column j. nzval_colptr[ncol] points to the
 first free location in arrays nzval[] and
 nzval_colptr[]. */
 int *rowind; /* Array of compressed row indices of
 rectangular supernodes */
 int *rowind_colptr; /* Array of length ncol+1;
 rowind_colptr[sup_to_col[s]] stores the
 location in rowind[] which starts
 all columns in supernode s, and
 rowind_colptr[ncol] points to the first
 free location in rowind[]. */
 int *col_to_sup; /* Array of length ncol+1; col_to_sup[j] is
 the supernode number to which column j
 belongs. Only the first ncol entries in
 col_to_sup[] are defined. */
 int *sup_to_col; /* Array of length ncol+1; sup_to_col[s]
 points to the starting column of the s-th
 supernode. Only the first nsuper+2 entries
 in sup_to_col[] are defined, and
 sup_to_col[nsuper+1] = ncol+1. */
} Imsl_c_sc_format;
typedef struct{
 int nrow; /* number of rows of matrix A */
 int ncol; /* number of columns of matrix A */
 int equilibration_method; /* The method used to equilibrate A:
 0 – No equilibration
 1 – Row equilibration.
 2 – Column equilibration
 3 – Both row and column equilibration */
 float *rowscale; /* Array of length nrow containing the row
 scale factors for A */
 float *columnscale; /* Array of length ncol containing the
 column scale factors for A */
 int *rowperm; /* Row permutation array of length nrow
 describing the row permutation matrix Pr
 */
 int *colperm; /* Column permutation array of length ncol
 describing the column permutation matrix
 Pc */
 Imsl_c_hb_format *U; /* The part of the U factor of A outside the
 supernodal blocks, stored in Harwell-
 Boeing format */
 Imsl_c_sc_format *L; /* The L factor of A, stored in supernodal
 format as block lower triangular matrix */
} Imsl_c_super_lu_factor;
133

 Linear Systems superlu (complex)
Structure Imsl_z_super_lu_factor and its two sub-structures are defined similarly by replacing float by double, f_com-
plex by d_complex, Imsl_c_hb_format by Imsl_z_hb_format and Imsl_c_sc_format by Imsl_z_sc_format in their
definitions.

For a definition of supernodes and its use in sparse unsymmetric LU factorization, see the SuperLU Users’ guide
(1999) and J.W. Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

Factorization of this matrix via imsl_c_superlu using natural column ordering, no equilibration, setting
sp_ienv[1] from its default value 5 to 1 and reducing the diagonal pivot thresh factor to 0.5 results in the fol-
lowing LU decomposition:

Considering the filled matrix (denoting the identity matrix),

the supernodal structure of the factors of matrix A can be described by

where denotes a nonzero entry in the th supernode and denotes a nonzero entry in the i-th column of
outside the supernodal block.

A =

1 − i 0 1 − i 1 − i 0
2 1 − i 0 0 0
0 1 + i 1 − i 0 0
0 0 0 1 + i 1 − i
2 1 + i 0 0 2 − i

A = LU =

1
1 + i 1

i 1
1

1 + i i 2i 2 1

1 − i 1 − i 1 − i
1 − i −2 −2

1 + i 2i
1 + i 1 − i

i

F I

F = L + U − I =

1 − i 1 − i 1 − i
1 + i 1 − i −2 −2

i 1 + i 2i
1 + i 1 − i

1 + i i 2i 2 i

s1 u3 u4
s1 s2 s2 u4

s2 s2 u4
s3 s3

s1 s2 s2 s3 s3

si i ui U
134

 Linear Systems superlu (complex)
Therefore, in a supernodal storage scheme the supernodal part of matrix F is stored as the lower block-diagonal
matrix

and the part outside the supernodes as the upper triangular matrix

This is in accordance with the output for structure Imsl_c_super_lu_factor:

Equilibration method: 0
Scale vectors:
rowscale: 1.000000 1.000000 1.000000 1.000000 1.000000
columnscale: 1.000000 1.000000 1.000000 1.000000 1.000000
Permutation vectors:
colperm: 0 1 2 3 4
rowperm: 0 1 2 3 4
Harwell-Boeing matrix U:
nrow 5, ncol 5, nnz 11
nzval: (1.000000,-1.000000) (-2.000000,0.000000) (0.000000,2.000000)
 (1.000000,-1.000000)
rowind: 0 1 2 0
colptr: 0 0 0 1 4 4
Supernodal matrix L:
nrow 5, ncol 5, nnz 11, nsuper 2
nzval:
0 0 (1.000000,-1.000000)
1 0 (1.000000,1.000000)
4 0 (1.000000,1.000000)
1 1 (1.000000,-1.000000)
2 1 (0.000000,1.000000)
4 1 (0.000000,1.000000)
1 2 (-2.000000,0.000000)
2 2 (1.000000,1.000000)
4 2 (0.000000,2.000000)
3 3 (1.000000,1.000000)
4 3 (2.000000,0.000000)
3 4 (1.000000,-1.000000)
4 4 (0.000000,1.000000)

Lsnode =

1 − i
1 + i 1 − i −2

i 1 + i
1 + i 1 − i

1 + i i 2i 2 i

Usnode =

* 1 − i 1 − i
* −2

* 2i
*

*

135

 Linear Systems superlu (complex)
nzval_colptr: 0 3 6 9 11 13
rowind: 0 1 4 1 2 4 3 4
rowind_colptr: 0 3 6 6 8 8
col_to_sup: 0 1 1 2 2
sup_to_col: 0 1 3 5

Function imsl_c_superlu is based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User’s Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse complex 6×6 matrix
136

 Linear Systems superlu (complex)
is computed. Let

y: = (1+i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)T

so that

b: = Ay = (3 + 17i, -19 + 5i, 6 + 18i, -38 + 32i, -63 + 49i, -57 + 83i)T

b

1

: = ATy = (-112 + 54i, -58 + 46i, 12i, -51 + 5i, 34 + 78i, -94 + 60i)T

and

b

2

: = AHy = (54 - 112i, 46 - 58i, 12, 5 - 51i, 78 + 34i, 60 - 94iT)

The LU factorization of A is used to solve the sparse complex linear systems Ax = b, ATx = b

1

 and AHx = b

2

.

#include <imsl.h>
int main(){
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},

A =

10 + 7i 0 0 0 0 0
0 3 + 2i −3 −1 + 2i 0 0
0 0 4 + 2i 0 0 0

−2 − 4i 0 0 1 + 6i −1 + 3i 0
−5 + 4i 0 0 −5 12 + 2i −7 + 7i
−1 + 12i −2 + 8i 0 0 0 3 + 7i
137

 Linear Systems superlu (complex)
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
 {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};

 f_complex b1[] = {{-112.0,54.0}, {-58.0,46.0}, {0.0,12.0},
 {-51.0,5.0}, {34.0,78.0}, {-94.0,60.0}};
 f_complex b2[] = {{54.0,-112.0}, {46.0, -58.0}, {12.0, 0.0},
 {5.0, -51.0}, {78.0, 34.0}, {60.0, -94.0}};

 int n = 6, nz = 15;
 f_complex *x = NULL;
 x = imsl_c_superlu (n, nz, a, b, 0);
 imsl_c_write_matrix ("solution to A*x = b", n, 1, x, 0);
 imsl_free (x);
 x = imsl_c_superlu (n, nz, a, b1, IMSL_TRANSPOSE, 1, 0);
 imsl_c_write_matrix ("solution to A^T*x = b1", n, 1, x, 0);
 imsl_free (x);
 x = imsl_c_superlu (n, nz, a, b2, IMSL_TRANSPOSE, 2, 0);
 imsl_c_write_matrix ("solution to A^H*x = b2", n, 1, x, 0);
 imsl_free (x);
}

Output

 solution to A*x = b
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)
 solution to A^T*x = b1
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)
 solution to A^H*x = b2
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)
138

 Linear Systems superlu (complex)
Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function
imsl_c_superlu_factor_free.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>
int main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_super_lu_factor lu_factor;
 f_complex *b, *x, *mod_five, *mod_ten;
 float error_factor_solve, error_solve;
 int n = 1000, c = 10;
 int i, nz, index;
 /* Get the coefficient matrix */
 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);
 /* Set two different predetermined solutions */
 mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
 mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
 mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
 }
 /* Choose b so that x will approximate mod_five */
 b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);
 /* Solve Ax = b */
 x = imsl_c_superlu (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 /* Compute max absolute error */
 error_factor_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (mod_five);
 imsl_free (b);
 imsl_free (x);
 /* Get new right hand side -- b = A * mod_ten */
 b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);
139

 Linear Systems superlu (complex)
 /* Use the previously computed factorization to solve Ax = b */
 x = imsl_c_superlu (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, lu_factor,
 IMSL_FACTOR_SOLVE, 2,
 0);
 error_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 free (mod_ten);
 imsl_free (b);
 imsl_free (x);
 imsl_free (a);
 /* Free sparse LU structure */
 imsl_c_superlu_factor_free (&lu_factor);
 /* Print errors */
 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
}

Output
absolute error (factor/solve) = 9.581565e-007
absolute error (solve) = 2.017575e-006

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #.
The solution might not be accurate.

IMSL_SINGULAR_MATRIX The input matrix is singular.
140

 Linear Systems superlu_smp
superlu_smp

Computes the LU factorization of a general sparse matrix by a left-looking column method using OpenMP paral-
lelism, and solves the real sparse linear system of equations Ax = b .

Synopsis
#include <imsl.h>
float *imsl_f_superlu_smp (int n, int nz, Imsl_f_sparse_elem a[], float b[],…,0)

void imsl_f_superlu_smp_factor_free (Imsl_f_super_lu_smp_factor *factor)

The type double functions are imsl_d_superlu_smp and imsl_d_superlu_smp_factor_free.

Required Arguments
int n (Input)

The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Imsl_f_sparse_elem structure in the section Matrix Storage Modes in the
“Introduction” chapter of this manual.

float b[] (Input)
An array of length n containing the right-hand side.

more...

more...
141

 Linear Systems superlu_smp
Return Value
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use imsl_free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_superlu_smp (int n, int nz, Imsl_f_sparse_elem a[], float b[],

IMSL_EQUILIBRATE, int equilibrate,
IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method,
IMSL_COLPERM_VECTOR, int permc[],
IMSL_TRANSPOSE, int transpose,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_SOLVE, int factsol,
IMSL_DIAG_PIVOT_THRESH, float diag_pivot_thresh,
IMSL_SNODE_PREDICTION, int snode_prediction,
IMSL_PERFORMANCE_TUNING, int sp_ienv[],
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind, float HB_values[],
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_super_lu_smp_factor *lu_factor_supplied

,
IMSL_RETURN_SPARSE_LU_FACTOR,

Imsl_f_super_lu_smp_factor *lu_factor_returned,
IMSL_CONDITION, float *condition,
IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
IMSL_FORWARD_ERROR_BOUND, float *ferr,
IMSL_BACKWARD_ERROR, float *berr,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments
IMSL_EQUILIBRATE, int equilibrate (Input)

Specifies if the input matrix A should be equilibrated before factorization.
142

 Linear Systems superlu_smp
Default: equilibrate = 0.

IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

Default: method = IMSL_COLAMD.

IMSL_COLPERM_VECTOR, int permc[] (Input)
Array of length n that defines the permutation matrix Pc before postordering. This argument is
required if IMSL_COLUMN_ORDERING_METHOD with method = IMSL_PERMC is used. Other-
wise, it is ignored.

IMSL_TRANSPOSE, int transpose (Input)
Indicates if the transposed problem ATx = b is to be solved. This option can be used in conjunction
with either of the options that supply the factorization.

Default: transpose = 0.

IMSL_ITERATIVE_REFINEMENT, int refine (Input)
Indicates if iterative refinement is desired.

equilibrate Description

0 Do not equilibrate A before factorization

1 Equilibrate A before factorization.

method Description

IMSL_NATURAL Natural ordering, i.e.the column ordering of the input
matrix.

IMSL_MMD_ATA Minimum degree ordering on the structure of AT A.

IMSL_MMD_AT_PLUS_A Minimum degree ordering on the structure of AT + A.

IMSL_COLAMD Column approximate minimum degree ordering.

IMSL_PERMC Use ordering given in permutation vector permc, which
is input by the user through the optional argument
IMSL_COLPERM_VECTOR. Vector permc is a permuta-
tion of the numbers 0,1,…, n-1.

transpose Description

0 Solve Ax = b.

1 Solve ATx = b.
143

 Linear Systems superlu_smp
Default: refine = 1.

IMSL_FACTOR_SOLVE, int factsol (Input)
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

Default: factsol = 0.

IMSL_DIAG_PIVOT_THRESH, float diag_pivot_thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
0.0 ≤ diag_pivot_thresh ≤ 1.0.
Default: diag_pivot_thresh = 1.0.

IMSL_SNODE_PREDICTION, int snode_prediction (Input)
Indicates which scheme is used to predict the number of nonzeros in the L supernodes.

Default: snode_prediction = 0.

refine Description

0 No iterative refinement.

1 Do iterative refinement.

factsol Description

0 Compute the LU factorization of the input matrix A and
solve the system Ax = b.

1 Only compute the LU factorization of the input matrix
and return.
The LU factorization is returned via the optional argu-
ment IMSL_RETURN_SPARSE_LU_FACTOR.
Input argument b is ignored.

2 Only solve Ax = b given the LU factorization of A.
The LU factorization of A must be supplied via the
optional argument
IMSL_SUPPLY_SPARSE_LU_FACTOR.
Input argument a is ignored unless iterative refine-
ment, computation of the condition number, or
computation of the reciprocal pivot growth factor is
required.

snode_prediction Description

0 Use static scheme for the prediction of the
number of nonzeros in the L supernodes.

1 Use dynamic scheme for the prediction of the
number of nonzeros in the L supernodes.
144

 Linear Systems superlu_smp
IMSL_PERFORMANCE_TUNING, int sp_ienv[] (Input)
Array of length 8 containing parameters that allow the user to tune the performance of the matrix
factorization algorithm. The elements sp_ienv[i] must be positive for i = 0,…,4 and different
from zero for i = 5,6,7.

IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], float HB_values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

i Description of sp_ienv[i]
0 The panel size.

Default: sp_ienv[0] = 10.

1 The relaxation parameter to control supernode amalgama-
tion.
Default: sp_ienv[1] = 5.

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100.

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] = 200.

4 The minimum column dimension to be used for 2D block-
ing.
Default: sp_ienv[4] = 40.

5 The size of the array nzval to store the values of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.
This element of array sp_ienv is used only if a dynamic
scheme for the prediction of the sizes of the L supernodes
is used, i.e. if snode_prediction = 1.
Default: sp_ienv[5] = -20.

6 The size of the arrays rowind and nzval to store the col-
umns in U. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.
Default: sp_ienv[6] = -20.

7 The size of the array rowind to store the subscripts of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.
Default: sp_ienv[7] = -10.
145

 Linear Systems superlu_smp
IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_super_lu_smp_factor *lu_factor_supplied (Input)
The address of a structure of type Imsl_f_super_lu_smp_factor containing the LU factors of the input
matrix computed with the IMSL_RETURN_SPARSE_LU_FACTOR option. See the Description sec-
tion for a definition of this structure. To free the memory allocated within this structure, use function
imsl_f_superlu_smp_factor_free.

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_super_lu_smp_factor *lu_factor_returned (Out-
put)
The address of a structure of type Imsl_f_super_lu_smp_factor containing the LU factorization of the
input matrix. See the Description section for a definition of this structure. To free the memory allo-
cated within this structure, use function imsl_f_superlu_smp_factor_free.

IMSL_CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth (Output)
The reciprocal pivot growth factor

If recip_pivot_growth is much less than 1, the stability of the LU factorization could be poor.

IMSL_FORWARD_ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_BACKWARD_ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
The steps imsl_f_superlu_smp uses to solve linear systems are identical to the steps described in the doc-
umentation of the serial version imsl_f_superlu.

Function imsl_f_superlu_smp uses a supernodal storage scheme for the LU factorization of matrix A. In
contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,

min
j ∥ PrDrADcPc j∥∞ /∥U j∥∞ .
146

 Linear Systems superlu_smp
also pointers to the end of each column or supernode are needed. The factorization is contained in structure
Imsl_f_super_lu_smp_factor and its two sub-structures Imsl_f_hbp_format and Imsl_f_scp_format. Following is a short
description of these structures:

Table 1 – Structure Imsl_f_hbp_format
Parameter Data Type Description

nnz int The number of nonzeros in the matrix.

nzval float * Array of nonzero values packed by column.

rowind int * Array of row indices of the nonzeros.

colbeg int * Array of size ncol+1; colbeg[j] stores the
location in nzval[] and rowind[], which
starts column j. Element colbeg[ncol]
points to the first free location in arrays
nzval[] and rowind[].

colend int * Array of size ncol; colend[j] stores the
location in nzval[] and rowind[] which is
one past the last element of column j.

Table 2 – Structure Imsl_f_scp_format
Parameter Data Type Description

nnz int The number of nonzeros in the supernodal
matrix.

nsuper int The number of supernodes minus one.

nzval float * Array of nonzero values packed by column.

nzval_colbeg int * Array of size ncol+1; nzval_colbeg[j]
points to the beginning of column j in
nzval[]. Entry nzval_colbeg[ncol]
points to the first free location in nzval[].

nzval_colend int * Array of size ncol; nzval_colend[j]
points to one past the last element of col-
umn j in nzval[].

rowind int * Array of compressed row indices of the rect-
angular supernodes.

rowind_colbeg int * Array of size ncol+1; rowind_colbeg[j]
points to the beginning of column j in
rowind[]. Element
rowind_colbeg[ncol] points to the first
free location in rowind[].

rowind_colend int * Array of size ncol; rowind_colend[j]
points to one past the last element of col-
umn j in rowind[].
147

 Linear Systems superlu_smp
Structure Imsl_d_super_lu_smp_factor and its two sub-structures are defined similarly by replacing float with double,
Imsl_f_hbp_format with Imsl_d_hbp_format, and Imsl_f_scp_format with Imsl_d_scp_format in their respective
definitions.

col_to_sup int * Array of size ncol+1; col_to_sup[j] is the
supernode number to which column j
belongs. Only the first ncol entries in
col_to_sup[] are defined.

sup_to_colbeg int * Array of size ncol+1; sup_to_colbeg[s]
points to the first column of the s-th super-
node; only the first nsuper+1 locations of
this array are used.

sup_to_colend int * Array of size ncol; sup_to_colend[s]
points to one past the last column of the s-
th supernode. Only the first nsuper+1 loca-
tions of this array are used.

Table 3 – Structure Imsl_f_super_lu_smp_factor
Parameter Data Type Description

nrow int The number of rows of matrix A.

ncol int The number of columns of matrix A.

equilibration_method int The method used to equilibrate A:
 0 – No equilibration.
 1 – Row equilibration.
 2 – Column equilibration.
 3 – Both row and column
equilibration.

rowscale float * Array of size nrow containing the row
scale factors for A.

columnscale float * Array of size ncol containing the col-
umn scale factors for A.

rowperm int * Row permutation array of size nrow
describing the row permutation matrix
Pr.

colperm int * Column permutation array of size
ncol describing the column permuta-
tion matrix Pc.

U Imsl_f_hbp_format * The part of the U factor of A outside
the supernodal blocks, stored in Har-
well-Boeing format.

L Imsl_f_scp_format * The L factor of A, stored in supernodal
format as block lower triangular
matrix.

Table 2 – Structure Imsl_f_scp_format
148

 Linear Systems superlu_smp
In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.
Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the esti-
mated sizes of array rowind for the L and of arrays rowind and nzval for the U factor (see structures
Imsl_f_scp_format and Imsl_f_hbp_format above) must be predetermined by the user via elements 6 and 7 of the
performance tuning array sp_ienv.

In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic
prediction scheme for the size of the L supernodes can be used. The static version, which function
imsl_f_superlu_smp uses by default, exploits the observation that for any row permutation P in PA = LU,
the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR fac-
torization A = QR. Furthermore, it can be shown that each fundamental supernode in L is always contained in a
fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array nzval in the L
factor respectively can be estimated and allocated prior to the factorization based on the size of the H super-
nodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost
linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonze-
ros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting
optional argument IMSL_SNODE_PREDICTION to 1. This scheme still uses the supernode partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage.
Use of the dynamic scheme requires the user to define the size of array nzval in the L factor via element 5 of
the performance tuning array sp_ienv.

For a complete description of the parallel algorithm, see Demmel et al. (1999c).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.
149

 Linear Systems superlu_smp
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6×6 matrix

is computed.

Let y = (1,2,3,4,5,6)T, so that b1 := Ay = (10,7,45,33,-34,31)T and b2 := ATy = (-9,8,39,13,1,21)T.

The LU factorization of A is used to solve the sparse linear systems Ax = b1 and ATx = b2.

#include <imsl.h>
int main(){
 Imsl_f_sparse_elem a[] = { 0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

A =

10 0 0 0 0 0
0 10 −3 −1 0 0
0 0 15 0 0 0
−2 0 0 10 −1 0
−1 0 0 −5 1 −3
−1 −2 0 0 0 6
150

 Linear Systems superlu_smp
 float b1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };
 int n = 6, nz = 15;
 float *x = NULL;
 x = imsl_f_superlu_smp (n, nz, a, b1, 0);
 imsl_f_write_matrix ("solution to A*x = b1", 1, n, x, 0);
 imsl_free (x);
 x = imsl_f_superlu_smp (n, nz, a, b2, IMSL_TRANSPOSE, 1, 0);
 imsl_f_write_matrix ("solution to A^T*x = b2", 1, n, x, 0);
 imsl_free (x);
}

Output

 solution to A*x = b1
 1 2 3 4 5 6
 1 2 3 4 5 6
 solution to A^T*x = b2
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function
imsl_f_superlu_smp_factor_free.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>
int main(){
 Imsl_f_sparse_elem *a = NULL;
 Imsl_f_super_lu_smp_factor lu_factor;
 float *b = NULL, *x = NULL, *mod_five = NULL, *mod_ten = NULL;
 float error_factor_solve, error_solve;
 int n = 1000, c = 10;
 int i, nz, index;
 /* Get the coefficient matrix */
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
 /* Set two different predetermined solutions */
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 mod_ten = (float*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
151

 Linear Systems superlu_smp
 mod_ten[i] = (float) (i % 10);
 }
 /* Choose b so that x will approximate mod_five */
 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five, 0);
 /* Solve Ax = b */
 x = imsl_f_superlu_smp (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 0);
 /* Compute max absolute error */
 error_factor_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (mod_five);
 imsl_free (b);
 imsl_free (x);
 /* Get new right hand side -- b = A * mod_ten */
 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);
 /* Use the previously computed factorization
 to solve Ax = b */
 x = imsl_f_superlu_smp (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_FACTOR_SOLVE, 2,
 0);
 error_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 free (mod_ten);
 imsl_free (b);
 imsl_free (x);
 imsl_free (a);
 /* Free sparse LU structure */
 imsl_f_superlu_smp_factor_free (&lu_factor);
 /* Print errors */
 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
}

Output

absolute error (factor/solve) = 1.096725e-005
absolute error (solve) = 5.435944e-005
152

 Linear Systems superlu_smp
Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_SINGULAR_MATRIX The input matrix is singular.
153

 Linear Systems superlu_smp (complex)
superlu_smp (complex)

Computes the LU factorization of a general complex sparse matrix by a left-looking column method using
OpenMP parallelism and solves the complex sparse linear system of equations Ax = b.

Synopsis
#include <imsl.h>
f_complex *imsl_c_superlu_smp (int n, int nz, Imsl_c_sparse_elem a[], f_complex b[],…,0)

void imsl_c_superlu_smp_factor_free (Imsl_c_super_lu_smp_factor *factor)

The type d_complex functions are imsl_z_superlu_smp and imsl_z_superlu_smp_factor_free.

Required Arguments
int n (Input)

The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
main “Introduction” chapter of this manual for an explanation of the Imsl_c_sparse_elem structure.

f_complex b[] (Input)
An array of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use imsl_free. If no solution
was computed, then NULL is returned.

more...

more...
154

 Linear Systems superlu_smp (complex)
Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_superlu_smp (int n, int nz, Imsl_c_sparse_elem a[], f_complex b[],

IMSL_EQUILIBRATE, int equilibrate,
IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method,
IMSL_COLPERM_VECTOR, int permc[],
IMSL_TRANSPOSE, int transpose,
IMSL_ITERATIVE_REFINEMENT, int refine,
IMSL_FACTOR_SOLVE, int factsol,
IMSL_DIAG_PIVOT_THRESH, float diag_pivot_thresh,
IMSL_SNODE_PREDICTION, int snode_prediction,
IMSL_PERFORMANCE_TUNING, int sp_ienv[],
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], f_complex HB_values[],
IMSL_SUPPLY_SPARSE_LU_FACTOR,

Imsl_c_super_lu_smp_factor *lu_factor_supplied,
IMSL_RETURN_SPARSE_LU_FACTOR,

Imsl_c_super_lu_smp_factor *lu_factor_returned,
IMSL_CONDITION, float *condition,
IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth,
IMSL_FORWARD_ERROR_BOUND, float *ferr,
IMSL_BACKWARD_ERROR, float *berr,
IMSL_RETURN_USER, f_complex x[],
0)

Optional Arguments
IMSL_EQUILIBRATE, int equilibrate (Inputs)

Specifies if the input matrix A should be equilibrated before factorization.

Default: equilibrate = 0

equilibrate Description

0 Do not equilibrate A before factorization.

1 Equilibrate A before factorization.
155

 Linear Systems superlu_smp (complex)
IMSL_COLUMN_ORDERING_METHOD, Imsl_col_ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

Default: method = IMSL_COLAMD
IMSL_COLPERM_VECTOR, int permc[] (Input)

An array of length n which defines the permutation matrix Pc before postordering. This argument is
required if IMSL_COLUMN_ORDERING_METHOD with method = IMSL_PERMC is used. Other-
wise, it is ignored.

IMSL_TRANSPOSE, int transpose (Input)
Indicates if the problem Ax = b or one of the transposed problems ATx = b or AHx = b is to be solved.

Default: transpose = 0.

IMSL_ITERATIVE_REFINEMENT, int refine (Input)
Indicates if iterative refinement is desired.

method Description

IMSL_NATURAL Natural ordering, i.e.the column ordering of the
input matrix.

IMSL_MMD_ATA Minimum degree ordering on the structure of AT A.

IMSL_MMD_AT_PLUS_A Minimum degree ordering on the structure of AT
+ A.

IMSL_COLAMD Column approximate minimum degree ordering.

IMSL_PERMC Use ordering given in permutation vector permc,
which is input by the user through optional argu-
ment IMSL_COLPERM_VECTOR. Vector permc is a
permutation of the numbers 0,1,…,n-1.

transpose Description

0 Solve Ax = b.

1 Solve ATx = b.
This option can be used in conjunction with either
of the options that supply the factorization.

2 Solve AHx = b.
This option can be used in conjunction with either
of the options that supply the factorization.
156

 Linear Systems superlu_smp (complex)
Default: refine = 1.

IMSL_FACTOR_SOLVE, int factsol (Input)
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

Default: factsol = 0.

IMSL_DIAG_PIVOT_THRESH, float diag_pivot_thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
0.0 ≤ diag_pivot_thresh ≤ 1.0.
Default: diag_pivot_thresh = 1.0.

IMSL_SNODE_PREDICTION, int snode_prediction (Input)
Indicates which scheme is used to predict the number of nonzeros in the L supernodes.

refine Description

0 No iterative refinement.

1 Do iterative refinement.

factsol Description

0 Compute the LU factorization of the input matrix A
and solve the system Ax = b.

1 Only compute the LU factorization of the input
matrix and return.
The LU factorization is returned via optional argu-
ment IMSL_RETURN_SPARSE_LU_FACTOR.
Input argument b is ignored.

2 Only solve Ax = b given the LU factorization of A.
The LU factorization of A must be supplied via
optional argument
IMSL_SUPPLY_SPARSE_LU_FACTOR.
Input argument a is ignored unless iterative refine-
ment, computation of the condition number, or
computation of the reciprocal pivot growth factor is
required.
157

 Linear Systems superlu_smp (complex)
Default: snode_prediction = 0.

IMSL_PERFORMANCE_TUNING, int sp_ienv[] (Input)
An array of length 8 containing parameters that allow the user to tune the performance of the matrix
factorization algorithm. The elements sp_ienv[i] must be positive for i = 0,…,4 and different
from zero for i = 5,6,7.

snode_prediction Description

0 Use static scheme for the prediction of the
number of nonzeros in the L supernodes.

1 Use dynamic scheme for the prediction of the
number of nonzeros in the L supernodes.

i Description of sp_ienv[i]
0 The panel size.

Default: sp_ienv[0] = 10.

1 The relaxation parameter to control supernode amalga-
mation.
Default: sp_ienv[1] = 5.

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100.

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] = 200.

4 The minimum column dimension to be used for 2D block-
ing.
Default: sp_ienv[4] = 40.

5 The size of the array nzval to store the values of the L
supernodes. A negative number represents the fills
growth factor, i.e. the product of its absolute magnitude
and the number of nonzeros in the original matrix A will
be used to allocate storage. A positive number represents
the number of nonzeros for which storage will be allo-
cated.
This element of array sp_ienv is used only if a dynamic
scheme for the prediction of the sizes of the L supernodes
is used, i.e. if snode_prediction = 1.
Default: sp_ienv[5] = -20.
158

 Linear Systems superlu_smp (complex)
IMSL_CSC_FORMAT, int HB_col_ptr[], int HB_row_ind[], f_complex HB_values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_super_lu_smp_factor *lu_factor_supplied (Input)
The address of a structure of type Imsl_c_super_lu_smp_factor containing the LU factors of the input
matrix computed with the IMSL_RETURN_SPARSE_LU_FACTOR option. See the Description sec-
tion for a definition of this structure. To free the memory allocated within this structure, use function
imsl_c_superlu_smp_factor_free.

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_super_lu_smp_factor *lu_factor_returned
(Output)
The address of a structure of type Imsl_c_super_lu_smp_factor containing the LU factorization of the
input matrix. See the Description section for a definition of this structure. To free the memory allo-
cated within this structure, use function imsl_c_superlu_smp_factor_free.

IMSL_CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL_PIVOT_GROWTH_FACTOR, float *recip_pivot_growth (Output)
The reciprocal pivot growth factor:

If recip_pivot_growth is much less than 1, the stability of the LU factorization could be poor.

6 The size of the arrays rowind and nzval to store the col-
umns in U. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used
to allocate storage. A positive number represents the
number of nonzeros for which storage will be allocated.
Default: sp_ienv[6] = -20.

7 The size of the array rowind to store the subscripts of the
L supernodes. A negative number represents the fills
growth factor, i.e. the product of its absolute magnitude
and the number of nonzeros in the original matrix A will
be used to allocate storage. A positive number represents
the number of nonzeros for which storage will be allo-
cated.
Default: sp_ienv[7] = -10.

i Description of sp_ienv[i]

min
j ∥ PrDrADcPc j∥∞ /∥U j∥∞ .
159

 Linear Systems superlu_smp (complex)
IMSL_FORWARD_ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_BACKWARD_ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL_ITERATIVE_REFINEMENT set to 1.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description
The steps imsl_c_superlu_smp uses to solve linear systems are identical to the steps described in the doc-
umentation of the serial version imsl_c_superlu.

Function imsl_c_superlu_smp uses a supernodal storage scheme for the LU factorization of matrix A. In
contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,
also pointers to the end of each column or supernode are needed. The factorization is contained in structure
Imsl_c_super_lu_smp_factor and its two sub-structures Imsl_c_hbp_format and Imsl_c_scp_format. Following is a
short description of these structures:

Table 4 – Structure Imsl_c_hbp_format
Parameter Data Type Description

nnz int The number of nonzeros in the matrix.

nzval f_complex * Array of nonzero values packed by column.

rowind int * Array of row indices of the nonzeros.

colbeg int * Array of size ncol+1; colbeg[j] stores the
location in nzval[] and rowind[], which
starts column j. Element colbeg[ncol]
points to the first free location in arrays
nzval[] and rowind[].

colend int * Array of size ncol; colend[j] stores the
location in nzval[] and rowind[], which is
one past the last element of column j.
160

 Linear Systems superlu_smp (complex)
Table 5 – Structure Imsl_c_scp_format
Parameter Data Type Description

nnz int The number of nonzeros in the supernodal
matrix.

nsuper int The number of supernodes minus one.

nzval f_complex * Array of nonzero values packed by column.

nzval_colbeg int * Array of size ncol+1; nzval_colbeg[j]
points to the beginning of column j in
nzval[]. Entry nzval_colbeg[ncol]
points to the first free location in nzval[].

nzval_colend int * Array of size ncol; nzval_colend[j]
points to one past the last element of col-
umn j in nzval[].

rowind int * Array of compressed row indices of the rect-
angular supernodes.

rowind_colbeg int * Array of size ncol+1; rowind_colbeg[j]
points to the beginning of column j in
rowind[]. Element
rowind_colbeg[ncol] points to the first
free location in rowind[].

rowind_colend int * Array of size ncol; rowind_colend[j]
points to one past the last element of col-
umn j in rowind[].

col_to_sup int * Array of size ncol+1; col_to_sup[j] is the
supernode number to which column j
belongs. Only the first ncol entries in
col_to_sup[] are defined.

sup_to_colbeg int * Array of size ncol+1; sup_to_colbeg[s]
points to the first column of the s-th super-
node; only the first nsuper+1 locations of
this array are used.

sup_to_colend int * Array of size ncol; sup_to_colend[s]
points to one past the last column of the s-
th supernode. Only the first nsuper+1 loca-
tions of this array are used.

Table 6 – Structure Imsl_c_super_lu_smp_factor
Parameter Data Type Description

nrow int The number of rows of matrix A.

ncol int The number of columns of matrix A.
161

 Linear Systems superlu_smp (complex)
Structure Imsl_z_super_lu_smp_factor and its two sub-structures are defined similarly by replacing float with double,
f_complex with d_complex, Imsl_c_hbp_format with Imsl_z_hbp_format, and Imsl_c_scp_format with Imsl_z_scp_format
in their respective definitions.

In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.
Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the esti-
mated sizes of array rowind for the L and of arrays rowind and nzval for the U factor (see structures
Imsl_c_scp_format and Imsl_c_hbp_format above) must be predetermined by the user via elements 6 and 7 of the
performance tuning array sp_ienv.

In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic
prediction scheme for the size of the L supernodes can be used. The static version, which function
imsl_c_superlu_smp uses by default, exploits the observation that for any row permutation P in PA = LU,
the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR fac-
torization A = QR. Furthermore, it can be shown that each fundamental supernode in L is always contained in a
fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array nzval in the L

equilibration_method int The method used to equilibrate A:
 0 – No equilibration.
 1 – Row equilibration.
 2 – Column equilibration.
 3 – Both row and column
equilibration.

rowscale float * Array of size nrow containing the row
scale factors for A.

columnscale float * Array of size ncol containing the col-
umn scale factors for A.

rowperm int * Row permutation array of size nrow
describing the row permutation matrix
Pr.

colperm int * Column permutation array of size
ncol describing the column permuta-
tion matrix Pc.

U Imsl_c_hbp_format * The part of the U factor of A outside
the supernodal blocks, stored in Har-
well-Boeing format.

L Imsl_c_scp_format * The L factor of A, stored in supernodal
format as block lower triangular
matrix.

Table 6 – Structure Imsl_c_super_lu_smp_factor
Parameter Data Type Description
162

 Linear Systems superlu_smp (complex)
factor respectively can be estimated and allocated prior to the factorization based on the size of the H super-
nodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost
linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonze-
ros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting
optional argument IMSL_SNODE_PREDICTION to 1. This scheme still uses the supernode partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage.
Use of the dynamic scheme requires the user to define the size of array nzval in the L factor via element 5 of
the performance tuning array sp_ienv.

For a complete description of the parallel algorithm, see Demmel et al. (1999c).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
163

 Linear Systems superlu_smp (complex)
Examples

Example 1

The LU factorization of the sparse complex 6×6 matrix

is computed. Let

y := (1+i, 2+2i, 3+3i, 4+4i, 5+5i, 6+6i)T

so that

b := Ay = (3+17i, -19+5i, 6+18i, -38+32i, -63+49i, -57+83i)T

b1 := ATy = (-112+54i, -58+46i, 12i, -51+5i, 34+78i, -94+60i)T

and

b2 := AHy = (54-112i, 46-58i, 12, 5-51i, 78+34i, 60-94i)T

The LU factorization of A is used to solve the sparse complex linear systems Ax=b, ATx=b1, and AHx=b2.

#include <imsl.h>
int main(){
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
 {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
 f_complex b1[] = {{-112.0,54.0}, {-58.0,46.0}, {0.0,12.0},

A =

10 + 7i 0 0 0 0 0
0 3 + 2i −3 −1 + 2i 0 0
0 0 4 + 2i 0 0 0

−2 − 4i 0 0 1 + 6i −1 + 3i 0
−5 + 4i 0 0 −5 12 + 2i −7 + 7i
−1 + 12i −2 + 8i 0 0 0 3 + 7i
164

 Linear Systems superlu_smp (complex)
 {-51.0,5.0}, {34.0,78.0}, {-94.0,60.0}};
 f_complex b2[] = {{54.0,-112.0}, {46.0, -58.0}, {12.0, 0.0},
 {5.0, -51.0}, {78.0, 34.0}, {60.0, -94.0}};
 int n = 6, nz = 15;
 f_complex *x = NULL;
 x = imsl_c_superlu_smp (n, nz, a, b, 0);
 imsl_c_write_matrix ("solution to A*x = b", n, 1, x, 0);
 imsl_free (x);
 x = imsl_c_superlu_smp (n, nz, a, b1, IMSL_TRANSPOSE, 1, 0);
 imsl_c_write_matrix ("solution to A^T*x = b1", n, 1, x, 0);
 imsl_free (x);
 x = imsl_c_superlu_smp (n, nz, a, b2, IMSL_TRANSPOSE, 2, 0);
 imsl_c_write_matrix ("solution to A^H*x = b2", n, 1, x, 0);
 imsl_free (x);
}

Output

 solution to A*x = b
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)
 solution to A^T*x = b1
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)
 solution to A^H*x = b2
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)

Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function
imsl_c_superlu_smp_factor_free.

#include <imsl.h>
165

 Linear Systems superlu_smp (complex)
#include <stdlib.h>
#include <stdio.h>
int main()
{
 Imsl_c_sparse_elem *a = NULL;
 Imsl_c_super_lu_smp_factor lu_factor;
 f_complex *b = NULL, *x = NULL, *mod_five = NULL, *mod_ten = NULL;
 float error_factor_solve, error_solve;
 int n = 1000, c = 10;
 int i, nz, index;
 /* Get the coefficient matrix */
 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);
 /* Set two different predetermined solutions */
 mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
 mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
 mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
 }
 /* Choose b so that x will approximate mod_five */
 b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);
 /* Solve Ax = b */
 x = imsl_c_superlu_smp (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 /* Compute max absolute error */
 error_factor_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (mod_five);
 imsl_free (b);
 imsl_free (x);
 /* Get new right hand side -- b = A * mod_ten */
 b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);
 /* Use the previously computed factorization to solve Ax = b */
 x = imsl_c_superlu_smp (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_FACTOR_SOLVE, 2,
 0);
 error_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 free (mod_ten);
 imsl_free (b);
 imsl_free (x);
 imsl_free (a);
 /* Free sparse LU structure */
 imsl_c_superlu_smp_factor_free (&lu_factor);
166

 Linear Systems superlu_smp (complex)
 /* Print errors */
 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
}

Output

absolute error (factor/solve) = 9.581556e-007
absolute error (solve) = 2.017572e-006

Warning Errors

Fatal Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate
of the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

IMSL_SINGULAR_MATRIX The input matrix is singular.
167

 Linear Systems lin_sol_posdef_coordinate
lin_sol_posdef_coordinate
Solves a sparse real symmetric positive definite system of linear equations A = b. Using optional arguments, any
of several related computations can be performed. These extra tasks include returning the symbolic factorization
of A, returning the numeric factorization of A, and computing the solution of Ax = b given either the symbolic or
numeric factorizations.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, Imsl_f_sparse_elem *a, float *b, ..., 0)

void imsl_free_symbolic_factor (Imsl_symbolic_factor *sym_factor)

void imsl_f_free_numeric_factor (Imsl_f_numeric_factor *num_factor)

The type double functions are imsl_d_lin_sol_posdef_coordinate and
imsl_d_free_numeric_factor.

Required Arguments
int n (Input)

Number of rows in the matrix.

int nz (Input)
Number of nonzeros in lower triangle of the matrix.

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space,
use imsl_free. If no solution was computed, then NULL is returned.
168

 Linear Systems lin_sol_posdef_coordinate
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, Imsl_f_sparse_elem *a, float *b,

IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, float x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values,
0)

Optional Arguments
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Output)

A pointer to a structure of type Imsl_symbolic_factor containing, on return, the symbolic factorization
of the input matrix. A detailed description of the Imsl_symbolic_factor structure is given in the follow-
ing table:
169

 Linear Systems lin_sol_posdef_coordinate
To free the memory allocated within this structure, use function
imsl_free_symbolic_factor.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains the symbolic factorization
of the input matrix computed by imsl_f_lin_sol_posdef_coordinate with the
IMSL_RETURN_SYMBOLIC_FACTOR option. The structure is described in the
IMSL_RETURN_SYMBOLIC_FACTOR optional argument description. To free the memory allocated
within this structure, use function imsl_free_symbolic_factor.

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

Parameter Data Type Description

nzsub int ** A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub int ** A pointer to an array of length n + 1 contain-
ing indices for *nzsub. The row subscripts
for the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub)[(*xnzsub)[j]].

maxsub int The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

xlnz int ** A pointer to an array of length n + 1 contain-
ing the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL_RETURN_NUMERIC_FACTOR). For
column j of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*xlnz)[j] and (*xlnz)[j + 1]
respectively.

maxlnz int The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm int ** A pointer to an array of length n containing
the permutation vector.

invp int ** A pointer to an array of length n containing
the inverse permutation vector.

multifrontal_space int The required size of working storage for the
stack of frontal matrices. If no multifrontal
factorization is used, then this variable is set
to zero.
170

 Linear Systems lin_sol_posdef_coordinate
IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_f_numeric_factor structure is given in the follow-
ing table:

Let L be the Cholesky factor of a and num_nonzeros be the number of nonzeros in L. In the struc-
ture described above, the diagonal elements of L are stored in diag. The off-diagonal non-zero
elements of L are stored in alnz. The starting and stopping indices to use to extract the non-zero
elements of L from alnz for column j are stored in xlnz[j] and xlnz[j + 1] respectively. The row
indices of the non-zero elements of L are contained in nzsub. xnzsub[i] contains the index of
nzsub from which one should start to extract the row indices for L for column i. This is best illus-
trated by the following code fragment which reconstructs the lower triangle of the factor matrix L
from the components of the above structure:

Imsl_f_numeric_factor numfctr;
.
.
.
for (i = 0; i < n; i++){

L[i][i] = (*numfctr.diag)[i];

Parameter Data Type Description

nzsub int ** A pointer to an array containing the row subscripts for
the non-zero off-diagonal elements of the Cholesky fac-
tor. This array is allocated to be of length nz but all
elements of the array may not be used.

xnzsub int ** A pointer to an array of length n + 1 containing indices
for nzsub. The row subscripts for the non-zeros in col-
umn j of the cholesky factor are stored consecutively
beginning with nzsub[xnzsub[j]].

xlnz int ** A pointer to an array of length n + 1 containing the start-
ing and stopping indices to use to extract the non-zero
off-diagonal elements from array alnz. For column j of
the factor matrix, the starting and stopping indices of
alnz are stored in xlnz[j] and xlnz[j + 1]
respectively.

alnz float ** A pointer to an array containing the non-zero off-diago-
nal elements of the Cholesky factor.

perm int ** A pointer to an array of length n containing the permuta-
tion vector.

diag float ** A pointer to an array of length n containing the diagonal
elements of the Cholesky factor.
171

 Linear Systems lin_sol_posdef_coordinate
if ((*numfctr.xlnz)[i] > (num_nonzeros-n)) continue;
start = (*numfctr.xlnz)[i]-1;
stop = (*numfctr.xlnz)[i+1]-1;
k = (*numfctr.xnzsub)[i]-1;
for (j = start; j < stop; j++){

L[(*numfctr.nzsub)[k]-1][i] = (*numfctr.alnz)[j];
k++;

}
}
To free the memory allocated within this structure, use function
imsl_f_free_numeric_factor.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_f_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by imsl_f_lin_sol_posdef_coordinate with the
IMSL_RETURN_NUMERIC_FACTOR option. The structure is described in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description.

To free the memory allocated within this structure, use function
imsl_f_free_numeric_factor.

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default, a standard factorization
is computed based on a sparse compressed storage scheme.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl_f_lin_sol_posdef_coordinate.
172

 Linear Systems lin_sol_posdef_coordinate
IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl_f_lin_sol_posdef_coordinate.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the “Matrix Storage
Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage
scheme.

Description
The function imsl_f_lin_sol_posdef_coordinate solves a system of linear algebraic equations having
a sparse symmetric positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization
of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The
solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse data structure for the Cholesky factor, L. This step only requires the “pattern” of the sparse
coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the
val field in the Imsl_f_sparse_elem structure is ignored. If an application generates different sparse sym-
metric positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization
need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT = LLT

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is per-
formed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981).
Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be
faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed descrip-
tion of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu
(1986, 1989).
173

 Linear Systems lin_sol_posdef_coordinate
If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and
IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the
IMSL_SOLVE_ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly

1

 = Pb

LTy

2

 = y

1

x = PTy

2

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As an example consider the 5 × 5 coefficient matrix:

Let xT = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of nonzeros in the lower triangle of A is nz =
10. The sparse coordinate form for the lower triangle is given by the following:

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

a =

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50
174

 Linear Systems lin_sol_posdef_coordinate
Since this representation is not unique, an equivalent form would be as follows:

#include <imsl.h>
int main()
{
 Imsl_f_sparse_elem a[] =
 {0, 0, 10.0,
 1, 1, 20.0,
 2, 0, 1.0,
 2, 2, 30.0,
 3, 2, 4.0,
 3, 3, 40.0,
 4, 0, 2.0,
 4, 1, 3.0,
 4, 3, 5.0,
 4, 4, 50.0};
 float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
 int n = 5;
 int nz = 10;
 float *x;
 x = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b,
 0);
 imsl_f_write_matrix ("solution", 1, n, x,
 0);
 imsl_free (x);
}

Output

 solution
 1 2 3 4 5
 5 4 3 2 1

Example 2

In this example, set A = E(2500, 50). Then solve the system Ax = bl and return the numeric factorization resulting

from that call. Then solve the system Ax = b2 using the numeric factorization just computed. The ratio of execu-

tion time is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
int main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_numeric_factor numeric_factor;

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50
175

 Linear Systems lin_sol_posdef_coordinate
 float *b_1;
 float *b_2;
 float *x_1;
 float *x_2;
 int n;
 int ic;
 int nz;
 double time_1;
 double time_2;
 ic = 50;
 n = ic*ic;
 /* Generate two right hand sides */
 b_1 = imsl_f_random_uniform (n*sizeof(*b_1),
 0);
 b_2 = imsl_f_random_uniform (n*sizeof(*b_2),
 0);
 /* Build coefficient matrix a */
 a = imsl_f_generate_test_coordinate (n, ic, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Now solve Ax_1 = b_1 and return the numeric
 factorization */
 time_1 = imsl_ctime ();
 x_1 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = imsl_ctime () - time_1;
 /* Now solve Ax_2 = b_2 given the numeric
 factorization */
 time_2 = imsl_ctime ();
 x_2 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_2 = imsl_ctime () - time_2;
 printf("time_2/time_1 = %lf\n", time_2/time_1);
}

Output

time_2/time_1 = 0.037037
176

 Linear Systems lin_sol_posdef_coordinate (complex)
lin_sol_posdef_coordinate (complex)
Solves a sparse Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include returning the symbolic factorization of
A, returning the numeric factorization of A, and computing the solution of Ax = b given either the symbolic or
numeric factorizations.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef_coordinate (int n, int nz, Imsl_c_sparse_elem *a,

f_complex *b, ..., 0)

void imsl_free_symbolic_factor (Imsl_symbolic_factor *sym_factor)

void imsl_c_free_numeric_factor (Imsl_c_numeric_factor *num_factor)

The type d_complex functions are imsl_z_lin_sol_posdef_coordinate and
imsl_z_free_numeric_factor.

Required Arguments
int n (Input)

Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in lower triangle of the
matrix.

f_complex *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. To release this space, use
imsl_free. If no solution was computed, then NULL is returned.
177

 Linear Systems lin_sol_posdef_coordinate (complex)
Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef_coordinate (int n, int nz, Imsl_c_sparse_elem *a,

f_complex *b,

IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, f_complex x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values,
0)

Optional Arguments
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Output)

A pointer to a structure of type Imsl_symbolic_factor containing, on return, the symbolic factorization
of the input matrix. A detailed description of the Imsl_symbolic_factor structure is given in the follow-
ing table:
178

 Linear Systems lin_sol_posdef_coordinate (complex)
To free the memory allocated within this structure, use function
imsl_free_symbolic_factor.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains the symbolic factorization
of the input matrix computed by imsl_c_lin_sol_posdef_coordinate with the
IMSL_RETURN_SYMBOLIC_FACTOR option. The structure is described in the
IMSL_RETURN_SYMBOLIC_FACTOR optional argument description. To free the memory allocated
within this structure, use function imsl_free_symbolic_factor.

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

Parameter Data Type Description

nzsub int ** A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub int ** A pointer to an array of length n + 1 contain-
ing indices for *nzsub. The row subscripts
for the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub)[(*xnzsub)[j]].

maxsub int The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

xlnz int ** A pointer to an array of length n + 1 contain-
ing the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL_RETURN_NUMERIC_FACTOR). For
column j of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*xlnz)[j] and (*xlnz)[j+1] respectively.

maxlnz int The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm int ** A pointer to an array of length n containing
the permutation vector.

invp int ** A pointer to an array of length n containing
the inverse permutation vector.

multifrontal_space int The required size of working storage for the
stack of frontal matrices. If no multifrontal
factorization is used, then this variable is set
to zero.
179

 Linear Systems lin_sol_posdef_coordinate (complex)
IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_c_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_c_numeric_factor structure is given in the follow-
ing table:

Let L be the Cholesky factor of a and num_nonzeros be the number of nonzeros in L. In the struc-
ture described above, the diagonal elements of L are stored in diag. The off-diagonal non-zero
elements of L are stored in alnz. The starting and stopping indices to use to extract the non-zero
elements of L from alnz for column j are stored in xlnz[j] and xlnz[j + 1]respectively. The row
indices of the elements of L which are non-zero are contained in nzsub. xnzsub[i] contains the
index of nzsub from which one should start to extract the row indices for L for column i. This is best
illustrated by the following code fragment which reconstructs the lower triangle of the factor matrix L
from the components of the above structure:

Imsl_c_numeric_factor numfctr;

Parameter Data Type Description

nzsub int ** A pointer to an array containing the
row subscripts for the non-zero off-
diagonal elements of the Cholesky fac-
tor. This array is allocated to be of
length nz but all elements of the array
may not be used.

xnzsub int ** A pointer to an array of length n + 1
containing indices for nzsub. The row
subscripts for the non-zeros in column
j of the Cholesky factor are stored con-
secutively beginning with
nzsub[xnzsub[j]].

xlnz int ** A pointer to an array of length n + 1
containing the starting and stopping
indices to use to extract the non-zero
off-diagonal elements from array
alnz. For column j of the factor
matrix, the starting and stopping indi-
ces of alnz are stored in xlnz[j] and
xlnz[j + 1] respectively.

alnz f_complex ** A pointer to an array containing the
non-zero off-diagonal elements of the
Cholesky factor.

perm int ** A pointer to an array of length n con-
taining the permutation vector.

diag f_complex ** A pointer to an array of length n con-
taining the diagonal elements of the
Cholesky factor.
180

 Linear Systems lin_sol_posdef_coordinate (complex)
.

.

.
for (i = 0; i < n; i++){
 L[i][i] = (*numfctr.diag)[i];
 if ((*numfctr.xlnz)[i] > (num_nonzeros-n)) continue;
 start = (*numfctr.xlnz)[i]-1;
 stop = (*numfctr.xlnz)[i+1]-1;
 k = (*numfctr.xnzsub)[i]-1;
 for (j = start; j < stop; j++){
 L[(*numfctr.nzsub)[k]-1][i] = (*numfctr.alnz)[j];
 k++;
 }
}
To free the memory allocated within this structure, use function
imsl_c_free_numeric_factor.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_c_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by imsl_c_lin_sol_posdef_coordinate with the
IMSL_RETURN_NUMERIC_FACTOR option. The structure is described in the
IMSL_RETURN_NUMERIC_FACTOR optional argument desription.

To free the memory allocated within this structure, use function
imsl_c_free_numeric_factor.

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default a standard factorization
is computed based on a sparse compressed storage scheme.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.
181

 Linear Systems lin_sol_posdef_coordinate (complex)
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the “Matrix Storage
Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage
scheme.

Description
The function imsl_c_lin_sol_posdef_coordinate solves a system of linear algebraic equations having
a sparse Hermitian positive definite coefficient matrix A. In this function’s default use, a symbolic factorization of a
permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution
of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse data structure for the Cholesky factor, L. This step only requires the “pattern” of the sparse
coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the
val field in the Imsl_c_sparse_elem structure is ignored. If an application generates different sparse Her-
mitian positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization
need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT = LLH

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is per-
formed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981).
Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be
182

 Linear Systems lin_sol_posdef_coordinate (complex)
faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed descrip-
tion of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu
(1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and
IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the
IMSL_SOLVE_ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly

1

 = Pb

LHy

2

 = y

1

x = PTy

2

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite matrix

Let xT = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (-2 + 2i, 5 +15i, 36 + 28i)T. The number of nonzeros in the lower triangle
is nz = 5.

#include <imsl.h>
int main()
{
 Imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0},
 1, 1, {4.0, 0.0},
 2, 2, {10.0, 0.0},
 1, 0, {-1.0, -1.0},

A =
2 −1 + i 0

−1 − i 4 1 + 2i
0 1 − 2i 10
183

 Linear Systems lin_sol_posdef_coordinate (complex)
 2, 1, {1.0, -2.0}};
 f_complex b[] = {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};
 int n = 3;
 int nz = 5;
 f_complex *x;
 x = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b, 0);
 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
 imsl_free (x);
}

Output

 Solution, x, of Ax = b
1 (1, 1)
2 (2, 2)
3 (3, 3)

Example 2

Set A = E(2500, 50). Then solve the system Ax = b1 and return the numeric factorization resulting from that call.

Then solve the system Ax = b2 using the numeric factorization just computed. Absolute errors and execution time

are printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_numeric_factor numeric_factor;
 f_complex b_1[2500], b_2[2500], *x_1, *x_2;
 int n, ic, nz, i, index;
 double time_1, time_2;
 float *rand_vec;
 ic = 50;
 n = ic*ic;
 index = 0;
 /* Generate two right hand sides */
 rand_vec = imsl_f_random_uniform (4*n*sizeof(*rand_vec),
 0);
 for (i=0; i<n; i++) {
 b_1[i].re = rand_vec[index++];
 b_1[i].im = rand_vec[index++];
 b_2[i].re = rand_vec[index++];
 b_2[i].im = rand_vec[index++];
 }
 /* Build coefficient matrix a */
 a = imsl_c_generate_test_coordinate (n, ic, &nz,
184

 Linear Systems lin_sol_posdef_coordinate (complex)
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Now solve Ax_1 = b_1 and return the numeric factorization */
 time_1 = imsl_ctime ();
 x_1 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = imsl_ctime () - time_1;
 /* Now solve Ax_2 = b_2 given the numeric factorization */
 time_2 = imsl_ctime ();
 x_2 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_2 = imsl_ctime () - time_2;
 printf("time_2/time_1 = %lf\n", time_2/time_1);
}

Output

time_2/time_1 = 0.096386
185

 Linear Systems sparse_cholesky_smp
sparse_cholesky_smp

Computes the Cholesky factorization of a sparse real symmetric positive definite matrix A by an OpenMP paral-
lelized supernodal algorithm and solves the sparse real positive definite system of linear equations Ax = b.

Synopsis
#include <imsl.h>
float *imsl_f_sparse_cholesky_smp (int n, int nz, Imsl_f_sparse_elem a[], float b[], …, 0)

void imsl_free_snodal_symbolic_factor (Imsl_snodal_symbolic_factor *sym_factor)

void imsl_f_free_numeric_factor (Imsl_f_numeric_factor *num_factor)

The type double functions are imsl_d_sparse_cholesky_smp and imsl_d_free_numeric_factor.

Required Arguments
int n (Input)

The order of the input matrix.

int nz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_f_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

float b[] (Input)
An array of length n containing the right-hand side.

more...

more...
186

 Linear Systems sparse_cholesky_smp
Return Value
A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space,
use imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_sparse_cholesky_smp (int n, int nz, Imsl_f_sparse_elem a[], float b[],

IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], float values[],
IMSL_PREORDERING, int preorder,
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *smallest_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments
IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], float values[] (Input)

Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL_PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

preorder Method

0 George and Liu’s Quotient Minimum
Degree algorithm.

1 A variant of George and Liu’s Quotient
Minimum Degree algorithm using a pre-
processing phase and external degrees.
187

 Linear Systems sparse_cholesky_smp
Default: preorder = 0.

IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor (Output)
A pointer to a structure of type Imsl_snodal_symbolic_factor containing, on return, the supernodal
symbolic factorization of the input matrix. A detailed description of the Imsl_snodal_symbolic_factor
structure is given in the following table:

Table 7 – Structure Imsl_snodal_symbolic_factor
Parameter Data Type Description

nzsub int ** A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub int ** A pointer to an array of length n+1 containing
indices for *nzsub. The row subscripts for
the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub)[(*xnzsub)[j]].

maxsub int The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

xlnz int ** A pointer to an array of length n+1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL_RETURN_NUMERIC_FACTOR). For
column j of the factor matrix, the starting
and stopping indices of *alnz are stored in
(*xlnz) [j] and (*xlnz) [j+1] respectively.

maxlnz int The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm int ** A pointer to an array of length n containing
the permutation vector.

invp int ** A pointer to an array of length n containing
the inverse permutation vector.

multifrontal_space int This variable is not used in the current
implementation.

nsuper int The number of supernodes in the Cholesky
factor.

snode int ** A pointer to an array of length n. Element
(*snode)[j] contains the number of the
fundamental supernode to which column j
belongs.

snode_ptr int ** A pointer to an array of length nsuper+1
containing the start column of each
supernode.
188

 Linear Systems sparse_cholesky_smp
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_snodal_symbolic_factor. This structure contains the symbolic fac-
torization of the input matrix computed by imsl_f_sparse_cholesky_smp with the
IMSL_RETURN_SYMBOLIC_FACTOR option. The structure is described in the
IMSL_RETURN_SYMBOLIC_FACTOR optional argument description.
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SYMBOLIC_FACTOR_ONLY, (Input)
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_f_numeric_factor structure is given in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_f_lin_sol_posdef_coordinate. To free the memory allocated within this structure, use
function imsl_f_free_numeric_factor.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_f_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by imsl_f_sparse_cholesky_smp with the
IMSL_RETURN_NUMERIC_FACTOR option. The structure is described in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_f_lin_sol_posdef_coordinate.
To free the memory allocated within this structure, use function
imsl_f_free_numeric_factor.

IMSL_NUMERIC_FACTOR_ONLY, (Input)
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY, (Input)
Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

nleaves int The number of leaves in the postordered
elimination tree of the symmetrically per-
muted input matrix A.

etree_leaves int ** A pointer to an array of length nleaves+1
containing the leaves of the elimination tree.

Table 7 – Structure Imsl_snodal_symbolic_factor
189

 Linear Systems sparse_cholesky_smp
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *smallest_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl_f_sparse_cholesky_smp.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl_f_sparse_cholesky_smp.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

Description
The function imsl_f_sparse_cholesky_smp solves a system of linear algebraic equations having a sparse
symmetric positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization of a per-
mutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP
parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse supernodal data structure for the Cholesky factor, L. This step only requires the “pattern” of
the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements them-
selves. Thus, the val field in the Imsl_f_sparse_elem structure is ignored. If an application generates
different sparse symmetric positive definite coefficient matrices that all have the same sparsity pattern, then by
using IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factor-
ization needs only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT = LLT

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking
and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).
190

 Linear Systems sparse_cholesky_smp
If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and
IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the
IMSL_SOLVE_ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly

1

 = Pb

LTy

2

 = y

1

x = PTy

2

The permutation information, P, is carried in the numeric factor structure Imsl_f_numeric_factor.

Examples

Example 1

Consider the 5 × 5 coefficient matrix A,

The number of nonzeros in the lower triangle of A is nz = 10. We construct the solution xT = (5, 4, 3, 2, 1) to the

system Ax = b by setting b := Ax = (55, 83, 103, 97, 82)T. The solution is computed and printed.

#include <imsl.h>
int main()
{
 Imsl_f_sparse_elem a[] =
 {0, 0, 10.0,
 1, 1, 20.0,
 2, 0, 1.0,

A =

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50
191

 Linear Systems sparse_cholesky_smp
 2, 2, 30.0,
 3, 2, 4.0,
 3, 3, 40.0,
 4, 0, 2.0,
 4, 1, 3.0,
 4, 3, 5.0,
 4, 4, 50.0};
 float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
 int n = 5, nz = 10;
 float *x = NULL;
 x = imsl_f_sparse_cholesky_smp (n, nz, a, b, 0);
 imsl_f_write_matrix ("solution", 1, n, x, 0);
 imsl_free (x);
}

Output

 solution
 1 2 3 4 5
 5 4 3 2 1

Example 2

This example shows how a symbolic factor can be re-used. At first, the system Ax = b with A = E(2500, 50) is solved
and the symbolic factorization of A is returned. Then, the system Cy = d with C = A+2*I, I the identity matrix, is
solved using the symbolic factorization just computed. This is possible because A and C have the same nonzero
structure and therefore also the same symbolic factorization. The solution errors are printed.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>
int main()
{
 Imsl_f_sparse_elem *a = NULL, *c = NULL;
 Imsl_snodal_symbolic_factor symbolic_factor;
 float *b = NULL, *d = NULL, *x = NULL, *y = NULL;
 float *mod_vector = NULL;
 int n, ic, nz, i, index;
 float error_1, error_2;
 ic = 50;
 n = ic * ic;
 mod_vector = (float*) malloc (n * sizeof(float));
 /* Build coefficient matrix A */
 a = (Imsl_f_sparse_elem *) imsl_f_generate_test_coordinate (n, ic,
 &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Build coefficient matrix C */
 c = (Imsl_f_sparse_elem*) malloc (nz * sizeof(Imsl_f_sparse_elem));
192

 Linear Systems sparse_cholesky_smp
 for (i = 0; i < nz; i++) c[i] = a[i];
 for (i = 0; i < n; i++)
 c[i].val = 6.0;
 /* Form right hand side b */
 for (i = 0; i < n; i++)
 mod_vector[i] = (float) (i % 5);
 b = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_vector,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Form right hand side d */
 d = (float *) imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, c,
 IMSL_X_VECTOR, n, mod_vector,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Solve Ax = b and return the symbolic factorization */
 x = imsl_f_sparse_cholesky_smp (n, nz, a, b,
 IMSL_RETURN_SYMBOLIC_FACTOR, &symbolic_factor,
 0);
 /* Compute solution error |x - mod_vector| */
 error_1 = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_vector,
 IMSL_INF_NORM, &index,
 0);
 /* Solve Cy = d given the symbolic factorization */
 y = imsl_f_sparse_cholesky_smp (n, nz, c, d,
 IMSL_SUPPLY_SYMBOLIC_FACTOR, &symbolic_factor,
 0);
 /* Compute solution error |y - mod_vector| */
 error_2 = imsl_f_vector_norm (n, y,
 IMSL_SECOND_VECTOR, mod_vector,
 IMSL_INF_NORM, &index,
 0);
 printf ("Solution error |x - mod_vector| = %e\n", error_1);
 printf ("Solution error |y - mod_vector| = %e\n", error_2);
 /* Free allocated memory */
 if (b) imsl_free(b);
 if (d) imsl_free(d);
 if (x) imsl_free(x);
 if (y) imsl_free(y);
 if (mod_vector) free(mod_vector);
 if (a) imsl_free(a);
 if (c) free(c);
 imsl_free_snodal_symbolic_factor (&symbolic_factor);
}

193

 Linear Systems sparse_cholesky_smp
Output

Solution error |x - mod_vector| = 4.529953e-005
Solution error |y - mod_vector| = 2.861023e-006

Example 3

In this example, set A = E(2500, 50). First solve the system Ax = b1 and return the numeric factorization resulting

from that call. Then solve the system Ax = b2 using the numeric factorization just computed. The ratio of execu-

tion times is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <omp.h>
int main()
{
 int n, ic, nz;
 float *b_1 = NULL, *b_2 = NULL, *x_1 = NULL, *x_2 = NULL;
 double time_1, time_2;
 Imsl_f_sparse_elem *a = NULL;
 Imsl_f_numeric_factor numeric_factor;
 ic = 50;
 n = ic * ic;
 /* Generate two right hand sides */
 imsl_random_seed_set (1234567);
 b_1 = imsl_f_random_uniform (n, 0);
 b_2 = imsl_f_random_uniform (n, 0);
 /* Build coefficient matrix a */
 a = imsl_f_generate_test_coordinate (n, ic, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Now solve Ax_1 = b_1 and return the numeric
 factorization */
 time_1 = omp_get_wtime();
 x_1 = imsl_f_sparse_cholesky_smp (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = omp_get_wtime() - time_1;
 /* Now solve Ax_2 = b_2 given the numeric
 factorization */
 time_2 = omp_get_wtime();
 x_2 = imsl_f_sparse_cholesky_smp (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
194

 Linear Systems sparse_cholesky_smp
 time_2 = omp_get_wtime() - time_2;
 printf("time_2/time_1 = %lf\n", time_2/time_1);
 /* Free allocated memory */
 if (x_1) imsl_free(x_1);
 if (x_2) imsl_free(x_2);
 if (b_1) imsl_free(b_1);
 if (b_2) imsl_free(b_2);
 if (a) imsl_free(a);
 imsl_f_free_numeric_factor (&numeric_factor);
}

Output

time_2/time_1 = 0.029411

Fatal Errors
IMSL_BAD_SQUARE_ROOT A zero or negative square root has occurred

during the factorization. The coefficient
matrix is not positive definite.
195

 Linear Systems sparse_cholesky_smp (complex)
sparse_cholesky_smp (complex)

Computes the Cholesky factorization of a sparse Hermitian positive definite matrix A by an OpenMP parallelized
supernodal algorithm and solves the sparse Hermitian positive definite system of linear equations Ax = b.

Synopsis
#include <imsl.h>
f_complex *imsl_c_sparse_cholesky_smp (int n, int nz, Imsl_c_sparse_elem a[], f_complex b[],

…, 0)

void imsl_free_snodal_symbolic_factor (Imsl_snodal_symbolic_factor *sym_factor)

void imsl_c_free_numeric_factor (Imsl_c_numeric_factor *num_factor)

The type d_complex functions are imsl_z_sparse_cholesky_smp and
imsl_z_free_numeric_factor.

Required Arguments
int n (Input)

The order of the input matrix.

int nz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

f_complex b[] (Input)
An array of length n containing the right-hand side.

more...

more...
196

 Linear Systems sparse_cholesky_smp (complex)
Return Value
A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. To release this space, use
imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_sparse_cholesky_smp (int n, int nz, Imsl_c_sparse_elem a[], f_complex b[],

IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], f_complex values[],
IMSL_PREORDERING, int preorder,
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *smallest_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_RETURN_USER, f_complex x[],
0)

Optional Arguments
IMSL_CSC_FORMAT, int col_ptr[], int row_ind[], f_complex values[] (Input)

Accept the coefficient matrix in compressed sparse column (CSC) format, as describedin the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL_PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

preorder Method

0 George and Liu’s Quotient Minimum
Degree algorithm.

1 A variant of George and Liu’s Quotient
Minimum Degree algorithm using a pre-
processing phase and external degrees.
197

 Linear Systems sparse_cholesky_smp (complex)
Default: preorder = 0.

IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor (Output)
A pointer to a structure of type Imsl_snodal_symbolic_factor containing, on return, the supernodal
symbolic factorization of the input matrix. A detailed description of the Imsl_snodal_symbolic_factor
structure is given in the following table:

Table 8 – Strucuture Imsl_snodal_symbolic_factor
Parameter Data Type Description

nzsub int ** A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub int ** A pointer to an array of length n+1 containing
indices for *nzsub. The row subscripts for
the non-zeros in column j of the Cholesky
factor are stored consecutively beginning
with (*nzsub)[(*xnzsub)[j]].

maxsub int The number of elements in array *nzsub
that are used as subscripts. Note that the size
of *nzsub can be larger than maxsub.

xlnz int ** A pointer to an array of length n+1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL_RETURN_NUMERIC_FACTOR). For
column j of the factor matrix, the starting
and stopping indices of *alnz are stored in
(*xlnz)[j] and (*xlnz)[j+1] respectively.

maxlnz int The number of non-zero off-diagonal ele-
ments in the Cholesky factor.

perm int ** A pointer to an array of length n containing
the permutation vector.

invp int ** A pointer to an array of length n containing
the inverse permutation vector.

multifrontal_space int This variable is not used in the current
implementation.

nsuper int The number of supernodes in the Cholesky
factor.

snode int ** A pointer to an array of length n. Element
(*snode)[j] contains the number of the
fundamental supernode to which column j
belongs.

snode_ptr int ** A pointer to an array of length nsuper+1
containing the start column of each
supernode.
198

 Linear Systems sparse_cholesky_smp (complex)
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_snodal_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_snodal_symbolic_factor. This structure contains the symbolic fac-
torization of the input matrix computed by imsl_c_sparse_cholesky_smp with the
IMSL_RETURN_SYMBOLIC_FACTOR option. The structure is described in the
IMSL_RETURN_SYMBOLIC_FACTOR optional argument description.
To free the memory allocated within this structure, use function
imsl_free_snodal_symbolic_factor.

IMSL_SYMBOLIC_FACTOR_ONLY, (Input)
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_c_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_c_numeric_factor structure is given in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_c_lin_sol_posdef_coordinate (complex). To free the memory allocated within this
structure, use function imsl_c_free_numeric_factor.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_c_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by imsl_c_sparse_cholesky_smp with the
IMSL_RETURN_NUMERIC_FACTOR option. The structure is described in the
IMSL_RETURN_NUMERIC_FACTOR optional argument description of function
imsl_lin_sol_posdef_coordinate (complex).

To free the memory allocated within this structure, use function
imsl_c_free_numeric_factor.

IMSL_NUMERIC_FACTOR_ONLY, (Input)
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY, (Input)
Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

nleaves int The number of leaves in the postordered
elimination tree of the symmetrically per-
muted input matrix A.

etree_leaves int ** A pointer to an array of length nleaves+1
containing the leaves of the elimination tree.

Table 8 – Strucuture Imsl_snodal_symbolic_factor
199

 Linear Systems sparse_cholesky_smp (complex)
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *smallest_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_sparse_cholesky_smp.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl_c_sparse_cholesky_smp.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

Description
The function imsl_c_sparse_cholesky_smp solves a system of linear algebraic equations having a sparse
Hermitian positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization of a per-
mutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP
parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse supernodal data structure for the Cholesky factor, L. This step only requires the “pattern” of
the sparse coefficient matrix, i.e., the locations of the nonzero elements but not any of the elements themselves.
Thus, the val field in the Imsl_c_sparse_elem structure is ignored. If an application generates different
sparse Hermitian positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization
needs only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT = LLH

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking
and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).
200

 Linear Systems sparse_cholesky_smp (complex)
If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and
IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the
IMSL_SOLVE_ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly

1

 = Pb

LHy

2

 = y

1

x = PTy

2

The permutation information, P, is carried in the numeric factor structure Imsl_c_numeric_factor.

Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite matrix

We construct the solution xT = (1 + i, 2 + 2i, 3 + 3i) to the system Ax = b by setting

b:=Ax = (-2 + 2i, 5 +15i, 36 + 28i)T. The number of nonzeros in the lower triangle is nz = 5. The solution is com-
puted and printed.

#include <imsl.h>
int main()
{
 int n = 3, nz = 5;
 f_complex b[] = {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};
 f_complex *x = NULL;
 Imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0},
 1, 1, {4.0, 0.0},
 2, 2, {10.0, 0.0},
 1, 0, {-1.0, -1.0},

A =
2 −1 + i 0

−1 − i 4 1 + 2i
0 1 − 2i 10
201

 Linear Systems sparse_cholesky_smp (complex)
 2, 1, {1.0, -2.0}};
 x = imsl_c_sparse_cholesky_smp (n, nz, a, b, 0);
 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
 imsl_free (x);
}

Output

 Solution, x, of Ax = b
1 (1, 1)
2 (2, 2)
3 (3, 3)

Example 2

This example shows how a symbolic factor can be re-used. Consider matrix A, a Hermitian positive definite matrix
with value 6 on the diagonal and value -1- i on its lower codiagonal and the lower band at distance 50 from the
diagonal. At first, the system Ax = b is solved and the symbolic factorization of A is returned. Then, the system
Cy = d with C = A+4*I, I the identity matrix, is solved using the symbolic factorization just computed. This is possi-
ble because A and C have the same nonzero structure and therefore also the same symbolic factorization. The
solution errors are printed.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>
int main()
{
 int n, ic, nz, i, index;
 float error_1, error_2;
 f_complex *b = NULL, *d = NULL, *x = NULL, *y = NULL;
 f_complex *mod_vector = NULL;
 Imsl_c_sparse_elem *a = NULL, *c = NULL;
 Imsl_snodal_symbolic_factor symbolic_factor;
 ic = 50;
 n = ic * ic;
 mod_vector = (f_complex*) malloc (n * sizeof(f_complex));
 /* Build coefficient matrix A */
 a = imsl_c_generate_test_coordinate (n, ic,
 &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Build coefficient matrix C */
 c = (Imsl_c_sparse_elem *) malloc (nz * sizeof (Imsl_c_sparse_elem));
 for (i=0; i<nz; i++)
 c[i] = a[i];
202

 Linear Systems sparse_cholesky_smp (complex)
 for (i=0; i<n; i++)
 {
 c[i].val.re = 10.0;
 c[i].val.im = 0.0;
 }
 /* Form right hand side b */
 for (i = 0; i < n; i++)
 {
 mod_vector[i].re = (float) (i % 5);
 mod_vector[i].im = 0.0;
 }
 b = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_vector,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Form right hand side d */
 d = (f_complex *) imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, c,
 IMSL_X_VECTOR, n, mod_vector,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Solve Ax = b and return the symbolic factorization */
 x = imsl_c_sparse_cholesky_smp (n, nz, a, b,
 IMSL_RETURN_SYMBOLIC_FACTOR, &symbolic_factor,
 0);
 /* Compute error |x-mod_vector| */
 error_1 = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_vector,
 IMSL_INF_NORM, &index,
 0);
 /* Solve Cy = d given the symbolic factorization */
 y = imsl_c_sparse_cholesky_smp (n, nz, c, d,
 IMSL_SUPPLY_SYMBOLIC_FACTOR, &symbolic_factor,
 0);
 /* Compute error |y-mod_vector| */
 error_2 = imsl_c_vector_norm (n, y,
 IMSL_SECOND_VECTOR, mod_vector,
 IMSL_INF_NORM, &index,
 0);
 printf ("Solution error |x - mod_vector| = %e\n", error_1);
 printf ("Solution error |y - mod_vector| = %e\n", error_2);
 /* Free allocated memory */
 if (mod_vector) free(mod_vector);
 if (a) imsl_free (a);
 if (c) free (c);
 if (b) imsl_free (b);
 if (d) imsl_free (d);
 if (y) imsl_free (y);
 if (x) imsl_free (x);
 imsl_free_snodal_symbolic_factor(&symbolic_factor);
}

203

 Linear Systems sparse_cholesky_smp (complex)
Output

 Solution error |x - mod_vector| = 2.885221e-006
 Solution error |y - mod_vector| = 2.386146e-006

Example 3

In this example, set A = E(2500, 50). First solve the system Ax = b1 and return the numeric factorization resulting

from that call. Then solve the system Ax = b2 using the numeric factorization just computed. The ratio of execu-

tion times is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <omp.h>
int main()
{
 int n, ic, nz, i, index;
 float *rand_vec = NULL;
 double time_1, time_2;
 f_complex b_1[2500], b_2[2500], *x_1 = NULL, *x_2 = NULL;
 Imsl_c_sparse_elem *a = NULL;
 Imsl_c_numeric_factor numeric_factor;
 ic = 50;
 n = ic * ic;
 index = 0;
 /* Generate two right hand sides */
 imsl_random_seed_set (1234567);
 rand_vec = imsl_f_random_uniform (4 * n, 0);
 for (i = 0; i < n; i++) {
 b_1[i].re = rand_vec[index++];
 b_1[i].im = rand_vec[index++];
 b_2[i].re = rand_vec[index++];
 b_2[i].im = rand_vec[index++];
 }
 /* Build coefficient matrix a */
 a = imsl_c_generate_test_coordinate (n, ic, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);
 /* Now solve Ax_1 = b_1 and return the numeric factorization */
 time_1 = omp_get_wtime();
 x_1 = imsl_c_sparse_cholesky_smp (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = omp_get_wtime() - time_1;
 /* Now solve Ax_2 = b_2 given the numeric factorization */
204

 Linear Systems sparse_cholesky_smp (complex)
 time_2 = omp_get_wtime();
 x_2 = imsl_c_sparse_cholesky_smp (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_2 = omp_get_wtime() - time_2;
 printf("time_2/time_1 = %lf\n", time_2/time_1);
 /* Free memory */
 if (rand_vec) imsl_free(rand_vec);
 if (x_1) imsl_free(x_1);
 if (x_2) imsl_free(x_2);
 if (a) imsl_free(a);
 imsl_c_free_numeric_factor(&numeric_factor);
}

Output

 time_2/time_1 = 0.025771

Fatal Errors
IMSL_BAD_SQUARE_ROOT A zero or negative square root has occurred

during the factorization. The coefficient
matrix is not positive definite.
205

 Linear Systems lin_sol_gen_min_residual
lin_sol_gen_min_residual
Solves a linear system Ax = b using the restarted generalized minimum residual (GMRES) method.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (float *p, float *z), float *b, ...,

0)

The type double function is imsl_d_lin_sol_gen_min_residual.

Required Arguments
int n (Input)

Number of rows in the matrix.

void amultp (float *p, float *z) (Input)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use imsl_free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_gen_min_residual (int n, void amultp(), float *b,

IMSL_RETURN_USER, float x[],
IMSL_MAX_ITER, int *maxit,
IMSL_REL_ERR, float tolerance,
IMSL_PRECOND, void precond(),
206

 Linear Systems lin_sol_gen_min_residual
IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax,
IMSL_HOUSEHOLDER_REORTHOG,
IMSL_FCN_W_DATA, void amultp(), void *data,
IMSL_PRECOND_W_DATA, void precond(), void *data,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_MAX_ITER, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of GMRES iterations allowed. On exit,
the number of iterations used is returned.
Default: maxit = 1000

IMSL_REL_ERR, float tolerance (Input)
The algorithm attempts to generate x such that ∥b - Ax∥2 ≤ τ∥b∥2, where τ = tolerance.
Default: tolerance = sqrt(imsl_f_machine(4))

IMSL_PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z = M -1r, where M is the preconditioning matrix.

IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax, (Input)
The maximum Krylov subspace dimension, i.e., the maximum allowable number of GMRES iterations
allowed before restarting.
Default: kdmax = imsl_i_min(n, 20)

IMSL_HOUSEHOLDER_REORTHOG,
Perform orthogonalization by Householder transformations, replacing the Gram-Schmidt process.

IMSL_FCN_W_DATA, void amultp (float *p, float *z, void *data), void *data, (Input)
User supplied function which computes z = Ap, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_PRECOND_W_DATA, void precond (float *r, float *z, void *data), void *data (Input)
User supplied function which sets z = M -1r, where M is the preconditioning matrix, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions section in the introduction to this
manual for more details.
207

 Linear Systems lin_sol_gen_min_residual
Description
The function imsl_f_lin_sol_gen_min_residual, based on the FORTRAN subroutine GMRES by H.F.
Walker, solves the linear system Ax = b using the GMRES method. This method is described in detail by Saad and
Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution x0 and an initial residual r0 = b - Ax0. At iteration m, a

correction zm is determined in the Krylov subspace

κm (v) = span (v, Av, …, Am-1v)

v = r0 which solves the least-squares problem

Then at iteration m, xm = x0 + zm.

Orthogonalization by Householder transformations requires less storage but more arithmetic than Gram-
Schmidt. However, Walker (1988) reports numerical experiments which suggest the Householder approach is
more stable, especially as the limits of residual reduction are reached.

Examples

Example 1

As an example, consider the following matrix:

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, -34, 31)T. The function
imsl_f_mat_mul_rect_coordinate is used to form the product Ax.

#include <imsl.h>
void amultp (float*, float*);
int main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};

z ∈ κm
min
(r0) ∥b − A x0 + z ∥2

A =

10 0 0 0 0 0
0 10 −3 −1 0 0
0 0 15 0 0 0
−2 0 0 10 −1 0
−1 0 0 −5 1 −3
−1 −2 0 0 0 6
208

 Linear Systems lin_sol_gen_min_residual
 int n = 6;
 float *x;
 x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
 0);
 imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
}
void amultp (float *p, float *z)
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int n = 6;
 int nz = 15;
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}

Output

 Solution, x, to Ax = b
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2

In this example, the same system given in the first example is solved. This time a preconditioner is provided. The
preconditioned matrix is chosen as the diagonal of A.

#include <imsl.h>
#include <stdio.h>
void amultp (float*, float*);
void precond (float*, float*);
int main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
209

 Linear Systems lin_sol_gen_min_residual
 float *x;
 int maxit = 1000;
 x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_PRECOND, precond,
 0);
 imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
 printf ("\nNumber of iterations taken = %d\n", maxit);
}
/* Set z = Ap */
void amultp (float *p, float *z)
{
 static Imsl_f_sparse_elem a[] =
 {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int n = 6;
 int nz = 15;
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}
/* Solve Mz = r */
void precond (float *r, float *z)
{
 static float diagonal_inverse[] =
 {0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0};
 int n = 6;
 int i;
 for (i=0; i<n; i++)
 z[i] = diagonal_inverse[i]*r[i];
}

Output

 Solution, x, to Ax = b
 1 2 3 4 5 6
 1 2 3 4 5 6
210

 Linear Systems lin_sol_gen_min_residual
Number of iterations taken =

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
211

 Linear Systems lin_sol_def_cg
lin_sol_def_cg
Solves a real symmetric definite linear system using a conjugate gradient method. Using optional arguments, a
preconditioner can be supplied.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_def_cg (int n, void amultp(), float *b, ..., 0)

The type double function is imsl_d_lin_sol_def_cg.

Required Arguments
int n (Input)

Number of rows in the matrix.

void amultp (float *p, float *z)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use imsl_free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_def_cg (int n, void amultp(), float *b,

IMSL_RETURN_USER, float x[],
IMSL_MAX_ITER, int *maxit,
IMSL_REL_ERR, float relative_error,
IMSL_PRECOND, void precond(),
212

 Linear Systems lin_sol_def_cg
IMSL_JACOBI, float *diagonal,
IMSL_FCN_W_DATA, void amultp(), void data,
IMSL_PRECOND_W_DATA, void precond(), void *data,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_MAX_ITER, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of iterations allowed. On exit, the num-
ber of iterations used is returned.

IMSL_REL_ERR, float relative_error (Input)
The relative error desired.
Default: relative_error = sqrt(imsl_f_machine(4))

IMSL_PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z = M -1r, where M is the preconditioning matrix.

IMSL_JACOBI, float diagonal[] (Input)
Use the Jacobi preconditioner, i.e. M = diag(A). The user-supplied vector diagonal should be set so
that diagonal[i] = Aii.

IMSL_FCN_W_DATA, void amultp (float *p, float *z, void *data), void *data, (Input)
User supplied function which computes z = Ap, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_PRECOND_W_DATA, void precond (float *r, float *z, void *data), void *data, (Input)
User supplied function which sets z = M -1r, where M is the preconditioning matrix, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

Description
The function imsl_f_lin_sol_def_cg solves the symmetric definite linear system Ax = b using the conju-
gate gradient method with optional preconditioning. This method is described in detail by Golub and Van Loan
(1983, Chapter 10), and in Hageman and Young (1981, Chapter 7).
213

 Linear Systems lin_sol_def_cg
The preconditioning matrix M is a matrix that approximates A, and for which the linear system Mz = r is easy to
solve. These two properties are in conflict; balancing them is a topic of much current research. In the default use
of imsl_f_lin_sol_def_cg, M = I. If the option IMSL_JACOBI is selected, M is set to the diagonal of A.

The number of iterations needed depends on the matrix and the error tolerance. As a rough guide,

See the references mentioned above for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let τ be the desired relative error. Then the
algorithm used is as follows:

Here λ is an estimate of λmax(G), the largest eigenvalue of the iteration matrix G = I - M -1 A. The stopping crite-

rion is based on the result (Hageman and Young 1981, pp. 148-151)

maxit = n for n >> 1

λ = − 1
p0 = x0
r1 = b − Ap
for k = 1, … ,maxit
zk = M

−1rk
if k = 1, then
βk = 1
pk = zk

else

βk = zk
Trk / zk−1

T rk−1
pk = zk + βk pk

endif
zk = Ap

αk = zk−1
T zk−1 / zk

T pk
xk = xk + αk pk
rk = rk − αkzk
if ∥zk∥2 ≤ τ 1 − λ ∥xk∥2 then

recompute λ
if ∥zk∥2 ≤ τ 1 − λ ∥xk∥2 exit

endif
endfor
214

 Linear Systems lin_sol_def_cg
where

It is also known that

where the Tn are the symmetric, tridiagonal matrices

with μk= 1 - βk/αk-1 - 1/αk, μ1 = 1 - 1/α1 and

Usually the eigenvalue computation is needed for only a few of the iterations.

Examples

Example 1

In this example, the solution to a linear system is found. The coefficient matrix is stored as a full matrix.

#include <imsl.h>
static void amultp (float*, float*);
int main()
{
 int n = 3;
 float b[] = {27.0, -78.0, 64.0};
 float *x;
 x = imsl_f_lin_sol_def_cg (n, amultp, b, 0);
 imsl_f_write_matrix ("x", 1, n, x, 0);
}

∥xk − x∥M
∥x∥M

≤ 1
1 − λmax G

∥zk∥M
∥xk∥M

∥x∥M2 = xTMx

λmax T1 ≤ λmax T2 ≤ … ≤ λmax G < 1

Tn =

μ1 ω2
ω2 μ2 ω3

ω3 μ3 ⋱
⋱ ⋱

ωk = Bk / αk−1
215

 Linear Systems lin_sol_def_cg
static void amultp (float *p, float *z)
{
 static float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 int n = 3;
 imsl_f_mat_mul_rect ("A*x",
 IMSL_A_MATRIX, n, n, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER, z,
 0);
}

Output

 x
 1 2 3
 1 -4 7

Example 2

In this example, two different preconditioners are used to find the solution of a linear system which occurs in a

finite difference solution of Laplace’s equation on a regular c × c grid, c = 100. The matrix is A = E (c2, c). For the
first solution, select Jacobi preconditioning and supply the diagonal, so M = diag (A). The number of iterations
performed and the maximum absolute error are printed. Next, use a more complicated preconditioning matrix,
M, consisting of the symmetric tridiagonal part of A.

Notice that the symmetric positive definite band solver is used to factor M once, and subsequently just perform
forward and back solves. Again, the number of iterations performed and the maximum absolute error are
printed. Note the substantial reduction in iterations.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
static void amultp (float*, float*);
static void precond (float*, float*);
static Imsl_f_sparse_elem *a;
static int n = 2500;
static int c = 50;
static int nz;
int main()
{
 int maxit = 1000;
 int i;
 int index;
 float *b;
 float *x;
 float *mod_five;
 float *diagonal;
 float norm;
216

 Linear Systems lin_sol_def_cg
 n = c*c;
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 diagonal = (float*) malloc (n*sizeof(*diagonal));
 b = (float*) malloc (n*sizeof(*b));
 /* Generate coefficient matrix */
 a = imsl_f_generate_test_coordinate (n, c, &nz,
 0);
 /* Set a predetermined answer and diagonal */
 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 diagonal[i] = 4.0;
 }
 /* Get right hand side */
 amultp (mod_five, b);
 /* Solve with jacobi preconditioning */
 x = imsl_f_lin_sol_def_cg (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_JACOBI, diagonal,
 0);
 /* Find max absolute error, print results */
 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 printf ("iterations = %d, norm = %e\n", maxit, norm);
 imsl_free (x);
 /* Solve same system, with different preconditioner */
 x = imsl_f_lin_sol_def_cg (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_PRECOND, precond,
 0);
 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 printf ("iterations = %d, norm = %e\n", maxit, norm);
}
/* Set z = Ap */
static void amultp (float *p, float *z)
{
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}
/* Solve Mz = r */
static void precond (float *r, float *z)
{
 static float *m;
217

 Linear Systems lin_sol_def_cg
 static float *factor;
 static int first = 1;
 float *null = (float*) 0;
 if (first) {
 /* Factor the first time through */
 m = imsl_f_generate_test_band (n, 1,
 IMSL_SYMMETRIC_STORAGE,
 0);
 imsl_f_lin_sol_posdef_band (n, m, 1, null,
 IMSL_FACTOR, &factor,
 IMSL_FACTOR_ONLY,
 0);
 first = 1;
 }
 /* Perform the forward and back solves */
 imsl_f_lin_sol_posdef_band (n, m, 1, r,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, z,
 0);
}

Output

iterations = 115, norm = 1.382828e-05
iterations = 75, norm = 7.319450e-05

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
218

 Linear Systems lin_least_squares_gen
lin_least_squares_gen

more...

Solves a linear least-squares problem Ax = b. Using optional arguments, the QR factorization of A, AP = QR, and the
solve step based on this factorization can be computed.

Synopsis
#include <imsl.h>
float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[], …, 0)

The type double procedure is imsl_d_lin_least_squares_gen.

Required Arguments
int m (Input)

Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size m × n containing the matrix.

float b[] (Input)
Array of size m containing the right-hand side.

Return Value
If no optional arguments are used, function imsl_f_lin_least_squares_gen returns a pointer to the
solution x of the linear least-squares problem Ax = b. To release this space, use imsl_free. If no value can be
computed, then NULL is returned.
219

 Linear Systems lin_least_squares_gen
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float x[],
IMSL_BASIS, float tol, int *kbasis,
IMSL_RESIDUAL, float **p_res,
IMSL_RESIDUAL_USER, float res[],
IMSL_FACTOR, float **p_qraux, float **p_qr,
IMSL_FACTOR_USER, float qraux[], float qr[],
IMSL_FAC_COL_DIM, int qr_col_dim,
IMSL_Q, float **p_q,
IMSL_Q_USER, float q[],
IMSL_Q_COL_DIM, int q_col_dim,
IMSL_PIVOT, int pvt[],
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of size n containing the least-squares solution x. If IMSL_RETURN_USER is
used, the return value of the function is a pointer to the array x.

IMSL_BASIS, float tol, int *kbasis (Input, Input/Output)

float tol (Input)
Nonnegative tolerance used to determine the subset of columns of A to be included in the
solution.
Default: tol = sqrt (imsl_f_machine(4))

int *kbasis (Input/Output)
Integer containing the number of columns used in the solution. kbasis = k if ∣rk+1,k+1∣
< |tol∣*∣r1,1∣. For more information on the use of this option, see Description section.
Default: kbasis = min (m, n)
220

 Linear Systems lin_least_squares_gen
IMSL_RESIDUAL, float **p_res (Output)
The address of a pointer to an array of size m containing the residual vector b − Ax. On return, the
necessary space is allocated by the function. Typically, float *p_res is declared, and &p_res is
used as an argument.

IMSL_RESIDUAL_USER, float res[] (Output)
A user-allocated array of size m containing the residual vector b − Ax.

IMSL_FACTOR, float **p_qraux, float **p_qr (Output)

float **p_qraux (Input/Output)
The address of a pointer qraux to an array of size n containing the scalars τk of the House-
holder transformations in the first min (m, n) positions. On return, the necessary space is
allocated by the function. Typically, float *qraux is declared, and &qraux is used as an
argument.

float **p_qr (Input/Output)
The address of a pointer to an array of size m × n containing the Householder transforma-
tions that define the decomposition. The strictly lower-triangular part of this array contains
the information to construct Q, and the upper-triangular part contains R. On return, the nec-
essary space is allocated by the function. Typically, float *qr is declared, and &qr is used as
an argument.

IMSL_FACTOR_USER, float qraux[], float qr[] (Input /Output)

float qraux[] (Input/Output)
A user-allocated array of size n containing the scalars τk of the Householder transformations
in the first min (m, n) positions.

float qr[] (Input/Output)
A user-allocated array of size m × n containing the Householder transformations that define
the decomposition. The strictly lower-triangular part of this array contains the information to
construct Q. The upper-triangular part contains R. If the data in a is not needed, qr can
share the same storage locations as a by using a instead of the separate argument qr.

These parameters are “Input” if IMSL_SOLVE is specified; “Output” otherwise.

IMSL_FAC_COL_DIM, int qr_col_dim (Input)
The column dimension of the array containing QR factorization.
Default: qr_col_dim = n

IMSL_Q, float **p_q (Output)
The address of a pointer to an array of size m × m containing the orthogonal matrix of the factoriza-
tion. On return, the necessary space is allocated by the function. Typically, float *q is declared, and
&q is used as an argument.

IMSL_Q_USER, float q[] (Output)
A user-allocated array of size m × m containing the orthogonal matrix Q of the QR factorization.
221

 Linear Systems lin_least_squares_gen
IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of the array containing the Q matrix of the factorization.
Default: q_col_dim = m

IMSL_PIVOT, int pvt[] (Input/Output)
Array of size n containing the desired variable order and usage information. The argument is used
with IMSL_FACTOR_ONLY or IMSL_SOLVE_ONLY.

On input, if pvt [k − 1] > 0, then column k of A is an initial column. If pvt [k − 1] = 0, then the col-
umn of A is a free column and can be interchanged in the column pivoting. If pvt [k − 1] < 0, then
column k of A is a final column. If all columns are specified as initial (or final) columns, then no pivot-
ing is performed. (The permutation matrix P is the identity matrix in this case.)

On output, pvt [k − 1] contains the index of the column of the original matrix that has been inter-
changed into column k.
Default: pvt [k − 1] = 0, k = 1, …, n

IMSL_FACTOR_ONLY
Compute just the QR factorization of the matrix AP with the permutation matrix P defined by pvt
and by further pivoting involving free columns. If IMSL_FACTOR_ONLY is used, the additional argu-
ments IMSL_PIVOT and IMSL_FACTOR are required. In that case, the required argument b is
ignored, and the returned value of the function is NULL.

IMSL_SOLVE_ONLY
Compute the solution to the least-squares problem Ax = b given the QR factorization previously com-
puted by this function. If IMSL_SOLVE_ONLY is used, arguments IMSL_FACTOR_USER,
IMSL_PIVOT, and IMSL_BASIS are required, and the required argument a is ignored.

Description
The function imsl_f_lin_least_squares_gen solves a system of linear least-squares problems Ax = b
with column pivoting. It computes a QR factorization of the matrix AP, where P is the permutation matrix defined
by the pivoting, and computes the smallest integer k satisfying ∣rk+1,k+1∣ < ∣tol∣*∣r1,1∣ to the output variable

kbasis. Householder transformations

k = 1, …, min (m − 1, n)are used to compute the factorization. The decomposition is computed in the form
Qmin(m-1, n)…Q1AP = R, so AP = QR where Q = Q1…Qmin(m-1, n). Since each Householder vector uk has zeros in the

first k − 1 entries, it is stored as part of column k of qr. The upper-trapezoidal matrix R is stored in the upper-

Qk = l − τkukuk
TQ
222

 Linear Systems lin_least_squares_gen
trapezoidal part of the first min (m, n) rows of qr. The solution x to the least-squares problem is computed by

solving the upper-triangular system of linear equations R(1:k, 1:k) y (1:k) = (QTb) (1:k) with k = kbasis. The solu-
tion is completed by setting y(k + 1 : n) to zero and rearranging the variables, x = Py.

When IMSL_FACTOR_ONLY is specified, the function computes the QR factorization of AP with P defined by the
input pvt and by column pivoting among ‘‘free’’ columns. Before the factorization, initial columns are moved to
the beginning of the array a and the final columns to the end. Both initial and final columns are not permuted
further during the computation. Just the free columns are moved.

If IMSL_SOLVE_ONLY is specified, then the function computes the least-squares solution to Ax = b given the QR
factorization previously defined. There are kbasis columns used in the solution. Hence, in the case that all col-
umns are free, x is computed as described in the default case.

Examples

Example 1

This example illustrates the least-squares solution of four linear equations in three unknowns using column piv-
oting. The problem is equivalent to least-squares quadratic polynomial fitting to four data values. Write the

polynomial as p(t) = x1 + tx2 + t2x3 and the data pairs (ti, bi), ti = 2i, i = 1, 2, 3, 4. A pointer to the solution to Ax = b is

returned by the function imsl_f_lin_least_squares_gen.

#include <imsl.h>
float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};
float b[] = {4.999, 9.001, 12.999, 17.001};
int main()
{
 int m = 4, n = 3;
 float *x;
 /* Solve Ax = b for x */
 x = imsl_f_lin_least_squares_gen (m, n, a, b, 0);
 /* Print x */
 imsl_f_write_matrix ("Solution vector", 1, n, x, 0);
}

Output

Solution vector
 1 2 3
0.999 2.000 0.000
223

 Linear Systems lin_least_squares_gen
Example 2

This example uses the same coefficient matrix A as in the initial example. It computes the QR factorization of A
with column pivoting. The final and free columns are specified by pvt and the column pivoting is done only
among the free columns.

#include <imsl.h>
float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};
int pvt[] = {0, 0, -1};
int main()
{
 int m = 4, n = 3;
 float *x, *b;
 float *p_qraux, *p_qr;
 float *p_q;
 /* Compute the QR factorization */
 /* of A with partial column */
 /* pivoting */
 x = imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_Q, &p_q,
 IMSL_FACTOR_ONLY,
 0);
 /* Print Q */
 imsl_f_write_matrix ("The matrix Q", m, m, p_q, 0);
 /* Print R */
 imsl_f_write_matrix ("The matrix R", m, n, p_qr,
 IMSL_PRINT_UPPER,
 0);
 /* Print pivots */
 imsl_i_write_matrix ("The Pivot Sequence", 1, n, pvt, 0);
}

Output

 The matrix Q
 1 2 3 4
1 -0.1826 -0.8165 0.5000 -0.2236
2 -0.3651 -0.4082 -0.5000 0.6708
3 -0.5477 0.0000 -0.5000 -0.6708
4 -0.7303 0.4082 0.5000 0.2236
 The matrix R
 1 2 3
1 -10.95 -1.83 -73.03
2 -0.82 16.33
224

 Linear Systems lin_least_squares_gen
3 8.00
The Pivot Sequence
 1 2 3
 2 1 3

Example 3

This example computes the QR factorization with column pivoting for the matrix A of the initial example. It com-
putes the least-squares solutions to Ax = bi for i = 1, 2, 3.

#include <imsl.h>
#include <stdio.h>
float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};
float b[] = {4.999, 9.001, 12.999, 17.001,
 2.0, 3.142, 5.11, 0.0,
 1.34, 8.112, 3.76, 10.99};
int pvt[] = {0, 0, 0};
int main()
{
 int m = 4, n = 3;
 int i, k = 3;
 float *p_qraux, *p_qr;
 float tol = 1.e-4;
 int *kbasis;
 float *x, *p_res;
 /* Factor A with the given pvt */
 /* setting all variables to */
 /* be imsl_free */
 imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_BASIS, tol, &kbasis,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_FACTOR_ONLY,
 0);
 /* Print some factorization */
 /* information*/
 printf("Number of Columns in the base\n%2d", kbasis);
 imsl_f_write_matrix ("Upper triangular R Matrix", m, n, p_qr,
 IMSL_PRINT_UPPER,
 0);
 imsl_i_write_matrix ("The output column order ", 1, n, pvt,
 0);
 /* Solve Ax = b for each x */
 /* given the factorization */
 for (i = 0; i < k; i++) {
225

 Linear Systems lin_least_squares_gen
 x = imsl_f_lin_least_squares_gen (m, n, a, &b[i*m],
 IMSL_BASIS, tol, &kbasis,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR_USER, p_qraux, p_qr,
 IMSL_RESIDUAL, &p_res,
 IMSL_SOLVE_ONLY,
 0);
 /* Print right-hand side, b */
 /* and solution, x */
 imsl_f_write_matrix ("Right-hand side, b ", 1, m, &b[i*m],
 0);
 imsl_f_write_matrix ("Solution, x ", 1, n, x, 0);
 /* Print residuals, b - Ax */
 imsl_f_write_matrix ("Residual, b - Ax ", 1, m, p_res,
 0);
 }
}

Output

Number of Columns in the base
3
 Upper triangular R Matrix
 1 2 3
1 -75.26 -10.63 -1.59
2 -2.65 -1.15
3 0.36
The output column order
 1 2 3
 3 2 1
 Right-hand side, b
 1 2 3 4
 5 9 13 17
 Solution, x
 1 2 3
 0.999 2.000 0.000
 Residual, b - Ax
 1 2 3 4
 -0.0004 0.0012 -0.0012 0.0004
 Right-hand side, b
 1 2 3 4
 2.000 3.142 5.110 0.000
 Solution, x
 1 2 3
 -4.244 3.706 -0.391
 Residual, b - Ax
 1 2 3 4
 0.395 -1.186 1.186 -0.395
 Right-hand side, b
226

 Linear Systems lin_least_squares_gen
 1 2 3 4
 1.34 8.11 3.76 10.99

 Solution, x
 1 2 3
 0.4735 0.9437 0.0286
 Residual, b - Ax
 1 2 3 4
 -1.135 3.406 -3.406 1.135

Fatal Errors
IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of

the first zero diagonal term is #.
227

 Linear Systems nonneg_least_squares
nonneg_least_squares
Compute the non-negative least squares (NNLS) solution of an m × n real linear least squares system, ,

 .

Synopsis
#include <imsl.h>
float *imsl_f_nonneg_least_squares (int m, int n, float a[], float b[],…, 0)

The type double function is imsl_d_nonneg_least_squares.

Required Arguments
int m (Input)

The number of rows in the matrix.

int n (Input)
The number of columns in the matrix.

float a[] (Input)
An array of length m × n containing the matrix.

float b[] (Input)
An array of length m containing the right-hand side vector.

Return Value
An array of length n containing the approximate solution vector, x ≥ 0.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_nonneg_least_squares (int m, int n, float a[], float b[],

IMSL_ITMAX, int itmax,
IMSL_DROP_MAX_POS_DUAL, int maxdual,

Ax ≅ b
x ≥ 0
228

 Linear Systems nonneg_least_squares
IMSL_DROP_TOLERANCE, float tol,
IMSL_SUPPLY_WORK_ARRAYS, int lwork, float work[], int liwork, int iwork[],
IMSL_OPTIMIZED, int *iflag,
IMSL_DUAL_SOLUTION, float **dual,
IMSL_DUAL_SOLUTION_USER, float udual[],
IMSL_RESIDUAL_NORM, float *rnorm,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments
IMSL_ITMAX, int itmax (Input)

The number of times a constraint is added or dropped should not exceed this maximum value. An
approximate solution x ≥ 0 is returned when the maximum number is reached.
Default: itmax = 3 × n.

IMSL_DROP_MAX_POS_DUAL, int maxdual (Input)
Indicates how a variable is moved from its constraint to a positive value, or dropped, when its current
dual value is positive. By dropping the variable corresponding to the first computed positive dual
value, instead of the maximum, better runtime efficiency usually results by avoiding work in the early
stages of the algorithm.
If maxdual = 0, the first encountered positive dual is used. Otherwise, the maximum positive dual, is
used. The results for x ≥ 0 will usually vary slightly depending on the choice.
Default: maxdual = 0

IMSL_DROP_TOLERANCE, float tol (Input)
This is a rank-determination tolerance. A candidate column

has values eliminated below the first entry of . The resulting value must satisfy the relative
condition

Otherwise the constraint remains satisfied because the column is linearly dependent on previously
dropped columns.
Default: tol = sqrt(imsl_f_machine(3));

a =
c
d

d

∥d∥2 > tol × ∥c∥2
a

229

 Linear Systems nonneg_least_squares
IMSL_SUPPLY_WORK_ARRAYS , int lwork, float work[], int liwork, int iwork[] (Input/Output)
The use of this optional argument will increase efficiency and avoid memory fragmentation run-time
failures for large problems by allowing the user to provide the sizes and locations of the working
arrays work and iwork. With maxt as the maximum number of threads that will be active, it is
required that:

lwork maxt*(m*(n+2) + n), and liwork maxt*n.

Without the use of OpenMP and parallel threading, maxt=1.

IMSL_OPTIMIZED, int *flag (Output)
A 0-1 flag noting whether or not the optimum residual norm was obtained. A value of 1 indicates the
optimum residual norm was obtained. A value of 0 occurs if the maximum number of iterations was
reached.

IMSL_DUAL_SOLUTION, float **dual (Output)
An array of length n containing the dual vector, . This may not be optimal (all com-
ponents may not satisfy), if the maximum number of iterations occurs first.

IMSL_DUAL_SOLUTION_USER, float dual[] (Output)
Storage for dual provided by the user. See IMSL_DUAL_SOLUTION.

IMSL_RESIDUAL_NORM, float *rnorm (Output)
The value of the residual vector norm, ∥Ax-b∥

2

.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the approximate solution vector, .

Description
Function imsl_f_nonneg_least_squares computes the constrained least squares solution of ,
by minimizing ∥Ax-b∥

2

flag Description

0 the maximum number of iterations was reached.

1 the optimum residual norm was obtained.

≥ ≥

w = AT Ax − b
w ≤ 0

x ≥ 0

Ax ≅ b
230

 Linear Systems nonneg_least_squares
 subject to . It uses the algorithm NNLS found in Charles L. Lawson and Richard J. Hanson, Solving Least
Squares Problems, SIAM Publications, Chap. 23, (1995). The functionality for multiple threads and the constraint
dropping strategy are new features. The original NNLS algorithm was silent about multiple threads; all dual com-
ponents were computed when only one was used. Using the first encountered eligible variable to make non-
active usually improves performance. An optimum solution is obtained in either approach. There is no restriction
on the relative sizes of m and n.

Examples

Example 1

A model function of exponentials is

The exponential function argument parameters

are fixed. The coefficients

are estimated by sampling data values,

using non-negative least squares. The values used for the data are

with

#include <imsl.h>
#include <math.h>
#define M 21
#define N 3
int main() {
 int i;
 float a[M][N], b[M], *c;
 for (i = 0; i < M; i++) {

x ≥ 0

f t = c1 + c2exp −λ2t + c3exp −λ3t , t ≥ 0

λ2 = 1, λ3 = 5

c j ≥ 0, j = 1, 2, 3

f ti , i = 1,...21

ti = 0.25i, i = 0,...20

c1 = 1, c2 = 0.2, c3 = 0.3
231

 Linear Systems nonneg_least_squares
 /* Generate exponential values. This model is
 y(t) = c_0 + c_1*exp(-t) + c_2*exp(-5*t) */
 a[i][0] = 1.0;
 a[i][1] = exp(-(i*0.25));
 a[i][2] = exp(-(i*0.25)*5.0);
 /* Compute sample values */
 b[i] = a[i][0] + 0.2*a[i][1] + 0.3*a[i][2];
 }
 /* Solve for coefficients, constraining values
 to be non-negative. */
 c = imsl_f_nonneg_least_squares(M, N, &a[0][0], b, 0);
 /* With noise level = 0, solution should be (1, 0.2, 0.3) */
 imsl_f_write_matrix("Coefficients", 1, N, c, 0);
}

Output

 Coefficients
 1 2 3
 1.0 0.2 0.3

Example 2

The model function of exponentials is

The values λ2, λ3 are the same as in Example 1. The function n (t) represents normally distributed random noise

with a standard deviation . A simulation is done with ns = 10001 samples for n (t). The resulting problem
is solved using OpenMP. To check that the OpenMP results are correct, a loop computes the solutions without
OpenMP followed by the same loop using OpenMP. The residual norms agree, showing that the routine returns
the same values using OpenMP as without using OpenMP.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
#define M 21
#define N 3
#define NS 10001
int main() {
#define BS(i_,j_) bs[(i_)*M + (j_)]
#define X(i_,j_) x[(i_)*N + (j_)]
 int thread_safe=1, seed=123457, i, *iwork, j, lwork, liwork, maxt;
 float b[M], *work, sigma=1.0e-3, a[M][N], rseq[NS], rpar[NS],

f t = c1 + c2exp −λ2t + c3exp −λ3t + n t , t ≥ 0

σ = 10−3
232

 Linear Systems nonneg_least_squares
 *bs, *x;
 /* Allocate work memory for all threads that are
 used in the loops below. */
 maxt = omp_get_max_threads();
 lwork = maxt*(M*(N+2)+N);
 liwork = maxt*N;
 work = (float *) malloc(lwork * sizeof(float));
 iwork = (int *) malloc(liwork * sizeof(int));
 x = (float *) malloc(NS*N * sizeof(float));
 bs = (float *) malloc(NS*M * sizeof(float));
 for (i = 0; i < M; i++) {
 /* Generate matrix values.
 This model is y(t) =
 c_0 + c_1*exp(-t) + c_2*exp(-5*t) + n(t) */
 a[i][0] = 1.0;
 a[i][1] = exp(-(i*0.25));
 a[i][2] = exp(-(i*0.25)*5.0);
 }
 /* Solve for coefficients, constraining values to be non-negative.
 First use a sequential for loop. Then a parallel for loop.
 Record the residual norms and compare them. */
 imsl_random_seed_set(seed);
 /* First the sequential loop.
 Working memory is not included as an argument. */
 for (j = 0; j < NS; j++) {
 imsl_f_random_normal(M, IMSL_RETURN_USER, b, 0);
 /* Add normal pdf noise at the level sigma. */
 for (i=0; i<M; i++) {
 b[i] = sigma*b[i] + a[i][0] + 0.2*a[i][1] + 0.3*a[i][2];
 BS(j,i) = b[i];
 }
 imsl_f_nonneg_least_squares(M, N, &a[0][0], &BS(j,0),
 IMSL_RETURN_USER, &X(j,0),
 IMSL_RESIDUAL_NORM, &rseq[j],
 0);
 }
 /* Then the parallel for loop using OpenMP.
 Working memory is an optional argument. This is not required
 but helps prevent memory fragmentation. */
 /* Reset x for output for the OpenMP loop. */
 for (i = 0; i < NS*N; i++)
 x[i] = 0.0;
#pragma omp parallel for private(j)
 for (j = 0; j < NS; j++) {
 imsl_f_nonneg_least_squares(M, N, &a[0][0], &BS(j,0),
 IMSL_RETURN_USER, &X(j,0),
 IMSL_RESIDUAL_NORM, &rpar[j],
 IMSL_SUPPLY_WORK_ARRAYS, lwork, work, liwork, iwork,
 0);
 }
233

 Linear Systems nonneg_least_squares
 /* Check that residual norms agree exactly for both loops. They
 should because the same problems are solved - one set
 sequentially and the next set in parallel. */
 for (j = 0; j < NS; j++) {
 /* Since the two loops solve the same set of problems, the
 residual norms must agree exactly. */
 if (rpar[j] != rseq[j]) {
 thread_safe = 0;
 break;
 }
 }
 if(thread_safe)
 printf("imsl_f_nonneg_least_squares is thread-safe.\n");
 else
 printf("imsl_f_nonneg_least_squares is not thread-safe.\n");
 system("pause");
}

Output

imsl_f_nonneg_least_squares is thread-safe.

Warning Errors
IMSL_MAX_NNLS_ITER_REACHED The maximum number of iterations was reached.

The best answer will be returned. “itmax” = # was
used. A larger value may help the algorithm
complete.
234

 Linear Systems lin_lsq_lin_constraints
lin_lsq_lin_constraints
Solves a linear least-squares problem with linear constraints.

Synopsis
#include <imsl.h>
float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float a[], float b[],

float c[], float bl[], float bu[], int con_type[], float xlb[], float xub[], ..., 0)

The type double function is imsl_d_lin_lsq_lin_constraints.

Required Arguments
int nra (Input)

Number of least-squares equations.

int nca (Input)
Number of variables.

int ncon (Input)
Number of constraints.

float a[] (Input)
Array of size nra × nca containing the coefficients of the nra least-squares equations.

float b[] (Input)
Array of length nra containing the right-hand sides of the least-squares equations.

float c[] (Input)
Array of size ncon × nca containing the coefficients of the ncon constraints.

float bl[] (Input)
Array of length ncon containing the lower limit of the general constraints. If there is no lower limit on
the i-th constraint, then bl[i] will not be referenced.

float bu[] (Input)
Array of length ncon containing the upper limit of the general constraints. If there is no upper limit
on the i-th constraint, then bu[i] will not be referenced. If there is no range constraint, bl and bu
can share the same storage.
235

 Linear Systems lin_lsq_lin_constraints
int con_type[] (Input)
Array of length ncon indicating the type of constraints exclusive of simple bounds, where
con_type[i] = 0, 1, 2, 3 indicates =, <=, >= and range constraints, respectively.

float xlb[] (Input)
Array of length nca containing the lower bound on the variables. If there is no lower bound on the
i-th variable, then xlb[i] should be set to 1.0e30.

float xub[] (Input)
Array of length nca containing the upper bound on the variables. If there is no lower bound on the
i-th variable, then xub[i] should be set to −1.0e30.

Return Value
A pointer to the to a vector of length nca containing the approximate solution. To release this space, use
imsl_free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float a[], float b[],

float c[], float bl[], float bu[], int con_type[], float xlb[], float xub[],

IMSL_RETURN_USER, float x[],
IMSL_RESIDUAL, float **residual,
IMSL_RESIDUAL_USER, float residual_user[],
IMSL_PRINT,
IMSL_ITMAX, int max_iter,
IMSL_REL_FCN_TOL, float rel_tol,
IMSL_ABS_FCN_TOL, float abs_tol,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

Store the solution in the user supplied vector x of length nca.

IMSL_RESIDUAL, float **residual (Output)
The address of a pointer to an array containing the residuals b − Ax of the least-squares equations at
the approximate solution.
236

 Linear Systems lin_lsq_lin_constraints
IMSL_RESIDUAL_USER, float residual_user[] (Output)
Store the residuals in the user-supplied vector of length nra.

IMSL_PRINT,
Debug output flag. Choose this option if more detailed output is desired.

IMSL_ITMAX, int max_iter (Input)
Set the maximum number of add/drop iterations.
Default: max_iter = 5*max(nra, nca)

IMSL_REL_FCN_TOL, float rel_tol (Input)
Relative rank determination tolerance to be used.
Default: rel_tol = sqrt(imsl_f_machine(4))

IMSL_ABS_FCN_TOL, float abs_tol (Input)
Absolute rank determination tolerance to be used.
Default: abs_tol = sqrt(imsl_f_machine(4))

Description
The function imsl_f_lin_lsq_lin_constraints solves linear least-squares problems with linear con-
straints. These are systems of least-squares equations of the form

Ax ≅ b

subject to

bl ≤Cx ≤bu

xl ≤x ≤ xu

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is the coefficient
matrix of the constraints. The vectors bl, bu, xl and xu are the lower and upper bounds on the constraints and the

variables, respectively. The system is solved by defining dependent variables y ≡ Cx and then solving the least-
squares system with the lower and upper bounds on x and y. The equation Cx − y = 0 is a set of equality con-
straints. These constraints are realized by heavy weighting, i.e., a penalty method, Hanson (1986, pp. 826-834).

Examples

Example 1

In this example, the following problem is solved in the least-squares sense:

3x
237

 Linear Systems lin_lsq_lin_constraints
1

 + 2x

2

 + x

3

 = 3.3

4x

1

 +2x

2

 + x

3

 = 2.2

2x

1

 + 2x

2

 + x

3

 = 1.3

x

1

 + x

2

 + x

3

 = 1.0

Subject to

x

1

 = x

2

 + x

3

 ≤ 1
238

 Linear Systems lin_lsq_lin_constraints
0 ≤x1 ≤ 0.5

0 ≤ x2 ≤ 0.5

0 ≤ x3 ≤ 0.5

#include <imsl.h>
int main()
{
 int nra = 4;
 int nca = 3;
 int ncon = 1;
 float *x;
 float a[] = {3.0, 2.0, 1.0,
 4.0, 2.0, 1.0,
 2.0, 2.0, 1.0,
 1.0, 1.0, 1.0};
 float b[] = {3.3, 2.3, 1.3, 1.0};
 float c[] = {1.0, 1.0, 1.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {0.5, 0.5, 0.5};
 int con_type[] = {1};
 float bc[] = {1.0};
 x = imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
 bc, bc, con_type, xlb, xub,
 0);
 imsl_f_write_matrix ("Solution", 1, nca, x,
 0);
}

Output

 Solution
 1 2 3
 0.5 0.3 0.2

Example 2

The same problem solved in the first example is solved again. This time residuals of the least-squares equations
at the approximate solution are returned, and the norm of the residual vector is printed. Both the solution and
residuals are returned in user-supplied space.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int nra = 4;
 int nca = 3;
 int ncon = 1;
 float x[3];
 float residual[4];
 float a[] = {3.0, 2.0, 1.0,
 4.0, 2.0, 1.0,
239

 Linear Systems lin_lsq_lin_constraints
 2.0, 2.0, 1.0,
 1.0, 1.0, 1.0};
 float b[] = {3.3, 2.3, 1.3, 1.0};
 float c[] = {1.0, 1.0, 1.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {0.5, 0.5, 0.5};
 int con_type[] = {1};
 float bc[] = {1.0};
 imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
 bc, bc, con_type, xlb, xub,
 IMSL_RETURN_USER, x,
 IMSL_RESIDUAL_USER, residual,
 0);
 imsl_f_write_matrix ("Solution", 1, nca, x, 0);
 imsl_f_write_matrix ("Residual", 1, nra, residual, 0);
 printf ("\n\nNorm of residual = %f\n",
 imsl_f_vector_norm (nra, residual, 0));
}

Output

 Solution
 1 2 3
 0.5 0.3 0.2
 Residual
 1 2 3 4
 -1.0 0.5 0.5 -0.0
Norm of residual = 1.224745

Fatal Errors
IMSL_BAD_COLUMN_ORDER The input order of columns must be between 1 and

“nvar” while input order = # and “nvar” = # are
given.

IMSL_BAD_POLARITY_FLAGS The bound polarity flags must be positive while
component # flag “ibb[#]”.

IMSL_TOO_MANY_ITN Maximum numbers of iterations exceeded.
240

 Linear Systems nonneg_matrix_factorization
nonneg_matrix_factorization

more...

Given an real matrix , and an integer , compute a factorization . The

matrix factors are computed to minimize the Frobenius, or sum of squares, norm of the

error matrix: .

Synopsis
#include <imsl.h>
float imsl_f_nonneg_matrix_factorization (int m, int n, int k, float a[], float f[], float g[],

…, 0)

The type double function is imsl_d_nonneg_matrix_factorization.

Required Arguments
int m (Input)

The number of rows in the matrix.

int n (Input)
The number of columns in the matrix.

int k (Input)
The number of columns in the matrix F and rows in the matrix G.

float a[] (Input)
An array of length m × n containing the A matrix.

float f[] (Input/Output)
An array of length m × k containing the F matrix. If IMSL_INITIAL_FACTORS is used, the sweeps
begin using the input values for .

float g[] (Output)
An array of length k × n containing the G matrix.

m × n A ≥ 0 k ≤ min m, n A ≅ FG
Fm×k ≥ 0, Gk×n ≥ 0

E = ei, j = A − FG

Fm×k ≥ 0
241

 Linear Systems nonneg_matrix_factorization
Return Value
A scalar containing the Frobenius norm of the error matrix

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_nonneg_matrix_factorization (int m, int n, int k, float a[], float f[], float g[],

IMSL_WEIGHT, float w[],
IMSL_INITIAL_FACTORS, int factors,
IMSL_ITMAX, int itmax,
IMSL_RESIDUAL_ERROR, float err,
IMSL_RELATIVE_ERROR, float rerr,
IMSL_STOPPING_CRITERION, int *reason,
IMSL_NSTEPS_TAKEN, int *nsteps,
0)

Optional Arguments
IMSL_WEIGHT, float w[] (Input)

An array of length m × n containing the matrix W ≥ 0 of weights that will be applied to the entries of
A ≥ 0 during the solution sweeps. The factorization obtained is FG ≅W ∘ A, where the weights are
applied element-wise.
Default: Weights are not applied, or equivalently, the weights all have value 1.

IMSL_INITIAL_FACTORS, int factors (Input)
A flag that signifies if the matrix F is given an input estimate. If factors = 0, start sweeps using

Otherwise, use initial values in f as the matrix F to start the sweeps.
Default: factors = 0

IMSL_ITMAX, int itmax (Input)
The maximum number of sweeps allowed for alternately solving for G ≥ 0, then F ≥ 0.
Default: itmax = 2 * (m + n + 1)

E:error = ∑
i, j

ei, j
2 1/2

F =
Ik
0

242

 Linear Systems nonneg_matrix_factorization
IMSL_RESIDUAL_ERROR, float err (Input)
A scalar that will stop the sweeps at the first one satisfying error ≤ err.
Default: err = 0

IMSL_RELATIVE_ERROR, float rerr (Input)
A scalar that will stop the sweeps at the first one satisfying

erroriter-2 - erroriter-1 ≤ rerr × erroriter, iter > 2.

This test is made after three values of the error matrix norm have been computed. The sequence
{erroriter} is decreasing with increasing values of the iteration counter, iter. If erroriter ≥ erroriter-1

occurs, the sweeps stop.

Default: rerr = (imsl_f_machine(3))0.4.

IMSL_STOPPING_CRITERION, int *reason (Output)
This flag has the value 0,1,2 or 3 depending on which of the following conditions stopped the
sweeps:

IMSL_NSTEPS_TAKEN, int *nsteps (Output)
The last value of the iteration count, , that gives the number of sweeps.

Description
Function imsl_f_nonneg_matrix_factorization computes an approximation , or with

weights, W ∘ A ≅ FG; the factors are constrained: . The matrix factors are

computed to minimize the Frobenius or sum of squares, norm of the error matrix: .

The algorithm is based on Alternating Least Squares, presented by P. Paatero and U. Tapper,
“Positive Matrix Factorization, etc.” Environmetrics, (5), p. 111-126 (1994).

Each constrained least squares problem is solved using imsl_f_nonneg_least_squares. This process alter-
nates between computing the batch of columns of and then the batch of rows of . This constitutes a
“sweep.”

reason Description

0 Errors in user input occurred

1 Reached maximum iterations

2 Residual norm is small

3 Relative error convergence

iter

A ≅ FG
Fm×k ≥ 0, Gk×n ≥ 0 Fm×k ≥ 0, Gk×n ≥ 0

E = ei, j = A − FG

n G m F
243

 Linear Systems nonneg_matrix_factorization
There is no restriction on the relative sizes of and . The restrictions on the integer are

 . When an initial matrix is to be used, instead of an initial , repose the factorization in

transposed form , or with weights, AT ∘ WT ≅ GTFT.

The matrix factors are not unique. In the function, the output rows of are scaled to have sum equal to
the value 1. The scaled columns of are sorted so the column sums are non-increasing. This sort order is then
applied to the rows of .

Example
Five customers, Beth, Dick, Fred, Joe and Kay make purchases at a convenience store.

This matrix of customers versus items purchased is approximated by a non-negative matrix factorization,

using : . The example is taken from one due to H. Jin and M. Saunders, “Exploring Nonnegative
Matrix Factorization,” A Workshop on Algorithms for Massive Data Sets, Stanford University, June 25-28, (2008).

#include <imsl.h>
#include <stdio.h>
#define M 5
#define N 5
#define K 2
int main() {
 float a[M][N]= {
 { 0, 3, 8, 0, 1},
 { 0, 2, 5, 1, 0},
 { 5, 0, 1, 10, 0},
 { 0, 20, 40, 2, 1},
 {10, 0, 1, 10, 1}
 };
 float error, f[M*K], g[K*N];
 int nsteps, reason;
 /* Solve for factors, constraining values to be non-negative.
 Get reason for stopping and number of sweeps. */
 error = imsl_f_nonneg_matrix_factorization(M, N, K, &a[0][0], f, g,
 IMSL_STOPPING_CRITERION, &reason,

Flour Balloons Beer Sugar Chips
 Beth 3 8 1

 Dick 2 5 1

 Fred 5 1 10

 Joe 20 40 2 1

 Kay 10 1 10 1

m n k
0 < k ≤ min m, n G F

AT ≅ GTFT

F, G G
F

G

A5×5
k = 2 A ≅ FG
244

 Linear Systems nonneg_matrix_factorization
 IMSL_NSTEPS_TAKEN, &nsteps,
 0);
 imsl_f_write_matrix("Matrix Factor F", M, K, f, 0);
 imsl_f_write_matrix("Matrix Factor G", K, N, g, 0);
 printf("\nFrobenius Norm of E=A-F*G is %e\n", error);
 printf("Reason for stopping sweeps: %d\n", reason);
 printf("Number of sweeps taken: %d\n", nsteps);
}

Output

 Matrix Factor F
 1 2
1 11.96 0.00
2 7.51 0.94
3 0.33 16.61
4 62.90 0.13
5 0.00 21.35
 Matrix Factor G
 1 2 3 4 5
1 0.0000 0.3150 0.6373 0.0298 0.0178
2 0.4048 0.0000 0.0473 0.5190 0.0288
Frobenius Norm of E=A-F*G is 3.195350e+000
Reason for stopping sweeps: 3
Number of sweeps taken: 10
245

 Linear Systems lin_svd_gen
lin_svd_gen

more...

Computes the SVD, A = USVT, of a real rectangular matrix A. An approximate generalized inverse and rank of A
also can be computed.

Synopsis
#include <imsl.h>
float *imsl_f_lin_svd_gen (int m, int n, float a[], …, 0)

The type double function is imsl_d_lin_svd_gen.

Required Arguments
int m (Input)

Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size m × n containing the matrix.

Return Value
If no optional arguments are used, imsl_f_lin_svd_gen returns a pointer to an array of size min (m, n) con-
taining the ordered singular values of the matrix. To release this space, use imsl_free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
246

 Linear Systems lin_svd_gen
float *imsl_f_lin_svd_gen (int m, int n, float a[],

IMSL_METHOD, int imeth
IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float s[],
IMSL_RANK, float tol, int *rank,
IMSL_U, float **p_u,
IMSL_U_USER, float u[],
IMSL_U_COL_DIM, int u_col_dim,
IMSL_V, float **p_v,
IMSL_V_USER, float v[],
IMSL_V_COL_DIM, int v_col_dim,
IMSL_INVERSE, float **p_gen_inva,
IMSL_INVERSE_USER, float gen_inva[],
IMSL_INV_COL_DIM, int gen_inva_col_dim,
0)

Optional Arguments
IMSL_METHOD, int imeth (Input)

The method used in the computation of the singular values and vectors.

Default: imeth = 0

NOTE: The LAPACK algorithms can be used if a vendor supplied library that supports LAPACK is
available. Examples are Intel’s® Math Kernel Library (MKL) or Sun’s™ High Performance
Library. Otherwise, only the native IMSL algorithm is available.

Computational Method

imeth IMSL LAPACK

0 Uses QR method to deter-
mine singular values and
singular vectors.

Uses QR method if singular vectors are
de-sired and the dqds algorithm (Fer-
nando and Parlett, 1994) otherwise.

1 Uses the same algorithm as
for imeth = 0.

Uses the dqds algorithm (Fernando and
Parlett, 1994) if singular values only are
desired and a divide-and-conquer algo-
rithm if singular vectors are desired.
247

 Linear Systems lin_svd_gen
IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float s[] (Output)
A user-allocated array of size min (m, n) containing the singular values of A in nonincreasing order. If
IMSL_RETURN_USER is used, the return value of imsl_f_lin_svd_gen is s.

IMSL_RANK, float tol, int *rank (Input/Output)

float tol (Input)
Scalar containing the tolerance used to determine when a singular value is negligible and
replaced by the value zero. If tol > 0, then a singular value si i is considered negligible if
si.i ≤ tol. If tol < 0, then a singular value si.i is considered negligible if si.i ≤ ∣tol∣*∥A∥∞. In
this case, ∣tol∣ should be an estimate of relative error or uncertainty in the data.
Default: tol = 100.0 * imsl_f_machine(4)

int *rank (Output)
Integer containing an estimate of the rank of A.

IMSL_U, float **p_u (Output)
The address of a pointer to an array of size m × min (m, n) containing the min (m, n) left singular vec-
tors of A. On return, the necessary space is allocated by imsl_f_lin_svd_gen. Typically,
float *p_u is declared, and &p_u is used as an argument.

IMSL_U_USER, float u[] (Output)
The address of a pointer to an array of size m × min (m, n) containing the min (m, n) left singular vec-
tors of A. The left singular vectors can be returned using the storage locations of the array a. Note
that the return of the left and right singular vectors cannot use the storage locations of a
simultaneously.

IMSL_U_COL_DIM, int u_col_dim (Input)
The column dimension of the array containing the left singular vectors.
Default: u_col_dim = min (m, n)

IMSL_V, float **p_v (Output)
The address of a pointer to array of size n × min (m, n) containing the right singular vectors of A. On
return, the necessary space is allocated by imsl_f_lin_svd_gen. Typically, float *p_v is
declared, and &p_v is used as an argument.

IMSL_V_USER, float v[] (Output)
The address of a pointer to array of size n × min (m, n) containing the right singular vectors of A. The
right singular vectors can be returned using the storage locations of the array a. Note that the return
of the left and right singular vectors cannot use the storage locations of a simultaneously.
248

 Linear Systems lin_svd_gen
IMSL_V_COL_DIM, int v_col_dim (Input)
The column dimension of the array containing the right singular vectors.
Default: v_col_dim = min (m, n)

IMSL_INVERSE, float **p_gen_inva (Output)
The address of a pointer to an array of size n × m containing the generalized inverse of the matrix A.
On return, the necessary space is allocated by imsl_f_lin_svd_gen. Typically,
float *p_gen_inva is declared, and &p_gen_inva is used as an argument.

IMSL_INVERSE_USER, float gen_inva[] (Output)
A user-allocated array of size n × m containing the general inverse of the matrix A.

IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
The column dimension of the array containing the general inverse of the matrix A.
Default: gen_inva_col_dim = m

Description
The function imsl_f_lin_svd_gen computes the singular value decomposition of a real matrix A. It first
reduces the matrix A to a bidiagonal matrix B by pre- and post-multiplying Householder transformations. Then,
the singular value decomposition of B is computed using the implicit-shifted QR algorithm. An estimate of the
rank of the matrix A is obtained by finding the smallest integer k such that sk,k ≤ tol or sk,k ≤ ∣tol∣*∥A∥∞. Since

si+1,i+1 ≤ si,i, it follows that all the si,i satisfy the same inequality for i = k, …, min (m, n) − 1. The rank is set to the

value k − 1. If A = USVT, its generalized inverse is A+ = VS+ UT. Here,

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or IMSL_INVERSE_USER is
specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is
then computed. The function imsl_f_lin_svd_gen fails if the QR algorithm does not converge after 30 iter-
ations isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a real 6 × 4 matrix.

#include <imsl.h>
float a[] = {1.0, 2.0, 1.0, 4.0,

S+ = diag s1, 1
−1 , … , si, i

−1, 0, … , 0
249

 Linear Systems lin_svd_gen
 3.0, 2.0, 1.0, 3.0,
 4.0, 3.0, 1.0, 4.0,
 2.0, 1.0, 3.0, 1.0,
 1.0, 5.0, 2.0, 2.0,
 1.0, 2.0, 2.0, 3.0};
int main()
{
 int m = 6, n = 4;
 float *s;
 /* Compute singular values */
 s = imsl_f_lin_svd_gen (m, n, a, 0);
 /* Print singular values */
 imsl_f_write_matrix ("Singular values", 1, n, s, 0);
}

Output

 Singular values
 1 2 3 4
11.49 3.27 2.65 2.09

Example 2

This example computes the singular value decomposition of the 6 × 4 real matrix A. The singular values are
returned in the user-provided array. The matrices U and V are returned in the space provided by the function
imsl_f_lin_svd_gen.

#include <imsl.h>
float a[] = {1.0, 2.0, 1.0, 4.0,
 3.0, 2.0, 1.0, 3.0,
 4.0, 3.0, 1.0, 4.0,
 2.0, 1.0, 3.0, 1.0,
 1.0, 5.0, 2.0, 2.0,
 1.0, 2.0, 2.0, 3.0};
int main()
{
 int m = 6, n = 4;
 float s[4], *p_u, *p_v;
 /* Compute SVD */
 imsl_f_lin_svd_gen (m, n, a,
 IMSL_RETURN_USER, s,
 IMSL_U, &p_u,
 IMSL_V, &p_v,
 0);
 /* Print decomposition*/
 imsl_f_write_matrix ("Singular values, S", 1, n, s, 0);
 imsl_f_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
 imsl_f_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
}

250

 Linear Systems lin_svd_gen
Output

 Singular values, S
 1 2 3 4
 11.49 3.27 2.65 2.09
 Left singular vectors, U
 1 2 3 4
1 -0.3805 -0.1197 -0.4391 0.5654
2 -0.4038 -0.3451 0.0566 -0.2148
3 -0.5451 -0.4293 -0.0514 -0.4321
4 -0.2648 0.0683 0.8839 0.2153
5 -0.4463 0.8168 -0.1419 -0.3213
6 -0.3546 0.1021 0.0043 0.5458
 Right singular vectors, V
 1 2 3 4
1 -0.4443 -0.5555 0.4354 -0.5518
2 -0.5581 0.6543 -0.2775 -0.4283
3 -0.3244 0.3514 0.7321 0.4851
4 -0.6212 -0.3739 -0.4444 0.5261

Example 3

This example computes the rank and generalized inverse of a 3 × 2 matrix A. The rank and the 2 × 3 generalized

inverse matrix A+ are printed.

#include <imsl.h>
#include <stdio.h>
float a[] =
 {1.0, 0.0,
 1.0, 1.0,
 100.0, -50.0};
int main()
{
 int m = 3, n = 2;
 float tol;
 float gen_inva[6];
 float *s;
 int rank;
 /* Compute generalized inverse */
 tol = 1.e-4;
 s = imsl_f_lin_svd_gen (m, n, a,
 IMSL_RANK, tol, &rank,
 IMSL_INVERSE_USER, gen_inva,
 IMSL_INV_COL_DIM, m,
 0);
 /* Print rank, singular values and */
 /* generalized inverse. */
 printf ("Rank of matrix = %2d", rank);
 imsl_f_write_matrix ("Singular values", 1, n, s, 0);
 imsl_f_write_matrix ("Generalized inverse", n, m, gen_inva,
251

 Linear Systems lin_svd_gen
 IMSL_A_COL_DIM, m,
 0);
}

Output

Rank of matrix = 2
 Singular values
 1 2
 111.8 1.4
 Generalized inverse
 1 2 3
1 0.100 0.300 0.006
2 0.200 0.600 -0.008

Fatal Errors
IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30 iterations.

IMSL_UPDATE_PROCESS_FAILED The algorithm failed to compute a singular value.
The update process of divide-and-conquer failed.
252

 Linear Systems lin_svd_gen (complex)
lin_svd_gen (complex)

more...

Computes the SVD, A = USVH, of a complex rectangular matrix A. An approximate generalized inverse and rank of
A also can be computed.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[], …, 0)

The type d_complex function is imsl_z_lin_svd_gen.

Required Arguments
int m (Input)

Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

f_complex a[] (Input)
Array of size m × n containing the matrix.

Return Value
Using only required arguments, imsl_c_lin_svd_gen returns a pointer to a complex array of length
min (m, n) containing the singular values of the matrix. To release this space, use imsl_free. If no value can be
computed then NULL is returned.
253

 Linear Systems lin_svd_gen (complex)
Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[],

IMSL_METHOD, int imeth,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, f_complex s[],
IMSL_RANK, float tol, int *rank,
IMSL_U, f_complex **p_u,
IMSL_U_USER, f_complex u[],
IMSL_U_COL_DIM, int u_col_dim,
IMSL_V, f_complex **p_v,
IMSL_V_USER, f_complex v[],
IMSL_V_COL_DIM, int v_col_dim,
IMSL_INVERSE, f_complex **p_gen_inva,
IMSL_INVERSE_USER, f_complex gen_inva[],
IMSL_INV_COL_DIM, int gen_inva_col_dim,
0)

Optional Arguments
IMSL_METHOD, int imeth (Input)

The method used in the computation of the singular values and vectors.

Default: imeth = 0

Computational Method

imeth IMSL LAPACK

0 Uses QR method to determine
singular values and singular
vectors.

Uses QR method if singular vectors are de-
sired and the dqds algorithm (Fernando and
Parlett, 1994) otherwise.

1 Uses the same algorithm as for
imeth = 0.

Uses the dqds algorithm (Fernando and Par-
lett, 1994) if singular values only are desired
and a divide-and-conquer algorithm if singu-
lar vectors are desired.
254

 Linear Systems lin_svd_gen (complex)
NOTE: The LAPACK algorithms can be used if a vendor supplied library that supports LAPACK is
available. Examples are Intel’s® Math Kernel Library (MKL) or Sun’s™ High Performance
Library. Otherwise, only the native IMSL algorithm is available.

IMSL_RETURN_USER, f_complex s[] (Output)
A user-allocated array of length min (m, n) containing the singular values of A in nonincreasing order.
The complex entries are all real. If IMSL_RETURN_USER is used, the return value of
imsl_c_lin_svd_gen is s.

IMSL_RANK, float tol, int *rank (Input/Output)

float tol (Input)
Scalar containing the tolerance used to determine when a singular value is negligible and
replaced by the value zero. If tol > 0, then a singular value si i is considered negligible if
si.i ≤ tol. If tol < 0, then a singular value si.i is considered negligible if si.i ≤ ∣tol∣*∥A∥∞. In
this case, ∣tol∣ should be an estimate of relative error or uncertainty in the data.
Default: tol = 100.0 * imsl_f_machine(4)

int *rank (Output)
Integer containing an estimate of the rank of A.

IMSL_U, f_complex **p_u (Output)
The address of a pointer to an array of size m × min (m, n) containing the min (m, n) left singular vec-
tors of A. On return, the necessary space is allocated by imsl_c_lin_svd_gen. Typically,
f_complex *p_u is declared, and &p_u is used as an argument.

IMSL_U_USER, f_complex u[] (Output)
The address of a pointer to an array of size m × min (m, n) containing the min (m, n) left singular vec-
tors of A. The left singular vectors can be returned using the storage locations of the array a. Note
that the return of the left and right singular vectors cannot use the storage locations of a
simultaneously.

IMSL_U_COL_DIM, int u_col_dim (Input)
The column dimension of the array containing the left singular vectors.
Default: u_col_dim = min (m, n)

IMSL_V, f_complex **p_v (Output)
The address of a pointer to array of size n × min (m, n) containing the right singular vectors of A. On
return, the necessary space is allocated by imsl_c_lin_svd_gen. Typically, f_complex *p_v is
declared, and &p_v is used as an argument.
255

 Linear Systems lin_svd_gen (complex)
IMSL_V_USER, f_complex v[] (Output)
The address of a pointer to array of size n × min (m, n) containing the right singular vectors of A. The
right singular vectors can be returned using the storage locations of the array a. Note that the return
of the left and right singular vectors cannot use the storage locations of a simultaneously.

IMSL_V_COL_DIM, int v_col_dim (Input)
The column dimension of the array containing the right singular vectors.
Default: v_col_dim = min (m, n)

IMSL_INVERSE, f_complex **p_gen_inva (Output)
The address of a pointer to an array of size n × m containing the generalized inverse of the matrix A.
On return, the necessary space is allocated by imsl_c_lin_svd_gen. Typically,
f_complex *p_gen_inva is declared, and &p_gen_inva is used as an argument.

IMSL_INVERSE_USER, f_complex gen_inva[] (Output)
A user-allocated array of size n × m containing the general inverse of the matrix A.

IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
The column dimension of the array containing the general inverse of the matrix A.
Default: gen_inva_col_dim = m

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

Description
The function imsl_c_lin_svd_gen computes the singular value decomposition of a complex matrix A. It first
reduces the matrix A to a bidiagonal matrix B by pre- and post-multiplying Householder transformations. Then,
the singular value decomposition of B is computed using the implicit-shifted QR algorithm. An estimate of the
rank of the matrix A is obtained by finding the smallest integer k such that sk,k ≤ tol or sk,k ≤ ∣tol∣*∥A∥∞. Since

si+1,i+1 ≤ si,i, it follows that all the si,i satisfy the same inequality for i = k, …, min (m, n) − 1. The rank is set to the

value k − 1. If A = USVH, its generalized inverse is A+ = VS+ UH.

Here,

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or IMSL_INVERSE_USER is
specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is
then computed. The function imsl_c_lin_svd_gen fails if the QR algorithm does not converge after 30 iter-
ations isolating an individual singular value.

S+ = diag s1, 1
−1 , … , si, i

−1, 0, … , 0
256

 Linear Systems lin_svd_gen (complex)
Examples

Example 1

This example computes the singular values of a 6 × 3 complex matrix.

#include <imsl.h>
int main()
{
 int m = 6, n = 3;
 f_complex *s;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};
 /* Compute singular values */
 s = imsl_c_lin_svd_gen (m, n, a, 0);
 /* Print singular values */
 imsl_c_write_matrix ("Singular values", 1, n, s, 0);
}

Output

 Singular values
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

Example 2

This example computes the singular value decomposition of the 6 × 3 complex matrix A. The singular values are
returned in the user-provided array. The matrices U and V are returned in the space provided by the function
imsl_c_lin_svd_gen.

#include <imsl.h>
int main()
{
 int m = 6, n = 3;
 f_complex s[3], *p_u, *p_v;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};
 /* Compute SVD of a */
 imsl_c_lin_svd_gen (m, n, a,
 IMSL_RETURN_USER, s,
 IMSL_U, &p_u,
 IMSL_V, &p_v,
 0);
 /* Print decomposition factors */
257

 Linear Systems lin_svd_gen (complex)
 imsl_c_write_matrix ("Singular values, S", 1, n, s, 0);
 imsl_c_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
 imsl_c_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
}

Output

 Singular values, S
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)
 Left singular vectors, U
 1 2 3
1 (0.1968, 0.2186) (0.5011, 0.0217) (-0.2007, -0.1003)
2 (0.3443, -0.3542) (-0.2933, 0.0248) (0.1155, -0.2338)
3 (0.1457, 0.2307) (-0.5424, 0.1381) (-0.4361, -0.4407)
4 (0.3016, -0.0844) (0.2157, 0.2659) (-0.0523, -0.0894)
5 (0.2283, -0.6008) (-0.1325, 0.1433) (0.3152, -0.0090)
6 (0.2876, -0.0350) (0.4377, -0.0400) (0.0458, -0.6205)
 Right singular vectors, V
 1 2 3
1 (0.6616, 0.0000) (-0.2651, 0.0000) (-0.7014, 0.0000)
2 (0.7355, 0.0379) (0.3850, -0.0707) (0.5482, 0.0624)
3 (0.0507, -0.1317) (0.1724, 0.8642) (-0.0173, -0.4509)

Example 3

This example computes the rank and generalized inverse of a 6 × 4 matrix A. The rank and the 4 × 6 generalized

inverse matrix A+ are printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int m = 6, n = 4, rank;
 float tol;
 f_complex gen_inv[24], *s;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, {1.0,0.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, {0.0,1.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, {0.0,0.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, {2.0,1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, {1.0,3.1},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}, {1.4,1.9}};
 /* Factor a */
 tol = 1.e-4;
 s = imsl_c_lin_svd_gen (m, n, a,
 IMSL_RANK, tol, &rank,
 IMSL_INVERSE_USER, gen_inv,
 IMSL_INV_COL_DIM, m,
 0);
 /* Print rank and generalized inverse matrix */
 printf ("Rank = %2d", rank);
258

 Linear Systems lin_svd_gen (complex)
 imsl_c_write_matrix ("Singular values", 1, n, s,
 0);
 imsl_c_write_matrix ("Generalized inverse", n, m, gen_inv,
 IMSL_A_COL_DIM, m,
 0);
}

Output

Rank = 4
 Singular values
 1 2 3
(12.13, 0.00) (9.53, 0.00) (5.67, 0.00)
 4
(1.74, 0.00)
 Generalized inverse
 1 2 3
1 (0.0266, -0.0164) (-0.0185, -0.0453) (0.0720, -0.0700)
2 (0.0061, -0.0280) (0.0820, 0.1156) (-0.0410, 0.0242)
3 (-0.0019, 0.0572) (0.1174, -0.0812) (0.0499, -0.0463)
4 (0.0380, -0.0298) (-0.0758, 0.2158) (0.0356, 0.0557)
 4 5 6
1 (-0.0220, 0.0428) (-0.0003, 0.0709) (0.0254, -0.1050)
2 (0.0959, -0.0885) (-0.0187, -0.0287) (-0.0218, 0.1109)
3 (-0.0234, -0.1033) (-0.0769, -0.0103) (0.0810, 0.1074)
4 (0.2918, 0.0763) (0.0881, -0.2070) (-0.1531, -0.0814)

Fatal Errors
IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30 iterations.

IMSL_UPDATE_PROCESS_FAILED The algorithm failed to compute a singular value.
The update process of divide-and-conquer failed.
259

 Linear Systems lin_sol_nonnegdef
lin_sol_nonnegdef
Solves a real symmetric nonnegative definite system of linear equations Ax = b. Using options, computes a Chole-

sky factorization of the matrix A, such that A = RTR = LLT. Computes the solution to Ax = b given the Cholesky
factor.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[], …, 0)

The type double function is imsl_d_lin_sol_nonnegdef.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)
Array of size n × n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
Using required arguments, imsl_f_lin_sol_nonnegdef returns a pointer to a solution x of the linear sys-
tem. To release this space, use imsl_free. If no value can be computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[],

IMSL_RETURN_USER, float x[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_FACTOR, float **p_factor,
260

 Linear Systems lin_sol_nonnegdef
IMSL_FACTOR_USER, float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_TOLERANCE, float tol,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x. When this option is specified, no storage
is allocated for the solution, and imsl_f_lin_sol_nonnegdef returns a pointer to the array x.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n × n containing the LLT factorization of A. When this
option is specified, the space for the factor matrix is allocated by imsl_f_lin_sol_nonnegdef.
The lower-triangular part of the factor array contains L, and the upper-triangular part contains LTR.
Typically, float *p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n × n containing the LLT factorization of A. The lower-triangular part of
factor contains L, and the upper-triangular part contains LT. If a is not needed, a and factor can
be the same storage locations. If IMSL_SOLVE is specified, this parameter is input; otherwise, it is
output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LLT factorization.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of A. The space for this array
is allocated by imsl_f_lin_sol_nonnegdef. Typically, float *p_inva is declared, and
&p_inva is used as an argument.
261

 Linear Systems lin_sol_nonnegdef
IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n × n containing the inverse of A. If a is not needed, a and factor can
be the same storage locations. The storage locations for A cannot be the factorization and the
inverse of A at the same time.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_TOLERANCE, float tol (Input)
Tolerance used in determining linear dependence. See the documentation for -imsl_f_machine
(imsl_f_machine(float)) in Chapter 12, “Utilities.”
Default: tol = 100* imsl_f_machine(4)

IMSL_FACTOR_ONLY
Compute the LLT factorization of A only. The argument b is ignored, and either the optional argument
IMSL_FACTOR or IMSL_FACTOR_USER is required.

IMSL_SOLVE_ONLY
Solve Ax = b using the factorization previously computed by this function. The argument a is ignored,
and the optional argument IMSL_FACTOR_USER is required.

IMSL_INVERSE_ONLY
Compute the inverse of A only. The argument b is ignored, and either the optional argument
IMSL_INVERSE or IMSL_INVERSE_USER is required.

Description
The function imsl_f_lin_sol_nonnegdef solves a system of linear algebraic equations having a symmet-

ric nonnegative definite (positive semidefinite) coefficient matrix. It first computes a Cholesky (LLT or RTR)
factorization of the coefficient matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds sequentially by columns. The i-th
column is declared to be linearly dependent on the first i − 1 columns if

where ε (specified in tol) may be set by the user. When a linear dependence is declared, all elements in the i-th
row of R (column of L) are set to zero.

∣aii −∑
j=1

i−1

r ji
2 ∣ ≤ ɛ∣aii∣
262

 Linear Systems lin_sol_nonnegdef
Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for checking for matrices that
are not nonnegative definite also are incorporated. The function imsl_f_lin_sol_nonnegdef declares A
to not be nonnegative definite and issues an error message if either of the following conditions are satisfied:

Healy’s (1968) algorithm and the function imsl_f_lin_sol_nonnegdef permit the matrices A and R to
occupy the same storage. Barrett and Healy (1978) in their remark neglect this fact. The function
imsl_f_lin_sol_nonnegdef uses

for aii in the above condition 2 to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive definite, then the resulting
inverse is a symmetric g2 inverse of A. For a matrix G to be a g2 inverse of a matrix A, G must satisfy conditions 1

and 2 for the Moore-Penrose inverse, but generally fail conditions 3 and 4. The four conditions for G to be a
Moore-Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

The solution of the linear system Ax = b is computed by solving the factored version of the linear system RTRx = b
as two successive triangular linear systems. In solving the triangular linear systems, if the elements of a row of R
are all zero, the corresponding element of the solution vector is set to zero. For a detailed description of the algo-
rithm, see Section 2 in Sallas and Lionti (1988).

Examples

Example 1

A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83-86 and 104-105) discusses
the computations for the factorization and solution to this problem.

1. aii − ∑ j=1
i−1r ji

2 < − ɛ∣aii∣

2. rii = 0 and ∣aik − ∑
j=1

i−1
r jir jk∣ > ɛ aiiakk,k > i

∑ j=1

i−1 ri j
2

263

 Linear Systems lin_sol_nonnegdef
#include <imsl.h>
int main()
{
 int n = 4;
 float *x;
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 float b[] = {18.0, 22.0, 7.0, 20.0};
 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_nonnegdef(n, a, b, 0);
 /* Print solution, x, of Ax = b */
 imsl_f_write_matrix("Solution, x", 1, n, x, 0);
}

Output

 Solution, x
 1 2 3 4
0.167 0.500 0.000 1.000

Example 2

The symmetric nonnegative definite matrix in the initial example is used to compute the factorization only in the
first call to lin_sol_nonnegdef. The space needed for the factor is provided by the user. On the second call,

both the LLT factorization and the right-hand side vector in the first example are used as the input to compute a
solution x. It also illustrates another way to obtain the solution array x.

#include <imsl.h>
int main()
{
 int n = 4, a_col_dim = 6;
 float factor[36], x[5];
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 float b[] = {18.0, 22.0, 7.0, 20.0};
 /* Factor A */
 imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_FACTOR_ONLY,
 0);
 /* NULL is returned in */
 /* this case. Another */
 /* way to obtain the */
 /* factor is to use the */
 /* IMSL_FACTOR option. */
 imsl_f_write_matrix("factor", n, n, factor,
 IMSL_A_COL_DIM, a_col_dim,
264

 Linear Systems lin_sol_nonnegdef
 0);
 /* Get the solution using */
 /* the factorized matrix. */
 imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_RETURN_USER, x,
 IMSL_SOLVE_ONLY,
 0);
 imsl_f_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}

Output

 Factor
 1 2 3 4
1 6 2 5 1
2 2 4 -2 2
3 5 -2 0 0
4 1 2 0 3
 Solution, x, of Ax = b
 1 2 3 4
 0.167 0.500 0.000 1.000

Example 3

This example uses the IMSL_INVERSE option to compute the symmetric g inverse of the symmetric nonnega-
tive matrix in the first example. Maindonald (1984, p. 106) discusses the computations for this problem.

#include <imsl.h>
int main()
{
 int n = 4;
 float *p_a_inva, *p_a_inva_a, *p_inva;
 float a[] =
 {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 /* Get g2_inverse(a) */
 imsl_f_lin_sol_nonnegdef(n, a, NULL,
 IMSL_INVERSE, &p_inva,
 IMSL_INVERSE_ONLY,
 0);
 /* Form a*g2_inverse(a) */
 p_a_inva = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, a,
 IMSL_B_MATRIX, n, n, p_inva,
 0);
 /* Form a*g2_inverse(a)*a */
 p_a_inva_a = imsl_f_mat_mul_rect("A*B",
265

 Linear Systems lin_sol_nonnegdef
 IMSL_A_MATRIX, n, n, p_a_inva,
 IMSL_B_MATRIX, n, n, a,
 0);
 imsl_f_write_matrix("The g2 inverse of a", n, n, p_inva,
 0);
 imsl_f_write_matrix("a*g2_inverse(a)\nviolates condition 3 of"
 " the M-P inverse", n, n, p_a_inva,
 0);
 imsl_f_write_matrix("a = a*g2_inverse(a)*a\ncondition 1 of"
 " the M-P inverse", n, n, p_a_inva_a,
 0);
}

Output

 The g2 inverse of a
 1 2 3 4
1 0.0347 -0.0208 0.0000 0.0000
2 -0.0208 0.0903 0.0000 -0.0556
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 -0.0556 0.0000 0.1111
 a*g2_inverse(a)
 violates condition 3 of the M-P inverse
 1 2 3 4
1 1.0 -0.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 1.0 -0.5 0.0 0.0
4 0.0 -0.0 0.0 1.0
 a = a*g2_inverse(a)*a
 condition 1 of the M-P inverse
 1 2 3 4
1 36 12 30 6
2 12 20 2 10
3 30 2 29 1
4 6 10 1 14

Warning Errors
IMSL_INCONSISTENT_EQUATIONS_2 The linear system of equations is inconsistent..

IMSL_NOT_NONNEG_DEFINITE The matrix A is not nonnegative definite.
266

 Eigensystem Analysis Functions
Eigensystem Analysis

Functions
Ordinary Linear Eigensystem Problems

General Matrices
Eigenvalues and eigenvectors. eig_gen 319
Eigenvalues and eigenvectors. .eig_gen (complex) 323

Real Symmetric Matrices
Eigenvalues and eigenvectors. .eig_sym 327

Complex Hermitian Matrices
Eigenvalues and eigenvectors. .eig_herm (complex) 331

Generalized Linear Eigensystem Problems
Real Symmetric Matrices and B Positive Definite

Eigenvalues and eigenvector. .eig_symgen 336
General Matrices

Real matrices. geneig 340
Complex matrices .geneig (complex) 345

Eigenvalues and Eigenvectors computed with ARPACK
Symmetric and General Problems

Real Symmetric Problem Ax = λBx . arpack_symmetric 272
Real General Problem Ax = λBx . arpack_general 299
267

 Eigensystem Analysis Usage Notes
Usage Notes
An ordinary linear eigensystem problem is represented by the equation Ax = λx where A denotes an n × n matrix.
The value λ is an eigenvalue and x ≠ 0 is the corresponding eigenvector. The eigenvector is determined up to a sca-
lar factor. In all functions, we have chosen this factor so that x has Euclidean length one, and the component of x
of largest magnitude is positive. The eigenvalues and corresponding eigenvectors are sorted then returned in the
order of largest to smallest complex magnitude. If x is a complex vector, this component of largest magnitude is
scaled to be real and positive. The entry where this component occurs can be arbitrary for eigenvectors having
nonunique maximum magnitude values.

A generalized linear eigensystem problem is represented by Ax = λBx where A and B are n × n matrices. The value
λ is a generalized eigenvalue, and x is the corresponding generalized eigenvector. The generalized eigenvectors
are normalized in the same manner as the ordinary eigensystem problem.

Error Analysis and Accuracy
The remarks in this section are for ordinary eigenvalue problems. Except in special cases, functions will not return
the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem Ax = λx. Typically, the computed pair

are an exact eigenvector-eigenvalue pair for a "nearby” matrix A + E. Information about E is known only in terms
of bounds of the form ∥E∥2 ≤ f (n) ∥A∥2ɛ. The value of f(n) depends on the algorithm, but is typically a small frac-

tional power of n. The parameter ɛ is the machine precision. By a theorem due to Bauer and Fike (see Golub and
Van Loan 1989, p. 342),

where σ(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of eigenvectors, ∥⋅∥2 is Euclid-

ean length, and κ(X) is the condition number of X defined as κ(X) = ∥X∥2∥X-1∥2. If A is a real symmetric or complex

Hermitian matrix, then its eigenvector matrix X is respectively orthogonal or unitary. For these matrices, κ(X) = 1.

The accuracy of the computed eigenvalues

and eigenvectors

can be checked by computing their performance index τ. The performance index is defined to be

x~, λ
~

min∣λ~ − λ∣ ≤ κ X ∥E∥2 for all λ in σ A

λ
~
j

x~ j
268

 Eigensystem Analysis Usage Notes
where ɛ is again the machine precision.

The performance index τ is related to the error analysis because

where E is the “nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an eigensystem analysis function
is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. This is an arbitrary definition, but large val-
ues of τ can serve as a warning that there is a significant error in the calculation.

If the condition number κ(X) of the eigenvector matrix X is large, there can be large errors in the eigenvalues even
if τ is small. In particular, it is often difficult to recognize near multiple eigenvalues or unstable mathematical
problems from numerical results. This facet of the eigenvalue problem is often difficult for users to understand.
Suppose the accuracy of an individual eigenvalue is desired. This can be answered approximately by computing
the condition number of an individual eigenvalue (see Golub and Van Loan 1989, pp. 344 - 345). For matrices A,
such that the computed array of normalized eigenvectors X is invertible, the condition number of λj is

the Euclidean length of the j-th row of X-1. Users can choose to compute this matrix using function
imsl_c_lin_sol_gen in Chapter 1, “Linear Systems.” An approximate bound for the accuracy of a computed
eigenvalue is then given by κjɛ∥A∥. To compute an approximate bound for the relative accuracy of an eigenvalue,

divide this bound by ∣λj∣.

Reformulating Generalized Eigenvalue Problems
The eigenvalue problem Ax = λBx is often difficult for users to analyze because it is frequently ill-conditioned.
Occasionally, changes of variables can be performed on the given problem to ease this ill-conditioning. Suppose

that B is singular, but A is nonsingular. Define the reciprocal μ = λ-1. Then assuming A is definite, the roles of A and
B are interchanged so that the reformulated problem Bx = μAx is solved. Those generalized eigenvalues μj = 0

correspond to eigenvalues λj = ∞. The remaining λj = μj
-1. The generalized eigenvectors for λj correspond to

those for μj.

τ = max
1≤ j≤n

∥Ax̃ j − λ̃ jx̃ j∥2
nε∥A∥2∥x̃ j∥2

∥Ex~ j∥2 = ∥Ax~ j − λ
~
jx
~
j∥2

κ j = ∥e jTX −1∥
269

 Eigensystem Analysis Usage Notes
Now suppose that B is nonsingular. The user can solve the ordinary eigenvalue problem Cx = λx where C = B-1A.

The matrix C is subject to perturbations due to ill-conditioning and rounding errors when computing B-1A. Com-
puting the condition numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy of
results for the generalized problem.

There is another method that users can consider to reduce the generalized problem to an alternate ordinary
problem. This technique is based on first computing a matrix decomposition B = PQ where both P and Q are
matrices that are “simple” to invert. Then, the given generalized problem is equivalent to the ordinary eigenvalue

problem Fy = λy. The matrix F = P-1AQ-1 and the unnormalized eigenvectors of the generalized problem are given

by x = Q-1y. An example of this reformulation is used in the case where A and B are real and symmetric, with B

positive definite. The function imsl_f_eig_symgen uses P = RT and Q = R where R is an upper-triangular matrix

obtained from a Cholesky decomposition, B = RTR. The matrix F = R-TAR-1 is symmetric and real. Computation of
the eigenvalue-eigenvector expansion for F is based on function imsl_f_eig_sym.

Eigenvalue Computation With ARPACK-Based Functions
ARPACK consists of a set of Fortran 77 subroutines that use the implicitly restarted Arnoldi method, described in
Sorensen (1992), to solve eigenvalue problems. ARPACK is well suited for large sparse or structured matrices A

where structured means that a matrix-vector product ω← Av requires O(n) rather than the usual O(n2) floating
point operations.

A full description of the ARPACK features can be found in the ARPACK Users' Guide written by Lehoucq, Sorensen,
and Yang (1998).

The original API for ARPACK uses a reverse communication interface. This interface can be used as illustrated in
the ARPACK Users' Guide. In order to simplify the usage of the ARPACK algorithms, CNL instead applies a forward
communication interface based on user-defined functions for matrix-vector products or linear solving steps
required by the algorithms in ARPACK. It is not necessary that the linear operators be expressed as dense or
sparse matrices. That is permitted, but for some problems the best approach is the ability to form a product of
the operator with a vector.

Function imsl_d_arpack_symmetric, based on ARPACK routines DSAUPD and DSEUPD, computes some of
the eigenvalues and corresponding eigenvectors of generalized real symmetric eigenproblems of the form
Ax = λBx. For B = I, the problem reduces to the standard eigenproblem. In the symmetric case, the Arnoldi
method specializes to a variant of the Lanczos method.

In below paragraph, add the link to the new arpack_general routine once it’s in the chapter.

Similarly, function imsl_d_arpack_general, which is based on ARPACK routines DNAUPD and DNEUPD, com-
putes eigenvalues and eigenvectors of generalized real eigenproblems of the form Ax = λBx with a real general
matrix A and a positive definite or positive semi-definite matrix B.
270

 Eigensystem Analysis Usage Notes
The Lanczos and Arnoldi methods usually work very well for the computation of non-clustered eigenvalues at the
periphery of the spectrum. Therefore, the eigenvalues of largest or smallest magnitude can be determined by

applying both methods directly to problem Cx ≡ B-1 Ax = λx. The user has to provide operator products

ω = Ax, ω = Bx, and ω = B-1x. Here, x is an input vector and ω the result of applying the linear operators A, B

or B-1 to x. Usually, matrix B is not directly inverted. Instead, a factorization of B is computed, and the linear sys-

tem Bω = x is solved using the factored form of B. In the case of the standard problem, B = I, only the product

ω = Ax has to be provided.

In the special case that B is positive definite and well-conditioned, one may compute the Cholesky decomposition

B = RTR and then solve the standard eigenvalue problem Cy ≡ R-T AR-1y = λy. The product operation required

by the Lanczos or Arnoldi algorithm, ω = Cx, is performed in steps: Solve Rz = x for z, compute y = Az, and

solve RT ω = y for ω. The eigenvectors y of C are transformed to those of the generalized problem, x, by solving

Rx = y for x.

For a generalized problem, if eigenvalues from a cluster or from the interior of the spectrum are sought, a shift
and invert spectral transformation can often be applied efficiently. Here, for a given shift value σ, the problem is

equivalently transformed into the standard eigenvalue problem Cx ≡ (A - σ B)-1Bx = vx. The matrix pencil

A - σ B is assumed to be non-singular. The purpose of the user-defined function is to provide results for the

operator products ω = Bx and ω = (A - σ B)-1x. Usually, the inverse matrix product will be computed by solving
linear systems, where the matrix pencil is the coefficient matrix. The back-transformed eigenvalues λ of the origi-

nal problem satisfy λj = σ + vj
-1. This relation shows that if eigenvalues of largest magnitude of matrix C are

computed, then also eigenvalues for the original problem are found that are closest to the shift σ in absolute
value.
271

 Eigensystem Analysis arpack_symmetric
arpack_symmetric

more...

Computes some of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue problem
Ax = λBx using an implicitly restarted Arnoldi method (IRAM). The algorithm can also be used for the standard

case B = I.

Synopsis
#include <imsl.h>
double *imsl_d_arpack_symmetric (void fcn(), int n, int nev, …, 0)

Required Arguments
void fcn (int n, double x[], int task, double y[]) (Input)

User-supplied function to return matrix-vector operations or solutions of linear systems.

int n (Input)
The dimension of the problem.

double x[] (Input)
An array of size n containing the vector to which the operator will be applied.

int task (Input)
An enumeration type which specifies the operation to be performed. Variable task is an
enumerated integer value associated with enum type Imsl_arpack_task. Table 9 lists
the following possible values:

NOTE: Function arpack_symmetric is available in double precision only.
272

 Eigensystem Analysis arpack_symmetric
double y[] (Output)
An array of size n containing the result of a matrix-vector operation or the solution of a linear
system.

int n (Input)

The dimension of the problem.

int nev (Input)

The number of eigenvalues to be computed.

Return Value
A pointer to the nev eigenvalues of the symmetric eigenvalue problem. To release this space, use imsl_free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
double *imsl_d_arpack_symmetric (void fcn(), int n, int nev,

IMSL_XGUESS, double xguess[],
IMSL_ITMAX, int itmax,
IMSL_TOLERANCE, double tol,
IMSL_SHIFT, double shift,
IMSL_EIGVAL_LOCATION, Imsl_arpack_eigval_location eigval_loc,
IMSL_EIG_PROBLEM_TYPE, Imsl_arpack_problem_type problem_type,
IMSL_EIG_SOLVE_MODE, Imsl_arpack_solve_mode mode,

Table 9 – Enum type Imsl_arpack_task

task Description

IMSL_ARPACK_PREPARE Take initial steps to prepare for the operations to follow.
These steps can include defining data for the matrices, fac-
torizations for upcoming linear system solves or recording
the vectors used in the operations.

IMSL_ARPACK_A_X y= Ax

IMSL_ARPACK_B_X y= Bx

IMSL_ARPACK_INV_SHIFT_X y= (A - σB)-1x, B general or = I

IMSL_ARPACK_INV_B_X y= B-1x
273

 Eigensystem Analysis arpack_symmetric
IMSL_NUM_LANCZOS_VECTORS, int ncv,
IMSL_NUM_ACCURATE_EIGVALS, int *n_acc,
IMSL_VECTORS, double **evec,
IMSL_VECTORS_USER, double evecu[],
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RETURN_USER, double evalu[],
IMSL_FCN_W_DATA, void fcn(), void *data,
0)

Optional Arguments
IMSL_XGUESS, double xguess[] (Input)

A non-zero vector of size n containing the starting vector for the implicitly restarted Arnoldi method.

By default, a random starting vector is computed internally.

IMSL_ITMAX, int itmax (Input)
The maximum number of Arnoldi iterations.
Default: itmax = 1000.

IMSL_TOLERANCE, double tol (Input)
Tolerance value used in the criterion for the acceptability of the relative accuracy of the Ritz values.
Default: tol = imsl_f_machine(3).

IMSL_SHIFT, double shift (Input)
The shift value used in the shift-invert spectral transformations.
Default: shift = 0.

IMSL_EIGVAL_LOCATION, Imsl_arpack_eigval_location eigval_loc (Input)
An enumeration type which specifies the location of the eigenvalues to compute.
274

 Eigensystem Analysis arpack_symmetric
For computational modes that use a spectral transformation the eigenvalue location refers to the
transformed—not the original—problem. See the Description section for an example.
Default: eigval_loc = IMSL_ARPACK_LARGEST_ALGEBRAIC.

IMSL_EIG_PROBLEM_TYPE, Imsl_arpack_problem_type problem_type (Input)
An enumeration type that indicates if a standard or generalized eigenvalue problem is to be solved.

Default: problem_type = IMSL_ARPACK_STANDARD.

IMSL_EIG_SOLVE_MODE, Imsl_arpack_solve_mode mode (Input)
An enumeration type indicating which computational mode is used for the eigenvalue computation.
Variables problem_type and mode together define the tasks that must be provided in the user-
supplied function. The following table describes the values variable mode can take, the feasible com-
binations with variable problem_type and the related tasks:

Table 10 – Enum type Imsl_arpack_eigval_location

eigval_loc Description

IMSL_ARPACK_LARGEST_ALGEBRAIC Compute algebraically largest eigenvalues.

IMSL_ARPACK_SMALLEST_ALGEBRAIC Compute algebraically smallest eigenvalues.

IMSL_ARPACK_LARGEST_MAGNITUDE Compute eigenvalues of largest magnitude.

IMSL_ARPACK_SMALLEST_MAGNITUDE Compute eigenvalues of smallest magnitude.

IMSL_ARPACK_BOTH_ENDS Compute eigenvalues from both ends of the
spectrum.

Table 11 – Enum type Imsl_arpack_problem_type

problem_type Description

IMSL_ARPACK_STANDARD Solve standard problem, Ax = λx.

IMSL_ARPACK_GENERALIZED Solve generalized problem, Ax = λBx.

Table 12 – Mode/problem type combinations

mode problem_type Required tasks

IMSL_ARPACK_REGULAR IMSL_ARPACK_STANDARD y = Ax

IMSL_ARPACK_REGULAR_INVERSE IMSL_ARPACK_GENERALIZED y = Ax, y = Bx, y = B-1x

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_STANDARD y= (A - σI)-1x

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_GENERALIZED y = Bx, y = (A - σB)-1x
275

 Eigensystem Analysis arpack_symmetric
Default: mode = IMSL_ARPACK_REGULAR.

IMSL_NUM_LANCZOS_VECTORS, int ncv (Input)
The number of Lanczos vectors generated in each iteration of the Arnoldi method. It is required that
nev +1 <= ncv <= n. A value ncv >= min(2*nev, n) is recommended.

Default: ncv = min(2*nev, n).

IMSL_NUM_ACCURATE_EIGVALS, int *n_acc (Output)
The number of eigenvalues that the algorithm was able to compute accurately. This number can be
smaller than nev.

IMSL_VECTORS, double **evec (Output)
The address of a pointer to an array of size n × nev containing the B-orthonormalized eigenvectors
of the eigenvalue problem in the first n_acc columns. Typically, double *evec is declared, and
&evec is used as an argument.

IMSL_VECTORS_USER, double evecu[] (Output)
A user-defined array of size n × nev containing the B-orthonormalized eigenvectors of the eigen-
value problem in the first n_acc columns.

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = nev

IMSL_RETURN_USER, double evalu[] (Output)
An array of size nev containing the accurately computed eigenvalues in the first n_acc locations.

IMSL_FCN_W_DATA, void fcn (int n, double x[], int task, double y[]), void *data, (Input/Output)
User-supplied function to return matrix-vector operations or solutions of linear systems, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

IMSL_ARPACK_BUCKLING IMSL_ARPACK_GENERALIZED y = Ax, y = (A - σB)-1x

IMSL_ARPACK_CAYLEY IMSL_ARPACK_GENERALIZED y = Ax, y = Bx, y = (A - σB)-1x

NOTE: The possibility to supply user-data via IMSL_FCN_W_DATA is an important feature of
arpack_symmetric. It allows the user to transfer problem-specific data to the algorithm without the
need to define global data. See the documentation examples (Example 2, Example 3, and Example 4)
for use cases.

Table 12 – Mode/problem type combinations

mode problem_type Required tasks
276

 Eigensystem Analysis arpack_symmetric
Description
Function imsl_d_arpack_symmetric, which is based on ARPACK subroutines DSAUPD and DSEUPD (see
the ARPACK Users' Guide, Lehoucq et al. (1998)), computes selected eigenvalue-eigenvector pairs for generalized
symmetric eigenvalue problems of the form

Ax = λBx.

Here, A and B are symmetric matrices. For B = I, the generalized problem reduces to the standard symmetric
eigenvalue problem.

The ARPACK routine DSAUPD implements a variant of the Lanczos method and uses reverse communication to
obtain the required matrix-vector products or solutions of linear systems for the iterations. Responses to these
requests are made by calling the user-defined function fcn. User data can be made available for the evaluations
by optional argument IMSL_FCN_W_DATA.

For a given problem, the requested responses depend on the settings of optional arguments IMSL_EIG_PROB-
LEM_TYPE and IMSL_EIG_SOLVE_MODE. For each response, a corresponding task must be defined in the user-
defined function fcn. The Mode/problem type combinations table under optional argument
IMSL_EIG_SOLVE_MODE shows which tasks have to be defined for a certain problem.

The following code snippet shows the complete list of tasks available for fcn and their meaning:

void fcn(int n, double x[], int itask, double y[])
{
 switch (itask) {
 /*
 * Define responses to different tasks for the generalized
 * eigenvalue problem
 * A*x = lambda * B * x,
 * which includes the ordinary case B = I.
 */
 case IMSL_ARPACK_PREPARE:
 /*
 * Take initial steps to prepare for the operations
 * that follow. Note that arpack_symmetric internally
 * always calls fcn with this enum value, even if it is
 * not required by the user.
 */
 break;
 case IMSL_ARPACK_A_X:
 /*
 * Compute matrix-vector product y = A * x
 */
 break;
 case IMSL_ARPACK_B_X:
 /*
 * Compute matrix-vector product y = B * x
 */
 break;
 case IMSL_ARPACK_INV_SHIFT_X:
 /*
277

 Eigensystem Analysis arpack_symmetric
 * Compute matrix-vector product
 * y = inv(A - sigma * B) * x.
 * Usually, matrix A - sigma * B is not directly inverted.
 * Instead, a factorization of A - sigma * B is determined,
 * and the factors are used to compute y via backsolves.
 *
 * Example:
 * If an LU factorization of A - sigma * B exists, then
 * A - sigma * B = P * L * U,
 * P a permutation matrix. Vector y can then be determined
 * as solution of the linear system
 * L * U * y = trans(P) * x.
 * The LU factorization only has to be computed once, for
 * example outside of fcn or within IMSL_ARPACK_PREPARE.
 */
 break;
 case IMSL_ARPACK_INV_B_X:
 /*
 * Compute matrix-vector product
 * y = inv(B) * x.
 * Usually, matrix B is not directly inverted.
 * Instead, a factorization of B is determined, and the
 * factors are used to compute y via backsolves.
 *
 * Example:
 * If matrix B is positive definite, then a Cholesky
 * factorization B = L * trans(L) exists. Vector y can then
 * be determined by solving the linear system
 * L * trans(L) * y = x.
 * The Cholesky factorization only has to be computed once,
 * for example outside of fcn or within IMSL_ARPACK_PREPARE.
 */
 break;
 default:
 /*
 * Define error conditions, if necessary.
 */
 break;
 }
}

Internally, imsl_d_arpack_symmetric first determines the eigenvalues for the problem specified by
optional arguments IMSL_EIG_SOLVE_MODE and IMSL_EIG_PROBLEM_TYPE.

Table 13 shows the matrices whose eigenvalues are determined for a given combination of these optional
arguments.
278

 Eigensystem Analysis arpack_symmetric
Note that the eigenvalue location defined by optional argument IMSL_EIGVAL_LOCATION always refers to the
matrices of Table 13.

For example, for mode=IMSL_ARPACK_SHIFT_INVERT, problem_type=IMSL_ARPACK_STANDARD,
and eigval_loc=IMSL_ARPACK_LARGEST_MAGNITUDE, the eigenvalues of largest magnitude of the

shift-inverted matrix (A - σI)-1 are computed. Because of the relationship

these eigenvalues correspond to the eigenvalues of the original problem Ax = λx that are closest to the shift σ in
absolute value.

In a second step, imsl_d_arpack_symmetric internally transforms the eigenvalues back to the eigenvalues

of the original problem Ax = λBx or Ax = λx and computes eigenvectors, if required.

Besides matrices A and B always being symmetric, the modes for the generalized eigenproblem require some
additional matrix properties summarized in Table 14:

Table 13 – Matrices for a given mode/problem_type combination

mode problem_type Matrix

IMSL_ARPACK_REGULAR IMSL_ARPACK_STANDARD A

IMSL_ARPACK_REGULAR_INVERSE IMSL_ARPACK_GENERALIZED B-1A

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_STANDARD (A - σI)-1

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_GENERALIZED (A - σB)-1B

IMSL_ARPACK_BUCKLING IMSL_ARPACK_GENERALIZED (A - σB)-1A

IMSL_ARPACK_CAYLEY IMSL_ARPACK_GENERALIZED (A - σB)-1(A+ σB)

(A − σ I)−1 x = ν x, λ = 1v + σ ,
279

 Eigensystem Analysis arpack_symmetric
Copyright notice for ARPACK

Copyright (c) 1996-2008 Rice University. Developed by D.C. Sorensen, R.B. Lehoucq, C. Yang, and K. Maschhoff.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer listed in this license in the documentation and/or other materials provided with the distribu-
tion.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or pro-
mote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Examples

Example 1

Eigenvalues and eigenfunctions of the Laplacian operator

Table 14 – Generalized eigenproblem additional matrix properties

mode Matrix properties

IMSL_ARPACK_REGULAR_INVERSE B positive definite

IMSL_ARPACK_SHIFT_INVERT B positive semi-definite

IMSL_ARPACK_BUCKLING A positive semi-definite, B indefinite

IMSL_ARPACK_CAYLEY B positive semi-definite
280

 Eigensystem Analysis arpack_symmetric
defined by

-Δu = λu

on the unit square [0,1] × [0,1] with zero Dirichlet boundary values, are approximated.

The full set of eigenvalues and their eigenfunctions are given by the sequence

where m,n are positive integers.

This provides a check on the accuracy of the numerical results. Equally spaced divided differences on the unit
square are used to approximate - Δu. A few eigenvalues of smallest magnitude and their eigenvectors are
requested. The problem reduces to a symmetric matrix eigenvalue computation. The user function code provides
the second order divided difference operator applied to an input vector under task IMSL_ARPACK_A_X.

#include <stdio.h>
#include <stdlib.h>
#include <imsl.h>
static void fcn(int n, double x[], int iact, double result[]);
static void tx(int nx, double x[], double y[]);
static void ax(int nx, double v[], double w[]);
static void daxpy(int n, double alpha, double x[], double y[]);
int main() {
 int n, nx, nev, n_acc, i, j;
 double *eigvals = NULL, *evecu = NULL, *res = NULL;
 nx = 10;
 n = nx * nx;
 nev = 5;
 /* Allocate memory for eigenvectors */
 evecu = (double *)malloc(n * nev * sizeof(double));
 /* Allocate memory for auxiliary array */
 res = (double *)malloc((2 * n + nev) * sizeof(double));
 eigvals = imsl_d_arpack_symmetric(fcn, n, nev,
 IMSL_EIGVAL_LOCATION, IMSL_ARPACK_SMALLEST_MAGNITUDE,
 IMSL_NUM_ACCURATE_EIGVALS, &n_acc,
 IMSL_VECTORS_USER, evecu,
 0);
 printf("Number of requested eigenvalues : %d\n", nev);
 printf("Number of accurate (converged) eigenvalues : %d\n", n_acc);

∆ u ≡ ∂2u
∂ x2
+ ∂2u
∂ y2

λm,n = (m
2 + n2)π2, um,n(x,y) = 2sin(m π x)sin(n π y),
281

 Eigensystem Analysis arpack_symmetric
 for (i = 0; i < n_acc; i++) {
 /*
 * Compute the residual norm || A * x - lambda * x || for the
 * n_acc accurately computed eigenvalues and eigenvectors.
 */
 /* Compute A * x - lambda * x */
 for (j = 0; j < n; j++) {
 res[nev + j] = evecu[j * nev + i];
 }
 ax(nx, &res[nev], &res[nev + n]);
 for (j = 0; j < n; j++) {
 res[nev + n + j] -= eigvals[i] * res[nev + j];
 }
 /* Compute relative residuals */
 res[i] = imsl_d_vector_norm(n, &res[nev + n], 0);
 if (eigvals[i] != 0.0) {
 res[i] /= eigvals[i];
 }
 }
 /*
 * Display eigenvalues and residuals
 */
 printf("\n Smallest Laplacian eigenvalues\n");
 printf("%14s%25s\n", "Eigenvalues", "Relative residuals");
 for (i = 0; i < n_acc; i++) {
 printf("%14.8lf%20.8lf\n", eigvals[i], res[i]);
 }
 /* Print first 2D Laplacian eigenfunction at Grid Points */
 for (j = 0; j < n; j++) {
 res[j] = evecu[j * nev];
 }
 imsl_d_write_matrix("First 2D Laplacian Eigenfunction at Grid Points",
 nx, nx, res, 0);
 if (eigvals)
 imsl_free(eigvals);
 if (evecu)
 free(evecu);
 if (res)
 free(res);
}
static void fcn(int n, double x[], int itask, double y[])
{
 int nx = 10; /* n = nx * nx */
 switch (itask) {
 case IMSL_ARPACK_PREPARE:
 /* Nothing to prepare, but formally handle this case */
 break;
 case IMSL_ARPACK_A_X:
 ax(nx, x, y);
 break;
 default:
 imsl_set_user_fcn_return_flag(1);
 break;
282

 Eigensystem Analysis arpack_symmetric
 }
}
/*
 * Matrix-vector function
 *
 * The matrix used is the 2 dimensional discrete Laplacian on the
 * unit square with zero Dirichlet boundary condition.
 *
 * Computes y <- A * x, where A is the nx*nx by nx*nx block
 * tridiagonal matrix
 *
 * | T -I |
 * | -I T -I |
 * A = | -I T |
 * | ... -I |
 * | -I T |
 *
 * Function tx() is called to compute y <- T * x.
 */
static void ax(int nx, double x[], double y[]) {
 int i, j, lo, n2;
 double h2;
 tx(nx, x, y);
 daxpy(nx, -1.0, &x[nx], y);
 for (j = 2; j <= nx - 1; j++) {
 lo = (j - 1)*nx;
 tx(nx, &x[lo], &y[lo]);
 daxpy(nx, -1.0, &x[lo - nx], &y[lo]);
 daxpy(nx, -1.0, &x[lo + nx], &y[lo]);
 }
 lo = (nx - 1) * nx;
 tx(nx, &x[lo], &y[lo]);
 daxpy(nx, -1.0, &x[lo - nx], &y[lo]);
 /*
 * Scale the vector w by (1 / (h * h)), where h is the
 * mesh size.
 */
 n2 = nx * nx;
 h2 = 1.0 / ((double)((nx + 1)*(nx + 1)));
 for (i = 0; i < n2; i++) {
 y[i] /= h2;
 }
}
static void tx(int nx, double x[], double y[]) {
 int j;
 double dd, dl, du;
 /*
 * Compute the matrix vector multiplication y <- T * x
 * where T is an nx by nx tridiagonal matrix with dd on the
 * diagonal, dl on the subdiagonal, and du on the superdiagonal.
 */
 dd = 4.0;
 dl = -1.0;
 du = -1.0;
283

 Eigensystem Analysis arpack_symmetric
 y[0] = dd * x[0] + du * x[1];
 for (j = 2; j <= nx - 1; j++) {
 y[j - 1] = dl * x[j - 2] + dd * x[j - 1] + du * x[j];
 }
 y[nx - 1] = dl * x[nx - 2] + dd * x[nx - 1];
}
static void daxpy(int n, double alpha, double x[], double y[]) {
 int i;
 /*
 * Compute y <- alpha * x + y
 */
 for (i = 0; i < n; i++) {
 y[i] += alpha * x[i];
 }
}

Output
Number of requested eigenvalues : 5
Number of accurate (converged) eigenvalues : 5
 Smallest Laplacian eigenvalues
 Eigenvalues Relative residuals
 19.60540077 0.00000000
 48.21934544 0.00000000
 48.21934544 0.00000000
 76.83329011 0.00000000
 93.32640277 0.00000000

 First 2D Laplacian Eigenfunction at Grid Points
 1 2 3 4 5
 1 0.0144 0.0277 0.0387 0.0466 0.0507
 2 0.0277 0.0531 0.0743 0.0894 0.0973
 3 0.0387 0.0743 0.1038 0.1250 0.1360
 4 0.0466 0.0894 0.1250 0.1504 0.1637
 5 0.0507 0.0973 0.1360 0.1637 0.1781
 6 0.0507 0.0973 0.1360 0.1637 0.1781
 7 0.0466 0.0894 0.1250 0.1504 0.1637
 8 0.0387 0.0743 0.1038 0.1250 0.1360
 9 0.0277 0.0531 0.0743 0.0894 0.0973
10 0.0144 0.0277 0.0387 0.0466 0.0507

 6 7 8 9 10
 1 0.0507 0.0466 0.0387 0.0277 0.0144
 2 0.0973 0.0894 0.0743 0.0531 0.0277
 3 0.1360 0.1250 0.1038 0.0743 0.0387
 4 0.1637 0.1504 0.1250 0.0894 0.0466
 5 0.1781 0.1637 0.1360 0.0973 0.0507
 6 0.1781 0.1637 0.1360 0.0973 0.0507
 7 0.1637 0.1504 0.1250 0.0894 0.0466
 8 0.1360 0.1250 0.1038 0.0743 0.0387
 9 0.0973 0.0894 0.0743 0.0531 0.0277
10 0.0507 0.0466 0.0387 0.0277 0.0144
284

 Eigensystem Analysis arpack_symmetric
Example 2

In this example, the eigenvalues and eigenfunctions of the 1D Laplacian operator

on the unit interval [0,1] with boundary conditions u(0) =u(1) = 0 are approximated. Equally spaced divided dif-
ferences are used for the operator, which yields a symmetric tri-diagonal matrix. The eigenvalues and (normed)
eigenfunctions are

This example shows that using inverse iteration for approximating the largest reciprocals of eigenvalues is more
efficient than directly computing the smallest magnitude eigenvalues by matrix-vector products.

By using mode IMSL_ARPACK_SHIFT_INVERT, the algorithm first computes the largest eigenvalues of the

shift-inverse matrix (A - σI)-1, here with σ = 0. These eigenvalues are then transformed back to the smallest

eigenvalues of A - σI = A, a positive definite matrix. When user-defined function fcn is entered with task

IMSL_ARPACK_PREPARE, the LU factorization of the shifted matrix A - σI is computed. When fcn is later

entered with task IMSL_ARPACK_INV_SHIFT_X, the LU factorization is available to efficiently compute y =

(A - σI)-1x = A-1x via LUy = x.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <imsl.h>
static void ax(int nx, double x[], double y[]);
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data);
typedef struct {
 double shift;
 double *band_matrix;
 int *ipvt;
 double *factor;
} imsl_arpack_data;
int main() {
 int n, nev, ncv, n_acc, i, j;
 int *ipvt = NULL;
 double shift = 0.0;
 double *a_matrix = NULL, *factor = NULL, *eigvals = NULL;
 double *evecu = NULL, *res = NULL;
 imsl_arpack_data usr_data;
 n = 100;
 nev = 4;

− d
2u
dx2
= λ u

λn = n
2π2, un(x) = 2sin(n π x), n = 1,2, …
285

 Eigensystem Analysis arpack_symmetric
 ncv = 10;
 shift = 0.0;
 /* Allocate memory for eigenvectors */
 evecu = (double *)malloc(n * nev * sizeof(double));
 /* Allocate arrays needed in the LU factorization */
 ipvt = (int *)malloc(n * sizeof(int));
 a_matrix = (double *)malloc(3 * n * sizeof(double));
 factor = (double *)malloc(4 * n * sizeof(double));
 /* Allocate memory for auxiliary array */
 res = (double *)malloc((2 * n + nev) * sizeof(double));
 if (!evecu || !ipvt || !a_matrix || !factor || !res) {
 printf("Memory allocation error\n");
 goto FREE_SPACE;
 }
 usr_data.band_matrix = a_matrix;
 usr_data.ipvt = ipvt;
 usr_data.factor = factor;
 usr_data.shift = shift;
 eigvals = imsl_d_arpack_symmetric(NULL, n, nev,
 IMSL_EIG_SOLVE_MODE, IMSL_ARPACK_SHIFT_INVERT,
 IMSL_NUM_LANCZOS_VECTORS, ncv,
 IMSL_NUM_ACCURATE_EIGVALS, &n_acc,
 IMSL_FCN_W_DATA, fcn_w_data, &usr_data,
 IMSL_VECTORS_USER, evecu,
 IMSL_SHIFT, shift,
 0);
 printf("Number of requested eigenvalues : %d\n", nev);
 printf("Number of accurate (converged) eigenvalues : %d\n", n_acc);
 for (i = 0; i < n_acc; i++) {
 /*
 * Compute the residual norm || A * x - lambda * x || for the
 * n_acc accurately computed eigenvalues and eigenvectors.
 */
 /* Compute A * x - lambda * x */
 for (j = 0; j < n; j++) {
 res[nev + j] = evecu[j * nev + i];
 }
 ax(n, &res[nev], &res[nev + n]);
 for (j = 0; j < n; j++) {
 res[nev + n + j] -= eigvals[i] * res[nev + j];
 }
 /* Compute relative residuals */
 res[i] = imsl_d_vector_norm(n, &res[nev + n], 0);
 if (fabs(eigvals[i]) != 0.0) {
 res[i] /= fabs(eigvals[i]);
 }
 }
 /*
 * Display eigenvalues and residuals
 */
286

 Eigensystem Analysis arpack_symmetric
 printf("\n Largest Laplacian eigenvalues near zero shift\n");
 printf("%14s%25s\n", "Eigenvalues", "Relative residuals");
 for (i = 0; i < n_acc; i++) {
 printf("%14.8lf%20.8lf\n", eigvals[i], res[i]);
 }
FREE_SPACE:
 if (eigvals)
 imsl_free(eigvals);
 if (ipvt)
 free(ipvt);
 if (a_matrix)
 free(a_matrix);
 if (factor)
 free(factor);
 if (res)
 free(res);
 if (evecu)
 free(evecu);
}
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data)
{
 int j;
 int *ipvt = NULL;
 double shift, h2;
 double *a_matrix = NULL, *factor = NULL;
 imsl_arpack_data *usr_data = (imsl_arpack_data *)data;
 shift = usr_data->shift;
 a_matrix = usr_data->band_matrix;
 ipvt = usr_data->ipvt;
 factor = usr_data->factor;
 switch (itask) {
 case IMSL_ARPACK_PREPARE:
 /* Create symmetric tridiagonal matrix in band storage format */
 h2 = 1.0 / (((double)(n + 1)) * (n + 1));
 for (j = 1; j <= n; j++) {
 a_matrix[j - 1] = -1.0 / h2;
 a_matrix[n + j - 1] = 2.0 / h2 - shift;
 a_matrix[2 * n + j - 1] = a_matrix[j - 1];
 }
 /* Compute LU factorization of tridiagonal matrix */
 imsl_d_lin_sol_gen_band(n, a_matrix, 1, 1, NULL,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_FACTOR_ONLY,
 0);
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(1);
 }
 break;
 case IMSL_ARPACK_INV_SHIFT_X:
 /* Solve (A - shift * I) y = x */
 imsl_d_lin_sol_gen_band(n, NULL, 1, 1, x,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_RETURN_USER, y,
 IMSL_SOLVE_ONLY,
 0);
287

 Eigensystem Analysis arpack_symmetric
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(2);
 }
 break;
 default:
 imsl_set_user_fcn_return_flag(3);
 break;
 }
}
/*
 * Matrix-vector function
 * The matrix is the 1 dimensional discrete Laplacian on the
 * interval [0, 1] with zero Dirichlet boundary condition.
 */
static void ax(int n, double x[], double y[]) {
 int i;
 double h2;
 y[0] = 2.0 * x[0] - x[1];
 for (i = 1; i <= n - 2; i++) {
 y[i] = -x[i - 1] + 2.0 * x[i] - x[i + 1];
 }
 y[n - 1] = -x[n - 2] + 2.0 * x[n - 1];
 /*
 * Scale the vector y by (1 / h ^ 2).
 */
 h2 = 1.0 / (((double)(n + 1)) * (n + 1));
 for (i = 0; i < n; i++) {
 y[i] /= h2;
 }
}

Output

Number of requested eigenvalues : 4
Number of accurate (converged) eigenvalues : 4
 Largest Laplacian eigenvalues near zero shift
 Eigenvalues Relative residuals
 9.86880868 0.00000000
 39.46568728 0.00000000
 88.76200274 0.00000000
 157.71006404 0.00000000

Example 3

In this example, a generalized problem is solved using the regular inverse mode. The problem comes from using
equally spaced linear finite element test functions to approximate eigenvalues and eigenfunctions of the 1D

Laplacian operator -Δ ≡ -d2/dx2, defined by

-Δu = λu,
288

 Eigensystem Analysis arpack_symmetric
on the unit interval [0,1] with boundary conditions u(0) =u(1)=0. This is Example 2 but solved using finite ele-

ments and the eigenvalues scaled by 1/π2 so that λn = n2, n = 1,2,… . In matrix notation, we have the matrix

problem Ax = λBx, with both A and B tri-diagonal and symmetric. The matrix B is non-singular.

The user function fcn requires the solution of a tri-diagonal system of linear equations with the input vector x

as right-hand side, By = x. When fcn is entered with task IMSL_ARPACK_PREPARE, the LU factorization of
matrix B is computed. When fcn is later called with task IMSL_ARPACK_INV_SHIFT_X, the LU factorization

is available to efficiently compute y = B-1x.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <imsl.h>
static void ax(int nx, double x[], double y[]);
static void bx(int n, double x[], double y[]);
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data);
typedef struct {
 double *band_matrix;
 int *ipvt;
 double *factor;
} imsl_arpack_data;
int main() {
 int n, nev, ncv, n_acc, i, j;
 int *ipvt = NULL;
 double *a_matrix = NULL, *factor = NULL, *eigvals = NULL;
 double *evecu = NULL, *res = NULL;
 imsl_arpack_data usr_data;
 n = 100;
 nev = 4;
 ncv = 10;
 /* Allocate memory for eigenvectors */
 evecu = (double *)malloc(n * nev * sizeof(double));
 /* Allocate arrays needed in the LU factorization */
 ipvt = (int *)malloc(n * sizeof(int));
 a_matrix = (double *)malloc(3 * n * sizeof(double));
 factor = (double *)malloc(4 * n * sizeof(double));
 /* Allocate memory for auxiliary array */
 res = (double *)malloc((nev + 3 * n) * sizeof(double));
 if (!evecu || !ipvt || !a_matrix || !factor || !res) {
 printf("Memory allocation error\n");
 goto FREE_SPACE;
 }
 usr_data.band_matrix = a_matrix;
 usr_data.ipvt = ipvt;
 usr_data.factor = factor;
289

 Eigensystem Analysis arpack_symmetric
 eigvals = imsl_d_arpack_symmetric(NULL, n, nev,
 IMSL_EIGVAL_LOCATION, IMSL_ARPACK_SMALLEST_MAGNITUDE,
 IMSL_EIG_PROBLEM_TYPE, IMSL_ARPACK_GENERALIZED,
 IMSL_EIG_SOLVE_MODE, IMSL_ARPACK_REGULAR_INVERSE,
 IMSL_NUM_LANCZOS_VECTORS, ncv,
 IMSL_NUM_ACCURATE_EIGVALS, &n_acc,
 IMSL_FCN_W_DATA, fcn_w_data, &usr_data,
 IMSL_VECTORS_USER, evecu,
 0);
 printf("Number of requested eigenvalues : %d\n", nev);
 printf("Number of accurate (converged) eigenvalues : %d\n", n_acc);
 for (i = 0; i < n_acc; i++) {
 /*
 * Compute the residual norm || A * x - lambda * B * x ||
 * for the n_acc accurately computed eigenvalues and
 * eigenvectors.
 */
 /* Compute A * x - lambda * B * x */
 for (j = 0; j < n; j++) {
 res[j + nev] = evecu[j * nev + i];
 }
 ax(n, &res[nev], &res[nev + n]);
 bx(n, &res[nev], &res[nev + 2 * n]);
 for (j = 0; j < n; j++) {
 res[nev + n + j] -= eigvals[i] * res[nev + 2 * n + j];
 }
 /* Compute relative residuals */
 res[i] = imsl_d_vector_norm(n, &res[nev + n], 0);
 if (fabs(eigvals[i]) != 0.0) {
 res[i] /= fabs(eigvals[i]);
 }
 }
 /*
 * Display eigenvalues and residuals
 */
 printf("\n Smallest Laplacian eigenvalues\n");
 printf("%14s%25s\n", "Eigenvalues", "Relative residuals");
 for (i = 0; i < n_acc; i++) {
 printf("%14.8lf%20.8lf\n", eigvals[i], res[i]);
 }
FREE_SPACE:
 if (eigvals)
 imsl_free(eigvals);
 if (ipvt)
 free(ipvt);
 if (a_matrix)
 free(a_matrix);
 if (factor)
 free(factor);
 if (evecu)
 free(evecu);
 if (res)
290

 Eigensystem Analysis arpack_symmetric
 free(res);
}
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data)
{
 int j;
 int *ipvt = NULL;
 double h, r1, r2;
 double *b_matrix = NULL, *factor = NULL;
 double pi = 3.1415926535897932384;
 imsl_arpack_data *usr_data = (imsl_arpack_data *)data;
 b_matrix = usr_data->band_matrix;
 ipvt = usr_data->ipvt;
 factor = usr_data->factor;
 switch (itask) {
 case IMSL_ARPACK_PREPARE:
 /* Create symmetric tridiagonal matrix B */
 h = pi / (n + 1);
 r1 = (2.0 / 3.0) * h;
 r2 = (1.0 / 6.0) * h;
 for (j = 0; j < n; j++) {
 b_matrix[j] = r2;
 b_matrix[n + j] = r1;
 b_matrix[2 * n + j] = r2;
 }
 /* Compute LU factorization of tridiagonal matrix B */
 imsl_d_lin_sol_gen_band(n, b_matrix, 1, 1, NULL,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_FACTOR_ONLY,
 0);
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(1);
 }
 break;
 case IMSL_ARPACK_A_X:
 ax(n, x, y);
 break;
 case IMSL_ARPACK_B_X:
 bx(n, x, y);
 break;
 case IMSL_ARPACK_INV_B_X:
 /* Solve B * y = x */
 imsl_d_lin_sol_gen_band(n, NULL, 1, 1, x,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_RETURN_USER, y,
 IMSL_SOLVE_ONLY,
 0);
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(2);
 }
 break;
 default:
 imsl_set_user_fcn_return_flag(3);
 break;
 }
}

291

 Eigensystem Analysis arpack_symmetric
/*
 * Matrix-vector function
 *
 * The matrix is the 1 - dimensional mass matrix
 * on the interval [0, 1].
 */
static void bx(int n, double x[], double y[]) {
 int j;
 double h;
 double pi = 3.1415926535897932384;
 y[0] = 4.0 * x[0] + x[1];
 for (j = 1; j < n - 1; j++) {
 y[j] = x[j - 1] + 4.0 * x[j] + x[j + 1];
 }
 y[n - 1] = x[n - 2] + 4.0 * x[n - 1];
 /*
 * Scale the vector w by h.
 */
 h = pi / ((n + 1) * 6.0);
 for (j = 0; j < n; j++) {
 y[j] *= h;
 }
}
/*
 * Matrix-vector function
 *
 * The matrix used is the stiffness matrix obtained from the finite
 * element discretization of the 1 - dimensional discrete Laplacian
 * on the interval [0, 1] with zero Dirichlet boundary condition
 * using piecewise linear elements.
 */
static void ax(int n, double x[], double y[]) {
 int j;
 double h;
 double pi = 3.1415926535897932384;
 y[0] = 2.0 * x[0] - x[1];
 for (j = 1; j < n - 1; j++) {
 y[j] = -x[j - 1] + 2.0 * x[j] - x[j + 1];
 }
 y[n - 1] = -x[n - 2] + 2.0 * x[n - 1];
 /*
 * Scale the vector w by (1 / h).
 */
 h = pi / (n + 1);
 for (j = 0; j < n; j++) {
 y[j] /= h;
 }
}

Output

Number of requested eigenvalues : 4
Number of accurate (converged) eigenvalues : 4
292

 Eigensystem Analysis arpack_symmetric
 Smallest Laplacian eigenvalues
 Eigenvalues Relative residuals
 1.00008063 0.00000000
 4.00129018 0.00000000
 9.00653261 0.00000000
 16.02065092 0.00000000

Example 4

In this example, a generalized problem Ax = λBx, with both A and B tri-diagonal and symmetric and B non-singu-
lar, is solved using the shift-invert spectral transformation mode. The problem stems from using equally spaced
linear finite element test functions to approximate eigenvalues and eigenfunctions of the 1D Laplacian operator

-Δ≡-d2/dx2, defined by

-Δu = λu,

on the unit interval [0,1] with boundary conditions u(0) =u(1)=0. This is Example 2, but solved using finite
elements.

The algorithm iteratively computes the eigenvalues v of largest magnitude of the transformed system

(A-σB)-1 Bx = vx

where

and the shift parameter σ = 0.

These eigenvalues are then transformed back to the eigenvalues of smallest magnitude of the original system,
λ = 1/v, and associated eigenvectors are determined.The user function fcn requires the solution of a tri-diago-

nal system of linear equations with the input vector x as right-hand side, (A - σB) y=x, where σ = 0. When fcn
is entered with task IMSL_ARPACK_PREPARE, the LU factorization of matrix A is computed. When fcn is later

called with task IMSL_ARPACK_INV_SHIFT_X, the LU factorization is available to efficiently compute y=(A -
σB)-1x = A-1x.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <imsl.h>
static void ax(int nx, double x[], double y[]);
static void bx(int n, double x[], double y[]);
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data);
typedef struct {

ν = 1
λ − σ
293

 Eigensystem Analysis arpack_symmetric
 double *band_matrix;
 int *ipvt;
 double *factor;
 double shift;
} imsl_arpack_data;
int main() {
 int n, nev, ncv, n_acc, i, j;
 int *ipvt = NULL;
 double shift = 0.0;
 double *a_matrix = NULL, *factor = NULL, *eigvals = NULL;
 double *evecu = NULL, *res = NULL;
 imsl_arpack_data usr_data;
 n = 100;
 nev = 4;
 ncv = 10;
 /* Allocate memory for eigenvectors */
 evecu = (double *)malloc(n * nev * sizeof(double));
 /* Allocate arrays needed in the LU factorization */
 ipvt = (int *)malloc(n * sizeof(int));
 a_matrix = (double *)malloc(3 * n * sizeof(double));
 factor = (double *)malloc(4 * n * sizeof(double));
 /* Allocate memory for auxiliary array */
 res = (double *)malloc((nev + 3 * n) * sizeof(double));
 if (!evecu || !ipvt || !a_matrix || !factor || !res) {
 printf("Memory allocation error\n");
 goto FREE_SPACE;
 }
 usr_data.band_matrix = a_matrix;
 usr_data.ipvt = ipvt;
 usr_data.factor = factor;
 usr_data.shift = shift;
 eigvals = imsl_d_arpack_symmetric(NULL, n, nev,
 IMSL_EIGVAL_LOCATION, IMSL_ARPACK_LARGEST_MAGNITUDE,
 IMSL_EIG_PROBLEM_TYPE, IMSL_ARPACK_GENERALIZED,
 IMSL_EIG_SOLVE_MODE, IMSL_ARPACK_SHIFT_INVERT,
 IMSL_SHIFT, shift,
 IMSL_NUM_LANCZOS_VECTORS, ncv,
 IMSL_NUM_ACCURATE_EIGVALS, &n_acc,
 IMSL_FCN_W_DATA, fcn_w_data, &usr_data,
 IMSL_VECTORS_USER, evecu,
 0);
 printf("Number of requested eigenvalues : %d\n", nev);
 printf("Number of accurate (converged) eigenvalues : %d\n", n_acc);
 for (i = 0; i < n_acc; i++) {
 /*
 * Compute the residual norm || A * x - lambda * B * x ||
 * for the n_acc accurately computed eigenvalues and
 * eigenvectors.
 */
294

 Eigensystem Analysis arpack_symmetric
 /* Compute A * x - lambda * B * x */
 for (j = 0; j < n; j++) {
 res[j + nev] = evecu[j * nev + i];
 }
 ax(n, &res[nev], &res[nev + n]);
 bx(n, &res[nev], &res[nev + 2 * n]);
 for (j = 0; j < n; j++) {
 res[nev + n + j] -= eigvals[i] * res[nev + 2 * n + j];
 }
 /* Compute relative residuals */
 res[i] = imsl_d_vector_norm(n, &res[nev + n], 0);
 if (fabs(eigvals[i]) != 0.0) {
 res[i] /= fabs(eigvals[i]);
 }
 }
 /*
 * Display eigenvalues and residuals
 */
 printf("\n Smallest Laplacian eigenvalues\n");
 printf("%14s%25s\n", "Eigenvalues", "Relative residuals");
 for (i = 0; i < n_acc; i++) {
 printf("%14.8lf%20.8lf\n", eigvals[i], res[i]);
 }
FREE_SPACE:
 if (eigvals)
 imsl_free(eigvals);
 if (ipvt)
 free(ipvt);
 if (a_matrix)
 free(a_matrix);
 if (factor)
 free(factor);
 if (evecu)
 free(evecu);
 if (res)
 free(res);
}
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data)
{
 int j;
 int *ipvt = NULL;
 double h, r1, r2, shift;
 double *b_matrix = NULL, *factor = NULL;
 imsl_arpack_data *usr_data = (imsl_arpack_data *)data;
 b_matrix = usr_data->band_matrix;
 ipvt = usr_data->ipvt;
 factor = usr_data->factor;
 shift = usr_data->shift;
 switch (itask) {
 case IMSL_ARPACK_PREPARE:
 /* Create symmetric tridiagonal matrix (A - shift * B) */
 h = 1.0 / (n + 1);
295

 Eigensystem Analysis arpack_symmetric
 r1 = (2.0 / 3.0) * h;
 r2 = (1.0 / 6.0) * h;
 for (j = 1; j <= n; j++) {
 b_matrix[j - 1] = -1.0 / h - shift * r2;
 b_matrix[n + j - 1] = 2.0 / h - shift * r1;
 b_matrix[2 * n + j - 1] = b_matrix[j - 1];
 }
 /* Compute LU factorization of tridiagonal matrix */
 imsl_d_lin_sol_gen_band(n, b_matrix, 1, 1, NULL,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_FACTOR_ONLY,
 0);
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(1);
 }
 break;
 case IMSL_ARPACK_B_X:
 bx(n, x, y);
 break;
 case IMSL_ARPACK_INV_SHIFT_X:
 /* Solve (A - shift * B) * y = x */
 imsl_d_lin_sol_gen_band(n, NULL, 1, 1, x,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_RETURN_USER, y,
 IMSL_SOLVE_ONLY,
 0);
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(2);
 }
 break;
 default:
 imsl_set_user_fcn_return_flag(3);
 break;
 }
}
/*
* Matrix-vector function B*x
* The matrix used is the 1 - dimensional mass matrix
* on the interval [0, 1].
*/
static void bx(int n, double x[], double y[]) {
 int j;
 double h;
 y[0] = 4.0 * x[0] + x[1];
 for (j = 1; j < n - 1; j++) {
 y[j] = x[j - 1] + 4.0 * x[j] + x[j + 1];
 }
 y[n - 1] = x[n - 2] + 4.0 * x[n - 1];
 /*
 * Scale the vector w by h.
 */
 h = 1.0 / (6.0 * (n + 1));
 for (j = 0; j < n; j++) {
 y[j] *= h;
 }
}

296

 Eigensystem Analysis arpack_symmetric
/*
* Matrix-vector function A*x
*
* The matrix is the finite element discretization of the
* 1 - dimensional discrete Laplacian on [0, 1] with zero
* Dirichlet boundary condition using piecewise linear
* elements.
*/
static void ax(int n, double x[], double y[]) {
 int j;
 double h;
 y[0] = 2.0 * x[0] - x[1];
 for (j = 1; j < n - 1; j++) {
 y[j] = -x[j - 1] + 2.0 * x[j] - x[j + 1];
 }
 y[n - 1] = -x[n - 2] + 2.0 * x[n - 1];
 /*
 * Scale the vector w by (1 / h)
 */
 h = 1.0 / ((double)(n + 1));
 for (j = 0; j < n; j++) {
 y[j] /= h;
 }
}

Output

Number of requested eigenvalues : 4
Number of accurate (converged) eigenvalues : 4
 Smallest Laplacian eigenvalues
 Eigenvalues Relative residuals
 9.87040017 0.00000000
 39.49115121 0.00000000
 88.89091388 0.00000000
 158.11748683 0.00000000

Warning Errors
IMSL_ARPACK_MAX_ITER_REACHED The maximum number of iterations has been reached. All

possible eigenvalues have been found. Variable "n_acc"
returns the number of wanted converged Ritz values.

IMSL_ARPACK_NO_SHIFTS_APPLIED No shifts could be applied during a cycle of the implicitly
restarted Arnoldi iteration. One possibility is to increase the
size of "ncv" = # relative to "nev" = #.
297

 Eigensystem Analysis arpack_symmetric
Fatal Errors

IMSL_START_VECTOR_ZERO The starting vector "xguess" is zero. Use a non-zero vector
instead.

IMSL_UNABLE_TO_BUILD_ARNOLDI The algorithm was not able to build an Arnoldi factorization.
The size of the current Arnoldi factorization is #. Use of a dif-
ferent starting vector "xguess" may help.

IMSL_SYMM_TRIDIAG_QL_QR_ERROR The eigenvalue calculation via the symmetric tridiagonal QL or
QR algorithm during the post-processing phase of the implic-
itly restarted Arnoldi method failed.

IMSL_ARPACK_NO_EIGVALS_FOUND The implicitly restarted Arnoldi method did not find any
eigenvalues to sufficient accuracy. Use of a different starting
vector "xguess", a larger iteration number "itmax", a different
number "ncv" of Arnoldi vectors or a different problem type
and/or solve mode may help.

IMSL_DIFF_N_CONV_RITZ_VALUES The number of converged Ritz values computed by the itera-
tively restarted Arnoldi method differs from the number of
converged Ritz values determined during the post-processing
phase.
298

 Eigensystem Analysis arpack_general
arpack_general

more...

Computes some of the eigenvalues and eigenvectors of the generalized nonsymmetric eigenvalue problem
Ax = λBx using an implicitly restarted Arnoldi method (IRAM). The algorithm can also be used for the standard

case B = I. The matrices A, B are real, but eigenvalues may be complex and occur in conjugate pairs.

Synopsis
#include <imsl.h>
d_complex *imsl_d_arpack_general (void fcn(), int n, int nev, …, 0)

Required Arguments
void fcn (int n, double x[], int task, double y[]) (Input)

User-supplied function to return matrix-vector operations or solutions of linear systems.

int n (Input)
The dimension of the problem.

double x[] (Input)
An array of size n containing the vector to which the operator will be applied.

int task (Input)
An enumeration type which specifies the operation to be performed. Variable task is an
enumerated integer value associated with enum type Imsl_arpack_task. Table 15
describes the possible values.

NOTE: Function arpack_general is available in double precision only.
299

 Eigensystem Analysis arpack_general
double y[] (Output)
An array of size n containing the result of a matrix-vector operation or the solution of a linear
system.

int n (Input)

The dimension of the problem.

int nev (Input)

The number of eigenvalues to be computed. It is required that 0 < nev < n - 1.

Return Value
A pointer to the nev eigenvalues of the general eigenvalue problem. Complex conjugate eigenvalues are stored
consecutively, with the eigenvalue with positive imaginary part in the first place. To release this space, use
imsl_free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
d_complex *imsl_d_arpack_general (void fcn(), int n, int nev,

IMSL_XGUESS, double xguess[],

Table 15 – Enum type Imsl_arpack_task

task Description

IMSL_ARPACK_PREPARE Take initial steps to prepare for the operations to follow.
These steps can include defining data for the matrices, fac-
torizations for upcoming linear system solves or recording
the vectors used in the operations.

IMSL_ARPACK_A_X y= Ax

IMSL_ARPACK_B_X y= Bx

IMSL_ARPACK_INV_SHIFT_X y= (A - σB)-1x, σ real,
or
y= Re{(A - σB)-1x}, σ complex,
or
y= Im{(A - σB)-1x}, σ complex,
B general or = I

IMSL_ARPACK_INV_B_X y= B-1x
300

 Eigensystem Analysis arpack_general
IMSL_ITMAX, int itmax,
IMSL_TOLERANCE, double tol,
IMSL_SHIFT, d_complex shift,
IMSL_EIGVAL_LOCATION, Imsl_arpack_eigval_location eigval_loc,
IMSL_EIG_PROBLEM_TYPE, Imsl_arpack_problem_type problem_type,
IMSL_EIG_SOLVE_MODE, Imsl_arpack_solve_mode mode,
IMSL_NUM_ARNOLDI_VECTORS, int ncv,
IMSL_NUM_ACCURATE_EIGVALS, int *n_acc,
IMSL_VECTORS, double **evec,
IMSL_VECTORS_USER, double evecu[],
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RETURN_USER, d_complex evalu[],
IMSL_FCN_W_DATA, void fcn(), void *data,
0)

Optional Arguments
IMSL_XGUESS, double xguess[] (Input)

A non-zero vector of size n containing the starting vector for the implicitly restarted Arnoldi method.

By default, a random starting vector is computed internally.

IMSL_ITMAX, int itmax (Input)
The maximum number of Arnoldi iterations.
Default: itmax = 1000.

IMSL_TOLERANCE, double tol (Input)
Tolerance value used in the criterion for the acceptability of the relative accuracy of the Ritz values.
Default: tol = imsl_f_machine(3).

IMSL_SHIFT, d_complex shift (Input)
The shift value used in the shift-invert spectral transformations.
Default: shift = {0, 0}.

IMSL_EIGVAL_LOCATION, Imsl_arpack_eigval_location eigval_loc (Input)
An enumeration type which specifies the location of the eigenvalues to compute.
301

 Eigensystem Analysis arpack_general
For computational modes that use a spectral transformation the eigenvalue location refers to the
transformed—not the original—problem. See the Description section for an example.
Default: eigval_loc = IMSL_ARPACK_LARGEST_MAGNITUDE.

IMSL_EIG_PROBLEM_TYPE, Imsl_arpack_problem_type problem_type (Input)
An enumeration type that indicates if a standard or generalized eigenvalue problem is to be solved.

Default: problem_type = IMSL_ARPACK_STANDARD.

IMSL_EIG_SOLVE_MODE, Imsl_arpack_solve_mode mode (Input)
An enumeration type indicating which computational mode is used for the eigenvalue computation.
Variables problem_type and mode together define the tasks that must be provided in the user-
supplied function. The following table describes the values variable mode can take, the feasible com-
binations with variable problem_type and the related tasks:

Table 16 – Enum type Imsl_arpack_eigval_location

eigval_loc Description

IMSL_ARPACK_LARGEST_MAGNITUDE Compute eigenvalues of largest magnitude.

IMSL_ARPACK_SMALLEST_MAGNITUDE Compute eigenvalues of smallest magnitude.

IMSL_ARPACK_LARGEST_REAL_PART Compute eigenvalues of largest algebraic real part.

IMSL_ARPACK_SMALLEST_REAL_PART Compute eigenvalues of smallest algebraic real part.

IMSL_ARPACK_LARGEST_IMAG_PART Compute eigenvalues of largest imaginary part
magnitude.

IMSL_ARPACK_SMALLEST_IMAG_PART Compute eigenvalues of smallest imaginary part
magnitude.

Table 17 – Enum type Imsl_arpack_problem_type

problem_type Description

IMSL_ARPACK_STANDARD Solve standard problem, Ax = λx.

IMSL_ARPACK_GENERALIZED Solve generalized problem, Ax = λBx.

Table 18 – Mode/problem type combinations

mode problem_type Required tasks

IMSL_ARPACK_REGULAR IMSL_ARPACK_STANDARD y = Ax

IMSL_ARPACK_REGULAR_INVERSE IMSL_ARPACK_GENERALIZED y = Ax, y = Bx, y = B-1x

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_STANDARD y= (A - σI)-1x

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_GENERALIZED y = Bx, y = (A - σB)-1x
302

 Eigensystem Analysis arpack_general
Default: mode = IMSL_ARPACK_REGULAR.

IMSL_NUM_ARNOLDI_VECTORS, int ncv (Input)
The number of Arnoldi vectors generated in each iteration of the Arnoldi method. It is required that
nev + 2 <= ncv <= n. A value ncv >= min(2*nev + 1, n) is recommended.

Default: ncv = min(2*nev + 1, n).

IMSL_NUM_ACCURATE_EIGVALS, int *n_acc (Output)
The number of eigenvalues that the algorithm was able to compute accurately. This number can be
smaller than nev.

IMSL_VECTORS, double **evec (Output)
The address of a pointer to an array of size n × (nev+1) containing the B-orthonormalized eigen-
vectors corresponding to the n_acc converged eigenvalues. Typically, double *evec is declared,
and &evec is used as an argument. For a closer description of the array content, see optional argu-
ment IMSL_VECTORS_USER.

IMSL_VECTORS_USER, double evecu[] (Output)
A user-defined array of size n × (nev+1) containing the n_acc B-orthonormalized eigenvectors
of the eigenvalue problem in compact form. The eigenvectors are stored column-wise in the same
order as the eigenvalues. An eigenvector corresponding to a real eigenvalue is real and represented
by a single column. For a complex conjugate pair of eigenvalues, the real and imaginary parts of the
eigenvector related to the eigenvalue with positive imaginary part are stored in two consecutive col-
umns of array evecu. If an eigenvalue is complex and has no complex conjugate counterpart due to
the choice of nev, then the corresponding eigenvector is stored in two consecutive columns of
evecu.

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = nev + 1

IMSL_RETURN_USER, d_complex evalu[] (Output)
An array of size nev containing the accurately computed eigenvalues in the first n_acc locations.
Complex conjugate pairs of eigenvalues are stored consecutively in evalu.

IMSL_ARPACK_REAL_SHIFT_INVERT IMSL_ARPACK_GENERALIZED y = Ax, y = Bx,

y = Re{(A - σB)-1x}

IMSL_ARPACK_IMAG_SHIFT_INVERT IMSL_ARPACK_GENERALIZED y = Ax, y = Bx,

y = Im{(A - σB)-1x}

Table 18 – Mode/problem type combinations

mode problem_type Required tasks
303

 Eigensystem Analysis arpack_general
IMSL_FCN_W_DATA, void fcn (int n, double x[], int task, double y[]), void *data, (Input/Output)
User-supplied function to return matrix-vector operations or solutions of linear systems, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function.

Description
Function imsl_d_arpack_general, which is based on ARPACK subroutines DNAUPD and DNEUPD (see the
ARPACK Users' Guide, Lehoucq et al. (1998)), computes selected eigenvalue-eigenvector pairs for generalized
nonsymmetric eigenvalue problems of the form

Ax = λBx.

Here, A is a real general and B a positive semi-definite matrix. For B = I, the generalized problem reduces to the
standard nonsymmetric eigenvalue problem.

The ARPACK routine DNAUPD implements a variant of the Arnoldi method and uses reverse communication to
obtain the required matrix-vector products or solutions of linear systems for the iterations. Responses to these
requests are made by calling the user-defined function fcn. User data can be made available for the evaluations
by optional argument IMSL_FCN_W_DATA.

For a given problem, the requested responses depend on the settings of optional arguments
IMSL_EIG_PROBLEM_TYPE and IMSL_EIG_SOLVE_MODE. For each response, a corresponding task must be
defined in the user-defined function fcn. The Mode/problem type combinations table under optional argument
IMSL_EIG_SOLVE_MODE shows which tasks have to be defined for a certain problem.

The following code snippet shows the complete list of tasks available for fcn and their meaning:

void fcn(int n, double x[], int itask, double y[])
{
 switch (itask) {
 /*
 * Define responses to different tasks for the generalized
 * eigenvalue problem
 * A*x = lambda * B * x,
 * which includes the ordinary case B = I.
 */
 case IMSL_ARPACK_PREPARE:
 /*
 * Take initial steps to prepare for the operations
 * that follow. Note that arpack_general internally
 * always calls fcn with this enum value, even if it is

NOTE: The possibility to supply user-data via IMSL_FCN_W_DATA is an important feature of
arpack_general. It allows the user to transfer problem-specific data to the algorithm without the
need to define global data. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.
304

 Eigensystem Analysis arpack_general
 * not required by the user.
 */
 break;
 case IMSL_ARPACK_A_X:
 /*
 * Compute matrix-vector product y = A * x
 */
 break;
 case IMSL_ARPACK_B_X:
 /*
 * Compute matrix-vector product y = B * x
 */
 break;
 case IMSL_ARPACK_INV_SHIFT_X:
 /*
 * Compute the matrix-vector product
 * z = inv(A - sigma * B) * x,
 * and return
 * y = z, if mode = IMSL_ARPACK_SHIFT_INVERT, sigma real,
 * y = Re{z}, if mode = IMSL_ARPACK_REAL_SHIFT_INVERT, sigma complex,
 * y = Im{z}, if mode = IMSL_ARPACK_IMAG_SHIFT_INVERT, sigma complex.
 *
 * Usually, matrix A - sigma * B is not directly inverted.
 * Instead, a factorization of A - sigma * B is determined,
 * and the factors are used to compute z via backsolves.
 *
 * Example:
 * If an LU factorization of A - sigma * B exists, then
 * A - sigma * B = P * L * U,
 * P a permutation matrix. Vector z can then be determined
 * as solution of the linear system
 * L * U * z = trans(P) * x.
 * The LU factorization only has to be computed once, for
 * example outside of fcn or within IMSL_ARPACK_PREPARE.
 */
 break;
 case IMSL_ARPACK_INV_B_X:
 /*
 * Compute matrix-vector product
 * y = inv(B) * x.
 * Usually, matrix B is not directly inverted.
 * Instead, a factorization of B is determined, and the
 * factors are used to compute y via backsolves.
 *
 * Example:
 * If matrix B is positive definite, then a Cholesky
 * factorization B = L * trans(L) exists. Vector y can then
 * be determined by solving the linear system
 * L * trans(L) * y = x.
 * The Cholesky factorization only has to be computed once,
 * for example outside of fcn or within IMSL_ARPACK_PREPARE.
 */
 break;
 default:
 /*
 * Define error conditions, if necessary.
 */
 break;
 }
}

305

 Eigensystem Analysis arpack_general
Internally, imsl_d_arpack_general first determines the eigenvalues for the problem specified by optional
arguments IMSL_EIG_SOLVE_MODE and IMSL_EIG_PROBLEM_TYPE.

Table 19 shows the matrices whose eigenvalues are determined for a given combination of these optional
arguments.

Note that the eigenvalue location defined by optional argument IMSL_EIGVAL_LOCATION always refers to the
matrices of Table 19.

For example, for mode=IMSL_ARPACK_SHIFT_INVERT, problem_type=IMSL_ARPACK_STANDARD,
and eigval_loc=IMSL_ARPACK_LARGEST_MAGNITUDE, the eigenvalues of largest magnitude of the

shift-inverted matrix (A - σI)-1 are computed. Because of the relationship

these eigenvalues correspond to the eigenvalues of the original problem Ax = λx that are closest to the shift σ in
absolute value.

In a second step, implemented via ARPACK routine DNEUPD, imsl_d_arpack_general internally trans-

forms the eigenvalues back to the eigenvalues of the original problem Ax = λBx or Ax = λx and computes
eigenvectors, if required.

Besides matrix A being real and general, the modes for the generalized eigenproblem require some additional

properties of matrix B that are summarized in Table 20:

Table 19 – Matrices for a given mode/problem_type combination

mode problem_type Matrix

IMSL_ARPACK_REGULAR IMSL_ARPACK_STANDARD A

IMSL_ARPACK_REGULAR_INVERSE IMSL_ARPACK_GENERALIZED B-1A

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_STANDARD (A - σI)-1, σ real

IMSL_ARPACK_SHIFT_INVERT IMSL_ARPACK_GENERALIZED (A - σB)-1B, σ real

IMSL_ARPACK_REAL_SHIFT_INVERT IMSL_ARPACK_GENERALIZED Re{(A - σB)-1B},σ complex

IMSL_ARPACK_IMAG_SHIFT_INVERT IMSL_ARPACK_GENERALIZED Im{(A - σB)-1B}, σ complex

(A − σ I)−1 x = ν x, λ = 1v + σ ,
306

 Eigensystem Analysis arpack_general
If the nonsymmetric problem has complex eigenvalues in conjugate pairs, the eigenvectors are returned in a
compact representation: If the eigenvalue λj has a positive imaginary part, the complex eigenvector is con-

structed from the relation wj = vj + ivj + 1. The real vectors vj, vj + 1 are consecutive columns of the arrays evec

or evecu. The eigenvalue-eigenvector relationship is Awj = λjwj. Since A is real, is also an eigenvalue:

. For purposes of checking results, the complex residual should be small in norm

relative to the norm of A. Since the norms of and are identical, a check of the alternate relationship is not

necessary. In the case of a real eigenvalue, the associated eigenvector is real and represented by a single column
in evec or evecu.

Copyright notice for ARPACK

Copyright (c) 1996-2008 Rice University. Developed by D.C. Sorensen, R.B. Lehoucq, C. Yang, and K. Maschhoff.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer listed in this license in the documentation and/or other materials provided with the distribu-
tion.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or pro-
mote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

Table 20 – Generalized eigenproblem additional matrix properties

mode Matrix properties

IMSL_ARPACK_REGULAR_INVERSE B positive definite

IMSL_ARPACK_SHIFT_INVERT B positive semi-definite

IMSL_ARPACK_REAL_SHIFT_INVERT B positive semi-definite

IMSL_ARPACK_IMAG_SHIFT_INVERT B positive semi-definite

λ
─
j

Aw─ j = λ
─
jw
─
j r j = Aw j − λ jw j

r j r─ j
307

 Eigensystem Analysis arpack_general
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Examples

Example 1

The generalized eigenvalue problem Ax = λBx is solved using shift-invert strategies. The matrix A is tri-diagonal
with the values 2 on the diagonal, -2 on the sub-diagonal and 3 on the super-diagonal. The matrix B is tri-diagonal
positive definite with the values 4 on the diagonal and 1 on the off-diagonals. A complex shift σ = 0.4 + 0.6i is

used. Two strategies of shift-invert are illustrated, y = Re{(A - σB)-1Bx} and y = Im{(A-σB)-1Bx}. In each case,
nev=6 eigenvalues are obtained, each with 3 pairs of complex conjugate values.

#include <math.h>
#include <imsl.h>
#include <omp.h>
#include <stdio.h>
static void ax(int n, double x[], double y[]);
static void bx(int n, double x[], double y[]);
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data);
static void compute_residuals_fcn(
 void(*fcn) (int n, double x[], int itask, double y[], void *data),
 int problem_type, int n, int nev, int nconv, d_complex eigvals[],
 double evecu[], double ax[], void *data);
typedef struct {
 d_complex *band_matrix;
 int *ipvt;
 d_complex *factor;
 d_complex *work;
 d_complex sigma;
 int shift_strategy;
} imsl_arpack_data;
int main() {
 int n, nev, ncv, n_acc, i, j;
 int *ipvt = NULL;
 d_complex sigma = { 0.4, 0.6 };
 d_complex *a_matrix = NULL, *factor = NULL, *eigvals = NULL;
 d_complex *work = NULL;
 double *evecu = NULL, *rwork = NULL;
 imsl_arpack_data usr_data;
308

 Eigensystem Analysis arpack_general
 Imsl_arpack_solve_mode mode[] = {
 IMSL_ARPACK_REAL_SHIFT_INVERT, IMSL_ARPACK_IMAG_SHIFT_INVERT
 };
 n = 100;
 nev = 6;
 ncv = 30;
 eigvals = (d_complex *)malloc(nev * sizeof(d_complex));
 evecu = (double *)malloc(n * (nev + 1) * sizeof(double));
 rwork = (double *)malloc((nev + 3 * n) * sizeof(double));
 /* Allocate arrays needed in the LU factorization */
 ipvt = (int *)malloc(n * sizeof(int));
 a_matrix = (d_complex *)malloc(3 * n * sizeof(d_complex));
 factor = (d_complex *)malloc(4 * n * sizeof(d_complex));
 work = (d_complex *)malloc(2 * n * sizeof(d_complex));
 if (!eigvals || !evecu || !rwork || !ipvt || !a_matrix || !factor
 || !work) {
 printf("Memory allocation error\n");
 goto FREE_SPACE;
 }
 usr_data.band_matrix = a_matrix;
 usr_data.ipvt = ipvt;
 usr_data.factor = factor;
 usr_data.sigma = sigma;
 usr_data.work = work;
 for (i = 0; i <= 1; i++) {
 usr_data.shift_strategy = i;
 imsl_d_arpack_general(NULL, n, nev,
 IMSL_EIG_PROBLEM_TYPE, IMSL_ARPACK_GENERALIZED,
 IMSL_EIG_SOLVE_MODE, mode[i],
 IMSL_SHIFT, sigma,
 IMSL_NUM_ARNOLDI_VECTORS, ncv,
 IMSL_NUM_ACCURATE_EIGVALS, &n_acc,
 IMSL_FCN_W_DATA, fcn_w_data, &usr_data,
 IMSL_VECTORS_USER, evecu,
 IMSL_RETURN_USER, eigvals,
 0);
 printf("\nNumber of requested eigenvalues : %d\n", nev);
 printf("Number of accurate (converged) eigenvalues : %d\n\n",
 n_acc);
 compute_residuals_fcn(fcn_w_data, 1, n, nev, n_acc, eigvals,
 evecu, rwork, &usr_data);
 /*
 * Display eigenvalues and corresponding residuals
 * || A * x - lambda * B * x || / |lambda|
 */
 if (i == 0) {
 printf(" Largest magnitude eigenvalues, real shift\n");
 printf(" ===\n");
 }
 else {
 printf(" Largest magnitude eigenvalues, imaginary shift"
309

 Eigensystem Analysis arpack_general
 "\n");
 printf(" =="
 "\n");
 }
 printf("%30s%26s\n", "Eigenvalues (Real, Imag)",
 "Relative residuals");
 for (j = 0; j < n_acc; j++) {
 printf("(%14.8lf, %14.8lf)%20.8lf\n", eigvals[j].re,
 eigvals[j].im, rwork[j]);
 }
 }
FREE_SPACE:
 if (eigvals)
 free(eigvals);
 if (ipvt)
 free(ipvt);
 if (a_matrix)
 free(a_matrix);
 if (factor)
 free(factor);
 if (work)
 free(work);
 if (rwork)
 free(rwork);
 if (evecu)
 free(evecu);
}
static void fcn_w_data(int n, double x[], int itask, double y[],
 void *data)
{
 int j, shift_strategy;
 int *ipvt = NULL;
 d_complex *c_matrix = NULL, *factor = NULL, *work = NULL;
 d_complex cl, cdiag, cu;
 d_complex sigma;
 imsl_arpack_data *usr_data = (imsl_arpack_data *)data;
 c_matrix = usr_data->band_matrix;
 ipvt = usr_data->ipvt;
 factor = usr_data->factor;
 sigma = usr_data->sigma;
 work = usr_data->work;
 shift_strategy = usr_data->shift_strategy;
 switch (itask) {
 case IMSL_ARPACK_PREPARE:
 /*
 * Create tridiagonal matrix
 * C := A - shift * B
 * in complex arithmetic.
 */
 cl = imsl_zd_convert(-2.0 - sigma.re, -sigma.im);
 cdiag = imsl_zd_convert(2.0 - 4.0 * sigma.re, -4.0 * sigma.im);
 cu = imsl_zd_convert(3.0 - sigma.re, -sigma.im);
 for (j = 1; j <= n; j++) {
 c_matrix[j - 1] = cu;
310

 Eigensystem Analysis arpack_general
 c_matrix[n + j - 1] = cdiag;
 c_matrix[2 * n + j - 1] = cl;
 }
 /* Compute LU factorization of tridiagonal matrix */
 imsl_z_lin_sol_gen_band(n, c_matrix, 1, 1, NULL,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_FACTOR_ONLY,
 0);
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(1);
 }
 break;
 case IMSL_ARPACK_A_X:
 ax(n, x, y);
 break;
 case IMSL_ARPACK_B_X:
 bx(n, x, y);
 break;
 case IMSL_ARPACK_INV_SHIFT_X:
 /*
 * Solve (A - sigma * M) * y = x in complex arithmetic
 */
 for (j = 0; j < n; j++) {
 work[j] = imsl_zd_convert(x[j], 0.0);
 }
 imsl_z_lin_sol_gen_band(n, NULL, 1, 1, work,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_RETURN_USER, &work[n],
 IMSL_SOLVE_ONLY,
 0);
 if (imsl_error_type() != 0) {
 imsl_set_user_fcn_return_flag(2);
 }
 if (shift_strategy == 0) {
 for (j = 0; j < n; j++) {
 y[j] = work[n + j].re;
 }
 }
 else if (shift_strategy == 1) {
 for (j = 0; j < n; j++) {
 y[j] = work[n + j].im;
 }
 }
 break;
 default:
 imsl_set_user_fcn_return_flag(3);
 break;
 }
}
/*
 * Matrix-vector multiplication function
 *
 * Computes the matrix vector multiplication y <- M*x, where M is
 * an n by n symmetric tridiagonal matrix with 4 on the diagonal, 1
 * on the subdiagonal and superdiagonal.
 */
311

 Eigensystem Analysis arpack_general
static void bx(int n, double x[], double y[]) {
 int j;
 y[0] = 4.0 * x[0] + x[1];
 for (j = 2; j <= n - 1; j++) {
 y[j - 1] = x[j - 2] + 4.0 * x[j - 1] + x[j];
 }
 y[n - 1] = x[n - 2] + 4.0 * x[n - 1];
}
/*
 * Matrix-vector multiplication function
 *
 * Compute the matrix vector multiplication y <- A*x where A is an
 * n by n symmetric tridiagonal matrix with 2 on the diagonal, -2
 * on the subdiagonal and 3 on the superdiagonal.
 */
static void ax(int n, double x[], double y[]) {
 int j;
 y[0] = 2.0 * x[0] + 3.0 * x[1];
 for (j = 2; j <= n - 1; j++) {
 y[j - 1] = -2.0 * x[j - 2] + 2.0 * x[j - 1] + 3.0 * x[j];
 }
 y[n - 1] = -2.0 * x[n - 2] + 2.0 * x[n - 1];
}

 /*
 * Compute residuals
 * || A * x - lambda * B * x || / |lambda|,
 * including the case B = I.
 *
 * problem_type = 0 (standard) --> size(rwork) >= nev + 2 * n
 * problem_type = 1 (generalized) --> size(rwork) >= nev + 3 * n
 */
static void compute_residuals_fcn(
 void(*fcn) (int n, double x[], int itask, double y[], void *data),
 int problem_type, int n, int nev, int nconv, d_complex eigvals[],
 double evecu[], double rwork[], void *data) {
 int first, i, j;
 double temp;
 /*
 * The following computations assume that complex conjugate
 * pairs of eigenvalues are stored consecutively and that the
 * imaginary part of the first eigenvalue is > 0, as
 * guaranteed by arpack_general.
 * The computed residuals are stored in rwork[0:nconv-1].
 * This example actually uses the general case only, but
 * contains also the standard case if the user wants to
 * compute residuals for his own standard problems.
 */
 first = 1;
312

 Eigensystem Analysis arpack_general
 if (problem_type == 0) { /* standard problem */
 /*
 * Compute the residual norm
 *
 * || A * x - lambda * x ||
 *
 * for the n_acc accurately computed eigenvalues and
 * eigenvectors.
 */
 for (i = 0; i < nconv; i++) {
 if (eigvals[i].im == 0.0) {
 /*
 * Ritz value is real.
 */
 /* Copy eigenvectors into ax */
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_A_X, &rwork[nev + n],
 data);
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] -= eigvals[i].re * rwork[nev + j];
 }
 rwork[i] = imsl_d_vector_norm(n, &rwork[nev + n], 0);
 if (fabs(eigvals[i].re) != 0.0) {
 rwork[i] /= fabs(eigvals[i].re);
 }
 }
 else if (first) {
 /*
 * Compute real part of A * x - lambda * x,
 *
 * A * x_re - lambda_re * x_re + lambda_im * x_im
 */
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_A_X, &rwork[nev + n],
 data);
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] -= eigvals[i].re *
 evecu[j * (nev + 1) + i];
 rwork[nev + n + j] += eigvals[i].im *
 evecu[j * (nev + 1) + i + 1];
 }
 /*
 * Compute
 * || A * x_re - lambda_re * x_re + lambda_im * x_im ||
 */
 rwork[i] = imsl_d_vector_norm(n, &rwork[nev + n], 0);
 /*
 * Compute imaginary part of A * x - lambda * x,
 *
 * A * x_im - lambda_im * x_re - lambda_re * x_im
 */
313

 Eigensystem Analysis arpack_general
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i + 1];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_A_X, &rwork[nev + n],
 data);
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] -= eigvals[i].im *
 evecu[j * (nev + 1) + i];
 rwork[nev + n + j] -= eigvals[i].re *
 evecu[j * (nev + 1) + i + 1];
 }
 /*
 * Compute || A * x - lambda * x ||
 */
 rwork[i] = hypot(rwork[i], imsl_d_vector_norm(n,
 &rwork[nev + n], 0));
 /*
 * Compute res := || A*x - lambda * x || / || lambda ||
 */
 temp = hypot(eigvals[i].re, eigvals[i].im);
 if (temp != 0.0) {
 rwork[i] /= temp;
 }
 /*
 * Take into account that
 * || A * x - lambda * x || =
 * || conj(A * x - lambda * x) ||
 */
 rwork[i + 1] = rwork[i];
 first = 0;
 }
 else {
 first = 1;
 }
 }
 }
 else { /* generalized problem */
 /*
 * Compute the residual norm
 *
 * || A * x - lambda * B * x || / | lambda |
 *
 * for the n_acc accurately computed eigenvalues and
 * eigenvectors.
 */
 for (i = 0; i < nconv; i++) {
 if (eigvals[i].im == 0.0) {
 /*
 * Ritz value is real.
 */
 /* Copy eigenvectors into rwork */
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_A_X, &rwork[nev + n],
 data);
 fcn(n, &rwork[nev], IMSL_ARPACK_B_X, &rwork[nev + 2 * n],
 data);
314

 Eigensystem Analysis arpack_general
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] -= eigvals[i].re *
 rwork[nev + 2 * n + j];
 }
 rwork[i] = imsl_d_vector_norm(n, &rwork[nev + n], 0);
 if (fabs(eigvals[i].re) != 0.0) {
 rwork[i] /= fabs(eigvals[i].re);
 }
 }
 else if (first) {
 /*
 * Ritz value is complex.
 */
 /*
 * Compute real part of A * x - lambda * B * x,
 *
 * A * x_re - lambda_re * B * x_re +
 * lambda_im * B * x_im
 */
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_A_X, &rwork[nev + n],
 data);
 fcn(n, &rwork[nev], IMSL_ARPACK_B_X, &rwork[nev + 2 * n],
 data);
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] -= eigvals[i].re *
 rwork[nev + 2 * n + j];
 }
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i + 1];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_B_X, &rwork[nev + 2 * n],
 data);
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] += eigvals[i].im *
 rwork[nev + 2 * n + j];
 }
 /*
 * Compute
 * || A * x_re - lambda_re * B * x_re +
 * lambda_im * B * x_im ||
 */
 rwork[i] = imsl_d_vector_norm(n, &rwork[nev + n], 0);
 /*
 * Compute imaginary part of A*x - lambda * B * x,
 *
 * A * x_im - lambda_im * B * x_re
 * - lambda_re * B * x_im
 */
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i + 1];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_A_X, &rwork[nev + n],
 data);
 fcn(n, &rwork[nev], IMSL_ARPACK_B_X, &rwork[nev + 2 * n],
 data);
315

 Eigensystem Analysis arpack_general
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] -= eigvals[i].re *
 rwork[nev + 2 * n + j];
 }
 for (j = 0; j < n; j++) {
 rwork[nev + j] = evecu[j * (nev + 1) + i];
 }
 fcn(n, &rwork[nev], IMSL_ARPACK_B_X, &rwork[nev + 2 * n],
 data);
 for (j = 0; j < n; j++) {
 rwork[nev + n + j] -= eigvals[i].im *
 rwork[nev + 2 * n + j];
 }
 /*
 * Compute || A * x - lambda * x ||
 */
 rwork[i] = hypot(rwork[i], imsl_d_vector_norm(n,
 &rwork[nev + n], 0));
 /*
 * Compute res := || A*x - lambda * x || / || lambda ||
 */
 temp = hypot(eigvals[i].re, eigvals[i].im);
 if (temp != 0.0) {
 rwork[i] /= temp;
 }
 /*
 * Take into account that
 * || A * x - lambda * x || =
 * || conj(A * x - lambda * x) ||
 */
 rwork[i + 1] = rwork[i];
 first = 0;
 }
 else {
 first = 1;
 }
 }
 }
}

Output

Number of requested eigenvalues : 6
Number of accurate (converged) eigenvalues : 6
 Largest magnitude eigenvalues, real shift
 ===
 Eigenvalues (Real, Imag) Relative residuals
(0.50000000, 0.59581177) 0.00000000
(0.50000000, -0.59581177) 0.00000000
(0.50000000, 0.63311769) 0.00000000
(0.50000000, -0.63311769) 0.00000000
(0.50000000, 0.55827553) 0.00000000
(0.50000000, -0.55827553) 0.00000000
Number of requested eigenvalues : 6
Number of accurate (converged) eigenvalues : 6
316

 Eigensystem Analysis arpack_general
 Largest magnitude eigenvalues, imaginary shift
 ==
 Eigenvalues (Real, Imag) Relative residuals
(0.50000000, 0.59581177) 0.00000000
(0.50000000, -0.59581177) 0.00000000
(0.50000000, 0.63311769) 0.00000000
(0.50000000, -0.63311769) 0.00000000
(0.50000000, 0.55827553) 0.00000000
(0.50000000, -0.55827553) 0.00000000

Warning Errors

Fatal Errors

IMSL_ARPACK_MAX_ITER_REACHED The maximum number of iterations has been reached. All
possible eigenvalues have been found. Variable "n_acc"
returns the number of wanted converged Ritz values.

IMSL_ARPACK_NO_SHIFTS_APPLIED No shifts could be applied during a cycle of the implicitly
restarted Arnoldi iteration. One possibility is to increase the
size of "ncv" = # relative to "nev" = #.

IMSL_START_VECTOR_ZERO The starting vector "xguess" is zero. Use a non-zero vector
instead.

IMSL_UNABLE_TO_BUILD_ARNOLDI The algorithm was not able to build an Arnoldi factorization.
The size of the current Arnoldi factorization is #. Use of a dif-
ferent starting vector "xguess" may help.

IMSL_QR_CONVERGENCE_ERROR The iteration for an eigenvalue failed to converge during the
processing of the implicitly restarted Arnoldi method.

IMSL_QR_CONVERGENCE_ERROR_1 The iteration for an eigenvalue failed to converge during the
postprocessing phase of the implicitly restarted Arnoldi
method.

IMSL_SCHUR_FORM_REORD_ERROR Reordering of the Schur form failed because some eigenval-
ues are too close to separate (the problem is very ill-
conditioned).

IMSL_EIGVEC_COMPUTATION_ERROR The eigenvector computation during the postprocessing
phase of the implicitly restarted Arnoldi method failed.

IMSL_SYMM_TRIDIAG_QL_QR_ERROR The eigenvalue calculation via the symmetric tridiagonal QL or
QR algorithm during the post-processing phase of the implic-
itly restarted Arnoldi method failed.
317

 Eigensystem Analysis arpack_general
IMSL_ARPACK_NO_EIGVALS_FOUND The implicitly restarted Arnoldi method did not find any
eigenvalues to sufficient accuracy. Use of a different starting
vector "xguess", a larger iteration number "itmax", a different
number "ncv" of Arnoldi vectors or a different problem type
and/or solve mode may help.

IMSL_DIFF_N_CONV_RITZ_VALUES The number of converged Ritz values computed by the itera-
tively restarted Arnoldi method differs from the number of
converged Ritz values determined during the post-processing
phase.

IMSL_RAYLEIGH_DENOM_ZERO The denominator of the Rayleigh quotient of the generalized
eigenvector w, numbered #, is equal to zero. More specifically,
the B-norm of the eigenvector, sqrt(ctrans(w)*B*w), is zero.
318

 Eigensystem Analysis eig_gen
eig_gen

more...

Computes the eigenexpansion of a real matrix A.

Synopsis
#include <imsl.h>
f_complex *imsl_f_eig_gen (int n, float *a, …, 0)

The type d_complex function is imsl_d_eig_gen.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float *a (Input)
An array of size n × n containing the matrix.

Return Value
A pointer to the n complex eigenvalues of the matrix. To release this space, use imsl_free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_f_eig_gen (int n, float *a,

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, f_complex evalu[],
319

 Eigensystem Analysis eig_gen
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n × n containing eigenvectors of the matrix. On return,
the necessary space is allocated by the function. Typically, f_complex *evec is declared, and &evec
is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × ncontaining the matrix of eigenvectors is
returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the neigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description
Function imsl_f_eig_gen computes the eigenvalues of a real matrix by a two-phase process. The matrix is
reduced to upper Hessenberg form by elementary orthogonal or Gauss similarity transformations. Then, eigen-
values are computed using a QR or combined LR-QR algorithm (Golub and Van Loan 1989, pp. 373 - 382, and
Watkins and Elsner 1990). The combined LR-QR algorithm is based on an implementation by Jeff Haag and David
Watkins. Eigenvectors are then calculated as required. When eigenvectors are computed, the QR algorithm is
used to compute the eigenexpansion. When only eigenvalues are required, the combined LR-QR algorithm is
used.
320

 Eigensystem Analysis eig_gen
Examples

Example 1

#include <imsl.h>
int main()
{
 int n = 3;
 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,
 18.0, -5.0, -7.0};
 f_complex *eval;
 /* Compute eigenvalues of A */
 eval = imsl_f_eig_gen (n, a, 0);
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output

 Eigenvalues
 1 2 3
(2, 4) (2, -4) (1, 0)

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>
int main()
{
 int n = 3;
 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,
 18.0, -5.0, -7.0};
 f_complex *eval;
 f_complex *evec;
 /* Compute eigenvalues of A */
 eval = imsl_f_eig_gen (n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
(2, 4) (2, -4) (1, 0)
 Eigenvectors
321

 Eigensystem Analysis eig_gen
 1 2 3
1 (0.3162, 0.3162) (0.3162, -0.3162) (0.4082, 0.0000)
2 (0.0000, 0.6325) (0.0000, -0.6325) (0.8165, 0.0000)
3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)

Warning Errors
IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge

after # iterations.
322

 Eigensystem Analysis eig_gen (complex)
eig_gen (complex)

more...

Computes the eigenexpansion of a complex matrix A.

Synopsis
#include <imsl.h>
f_complex *imsl_c_eig_gen (int n, f_complex *a, …, 0)

The type d_complex procedure is imsl_z_eig_gen.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

f_complex *a (Input)
Array of size n ×n containing the matrix.

Return Value
A pointer to the n complex eigenvalues of the matrix. To release this space, use imsl_free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_eig_gen (int n, f_complex *a

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, f_complex evalu[],
323

 Eigensystem Analysis eig_gen (complex)
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n ×n containing eigenvectors of the matrix. On return,
the necessary space is allocated by the function. Typically, f_complex *evecu is declared, and
&evecu is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix of eigenvectors is
returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description
The function imsl_c_eig_gen computes the eigenvalues of a complex matrix by a two-phase process. The
matrix is reduced to upper Hessenberg form by elementary Gauss transformations. Then, the eigenvalues are
computed using an explicitly shifted LR algorithm. Eigenvectors are calculated during the iterations for the eigen-
values (Martin and Wilkinson 1971).

Examples

Example 1

#include <imsl.h>
int main()
{

324

 Eigensystem Analysis eig_gen (complex)
 int n = 4;
 f_complex a[] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
 {3,3}, {6,10}, {-5,-5}, {-6,-6},
 {2,2}, {3,3}, {-1, 3}, {-5,-5},
 {1,1}, {2,2}, {-3,-3}, { 0, 4} };
 f_complex *eval;
 /* Compute eigenvalues */
 eval = imsl_c_eig_gen (n, a, 0);
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output

 Eigenvalues
 1 2 3
(4, 8) (3, 7) (2, 6)
 4
(1, 5)

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>
int main()
{
 int n = 4;
 f_complex a[] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
 {3,3}, {6,10}, {-5,-5}, {-6,-6},
 {2,2}, {3,3}, {-1, 3}, {-5,-5},
 {1,1}, {2,2}, {-3,-3}, { 0, 4} };
 f_complex *eval;
 f_complex *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_c_eig_gen (n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
(4, 8) (3, 7) (2, 6)
 4
(1, 5)
 Eigenvectors
 1 2 3
1 (0.5773, -0.0000) (0.5774 0.0000) (0.3780, -0.0000)
325

 Eigensystem Analysis eig_gen (complex)
2 (0.5773, -0.0000) (0.5773, -0.0000) (0.7559, 0.0000)
3 (0.5774, 0.0000) (-0.0000, -0.0000) (0.3780, 0.0000)
4 (-0.0000, -0.0000) (0.5774, 0.0000) (0.3780, -0.0000)
 4
1 (0.7559, 0.0000)
2 (0.3780, 0.0000)
3 (0.3780, 0.0000)
4 (0.3780, 0.0000)

Fatal Errors
IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge

after # iterations.
326

 Eigensystem Analysis eig_sym
eig_sym

more...

Computes the eigenexpansion of a real symmetric matrix A.

Synopsis
#include <imsl.h>
float *imsl_f_eig_sym (int n, float *a, …, 0)

The type double procedure is imsl_d_eig_sym.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float *a (Input)
Array of size n × n containing the symmetric matrix.

Return Value
A pointer to the computed eigenvalues of the symmetric matrix in decreasing order of magnitude. To release this
space, use imsl_free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_eig_sym (int n, float *a,

IMSL_VECTORS, float **evec,
IMSL_VECTORS_USER, float evecu[],
IMSL_RETURN_USER, float evalu[],
327

 Eigensystem Analysis eig_sym
IMSL_RANGE, float elow, float ehigh,
IMSL_EXTREME_VALUES, int small, int n_extreme,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RETURN_NUMBER, int *n_eval,
0)

Optional Arguments
IMSL_VECTORS, float **evec (Output)

The address of a pointer to an array of size n × n_eval containing the orthonormal eigenvectors of
the matrix. In the special case of n_eval = 0, a one-element array is returned. On return, the neces-
sary space is allocated by the function. Typically, float *evec is declared, and &evec is used as an
argument.

IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. Array evecu, which contains the orthonormal eigenvectors, is
user-defined and must be of size n × k, where k >= n_extreme if optional argument
IMSL_EXTREME_VALUES is used, and k >= n otherwise.

IMSL_RETURN_USER, float evalu[] (Output)
Store the eigenvalues in decreasing order of magnitude in a user-defined array. Array evalu must
be of size k, where k >= n_extreme if optional argument IMSL_EXTREME_VALUES is used, and
k >= n otherwise.

IMSL_RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower limit elow and
upper limit ehigh.
Default: (elow, ehigh) = (−∞, +∞)

IMSL_EXTREME_VALUES, int small, int n_extreme (Input)
Return extreme eigenvalues and optionally eigenvectors of the matrix. If small = 0, the largest
n_extreme eigenvalues are returned, if small = 1, the smallest n_extreme eigenvalues are
returned.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n
328

 Eigensystem Analysis eig_sym
IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n_extreme, if argument IMSL_EXTREME_VALUES is used,
evecu_col_dim = n otherwise.

IMSL_RETURN_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range (elow, ehigh) or, if optional
argument IMSL_EXTREME_VALUES is used, the number of extreme eigenvalues computed (that
is, n_extreme).

Description
The function imsl_f_eig_sym computes the eigenvalues of a symmetric real matrix by a two-phase process.
The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the eigenval-
ues are computed using a rational QR or bisection algorithm. Eigenvectors are calculated as required (Parlett
1980, pp. 169 - 173).

Examples

Example 1

#include <imsl.h>
int main()
{
 int n = 3;
 float a[] = {7.0, -8.0, -8.0,
 -8.0, -16.0, -18.0,
 -8.0, -18.0, 13.0};
 float *eval;
 /* Compute eigenvalues */
 eval = imsl_f_eig_sym(n, a, 0);
 /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, 3, eval, 0);
}

Output

 Eigenvalues
 1 2 3
 -27.90 22.68 9.22

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.
329

 Eigensystem Analysis eig_sym
#include <imsl.h>
int main()
{
 int n = 3;
 float a[] = {7.0, -8.0, -8.0,
 -8.0, -16.0, -18.0,
 -8.0, -18.0, 13.0};
 float *eval;
 float *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_f_eig_sym(n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
 -27.90 22.68 9.22
 Eigenvectors
 1 2 3
1 0.2945 -0.2722 0.9161
2 0.8521 -0.3591 -0.3806
3 0.4326 0.8927 0.1262

Warning Errors
IMSL_SLOW_CONVERGENCE_SYM The iteration for the eigenvalue failed to converge in

100 iterations before deflating.

IMSL_SLOW_CONVERGENCE_2 Inverse iteration did not converge. Eigenvector is
not correct for the specified eigenvalue.

IMSL_LOST_ORTHOGONALITY The iteration for at least one eigenvector failed to
converge. Some of the eigenvectors may be
inaccurate.

IMSL_LOST_ORTHOGONALITY_2 The eigenvectors have lost orthogonality.

IMSL_NO_EIGENVALUES_RETURNED The number of eigenvalues in the specified interval
exceeds mxeval. The argument n_eval contains
the number of eigenvalues in the interval. No eigen-
values will be returned.
330

 Eigensystem Analysis eig_herm (complex)
eig_herm (complex)

more...

Computes the eigenexpansion of a complex Hermitian matrix A.

Synopsis
#include <imsl.h>
float *imsl_c_eig_herm (int n, f_complex *a, …, 0)

The type double procedure is imsl_z_eig_herm.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

f_complex *a (Input)
Array of size n × n containing the matrix.

Return Value
A pointer to the eigenvalues of the matrix in decreasing order of magnitude. To release this space, use
imsl_free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_c_eig_herm (int n, f_complex *a,

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, float evalu[],
331

 Eigensystem Analysis eig_herm (complex)
IMSL_RANGE, float elow, float ehigh,
IMSL_EXTREME_VALUES, int small, int n_extreme,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RETURN_NUMBER, int *n_eval,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n × n_eval containing the orthonormal eigenvectors of
the matrix. In the special case of n_eval = 0, a one-element array is returned. On return, the neces-
sary space is allocated by the function. Typically, f_complex *evec is declared, and &evec is used as
an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. Array evecu, which contains the orthonormal eigenvectors, is
user-defined and must be of size n × k, where k >= n_extreme if optional argument
IMSL_EXTREME_VALUES is used, and k >= n otherwise.

IMSL_RETURN_USER, float evalu[] (Output)
Store the eigenvalues in decreasing order of magnitude in a user-defined array. Array evalu must
be of size k, where k >= n_extreme if optional argument IMSL_EXTREME_VALUES is used, and
k >= n otherwise.

IMSL_RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower limit elow and
upper limit ehigh.
Default: (elow, ehigh) = (−∞, +∞).

IMSL_EXTREME_VALUES, int small, int n_extreme (Input)
Return extreme eigenvalues and optionally eigenvectors of the matrix. If small = 0, the largest
n_extreme eigenvalues are returned, if small = 1, the smallest n_extreme eigenvalues are
returned.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n
332

 Eigensystem Analysis eig_herm (complex)
IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n_extreme, if argument IMSL_EXTREME_VALUES is used,
evecu_col_dim = n otherwise.

IMSL_RETURN_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range (elow, ehigh) or, if optional argu-
ment IMSL_EXTREME_VALUES is used, the number of extreme eigenvalues computed (that is,
n_extreme).

Description
The function imsl_c_eig_herm computes the eigenvalues of a complex Hermitian matrix by a two-phase
process. The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the
eigenvalues are computed using a rational QR or bisection algorithm. Eigenvectors are calculated as required.

Examples

Example 1

#include <imsl.h>
int main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {-2,0} };
 float *eval;
 /* Compute eigenvalues */
 eval = imsl_c_eig_herm(n, a, 0);
 /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output

 Eigenvalues
 1 2 3
 15.38 -10.63 -0.75

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>
333

 Eigensystem Analysis eig_herm (complex)
int main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {-2,0} };
 float *eval;
 f_complex *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_c_eig_herm(n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
 15.38 -10.63 -0.75
 Eigenvectors
 1 2 3
1 (0.0631, -0.4075) (-0.0598, -0.3117) (0.8539, 0.0000)
2 (0.7703, 0.0000) (-0.5939, 0.1841) (-0.0313, -0.1380)
3 (0.4668, 0.1366) (0.7160, 0.0000) (0.0808, -0.4942)
334

 Eigensystem Analysis eig_herm (complex)
Warning Errors

Fatal Errors

IMSL_LOST_ORTHOGONALITY The iteration for at least one eigenvector failed to
converge. Some of the eigenvectors may be
inaccurate.

IMSL_NEVAL_MXEVAL_MISMATCH The determined number of eigenvalues in the inter-
val (#, #) is #. However, the input value for the
maximum number of eigenvalues in this interval is
#.

IMSL_HERMITIAN_DIAG_REAL_1 The matrix element “a[#][#]” =#. The diagonal of a
Hermitian matrix must be real; its imaginary part is
set to zero.

IMSL_BEST_ESTIMATE_RETURNED The iteration for an eigenvalue failed to converge.
The best estimate will be returned.

IMSL_SLOW_CONVERGENCE_GEN The iteration for the eigenvalues did not converge.

IMSL_HERMITIAN_DIAG_REAL The matrix element A (#, #) = #. The diagonal of a
Hermitian matrix must be real.
335

 Eigensystem Analysis eig_symgen
eig_symgen

more...

Computes the generalized eigenexpansion of a system Ax = λBx. The matrices A and B are real and symmetric,
and B is positive definite.

Synopsis
#include <imsl.h>
float *imsl_f_eig_symgen (int n, float *a, float *b, …, 0)

The type double procedure is imsl_d_eig_symgen.

Required Arguments
int n (Input)

Number of rows and columns in the matrices.

float *a (Input)
Array of size n ×n containing the symmetric coefficient matrix A.

float *b (Input)
Array of size n ×n containing the positive definite symmetric coefficient matrix B.

Return Value
A pointer to the n eigenvalues of the symmetric matrix. To release this space, use imsl_free. If no value can
be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
336

 Eigensystem Analysis eig_symgen
float *imsl_f_eig_symgen (int n, float *a, float *b,

IMSL_VECTORS, float **evec,
IMSL_VECTORS_USER, float evecu[],
IMSL_RETURN_USER, float evalu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, float **evec (Output)

The address of a pointer to an array of size n ×n containing eigenvectors of the problem. On return,
the necessary space is allocated by the function. Typically, float *evec is declared, and &evec is
used as an argument.

IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n ×n containing the matrix of generalized
eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n
337

 Eigensystem Analysis eig_symgen
Description
The function imsl_f_eig_symgen computes the eigenvalues of a symmetric, positive definite eigenvalue
problem by a three-phase process (Martin and Wilkinson 1971). The matrix B is reduced to factored form using
the Cholesky decomposition. These factors are used to form a congruence transformation that yields a symmet-
ric real matrix whose eigenexpansion is obtained. The problem is then transformed back to the original
coordinates. Eigenvectors are calculated and transformed as required.

Examples

Example 1

#include <imsl.h>
int main()
{
 int n = 3;
 float a[] = {1.1, 1.2, 1.4,
 1.2, 1.3, 1.5,
 1.4, 1.5, 1.6};
 float b[] = {2.0, 1.0, 0.0,
 1.0, 2.0, 1.0,
 0.0, 1.0, 2.0};
 float *eval;
 /* Solve for eigenvalues */
 eval = imsl_f_eig_symgen (n, a, b, 0);
 /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output

 Eigenvalues
 1 2 3
 1.386 -0.058 -0.003

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>
int main()
{
 int n = 3;
 float a[] = {1.1, 1.2, 1.4,
 1.2, 1.3, 1.5,
 1.4, 1.5, 1.6};
338

 Eigensystem Analysis eig_symgen
 float b[] = {2.0, 1.0, 0.0,
 1.0, 2.0, 1.0,
 0.0, 1.0, 2.0};
 float *eval;
 float *evec;
 /* Solve for eigenvalues and eigenvectors */
 eval = imsl_f_eig_symgen (n, a, b,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
 1.386 -0.058 -0.003
 Eigenvectors
 1 2 3
1 0.6431 -0.1147 -0.6817
2 -0.0224 -0.6872 0.7266
3 0.7655 0.7174 -0.0858

Warning Errors

Fatal Errors

IMSL_SLOW_CONVERGENCE_SYM The iteration for an eigenvalue failed to converge
in 100 iterations before deflating.

IMSL_SUBMATRIX_NOT_POS_DEFINITE The leading # by # submatrix of the input
matrix is not positive definite.

IMSL_MATRIX_B_NOT_POS_DEFINITE Matrix B is not positive definite.
339

 Eigensystem Analysis geneig
geneig

more...

Computes the generalized eigenexpansion of a system Ax = λBx, with A and B real.

Synopsis
#include <imsl.h>
void imsl_f_geneig (int n, float *a, float *b, f_complex *alpha, float *beta, ..., 0)

The double analogue is imsl_d_geneig.

Required Arguments
int n (Input)

Number of rows and columns in A and B.

float *a (Input)
Array of size n × n containing the coefficient matrix A.

float *b (Input)
Array of size n × n containing the coefficient matrix B.

f_complex *alpha (Output)
Vector of size n containing scalars αi. If βi ≠ 0, λi = αi/βi for i = 0, …, n − 1 are the eigenvalues of
the system.

float *beta (Output)
Vector of size n .

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_geneig (int n, float *a, float *b,
340

 Eigensystem Analysis geneig
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n × n containing eigenvectors of the problem. Each vec-
tor is normalized to have Euclidean length equal to the value one. On return, the necessary space is
allocated by the function. Typically, f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix of generalized
eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length
equal to the value one.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n .

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description
The function imsl_f_geneig uses the QZ algorithm to compute the eigenvalues and eigenvectors of the gen-
eralized eigensystem Ax = λBx, where A and B are real matrices of order n. The eigenvalues for this problem can
be infinite, so α and β are returned instead of λ. If β is nonzero, λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-trian-
gular form. Then, orthogonal transformations are used to reduce A to quasi-upper-triangular form while keeping
B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.
341

 Eigensystem Analysis geneig
The function imsl_f_geneig is based on the QZ algorithm due to Moler and Stewart (1973), as implemented
by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).

Examples

Example 1

In this example, the eigenvalue, λ, of system Ax = λBx is computed, where

A =
1.0 0.5 0.0
−10.0 2.0 0.0
5.0 1.0 0.5

and B =
0.5 0.0 0.0
3.0 3.0 0.0
4.0 0.5 1.0
342

 Eigensystem Analysis geneig
#include <imsl.h>
#include <stdio.h>
int main()
{
 int n = 3;
 f_complex alpha[3];
 float beta[3];
 int i;
 f_complex eval[3];
 float a[] =
 {1.0, 0.5, 0.0,
 -10.0, 2.0, 0.0,
 5.0, 1.0, 0.5};
 float b[] =
 {0.5, 0.0, 0.0,
 3.0, 3.0, 0.0,
 4.0, 0.5, 1.0};
 /* Compute eigenvalues */
 imsl_f_geneig (n, a, b, alpha, beta,
 0);
 for (i=0; i<n; i++)
 if (beta[i] != 0.0)
 eval[i] = imsl_c_div(alpha[i],
 imsl_cf_convert(beta[i], 0.0));
 else
 printf ("Infinite eigenvalue\n");
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval,
 0);
}

Output

 Eigenvalues
 1 2 3
(0.833, 1.993) (0.833, -1.993) (0.500, 0.000)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int n = 3;
 f_complex alpha[3];
 float beta[3];
 int i;
343

 Eigensystem Analysis geneig
 f_complex eval[3];
 f_complex *evec;
 float a[] =
 {1.0, 0.5, 0.0,
 -10.0, 2.0, 0.0,
 5.0, 1.0, 0.5};
 float b[] =
 {0.5, 0.0, 0.0,
 3.0, 3.0, 0.0,
 4.0, 0.5, 1.0};
 imsl_f_geneig (n, a, b, alpha, beta,
 IMSL_VECTORS, &evec,
 0);
 for (i=0; i<n; i++)
 if (beta[i] != 0.0)
 eval[i] = imsl_c_div(alpha[i],
 imsl_cf_convert(beta[i], 0.0));
 else
 printf ("Infinite eigenvalue\n");
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval,
 0);
 /* Print eigenvectors */
 imsl_c_write_matrix ("Eigenvectors", n, n, evec,
 0);
}

Output

 Eigenvalues
 1 2 3
(0.833, 1.993) (0.833, -1.993) (0.500, -0.000)
 Eigenvectors
 1 2 3
1 (-0.197, 0.150) (-0.197, -0.150) (-0.000, 0.000)
2 (-0.069, -0.568) (-0.069, 0.568) (-0.000, 0.000)
3 (0.782, 0.000) (0.782, 0.000) (1.000, 0.000)
344

 Eigensystem Analysis geneig (complex)
geneig (complex)

more...

Computes the generalized eigenexpansion of a system Ax = λBx, with A and B complex.

Synopsis
#include <imsl.h>
void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha, float *beta, ..., 0)

The double analogue is imsl_z_geneig.

Required Arguments
int n (Input)

Number of rows and columns in A and B.

f_complex *a (Input)
Array of size n × n containing the coefficient matrix A.

f_complex *b (Input)
Array of size n × n containing the coefficient matrix B.

f_complex *alpha (Output)
Vector of size n containing scalars αi. If βi ≠ 0, λi = αi/βi for i = 0, …, n − 1 are the eigenvalues of the
system.

f_complex *beta (Output)
Vector of size n .

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha, f_complex *beta,
345

 Eigensystem Analysis geneig (complex)
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n × n containing eigenvectors of the problem. Each vec-
tor is normalized to have Euclidean length equal to the value one. On return, the necessary space is
allocated by the function. Typically, f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix of generalized
eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length
equal to the value one.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n.

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n.

Description
The function imsl_c_geneig uses the QZ algorithm to compute the eigenvalues and eigenvectors of the gen-
eralized eigensystem Ax = λBx, where A and B are complex matrices of order n. The eigenvalues for this problem
can be infinite, so α and β are returned instead of λ. If β is nonzero, λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-trian-
gular form. Then, orthogonal transformations are used to reduce A to quasi-upper­triangular form while keeping
B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_c_geneig is based on the QZ algorithm due to Moler and Stewart (1973).
346

 Eigensystem Analysis geneig (complex)
Examples

Example 1

In this example, the eigenvalue, λ, of system Ax = λBx is solved, where

#include <imsl.h>
#include <stdio.h>
int main()
{
 int n = 3, i;
 f_complex alpha[3], beta[3], eval[3];
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};
 /* Compute eigenvalues */
 imsl_c_geneig (n, a, b, alpha, beta,
 0);
 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf ("Infinite eigenvalue\n");
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval,
 0);
}

Output

 Eigenvalues
 1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

#include <imsl.h>

A =
1 0.5 + i 5i
−10 2 + i 0
5 + i 1 0.5 + 3i

and B =
0.5 0 0
3 + 3i 3 + 3i i
4 + 2i 0.5 + i 1 + i
347

 Eigensystem Analysis geneig (complex)
#include <stdio.h>
int main()
{
 int n = 3, i;
 f_complex alpha[3], beta[3], eval[3], *evec;
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};
 /* Compute eigenvalues and eigenvectors */
 imsl_c_geneig (n, a, b, alpha, beta,
 IMSL_VECTORS, & evec,
 0);
 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf ("Infinite eigenvalue\n");
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval,
 0);
 /*Print eigenvectors */
 imsl_c_write_matrix ("Eigenvectors", n, n, evec,
 0);
}

Output

 Eigenvalues
 1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)
 Eigenvectors
 1 2 3
1 (-0.3267, -0.1245) (-0.3007, -0.2444) (0.0371, 0.1518)
2 (0.1767, 0.0054) (0.8959, 0.0000) (0.9577, 0.0000)
3 (0.9201, 0.0000) (-0.2019, 0.0801) (-0.2215, 0.0968)
348

 Interpolation and Approximation Functions
Interpolation and Approximation

Functions
Cubic Spline Interpolation

Derivative end conditions. cub_spline_interp_e_cnd 360
Shape preserving . cub_spline_interp_shape 369
Tension-Continuity-Bias Conditions . cub_spline_tcb 375

Cubic Spline Evaluation and Integration
Evaluation and differentiation .cub_spline_value 383
Integration . cub_spline_integral 387

Spline Interpolation
One-dimensional interpolation . spline_interp 389
Knot sequence given interpolation data. spline_knots 395
Two-dimensional, tensor-product interpolation spline_2d_interp 400

Spline Evaluation and Integration
One-dimensional evaluation and differentiation. spline_value 407
One-dimensional integration . spline_integral 411
Two-dimensional evaluation and differentiation. spline_2d_value 414
Two-dimensional integration . spline_2d_integral 418

Multi-dimensional
Multidimensional interpolation and differentiation spline_nd_interp 422

Least-Squares Approximation and Smoothing
General functions . user_fcn_least_squares 427
Splines with fixed knots .spline_least_squares 436
Tensor-product splines with fixed knots.spline_2d_least_squares 443
Cubic smoothing spline . cub_spline_smooth 449
Splines with constraints . spline_lsq_constrained 454
Smooth one-dimensional data by error detection smooth_1d_data 463

Scattered Data Interpolation
Akima’s surface-fitting method. .scattered_2d_interp 468

Scattered Data Least Squares
Fit using radial-basis functions . radial_scattered_fit 473
Evaluate radial-basis fit . radial_evaluate 481
349

 Interpolation and Approximation Usage Notes
Usage Notes
The majority of the functions in this chapter produce cubic piecewise polynomial or general spline functions that
either interpolate or approximate given data or support the evaluation and integration of these functions. Two
major subdivisions of functions are provided. The cubic spline functions begin with the prefix “cub_spline_”
and use the piecewise polynomial representation described below. The spline functions begin with the prefix
“spline_” and use the B-spline representation described below. Most of the spline functions are based on rou-
tines in the book by de Boor (1978).

We provide a few general purpose routines for general least-squares fit to data and a routine that produces an
interpolant to two-dimensional scattered data.

Piecewise Polynomials
A univariate piecewise polynomial (function) p is specified by giving its breakpoint sequence ξ∈ℜ , the order k
(degree k − 1) of its polynomial pieces, and the k × (n - 1) matrix c of its local polynomial coefficients. In terms of
this information, the piecewise polynomial (ppoly) function is given by

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the ppoly function to the entire
real axis by extrapolation from the first and last intervals. This representation is redundant when the ppoly func-
tion is known to be smooth. For example, if p is known to be continuous, then we can compute c1,i+1 from the cii

as follows:

For smooth ppoly, we prefer to use the nonredundant representation in terms of the “basis” or B-splines, at least
when such a function is first to be determined.

Splines and B-Splines
B-splines provide a particularly convenient and suitable basis for a given class of smooth ppoly functions. Such a
class is specified by giving its breakpoint sequence, its order k, and the required smoothness across each of the

interior breakpoints. The corresponding B-spline basis is specified by giving its knot sequence t ε ℜM. The specifi-

p x =∑
j=1

k

c ji
x − ξi

j−1

j − 1 !
for ξi ≤ x ≤ ξi+1

c1, i+1 = p ξi+1 =∑
j=1

k

c ji
ξi+1 − ξi

j−1

j − 1 !
350

 Interpolation and Approximation Usage Notes
cation rule is as follows: If the class is to have all derivatives up to and including the j-th derivative continuous
across the interior breakpoint ξi, then the number ξi should occur k − j − 1 times in the knot sequence. Assum-

ing that ξ1 and ξn are the endpoints of the interval of interest, choose the first k knots equal to ξ1 and the last k

knots equal to ξn. This can be done because the B-splines are defined to be right continuous near ξ1 and left

continuous near ξn.

When the above construction is completed, a knot sequence t of length M is generated, and there are m: = M − k
B-splines of order k, for example B0, …, Bm-1, spanning the ppoly functions on the interval with the indicated

smoothness. That is, each ppoly function in this class has a unique representation

as a linear combination of B-splines. A B-spline is a particularly compact ppoly function. Bi is a nonnegative func-

tion that is nonzero only on the interval [ti,ti+k]. More precisely, the support of the i-th B-spline is [ti,ti+k]. No

ppoly function in the same class (other than the zero function) has smaller support (i.e., vanishes on more inter-
vals) than a B-spline. This makes B-splines particularly attractive basis functions since the influence of any
particular B-spline coefficient extends only over a few intervals. When it is necessary to emphasize the depen-
dence of the B-spline on its parameters, we will use the notation Bi,k,t to denote the i-th B-spline of order k for

the knot sequence t.

Cubic Splines
Cubic splines are smooth (i.e., C0, C1 or C2), fourth-order ppoly functions. For historical and other reasons, cubic
splines are the most heavily used ppoly functions. Therefore, we provide special functions for their construction
and evaluation. These routines use the ppoly representation as described above for general ppoly functions (with
k = 4).

We provide three cubic spline interpolation functions: imsl_f_cub_spline_interp_e_cnd,
imsl_f_cub_spline_interp_shape, and imsl_f_cub_spline_tcb. The function
imsl_f_cub_spline_interp_e_cnd allows the user to specify various endpoint conditions (such as the
value of the first or second derivative at the right and left points). The natural cubic spline, for example, can be
obtained using this function by setting the second derivative to zero at both endpoints. The function
imsl_f_cub_spline_interp_shape is designed so that the shape of the curve matches the shape of the
data. In particular, one option of this function preserves the convexity of the data while the default attempts to
minimize oscillations. The function imsl_f_cub_spline_tcb allows the user to specify tension, continuity
and bias parameters at each data point.

p = a0B0 + a1B1 + … + am−1Bm−1
351

 Interpolation and Approximation Usage Notes
It is possible that the cubic spline interpolation functions will produce unsatisfactory results. For example, the
interpolant may not have the shape required by the user, or the data may be noisy and require a least-squares fit.
The interpolation function imsl_f_spline_interp is more flexible, as it allows you to choose the knots and
order of the spline interpolant. We encourage the user to use this routine and exploit the flexibility provided.

Tensor Product Splines
The simplest method of obtaining multivariate interpolation and approximation functions is to take univariate
methods and form a multivariate method via tensor products. In the case of two-dimensional spline interpola-
tion, the derivation proceeds as follows. Let tx be a knot sequence for splines of order kx, and tv be a knot

sequence for splines of order kv. Let Nx + kx be the length of tx, and Nv + kx be the length of tv. Then, the tensor-

product spline has the following form.

Given two sets of points

and

for which the corresponding univariate interpolation problem can be solved, the tensor-product interpolation
problem finds the coefficients cnm so that

This problem can be solved efficiently by repeatedly solving univariate interpolation problems as described in de
Boor (1978, p. 347). Three-dimensional interpolation can be handled in an analogous manner. This chapter pro-
vides functions that compute the two-dimensional, tensor-product spline coefficients given two-dimensional
interpolation data (imsl_f_spline_2d_interp) and that compute the two-dimensional, tensor-product spline
coefficients for a tensor-product, least-squares problem (imsl_f_spline_2d_least_squares). In addition,
we provide evaluation, differentiation, and integration functions for the two-dimensional, tensor-product spline
functions. The relevant functions are imsl_f_spline_2d_value and imsl_f_spline_2d_integral.

∑
m=0

N y−1

∑
n=0

Nx−1

cnmBn, kx, tx x Bm, ky, ty y

xi i=1
Nx

yi i=1
N y

∑
m=0

N y−1

∑
n=0

Nx−1

cnmBn,kx,tx xi Bm,ky,ty y j = f i j
352

 Interpolation and Approximation Usage Notes
Scattered Data Interpolation
The IMSL C Math Library provides one function, imsl_f_scattered_2d_interp, that returns values of an

interpolant to scattered data in the plane. This function is based on work by Akima (1978), which uses C1 piece-
wise quintics on a triangular mesh.

Multi-dimensional Interpolation
imsl_f_spline_nd_interp computes a piecewise polynomial interpolant, of up to 15-th degree, to a function of
up to 7 variables, defined on a multi-dimensional grid.

Least Squares
The IMSL C Math Library includes functions for smoothing noisy data. The function
imsl_f_user_fcn_least_squares computes regressions with user-supplied functions. The function
imsl_f_spline_least_squares computes a least-squares fit using splines with fixed knots or variable knots.
These functions produce cubic spline, least-squares fit by default. Optional arguments allow the user to choose
the order and the knot sequence. IMSL C Math Library also includes a tensor-product spline regression function
(imsl_f_spline_2d_least_squares), mentioned above. The function imsl_f_radial_scattered_fit

computes an approximation to scattered data in ℜN using radial-basis functions.

In addition to the functions listed above, several functions in Chapter 10, “Statistics and Random Number Gener-
ation”, provide for polynomial regression and general linear regression.

Smoothing by Cubic Splines
One ‘‘smoothing spline’’ function is provided. The default action of imsl_f_cub_spline_smooth estimates a
smoothing parameter by cross-validation and then returns the cubic spline that smooths the data. If the user
wishes to supply a smoothing parameter, then this function returns the appropriate cubic spline.

Structures for Splines and Piecewise Polynomials
This optional section includes more details concerning the structures for splines and piecewise polynomials.

B-Splines

A spline may be viewed as a mapping with domain ℜd and target ℜr, where d and r are positive integers. For this
version of the IMSL C Math Library, only r = 1 is supported. Thus, if s is a spline, then for some d and r
353

 Interpolation and Approximation Usage Notes
s : ℜd → ℜr

This implies that such a spline s must have d knot sequences and orders (one for each domain dimension). Thus,
associated with s, we have knots and orders

t0, …, td-1

k

0

, …, kd-

1

The precise form of the spline follows:

s(x) = (s

0

(x), …, sr

-

1

(x)) x = (x

1

, …, xd) ε ℜd

where the following equation is true.

Note that ni is the number of knots in ti minus the order ki.

We store all the information for a spline in one structure called Imsl_f_spline. (If the type is double, then the struc-
ture name is Imsl_d_spline, and the float becomes double.) The specification for this structure follows:

 typedef struct {
 int domain_dim;
 int target_dim;
 int *order;
 int *num_coef;
 int *num_knots;
 float **knots;
 float **coef;
} Imsl_f_spline;

The following function demonstrates how the contents of an Imsl_f_spline can be viewed:

#include <imsl.h>

si x : = ∑
jd−1=0

nd−1−1

⋯∑
j0=0

n0−1

c j0, …, jd−1
i B

j0, k0, t
0…B jd−1, kd−1, t

d−1
354

 Interpolation and Approximation Usage Notes
#include <stdio.h>
void sp_print(Imsl_f_spline *sp)
{
 int i, j;
 printf("Domain dimension: %d\n", sp->domain_dim);
 printf("Target dimension: %d\n\n", sp->target_dim);
 for (i = 0; i < sp->domain_dim; i++) {
 printf("Domain #%d\n", (i + 1));
 printf(" Order %d\n", sp->order[i]);
 printf(" # of coefficients %d\n", sp->num_coef[i]);
 printf(" # of knots %d\n",sp->num_knots[i]);
 printf(" Knots:\n");
 for (j = 0; j < (sp->num_knots[i]); j++)
 printf(" %8.3f\n", sp->knots[i][j]);
 }
 /*
 * Handle printing of 1D and 2D B-spline coefficients separately.
 */
 if (sp->domain_dim==1) {
 imsl_f_write_matrix("Spline Coefficients",
 sp->num_coef[0], 1, sp->coef[0], 0);
 }
 if (sp->domain_dim==2) {
 /*
 * Coefficients of 2D B-splines are stored in column-major order.
 * To view the coefficients correctly we reverse the dimensions and
 * use optional argument IMSL_TRANSPOSE when calling
 * imsl_f_write_matrix() .
 */
 imsl_f_write_matrix("Spline Coefficients",
 sp->num_coef[1], sp->num_coef[0],
 sp->coef[0], IMSL_TRANSPOSE, 0);
 }
}

Example
The data for this example comes from the function ex sin (x + y) on the rectangle [0, 3] × [0, 5]. This function is
sampled on a 50 × 25 grid and a tensor-product spline approximation is computed using
imsl_f_spline_2d_least_squares(). The contents of the spline structure are then printed using the
function sp_print() provided above.

#include <imsl.h>
void sp_print(Imsl_f_spline *sp);
int main()
{
#define NXDATA 50
#define NYDATA 25
 /* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))
 int i, j;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA];
355

 Interpolation and Approximation Usage Notes
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NXDATA; i++)
 xdata[i] = 3.*(float) i / ((float)(NXDATA-1));
 for (i = 0; i < NYDATA; i++)
 ydata[i] = 5.*(float) i / ((float)(NYDATA-1));
 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++)
 for (j = 0; j < NYDATA; j++)
 fdata[i][j] = F(xdata[i], ydata[j]);
 /* Compute tensor-product fit */
 sp = imsl_f_spline_2d_least_squares(NXDATA, &xdata[0], NYDATA,
 &ydata[0], &fdata[0][0], 5, 7, 0);
 /* Print contents of spline structure. */
 sp_print(sp);
}

Output
Domain dimension: 2
Target dimension: 1
Domain #1
 Order 4
 # of coefficients 5
 # of knots 9
 Knots:
 0.000
 0.000
 0.000
 0.000
 1.500
 3.000
 3.000
 3.000
 3.000
Domain #2
 Order 4
 # of coefficients 7
 # of knots 11
 Knots:
 0.000
 0.000
 0.000
 0.000
 1.250
 2.500
 3.750
 5.000
 5.000
 5.000
 5.000
 Spline Coefficients
 1 2 3 4 5
1 -0.02 0.43 1.34 0.87 -0.78
2 0.52 0.99 1.62 0.35 -1.40
3 3.35 4.99 6.16 -0.46 -6.45
356

 Interpolation and Approximation Usage Notes
4 10.43 7.44 -5.11 -16.78 -5.56
5 2.98 -5.24 -23.55 -18.74 11.62
 6 7
1 -1.18 -1.05
2 -1.30 -0.95
3 -4.60 -2.79
4 7.10 10.21
5 21.49 20.07

Piecewise Polynomials

For ppoly functions, we view a ppoly as a mapping with domain ℜd and target ℜr where d and r are positive
integers. Thus, if p is a ppoly, then for some d and r the following is true.

p : ℜd → ℜr

For this version of the C MathLibrary, only r = d = 1 is supported. See the section Piecewise Polynomials near the
beginning of this chapter for a detailed description of ppoly construction.

We store all the information for a ppoly in one structure called Imsl_f_ppoly. (If the type is double, then the struc-
ture name is Imsl_d_ppoly, and the float becomes double.) The following is the specification for this structure.

 typedef struct {
 int domain_dim;
 int target_dim;
 int *order;
 int *num_coef;
 int *num_breakpoints;
 float **breakpoints;
 float **coef;
} Imsl_f_ppoly;

The following function demonstrates how the contents of an Imsl_f_ppoly can be viewed.

#include <imsl.h>
#include <stdio.h>
void pp_print(Imsl_f_ppoly *pp)
{
 int i, j, k;
 printf("Domain dimension: %d\n", pp->domain_dim);
 printf("Target dimension: %d\n\n", pp->target_dim);
 for (i = 0; i < pp->domain_dim; i++) {
 printf("Domain #%d\n", (i + 1));
 printf(" Order %d\n", pp->order[i]);
 printf(" # of coefficients %d\n", pp->num_coef[i]);
 printf(" # of breakpoints %d\n",pp->num_breakpoints[i]);
 printf(" Breakpoints:\n");
 for (j = 0; j < (pp->num_breakpoints[i]); j++)
 printf(" %8.3f\n", pp->breakpoints[i][j]);
 }
 printf("\nCoefficients:\n");
 for (j = 0; j < ((pp->num_breakpoints[0]) - 1); j++)
357

 Interpolation and Approximation Usage Notes
 {
 printf(" ppoly piece %4d", j + 1);
 for (k = 0; k < (pp->order[0]); k++)
 printf(" %9.3f ", pp->coef[0][j * (pp->order[0]) + k]);
 printf("\n");
 }

}

Example
In this example, a cubic spline interpolant to a function f is computed. The contents of the ppoly structure are
then printed using the sample code pp_print() provided above.

#include <imsl.h>
void pp_print(Imsl_f_ppoly *pp);
int main()
{
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *ppoly;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print contents of ppoly structure. */
 pp_print(ppoly);
}

Output
Domain dimension: 1
Target dimension: 1
Domain #1
 Order 4
 # of coefficients 40
 # of breakpoints 11
 Breakpoints:
 0.000
 0.100
 0.200
 0.300
 0.400
 0.500
 0.600
 0.700
 0.800
358

 Interpolation and Approximation Usage Notes
 0.900
 1.000
Coefficients:
 ppoly piece 1 0.000 23.414 -310.479 1250.916
 ppoly piece 2 0.997 -1.379 -185.387 1250.917
 ppoly piece 3 0.141 -13.663 -60.295 3294.986
 ppoly piece 4 -0.978 -3.218 269.203 -1956.621
 ppoly piece 5 -0.279 13.919 73.541 -3253.285
 ppoly piece 6 0.938 5.007 -251.787 1394.176
 ppoly piece 7 0.412 -13.201 -112.370 3540.767
 ppoly piece 8 -0.880 -6.734 241.707 -1152.020
 ppoly piece 9 -0.537 11.677 126.505 -2758.902
 ppoly piece 10 0.804 10.532 -149.385 -2758.903
359

 Interpolation and Approximation cub_spline_interp_e_cnd
cub_spline_interp_e_cnd

more...

Computes a cubic spline interpolant, specifying various endpoint conditions. The default interpolant satisfies the
“not-a-knot” condition.

Synopsis
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata, float xdata[], float fdata[],

…, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_e_cnd.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation problem.

float fdata[] (Input)
Array with ndata components containing the ordinates for the interpolation problem.

Return Value
A pointer to the structure that represents the cubic spline interpolant. If an interpolant cannot be computed,
then NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata, float xdata[], float fdata[],
360

 Interpolation and Approximation cub_spline_interp_e_cnd
IMSL_LEFT, int ileft, float left,
IMSL_RIGHT, int iright, float right,
IMSL_PERIODIC,
0)

Optional Arguments
IMSL_LEFT, int ileft, float left (Input)

Set the value for the first or second derivative of the interpolant at the left endpoint. If ileft = i,
then the interpolant s satisfies

s(i)(xL) = left
where xL is the leftmost abscissa. The only valid values for ileft are 1 or 2.

IMSL_RIGHT, int iright, float right (Input)
Set the value for the first or second derivative of the interpolant at the right endpoint. If iright = i,
then the interpolant s satisfies

s(i)(xR)= right
where xR is the rightmost abscissa. The only valid values for iright are 1 or 2.

IMSL_PERIODIC
Compute the C2 periodic interpolant to the data. That is, we require

s(i)(xL) = s(i)(xR) i = 0, 1, 2

where s, xL, and xR are defined above.

Description
The function imsl_f_cub_spline_interp_e_cnd computes a C2 cubic spline interpolant to a set of data
points (xi, fi) for i = 0, …, ndata − 1 = n. The breakpoints of the spline are the abscissas. We emphasize here that

for all the univariate interpolation functions, the abscissas need not be sorted. Endpoint conditions are to be
selected by the user. The user may specify “not-a-knot” or first derivative or second derivative at each endpoint,

or C2 periodicity may be requested (see de Boor 1978, Chapter 4). If no defaults are selected, then the “not-a-
knot” spline interpolant is computed. If the IMSL_PERIODIC keyword is selected, then all other keywords are

ignored; and a C2 periodic interpolant is computed. In this case, if the fdata values at the left and right end-
points are not the same, then a warning message is issued; and we set the right value equal to the left. If
IMSL_LEFT or IMSL_RIGHT are selected (in the absence of IMSL_PERIODIC), then the user has the ability
361

 Interpolation and Approximation cub_spline_interp_e_cnd
to select the values of the first or second derivative at either endpoint. The default case (when the keyword is not
used) is the “not-a-knot” condition on that endpoint. Thus, when no optional arguments are chosen, this function
produces the “not-a-knot” interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth (say C4) function f, i.e. fi = f(xi),

then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline interpo-
lant. Then, the maximum absolute error satisfies

where

For more details, see de Boor (1978, Chapters 4 and 5).

The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling program must receive this
in a pointer Imsl_f_ppoly *ppoly. This structure contains all the information to determine the spline (stored as a
piecewise polynomial) that is computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y

y = imsl_f_cub_spline_value (x, ppoly, 0)
The difference between the default (“not-a-knot”) spline and the interpolating cubic spline, which has first deriva-
tive set to 1 at the left end and the second derivative set to −90 at the right end, is illustrated in the following
figure.

∥ f − s∥ ξ0,ξn ≤ C∥ f
4 ∥

ξ0,ξn
∣ξ∣4

∣ξ∣: = max
i=0,…,n−1

∣ξi+1 − ξi∣
362

 Interpolation and Approximation cub_spline_interp_e_cnd
Figure 1, Two Interpolating Splines

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then com-
pared with the exact function values. Since we are using the default settings, the interpolant is determined by the
“not-a-knot” condition (see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *ppoly;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,ppoly,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.809 0.1270
0.100 0.997 0.997 0.0000
0.150 0.778 0.723 0.0552
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
363

 Interpolation and Approximation cub_spline_interp_e_cnd
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.148 0.0347
0.900 0.804 0.804 0.0000
0.950 0.994 1.086 0.0926
1.000 0.650 0.650 0.0000

Example 2

In this example, a cubic spline interpolant to a function f is computed. The value of the derivative at the left end-
point and the value of the second derivative at the right endpoint are specified. The values of this spline are then
compared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA], xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 1;
 left = 0.0;
 iright = 2;
 right =-225.0*sin(15.0);
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i=0; i<NDATA; i++){
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

364

 Interpolation and Approximation cub_spline_interp_e_cnd
Output

 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.438 0.2441
0.100 0.997 0.997 0.0000
0.150 0.778 0.822 0.0442
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.575 0.0038
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.836 0.0233
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.439 0.0111
0.500 0.938 0.938 0.0000

Example 3

This example computes the natural cubic spline interpolant to a function f by forcing the second derivative of the
interpolant to be zero at both endpoints. As in the previous example, the exact function values are computed
with the values of the spline.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA],
 xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 2;
 left = 0.0;
 iright = 2;
 right = 0.0;
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < NDATA; i++){
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
365

 Interpolation and Approximation cub_spline_interp_e_cnd
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.667 0.0150
0.100 0.997 0.997 0.0000
0.150 0.778 0.761 0.0172
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.559 0.0126
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.840 0.0189
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.440 0.0098
0.500 0.938 0.938 0.0000

Example 4

This example computes the cubic spline interpolant to a functions, and imposes the periodic end conditions
s(a) = s(b), s'(a) = s'(b), and s"(a) = s"(b), where a is the leftmost abscissa and b is the rightmost abscissa.
366

 Interpolation and Approximation cub_spline_interp_e_cnd
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function*/
#define F(x) (float)(sin(x))
int main()
{
 int i;
 float x, y, twopi, fdata[NDATA], xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 twopi = 2.0*imsl_f_constant("pi", 0);
 for (i = 0; i < NDATA; i++) {
 xdata[i] = twopi*(float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 fdata[NDATA-1] = fdata[0];
 /* Compute periodic cubic spline */
 /* interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_PERIODIC,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < NDATA; i++){
 x = (twopi/20.)*i;
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n",x,F(x), y,
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.314 0.309 0.309 0.0001
0.628 0.588 0.588 0.0000
0.942 0.809 0.809 0.0004
1.257 0.951 0.951 0.0000
1.571 1.000 1.000 0.0004
1.885 0.951 0.951 0.0000
2.199 0.809 0.809 0.0004
2.513 0.588 0.588 0.0000
2.827 0.309 0.309 0.0001
3.142 -0.000 -0.000 0.0000
367

 Interpolation and Approximation cub_spline_interp_e_cnd
Warning Errors

Fatal Errors

IMSL_NOT_PERIODIC The data is not periodic. The rightmost fdata value is
set to the leftmost fdata value.

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.
368

 Interpolation and Approximation cub_spline_interp_shape
cub_spline_interp_shape
Computes a shape-preserving cubic spline.

Synopsis
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata, float xdata[], float fdata[],

…, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_shape.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation problem.

float fdata[] (Input)
Array with ndata components containing the ordinates for the interpolation problem.

Return Value
A pointer to the structure that represents the cubic spline interpolant. If an interpolant cannot be computed,
then NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata, float xdata[], float fdata[],

IMSL_CONCAVE,
IMSL_CONCAVE_ITMAX, int itmax,
0)
369

 Interpolation and Approximation cub_spline_interp_shape
Optional Arguments
IMSL_CONCAVE

This option produces a cubic interpolant that will preserve the concavity of the data.

IMSL_CONCAVE_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of Newton’s Method.
Default: itmax = 25.

Description
The function imsl_f_cub_spline_interp_shape computes a C1 cubic spline interpolant to a set of data
points(xi, fi) for i = 0, …, ndata − 1 = n. The breakpoints of the spline are the abscissas. This computation is

based on a method by Akima (1970) to combat wiggles in the interpolant. Endpoint conditions are automatically
determined by the program; see Akima (1970) or de Boor (1978).

If the optional argument IMSL_CONCAVE is chosen, then this function computes a cubic spline interpolant to
the data. For ease of explanation, we will assume that xi < xi+1, although it is not necessary for the user to sort

these data values. If the data are strictly convex, then the computed spline is convex, C2, and minimizes the
expression

over all convex C1 functions that interpolate the data. In the general case, when the data have both convex and
concave regions, the convexity of the spline is consistent with the data, and the above integral is minimized under
the appropriate constraints. For more information on this interpolation scheme, refer to Michelli et al. (1985) and
Irvine et al. (1986).

One important feature of the splines produced by this function is that it is not possible, a priori, to predict the
number of breakpoints of the resulting interpolant. In most cases, there will be breakpoints at places other than
data locations. This function should be used when it is important to preserve the convex and concave regions
implied by the data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic polynomials are not repro-
duced. (However, linear polynomials are reproduced.) This explains the theoretical error estimate below.

If the data points arise from the values of a smooth (say C4) function f, i.e. fi = f(xi), then the error will behave in a

predictable fashion. Let ξ be the breakpoint vector for either of the above spline interpolants. Then, the maxi-
mum absolute error satisfies

∫x1
xn
g ′ ′ 2
370

 Interpolation and Approximation cub_spline_interp_shape
where

and ξm is the last breakpoint.

The return value for this function is a pointer of the type Imsl_f_ppoly. The calling program must receive this in a
pointer Imsl_f_ppoly *ppoly. This structure contains all the information to determine the spline (stored as a
piecewise polynomial) that is computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y.

y = imsl_f_cub_spline_value (x, ppoly, 0)
The difference between the convexity-preserving spline and Akima’s spline is illustrated in the following figure.
Note that the convexity-preserving interpolant exhibits linear segments where the convexity constraints are
binding.

Figure 2, Two Shape-Preserving Splines

∥ f − s∥ ξ0,ξm ≤ C∥ f 2 ∥ ξ0,ξm ∣ξ∣2

∣ξ∣: = max
i=0,…,m−1

∣ξi+1 − ξi∣
371

 Interpolation and Approximation cub_spline_interp_shape
Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then com-
pared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < 2*NDATA-1; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.818 0.1360
0.100 0.997 0.997 0.0000
0.150 0.778 0.615 0.1635
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.478 0.0934
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.812 0.0464
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.386 0.0645
0.500 0.938 0.938 0.0000
0.550 0.923 0.854 0.0683
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.276 0.0433
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.889 0.0789
372

 Interpolation and Approximation cub_spline_interp_shape
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.149 0.0338
0.900 0.804 0.804 0.0000
0.950 0.994 0.932 0.0613
1.000 0.650 0.650 0.0000

Example 2

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then com-
pared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata,
 IMSL_CONCAVE,
 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.667 0.0150
0.100 0.997 0.997 0.0000
0.150 0.778 0.761 0.0172
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.559 0.0126
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.840 0.0189
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.440 0.0098
0.500 0.938 0.938 0.0000
373

 Interpolation and Approximation cub_spline_interp_shape
0.550 0.923 0.902 0.0208
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.311 0.0086
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.952 0.0156
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.200 0.0174
0.900 0.804 0.804 0.0000
0.950 0.994 0.892 0.1020
1.000 0.650 0.650 0.0000

Warning Errors

Fatal Errors

IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been
reached. The best approximation is returned.

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.
374

 Interpolation and Approximation cub_spline_tcb
cub_spline_tcb
Computes a tension-continuity-bias (TCB) cubic spline interpolant. This is also called a Kochanek-Bartels spline
and is a generalization of the Catmull–Rom spline.

Synopsis
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_tcb (int ndata, float xdata[], float fdata[], ..., 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_tcb.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation problem.

float fdata[] (Input)
Array with ndata components containing the ordinates for the interpolation problem.

Return Value
A pointer to the structure that represents the interpolant. If an interpolant cannot be computed, NULL is
returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_tcb (int ndata, float xdata[], float fdata[],

IMSL_TENSION, float tension[],
IMSL_CONTINUITY, float continuity[],
IMSL_BIAS, float bias[],
IMSL_LEFT, double left,
375

 Interpolation and Approximation cub_spline_tcb
IMSL_RIGHT, double right,
0)

Optional Arguments
IMSL_TENSION, float tension[] (Input)

Sets the tension values at the data points. The array tension is of length ndata and contains ten-
sion values in the interval [-1,1]. For each point, if the tension value is near +1 the curve is tightened
at that point. If it is near -1, the curve is slack.
Default: All values of tension are zero.

IMSL_CONTINUITY, float continuity[] (Input)
Sets the continuity values at the data points. The array continuity is of length ndata and con-
tains continuity values in the interval [-1,1]. For each point, if the continuity value is zero the curve is
C1 at that point. Otherwise the curve has a corner at that point, but is still continuous (C0).
Default: All values of continuity are zero.

IMSL_BIAS, float bias[] (Input)
Sets the bias values at the data points. The array bias is of length ndata and contains bias values
in the interval [-1,1]. For each point, if the bias value is zero the left and right side tangents are equally
weighted. If the value is near +1 the left-side tangent dominates. If the value is near -1 the right-side
tangent dominates.
Default: All values of bias are zero.

IMSL_LEFT, double left (Input)
Sets the value of the tangent at the leftmost endpoint.
Default: left = 0.

IMSL_RIGHT, double right (Input)
Sets the value of the tangent at the rightmost endpoint.
Default: right = 0.

Description
The function imsl_f_cub_spline_tcb computes the Kochanek-Bartels spline, a piecewise cubic Hermite
spline interpolant to a set of data points {xi, fi} for i = 0, …, ndata-1. The breakpoints of the spline are the abscis-

sas. As with all of the univariate interpolation functions, the abscissas need not be sorted.

The {xi} values are the knots, so the i-th interval is [xi, xi+1]. (To simplify the explanation, it is assumed that the data

points are given in increasing order.) The cubic Hermite interpolant in the i-th segment has a starting value of fi

and an ending value of fi+1. Its incoming tangent is
376

 Interpolation and Approximation cub_spline_tcb
where ti is the i-th tension value, ci is the i-th continuity value, and bi is the i-th bias value. Its outgoing tangent is

The optional arguments left and right are used at the endpoints i = 0 and i = ndata-1:

 and

Both left and right default to zero.

The spline has a continuous first derivative (is C1) if at each data point the left and right tangents are equal. This is

true if the continuity parameters, ci, are all zero. For any values of the parameters the spline is continuous (C0).

If ti = ci = bi = 0 for all i, then the curve is the Catmull-Rom spline.

The following chart shows the same data points interpolated with different parameter values. All of the tension,
continuity and bias parameters are zero except for the labeled parameter, which has the indicated value at all
data points.

Tension controls how sharply the spline bends at the data points. If tension is near +1, the curve tightens. If
tension is near -1, the curve slackens.

The continuity parameter controls the continuity of the first derivative. If continuity is zero, the spline’s first deriv-

ative is continuous, so the spline is C1.

The bias parameter controls the weighting of the left and right tangents. If zero, the tangents are equally
weighted. If the bias parameter is near +1, the left tangent dominates. If the bias parameter is near -1, the right
tangent dominates.

DSi =
1
2 1 − ti 1 − ci 1 + bi

f i − f i−1
xi − xi−1 +

1
2 1 − ti 1 + ci 1 − bi

f i+1 − f i
xi+1 − xi

DDi =
1
2 1 − ti 1 + ci 1 + bi

f i − f i−1
xi − xi−1 +

1
2 1 − ti 1 − ci 1 − bi

f i+1 − f i
xi+1 − xi

f 0 − f −1
x0 − x−1 = left f ndata − f ndata−1

xndata − xndata−1 = right
377

 Interpolation and Approximation cub_spline_tcb
Figure 3, Data Points Interpolated with Different Parameter Values

Examples

Example 1

This example interpolates to a set of points. At x = 3 the continuity and tension parameters are -1. At all other
points, they are zero. Interpolated values are then printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int m = 2, ndata = 6, i;
378

 Interpolation and Approximation cub_spline_tcb
 float x, y;
 float xdata[] = { 0, 1, 2, 3, 4, 5 };
 float fdata[] = { 5, 2, 3, 5, 1, 2 };
 float continuity[] = { 0, 0, 0, -1, 0, 0 };
 float tension[] = { 0, 0, 0, -1, 0, 0 };
 Imsl_f_ppoly *ppoly;
 ppoly = imsl_f_cub_spline_tcb(ndata, xdata, fdata,
 IMSL_CONTINUITY, continuity,
 IMSL_TENSION, tension,
 0);
 for (i = 0; i < m*(ndata - 1) + 1; i++) {
 x = i / (float)m;
 y = imsl_f_cub_spline_value(x, ppoly, 0);
 printf(" %6.3f %10.4f\n", x, y);
 }
 if (ppoly)
 imsl_free(ppoly);
}

Output

0.000 5.0000
0.500 3.4375
1.000 2.0000
1.500 2.1875
2.000 3.0000
2.500 3.6875
3.000 5.0000
3.500 2.1875
4.000 1.0000
4.500 1.2500
5.000 2.0000

Example 2

It is possible to use an interpolating spline for approximation by using an optimization function to compute its
parameters. In this example a series of n interest rates, ri, for different maturities, xi, is given, {xi, ri} for i = 0, …, n-

1. Since the dates are given on a widely varying time scale, the base 10 logarithm of the dates is used for
interpolation.

A TCB spline is constructed using a subset of the given data points for knot locations, {pi , qi}, for i = 0, …, m-1. The

p values are a subset of the log10 xi values. The q values are to be determined by the optimizer. The spline has

non-zero values of the continuity parameter, ci, for i = 0, …, m-1.

The optimization problem finds the spline, , which interpolates the points {pi, qi} and

has continuity parameters, c, and specified left and right parameters.

The optimization problem is

s ri;p, q, c, left, right
379

 Interpolation and Approximation cub_spline_tcb
subject to the bounds, for all i,

The function constrained_nlp is used as the optimizer. The unknowns q, c, left and right are packed into the array
x, respectively.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcn(int, double[], int, double *, int *);
double objective(double *, double *, double, double);
#define N_DATA 15
static int days[] = { 3, 31, 62, 94, 185, 367, 731, 1096, 1461, 1826, 2194,
 2558, 2922, 3287, 3653 };
static double log_days[N_DATA];
static double rate[] = { 5.01772, 4.98284, 4.97234, 4.96157, 4.99058,
 5.09389, 5.79733, 6.30595, 6.73464, 6.94816, 7.08807, 7.27527,
 7.30852, 7.3979, 7.49015 };
/* Knots are set on a subset of the data points */
#define N_KNOTS 4
static double xknots[N_KNOTS];
static int subset[] = { 0, 5, 10, 14 };
#define Y_KNOTS 0
#define CONTINUITY (Y_KNOTS + N_KNOTS)
#define LEFT (CONTINUITY + N_KNOTS)
#define RIGHT (LEFT + 1)
#define N_VARIABLES (RIGHT + 1)
int main()
{
 int n_constraints, ibtype, i;
 double y;
 double *x, xlb[N_VARIABLES], xub[N_VARIABLES];
 double xguess[N_VARIABLES];
 Imsl_d_ppoly *ppoly;

 n_constraints = 0;
 ibtype = 0;
 for (i = 0; i < N_KNOTS; i++) {
 xlb[Y_KNOTS + i] = 0.1; /* lower bound on rate */
 xub[Y_KNOTS + i] = 10.0; /* upper bound on rate */
 xlb[CONTINUITY + i] = -0.95; /* lower bound on continuity */
 xub[CONTINUITY + i] = 0.95; /* upper bound on continuity */
 }
 /* Set bounds wide enough on LEFT and RIGHT so they are not binding */

min
q,c,left,right∑i=0

i=n−1
|s ri;q,c,left,right − ri|

2

0.1 ≤ qi ≤ 10

−0.95 ≤ ci ≤ 0.95
380

 Interpolation and Approximation cub_spline_tcb
 xlb[LEFT] = -100.0; xub[LEFT] = 100.0;
 xlb[RIGHT] = -100.0; xub[RIGHT] = 100.0;
 for (i = 0; i < N_DATA; i++) {
 log_days[i] = log10(days[i]);
 }
 for (i = 0; i < N_KNOTS; i++) {
 xknots[i] = log_days[subset[i]];
 xguess[Y_KNOTS + i] = rate[subset[i]];
 xguess[CONTINUITY + i] = 0.0;
 }
 xguess[LEFT] = xguess[RIGHT] = 0.0;
 /* Find the optimal curve */
 x = imsl_d_constrained_nlp(fcn, n_constraints, 0, N_VARIABLES,
 ibtype, xlb, xub,
 IMSL_XGUESS, xguess,
 IMSL_DIFFTYPE, 3,
 0);
 /* Report results */
 ppoly = imsl_d_cub_spline_tcb(N_KNOTS, xknots, x,
 IMSL_CONTINUITY, x + CONTINUITY,
 IMSL_LEFT, x[LEFT],
 IMSL_RIGHT, x[RIGHT],
 0);
 printf("Days Rate Curve Error\n");
 for (i = 0; i < N_DATA; i++) {
 y = imsl_d_cub_spline_value(log_days[i], ppoly, 0);
 printf("%4d %6.3f %6.3f %6.3f\n",
 days[i], rate[i], y, y - rate[i]);
 }
 printf("\n");
 for (i = 0; i < N_KNOTS; i++) {
 printf("continuity[%2d] = %6.3f\n", days[i], x[CONTINUITY + i]);
 }
 printf("\nleft = %6.3f\nright = %6.3f\n", x[LEFT], x[RIGHT]);
 if (x)
 imsl_free(x);
 if (ppoly)
 imsl_free(ppoly);
}
/* Function passed to imsl_d_constrained_nlp */
void fcn(int n, double x[], int iact, double *result, int *ierr)
{
 if (iact == 0) {
 *result = objective(x + Y_KNOTS, x + CONTINUITY, x[LEFT], x[RIGHT]);
 }
}
/* Compute the objective function, the sum of squares error */
double objective(double *yknots, double *continuity,
 double left, double right)
{
 int i;
 double y, diff, error;
 Imsl_d_ppoly *ppoly;
 ppoly = imsl_d_cub_spline_tcb(N_KNOTS, xknots, yknots,
 IMSL_CONTINUITY, continuity,
 IMSL_LEFT, left,
381

 Interpolation and Approximation cub_spline_tcb
 IMSL_RIGHT, right,
 0);
 error = 0.0;
 for (i = 0; i < N_DATA; i++) {
 y = imsl_d_cub_spline_value(log_days[i], ppoly, 0);
 diff = y - rate[i];
 error += diff * diff;
 }
 if (ppoly)
 imsl_free(ppoly);
 return error / N_DATA;
}

Output

Days Rate Curve Error
 3 5.018 5.019 0.002
 31 4.983 4.998 0.015
 62 4.972 4.959 -0.013
 94 4.962 4.951 -0.010
 185 4.991 4.980 -0.011
 367 5.094 5.084 -0.010
 731 5.797 5.842 0.045
1096 6.306 6.340 0.034
1461 6.735 6.683 -0.052
1826 6.948 6.931 -0.017
2194 7.088 7.118 0.030
2558 7.275 7.240 -0.035
2922 7.309 7.332 0.023
3287 7.398 7.408 0.011
3653 7.490 7.479 -0.011
continuity[3] = 0.009
continuity[31] = -0.630
continuity[62] = -0.184
continuity[94] = -0.950
left = 0.534
right = 0.266
382

 Interpolation and Approximation cub_spline_value
cub_spline_value
Computes the value of a cubic spline or the value of one of its derivatives.

Synopsis
#include <imsl.h>
float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly, …, 0)

The type double function is imsl_d_cub_spline_value.

Required Arguments
float x (Input)

Evaluation point for the cubic spline.

Imsl_f_ppoly *ppoly (Input)
Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value
The value of a cubic spline or one of its derivatives at the point x. If no value can be computed, then NaN is
returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly,

IMSL_DERIV, int deriv,
IMSL_GRID, int n, float *xvec, float **value,
IMSL_GRID_USER, int n, float *xvec, float value_user[],
0)
383

 Interpolation and Approximation cub_spline_value
Optional Arguments
IMSL_DERIV, int deriv (Input)

Let d = deriv and let s be the cubic spline that is represented by the structure *ppoly,
then this option produces the d-th derivative of s at x, s(d) (x).

IMSL_GRID, int n, float *xvec, float **value (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to be evaluated.
The d-th derivative of the spline at the points in xvec is returned in value. The values in
array xvec must appear sorted and non-decreasing. Arranging for this requirement may
benefit by use of the function imsl_f_sort, Chapter 12.

IMSL_GRID_USER, int n, float *xvec, float value_user[] (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to be evaluated.
The d-th derivative of the spline at the points in xvec is returned in the user-supplied space
value_user. The values in array xvec must appear sorted and non-decreasing..

Description
The function imsl_f_cub_spline_value computes the value of a cubic spline or one of its derivatives. The
first and last pieces of the cubic spline are extrapolated. As a result, the cubic spline structures returned by the
cubic spline routines are defined and can be evaluated on the entire real line. This routine is based on the routine
PPVALU by de Boor (1978, p. 89).

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then com-
pared with the exact function values. Since the default settings are used, the interpolant is determined by the
“not-a-knot” condition (see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
384

 Interpolation and Approximation cub_spline_value
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed. The values of this spline are
then compared with the exact function values. This example compares the values of the first derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define functions */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata,fdata, 0);
 /* Print results */
 printf(" x FP(x) Interpolant Deriv Error\n");
385

 Interpolation and Approximation cub_spline_value
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp,
 IMSL_DERIV, 1,
 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, FP(x), y,
 fabs(FP(x)-y));
 }
}

Output

 x FP(x) Interpolant Deriv Error
0.250 -12.308 -12.559 0.2510
0.300 -3.162 -3.218 0.0560
0.350 7.681 7.796 0.1151
0.400 14.403 13.919 0.4833
0.450 13.395 13.530 0.1346
0.500 5.200 5.007 0.1926
0.550 -5.786 -5.840 0.0535
0.600 -13.667 -13.201 0.4660
0.650 -14.214 -14.393 0.1798
0.700 -7.133 -6.734 0.3990
0.750 3.775 3.911 0.1359
386

 Interpolation and Approximation cub_spline_integral
cub_spline_integral
Computes the integral of a cubic spline.

Synopsis
#include <imsl.h>
float imsl_f_cub_spline_integral (float a, float b, Imsl_f_ppoly *ppoly)

The type double function is imsl_d_cub_spline_integral.

Required Arguments
float a (Input)

float b (Input)
Endpoints for integration.

Imsl_f_ppoly *ppoly (Input)
Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value
The integral from a to b of the cubic spline. If no value can be computed, then NaN is returned.

Description
The function imsl_f_cub_spline_integral computes the integral of a cubic spline from a to b.

Example
In this example, a cubic spline interpolant to a function f is computed. The values of the integral of this spline are
then compared with the exact integral values. Since the default settings are used, the interpolant is determined
by the “not-a-knot” condition (see de Boor 1978).

∫a
b
s x dx
387

 Interpolation and Approximation cub_spline_integral
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 21
 /* Define function */
#define F(x) (float)(sin(15.0*x))
 /* Integral from 0 to x */
#define FI(x) (float)((1.-cos(15.0*x))/15.)
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FI(x) Interpolant Integral Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_integral(0.0, x, pp);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, FI(x), y,
 fabs(FI(x)-y));
 }
}

Output
x FI(x) Interpolant Integral Error
0.250 0.121 0.121 0.0001
0.275 0.104 0.104 0.0001
0.300 0.081 0.081 0.0001
0.325 0.056 0.056 0.0001
0.350 0.033 0.033 0.0001
0.375 0.014 0.014 0.0002
0.400 0.003 0.003 0.0002
0.425 0.000 0.000 0.0002
0.450 0.007 0.007 0.0002
0.475 0.022 0.022 0.0001
0.500 0.044 0.044 0.0001
0.525 0.068 0.068 0.0001
0.550 0.092 0.092 0.0001
0.575 0.113 0.113 0.0001
0.600 0.127 0.128 0.0001
0.625 0.133 0.133 0.0001
0.650 0.130 0.130 0.0001
0.675 0.118 0.118 0.0001
0.700 0.098 0.098 0.0001
0.725 0.075 0.075 0.0001
0.750 0.050 0.050 0.0001
388

 Interpolation and Approximation spline_interp
spline_interp
Compute a spline interpolant.

Synopsis
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[], float fdata[], …, 0)

The type Imsl_d_spline function is imsl_d_spline_interp.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the interpolation problem.

Return Value
A pointer to the structure that represents the spline interpolant. If an interpolant cannot be computed, then
NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[], float fdata[],

IMSL_ORDER, int order,

IMSL_KNOTS, float knots[],
0)
389

 Interpolation and Approximation spline_interp
Optional Arguments
IMSL_ORDER, int order (Input)

The order of the spline subspace for which the knots are desired. This option is used to com-
municate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

IMSL_KNOTS, float knots[] (Input)
An array of size ndata + order containing the user-provided knots.
Default: knots are selected by the function imsl_f_spline_knots using its defaults.

Description
Given the data points x = xdata, f = fdata, and the number n = ndata of elements in xdata and fdata, the
default action of imsl_f_spline_interp computes a cubic (k = 4) spline interpolant s to the data using the
default knot sequence generated by imsl_f_spline_knots.

The optional argument IMSL_ORDER allows the user to choose the order of the spline interpolant. The optional
argument IMSL_KNOTS allows user specification of knots.

The function imsl_f_spline_interp is based on the routine SPLINT by de Boor (1978, p. 204).

First, imsl_f_spline_interp sorts the xdata vector and stores the result in x. The elements of the
fdata vector are permuted appropriately and stored in f, yielding the equivalent data (xi, fi) for i = 0 to n − 1.

The following preliminary checks are performed on the data. We verify that

The first test checks to see that the abscissas are distinct. The second and third inequalities verify that a valid knot
sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check tk-1 ≤ xi ≤ tn for i = 0 to n − 1. This first

inequality in the last check is necessary since the method used to generate the entries of the interpolation matrix
requires that the k possibly nonzero B-splines at xi,

Bj-k

+

1

, …, Bj where j satisfies tj ≤ xi < tj+

1

be well-defined (that is, j − k + 1 ≥ 0).

xi < xi+1 i = 0, … , n − 2
ti < ti+k i = 0, … , n − 1
ti < ti+1 i = 0, … , n + k − 2
390

 Interpolation and Approximation spline_interp
General conditions are not known for the exact behavior of the error in spline interpolation; however, if t and x

are selected properly and the data points arise from the values of a smooth (say Ck) function f, i.e. fj = f(xj), then

the error will behave in a predictable fashion. The maximum absolute error satisfies

where

For more information on this problem, see de Boor (1978, Chapter 13) and his reference. This function can be
used in place of the IMSL function imsl_f_cub_spline_interp.

The return value for this function is a pointer of type Imsl_f_spline. The calling program must receive this in a
pointer Imsl_f_spline *sp. This structure contains all the information to determine the spline (stored as a linear
combination of B-splines) that is computed by this function. For example, the following code sequence evaluates
this spline at x and returns the value in y.

y = imsl_f_spline_value (x, sp, 0)
Three spline interpolants of order 2, 3, and 5 are plotted. These splines use the default knots.

Figure 4, Three Spline Interpolants

∥ f − s∥ tk−1,tn ≤ C∥ f
k ∥

tk−1,tn
∣t∣k

|t|: = max
i=k−1,…,n−1

|ti+1 − ti|
391

 Interpolation and Approximation spline_interp
Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then com-
pared with the exact function values. Since the default settings are used, the interpolant is determined by the
“not-a-knot” condition (see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i;
 float xdata[NDATA], fdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.809 0.1270
0.100 0.997 0.997 0.0000
0.150 0.778 0.723 0.0552
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
392

 Interpolation and Approximation spline_interp
0.750 -0.968 -0.938 0.0295
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.148 0.0347
0.900 0.804 0.804 0.0000
0.950 0.994 1.086 0.0926
1.000 0.650 0.650 0.0000

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed. The values of this spline are
then compared with the exact function values. This example chooses to use a quadratic (k = 3) and a quintic k = 6
spline interpolant to the data instead of the default values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i, order;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 for (order =3; order<7; order += 3) {
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata,
 IMSL_ORDER, order,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d\n", order);
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x,sp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
 }
}

Output

The order of the spline is 3
 x F(x) Interpolant Error
 0.250 -0.572 -0.542 0.0299
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.819 0.0397
 0.400 -0.279 -0.279 0.0000
393

 Interpolation and Approximation spline_interp
 0.450 0.450 0.429 0.0210
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.879 0.0433
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.305 0.0149
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.922 0.0459
The order of the spline is 6
 x F(x) Interpolant Error
 0.250 -0.572 -0.573 0.0016
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.856 0.0031
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.448 0.0020
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.922 0.0003
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.322 0.0025
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.959 0.0090

Warning Errors

Fatal Errors

IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The solu-
tion might not be accurate.

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of
the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_KNOT_DATA_INTERLACING The i-th smallest element of xdata (xi) must satisfy
ti≤ xi < ti+order where t is the knot sequence.

IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdatai≤ tndata, for
i = 0,…, ndata-1.

IMSL_XDATA_TOO_SMALL The array xdata must satisfy xdatai≥ torder-1, for
i = 0,…, ndata-1.
394

 Interpolation and Approximation spline_knots
spline_knots
Computes the knots for a spline interpolant

Synopsis
#include <imsl.h>

float *imsl_f_spline_knots (int ndata, float xdata[], …, 0)

The type double function is imsl_d_spline_knots.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation problem.

Return Value
A pointer to the knots. If the knots cannot be computed, then NULL is returned. To release this space, use
imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_spline_knots (int ndata, float xdata[],

IMSL_ORDER, int order,
IMSL_OPT,
IMSL_OPT_ITMAX, int itmax,
IMSL_RETURN_USER, float knots[],
0)
395

 Interpolation and Approximation spline_knots
Optional Arguments
IMSL_ORDER, int order (Input)

The order of the spline subspace for which the knots are desired. This option is used to com-
municate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

IMSL_OPT
This option produces knots that satisfy an optimality criterion.

IMSL_OPT_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of Newton’s method.
Default: itmax = 10

IMSL_RETURN_USER, float knots[] (Output)
A user-provided array of size ndata + order containing the knots. For example, the user
could declare float knots[100]; and pass in knots. The return value is then also set to
knots.

Description
Given the data points x = xdata, the order of the spline k = order, and the number n = ndata of elements in
xdata, the default action of imsl_f_spline_knots returns a pointer to a knot sequence that is appropri-
ate for interpolation of data on x by splines of order k (the default order is k = 4). The knot sequence is contained
in its first n + k positions. If k is even, and we assume that the entries in the input vector x are increasing, then the
resulting knot sequence t is returned as

There is some discussion concerning this selection of knots in de Boor (1978, p. 211). If k is odd, then t is
returned as

It is not necessary to sort the values in xdata.

If the option IMSL_OPT is selected, then the knot sequence returned minimizes the constant c in the error
estimate

∥f - s∥≤c∥f (k)∥

ti = x0 for i = 0, … ,k − 1
ti = xi−k/2−1 for i = k, … ,n − 1
ti = xn−1 for i = n, … ,n + k − 1

ti = x0 for i = 0, … ,k − 1
ti = x

i − k−12 − 1
+ x

i − k−12
/ 2 for i = k, … ,n − 1

ti = xn−1 for i = n, … , n + k − 1
396

 Interpolation and Approximation spline_knots
In the above formula, f is any function in Ck, and s is the spline interpolant to f at the abscissas x with knot
sequence t.

The algorithm is based on a routine described in de Boor (1978, p. 204), which in turn is based on a theorem of
Micchelli et al. (1976).

Examples

Example 1

In this example, knots for a cubic spline are generated and printed. Notice that the knots are stacked at the end-
points and that the second and next to last data points are not knots.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 6
int main()
{
 int i;
 float *knots, xdata[NDATA];
 for(i = 0; i < NDATA; i++)
 xdata[i] = i;
 knots = imsl_f_spline_knots(NDATA, xdata, 0);
 imsl_f_write_matrix("The knots for the cubic spline are:\n",
 1, NDATA+4, knots,
 IMSL_COL_NUMBER_ZERO,
 0);
}

Output

 The knots for the cubic spline are:
 0 1 2 3 4 5
 0 0 0 0 2 3
 6 7 8 9
 5 5 5 5

Example 2

This is a continuation of the examples for imsl_f_spline_interp. Recall that in these examples, a cubic spline
interpolant to a function f is computed first. The values of this spline are then compared with the exact function
values. The second example uses a quadratic (k = 3) and a quintic (k = 6) spline interpolant to the data. Now,
instead of using the default knots, select the “optimal” knots as described above. Notice that the error is actually
worse in this case.
397

 Interpolation and Approximation spline_knots
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i, order;
 float fdata[NDATA], xdata[NDATA], *knots, x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 for(order = 3; order < 7; order += 3) {
 knots = imsl_f_spline_knots(NDATA, xdata, IMSL_ORDER, order,
 IMSL_OPT,
 0);
 /* Compute spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata,fdata,
 IMSL_ORDER, order,
 IMSL_KNOTS, knots,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d\n", order);
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
 }
}

Output

The order of the spline is 3
 x F(x) Interpolant Error
 0.250 -0.572 -0.543 0.0290
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.819 0.0401
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.429 0.0210
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.879 0.0433
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.305 0.0150
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.920 0.0478
The order of the spline is 6
 x F(x) Interpolant Error
 0.250 -0.572 -0.578 0.0061
398

 Interpolation and Approximation spline_knots
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.854 0.0054
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.448 0.0019
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.920 0.0022
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.317 0.0020
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.966 0.0023

Warning Errors

Fatal Errors

IMSL_NO_CONV_NEWTON Newton’s method iteration did not converge.

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_ILL_COND_LIN_SYS Interpolation matrix is singular. The xdata values
may be too close together.
399

 Interpolation and Approximation spline_2d_interp
spline_2d_interp
Computes a two-dimensional, tensor-product spline interpolant from two-dimensional, tensor-product data.

Synopsis
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int num_ydata,
float ydata[], float fdata[], …, 0)

The type Imsl_d_spline function is imsl_d_spline_2d_interp.

Required Arguments
int num_xdata (Input)

Number of data points in the X direction.

float xdata[] (Input)
Array with num_xdata components containing the data points in the X direction.

int num_ydata (Input)
Number of data points in the Y direction.

float ydata[] (Input)
Array with num_ydata components containing the data points in the Y direction.

float fdata[] (Input)
Array of size num_xdata × num_ydata containing the values to be interpolated. fdata[i][j] is
the value at (xdata[i], ydata[j]).

Return Value
A pointer to the structure that represents the tensor-product spline interpolant. If an interpolant cannot be com-
puted, then NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
400

 Interpolation and Approximation spline_2d_interp
Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int num_ydata,
float ydata[], float fdata[],

IMSL_ORDER, int xorder, int yorder,
IMSL_KNOTS, float xknots[], float yknots[],
IMSL_FDATA_COL_DIM, int fdata_col_dim,
0)

Optional Arguments
IMSL_ORDER, int xorder, int yorder (Input)

This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4, (i.e., tensor-product cubic splines)

IMSL_KNOTS, float xknots[], float yknots[] (Input)
User-provided arrays containing the knots. Array xknots must be of size num_xdata + xorder
and array yknots of size num_ydata + yorder. The default knots are selected by the function
imsl_f_spline_knots using its defaults.

IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)
The column dimension of the matrix fdata.
Default: fdata_col_dim = num_ydata

Description
The function imsl_f_spline_2d_interp computes a tensor-product spline interpolant. The tensor-prod-
uct spline interpolant to data {(xj, yj, fjj)}, where 0 ≤ i ≤ nx − 1 and 0 ≤ j ≤ ny − 1 has the form

where kx and ky are the orders of the splines. These numbers are defaulted to be 4, but can be set to any positive

integer using the keyword, IMSL_ORDER. Likewise, tx and ty are the corresponding knot sequences (xknots

and yknots). These values are defaulted to the knots returned by imsl_f_spline_knots. The algorithm
requires that

∑
m=0

ny−1

∑
n=0

nx−1

cnmBn, kx, tx x Bm, ky, ty y
401

 Interpolation and Approximation spline_2d_interp
Tensor-product spline interpolants in two dimensions can be computed quite efficiently by solving (repeatedly)
two univariate interpolation problems.

The computation is motivated by the following observations. It is necessary to solve the system of equations

Setting

note that for each fixed i from 1 to nx − 1, we have ny − 1 linear equations in the same number of unknowns as

can be seen below:

The same matrix appears in all of the equations above:

Thus, only factor this matrix once and then apply this factorization to the nx right-hand sides. Once this is done

and hmi is computed, then solve for the coefficients cnm using the relation

for m from 0 to ny − 1, which again involves one factorization and ny solutions to the different right-hand sides.

The function imsl_f_spline_2d_interp is based on the routine SPLI2D by de Boor (1978, p. 347).

The return value for this function is a pointer to the structure imsl_f_spline. The calling program must
receive this in a pointer imsl_f_spline *sp. This structure contains all the information to determine the
spline (stored in B-spline format) that is computed by this procedure. For example, the following code sequence
evaluates this spline at (x,y) and returns the value in z.

tx kx − 1 ≤ xi ≤ tx nx 0 ≤ i ≤ nx − 1

ty ky − 1 ≤ yi ≤ ty ny − 1 0 ≤ j ≤ ny − 1

∑
m=0

ny−1

∑
n=0

nx−1

cnmBn,kx,tx xi Bm,ky,ty y j = f i j

hmi =∑
n=0

nx−1cnmBn, kx, tx xi

∑
m=0

ny−1

hmiBm,ky,ty yi = f i j

Bm,ky,ty y j 1 ≤ m, j ≤ ny − 1

∑
n=0

nx−1

cnmBn, kx, tx xi = hmi
402

 Interpolation and Approximation spline_2d_interp
z = imsl_f_spline_2d_value (x, y, sp, 0);

Examples

Example 1

In this example, a tensor-product spline interpolant to a function f is computed. The values of the interpolant and
the error on a 4 × 4 grid are displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x, y) (float)(x*x*x+y*y)
int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, (float*) fdata, 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error \n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output

 x y F(x, y) Interpolant Error
0.000 0.000 0.000 0.000 0.0000
403

 Interpolation and Approximation spline_2d_interp
0.000 0.500 0.250 0.250 0.0000
0.500 0.000 0.125 0.125 0.0000
0.500 0.500 0.375 0.375 0.0000

Example 2

Recall that in the first example, a tensor-product spline interpolant to a function f is computed. The values of the
interpolant and the error on a 4 × 4 grid are displayed. Notice that the first interpolant with order = 3 does not
reproduce the cubic data, while the second interpolant with order = 6 does reproduce the data.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 7
#define OUTDATA 4
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)
int main()
{
 int i, j, num_xdata, num_ydata, order;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 for(order = 3; order < 7; order += 3) {
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, (float *)fdata,
 IMSL_ORDER, order, order,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d \n", order);
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f \n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
 }
}

404

 Interpolation and Approximation spline_2d_interp
Output

The order of the spline is 3
 x y F(x, y) Interpolant Error
 0.000 0.000 0.000 0.000 0.0000
 0.000 0.250 0.062 0.063 0.0000
 0.000 0.500 0.250 0.250 0.0000
 0.000 0.750 0.562 0.562 0.0000
 0.250 0.000 0.016 0.016 0.0002
 0.250 0.250 0.078 0.078 0.0002
 0.250 0.500 0.266 0.266 0.0002
 0.250 0.750 0.578 0.578 0.0002
 0.500 0.000 0.125 0.125 0.0000
 0.500 0.250 0.188 0.188 0.0000
 0.500 0.500 0.375 0.375 0.0000
 0.500 0.750 0.688 0.687 0.0000
 0.750 0.000 0.422 0.422 0.0002
 0.750 0.250 0.484 0.484 0.0002
 0.750 0.500 0.672 0.672 0.0002
 0.750 0.750 0.984 0.984 0.0002
The order of the spline is 6
 x y F(x, y) Interpolant Error
 0.000 0.000 0.000 0.000 0.0000
 0.000 0.250 0.062 0.063 0.0000
 0.000 0.500 0.250 0.250 0.0000
 0.000 0.750 0.562 0.562 0.0000
 0.250 0.000 0.016 0.016 0.0000
 0.250 0.250 0.078 0.078 0.0000
 0.250 0.500 0.266 0.266 0.0000
 0.250 0.750 0.578 0.578 0.0000
 0.500 0.000 0.125 0.125 0.0000
 0.500 0.250 0.188 0.188 0.0000
 0.500 0.500 0.375 0.375 0.0000
 0.500 0.750 0.688 0.688 0.0000
 0.750 0.000 0.422 0.422 0.0000
 0.750 0.250 0.484 0.484 0.0000
 0.750 0.500 0.672 0.672 0.0000
 0.750 0.750 0.984 0.984 0.0000

Warning Errors

Fatal Errors

IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The solu-
tion might not be accurate.

IMSL_XDATA_NOT_INCREASING The xdata values must be strictly increasing.

IMSL_YDATA_NOT_INCREASING The ydata values must be strictly increasing.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of
the spline.
405

 Interpolation and Approximation spline_2d_interp
IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_KNOT_DATA_INTERLACING The i-th smallest element of the data arrays xdata
and ydata must satisfy ti≤ datai < ti+order, where
t is the knot sequence.

IMSL_DATA_TOO_LARGE The data arrays xdata and ydata must satisfy
datai≤ tnum_data, for i = 1,…, num_data.

IMSL_DATA_TOO_SMALL The data arrays xdata and ydata must satisfy
datai≥ torder-1, for i = 1,…, num_data.
406

 Interpolation and Approximation spline_value
spline_value
Computes the value of a spline or the value of one of its derivatives.

Synopsis
#include <imsl.h>
float imsl_f_spline_value (float x, Imsl_f_spline *sp, …, 0)

The type double function is imsl_d_spline_value.

Required Arguments
float x (Input)

Evaluation point for the spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value
The value of a spline or one of its derivatives at the point x. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_spline_value (float x, Imsl_f_spline *sp,

IMSL_DERIV, int deriv,
IMSL_GRID, int n, float *xvec, float **value,
IMSL_GRID_USER, int n, float *xvec, float value_user[],
0)
407

 Interpolation and Approximation spline_value
Optional Arguments
IMSL_DERIV, int deriv (Input)

Let d = deriv and let s be the spline that is represented by the structure *sp. Then, this
option produces the d-th derivative of s at x, s(d) (x).
Default: deriv = 0

IMSL_GRID, int n, float *xvec, float **value (Input/Output)
The argument xvec is the array of length n containing the points at which the spline is to be
evaluated. The d-th derivative of the spline at the points in xvec is returned in value.

IMSL_GRID_USER int n, float *xvec, float value_user[] (Input/Output)
The argument xvec is the array of length n containing the points at which the spline is to be
evaluated. The d-th derivative of the spline at the points in xvec is returned in
value_user.

Description
The function imsl_f_spline_value computes the value of a spline or one of its derivatives. This function is
based on the routine BVALUE by de Boor (1978, p. 144).

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then com-
pared with the exact function values. Since the default settings are used, the interpolant is determined by the
“not-a-knot” condition (see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata,fdata, 0);
408

 Interpolation and Approximation spline_value
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output

 x F(x) Interpolant Error
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed. The values of this spline are
then compared with the exact function values. This example compares the values of the first derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FP(x) Interpolant Deriv Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, IMSL_DERIV, 1, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f \n", x, FP(x), y,
409

 Interpolation and Approximation spline_value
 fabs(FP(x)-y));
 }
}

Output

 x FP(x) Interpolant Deriv Error
0.250 -12.308 -12.559 0.2510
0.300 -3.162 -3.218 0.0560
0.350 7.681 7.796 0.1151
0.400 14.403 13.919 0.4833
0.450 13.395 13.530 0.1346
0.500 5.200 5.007 0.1926
0.550 -5.786 -5.840 0.0535
0.600 -13.667 -13.201 0.4660
0.650 -14.214 -14.393 0.1798
0.700 -7.133 -6.734 0.3990
0.750 3.775 3.911 0.1359

Fatal Errors
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of

the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.
410

 Interpolation and Approximation spline_integral
spline_integral
Computes the integral of a spline.

Synopsis
#include <imsl.h>
float imsl_f_spline_integral (float a, float b, Imsl_f_spline *sp)

The type double function is imsl_d_spline_integral.

Required Arguments
float a (Input)

The lower limit of integration.

float b (Input)
Endpoints for integration.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value
The integral of a spline. If no value can be computed, then NaN is returned.

Description
The function imsl_f_spline_integral computes the integral of a spline from a to b

This routine uses the identity (22) on page 151 of de Boor (1978).

∫a
b
s x dx
411

 Interpolation and Approximation spline_integral
Example
In this example, a cubic spline interpolant to a function f is computed. The values of the integral of this spline are
then compared with the exact integral values. Since the default settings are used, the interpolant is determined
by the “not-a-knot” condition (see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 21
 /* Define function */
#define F(x) (float)(sin(15.0*x))
 /* Integral from 0 to x */
#define FI(x) (float)((1.-cos(15.0*x))/15.)
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FI(x) Interpolant Integral Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_integral(0.0, x, sp);
 printf(" %6.3f %10.3f %10.3f %10.4f \n", x, FI(x), y,
 fabs(FI(x)-y));
 }
}

Output
 x FI(x) Interpolant Integral Error
0.250 0.121 0.121 0.0001
0.275 0.104 0.104 0.0001
0.300 0.081 0.081 0.0001
0.325 0.056 0.056 0.0001
0.350 0.033 0.033 0.0001
0.375 0.014 0.014 0.0002
0.400 0.003 0.003 0.0002
0.425 0.000 0.000 0.0002
0.450 0.007 0.007 0.0002
0.475 0.022 0.022 0.0001
0.500 0.044 0.044 0.0001
0.525 0.068 0.068 0.0001
0.550 0.092 0.092 0.0001
0.575 0.113 0.113 0.0001
412

 Interpolation and Approximation spline_integral
0.600 0.127 0.128 0.0001
0.625 0.133 0.133 0.0001
0.650 0.130 0.130 0.0001
0.675 0.118 0.118 0.0001
0.700 0.098 0.098 0.0001
0.725 0.075 0.075 0.0001
0.750 0.050 0.050 0.0001

Warning Errors

Fatal Errors

IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy
datai≤ torder-1, for i = 1, …, num_data.

IMSL_SPLINE_EQUAL_LIMITS The upper and lower endpoints of integration are
equal. The indefinite integral is zero.

IMSL_LIMITS_LOWER_TOO_SMALL The left endpoint is less than torder-1. Integration
occurs only from torder-1 to b.

IMSL_LIMITS_UPPER_TOO_SMALL The right endpoint is less than torder-1. Integration
occurs only from torder-1 to a.

IMSL_LIMITS_UPPER_TOO_BIG The right endpoint is greater than tspline_space_dim-

1. Integration occurs only from a to tspline_space_dim-

1.

IMSL_LIMITS_LOWER_TOO_BIG The left endpoint is greater than tspline_space_dim-1.
Integration occurs only from b to tspline_space_dim-1.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of
the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.
413

 Interpolation and Approximation spline_2d_value
spline_2d_value
Computes the value of a tensor-product spline or the value of one of its partial derivatives.

Synopsis
#include <imsl.h>
float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp, …, 0)

The type double function is imsl_d_spline_2d_value.

Required Arguments
float x (Input)

float y (Input)
The (x, y) coordinates of the evaluation point for the tensor-product spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value
The value of a tensor-product spline or one of its derivatives at the point (x, y).

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp,

IMSL_DERIV, int x_partial, int y_partial,
IMSL_GRID, int nx, float *xvec, int ny, float *yvec, float **value,
IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec, float value_user[],
0)
414

 Interpolation and Approximation spline_2d_value
Optional Arguments
IMSL_DERIV, int x_partial, int y_partial (Input)

Let p = x_partial and q = y_partial, and let s be the spline that is represented by the
structure *sp, then this option produces the (p, q)-th derivative of s at (x, y), s(p,q) (x, y).
Default: x_partial = y_partial = 0

IMSL_GRID, int nx, float *xvec, int ny, float *yvec, float **value (Input/Output)
The argument xvec is the array of length nx containing the X coordinates at which the
spline is to be evaluated. The argument yvec is the array of length ny containing the
Y coordinates at which the spline is to be evaluated. The value of the spline on the nx by ny
grid is returned in value.

IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec, float value_user[]
(Input/Output)
The argument xvec is the array of length nx containing the X coordinates at which the
spline is to be evaluated. The argument yvec is the array of length ny containing the
Y coordinates at which the spline is to be evaluated. The value of the spline on the nx by ny
grid is returned in the user-supplied space value_user.

Description
The function imsl_f_spline_2d_value computes the value of a tensor-product spline or one of its deriva-
tives. This function is based on the discussion in de Boor (1978, pp. 351−353).

Examples

Example 1

In this example, a spline interpolant s to a function f is constructed. Using the procedure
imsl_f_spline_2d_interp to compute the interpolant, imsl_f_spline_2d_value is employed to com-
pute s(x, y). The values of this partial derivative and the error are computed on a 4 × 4 grid and then displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)
int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
415

 Interpolation and Approximation spline_2d_value
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F(x, y) Value Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output

 x y F(x, y) Value Error
0.333 0.333 0.148 0.148 0.0000
0.333 0.667 0.481 0.481 0.0000
0.667 0.333 0.407 0.407 0.0000
0.667 0.667 0.741 0.741 0.0000

Example 2

In this example, a spline interpolant s to a function f is constructed. Using function
imsl_f_spline_2d_interp to compute the interpolant, then imsl_f_spline_2d_value is employed

to compute s(2,1) (x, y). The values of this partial derivative and the error are computed on a 4 × 4 grid and then
displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x, y) (float)(x*x*x*y*y)
#define F21(x,y) (float)(6.*x*2.*y)
int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
416

 Interpolation and Approximation spline_2d_value
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F21(x, y) 21InterpDeriv Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_value(x, y, sp,
 IMSL_DERIV, 2, 1,
 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F21(x, y), z, fabs(F21(x,y)-z));
 }
 }
}

Output

 x y F21(x, y) 21InterpDeriv Error
0.333 0.333 1.333 1.333 0.0000
0.333 0.667 2.667 2.667 0.0000
0.667 0.333 2.667 2.667 0.0000
0.667 0.667 5.333 5.333 0.0001

Warning Errors

Fatal Errors

IMSL_X_NOT_WITHIN_KNOTS The value of x does not lie within the knot
sequence.

IMSL_Y_NOT_WITHIN_KNOTS The value of y does not lie within the knot
sequence.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of
the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.
417

 Interpolation and Approximation spline_2d_integral
spline_2d_integral
Evaluates the integral of a tensor-product spline on a rectangular domain.

Synopsis
#include <imsl.h>
float imsl_f_spline_2d_integral (float a, float b, float c, float d, Imsl_f_spline *sp)

The type double function is imsl_d_spline_2d_integral.

Required Arguments
float a (Input)

blah

float b (Input)
The integration limits for the first variable of the tensor-product spline.

float c (Input)
blah

float d (Input)
The integration limits for the second variable of the tensor-product spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value
The value of the integral of the tensor-product spline over the rectangle [a, b] × [c, d]. If no value can be com-
puted, NaN is returned.

Description
The function imsl_f_spline_2d_integral computes the integral of a tensor-product spline. If s is the
spline, then this function returns
418

 Interpolation and Approximation spline_2d_integral
This function uses the (univariate integration) identity (22) in de Boor (1978, p. 151)

where t0 ≤ x ≤ tr.

It assumes (for all knot sequences) that the first and last k knots are stacked, that is, t0 = … = tk-1 and

tn = … = tn+k-1 , where k is the order of the spline in the x or y direction.

Example
This example integrates a two-dimensional, tensor-product spline over the rectangle [0, x] × [0, y].

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)
 /* The integral of F from 0 to x */
 /* and 0 to y */
#define FI(x,y) (float)(y*x*x*x*x/4. + x*y*y*y/3.)
int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i],ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y FI(x, y) Integral Error\n");
 for (i = 0; i < OUTDATA; i++) {

∫a
b

∫c
d
s x, y dydx

∫t0
x

∑
i=0

n−1

αiBi, k τ dτ =∑
i=0

r−1

∑
j=0

i

α j
t j+k − t j
k Bi, k+1 x
419

 Interpolation and Approximation spline_2d_integral
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_integral(0.0, x, 0.0, y, sp);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, FI(x, y), z, fabs(FI(x,y)-z));
 }
 }
}

Output
 x y FI(x, y) Integral Error
0.333 0.333 0.005 0.005 0.0000
0.333 0.667 0.035 0.035 0.0000
0.667 0.333 0.025 0.025 0.0000
0.667 0.667 0.099 0.099 0.0000
420

 Interpolation and Approximation spline_2d_integral
Warning Errors

Fatal Errors

IMSL_SPLINE_LEFT_ENDPT The left endpoint of X integration is not within the knot
sequence. Integration occurs only from torder-1 to b.

IMSL_SPLINE_RIGHT_ENDPT The right endpoint of X integration is not within the knot
sequence. Integration occurs only from torder-1 to a.

IMSL_SPLINE_LEFT_ENDPT_1 The left endpoint of X integration is not within the knot
sequence. Integration occurs only from b to tspline_space_dim-1.

IMSL_SPLINE_RIGHT_ENDPT_1 The right endpoint of X integration is not within the knot
sequence. Integration occurs only from a to tspline_space_dim-1.

IMSL_SPLINE_LEFT_ENDPT_2 The left endpoint of Y integration is not within the knot
sequence. Integration occurs only from torder-1 to d.

IMSL_SPLINE_RIGHT_ENDPT_2 The right endpoint of Y integration is not within the knot
sequence. Integration occurs only from torder-1 to c.

IMSL_SPLINE_LEFT_ENDPT_3 The left endpoint of Y integration is not within the knot
sequence. Integration occurs only from d to tspline_space_dim-1.

IMSL_SPLINE_RIGHT_ENDPT_3 The right endpoint of Y integration is not within the knot
sequence. Integration occurs only from c to tspline_space_dim-1.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of the
spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.
421

 Interpolation and Approximation spline_nd_interp
spline_nd_interp
Performs multidimensional interpolation and differentiation for up to 7 dimensions.

Synopsis
#include <imsl.h>

float imsl_f_spline_nd_interp (int n, int d[], float x[], float xdata[], float fdata[], ..., 0)

The type double function is imsl_d_spline_nd_interp.

Required Arguments
int n (Input)

The dimension of the problem. n cannot be greater than seven.

int d[] (Input)
Array of length n. d[i] contains the number of gridpoints in the i-th direction.

float x[] (Input)
Array of length n containing the point at which interpolation is to be done. An interpolant is to be cal-
culated at the point:

where

float xdata[] (Input)
Array of size n * max(d[0], …, d[n-1]) containing the gridpoint values for the grid.

float fdata[] (Input)
Array of length d[0]* d[1]* …* d[n-1] containing the values of the function to be interpolated at
the gridpoints.
fdata(i, j, k, …) is the value of the function at

where

X 1, X 2, … , Xn

X 1 = x 0 , X 2 = x 1 , …

Z1, i, Z2, j, Z3, k, …
422

 Interpolation and Approximation spline_nd_interp

Return Value
Interpolated value of the function. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_spline_nd_interp (int n, int d[], float x[], float xdata[], float fdata[],

IMSL_NDEGREE, int ndeg[],
IMSL_ORDER, int nders,
IMSL_DERIV, float **deriv,
IMSL_DERIV_USER, float deriv[],
IMSL_ERR_EST, float *error,
0)

Optional Arguments
IMSL_NDEGREE, int ndeg[] (Input)

Array of length n containing the degree of polynomial interpolation to be used in each
dimension. ndeg[i] must be less than or equal to 15.
Default: ndeg[i] = 5, for i = 0, …, n-1.

IMSL_ORDER, int nders (Input)
Maximum order of derivatives to be computed with respect to each variable. nders cannot
be larger than max (7- n, 2). All partial derivatives up to and including order nders are
returned in each of the n dimensions. See deriv for more details.
Default: nders = 0.

IMSL_DERIV, float **deriv (Output)
Address of a pointer to an internally allocated n dimensional array, dimensioned
(nders +1) × (nders +1) × …, containing derivative estimates at the interpolation point.
deriv [i] [j] … will hold an estimate of the derivative with respect to x1 i times, and with
respect to x2 j times, etc. where i = 0, …, nders, j = 0, …, nders, …. The 0-th derivative
means the function value, thus, deriv[0][0] … = imsl_f_spline_nd_interp.

Z1, i = xdata 0 i − 1

Z2, j = xdata 1 j − 1

Z3, k = xdata 2 k − 1

for i = 1, … ,d 0 , j = 1, … ,d 1 , k = 1, … ,d 2 , …
423

 Interpolation and Approximation spline_nd_interp
IMSL_DERIV_USER, float deriv[] (Output)
Storage for deriv is provided by the user. See IMSL_DERIV.

IMSL_ERR_EST, float *error (Output)
Estimate of the error.

Description
The function imsl_f_spline_nd_interp interpolates a function of up to 7 variables, defined on a (possibly
nonuniform) grid. It fits a polynomial of up to degree 15 in each variable through the grid points nearest the inter-
polation point. Approximations of partial derivatives are calculated, if requested. If derivatives are desired, high
precision is strongly recommended. For more details, see Krogh (1970).

Example
The 3D function f(x, y, z) = exp(x + 2y + 3z), defined on a 20 by 30 by 40 uniform grid, is interpolated together with
several partial derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define N 3
#define ND1 20
#define ND2 30
#define ND3 40
#define NDERS 1
int main() {
 char order[3];
 int i, j, k, ndeg[N], d[N], nders=NDERS;
 float xdata[N][ND3], fdata[ND1][ND2][ND3], x[N], xx, yout, yy,
 zz, derout[NDERS+1][NDERS+1][NDERS+1], error, relerr, tr;
 d[0] = ND1;
 d[1] = ND2;
 d[2] = ND3;
 /*
 * 20 by 30 by 40 uniform grid used for
 * interpolation of F(x,y,z) = exp(x+2*y+3*z)
 */
 ndeg[0] = 8;
 ndeg[1] = 7;
 ndeg[2] = 9;
 for (i=0; i < ND1; i++)
 xdata[0][i] = 0.05*(i);
 for (j=0; j < ND2; j++)
 xdata[1][j] = 0.03*(j);
 for (k=0; k < ND3; k++)
424

 Interpolation and Approximation spline_nd_interp
 xdata[2][k] = 0.025*(k);
 for (i=0; i < ND1; i++) {
 for (j=0; j < ND2; j++) {
 for (k=0; k < ND3; k++) {
 xx = xdata[0][i];
 yy = xdata[1][j];
 zz = xdata[2][k];
 fdata[i][j][k] = exp(xx+2*yy+3*zz);
 }
 }
 }
 /* Interpolate at (0.18,0.43,0.35)*/
 x[0] = 0.18;
 x[1] = 0.43;
 x[2] = 0.35;
 yout = imsl_f_spline_nd_interp(N, d, x, &xdata[0][0],
 &fdata[0][0][0],
 IMSL_NDEGREE, ndeg,
 IMSL_ORDER, nders,
 IMSL_DERIV_USER, &derout[0][0][0],
 IMSL_ERR_EST, &error, 0);
 /*
 * Output F,Fx,Fy,Fz,Fxy,Fxz,Fyz,Fxyz at
 * interpolation point
 */
 xx = x[0];
 yy = x[1];
 zz = x[2];
 printf("EST. VALUE = %g, EST. ERROR = %g\n\n", yout, error);
 printf(" Computed Der. True Der. Rel. Err\n");
 for (k=0; k <= NDERS; k++) {
 for (j=0; j <= NDERS; j++) {
 for (i=0; i <= NDERS; i++) {
 order[0] = ' ';
 order[1] = ' ';
 order[2] = ' ';
 if (i == 1) order[0] = 'x';
 if (j == 1) order[1] = 'y';
 if (k == 1) order[2] = 'z';
 tr = pow(2,j) * pow(3,k) * exp(xx+2*yy+3*zz);
 relerr = (derout[i][j][k] - tr)/tr;
 printf("F%s", order);
 printf("%14.6f %14.6f %14.3e\n", derout[i][j][k],
 tr, relerr);
 }
 }
 }
}

425

 Interpolation and Approximation spline_nd_interp
Output
Est. Value = 8.08491, Est. Error = 4.18959e-006
 Computed Der. True Der. Rel. Err
F 8.084914 8.084915 -1.180e-007
Fx 8.084922 8.084915 8.257e-007
F y 16.169794 16.169830 -2.241e-006
Fxy 16.170071 16.169830 1.486e-005
F z 24.254747 24.254745 7.864e-008
Fx z 24.253994 24.254745 -3.098e-005
F yz 48.510410 48.509491 1.895e-005
Fxyz 48.533176 48.509491 4.883e-004

Warning Errors

Fatal Errors

IMSL_ARG_TOO_BIG “nders” is too large, it has been reset to max(7-n,2).

IMSL_INTERP_OUTSIDE_DOMAIN The interpolation point is outside the domain of the
table, so extrapolation is used.

IMSL_TOO_MANY_DERIVATIVES Too many derivatives requested for the polynomial
degree used.

IMSL_POLY_DEGREE_TOO_LARGE One of the polynomial degrees requested is too
large for the number of gridlines in that direction.
426

 Interpolation and Approximation user_fcn_least_squares
user_fcn_least_squares
Computes a least-squares fit using user-supplied functions.

Synopsis
#include <imsl.h>
float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int nbasis, int ndata,

float xdata[], float ydata[], …, 0)

The type double function is imsl_d_user_fcn_least_squares.

Required Arguments
float fcn (int k, float x) (Input)

User-supplied function that defines the subspace from which the least-squares fit is to be performed.
The k-th basis function evaluated at x is f(k, x) where k = 1, 2, …, nbasis.

int nbasis (Input)
Number of basis functions.

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares problem.

float ydata[] (Input)
Array with ndata components containing the ordinates of the least-squares problem.

Return Value
A pointer to the vector containing the coefficients of the basis functions. If a fit cannot be computed, then NULL
is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
427

 Interpolation and Approximation user_fcn_least_squares
float *imsl_f_user_fcn_least_squares (float fcn(), int nbasis, int ndata, float xdata[],
float ydata[],

IMSL_RETURN_USER, float coef[],
IMSL_INTERCEPT, float *intercept,
IMSL_SSE, float *ssq_err,
IMSL_WEIGHTS, float weights[],
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_RETURN_USER, float coef[] (Output)

The coefficients are stored in the user-supplied array.

IMSL_INTERCEPT, float *intercept (Output)
This option adds an intercept to the model. Thus, the least-squares fit is computed using the user-
supplied basis functions augmented by the constant function. The coefficient of the constant func-
tion is stored in intercept.

IMSL_SSE, float *ssq_err (Output)
This option returns the error sum of squares.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_FCN_W_DATA, float fcn (int k, float x, float *data), void *data, (Input)
User supplied function that defines the subspace from which the least-squares fit is to be performed,
which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be
passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduc-
tion to this manual for more details.

Description
The function imsl_f_user_fcn_least_squares computes a best least-squares approximation to given
univariate data of the form

by M basis functions

xi, f i i=0
n−1
428

 Interpolation and Approximation user_fcn_least_squares
(where M = nbasis). In particular, the default for this function returns the coefficients a which minimize

where w = weights, n = ndata, x = xdata, and f = ydata.

If the optional argument IMSL_INTCERCEPT is chosen, then an intercept is placed in the model, and the coef-
ficients a, returned by imsl_f_user_fcn_least_squares, minimize the error sum of squares as
indicated below.

Remarks
Note that although the system is linear, for very large problems the Chapter 8 function,
imsl_f_nonlin_least_squares, might be better suited. This is because
imsl_f_user_fcn_least_squares will gather the matrix entries one at a time by calls to the user-sup-
plied function. By using the nonlinear solver and supplying the Jacobian the user can sidestep this issue and likely
achieve accurate results since the nonlinear solver utilizes regularization and iterative refinement. Example 3
below demonstrates the use of the nonlinear solver imsl_f_nonlin_least_squares as an alternative to
imsl_f_user_fcn_least_squares.

Examples

Example 1

This example fits the following two functions (indexed by δ):

1 + sinx + 7 sin3x + δε

where ɛ is a random uniform deviate over the range [-1, 1] and δ is 0 for the first function and 1 for the second.
These functions are evaluated at 90 equally spaced points on the interval [0, 6]. Four basis functions are used: 1,
sinx, sin2x, sin3x.

#include <imsl.h>
#include <stdio.h>

F j j=1
M

∑
i=0

n−1

wi f i −∑
j=1

M

a j−1F j xi

2

∑
i=0

n−1

wi f i − intercept −∑
j=1

M

a j−1F j xi

2

429

 Interpolation and Approximation user_fcn_least_squares
#include <math.h>
#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
float fcn(int n, float x);
int main()
{
 int nbasis = 4, i, delta;
 float ydata[NDATA], xdata[NDATA], *random, *coef;
 /* Generate random numbers */
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for(delta = 0; delta < 2; delta++) {
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
 ydata, 0);
 printf("\nFor delta = %1d", delta);
 imsl_f_write_matrix("the computed coefficients are\n",
 1, nbasis, coef, 0);
 }
}

float fcn(int n, float x)
{
 return (n == 1) ? 1.0 : sin((n-1)*x);
}

Output

For delta = 0
 the computed coefficients are
 1 2 3 4
 1 1 -0 7
For delta = 1
 the computed coefficients are
 1 2 3 4
 0.979 0.998 0.096 6.839

Example 2

Recall that the first example fitted the following two functions (indexed by δ):

1 + sinx + 7 sin3x + δε
430

 Interpolation and Approximation user_fcn_least_squares
where ε is a random uniform deviate over the range[−1, 1] , and δ is 0 for the first function and 1 for the second.
These functions are evaluated at 90 equally spaced points on the interval [0, 6]. Previously, the four basis func-
tions were used: 1, sinx, sin2x, sin3x. This example uses the four basis functions: sinx, sin2x, sin3x, sin4x,
combined with the intercept option.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
float fcn(int n, float x);
int main()
{
 int nbasis = 4, i, delta;
 float ydata[NDATA], xdata[NDATA], *random, *coef, intercept;
 /* Generate random numbers */
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for(delta = 0; delta < 2; delta++){
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
 ydata,
 IMSL_INTERCEPT, &intercept,
 0);
 printf("\nFor delta = %1d\n", delta);
 printf("The predicted intercept value is %10.3f\n" ,
 intercept);
 imsl_f_write_matrix("the computed coefficients are\n",
 1, nbasis, coef, 0);
 }
}

float fcn(int n, float x)
{
 return sin(n*x);
}

Output

For delta = 0
The predicted intercept value is 1.000
 the computed coefficients are
 1 2 3 4
 1 0 7 -0
For delta = 1
The predicted intercept value is 0.978
431

 Interpolation and Approximation user_fcn_least_squares
 the computed coefficients are
 1 2 3 4
 0.998 0.097 6.841 0.075

Example 3

This example solves the same problem as Example 1, demonstrating the use of
imsl_f_nonlin_least_squares as an alternative to imsl_f_user_fcn_least_squares. See the
Remarks section above for a discussion of why, for some problems, imsl_f_nonlinear_least_squares
might be better suited than imsl_f_user_fcn_least_squares.
432

 Interpolation and Approximation user_fcn_least_squares
#include <stdio.h>
#include <imsl.h>
#include <math.h>
float fcn(int n, float x);
void fcn2(int m, int n, float x[], float f[], void* data);
void fcn2jac(int m, int n, float x[], float fjac[], int fjac_col_dim,

 void *data);
/*
* The following structure type will be used to pass
* additional data to imsl_f_nonlin_least_squares() using
* the optional argument IMSL_FCN_W_DATA
*/
typedef struct {

 float *xdata;
 float *ydata;

} Problem_data;
int main()
{
#define NDATA 90
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

int nbasis = 4, i, delta;
 float *random, *coef, *coef2;
 float ydata[NDATA], xdata[NDATA];
 Problem_data data;
 data.xdata = xdata;
 data.ydata = ydata;
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
for(delta = 0; delta < 2; delta++) {

 printf("\n\nFor delta = %1d", delta);
 for (i = 0; i < NDATA; i++) {

 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);

 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,

 ydata, 0);
 imsl_f_write_matrix(

 " Coefficients from user_fcn_least_squares\n",
 1, nbasis, coef, IMSL_NO_COL_LABELS, IMSL_NO_ROW_LABELS,
IMSL_WRITE_FORMAT, "%6.3f", 0);

 coef2 = imsl_f_nonlin_least_squares(NULL, NDATA, nbasis,
IMSL_FCN_W_DATA, fcn2, &data,
IMSL_JACOBIAN_W_DATA, fcn2jac, &data, 0);

 imsl_f_write_matrix(
 " Coefficients from nonlin_least_squares \n",
1, nbasis, coef2, IMSL_NO_COL_LABELS, IMSL_NO_ROW_LABELS,
IMSL_WRITE_FORMAT, "%6.3f", 0);

 }
}
float fcn(int n, float x)
{

 return (n == 1) ? 1.0 : sin((n-1)*x);
}

433

 Interpolation and Approximation user_fcn_least_squares
void fcn2(int m, int n, float x[], float f[], void *data)
{

 int i;
 float *xdata, *ydata;
xdata = ((Problem_data*)data)->xdata;

 ydata = ((Problem_data*)data)->ydata;
 for (i=0;i<m;i++)

 f[i] = x[0] + x[1]*sin(xdata[i]) + x[2]*sin(2.0*xdata[i]) +
 x[3]*sin(3.0*xdata[i]) - ydata[i];

}
void fcn2jac(int m, int n, float x[], float fjac[], int fjac_col_dim,

 void *data)
{

 int i, j;
 float *xdata;
xdata = ((Problem_data*)data)->xdata;

 for (i=0;i<m;i++)
 for (j=0;j<n;j++)

 fjac[i*fjac_col_dim+j] = (j==0) ? 1.0 : sin(j*xdata[i]);
}

Output

For delta = 0
 Coefficients from user_fcn_least_squares
 1.000 1.000 0.000 7.000
 Coefficients from nonlin_least_squares
 1.000 1.000 0.000 7.000

For delta = 1
 Coefficients from user_fcn_least_squares
 0.979 0.998 0.096 6.839
 Coefficients from nonlin_least_squares
 0.979 0.998 0.096 6.839
434

 Interpolation and Approximation user_fcn_least_squares
Warning Errors

Fatal Errors

IMSL_LINEAR_DEPENDENCE Linear dependence of the basis functions exists.
One or more components of coef are set to zero.

IMSL_LINEAR_DEPENDENCE_CONST Linear dependence of the constant function and
basis functions exists. One or more components of
coef are set to zero.

IMSL_NEGATIVE_WEIGHTS_2 All weights must be greater than or equal to zero.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
435

 Interpolation and Approximation spline_least_squares
spline_least_squares
Computes a least-squares spline approximation.

Synopsis
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[], float fdata[],

int spline_space_dim, …, 0)

The type Imsl_d_spline function is imsl_d_spline_least_squares.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the least-squares problem.

int spline_space_dim (Input)
The linear dimension of the spline subspace. It should be smaller than ndata and greater than or
equal to order (whose default value is 4).

Return Value
A pointer to the structure that represents the spline fit. If a fit cannot be computed, then NULL is returned. To
release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[], float fdata[],
int spline_space_dim,
436

 Interpolation and Approximation spline_least_squares
IMSL_SSE, float *sse_err,
IMSL_WEIGHTS, float weights[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
IMSL_OPTIMIZE,
0)

Optional Arguments
IMSL_SSE, float *sse (Output)

This option places the weighted error sum of squares in the place pointed to by sse.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one.

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option is used to communi-
cate the order of the spline subspace.
Default: order = 4, (i.e., cubic splines).

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots. The user must provide a knot sequence of length
spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

IMSL_OPTIMIZE
This option optimizes the knot locations, by attempting to minimize the least-squares error as a func-
tion of the knots. The optimal knots are available in the returned spline structure.

Description
Let’s make the identifications

n = ndata
x = xdata
f = fdata
m = spline_space_dim
k = order
437

 Interpolation and Approximation spline_least_squares
For convenience, we assume that the sequence x is increasing, although the function does not require this.

By default, k = 4, and the knot sequence we select equally distributes the knots through the distinct xi’s. In partic-

ular, the m + k knots will be generated in [x1, xn] with k knots stacked at each of the extreme values. The interior

knots will be equally spaced in the interval.

Once knots t and weights w are determined (and assuming that the option IMSL_OPTIMIZE is not chosen),
then the function computes the spline least-squares fit to the data by minimizing over the linear coefficients aj

where the Bj, j = 1, …, m are a (B-spline) basis for the spline subspace.

The optional argument IMSL_ORDER allows the user to choose the order of the spline fit. The optional argu-
ment IMSL_KNOTS allows user specification of knots. The function imsl_f_spline_least_squares is
based on the routine L2APPR by de Boor (1978, p. 255).

If the option IMSL_OPTIMIZE is chosen, then the procedure attempts to find the best placement of knots that
will minimize the least-squares error to the given data by a spline of order k with m coefficients. For this problem
to make sense, it is necessary that m > k. We then attempt to find the minimum of the functional

The technique employed here uses the fact that for a fixed knot sequence t the minimization in a is a linear least-
squares problem that can be easily solved. Thus, we can think of our objective function F as a function of just t by
setting

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new objective function G. In
addition to this local method, there is a global heuristic built into the algorithm that will be useful if the data arise
from a smooth function. This heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184 and 258−261).

The initial guess, tg, for the knot sequence is either provided by the user or is the default. This guess must be a
valid knot sequence for splines of order k with

with tg nondecreasing, and

∑
i=0

n−1

wi f i −∑
j=1

m

a jB j xi
2

F a,t =∑
i=0

n−1

wi f i −∑
j=0

m−1

a jB j,k,t xi

G t = min
a
F a,t

t0
g
≤ … ≤ tk−1

g
≤ xi ≤ tm

g
≤ … ≤ tm+k−1

g i = 1, … , M
438

 Interpolation and Approximation spline_least_squares
In regard to execution speed, this function can be several orders of magnitude slower than a simple least-
squares fit.

The return value for this function is a pointer of type Imsl_f_spline. The calling program must receive this in
a pointer Imsl_f_spline *sp. This structure contains all the information to determine the spline (stored in
B-spline form) that is computed by this function. For example, the following code sequence evaluates this spline
at x and returns the value in y.

y = imsl_f_spline_value (x, sp, 0);
In the figure below, two cubic splines are fit to

Both splines are cubics with the same spline_space_dim = 8. The first spline is computed with the default
settings, while the second spline is computed by optimizing the knot locations using the keyword
IMSL_OPTIMIZE.

Figure 5, Two Cubic Splines

ti
g
< ti+k
g
for i = 0, … ,m − 1

∣x∣
439

 Interpolation and Approximation spline_least_squares
Examples

Example 1

This example fits data generated from a trigonometric polynomial

1 + sinx + 7 sin3x + ε
where ɛ is a random uniform deviate over the range [-1, 1]. The data are obtained by evaluating this function at
90 equally spaced points on the interval [0, 6]. This data is fitted with a cubic spline with 12 degrees of freedom
(eight equally spaced interior knots). The error at 10 equally spaced points is printed out.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
int main()
{
 int i, spline_space_dim = 12;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_spline *sp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim, 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++) {
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output

 x Error
0.000 -0.356
0.667 -0.004
1.333 0.434
2.000 -0.069
2.667 -0.494
3.333 0.362
4.000 -0.273
4.667 -0.247
5.333 0.303
440

 Interpolation and Approximation spline_least_squares
6.000 0.578

Example 2

This example continues with the first example in which we fit data generated from the trigonometric polynomial

1 + sinx + 7 sin3x + ε
where ɛ is random uniform deviate over the range [−1, 1]. The data is obtained by evaluating this function at 90
equally spaced points on the interval [0, 6]. This data was fitted with a cubic spline with 12 degrees of freedom (in
this case, the default gives us eight equally spaced interior knots) and the error sum of squares was printed. In
this example, the knot locations are optimized and the error sum of squares is printed. Then, the error at 10
equally spaced points is printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
int main()
{
 int i, spline_space_dim = 12;
 float fdata[NDATA], xdata[NDATA], *random, sse1, sse2;
 Imsl_f_spline *sp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim,
 IMSL_SSE, &sse1,
 0);
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim,
 IMSL_OPTIMIZE,
 IMSL_SSE, &sse2,
 0);
 printf("The error sum of squares before optimizing is %10.1f\n",

sse1);
 printf("The error sum of squares after optimizing is %10.1f\n\n", sse2);
 printf(" x error\n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

441

 Interpolation and Approximation spline_least_squares
Output

The error sum of squares before optimizing is 32.6
The error sum of squares after optimizing is 27.0
 x Error
 0.000 -0.656
 0.667 0.107
 1.333 0.055
 2.000 -0.243
 2.667 -0.063
 3.333 -0.015
 4.000 -0.424
 4.667 -0.138
 5.333 0.133
 6.000 0.494

Warning Errors

Fatal Errors

IMSL_OPT_KNOTS_STACKED_1 The knots found to be optimal are stacked more than
order. This indicates fewer knots will produce the same
error sum of squares. The knots have been separated
slightly.

IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdatai≤ tndata, for
i = 1,…, ndata.

IMSL_XDATA_TOO_SMALL The array xdata must satisfy xdatai≥ torder - 1, for
i = 1,…, ndata.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to zero.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of the
spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_OPT_KNOTS_STACKED_2 The knots found to be optimal are stacked more than
order. This indicates fewer knots will produce the same
error sum of squares.
442

 Interpolation and Approximation spline_2d_least_squares
spline_2d_least_squares
Computes a two-dimensional, tensor-product spline approximant using least-squares.

Synopsis
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float xdata[],
int num_ydata, float ydata[], float fdata[], int x_spline_space_dim,
int y_spline_space_dim, …, 0)

The type Imsl_d_spline function is imsl_d_spline_2d_least_squares.

Required Arguments
int num_xdata (Input)

Number of data points in the x direction.

float xdata[] (Input)
Array with num_xdata components containing the data points in the x direction.

int num_ydata (Input)
Number of data points in the y direction.

float ydata[] (Input)
Array with num_ydata components containing the data points in the y direction.

float fdata[] (Input)
Array of size num_xdata × num_ydata containing the values to be approximated. fdata[i][j] is
the value at (xdata[i], ydata[j]).

int x_spline_space_dim (Input)
The linear dimension of the spline subspace for the x variable. It should be smaller than num_xdata
and greater than or equal to xorder whose default value is 4.

int y_spline_space_dim (Input)
The linear dimension of the spline subspace for the y variable. It should be smaller than num_ydata
and greater than or equal to yorder whose default value is 4.
443

 Interpolation and Approximation spline_2d_least_squares
Return Value
This is a pointer to the structure that represents the tensor-product spline interpolant. If an interpolant cannot
be computed, then NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float xdata[],
int num_ydata, float ydata[], float fdata[], int x_spline_space_dim,
int y_spline_space_dim,

IMSL_SSE, float *sse,
IMSL_ORDER, int xorder, int yorder,
IMSL_KNOTS, float xknots[], float yknots[],
IMSL_FDATA_COL_DIM, int fdata_col_dim,
IMSL_WEIGHTS, float xweights[], float yweights[],
0)

Optional Arguments
IMSL_SSE, float *sse (Output)

This option places the weighted error sum of squares in the place pointed to by sse.

IMSL_ORDER, int xorder, int yorder (Input)
This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4 i.e., tensor-product cubic splines

IMSL_KNOTS, float xknots[], float yknots[] (Input)
This option requires the user to provide the knots.
Default: The default knots are equally spaced in the x and y dimensions.

IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)
The column dimension of fdata.
Default: fdata_col_dim = num_ydata

IMSL_WEIGHTS, float xweights[], float yweights[] (Input)
This option requires the user to provide the weights for the least-squares fit.
Default: all weights are equal to 1.
444

 Interpolation and Approximation spline_2d_least_squares
Description
The imsl_f_spline_2d_least_squares procedure computes a tensor-product spline least-squares
approximation to weighted tensor-product data. The input for this function consists of data vectors to specify the
tensor-product grid for the data, two vectors with the weights (optional, the default is 1), the values of the surface
on the grid, and the specification for the tensor-product spline (optional, a default is chosen). The grid is specified
by the two arrays x = xdata and y = ydata of length n = num_xdata and m = num_ydata, respectively. A
two-dimensional array f = fdata contains the data values which are to be fit. The two vectors wx = xweights

and wy = yweights contain the weights for the weighted least-squares problem. The information for the

approximating tensor-product spline can be provided using the keywords IMSL_ORDER and IMSL_KNOTS.
This information is contained in kx = xorder, tx = xknots, and N = xspline_space_dim for the spline in

the first variable, and in ky = yorder, ty = yknots and M = y_spline_space_dim for the spline in the sec-

ond variable.

This function computes coefficients for the tensor-product spline by solving the normal equations in tensor-prod-
uct form as discussed in de Boor (1978, Chapter 17). Also see the paper by Grosse (1980).

As the computation proceeds, we obtain coefficients c minimizing

where the function Bkl is the tensor-product of two B-splines of order kx and ky. Specifically, we have

The spline

and its partial derivatives can be evaluated at any point (x, y) using imsl_f_spline_2d_value.

The return value for this function is a pointer to the structure Imsl_f_spline. The calling program must receive this
in a pointer of type Imsl_f_spline. This structure contains all the information to determine the spline that is com-
puted by this procedure. For example, the following code sequence evaluates this spline (stored in the structure
sp at (x, y) and returns the value in v.

v = imsl_f_spline_2d_value (x, y, sp, 0)

∑
i=0

n−1

∑
j=0

m−1

wx i wy j ∑
k=0

N−1

∑
l=0

M−1

cklBkl xi,yi − f i j

2

Bkl x, y = Bk, kx, tx x Bl, ky, ty y

∑
k=0

N−1

∑
l=0

M−1

cklBkl x, y
445

 Interpolation and Approximation spline_2d_least_squares
Examples

Example 1

The data for this example comes from the function ex sin (x + y) on the rectangle [0, 3] × [0, 5]. This function is
sampled on a 50 × 25 grid. Then recover or smooth the data by using tensor-product cubic splines and least-

squares fitting. The values of the function ex sin (x + y) are printed on a 2 × 2 grid and compared with the values
of the tensor-product spline least-squares fit.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NXDATA 50
#define NYDATA 25
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))
int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA];
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NXDATA; i++) {
 xdata[i] = 3.*(float) i / ((float)(NXDATA-1));
 }
 for (i = 0; i < NYDATA; i++) {
 ydata[i] = 5.*(float) i / ((float)(NYDATA-1));
 }
 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++) {
 for (j = 0; j < NYDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = NXDATA;
 num_ydata = NYDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_least_squares(num_xdata, &xdata[0], num_ydata,
 &ydata[0], &fdata[0][0], 5, 7, 0);
 /* Print results */
 printf(" x y F(x, y) Spline Fit Abs. Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float)i / (float)(OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float)j / (float)(OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x, y), z, fabs(F(x,y)-z));
 }
 }
 }
446

 Interpolation and Approximation spline_2d_least_squares
Output

 x y F(x, y) Spline Fit Abs. Error
 0.000 0.000 0.000 -0.020 0.0204
 0.000 0.500 0.479 0.500 0.0208
 0.500 0.000 0.790 0.816 0.0253
 0.500 0.500 1.387 1.384 0.0031

Example 2

The same data is used as in the previous example. Optional argument IMSL_SSE is used to return the error
sum of squares.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NXDATA 50
#define NYDATA 25
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))
int main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA], sse, x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NXDATA; i++) {
 xdata[i] = 3.*(float) i / ((float) (NXDATA - 1));
 }
 for (i = 0; i < NYDATA; i++) {
 ydata[i] = 5.*(float) i / ((float) (NYDATA - 1));
 }
 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++) {
 for (j = 0; j < NYDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = NXDATA;
 num_ydata = NYDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_least_squares(num_xdata, &xdata[0], num_ydata,
 &ydata[0], &fdata[0][0], 5, 7,
 IMSL_SSE, &sse, 0);
 /* Print results */
 printf("The error sum of squares is %10.3f\n\n", sse);
 printf(" x y F(x, y) Spline Fit Abs. Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
447

 Interpolation and Approximation spline_2d_least_squares
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output

The error sum of squares is 3.753
 x y F(x, y) Spline Fit Abs. Error
 0.000 0.000 0.000 -0.020 0.0204
 0.000 0.500 0.479 0.500 0.0208
 0.500 0.000 0.790 0.816 0.0253
 0.500 0.500 1.387 1.384 0.0031

Warning Errors

Fatal Errors

IMSL_ILL_COND_LSQ_PROB The least-squares matrix is ill-conditioned. The solu-
tion might not be accurate.

IMSL_SPLINE_LOW_ACCURACY There may be less than one digit of accuracy in the
least-squares fit. Try using a higher precision if
possible.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the order of
the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_SPLINE_LRGST_ELEMNT The data arrays xdata and ydata must satisfy
datai≤ tspline_space_dim, for i = 1, …, num_data.

IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy
datai≥ torder-1, for i = 1, …, num_data.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to zero.

IMSL_DATA_DECREASING The xdata values must be nondecreasing.
448

 Interpolation and Approximation cub_spline_smooth
cub_spline_smooth
Computes a smooth cubic spline approximation to noisy data by using cross-validation to estimate the smooth-
ing parameter or by directly choosing the smoothing parameter.

Synopsis
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float fdata[], …, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_smooth.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the problem.

Return Value
A pointer to the structure that represents the cubic spline. If a smoothed cubic spline cannot be computed, then
NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>s
Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float fdata[],

IMSL_WEIGHTS, float weights[],
IMSL_SMOOTHING_PAR, float sigma,
0)
449

 Interpolation and Approximation cub_spline_smooth
Optional Arguments
IMSL_WEIGHTS, float weights[] (Input)

This option requires the user to provide the weights.
Default: all weights are equal to 1.

IMSL_SMOOTHING_PAR, float sigma (Input)
This option sets the smoothing parameter σ = sigma explicitly.

Description
The function imsl_f_cub_spline_smooth is designed to produce a C2 cubic spline approximation to a
data set in which the function values are noisy. This spline is called a smoothing spline.

Consider first the situation when the optional argument IMSL_SMOOTHING_PAR is selected. Then, a natural
cubic spline with knots at all the data abscissas x = xdata is computed, but it does not interpolate the data (xi,

fi). The smoothing spline s is the unique C2 function which minimizes

subject to the constraint

where w = weights, σ = sigma is the smoothing parameter, and n = ndata.

Recommended values for σ depend on the weights w. If an estimate for the standard deviation of the error in the
value fi is available, then wi should be set to the inverse of this value; and the smoothing parameter σ should be

chosen in the confidence interval corresponding to the left side of the above inequality. That is,

The function imsl_f_cub_spline_smooth is based on an algorithm of Reinsch (1967). This algorithm is
also discussed in de Boor (1978, pp. 235−243).

The default for this function chooses the smoothing parameter σ by a statistical technique called cross-validation.
For more information on this topic, refer to Craven and Wahba (1979).

∫
a

b

s ′ ′ x 2dx

∑
i=0

n−1
∣ s xi − f i wi∣2 ≤ σ

n − 2n ≤ σ ≤ n + 2n
450

 Interpolation and Approximation cub_spline_smooth
The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling program must receive this
in a pointer Imsl_f_ppoly *pp. This structure contains all the information to determine the spline (stored as a
piecewise polynomial) that is computed by this procedure. For example, the following code sequence evaluates
this spline at x and returns the value in y.

y = imsl_f_cub_spline_value (x, pp, 0);

Examples

Example 1

In this example, function values are contaminated by adding a small “random” amount to the correct values. The
function imsl_f_cub_spline_smooth is used to approximate the original, uncontaminated data.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_ppoly *pp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
 }
 pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata, 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output

 x Error
0.000 -0.201
0.667 0.070
1.333 -0.008
2.000 -0.058
2.667 -0.025
451

 Interpolation and Approximation cub_spline_smooth
3.333 0.076
4.000 -0.002
4.667 -0.008
5.333 0.045
6.000 0.276

Example 2

Recall that in the first example, function values are contaminated by adding a small “random” amount to the cor-
rect values. Then, imsl_f_cub_spline_smooth is used to approximate the original, uncontaminated data.
This example explicitly inputs the value of the smoothing parameter to be 5.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
int main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_ppoly *pp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
 }
 pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata,
 IMSL_SMOOTHING_PAR, 5.0,
 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output

x Error
0.000 -0.593
0.667 0.230
1.333 -0.116
2.000 -0.106
2.667 0.176
3.333 -0.071
4.000 -0.171
4.667 0.196
452

 Interpolation and Approximation cub_spline_smooth
5.333 -0.036
6.000 0.971

Warning Errors

Fatal Errors

IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been reached.
The best approximation is returned.

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to zero.
453

 Interpolation and Approximation spline_lsq_constrained
spline_lsq_constrained
Computes a least-squares constrained spline approximation.

Synopsis
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[], float fdata[],
int spline_space_dim, int num_con_pts, f_constraint_struct constraints[], …, 0)

The type Imsl_d_spline function is imsl_d_spline_lsq_constrained.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the least-squares problem.

int spline_space_dim (Input)
The linear dimension of the spline subspace. It should be smaller than ndata and greater than or
equal to order (whose default value is 4).

int num_con_pts (Input)
The number of points in the vector constraints.

f_constraint_struct constraints[] (Input)
A structure containing the abscissas at which the fit is to be constrained, the derivative of the spline
that is to be constrained, the type of constraints, and any lower or upper limits. A description of the
structure fields follows:

Field Description

xval point at which fit is constrained

der derivative value of the spline to be constrained

type types of the general constraints
454

 Interpolation and Approximation spline_lsq_constrained
In order to have two point constraints, must have

constraints[i].type = constraints[i+1].type

bl lower limit of the general constraints

bu upper limit of the general constraints

Notes: If you want to constrain the integral of the spline over the closed interval (c, d), then set
constraints[i].der = constraints[i+1].der =−1 and constraints[i].xval = c and
constraints[i+1].xval = d. For consistency, insist that
constraints[i].type = constraints[i+1].type≥ 0 and c≤ d. Note that every der must be at
least−1.

constraints [i].type i-th constraint

1

2

3

4

5

6

7

8

20 periodic end conditions

99 disregard this constraint

constraints [i]. type i-th constraint

9

10

Field Description

bli = f
di
xi

f
di
xi ≤ bui

f
di
xi ≥ bli

bli ≤ f
di
xi ≤ bui

bli = ∫c
d f t dt

∫c
d f t dt ≤ bui

∫c
d f t dt ≥ bli

bli ≤ ∫c
d f t dt ≤ bui

bli = f
di
xi − f

di+1
xi+1

f
di
xi ≤ bui
455

 Interpolation and Approximation spline_lsq_constrained
Return Value
A pointer to the structure that represents the spline fit. If a fit cannot be computed, then NULL is returned. To
release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>

Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[], float fdata[],
int spline_space_dim, int num_con_pts, f_constraint_struct constraints[],

IMSL_NHARD, int nhard,
IMSL_WEIGHTS, float weights[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
0)

Optional Arguments
IMSL_NHARD, int nhard (Input)

The argument nhard is the number of entries of constraints involved in the “hard” constraints. Note
that 0 ≤ nhard ≤ num_con_pts. The default, nhard = 0, always results in a fit, while setting
nhard = num_con_pts forces all constraints to be met. The “hard” constraints must be met, or
else the function signals failure. The “soft” constraints need not be satisfied, but there will be an
attempt to satisfy the “soft” constraints. The constraints must be listed in terms of priority with the
most important constraints first. Thus, all of the “hard” constraints must precede the “soft” con-
straints. If infeasibility is detected among the “soft” constraints, we satisfy, in order, as many of the
“soft” constraints as possible.
Default: nhard = 0

11

12

constraints [i]. type i-th constraint

f
di
xi − f

di+1
xi+1 ≥ bli

bli ≤ f
di
xi − f

di+1
xi+1 ≤ bui
456

 Interpolation and Approximation spline_lsq_constrained
IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option is used to communi-
cate the order of the spline subspace.
Default: order = 4 (i.e., cubic splines)

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots. The user must provide a knot sequence of length
spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

Description
The function imsl_f_spline_lsq_constrained produces a constrained, weighted least-squares fit to
data from a spline subspace. Constraints involving one point, two points, or integrals over an interval are allowed.
The types of constraints supported by the functions are of four types:

An interval, Ip (which may be a point, a finite interval, or a semi-infinite interval), is associated with each of these

constraints.

The input for this function consists of several items; first, the data set (xi, fi) for i = 1, … N (where N = NDATA), that

is the data which is to be fit. Second, we have the weights to be used in the least-squares fit (w = WEIGHT,
defaulting to 1). The vector constraints contains the abscissas of the points involved in specifying the con-
straints, as well as information relating the type of constraints and the constraint interval.

Let nf denote the number of feasible constraints as described above. Then, the function solved the problem

Ep[f]

Or

Or

Or = periodic end conditions

= f
jp

yp

= f
jp

yp − f
jp+1

yp+1

= ∫yp
yp+1 f t dt
457

 Interpolation and Approximation spline_lsq_constrained
subject to

This linearly constrained least-squares problem is treated as a quadratic program and is solved by invoking the
function imsl_f_quadratic_prog (See Chapter 8, “Optimization”)

The choice of weights depends on the data uncertainty in the problem. In some cases, there is a natural choice
for the weights based on the estimates of errors in the data points.

Determining feasibility of linear constraints is a numerically sensitive task. If you encounter difficulties, a quick fix
would be to widen the constraint intervals Ip.

Examples

Example 1

This is a simple application of imsl_f_lsq_constrained. Data is generated from the function

and contaminated with random noise and fit with cubic splines. The function is increasing, so least-squares fit
should also be increasing. This is not the case for the unconstrained least-squares fit generated by
imsl_f_spline_least_squares. Then, the derivative is forced to be greater than 0 at num_con_pts = 15
equally spaced points and imsl_f_lsq_constrained is called. The resulting curve is monotone. The error
is printed for the two fits averaged over 100 equally spaced points.

#include <imsl.h>
#include <math.h>
#define MXKORD 4
#define MXNCOF 20
#define MXNDAT 51
#define MXNXVL 15
int main()
{
 f_constraint_struct constraint[MXNXVL];
 int i, korder, ncoef, ndata, nxval;
 float *noise, errlsq, errnft, grdsiz, x;

∑
i=1

n

| f i −∑
j=1

m

a jB j xi |
2

wi

Ep ∑
j=1

m

a jB j ∈ I p p = 1, … ,n f

x
2 + sin

x
2

458

 Interpolation and Approximation spline_lsq_constrained
 float fdata[MXNDAT], xdata[MXNDAT];
 Imsl_f_spline *sp, *spls;

#define F1(x) (float)(.5*(x) + sin(.5*(x)))
 korder = 4;
 ndata = 15;
 nxval = 15;
 ncoef = 8;
 /*
 * Compute original xdata and fdata with random noise.
 */
 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform (ndata, 0);
 grdsiz = 10.0;
 for (i = 0; i < ndata; i++) {
 xdata[i] = grdsiz * ((float) (i) / (float) (ndata - 1));
 fdata[i] = F1 (xdata[i]) + (noise[i] - .5);
 }
 /* Compute least-squares fit. */
 spls = imsl_f_spline_least_squares (ndata, xdata, fdata, ncoef, 0);
 /*
 * Construct the constraints.
 */
 for (i = 0; i < nxval; i++) {
 constraint[i].xval = grdsiz * (float)(i) / (float)(nxval - 1);
 constraint[i].type = 3;
 constraint[i].der = 1;
 constraint[i].bl = 0.0;
 }
 /* Compute constrained least-squares fit. */
 sp = imsl_f_spline_lsq_constrained (ndata, xdata, fdata, ncoef,
 nxval, constraint, 0);
 /*
 * Compute the average error of 100 points in the interval.
 */
 errlsq = 0.0;
 errnft = 0.0;
 for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
 }
 /* Print results */
 printf (" Average error with spline_least_squares fit: %8.5f\n",
 errlsq / 100.0);
 printf (" Average error with spline_lsq_constrained fit: %8.5f\n",
 errnft / 100.0);
}

Output

Average error with spline_least_squares fit: 0.20250
Average error with spline_lsq_constrained fit: 0.14334
459

 Interpolation and Approximation spline_lsq_constrained
Example 2

Now, try to recover the function

from noisy data. First, try the unconstrained least-squares fit using imsl_f_spline_least_squares. Finding
that fit somewhat unsatisfactory, several constraints are applied using imsl_f_spline_lsq_constrained.
First, notice that the unconstrained fit oscillates through the true function at both ends of the interval. This is
common for flat data. To remove this oscillation, the cubic spline is constrained to have zero second derivative at
the first and last four knots. This forces the cubic spline to reduce to a linear polynomial on the first and last three
knot intervals. In addition, the fit is constrained (called s) as follows:

s(-7) ≥ 0

s(-7) = s(7)

Notice that the last constraint was generated using the periodic option (requiring only the zero-th derivative to be
periodic). The error is printed for the two fits averaged over 100 equally spaced points.

#include <imsl.h>
#include <math.h>
#define KORDER 4
#define NDATA 51
#define NXVAL 12
#define NCOEF 13
int main()
{
 f_constraint_struct constraint[NXVAL];
 int i;
 float *noise, errlsq, errnft, grdsiz, x;
 float fdata[NDATA], xdata[NDATA], xknot[NDATA+KORDER];
 Imsl_f_spline *sp, *spls;

#define F1(x) (float)(1.0/(1.0+x*x*x*x))
 /* Compute original xdata and fdata with random noise */
 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform (NDATA, 0);
 grdsiz = 14.0;
 for (i = 0; i < NDATA; i++) {
 xdata[i] = grdsiz * ((float)(i)/(float)(NDATA - 1))
 - grdsiz/2.0;
 fdata[i] = F1 (xdata[i]) + 0.125*(noise[i] - .5);
 }
/* Generate knots. */
 for (i = 0; i < NCOEF-KORDER+2; i++) {

1
1 + x4

∫−7
7

s x dx ≤ 2.3
460

 Interpolation and Approximation spline_lsq_constrained
 xknot[i+KORDER-1] = grdsiz * ((float)(i)/
 (float)(NCOEF-KORDER+1)) - grdsiz/2.0;
 }
 for (i = 0; i < KORDER - 1; i++) {
 xknot[i] = xknot[KORDER-1];
 xknot[i+NCOEF+1] = xknot[NCOEF];
 }
 /* Compute spline_least_squares fit */
 spls = imsl_f_spline_least_squares (NDATA, xdata, fdata, NCOEF,
 IMSL_KNOTS, xknot, 0);
 /* Construct the constraints for CONFT */
 for (i = 0; i < 4; i++) {
 constraint[i].xval = xknot[KORDER+i-1];
 constraint[i+4].xval = xknot[NCOEF-3+i];
 constraint[i].type = 1;
 constraint[i+4].type = 1;
 constraint[i].der = 2;
 constraint[i+4].der = 2;
 constraint[i].bl = 0.0;
 constraint[i+4].bl = 0.0;
 }
 constraint[8].xval = -7.0;
 constraint[8].type = 3;
 constraint[8].der = 0;
 constraint[8].bl = 0.0;
 constraint[9].xval = -7.0;
 constraint[9].type = 6;
 constraint[9].bu = 2.3;
 constraint[10].xval = 7.0;
 constraint[10].type = 6;
 constraint[10].bu = 2.3;
 constraint[11].xval = -7.0;
 constraint[11].type = 20;
 constraint[11].der = 0;
 sp = imsl_f_spline_lsq_constrained (NDATA, xdata, fdata, NCOEF,
 NXVAL, constraint, IMSL_KNOTS, xknot, 0);
 /* Compute the average error of 100 points in the interval */
 errlsq = 0.0;
 errnft = 0.0;
 for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0 - grdsiz/2.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
 }
 /* Print results */
 printf (" Average error with BSLSQ fit: %8.5f\n",
 errlsq / 100.0);
 printf (" Average error with CONFT fit: %8.5f\n",
 errnft / 100.0);
}

461

 Interpolation and Approximation spline_lsq_constrained
Output

Average error with BSLSQ fit: 0.01783
Average error with CONFT fit: 0.01339
462

 Interpolation and Approximation smooth_1d_data
smooth_1d_data
Smooth one-dimensional data by error detection.

Synopsis
#include <imsl.h>

float *imsl_f_smooth_1d_data (int ndata, float xdata[], float fdata[], …, 0)

The type double function is imsl_d_smooth_1d_data.

Required Arguments
int ndata (Input)

Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the data points.

float ydata[] (Input)
Array with ndata components containing the ordinates of the data points.

Return Value
A pointer to the vector of length ndata containing the smoothed data.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_smooth_1d_data (int ndata, float xdata[], float fdata[],

IMSL_RETURN_USER, float sdata[],
IMSL_ITMAX, int itmax,
IMSL_DISTANCE, float dis,
IMSL_STOPPING_CRITERION, float sc,
0)
463

 Interpolation and Approximation smooth_1d_data
Optional Arguments
IMSL_RETURN_USER, float sdata[] (Output)

The smoothed data is stored in the user-supplied array.

IMSL_ITMAX, int itmax (Input)
The maximum number of iterations allowed.
Default: itmax = 500

IMSL_DISTANCE, float dis (Input)
Proportion of the distance the ordinate in error is moved to its
interpolating curve. It must be in the range 0.0 to 1.0.
Default: dis = 1.0

IMSL_STOPPING_CRITERION, float sc (Input)
The stopping criterion. sc should be greater than or equal to zero.
Default: sc = 0.0

Description
The function imsl_f_smooth_1d_data is designed to smooth a data set that is mildly contaminated with
isolated errors. In general, the routine will not work well if more than 25% of the data points are in error. The rou-
tine imsl_f_smooth_1d_data is based on an algorithm of Guerra and Tapia (1974).

Setting ndata = n, ydata = f, sdata = s and xdata = x, the algorithm proceeds as follows. Although the user
need not input an ordered xdata sequence, we will assume that x is increasing for simplicity. The algorithm first
sorts the xdata values into an increasing sequence and then continues. A cubic spline interpolant is computed
for each of the 6-point data sets (initially setting s = f)

(xj, sj) j = i - 3, …, i + 3j ≠ i,

where i = 4, …, n - 3. For each i the interpolant, which we will call Si, is compared with the current value of si, and

a ‘point energy’ is computed as

pei = Si (xi) - si

Setting sc = sc, the algorithm terminates either if itmax iterations have taken place or if

If the above inequality is violated for any i, then we update the i-th element of s by setting si = si + d(pei), where d =

dis. Note that neither the first three nor the last three data points are changed. Thus, if these points are inaccu-
rate, care must be taken to interpret the results.

∣pei∣ ≤ sc xi+3 − xi−3 / 6 i = 4, … ,n − 3
464

 Interpolation and Approximation smooth_1d_data
The choice of the parameters d, sc and itmax are crucial to the successful usage of this subroutine. If the user
has specific information about the extent of the contamination, then he should choose the parameters as fol-
lows: d = 1, sc = 0 and itmax to be the number of data points in error. On the other hand, if no such specific
information is available, then choose d = 5, itmax ≤ 2n, and

In any case, we would encourage the user to experiment with these values.

Example
We take 91 uniform samples from the function 5 + (5 + t2 sin t)/t on the interval [1, 10]. Then, we contaminate 10
of the samples and try to recover the original function values.

#include <imsl.h>
#include <stdlib.h>
#include <math.h>
#define NDATA 91
#define F(X) (X*X*sin((double)(X))+5.0)/X + 5.0
int main()
{
 int i, maxit;
 int isub[10] = {5, 16, 25, 33, 41, 48, 55, 61, 74, 82};
 float dis, fdata[NDATA], sc, *sdata=NULL;
 float xdata[NDATA], s_user[NDATA];
 float rnoise[10] = {2.5, -3., -2., 2.5, 3.,
 -2., -2.5, 2., -2., 3.};
 /* Example 1: No specific information available. */
 dis = .5;
 sc = .56;
 maxit = 182;
 /* Set values for xdata and fdata. */
 xdata[0] = 1.;
 fdata[0] = F(xdata[0]);
 for (i=1;i<NDATA;i++) {
 xdata[i] = xdata[i-1]+.1;
 fdata[i] = F(xdata[i]);
 }
 /* Contaminate the data. */
 for (i=0;i<10;i++) fdata[isub[i]] += rnoise[i];
 /* Smooth the data. */
 sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,
 IMSL_DISTANCE, dis,
 IMSL_STOPPING_CRITERION, sc,
 IMSL_ITMAX, maxit,

sc = .5maxs − mins
xn − x1
465

 Interpolation and Approximation smooth_1d_data
 0);
 /* Output the result. */
 printf("Case A - No specific information available. \n");
 printf(" F(X) F(X)+noise sdata\n");

 for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",
 F(xdata[isub[i]]),
 fdata[isub[i]],
 sdata[isub[i]]);

 /* Example 2: No specific information is available. */
 dis = 1.0;
 sc = 0.0;
 maxit = 10;

 /*
 * A warning message is produced because the maximum
 * number of iterations is reached.
 */
 /* Smooth the data. */
sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,
 IMSL_DISTANCE, dis,
 IMSL_STOPPING_CRITERION, sc,
 IMSL_ITMAX, maxit,
 IMSL_RETURN_USER, s_user,
 0);
 /* Output the result. */
 printf("Case B - Specific information available. \n");
 printf(" F(X) F(X)+noise sdata\n");
 for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",
 F(xdata[isub[i]]),
 fdata[isub[i]],
 s_user[isub[i]]);
}

Output
Case A - No specific information available.
 F(X) F(X)+noise sdata
 9.830 12.330 9.870
 8.263 5.263 8.215
 5.201 3.201 5.168
 2.223 4.723 2.264
 1.259 4.259 1.308
 3.167 1.167 3.138
 7.167 4.667 7.131
10.880 12.880 10.909
12.774 10.774 12.708
 7.594 10.594 7.639
*** WARNING Error IMSL_ITMAX_EXCEEDED from imsl_f_smooth_1d_data.
*** Maximum number of iterations limit "itmax" = 10 exceeded.
*** The best answer found is returned.
466

 Interpolation and Approximation smooth_1d_data
Case B - Specific information available.
 F(X) F(X)+noise sdata
 9.830 12.330 9.831
 8.263 5.263 8.262
 5.201 3.201 5.199
 2.223 4.723 2.225
 1.259 4.259 1.261
 3.167 1.167 3.170
 7.167 4.667 7.170
10.880 12.880 10.878
12.774 10.774 12.770
 7.594 10.594 7.592
467

 Interpolation and Approximation scattered_2d_interp
scattered_2d_interp
Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables.

Synopsis
#include <imsl.h>
float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float fdata[], int nx_out,

int ny_out, float x_out[], float y_out[], …, 0)

The type double function is imsl_d_scattered_2d_interp.

Required Arguments
int ndata (Input)

Number of data points.

float xydata[] (Input)
Array with ndata*2 components containing the data points for the interpolation problem. The i-th
data point (xi, yi) is stored consecutively in the 2i and 2i + 1 positions of xydata.

float fdata[] (Input)
Array of size ndata containing the values to be interpolated.

int nx_out (Input)
Number of data points in the x direction for the output grid.

int ny_out (Input)
Number of data points in the y direction for the output grid.

float x_out[] (Input)
Array of length nx_out specifying the x values for the output grid. It must be strictly increasing.

float y_out[] (Input)
Array of length ny_out specifying the y values for the output grid. It must be strictly increasing.s
468

 Interpolation and Approximation scattered_2d_interp
Return Value
A pointer to the nx_out × ny_out grid of values of the interpolant. If no answer can be computed, then NULL
is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float fdata[], int nx_out,

int ny_out, float x_out[], float y_out[],

IMSL_RETURN_USER, float surface[],
IMSL_SUR_COL_DIM, int surface_col_dim,
0)

Optional Arguments
IMSL_RETURN_USER, float surface[] (Output)

This option allows the user to provide his own space for the result. In this case, the answer will be
returned in surface.

IMSL_SUR_COL_DIM, int surface_col_dim (Input)
This option requires the user to provide the column dimension of the two-dimensional array
surface.
Default: surface_col_dim = ny_out

Description
The function imsl_f_scattered_2d_interp computes a C1 interpolant to scattered data in the plane.
Given the data points

in R3 where n = ndata, imsl_f_scattered_2d_interp returns the values of the interpolant s on the
user-specified grid. The computation of s is as follows: First the Delaunay triangulation of the points

is computed. On each triangle T in this triangulation, s has the form

xi, yi, f i i=0
n−1

xi, yi i=0
n−1
469

 Interpolation and Approximation scattered_2d_interp
Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In addition, we have

and s is continuously differentiable across the boundaries of neighboring triangles. These conditions do not
exhaust the freedom implied by the above representation. This additional freedom is exploited in an attempt to
produce an interpolant that is faithful to the global shape properties implied by the data. For more information
on this procedure, refer to the article by Akima (1978). The output grid is specified by the two integer variables
nx_out and ny_out that represent the number of grid points in the first (second) variable and by two real vec-
tors that represent the first (second) coordinates of the grid.

Examples

Example 1

In this example, the interpolant to the linear function (3 + 7x + 2y) is computed from 20 data points equally
spaced on the circle of radius 3. Then the values are printed on a 3 ×3 grid.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 20
#define OUTDATA 3
 /* Define function */
#define F(x,y) (float)(3.+7.*x+2.*y)
#define SURF(I,J) surf[(J) +(I)*OUTDATA]
int main()
{
 int i, j;
 float fdata[NDATA], xydata[2*NDATA], *surf;
 float x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;
 pi = imsl_f_constant("pi", 0);
 /* Set up output grid */
 for (i = 0; i < OUTDATA; i++) {
 x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
 }
 for (i = 0; i < 2*NDATA; i += 2) {
 xydata[i] = 3.*cos(pi*i/NDATA);
 xydata[i+1] = 3.*sin(pi*i/NDATA);
 fdata[i/2] = F(xydata[i], xydata[i+1]);
 }
 /* Compute scattered data interpolant */

s x,y = ∑
m+n≤5

cmn
T xmyn ∀ x, y ∈ T

s xi,yi = f i for i = 0, … ,n − 1
470

 Interpolation and Approximation scattered_2d_interp
 surf = imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
 OUTDATA, x_out, y_out, 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 for (j = 0; j < OUTDATA; j++) {
 x = x_out[i];
 y = y_out[j];
 z = SURF(i,j);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output

 x y F(x, y) Interpolant Error
0.000 0.000 3.000 3.000 0.0000
0.000 0.500 4.000 4.000 0.0000
0.000 1.000 5.000 5.000 0.0000
0.500 0.000 6.500 6.500 0.0000
0.500 0.500 7.500 7.500 0.0000
0.500 1.000 8.500 8.500 0.0000
1.000 0.000 10.000 10.000 0.0000
1.000 0.500 11.000 11.000 0.0000
1.000 1.000 12.000 12.000 0.0000

Example 2

Recall that in the first example, the interpolant to the linear function 3 + 7x + 2y is computed from 20 data points
equally spaced on the circle of radius 3. We then print the values on a 3 × 3 grid. This example used the optional
arguments to indicate that the answer is stored noncontiguously in a two-dimensional array surf with column
dimension equal to 11.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 20
#define OUTDATA 3
#define COLDIM 11
 /* Define function */
#define F(x,y) (float)(3.+7.*x+2.*y)
int main()
{
 int i, j;
 float fdata[NDATA], xydata[2*NDATA];
 float surf[OUTDATA][COLDIM];
 float x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;
 pi = imsl_f_constant("pi", 0);
 /* Set up output grid */
 for (i = 0; i < OUTDATA; i++) {
 x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
471

 Interpolation and Approximation scattered_2d_interp
 }
 for (i = 0; i < 2*NDATA; i += 2) {
 xydata[i] = 3.*cos(pi*i/NDATA);
 xydata[i+1] = 3.*sin(pi*i/NDATA);
 fdata[i/2] = F(xydata[i], xydata[i+1]);
 }
 /* Compute scattered data interpolant */
 imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
 OUTDATA, x_out, y_out,
 IMSL_RETURN_USER, surf,
 IMSL_SUR_COL_DIM, COLDIM,
 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 for (j = 0; j < OUTDATA; j++) {
 x = x_out[i];
 y = y_out[j];
 z = surf[i][j];
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output

 x y F(x, y) Interpolant Error
0.000 0.000 3.000 3.000 0.0000
0.000 0.500 4.000 4.000 0.0000
0.000 1.000 5.000 5.000 0.0000
0.500 0.000 6.500 6.500 0.0000
0.500 0.500 7.500 7.500 0.0000
0.500 1.000 8.500 8.500 0.0000
1.000 0.000 10.000 10.000 0.0000
1.000 0.500 11.000 11.000 0.0000
1.000 1.000 12.000 12.000 0.0000

Fatal Errors

IMSL_DUPLICATE_XYDATA_VALUES The two-dimensional data values must be
distinct.

IMSL_XOUT_NOT_STRICTLY_INCRSING The vector x_out must be strictly increasing.

IMSL_YOUT_NOT_STRICTLY_INCRSING The vector y_out must be strictly increasing.
472

 Interpolation and Approximation radial_scattered_fit
radial_scattered_fit
Computes an approximation to scattered data in ℜn for n ≥ 1 using radial-basis functions.

Synopsis
#include <imsl.h>
Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension, int num_points,

float abscissae[], float fdata[], int num_centers, …, 0)

The type Imsl_d_radial_basis_fit function is imsl_d_radial_scattered_fit.

Required Arguments
int dimension (Input)

Number of dimensions.

int num_points (Input)
The number of data points.

float abscissae[] (Input)
Array of size dimension × num_points containing the abscissae of the data points. The argu-
ment abscissae[i][j] is the abscissa value of the (i+1)-th data point in the (j+1)-th dimension.

float fdata[] (Input)
Array with num_points components containing the ordinates for the problem.

int num_centers (Input)
The number of centers to be used when computing the radial-basis fit. The argument
num_centers should be less than or equal to num_points.

Return Value
A pointer to the structure that represents the radial-basis fit. If a fit cannot be computed, then NULL is returned.
To release this space, use imsl_free.
473

 Interpolation and Approximation radial_scattered_fit
Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension, int num_points, float

abscissae[], float fdata[],int num_centers,

IMSL_CENTERS, float centers[],
IMSL_CENTERS_RATIO, float ratio,
IMSL_RANDOM_SEED, int seed,
IMSL_SUPPLY_BASIS, float radial_function(),
IMSL_SUPPLY_BASIS_W_DATA, float radial_function(), void *data,
IMSL_SUPPLY_DELTA, float delta,
IMSL_WEIGHTS, float weights[],
IMSL_NO_SVD,
0)

Optional Arguments
IMSL_CENTERS (Input)

User-supplied centers. See the Description section of this function for details.

IMSL_CENTERS_RATIO, float ratio (Input)
The desired ratio of centers placed on an evenly spaced grid to the total number of centers. The con-
dition that the same number of centers placed on a grid for each dimension must be equal. Thus, the
actual number of centers placed on a grid is usually less than ratio × num_centers, but will
never be more than ratio × num_centers. The remaining centers are randomly chosen from
the set of abscissae given in abscissae.
Default: ratio = 0.5

IMSL_RANDOM_SEED, int seed
The value of the random seed used when determining the random subset of abscissae to use as cen-
ters. By changing the value of seed on different calls to imsl_f_radial_scattered_fit, with
the same data set, a different set of random centers will be chosen. Setting seed to zero forces the
random number seed to be based on the system clock, so a possibly different set of centers will be
chosen each time the program is executed.
Default: seed = 234579

IMSL_SUPPLY_BASIS, float radial_function (float distance) (Input)
User-supplied function to compute the values of the radial functions.
Default: Hardy multiquadric
474

 Interpolation and Approximation radial_scattered_fit
IMSL_SUPPLY_BASIS_W_DATA, float radial_function (float distance, void *data),
void *data (Input)
User-supplied function to compute the values of the radial functions, which also accepts a pointer to
data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied
function. See Passing Data to User-Supplied Functions in the introduction to this manual for more
details.
Default: Hardy multiquadric

IMSL_SUPPLY_DELTA, float delta (Input)
The delta used in the default basis function

Default: delta = 1

IMSL_WEIGHTS, float weights[]
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_NO_SVD
This option forces the use of a QR decomposition instead of a singular value decomposition. This
may result in space savings for large problems.

Description
The function imsl_f_radial_scattered_fit computed a least-squares fit to scattered data in ℜd where
d = dimension. More precisely, let n = ndata, x = abscissae, f = fdata, and d = dimension. Then we
have

This function computes a function F which approximates the above data in the sense that it minimizes the sum-
of-squares error

where w = weights. Of course, we must restrict the functional form of F. This is done as follows:

ϕ r = r2 + δ2

x0, … ,xn−1 ⊂ ℜd f 0, … , f n−1 ⊂ ℜ1

∑
i=0

n−1

wi F xi − f i
2

475

 Interpolation and Approximation radial_scattered_fit
The function ɸ is called the radial function. It maps ℜ1 into ℜ1, only defined for the nonnegative reals. For the
purpose of this routine, the user-supplied function

Note that the value of delta is defaulted to 1. It can be set by the user by using the keyword IMSL_DELTA. The
parameter δ is used to scale the problem. Generally choose δ to be near the minimum spacing of the centers.

The default basis function is called the Hardy multiquadric, and it is defined as

A key feature of this routine is the user’s control over the selection of the basis function.

To obtain the default selection of centers, we first compute the number of centers that will be on a grid and how
many are on a random subset of the abscissae. Next, we compute those centers on a grid. Finally, a random sub-
set of abscissa are obtained determining where the centers are placed. Let us examine the selection of centers in
more detail.

First, we restrict the computed grid to have the same number of grid values in each of the dimension direc-
tions. Then, the number of centers placed on a grid, num_gridded, is computed as follows:

α = (centers_ratio) (num_centers)

β = ⌊α1/dimension⌋
num_gridded = βdimension

Note that there are β grid values in each of the dimension directions. Then we have

num_random = (num_centers) - (num_gridded)

Now we know how many centers will be placed on a grid and how many will be placed on a random subset of the
abscissae. The gridded centers are computed such that they are equally spaced in each of the dimension
directions. The last problem is to compute a random subset, without replacement, of the abscissa. The selection
is based on a random seed. The default seed is 234579. The user can change this using the optional argument
IMSL_RANDOM_SEED. Once the subset is computed, we use the abscissae as centers.

Since the selection of good centers for a specific problem is an unsolved problem at this time, we have given the
ultimate flexibility to the user. That is, you can select your own centers using the keyword IMSL_CENTERS. As a
rule of thumb, the centers should be interspersed with the abscissae.

F x : = ∑
j=0

k−1

α jϕ ∥x − c∥2 + δ2
1/2

ϕ r = r2 + δ2
1/2

ϕ r = r2 + δ2
1/2
476

 Interpolation and Approximation radial_scattered_fit
The return value for this function is a pointer to the structure, which contains all the information necessary to
evaluate the fit. This pointer is then passed to the function imsl_f_radial_evaluate to produce values of the
fitted function.

Examples

Example 1

This example, generates data from a function and contaminates it with noise on a grid of 10 equally spaced
points.The fit is evaluated on a finer grid and compared with the actual function values.

#include <imsl.h>
#include <math.h>
#define NDATA 10
#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))
int main ()
{
 int i;
 int dim = 1;
 float fdata[NDATA];
 float *fdata2;
 float xdata[NDATA];
 float xdata2[2*NDATA];
 float pi;
 float *noise;
 Imsl_f_radial_basis_fit *radial_fit;
 pi = imsl_f_constant ("pi", 0);
 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform(NDATA, 0);
/* Set up the sampled data points with noise. */
 for (i = 0; i < NDATA; ++i) {
 xdata[i] = (float)(i)/(float)(NDATA-1);
 fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
 }
/* Compute the radial fit. */
 radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
 fdata, NUM_CENTERS, 0);

/* Compare result to the original function at twice as many values as
 there were original data points. */
 for (i = 0; i < 2*NDATA; ++i)
 xdata2[i] = (float)(i/(float)(2*(NDATA-1)));
/* Evaluate the fit at these new points. */

477

 Interpolation and Approximation radial_scattered_fit
 fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);
 printf(" I TRUE APPROX ERROR\n");
 for (i = 0; i < 2*NDATA; ++i)
 printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
 }

Output

I TRUE APPROX ERROR
1 0.00000 -0.08980 0.08980
2 0.34202 0.38795 -0.04593
3 0.64279 0.75470 -0.11191
4 0.86603 0.99915 -0.13312
5 0.98481 1.11597 -0.13116
6 0.98481 1.10692 -0.12211
7 0.86603 0.98183 -0.11580
8 0.64279 0.75826 -0.11547
9 0.34202 0.46078 -0.11876
10 -0.00000 0.11996 -0.11996
11 -0.34202 -0.23007 -0.11195
12 -0.64279 -0.55348 -0.08931
13 -0.86603 -0.81624 -0.04979
14 -0.98481 -0.98752 0.00271
15 -0.98481 -1.04276 0.05795
16 -0.86603 -0.96471 0.09868
17 -0.64279 -0.74472 0.10193
18 -0.34202 -0.38203 0.04001
19 0.00000 0.11600 -0.11600
20 0.34202 0.73553 -0.39351

Example 2

This example generates data from a function and contaminates it with noise.We fit this data successively on grids
of size 10, 20, …, 100. Now interpolate and print the 2-norm of the difference between the interpolated result
and actual function values. Note that double precision is used for higher accuracy.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 100
#define NUM_CENTERS 100
#define NRANDOM 200
#define NOISE_SIZE 1.0
#define G(x,y) (exp((y)/2.0)*sin(x) - cos((y)/2.0))
double radial_function (double r);
int main()
{
 int i;
 int ndata;
 double *fit;
 double ratio;
478

 Interpolation and Approximation radial_scattered_fit
 double fdata[NDATA+1];
 double xydata[2 * NDATA+1];
 double pi;
 double *noise;
 int num_centers;
 Imsl_d_radial_basis_fit *radial_struct;
 pi = imsl_d_constant ("pi", 0);
 /* Get the random numbers used for the noise. */
 imsl_random_seed_set (234579);
 noise = imsl_d_random_uniform (NRANDOM+1, 0);
 for (i = 0; i < NRANDOM; ++i) noise[i] = 1.0 - 2.0 * noise[i];
 printf(" NDATA || Error ||_2 \n");
 for (ndata = 10; ndata <= 100 ; ndata += 10) {
 num_centers = ndata;
 /* Set up the sampled data points with noise. */
 for (i = 0; i < 2 * ndata; i += 2) {
 xydata[i] = 3. * (noise[i]);
 xydata[i + 1] = 3. * (noise[i + 1]);
 fdata[i / 2] = G(xydata[i], xydata[i + 1])
 + NOISE_SIZE * noise[i];
 }
 /* Compute the radial fit. */
 ratio = 0.5;
 radial_struct= imsl_d_radial_scattered_fit (2, ndata, xydata,
 fdata, num_centers,
 IMSL_CENTERS_RATIO, ratio,
 IMSL_SUPPLY_BASIS, radial_function,
 0);
 fit = imsl_d_radial_evaluate (ndata, xydata, radial_struct, 0);
 for (i = 0; i < ndata; ++i) fit[i] -= fdata[i];
 printf("%8d %17.8f \n", ndata,
 imsl_d_vector_norm(ndata, fit, 0));
 }
}
double radial_function (double r)
{
 return log(1.0+r);
}

479

 Interpolation and Approximation radial_scattered_fit
Output

NDATA || Error ||_2
10 0.00000000
20 0.00000000
30 0.00000000
40 0.00000000
50 0.00000000
60 0.00000000
70 0.00000000
80 0.00000000
90 0.00000000
100 0.00000000

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
480

 Interpolation and Approximation radial_evaluate
radial_evaluate
Evaluates a radial-basis fit.

Synopsis
#include <imsl.h>
float *imsl_f_radial_evaluate (int n, float x[], Imsl_d_radial_basis_fit *radial_fit, …, 0)

The type double function is imsl_d_evaluate.

Required Arguments
int n (Input)

The number of points at which the fit will be evaluated.

float x[] (Input)
Array of size (radial_fit -> dimension) × n containing the abscissae of the data points at
which the fit will be evaluated. The argument x[i][j] is the abscissa value of the (i+1)-th data point in
the (j+1)-th dimension.

Imsl_f_radial_basis_fit *radial_fit (Input)
A pointer to radial-basis structure to be used for the evaluation. (Input).

Return Value
A pointer to an array of length n containing the values of the radial-basis fit at the desired values. If no value can
be computed, then NULL is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_radial_evaluate (int n, float x[], Imsl_f_radial_basis_fit *radial_fit

IMSL_RETURN_USER, float value[],
0)
481

 Interpolation and Approximation radial_evaluate
Optional Arguments
IMSL_RETURN_USER, float value[] (Input)

A user-allocated array of length n containing the returned values.

Description
The function imsl_f_radial_evaluate evaluates a radial-basis fit from data generated by
imsl_f_radial_scattered_fit.
482

 Interpolation and Approximation radial_evaluate
Example
#include <imsl.h>
#include <math.h>
#define NDATA 10
#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))
int main ()
{
 int i;
 int dim = 1;
 float fdata[NDATA];
 float *fdata2;
 float xdata[NDATA];
 float xdata2[2*NDATA];
 float pi;
 float *noise;
 Imsl_f_radial_basis_fit *radial_fit;
 pi = imsl_f_constant ("pi", 0);
 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform(NDATA, 0);
/* Set up the sampled data points with noise */
 for (i = 0; i < NDATA; ++i) {
 xdata[i] = (float)(i)/(float)(NDATA-1);
 fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
 }
/* Compute the radial fit */
 radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
 fdata, NUM_CENTERS, 0);

/* Compare result to the original function at twice as many values as there
 were original data points */
 for (i = 0; i < 2*NDATA; ++i)
 xdata2[i] = (float)(i/(float)(2*(NDATA-1)));
/* Evaluate the fit at these new points */

 fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);
 printf(" I TRUE APPROX ERROR\n");
 for (i = 0; i < 2*NDATA; ++i)
 printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
}

Output
483

 Interpolation and Approximation radial_evaluate
I TRUE APPROX ERROR
1 0.00000 -0.08980 0.08980
2 0.34202 0.38795 -0.04593
3 0.64279 0.75470 -0.11191
4 0.86603 0.99915 -0.13312
5 0.98481 1.11597 -0.13116
6 0.98481 1.10692 -0.12211
7 0.86603 0.98183 -0.11580
8 0.64279 0.75826 -0.11547
9 0.34202 0.46078 -0.11876
10 -0.00000 0.11996 -0.11996
11 -0.34202 -0.23007 -0.11195
12 -0.64279 -0.55348 -0.08931
13 -0.86603 -0.81624 -0.04979
14 -0.98481 -0.98752 0.00271
15 -0.98481 -1.04276 0.05795
16 -0.86603 -0.96471 0.09868
17 -0.64279 -0.74472 0.10193
18 -0.34202 -0.38203 0.04001
19 0.00000 0.11600 -0.11600
20 0.34202 0.73553 -0.39351
484

 Quadrature Functions
Quadrature

Functions
Univariate Quadrature

Adaptive general-purpose endpoint singularity . int_fcn_sing 489
Adaptive general-purpose with a possible internal or

endpoint singularity . int_fcn_sing_1d 494
Adaptive general purpose . int_fcn 502
Adaptive general-purpose points of singularity int_fcn_sing_pts 507
Adaptive weighted algebraic singularities . int_fcn_alg_log 513
Adaptive infinite interval. int_fcn_inf 518
Adaptive weighted oscillatory (trigonometric) .int_fcn_trig 524
Adaptive weighted Fourier (trigonometric). int_fcn_fourier 530
Cauchy principal value. int_fcn_cauchy 536
Nonadaptive general purpose . int_fcn_smooth 541

Multivariate Quadrature
Two-dimensional iterated integral . int_fcn_2d 546
Two-dimensional quadrature with a possible

internal or endpoint singularity . int_fcn_sing_2d 552
Three-dimensional quadrature with a possible

internal or endpoint singularity . int_fcn_sing_3d 561
Iterated integral using product Gauss formulasint_fcn_hyper_rect 571
Iterated integral using a quasi-Monte Carlo

method . int_fcn_qmc 576

Gauss Quadrature
Gauss quadrature formulas .gauss_quad_rule 580

Differentiation
First, second, or third derivative of a function . fcn_derivative 585
485

 Quadrature Usage Notes
Usage Notes

Univariate Quadrature
The first nine functions in this chapter section are designed to compute approximations to integrals of the form

The weight function w is used to incorporate known singularities (either algebraic or logarithmic) or to incorpo-
rate oscillations. For general-purpose integration, we recommend the use of int_fcn_sing (even if no endpoint
singularities are present). If more efficiency is desired, then the use of one of the more specialized functions
should be considered. These functions are organized as follows:

 w = 1

imsl_f_int_fcn_sing
int_fcn_sing_1d
imsl_f_int_fcn
imsl_f_int_fcn_sing_pts
imsl_f_int_fcn_inf
imsl_f_int_fcn_smooth

 w(x) = sinωx or w(x) = cosωx

imsl_f_int_fcn_trig (for a finite interval)

imsl_f_int_fcn_fourier (for an infinite interval)

 w(x) = (x − a)a(b − x)bln(x − a)ln(b − x) where the ln factors are optional

imsl_f_int_fcn_alg_log
 w(x) = 1/(x − c)

imsl_f_int_fcn_cauchy

The calling sequences for these functions are very similar. The function to be integrated is always fcn, and the
lower and upper limits are a and b, respectively. The requested absolute error ɛ is err_abs, while the
requested relative error ρ is err_rel. These quadrature functions return the estimated answer R. An optional
value err_est = E estimates the error. These numbers are related as follows:

∫c
b
f x w x dx
486

 Quadrature Usage Notes
Several of the univariate quadrature functions have arguments of type imsl_quad, which is defined in
imsl.h.

One situation that occasionally arises in univariate quadrature concerns the approximation of integrals when
only tabular data are given. The functions described above do not directly address this question. However, the
standard method for handling this problem is first to interpolate the data, and then to integrate the interpolant.
This can be accomplished by using the IMSL spline interpolation functions with one of the spline integration func-
tions, which can be found in Interpolation and Approximation

Multivariate Quadrature
Four functions have been included in this chapter that are of use in approximating certain multivariate integrals.
In particular, the functions imsl_f_int_fcn_2d and imsl_f_int_fcn_sing_2d return an approximation to
an iterated two-dimensional integral of the form

while imsl_f_int_fcn_sing_3d returns an approximation to an iterated three-dimensional integral of the
form

The fourth function, imsl_f_int_fcn_hyper_rect, returns an approximation to the integral of a function of n
variables over a hyper-rectangle

When working with two-dimensional tensor-product tabular data, use the IMSL spline interpolation function
imsl_f_spline_2d_interp, followed by the IMSL spline integration function
imsl_f_spline_2d_integral described in Chapter 3, “Interpolation and Approximation”.

| ∫
a

b

f x w x dx − R | ≤ E ≤ max ɛ,ρ | ∫
a

b

f x w x dx |

∫a
b

∫g x
h x

f x, y dydx

∫a
b

∫g x
h x

∫p x, y
q x, y

f x, y, z dzdydx

∫a1
b1
… ∫an

bn
f x1, … , xn dxn… dx1
487

 Quadrature Usage Notes
Gauss Quadrature
Before computing Gauss quadratures, you must compute so-called Gauss quadrature rules that integrate poly-
nomials of as high degree as possible. These quadrature rules can be easily computed using the function
imsl_f_gauss_quad_rule, which produces the points {wi} for i = 1, …, N that satisfy

for all functions f that are polynomials of degree less than 2N. The weight functions w may be selected from the
following table.

Where permissible, imsl_f_gauss_quad_rule also computes Gauss-Radau and Gauss-Lobatto quadrature
rules.

w(x) Interval Name

1 (-1, 1) Legendre

(-1, 1) Chebyshev 1st kind

 (-1, 1) Chebyshev 2nd kind

(-∞, ∞) Hermite

(1 + x)a (1 - x)b (-1, 1) Jacobi

 (0, ∞) Generalized Laguerre

1/cosh (x) (-∞, ∞) Hyperbolic cosine

∫a
b
f x w x dx =∑

i=1

N

f xi wi

1 / 1 − x2

1 − x2

e−x
2

e−xxa
488

 Quadrature int_fcn_sing
int_fcn_sing

more...

Integrates a function, which may have endpoint singularities, using a globally adaptive scheme based on Gauss-
Kronrod rules.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_sing (float fcn(), float a, float b, …, 0)

The type double function is imsl_d_int_fcn_sing.

Required Arguments
float fcn (float x) (input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Return Value
An estimate of

If no value can be computed, NaN is returned.

∫a
b
fcn x dx
489

 Quadrature int_fcn_sing
Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_sing (float fcn(), float a, float b,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

err_abs = ɛ

err_rel = ɛ
490

 Quadrature int_fcn_sing
Description
This function is designed to handle functions with endpoint singularities. However, the performance on functions
that are well-behaved at the endpoints is also quite good.

The function imsl_f_int_fcn_sing is a general-purpose integrator that uses a globally adaptive scheme in
order to reduce the absolute error. It subdivides the interval [a, b] and uses a 21-point Gauss-Kronrod rule to
estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the
10-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same
procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied,
roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed
is reached. This function uses an extrapolation procedure known as the ɛ-algorithm.

On some platforms, imsl_f_int_fcn_sing can evaluate the user-supplied function fcn in parallel. This is
done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is
thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

The function imsl_f_int_fcn_sing is based on the subroutine QAGS by Piessens et al. (1983).

Examples

Example 1

The value of

is estimated.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0,

∫0
1

ln x x−1/2dx = − 4
491

 Quadrature int_fcn_sing
 0);
 /* Print the result and */
 /*the exact answer */
 exact = -4.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return log(x)/sqrt(x);
}

Output

integral = -4.000
exact = -4.000

Example 2

The value of

is again estimated. The values of the actual and estimated errors are printed as well. Note that these numbers
are machine dependent. Furthermore, usually the error estimate is pessimistic. That is, the actual error is usually
smaller than the error estimate as is in this example.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact, err_est, exact_err;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0,
 IMSL_ERR_EST, &err_est,
 0);
 /* Print the result and */
 /* the exact answer */
 exact = -4.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);

∫0
1

ln x x−1/2dx = − 4
492

 Quadrature int_fcn_sing
}
float fcn(float x)
{
 return log(x)/sqrt(x);
}

Output

integral = -4.000
exact = -4.000
error estimate = 2.708435e-004
exact error = 2.241135e-005

Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.

IMSL_PRECISION_DEGRADATION Integral is probably divergent or slowly
convergent.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to stop
algorithm.
User flag = "#".
493

 Quadrature int_fcn_sing_1d
int_fcn_sing_1d
Integrates a function with a possible internal or endpoint singularity.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_sing_1d (float fcn(), float a, float b, ..., 0)

The type double function is imsl_d_int_fcn_sing_1d.

Required Arguments
float fcn (float x) (Input/Output)

User-supplied function to be integrated.

Arguments

float x (Input)
Independent variable.

Return Value

The computed function value at the point x.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration. The relative values of a and b are interpreted properly. Thus if one
exchanges a and b, the sign of the answer is changed. When the integrand is positive, the sign of the
result is the same as the sign of b – a.

Return Value
An estimate of
494

 Quadrature int_fcn_sing_1d
Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_sing_1d (float fcn(), float a, float b,

IMSL_FCN_W_DATA, float fcn(), float *err_post, void *data,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_FRAC, float err_frac,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_PRIOR, float err_prior,
IMSL_MAX_EVALS, int maxfn,
IMSL_SINGULARITY, float singularity, int singularity_type,
IMSL_N_EVALS, int *n_evals,
IMSL_ERR_EST, float *err_est,
IMSL_ISTATUS, int *istatus,
0)

Optional Arguments
IMSL_FCN_W_DATA, float fcn (float x, float *err_post, void *data), float *err_post, void

*data (Input)

float fcn (float x, float *err_post, void *data) (Input)
User supplied function to be integrated, which also accepts a pointer to an a posteriori esti-
mate of the absolute value of the error committed while evaluating the integrand, and a
pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in
the introduction to this manual for more details.

Arguments
float x (Input)

The point at which the function is evaluated.
float *err_post (Output)

An a posteriori estimate of the absolute value of the error committed while
evaluating the integrand. This argument provides a means for the user to
have fcn compute this value as output. Although this argument must
appear in the argument list of fcn, it need not be referenced in the function.
See Example 2 for an example of this.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

∫a
b
fcn x dx
495

 Quadrature int_fcn_sing_1d
Return Value
The computed function value at the point x.

float *err_post (Input/Output)
An a posteriori estimate of the absolute value of the error committed while
evaluating the integrand. On input, the user may supply this estimate and
that value will be used as the estimate thereafter provided fcn does not cal-
culate a new value. If an a posteriori estimate of the value of the error is not
known, set err_post to 0.0 on input. On output, err_post will contain
either the input value set by the user or the value calculated by fcn.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_ERR_ABS, float err_abs (Input)
Absolute error tolerance. See Remark 1 for a discussion on the error tolerances.
Default: err_abs = 0.0

IMSL_ERR_FRAC, float err_frac (Input)
A fraction expressing the (number of correct digits of accuracy desired)/(number of digits of achiev-
able precision). See Remark 1 for a discussion on accuracy.
Default: err_frac = 0.75

IMSL_ERR_REL, float err_rel (Input)
The error tolerance relative to the value of the integral. See Remark 1 for a discussion on the error
tolerances.
Default: err_rel = 0.0

IMSL_ERR_PRIOR, float err_prior (Input)
An a priori estimate of the absolute value of the relative error expected to be committed while evalu-
ating the integrand. Changes to this value are not detected during evaluation of the integral.
Default: err_prior = imsl_f_machine(4)

IMSL_MAX_EVALS, int maxfn (Input)
The maximum number of function evaluations to use to compute the integral.
Default: The number of function values is not bounded.

IMSL_SINGULARITY, float singularity, int singularity_type (Input)
singularity is the real part of the abscissa of a singularity or discontinuity in the integrand.
singularity_type is a signed integer specifying the type of singularity which occurs in the inte-
grand. If the singularity has a leading term of the form xα where α is not an integer, if α is “large” or
has the form α = (2n-1)/2 where n is a nonnegative integer, or the singularity is well outside the inter-
val, set singularity_type to a positive integer. Otherwise, set singularity_type to a
negative integer. Also see Remark 2.
Default: It is assumed that there is no singularity in the integrand so singularity and
singularity_type are not set.
496

 Quadrature int_fcn_sing_1d
IMSL_N_EVALS, int *n_evals (Output)
Number of function evaluations used to calculate the integral.

IMSL_ERR_EST, float *err_est (Output)
An estimate of the upper bound of the magnitude of the difference between the value returned by
imsl_f_int_fcn_sing_1d and the true value of the integral.

IMSL_ISTATUS, int *istatus (Output)
A status flag indicating the error criteria which was satisfied on exit.

Description
The function imsl_f_int_fcn_sing_1d is based on the JPL Library routine SINT1. The integral is esti-
mated using quadrature formulae due to T. N. L. Patterson (1968). Patterson described a family of formulae in

which the kth formula used all the integrand values used in the k-1st formula, and added 2k-1 new integrand val-
ues in an optimal way. The first formula is the midpoint rule, the second is the three point Gauss formula, and the
third is the seven point Kronrod formula. Formulae of this family of higher degree had not previously been
described. This program uses formulae up to k = 8.

An error estimate is obtained by comparing the values of the integral estimated by two adjacent formulae, exam-
ining differences up to the fifteenth order, integrating round-off error, integrating error declared to have been
committed during computation of the integrand, integrating a first order estimate of the effect round-off error in
the abscissa has on integrand values, and including errors in the limits. The latter four methods are also used to
derive a bound on the achievable precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is subdivided. The differ-
ence table is used to discover whether the integral is difficult to compute because the integrand is too complex
or has singular behavior. In the former case, the estimated error, requested error tolerance, and difference table
are used to choose a step size.

istatus Description

-1 Indicates normal termination with either the absolute
or relative error tolerance criteria satisfied.

-2 Indicates normal termination with neither the absolute
nor the relative error tolerance criteria satisfied, but
the error tolerance based on the locally achievable pre-
cision is satisfied.

-3 Indicates normal termination with none of the error
tolerance criteria satisfied.

Other Any value other than the above indicates abnormal ter-
mination due to an error condition.
497

 Quadrature int_fcn_sing_1d
In the latter case, the difference table is used in a search algorithm to find the abscissa of the singular behavior. If
the singular behavior is discovered on the end of an interval, a change of independent variable is applied to
reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump discontinuities, and com-
putational noise.

Remarks
Remark 1

The user provides the absolute error tolerance through optional argument IMSL_ERR_ABS. Optional argument
IMSL_ERR_FRAC represents the ratio of the (number of correct digits of accuracy desired) to (number of digits
of achievable precision). Optional argument IMSL_ERR_REL represents the error tolerance relative to the value
of the integral. The internal value for err_frac is bounded between .5 and 1. By default, err_abs and
err_rel are set to 0.0 and err_frac is set to .75. These default values usually provide all the accuracy that
can be obtained efficiently.
The error tolerance relative to the value of the integral is applied globally (over the entire region of integration)
rather than locally (one step at a time). This policy provides true control of error relative to the value of the inte-
gral when the integrand is not sign definite, as well as when the integrand is sign definite. To apply the criterion of
error tolerance relative to the value of the integral, the value of the integral over the entire region, estimated with-
out refinement of the region, is used to derive an absolute error tolerance that may be applied locally. If the
preliminary estimate of the value of the integral is significantly in error, and the least restrictive error tolerance is
relative to the value of the integral, the cost of computing the integral will be larger than the cost of computing
the integral to the same degree of accuracy using appropriate values of either of the other tolerance criteria. The
preliminary estimate of the integral may be significantly in error if the integrand is not sign definite or has large
variation.

Remark 2

Optional argument IMSL_SINGULARITY provides the user with a means to give the routine information about
the location and type of any known singularity of the integrand. When an integrand appears to have singular
behavior at the end of the interval, a transformation of the variable of integration is applied to reduce the
strength of the singularity. When an integrand appears to have singular behavior inside the interval, the abscissa
of the singularity is determined as precisely as necessary, depending on the error tolerance, and the interval is
subdivided. The discovery of singular behavior and determination of the abscissa of singular behavior are expen-
sive. If the user knows of the existence of a singularity, the efficiency of computation of the integral may be
improved by requesting an immediate transformation of the independent variable or subdivision of the interval.
It is recommended that the user select these optional arguments for all singularities, even those outside [a, b].

If the singularity has a leading term of the form xα where α is not an integer, if α is “large” or has the form
α = (2n -1)/2 where n is a nonnegative integer, or the singularity is well outside the interval, set
498

 Quadrature int_fcn_sing_1d
singularity_type to a positive value. Otherwise, set singularity_type to a negative value. The mean-
ing of “large” depends on the rest of the integrand and the length of the interval. For the typical case, a value of

about 2 is considered “large”. For a singularity of the form xα log x use the above rule, even if α is an integer. For
other types of singularities make a reasonable guess based on the above. If several similar integrals are to be
computed, some experimentation may be useful.

When singularity_type is positive, a transformation of the form T = TA + (X - TA)2 / (TB – TA) is applied, where
TA is the abscissa of the singularity and TB is the end of the interval. If TA is outside the interval, TB will be the end
of the interval farthest from TA. If TA is inside the interval, the interval will immediately be subdivided at TA, and
both parts will be separately integrated with TB equal to each end of the original interval, respectively. When

singularity_type is negative, a transformation of the form T = TA + (X - TA)4 / (TB – TA)3 is applied, with TA and
TB as above.

If the integrand has singularities at more than one abscissa within the region, or more than one pole near the real
axis such that the real parts are within the region of integration, then the interval should be subdivided at the
abscissa of the singularities or the real parts of the poles, and the integrals should be computed as separate
problems, with the results summed.

Examples

Example 1

The value of

is estimated. Note that the optional argument IMSL_SINGULARITY is used.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn (float x);
int main(){

 int n_evals, singularity_type=-1;
 float a=0.0, b=1.0, singularity=0.0, errabs=0.0, errest, result;
 result = imsl_f_int_fcn_sing_1d(fcn,a,b,

IMSL_ERR_ABS, errabs,
 IMSL_SINGULARITY, singularity, singularity_type,
 IMSL_ERR_EST, &errest,
 IMSL_N_EVALS, &n_evals, 0);

 printf("The approximation to the integral is %f\n", result);
 printf("The estimated absolute error is %f\n", errest);

∫0
1

ln x x−1/2 dx = − 4
499

 Quadrature int_fcn_sing_1d
 printf("The number of evaluations taken is %d\n", n_evals);
}

float fcn (float x) {
 return log(x)/sqrt(x);

}

Output

The approximation to the integral is -4.000000
The estimated absolute error is 6.0e-007
The number of evaluations taken is 32

Example 2

The value of

is estimated. Note that the optional argument IMSL_FCN_W_DATA is used to set the value of k = 2 in the user-
supplied function, fcn2. We do not attempt to calculate the an a posteriori error in the function evaluation so
err_post is set to 0.0.

#include <imsl.h>
#include <stdio.h>
float fcn (float x, float *err_post, void *fcn_data);
int main(){

 float a=1.0, b=2.0, err_post=0.0,rdata[1]={2.0}, errest, result;
 result = imsl_f_int_fcn_sing_1d(NULL, a, b,

 IMSL_FCN_W_DATA, fcn, &err_post, (void *)rdata,
IMSL_ERR_EST, &errest, 0);

 printf("The approximation to the integral is %f\n", result);
 printf("The estimated absolute error is %6.1e\n", errest);

}

float fcn (float x, float *err_post, void *fcn_data) {
 float k = ((float*)fcn_data)[0];
 return 2.0*x + k*x;

}

Output

The approximation to the integral is 6.000000
The estimated absolute error is 1.2e-006

∫1
2

2x + kx dx = 6
500

 Quadrature int_fcn_sing_1d
Fatal Errors
IMSL_NONINTEGRABLE The integrand apparently contains a nonin-

tegrable singularity. The abscissa of the
singularity is near #. The result has been
set to NaN.

IMSL_MAX_FCN_EVAL_EXCEEDED_NAN The maximum number of function evalua-
tions allowed, “maxfn”, has been
exceeded. “maxfn” is currently set to a
value of #. The result has been set to NaN.

IMSL_CRITERIA_NOT_SATISFIED The algorithm has terminated without sat-
isfying any of the error tolerance criteria.
The error estimate is #.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
501

 Quadrature int_fcn
int_fcn

more...

Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn (float fcn(), float a, float b, …, 0)

The type double function is imsl_d_int_fcn.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Return Value
The value of

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

∫a
b
fcn x dx
502

 Quadrature int_fcn
float imsl_f_int_fcn (float fcn(), float a, float b,

IMSL_RULE, int rule,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_RULE, int rule (Input)

Choice of quadrature rule.

Default: rule = 1

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_abs = where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

rule Gauss-Kronrod Rule

1 7-15 points

2 10-21 points

3 15-31 points

4 20-41 points

5 25-51 points

6 30-61 points

ɛ

ɛ

503

 Quadrature int_fcn
IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_int_fcn is a general-purpose integrator that uses a globally adaptive scheme to reduce
the absolute error. It subdivides the interval [a, b] and uses a (2k + 1)-point Gauss-Kronrod rule to estimate the
integral over each subinterval. The error for each subinterval is estimated by comparison with the k-point Gauss
quadrature rule. The subinterval with the largest estimated error is then bisected, and the same procedure is
applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff
error is detected, the subintervals become too small, or the maximum number of subintervals allowed is
reached. The function imsl_f_int_fcn is based on the subroutine QAG by Piessens et al. (1983).

On some platforms, imsl_f_int_fcn can evaluate the user-supplied function fcn in parallel. This is done
only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is
thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

Should imsl_f_int_fcn fail to produce acceptable results, consider one of the more specialized functions
documented in this chapter section.

Examples

Example 1

The value of

is computed. Since the integrand is not oscillatory, all of the default values are used. The values of the actual and
estimated error are machine dependent.

∫0
2

xexdx = e2 + 1
504

 Quadrature int_fcn
#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
float q;
float exact;
int main()
{
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* evaluate the integral */
 q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);
 /* print the result and the exact answer */
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 float y;
 y = x * (exp(x));
 return y;
}

Output

integral = 8.389
exact = 8.389

Example 2

The value of

is computed. Since the integrand is oscillatory, rule = 6 is used. The exact value is 0.50406706. The values of the
actual and estimated error are machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, err_est, err_abs= 0.0001, exact = 0.50406706, error;

∫0
1

sin 1 / x dx
505

 Quadrature int_fcn
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* intergrate fcn(x) from 0 to 1 */
 q = imsl_f_int_fcn (fcn, 0.0, 1.0,
 IMSL_ERR_ABS, err_abs,/* set abs error value*/
 IMSL_RULE, 6,
 IMSL_ERR_EST, &err_est, /* pass in address */
 0);
 error = q - exact;
 /* print the result and the exact answer */
 printf(" integral = %10.3f\n exact = %10.3f\n error = %10.3f\n ",
 q, exact , error);
 printf(" err_est = %g\n", err_est);
}
float fcn(float x)
{
 /* compute sin(1/x), avoiding division by zero */
 return ((x)>1.0e-5) ? sin(1.0/(x)) : 0.0;
}

Output

integral = 0.504
 exact = 0.504
 error = 0.000
 err_est = 0.000170593

Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error has been detected. The
requested tolerances, “err_abs” = # and
“err_rel” cannot be reached.

IMSL_PRECISION_DEGRADATION Precision is degraded due to too fine a sub-
division relative to the requested tolerance.
This may be due to bad integrand behavior
in the interval (#,#). Higher precision may
alleviate this problem.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed “max_sub” has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
506

 Quadrature int_fcn_sing_pts
int_fcn_sing_pts

more...

Integrates a function with singularity points given.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints, float points[], …,
0)

The type double function is imsl_d_int_fcn_sing_pts.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

int npoints (Input)
The number of singularities of the integrand.

float points[] (Input)
The abscissas of the singularities. These values should be interior to the interval [a, b].

Return Value
The value of
507

 Quadrature int_fcn_sing_pts
is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints, float points[],

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

∫a
b
fcn x dx

err_abs = ɛ

err_rel = ɛ
508

 Quadrature int_fcn_sing_pts
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functionsin the introduction to this manual for more details.

Description
The function imsl_f_int_fcn_sing_pts is a special-purpose integrator that uses a globally adaptive
scheme in order to reduce the absolute error. It subdivides the interval [a, b] into npoints + 1 user-supplied
subintervals and uses a 21-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for
each subinterval is estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with the
largest estimated error is then bisected, and the same procedure is applied to both halves. The bisection process
is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too
small, or the maximum number of subintervals allowed is reached. This function uses an extrapolation procedure
known as the ɛ-algorithm.

On some platforms,imsl_f_int_fcn_sing_pts can evaluate the user-supplied function fcn in parallel.
This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A
function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of
writing to global or static variables.

The function imsl_f_int_fcn_sing_pts is based on the subroutine QAGP by Piessens et al. (1983).

Examples

Example 1

The value of

is computed. The values of the actual and estimated error are machine dependent. Note that this function never
evaluates the user-supplied function at the user-supplied breakpoints.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{

∫0
3

x3ln∣ x2 − 1 x2 − 2 ∣dx = 61ln2 + 774 ln7 − 27
509

 Quadrature int_fcn_sing_pts
 int npoints = 2;
 float q, exact, points[2];
 /* Set singular points */
 points[0] = 1.0;
 points[1] = sqrt(2.);
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points,
 0);
 /* print the result and */
 /* the exact answer */
 exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}

Output

integral = 52.741
exact = 52.741

Example 2

The value of

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate, as in this example. The number of function evaluations also are printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 int n_evals, npoints = 2;
 float q, exact, err_est, exact_err, points[2];
 /* Set singular points */
 points[0] = 1.0;

∫0
3

x3ln∣ x2 − 1 x2 − 2 ∣dx = 61ln2 + 774 ln7 − 27
510

 Quadrature int_fcn_sing_pts
 points[1] = sqrt(2.);
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral and get the */
 /* error estimate and the number of */
 /* evaluations */
 q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
 return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}

511

 Quadrature int_fcn_sing_pts
Output

integral = 52.741
exact = 52.741
error estimate = 1.258850e-04
exact error = 3.051758e-05
The number of function evaluations = 819

Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error has been detected in the
extrapolation table. The tolerances,
“err_abs” = # and “err_rel” = # cannot
be reached.

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
512

 Quadrature int_fcn_alg_log
int_fcn_alg_log

more...

Integrates a function with algebraic-logarithmic singularities.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_alg_log (float fcn(), float a, float b, Imsl_quad weight, float alpha, float
beta, …, 0)

The type double function is imsl_d_int_fcn_alg_log.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Imsl_quad weight, float alpha, float beta (Input)
These three parameters are used to describe the weight function that may have algebraic or logarith-
mic singularities at the endpoints. The parameter weight can take on four values as described
below. The parameters alpha = α and beta = β specify the strength of the singularities at a or b
and hence, must be greater than −1.

Weight Integration Weight

IMSL_ALG (x - a)a (b - x)b

IMSL_ALG_LEFT_LOG (x - a)a (b - x)blog (x - a)
513

 Quadrature int_fcn_alg_log
Return Value
The value of

is returned where w(x) is one of the four weights above. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_alg_log (float fcn(float x), float a, float b, Imsl_quad weight,

float alpha, float beta,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: where ɛ is the machine precision

IMSL_ALG_RIGHT_LOG (x - a)a (b - x)blog (b - x)

IMSL_ALG_LOG (x - a)a (b - x)blog (x - a) log (b - x)

Weight Integration Weight

∫a
b
fcn x w x dx

err_abs = ɛ

err_rel = ɛ
514

 Quadrature int_fcn_alg_log
IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_int_fcn_alg_log is a special-purpose integrator that uses a globally adaptive
scheme to reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x)
where w(x) is a weight function described above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod
formulas is employed. This function is based on the subroutine QAWS, which is fully documented by Piessens et
al. (1983).

On some platforms,imsl_f_int_fcn_alg_log can evaluate the user-supplied function fcn in parallel. This
is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function
is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

Examples

Example 1

The value of

is computed.

∫0
1

1 + x 1 − x 1/2xln x dx =
3ln 2 − 4

9

515

 Quadrature int_fcn_alg_log
#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
 IMSL_ALG_LEFT_LOG, 1.0, 0.5,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = (3.*log(2.)-4.)/9.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return sqrt(1+x);
}

Output

integral = -0.213
exact = -0.213

Example 2

The value of

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate, as in this example. The number of function evaluations also are printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{

∫0
1

1 + x 1 − x 1/2xln x dx =
3ln 2 − 4

9

516

 Quadrature int_fcn_alg_log
 int n_evals;
 float q, exact, err_est, exact_err;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
 IMSL_ALG_LEFT_LOG, 1.0, 0.5,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = (3.*log(2.)-4.)/9.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
 return sqrt(1+x);
}

Output

integral = -0.213
exact = -0.213
error estimate = 3.725290e-09
exact error = 1.490116e-08
The number of function evaluations = 50

Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
517

 Quadrature int_fcn_inf
int_fcn_inf

more...

Integrates a function over an infinite or semi-infinite interval.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_inf (float fcn(), float bound, Imsl_quad interval, …, 0)

The type double procedure is imsl_d_int_fcn_inf.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float bound (Input)
Finite limit of integration. This argument is ignored if interval has the value IMSL_INF_INF.

Imsl_quad interval (Input)
Flag indicating integration limits. The following settings are allowed:

Return Value
The value of

interval Integration Limits

IMSL_INF_BOUND (-∞, bound)

IMSL_BOUND_INF (bound, ∞)

IMSL_INF_INF (-∞, ∞)
518

 Quadrature int_fcn_inf
is returned where a and b are appropriate integration limits. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_inf (float fcn, float bound, Imsl_quad interval,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500.

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

∫a
b
fcn x dx

err_abs = ɛ

err_rel = ɛ
519

 Quadrature int_fcn_inf
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See the Introduction,
Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_inf is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It initially transforms an infinite or semi-infinite interval into the finite interval [0, 1]. It
then uses the same strategy as the function imsl_f_int_fcn_sing.

On some platforms, imsl_f_int_fcn_inf can evaluate the user-supplied function fcn in parallel. This is
done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is
thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

The function imsl_f_int_fcn_inf is based on the subroutine QAGI by Piessens et al. (1983).

Examples

Example 1

The value of

is computed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact, pi;
 pi = imsl_f_constant("pi", 0);
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

∫0
∞ ln x
1 + 10x 2dx =

−πln 10
20
520

 Quadrature int_fcn_inf
 /* Evaluate the integral */
 q = imsl_f_int_fcn_inf (fcn, 0.0,
 IMSL_BOUND_INF,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -pi*log(10.)/20.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 float z;
 z = 10.*x;
 return log(x)/(1+ z*z);
}

Output

integral = -0.362
exact = -0.362

Example 2

The value of

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate, as in this example. The number of function evaluations also are printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 int n_evals;
 float q, exact, err_est, exact_err, pi;
 pi = imsl_f_constant("pi",
 0);
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_inf (fcn, 0.0,

∫0
∞

lnx
1 + 10x 2dx =

−πln 10
20
521

 Quadrature int_fcn_inf
 IMSL_BOUND_INF,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -pi*log(10.)/20.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
 float z;
 z = 10.*x;
 return log(x)/(1+ z*z);
}

Output

integral = -0.362
exact = -0.362
error estimate = 2.801418e-06
exact error = 2.980232e-08
The number of function evaluations = 285

Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.
522

 Quadrature int_fcn_inf
IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
523

 Quadrature int_fcn_trig
int_fcn_trig

more...

Integrates a function containing a sine or a cosine factor.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight, float omega, …, 0)

The type double function is imsl_d_int_fcn_trig.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Imsl_quad weight and float omega (Input)
These two parameters are used to describe the trigonometric weight. The parameter weight can
take on the two values described below, and the parameter omega =ω specifies the frequency of
the trigonometric weighting function.

Return Value
The value of

weight Integration Weight

IMSL_COS cos (ωx)

IMSL_SIN sin (ωx)
524

 Quadrature int_fcn_trig
is returned if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced with a sine fac-
tor. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight, float omega,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_MAX_MOMENTS, int max_moments,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

∫a
b
fcn x cos ωx dx

err_abs = ɛ

err_rel = ɛ
525

 Quadrature int_fcn_trig
IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_MAX_MOMENTS, int max_moments (Input)
This is an upper bound on the number of Chebyshev moments that can be stored. Increasing
(decreasing) this number may increase (decrease) execution speed and space used.
Default: max_moments = 21

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_int_fcn_trig is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x) where w(x) is
either cos(ωx) or sin(ωx). Depending on the length of the subinterval in relation to the size of ω, either a modified
Clenshaw-Curtis procedure or a Gauss-Kronrod 7∕15 rule is employed to approximate the integral on a subinter-
val. This function uses the general strategy of the function imsl_f_int_fcn_sing.

On some platforms,imsl_f_int_fcn_trig can evaluate the user-supplied function fcn in parallel. This is
done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is
thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

The function imsl_f_int_fcn_trig is based on the subroutine QAWO by Piessens et al. (1983).

Examples

Example 1

The value of

is computed. Notice that we have coded around the singularity at zero. This is necessary since this procedure
evaluates the integrand at the two endpoints.

#include <imsl.h>
#include <stdio.h>

∫0
1

ln x sin 10πx dx
526

 Quadrature int_fcn_trig
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact, omega;
 omega = 10*imsl_f_constant("pi",
 0);
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
 IMSL_SIN, omega,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -.1281316;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return (x==0.0) ? 0.0 : log(x);
}

Output

integral = -0.128
exact = -0.128

Example 2

The value of

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, it is usually the case that the error estimate is pessimistic. That is, the actual
error is usually smaller than the error estimate as is the case in this example. The number of function evaluations
are also printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);

∫0
1

ln x sin 10πx dx
527

 Quadrature int_fcn_trig
int main()
{
 int n_evals;
 float q, exact, omega, err_est, exact_err;
 omega = 10*imsl_f_constant("pi",
 0);
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
 IMSL_SIN, omega,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -.1281316;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
 return (x==0.0) ? 0.0 : log(x);
}

Output

integral = -0.128
exact = -0.128
error estimate = 7.504603e-05
exact error = 5.245209e-06
The number of function evaluations = 215
528

 Quadrature int_fcn_trig
Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
529

 Quadrature int_fcn_fourier
int_fcn_fourier

more...

Computes a Fourier sine or cosine transform.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight, float omega, …, 0)

The type double function is imsl_d_int_fcn_fourier.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration. The upper limit of integration is ∞.

Imsl_quad weight and float omega (Input)
These two parameters are used to describe the trigonometric weight. The parameter weight can
take on the two values described below, and the parameter omega =ω specifies the frequency of
the trigonometric weighting function.

Return Value
The return value is

weight Integration Weight

IMSL_COS cos (ωx)

IMSL_SIN sin (ωx)
530

 Quadrature int_fcn_fourier
if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced with a sine factor. If no
value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight, float omega,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_MAX_CYCLES, int max_cycles,
IMSL_MAX_MOMENTS, int max_moments,
IMSL_N_CYCLES, int *n_cycles,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_MAX_CYCLES, int max_cycles (Input)
Number of cycles allowed.
Default: max_subinter = 50

IMSL_MAX_MOMENTS, int max_moments (Input)
Number of subintervals allowed in the partition of each cycle.
Default: max_moments = 21

∫a
∞

fcn x cos ωx dx

err_abs = ɛ
531

 Quadrature int_fcn_fourier
IMSL_N_CYCLES, int *n_cycles (Output)
Address to store the number of cycles generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See the Introduction,
Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_fourier is a special-purpose integrator that uses a globally adaptive
scheme to reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x)
where w(x) is either cosωx or sinωx. The integration interval is always semi-infinite of the form [a,∞]. These Fou-
rier integrals are approximated by repeated calls to the function imsl_f_int_fcn_trig followed by
extrapolation.

On some platforms,imsl_f_int_fcn_fourier can evaluate the user-supplied function fcn in parallel. This
is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function
is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

The function imsl_f_int_fcn_fourier is based on the subroutine QAWF by Piessens et al. (1983).

Examples

Example 1

The value of

is computed. Notice that the integrand is coded to protect for the singularity at zero.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);

∫0
∞

x−1/2cos πx / 2 dx = 1
532

 Quadrature int_fcn_fourier
int main()
{
 float q, exact, omega;
 omega = imsl_f_constant("pi",0) / 2.;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_fourier (fcn, 0.0,
 IMSL_COS, omega,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return (x==0.) ? 0. : 1./sqrt(x);
}

Output

integral = 1.000
exact = 1.000

Example 2

The value of

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate,
as is the case in this example.The number of function evaluations also are printed. Notice that the integrand is
coded to protect for the singularity at zero.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 int n_evals;
 float q, exact, omega, err_est, exact_err;

∫0
∞

x−1/2cos πx / 2 dx = 1
533

 Quadrature int_fcn_fourier
 omega = imsl_f_constant("pi",0) / 2.0;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_fourier (fcn, 0.0,
 IMSL_COS, omega,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 1.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
 return (x==0.) ? 0. : 1./sqrt(x);
}

534

 Quadrature int_fcn_fourier
Output

integral = 1.000
exact = 1.000
error estimate = 1.803637e-04
exact error = 1.013279e-06
The number of function evaluations = 405

Warning Errors

Fatal Errors

IMSL_BAD_INTEGRAND_BEHAVIOR Bad integrand behavior occurred in one or
more cycles.

IMSL_EXTRAPOLATION_PROBLEMS Extrapolation table constructed for conver-
gence acceleration of the series formed by
the integral contributions of the cycles
does not converge to the requested
accuracy.

IMSL_MAX_CYCLES Maximum number of cycles allowed has
been reached.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
535

 Quadrature int_fcn_cauchy
int_fcn_cauchy

more...

Computes integrals of the form

in the Cauchy principal value sense.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c, …, 0)

The type double function is imsl_d_int_fcn_cauchy.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

float c (Input)
Singular point, c must not equal a or b.

Return Value
The value of

∫a
b f x
x − c dx
536

 Quadrature int_fcn_cauchy
is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: , where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: , where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

∫a
b fcn x
x − c dx

err_abs = ɛ

err_rel = ɛ
537

 Quadrature int_fcn_cauchy
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_int_fcn_cauchy uses a globally adaptive scheme in an attempt to reduce the abso-
lute error. It computes integrals whose integrands have the special form w(x)f(x) where w(x) = 1∕(x − c). If c lies in
the interval of integration, then the integral is interpreted as a Cauchy principal value. A combination of modified
Clenshaw-Curtis and Gauss-Kronrod formulas are employed.

On some platforms, imsl_f_int_fcn_cauchy can evaluate the user-supplied function fcn in parallel. This
is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function
is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

The function imsl_f_int_fcn_cauchy is an implementation of the subroutine QAWC by Piessens et al.
(1983).

Examples

Example 1

The Cauchy principal value of

is computed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

∫−1
5

1
x(5x3 + 6)

dx =
ln(125 / 631)

18
538

 Quadrature int_fcn_cauchy
 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0, 0);
 /* Print the result and the */
 /* exact answer */
 exact = log(125./631.)/18.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return 1.0/(5.0*x*x*x+6.0);
}

Output

integral = -0.090
exact = -0.090

Example 2

The Cauchy principal value of

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate,
as is the case in this example. The number of function evaluations also are printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 int n_evals;
 float q, exact, err_est, exact_err;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */

∫−1
5

1
x(5x3 + 6)

dx =
ln(125 / 631)

18
539

 Quadrature int_fcn_cauchy
 exact = log(125./631.)/18.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
 return 1.0/(5.0*x*x*x+6.0);
}

Output

integral = -0.090
exact = -0.090
error estimate = 2.160174e-06
exact error = 0.000000e+00
The number of function evaluations = 215

Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
540

 Quadrature int_fcn_smooth
int_fcn_smooth

more...

Integrates a smooth function using a nonadaptive rule.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_smooth (float fcn(), float a, float b, …, 0)

The type double function is imsl_d_int_fcn_smooth.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Return Value
The value of

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

∫a
b
fcn x dx
541

 Quadrature int_fcn_smooth
float imsl_f_int_fcn_smooth (float fcn(), float a, float b,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: , where ɛ is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: , where ɛ is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_int_fcn_smooth is designed to integrate smooth functions. It implements a nonadap-
tive quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87. These rules are positive
quadrature rules with degree of accuracy 19, 31, 64, and 130, respectively. The function
imsl_f_int_fcn_smooth applies these rules successively, estimating the error, until either the error esti-
mate satisfies the user-supplied constraints or the last rule is applied.

This function is not very robust, but for certain smooth functions it can be efficient. If
imsl_f_int_fcn_smooth should not perform well, we recommend the use of the function
imsl_f_int_fcn_sing.

On some platforms, imsl_f_int_fcn_smooth can evaluate the user-supplied function fcn in parallel. This
is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function
is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.

err_abs = ɛ

err_rel = ɛ
542

 Quadrature int_fcn_smooth
The function imsl_f_int_fcn_smooth is based on the subroutine QNG by Piessens et al. (1983).

Examples

Example 1

The value of

is computed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0., 2.,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return x * exp(x);
}

Output

integral = 8.389
exact = 8.389

Example 2

The value of

∫0
2

xexdx = e2 + 1
543

 Quadrature int_fcn_smooth
is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are
machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually
smaller than the error estimate, as is the case in this example.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x);
int main()
{
 float q, exact, err_est, exact_err;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0.0, 2.0,
 IMSL_ERR_EST, &err_est,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
}
float fcn(float x)
{
 return x * exp(x);
}

Output

integral = 8.389
exact = 8.389
error estimate = 5.000267e-05
exact error = 9.536743e-07

∫0
2

xexdx = e2 + 1
544

 Quadrature int_fcn_smooth
Fatal Errors
IMSL_MAX_STEPS The maximum number of steps allowed

have been taken. The integrand is too diffi-
cult for this routine.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
545

 Quadrature int_fcn_2d
int_fcn_2d
Computes a two-dimensional iterated integral.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (float x), float hcn (float x), …, 0)

The type double function is imsl_d_int_fcn_2d.

Required Arguments
float fcn (float x, float y) (Input)

User-supplied function to be integrated.

float a (Input)
Lower limit of outer integral.

float b (Input)
Upper limit of outer integral.

float gcn (float x) (Input)
User-supplied function to evaluate the lower limit of the inner integral.

float hcn (float x) (Input)
User-supplied function to evaluate the upper limit of the inner integral.

Return Value
The value of

is returned. If no value can be computed, NaN is returned.

∫a
b

∫gcn x
hcn x

fcn x, y dydx
546

 Quadrature int_fcn_2d
Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (), float hcn (),

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GCN_W_DATA, float gcn(), void *data,
IMSL_HCN_W_DATA, float hcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: , where ɛ is the machine precision.

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: , where ɛ is the machine precision.

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

err_abs = ɛ

err_rel = ɛ
547

 Quadrature int_fcn_2d
IMSL_FCN_W_DATA, float fcn (float x, float y, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

IMSL_GCN_W_DATA, float gcn (float x, void *data), void *data (Input)
User supplied function to evaluate the lower limit of the inner integral, which also accepts a pointer
to data that is supplied by the user. See Passing Data to User-Supplied Functions in the introduction
to this manual for more details.

IMSL_HCN_W_DATA, float hcn (float x, void *data), void *data (Input)
User supplied function to evaluate the upper limit of the inner integral, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied
function. See Passing Data to User-Supplied Functions in the introduction to this manual for more
details.

Description
The function imsl_f_int_fcn_2d approximates the two-dimensional iterated integral

An estimate of the error is returned in err_est. The lower-numbered rules are used for less smooth inte-
grands while the higher-order rules are more efficient for smooth (oscillatory) integrands.

Examples

Example 1

In this example, compute the value of the integral

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x, float y), gcn(float x), hcn(float x);
int main()
{

∫a
b

∫g x
h x

f x, y dydx

∫0
1

∫1
3

ycos x + y2 dydx
548

 Quadrature int_fcn_2d
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_2d (fcn, 0.0, 1.0, gcn, hcn, 0);
 /* print the result and the exact answer */
 exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x, float y)
{
 return y * cos(x+y*y);
}
float gcn(float x)
{
 return 1.0;
}
float hcn(float x)
{
 return 3.0;
}

Output

integral = -0.514
exact = -0.514

Example 2

In this example, compute the value of the integral

The values of the actual and estimated error are printed as well. Note that these numbers are machine depen-
dent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the
error estimate, as is the case in this example. The number of function evaluations also is printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(float x, float y), gcn(float x), hcn(float x);
int main()
{
 int n_evals;
 float q, exact, err_est, exact_err;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);

∫0
1

∫1
3

ycos x + y2 dydx
549

 Quadrature int_fcn_2d
 /* Evaluate the integral */
 q = imsl_f_int_fcn_2d (fcn, 0., 1., gcn, hcn,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x, float y)
{
 return y * cos(x+y*y);
}
float gcn(float x)
{
 return 1.0;
}
float hcn(float x)
{
 return 3.0;
}

Output

integral = -0.514
exact = -0.514
error estimate = 3.065193e-06
exact error = 1.192093e-07
The number of function evaluations = 441
550

 Quadrature int_fcn_2d
Warning Errors

Fatal Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
551

 Quadrature int_fcn_sing_2d
int_fcn_sing_2d
Integrates a function of two variables with a possible internal or endpoint singularity.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_sing_2d (float fcn(), float a, float b, float gcn(), float hcn(), ..., 0)

The type double function is imsl_d_int_fcn_sing_2d.

Required Arguments
float fcn (float x, float y) (Input/Output)

User-supplied function to be integrated.

Arguments

float x (Input)
Independent variable.

float y (Input)
Independent variable.

Return Value
The computed function value.

float a (Input)
Lower limit of integration for outer dimension.

float b (Input)
Upper limit of integration for outer dimension. The relative values of a and b are interpreted prop-
erly. Thus if one exchanges a and b, the sign of the answer is changed. When the integrand is
positive, the sign of the result is the same as the sign of b – a.

float gcn (float x) (Input/Output)
User-supplied function to compute the lower limit of integration for the inner dimension.

Arguments
float x (Input)

Independent variable.
Return Value

The computed function value at the point x.
552

 Quadrature int_fcn_sing_2d
float hcn (float x) (Input/Output)
User-supplied function to compute the upper limit of integration for the inner dimension.

Arguments
float x (Input)

Independent variable.
Return Value

The computed function value at the point x.

Return Value
An estimate of

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_sing_2d (float fcn(), float a, float b, float gcn(), float hcn(),

IMSL_FCN_W_DATA, float fcn(), float *err_post, void *data,
IMSL_GCN_W_DATA, float gcn(), void *data,
IMSL_HCN_W_DATA, float hcn(), void *data,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_FRAC, float err_frac,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_PRIOR, float err_prior,
IMSL_MAX_EVALS, int maxfn,
IMSL_SINGULARITY, float singularity, int singularity_type,
IMSL_N_EVALS, int *n_evals,
IMSL_ERR_EST, float *err_est,
IMSL_ISTATUS, int *istatus,
0)

Optional Arguments
IMSL_FCN_W_DATA, float fcn (float x, float y, float *err_post, void *data), float *err_post,

void *data (Input)

∫a
b

∫gcn x
hcn x

fcn x, y dydx
553

 Quadrature int_fcn_sing_2d
float fcn (float x, float y, float *err_post, void *data) (Input)
User supplied function to be integrated, which also accepts a pointer to an a posteriori esti-
mate of the absolute value of the error committed while evaluating the integrand, and a
pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in
the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
float y (Input)

Independent variable.
float *err_post (Output)

An a posteriori estimate of the absolute value of the error committed while
evaluating the integrand. This argument provides a means for the user to
have fcn compute this value as output. Although this argument must
appear in the argument list of fcn, it need not be referenced in the function.
See Example 2 of int_fcn_sing_1d for an example of this.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value
The computed function value.

float *err_post (Input/Output)
An a posteriori estimate of the absolute value of the error committed while evaluating the
integrand. On input, the user may supply this estimate and that value will be used as the esti-
mate thereafter provided fcn does not calculate a new value. If an a posteriori estimate of
the value of the error is not known, set err_post to 0.0 on input. On output, err_post
will contain either the input value set by the user or the value calculated by fcn.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_GCN_W_DATA, float gcn (float x, void *data), void *data (Input)

float gcn (float x, void *data) (Input)
User supplied function to compute the lower limit of integration for the inner dimension
which also accepts a pointer to data that is supplied by the user. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed function value at the point x.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
554

 Quadrature int_fcn_sing_2d
IMSL_HCN_W_DATA, float hcn (float x, void *data), void *data (Input)

float hcn (float x, void *data) (Input)
User supplied function to compute the upper limit of integration for the inner dimension
which also accepts a pointer to data that is supplied by the user. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed function value at the point x.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_ERR_ABS, float err_abs (Input)
Absolute error tolerance. See Remark 1 for a discussion on the error tolerances.
Default: err_abs = 0.0

IMSL_ERR_FRAC, float err_frac (Input)
A fraction expressing the (number of correct digits of accuracy desired)/(number of digits of achiev-
able precision). See Remark 1 for a discussion on accuracy.
Default: err_frac = 0.75

IMSL_ERR_REL, float err_rel (Input)
The error tolerance relative to the value of the integral. See Remark 1 for a discussion on the error
tolerances.
Default: err_rel = 0.0

IMSL_ERR_PRIOR, float err_prior (Input)
An a priori estimate of the absolute value of the relative error expected to be committed while evalu-
ating the integrand. Changes to this value are not detected during evaluation of the integral.
Default: Default: err_prior = imsl_f_machine(4)

IMSL_MAX_EVALS, int maxfn (Input)
The maximum number of function evaluations to use to compute the integral.
Default: The number of function values is not bounded.

IMSL_SINGULARITY, float singularity, int singularity_type (Input)
singularity is the real part of the abscissa of a singularity or discontinuity in the innermost inte-
grand. singularity_type is a signed integer specifying the type of singularity which occurs in
the integrand. If the singularity has a leading term of the form xα where α is not an integer, if α is
“large” or has the form α = (2n-1)/2 where n is a nonnegative integer, or the singularity is well outside
555

 Quadrature int_fcn_sing_2d
the interval, set singularity_type to a positive integer. Otherwise, set singularity_type
to a negative integer. Also see Remark 2.
Default: It is assumed that there is no singularity in the innermost integrand so singularity and
singularity_type are not set.

IMSL_N_EVALS, int *n_evals (Output)
Number of function evaluations used to calculate the integral.

IMSL_ERR_EST, float *err_est (Output)
An estimate of the upper bound of the magnitude of the difference between the value returned by
imsl_f_int_fcn_sing_2d and the true value of the integral.

IMSL_ISTATUS, int *istatus (Output)
A status flag indicating the error criteria which was satisfied on exit.

Description
The function imsl_f_int_fcn_sing_2d, based on the JPL Library routine SINTM, approximates an iterated
two-dimensional integral of the form

The integral over two dimensions is computed by repeated integration over one dimension. The integration over
one dimension is estimated using quadrature formulae due to T. N. L. Patterson (1968). Patterson described a

family of formulae in which the kth formula used all the integrand values used in the k-1st formula, and added 2k-1

new integrand values in an optimal way. The first formula is the midpoint rule, the second is the three point Gauss
formula, and the third is the seven point Kronrod formula. Formulae of this family of higher degree had not previ-
ously been described. This program uses formulae up to k = 8.

istatus Description

-2 Indicates normal termination with either the absolute
or relative error tolerance criteria satisfied.

-3 Indicates normal termination with neither the absolute
nor the relative error tolerance criteria satisfied, but
the error tolerance based on the locally achievable pre-
cision is satisfied.

-4 Indicates normal termination with none of the error
tolerance criteria satisfied.

Other Any value other than the above indicates abnormal ter-
mination due to an error condition.

∫a
b

∫g x
h x

f x, y dydx
556

 Quadrature int_fcn_sing_2d
An error estimate is obtained by comparing the values of the integral estimated by two adjacent formulae, exam-
ining differences up to the fifteenth order, integrating round-off error, integrating error declared to have been
committed during computation of the integrand, integrating a first order estimate of the effect round-off error in
the abscissa has on integrand values, and including errors in the limits. The latter four methods are also used to
derive a bound on the achievable precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is subdivided. The differ-
ence table is used to discover whether the integral is difficult to compute because the integrand is too complex
or has singular behavior. In the former case, the estimated error, requested error tolerance, and difference table
are used to choose a step size.

In the latter case, the difference table is used in a search algorithm to find the abscissa of the singular behavior. If
the singular behavior is discovered on the end of an interval, a change of independent variable is applied to
reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump discontinuities, and com-
putational noise.

Remarks
Remark 1

The user provides the absolute error tolerance through optional argument IMSL_ERR_ABS. Optional argument
IMSL_ERR_FRAC represents the ratio of the (number of correct digits of accuracy desired) to (number of digits
of achievable precision). Optional argument IMSL_ERR_REL represents the error tolerance relative to the value
of the integral. The internal value for err_frac is bounded between .5 and 1. By default, err_abs and
err_rel are set to 0.0 and err_frac is set to .75. These default values usually provide all the accuracy that
can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the entire region of integration)
rather than locally (one step at a time). This policy provides true control of error relative to the value of the inte-
gral when the integrand is not sign definite, as well as when the integrand is sign definite. To apply the criterion of
error tolerance relative to the value of the integral, the value of the integral over the entire region, estimated with-
out refinement of the region, is used to derive an absolute error tolerance that may be applied locally. If the
preliminary estimate of the value of the integral is significantly in error, and the least restrictive error tolerance is
relative to the value of the integral, the cost of computing the integral will be larger than the cost of computing
the integral to the same degree of accuracy using appropriate values of either of the other tolerance criteria. The
preliminary estimate of the integral may be significantly in error if the integrand is not sign definite or has large
variation.

Remark 2
557

 Quadrature int_fcn_sing_2d
Optional argument IMSL_SINGULARITY provides the user with a means to give the routine information about
the location and type of any known singularity of the innermost integrand. When an integrand appears to have
singular behavior at the end of the interval, a transformation of the variable of integration is applied to reduce the
strength of the singularity. When an integrand appears to have singular behavior inside the interval, the abscissa
of the singularity is determined as precisely as necessary, depending on the error tolerance, and the interval is
subdivided. The discovery of singular behavior and determination of the abscissa of singular behavior are expen-
sive. If the user knows of the existence of a singularity, the efficiency of computation of the integral may be
improved by requesting an immediate transformation of the independent variable or subdivision of the interval.
It is recommended that the user select these optional arguments for all singularities, even those outside [a, b].

If the singularity has a leading term of the form xα where α is not an integer, if α is “large” or has the form
α = (2n - 1)/2 where n is a nonnegative integer, or the singularity is well outside the interval, set
singularity_type to a positive value. Otherwise, set singularity_type to a negative value. The mean-
ing of “large” depends on the rest of the integrand and the length of the interval. For the typical case, a value of

about 2 is considered “large”. For a singularity of the form xα log x use the above rule, even if α is an integer. For
other types of singularities make a reasonable guess based on the above. If several similar integrals are to be
computed, some experimentation may be useful.

When singularity_type is positive, a transformation of the form T = TA + (X - TA)2 / (TB – TA) is applied, where
TA is the abscissa of the singularity and TB is the end of the interval. If TA is outside the interval, TB will be the end
of the interval farthest from TA. If TA is inside the interval, the interval will immediately be subdivided at TA, and
both parts will be separately integrated with TB equal to each end of the original interval, respectively. When

singularity_type is negative, a transformation of the form T = TA + (X – TA)4 / (TB – TA)3 is applied, with TA
and TB as above.

If the integrand has singularities at more than one abscissa within the region, or more than one pole near the real
axis such that the real parts are within the region of integration, then the interval should be subdivided at the
abscissa of the singularities or the real parts of the poles, and the integrals should be computed as separate
problems, with the results summed.

Example
The value of
558

 Quadrature int_fcn_sing_2d
is estimated.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn (float x, float y);
float gcn (float x);
float hcn (float x);

int main(){

 float a=0.0, b=1.0, errest, result;
 result = imsl_f_int_fcn_sing_2d(fcn, a, b, gcn, hcn,
 IMSL_ERR_EST, &errest, 0);
 printf("The approximation to the integral is %f\n", result);
 printf("The estimated error is %6.1e\n", errest);
}

float fcn (float x, float y) {
 return y*cos(x+y*y);
}
float gcn (float x) {
 return 1.0;
}
float hcn (float x) {
 return 3.0;
}

Output
The approximation to the integral is -0.514254
The estimated error is 5.3e-006

∫0
1

∫1
3

ycos x + y2 dydx
559

 Quadrature int_fcn_sing_2d
Fatal Errors
IMSL_NONINTEGRABLE The integrand apparently contains a nonin-

tegrable singularity. The abscissa of the
singularity is near #. The result has been
set to NaN.

IMSL_MAX_FCN_EVAL_EXCEEDED_NAN The maximum number of function evalua-
tions allowed, “maxfn”, has been
exceeded. “maxfn” is currently set to a
value of #. The result has been set to NaN.

IMSL_CRITERIA_NOT_SATISFIED The algorithm has terminated without sat-
isfying any of the error tolerance criteria.
The error estimate is #.

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
560

 Quadrature int_fcn_sing_3d
int_fcn_sing_3d
Integrates a function of three variables with a possible internal or endpoint singularity.

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_sing_3d (float fcn(), float a, float b, float gcn(), float hcn(),
float pcn(), float qcn(), …, 0)

The type double function is imsl_d_int_fcn_sing_3d.

Required Arguments
float fcn (float x, float y, float z) (Input/Output)

User-supplied function to be integrated.

Arguments
float x (Input)

Independent variable..
float y (Input)

Independent variable.
float z (Input)

Independent variable.
Return Value

The computed function value.

float a (Input)
Lower limit of integration for outer dimension.

float b (Input)
Upper limit of integration for outer dimension. The relative values of a and b are interpreted prop-
erly. Thus if one exchanges a and b, the sign of the answer is changed. When the integrand is
positive, the sign of the result is the same as the sign of b – a.

float gcn (float x) (Input/Output)
User-supplied function to compute the lower limit of integration for the middle dimension.

Arguments
float x (Input)

Independent variable.
561

 Quadrature int_fcn_sing_3d
Return Value

The computed function value at the point x.

float hcn (float x) (Input/Output)
User-supplied function to compute the upper limit of integration for the middle dimension.

Arguments
float x (Input)

Independent variable..
Return Value

The computed function value.

float pcn (float x, float y) (Input/Output)
User-supplied function to compute the lower limit of integration for the inner dimension.

Arguments

float x (Input)
Independent variable.

float y (Input)
Independent variable.

Return Value
The computed function value.

float qcn (float x, float y) (Input/Output)
User-supplied function to compute the upper limit of integration for the inner dimension.

Arguments
float x (Input)

Independent variable.
float y (Input)

Independent variable.
Return Value

The computed function value.

Return Value
An estimate of

Synopsis with Optional Arguments
#include <imsl.h>

∫a
b

∫gcn x
hcn x

∫pcn x, y
qcn x, y

f x, y, z dzdydx
562

 Quadrature int_fcn_sing_3d
float imsl_f_int_fcn_sing_3d (float fcn(), float a, float b, float gcn(), float hcn(),
float pcn(), float qcn(),

IMSL_FCN_W_DATA, float fcn(), float *err_post, void *data,
IMSL_GCN_W_DATA, float gcn(), void *data,
IMSL_HCN_W_DATA, float hcn(), void *data,
IMSL_PCN_W_DATA, float pcn(), void *data,
IMSL_QCN_W_DATA, float qcn(), void *data,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_FRAC, float err_frac,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_PRIOR, float err_prior,
IMSL_MAX_EVALS, int maxfn,
IMSL_SINGULARITY, float singularity, int singularity_type,
IMSL_N_EVALS, int *n_evals,
IMSL_ERR_EST, float *err_est,
IMSL_ISTATUS, int *istatus,
0)

Optional Arguments
IMSL_FCN_W_DATA, float fcn (float x, float y, float z, float *err_post, void *data),

float *err_post, void *data (Input)

float fcn (float x, float y, float z, float *err_post, void *data) (Input)
User supplied function to be integrated, which also accepts a pointer to an a posteriori esti-
mate of the absolute value of the error committed while evaluating the integrand, and a
pointer to data that is supplied by the user. See Passing Data to User-Supplied Functions in
the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
float y (Input)

Independent variable.
float z (Input)

Independent variable.
float *err_post (Output)

An a posteriori estimate of the absolute value of the error committed while
evaluating the integrand This argument provides a means for the user to
have fcn compute this value as output. Although this argument must
appear in the argument list of fcn, it need not be referenced in the function.
See Example 2 of int_fcn_sing_1d for an example of this.
563

 Quadrature int_fcn_sing_3d
void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value
The computed function value.

float *err_post (Input/Output)
An a posteriori estimate of the absolute value of the error committed while evaluating the
integrand. On input, the user may supply this estimate and that value will be used as the esti-
mate thereafter provided fcn does not calculate a new value. If an a posteriori estimate of
the value of the error is not known, set err_post to 0.0 on input. On output, err_post
will contain either the input value set by the user or the value calculated by fcn.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSL_GCN_W_DATA, float gcn (float x, void *data), void *data (Input)

float gcn (float x, void *data) (Input)
User supplied function to compute the lower limit of integration for the middle dimension
which also accepts a pointer to data that is supplied by the user. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed function value at the point x.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_HCN_W_DATA, float hcn (float x, void *data), void *data (Input)

float hcn (float x, void *data) (Input)
User supplied function to compute the upper limit of integration for the middle dimension
which also accepts a pointer to data that is supplied by the user. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed function value at the point x.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_PCN_W_DATA, float pcn (float x, float y, void *data), void *data (Input)
564

 Quadrature int_fcn_sing_3d
float pcn (float x, float y, void *data) (Input)
User supplied function to compute the lower limit of integration for the inner dimension
which also accepts a pointer to data that is supplied by the user. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
float y (Input)

Independent variable.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed function value.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_QCN_W_DATA, float qcn (float x, float y, void *data), void *data (Input)

float qcn (float x, float y, void *data) (Input)
User supplied function to compute the lower limit of integration for the inner dimension
which also accepts a pointer to data that is supplied by the user. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Arguments
float x (Input)

Independent variable.
float y (Input)

Independent variable.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed function value.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_ERR_ABS, float err_abs (Input)
Absolute error tolerance. See Remark 1 for a discussion on the error tolerances.
Default: err_abs = 0.0

IMSL_ERR_FRAC, float err_frac (Input)
A fraction expressing the (number of correct digits of accuracy desired)/(number of digits of achiev-
able precision). See Remark 1 for a discussion on accuracy.
Default: err_frac = 0.75
565

 Quadrature int_fcn_sing_3d
IMSL_ERR_REL, float err_rel (Input)
The error tolerance relative to the value of the integral. See Remark 1 for a discussion on the error
tolerances.
Default: err_rel = 0.0

IMSL_ERR_PRIOR, float err_prior (Input)
An a priori estimate of the absolute value of the relative error expected to be committed while evalu-
ating the integrand. Changes to this value are not detected during evaluation of the integral.
Default: err_prior = imsl_f_machine(4)

IMSL_MAX_EVALS, float maxfn (Input)
The maximum number of function evaluations to use to compute the integral.
Default: The number of function values is not bounded.

IMSL_SINGULARITY, float singularity, int singularity_type (Input)
singularity is the real part of the abscissa of a singularity or discontinuity in the innermost inte-
grand. By default it is assumed that there is no singularity in the integrand. singularity_type is
a signed integer specifying the type of singularity which occurs in the integrand. If the singularity has
a leading term of the form xα where α is not an integer, if α is “large” or has the form α = (2n-1)/2
where n is a nonnegative integer, or the singularity is well outside the interval, set
singularity_type to a positive integer. Otherwise, set singularity_type to a negative
integer. Also see Remark 2.
Default: It is assumed that there is no singularity in the innermost integrand so singularity and
singularity_type are not set.

IMSL_N_EVALS, int *n_evals (Output)
Number of function evaluations used to calculate the integral.

IMSL_ERR_EST, float *err_est (Output)
An estimate of the upper bound of the magnitude of the difference between the value returned by
imsl_f_int_fcn_sing_3d and the true value of the integral.

IMSL_ISTATUS, int *istatus (Output)
A status flag indicating the error criteria which was satisfied on exit.

istatus Description

-3 Indicates normal termination with either the absolute
or relative error tolerance criteria satisfied.

-4 Indicates normal termination with neither the absolute
nor the relative error tolerance criteria satisfied, but
the error tolerance based on the locally achievable pre-
cision is satisfied.
566

 Quadrature int_fcn_sing_3d
Description
The function imsl_f_int_fcn_sing_3d, based on the JPL Library routine SINTM, approximates an iterated
three-dimensional integral of the form

The integral over three dimensions is computed by repeated integration over one dimension. The integration
over one dimension is estimated using quadrature formulae due to T. N. L. Patterson (1968). Patterson described

a family of formulae in which the kth formula used all the integrand values used in the k-1st formula, and added

2k-1 new integrand values in an optimal way. The first formula is the midpoint rule, the second is the three point
Gauss formula, and the third is the seven point Kronrod formula. Formulae of this family of higher degree had not
previously been described. This program uses formulae up to k = 8.

An error estimate is obtained by comparing the values of the integral estimated by two adjacent formulae, exam-
ining differences up to the fifteenth order, integrating round-off error, integrating error declared to have been
committed during computation of the integrand, integrating a first order estimate of the effect round-off error in
the abscissa has on integrand values, and including errors in the limits. The latter four methods are also used to
derive a bound on the achievable precision.

If the integral over an interval cannot be estimated with sufficient accuracy, the interval is subdivided. The differ-
ence table is used to discover whether the integral is difficult to compute because the integrand is too complex
or has singular behavior. In the former case, the estimated error, requested error tolerance, and difference table
are used to choose a step size.

In the latter case, the difference table is used in a search algorithm to find the abscissa of the singular behavior. If
the singular behavior is discovered on the end of an interval, a change of independent variable is applied to
reduce the strength of the singularity.

The program also uses the difference table to detect nonintegrable singularities, jump discontinuities, and com-
putational noise.

-5 Indicates normal termination with none of the error
tolerance criteria satisfied.

Other Any value other than the above indicates abnormal ter-
mination due to an error condition.

istatus Description

∫a
b

∫g x
h x

∫p x, y
q x, y

f x, y, z dzdydx
567

 Quadrature int_fcn_sing_3d
Remarks
Remark 1

The user provides the absolute error tolerance through optional argument IMSL_ERR_ABS. Optional argument
IMSL_ERR_FRAC represents the ratio of the (number of correct digits of accuracy desired) to (number of digits
of achievable precision). Optional argument IMSL_ERR_REL represents the error tolerance relative to the value
of the integral. The internal value for err_frac is bounded between .5 and 1. By default, err_abs and
err_rel are set to 0.0 and err_frac is set to .75. These default values usually provide all the accuracy that
can be obtained efficiently.

The error tolerance relative to the value of the integral is applied globally (over the entire region of integration)
rather than locally (one step at a time). This policy provides true control of error relative to the value of the inte-
gral when the integrand is not sign definite, as well as when the integrand is sign definite. To apply the criterion of
error tolerance relative to the value of the integral, the value of the integral over the entire region, estimated with-
out refinement of the region, is used to derive an absolute error tolerance that may be applied locally. If the
preliminary estimate of the value of the integral is significantly in error, and the least restrictive error tolerance is
relative to the value of the integral, the cost of computing the integral will be larger than the cost of computing
the integral to the same degree of accuracy using appropriate values of either of the other tolerance criteria. The
preliminary estimate of the integral may be significantly in error if the integrand is not sign definite or has large
variation.

Remark 2

Optional argument IMSL_SINGULARITY provides the user with a means to give the routine information about
the location and type of any known singularity of the innermost integrand. When an integrand appears to have
singular behavior at the end of the interval, a transformation of the variable of integration is applied to reduce the
strength of the singularity. When an integrand appears to have singular behavior inside the interval, the abscissa
of the singularity is determined as precisely as necessary, depending on the error tolerance, and the interval is
subdivided. The discovery of singular behavior and determination of the abscissa of singular behavior are expen-
sive. If the user knows of the existence of a singularity, the efficiency of computation of the integral may be
improved by requesting an immediate transformation of the independent variable or subdivision of the interval.
It is recommended that the user select these optional arguments for all singularities, even those outside [a, b].

If the singularity has a leading term of the form xα where α is not an integer, if α is “large” or has the form α = (2n-
1)/2 where n is a nonnegative integer, or the singularity is well outside the interval, set singularity_type to
a positive value. Otherwise, set singularity_type to a negative value. The meaning of “large” depends on
the rest of the integrand and the length of the interval. For the typical case, a value of about 2 is considered

“large”. For a singularity of the form xα log x use the above rule, even if α is an integer. For other types of singular-
ities make a reasonable guess based on the above. If several similar integrals are to be computed, some
experimentation may be useful.
568

 Quadrature int_fcn_sing_3d
When singularity_type is positive, a transformation of the form T = TA + (X -TA)2 / (TB -TA) is applied, where
TA is the abscissa of the singularity and TB is the end of the interval. If TA is outside the interval, TB will be the end
of the interval farthest from TA. If TA is inside the interval, the interval will immediately be subdivided at TA, and
both parts will be separately integrated with TB equal to each end of the original interval, respectively. When

singularity_type is negative, a transformation of the form T = TA + (X - TA)4 / (TB - TA)3 is applied, with TA
and TB as above.

If the integrand has singularities at more than one abscissa within the region, or more than one pole near the real
axis such that the real parts are within the region of integration, then the interval should be subdivided at the
abscissa of the singularities or the real parts of the poles, and the integrals should be computed as separate
problems, with the results summed.

Example
The value of

is estimated.

#include <imsl.h>
#include <stdio.h>
float fcn (float x, float y, float z);
float gcn (float x);
float hcn (float x);
float pcn (float x, float y);
float qcn (float x, float y);

int main(){
 float a=0.0, b=1.0, errest, result;
 result = imsl_f_int_fcn_sing_3d(fcn, a, b, gcn, hcn, pcn, qcn,
 IMSL_ERR_EST, &errest, 0);
 printf("The approximation to the integral is %f\n", result);
 printf("The estimated error is %6.1e\n", errest);
}

float fcn (float x, float y, float z) {
 return 1.0 + x + y + 2.0*z;
}
float gcn (float x) {
 return 0.0;
}
float hcn (float x) {

∫0
1

∫0
1−x

∫0
1−x−y

1.0 + x + y + 2z dzdydx
569

 Quadrature int_fcn_sing_3d
 return 1.0 - x;
}
float pcn (float x, float y) {
 return 0.0;
}
float qcn (float x, float y) {
 return 1.0 - x - y;
}

Output
The approximation to the integral is 0.333333
The estimated error is 1.9e-007

Fatal Errors
IMSL_NONINTEGRABLE The integrand apparently contains a nonintegrable

singularity. The abscissa of the singularity is near #.
The result has been set to NaN.

IMSL_MAX_FCN_EVAL_EXCEEDED_NA
N

The maximum number of function evaluations
allowed, “maxfn”, has been exceeded. “maxfn” is cur-
rently set to a value of #. The result has been set to
NaN.

IMSL_CRITERIA_NOT_SATISFIED The algorithm has terminated without satisfying any
of the error tolerance criteria. The error estimate is #.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
570

 Quadrature int_fcn_hyper_rect
int_fcn_hyper_rect

more...

Integrate a function on a hyper-rectangle,

Synopsis
#include <imsl.h>

float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[], float b[], …, 0)

The type double function is imsl_d_int_fcn_hyper_rect.

Required Arguments
float fcn (int ndim, float x[]) (Input)

User-supplied function to be integrated.

int ndim (Input)
The dimension of the hyper-rectangle.

float a[] (Input)
Lower limits of integration.

float b[] (Input)
Upper limits of integration.

Return Value
The value of

is returned. If no value can be computed, then NaN is returned.

∫a0
b0
… ∫an−1

bn−1
f x0, … , xn−1 dxn−1 … dx0

∫a0
b0
… ∫an−1

bn−1
f x0, … , xn−1 dxn−1 … dx0
571

 Quadrature int_fcn_hyper_rect
Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[], float b[],

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_EVALS, int max_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: , where ɛ is the machine precision.

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: , where ɛ is the machine precision.

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_EVALS, int max_evals (Input)
Number of evaluations allowed.
Default: max_evals = 32n.

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_int_fcn_hyper_rect approximates the n-dimensional iterated integral

err_abs = ɛ

err_rel = ɛ
572

 Quadrature int_fcn_hyper_rect
An estimate of the error is returned in the optional argument err_est. The approximation is achieved by iter-
ated applications of product Gauss formulas. The integral is first estimated by a two-point tensor product formula
in each direction. Then for i = 1, …, n, the function calculates a new estimate by doubling the number of points in
the i-th direction, then halving the number immediately afterwards if the new estimate does not change apprecia-
bly. This process is repeated until either one complete sweep results in no increase in the number of sample
points in any dimension; the number of Gauss points in one direction exceeds 256; or the number of function
evaluations needed to complete a sweep exceeds max_evals.

On some platforms, imsl_f_int_fcn_hyper_rect can evaluate the user-supplied function fcn in paral-
lel. This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A
function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of
writing to global or static variables.

Example
In this example, we compute the integral of

on an expanding cube. The values of the error estimates are machine dependent. The exact integral over R3 is

π3/2.

∫a0
b
… ∫an−1

bn−1
f x0, … , xn−1 dxn−1 … dx0

e
− x1
2+x2
2+x3
2

573

 Quadrature int_fcn_hyper_rect
#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(int n, float x[]);
int main()
{
 int i, j, ndim = 3;
 float q, limit, a[3], b[3];
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 printf(" integral limit \n");
 limit = pow(imsl_f_constant("pi",0), 1.5);
 /* Evaluate the integral */
 for (i = 0; i < 6; i++) {
 for (j = 0; j < 3; j++) {
 a[j] = -(i+1)/2.;
 b[j] = (i+1)/2.;
 }
 q = imsl_f_int_fcn_hyper_rect (fcn, ndim, a, b,
 0);
 /* Print the result and the */
 /* limiting answer */
 printf(" %10.3f %10.3f\n", q, limit);
 }
}
float fcn(int n, float x[])
{
 float s;
 s = x[0]*x[0] + x[1]*x[1] + x[2]*x[2];
 return exp(-s);
}

Output
integral limit
 0.785 5.568
 3.332 5.568
 5.021 5.568
 5.491 5.568
 5.561 5.568
 5.568 5.568
574

 Quadrature int_fcn_hyper_rect
Warning Errors

Fatal Errors

IMSL_MAX_EVALS_TOO_LARGE The argument max_evals was set greater
than 28n.

IMSL_NOT_CONVERGENT The maximum number of function evalua-
tions has been reached, and convergence
has not been attained

IMSL_STOP_USER_FCN Request from user supplied function to
stop algorithm.
User flag = "#".
575

 Quadrature int_fcn_qmc
int_fcn_qmc

more...

Integrates a function on a hyper-rectangle using a quasi-Monte Carlo method.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_qmc (float fcn(), int ndim, float a[], float b[], …, 0)

The type double function is imsl_d_int_fcn_qmc.

Required Arguments
float fcn (int ndim, float x[]) (Input)

User-supplied function to be integrated.

int ndim (Input)
The dimension of the hyper-rectangle.

float a[] (Input)
Lower limits of integration.

float b[] (Input)
Upper limits of integration.

Return Value
The value of

is returned. If no value can be computed, then NaN is returned.

∫a0
b0
… ∫an−1

bn−1
f x0, … , xn−1 dxn−1 … dx0
576

 Quadrature int_fcn_qmc
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_int_fcn_qmc (float fcn(), int ndim, float a[], float b[],

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_EVALS, int max_evals,
IMSL_BASE, int base,
IMSL_SKIP, int skip,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err_abs = 1.0e-4.

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_abs = 1.0e-4.

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_EVALS, int max_evals (Input)
Number of evaluations allowed.
Default: No limit.

IMSL_BASE, int base (Input)
The value of IMSL_BASE used to compute the Faure sequence.

IMSL_SKIP, int skip (Input)
The value of IMSL_SKIP used to compute the Faure sequence.

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.
577

 Quadrature int_fcn_qmc
Description
Integration of functions over hypercubes by direct methods, such as imsl_f_fcn_hyper_rect, is practical
only for fairly low dimensional hypercubes. This is because the amount of work required increases exponential as
the dimension increases.

An alternative to direct methods is Monte Carlo, in which the integral is evaluated as the value of the function
averaged over a sequence of randomly chosen points. Under mild assumptions on the function, this method will

converge like 1/n1/2, where n is the number of points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the points at which the func-
tion is to be evaluated. Randomly distributed points tend to be non-uniformly distributed. The alternative to at
sequence of random points is a low-discrepancy sequence. A low-discrepancy sequence is one that is highly
uniform.

This function is based on the low-discrepancy Faure sequence as computed by imsl_f_faure_next_point
(see Chapter 10, “Statistics and Random Number Generation”).

On some platforms, imsl_f_int_fcn_qmc can evaluate the user-supplied function fcn in parallel. This is
done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A function is
thread-safe if there are no dependencies between calls. Such dependencies are usually the result of writing to
global or static variables.
578

 Quadrature int_fcn_qmc
Example
#include <imsl.h>
#include <stdio.h>
#include <math.h>
float fcn(int ndim, float x[]);
int main()
{
 int k, ndim = 10;
 float q, a[10], b[10];
 for (k = 0; k < ndim; k++) {
 a[k] = 0.0;
 b[k] = 1.0;
 }
 q = imsl_f_int_fcn_qmc (fcn, ndim, a, b,
 0);
 printf ("integral=%10.3f\n", q);
}
float fcn (int ndim, float x[])
{
 int i, j;
 float prod, sum = 0.0, sign = -1.0;
 for (i = 0; i < ndim; i++) {
 prod = 1.0;
 for (j = 0; j <= i; j++) {
 prod *= x[j];
 }
 sum += sign * prod;
 sign = -sign;
 }
 return sum;
}

Output
q = -0.333

Fatal Errors
IMSL_NOT_CONVERGENT The maximum number of function evaluations has

been reached, and convergence has not been attained

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
579

 Quadrature gauss_quad_rule
gauss_quad_rule
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions.

Synopsis
#include <imsl.h>
void imsl_f_gauss_quad_rule (int n, float weights[], float points[], …, 0)

The type double procedure is imsl_d_gauss_quad_rule.

Required Arguments
int n (Input)

Number of quadrature points.

float weights[] (Output)
Array of length n containing the quadrature weights.

float points[] (Output)
Array of length n containing quadrature points. The default action of this routine is to produce the
Gauss Legendre points and weights.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_gauss_quad_rule (int n, float weights[], float points[],

IMSL_CHEBYSHEV_FIRST,
IMSL_CHEBYSHEV_SECOND,
IMSL_HERMITE,
IMSL_COSH,
IMSL_JACOBI, float alpha, float beta,
IMSL_GEN_LAGUERRE, float alpha,
IMSL_FIXED_POINT, float a,
IMSL_TWO_FIXED_POINTS, float a, float b,
0)
580

 Quadrature gauss_quad_rule
Optional Arguments
IMSL_CHEBYSHEV_FIRST

Compute the Gauss points and weights using the weight function

on the interval (−1, 1).

IMSL_CHEBYSHEV_SECOND
Compute the Gauss points and weights using the weight function

on the interval (−1, 1).

IMSL_HERMITE
Compute the Gauss points and weights using the weight function exp (−x2) on the interval (−∞,∞).

IMSL_COSH
Compute the Gauss points and weights using the weight function 1 ∕ (cosh (x)) on the interval
(−∞,∞).

IMSL_JACOBI, float alpha, float beta (Input)
Compute the Gauss points and weights using the weight function (1 − x)a (1 + x)b on the interval
(−1, 1).

IMSL_GEN_LAGUERRE, float alpha (Input)
Compute the Gauss points and weights using the weight function exp (−x)xa on the interval (0,∞).

IMSL_FIXED_POINT, float a (Input)
Compute the Gauss-Radau points and weights using the specified weight function and the fixed point
a. This formula will integrate polynomials of degree less than 2n − 1 exactly.

IMSL_TWO_FIXED_POINTS, float a, float b (Input)
Compute the Gauss-Lobatto points and weights using the specified weight function and the fixed
points a and b. This formula will integrate polynomials of degree less than 2n − 2 exactly.

1 / 1 − x2

1 − x2
581

 Quadrature gauss_quad_rule
Description
The function imsl_f_gauss_quad_rule produces the points and weights for the Gauss, Gauss-Radau, or
Gauss-Lobatto quadrature formulas for some of the most popular weights. The default weight is the weight func-
tion identically equal to 1 on the interval (−1, 1). In fact, it is slightly more general than this suggests, because the
extra one or two points that may be specified do not have to lie at the endpoints of the interval. This function is a
modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969).

In the default case, the function returns points in x = points and weights in w = weights so that

for all functions f that are polynomials of degree less than 2n.

If the keyword IMSL_FIXED_POINT is specified, then one of the above xi is equal to a. Similarly, if the keyword

IMSL_TWO_FIXED_POINTS is specified, then two of the components of x are equal to a and b. In general, the
accuracy of the above quadrature formula degrades when n increases. The quadrature rule will integrate all func-
tions f that are polynomials of degree less than 2n − F, where F is the number of fixed points.

Examples

Example 1

The three-point Gauss Legendre quadrature points and weights are computed and used to approximate the
integrals

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In gen-
eral, the Gauss rules with k points integrate polynomials with degree less than 2k exactly.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define QUADPTS 3
#define POWERS 7
int main()
{
 int i, j;
 float weights[QUADPTS], points[QUADPTS], s[POWERS];

∫a
b
f x w x dx =∑

i=1

N

f xi wi

∫−1
1

xidx i = 0, … ,6
582

 Quadrature gauss_quad_rule
 /* Produce the Gauss Legendre */
 /* quadrature points */
 imsl_f_gauss_quad_rule (QUADPTS, weights, points,
 0);
 /* integrate the functions */
 /* 1, x, ..., pow(x,POWERS-1) */
 for(i = 0; i < POWERS; i++) {
 s[i] = 0.0;
 for(j = 0; j < QUADPTS; j++) {
 s[i] += weights[j]*imsl_fi_power(points[j], i);
 }
 }
 printf("The integral from -1 to 1 of pow(x, i) is\n");
 printf("Function Quadrature Exact\n\n");
 for(i = 0; i < POWERS; i++){
 float z;
 z = (1-i%2)*2./(i+1.);
 printf("pow(x, %d) %10.3f %10.3f\n", i, s[i], z);
 }
}

Output

The integral from -1 to 1 of pow(x, i) is
Function Quadrature Exact
pow(x, 0) 2.000 2.000
pow(x, 1) 0.000 0.000
pow(x, 2) 0.667 0.667
pow(x, 3) 0.000 0.000
pow(x, 4) 0.400 0.400
pow(x, 5) 0.000 0.000
pow(x, 6) 0.240 0.286

Example 2

The three-point Gauss Laguerre quadrature points and weights are computed and used to approximate the
integrals

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In gen-
eral, the Gauss rules with k points integrate polynomials with degree less than 2k exactly.

#include <imsl.h>
#include <stdio.h>
#define QUADPTS 3

∫0
∞

xixe−xdx = i! i = 0, … ,6
583

 Quadrature gauss_quad_rule
#define POWERS 7
int main()
{
 int i, j;
 float weights[QUADPTS], points[QUADPTS], s[POWERS], z;
 /* Produce the Gauss Legendre */
 /* quadrature points */
 imsl_f_gauss_quad_rule (QUADPTS, weights, points,
 IMSL_GEN_LAGUERRE, 1.0,
 0);
 /* Integrate the functions */
 /* 1, x, ..., pow(x,POWERS-1) */
 for(i = 0; i < POWERS; i++) {
 s[i] = 0.0;
 for(j = 0; j < QUADPTS; j++){
 s[i] += weights[j]*imsl_fi_power(points[j], i);
 }
 }
 printf("The integral from 0 to infinity of pow(x, i)*x*exp(x) is\n");
 printf("Function Quadrature Exact\n\n");
 for(z = 1.0, i = 0; i < POWERS; i++){
 z *= (i+1);
 printf("pow(x, %d) %10.3f %10.3f \n", i, s[i], z);
 }
}

Output

The integral from 0 to infinity of pow(x, i)*x*exp(x) is
Function Quadrature Exact
pow(x, 0) 1.000 1.000
pow(x, 1) 2.000 2.000
pow(x, 2) 6.000 6.000
pow(x, 3) 24.000 24.000
pow(x, 4) 120.000 120.000
pow(x, 5) 720.000 720.000
pow(x, 6) 4896.000 5040.000
584

 Quadrature fcn_derivative
fcn_derivative
Computes the first, second, or third derivative of a user-supplied function.

Synopsis
#include <imsl.h>
float imsl_f_fcn_derivative (float fcn(), float x, …, 0)

The type double procedure is imsl_d_fcn_derivative.

Required Arguments
float fcn(float x) (Input)

User-supplied function whose derivative at x will be computed.

float x (Input)
Point at which the derivative will be evaluated.

Return Value
An estimate of the first, second or third derivative of fcn at x. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_fcn_derivative (float fcn(), float x,

IMSL_ORDER, int order,
IMSL_INITIAL_STEPSIZE, float stepize,
IMSL_RELATIVE_ERROR, float tolerance,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)
585

 Quadrature fcn_derivative
Optional Arguments
IMSL_ORDER, int order (Input)

The order of the desired derivative (1, 2 or 3).
Default: order = 1.

IMSL_INITIAL_STEPSIZE, float stepsize (Input)
Beginning value used to compute the size of the interval for approximating the derivative. Stepsize
must be chosen small enough that fcn is defined and reasonably smooth in the interval
(x − 4.0 × stepsize, x + 4.0 × stepsize), yet large enough to avoid roundoff problems.
Default: stepsize = 0.01

IMSL_RELATIVE_ERROR, float tolerance (Input)
The relative error desired in the derivative estimate. Convergence is assumed when
(2/3) |d2 - d1| < tolerance, for two successive derivative estimates, d1 and d2.
Default: tolerance = where ɛ is the machine precision.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function whose derivative at x will be computed, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_fcn_derivative produces an estimate to the first, second, or third derivative of a
function. The estimate originates from first computing a spline interpolant to the input function using value
within the interval (x − 4.0 × stepsize, x + 4.0 × stepsize), then differentiating the spline at x.

Examples

Example 1

This example obtains the approximate first derivative of the function f(x) = -2sin(3x/2) at the point x = 2.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 float fcn(float);
 float x;
 float deriv;

ɛ4
586

 Quadrature fcn_derivative
 x = 2.0;
 deriv = imsl_f_fcn_derivative(fcn, x, 0);
 printf ("f’(x) = %7.4f\n", deriv);
}
float fcn(float x)
{
 return -2.0*sin(1.5*x);
}

Output

f’(x) = 2.9701

Example 2

This example obtains the approximate first, second, and third derivative of the function f(x) = -2sin(3x/2) at the
point x = 2.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 double fcn(double);
 double x, tolerance, deriv;
 x = 2.0;
 deriv = imsl_d_fcn_derivative(fcn, x, 0);
 printf ("f'(x) = %7.3f, error = %5.2e\n", deriv,
 fabs(deriv+3.0*cos(1.5*x)));
 deriv = imsl_d_fcn_derivative(fcn, x, IMSL_ORDER, 2, 0);
 printf ("f''(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-4.5*sin(1.5*x)));
 deriv = imsl_d_fcn_derivative(fcn, x, IMSL_ORDER, 3, 0);
 printf ("f'''(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-6.75*cos(1.5*x)));
}

double fcn(double x)
{
 return -2.0*sin(1.5*x);
}

Output

f’(x) = 2.970, error = 1.11e-07
f’’(x) = 0.6350, error = 8.52e-09
f’’’(x) = -6.6824, error = 1.12e-08
587

 Quadrature fcn_derivative
Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
588

 Differential Equations Functions
Differential Equations

Functions
First Order Ordinary Differential Equations

Solution of the Initial-Value Problem for ODEs
Runge-Kutta method . ode_runge_kutta 593

Solution of the Initial-Value Problem for ODEs
Finite-difference method . bvp_finite_difference 600

Solution of Differential–Algebraic Systems
Solves a first order differential-algebraic system

of equations . differential_algebraic_eqs 612

First-and-Second-Order Ordinary Differential Equations
Solution of the Initial-Value Problem for ODEs

Solves an initial-value problem for a system of ODEs using a
variable order Adams method. .ode_adams_krogh 630

Partial Differential Equations
Solution of Systems of PDEs in One Dimension

Method of lines with a Variable Gridding
Introduction to pde_1d_mg . 640
Solves a system of one-dimensional time-dependent partial

differential equations using a moving-grid interface pde_1d_mg 643
Method of lines with a Hermite

cubic basis . modified_method_of_lines 678
Solves a generalized Feynman-Kac equation on a

finite interval using Hermite quintic splines . feynman_kac 695
Computes the value of a Hermite quintic spline

or the value of one of its derivatives feynman_kac_evaluate 730
Solution of a PDE in Two Dimensions

Fast Poisson solver . fast_poisson_2d 734
589

 Differential Equations Usage Notes
Usage Notes

Ordinary Differential Equations
An ordinary differential equation is an equation involving one or more dependent variables yi, an independent vari-

able t, and derivatives of the yi with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent variables yi at a known value t = t0

are given. Values of yi(t) for t > t0 or t < t0 are required.

The functions imsl_f_ode_runge_kutta and imsl_f_ode_adams_krogh solve the IVP for ODEs of the form

with yi(t = t0) specified. Here fi is a user-supplied function that must be evaluated at any set of values (t,

y1, …, yN), i = 1, …, N.

This problem statement is abbreviated by writing it as a system of first-order ODEs,

y(t) = [y1(t), …, yN(t)]T, f(t, y) = [f1(t, y), …, fN(t, y)]T, so that the problem becomes y′ = f(t, y) with initial values y(t0).

The system is said to be stiff if some of the eigenvalues of the Jacobian matrix are
large and negative. An alternate definition is based on the disparate integration times using a non-stiff solver
compared to an implicit integration solver. Frequently differential equations modeling the behavior of physical
systems are stiff, such as chemical reactions proceeding to equilibrium where subspecies effectively complete
their reactions in different epochs. An alternate model concerns discharging capacitors such that different parts
of the system have widely varying decay rates (or time constants).

Users typically identify stiff systems by the fact that numerical differential equation solvers such as
imsl_f_ode_runge_kutta are inefficient, or else completely fail. Special methods are often required. The
most common inefficiency is that a large number of evaluations of f(t, y) (and hence an excessive amount of com-
puter time) are required to satisfy the accuracy and stability requirements of the software. In such cases, use the
IMSL function imsl_f_ode_adams_krogh. For more discussion about stiff systems, see Gear (1971, Chapter
11) or Shampine and Gear (1979).

The function imsl_f_modified_method_of_lines solves the boundary value problem (BVP) for first order

systems of the form subject to the boundary conditions . Both functions
 are user-supplied. The functionassumes that the user has embedded the problem into a one-parameter

dyi
dt = y′i = f i t, y1, ...yN i = 1, ...N

dy
dt = y ′ = f t, y ∂ y′i / ∂ yj

y ′ = f t, y, p h yleft, yright = 0

f , h
590

 Differential Equations Usage Notes
family of problems. In this formulation, is an optional continuation parameter. It can be useful in solving nonlin-
ear problems. When used, corresponds to an easy-to-solve problem and corresponds to the actual
problem.

The functionimsl_f_ode_adams_krogh solves systems of ordinary differential equations of order one, order
two, or mixed order one and two.

Differential-algebraic Equations
Frequently, it is not possible or not convenient to express the model of a dynamical system as a set of ODEs.
Rather, an implicit equation is available in the form

The gi are user-supplied functions. The system is abbreviated as

With initial value y(t0). Any system of ODEs can be trivially written as a differential-algebraic system by defining

The function imsl_f_differential_algebraic_eqs solves differential-algebraic systems of index 1 or index
0. For a definition of index of a differential-algebraic system, see (Brenan et al. 1989). Also, see Gear and Petzold
(1984) for an outline of the computing methods used.

Partial Differential Equations
There is a section Introduction to pde_1d_mg in this chapter for imsl_pde_1d_mg with greater details. This soft-
ware is a variable grid-variable order integrator. It solves a problem

with boundary conditions

The function imsl_f_modified_method_of_lines solves the IVP problem for systems of the form

p
p = 0 p = 1

gi t,y, … ,yN,y′1, … ,y′N = 0 i = 1, … ,N

g t, y, y ′ = g1 t, y, y ′ , … , gN t, y, y ′ T
= 0

g t, y, y ′ = f t, y − y ′

∑
k=1

NPDE
C j, k x, t, u, ux

∂uk
∂ t = x

−m ∂
∂ x xmR j x, t, u, ux − Qj x, t, u, ux ,

j = 1, … , NPDE, xL < x < xR, t > t0, m ∈ 0, 1, 2

β j x,t R j x,t,u,ux = γ j x,t,u,ux ,

atx = xL and x = xR, j = 1,...NPDE
591

 Differential Equations Usage Notes
subject to the boundary conditions

and subject to the initial conditions ,for i = 1, …, N. Here, fi, gi, are user-sup-

plied, j = 1, 2.

The function imsl_f_feynman_kac solves a single equation on a finite interval . This equation
often arises in applications from financial engineering and that is the primary focus of the document examples.
The equation, initial conditions and Feynman-Kac boundary values are given by

The solution is approximated by a piece-wise series of Hermite quintic polynomials on a grid of the interval

 that yields a twice differentiable solution. To assist in the evaluation of the approximate solution and
its derivatives there is the function imsl_f_feynman_kac_evaluate.

The function imsl_f_fast_poisson_2d solves Laplace’s, Poisson’s, or Helmholtz’s equation in two dimensions.
This function uses a fast Poisson method to solve a PDE of the form

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant c and the function
f are user specified.

∂ui
∂ t = f i x, t, u1, … , uN,

∂u1
∂ x , … ,

∂uN
∂ x ,

∂2u1
∂ x2

, … ,
∂2uN
∂ x2

α1
i
ui a + β1

i ∂ui
∂ x a = γ1 t

α2
i
ui b + β2

i ∂ui
∂ x b = γ2 t

ui x, t = t0 = gi x α j
i
, and β j

i

xmin, xmax

f t + μ x, t f x +
σ2 x, t

2 f xx − κ(x, t) f = ϕ(f , x, t),

f x, T = p x ,{ f t =
∂ f
∂ t , etc.}

a x, t f + b x, t f x + c x, t f xx = d x, t , x = xminxmax

xmin, xmax

∂2u
∂ x2

+ ∂
2u
∂ y2

+ cu = f x, y
592

 Differential Equations ode_runge_kutta
ode_runge_kutta

more...

Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

Synopsis
#include <imsl.h>
float imsl_f_ode_runge_kutta_mgr (int task, void **state, …, 0)

void imsl_f_ode_runge_kutta (int neq, float *t, float tend, float y[], void *state, void fcn())

The type double functions are imsl_d_ode_runge_kutta_mgr and imsl_d_ode_runge_kutta.

Required Arguments for imsl_ f_ode_runge_kutta_mgr
int task (Input)

This function must be called with task set to IMSL_ODE_INITIALIZE to set up for solving an
ODE system and with task equal to IMSL_ODE_RESET to clean up after it has been solved. These
values for task are defined in the include file, imsl.h.

void **state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by state. It cannot be directly
manipulated.

Required Arguments for imsl_f_ode_runge_kutta
int neq (Input)

Number of differential equations.

float *t (Input/Output)
Independent variable. On input, t is the initial independent variable value. On output, t is replaced
by tend, unless error conditions arise.
593

 Differential Equations ode_runge_kutta
float tend (Input)
Value of t at which the solution is desired. The value tend may be less than the initial value of t.

float y[] (Input/Output)
Array with neq components containing a vector of dependent variables. On input, y contains the ini-
tial values. On output, y contains the approximate solution.

void *state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by state. It must be initialized
by a call to imsl_f_ode_runge_kutta_mgr. It cannot be directly manipulated.

void fcn (int neq, float t, float *y, float *yprime)
User-supplied function to evaluate the right-hand side where float *yprime (Output)
Array with neq components containing the vector y′. This function computes

and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_ode_runge_kutta_mgr (int task, void **state,

IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_HMIN, float hmin,
IMSL_HMAX, float hmax,
IMSL_MAX_NUMBER_STEPS, int max_steps,
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals,
IMSL_SCALE, float scale,
IMSL_NORM, int norm,
IMSL_FLOOR, float floor,
IMSL_NSTEP, int *nstep,
IMSL_NFCN, int *nfcn,
IMSL_HTRIAL, float *htrial,
IMSL_FCN_W_DATA, void fcn(), void *data,
0)

yprime =
dy
dt = y

′ = f t,y
594

 Differential Equations ode_runge_kutta
Optional Arguments
IMSL_TOL, float tol (Input)

Tolerance for error control. An attempt is made to control the norm of the local error such that the
global error is proportional to tol.
Default: tol = 100.0*imsl_f_machine(4)

IMSL_HINIT, float hinit (Input)
Initial value for the step size h. Steps are applied in the direction of integration.
Default: hinit = 0.001 * |tend − t|

IMSL_HMIN, float hmin (Input)
Minimum value for the step size h.
Default: hmin = 0.0.

IMSL_HMAX, float hmax (Input)
Maximum value for the step size h.
Default: hmax = 2.0.

IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
Maximum number of steps allowed.
Default: max_steps = 500.

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
Maximum number of function evaluations allowed.
Default: max_fcn_evals = No enforced limit.

IMSL_SCALE, float scale (Input)
A measure of the scale of the problem, such as an approximation to the Jacobian along the trajectory.
Default: scale = 1.

IMSL_NORM, int norm (Input)
Switch determining the error norm. In the following, ei is the absolute value of the error estimate for
yi.

Default: norm = 0.

norm Error norm used

0 minimum of the absolute error and the relative error,
equals the maximum of ei / max (|yi|, 1) for i = 1, …, neq.

1 absolute error, equals maxiei.

2 maxi(ei ∕ wi) where wi = max (|yi|, floor). The value of
floor is reset using IMSL_FLOOR.
595

 Differential Equations ode_runge_kutta
IMSL_FLOOR, float floor (Input)
This is used with IMSL_NORM. It provides a positive lower bound for the error norm option with
value 2.
Default: floor = 1.0.

IMSL_NSTEP, int *nstep (Output)
Returns the number of steps taken.

IMSL_NFCN, int *nfcn (Output)
Returns the number of function evaluations used.

IMSL_HTRIAL, float *htrial (Output)
Returns the current trial step size.

IMSL_FCN_W_DATA, void fcn(int neq, float t, float *y, float *yprime, void *data), void *data,
(Input)
User-supplied function to evaluate the right-hand side, which also accepts a pointer to data that is
supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See
Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_ode_runge_kutta finds an approximation to the solution of a system of first-order
differential equations of the form

with given initial conditions for y at the starting value for t. The function attempts to keep the global error propor-
tional to a user-specified tolerance. The proportionality depends on the differential equation and the range of
integration.

The function imsl_f_ode_runge_kutta is efficient for nonstiff systems where the evaluations of f(t, y) are
not expensive. The code is based on an algorithm designed by Hull et al. (1976, 1978). It uses Runge-Kutta formu-
las of order five and six developed by J.H. Verner.

Examples

Example 1

This example solves

yprime =
dy
dt = y

′ = f t,y
596

 Differential Equations ode_runge_kutta
over the interval [0, 1] with the initial condition y(0) = 1. The solution is y(t) = e-t.

The ODE solver is initialized by a call to imsl_f_ode_runge_kutta_mgr with IMSL_ODE_INITIALIZE.
This is the simplest use of the solver, so none of the default values are changed. The function
imsl_f_ode_runge_kutta is then called to integrate from t = 0 to t = 1.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
void fcn (int neq, float t, float y[], float yprime[]);
int main()
{
 int neq = 1; /* Number of ode’s */
 float t = 0.0; /* Initial time */
 float tend = 1.0; /* Final time */
 float y[1] = {1.0}; /* Initial condition */
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state, 0);
 /* Integrate from t=0 to tend=1 */
 imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
 /* Print the solution and error */
 printf("y[%f] = %f\n", t, y[0]);
 printf("Error is: %e\n", exp((double)(-tend)) - y[0]);
 /* Clean up */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_RESET, &state, 0);
}
void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = -y[0];
}

Output

y[1.000000] = 0.367879
Error is: -9.149755e-09

Example 2

Consider a predator-prey problem with rabbits and foxes. Let r be the density of rabbits, and let f be the density
of foxes. In the absence of any predator-prey interaction, the rabbits would increase at a rate proportional to
their number, and the foxes would die of starvation at a rate proportional to their number. Mathematically, the
model without species interaction is approximated by the equation

r′ = 2r

ƒ′= −ƒ

dy
dt = − y
597

 Differential Equations ode_runge_kutta
With species interaction, the rate at which the rabbits are consumed by the foxes is assumed to equal the value
2rf. The rate at which the foxes increase, because they are consuming the rabbits, is equal to rf. Thus, the model
differential equations to be solved are

r′ = 2r − 2rƒ
ƒ′= -ƒ + rƒ

For illustration, the initial conditions are taken to be r(0) = 1 and f(0) = 3. The interval of integration is 0 ≤ t ≤ 10.
In the program, y[0] = r and y[1] = f. The ODE solver is initialized by a call to
imsl_f_ode_runge_kutta_mgr. The error tolerance is set to 0.0005. Absolute error control is selected by
setting IMSL_NORM to the value one. We also request that nstep be set to the current number of steps in the
integration. The function imsl_f_ode_runge_kutta is then called in a loop to integrate from t = 0 to t = 10
in steps of δt = 1. At each step, the solution is printed. Note that nstep is updated even though it is not an argu-
ment to this function. Its address has been stored within imsl_f_ode_runge_kutta_mgr into the area
pointed to by state. The last call to imsl_f_ode_runge_kutta_mgr with IMSL_ODE_RESET releases
workspace.

#include <imsl.h>
void fcn(int neq, float t, float y[], float yprime[]);
int main()
{
 int neq = 2;
 float t = 0.0; /* Initial time */
 float tend; /* Final time */
 float y[2] = { 1.0, 3.0 }; /* Initial conditions */
 int k;
 int nstep;
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state,
 IMSL_TOL, 0.0005,
 IMSL_NSTEP, &nstep,
 IMSL_NORM, 1,
 0);
 printf("\n%6s%8s%17s%14s%14s",
 "Start", "End", "Density of", "Density of", "Number of");
 printf("\n%5s%10s%15s%12s%15s\n\n",
 "Time", "Time", "Rabbits", "Foxes", "Steps");
 for (k = 0; k < 10; k++) {
 tend = k + 1;
 imsl_f_ode_runge_kutta(neq, &t, tend, y, state, fcn);
 printf("%3d %12.3f %12.3f %12.3f %12d\n",
 k, t, y[0], y[1], nstep);
 }
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_RESET, &state, 0);
}
void fcn(int neq, float t, float y[], float yprime[])
{
 /* Density change rate for Rabbits: */
 yprime[0] = 2 * y[0] * (1 - y[1]);
598

 Differential Equations ode_runge_kutta
 /* Density change rate for Foxes: */
 yprime[1] = -y[1] * (1 - y[0]);
}

Output

Start End Density of Density of Number of
Time Time Rabbits Foxes Steps
 0 1.000 0.078 1.465 4
 1 2.000 0.085 0.578 6
 2 3.000 0.292 0.250 7
 3 4.000 1.449 0.187 8
 4 5.000 4.046 1.444 11
 5 6.000 0.176 2.256 15
 6 7.000 0.066 0.908 18
 7 8.000 0.148 0.367 20
 8 9.000 0.655 0.188 21
 9 10.000 3.157 0.352 23

Fatal Errors
IMSL_ODE_TOO_MANY_EVALS Completion of the next step would make the num-

ber of function evaluations #, but only # evaluations
are allowed.

IMSL_ODE_TOO_MANY_STEPS Maximum number of steps allowed, #, used. The
problem may be stiff.

IMSL_ODE_FAIL Unable to satisfy the error requirement. “tol” = #
may be too small.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
599

 Differential Equations bvp_finite_difference
bvp_finite_difference
Solves a (parameterized) system of differential equations with boundary conditions at two points, using a variable
order, variable step size finite difference method with deferred corrections.

Synopsis
#include <imsl.h>
void imsl_f_bvp_finite_difference (void fcneq(), void fcnjac(), void fcnbc(), int n,

int nleft, int ncupbc, float tleft, float tright, int linear, float *nfinal, float *xfinal,
float *yfinal, …, 0)

The type double function is imsl_d_bvp_finite_difference.

Required Arguments
void fcneq (int n, float t, float y[], float p, float dydt[]) (Input)

User supplied function to evaluate derivatives.

int n (Input)
Number of differential equations.

float t (Input)
Independent variable, t.

float y[] (Input)
Array of size n containing the dependent variable values, y(t).

float p (Input)
Continuation parameter, p. See optional argument IMSL_PROBLEM_EMBEDDED.

float dydt[] (Output)
Array of size n containing the derivatives y′(t).

void fcnjac(int n, float t, float y[], float p, float dypdy[]) (Input)
User supplied function to evaluate the Jacobian.

int n (Input)
Number of differential equations.

float t (Input)
Independent variable, t.

float y[] (Input)
Array of size n containing the dependent variable values, y(t).
600

 Differential Equations bvp_finite_difference
float p (Input)
Continuation parameter, p. See optional argument IMSL_PROBLEM_EMBEDDED.

float dypdy[] (Output)
n by n array containing the partial derivatives ai,j = ∂ fi ⁄ ∂ yj evaluated at (t, y). The values ai,j
are returned in dypdy[(i-1)*n+(j-1)].

void fcnbc(int n, float yleft[], float yright[], float p, float h[]) (Input)
User supplied function to evaluate the boundary conditions.

int n (Input)
Number of differential equations.

float yleft[] (Input)
Array of size n containing the values of the dependent variable at the left endpoint.

float yright[] (Input)
Array of size n containing the values of the dependent variable at the right endpoint.

float p (Input)
Continuation parameter, p See optional argument IMSL_PROBLEM_EMBEDDED.

float h[] (Output)
Array of size n containing the boundary condition residuals. The boundary conditions are
defined by hi= 0, for i = 0, …, n-1. The left endpoint conditions must be defined first, then, the
conditions involving both endpoints, and finally the right endpoint conditions.

int n (Input)
Number of differential equations.

int nleft (Input)
Number of initial conditions. The value nleft must be greater than or equal to zero and less than n.

int ncupbc (Input)
Number of coupled boundary conditions. The value nleft + ncupbc must be greater than zero
and less than or equal to n.

float tleft (Input)
The left endpoint.

float tright (Input)
The right endpoint.

int linear (Input)
Integer flag to indicate if the differential equations and the boundary conditions are linear. Set
linear to one if the differential equations and the boundary conditions are linear, otherwise set
linear to zero.

int *nfinal (Output)
Number of final grid points, including the endpoints.
601

 Differential Equations bvp_finite_difference
float *tfinal (Output)
Array of size mxgrid containing the final grid points. Only the first nfinal points are significant.
See optional argument IMSL_MAX_SUBINTER for definition of mxgrid.

float *yfinal (Output)
Array of size mxgrid by n containing the values of Y at the points in tfinal. See optional argu-
ment IMSL_MAX_SUBINTER for definition of mxgrid.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_bvp_finite_difference (void fcneq(), void fcnjac(), void fcnbc(),

int n, int nleft, int ncupbc, float tleft, float tright, int linear, float *nfinal,
float *xfinal[], float *yfinal,

IMSL_TOL, float tol,
IMSL_HINIT, int ninit, float tinit[], float yinit[][],
IMSL_PRINT, int iprint,
IMSL_MAX_SUBINTER, int mxgrid,
IMSL_PROBLEM_EMBEDDED, float pistep, void fcnpeq(), void fcnpbc(),
IMSL_ERR_EST, float **errest,
IMSL_ERR_EST_USER, float errest[],
IMSL_FCN_W_DATA, void fcneq(), void *data,
IMSL_JACOBIAN_W_DATA, void fcnjac (),void *data,
IMSL_FCN_BC_W_DATA, void fcnbc(), void *data,
IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep,(), void *data, void fcnpeq(),

void fcnpbc(), void *data,
0)

Optional Arguments
IMSL_TOL, float tol (Input)

Relative error control parameter. The computations stop when

Default: tol = .001.

∣Ei, j∣ / max yi, j,1.0 < tol for all i = 0,n = 1, and j = 0,ngrid − 1

Here Ei, j is the estimated error on yi, j
602

 Differential Equations bvp_finite_difference
IMSL_HINIT, int ninit, float tinit[], float yinit[][], (Input)
Initial gridpoints. Number of initial grid points, including the endpoints, is given by ninit. tinit is
an array of size ninit containing the initial grid points. yinit is an array size ninit by n contain-
ing an initial guess for the values of Y at the points in tinit.
Default: ninit = 10, tinit[*] equally spaced in the interval [tleft, tright], and
yinit[*][*] = 0.

IMSL_PRINT, int iprint (Input)
Parameter indicating the desired output level.

IMSL_MAX_SUBINTER, int mxgrid (Input)
Maximum number of grid points allowed.
Default: mxgrid = 100.

IMSL_PROBLEM_EMBEDDED, float pistep, void fcnpeq(), void fcnpbc()
If this optional argument is supplied, then the function imsl_f_bvp_finite_difference
assumes that the user has embedded the problem into a one-parameter family of problems:

such that for p = 0 the problem is simple. For p = 1, the original problem is recovered. The function
imsl_f_bvp_finite_difference automatically attempts to increment from p = 0 to p = 1.
The value pistep is the beginning increment used in this continuation. The increment will usually
be changed by function imsl_f_bvp_finite_difference, but an arbitrary minimum of 0.01
is imposed.

The argument p is the initial increment size for p. The functions fcnpeq and fcnpbc are user-sup-
plied functions, and are defined:

void fcnpeq(int n, float t, float y[], float p, float dypdp[]) (Input)
User supplied function to evaluate the derivative of y′ with respect to the parameter p.

int n (Input)
Number of differential equations.

float t (Input)
Independent variable, t.

iprint Action

0 No output printed.

1 Intermediate output is printed.
Default: iprint = 0.

y ′ = y ′ t, y, p

h yleft, yright, p = 0
603

 Differential Equations bvp_finite_difference
float y[] (Input)
Array of size n containing the dependent variable values.

float p (Input)
Continuation parameter, p.

float dypdp[] (Output)
Array of size n containing the derivative y′ with respect to the parameter p at (t, y).

void fcnpbc(int n, float yleft[], float yright[], float p, float h[])(Input)
User supplied function to evaluate the derivative of the boundary conditions with respect to
the parameter p.

int n (Input)
Number of differential equations.

float yleft[] (Input)
Array of size n containing the values of the dependent variable at the left endpoint.

float yright[] (Input)
Array of size n containing the values of the dependent variable at the right endpoint.

float p (Input)
Continuation parameter, p.

float h[] (Output)
Array of size n containing the derivative of fi with respect to p.

IMSL_ERR_EST, float **errest (Output)
Address of a pointer to an array of size n containing estimated error in y.

IMSL_ERR_EST_USER, float errest[] (Output)
User allocated array of size n containing estimated error in y.

IMSL_FCN_W_DATA, void fcneq (int n, float t, float y[], float p, float dydt[], void *data)
,void *data, (Input)
User-supplied function to evaluate derivatives, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data
to User-Supplied Functions in the introduction to this manual for more details.

IMSL_JACOBIAN_W_DATA, void fcnjac(int n, float t, float y[], float p, float dypdy[], void *data),
void *data, (Input)
User-supplied function to evaluate the Jacobian, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data
to User-Supplied Functions in the introduction to this manual for more details.

IMSL_FCN_BC_W_DATA, void fcnbc(int n, float yleft[], float yright[], float p, float h[],
void *data), void *data, (Input)
User-supplied function to evaluate the boundary conditions , which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.
604

 Differential Equations bvp_finite_difference
IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep, void fcnpeq(void *data), void fcnpbc(),
void *data, (Input)
Same as optional argument IMSL_PROBLEM_EMBEDDED, except user-supplied functions also
accept a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this man-
ual for more details.

Description
The function imsl_f_bvp_finite_difference is based on the subprogram PASVA3 by M. Lentini and V.
Pereyra (see Pereyra 1978). The basic discretization is the trapezoidal rule over a nonuniform mesh. This mesh is
chosen adaptively, to make the local error approximately the same size everywhere. Higher-order discretizations
are obtained by deferred corrections. Global error estimates are produced to control the computation. The
resulting nonlinear algebraic system is solved by Newton’s method with step control. The linearized system of
equations is solved by a special form of Gauss elimination that preserves the sparseness.

Examples

Example 1

This example solves the third-order linear equation

subject to the boundary conditions y(0) = y(2π) and y′(0) = y′(2π) = 1. (Its solution is y = sin t.) To use
imsl_f_bvp_finite_difference, the problem is reduced to a system of first-order equations by defining
y1 = y, y2 = y′ and y3 = y″. The resulting system is

Note that there is one boundary condition at the left endpoint t = 0 and one boundary condition coupling the left
and right endpoints. The final boundary condition is at the right endpoint. The total number of boundary condi-
tions must be the same as the number of equations (in this case 3).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcneqn(int n, float t, float y[], float p, float dydt[]);

y ′ ′ ′ − 2y ′ ′ + y ′ − y = sin t

y′1 = y2 y2 0 − 1 = 0

y′2 = y3 y1 0 − y1 2π = 0

y′3 = 2y3 − y2 + y1 + sin t y2 2π − 1 = 0
605

 Differential Equations bvp_finite_difference
void fcnjac(int n, float t, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);
#define MXGRID 100
#define N 3
int main()
{
 int n = N;
 int nleft = 1;
 int ncupbc = 1;
 float tleft = 0;
 float tright;
 int linear = 1;
 int nfinal;
 float tfinal[MXGRID];
 float yfinal[MXGRID][N];
 float errest[N];
 int i;
 tright = 2.0*imsl_f_constant("pi", 0);
 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc,
 n, nleft, ncupbc, tleft, tright,
 linear, &nfinal, tfinal,
 (float*)(&yfinal[0][0]),
 IMSL_ERR_EST_USER, errest,
 0);
 printf(" tfinal y0 y1 y2 \n");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e%15.6e\n", i, tfinal[i],
 yfinal[i][0], yfinal[i][1], yfinal[i][2]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e%15.6e\n",errest[0],errest[1],errest[2]);
}
void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 dydt[0] = y[1];
 dydt[1] = y[2];
 dydt[2] = 2*y[2] - y[1] + y[0] + sin(t);
}
void fcnjac(int n, float t, float y[], float p, float dfdy[])
{
 dfdy[0*n+0] = 0; /* df1/dy1 */
 dfdy[1*n+0] = 0; /* df2/dy1 */
 dfdy[2*n+0] = 1; /* df3/dy1 */
 dfdy[0*n+1] = 1; /* df1/dy2 */
 dfdy[1*n+1] = 0; /* df2/dy2 */
 dfdy[2*n+1] = -1; /* df3/dy2 */
 dfdy[0*n+2] = 0; /* df1/dy3 */
 dfdy[1*n+2] = 1; /* df2/dy3 */
 dfdy[2*n+2] = 2; /* df3/dy3 */
}
void fcnbc(int n, float yleft[], float yright[], float p, float h[])
{

606

 Differential Equations bvp_finite_difference
 h[0] = yleft[1] - 1;
 h[1] = yleft[0] - yright[0];
 h[2] = yright[1] - 1;
}

Output

 tfinal y0 y1 y2
 0 0.000000e+00 -1.123446e-04 1.000000e+00 6.245916e-05
 1 3.490659e-01 3.419106e-01 9.397087e-01 -3.419581e-01
 2 6.981317e-01 6.426907e-01 7.660918e-01 -6.427230e-01
 3 1.396263e+00 9.847531e-01 1.737333e-01 -9.847453e-01
 4 2.094395e+00 8.660527e-01 -4.998748e-01 -8.660057e-01
 5 2.792527e+00 3.421828e-01 -9.395475e-01 -3.420647e-01
 6 3.490659e+00 -3.417236e-01 -9.396111e-01 3.418948e-01
 7 4.188790e+00 -8.656881e-01 -5.000588e-01 8.658734e-01
 8 4.886922e+00 -9.845795e-01 1.734572e-01 9.847519e-01
 9 5.585054e+00 -6.427722e-01 7.658259e-01 6.429526e-01
 10 5.934120e+00 -3.420819e-01 9.395434e-01 3.423984e-01
 11 6.283185e+00 -1.123446e-04 1.000000e+00 6.739637e-04
Error Estimates 2.840487e-04 1.792839e-04 5.587848e-04

Example 2

In this example, the following nonlinear problem is solved:

y″ - y3 + (1 + sin2t) sin t = 0

with y(0) = y(π) = 0. Its solution is y = sin t. As in Example 1, this equation is reduced to a system of first-order dif-
ferential equations by defining y1 = y and y2 = y′. The resulting system is

In this problem, there is one boundary condition at the left endpoint and one at the right endpoint; there are no
coupled boundary conditions.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcneqn(int n, float x, float y[], float p, float dydx[]);
void fcnjac(int n, float x, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);
#define MXGRID 100
#define NINIT 12
#define N 2
int main()
{
 int n = N, nleft = 1, ncupbc = 0, linear = 0;
 int i, nfinal, ninit = NINIT;
 float tleft = 0, tright;

y′1 = y2y1 0 = 0

y′2 = y1
3 − 1 + sin2t sin ty1 π = 0
607

 Differential Equations bvp_finite_difference
 float tinit[NINIT], yinit[NINIT][N];
 float tfinal[MXGRID], yfinal[MXGRID][N];
 float *errest, step;
 tright = imsl_f_constant("pi", 0);
 step = (tright-tleft) / (ninit-1);
 for(i=0; i<ninit; i++) {
 tinit[i] = tleft + i*step;
 yinit[i][0] = 0.4 * (tinit[i]-tleft) * (tright-tinit[i]);
 yinit[i][1] = 0.4 * (tright+tleft-2*tinit[i]);
 }
 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc, n, nleft,
 ncupbc, tleft, tright, linear, &nfinal, tfinal,
 (float*)(&yfinal[0][0]),
 IMSL_HINIT, ninit, tinit, yinit,
 IMSL_ERR_EST, &errest,
 0);
 printf(" t y0 y1\n");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e\n", i, tfinal[i], yfinal[i][0],
 yfinal[i][1]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e\n",errest[0],errest[1]);
}
void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 float sx = sin(t);
 dydt[0] = y[1];
 dydt[1] = y[0]*y[0]*y[0] - (sx*sx+1)*sx;
}
void fcnjac(int n, float t, float y[], float p, float dfdy[])
{
 dfdy[0*n+0] = 0; /* df1/dy1 */
 dfdy[1*n+0] = 3*y[0]*y[0]; /* df2/dy1 */
 dfdy[0*n+1] = 1; /* df1/dy2 */
 dfdy[1*n+1] = 0; /* df2/dy2 */
}
void fcnbc(int n, float yleft[], float yright[], float p, float h[])
{
 h[0] = yleft[0];
 h[1] = yright[0];
}

Output

 t y0 y1
 0 0.000000e+00 0.000000e+00 9.999277e-01
 1 2.855994e-01 2.817682e-01 9.594315e-01
 2 5.711987e-01 5.406458e-01 8.412407e-01
 3 8.567981e-01 7.557380e-01 6.548904e-01
 4 1.142397e+00 9.096186e-01 4.154530e-01
 5 1.427997e+00 9.898143e-01 1.423307e-01
 6 1.713596e+00 9.898143e-01 -1.423308e-01
608

 Differential Equations bvp_finite_difference
 7 1.999195e+00 9.096185e-01 -4.154530e-01
 8 2.284795e+00 7.557380e-01 -6.548902e-01
 9 2.570394e+00 5.406460e-01 -8.412405e-01
 10 2.855994e+00 2.817682e-01 -9.594312e-01
 11 3.141593e+00 0.000000e+00 -9.999274e-01
Error Estimates 3.907291e-05 7.124317e-05

Example 3

In this example, the following nonlinear problem is solved:

with y(0) = y(1) = π/2. As in the previous examples, this equation is reduced to a system of first-order differential
equations by defining y1 = y and y2 = y′. The resulting system is

The problem is embedded in a family of problems by introducing the parameter p and by changing the second
differential equation to

At p = 0, the problem is linear; and at p = 1, the original problem is recovered. The derivatives ∂y′/∂p must now be
specified in the subroutine fcnpeq. The derivatives ∂f/∂p are zero in fcnpbc.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcneqn(int n, float t, float y[], float p, float dydt[]);
void fcnjac(int n, float t, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);
void fcnpeq(int n, float t, float y[], float p, float dfdp[]);
void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[]);
#define MXGRID 45
#define NINIT 12
#define N 2
int main()
{
 int n = 2;
 int nleft = 1;
 int ncupbc = 0;
 float tleft = 0;
 float tright = 1;
 float pistep = 0.1;

y ′ ′ − y3 = 409 t − 12
2/3
− t − 12

8

y′1 = y2 y1 0 = π / 2

y′2 = y1
3 − 409 t − 12

2/3
+ t − 12

8
y1 1 = π / 2

y′2 = py1
3 + 409 t − 12

2/3
t − 12

8

609

 Differential Equations bvp_finite_difference
 int ninit = 5;
 float tinit[NINIT] = { 0.0, 0.4, 0.5, 0.6, 1.0 };
 float yinit[NINIT][N] =
 { 0.15749, 0.00215,
 0.0, 0.00215,
 0.15749, -0.83995,
 -0.05745, 0.0,
 0.05745, 0.83995 };
 int linear = 0;
 int nfinal;
 float tfinal[MXGRID];
 float yfinal[MXGRID][N];
 float *errest;
 int i;
 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc, n, nleft,
 ncupbc, tleft, tright,
 linear, &nfinal, tfinal, (float*)(&yfinal[0][0]),
 IMSL_MAX_SUBINTER, MXGRID,
 IMSL_PROBLEM_EMBEDDED, pistep, fcnpeq, fcnpbc,
 IMSL_HINIT, ninit, tinit, yinit,
 IMSL_ERR_EST, &errest,
 0);
 printf(" t y0 y1\n");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e\n", i, tfinal[i], yfinal[i][0],
 yfinal[i][1]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e\n",errest[0],errest[1]);
}
void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 float z = t - 0.5;
 dydt[0] = y[1];
 dydt[1] = p*y[0]*y[0]*y[0] + 40./9.*pow(z*z,1./3.) - pow(z,8);
}
void fcnjac(int n, float t, float y[], float p, float dfdy[])
{
 dfdy[0*n+0] = 0; /* df0/dy0 */
 dfdy[0*n+1] = 1; /* df0/dy1 */
 dfdy[1*n+0] = 3.*(p)*(y[0]*y[0]); /* df1/dy0 */
 dfdy[1*n+1] = 0; /* df1/dy1 */
}
void fcnbc(int n, float yleft[], float yright[], float p, float h[])
{
 float pi2 = imsl_f_constant("pi", 0)/2.0;
 h[0] = yleft[0] - pi2;
 h[1] = yright[0] - pi2;
}
void fcnpeq(int n, float t, float y[], float p, float dfdp[])
{
 dfdp[0] = 0;
 dfdp[1] = y[0]*y[0]*y[0];
}

610

 Differential Equations bvp_finite_difference
void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[])
{
 dhdp[0] = 0;
 dhdp[1] = 0;
}

Output

 t y0 y1
 0 0.000000e+000 1.570796e+000 -1.949336e+000
 1 4.444445e-002 1.490495e+000 -1.669567e+000
 2 8.888889e-002 1.421951e+000 -1.419465e+000
 3 1.333333e-001 1.363953e+000 -1.194307e+000
 4 2.000000e-001 1.294526e+000 -8.958461e-001
 5 2.666667e-001 1.243628e+000 -6.373191e-001
 6 3.333334e-001 1.208785e+000 -4.135206e-001
 7 4.000000e-001 1.187783e+000 -2.219351e-001
 8 4.250000e-001 1.183038e+000 -1.584200e-001
 9 4.500000e-001 1.179822e+000 -9.973147e-002
 10 4.625000e-001 1.178748e+000 -7.233894e-002
 11 4.750000e-001 1.178007e+000 -4.638249e-002
 12 4.812500e-001 1.177756e+000 -3.399764e-002
 13 4.875000e-001 1.177582e+000 -2.205549e-002
 14 4.937500e-001 1.177480e+000 -1.061179e-002
 15 5.000000e-001 1.177447e+000 -1.603742e-007
 16 5.062500e-001 1.177480e+000 1.061152e-002
 17 5.125000e-001 1.177582e+000 2.205516e-002
 18 5.187500e-001 1.177756e+000 3.399726e-002
 19 5.250000e-001 1.178007e+000 4.638217e-002
 20 5.375000e-001 1.178748e+000 7.233874e-002
 21 5.500000e-001 1.179822e+000 9.973122e-002
 22 5.750000e-001 1.183038e+000 1.584198e-001
 23 6.000000e-001 1.187783e+000 2.219350e-001
 24 6.666667e-001 1.208786e+000 4.135205e-001
 25 7.333333e-001 1.243628e+000 6.373190e-001
 26 8.000000e-001 1.294526e+000 8.958460e-001
 27 8.666667e-001 1.363953e+000 1.194307e+000
 28 9.111111e-001 1.421951e+000 1.419465e+000
 29 9.555556e-001 1.490495e+000 1.669566e+000
 30 1.000000e+000 1.570796e+000 1.949336e+000
Error Estimates 3.449248e-006 5.550227e-005

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#"..
611

 Differential Equations differential_algebraic_eqs
differential_algebraic_eqs
Solves a first order differential-algebraic system of equations, g(t, y, yʹ) = 0, with optional additional constraints
and user-defined linear system solver.

Synopsis
#include <imsl.h>
void imsl_f_differential_algebraic_eqs (int neq, float *t, float tend, int *ido, float y[],

float yprime[], void gcn(), …, 0)

The typedouble function is imsl_d_differential_algebraic_eqs.

Required Arguments
int neq (Input)

Number of dependent variables, and number of differential/algebraic equations, not counting any
additional constraints.

float *t (Input/Output)
Set t to the starting value t0 at the first step. On output, t is set to the value to which the integration
has advanced. Normally, this new value is tend.

float tend (Input)
Final value of the independent variable. Update this value when re-entering after output with
ido = 2.

int *ido (Input/Output)
Flag indicating the state of the computation.

Note: imsl_f_differential_algebraic_eqs replaces imsl_f_dea_petzold_gear.

ido State

1 Initial entry

2 Normal re-entry after obtaining output

3 Release workspace, last call
612

 Differential Equations differential_algebraic_eqs
The user sets ido = 1 on the first call at t = t0. The function then sets ido =2, and this value is used

for all but the last entry, which is made with ido = 3.

float y[] (Input/Output)
Array of length neq containing the dependent variable values, y. On input, y must contain initial val-
ues. On output, y contains the computed solution at tend.

float yprime[] (Input/Output)
Array of length neq containing derivative values, yʹ. This array must contain initial values, but they
need not be such that g(t, y, yʹ) = 0 at t =t0. See the description of parameter iypr for more
information.

void gcn (int neq, float t, float y[], float yprime[], float delta[], float d[], int ldd, int *ires)
(Input)
User-supplied function to evaluate g(t, y, yʹ), and any constraints. Also partial derivative evaluations
and optionally linear solving steps occur here. The equations g(t, y, yʹ) = 0 consist of neq differential-
algebraic equations of the form.

The function gcn is also used to evaluate the ncon additional algebraic constraints.

Arguments
int neq (Input)

Number of dependent variables, and number of differential-algebraic equations, not count-
ing any additional constraints.

float t (Input)
Integration variable t.

float y[] (Input)
Array of neq dependent variables, y.

float yprime[] (Input)
Array of neq derivative values, yʹ.

float delta[] (Input/Output)
Array of length max(neq, ncon) containing residuals, . See parameter ires for a
definition.

float d[] (Input/Output
Array of length ldd × neq containing partial derivatives, d See parameter ires for a
definition.

int ldd (Input)
Number of rows in d.

Fi t, y1, … , yneq, y′1, … , y′neq ≡ Fi t, y, y ′ = 0, i = 1, … , neq

Ci t, y1, … , yneq ≡ Ci t, y = 0, i = 1, … , ncon, ncon ≥ 0

δ

613

 Differential Equations differential_algebraic_eqs
int *ires (Input/Output)
Flag indicating what is to be calculated in the user function, gcn.
Note: ires is input only, except when ires = 6. It is input/output when ires = 6. For a
detailed description see the table below.
The code calls gcn with ires = 0, 1, 2, 3, 4, 5, 6, or 7, defined as follows:

ires Description

0 Do initializations which may be required in later calls to gcn.
This is a setup flag that is input to gcn just once per problem.
Initializations might be computing parameters to be used inter-
nally by gcn or taking any other necessary steps for what may
follow in terms of evaluating derivatives or linear solves.
Return and do nothing if no initializations are needed.

1 Compute = , the i-th residual, for i =1,…,neq.

2 (Required only if iujac =1 and matstr = 0 or 1).
Compute

 ,

the partial derivative matrix. These are derivatives of with
respect to , for i =1,…, neq and j = 1,…,neq.

3 (Required only if iujac =1 and matstr = 0 or 1).
Compute

 ,

the partial derivative of with respect to , for i = 1,…,neq
and j = 1,…,neq.

4 (Required only if iypr = 2).
Compute

 ,
the partial derivative of Fi with respect to t, for i =1,…, neq.

5 (Required only if ncon > 0).

Compute = , the i-th residual in the additional con-
straints, for i =1,…, ncon, and

 ,

the partial derivative of with respect to for i =1,…,
ncon and j =1,…, neq.

δi Fi t, y, y ′

di, j =
∂Fi t, y, y ′

∂ y j
Fi

y j

di, j =
∂Fi t, y, y ′

∂ y′ j
Fi y′ j

δi =
∂Fi t, y, y ′

∂ t

δi Ci t, y

di, j =
∂Ci t, y
∂ y j

Ci y j
614

 Differential Equations differential_algebraic_eqs
Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_differential_algebraic_eqs (int neq, float *t, float tend, int *ido, float y[],

float yprime[], void gcn(),

IMSL_N_CONSTRAINTS, int ncon,
IMSL_JACOBIAN_OPTION, int iujac,
IMSL_YPRIME_METHOD, int iypr,
IMSL_JACOBIAN_MATRIX_TYPE, int matstr,
IMSL_METHOD, int isolve,
IMSL_N_LOWER_DIAG, int ml,
IMSL_N_UPPER_DIAG, int mu,
IMSL_RELATIVE_TOLERANCE, float rtol,
IMSL_ABSOLUTE_TOLERANCE, float atol[],
IMSL_INITIAL_STEPSIZE, float h0,
IMSL_MAX_STEPSIZE, float hmax,
IMSL_MAX_ORDER, int maxord,
IMSL_MAX_NUMBER_STEPS, int maxsteps,

6 (Required only if isolve = 1.) If matstr = 2, the user must com-
pute the matrix

 ,

where cj = , and save this matrix in any user-defined format.
This is for later use when ires = 7. The matrix may also be fac-
tored in this step, if desired. The array d is not referenced if
matstr = 2.
If matstr = 0 or 1, the A matrix will already be defined and
passed to gcn in the array d, which will be in full matrix format
if matstr = 0, and band matrix format, if matstr = 1. The user
may factor d in this step, if desired.
Note: For matstr = 0, 1, or 2, the user must set ires = 0 to sig-
nal that Ais nonsingular. If A is nearly singular, leave ires = 6.
This results in using a smaller step-size internally.

7 (Required only if isolve = 1.) The user must solve ,
where is passed to gcn in the vector delta, and xis returned
in delta. If matstr = 2, A is the matrix which was computed
and saved at the call with ires = 6; if matstr = 0 or 1, A is
passed to gcn in the array d. In either case, the A matrix will
remain factored if the user factored it when ires = 6.

ires Description

A = ∂F
∂ y + cj

∂F
∂ y ′

δ1

Ax = b
b

615

 Differential Equations differential_algebraic_eqs
IMSL_INTEGRATION_LIMIT, float tstop,
IMSL_ORDER_MAGNITUDE_EST, float fmag,
IMSL_GCN_W_DATA, void gcn(), void *data,
0)

Optional Arguments
IMSL_N_CONSTRAINTS, int ncon (Input)

Number of additional constraints.
Default: ncon = 0.

IMSL_JACOBIAN_OPTION, int iujac (Input)
Jacobian calculation option.

Default: iujac = 0 for matstr = 0 or 1. iujac = 1 for matstr = 2.

IMSL_YPRIME_METHOD, int iypr (Input)
Initial yʹ calculation method.

Default: iypr = 1.

iujac Description

0 Calculates using finite difference approximations.

1 User supplies the Jacobian matrices of partial deriv-
atives of in the function gcn,
when ires = 2 and 3.

iypr Description

0 The initial input values of yprime are already con-
sistent with the input values of Y. That is
g(t, y, yʹ) = 0 at t = t0. Any constraints must be satis-
fied att =t0.

1 Consistent values of yprime are calculated by Pet-
zold’s original DASSL algorithm.

2 Consistent values of yprime are calculated using a
new algorithm [Hanson and Krogh, 2008], which is
generally more robust but requires that iujac = 1
and isolve = 0, and additional derivatives corre-
sponding to ires = 4 are to be calculated in gcn.

Fi, i = 1, … , neq,
616

 Differential Equations differential_algebraic_eqs
IMSL_JACOBIAN_MATRIX_TYPE, int matstr (Input)
Parameter specifying the Jacobian matrix structure.

Default: matstr = 0.

IMSL_METHOD, int isolve (Input)
Solve method.

Default: isolve = 0 for matstr = 0 or 1. isolve = 1 for matstr = 2.

IMSL_N_LOWER_DIAG, int ml (Input)
Number of non-zero diagonals below the main diagonal in the Jacobian matrices when band storage
mode is used. ml is ignored if matstr ≠ 1.

Default: ml = neq - 1.

IMSL_N_UPPER_DIAG, int mu (Input)
Number of non-zero diagonals above the main diagonal in the Jacobian matrices when band storage
mode is used. mu is ignored if matstr ≠ 1.

Default: mu = neq - 1.

IMSL_RELATIVE_TOLERANCE, float rtol (Input)
Relative error tolerance for solver. The program attempts to maintain a local error in Y(i) less than
rtol*∣y[i]∣ + atol[i].

Default: rtol = , where ɛ is machine precision.

matstr Description

0 The Jacobian matrices (whether iujac = 0 or 1) are
to be stored in full storage mode.

1 The Jacobian matrices are to be stored in band stor-
age mode. In this case, if iujac = 1, the partial
derivative matrices have their entries for row iand

columnj, stored as array elements .
This occurs when ires = 2 or 3 in gcn.

2 A user-defined matrix structure is used (see the doc-
umentation for 6 for more details). If matstr = 2,
isolve and iujac are set to 1 internally.

isolve Description

0 imsl_f_differential_algebraic_eqs solves
the linear systems.

1 The user wishes to solve the linear system in func-
tion gcn. See parameter gcn for details.

d(i− j+mu+1, j)

ɛ

617

 Differential Equations differential_algebraic_eqs
IMSL_ABSOLUTE_TOLERANCE, float atol[] (Input)
Array of size neq containing absolute error tolerances. See description of rtol.

Default: atol[i] = 0.0.

IMSL_INITIAL_STEPSIZE, float h0 (Input)s
Initial stepsize used by the solver. If h0 = 0.0, the function defines the initial stepsize.
Default: h0 = 0.0.

IMSL_MAX_STEPSIZE, float hmax (Input)
Maximum stepsize used by the solver. If hmax = 0.0, the function defines the maximum stepsize.

Default: hmax = 0.0.

IMSL_MAX_ORDER, int maxord (Input)
Maximum order of the backward difference formulas used. 1 ≤ maxord ≤ 5.

Default: maxord = 5.

IMSL_MAX_NUMBER_STEPS, int maxsteps (Input)
Maximum number of steps allowed from t to tend.
Default: maxsteps = 500.

IMSL_INTEGRATION_LIMIT, float tstop (Input)
Integration limit point. For efficiency reasons, the code sometimes integrates past tend and interpo-
lates a solution at tend. If a value for tstop is specified, the code will never integrate past
t=tstop.

Default: No tstop value is specified.

IMSL_ORDER_MAGNITUDE_EST, float fmag (Input)
Order-of-magnitude estimate. fmag is used as an order-of-magnitude estimate of the magnitude of
the functions Fi (see description of gcn), for convergence testing, if iypr=2. fmag is ignored if
iypr=0 or 1.

Default: fmag = 1.0.

IMSL_GCN_W_DATA, void gcn(int neq, float t, float y[], float yprime[], float delta[], float d[],
int ldd, int *ires, void *data), void *data (Input)
User-supplied function to evaluate g(t, y, yʹ), and any constraints, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
Please refer to gcn in the Required Arguments section for more information. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.
618

 Differential Equations differential_algebraic_eqs
Description
Function imsl_f_differential_algebraic_eqs finds an approximation to the solution of a system of

differential-algebraic equations with given initial data for and . The function uses BDF for-
mulas, which are appropriate for stiff systems. imsl_f_differential_algebraic_eqs is based on the
code DASSL designed by Linda Petzold [1982], and has been modified by Hanson and Krogh [2008] Solving Con-
strained Differential-Algebraic Systems Using Projections to allow the inclusion of additional constraints, including
conservation principles, after each time step. The modified code also provides a more robust algorithm to calcu-
late initial values consistent with the given initial values. This occurs when the initial are not known.

A differential-algebraic system of equations is said to have “index 0” if the Jacobian matrix of partial derivatives of

the with respect to the is nonsingular. Thus it is possible to solve for all the initial values of and put the
system in the form of a standard ODE system. If it is possible to reduce the system to a system of index 0 by tak-
ing first derivatives of some of the equations, the system has index 1, otherwise the index is greater than 1. See
Brenan [1989] for a definition of index. imsl_f_differential_algebraic_eqs can generally only solve
systems of index 0 or 1; other systems will usually have to be reduced to such a form through differentiation.

Examples

Example 1 – Method of Lines PDE Problem

This example solves the partial differential equation , with initial condition , and

boundary conditions , which has exact solution . If we

approximate the term using finite differences, where , and , we get:

If Yi(t) = U(xi,t), the first and last equations are algebraic and the others are differential equations, so this is a sys-

tem of differential-algebraic equations. The system has index = 1, since it could be transformed into an ODE
system by differentiating the first and last equations. Note that the Jacobian matrices are banded (tridiagonal),
with ml = mu = 1. We use this and specify the option for dealing with banded matrices in
imsl_f_differential_algebraic_eqs.

#include <imsl.h>
#include <math.h>

g t, y, y ′ = 0 y y ′

y ′ y y ′

Fi y′ j y′ j

U t = Uxx + U U x, 0 = 1 + x

U 0, t = et U 1, t = 2et U x, t = 1 + x et

Uxx xi = i − 1 h h = 1 / n − 1

U x1, t = et

U ′ xi,t = U xi+1,t − 2U xi,t + U xi−1,t / h2 + U xi,t , i = 2, … ,n − 1

U xn, t = 2et
619

http://www.roguewave.com/getattachment/1bc46ef4-cf3e-4eb5-8e7c-493c9de60a97/Integrating-Feynman-Kac-Equations-Using-Hermite-Qutarget=
http://www.roguewave.com/getattachment/1bc46ef4-cf3e-4eb5-8e7c-493c9de60a97/Integrating-Feynman-Kac-Equations-Using-Hermite-Qutarget=

 Differential Equations differential_algebraic_eqs
#include <stdio.h>
#define NEQ 101
#define MAX(a,b) ((a) > (b)) ? (a) : (b)
void gcn(int neq, float t, float y[], float yprime[], float delta[],
 float *d, int ldd, int *ires);
int main() {
 int i, ido, iujac=1, iypr=1, matstr=1, ml=1, mu=1, nsteps=10;
 float errmax=0.0, hx, rtol=1.0e-4, t, tend, tr, x,
 y[NEQ], yprime[NEQ];
 hx = 1.0 / (float) (NEQ - 1);
 /* Initial values */
 for (i = 0; i < NEQ; i++) {
 yprime[i] = 0.0;
 x = ((float) i) * hx;
 y[i] = 1.0 + x;
 }
 /* Always set ido=1 on first call */
 ido = 1;
 for (i = 0; i < nsteps; i++) {
 /* Output solution at t=0.1,0.2,...,1.0 */
 t = 0.1 * (float) i;
 tend = 0.1 * (float) (i + 1);
 /* Set ido = 3 on last call */
 if (i == (nsteps-1))
 ido = 3;
 /* User-supplied jacobian matrix (iujac=1)
 Banded jacobian (matstr=1) */
 imsl_f_differential_algebraic_eqs(NEQ, &t, tend, &ido, y,
 yprime, gcn,
 IMSL_JACOBIAN_OPTION, iujac,
 IMSL_YPRIME_METHOD, iypr,
 IMSL_JACOBIAN_MATRIX_TYPE, matstr,
 IMSL_N_LOWER_DIAG, ml,
 IMSL_N_UPPER_DIAG, mu,
 IMSL_RELATIVE_TOLERANCE, rtol,
 0);
 }
 for (i = 0; i < NEQ; i++) {
 x = ((float) i) * hx;
 tr = (1.0 + x) * exp(t);
 errmax = MAX(errmax,fabs(y[i]-tr));
 }
 printf("Max Error at T=1 is %g.\n", errmax);
}

void gcn(int neq, float t, float y[], float yprime[], float delta[],
 float *d, int ldd, int *ires) {
#define D(I_,J_) (*(d+(I_)*(neq)+(J_)))
620

 Differential Equations differential_algebraic_eqs
 int i, j, mu;
 float hx;
 hx = 1.0 / (float) (neq - 1);
 mu = 1;
 if (*ires == 1) {
 /* f_i defined here */
 delta[0] = y[0] - exp(t);
 for (i = 1; i < (neq - 1); i++)
 delta[i] = -yprime[i] + (y[i+1] - 2.0 * y[i] + y[i-1]) /
 pow(hx,2) + y[i];
 delta[neq-1] = y[neq-1] - 2.0 * exp(t);
 } else if (*ires == 2) {
 /* d(i-j+mu+1,j) = d(f_i)/d(y_j)
 in band storage mode */
 D(mu,0) = 1.0;
 for (i = 1; i < (neq - 1); i++) {
 j = i;
 D(i-j+mu+1,j-1) = 1.0 / pow(hx,2);
 j = i + 1;
 D(i-j+mu+1,j-1) = -2.0 / pow(hx,2) + 1.0;
 j = i + 2;
 D(i-j+mu+1,j-1) = 1.0 / pow(hx,2);
 }
 D(mu,neq-1) = 1.0;
 } else if (*ires == 3) {
 /* d(i-j+mu+1,j) = d(f_i)/d(yprime_j) */
 for (i = 1; i < (neq - 1); i++)
 D(mu,i) = -1.0;
 }
}

Output

Max Error at T=1 is 5.53131e-005.

Example 2 – Pendulum Problem

The first-order equations of motion of a point-mass msuspended on a massless wire of length under the influ-
ence of gravity, mg, and wire tension, λ , in Cartesian coordinates (p,q) are

L

621

 Differential Equations differential_algebraic_eqs
The problem above has an index number equal to 3, thus it cannot be solved with
imsl_f_differential_algebraic_eqs directly. Unfortunately, the fact that the index is greater than 1
is not obvious, but an attempt to solve it will generally produce an error message stating the corrector equation
did not converge, or if iypr = 2 an error message stating that the index appears to be greater than 1 should be
issued. The user then differentiates the last equation, which after replacing pʹ by u and qʹ by v, gives pu+qv = 0.
This system still has index=2 (again not obvious, the user discovers this by unsuccessfully trying to solve the new
system) and the last equation must be differentiated again, to finally (after appropriate substitutions) give the
equation of total energy balance:

With initial conditions and appropriate definitions of the dependent variables, the system becomes:

The initial conditions correspond to the pendulum starting in a horizontal position.

Since we have replaced the original constraint, , which requires that the pendulum length
be L, by differentiating it twice, this constraint is no longer explicitly enforced, and if we try to solve the above sys-
tem alone (ie, with ncon=0), the pendulum length drifts substantially from L at larger times.
imsl_f_differential_algebraic_eqs therefore allows the user to add additional constraints, to be
re-enforced after each time step, so we add this original constraint, as well as the intermediate constraint

 . Using these two supplementary constraints, (ncon = 2), the pendulum length is constant.

p ′ = u
q ′ = v
mu ′ = − pλ
mv ′ = − qλ − mg
p2 + q2 − L2 = 0

m u2 + v2 − mgq − L2λ = 0

p 0 = L,q 0 = u 0 = v 0 = λ 0 = 0
y1 = p
y2 = q
y3 = u
y4 = v
y5 = λ
F1 = y3 − y′1 = 0
F2 = y4 − y′2 = 0
F3 = − y1y5 − my′3 = 0
F4 = − y2y5 − mg − my′4 = 0

F5 = m y3
2 + y4

2 − mgy2 − L
2y5 = 0

C1 = p
2 + q2 − L2 = 0

C2 = pu + qv = 0
622

 Differential Equations differential_algebraic_eqs
#include <imsl.h>
#include <math.h>
#include <stdio.h>
#define NEQ 5
void gcn(int neq, float t, float y[], float yprime[], float delta[],
 float *d, int ldd, int *ires);
int main() {
 int i, ido, ncon=2, nsteps=5, iypr=2, iujac=1, maxsteps=50000;
 float atol[NEQ], len, t, tend, tol, y[NEQ], yprime[NEQ],
 mass=1.0, length=1.1, gravity=9.806650;
 /* Initial values */
 tol = 1.0e-5;
 for (i = 0; i < NEQ; i++) {
 y[i] = 0.0;
 yprime[i] = 0.0;
 atol[i] = tol;
 }
 y[0] = length;
 printf(" T Y(0) ");
 printf("Y(1) Length\n");
 /* Always set ido=1 on first call */
 ido = 1;
 for (i = 0; i < nsteps; i++) {
 /* Output solution at t=10,20,30,40,50 */
 t = 10.0 * (float) i;
 tend = 10.0 * (float) (i + 1);
 /* Set ido = 3 on last call*/
 if (i == (nsteps-1))
 ido = 3;
 /* User-supplied jacobian matrix (iujac=1)
 Use new algorithm to get compatible y' */
 imsl_f_differential_algebraic_eqs(NEQ, &t, tend, &ido, y,
 yprime, gcn,
 IMSL_N_CONSTRAINTS, ncon,
 IMSL_JACOBIAN_OPTION, iujac,
 IMSL_YPRIME_METHOD, iypr,
 IMSL_RELATIVE_TOLERANCE, tol,
 IMSL_ABSOLUTE_TOLERANCE, atol,
 IMSL_MAX_NUMBER_STEPS, maxsteps,
 0);
 /* len = pendulum length (should be constant) */
 len = sqrt(pow(y[0],2) + pow(y[1],2));
 printf("%15.7f %15.7f %15.7f %15.7f\n", t, y[0], y[1], len);
 }
}

void gcn(int neq, float t, float y[], float yprime[], float delta[],
 float *d, int ldd, int *ires) {
623

 Differential Equations differential_algebraic_eqs
#define D(I_,J_) (*(d+(I_)*(neq)+(J_)))
 float lsq, mg, mass=1.0, length=1.1, gravity=9.806650;
 /* Simple swinging pendulum problem */
 mg = mass * gravity;
 lsq = pow(length,2);
 if (*ires == 1) {
 /* f_i defined here */
 delta[0] = y[2] - yprime[0];
 delta[1] = y[3] - yprime[1];
 delta[2] = -y[0] * y[4] - mass * yprime[2];
 delta[3] = -y[1] * y[4] - mass * yprime[3] - mg;
 delta[4] = mass * (pow(y[2],2) + pow(y[3],2)) -
 mg * y[1] - lsq * y[4];
 } else if (*ires == 2) {
 /* d(i,j) = d(f_i)/d(y_j) */
 D(0,2) = 1.0;
 D(1,3) = 1.0;
 D(2,0) = -y[4];
 D(2,4) = -y[0];
 D(3,1) = -y[4];
 D(3,4) = -y[1];
 D(4,1) = -mg;
 D(4,2) = mass * 2.0 * y[2];
 D(4,3) = mass * 2.0 * y[3];
 D(4,4) = -lsq;
 } else if (*ires == 3) {
 /* d(i,j) = d(f_i)/d(yprime_j) */
 D(0,0) = -1.0;
 D(1,1) = -1.0;
 D(2,2) = -mass;
 D(3,3) = -mass;
 } else if (*ires == 4) {
 /* delta(i) = d(f_i)/dt */
 delta[0] = 0.0;
 delta[1] = 0.0;
 delta[2] = 0.0;
 delta[3] = 0.0;
 delta[4] = 0.0;
 } else if (*ires == 5) {
 /* delta(i) = g_i
 d(i,j) = d(g_i)/d(y_j) */
 delta[0] = pow(y[0],2) + pow(y[1],2) - lsq;
 delta[1] = y[0]*y[2] + y[1]*y[3];
 D(0,0) = 2.0 * y[0];
 D(0,1) = 2.0 * y[1];
 D(0,2) = 0.0;
 D(0,3) = 0.0;
 D(0,4) = 0.0;
 D(1,0) = y[2];
 D(1,1) = y[3];
 D(1,2) = y[0];
 D(1,3) = y[1];
 D(1,4) = 0.0;
 }
}

624

 Differential Equations differential_algebraic_eqs
Output

 T Y(0) Y(1) Length
 10.0000000 1.0998138 -0.0202353 1.0999999
 20.0000000 1.0970403 -0.0806356 1.0999998
 30.0000000 1.0852183 -0.1797250 1.0999999
 40.0000000 1.0541573 -0.3142486 1.0999999
 50.0000000 0.9912723 -0.4768429 1.1000000

Example 3 – User Solves Linear System

Consider the system of ordinary differential equations, yʹ = By, where B is the bi-diagonal matrix with
(-1, -1/2, -1/3, …, -1/(n-1), 0) on the main diagonal and with 1’s along the first sub-diagonal. The initial condition

is y(0) = (1,0,0,…,0)T, and since yʹ (0) = By(0) = (-1,1,0,…,0)T, yʹ (0) is also known for this problem.

Since BT v = 0, where vi = 1/(i-1)!, v is an eigenvector of BTcorresponding to the eigenvalue 0. Thus

so vT y(t) is constant. Since it has the value vT y(0) = v1 = 1 at t= 0, the constraint vT y(t) = 1 is satisfied for all t. This

constraint is imposed in this example.

This example also illustrates how the user can solve his/her own linear systems (matstr=2). Normally, when
ires = 6, the matrix

is computed, saved and possibly factored, using a sparse matrix factorization function of the user’s choice. Then
when ires=7, the system Ax = delta is solved, using the matrix B saved and factored earlier, and the solution
is returned in delta. In this case, B is just a bidiagonal matrix, so there is no need to save or factor A when
ires = 6, since a bi-diagonal system can be solved directly using forward substitution, when ires = 7.

#include <imsl.h>
#include <stdio.h>
#define NEQ 100
void gcn(int neq, float t, float y[], float yprime[], float delta[],
 float *d, int ldd, int *ires);
int main() {
 int i, ido, nsteps=10, ncon=1, iypr=0, matstr=2;
 float atol[NEQ], con=0.0, t, tend, v[NEQ], y[NEQ], yprime[NEQ];
 /* a^t eigenvector v */
 v[0] = 1.0;
 for (i = 1; i < NEQ; i++)
 v[i] = v[i-1] / (float) i;

0 = vT y ′ − By = vT y ′ − BTv
T
y = vT y ′ = vT y

′

A =
∂g
∂ y + cj

∂g
∂ y ′
625

 Differential Equations differential_algebraic_eqs
 /* initial values */
 for (i = 0; i < NEQ; i++) {
 y[i] = 0.0;
 yprime[i] = 0.0;
 atol[i] = 1.0e-4;
 }
 y[0] = 1.0;
 yprime[0] = -1.0;
 yprime[1] = 1.0;
 /* always set ido=1 on first call */
 ido = 1;
 for (i = 0; i < nsteps; i++) {
 /* output solution at t=1,2,...,10 */
 t = (float) i;
 tend = (float) (i + 1);
 /* set ido = 3 on last call */
 if (i == (nsteps-1))
 ido = 3;
 /* user-defined jacobian matrix structure (matstr=2) */
 imsl_f_differential_algebraic_eqs(NEQ, &t, tend, &ido, y,
 yprime, gcn,
 IMSL_N_CONSTRAINTS, ncon,
 IMSL_YPRIME_METHOD, iypr,
 IMSL_JACOBIAN_MATRIX_TYPE, matstr,
 IMSL_ABSOLUTE_TOLERANCE, atol,
 0);
 }
 /* check if solution satisfies constraint */
 for (i = 0; i < NEQ; i++)
 con += v[i] * y[i];
 printf(" V dot Y = %f\n", con);
}
void gcn(int neq, float t, float y[], float yprime[], float delta[],
 float *d, int ldd, int *ires)
{
#define D(I_,J_) (*(d+(I_)*(neq)+(J_)))
 int i;
 float con, v[NEQ];
 static float cj;
 v[0] = 1.0;
 for (i = 1; i < NEQ; i++)
 v[i] = v[i-1] / (float) i;
 if (*ires == 1) {
 /* f_i defined here */
 delta[0] = yprime[0] + y[0];
 for (i = 1; i < (NEQ - 1); i++)
 delta[i] = yprime[i] - y[i-1] + y[i] / (float) (i + 1);
 delta[NEQ-1] = yprime[NEQ-1] - y[NEQ-2];
 } else if (*ires == 5) {
 /* constraint is v dot y = 1 */
626

 Differential Equations differential_algebraic_eqs
 con = -1.0;
 for (i = 0; i < NEQ; i++) {
 con += v[i]*y[i];
 D(0,i) = v[i];
 }
 delta[0] = con;
 } else if (*ires == 6) {
 /* normally, compute matrix
 a = df/dy + cj*df/dy' = -b + cj*i
 here. only cj needs to be saved in this case, however,
 since b is bidiagonal, so a*x=delta can be solved (ires=7)
 without saving or factoring b. */
 cj = delta[0];
 /* if cj > 0 not close to zero, a is nonsingular,
 so set ires = 0. */
 if (cj >= 1.0e-4)
 *ires = 0;
 } else if (*ires == 7) {
 /* solve a*x=delta and return x in delta. */
 delta[0] /= 1.0 + cj;
 for (i = 1; i < (NEQ - 1); i++)
 delta[i] = (delta[i] + delta[i-1]) /
 (1.0 / (float) (i + 1) + cj);
 delta[NEQ-1] = (delta[NEQ-1] + delta[NEQ-2]) / cj;
 }
}

Output

V dot Y = 1.000000

Fatal Errors
IMSL_SYSTEM_CONVERGENCE The system has index # but convergence of

“yprime” values was not achieved.

IMSL_SYSTEM_CONVERGENCE The system appears to have index > 1.

IMSL_SYS_INDEX_GT_ONE For the Pareto distribution, the Hessian cannot be
calculated because the parameter estimate is 0.

IMSL_SYS_NOT_DIFF_ALG This is not a differential-algebraic system.

IMSL_ACCURACY_EXCEEDED_1 Accuracy requested exceeds machine precision.

IMSL_STEPS_EXCEEDED More than “maxsteps”=# steps taken between out-
put points.

IMSL_ERROR_TEST_FAILURE_2 The error test has failed repeatedly.

IMSL_CORRECTOR_FAILED_3 The corrector iteration failed repeatedly to
converge.
627

 Differential Equations differential_algebraic_eqs
IMSL_SINGULAR_MATRIX_1 The iteration matrix is singular.

IMSL_UNABLE_TO_SOLVE_YPR Unable to solve for initial “yprime”.

IMSL_TEND_GT_TSTOP “tend” is greater than “tstop”.

IMSL_TEND_CLOSE_TO_T “tend” is too close to “t”.

IMSL_TSTOP_INCONSIST_T “tstop” is not consistent with“t”.

IMSL_CONSTRAINTS_INCONSIST Constraints appear inconsistent

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
628

 Differential Equations dea_petzold_gear
dea_petzold_gear

Note: This function is deprecated and has been replaced by differential_algebraic_eqs. To
view the deprecated documentation, see dea_petzold_gear.pdf on the Rogue Wave website. You
can also access a local copy in your IMSL installation directory at
pdf\deprecated_routines\math\dea_petzold_gear.pdf.
629

http://docs.roguewave.com/imsl/c/8.6/LinkedDocuments/dea_petzold_gear.pdf

 Differential Equations ode_adams_krogh
ode_adams_krogh

Solves an initial-value problem for a system of ordinary differential equations of order one or two using a variable
order Adams method.

Synopsis
#include <imsl.h>
void imsl_f_ode_adams_krogh (int neq, float *t, float tend, int *ido,float y[], float hidrvs[],

void fcn(), …, 0)

The typedouble function is imsl_d_ode_adams_krogh.

Required Arguments
int neq (Input)

Number of differential equations in the system of equations to solve.

float *t (Input/Output)
On input, t contains the initial independent variable value. On output, t is replaced by tend unless
error conditions arise. See ido for details.

float tend (Input)
Value of t = tend where the solution is required.

int *ido (Input/Output)
Flag indicating the state of the computation.

Note: imsl_f_ode_adams_krogh replaces imsl_f_ode_adams_2nd_order.

ido State

1 Initial entry input value.

2 Normal re-entry input value. On output, if ido = 2 then the
integration is finished. If the integrator is called with a new
value for tend, the integration continues. If the integrator is
called with tend unchanged, an error message is issued.

3 Input value to use on final call to release workspace.

>3 Output value that indicates that a fatal error has occurred.
630

 Differential Equations ode_adams_krogh
The initial call is made with ido = 1. The function then sets ido = 2, and this value is used for all but
the last call that is made with ido = 3. This final call is only used to release workspace which was
automatically allocated by the initial call with ido = 1.

float y[] (Input/Output)
An array of length k containing the dependent variables, y(t), and first derivatives, if any. k will be the
sum of the orders of the equations in the system of equations to solve, that is, the sum of the ele-
ments of korder. On input, y contains the initial values, y(t0) and y’(t0) (if needed). On output, y
contains the approximate solution, y(t). For example, for a system of first order equations, y[i-1] is
the i-th dependent variable. For a system of second order equations, y[2i-2] is thei-th dependent
variable and y[2i-1] is the derivative of the i-th dependent variable. For systems of equations in
which one or more equations is of order 2, optional argument IMSL_EQ_ORDER must be used to
denote the order of each equation so that the derivatives in y can be identified. By default it is
assumed that all equations are of order 1 and y contains only dependent variables.

float hidrvs[] (Output)
An array of length neq containing the highest order derivatives at the point y.

void fcn (int neq, int ido, float t, float y[], float hidrvs) (Input)
User-supplied function to evaluate derivatives.

Arguments

int neq (Input)
Number of differential equations in the system of equations to solve.

int ido (Input)
Flag indicating the state of the computation. This flag corresponds to the ido argu-
ment described above. If fcn has complicated subexpressions, which depend only
weakly or not at all on y then these subexpressions need only be computed when
ido = 1 and their values then reused when ido = 2.

float t (Input)
Independent variable, t.

float y[] (Input)
An array of length k containing the dependent variable values, y,and first derivatives,
if any. k will be the sum of the orders of the equations in the system of equations to
solve.

float hidrvs[] (Output)
An array of length neq containing the values of the highest order derivatives evalu-
ated at (t, y).

Synopsis with Optional Arguments
#include <imsl.h>
631

 Differential Equations ode_adams_krogh
void imsl_f_ode_adams_krogh (int neq, float *t, float tend, int *ido, float y[], float hidrvs[],
void fcn(),

IMSL_EQ_ORDER, int korder[],
IMSL_EQ_ERR, float eqnerr[],
IMSL_STEPSIZE_INC, float hinc,
IMSL_STEPSIZE_DEC, float hdec,
IMSL_MIN_STEPSIZE, float hmin,
IMSL_MAX_STEPSIZE, float hmax,
IMSL_FCN_W_DATA, void fcn(), void *data,
0)

Optional Arguments
IMSL_EQ_ORDER, int korder[] (Input)

An array of length neq specifying the orders of the equations in the system of equations to solve.
The elements of korder can be 1 or 2. korder must be used with argument y to define systems
of mixed or higher order.
Default: korder = [1,1,1,…,1].

IMSL_EQ_ERR, float eqnerr[] (Input)
An array of length neq specifying the error tolerance for each equation. Let e(i) be the error tolerance
for equation i for i = 0,…, neq -1. Then

Default: An absolute error tolerance of 1.e-5 is used for single precision and 1.e-10 for double preci-
sion for all equations.

IMSL_STEPSIZE_INC, float hinc (Input)
Factor used for increasing the stepsize. One should set hinc such that 9/8 <= hinc <= 4.
Default: hinc = 2.0.

Value Explanation

e(i) >0 Implies an absolute error tolerance of e(i) is to be used for
equationi.

e(i) =0 Implies no error checking is to be performed for equation
i.

e(i) <0 Implies a relative error test is to be performed for equa-
tion i. In this case, the base error tolerance used will be
|e(i)| and the relative error factor used will be
(15/16 * |e(i)|). Thus the actual absolute error tolerance
used will be |e(i)|×(15/16×|e(i)|).
632

 Differential Equations ode_adams_krogh
IMSL_STEPSIZE_DEC, float hdec (Input)
Factor used for decreasing the stepsize. One should set hdec such that 1/4 <= hdec <= 7/8.
Default: hdec = 0.5.

IMSL_MIN_STEPSIZE, float hmin (Input)
Absolute value of the minimum stepsize permitted.
Default: hmin = 10.0/imsl_f_machine(2).

IMSL_MAX_STEPSIZE, float hmax (Input)
Absolute value of the maximum stepsize permitted.
Default: hmax = imsl_f_machine(2).

IMSL_FCN_W_DATA, void fcn(int neq, int ido, float t, float y[], float hidrvs[], void *data),
void *data (Input)
User-supplied function to evaluate functions, which also accepts a pointer to data that is supplied by
the user. data is a pointer to the data to be passed to the user-supplied function. Please refer to the
fcn argument in the Required Arguments section for more information. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Description
imsl_f_ode_adams_krogh is based on the JPL Library routine SIVA. imsl_f_ode_adams_krogh uses
a variable order Adams method to solve the initial value problem

or more generally

where y is the vector

 is the kth derivative of zi with respect to t, di is the order of the ith differential equation, and η is a vector with

the same dimension as y.

dyi
dt = f i t,y1,y2, … ,yneq

yi t0 = ηi
, i = 1,2, … , neq

zi
di
= f i t,y ,y t0 = η0, i = 1,2, … , neq,

z1,z′1, … ,z1
d1−1

,z2, … ,zneq
dneq−1

,

zi
k

633

 Differential Equations ode_adams_krogh
Note that the systems of equations solved by imsl_f_ode_adams_krogh can be of order one, order two, or
mixed order one and two.

See "Changing Stepsize in the Integration of Differential Equations Using Modified Divided Differences,” Krogh
(1974).

Examples

Example 1

In this example a system of two equations of order two is solved.

The initial conditions are

Since the system is of order two, optional argument imsl_eq_order must be used to specify the orders of the
equations. Also, because the system is of order two, y[0] contains the first dependent variable, y[1] contains
the derivative of the first dependent variable, y[2] contains the second dependent variable, and y[3] contains
the derivative of the second dependent variable.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
#define NEQ 2
void fcn(int neq, int ido, float t, float y[], float hidrvs[]);
int main() {
 int iend, ido, k, korder[NEQ];
 float delta, t, tend, y[4], hidrvs[NEQ];
 /* Initialize */
 ido = 1;
 t = 0.0;
 y[0] = 1.0;
 y[1] = 0.0;
 y[2] = 0.0;
 y[3] = 1.0;
 korder[0] = 2;
 korder[1] = 2;

Y ′ ′1 = − Y1 / Y1
2 + Y2

2
3
2

Y ′ ′2 = − Y2 / Y1
2 + Y2

2
3
2

Y1 0 = 1.0, Y ′1 0 = 0.0, Y2 0 = 0.0, Y ′2 0 = 1.0
634

 Differential Equations ode_adams_krogh
 /* Write Title */
 printf(" T Y1/Y2 Y1P/Y2P ");
 printf("Y1PP/Y2PP\n");
 /* Integrate ODE */
 iend = 0;
 delta = 2.0 * imsl_f_constant("PI",0);
 for(k=0;k<5;k++){
 iend += 1;
 tend = t + delta;
 if(tend > 20.0) tend = 20.0;
 imsl_f_ode_adams_krogh (NEQ, &t, tend, &ido, y, hidrvs, fcn,
 IMSL_EQ_ORDER, korder,
 0);
 if(iend < 5){
 printf("%15.4f %15.4f %15.4f %15.4f\n",
 t, y[0], y[1], hidrvs[0]);
 printf(" %15.4f %15.4f %15.4f\n",
 y[2], y[3], hidrvs[1]);
 }
 /* Finish up */
 if (iend == 4) ido = 3;
 }
}

void fcn(int neq, int ido, float t, float y[], float hidrvs[])
{
 float tp;
 tp = y[0] * y[0] + y[2] * y[2];
 tp = 1.0e0/(tp * sqrt(tp));
 hidrvs[0] = -y[0] * tp;
 hidrvs[1] = -y[2] * tp;
}

Output

 T Y1/Y2 Y1P/Y2P Y1PP/Y2PP
 6.2832 1.0000 -0.0000 -1.0000
 0.0000 1.0000 0.0000
12.5664 1.0000 -0.0000 -1.0000
 0.0000 1.0000 -0.0000
18.8496 1.0000 -0.0000 -1.0000
 0.0000 1.0000 -0.0000
20.0000 0.4081 -0.9129 -0.4081
 0.9129 0.4081 -0.9129
635

 Differential Equations ode_adams_krogh
Example 2

This contrived example illustrates how to use imsl_f_ode_adams_krogh to solve a system of equations of
mixed order.

The height, y(t), of an object of mass m above the surface of the Earth can be modeled using Newton's second law
as:

or

where -mg is the downward force of gravity and -ky' is the force due to air resistance, in a direction opposing the
velocity. If the object is a meteor, the mass, m, and air resistance, k, will decrease as the meteor burns up in the

atmosphere. The mass is proportional to r3 (r = radius) and the air resistance, presumably dependent on the sur-

face area, may be assumed to be proportional to r2, so that k/m = k0/r. The rate at which the meteor’s radius

decreases as it burns up may depend on r, on the velocity y', and, since the density of the atmosphere depends
on y, on y itself. However, we will construct a very simple model where the rate is just proportional to the square
of the velocity,

We solve (1) and (2), with k0 = 0.005, c0 = 10-8, g = 9.8 and initial conditions y(0) = 100,000 meters, y'(0) = -1000

meters/second, r(0) = 1 meter.

my ′ ′ = − mg − ky ′

y ′ ′ = − g − k /m y ′

r ′ = − c0 y ′
2

636

 Differential Equations ode_adams_krogh
#include <imsl.h>
#include <stdio.h>
#define NEQ 2
void fcn(int neq, int ido, float t, float y[], float hidrvs[]);
int main() {
 int iend, ido, k, korder[NEQ];
 float delta, t, tend, y[3], eqnerr[NEQ], hidrvs[NEQ];
 /* Initialize */
 ido = 1;
 t = 0.0;
 y[0] = 100000.0;
 y[1] = -1000.0;
 y[2] = 1.0;
 korder[0] = 2;
 korder[1] = 1;
 eqnerr[0] = .003;
 eqnerr[1] = .003;
 /* Write Title */
 printf(" T Y1/Y2 Y1P ");
 printf("Y1PP/Y2PP\n");
 /* Integrate ODE */
 iend = 0;
 delta = 10.0;
 for(k=0;k<6;k++){
 iend += 1;
 tend = t + delta;
 if(tend > 50.0) tend = 50.0;
 imsl_f_ode_adams_krogh (NEQ, &t, tend, &ido, y, hidrvs, fcn,
 IMSL_EQ_ORDER, korder,
 IMSL_EQ_ERR, eqnerr,
 0);
 if(iend < 6){
 printf("%15.4f %15.4f %15.4f %15.4f\n",
 t, y[0], y[1], hidrvs[0]);
 printf(" %15.4f %15.4f\n",
 y[2], hidrvs[1]);
 }
 /* Finish up */
 if (iend == 5) ido = 3;
 }
}

void fcn(int neq, int ido, float t, float y[], float hidrvs[])
{
 hidrvs[0] = -9.8 - .005/y[2]*y[1];
 hidrvs[1] = -1.e-8 * y[1] * y[1];
}

637

 Differential Equations ode_adams_krogh
Output

 T Y1/Y2 Y1P Y1PP/Y2PP
 10.0000 89773.0391 -1044.0096 -3.9701
 0.8954 -0.0109
 20.0000 79150.9922 -1078.6333 -2.9083
 0.7826 -0.0116
 30.0000 68240.9531 -1101.0377 -1.5031
 0.6635 -0.0121
 40.0000 57184.9180 -1106.9633 0.4253
 0.5413 -0.0123
 50.0000 46178.1445 -1089.8291 3.1699
 0.4201 -0.0119

Warning Errors

Fatal Errors

IMSL_ TOLERANCE_TOO_SMALL The requested error tolerance, # is too small. Using
instead.

IMSL_ RESTART The stepsize has been reduced too rapidly The inte-
grator is going to do a restart.

IMSL_ADJUST_STEPSIZE1 The current step length = #, is less than the mini-
mum steplength, “hmin” = #, at the conclusion of
the starting phase of the integration. Decreasing
“hmin” to a value less than or equal to # may help.

IMSL_ADJUST_STEPSIZE2 The integrator needs to take a step smaller than # in
order to maintain the requested local error.
Decreasing “hmin” to a value less than or equal to #
may help.

IMSL_INCORRECT_TEND Either the new output point precedes the last one or
it has the same value. “tend” = #.

IMSL_ADJUST_ERROR_TOLERANCE The step length, H = #, is so small that when Tn + H
is formed, the result will be the same as Tn, where
Tn is the base value of the independent variable. If
this problem is not due to a nonintegrable singular-
ity, it can probably be corrected by translating “t” so
that it is closer to 0. Reducing the error tolerance for
the equations through argument “eqnerr” may also
help with this problem.

IMSL_ERROR_TOLERANCE A local error tolerance of zero has been requested.
638

 Differential Equations ode_adams_krogh
IMSL_ERROR_PREVIOUS A fatal error has occurred because of the error
reported in the previous error message.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
639

 Differential Equations Introduction to pde_1d_mg
Introduction to pde_1d_mg
The section describes an algorithm and a corresponding integrator function imsl_f_pde_1d_mg for solving a
system of partial differential equations

Equation 1

This software is a one-dimensional differential equation solver. It requires the user to provide initial and boundary

conditions in addition to a function for the evaluation of . The integration method is noteworthy due to the
maintenance of grid lines in the space variable, . Details for choosing new grid lines are given in Blom and Zegel-
ing, (1994). The class of problems solved with imsl_f_pde_1d_mg is expressed by Equation 1 and given in more
detail by:

Equation 2

The vector is the solution. The integer value is the number of differential

equations. The functions and can be regarded, in special cases, as flux and source terms. The functions

 are expected to be continuous. Allowed values for the integer are any of . These
are respectively for problems in Cartesian, cylindrical or polar, and spherical coordinates. In the two cases with

 , the interval must not contain as an interior point.

The boundary conditions have the master equation form

Equation 3

ut ≡
∂u
∂ t = f u, x, t , xL < x < xR, t > t0

ut
x

∑
k=1

NPDE
C j, k x, t, u, ux

∂uk
∂ t = x

−m ∂
∂ x xmR j x, t, u, ux − Qj x, t, u, ux ,

j = 1, … , NPDE, xL < x < xR, t > t0, m ∈ 0, 1, 2

u ≡ u1, … , uNPDE
T

NPDE ≥ 1
Rj Qj

u, C j, k, Rj, Qj m m = 0, 1, 2

m > 0 xL, xR x = 0
640

 Differential Equations Introduction to pde_1d_mg
In the boundary conditions the functions and are continuous. In the two cases with , with an endpoint

of at 0, the finite value of the solution at must be ensured. This requires the specification of the

solution at , or it implies that or . The initial values satisfy

 , where is a piece-wise continuous vector function of with
components.

The user must pose the problem so that mathematical definitions are known for the functions

These functions are provided to the function imsl_f_pde_1d_mg in the form of two user-supplied functions.

This form of the usage interface is explained below and illustrated with several examples. can be supplied as
the input argument u or by an optional user-supplied function. Users comfortable with the description of this
algorithm may skip directly to the Examples section.

Description Summary
Equation 1 is approximated at time-dependent grid values

 . Using the total differential transforms the differ-
ential equation to the form

Using central divided differences for the factor leads to the system of ordinary differential equations in implicit
form

The terms respectively represent the approximate solution to the partial differential equation and the

value of at the point . The truncation error from this approximation is
second-order in the space variable . The above ordinary differential equations are underdetermined, so addi-
tional equations are added for determining the time-dependent grid points. These additional equations contain
parameters that can be adjusted by the user. Often it will be necessary to modify these parameters to solve a dif-
ficult problem. For this purpose the following quantities are needed:

β j x,t R j x,t,u,ux = γ j x,t,u,ux ,

at x = xL and x = xR, j = 1,...NPDE

βj γ j m > 0
xL, xR x = 0

x = 0 R j∣x=xL = 0 Rj∣x=xR = 0
u x, t0 = u0 x , x ∈ xL, xR u0 x NPDE

C j,k,R j,Qj,β j,γ j and u0

u0

N = ngrids
xL = x0 < x1 < … < xi t < … < xN+1 = xR

du
dt = ut + ux

dx
dt

ut =
du
dt − ux

dx
dt = f u, x, t , xL < x < xR

ux

dU i
dt −

U i+1 − U i−1
xi+1 − xi−1

dxi
dt = Fi, t > t0, i = 1, ⋯ , N

Ui, Fi
f u, x, t u, x, t = Ui, xi t , t

x

641

 Differential Equations Introduction to pde_1d_mg
The values are the so-called point concentration of the grid. The parameter denotes a spatial smoothing
value. Now the grid points are defined implicitly so that

The parameter denotes a time-smoothing value. If the value is chosen to be large, this results in a fixed
spatial grid. Increasing from its default value avoids the error condition where grid lines cross. The divisors are
defined by

The value determines the level of clustering or spatial smoothing of the grid points. Decreasing from its

default values also decreases the amount of spatial smoothing. The parameters approximate arc length and

help determine the shape of the grid or distribution. The parameter prevents the grid movement from adjust-

ing immediately to new values of the , thereby avoiding oscillations in the grid that cause large relative errors
in the solution. This is important when applied to solutions with steep gradients.

The discrete form of the differential equation and the smoothing equations are combined to yield the implicit sys-
tem of differential equations

This is usually a stiff differential-algebraic system. It is solved using the integrator imsl_f_dea_petzold_gear.
If imsl_f_dea_petzold_gear is needed during the evaluations of the differential equations or boundary
conditions, it must be done in a separate thread to avoid possible problems with imsl_f_pde_1d_mg’s internal
use of imsl_f_dea_petzold_gear. The only options for imsl_f_dea_petzold_gear set by
imsl_f_pde_1d_mg are the Maximum BDF Order, and the absolute and relative error values, documented as
IMSL_MAX_BDF_ORDER, and IMSL_ATOL_RTOL_SCALARS.

Δxi = xi+1 − xi, ni = Δxi
−1

μi = ni − κ κ + 1 ni+1 − 2ni + ni−1 , 0 ≤ i ≤ N
n−1 ≡ n0, nN+1 ≡ nN

ni κ ≥ 0

μi−1 + τ
dui−1
dt

Mi−1
=
μi + τ

dui
dt

Mi
, 1 ≤ i ≤ N

τ ≥ 0 τ
τ

Mi
2 = α + NPDE−1 ∑

j=1

NPDE Ui+1
j
− Ui

j

Δxi
2

2

κ κ
Mi

xi τ
Mi

A(Y)dYdt = L Y ,

Y = U1
1, … ,U1

NPDE,x1, …
T

642

 Differential Equations pde_1d_mg
pde_1d_mg
Solves a system of one-dimensional time-dependent partial differential equations using a moving-grid interface.

Synopsis
#include <imsl.h>
void imsl_f_pde_1d_mg_mgr (int task, void **state,…, 0)

void imsl_f_pde_1d_mg (int npdes, int ngrids, float *t, float tend float u[], float xl,
float xr, void *state, void pde_systems(), void boundary_conditions(), …, 0)

The void functions imsl_d_pde_1d_mg_mgr and imsl_d_pde_1d_mg are for double type arithmetic
accuracy.

The function imsl_f_pde_1d_mg_mgr is used to initialize and reset the problem, and the function
imsl_f_pde_1d_mg is the integrator. The descriptions of both functions are provided below.

Required Arguments for imsl_f_pde_1d_mg_mgr
int task (Input)

This function must be called with task set to IMSL_PDE_INITIALIZE to set up for solving a sys-
tem and with task equal to IMSL_PDE_RESET to clean up after it has been solved. These values
for task are defined in the include file, imsl.h.

void **state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by state. It cannot be directly
manipulated.

Required Arguments for imsl_f_pde_1d_mg
int npdes (Input)

The number of differential equations.

int ngrids (Input)
The number of spatial grid/mesh points, including the boundary points and .

NOTE: The integrator is provided with single or double precision arithmetic. We recommend using the dou-
ble precision interface imsl_d_pde_1d_mg.

xL xR
643

 Differential Equations pde_1d_mg
float *t (Input/Output)
On input, t is the initial independent variable value. On output, t is replaced by tend, unless error
conditions arise. This is first set to the value of the independent variable where the integration of
begins. It is set to the value tend on return.

float tend (Input)
Mathematical value of where the integration of ends. Note: Starting values of t < tend imply
integration in the forward direction, while values of t > tend imply integration in the backward
direction. Either direction is permitted.

float u[] (Input/Output)
Array of size npdes+1 by ngrids. On input, the first npdes rows contain initial values for all com-
ponents of the system at the equally spaced grid of values. It is not required to define the grid values
in the last row of u. On output u[] contains the approximate solution value U i(xj(tend), tend) at array
location u[i×ngrids+j]. The grid value x j(tend) is in location u[(npdes*ngrids) +j]. Normally
the grid values are equally spaced as the integration starts. Variable grid values can be provided by
defining them as output from the user function initial_conditions supplied by either
imsl_f_pde_1d_mg_mgr’s IMSL_INITIAL_CONDITIONS, or
IMSL_INITIAL_CONDITIONS_W_DATA optional arguments.

float xl (Input)
Lower grid boundary, .

float xr (Input)
Upper grid boundary, .

void *state (Input/Output)
The current state of the solution is held in a structure pointed to by state. It must be initialized by a
call to imsl_f_pde_1d_mg_mgr. It cannot be directly manipulated.

void pde_systems(float t, float x, int npdes, int ngrids, float *full_u, float *grid_u,
float *dudx, float *c, float *q, float *r, int *ires) (Input)
A user-supplied function to evaluate the differential equation, as expressed in Equation 2. Each
application requires a function specifically designed for the task, and this function is normally written
by the user of the integrator.

Evaluate the terms of the system of Equation 2. A default value of is assumed, but this can be
changed to one of the choices, . Use the optional arguments
IMSL_CART_COORDINATES, IMSL_CYL_COORDINATES, IMSL_SPH_COORDIANTES for the
respective values . Return the values in the arrays as indicated:

t0 ut

t ut

xL

xR

m = 0
m = 1, 2

m = 0, 1, 2
644

 Differential Equations pde_1d_mg
If any of the functions cannot be evaluated, set ires=3. Otherwise, do not change the value of
ires.

void boundary_conditions (float t, float *beta, float *gamma, float *full_u, float *grid_u,
float *dudx, int npdes, int grids, int left, int *ires) (Input)
User-supplied function to supply the boundary conditions, as expressed in Equation 2.

The value , and the flag left=1 for . The flag has the value left=0 for . If

any of the functions cannot be evaluated, set ires=3. Otherwise, do not change the value of ires.

Synopsis with Optional Arguments for imsl_f_pde_1d_mg_mgr
#include <imsl.h>
void imsl_f_pde_1d_mg_mgr (int task, void **state,

IMSL_CART_COORDINATES, or
IMSL_CYL_COORDINATES, or
IMSL_SPH_COORDINATES,
IMSL_TIME_SMOOTHING, float tau,
IMSL_SPATIAL_SMOOTHING, float kappa,

u j = grid_u[j]
U = full_u

∂u j

∂ x = ux
j
= dudx[j]

c[l][k] = C j,k x,t,u,ux
r[j] = r j x,t,u,ux
q[j] = q j x,t,u,ux
j,k = 0,...NPDE − 1

u j = grid_u[j]
U = full_u
∂u
∂ x
j
= ux

j
= dudx[j]

beta[j] = β j x,t,u,ux
gamma[j] = γ j x,t,u,ux
j = 0, ...NPDE − 1

x∈{xL,xR} x = xL x = xR
645

 Differential Equations pde_1d_mg
IMSL_MONITOR_REGULARIZING, float alpha,
IMSL_MAX_BDF_ORDER, int max_bdf_order,
IMSL_USER_FACTOR_SOLVE, int fac(), void sol(),
IMSL_USER_FACTOR_SOLVE_W_DATA, int fac(), void sol(), void data,
IMSL_INITIAL_CONDITIONS, void initial_conditions()
IMSL_INITIAL_CONDITIONS_W_DATA, void initial_conditions(), void data,
0)

Optional Arguments
IMSL_CART_COORDINATES, or

IMSL_CYL_COORDINATES, or

IMSL_SPH_COORDINATES
IMSL_CART_COORDINATES specifies cartesian coordinates, where in Equation 2.
IMSL_CYL_COORDINATES specifies cylindrical or polar coordinates, where in Equation 2.
IMSL_SPH_COORDINATES specifies spherical coordinates, where in Equation 2.
Default: IMSL_CART_COORDINATES

IMSL_TIME_SMOOTHING, float tau, (Input)
Resets the value of the parameter , described above.
Default: .

IMSL_SPATIAL_SMOOTHING, float kappa, (Input)
Resets the value of the parameter , described above.
Default: .

IMSL_MONITOR_REGULARIZING, float alpha, (Input)
Resets the value of the parameter , described above.
Default: .

IMSL_MAX_BDF_ORDER, int max_bdf_order, (Input)
Resets the maximum order for the bdf formulas used in imsl_f_dea_petzold_gear. The new
value can be any integer between 1 and 5. Some problems benefit by making this change. The default
value of max_bdf_order was chosen because imsl_f_dea_petzold_gear may cycle on its
selection of order and step-size with max_bdf_order higher than value 2.
Default: max_bdf_order=2.

IMSL_USER_FACTOR_SOLVE, int fac(int neq, int iband, float *a), void sol(int neq, int iband,
float *g, float *y) (Input)
User-supplied functions to factor A, and solve the system AΔy = Δg. Use of this optional argument

m = 0
m = 1

m = 2

τ ≥ 0
τ = 0

κ ≥ 0
κ = 2

α ≥ 0
α = 0.01
646

 Differential Equations pde_1d_mg
allows for handling the factorization and solution steps in a problem-specific manner. If successful
fac should return 0, if unsuccessful, fac should return a non-zero value. See Example 5 - A Flame
Propagation Model for sample usage of this optional argument.

IMSL_USER_FACTOR_SOLVE_W_DATA, int fac(int neq,int iband,float *a, void *data),
void sol(int neq,int iband,float *g, float *y, void *data), void *data (Input)
User-supplied functions to factor A, and solve the system AΔy = Δg.The argument data is a pointer
to the data that is passed to the user-supplied function.

IMSL_INITIAL_CONDITIONS, void initial_conditions(int npdes, int ngrids, float *u)
(Input)
User-supplied function to supply the initial values for the system at the starting independent variable
value t. This function can also provide a non-uniform grid at the initial value. Here npdes is the num-
ber of differential equations, ngrids is the number of grid points, and u is an array of size
npdes+1 by ngrids, containing the approximate solution value in location
u[i×ngrids+j]. The grid values are equally spaced on input, but can be updated as desired, pro-
vided the values are increasing. Update the grid values in array locations u[(npdes × ngrids) +j],
where 0 ≤ j ≤ ngrids.

IMSL_INITIAL_CONDITIONS_W_DATA, void initial_conditions(int npdes, int ngrids,
float *u, float *grid, void *data), void *data (Input)
User-supplied function to supply the initial values for the system at the starting independent variable
value t. This function can also provide a non-uniform grid at the initial value. The argument data is a
pointer to the data that is passed to the user-supplied function.

Synopsis with Optional Arguments for imsl_f_pde_1d_mg
#include <imsl.h>
void imsl_f_pde_1d_mg (int npdes ,int ngrids ,float *t ,float tend,float u[] ,float xl ,float xr

,void *state ,void pde_systems() ,void boundary_conditions(),

IMSL_RELATIVE_TOLERANCE ,float rtol,
IMSL_ABSOLUTE_TOLERANCE ,float atol,
IMSL_PDE_SYS_W_DATA ,void pde_systems() ,void *data,
IMSL_BOUNDARY_COND_W_DATA ,void boundary_conditions() ,void *data,
0)

Ui x j tend , tend
647

 Differential Equations pde_1d_mg
Optional Arguments
IMSL_RELATIVE_TOLERANCE, float rtol, (Input)

This option resets the value of the relative accuracy parameter used in
imsl_f_dea_petzold_gear.
Default: rtol=1.0E-2 for single precision, rtol=1.0E-4 for double precision.

IMSL_ABSOLUTE_TOLERANCE, float atol, (Input)
This option resets the value of the absolute accuracy parameter used in
imsl_f_dea_petzold_gear.
Default: atol=1E-2 for single precision, atol=1E-4 for double precision.

IMSL_PDE_SYS_W_DATA, void pde_systems(float t, float x, int npdes, int ngrids,
float *full_u, float *grid_u, float *dudx, float *c, float *q, float *r, int *ires,
void *data),void *data (Input)
User-supplied function to evaluate the differential equation, as expressed in Equation 2. The argu-
ment data is a pointer to the data that is passed to the user-supplied function.

IMSL_BOUNDARY_COND_W_DATA, void boundary_conditions (float t,float *beta,
float *gamma, float *full_u, float *grid_u, float *dudx, int npdes, int ngrids,
int left,int *ires, void *data), void *data (Input)
User-supplied function to supply the boundary conditions, as expressed in Equation 2. The argument
data is a pointer to the data that is passed to the user-supplied function.

Examples

Remarks on the Examples

Due to its importance and the complexity of its interface, function imsl_f_pde_1d_mg is presented with sev-
eral examples. Many of the program features are exercised. The problems complete without any change to the
optional arguments, except where these changes are required to describe or to solve the problem.

In many applications the solution to a PDE is used as an auxiliary variable, perhaps as part of a larger design or
simulation process. The truncation error of the approximate solution is commensurate with piece-wise linear
interpolation on the grid of values, at each output point. To show that the solution is reasonable, a graphical dis-
play is revealing and helpful. We have not provided graphical output as part of our documentation, but users may
already have the Rogue Wave, Inc. product, PV-WAVE, which is not included with IMSL C Numerical Library. Exam-
ples 1 through 8 write results in files pde_ex0#.out that can be visualized with PV-WAVE. We provide a script
of commands, pde_1d_mg_plot.pro, for viewing the solutions. This is listed below. The grid of values and
648

 Differential Equations pde_1d_mg
each consecutive solution component is displayed in separate plotting windows. The script and data files written
by examples 1-8 on a SUN-SPARC system are in the directory for IMSL C Numerical Library examples. When exe-
cuting PV_WAVE, use the command line

pde_1d_mg_plot,filename=’pde_ex0#.out’
to view the output of a particular example. The symbol ‘#’ will be one of the choices 1,2,…,8. However, it is not
necessary to have PV_WAVE installed to execute the examples.

To view the code, see Code for PV-WAVE Plotting.

Example 1 - Electrodynamics Model

This example is from Blom and Zegeling (1994). The system is

We make the connection between the model problem statement and the example:

The boundary conditions are

This is a non-linear problem with sharply changing conditions near . The default settings of integration
parameters allow the problem to be solved. The use of imsl_f_pde_1d_mg requires two subroutines pro-
vided by the user to describe the differential equations, and boundary conditions.

#include <stdio.h>
#include <math.h>
#include <imsl.h>
/* prototypes */

ut = ɛpuxx − g(u − v)
vt = pvxx + g(u − v),
where g(z) = exp(ηz / 3) − exp(− 2ηz / 3)
0 ≤ x ≤ 1, 0 ≤ t ≤ 4
ux = 0 and v = 0 at x = 0
u = 1 and vx = 0 at x = 1
ɛ = 0.143,p = 0.1743,η = 17.19

C = I2
m = 0,R1 = ɛpux,R2 = pvx
Q1 = g(u − v),Q2 = − Q1
u = 1 and v = 0 at t = 1

β1 = 1,β2 = 0,γ1 = 0,γ2 = v, at x = xL = 0
β1 = 0,β2 = 1,γ1 = u − 1,γ2 = 0, at x = xR = 1

t = 0
649

 Differential Equations pde_1d_mg
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[], int npdes,
 int ngrids, int left, int *ires);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 2
#define NFRAMES 5
#define N 51
#define U(I_,J_) u[I_ * ngrids + J_]
int main ()
{
 char *state = NULL;
 int i, j;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout;
 double delta_t = 10.0, tend = 4.0;
 int npdes = NPDE, ngrids = N;
 double xl = 0.0, xr = 1.0;
 FILE *file1;
 file1 = fopen ("pde_ex01.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 fprintf (file1, " %d\t%d\t%d", npdes, ngrids, NFRAMES);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);

 /* initialize u */
 initial_conditions (npdes, ngrids, u);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state, 0);
 tout = 1e-3;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl, xr, state,
 pde_systems, boundary_conditions, 0);

 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }

 t0 = tout;
 tout = tout * delta_t;
 tout = MIN (tout, tend);
 }
 while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
650

 Differential Equations pde_1d_mg
#undef MIN
#undef NPDE
#undef NFRAMES
#undef N
#undef U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]

 int i;
 for (i = 0; i < ngrids; i++)
 {
 U (0, i) = 1.0;
 U (1, i) = 0.0;
 }
#undef U
}
static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_ * npdes + J_]
 double z;
 static double eps = 0.143;
 static double eta = 17.19;
 static double pp = 0.1743;
 C (0, 0) = 1.0;
 C (0, 1) = 0.0;
 C (1, 0) = 0.0;
 C (1, 1) = 1.0;
 r[0] = pp * dudx[0] * eps;
 r[1] = pp * dudx[1];
 z = eta * (grid_u[0] - grid_u[1]) / 3.0;
 q[0] = exp (z) - exp (-2.0 * z);
 q[1] = -q[0];
 return;
#undef C
}
static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int ngrids, int npdes, int left, int *ires)
{
 if (left)
 {
 beta[0] = 1.0;
 beta[1] = 0.0;
 gamma[0] = 0.0;
 gamma[1] = grid_u[1];
 }
651

 Differential Equations pde_1d_mg
 else
 {
 beta[0] = 0.0;
 beta[1] = 1.0;
 gamma[0] = grid_u[0] - 1.0;
 gamma[1] = 0.0;
 }
 return;
}

Example 2 - Inviscid Flow on a Plate

This example is a first order system from Pennington and Berzins, (1994). The equations are

Following elimination of w, there remain differential equations. The variable is not time, but a sec-
ond space variable. The integration goes from to . It is necessary to truncate the variable at a finite

value, say . In terms of the integrator, the system is defined by letting and

The boundary conditions are satisfied by

We use grid points and output the solution at steps of .

This is a non-linear boundary layer problem with sharply changing conditions near . The problem statement
was modified so that boundary conditions are continuous near . Without this change the underlying inte-
gration software, imsl_f_dea_petzold_gear, cannot solve the problem. The continuous blending function

 is arbitrary and artfully chosen. This is a mathematical change to the problem, required because
of the stated discontinuity at . Reverse communication is used for the problem data. No additional user-
written subroutines are required when using reverse communication. We also have chosen 10 of the initial grid

points to be concentrated near , anticipating rapid change in the solution near that point. Optional
changes are made to use a pure absolute error tolerance and non-zero time-smoothing.

ut = − vx
uut = − vux + wxx
w = ux, implying that uut = − vux + uxx
u 0,t = v 0,t = 0,u ∞ ,t = u xR,t = 1,t ≥ 0

u x,0 = 1,v x,0 = 0,x ≥ 0

NPDE = 2 t
t = 0 t = 5 x

xmax = xR = 25 m = 0

C = C jk =
10
u0 , R =

−v
ux , Q =

0
vux

β = 0,γ = u − exp −20t
v

, at x = xL

β = 0,γ = u − 1
vx , at x = xR

N = 10 + 51 = 61 Δt = 0.1

t = 0
t = 0

u − exp −20t
t = 0

X L = 0
652

 Differential Equations pde_1d_mg
#include <stdio.h>
#include <math.h>
#include <imsl.h>
/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[],
 double dudx[], double *c, double q[],
 double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double full_u[],
 double grid_u[], double dudx[],
 int npdes, int ngrids, int left,
 int *ires);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 2
#define N1 10
#define N2 51
#define N (N1+N2)
#define U(I_,J_) u[I_ * ngrids + J_]
FILE *file1;
int main ()
{
 char *state;
 int i, j;
 int nframes;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout;
 double delta_t = 1e-1, tend = 5.0;
 int npdes = NPDE, ngrids = N;
 double xl = 0.0, xr = 25.0;
 double tau = 1.0e-3;
 double atol = 1e-2;
 double rtol = 0.0;

 file1 = fopen ("pde_ex02.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((tend + delta_t) / delta_t);
 fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_TIME_SMOOTHING, tau,
 IMSL_INITIAL_CONDITIONS, initial_conditions, 0);
 t0 = 0.0;
 tout = delta_t;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions,
 IMSL_RELATIVE_TOLERANCE, rtol,
 IMSL_ABSOLUTE_TOLERANCE, atol, 0);
 t0 = tout;
653

 Differential Equations pde_1d_mg
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
 tout = tout + delta_t;
 tout = MIN (tout, tend);
 }
 while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
 fclose (file1);
#undef MIN
#undef NPDE
#undef NFRAMES
#undef N
#undef U
}
static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_* ngrids + J_]

 int i, j, i_, n1 = 10, n2 = 51, n;
 double dx1, dx2;
 double xl = 0.0, xr = 25.0;

 n = n1 + n2;
 for (i = 0; i < ngrids; i++)
 {
 U (0, i) = 1.0;
 U (1, i) = 0.0;
 U (2, i) = 0.0;
 }
 dx1 = xr / n2;
 dx2 = dx1 / n1;
 /* grid */
 for (i = 1; i <= n1; i++)
 {
 i_ = i - 1;
 U (2, i_) = (i - 1) * dx2;
 }
 for (i = n1 + 1; i <= n; i++)
 {
 i_ = i - 1;
 U (2, i_) = (i - n1) * dx1;
 }
 for (i = 0; i < npdes + 1; i++)
654

 Differential Equations pde_1d_mg
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
#undef U
}
static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_ * npdes + J_]
 double z;
 C (0, 0) = 1.0;
 C (1, 0) = 0.0;
 C (0, 1) = grid_u[0];
 C (1, 1) = 0.0;
 r[0] = -grid_u[1];
 r[1] = dudx[0];
 q[0] = 0.0;
 q[1] = grid_u[1] * dudx[0];
 return;
#undef C
}
static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{
 double dif;
 beta[0] = 0.0;
 beta[1] = 0.0;
 if (left)
 {
 dif = exp (-20.0 * t);
 gamma[0] = grid_u[0] - dif;
 gamma[1] = grid_u[1];
 }
 else
 {
 gamma[0] = grid_u[0] - 1.0;
 gamma[1] = dudx[1];
 }
 return;
}

655

 Differential Equations pde_1d_mg
Example 3 - Population Dynamics

This example is from Pennington and Berzins (1994). The system is

This is a notable problem because it involves the unknown

across the entire domain. The software can solve the problem by introducing two dependent algebraic equations:

This leads to the modified system

In the interface to the evaluation of the differential equation and boundary conditions, it is necessary to evaluate

the integrals, which are computed with the values of on the grid. The integrals are approximated using
the trapezoid rule, commensurate with the truncation error in the integrator.

ut = − ux − I t u,xL = 0 ≤ x ≤ a = xR,t ≥ 0

I t = ∫
0

a
u x,t dx

u x,0 =
exp −x

2 − exp −a

u 0,t = g ∫
0

a
b x,I t u x,t dx,t , where

b x,y =
xyexp −x

y + 1 2
, and

g z,t =

4z 2 − 2exp −a + exp −t 2

1 − exp −a 1 − 1 + 2a exp −2a 1 − exp −a + exp −t

u x, t =
exp −x

1 − exp −a + exp −t

v1(t) = ∫
0

a
u x,t dx,

v2(t) = ∫
0

a
x exp −x u x,t dx

ut = − ux − v1u, 0 ≤ x ≤ a, t ≥ 0

u 0,t =
g 1,t v1v2
v1 + 1

2

u x, t
656

 Differential Equations pde_1d_mg
This is a non-linear integro-differential problem involving non-local conditions for the differential equation and
boundary conditions. Access to evaluation of these conditions is provided using the optional arguments
IMSL_PDE_SYS_W_DATA and IMSL_BOUNDARY_COND_W_DATA. Optional changes are made to use an
absolute error tolerance and non-zero time-smoothing. The time-smoothing value prevents grid lines from
crossing.
#include <stdio.h>
#include <math.h>
#include <imsl.h>

/* prototypes */

static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[],
 double dudx[], double *c, double q[],
 double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double full_u[],
 double grid_u[], double dudx[],
 int npdes, int ngrids, int left,
 int *ires);
static double fcn_g (double z, double t);

#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 101
#define U(I_,J_) u[I_ * ngrids + J_]
FILE *file1;
int main ()
{
 int i, j, nframes;
 double u[(NPDE + 1) * N], mid[N - 1];
 int npdes = NPDE, ngrids = N;
 double t0 = 0.0, tout;
 double delta_t = 1e-1, tend = 5.0, a = 5.0;
 char *state;
 double xl = 0.0, xr = 5.0;
 double *ptr_u;
 double tau = 1.0;
 double atol = 1e-2;
 double rtol = 0.0;

 file1 = fopen ("pde_ex03.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) (tend + delta_t) / delta_t;
 fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);

 ptr_u = u;

 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_TIME_SMOOTHING, tau,
 IMSL_INITIAL_CONDITIONS, initial_conditions, 0);

 tout = delta_t;

τ = 1
657

 Differential Equations pde_1d_mg
 fprintf (file1, "%f\n", t0);
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions,
 IMSL_RELATIVE_TOLERANCE, rtol,
 IMSL_ABSOLUTE_TOLERANCE, atol, 0);

 t0 = tout;
 if (t0 <= tend)
 {
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
 }
 tout = MIN (tout + delta_t, tend);
 }
 while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);

 fclose (file1);

#undef MIN
#undef NPDE
#undef N
#undef XL
#undef XR
#undef U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]
#define XL 0.0
#define XR 5.0

 int i, j;
 double dx, xi;

 dx = (XR - XL) / (ngrids - 1);
 for (i = 0; i < ngrids; i++)
 {
 U (0, i) = exp (-U (1, i)) / (2.0 - exp (-XR));
 }

 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
658

 Differential Equations pde_1d_mg
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }

#undef U
#undef XL
#undef XR
}

static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires)
{
#define U(I_,J_) full_u[I_ * ngrids + J_]

 double v1;
 double sum = 0.0;
 int i;

 c[0] = 1.0;
 r[0] = -1 * grid_u[0];

 for (i = 0; i < ngrids - 1; i++)
 {
 sum += (U (0, i) + U (0, i + 1)) * (U (1, i + 1) - U (1, i));
 }

 v1 = 0.5 * sum;
 q[0] = v1 * grid_u[0];

 return;
#undef U
}

static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{
#define U(I_,J_) full_u[I_ * ngrids + J_]
 double v1, v2, mid;
 double sum = 0.0;
 double sum1 = 0.0, sum2 = 0.0, sum3 = 0.0, sum4 = 0.0;
 int i;

 for (i = 0; i < ngrids - 1; i++)
 {
 sum += (U (0, i) + U (0, i + 1)) * (U (1, i + 1) - U (1, i));
 mid = 0.5 * (U (1, i) + U (1, i + 1));
 sum1 += mid * exp (-mid) *
 ((U (0, i) + U (0, i + 1)) * (U (1, i + 1) - U (1, i)));
 }

 if (left)
659

 Differential Equations pde_1d_mg
 {
 v1 = 0.5 * sum;
 v2 = 0.5 * sum1;
 beta[0] = 0.0;
 gamma[0] = fcn_g (1.0, t) * v1 * v2 /
 ((v1 + 1.0) * (v1 + 1.0)) - grid_u[0];
 }
 else
 {
 beta[0] = 0.0;
 gamma[0] = dudx[0];
 }
 return;
#undef U
}

static double
fcn_g (double z, double t)
{
 double g, a = 5.0;

 g = 4.0 * z * (2.0 - 2.0 * exp (-a) + exp (-t)) *
 (2.0 - 2.0 * exp (-a) + exp (-t));
 g = g / ((1.0 - exp (-a)) * (1.0 - (1.0 + 2.0 * a) *
 exp (-2.0 * a)) * (1.0 - exp (-a) + exp (-t)));
 return g;
}

Example 4 - A Model in Cylindrical Coordinates

This example is from Blom and Zegeling (1994). The system models a reactor-diffusion problem:

The axial direction is treated as a time coordinate. The radius is treated as the single space variable.

This is a non-linear problem in cylindrical coordinates. Our example illustrates assigning in Equation 2. We
provide the optional argument IMSL_CYL_COORDINATES that resets this value from its default, .

#include <stdio.h>
#include <math.h>
#include <imsl.h>

/* prototypes */
static void initial_conditions (int npdes, int ngrids, double t[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double u[], double grid_u[], double dudx[], double *c,

Tz = r
−1
∂ βrTr
∂r + γexp T

1 + ɛT

Tr 0,z = 0, T 1,z = 0, z > 0

T r,0 = 0, 0 ≤ r < 1

β = 10−4,γ = 1,ɛ = 0.1

z r

m = 1
m = 0
660

 Differential Equations pde_1d_mg
 double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 41
#define T(I_,J_) t[I_ * ngrids + J_]
int main ()
{
 int i, j, ido;
 int nframes;
 double t[(NPDE + 1) * N];
 double z0 = 0.0, zout;
 double dx1, dx2, diff;
 double delta_z = 1e-1, zend = 1.0, zmax = 1.0;
 double beta = 1e-4, gamma = 1.0, eps = 1e-1;
 char *state;
 int npdes = NPDE, ngrids = N;
 double xl = 0.0, xr = 1.0;
 FILE *file1;
 int m = 1;

 file1 = fopen ("pde_ex04.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((zend + delta_z) / delta_z) - 1;
 fprintf (file1, " %d\t%d\t%d", npdes, N, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, z0, zend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state, IMSL_CYL_COORDINATES, 0);
 initial_conditions (npdes, ngrids, t);
 zout = delta_z;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &z0, zout, t, xl,
 xr, state, pde_systems, boundary_conditions, 0);
 z0 = zout;
 if (z0 <= zend)
 {
 fprintf (file1, "%f\n", zout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", T (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
 }
 zout = MIN ((zout + delta_z), zend);
 }
 while (z0 < zend);
661

 Differential Equations pde_1d_mg
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
 fclose (file1);
#undef MIN
#undef NPDE
#undef N
#undef T
}
static void
initial_conditions (int npdes, int ngrids, double t[])
{
#define T(I_,J_) t[I_ * ngrids + J_]
 int i;
 for (i = 0; i < ngrids; i++)
 {
 T (0, i) = 0.0;
 }
#undef T
}
static void
pde_systems (double t, double x, int npdes, int ngrids, double u[],
 double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_ * npdes + J_]
 static double beta = 01e-4, gamma = 1.0, eps = 1e-1;
 C (0, 0) = 1.0;
 r[0] = beta * dudx[0];
 q[0] = -1.0 * gamma * exp (grid_u[0] / (1.0 + eps * grid_u[0]));
 return;
#undef C
}
static void
boundary_conditions (double t, double beta[], double gamma[],
 double u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{

 if (left)
 {
 beta[0] = 1.0;
 gamma[0] = 0.0;
 }
 else
 {
 beta[0] = 0.0;
 gamma[0] = grid_u[0];
 }
 return;
}

662

 Differential Equations pde_1d_mg
Example 5 - A Flame Propagation Model

This example is presented more fully in Verwer, et al., (1989). The system is a normalized problem relating mass

density and temperature :

This is a non-linear problem. The example shows the model steps for replacing the banded solver in the software
with one of the user’s choice. Following the computation of the matrix factorization in
imsl_lin_sol_gen_band (see Chapter 1, Linear Systems), we declare the system to be singular when the recip-
rocal of the condition number is smaller than the working precision. This choice is not suitable for all problems.
Attention must be given to detecting a singularity when this option is used.

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
#include <imsl.h>
/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double u[],
 double grid_u[], double dudx[],
 int npdes, int ngrids, int left,
 int *ires);
static int fac (int neq, int iband, double *a);
static void sol (int neq, int iband, double *g, double *y);
static double fcn (double z);

int *ipvt = NULL;
double *factor = NULL;
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 2

u x, t v x, t

ut = uxx − uf v

vt = vxx + uf v ,

where f z = γexp −β / z ,β = 4,γ = 3.52 × 106

0 ≤ x ≤ 1,0 ≤ t ≤ 0.006
u x,0 = 1,v x,0 = 0.2

ux = vx = 0,x = 0
ux = 0,v = b t ,x = 1, where

b t = 1.2, for t ≥ 2 × 10−4, and

= 0.2 + 5 × 103t, for 0 ≤ t ≤ 2 × 10−4
663

 Differential Equations pde_1d_mg
#define N 40
#define NEQ ((NPDE+1)*N)
#define U(I_,J_) u[I_ * ngrids + J_]
int main ()
{
 int i, j, nframes;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout;
 double delta_t = 1e-4, tend = 6e-3;
 char *state;
 int npdes = NPDE, ngrids = N;
 double xl = 0.0, xr = 1.0;
 FILE *file1;
 double work[NEQ], rcond;
 double xmax = 1.0, beta = 4.0, gamma = 3.52e6;
 int max_bdf_order = 5;
 file1 = fopen ("pde_ex05.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((tend + delta_t) / delta_t) - 1;
 fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);
 initial_conditions (npdes, ngrids, u);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_MAX_BDF_ORDER, max_bdf_order,
 IMSL_USER_FACTOR_SOLVE, fac, sol, 0);
 tout = delta_t;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions, 0);
 t0 = tout;
 if (t0 <= tend)
 {
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 }
 }
 tout = MIN ((tout + delta_t), tend);
 }
 while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
 fclose (file1);
 if (factor != NULL)
 {
 imsl_free (factor);
 }
664

 Differential Equations pde_1d_mg
 if (ipvt != NULL)
 {
 imsl_free (ipvt);
 }
}
#undef MIN
#undef U
static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]

 int i;
 for (i = 0; i < ngrids; i++)
 {
 U (0, i) = 1.0;
 U (1, i) = 2e-1;
 }
#undef U
}
static void
pde_systems (double t, double x, int npdes, int ngrids, double u[],
 double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_ * npdes + J_]
 C (0, 0) = 1.0;
 C (0, 1) = 0.0;
 C (1, 0) = 0.0;
 C (1, 1) = 1.0;
 r[0] = dudx[0];
 r[1] = dudx[1];
 q[0] = grid_u[0] * fcn (grid_u[1]);
 q[1] = -1.0 * q[0];
 return;
#undef C
}
static void
boundary_conditions (double t, double beta[], double gamma[],
 double u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{
 if (left)
 {
 beta[0] = 0.0;
 beta[1] = 0.0;
 gamma[0] = dudx[0];
 gamma[1] = dudx[1];
 }
 else
 {
 beta[0] = 1.0;
 gamma[0] = 0.0;
665

 Differential Equations pde_1d_mg
 beta[1] = 0.0;
 if (t >= 2e-4)
 {
 gamma[1] = 12e-1;
 }
 else
 {
 gamma[1] = 2e-1 + 5e3 * t;
 }
 gamma[1] -= grid_u[1];
 }
 return;
}
/* Factor the banded matrix. This is the same solver used
* internally but that is not required. A user can substitute
* one of their own.
* Note: Allowing lin_sol_gen_band to allocate ipvt and factor
* variables, then use in sol function.
*/
static int
fac (int neq, int iband, double *a)
{
 double rcond, panic_flag;
 int i, j;
 double b[NEQ];
 /* Free factor and pivot sequence if previously allocated. */
 if (factor != NULL)
 {
 imsl_free (factor);
 factor = NULL;
 }
 if (ipvt != NULL)
 {
 imsl_free (ipvt);
 ipvt = NULL;
 }
 imsl_d_lin_sol_gen_band (neq, a, iband, iband, b,
 IMSL_FACTOR, &ipvt, &factor,
 IMSL_FACTOR_ONLY, IMSL_CONDITION, &rcond, 0);
 panic_flag = 0;
 if (1.0 / rcond <= imsl_d_machine (4))
 panic_flag = 3;
 return panic_flag;
}
static void
sol (int neq, int iband, double *g, double *y)
{
 imsl_d_lin_sol_gen_band (neq, (double *) NULL, iband, iband, g,
 IMSL_SOLVE_ONLY,
 IMSL_FACTOR_USER, ipvt, factor,
 IMSL_RETURN_USER, y, 0);
 return;
}
static double
666

 Differential Equations pde_1d_mg
fcn (double z)
{
 double beta = 4.0, gamma = 3.52e6;
 return gamma * exp (-1.0 * beta / z);
}

Example 6 - A ‘Hot Spot’ Model

This example is presented more fully in Verwer, et al., (1989). The system is a normalized problem relating the

temperature , of a reactant in a chemical system. The formula for is equivalent to their example.

This is a non-linear problem. The output shows a case where a rapidly changing front, or hot-spot, develops after
a considerable way into the integration. This causes rapid change to the grid. An option sets the maximum order
BDF formula from its default value of 2 to the theoretical stable maximum value of 5.

#include <stdio.h>
#include <math.h>
#include <imsl.h>
/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[],
 double dudx[], double *c, double q[],
 double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double full_u[],
 double grid_u[], double dudx[],
 int npdes, int ngrids, int left,
 int *ires);
static double fcn_h (double z);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 80
#define U(I_,J_) u[I_ * ngrids + J_]
int main ()
{
 int i, j, nframes;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout;

u x, t h z

ut = uxx + h u ,

where h z = R
aδ 1 + a − z exp −δ 1 / z − 1 ,

a = 1,δ = 20,R = 5
0 ≤ x ≤ 1,0 ≤ t ≤ 0.29
u x,0 = 1

ux = 0,x = 0
u = 1,x = 1
667

 Differential Equations pde_1d_mg
 double delta_t = 1e-2, tend = 29e-2;
 double u0 = 1.0, u1 = 0.0, tdelta = 1e-1, tol = 29e-2;
 double a = 1.0, delta = 20.0, r = 5.0;
 char *state;
 int npdes = NPDE, ngrids = N;
 double xl = 0.0, xr = 1.0;
 FILE *file1;
 int max_bdf_order = 5;

 file1 = fopen ("pde_ex06.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((tend + delta_t) / delta_t) - 1;
 fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);
 initial_conditions (npdes, ngrids, u);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_MAX_BDF_ORDER, max_bdf_order, 0);
 tout = delta_t;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions, 0);
 t0 = tout;
 if (t0 <= tend)
 {
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0) fprintf (file1, "\n");
 }
 }
 }
 tout = MIN ((tout + delta_t), tend);
 }
 while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
 fclose (file1);
#undef MIN
#undef NPDE
#undef N
#undef U
}
static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]
 int i;
 for (i = 0; i < ngrids; i++)
 {
668

 Differential Equations pde_1d_mg
 U (0, i) = 1.0;
 }
#undef U
}
static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_ * npdes + J_]
 c[0] = 1.0;
 r[0] = dudx[0];
 q[0] = -fcn_h (grid_u[0]);
 return;
#undef C
}
static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{
 if (left)
 {
 beta[0] = 0.0;
 gamma[0] = dudx[0];
 }
 else
 {
 beta[0] = 0.0;
 gamma[0] = grid_u[0] - 1.0;
 }
 return;
}
static double
fcn_h (double z)
{
 double a = 1.0, delta = 2e1, r = 5.0;
 return (r / (a * delta)) * (1.0 + a - z) *
 exp (-delta * (1.0 / z - 1.0));
}

Example 7 - Traveling Waves

This example is presented more fully in Verwer, et al., (1989). The system is a normalized problem relating the

interaction of two waves, and moving in opposite directions. The waves meet and reduce in
amplitude, due to the non-linear terms in the equation. Then they separate and travel onward, with reduced
amplitude.

u x, t v x, t
669

 Differential Equations pde_1d_mg
This is a non-linear system of first order equations.

#include <stdio.h>
#include <math.h>
#include <imsl.h>
/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[],
 double dudx[], double *c, double q[],
 double r[], int *ires);
static void boundary_conditions (double t, double beta[],
 double gamma[], double full_u[],
 double grid_u[], double dudx[],
 int npdes, int ngrids, int left,
 int *ires);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 2
#define N 50
#define XL (-0.5)
#define XR 0.5
#define U(I_,J_) u[I_ * ngrids + J_]
FILE *file1;
int main ()
{
 int i, j, nframes;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout;
 double delta_t = 5e-2, tend = 5e-1;
 char *state;
 int npdes = NPDE, ngrids = N;
 double xl = XL, xr = XR;
 double tau = 1e-3;
 double atol = 1e-3;
 double rtol = 0.0;
 int max_bdf_order = 3;
 file1 = fopen ("pde_ex07.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((tend + delta_t) / delta_t);
 fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);

ut = − ux − 100uv,
vt = vx − 100uv,
−0.5 ≤ x ≤ 0.5,0 ≤ t ≤ 0.5
u x,0 = 0.5 1 + cos 10πx ,x ∈ −0.3, − 0.1 , and

= 0, otherwise,

v x,0 = 0.5 1 + cos 10πx x ∈ 0.1,0.3 , and

= 0, otherwise,
u = v = 0 at both ends, t ≥ 0
670

 Differential Equations pde_1d_mg
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_TIME_SMOOTHING, tau,
 IMSL_MAX_BDF_ORDER, max_bdf_order,
 IMSL_INITIAL_CONDITIONS, initial_conditions, 0);
 fprintf (file1, "%f\n", t0);
 tout = delta_t;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions,
 IMSL_RELATIVE_TOLERANCE, rtol,
 IMSL_ABSOLUTE_TOLERANCE, atol, 0);
 t0 = tout;
 if (t0 <= tend)
 {
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }

 }
 tout = MIN ((tout + delta_t), tend);
 }
 while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);

 fclose (file1);
#undef MIN
#undef NPDE
#undef N
#undef XL
#undef XR
#undef U
}

static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]
#define XL -0.5
#define XR 0.5

 int i, j;
 double _pi, pulse;
 double dx, xi;
671

 Differential Equations pde_1d_mg
 _pi = imsl_d_constant("pi",0);
 for (i = 0; i < ngrids; i++)
 {
 pulse = (0.5 * (1.0 + cos (10.0 * _pi * U (npdes, i))));
 U (0, i) = pulse;
 U (1, i) = pulse;
 }
 for (i = 0; i < ngrids; i++)
 {
 if ((U (npdes, i) < -3e-1) || (U (npdes, i) > -1e-1))
 {
 U (0, i) = 0.0;
 }
 if ((U (npdes, i) < 1e-1 || U (npdes, i) > 3e-1))
 {
 U (1, i) = 0.0;
 }
 }
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 fprintf (file1, "\n");
 }
#undef XL
#undef XR
#undef U
}
static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[],
 double *c, double q[], double r[], int *ires)
{
#define C(I_,J_) c[I_ * npdes + J_]
 C (0, 0) = 1.0;
 C (0, 1) = 0.0;
 C (1, 0) = 0.0;
 C (1, 1) = 1.0;
 r[0] = -1.0 * grid_u[0];
 r[1] = grid_u[1];
 q[0] = 100.0 * grid_u[0] * grid_u[1];
 q[1] = q[0];
 return;
#undef C
}
static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{

672

 Differential Equations pde_1d_mg
 beta[0] = 0.0;
 beta[1] = 0.0;
 gamma[0] = grid_u[0];
 gamma[1] = grid_u[1];
 return;
}

Example 8 - Black-Scholes

The value of a European “call option,” , with exercise price and expiration date , satisfies the “asset-or-

nothing payoff ” . Prior to expiration is estimated by the Black-Scholes dif-

ferential equation . The parameters in the model

are the risk-free interest rate, , and the stock volatility, . The boundary conditions are and

 . This development is described in Wilmott, et al. (1995), pages 41-57. There are explicit
solutions for this equation based on the Normal Curve of Probability. The normal curve, and the solution itself,
can be efficiently computed with the IMSL function imsl_f_normal_cdf, see Chapter 9, “Special Functions.”
With numerical integration the equation itself or the payoff can be readily changed to include other formulas,

 , and corresponding boundary conditions. We use

 .

This is a linear problem but with initial conditions that are discontinuous. It is necessary to use a positive time-

smoothing value to prevent grid lines from crossing. We have used an absolute tolerance of . In $US, this is
one-tenth of a cent.

#include <stdio.h>
#include <imsl.h>
/* prototypes */
static void initial_conditions (int npdes, int ngrids, double u[]);
static void pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires);
static void boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[], int npdes,
 int ngrids, int left, int *ires);
#define MIN(X,Y) (X<Y)?X:Y
#define NPDE 1
#define N 100
#define XL 0.0
#define XR 150.0
#define U(I_,J_) u[I_ * ngrids + J_]
int main ()
{
 int i, j, nframes;
 double u[(NPDE + 1) * N];
 double t0 = 0.0, tout, xval;

c s, t e T
c s, T = s, s ≥ e; = 0, s < e c s, t

ct +
σ2
2 s

2css + rscs − rc ≡ ct +
σ2
2 s2cs

s
+ r − σ2 scs − rc = 0

r σ c 0, t = 0

cs s, t ≈ 1, s→ ∞

c s, T
e = 100, r = 0.08, T − t = 0.25, σ2 = 0.04, sL = 0 and sR = 150

10−3
673

 Differential Equations pde_1d_mg
 double delta_t = 25e-3, tend = 25e-2;
 double xmax = 150.0;
 char *state;
 int npdes = NPDE, ngrids = N;
 double xl = XL, xr = XR;
 FILE *file1;
 double tau = 5e-3;
 double atol = 1e-2;
 double rtol = 0.0;
 int max_bdf_order = 5;

 file1 = fopen ("pde_ex08.out", "w");
 imsl_output_file (IMSL_SET_OUTPUT_FILE, file1, 0);
 nframes = (int) ((tend + delta_t) / delta_t);
 fprintf (file1, " %d\t%d\t%d", npdes, ngrids, nframes);
 fprintf (file1, "\t%f\t%f\t%f\t%f\n", xl, xr, t0, tend);
 initial_conditions (npdes, ngrids, u);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_INITIALIZE, &state,
 IMSL_TIME_SMOOTHING, tau,
 IMSL_MAX_BDF_ORDER, max_bdf_order, 0);
 tout = delta_t;
 do
 {
 imsl_d_pde_1d_mg (npdes, ngrids, &t0, tout, u, xl,
 xr, state, pde_systems, boundary_conditions,
 IMSL_RELATIVE_TOLERANCE, rtol,
 IMSL_ABSOLUTE_TOLERANCE, atol, 0);
 t0 = tout;
 if (t0 <= tend)
 {
 fprintf (file1, "%f\n", tout);
 for (i = 0; i < npdes + 1; i++)
 {
 for (j = 0; j < ngrids; j++)
 {
 fprintf (file1, "%16.10f ", U (i, j));
 if (((j + 1) % 4) == 0)
 fprintf (file1, "\n");
 }
 }
 }
 tout = MIN ((tout + delta_t), tend);
 }
 while (t0 < tend);
 imsl_d_pde_1d_mg_mgr (IMSL_PDE_RESET, &state, 0);
 fclose (file1);
#undef MIN
#undef NPDE
#undef N
#undef XL
#undef XR
#undef U
}

674

 Differential Equations pde_1d_mg
static void
initial_conditions (int npdes, int ngrids, double u[])
{
#define U(I_,J_) u[I_ * ngrids + J_]
#define XL 0.0
#define XR 150.0

 int i;
 double dx, xi, xval, e = 100.0;
 dx = (XR - XL) / (ngrids - 1);
 for (i = 0; i < ngrids; i++)
 {
 xi = XL + i * dx;
 if (xi <= e)
 {
 U (0, i) = 0.0;
 }
 else
 {
 U (0, i) = xi;
 }
 }
#undef U
#undef XL
#undef XR
}
static void
pde_systems (double t, double x, int npdes, int ngrids,
 double full_u[], double grid_u[], double dudx[], double *c,
 double q[], double r[], int *ires)
{
 double sigsq, sigma = 2e-1, rr = 8e-2;
 sigsq = sigma * sigma;
 c[0] = 1.0;
 r[0] = dudx[0] * x * x * sigsq * 0.5;
 q[0] = -(rr - sigsq) * x * dudx[0] + rr * grid_u[0];
 return;
}
static void
boundary_conditions (double t, double beta[], double gamma[],
 double full_u[], double grid_u[], double dudx[],
 int npdes, int ngrids, int left, int *ires)
{
 if (left)
 {
 beta[0] = 0.0;
 gamma[0] = grid_u[0];
 }
 else
 {
 beta[0] = 0.0;
 gamma[0] = dudx[0] - 1.0;
 }
 return;
}

675

 Differential Equations pde_1d_mg
Code for PV-WAVE Plotting

PRO PDE_1d_mg_plot, FILENAME = filename, PAUSE = pause
;
 if keyword_set(FILENAME) then file = filename else file = "res.dat"
 if keyword_set(PAUSE) then twait = pause else twait = .1
;
; Define floating point variables that will be read
; from the first line of the data file.
 xl = 0D0
 xr = 0D0
 t0 = 0D0
 tlast = 0D0
;
; Open the data file and read in the problem parameters.
 openr, lun, filename, /get_lun
 readf, lun, npde, np, nt, xl, xr, t0, tlast
; Define the arrays for the solutions and grid.
 u = dblarr(nt, npde, np)
 g = dblarr(nt, np)
 times = dblarr(nt)
;
; Define a temporary array for reading in the data.
 tmp = dblarr(np)
 t_tmp = 0D0
;
; Read in the data.
 for i = 0, nt-1 do begin ; For each step in time
 readf, lun, t_tmp
 times(i) = t_tmp
 for k = 0, npde-1 do begin ; For each PDE:
 rmf, lun, tmp
 u(i,k,*) = tmp ; Read in the components.
 end
 rmf, lun, tmp
 g(i,*) = tmp ; Read in the grid.
 end
;
; Close the data file and free the unit.
 close, lun
 free_lun, lun
;
; We now have all of the solutions and grids.
;
; Delete any window that is currently open.
 while (!d.window NE -1) do WDELETE
;
; Open two windows for plotting the solutions
; and grid.
 window, 0, xsize = 550, ysize = 420
 window, 1, xsize = 550, ysize = 420
;
; Plot the grid.
 wset, 0
 plot, [xl, xr], [t0, tlast], /nodata, ystyle = 1, $
 title = "Grid Points", xtitle = "X", ytitle = "Time"
676

 Differential Equations pde_1d_mg
 for i = 0, np-1 do begin
 oplot, g(*, i), times, psym = -1
 end
;
; Plot the solution(s):
 wset, 1
 for k = 0, npde-1 do begin
 umin = min(u(*,k,*))
 umax = max(u(*,k,*))
 for i = 0, nt-1 do begin
 title = strcompress("U_"+string(k+1), /remove_all)+ $
 " at time "+string(times(i))
 plot, g(i, *), u(i,k,*), ystyle = 1, $
 title = title, xtitle = "X", $
 ytitle = strcompress("U_"+string(k+1), /remove_all), $
 xr = [xl, xr], yr = [umin, umax], $
 psym = -4
 wait, twait
 end
 end
end

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
677

 Differential Equations modified_method_of_lines
modified_method_of_lines
Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx) using the method of lines. The

solution is represented with cubic Hermite polynomials.

Synopsis
#include <imsl.h>
void imsl_f_modified_method_of_lines_mgr (int task, void **state, …, 0)

void imsl_f_modified_method_of_lines (int npdes, float *t, float tend,
int nx,float xbreak[], float y[], void *state, void fcn_ut(), void fcn_bc())

The type double functions are imsl_d_modified_method_of_lines_mgr and
imsl_d_modified_method_of_lines.

Required Arguments for imsl_f_modified_method_of_lines_mgr
int task (Input)

This function must be called with task set to IMSL_PDE_INITIALIZE to set up memory and
default values prior to solving a problem and with task equal to IMSL_PDE_RESET to clean up after
it has solved.

void **state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by state. It cannot be directly
manipulated.

Required Arguments for imsl_f_modified_method_of_lines
int npdes (Input)

Number of differential equations.

float *t (Input/Output)
Independent variable. On input, t supplies the initial time, t0. On output, t is set to the value to which
the integration has been updated. Normally, this new value is tend.

Note: imsl_f_modified_method_of_lines replaces deprecated function
imsl_pde_method_of_lines.
678

 Differential Equations modified_method_of_lines
float tend (Input)
Value of t = tend at which the solution is desired.

int nx (Input)
Number of mesh points or lines.

float xbreak[] (Input)
Array of length nx containing the breakpoints for the cubic Hermite splines used in the x discretiza-
tion. The points in xbreak must be strictly increasing. The values xbreak[0] and xbreak[nx - 1]
are the endpoints of the interval.

float y[] (Input/Output)
Array of length npdes by nx containing the solution. The array y contains the solution as y[k,i] =
uk(x, tend) at x = xbreak[i]. On input, y contains the initial values. It must satisfy the boundary
conditions. On output, y contains the computed solution.

void *state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by state. It must be initialized by
a call to imsl_f_modified_method_of_lines_mgr. It cannot be directly manipulated.

void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[], float ut[])
User-supplied function to evaluate ut.

int npdes (Input)
Number of equations.

float x (Input)
Space variable, x.

float t (Input)
Time variable, t.

float u[] (Input)
Array of length npdes containing the dependent values, u.

float ux[] (Input)
Array of length npdes containing the first derivatives, ux.

float uxx[] (Input)
Array of length npdes containing the second derivative, uxx.

float ut[] (Output)
Array of length npdes containing the computed derivatives ut.

void fcn_bc(int npdes, float x, float t, float alpha[], float beta[], float gamma[])
User-supplied function to evaluate the boundary conditions. The boundary conditions accepted by
imsl_f_modified_method_of_lines are
679

 Differential Equations modified_method_of_lines
int npdes (Input)
Number of equations.

float x (Input)
Space variable, x.

float t (Input)
Time variable, t.

float alpha[] (Output)
Array of length npdes containing the αk values.

float beta[] (Output)
Array of length npdes containing the βk values.

float gamma[] (Output)
Array of length npdes containing the values of yk.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_modified_method_of_lines_mgr (int task, void **state,

IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[],
IMSL_HTRIAL, float *htrial,
IMSL_FCN_UT_W_DATA, void fcn_ut(), void *data,
IMSL_FCN_BC_W_DATA, void fcn_bc(), void *data,
0)

Optional Arguments
IMSL_TOL, float tol (Input)

Differential equation error tolerance. An attempt is made to control the local error in such a way that
the global relative error is proportional to tol.
Default: tol = 100.0*imsl_f_machine(4)

NOTE: Users must supply the values αk, βk, and yk.

αkuk + βk
∂uk
∂ x = γk
680

 Differential Equations modified_method_of_lines
IMSL_HINIT, float hinit (Input)
Initial step size in the t integration. This value must be nonnegative. If hinit is zero, an initial step
size of 0.001|tend - t0| will be arbitrarily used. The step will be applied in the direction of integra-
tion.
Default: hinit = 0.0

IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[] (Input/Output)
Supply the derivative values ux(x, t0) in initial_deriv, an array of length npdes by nx. This
derivative information is input as

The array initial_deriv contains the derivative values as output:

Default: Derivatives are computed using cubic spline interpolation.

IMSL_HTRIAL, float *htrial (Output)
Return the current trial step size.

IMSL_FCN_UT_W_DATA, void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[],
float ut[], void *data), void *data (Input)
User-supplied function to evaluate ut, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function. See Passing Data to
User-Supplied Functions in the introduction to this manual for more details.

IMSL_FCN_BC_W_DATA, void fcn_bc(int npdes, float x, float t, float alpha[], float beta[],
float gamma[], void *data), void *data (Input)
User-supplied function to evaluate the boundary conditions, which also accepts a pointer to data that
is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. See
Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
Let M = npdes, N = nx and xi = xbreak(I). The function imsl_f_modified_method_of_lines uses the

method of lines to solve the partial differential equation system

initial_deriv[k,i] = ∂uk∂ x (x,t0) at x = x[i]

initial_deriv[k,i] = ∂uk∂ x (x, tend) at x = x[i]
681

 Differential Equations modified_method_of_lines
with the initial conditions

and the boundary conditions

for k = 1, …, M.

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is expanded in the
series

where φi(x) and ψi(x) are the standard basis functions for the cubic Hermite polynomials with the knots

x1 < x2 < … < xN. These are piecewise cubic polynomials with continuous first derivatives. At the breakpoints, they

satisfy

According to the collocation method, the coefficients of the approximation are obtained so that the trial solution
satisfies the differential equation at the two Gaussian points in each subinterval,

for j = 1, …, N. The collocation approximation to the differential equation is

initial_deriv k,i =
∂uk
∂ x x,t0 at x = x i

initial_deriv k,i =
∂uk
∂ x x,tend at x = x i

∂uk
∂ t = f k x,t,u1,...uM,

∂u1
∂ x , ...

∂uM
∂ x ,

∂2u1
∂ x2

, ...
∂2uM
∂ x2

uk = uk x,t at t = t0

αkuk + βk
∂uk
∂ x = γk at x = x1 and at x = xN

ûk x, t =∑
i=1

N

ak, i t ϕi x + bk, i t ψi x

ϕi xl = δil ψi xl = 0

dϕi
dx xl = 0

dψi
dx xl = δil

p2 j−1 = x j +
3 − 3
6 x j+1 − x j

p2 j = x j +
3 + 3
6 x j+1 + x j
682

 Differential Equations modified_method_of_lines
for k = 1, …, M and j = 1, …, 2(N - 1).

This is a system of 2M(N - 1) ordinary differential equations in 2M N unknown coefficient functions, ak,i and bk,i.

This system can be written in the matrix-vector form as A dc/dt = F (t, c) with c(t0) = c0 where c is a vector of coeffi-

cients of length 2M N and c0 holds the initial values of the coefficients. The last 2M equations are obtained from

the boundary conditions.

If αk = βk = 0, it is assumed that no boundary condition is desired for the k-th unknown at the left endpoint. A

similar comment holds for the right endpoint. Thus, collocation is done at the endpoint. This is generally a useful
feature for systems of first-order partial differential equations.

The input/output array Y contains the values of the ak,i. The initial values of the bk,i are obtained by using the

IMSL cubic spline function imsl_f_cub_spline_interp_e_cnd (Interpolation and Approximation) to con-
struct functions

such that

The IMSL function imsl_f_cub_spline_value (Interpolation and Approximation) is used to approximate the
values

Optional argument IMSL_INITIAL_VALUE_DERIVATIVE allows the user to provide the initial values of bk,i.

The order of matrix A is 2M N and its maximum bandwidth is 6M - 1. The band structure of the Jacobian of F with
respect to c is the same as the band structure of A. This system is solved using a modified version of
imsl_f_ode_adams_krogh. Numerical Jacobians are used exclusively. Gear’s BDF method is used as the
default because the system is typically stiff. For more details, see Sewell (1982).

∑
i=1

N dak,i
dt ϕi p j +

dbk,i
dt ψi p j =

f k p j,t,û1 p j , … ,ûM p j , … , û1 xx
p j , … , ûM xx

p j

ûk xi,t0

dûk xi, t0 = aki

ûk xi, t0 = aki

dûk
dx xi, t0 ≡ bk, i
683

 Differential Equations modified_method_of_lines
Four examples of PDEs are now presented that illustrate how users can interface their problems with IMSL PDE
solving software. The examples are small and not indicative of the complexities that most practitioners will face in
their applications. A set of seven sample application problems, some of them with more than one equation, is
given in Sincovec and Madsen (1975). Two further examples are given in Madsen and Sincovec (1979).

Examples

Example 1

The normalized linear diffusion PDE, ut = uxx, 0 ≤ x ≤ 1, t > t0, is solved. The initial values are t0 = 0, u(x,

t0) = u0 = 1. There is a “zero-flux” boundary condition at x = 1, namely ux(1, t) = 0, (t > t0). The boundary value of

u(0, t) is abruptly changed from u0 to the value 0, for t >0.

When the boundary conditions are discontinuous, or incompatible with the initial conditions such as in this exam-
ple, it may be important to use double precision.

#include <imsl.h>
#include <stdio.h>
void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *);
int main() {

 int npdes = 1, nx = 8, i, j, nstep = 10;
 float hinit, tol, t = 0.0, tend, xbreak[8], y[8];
 char title[50];
 void *state;
 /* Set breakpoints and initial conditions */
 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 1.0;
 }
 /* Initialize the solver */
 tol = 10.e-4;
 hinit = 0.01 * tol;
 imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_HINIT, hinit,
 0);
 for (j = 1; j <= nstep; j++) {
 tend = (float) j / (float) nstep;
 tend *= tend;
 /* Solve the problem */
 imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
684

 Differential Equations modified_method_of_lines
 state, fcnut, fcnbc);
 /* Print results at current t=tend */
 sprintf(title, "solution at t = %4.2f", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
 }
}

void fcnut(int npdes, float x, float t, float *u, float *ux,
 float *uxx, float *ut) {
 /* Define the PDE */
 *ut = *uxx;
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gam) {
 float delta = 0.09, u0 = 1.0, u1 = 0.1;
 /* Define boundary conditions */
 if (x == 0.0) {
 /* These are for x = 0 */
 *alpha = 1.0;
 *beta = 0.0;
 *gam = u1;
 /* If in the boundary layer, compute
 nonzero gamma */
 if (t <= delta)
 gam = u0 +(u1 - u0) t/delta;
 } else {
 /* These are for x = 1 */
 *alpha = 0.0;
 *beta = 1.0;
 *gam = 0.0;
 }
}

Output

 solution at t = 0.01
 1 2 3 4 5 6
 0.900 0.985 0.999 1.000 1.000 1.000
 7 8
 1.000 1.000
 solution at t = 0.04
 1 2 3 4 5 6
 0.600 0.834 0.941 0.982 0.996 0.999
685

 Differential Equations modified_method_of_lines
 7 8
 1.000 1.000
 solution at t = 0.09
 1 2 3 4 5 6
 0.1003 0.4906 0.7304 0.8673 0.9395 0.9743
 7 8
 0.9891 0.9931
 solution at t = 0.16
 1 2 3 4 5 6
 0.1000 0.3145 0.5094 0.6702 0.7905 0.8709
 7 8
 0.9159 0.9303
 solution at t = 0.25
 1 2 3 4 5 6
 0.1000 0.2571 0.4052 0.5361 0.6434 0.7228
 7 8
 0.7713 0.7876
 solution at t = 0.36
 1 2 3 4 5 6
 0.1000 0.2178 0.3295 0.4296 0.5129 0.5754
 7 8
 0.6142 0.6273
 solution at t = 0.49
 1 2 3 4 5 6
 0.1000 0.1852 0.2661 0.3387 0.3993 0.4449
 7 8
 0.4732 0.4827
 solution at t = 0.64
 1 2 3 4 5 6
 0.1000 0.1587 0.2144 0.2644 0.3061 0.3375
 7 8
 0.3570 0.3636
 solution at t = 0.81
 1 2 3 4 5 6
 0.1000 0.1385 0.1752 0.2080 0.2354 0.2561
 7 8
 0.2689 0.2732
 solution at t = 1.00
 1 2 3 4 5 6
 0.1000 0.1243 0.1475 0.1682 0.1855 0.1985
 7 8
 0.2066 0.2093
686

 Differential Equations modified_method_of_lines
Example 2

Here, Problem C is solved from Sincovec and Madsen (1975). The equation is of diffusion-convection type with
discontinuous coefficients. This problem illustrates a simple method for programming the evaluation routine for
the derivative, ut. Note that the weak discontinuities at x = 0.5 are not evaluated in the expression for ut. The

problem is defined as

#include <imsl.h>
#include <math.h>
#include <stdio.h>
void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *);
int main()
{
 int i, j, npdes = 1, nstep = 10, nx = 100;
 float hinit, t = 0.0, tend, tol, xbreak[100], y[100];
 char title[50];
 void *state;
 /* Set breakpoints and initial conditions */
 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 0.0;
 }
 y[0] = 1.0;
 /* Initialize the solver */
 tol = sqrt(imsl_f_machine(4));
 hinit = 0.01*tol;
 imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_HINIT, hinit,
 0);

ut = ∂u / ∂ t = ∂ / ∂ x D x ∂u / ∂ x − v(x)∂u / ∂ x
x ∈ [0,1],t > 0

D x =
5 if 0 ≤ x < 0.5
1 if 0.5 < x ≤ 1.0

ν x =
1000.0 if 0 ≤ x < 0.5
1 if 0.5 < x ≤ 1.0

u x,0 =
1 if x = 0
0 if x > 0

u 0,t = 1,u 1,t = 0
687

 Differential Equations modified_method_of_lines
 for (j = 1; j <= nstep; j++) {
 tend = (float) j / (float) nstep;
 /* Solve the problem */
 imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);
 }
 /* Print results at t=tend */
 sprintf(title, "solution at t = %4.2f", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
}
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */
 float d = 1.0, v = 1.0;
 if (x <= 0.5) {
 d = 5.0;
 v = 1000.0;
 }
 ut[0] = d*uxx[0] - v*ux[0];
}
void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gam)
{
 if (x == 0.0) {
 *alpha = 1.0;
 *beta = 0.0;
 *gam = 1.0;
 } else {
 *alpha = 1.0;
 *beta = 0.0;
 *gam = 0.0;
 }
}

Output

 solution at t = 1.00
 1 2 3 4 5 6
 1.000 1.000 1.000 1.000 1.000 1.000
 7 8 9 10 11 12
 1.000 1.000 1.000 1.000 1.000 1.000
 13 14 15 16 17 18
 1.000 1.000 1.000 1.000 1.000 1.000
 19 20 21 22 23 24
 1.000 1.000 1.000 1.000 1.000 1.000
 25 26 27 28 29 30
688

 Differential Equations modified_method_of_lines
 1.000 1.000 1.000 1.000 1.000 1.000
 31 32 33 34 35 36
 1.000 1.000 1.000 1.000 1.000 1.000
 37 38 39 40 41 42
 1.000 1.000 1.000 1.000 1.000 1.000
 43 44 45 46 47 48
 1.000 1.000 1.000 1.000 1.000 1.000
 49 50 51 52 53 54
 1.000 0.997 0.984 0.969 0.953 0.937
 55 56 57 58 59 60
 0.921 0.905 0.888 0.872 0.855 0.838
 61 62 63 64 65 66
 0.821 0.804 0.786 0.769 0.751 0.733
 67 68 69 70 71 72
 0.715 0.696 0.678 0.659 0.640 0.621
 73 74 75 76 77 78
 0.602 0.582 0.563 0.543 0.523 0.502
 79 80 81 82 83 84
 0.482 0.461 0.440 0.419 0.398 0.376
 85 86 87 88 89 90
 0.354 0.332 0.310 0.288 0.265 0.242
 91 92 93 94 95 96
 0.219 0.196 0.172 0.148 0.124 0.100
 97 98 99 100
 0.075 0.050 0.025 0.000

Example 3

In this example, using imsl_f_modified_method_of_lines, the linear normalized diffusion PDE ut = uxx

is solved but with an optional use that provides values of the derivatives, ux, of the initial data. Due to errors in

the numerical derivatives computed by spline interpolation, more precise derivative values are required when the
initial data is u(x, 0) = 1 + cos[(2n - 1)πx], n > 1. The boundary conditions are “zero flux” conditions ux(0, t) = ux(1,

t) = 0 for t > 0.

This optional usage signals that the derivative of the initial data is passed by the user. The values u(x, tend) and
ux(x, tend) are output at the breakpoints with the optional usage.
689

 Differential Equations modified_method_of_lines
#include <imsl.h>
#include <math.h>
#include <stdio.h>
void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *);
int main()
{
 int i, j, npdes = 1, nstep = 10, nx = 10;
 float arg, hinit, tol, pi, t = 0.0, tend = 0.0;
 float deriv[10], xbreak[10], y[10];
 char title[50];
 void *state;
 pi = imsl_f_constant("pi", 0);
 arg = 9.0 * pi;
 /* Set breakpoints and initial conditions */
 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 1.0 + cos(arg * xbreak[i]);
 deriv[i] = -arg * sin(arg * xbreak[i]);
 }
 /* Initialize the solver */
 tol = sqrt(imsl_f_machine(4));
 imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE, deriv,
 0);
 for (j = 1; j <= nstep; j++) {
 tend += 0.001;
 /* Solve the problem */
 imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);
 /* Print results at every other t=tend */
 if (!(j % 2)) {
 sprintf(title, "\nsolution at t = %5.3f", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
 sprintf(title, "\nderivative at t = %5.3f", t);
 imsl_f_write_matrix(title, npdes, nx, deriv, 0);
 }
 }
}
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */
 *ut = *uxx;
690

 Differential Equations modified_method_of_lines
}
void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gam)
{
 /* Define the boundary conditions */
 alpha[0] = 0.0;
 beta[0] = 1.0;
 gam[0] = 0.0;
}

Output

 solution at t = 0.002
 1 2 3 4 5 6
 1.234 0.766 1.234 0.766 1.234 0.766
 7 8 9 10
 1.234 0.766 1.234 0.766

 derivative at t = 0.002
 1 2 3 4 5 6
0.000e+000 8.983e-007 -3.682e-008 1.772e-006 4.368e-008 2.619e-006
 7 8 9 10
-1.527e-006 4.956e-006 -3.003e-006 -3.009e-011

 solution at t = 0.004
 1 2 3 4 5 6
 1.054 0.946 1.054 0.946 1.054 0.946
 7 8 9 10
 1.054 0.946 1.054 0.946

 derivative at t = 0.004
 1 2 3 4 5 6
0.000e+000 2.646e-007 4.763e-007 1.009e-006 -5.439e-007 -8.247e-007
 7 8 9 10
3.142e-007 1.750e-006 -1.019e-006 4.300e-012

 solution at t = 0.006
 1 2 3 4 5 6
 1.012 0.988 1.012 0.988 1.012 0.988
 7 8 9 10
 1.012 0.988 1.012 0.988

 derivative at t = 0.006
 1 2 3 4 5 6
0.000e+000 4.923e-007 4.082e-008 6.763e-007 -3.347e-007 -7.026e-007
 7 8 9 10
691

 Differential Equations modified_method_of_lines
4.525e-007 3.456e-007 -5.008e-007 1.327e-012

 solution at t = 0.008
 1 2 3 4 5 6
 1.003 0.997 1.003 0.997 1.003 0.997
 7 8 9 10
 1.003 0.997 1.003 0.997

 derivative at t = 0.008
 1 2 3 4 5 6
0.000e+000 -1.323e-007 1.079e-006 2.271e-007 -7.651e-007 4.554e-007
 7 8 9 10
7.479e-007 -5.015e-009 -3.918e-007 2.261e-013

 solution at t = 0.010
 1 2 3 4 5 6
 1.001 0.999 1.001 0.999 1.001 0.999
 7 8 9 10
 1.001 0.999 1.001 0.999

 derivative at t = 0.010
 1 2 3 4 5 6
0.000e+000 9.523e-008 1.043e-006 3.912e-007 -6.791e-007 2.734e-008
 7 8 9 10
4.506e-007 2.447e-007 -2.414e-008 -1.161e-015

Example 4

In this example, consider the linear normalized hyperbolic PDE, utt = uxx, the “vibrating string” equation. This nat-

urally leads to a system of first order PDEs. Define a new dependent variable ut = v. Then, vt = uxx is the second

equation in the system. Take as initial data u(x, 0) = sin(πx) and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed

so u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. The exact solution to this problem is u(x, t) = sin(πx) cos(πt). Residuals are
computed at the output values of t for 0 < t ≤ 2. Output is obtained at 200 steps in increments of 0.01.

Even though the sample code imsl_f_modified_method_of_lines gives satisfactory results for this
PDE, users should be aware that for nonlinear problems, “shocks” can develop in the solution. The appearance of
shocks may cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pp 488-490, for an
introductory discussion of shocks in hyperbolic systems.
692

 Differential Equations modified_method_of_lines
#include <imsl.h>
#include <math.h>
#include <stdio.h>
void fcnut(int, float, float, float *, float *, float *, float *);
void fcnbc(int, float, float, float *, float *, float *);
int main()
{
 int i, j, npdes = 2, nstep = 200, nx = 10;
 float error[10], erru = 0.0, err, hinit, pi, t = 0.0, tend = 0.0;
 float deriv[20], tol, y[20], xbreak[10];
 void *state;
 pi = imsl_f_constant("pi", 0);
 /* Set breakpoints and initial conditions */
 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = sin(pi * xbreak[i]);
 y[nx + i] = 0.0;
 deriv[i] = pi * cos(pi * xbreak[i]);
 deriv[nx + i] = 0.0;
 }
 /* Initialize the solver */
 tol = sqrt(imsl_f_machine(4));
 imsl_f_modified_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE, deriv,
 0);
 for (j=1; j <= nstep; j++) {
 tend += 0.01;
 /* Solve the problem */
 imsl_f_modified_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Look at output at steps of 0.01 and compute errors */

 for (i = 0; i < nx; i++) {
 error[i] = y[i] - sin(pi * xbreak[i]) * cos(pi *tend);
 err = fabs(error[i]);
 if (err > erru) erru = err;
 }
 }
 printf("Maximum error in u(x,t) = %e\n", erru);
}
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */
693

 Differential Equations modified_method_of_lines
 ut[0] = u[1];
 ut[1] = uxx[0];
}
void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gam)
{
 /* Define the boundary conditions */
 alpha[0] = 1.0;
 beta[0] = 0.0;
 gam[0] = 0.0;
 alpha[1] = 1.0;
 beta[1] = 0.0;
 gam[1] = 0.0;
}

Output

Maximum error in u(x,t) = 5.757928e-003

Fatal Errors
IMSL_REPEATED_ERR_TEST_FAILURE After some initial success, the integration was

halted by repeated error test failures.

IMSL_INTEGRATION_HALTED_1 Integration halted after failing to pass the error test,
even after reducing the stepsize by a factor of
1.0E+10 to H = #. TOL = # may be too small.

IMSL_INTEGRATION_HALTED_2 Integration halted after failing to achieve corrector
convergence, even after reducing the stepsize by a
factor of 1.0E+10 to H = #. TOL = # may be too
small.

IMSL_INTEGRATION_HALTED_3 After some initial success, the integration was
halted by a test on TOL = #.

IMSL_TOL_TOO_SMALL_OR_STIFF On the next step X+H will equal X, with X = # and
H = #. Either TOL = # is too small or the problem is
stiff.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
694

 Differential Equations feynman_kac
feynman_kac

This function solves the generalized Feynman-Kac PDE on a rectangular grid using a finite element Galerkin

method. Initial and boundary conditions are satisfied. The solution is represented by a series of C2 Hermite quin-
tic splines.

Synopsis
#include <imsl.h>
void imsl_f_feynman_kac (int nxgrid, int ntgrid, int nlbcd, int nrbcd, float xgrid[],

float tgrid[], void fcn_fkcfiv(), void fcn_fkbcp(), float y[], float y_prime[],…, 0)

The typedouble function is imsl_d_feynman_kac.

Required Arguments
int nxgrid (Input)

Number of grid lines in the x-direction. nxgrid must be at least 2.

int ntgrid (Input)
Number of time points where an approximate solution is returned. The value ntgrid must be at
least 1.

int nlbcd (Input)
Number of left boundary conditions. It is required that 1 ≤nlbcd ≤ 3.

int nrbcd (Input)
Number of right boundary conditions. It is required that 1 ≤nrbcd ≤ 3.

float xgrid[] (Input)
Array of length nxgrid containing the breakpoints for the Hermite quintic splines used in the x dis-
cretization. The points in xgrid must be strictly increasing. The values xgrid[0] and
xgrid[nxgrid-1] are the endpoints of the interval.

more...
695

 Differential Equations feynman_kac
float tgrid[] (Input)
Array of length ntgrid containing the set of time points (in time-remaining units) where an approx-
imate solution is returned. The points in tgrid must be positive and strictly increasing.

void fcn_fkcfiv (float x, float t, int *iflag,float *value)
User-supplied function to compute the values of the coefficients for the Feynman-Kac
PDE and the initial data function .

float x (Input)
Space variable.

float t (Input)
Time variable.

int *iflag (Input/Output)
On entry, iflag indicates which coefficient or data function is to be computed. The follow-
ing table shows which value has to be returned by fcn_fkcfiv for all possible values of
iflag:

For non-zero input values of iflag, note when a coefficient does not depend on t. This is done by setting
iflag = 0 after the coefficient is defined. If there is time dependence, the value of iflag should not be
changed. This action will usually yield a more efficient algorithm because some finite element matrices do not
have to be reassembled for each t value.

float *value (Output)
Value of the coefficient or initial data function. Which value is computed depends on the
input value for iflag, see description of iflag.

void fcn_fkbcp (int nbc, float t,int *iflag,float values[])
User-supplied function to define boundary values that the solution of the differential equation must
satisfy. There are nlbcd conditions specified at the left end, , and nrbcd conditions at the right
end, . The boundary conditions are

iflag Computed coefficient

-1

0

1

2

3

σ, σ ′, μ, κ
p (x), xmin ≤ x ≤ xmax

σ ′ =
∂σ x, t
∂ x

p x

σ

μ

κ

xmin
xmax
696

 Differential Equations feynman_kac
int nbc (Input)
Number of boundary conditions. At xmin, nbc=nlbcd, at xmax, nbc = nrbcd.

float t (Input)
Time point of the boundary conditions.

int *iflag (Input/Output)
On entry, iflag indicates whether the coefficients for the left or right boundary conditions
are to be computed:

If there is no time dependence for one of the boundaries then set iflag = 0 after the
array values is defined for either end point. This flag can avoid unneeded continued com-
putation of the finite element matrices.

float values[] (Output)
Array of length 4 * max (nlbcd, nrbcd) containing the values of the boundary condition
coefficients in its first 4*nbc locations. The coefficients for xminare stored row-wise accord-
ing to the following scheme:

The coefficients for xmax are stored similarly.

float y[] (Output)
An array of size (ntgrid+1) by (3 × nxgrid) containing the coefficients of the Hermite representa-
tion of the approximate solution for the Feynman-Kac PDE at time points 0, tgrid[0], …,
tgrid[ntgrid-1]. The approximate solution is given by

for

iflag
Computed boundary
conditions

1 Left end, x = xmin

0 Right end, x = xmax

a x,t f + b x,t f x + c x,t f xx = d x,t , x = xmin or x = xmax

a1 xmin, t , b1 xmin, t , c1 xmin, t , d1 xmin, t
⋮

anlbcd xmin, t , bnlbcd xmin, t , cnlbcd xmin, t , dnlbcd xmin, t

f x,t = ∑
j=0

3*nxgrid−1
yi j β j x
697

 Differential Equations feynman_kac
The representation for the initial data at t = 0 is

The (ntgrid + 1) by (3 * nxgrid) matrix

is stored row-wise in array y.
After the integration, use row i of array y as input argument coef in function
imsl_f_feynman_kac_evaluate to obtain an array of values for f(x, t) or its partials

 at time point t=0,tgrid[i-1], i=1,…,ntgrid.
The expressions for the basis functions are represented piece-wise and can be found in Han-
son, R. (2008) Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements.

float y_prime[] (Output)
An array of size (ntgrid + 1) by (3 × nxgrid) containing the first derivatives of y at time points 0,
tgrid[0],…,tgrid[ntgrid - 1], i.e.

for

and

The (ntgrid + 1) by (3 *nxgrid) matrix

is stored row-wise in array y_prime.

t = tgrid i − 1 ,i = 1, … ,ntgrid

p x = ∑
j=0

3*nxgrid−1
y0 jβ j x

yi j i=0,…,ntgrid
j=0,…,3*nxgrid−1

f x, f xx, f xxx

β j x

f t x, t̄ = ∑
j=0

3*nxgrid−1
y′i j β j x

t─ = tgrid i − 1 ,i = 1, … ,ntgrid

f t x, t
─ = ∑

j=0

3*nxgrid−1
y′0 jβ j x for t─ = 0.

y′i j i=0,…,ntgrid
j=0,…,3*nxgrid−1
698

http://www.roguewave.com/getattachment/1bc46ef4-cf3e-4eb5-8e7c-493c9de60a97/Integrating-Feynman-Kac-Equations-Using-Hermite-Qutarget=

 Differential Equations feynman_kac
After the integration, use row i of array y_prime as input argument coef in function

imsl_f_feynman_kac_evaluate to obtain an array of values for the partials
at time point t=tgrid[i-1], i=1,…,ntgrid, and row 0 for the partials at t=0.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_feynman_kac (int nxgrid, int ntgrid, int nlbcd, int nrbcd,float xgrid[],

float tgrid[], void fcn_fkcfiv(), void fcn_fkbcp(), float y[], float y_prime[],

IMSL_FCN_FKCFIV_W_DATA, void fcn_fkcfiv(), void *data,
IMSL_FCN_FKBCP_W_DATA, void fcn_fkbcp(), void *data,
IMSL_FCN_INIT, void fcn_fkinit(),
IMSL_FCN_INIT_W_DATA, void fcn_fkinit(), void *data,
IMSL_FCN_FORCE, void fcn_fkforce(),
IMSL_FCN_FORCE_W_DATA, void fcn_fkforce(), void *data,
IMSL_ATOL_RTOL_SCALARS, float atol, float rtol,
IMSL_ATOL_RTOL_ARRAYS, float atol[], float rtol[]
IMSL_NDEGREE, int ndeg,
IMSL_TDEPEND, int tdepend[],
IMSL_MAX_STEP, float max_stepsize,
IMSL_INITIAL_STEPSIZE, float init_stepsize,
IMSL_MAX_NUMBER_STEPS, int max_steps,
IMSL_STEP_CONTROL, int step_control,
IMSL_MAX_BDF_ORDER, int max_bdf_order,
IMSL_T_BARRIER, float t_barrier,
IMSL_ISTATE, int istate[],
IMSL_EVALS, int nval[],
0)

Optional Arguments
IMSL_FCN_FKCFIV_W_DATA, void fcn_fkcfiv(float x, float t,int *iflag, float *value,

void *data), void *data (Input)
User-supplied function to compute the values of the coefficients for the Feynman-Kac
PDE and the initial data function . This function also accepts a pointer to the
object data supplied by the user.

f t, f tx, f txx, f txxx

σ, σ ′, μ, κ
p x , xmin ≤ x ≤ xmax
699

 Differential Equations feynman_kac
IMSL_FCN_FKBCP_W_DATA, void fcn_fkbcp(int nbc, float t,int *iflag,float values[],
void *data), void *data (Input)
User-supplied function to define boundary values that the solution of the differential equation must
satisfy. This function also accepts a pointer to data supplied by the user.

IMSL_FCN_INIT, void fcn_fkinit(int nxgrid, int ntgrid, float xgrid[], float tgrid[],
float time, float yprime[], float y[], float atol[], float rtol[]) (Input)
User-supplied function for adjustment of initial data or as an opportunity for output during the inte-
gration steps. The solution values of the model parameters are presented in the arrays y and
yprime at the integration points time = 0, tgrid[j], j=0,…,ntgrid-1. At the initial point,
integral least-squares estimates are made for representing the initial data . If this is not satis-
factory, fcn_fkinit can change the contents of y[] to match data for any reason.

int nxgrid (Input)
Number of grid lines in the x-direction.

int ntgrid (Input)
Number of time points where an approximate solution is returned.

float xgrid[] (Input)
Vector of length nxgrid containing the breakpoints for the Hermite quintic splines used in
the x discretization.

float tgrid[] (Input)
Vector of length ntgrid containing the set of time points (in time-remaining units) where an
approximate solution is returned.

float time (Input)
Time variable.

float yprime[] (Input)
Vector of length 3*nxgrid containing the derivative of the coefficients of the Hermite quin-
tic spline at time point time.

float y[] (Input/Output)
Vector of length 3 × nxgrid containing the coefficients of the Hermite quintic spline at time
point time.

float atol[] (Input/Output)
Array of length 3 × nxgridcontaining absolute error tolerances.

float rtol[] (Input/Output)
Array of length 3 × nxgrid containing relative error tolerances.

IMSL_FCN_INIT_W_DATA, void fcn_fkinit(int nxgrid, int ntgrid, float xgrid[],
float tgrid[], float time, float yprime[], float y[], float atol[], float rtol[], void *data),
void *data (Input)
User-supplied function for adjustment of initial data or as an opportunity for output during the inte-
gration steps which also accepts a pointer to data supplied by the user. For an explanation of the
other arguments of function fcn_fkinit, see optional argument IMSL_FCN_INIT.

p x
700

 Differential Equations feynman_kac
IMSL_FCN_FORCE, void fcn_fkforce(int interval, int ndeg, int nxgrid, float y[], float time,
float width, float xlocal[], float qw[], float u[],float phi[], float dphi[]) (Input)
Function fcn_fkforce is used in case there is a non-zero term in the Feynman-Kac dif-

ferential equation. If function fcn_fkforce is not used, it is assumed that is identically
zero.

int interval (Input)
Index indicating the bounds xgrid[interval-1] and xgrid[interval] of the inte-
gration interval, 1≤interval ≤ nxgrid-1.

int ndeg (Input)
The degree used for the Gauss-Legendre formulas.

int nxgrid (Input)
Number of grid lines in the x-direction.

float y[] (Input)
Vector of length 3*nxgrid containing the coefficients of the Hermite quintic spline repre-
senting the solution of the Feynman-Kac equation at time point time.

float time (Input)
Time variable.

float width (Input)
The interval width, width = xgrid[interval] - xgrid[interval-1].

float xlocal[] (Input)
Array of length ndeg containing the Gauss-Legendre points translated and normalized to
the interval [xgrid[interval-1], xgrid[interval]].

float qw[] (Input)
Vector of length ndeg containing the Gauss-Legendre weights.

float u[] (Input)

Array of dimension 12 by ndeg containing the basis function values that define at the
Gauss-Legendre points xlocal. Setting u[i+k*ndeg] and xlocal[i],

 is defined as

float phi[] (Output)
Vector of length 6 containing Gauss-Legendre approximations for the local contributions

where time and

ϕ f , x, t

ϕ f , x, t

β
~
x

uk,i : = xi : =
β
~
xi

β
~
(xi): = β

3* interval−1
xi , … ,β

3* interval+2
xi

T

= u0,i,u1,i,u2,i,u6,i,u7,i,u8,i)
T.

φt: = ∫xgrid interval−1
xgrid[interval]

Φ f ,x,t β
~
x dx,

t =
701

 Differential Equations feynman_kac
Vector phi contains elements

for i=0,…,5.

float dphi[] (Output)
Array of dimension 6 by 6 containing a Gauss-Legendre approximation for the Jacobian of
the local contributions at time,

The approximation to this symmetric matrix is stored row-wise, i.e.

for i, j = 0, …, 5.

IMSL_FCN_FORCE_W_DATA, void fcn_fkforce(int interval, int ndeg, int nxgrid, float y[],
float time, float width, float xlocal[], float qw[], float u[], float phi[], float dphi[],
void *data),void *data (Input)
Function fcn_fkforce is used in case there is a non-zero term in the Feynman-Kac dif-
ferential equation. This function also accepts a data pointer to data supplied by the user. For an
explanation of the other arguments of function fcn_fkforce, see optional argument
IMSL_FCN_FORCE.

IMSL_ATOL_RTOL_SCALARS, float atol, float rtol (Input)
Scalar values that apply to the error estimates of all components of the solution y in the differential
equation solver SDASLX. See optional argument IMSL_ATOL_RTOL_ARRAYS if separate toler-
ances are to be applied to each component of y.

Default: atol and rtol are set to 10-3 in single precision and 10-5 in double precision.

IMSL_ATOL_RTOL_ARRAYS, float atol[], float rtol[], (Input)
Componentwise tolerances are used for the computation of solution y in the differential equation
solver SDASLX. Arguments atol and rtol are pointers to arrays of length 3 × nxgrid to be
used for the absolute and relative tolerance and to be applied to each component of the solution, y.
See optional argument IMSL_ATOL_RTOL_SCALARS if scalar values of absolute and relative toler-
ances are to be applied to all components.

β
~
x : = β

3* interval−1
x , … , β

3* interval+2
x T

phi[i] = width *∑j=0

ndegGL−1qw j β
~

i xj ϕ(f ,xlocal[j],time)

φt t =

∂φt
∂ y = ∫xgrid[interval−1]

xgrid[interval] ∂Φ f ,x,t
∂ f β

~
x β

~T x dx.

dphi[j + i * 6] = width *∑
k=0

ndegGL−1
qw k β

~
i xk β

~
j xk

∂Φ
∂ f ∣x=xlocal k ,t=time

ϕ f , x, t
702

 Differential Equations feynman_kac
Default: All elements of atol and rtol are set to 10-3 in single precision and 10-5 in double
precision.

IMSL_NDEGREE,int ndeg (Input)
The degree used for the Gauss-Legendre formulas for constructing the finite element matrices. It is
required that ndeg ≥ 6.
Default: ndeg = 6.

IMSL_TDEPEND, int tdepend[] (Output)
Vector of length 7 indicating time dependence of the coefficients, boundary conditions and function
φ in the Feynman-Kac equation. If tdepend[i] = 0 then argument i is not time dependent, if
tdepend[i]=1 then argument i is time dependent.

IMSL_MAX_STEP, float max_stepsize (Input)
This is the maximum step size the integrator may take.

Default: max_stepsize = imsl_f_machine(2), the largest possible machine number.

IMSL_INITIAL_STEPSIZE, float init_stepsize (Input)
The starting step size for the integration. Must be less than zero since the integration is internally
done from t=0 to t=tgrid[ntgrid-1] in a negative direction.

Default: init_stepsize = -Ɛ, where Ɛ is the machine precision.

IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
The maximum number of steps between each output point of the integration.

Default: maxsteps = 500000.

i Computed coefficient

0

1

2

3

4 Left boundary conditions

5 Right boundary conditions

6 φ

σ ′

σ

μ

κ

703

 Differential Equations feynman_kac
IMSL_STEP_CONTROL, int step_control (Input)
Indicates which step control algorithm is used for the integration. If step_control = 0, then the
step control method of Söderlind is used. If step_control = 1, then the method used by the orig-
inal Petzold code SASSL is used.

Default: step_control = 0.
IMSL_MAX_BDF_ORDER, int max_bdf_order (Input)

Maximum order of the backward differentiation formulas used in the integrator. It is required that
1≤ max_bdf_order ≤ 5.

Default: max_bdf_order = 5.

IMSL_T_BARRIER, float t_barrier (Input)
This optional argument controls whether the code should integrate past a special point,
t_barrier, and then interpolate to get and at the points in tgrid[]. If this optional argu-
ment is present, the integrator assumes the equations either change on the alternate sides of
t_barrier or they are undefined there. In this case, the code creeps up to t_barrier in the
direction of integration. It is required that t_barrier ≥tgrid[ntgrid-1].
Default: t_barrier = tgrid[ntgrid-1].

IMSL_ISTATE, int istate[] (Output)
An array of length 7 whose entries flag the state of computation for the matrices and vectors
required in the integration. For each entry, a zero indicates that no computation has been done or
there is a time dependence. A one indicates that the entry has been computed and there is no time
dependence. The istate entries are as follows:

Default: istate[i] = 0 for I = 0,…,6.

IMSL_EVALS, int nval[] (Output)
Array of length 3 summarizing the number of evaluations required during the integration.

i Entry in istate

0 Mass Matrix, M

1 Stiffness matrix, N

2 Bending matrix, R

3 Weighted mass, K

4 Left boundary conditions

5 Right- boundary conditions

6 Forcing term

y y ′
704

 Differential Equations feynman_kac
Description
The generalized Feynman-Kac differential equation has the form

where the initial data satisfies . The derivatives are

The function imsl_f_feynman_kac uses a finite element Galerkin method over the rectangle

in to compute the approximate solution. The interval is decomposed with a grid

On each subinterval the solution is represented by

The values

are time-dependent coefficients associated with each interval. The basis functions are given for

i nval[i]

0 Number of residual function evaluations of
the DAE used in the model.

1 Number of factorizations of the differential
matrix associated with solving the DAE.

2 Number of linear system solve steps using
the differential matrix.

f t + μ x, t f x +
σ2 x, t
2 f xx − κ x, t f = ϕ f , x, t ,

f x, T = p x

f t =
∂ f
∂ t

xmin,xmax × T^ ,T

x, t xmin, xmax

xmin = x1 < x2 < … < xm = xmax .

f x,t = f ib0 z + f i+1b0 1 − z + hif i
′b1 z − hi f ′i+1b1 1 − z

+hi
2f i
′′b2 z + hi

2 f ′ ′i+1b2 1 − z .

f i, f ′i, f ′ ′i, f i+1, f ′i+1, f ′ ′i+1

b0, b1, b2
705

 Differential Equations feynman_kac
by

The Galerkin principle is then applied. Using the provided initial and boundary conditions leads to an Index 1 dif-
ferential-algebraic equation for the time-dependent coefficients

This system is integrated using the variable order, variable step algorithm DDASLX/SDASLX noted in Hanson
and Krogh, R. (2008) Solving Constrained Differential-Algebraic Systems Using Projections. Solution values and
their time derivatives are returned at a grid preceding time T, expressed in units of time remaining. For further
details of deriving and solving the system see Hanson, R. (2008) Integrating Feynman-Kac Equations Using Her-
mite Quintic Finite Elements. To evaluate f or its partial derivatives at any time point in the grid, use the function
imsl_f_feynman_kac_evaluate.

Examples

Example 1

The value of the American Option on a Vanilla Put can be no smaller than its European counterpart. That is due
to the American Option providing the opportunity to exercise at any time prior to expiration. This example com-
pares this difference – or premium value of the American Option – at two time values using the Black-Scholes
model. The example is based on Wilmott et al. (1996, p. 176), and uses the non-linear forcing or weighting term
described in Hanson, R. (2008), Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements, for
evaluating the price of the American Option. The coefficients, payoff, boundary conditions and forcing term for
American and European options are defined by the user functions fkcfiv_put, fkbcp_put and
fkforce_put, respectively. One breakpoint is set exactly at the strike price.

The sets of parameters in the computation are:

1. Strike price .

2. Volatility .

3. Times until expiration .

x ∈ xi, xi+1 , hi = xi+1 − xi, z = x − xi / hi, z ∈ 0, 1 ,

b0 z = − 6z5 + 15z4 − 10z3 + 1 = 1 − z 3 6z2 + 3z + 1 ,

b1 z = − 3z5 + 8z4 − 6z3 + z = 1 − z 3z 3z + 1 ,

b2 z = 1
2 −z5 + 3z4 − 3z3 + z2 = 1

2 1 − z
3z2.

f i, f ′i, f ′ ′i, f i+1, f ′i+1, f ′ ′i+1 = yi,yi+1,yi+2, … , i = 1, … ,m − 1

K = 10.0

σ = 0.4

= 1 / 4, 1 / 2
706

http://www.roguewave.com/getattachment/1bc46ef4-cf3e-4eb5-8e7c-493c9de60a97/Integrating-Feynman-Kac-Equations-Using-Hermite-Qutarget=
http://www.roguewave.com/getattachment/1bc46ef4-cf3e-4eb5-8e7c-493c9de60a97/Integrating-Feynman-Kac-Equations-Using-Hermite-Qutarget=
http://www.roguewave.com/getattachment/1bc46ef4-cf3e-4eb5-8e7c-493c9de60a97/Integrating-Feynman-Kac-Equations-Using-Hermite-Qutarget=
http://www.roguewave.com/getattachment/1bc46ef4-cf3e-4eb5-8e7c-493c9de60a97/Integrating-Feynman-Kac-Equations-Using-Hermite-Qutarget=

 Differential Equations feynman_kac
4. Interest rate .

5. .

6. .

The payoff function is the “vanilla option”, .

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define max(A,B) ((A) >= (B) ? (A) : (B))
#define NXGRID 61
#define NTGRID 2
#define NV 9
void fkcfiv_put(float, float, int *, float *);
void fkbcp_put(int, float, int *, float[]);
void fkforce_put(int, int, int, float[], float, float, float[],
 float[], float[], float[],float[], void *);
int main()
{
 /* Compute American Option Premium for Vanilla Put */
 /* The strike price */
 float KS = 10.0;
 /* The sigma value */
 float sigma = 0.4;
 /* Time values for the options */
 int nt = 2;
 float time[] = { 0.25, 0.5};
 /* Values of the underlying where evaluations are made */
 float xs[] = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0,
 12.0, 14.0, 16.0 };
 /* Value of the interest rate */
 float r = 0.1;
 /* Values of the min and max underlying values modeled */
 float x_min=0.0, x_max=30.0;
 /* Define parameters for the integration step. */
 int nint=NXGRID-1, n=3*NXGRID;
 float xgrid[NXGRID];
 float ye[(NTGRID+1)*3*NXGRID],yeprime[(NTGRID+1)*3*NXGRID];
 float ya[(NTGRID+1)*3*NXGRID], yaprime[(NTGRID+1)*3*NXGRID];
 float fe[NTGRID*NV], fa[NTGRID*NV];
 float dx;
 int i;
 int nlbcd = 2, nrbcd = 3;
 float atol = 0.2e-2;
 /* Array for user-defined data */

r = 0.1

xmin = 0.0, xmax = 30.0

nx = 61, n = 3 × nx = 183

p x = max K − x, 0
707

 Differential Equations feynman_kac
 float usr_data[3];
 /* Define an equally-spaced grid of points for the
 underlying price */
 dx = (x_max-x_min)/((float) nint);
 xgrid[0]=x_min;
 xgrid[NXGRID-1]=x_max;
 for (i=2; i<=NXGRID-1; i++) xgrid[i-1]=xgrid[i-2]+dx;
 usr_data[0] = KS;
 usr_data[1] = r;
 usr_data[2] = atol;
 imsl_f_feynman_kac(NXGRID, nt, nlbcd, nrbcd, xgrid, time,
 fkcfiv_put, fkbcp_put, ye, yeprime,
 IMSL_ATOL_RTOL_SCALARS, 0.5e-2, 0.5e-2,
 0);
 imsl_f_feynman_kac(NXGRID, nt, nlbcd, nrbcd, xgrid, time,
 fkcfiv_put, fkbcp_put, ya, yaprime,
 IMSL_FCN_FORCE_W_DATA, fkforce_put, usr_data,
 IMSL_ATOL_RTOL_SCALARS, 0.5e-2, 0.5e-2,
 0);
 /* Evaluate solutions at vector of points XS(:), at each
 time value prior to expiration. */
 for (i=0; i<nt; i++)
 {
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &ye[(i+1)*n],
 IMSL_RETURN_USER, &fe[i*NV], 0);
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &ya[(i+1)*n],
 IMSL_RETURN_USER, &fa[i*NV], 0);
 }
 printf("\nAmerican Option Premium for Vanilla Put, "
 "3 and 6 Months Prior to Expiry\n");
 printf("%7sNumber of equally spaced spline knots:%4d\n", " ",
 NXGRID);
 printf("%7sNumber of unknowns:%4d\n", " ", n);
 printf("%7sStrike=%6.2f, sigma=%5.2f, Interest Rate=%5.2f\n\n",
 " ",KS,sigma,r);
 printf("%7s%10s%20s%20s\n", " ","Underlying","European","American");
 for (i=0; i<NV; i++)
 printf("%7s%10.4f%10.4f%10.4f%10.4f%10.4f\n", " ", xs[i], fe[i],
 fe[i+NV], fa[i], fa[i+NV]);
}
/* These functions define the coefficients, payoff, boundary conditions
and forcing term for American and European Options. */
void fkcfiv_put(float x, float tx, int *iflag, float *value)
{
 /* The sigma value */
 float sigma=0.4;
 /* Value of the interest rate and continuous dividend */
 float strike_price=10.0, interest_rate=0.1, dividend=0.0;
 float zero=0.0;
 switch (*iflag)
 {
708

 Differential Equations feynman_kac
 case 0:
 /* The payoff function */
 *value = max(strike_price - x, zero);
 break;
 case -1:
 /* The coefficient derivative d sigma/ dx */
 *value = sigma;
 break;
 case 1:
 /* The coefficient sigma(x) */
 *value = sigma*x;
 break;
 case 2:
 /* The coefficient mu(x) */
 *value = (interest_rate - dividend) * x;
 break;
 case 3:
 /* The coefficient kappa(x) */
 *value = interest_rate;
 break;
 }
 /* Note that there is no time dependence */
 *iflag = 0;
 return;
}
void fkbcp_put(int nbc, float tx, int *iflag, float val[])
{
 switch (*iflag)
 {
 case 1:
 val[0] = 0.0; val[1] = 1.0; val[2] = 0.0;
 val[3] = -1.0; val[4] = 0.0; val[5] = 0.0;
 val[6] = 1.0; val[7] = 0.0;
 break;
 case 2:
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = 0.0; val[4] = 0.0; val[5] = 1.0;
 val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 break;
 }
 /* Note no time dependence */
 *iflag = 0;
 return;
}
void fkforce_put(int interval, int ndeg, int nxgrid,
 float y[], float time, float width, float xlocal[],
 float qw[], float u[], float phi[],float dphi[],
 void *data_ptr)
{
 int i, j, k, l;
 const int local=6;
 float yl[6], bf[6];
 float value, strike_price, interest_rate, zero=0.0, one=1.0;
 float rt, mu;
 float *data = NULL;
709

 Differential Equations feynman_kac
 data = (float *) data_ptr;
 for (i=0; i<local; i++)
 {
 yl[i] = y[3*interval-3+i];
 phi[i] = zero;
 }
 strike_price = data[0];
 interest_rate = data[1];
 value = data[2];
 mu=2.0;
 /* This is the local definition of the forcing term */
 for (j=1; j<=local; j++){
 for (l=1; l<=ndeg; l++)
 {
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+6*ndeg];
 bf[4] = u[(l-1)+7*ndeg];
 bf[5] = u[(l-1)+8*ndeg];
 rt = 0.0;
 for (k=0; k<local; k++)
 rt += yl[k]*bf[k];
 rt = value/(rt + value - (strike_price-xlocal[l-1]));
 phi[j-1] += qw[l-1] * bf[j-1] * pow(rt,mu);
 }
 }
 for (i=0; i<local; i++)
 phi[i] = -phi[i]*width*interest_rate*strike_price;
 /* This is the local derivative matrix for the forcing term */
 for (i=0; i<local*local; i++)
 dphi[i] = zero;
 for (j=1; j<=local; j++){
 for (i=1; i<=local; i++){
 for (l=1; l<=ndeg; l++)
 {
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+6*ndeg];
 bf[4] = u[(l-1)+7*ndeg];
 bf[5] = u[(l-1)+8*ndeg];
 rt = 0.0;
 for (k=0; k<local; k++)
 rt += yl[k]*bf[k];
 rt = one/(rt + value-(strike_price-xlocal[l-1]));
 dphi[i-1+(j-1)*local] += qw[l-1] * bf[i-1] * bf[j-1]
 * pow(rt, mu+1.0);
 }
 }
 }
710

 Differential Equations feynman_kac
 for (i=0; i<local*local; i++)
 dphi[i] = mu * dphi[i] * width * pow(value, mu) *
 interest_rate * strike_price;
 return;
}

Output

American Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry
 Number of equally spaced spline knots: 61
 Number of unknowns: 183
 Strike= 10.00, sigma= 0.40, Interest Rate= 0.10
 Underlying European American
 0.0000 9.7534 9.5136 10.0000 10.0000
 2.0000 7.7536 7.5138 8.0000 8.0000
 4.0000 5.7537 5.5156 6.0000 6.0000
 6.0000 3.7615 3.5683 4.0000 4.0000
 8.0000 1.9070 1.9168 2.0170 2.0865
 10.0000 0.6529 0.8548 0.6771 0.9030
 12.0000 0.1632 0.3371 0.1680 0.3519
 14.0000 0.0372 0.1270 0.0373 0.1321
 16.0000 0.0088 0.0483 0.0084 0.0501

Example 2

In Beckers (1980) there is a model for a Stochastic Differential Equation of option pricing. The idea is a
“constant elasticity of variance diffusion (or CEV) class”

The Black-Scholes model is the limiting case . A numerical solution of this diffusion model yields the price
of a call option. Various values of the strike price , time values, and power coefficient are used to evaluate
the option price at values of the underlying price. The sets of parameters in the computation are:

1. power .

2. strike price .

3. volatility .

4. times until expiration .

5. underlying prices .

6. interest rate .

7. .

8. .

dS = μSdt + σSα/2dW , 0 ≤ α < 2

α→ 2
K σ α

α = 2.0, 1.0, 0.0

K = 15.0, 20.0, 25.0

σ = 0.2, 0.3, 0.4

= 1 / 12, 4 / 12, 7 / 12

= 19.0, 20.0, 21.0

r = 0.05

xmin = 0, xmax = 60

nx = 121, n = 3 × nx = 363
711

 Differential Equations feynman_kac
With this model the Feynman-Kac differential equation is defined by identifying:

The payoff function is the “vanilla option”, .

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define max(A,B) ((A) >= (B) ? (A) : (B))
#define NXGRID 121
#define NTGRID 3
#define NV 3
void fcn_fkcfiv(float, float, int *, float *, void *);
void fcn_fkbcp(int, float, int *, float[], void *);
int main()
{
 /* Compute Constant Elasticity of Variance Model for Vanilla Call */

 /* The set of strike prices */
 float KS[] = { 15.0, 20.0, 25.0};

 /* The set of sigma values */
 float sigma[] = { 0.2, 0.3, 0.4};

 /* The set of model diffusion powers */
 float alpha[] = { 2.0, 1.0, 0.0};

 /* Time values for the options */
 int nt = 3;
 float time[] = { 1.0/12.0, 4.0/12.0, 7.0/12.0 };
 /* Values of the underlying where evaluations are made */
 float xs[] = { 19.0, 20.0, 21.0};
 /* Value of the interest rate and continuous dividend */
 float r=0.05, dividend=0.0;
 /* Values of the min and max underlying values modeled */
 float x_min=0.0, x_max=60.0;

 /* Define parameters for the integration step. */

x: S

σ x, t : σxα/2; ∂σ
∂ x =

aσ
2 x

α/2−1

μ x, t : rx

κ x, t : r

ϕ f , x, t ≡ 0

p x = max x − K, 0
712

 Differential Equations feynman_kac
 int nint = NXGRID-1, n=3*NXGRID;
 float xgrid[NXGRID], y[(NTGRID+1)*3*NXGRID];
 float yprime[(NTGRID+1)*3*NXGRID], f[NTGRID*NV];
 float dx;
 /* Number of left/right boundary conditions */
 int nlbcd = 3, nrbcd = 3;

 float usr_data[6];

 int i,i1,i2,i3,j;
 /* Define equally-spaced grid of points for the underlying price */

 dx = (x_max-x_min)/((float) nint);
 xgrid[0] = x_min;
 xgrid[NXGRID-1] = x_max;

 for (i=2; i<=NXGRID-1; i++)
 xgrid[i-1] = xgrid[i-2]+dx;

 printf("%2sConstant Elasticity of Variance Model for Vanilla Call\n",
 " ");
 printf("%7sInterest Rate:%7.3f\tContinuous Dividend:%7.3f\n",
 " ", r, dividend);
 printf("%7sMinimum and Maximum Prices of Underlying:%7.2f%7.2f\n",
 " ",x_min, x_max);
 printf("%7sNumber of equally spaced spline knots:%4d \n", " ",
 NXGRID-1);
 printf("%7sNumber of unknowns:%4d\n\n", " ",n);
 printf("%7sTime in Years Prior to Expiration:%7.4f%7.4f%7.4f\n",
 " ",time[0], time[1], time[2]);
 printf("%7sOption valued at Underlying Prices:%7.2f%7.2f%7.2f\n\n",
 " ", xs[0], xs[1], xs[2]);

 for (i1=1; i1<=3; i1++) /* Loop over power */
 for (i2=1; i2<=3; i2++) /* Loop over volatility */
 for (i3=1; i3<=3; i3++) /* Loop over strike price */
 {
 /* Pass data through into evaluation functions. */
 usr_data[0] = KS[i3-1];
 usr_data[1] = x_max;
 usr_data[2] = sigma[i2-1];
 usr_data[3] = alpha[i1-1];
 usr_data[4] = r;
 usr_data[5] = dividend;

 imsl_f_feynman_kac(NXGRID, nt, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, y, yprime,
 IMSL_FCN_FKCFIV_W_DATA, fcn_fkcfiv, usr_data,
 IMSL_FCN_FKBCP_W_DATA, fcn_fkbcp, usr_data, 0);

 /* Evaluate solution at vector of points xs, at each time
 Value prior to expiration. */
 for (i=0; i<NTGRID; i++)
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs,
 &y[(i+1)*n], IMSL_RETURN_USER, &f[i*NV], 0);

 printf("%2sStrike=%5.2f, Sigma=%5.2f, Alpha=%5.2f\n",
 " ", KS[i3-1], sigma[i2-1], alpha[i1-1]);
713

 Differential Equations feynman_kac

 for (i=0; i<NV; i++)
 {
 printf("%23sCall Option Values%2s", " ", " ");
 for (j=0; j<nt; j++) printf("%7.4f ", f[j*NV+i]);
 printf("\n");
 }
 printf("\n");
 }
}
void fcn_fkcfiv(float x, float tx, int *iflag, float *value,
 void *data_ptr)
{
 float sigma, strike_price, interest_rate;
 float alpha, dividend, zero=0.0, half=0.5;
 float *data = NULL;

 data = (float *)data_ptr;

 strike_price = data[0];
 sigma = data[2];
 alpha = data[3];
 interest_rate = data[4];
 dividend = data[5];

 switch (*iflag)
 {
 case 0:
 /* The payoff function */
 *value = max(x - strike_price, zero);
 break;
 case -1:
 /* The coefficient derivative d sigma/ dx */
 *value = half * alpha * sigma * pow(x, alpha*half-1.0);
 break;
 case 1:
 /* The coefficient sigma(x) */
 *value = sigma * pow(x, alpha*half);
 break;

 case 2:
 /* The coefficient mu(x) */
 *value = (interest_rate - dividend) * x;
 break;

 case 3:
 /* The coefficient kappa(x) */
 *value = interest_rate;
 break;
 }
 data = NULL;
 /* Note that there is no time dependence */
 *iflag = 0;
 return;
714

 Differential Equations feynman_kac
}

void fcn_fkbcp(int nbc, float tx, int *iflag, float val[],
 void *data_ptr)
{
 float x_max, df, interest_rate, strike_price;
 float *data = NULL;

 data = (float *)data_ptr;

 strike_price = data[0];
 x_max = data[1];
 interest_rate = data[4];
 switch (*iflag)
 {
 case 1:
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = 0.0; val[4] = 0.0; val[5] = 1.0;
 val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 /* Note no time dependence at left end */
 *iflag = 0;
 break;

 case 2:
 df = exp(interest_rate*tx);
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = x_max - df*strike_price; val[4] = 0.0;
 val[5] = 1.0; val[6] = 0.0; val[7] = 1.0;
 val[8] = 0.0; val[9] = 0.0; val[10] = 1.0;
 val[11] = 0.0;
 break;
 }

 data = NULL;
 return;
}

Output

 Constant Elasticity of Variance Model for Vanilla Call
 Interest Rate: 0.050 Continuous Dividend: 0.000
 Minimum and Maximum Prices of Underlying: 0.00 60.00
 Number of equally spaced spline knots: 120
 Number of unknowns: 363
 Time in Years Prior to Expiration: 0.0833 0.3333 0.5833
 Option valued at Underlying Prices: 19.00 20.00 21.00
 Strike=15.00, Sigma= 0.20, Alpha= 2.00
 Call Option Values 4.0624 4.2577 4.4730
 Call Option Values 5.0624 5.2507 5.4491
 Call Option Values 6.0624 6.2487 6.4386
 Strike=20.00, Sigma= 0.20, Alpha= 2.00
 Call Option Values 0.1310 0.5956 0.9699
715

 Differential Equations feynman_kac
 Call Option Values 0.5028 1.0889 1.5100
 Call Option Values 1.1979 1.7485 2.1751
 Strike=25.00, Sigma= 0.20, Alpha= 2.00
 Call Option Values 0.0000 0.0113 0.0742
 Call Option Values 0.0000 0.0372 0.1614
 Call Option Values 0.0007 0.1025 0.3132
 Strike=15.00, Sigma= 0.30, Alpha= 2.00
 Call Option Values 4.0637 4.3399 4.6623
 Call Option Values 5.0626 5.2945 5.5788
 Call Option Values 6.0624 6.2709 6.5241
 Strike=20.00, Sigma= 0.30, Alpha= 2.00
 Call Option Values 0.3103 1.0274 1.5500
 Call Option Values 0.7315 1.5422 2.1024
 Call Option Values 1.3758 2.1689 2.7385
 Strike=25.00, Sigma= 0.30, Alpha= 2.00
 Call Option Values 0.0006 0.1112 0.3547
 Call Option Values 0.0038 0.2170 0.5552
 Call Option Values 0.0184 0.3857 0.8225
 Strike=15.00, Sigma= 0.40, Alpha= 2.00
 Call Option Values 4.0759 4.5136 4.9673
 Call Option Values 5.0664 5.4199 5.8321
 Call Option Values 6.0635 6.3577 6.7294
 Strike=20.00, Sigma= 0.40, Alpha= 2.00
 Call Option Values 0.5116 1.4645 2.1286
 Call Option Values 0.9623 1.9957 2.6944
 Call Option Values 1.5815 2.6110 3.3230
 Strike=25.00, Sigma= 0.40, Alpha= 2.00
 Call Option Values 0.0083 0.3288 0.7790
 Call Option Values 0.0285 0.5169 1.0657
 Call Option Values 0.0813 0.7688 1.4103
 Strike=15.00, Sigma= 0.20, Alpha= 1.00
 Call Option Values 4.0624 4.2479 4.4311
 Call Option Values 5.0624 5.2479 5.4311
 Call Option Values 6.0624 6.2479 6.4311
 Strike=20.00, Sigma= 0.20, Alpha= 1.00
 Call Option Values 0.0000 0.0241 0.1061
 Call Option Values 0.1498 0.4102 0.6483
 Call Option Values 1.0832 1.3313 1.5772
 Strike=25.00, Sigma= 0.20, Alpha= 1.00
 Call Option Values 0.0000 -0.0000 0.0000
 Call Option Values 0.0000 0.0000 0.0000
 Call Option Values -0.0000 0.0000 0.0000
 Strike=15.00, Sigma= 0.30, Alpha= 1.00
 Call Option Values 4.0624 4.2477 4.4310
 Call Option Values 5.0624 5.2477 5.4310
 Call Option Values 6.0624 6.2477 6.4310
 Strike=20.00, Sigma= 0.30, Alpha= 1.00
 Call Option Values 0.0016 0.0812 0.2214
716

 Differential Equations feynman_kac
 Call Option Values 0.1981 0.4981 0.7535
 Call Option Values 1.0836 1.3441 1.6018
 Strike=25.00, Sigma= 0.30, Alpha= 1.00
 Call Option Values -0.0000 0.0000 0.0000
 Call Option Values -0.0000 0.0000 0.0000
 Call Option Values -0.0000 0.0000 0.0005
 Strike=15.00, Sigma= 0.40, Alpha= 1.00
 Call Option Values 4.0624 4.2479 4.4312
 Call Option Values 5.0624 5.2479 5.4312
 Call Option Values 6.0624 6.2479 6.4312
 Strike=20.00, Sigma= 0.40, Alpha= 1.00
 Call Option Values 0.0072 0.1556 0.3445
 Call Option Values 0.2501 0.5919 0.8720
 Call Option Values 1.0867 1.3783 1.6577
 Strike=25.00, Sigma= 0.40, Alpha= 1.00
 Call Option Values -0.0000 0.0000 0.0001
 Call Option Values 0.0000 0.0000 0.0007
 Call Option Values 0.0000 0.0002 0.0059
 Strike=15.00, Sigma= 0.20, Alpha= 0.00
 Call Option Values 4.0625 4.2479 4.4311
 Call Option Values 5.0625 5.2479 5.4312
 Call Option Values 6.0623 6.2479 6.4312
 Strike=20.00, Sigma= 0.20, Alpha= 0.00
 Call Option Values 0.0001 0.0001 0.0002
 Call Option Values 0.0816 0.3316 0.5748
 Call Option Values 1.0818 1.3308 1.5748
 Strike=25.00, Sigma= 0.20, Alpha= 0.00
 Call Option Values 0.0000 -0.0000 -0.0000
 Call Option Values 0.0000 -0.0000 -0.0000
 Call Option Values -0.0000 0.0000 -0.0000
 Strike=15.00, Sigma= 0.30, Alpha= 0.00
 Call Option Values 4.0624 4.2479 4.4311
 Call Option Values 5.0625 5.2479 5.4311
 Call Option Values 6.0623 6.2479 6.4311
 Strike=20.00, Sigma= 0.30, Alpha= 0.00
 Call Option Values 0.0000 -0.0000 0.0029
 Call Option Values 0.0895 0.3326 0.5753
 Call Option Values 1.0826 1.3306 1.5749
 Strike=25.00, Sigma= 0.30, Alpha= 0.00
 Call Option Values 0.0000 -0.0000 -0.0000
 Call Option Values 0.0000 -0.0000 -0.0000
 Call Option Values 0.0000 -0.0000 -0.0000
 Strike=15.00, Sigma= 0.40, Alpha= 0.00
 Call Option Values 4.0624 4.2479 4.4312
 Call Option Values 5.0624 5.2479 5.4312
 Call Option Values 6.0624 6.2479 6.4312
 Strike=20.00, Sigma= 0.40, Alpha= 0.00
 Call Option Values -0.0000 0.0001 0.0111
717

 Differential Equations feynman_kac
 Call Option Values 0.0985 0.3383 0.5781
 Call Option Values 1.0830 1.3306 1.5749
 Strike=25.00, Sigma= 0.40, Alpha= 0.00
 Call Option Values 0.0000 0.0000 -0.0000
 Call Option Values 0.0000 -0.0000 -0.0000
 Call Option Values 0.0000 -0.0000 -0.0000

Example 3

This example evaluates the price of a European Option using two payoff strategies: Cash-or-Nothing and Vertical
Spread. In the first case the payoff function is

The value B is regarded as the bet on the asset price, see Wilmott et al. (1995, p. 39-40). The second case has the
payoff function

Both problems use the same boundary conditions. Each case requires a separate integration of the Black-
Scholes differential equation, but only the payoff function evaluation differs in each case. The sets of parameters
in the computation are:

1. Strike and bet prices K1={10.0}, K2 = {15.0}, and B = {2.0}.

2. Volatility σ= {0.4}.

3. Times until expiration = {1/4, 1/2}.

4. Interest rate r = 0.1.

5. xmin = 0, xmax = 30.

6. nx =61, n = 3 × nx = 183.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define max(A,B) ((A) >= (B) ? (A) : (B))
#define NXGRID 61
#define NTGRID 2
#define NV 12
void fkcfiv_call(float, float, int *, float *, void *);
void fkbcp_call(int, float, int *, float[], void *);
int main()
{

p x =
0, x ≤ K
B, x > K

p x = max x − K1 − max x − K2 , K2 > K1
718

 Differential Equations feynman_kac
 int i;
 /* The strike price */
 float KS1 = 10.0;
 /* The spread value */
 float KS2 = 15.0;
 /* The Bet for the Cash-or-Nothing Call */
 float bet = 2.0;
 /* The sigma value */
 float sigma = 0.4;
 /* Time values for the options */
 int nt = 2;
 float time[] = {0.25, 0.5};

 /* Values of the underlying where evaluations are made */
 float xs[NV];

 /* Value of the interest rate and continuous dividend */
 float r = 0.1, dividend=0.0;

 /* Values of the min and max underlying values modeled */
 float x_min=0.0, x_max=30.0;

 /* Define parameters for the integration step. */
 int nint=NXGRID-1, n=3*NXGRID;

 float xgrid[NXGRID];
 float yb[(NTGRID+1)*3*NXGRID], ybprime[(NTGRID+1)*3*NXGRID];
 float yv[(NTGRID+1)*3*NXGRID], yvprime[(NTGRID+1)*3*NXGRID];
 float fb[NTGRID*NV], fv[NTGRID*NV];
 float dx;

 /* Number of left/right boundary conditions. */
 int nlbcd = 3, nrbcd = 3;
 /* Structure for the evaluation functions. */
 struct {
 int idope[1];
 float rdope[7];
 } usr_data;

 /* Define an equally-spaced grid of points for the underlying
 price */
 dx = (x_max-x_min)/((float)(nint));
 xgrid[0]=x_min;
 xgrid[NXGRID-1]=x_max;
 for (i=2; i<=NXGRID-1; i++)
 xgrid[i-1] = xgrid[i-2]+dx;
 for (i=1; i<=NV; i++)
 xs[i-1] = 2.0+(i-1)*2.0;

 usr_data.rdope[0] = KS1;
 usr_data.rdope[1] = bet;
 usr_data.rdope[2] = KS2;
 usr_data.rdope[3] = x_max;
 usr_data.rdope[4] = sigma;
 usr_data.rdope[5] = r;
 usr_data.rdope[6] = dividend;

719

 Differential Equations feynman_kac
 /* Flag the difference in payoff functions */
 /* 1 for the Bet, 2 for the Vertical Spread */

 usr_data.idope[0] = 1;

 imsl_f_feynman_kac(NXGRID, NTGRID, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, yb, ybprime,
 IMSL_FCN_FKCFIV_W_DATA, fkcfiv_call, &usr_data,
 IMSL_FCN_FKBCP_W_DATA, fkbcp_call, &usr_data,
 0);
 usr_data.idope[0] = 2;

 imsl_f_feynman_kac(NXGRID, NTGRID, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, yv, yvprime,
 IMSL_FCN_FKCFIV_W_DATA, fkcfiv_call, &usr_data,
 IMSL_FCN_FKBCP_W_DATA, fkbcp_call, &usr_data,
 0);
 /* Evaluate solutions at vector of points XS(:), at each time value
 prior to expiration. */

 for (i=0; i<NTGRID; i++)
 {
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &yb[(i+1)*n],
 IMSL_RETURN_USER, &fb[i*NV], 0);
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &yv[(i+1)*n],
 IMSL_RETURN_USER, &fv[i*NV], 0);
 }
 printf("%2sEuropean Option Value for A Bet\n", " ");
 printf("%3sand a Vertical Spread, 3 and 6 Months Prior to Expiry\n",
 " ");
 printf("%5sNumber of equally spaced spline knots:%4d\n", " ",
 NXGRID);
 printf("%5sNumber of unknowns:%4d\n", " ", n);
 printf("%5sStrike=%5.2f, Sigma=%5.2f, Interest Rate=%5.2f\n",
 " ", KS1, sigma, r);
 printf("%5sBet=%5.2f, Spread Value=%5.2f\n\n", " ", bet, KS2);
 printf("%17s%18s%18s\n", "Underlying", "A Bet", "Vertical Spread");
 for (i=0; i<NV; i++)
 printf("%8s%9.4f%9.4f%9.4f%9.4f%9.4f\n", " ", xs[i], fb[i],
 fb[i+NV], fv[i], fv[i+NV]);
}

/* These functions define the coefficients, payoff, boundary conditions
 and forcing term for American and European Options. */
void fkcfiv_call(float x, float tx, int *iflag, float *value,
 void *data_ptr)
{
 float sigma, strike_price, interest_rate;
 float spread, bet, dividend, zero=0.0;
 float *data_real = NULL;
 int *data_int = NULL;
 struct struct_data {
 int idope[1];
 float rdope[7];
720

 Differential Equations feynman_kac
 };

 struct struct_data *data = NULL;
 data = data_ptr;

 data_real = data->rdope;
 data_int = data->idope;

 strike_price = data_real[0];
 bet = data_real[1];
 spread = data_real[2];
 sigma = data_real[4];
 interest_rate = data_real[5];
 dividend = data_real[6];
 switch (*iflag)
 {

 case 0:
 /* The payoff function - Use flag passed to decide which */
 switch (data_int[0])
 {
 case 1:
 /* After reaching the strike price the payoff jumps
 from zero to the bet value. */
 *value = zero;
 if (x > strike_price) *value = bet;
 break;
 case 2:
 /* Function is zero up to strike price.
 Then linear between strike price and spread.
 Then has constant value Spread-Strike Price after
 the value Spread. */
 *value = max(x-strike_price, zero)-max(x-spread, zero);
 break;
 }
 break;

 case -1:
 /* The coefficient derivative d sigma/ dx */
 *value = sigma;
 break;

 case 1:
 /* The coefficient sigma(x) */
 *value = sigma*x;
 break;

 case 2:
 /* The coefficient mu(x) */
 *value = (interest_rate - dividend)*x;
 break;

 case 3:
 /* The coefficient kappa(x) */
 *value = interest_rate;
 break;
 }
 /* Note that there is no time dependence */
721

 Differential Equations feynman_kac
 *iflag = 0;
 data_real = NULL;
 data_int = NULL;
 data = NULL;
 return;
}
void fkbcp_call(int nbc, float tx, int *iflag, float val[],
 void *data_ptr)
{
 float strike_price, spread, bet, interest_rate, df;
 int *data_int = NULL;
 float *data_real = NULL;
 struct struct_data {
 int idope[1];
 float rdope[7];
 };
 struct struct_data *data = NULL;
 data = data_ptr;

 data_int = data->idope;
 data_real = data->rdope;
 strike_price = data_real[0];
 bet = data_real[1];
 spread = data_real[2];
 interest_rate = data_real[5];

 switch (*iflag)
 {
 case 1:
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = 0.0; val[4] = 0.0; val[5] = 1.0;
 val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 /* Note no time dependence in case (1) for IFLAG */
 *iflag = 0;
 break;

 case 2:
 /* This is the discount factor using the risk-free
 interest rate */
 df = exp(interest_rate*tx);
 /* Use flag passed to decide on boundary condition */
 switch (data_int[0])
 {
 case 1:
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = bet*df;
 break;
 case 2:
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = (spread-strike_price)*df;
 break;
 }
 val[4] = 0.0; val[5] = 1.0; val[6] = 0.0;
722

 Differential Equations feynman_kac
 val[7] = 0.0; val[8] = 0.0; val[9] = 0.0;
 val[10] = 1.0; val[11] = 0.0;
 break;
 }

 data_real = NULL;
 data_int = NULL;
 data = NULL;
 return;
}

Output

 European Option Value for A Bet
 and a Vertical Spread, 3 and 6 Months Prior to Expiry
 Number of equally spaced spline knots: 61
 Number of unknowns: 183
 Strike=10.00, Sigma= 0.40, Interest Rate= 0.10
 Bet= 2.00, Spread Value=15.00
 Underlying A Bet Vertical Spread
 2.0000 0.0000 0.0000 0.0000 0.0000
 4.0000 0.0000 0.0014 0.0000 0.0006
 6.0000 0.0110 0.0722 0.0039 0.0446
 8.0000 0.2690 0.4304 0.1479 0.3831
 10.0000 0.9948 0.9781 0.8909 1.1927
 12.0000 1.6095 1.4287 2.1911 2.2274
 14.0000 1.8654 1.6924 3.4255 3.1551
 16.0000 1.9337 1.8177 4.2264 3.8263
 18.0000 1.9476 1.8700 4.6264 4.2492
 20.0000 1.9501 1.8903 4.7911 4.4922
 22.0000 1.9505 1.8979 4.8497 4.6232
 24.0000 1.9506 1.9007 4.8685 4.6909

Example 4

This example evaluates the price of a convertible bond. Here, convertibility means that the bond may, at any time
of the holder’s choosing, be converted to a multiple of the specified asset. Thus a convertible bond with price
returns an amount at time unless the owner has converted the bond to units of the asset at some
time prior to . This definition, the differential equation and boundary conditions are given in Chapter 18 of
Wilmott et al. (1996). Using a constant interest rate and volatility factor, the parameters and boundary conditions
are:

1. Bond face value , conversion factor

2. Volatility

3. Times until expiration

4. Interest rate , dividend

x
K T νx, ν ≥ 1,

T

K = 1 ν = 1.125

σ = 0.25

= 1 / 2, 1

r = 0.1 D = 0.02
723

 Differential Equations feynman_kac
5.

6.

7. Boundary conditions

8. Terminal data

9. Constraint for bond holder

Note that the error tolerance is set to a pure absolute error of value . The free boundary constraint

 is achieved by use of a non-linear forcing term in the function fkforce_cbond. The terminal
conditions are provided with the user function fkinit_cbond.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define max(A,B) ((A) >= (B) ? (A) : (B))
#define NXGRID 61
#define NTGRID 2
#define NV 13
void fkcfiv_cbond(float, float, int *, float *, void *);
void fkbcp_cbond(int, float, int *, float[], void *);
void fkforce_cbond(int, int, int, float[], float, float,
 float[], float[], float[], float[], float[], void *);
void fkinit_cbond(int, int, float[], float[], float,
 float[], float[], float[], float[], void *);
int main()
{
 int i;
 /* Compute value of a Convertible Bond */
 /* The face value */
 float KS = 1.0e0;
 /* The sigma or volatility value */
 float sigma = 0.25e0;
 /* Time values for the options */
 float time[] = { 0.5, 1.0};
 /* Values of the underlying where evaluation are made */
 float xs[NV];
 /* Value of the interest rate, continuous dividend and factor */
 float r = 0.1, dividend=0.02, factor = 1.125;
 /* Values of the min and max underlying values modeled */
 float x_min = 0.0, x_max = 4.0;
 /* Define parameters for the integration step. */

xmin = 0, xmax = 4

nx = 61, n = 3 × nx = 183

f 0,t = Kexp −r T − t , f xmax,t = νxmax

f x, T = max K, νx

f x, t ≥ νx

10−3

f x, t ≥ νx
724

 Differential Equations feynman_kac
 int nint = NXGRID-1, n=3*NXGRID;
 float xgrid[NXGRID];
 float y[(NTGRID+1)*3*NXGRID], yprime[(NTGRID+1)*3*NXGRID];
 float f[(NTGRID+1)*NV], dx;
 /* Array for user-defined data */
 float usr_data[8];
 float atol;
 /* Number of left/right boundary conditions. */
 int nlbcd = 3, nrbcd = 3;
 /*
 * Define an equally-spaced grid of points for the
 * underlying price
 */
 dx = (x_max-x_min)/((float) nint);
 xgrid[0] = x_min;
 xgrid[NXGRID-1] = x_max;
 for (i=2; i<=NXGRID-1; i++) xgrid[i-1] = xgrid[i-2] + dx;
 for (i=1; i<=NV; i++) xs[i-1] = (i-1)*0.25;
 /* Pass the data for evaluation */
 usr_data[0] = KS;
 usr_data[1] = x_max;
 usr_data[2] = sigma;
 usr_data[3] = r;
 usr_data[4] = dividend;
 usr_data[5] = factor;
 /* Use a pure absolute error tolerance for the integration */
 atol = 1.0e-3;
 usr_data[6] = atol;
 /* Compute value of convertible bond */
 imsl_f_feynman_kac(NXGRID, NTGRID, nlbcd, nrbcd, xgrid, time,
 NULL, NULL, y, yprime,
 IMSL_FCN_FKCFIV_W_DATA, fkcfiv_cbond, usr_data,
 IMSL_FCN_FKBCP_W_DATA, fkbcp_cbond, usr_data,
 IMSL_FCN_INIT_W_DATA, fkinit_cbond, usr_data,
 IMSL_FCN_FORCE_W_DATA, fkforce_cbond, usr_data,
 IMSL_ATOL_RTOL_SCALARS, 1.0e-3, 0.0e0,
 0);
 /*
 * Evaluate and display solutions at vector of points XS(:),
 * at each time value prior to expiration.
 */

 for (i=0; i<=NTGRID; i++)
 imsl_f_feynman_kac_evaluate (NV, NXGRID, xgrid, xs, &y[i*n],
 IMSL_RETURN_USER, &f[i*NV], 0);
 printf("%2sConvertible Bond Value, 0+, 6 and 12 Months Prior "
 "to Expiry\n", " ");
 printf("%5sNumber of equally spaced spline knots:%4d\n", " ",
 NXGRID);
 printf("%5sNumber of unknowns:%4d\n", " ",n);
725

 Differential Equations feynman_kac
 printf("%5sStrike=%5.2f, Sigma=%5.2f\n", " ", KS, sigma);
 printf("%5sInterest Rate=%5.2f, Dividend=%5.2f, Factor=%6.3f\n\n",
 " ", r, dividend, factor);
 printf("%15s%18s\n", "Underlying", "Bond Value");

 for (i=0; i<NV; i++)
 printf("%7s%8.4f%8.4f%8.4f%8.4f\n",
 " ", xs[i], f[i], f[i+NV], f[i+2*NV]);
}
/*
* These functions define the coefficients, payoff, boundary conditions
* and forcing term.
*/
void fkcfiv_cbond(float x, float tx, int *iflag, float *value,
 void *data_ptr)
{
 float sigma, strike_price, interest_rate;
 float dividend, factor, zero=0.0;
 float *data = NULL;
 data = (float *) data_ptr;

 strike_price = data[0];
 sigma = data[2];
 interest_rate = data[3];
 dividend = data[4];
 factor = data[5];
 switch(*iflag)
 {
 case 0:
 /* The payoff function - */
 *value = max(factor * x, strike_price);
 break;
 case -1:
 /* The coefficient derivative d sigma/ dx */
 *value = sigma;
 break;
 case 1:
 /* The coefficient sigma(x) */
 *value = sigma*x;
 break;
 case 2:
 /* The coefficient mu(x) */
 *value = (interest_rate - dividend) * x;
 break;
 case 3:
 /* The coefficient kappa(x) */
 *value = interest_rate;
 break;
 }
 /* Note that there is no time dependence */
 *iflag = 0;
}

void fkbcp_cbond(int nbc, float tx, int *iflag, float val[],
 void *data_ptr)
{

726

 Differential Equations feynman_kac
 float interest_rate, strike_price, dp, factor, x_max;
 float *data = NULL;
 data = (float *) data_ptr;
 switch (*iflag)
 {
 case 1:
 strike_price = data[0];
 interest_rate = data[3];
 dp = strike_price * exp(tx*interest_rate);
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = dp; val[4] = 0.0; val[5] = 1.0;
 val[6] = 0.0; val[7] = 0.0; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 break;

 case 2:
 x_max = data[1];
 factor = data[5];
 val[0] = 1.0; val[1] = 0.0; val[2] = 0.0;
 val[3] = factor*x_max; val[4] = 0.0; val[5] = 1.0;
 val[6] = 0.0; val[7] = factor; val[8] = 0.0;
 val[9] = 0.0; val[10] = 1.0; val[11] = 0.0;
 /* Note no time dependence */
 *iflag = 0;
 break;
 }
 return;
}

void fkforce_cbond(int interval, int ndeg, int nxgrid, float y[],
 float time, float width, float xlocal[], float qw[],
 float u[], float phi[], float dphi[], void *data_ptr)
{
 int i, j, k, l;
 const int local=6;
 float yl[6], bf[6];
 float value, strike_price, interest_rate, zero=0.e0;
 float one=1.0e0, rt, mu, factor;

 float *data = NULL;
 data = (float *) data_ptr;
 for (i=0; i<local; i++)
 {
 yl[i] = y[3*interval-3+i];
 phi[i] = zero;
 }

 for (i=0; i<local*local; i++)
 dphi[i] = zero;

 value = data[6];
 strike_price = data[0];
 interest_rate = data[3];
 factor = data[5];

 mu = 2.0;
727

 Differential Equations feynman_kac
 /*
 * This is the local definition of the forcing term -
 * It "forces" the constraint f >= factor*x.
 */
 for (j=1; j<=local; j++)
 for (l=1; l<=ndeg; l++)
 {
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+6*ndeg];
 bf[4] = u[(l-1)+7*ndeg];
 bf[5] = u[(l-1)+8*ndeg];

 rt = 0.0;
 for (k=0; k<local; k++)
 rt += yl[k]*bf[k];
 rt = value/(rt + value - factor * xlocal[l-1]);
 phi[j-1] += qw[l-1] * bf[j-1] * pow(rt,mu);
 }

 for (i=0; i<local; i++)
 phi[i] = -phi[i]*width*factor*strike_price;
 /*
 * This is the local derivative matrix for the forcing term
 */
 for (j=1; j<=local; j++)
 for (i=1; i<=local; i++)
 for (l=1; l<=ndeg; l++)
 {
 bf[0] = u[(l-1)];
 bf[1] = u[(l-1)+ndeg];
 bf[2] = u[(l-1)+2*ndeg];
 bf[3] = u[(l-1)+6*ndeg];
 bf[4] = u[(l-1)+7*ndeg];
 bf[5] = u[(l-1)+8*ndeg];
 rt = 0.0;
 for (k=0; k<local; k++) rt += yl[k]*bf[k];
 rt = one/(rt + value - factor * xlocal[l-1]);
 dphi[i-1+(j-1)*local] += qw[l-1] * bf[i-1] *
 bf[j-1] * pow(value*rt, mu) * rt;
 }

 for (i=0; i<local*local; i++)
 dphi[i] = -mu * dphi[i] * width * factor * strike_price;

 return;
}
void fkinit_cbond(int nxgrid, int ntgrid, float xgrid[], float tgrid[],
 float time, float yprime[], float y[], float atol[],
 float rtol[], void *data_ptr)
{
 int i;
 float *data = NULL;
728

 Differential Equations feynman_kac
 data = (float *) data_ptr;
 if (time == 0.0)
 {
 /* Set initial data precisely. */
 for (i=1; i<=nxgrid; i++)
 {
 if (xgrid[i-1] * data[5] < data[0])
 {
 y[3*i-3] = data[0];
 y[3*i-2] = 0.0;
 y[3*i-1] = 0.0;
 }
 else
 {
 y[3*i-3] = xgrid[i-1] * data[5];
 y[3*i-2] = data[5];
 y[3*i-1] = 0.0;
 }
 }
 }
 return;
}

Output

 Convertible Bond Value, 0+, 6 and 12 Months Prior to Expiry
 Number of equally spaced spline knots: 61
 Number of unknowns: 183
 Strike= 1.00, Sigma= 0.25
 Interest Rate= 0.10, Dividend= 0.02, Factor= 1.125
 Underlying Bond Value
 0.0000 1.0000 0.9512 0.9048
 0.2500 1.0000 0.9512 0.9049
 0.5000 1.0000 0.9513 0.9065
 0.7500 1.0000 0.9737 0.9605
 1.0000 1.1250 1.1416 1.1464
 1.2500 1.4063 1.4117 1.4121
 1.5000 1.6875 1.6922 1.6922
 1.7500 1.9688 1.9731 1.9731
 2.0000 2.2500 2.2540 2.2540
 2.2500 2.5312 2.5349 2.5349
 2.5000 2.8125 2.8160 2.8160
 2.7500 3.0938 3.0970 3.0970
 3.0000 3.3750 3.3781 3.3781

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
729

 Differential Equations feynman_kac_evaluate
feynman_kac_evaluate
Computes the value of a Hermite quintic spline or the value of one of its derivatives. In particular, computes solu-
tions to the Feynman-Kac PDE handled by function imsl_f_feynman_kac.

Synopsis
#include <imsl.h>
float *imsl_f_feynman_kac_evaluate (int nw, int m, float breakpoints[], float w[],

float coef[], …, 0)

The typedouble function is imsl_d_feynman_kac_evaluate.

Required Arguments
int nw (Input)

Length of the array containing the evaluation points of the spline.

int m (Input)
Number of breakpoints for the Hermite quintic spline interpolation. It is required that m 2. When
applied to imsl_f_feynman_kac, m is identical to argument nxgrid.

float breakpoints[] (Input)
Array of length m containing the breakpoints for the Hermite quintic spline interpolation. The break-
points must be in strictly increasing order. When applied to imsl_f_feynman_kac,
breakpoints[] is identical to array xgrid[].

float w[] (Input)
Vector of length nw containing the evaluation points for the spline. It is required that
breakpoints[0] w[i] breakpoints[m-1] for i=0,…,nw-1.

float coef[] (Input)
Vector of length 3*m containing the coefficients of the Hermite quintic spline.
When applied to imsl_f_feynman_kac, this vector is one of the rows of output arrays y or
y_prime related to the spline coefficients at time points t=tgrid[j], j=1, …,ntgrid.

≥

≤ ≤
730

 Differential Equations feynman_kac_evaluate
Return Value
A pointer to an array of length nw containing the values of the Hermite quintic spline or one of its derivatives at
the evaluation points in array w[]. If no values can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_feynman_kac_evaluate(int nw, int m, float breakpoints[], float w[],

float coef[],

IMSL_DERIV, int deriv,
IMSL_RETURN_USER, float value[],
0)

Optional Arguments
IMSL_DERIV, int deriv (Input)

Let d = deriv and let H(w) be the given Hermite quintic spline. Then, this option produces the d-th
derivative of H(w) at w, Hd(w). It is required that deriv = 0,1,2 or 3.
Default: deriv = 0.

IMSL_RETURN_USER, float value[] (Output)
A user defined array of length nw to receive the d-th derivative of at the evaluation points in
w[]. When using this option, the return value of the function is NULL.

Description

The Hermite quintic spline interpolation is done over the composite interval , where

 -breakpoints[i-1] = are given by .

The Hermite quintic spline function is constructed using three primary functions, defined by

For each

H x

xmin, xmax

xi xmin = x1 < x2 < … < xm = xmax

b0 z = − 6z5 + 15z4 − 10z3 + 1 = 1 − z 3 6z2 + 3z + 1 ,

b1 z = − 3z5 + 8z4 − 6z3 + z = 1 − z 3z 3z + 1 ,

b2 z = 1
2 −z5 + 3z4 − 3z3 + z2 = 1

2 1 − z
3z2.
731

 Differential Equations feynman_kac_evaluate
the spline is locally defined by

where

are the values of a given twice continuously differentiable function and its first two derivatives at the break-
points.

The approximating function is twice continuously differentiable on , whereas the third deriva-

tive is in general only continuous within the interior of the intervals . From the local representation of

 it follows that

The spline coefficients are stored as successive triplets in array coef[]. For a given

 , function imsl_f_feynman_kac_evaluate uses the information in coef[] together

with the values of and its derivatives at to compute using the local repre-
sentation on the particular subinterval containing .

Example

Consider function , a polynomial of degree 5, on the interval with breakpoints . Then, the
end derivative values are

and

Since the Hermite quintic interpolates all polynomials up to degree 5 exactly, the spline interpolation on
must agree with the exact function value up to rounding errors.

x ∈ xi, xi+1 , hi = xi+1 − xi, zi = x − xi / hi, i = 1, … , m − 1,

H x = y3i−2b0 z + y3i+1b0 1 − z + hiy3i−1b1 z

−hiy3i+2b1 1 − z + hi
2y3ib2 z + hi

2y3i+3b2 1 − z ,

y3i−2 = f xi ,y3i−1 = ∂ f / ∂ x xi = f ′ xi ,y3i = ∂2 f / ∂ x2 xi
= f ′ ′ xi ,i = 1, … ,m − 1

f

H x xmin, xmax
xi, xi+1

H x

H xi = f xi = y3i−2, H ′ xi = f ′ xi = y3i−1, H ′ ′ xi = y3i, i = 1, … , m

yi, i = 1, … , 3m,

w ∈ xmin, xmax

b0, b1, b2 w H
d
w , d = 0, … , 3

w

f x = x5 −1, 1 ±1

y1 = f −1 = − 1, y2 = f ′ −1 = 5, y3 = f ′ ′ −1 = − 20

y4 = f 1 = 1, y5 = f ′ 1 = 5, y6 = f ′ ′ 1 = 20

−1, 1
732

 Differential Equations feynman_kac_evaluate
#include <imsl.h>
#include <stdio.h>
#include <math.h>
/* Define function */
#define F(x) pow(x,5.0)
int main()
{
 int i;
 int nw = 7;
 int m = 2;
 float breakpoints[] = { -1.0, 1.0 };
 float w[] = { -0.75, -0.5, -0.25, 0.0,
 0.25, 0.5, 0.75 };
 float coef[] = { -1.0, 5.0, -20.0,
 1.0, 5.0, 20.0 };
 float *result = NULL;
 result = imsl_f_feynman_kac_evaluate(nw, m, breakpoints, w, coef, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n\n");
 for (i=0; i<=6; i++)
 printf(" %6.3f %10.3f %10.3f %10.7f\n", w[i], F(w[i]),
 result[i], fabs(F(w[i])-result[i]));
}

Output

 x F(x) Interpolant Error
 -0.750 -0.237 -0.237 0.0000000
 -0.500 -0.031 -0.031 0.0000000
 -0.250 -0.001 -0.001 0.0000000
 0.000 0.000 0.000 0.0000000
 0.250 0.001 0.001 0.0000000
 0.500 0.031 0.031 0.0000000
 0.750 0.237 0.237 0.0000000
733

 Differential Equations fast_poisson_2d
fast_poisson_2d

more...

Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

Synopsis
#include <imsl.h>
float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float coeff_u,

int nx, int ny, float ax, float bx, float ay, float by, Imsl_bc_type bc_type[], …, 0)

The type double function is imsl_d_fast_poisson_2d.

Required Arguments
float rhs_pde (float x, float y)

User-supplied function to evaluate the right-hand side of the partial differential equation at x and y.

float rhs_bc(Imsl_pde_side side, float x, float y)
User-supplied function to evaluate the right-hand side of the boundary conditions, on side side, at
x and y. The value of side will be one of the following: IMSL_RIGHT, IMSL_BOTTOM,
IMSL_LEFT, or IMSL_TOP.

float coeff_u (Input)
Value of the coefficient of u in the differential equation.

int nx (Input)
Number of grid lines in the x-direction. nx must be at least 4. See the Description section for further
restrictions on nx.

int ny (Input)
Number of grid lines in the y-direction. ny must be at least 4. See the Description section for further
restrictions on ny.

float ax (Input)
The value of x along the left side of the domain.
734

 Differential Equations fast_poisson_2d
float bx (Input)
The value of x along the right side of the domain.

float ay (Input)
The value of y along the bottom of the domain.

float by (Input)
The value of y along the top of the domain.

Imsl_bc_type bc_type[4] (Input)
Array of size 4 indicating the type of boundary condition on each side of the domain or that the solu-
tion is periodic. The sides are numbered as follows:

Return Value
An array of size nx by ny containing the solution at the grid points.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float coeff_u, int nx,

int ny, float ax, float bx, float ay, float by, Imsl_bc_type bc_type[],

IMSL_RETURN_USER, float u_user[],
IMSL_ORDER, int order,
IMSL_RHS_PDE_W_DATA, float rhs_pde(), void *data,

Side Location

IMSL_RIGHT_SIDE(0) x = bx
IMSL_BOTTOM_SIDE(1) y = ay
IMSL_LEFT_SIDE(2) x = ax
IMSL_TOP_SIDE(3) y = by
The three possible boundary condition types are as follows:

Type Location

IMSL_DIRICHLET_BC Value of u is given.

IMSL_NEUMANN_BC Value of du/dx is given (on the
right or left sides) or du/dy (on the
bottom or top of the domain).

IMSL_PERIODIC_BC Periodic
735

 Differential Equations fast_poisson_2d
IMSL_RHS_BC_W_DATA, float rhs_bc(), void *data,
0)

Optional Arguments
IMSL_RETURN_USER, float u_user[] (Output)

User-supplied array of size nx by ny containing the solution at the grid points.

IMSL_ORDER, int order (Input)
Order of accuracy of the finite-difference approximation. It can be either 2 or 4.
Default: order = 4

IMSL_RHS_PDE_W_DATA, float rhs_pde (float x, float y, void *data), void *data, (Input)
User-supplied function to evaluate the right-hand side of the partial differential equation at x and y,
which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be
passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduc-
tion to this manual for more details.

IMSL_RHS_BC_W_DATA, float rhs_bc(Imsl_pde_side side, float x, float y, void *data) , void *data,
(Input)
User-supplied function to evaluate right-hand side of the boundary conditions, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

Description
Let c = coeff_u, ax = ax, bx = bx, ay = ay, by = by, nx = nx and ny = ny.

imsl_f_fast_poisson_2d is based on the code HFFT2D by Boisvert (1984). It solves the equation

on the rectangular domain (ax, bx) × (ay, by) with a user-specified combination of Dirichlet (solution prescribed),

Neumann (first-derivative prescribed), or periodic boundary conditions. The sides are numbered clockwise, start-
ing with the right side.

∂2u
∂ x2

+ ∂
2u
∂ y2

+ cu = p
736

 Differential Equations fast_poisson_2d
When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any constant may be added
to the solution to obtain another solution to the problem. In this case, the solution of minimum ∞-norm is
returned.

The solution is computed using either a second-or fourth-order accurate finite-difference approximation of the
continuous equation. The resulting system of linear algebraic equations is solved using fast Fourier transform
techniques. The algorithm relies on the fact that nx - 1 is highly composite (the product of small primes). For

details of the algorithm, see Boisvert (1984). If nx - 1 is highly composite then the execution time of

imsl_f_fast_poisson_2d is proportional to nxnylog2nx. If evaluations of p(x, y) are inexpensive, then the

difference in running time between order = 2 and order = 4 is small.

The grid spacing is the distance between the (uniformly spaced) grid lines. It is given by the formulas hx = (bx -
ax)/(nx -1) and hy = (by - ay)/(ny - 1). The grid spacings in the x and y directions must be the same, i.e., nx
and ny must be such that hx is equal to hy. Also, as noted above, nx and ny must be at least 4. To increase the
speed of the fast Fourier transform, nx - 1 should be the product of small primes. Good choices are 17, 33, and
65.

If -coeff_u is nearly equal to an eigenvalue of the Laplacian with homogeneous boundary conditions, then the
computed solution might have large errors.

On some platforms, imsl_f_fast_poisson_2d can evaluate the user-supplied function fcn in parallel.
This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A
function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of
writing to global or static variables.
737

 Differential Equations fast_poisson_2d
Example
In this example, the equation

with the boundary conditions

on the bottom side and

on the other three sides is solved. The domain is the rectangle [0, ¼] ×[0, ½]. The output of
imsl_f_fast_poisson_2d is a 17 × 33 table of values. The functions imsl_f_spline_2d_value are
used to print a different table of values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 float rhs_pde(float, float);
 float rhs_bc(Imsl_pde_side, float, float);
 int nx = 17;
 int nxtabl = 5;
 int ny = 33;
 int nytabl = 5;
 int i;
 int j;
 Imsl_f_spline *sp;
 Imsl_bc_type bc_type[4];
 float ax, ay, bx, by;
 float x, y, xdata[17], ydata[33];
 float coefu, *u;
 float u_table;
 float abs_error;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Set rectangle size */
 ax = 0.0;
 bx = 0.25;
 ay = 0.0;
 by = 0.50;

δ2u
δx2

+ δ
2u
δy2

+ 3u = − 2sin x + 2y + 16e2x+3y

du
dy = 2cos x + 2y + 3e2x+3y

u = sin x + 2y + e2x+3y
738

 Differential Equations fast_poisson_2d
 /* Set boundary conditions */
 bc_type[IMSL_RIGHT_SIDE] = IMSL_DIRICHLET_BC;
 bc_type[IMSL_BOTTOM_SIDE] = IMSL_NEUMANN_BC;
 bc_type[IMSL_LEFT_SIDE] = IMSL_DIRICHLET_BC;
 bc_type[IMSL_TOP_SIDE] = IMSL_DIRICHLET_BC;
 /* Coefficient of u */
 coefu = 3.0;
 /* Solve the PDE */
 u = imsl_f_fast_poisson_2d(rhs_pde, rhs_bc, coefu, nx, ny,
 ax, bx, ay, by, bc_type,
 0);
 /* Set up for interpolation */
 for (i = 0; i < nx; i++)
 xdata[i] = ax + (bx - ax) * (float) i / (float) (nx - 1);
 for (i = 0; i < ny; i++)
 ydata[i] = ay + (by - ay) * (float) i / (float) (ny - 1);
 /* Compute interpolant */
 sp = imsl_f_spline_2d_interp(nx, xdata, ny, ydata, u,
 0);
 printf(" x y u error\n\n");
 for (i = 0; i < nxtabl; i++)
 for (j = 0; j < nytabl; j++) {
 x = ax + (bx - ax) * (float) j / (float) (nxtabl - 1);
 y = ay + (by - ay) * (float) i / (float) (nytabl - 1);
 u_table = imsl_f_spline_2d_value(x, y, sp,
 0);
 abs_error = fabs(u_table - sin(x + 2.0 * y) -
 exp(2.0 * x + 3.0 * y));
 /* Print computed answer and absolute on
 nxtabl by nytabl grid */
 printf(" %6.4f %6.4f %6.4f %8.2e\n",
 x, y, u_table, abs_error);
 }
}
float rhs_pde(float x, float y)
{
 /* Define the right side of the PDE */
 return (-2.0 * sin(x + 2.0 * y) + 16.0 * exp(2.0 * x + 3.0 * y));
}
float rhs_bc(Imsl_pde_side side, float x, float y)
{
 /* Define the boundary conditions */
 if (side == IMSL_BOTTOM_SIDE)
 return (2.0 * cos(x + 2.0 * y) + 3.0 * exp(2.0 * x + 3.0 *
 y));
 else
 return (sin(x + 2.0 * y) + exp(2.0 * x + 3.0 * y));
}

739

 Differential Equations fast_poisson_2d
Output

 x y u error
 0.0000 0.0000 1.0000 0.00e+00
 0.0625 0.0000 1.1956 5.12e-06
 0.1250 0.0000 1.4087 7.19e-06
 0.1875 0.0000 1.6414 5.10e-06
 0.2500 0.0000 1.8961 8.67e-08
 0.0000 0.1250 1.7024 1.73e-07
 0.0625 0.1250 1.9562 6.39e-06
 0.1250 0.1250 2.2345 9.50e-06
 0.1875 0.1250 2.5407 6.36e-06
 0.2500 0.1250 2.8783 1.66e-07
 0.0000 0.2500 2.5964 2.60e-07
 0.0625 0.2500 2.9322 9.25e-06
 0.1250 0.2500 3.3034 1.34e-05
 0.1875 0.2500 3.7148 9.27e-06
 0.2500 0.2500 4.1720 9.40e-08
 0.0000 0.3750 3.7619 4.84e-07
 0.0625 0.3750 4.2163 9.16e-06
 0.1250 0.3750 4.7226 1.36e-05
 0.1875 0.3750 5.2878 9.44e-06
 0.2500 0.3750 5.9199 5.72e-07
 0.0000 0.5000 5.3232 5.93e-07
 0.0625 0.5000 5.9520 9.84e-07
 0.1250 0.5000 6.6569 1.34e-06
 0.1875 0.5000 7.4483 4.55e-07
 0.2500 0.5000 8.3380 2.27e-06

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
740

 Transforms Functions
Transforms

Functions
Real Trigonometric FFTs

Real FFT . fft_real 744
Real FFT initialization .fft_real_init 749

Complex Exponential FFTs
Complex FFT . fft_complex 751
Complex FFT initialization . fft_complex_init 755

Real Sine and Cosine FFTs
Fourier cosine transform . fft_cosine 758
Fourier cosine transform initialization . fft_cosine_init 761
Fourier sine transform .fft_sine 765
Fourier sine transform initialization . fft_sine_init 768

Two-Dimensional FFTs
Complex two-dimensional FFT . fft_2d_complex 772

Convolution and Correlation
Real convolution/correlation . convolution 777
Complex convolution/correlation . convolution (complex) 784

Laplace Transform
Approximate inverse Laplace transform of a complex function inverse_laplace 791
741

 Transforms Usage Notes
Usage Notes

Fast Fourier Transforms
A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed efficiently. The straightfor-

ward method for computing the Fourier transform takes approximately n2 operations where n is the number of
points in the transform, while the FFT (which computes the same values) takes approximately n log n operations.
It uses the system’s high performance library for the computation, if available. The algorithms in this chapter are
modeled on the Cooley-Tukey (1965) algorithm. Hence, these functions are most efficient for integers that are
highly composite; that is, integers that are a product of small primes.

For the two functions imsl_f_fft_real and imsl_c_fft_complex there is a corresponding initialization
function. Use these functions only when repeatedly transforming sequences of the same length. In this situation,
the initialization function computes the initial setup once. Subsequently, the user calls the corresponding main
function with the appropriate option. This may result in substantial computational savings. For more information
on the use of these functions, consult the documentation under the appropriate function name.

In addition to the one-dimensional transformations described above, we also provide a complex two-dimensional
FFT and its inverse.

Continuous Versus Discrete Fourier Transform
There is, of course, a close connection between the discrete Fourier transform and the continuous Fourier trans-
form. Recall that the continuous Fourier transform is defined (Brigham 1974) as

We begin by making the following approximation:

If we approximate the last integral using the rectangle rule with spacing h = T /n, we have

f^ ω = ∫−∞
∞

f t e−2πiωtdt

f^ ω ≈ ∫−T /2
T /2 f t e−2πiωtdt

= ∫0
T f t − T / 2 e

−2πiω t−T /2
dt

= eπiωT∫0
T f t − T / 2 e−2πiωtdt
742

 Transforms Usage Notes
Finally, setting ω = j/T for j = 0, …, n − 1 yields

where the vector f h = (f(−T/2), …, f((n − 1)h − T/2)). Thus, after scaling the components by (−1)jh, the discrete

Fourier transform, as computed in imsl_c_fft_complex (with input f h) is related to an approximation of the
continuous Fourier transform by the above formula.

If the function f is expressed as a C function, then the continuous Fourier transform

can be approximated using the IMSL function imsl_f_int_fcn_fourier (Quadrature).

f^ ω ≈ eπiωTh∑
k=0

n−1

e−2πiωkh f kh − T / 2

f^ j / T ≈ eπi jh∑
k=0

n−1

e−2πijk/n f kh − T / 2 = −1
j∑
k=0

n−1

e−2πijk/n f k
h

f^
743

 Transforms fft_real
fft_real

more...

Computes the real discrete Fourier transform of a real sequence.

Synopsis
#include <imsl.h>
float *imsl_f_fft_real (int n, float p[], …, 0)

The type double function is imsl_d_fft_real.

Required Arguments
int n (Input)

Length of the sequence to be transformed.

float p[] (Input)
Array with n components containing the periodic sequence.

Return Value
A pointer to the transformed sequence. To release this space, use imsl_free. If no value can be computed,
then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_fft_real (int n, float p[],

IMSL_BACKWARD,
IMSL_PARAMS, float params[],
IMSL_RETURN_USER, float q[],
744

 Transforms fft_real
0)

Optional Arguments
IMSL_BACKWARD

Compute the backward transform. If IMSL_BACKWARD is used, the return value of the function is
the backward transformed sequence.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_real_init. If imsl_f_fft_real is used
repeatedly with the same value of n, then it is more efficient to compute these parameters only once.

IMSL_RETURN_USER, float q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the
solution, and imsl_f_fft_real returns q. The array q must be at least n long.

Description
The function imsl_f_fft_real computes the discrete Fourier transform of a real vector of size n. It uses the
system’s high performance library for the computation, if available. Otherwise, the method used is a variant of the
Cooley-Tukey algorithm, which is most efficient when n is a product of small prime factors. If n satisfies this condi-
tion, then the computational effort is proportional to n log n. The Cooley-Tukey algorithm is based on the real FFT
in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

By default, imsl_f_fft_real computes the forward transform. If n is even, then the forward transform is

If n is odd, qm is defined as above for m from 1 to (n − 1)/2.

Let f be a real valued function of time. Suppose we sample f at n equally spaced time intervals of length Δ sec-
onds starting at time t0. That is, we have

pi:= f(t

0

+ iΔ) i = 0, 1, …, n − 1

q2m−1 = ∑
k=0

n−1
pkcos

2πkm
n m = 1, … ,n / 2

q2m = − ∑
k=0

n−1
pksin

2πkm
n m = 1, … ,n / 2 − 1

q0 = ∑
k=0

n−1
pk
745

 Transforms fft_real
We will assume that n is odd for the remainder of this discussion. The function imsl_f_fft_real treats this
sequence as if it were periodic of period n. In particular, it assumes that f(t0) = f(t0 + nΔ). Hence, the period of the

function is assumed to be T = nΔ. We can invert the above transform for p as follows:

This formula is very revealing. It can be interpreted in the following manner. The coefficients q produced by
imsl_f_fft_real determine an interpolating trigonometric polynomial to the data. That is, if we define

then we have

Now suppose we want to discover the dominant frequencies, forming the vector P of length (n + 1)/2 as follows:

These numbers correspond to the energy in the spectrum of the signal. In particular, Pk corresponds to the

energy level at frequency

Furthermore, note that there are only (n + 1)/2 ≈ T/(2Δ) resolvable frequencies when n observations are taken.
This is related to the Nyquist phenomenon, which is induced by discrete sampling of a continuous signal. Similar
relations hold for the case when n is even.

If the optional argument IMSL_BACKWARD is specified, then the backward transform is computed. If n is even,
then the backward transform is

If n is odd,

pm =
1
n q0 + 2 ∑

k=0

n−3 /2

q2k+1cos
2π k + 1 m

n − 2 ∑
k=0

n−3 /2

q2k+2sin
2π k + 1 m

n

g t = 1
n q0 + 2 ∑

k=0

n−3 /2
q2k+1cos

2π k + 1 t − t0
nΔ − 2 ∑

k=0

n−3 /2
q2k+2sin

2π k + 1 t − t0
nΔ

= 1
n q0 + 2 ∑

k=0

n−3 /2
q2k+1cos

2π k + 1 t − t0
T − 2 ∑

k=0

n−3 /2
q2k+2sin

2π k + 1 t − t0
T

f t0 + iΔ = g t0 + iΔ

P0: = ∣q0∣
Pk: = q2k−1

2 + q2k
2 k = 1,2, … , n − 1 / 2

k
T =

k
nΔ k = 0, 1, … , n − 12

qm = p0 + −1
mpn−1 + 2∑

k=0

n/2−2

p2k+1cos
2π k + 1 m

n − 2∑
k=0

n/2−2

p2k+2sin
2π k + 1 m

n

746

 Transforms fft_real
The backward Fourier transform is the unnormalized inverse of the forward Fourier transform.

Examples

Example 1

In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered. The Fourier series
is a vector with all components zero except at the appropriate frequency where it has an n.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
int main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 float p[7], *q;
 /* Fill q with a pure exponential signal */
 for (k = 0; k < n; k++)
 p[k] = cos(k*two_pi/n);
 q = imsl_f_fft_real (n, p, 0);
 printf(" index p q\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
}

Output

 index p q
 0 1.00 0.00
 1 0.62 3.50
 2 -0.22 0.00
 3 -0.90 -0.00
 4 -0.90 -0.00
 5 -0.22 0.00
 6 0.62 -0.00

Example 2

This example computes the Fourier transform of the vector x, where xj = (−1)j for j = 0 to n − 1. The backward

transform of this vector is now computed by using the optional argument IMSL_BACKWARD. Note that s = nx,

that is, sj = (−1)jn, for j = 0 to n − 1.

qm = p0 + 2 ∑
k=0

n−3 /2

p2k+1cos
2π k + 1 m

n − 2 ∑
k=0

n−3 /2

p2k+2sin
2π k + 1 m

n

747

 Transforms fft_real
#include <imsl.h>
#include <stdio.h>
int main()
{
 int k, n = 7;
 float *q, *s, x[7];
 /* Fill data vector */
 x[0] = 1.0;
 for (k = 1; k<n; k++)
 x[k] = -x[k-1];
 /* Compute the forward transform of x */
 q = imsl_f_fft_real (n, x, 0);
 /* Compute the backward transform of x */
 s = imsl_f_fft_real (n, q,
 IMSL_BACKWARD,
 0);
 printf(" index x q s\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f\n", k, x[k], q[k], s[k]);
}

Output

 index x q s
 0 1.00 1.00 7.00
 1 -1.00 1.00 -7.00
 2 1.00 0.48 7.00
 3 -1.00 1.00 -7.00
 4 1.00 1.25 7.00
 5 -1.00 1.00 -7.00
 6 1.00 4.38 7.00
748

 Transforms fft_real_init
fft_real_init

more...

Computes the parameters for imsl_f_fft_real.

Synopsis
#include <imsl.h>

float *imsl_f_fft_real_init (int n)

The type double function is imsl_d_fft_real_init.

Required Arguments
int n (Input)

Length of the sequence to be transformed.

Return Value
A pointer to the internal parameter vector that can then be used by imsl_f_fft_real when the optional
argument IMSL_PARAMS is specified. To release this space, use imsl_free. If no value can be computed,
then NULL is returned.

Description
The function imsl_f_fft_real_init should be used when many calls are to be made to
imsl_f_fft_real without changing the sequence length n. This function computes the parameters that are
necessary for the real Fourier transform.

It uses the system’s high performance library for the computation, if available. Otherwise, the function
imsl_f_fft_real_init is based on the routine RFFTI in FFTPACK, which was developed by Paul Swarztrau-
ber at the National Center for Atmospheric Research.
749

 Transforms fft_real_init
Example
This example computes three distinct real FFTs by calling imsl_f_fft_real_init once and then calling
imsl_f_fft_real three times.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
int main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 float p[7], *q, *work;
 work = imsl_f_fft_real_init (n);
 for (j = 0; j < 3; j++){
 /* Fill p with a pure sinusoidal signal */
 for (k = 0; k < n; k++)
 p[k] = cos(k*two_pi*j/n);
 q = imsl_f_fft_real (n, p,
 IMSL_PARAMS, work, 0);
 printf(" index p q\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
 }
}

Output

index p q
 0 1.00 7.00
 1 1.00 0.00
 2 1.00 0.00
 3 1.00 0.00
 4 1.00 0.00
 5 1.00 -0.00
 6 1.00 0.00
index p q
 0 1.00 0.00
 1 0.62 3.50
 2 -0.22 0.00
 3 -0.90 -0.00
 4 -0.90 -0.00
 5 -0.22 0.00
 6 0.62 -0.00
index p q
 0 1.00 -0.00
 1 -0.22 0.00
 2 -0.90 -0.00
 3 0.62 3.50
 4 0.62 -0.00
 5 -0.90 0.00
 6 -0.22 0.00
750

 Transforms fft_complex
fft_complex

more...

Computes the complex discrete Fourier transform of a complex sequence.

Synopsis
#include <imsl.h>
f_complex *imsl_c_fft_complex (int n, f_complex p[], …, 0)

The type d_complex function is imsl_z_fft_complex.

Required Arguments
int n (Input)

Length of the sequence to be transformed.

f_complex p[] (Input)
Array with n components containing the periodic sequence.

Return Value
If no optional arguments are used, imsl_c_fft_complex returns a pointer to the transformed sequence. To
release this space, use imsl_free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_fft_complex (int n, f_complex p[],

IMSL_BACKWARD,
IMSL_PARAMS, float params[],
IMSL_RETURN_USER, f_complex q[],
751

 Transforms fft_complex
0)

Optional Arguments
IMSL_BACKWARD

Compute the backward transform. If IMSL_BACKWARD is used, the return value of the function is
the backward transformed sequence.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_c_fft_complex_init. If imsl_c_fft_complex is
used repeatedly with the same value of n, then it is more efficient to compute these parameters only
once.

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the
solution, and imsl_c_fft_complex returns q. The array q must be of length at least n.

Description
The function imsl_c_fft_complex computes the discrete Fourier transform of a real vector of size n. It uses
the system’s high performance library for the computation, if available. Otherwise, the method used is a variant of
the Cooley-Tukey algorithm, which is most efficient when n is a product of small prime factors. If n satisfies this
condition, then the computational effort is proportional to n log n. The Cooley-Tukey algorithm is based on the
complex FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

By default, imsl_c_fft_complex computes the forward transform below.

Note that we can invert the Fourier transform as follows below.

This formula reveals the fact that, after properly normalizing the Fourier coefficients, you have the coefficients for
a trigonometric interpolating polynomial to the data.

If the option IMSL_BACKWARD is selected, then the following computation is performed.

q j =∑
m=0

n−1

pme
−2πimj/n

pm = 1
n∑

j=0

n−1

q je
2πijm/n
752

 Transforms fft_complex
Furthermore, the relation between the forward and backward transforms is that they are unnormalized inverses
of each other. That is, the following code fragment begins with a vector p and concludes with a vector p2 = np.

q = imsl_c_fft_complex(n, p, 0);
p2 = imsl_c_fft_complex(n, q, IMSL_BACKWARD, 0);

Examples

Example 1

This example inputs a pure exponential data vector and recovers its Fourier series, which is a vector with all com-
ponents zero except at the appropriate frequency where it has an n.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[7], *q, z;
 /* Fill p with a pure exponential signal */
 for (k = 0; k < n; k++) {
 z.re = 0.;
 z.im = k*two_pi/n;
 p[k] = imsl_c_exp(z);
 }
 q = imsl_c_fft_complex (n, p, 0);
 printf(" index p.re p.im q.re q.im\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 q[k].re, q[k].im);
}

Output

 index p.re p.im q.re q.im
 0 1.00 0.00 0.00 0.00
 1 0.62 0.78 7.00 0.00
 2 -0.22 0.97 -0.00 0.00
 3 -0.90 0.43 -0.00 0.00
 4 -0.90 -0.43 0.00 -0.00
 5 -0.22 -0.97 0.00 -0.00
 6 0.62 -0.78 0.00 0.00

q j =∑
m=0

n−1

pme
2πimj/n
753

 Transforms fft_complex
Example 2

The backward transform is used to recover the original sequence. Notice that the forward transform followed by
the backward transform multiplies the entries in the original sequence by the length of the sequence.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[7], *q, *pp;
 /* Fill p with an increasing signal */
 for (k = 0; k < n; k++) {
 p[k].re = (float) k;
 p[k].im = 0.;
 }
 q = imsl_c_fft_complex (n, p, 0);
 pp = imsl_c_fft_complex (n, q,
 IMSL_BACKWARD,
 0);
 printf(" index p.re p.im pp.re pp.im \n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 pp[k].re , pp[k].im);
}

Output

 index p.re p.im pp.re pp.im
 0 0.00 0.00 0.00 0.00
 1 1.00 0.00 7.00 0.00
 2 2.00 0.00 14.00 0.00
 3 3.00 0.00 21.00 0.00
 4 4.00 0.00 28.00 0.00
 5 5.00 0.00 35.00 0.00
 6 6.00 0.00 42.00 0.00
754

 Transforms fft_complex_init
fft_complex_init

more...

Computes the parameters for imsl_c_fft_complex.

Synopsis
#include <imsl.h>
float *imsl_c_fft_complex_init (int n)

The type double function is imsl_z_fft_complex_init.

Required Arguments
int n (Input)

Length of the sequence to be transformed.

Return Value
A pointer to the internal parameter vector that can then be used by imsl_c_fft_complex when the optional
argument IMSL_PARAMS is specified. To release this space, use imsl_free. If no value can be computed,
then NULL is returned.

Description
The routine imsl_c_fft_complex_init should be used when many calls are to be made to
imsl_c_fft_complex without changing the sequence length n. This routine computes constants which are
necessary for the real Fourier transform.

It uses the system’s high performance library for the computation, if available. Otherwise, the function
imsl_c_fft_complex_init is based on the routine CFFTI in FFTPACK, which was developed by Paul Swarz-
trauber at the National Center for Atmospheric Research.
755

 Transforms fft_complex_init
Example
This example computes three distinct complex FFTs by calling imsl_c_fft_complex_init once, then call-
ing imsl_c_fft_complex 3 times.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0), *work;
 f_complex p[7], *q, z;
 work = imsl_c_fft_complex_init (n);
 for (j = 0; j < 3; j++){
 /* Fill p with a pure exponential signal */
 for (k = 0; k < n; k++) {
 z.re = 0.;
 z.im = k*two_pi*j/n;
 p[k] = imsl_c_exp(z);
 }
 q = imsl_c_fft_complex (n, p,
 IMSL_PARAMS, work, 0);
 printf("\n index p.re p.im q.re q.im\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 q[k].re, q[k].im);
 }
}

Output

 index p.re p.im q.re q.im
 0 1.00 0.00 7.00 0.00
 1 1.00 0.00 0.00 0.00
 2 1.00 0.00 0.00 0.00
 3 1.00 0.00 0.00 0.00
 4 1.00 0.00 0.00 0.00
 5 1.00 0.00 0.00 0.00
 6 1.00 0.00 0.00 0.00
 index p.re p.im q.re q.im
 0 1.00 0.00 0.00 0.00
 1 0.62 0.78 7.00 0.00
 2 -0.22 0.97 -0.00 0.00
 3 -0.90 0.43 -0.00 0.00
 4 -0.90 -0.43 0.00 -0.00
 5 -0.22 -0.97 0.00 -0.00
 6 0.62 -0.78 0.00 0.00
 index p.re p.im q.re q.im
 0 1.00 0.00 0.00 0.00
 1 -0.22 0.97 0.00 0.00
 2 -0.90 -0.43 7.00 0.00
 3 0.62 -0.78 -0.00 0.00
756

 Transforms fft_complex_init
 4 0.62 0.78 -0.00 0.00
 5 -0.90 0.43 -0.00 -0.00
 6 -0.22 -0.97 0.00 -0.00
757

 Transforms fft_cosine
fft_cosine

more...

Computes the discrete Fourier cosine transformation of an even sequence.

Synopsis
#include <imsl.h>
float *imsl_f_fft_cosine (int n, float p[], …, 0)

The type double procedure is imsl_d_fft_cosine.

Required Arguments
int n (Input)

Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)
Array of size n containing the sequence to be transformed.

Return Value
A pointer to the transformed sequence. To release this space, use imsl_free. If no solution was computed,
then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_fft_cosine (int n, float p[],

IMSL_RETURN_USER, float q[],
IMSL_PARAMS, float params[],
0)
758

 Transforms fft_cosine
Optional Arguments
IMSL_RETURN_USER, float q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the
solution, and imsl_f_fft_cosine returns q. The length of array must be at least n.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_cosine_init. If imsl_f_fft_cosine is
used repeatedly with the same value of n, then it is more efficient to compute these parameters only
once.
Default: Initializing parameters computed each time imsl_f_fft_cosine is entered

Description
The function imsl_f_fft_cosine computes the discrete Fourier cosine transform of a real vector of size N.
It uses the system’s high performance library for the computation, if available. Otherwise, the method used is a
variant of the Cooley-Tukey algorithm, which is most efficient when N - 1 is a product of small prime factors. If N
satisfies this condition, then the computational effort is proportional to N logN. Specifically, given an N-vector p,
imsl_f_fft_cosine returns in q

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. The Cooley-Tukey algorithm is
based on the cosine FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmo-
spheric Research.

Example
This example inputs a pure cosine wave as a data vector and recovers its Fourier cosine series, which is a vector
with all components zero, except n - 1 at the appropriate frequency.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
int main()
{
 int n = 7;
 int i;
 float p[7];
 float *q;
 float pi;

qm = 2∑
n=1

N−2

pnsin
mnπ
N − 1 + s0 + sN−1 −1

m

759

 Transforms fft_cosine
 pi = imsl_f_constant("pi", 0);
 /* Fill p with a pure cosine wave */
 for (i=0; i<n; i++)
 p[i] = cos((float)(i)*pi/(float)(n-1));
 q = imsl_f_fft_cosine (n, p, 0);
 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}

Output

index p q
 0 1.00 -0.00
 1 0.87 6.00
 2 0.50 0.00
 3 -0.00 0.00
 4 -0.50 -0.00
 5 -0.87 -0.00
 6 -1.00 -0.00
760

 Transforms fft_cosine_init
fft_cosine_init

more...

Computes the parameters needed for imsl_f_fft_cosine.

Synopsis
#include <imsl.h>
float *imsl_f_fft_cosine_init (int n)

The type double procedure is imsl_d_fft_cosine_init.

Required Arguments
int n (Input)

Length of the sequence to be transformed. It must be greater than 1.

Return Value
A pointer to the internal parameter vector that can then be used by imsl_f_fft_cosine when the optional
argument IMSL_PARAMS is specified. To release this space, use imsl_free. If no solution was computed,
then NULL is returned.

Description
The function imsl_f_fft_cosine_init should be used when many calls must be made to
imsl_f_fft_cosine without changing the sequence length n. It uses the system’s high performance library for
the computation, if available. Otherwise, the function imsl_f_fft_cosine_init is based on the routine
COSTI in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmo-
spheric Research.
761

 Transforms fft_cosine_init
Example
This example computes three distinct sine FFTs by calling imsl_f_fft_cosine_init once, then calling
imsl_f_fft_cosine three times. The internal parameter initialization in imsl_f_fft_cosine is now
skipped.
762

 Transforms fft_cosine_init
#include <imsl.h>
#include <math.h>
#include <stdio.h>
int main()
{
 int n = 7;
 int i, k;
 float p[7];
 float q[7];
 float pi;
 float *params;
 pi = imsl_f_constant("pi", 0);
 /* Compute parameters for transform of
 length n */
 params = imsl_f_fft_cosine_init (n);
 /* Different frequencies of the same
 wave will be transformed */
 for (k=0; k<3; k++)
 {
 printf("\n");
 /* Fill p with a pure cosine wave */
 for (i=0; i<n; i++)
 p[i] = cos((float)((k+1)*i)*pi/(float)(n-1));
 /* Compute the transform of p */
 imsl_f_fft_cosine (n, p,
 IMSL_PARAMS, params,
 IMSL_RETURN_USER, q,
 0);
 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
 }
}

Output

index p q
 0 1.00 -0.00
 1 0.87 6.00
 2 0.50 0.00
 3 -0.00 0.00
 4 -0.50 -0.00
 5 -0.87 -0.00
 6 -1.00 -0.00
index p q
763

 Transforms fft_cosine_init
 0 1.00 0.00
 1 0.50 -0.00
 2 -0.50 6.00
 3 -1.00 0.00
 4 -0.50 0.00
 5 0.50 0.00
 6 1.00 -0.00
index p q
 0 1.00 -0.00
 1 -0.00 0.00
 2 -1.00 -0.00
 3 0.00 6.00
 4 1.00 0.00
 5 -0.00 -0.00
 6 -1.00 0.00
764

 Transforms fft_sine
fft_sine

more...

Computes the discrete Fourier sine transformation of an odd sequence.

Synopsis
#include <imsl.h>
float *imsl_f_fft_sine (int n, float p[], …, 0)

The type double procedure is imsl_d_fft_sine.

Required Arguments
int n (Input)

Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)
Array of size n containing the sequence to be transformed.

Return Value
A pointer to the transformed sequence. To release this space, use imsl_free. If no solution was computed,
then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[],
IMSL_RETURN_USER, float q[],
IMSL_PARAMS, float params[],
0)
765

 Transforms fft_sine
Optional Arguments
IMSL_RETURN_USER, float q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the
solution, and imsl_f_fft_sine returns q. The array must be of length at least n + 1.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_sine_init. If imsl_f_fft_sine is used
repeatedly with the same value of n, then it is more efficient to compute these parameters only once.
Default: Initializing parameters computed each time imsl_f_fft_sine is entered

Description
The function imsl_f_fft_sine computes the discrete Fourier sine transform of a real vector of size N. It
uses the system’s high performance library for the computation, if available. Otherwise, the method used is a vari-
ant of the Cooley-Tukey algorithm, which is most efficient when N + 1 is a product of small prime factors. If N
satisfies this condition, then the computational effort is proportional to N logN. Specifically, given an N-vector p,
imsl_f_fft_sine returns in q

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The Cooley-Tukey algorithm is
based on the sine FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmo-
spheric Research.

Example
This example inputs a pure sine wave as a data vector and recovers its Fourier sine series, which is a vector with
all components zero, except n at the appropriate frequency.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
int main()
{
 int n = 7;
 int i;
 float p[7];
 float *q;
 float pi;
 pi = imsl_f_constant("pi", 0);

qm = 2∑
n=0

N−1

pnsin
m + 1 n + 1 π

N + 1
766

 Transforms fft_sine
 /* fill p with a pure sine wave */
 for (i=0; i<n; i++)
 p[i] = sin((float)(i+1)*pi/(float)(n+1));
 q = imsl_f_fft_sine (n, p, 0);
 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}

Output

index p q
 0 0.38 8.00
 1 0.71 0.00
 2 0.92 0.00
 3 1.00 0.00
 4 0.92 0.00
 5 0.71 -0.00
 6 0.38 0.00
767

 Transforms fft_sine_init
fft_sine_init

more...

Computes the parameters needed for imsl_f_fft_sine.

Synopsis
#include <imsl.h>
float *imsl_f_fft_sine_init (int n)

The type double procedure is imsl_d_fft_sine_init.

Required Arguments
int n (Input)

Length of the sequence to be transformed. It must be greater than 1.

Return Value
A pointer to the internal parameter vector that can then be used by imsl_f_fft_sine when the optional
argument IMSL_PARAMS is specified. To release this space, use imsl_free. If no solution was computed,
then NULL is returned.

Description
The function imsl_f_fft_sine_init should be used when many calls must be made to
imsl_f_fft_sine without changing the sequence length n. It uses the system’s high performance library for
the computation, if available. Otherwise, the function imsl_f_fft_sine_init is based on the routine
SINTI in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmo-
spheric Research.
768

 Transforms fft_sine_init
Example
This example computes three distinct sine FFTs by calling imsl_f_fft_sine_init once, then calling
imsl_f_fft_sine_init three times. The internal parameter initialization in imsl_f_fft_sine is now
skipped.
769

 Transforms fft_sine_init
#include <imsl.h>
#include <math.h>
#include <stdio.h>
int main()
{
 int n = 7;
 int i, k;
 float p[7];
 float q[7];
 float pi;
 float *params;
 pi = imsl_f_constant("pi", 0);
 /* Compute parameters for transform of
 length n */
 params = imsl_f_fft_sine_init (n);
 /* Different frequencies of the same
 wave will be transformed */
 for (k=0; k<3; k++)
 {
 printf("\n");
 /* Fill p with a pure sine wave */
 for (i=0; i<n; i++)
 p[i] = sin((float)((k+1)*(i+1))*pi/(float)(n+1));
 /* Compute the transform of p */
 imsl_f_fft_sine (n, p,
 IMSL_PARAMS, params,
 IMSL_RETURN_USER, q,
 0);
 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
 }
}

Output

index p q
 0 0.38 8.00
 1 0.71 0.00
 2 0.92 0.00
 3 1.00 0.00
 4 0.92 0.00
 5 0.71 -0.00
 6 0.38 0.00
index p q
770

 Transforms fft_sine_init
 0 0.71 -0.00
 1 1.00 8.00
 2 0.71 0.00
 3 -0.00 -0.00
 4 -0.71 0.00
 5 -1.00 -0.00
 6 -0.71 0.00
index p q
 0 0.92 0.00
 1 0.71 -0.00
 2 -0.38 8.00
 3 -1.00 0.00
 4 -0.38 0.00
 5 0.71 0.00
 6 0.92 0.00
771

 Transforms fft_2d_complex
fft_2d_complex

more...

Computes the complex discrete two-dimensional Fourier transform of a complex two-dimensional array.

Synopsis
#include <imsl.h>
f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[], …, 0)

The type d_complex function is imsl_z_fft_2d_complex.

Required Arguments
int n (Input)

Number of rows in the two-dimensional transform.

int m (Input)
Number of columns in the two-dimensional transform.

f_complex p[] (Input)
Two-dimensional array of size n × m containing the sequence that is to be transformed.

Return Value
A pointer to the transformed array. To release this space, use imsl_free. If no value can be computed, then
NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[],
772

 Transforms fft_2d_complex
IMSL_P_COL_DIM, int p_col_dim,
IMSL_BACKWARD,
IMSL_RETURN_USER, f_complex q[],
IMSL_Q_COL_DIM, int q_col_dim,
0)

Optional Arguments
IMSL_P_COL_DIM, int p_col_dim (Input)

The column dimension of p.
Default: p_col_dim = m

IMSL_BACKWARD
Compute the backward transform. If IMSL_BACKWARD is used, the return value of the function is
the backward transformed sequence.

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the
solution, and imsl_c_fft_2d_complex returns q. The array must be of length at least n × m.

IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of q.
Default: q_col_dim = m

Description
The function imsl_c_fft_2d_complex computes the discrete Fourier transform of a two-dimensional com-
plex array of size n × m. It uses the system’s high performance library for the computation, if available. Otherwise,
the method used is a variant of the Cooley-Tukey algorithm, which is most efficient when both n and m are a
product of small prime factors. If n and m satisfy this condition, then the computational effort is proportional to
nm log nm. The Cooley-Tukey algorithm is based on the complex FFT in FFTPACK, which was developed by Paul
Swarztrauber at the National Center for Atmospheric Research

By default, imsl_c_fft_2d_complex computes the forward transform below.

Note that we can invert the Fourier transform as follows.

q jk =∑
s=0

n−1

∑
t=0

m−1

pste
−2πijs/ne−2πikt/m
773

 Transforms fft_2d_complex
This formula reveals the fact that, after properly normalizing the Fourier coefficients, you have the coefficients for
a trigonometric interpolating polynomial to the data. The function imsl_c_fft_2d_complex is based on the
complex FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

If the option IMSL_BACKWARD is selected, then the following computation is performed.

The relation between the forward and backward transforms is that they are unnormalized inverses of each other.
That is, the following code fragment begins with a vector p and concludes with a vector p2 = nmp.

 q = imsl_c_fft_2d_complex(n, m, p, 0);
 p2 = imsl_c_fft_2d_complex(n, m, q, IMSL_BACKWARD, 0);

Examples

Example 1

This example computes the Fourier transform of the pure frequency input for a 5 × 4 array

for 0 ≤ n ≤ 4 and 0 ≤ m ≤ 3. The result, , has all zeros except in the [2][3] position.

#include <imsl.h>
int main()
{
 int s, t, n = 5, m =4;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[5][4], *q, z, w;
 /* Fill p with a pure exponential signal */
 for (s = 0; s < n; s++) {
 z.re = 0.;
 z.im = s*two_pi*2./n;
 for(t =0; t < m; t++){
 w.re = 0.;
 w.im = t*two_pi*3./m;
 p[s][t] = imsl_c_mul(imsl_c_exp(z),imsl_c_exp(w));
 }

p jk =
1
nm∑

s=0

n−1

∑
t=0

m−1

qste
2πijs/ne2πikt/m

p jk =∑
s=0

n−1

∑
t=0

m−1

qste
2πijs/ne2πikt/m

pst = e
2πi2s/Se2πit3/4

p^ = q
774

 Transforms fft_2d_complex
 }
 q = imsl_c_fft_2d_complex (n, m, (f_complex*)p,
 0);
 /* Write the input */
 imsl_c_write_matrix ("The input matrix is ", 5, 4, (f_complex*)p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO,
 0);
 imsl_c_write_matrix ("The output matrix is ", 5, 4, q,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO,
 0);
}

Output

 The input matrix is
 0 1
0 (1.000, 0.000) (0.000, -1.000)
1 (-0.809, 0.588) (0.588, 0.809)
2 (0.309, -0.951) (-0.951, -0.309)
3 (0.309, 0.951) (0.951, -0.309)
4 (-0.809, -0.588) (-0.588, 0.809)
3 (-0.309, -0.951) (-0.951, 0.309)
4 (0.809, 0.588) (0.588, -0.809)
 2 3
0 (-1.000, -0.000) (-0.000, 1.000)
1 (0.809, -0.588) (-0.588, -0.809)
2 (-0.309, 0.951) (0.951, 0.309)
 The output matrix is
 0 1
0 (-0, -0) (0, -0)
1 (0, 0) (0, -0)
2 (-0, -0) (0, -0)
3 (0, 0) (0, -0)
4 (-0, -0) (0, -0)
 2 3
0 (0, -0) (0, -0)
1 (-0, 0) (0, -0)
2 (0, -0) (20, 0)
3 (-0, 0) (-0, -0)
4 (0, -0) (-0, -0)

Example 2

This example uses the backward transform to recover the original sequence. Notice that the forward transform
followed by the backward transform multiplies the entries in the original sequence by the product of the lengths
of the two dimensions.

#include <imsl.h>
#include <stdio.h>
775

 Transforms fft_2d_complex
int main()
{
 int s, t, n = 5, m =4;
 f_complex p[5][4], *q, *p2;
 /* Fill p with a pure exponential signal */
 for (s = 0; s < n; s++) {
 for(t =0; t < m; t++){
 p[s][t].re = s + 5*t;
 p[s][t].im = 0.;
 }
 } /* Forward transform */
 q = imsl_c_fft_2d_complex (n, m, (f_complex*)p, 0);
 /* Backward transform */
 p2 = imsl_c_fft_2d_complex (n, m, q,
 IMSL_BACKWARD, 0);
 /* Write the input */
 imsl_c_write_matrix ("The input matrix is ", 5, 4, (f_complex*)p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
 imsl_c_write_matrix ("The output matrix is ", 5, 4, p2,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
}

Output

 The input matrix is
 0 1
0 (0, 0) (5, 0)
1 (1, 0) (6, 0)
2 (2, 0) (7, 0)
3 (3, 0) (8, 0)
4 (4, 0) (9, 0)
 2 3
0 (10, 0) (15, 0)
1 (11, 0) (16, 0)
2 (12, 0) (17, 0)
3 (13, 0) (18, 0)
4 (14, 0) (19, 0)
 The output matrix is
 0 1
0 (0, 0) (100, 0)
1 (20, 0) (120, 0)
2 (40, 0) (140, 0)
3 (60, 0) (160, 0)
4 (80, 0) (180, 0)
 2 3
0 (200, 0) (300, 0)
1 (220, 0) (320, 0)
2 (240, 0) (340, 0)
3 (260, 0) (360, 0)
4 (280, 0) (380, 0)
776

 Transforms convolution
convolution
Computes the convolution, and optionally, the correlation of two real vectors.

Synopsis
#include <imsl.h>
float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz, …, 0)

The type double function is imsl_d_convolution.

Required Arguments
int nx (Input)

Length of the vector x.

float x[] (Input)
Real vector of length nx.

int ny (Input)
Length of the vector y.

float y[] (Input)
Real vector of length ny.

int *nz (Output)
Length of the output vector.

Return Value
A pointer to an array of length nz containing the convolution of x and y. To release this space, use imsl_free.
If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz,
777

 Transforms convolution
IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, float z[],
IMSL_Z_TRANS, float **zhat
IMSL_Z_TRANS_USER, float *zhat,
0)

Optional Arguments
IMSL_PERIODIC

The input is periodic.

IMSL_CORRELATION
Return the correlation of x and y.

IMSL_FIRST_CALL
If the function is called multiple times with the same nx and ny, select this option on the first call.

IMSL_CONTINUE_CALL
If the function is called multiple times with the same nx and ny, select this option on intermediate
calls.

IMSL_LAST_CALL
If the function is called multiple times with the same nx and ny, select this option on the final call.

IMSL_RETURN_USER, float z[] (Output)
User-supplied array of length at least nz containing the convolution or correlation of x and y.

IMSL_Z_TRANS, float **zhat[] (Output)
Address of a pointer to an array of length at least nz containing on output the discrete Fourier trans-
form of z.

IMSL_Z_TRANS_USER, float zhat[] (Output)
User-supplied array of length at least nz containing on output the discrete Fourier transform of z.
778

 Transforms convolution
Description
The function imsl_f_convolution, by default, computes the discrete convolution of two sequences x and y.
More precisely, let nx be the length of x, and ny denote the length of y. If a circular convolution is desired, the

optional argument IMSL_PERIODIC must be selected. We set

nz = max {ny, nx},

and we pad out the shorter vector with zeros. Then, we compute

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier transform maps

convolution into multiplication. Thus, the Fourier transform of z is given by

where the following equation is true.

The technique used here to compute the convolution is to take the discrete Fourier transform of x and y, multiply
the results together component-wise, and then take the inverse transform of this product. It is very important to
make sure that nz is the product of small primes if option IMSL_PERIODIC is selected. If nz is a product of small

primes, then the computational effort will be proportional to nzlog(nz). If option IMSL_PERIODIC is not

selected, then a good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ nx + ny − 1. This

will mean that both vectors will be padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are real, and real transforms
can simulate the complex transform above. Such a strategy is six times faster and requires less space than when
using the complex transform.

Optionally, the function imsl_f_convolution computes the discrete correlation of two sequences x and y.
More precisely, let n be the length of x and y. If a circular correlation is desired, then option IMSL_PERIODIC
must be selected. We set (on output)

nz = n if IMSL_PERIODIC is chosen

(nz = 2α3β5γ ≥ 2n− 1) if IMSL_PERIODIC is not chosen

zi =∑
j=1

nz

xi− j+1y j

ẑ n = x̂ n ŷ n

ẑ n =∑
m=1

nz

zme
−2πi m−1 n−1 /nz
779

 Transforms convolution
where α, β, and γ are nonnegative integers yielding the smallest number of the type 2α3β5γ satisfying the
inequality. Once nz is determined, we pad out the vectors with zeros. Then, we compute

where the index on x is interpreted as a positive number between one and nz, modulo nz. Note that this means

that

contains the correlation of x(k − 1) with y as k = 0, 1, …, nz/2. Thus, if x(k − 1) = y(k) for all k, then we would expect

to be the largest component of z. The technique used to compute the zi’s is based on the fact that the (complex

discrete) Fourier transform maps correlation into multiplication. Thus, the Fourier transform of z is given by

where the following equation is true.

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform of x and the
conjugate of the discrete Fourier transform of y, multiply the results together component-wise, and then take the
inverse transform of this product. It is very important to make sure that nz is the product of small primes if

IMSL_PERIODIC is selected. If nz is the product of small primes, then the computational effort will be propor-

tional to nzlog (nz). If IMSL_PERIODIC is not chosen, then a good value is chosen for nz so that the Fourier

transforms are efficient and nz ≥ 2n − 1. This will mean that both vectors will be padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are real, and real transforms
can simulate the complex transform above. Such a strategy is six times faster and requires less space than when
using the complex transform.

zi =∑
j=1

nz

xi+ j−1y j

znz−k

znz

ẑ j = x̂ jy
─
j

ẑ j =∑
m=1

nz

zme
−2πi m−1 j−1 /nz
780

 Transforms convolution
Examples

Example 1

This example computes a nonperiodic convolution. The idea here is that you can compute a moving average of
the type found in digital filtering using this function. The averaging operator in this case is especially simple and is
given by averaging five consecutive points in the sequence. We try to recover the values of an exponential func-
tion contaminated by noise. The large error for the last value has to do with the fact that the convolution is
averaging the zeros in the “pad” rather than the function values. Notice that the signal size is 100, but only reports
the errors at 10 points.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NFLTR 5
#define NY 100
/* Define function */
#define F1(A) exp(A)
int main()
{
 int i, k, nz;
 float fltr[NFLTR], fltrer, origer, total1, total2, twopi,
 x, y[NY], *z, *noise;
 /* Set up the filter */
 for (i = 0; i < NFLTR; i++)
 fltr[i] = 0.2;
 /* Set up y-vector for the nonperiodic casE. */
 twopi = 2.0*imsl_f_constant ("Pi",
 0);
 imsl_random_seed_set(1234579);
 noise = imsl_f_random_uniform(NY,
 0);
 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 y[i] = F1(x) + 0.5 *noise[i] - 0.25;
 }
 /* Call the convolution routine for the nonperiodic case. */
 z = imsl_f_convolution(NFLTR, fltr, NY, y, &nz,
 0);
 /* Call test routines to check z & zhat here. Print results */
 printf("\n Nonperiodic Case\n");
 printf(" x F1(x) Original Error");
 printf(" Filtered Error\n");
 total1 = 0.0;
 total2 = 0.0;
 for (i = 0; i < NY; i++) {
781

 Transforms convolution
 if (i >= NY-2)
 k = i - NY + 2;
 else
 k = i + 2;
 x = (float)(i) / (float) (NY - 1);
 origer = fabs(y[i] - F1(x));
 fltrer = fabs(z[i+2] - F1(x));
 if ((i % 11) == 0) {
 printf(" %10.4f%13.4f%18.4f%18.4f\n",
 x, F1(x), origer, fltrer);
 }
 total1 += origer;
 total2 += fltrer;
 }
 printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
 printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));
}

Output

Nonperiodic Case
 x F1(x) Original Error Filtered Error
 0.0000 1.0000 0.0811 0.3523
 0.1111 1.1175 0.0226 0.0754
 0.2222 1.2488 0.1526 0.0488
 0.3333 1.3956 0.0959 0.0161
 0.4444 1.5596 0.1747 0.0276
 0.5556 1.7429 0.1035 0.0250
 0.6667 1.9477 0.0402 0.0562
 0.7778 2.1766 0.0673 0.0835
 0.8889 2.4324 0.1044 0.0050
 1.0000 2.7183 0.0154 1.1255
Average absolute error before filter: 0.12481
Average absolute error after filter: 0.06785

Example 2

This example computes both a periodic correlation between two distinct signals x and y. There are 100 equally
spaced points on the interval [0, 2π] and f1(x) = sin (x). Define x and y as follows:

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which corresponds to the offset.

xi = f 1
2πi
n − 1 i = 0, … , n − 1

yi = f 1
2πi
n − 1 +

π
2 i = 0, … , n − 1
782

 Transforms convolution
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define N 100
/* Define function */
#define F1(A) sin(A)
int main()
{
 int i, k, nz;
 float pi, max, x[N], y[N], *z, xnorm, ynorm;
 /* Set up y-vector for the nonperiodic case. */
 pi = imsl_f_constant ("Pi", 0);
 for (i = 0; i < N; i++) {
 x[i] = F1(2.0*pi*(float)(i) / (N-1));
 y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
 }
 /* Call the correlation function for the nonperiodic case. */
 z = imsl_f_convolution(N, x, N, y, &nz,
 IMSL_CORRELATION,
 IMSL_PERIODIC,
 0);
 xnorm = imsl_f_vector_norm (N, x, 0);
 ynorm = imsl_f_vector_norm (N, y, 0);
 for (i = 0; i < N; i++) {
 z[i] /= xnorm*ynorm;
 }
 max = z[0];
 k = 0;
 for (i = 1; i < N; i++) {
 if (max < z[i]) {
 max = z[i];
 k = i;
 }
 }
 printf("The element of Z with the largest normalized\n");
 printf("value is Z(%2d).\n", k);
 printf("The normalized value of Z(%2d) is %6.3f\n", k, z[k]);
}

Output

The element of Z with the largest normalized
value is Z(25).
The normalized value of Z(25) is 1.000
783

 Transforms convolution (complex)
convolution (complex)
Computes the convolution, and optionally, the correlation of two complex vectors.

Synopsis
#include <imsl.h>
f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex y[], int *nz, …, 0)

The type double function is imsl_d_convolution.

Required Arguments
int nx (Input)

Length of the vector x.

f_complex x[] (Input)
Real vector of length nx.

int ny (Input)
Length of the vector y.

f_complex y[] (Input)
Real vector of length ny.

int *nz (Output)
Length of the output vector.

Return Value
A pointer to an array of length nz containing the convolution of x and y. To release this space, use imsl_free.
If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex y[], int *nz,
784

 Transforms convolution (complex)
IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, f_complex z[],
IMSL_Z_TRANS, f_complex **zhat
IMSL_Z_TRANS_USER, f_complex *zhat,
0)

Optional Arguments
IMSL_PERIODIC

The input is periodic.

IMSL_CORRELATION
Return the correlation of x and y.

IMSL_FIRST_CALL
If the function is called multiple times with the same nx and ny, select this option on the first call.

IMSL_CONTINUE_CALL
If the function is called multiple times with the same nx and ny, select this option on intermediate
calls.

IMSL_LAST_CALL
If the function is called multiple times with the same nx and ny, select this option on the final call.

IMSL_RETURN_USER, f_complex z[] (Output)
User-supplied array of length at least nz containing the convolution or correlation of x and y.

IMSL_Z_TRANS, f_complex **zhat[] (Output)
Address of a pointer to an array of length at least nz containing on output the discrete Fourier trans-
form of z.

IMSL_Z_TRANS_USER, f_complex zhat[] (Output)
User-supplied array of length at least nz containing on output the discrete Fourier transform of z.
785

 Transforms convolution (complex)
Description
The function imsl_c_convolution, by default, computes the discrete convolution of two sequences x and y.
More precisely, let nx be the length of x, and ny denote the length of y. If a circular convolution is desired, the

optional argument IMSL_PERIODIC must be selected. We set

nz = max {ny, nx}

and we pad out the shorter vector with zeros. Then, we compute

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi’s is based on the fact that the (complex discrete) Fourier transform maps

convolution into multiplication. Thus, the Fourier transform of z is given by

where the following equation is true.

The technique used here to compute the convolution is to take the discrete Fourier transform of x and y, multiply
the results together component-wise, and then take the inverse transform of this product. It is very important to
make sure that nzis the product of small primes if option IMSL_PERIODIC is selected. If nzis a product of small

primes, then the computational effort will be proportional to nzlog (nz). If option IMSL_PERIODIC is not

selected, then a good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ nx + ny − 1. This

will mean that both vectors will be padded with zeros.

Optionally, the function imsl_c_convolution computes the discrete correlation of two sequences x and y.
More precisely, let n be the length of x and y. If a circular correlation is desired, then option IMSL_PERIODIC
must be selected. We set (on output)

where α, β, and γ are nonnegative integers yielding the smallest number of the type 2α3β5γ satisfying the
inequality. Once nz is determined, we pad out the vectors with zeros. Then, we compute

nz = n if IMSL_PERIODIC is chosen

(nz = 2α3β5γ ≥ 2n− 1) if IMSL_PERIODIC is not chosen

zi =∑
j=1

nz

xi− j+1y j

ẑ n = x̂ n ŷ n

ẑ n =∑
m=1

nz

zme
−2πi m−1 n−1 /nz
786

 Transforms convolution (complex)
where the index on x is interpreted as a positive number between one and nz, modulo nz. Note that this means

that

contains the correlation of x (k − 1) with y as k = 0, 1, …, nz∕2. Thus, if x(k − 1) = y(k) for all k, then we would expect

to be the largest component of ℜz. The technique used to compute the zi’s is based on the fact that the (complex

discrete) Fourier transform maps correlation into multiplication.

Thus, the Fourier transform of z is given by

where the following equation is true.

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform of x and the
conjugate of the discrete Fourier transform of y, multiply the results together component-wise, and then take the
inverse transform of this product. It is very important to make sure that nz is the product of small primes if

IMSL_PERIODIC is selected. If nzis the product of small primes, then the computational effort will be propor-

tional to nzlog (nz). If IMSL_PERIODIC is not chosen, then a good value is chosen for nz so that the Fourier

transforms are efficient and nz ≥ 2n − 1. This will mean that both vectors will be padded with zeros.

No complex transforms of x or y are taken since both sequences are real, and real transforms can simulate the
complex transform above. Such a strategy is six times faster and requires less space than when using the com-
plex transform.

zi =∑
j=1

nz

xi+ j−1y j

znz−k

ℜ znz

ẑ j = x̂ jy
─
j

ẑ j =∑
m=1

nz

zme
−2πi m−1 j−1 /nz
787

 Transforms convolution (complex)
Examples

Example 1

This example computes a nonperiodic convolution. The purpose is to compute a moving average of the type
found in digital filtering. The averaging operator in this case is especially simple and is given by averaging five con-
secutive points in the sequence. We try to recover the values of an exponential function contaminated by noise.
The large error for the last value has to do with the fact that the convolution is averaging the zeros in the “pad”
rather than the function values. Notice that the signal size is 100, but only report the errors at ten points.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NFLTR 5
#define NY 100
#define F1(A) (imsl_c_mul(imsl_cf_convert(exp(A),0.0), \
 imsl_cf_convert(cos(A),sin(A))))
int main()
{
 int i, nz;
 f_complex fltr[NFLTR], temp,
 y[NY], *z;
 float x, twopi, total1, total2, *noise, origer, fltrer;
 /* Set up the filter */
 for (i = 0; i < NFLTR; i++) fltr[i] = imsl_cf_convert(0.2,0.0);
 /* Set up y-vector for the periodic case */
 twopi = 2.0*imsl_f_constant ("Pi", 0);
 imsl_random_seed_set(1234579);
 noise = imsl_f_random_uniform(2*NY, 0);
 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 temp = imsl_cf_convert(0.5*noise[i]-0.25, 0.5*noise[NY+i]-0.25);
 y[i] = imsl_c_add(F1(x), temp);
 }
 /* Call the convolution routine for the periodic case */
 z = imsl_c_convolution(NFLTR, fltr, NY, y, &nz, 0);
 /* Print results */
 printf(" Periodic Case\n");
 printf(" x F1(x) Original Error");
 printf(" Filtered Error\n");
 total1 = 0.0;
 total2 = 0.0;
 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 origer = imsl_c_abs(imsl_c_sub(y[i],F1(x)));
 fltrer = imsl_c_abs(imsl_c_sub(z[i+2],F1(x)));
788

 Transforms convolution (complex)
 if ((i % 11) == 0)
 printf(" %10.4f (%6.4f,%6.4f) %12.4f %15.4f\n",
 x, (F1(x)).re, (F1(x)).im, origer, fltrer);
 total1 += origer;
 total2 += fltrer;
 }
 printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
 printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));
}

Output

Periodic Case
 x F1(x) Original Error Filtered Error
 0.0000 (1.0000,0.0000) 0.1684 0.3524
 0.1111 (1.1106,0.1239) 0.0582 0.0822
 0.2222 (1.2181,0.2752) 0.1991 0.1054
 0.3333 (1.3188,0.4566) 0.1487 0.1001
 0.4444 (1.4081,0.6706) 0.2381 0.1004
 0.5556 (1.4808,0.9192) 0.1037 0.0708
 0.6667 (1.5307,1.2044) 0.1312 0.0904
 0.7778 (1.5508,1.5273) 0.1695 0.0856
 0.8889 (1.5331,1.8885) 0.1851 0.0698
 1.0000 (1.4687,2.2874) 0.2130 1.0760
Average absolute error before filter: 0.19057
Average absolute error after filter: 0.10024

Example 2

This example computes both a periodic correlation between two distinct signals x and y. There are 100 equally
spaced points on the interval [0, 2π] and f1 (x) = cos (x) + i sin (x). Define x and y as follows:

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which corresponds to the offset.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
#define N 100
/* Define function */
#define F1(A) imsl_cf_convert(cos(A),sin(A))
int main()
{
 int i, k, nz;
 float zreal[4*N], pi, max, xnorm, ynorm, sumx, sumy;

xi = f 1
2π i − 1
n − 1 i = 1, … , n

yi = f 1
2π i − 1
n − 1 + π2 i = 1, … , n
789

 Transforms convolution (complex)
 f_complex x[N], y[N], *z;
 /* Set up y-vector for the nonperiodic case */
 pi = imsl_f_constant ("Pi", 0);
 for (i = 0; i < N; i++) {
 x[i] = F1(2.0*pi*(float)(i) / (N-1));
 y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
 }
 /* Call the correlation function for the
 nonperidic case */
 z = imsl_c_convolution(N, x, N, y, &nz,
 IMSL_CORRELATION, IMSL_PERIODIC,0);
 sumx = sumy = 0.0;
 for (i = 0; i < N; i++) {
 sumx += imsl_c_abs(imsl_c_mul(x[i], x[i]));
 sumy += imsl_c_abs(imsl_c_mul(y[i], y[i]));
 }
 xnorm = sqrt((sumx));
 ynorm = sqrt((sumy));
 for (i = 0; i < N; i++) {
 zreal[i] = (z[i].re/(xnorm*ynorm));
 }
 max = zreal[0];
 k = 0;
 for (i = 1; i < N; i++) {
 if (max < zreal[i]) {
 max = zreal[i];
 k = i;
 }
 }
 printf("The element of Z with the largest normalized\n");
 printf("value is Z(%2d).\n", k);
 printf("The normalized value of Z(%2d) is %6.3f\n", k, zreal[k]);
}

Output

The element of Z with the largest normalized
value is Z(25).
The normalized value of Z(25) is 1.000
790

 Transforms inverse_laplace
inverse_laplace
Computes the inverse Laplace transform of a complex function.

Synopsis
#include <imsl.h>
float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float t[], …, 0)

The type double procedure is imsl_d_inverse_laplace.

Required Arguments
f_complex fcn(f_complex z) (Input)

User-supplied function for which the inverse Laplace transform will be computed.

float sigma0 (Input)
An estimate for the maximum of the real parts of the singularities of fcn. If unknown, set
sigma0 = 0.0.

int n (Input)
The number of points at which the inverse Laplace transform is desired.

float t[] (Input)
Array of size n containing the points at which the inverse Laplace transform is desired.

Return Value
A pointer to the array of length n whose i-th component contains the approximate value of the inverse Laplace
transform at the point t[i]. To release this space, use imsl_free. If no solution was computed, then NULL is
returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float t[],

IMSL_RETURN_USER, float x[],
791

 Transforms inverse_laplace
IMSL_PSEUDO_ACCURACY, float pseudo_accuracy,
IMSL_FIRST_LAGUERRE_PARAMETER, float sigma,
IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue,
IMSL_MAXIMUM_COEFFICIENTS, int mtop,
IMSL_ERROR_EST, float *error_est,
IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est,
IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est,
IMSL_CONDITION_ERROR_EST, float *cond_error_est,
IMSL_DECAY_FUNCTION_COEFFICIENT, float *k,
IMSL_DECAY_FUNCTION_BASE, float *r,
IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs,
IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs,
IMSL_UNDER_OVERFLOW_INDICATORS, Imsl_laplace_flow **indicators,
IMSL_FCN_W_DATA, f_complex fcn(), void *data,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the approximate value of the inverse Laplace transform.

IMSL_PSEUDO_ACCURACY, float pseudo_accuracy (Input)
The required absolute uniform pseudo accuracy for the coefficients and inverse Laplace transform
values.

Default: pseudo_accuracy = , where ɛ is machine epsilon

IMSL_FIRST_LAGUERRE_PARAMETER, float sigma (Input)
The first parameter of the Laguerre expansion. If sigma is not greater than sigma0, it is reset to
sigma0 + 0.7.
Default: sigma = sigma0 + 0.7

IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue (Input)
The second parameter of the Laguerre expansion. If bvalue is less than 2.0*(sigma - sigma0), it
is reset to 2.5*(sigma - sigma0).
Default: bvalue = 2.5*(sigma - sigma0)

IMSL_MAXIMUM_COEFFICIENTS, int mtop (Input)
An upper limit on the number of coefficients to be computed in the Laguerre expansion. Argument
mtop must be a multiple of four.
Default: mtop = 1024

ɛ

792

 Transforms inverse_laplace
IMSL_ERROR_EST, float *error_est (Output)
Overall estimate of the pseudo error,
disc_error_est + trunc_error_est + cond_error_est. See the Description section for
details.

IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est (Output)
Estimate of the pseudo discretization error.

IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est (Output)
Estimate of the pseudo truncation error.

IMSL_CONDITION_ERROR_EST, float *cond_error_est (Output)
Estimate of the pseudo condition error on the basis of minimal noise levels in the function values.

IMSL_DECAY_FUNCTION_COEFFICIENT, float *k (Output)
The coefficient of the decay function. See the Description section for details.

IMSL_DECAY_FUNCTION_BASE, float *r (Output)
The base of the decay function. See the Description section for details.

IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs (Output)
The logarithm of the largest coefficient in the decay function. See the Descriptionsection for
details.

IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs (Output)
The logarithm of the smallest nonzero coefficient in the decay function. See the Description
section for details.

IMSL_UNDER_OVERFLOW_INDICATORS, Imsl_laplace_flow **indicators (Output)
The address of a pointer initialized by imsl_f_inverse_laplace to point to an array of length
n containing the overflow/underflow indicators for the computed approximate inverse Laplace
transform. For the ith point at which the transform is computed, indicators[i] signifies the following:

indicators [i] Meaning

IMSL_NORMAL_TERMINATION Normal termination.

IMSL_TOO_LARGE The value of the inverse Laplace transform is too large
to be representable. This component of the result is
set to NaN.

IMSL_TOO_SMALL The value of the inverse Laplace transform is found to
be too small to be representable. This component of
the result is set to 0.0.
793

 Transforms inverse_laplace
IMSL_FCN_W_DATA, f_complex fcn(f_complex z, void *data) ,void *data, (Input)
User supplied function for which the inverse Laplace transform will be computed, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

Description
The function imsl_f_inverse_laplace computes the inverse Laplace transform of a complex-valued func-
tion. Recall that if f is a function that vanishes on the negative real axis, then the Laplace transform of f is defined
by

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks’ method (see Weeks
(1966)) due to Garbow et al. (1988). This method is suitable when f has continuous derivatives of all orders on [0,
∞). In particular, given a complex-valued function F(s) = L[f] (s), f can be expanded in a Laguerre series whose coef-
ficients are determined by F. This is fully described in Garbow et al. (1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

where Ɛ = pseudo_accuracy and σ= sigma > sigma0. The expression on the left is called the pseudo error.
An estimate of the pseudo error in available in error_est.

The first step in the method is to transform F to φ where

IMSL_TOO_LARGE_BEFORE_EXPANSION The value of the inverse Laplace transform is esti-
mated to be too large, even before the series
expansion, to be representable. This component of
the result is set to NaN.

IMSL_TOO_SMALL_BEFORE_EXPANSION The value of the inverse Laplace transform is esti-
mated to be too small, even before the series
expansion, to be representable. This component of
the result is set to 0.0.

indicators [i] Meaning

L f s = ∫0
∞

e−sx f x dx

| g t − f t
eσt | < ɛ
794

 Transforms inverse_laplace
Then, if f is smooth, it is known that φ is analytic in the unit disc of the complex plane and hence has a Taylor
series expansion

which converges for all z whose absolute value is less than the radius of convergence Rc. This number is esti-

mated in r, obtained through the optional argument IMSL_DECAY_FUNCTION_BASE. Using optional
argument IMSL_DECAY_FUNCTION_COEFFICIENT, the smallest number K is estimated which satisfies

for all R < Rc.

The coefficients of the Taylor series for φ can be used to expand f in a Laguerre series

On some platforms, imsl_f_inverse_laplace can evaluate the user-supplied function fcn in parallel.
This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A
function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of
writing to global or static variables.

Examples

Example 1

This example computes the inverse Laplace transform of the function (s - 1)-2, and prints the computed approxi-

mation, true transform value, and difference at five points. The correct inverse transform is xex. From Abramowitz
and Stegun (1964).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 f_complex f(f_complex);
 int n = 5;

ϕ z = b
1 − zF

b
1 − z −

b
2 + σ

ϕ z =∑
s=0

∞

asz
s

∣as∣ < KRs

f t = eσt∑
s=0

∞

ase
−bt/2Ls bt
795

 Transforms inverse_laplace
 float t[5];
 float true_inverse[5];
 float relative_diff[5];
 int i;
 float *inverse;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* Initialize t and compute inverse */
 for (i=0; i<n; i++)
 t[i] = (float)i + 0.5;
 inverse = imsl_f_inverse_laplace(f, 1.5, n, t,
 0);
 /* Compute true inverse, relative difference */
 for (i=0; i<n; i++) {
 true_inverse[i] = t[i]*exp(t[i]);
 relative_diff[i] = fabs(inverse[i] - true_inverse[i])/
 true_inverse[i];
 }
 printf("\t t\t\t f_inv\t\t true\t\t diff\n");
 for (i=0; i<n; i++)
 printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n", t[i],
 inverse[i], true_inverse[i], relative_diff[i]);
}
f_complex f(f_complex s)
{
 /* Return 1/(s-1)**2 */
 f_complex one = {1.0, 0.0};
 return (imsl_c_div(one,
 imsl_c_mul(imsl_c_sub(s, one), imsl_c_sub(s, one))));
}

Output

 t f_inv true diff
 0.5 0.824 0.824 1.5e-05
 1.5 6.722 6.723 1.0e-05
 2.5 30.456 30.456 5.6e-07
 3.5 115.906 115.904 1.8e-05
 4.5 405.054 405.077 5.8e-05

Example 2

This example computes the inverse Laplace transform of the function e-1/s/s, and prints the computed approxi-
mation, true transform value, and difference at five points. Additionally, the inverse is returned in user-supplied
space, and a required accuracy for the inverse transform values is specified. The correct inverse transform is
796

 Transforms inverse_laplace
from Abramowitz and Stegun (1964).

J0 2 x
797

 Transforms inverse_laplace
#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 f_complex f(f_complex);
 int n = 5;
 int i;
 float t[5];
 float true_inverse[5];
 float relative_diff[5];
 float inverse[5];
 Imsl_laplace_flow *indicators;
 /* Initialize t and compute inverse */
 for (i=0; i<n; i++)
 t[i] = (float)i + 0.5;
 imsl_f_inverse_laplace(f, 0.0, n, t,
 IMSL_PSEUDO_ACCURACY, 1.0e-6,
 IMSL_UNDER_OVERFLOW_INDICATORS, &indicators,
 IMSL_RETURN_USER, inverse,
 0);
 /* Compute true inverse, relative
 difference */
 for (i=0; i<n; i++) {
 true_inverse[i] = imsl_f_bessel_J0(2.0*sqrt(t[i]));
 relative_diff[i] = fabs((inverse[i] - true_inverse[i])/
 true_inverse[i]);
 }
 /* Print results, noting if any results
 overflowed or underflowed */
 printf("\t T\t\t f_inv\t\t true\t\t diff\n");
 for (i=0; i<n; i++)
 if (indicators[i] == IMSL_NORMAL_TERMINATION)
 printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n",
 t[i],
 inverse[i], true_inverse[i],
 relative_diff[i]);
 else
 printf("Overflow or underflow noted.\n");
}
f_complex f(f_complex s)
{
 /* Return (1/s)(exp(-1/s) */
 f_complex one = {1.0, 0.0};
 f_complex s_inverse;
 s_inverse = imsl_c_div(one, s);
 return (imsl_c_mul(s_inverse, imsl_c_exp(imsl_c_neg(s_inverse))));
}

Output
798

 Transforms inverse_laplace
 T f_inv true diff
 0.5 0.559 0.559 2.1e-07
 1.5 -0.023 -0.023 8.5e-06
 2.5 -0.310 -0.310 9.6e-08
 3.5 -0.401 -0.401 7.4e-08
 4.5 -0.370 -0.370 6.4e-07

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
799

 Nonlinear Equations Functions

Nonlinear Equations

Functions
Zeros of a Polynomial

Real coefficients using Jenkins-Traub, companion matrix or Aberth’s method zeros_poly
802

Complex coefficients using Jenkins-Traub, companion matrix or Aberth’s method
zeros_poly (complex) 807

Zero(s) of a Function
Zeros of a real univariate function . zero_univariate 812
Real zeros of a real function . zeros_function 816

Root of a System of Equations
Powell’s hybrid method . zeros_sys_eqn 822
800

 Nonlinear Equations Usage Notes
Usage Notes

Zeros of a Polynomial
A polynomial function of degree n can be expressed as follows:

p(z) = anzn + an

-1

zn-1 + … + a

1

z + a

0

where an ≠ 0. The function imsl_f_zeros_poly finds zeros of a polynomial with real coefficients using the

Jenkins-Traub method.

Zeros of a Function
The function imsl_f_zeros_function finds the real zeros of a real, continuous, univariate function. It uses a
meta-algorithm based on partitioning the interval using a low-discrepancy sequence and a combination of
Müller’s method and Brent’s method. This algorithm can find roots without requiring the user to bracket the root
in an interval over which the function changes sign, as required by Brent’s method, or give good guesses for the
roots, as required by Müller’s method.

The function imsl_f_zero_univariate finds a real zero of a real, continuous, univariate function. It uses an
algorithm attributed to Dr. Fred T. Krogh, JPL, 1972. Tests have shown this algorithm to require fewer function
evaluations, on average, than a number of other algorithms for finding a zero of a continuous function.

Root of System of Equations
A system of equations can be stated as follows:

fi(x) = 0, for i = 1, 2, …, n

where x ∈ ℜn, and fi :ℜn →ℜ.The function imsl_f_zeros_sys_eqn uses a modified hybrid method due to

M.J.D. Powell to find the zero of a system of nonlinear equations.
801

 Nonlinear Equations zeros_poly
zeros_poly
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub, three-stage algorithm. Alternatively,
the classical companion matrix method, or Aberth’s method according to an implementation by D. A. Bini, can be
selected.

Synopsis
#include <imsl.h>
f_complex *imsl_f_zeros_poly (int ndeg, float coef[], …, 0)

The type d_complex function is imsl_d_zeros_poly.

Required Arguments
int ndeg (Input)

Degree of the polynomial. For the Jenkins-Traub method, ndeg <= 100 is required.

float coef[] (Input)
Array with ndeg + 1 components containing the coefficients of the polynomial in increasing order by
degree. The polynomial is coef[n] zn + coef [n − 1] zn-1 + … + coef[0], where n = ndeg.

Return Value
A pointer to the complex array of zeros of the polynomial. To release this space, use imsl_free. If no zeros are
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_f_zeros_poly (int ndeg, float coef[],

IMSL_COMPANION_METHOD,
IMSL_ABERTH_METHOD,
IMSL_MAX_ITERATIONS, int max_itn
IMSL_RETURN_USER, f_complex root[],
0)
802

 Nonlinear Equations zeros_poly
Optional Arguments
IMSL_COMPANION_METHOD

Chooses the classical companion matrix method to find the polynomial roots.
By default, the Jenkins-Traub algorithm is selected.

IMSL_ABERTH_METHOD
Chooses Aberth’s method according to an implementation by Bini to find the polynomial roots. Note
that this method is internally always used in double precision, even if zeros_poly is called in single
precision.
By default, the Jenkins-Traub algorithm is selected.

IMSL_MAX_ITERATIONS, int max_itn (Input)
The maximum number of iterations allowed in Aberth’s method IMSL_ABERTH_METHOD.
Default: max_itn = 30.

IMSL_RETURN_USER, f_complex root[] (Output)
Array with ndeg components containing the zeros of the polynomial.

Description
The function imsl_f_zeros_poly computes the n zeros of the polynomial

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the polynomial.

The function imsl_f_zeros_poly uses the Jenkins-Traub, three-stage algorithm (Jenkins and Traub 1970;
Jenkins 1975). The zeros are computed one at a time for real zeros or two at a time for a complex conjugate pair.
As the zeros are found, the real zero, or quadratic factor, is removed by polynomial deflation.

Alternatively, the classical companion matrix method can be used through optional argument
IMSL_COMPANION_METHOD. The companion matrix method is based on the fact that if Cp denotes the com-

panion matrix associated with p(z), then det(zI - Cp) = p(z), where I is the n x n identity matrix. Thus, det(z0I - Cp) =

0 if and only if z0 is a zero of p(z). This implies that computing the eigenvalues of Cp will yield the roots of p(z). The

companion matrix method is thought to be more robust than the Jenkins-Traub algorithm in most cases.

A second alternative is a variant of Aberth’s method based on an implementation by D. A. Bini (1996). This
method can be used via optional argument IMSL_ABERTH_METHOD. It’s a numerically very stable Newton-type
method with rapid convergence properties that can also be applied to high-degree polynomials.

For larger degree polynomials, use of the double-precision versions of the root-finding methods is recom-
mended. This applies especially to the Jenkins-Traub method.

p z = anz
n + an−1z

n−1 + … + a1z + a0
803

 Nonlinear Equations zeros_poly
Copyright Notice for Bini’s code (see https://www.netlib.org/numeralgo/na10):

* All the software contained in this library is protected by copyright. *
* Permission to use, copy, modify, and distribute this software for any *
* purpose without fee is hereby granted, provided that this entire notice *
* is included in all copies of any software which is or includes a copy *
* or modification of this software and in all copies of the supporting *
* documentation for such software. *

* THIS SOFTWARE IS BEING PROVIDED “AS IS”, WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTY. IN NO EVENT, NEITHER THE AUTHORS, NOR THE PUBLISHER, NOR ANY *
* MEMBER OF THE EDITIORIAL BOARD OF THE JOURNAL “NUMERICAL ALGORITHMS” *
* NOR ITS EDITOR - IN - CHIEF, BE LIABLE FOR ANY ERROR IN THE SOFTWARE, *
* ANY MISUSE OF IT OR ANY DAMAGE ARISING OUT OF ITS USE. THE ENTIRE RISK *
* OF USING THE SOFTWARE LIES WITH THE PARTY DOING SO. *

* ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE OF THE TERMS OF THE *
* ABOVE STATEMENT. *

Examples

Example 1

This example finds the zeros of the third-degree polynomial

p(z) = z3 − 3z2 + 4z – 2

where z is a complex variable.

#include <imsl.h>
#define NDEG 3
int main()
{
 f_complex *zeros;
 static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};
 zeros = imsl_f_zeros_poly(NDEG, coeff, 0);
 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

804

https://www.netlib.org/numeralgo/na10

 Nonlinear Equations zeros_poly
Output

 The complex zeros found are
 1 2 3
(1, 0) (1, 1) (1, -1)

Example 2

The same problem is solved with the return option.

#include <imsl.h>
#define NDEG 3
int main()
{
 f_complex zeros[3];
 static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};
 imsl_f_zeros_poly(NDEG, coeff,
 IMSL_RETURN_USER, zeros, 0);
 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

 The complex zeros found are
 1 2 3
(1, 0) (1, 1) (1, -1)
805

 Nonlinear Equations zeros_poly
Warning Errors
IMSL_ZERO_COEFF The # leading coefficients of the polynomial are

equal to zero. The last # roots will be set to ("infin-
ity",0.0) where "infinity" is the positive machine
infinity.

IMSL_ZERO_COEFF_1 The leading coefficient of the polynomial is equal to
zero. The last root will be set to ("infinity", 0.0)
where "infinity" is the positive machine infinity.

IMSL_FEWER_ZEROS_FOUND Only # roots were found. The "root" vector will con-
tain the value for machine infinity in the last #
locations.

IMSL_POLY_CONSTANT_ZERO The polynomial is identically zero.

IMSL_POLY_CONSTANT_NONZERO The polynomial is a nonzero constant.

IMSL_NO_CONVERGE_MAX_ITER Failure to converge within "max_itn" = # iterations
for at least one of the "nroot" = # roots.

IMSL_POLY_COEFFS_TOO_LARGE At least one of the coefficients of the polynomial is
too large, overflow is likely.

IMSL_POLY_ROOT_BOUNDS_FAIL The computation of some inclusion radii for the
roots of the polynomial may fail.

IMSL_INV_POLY_ZEROS_TOO_SMALL # zero(s) are too small to represent their inverses as
complex numbers. They are replaced by small
numbers.

IMSL_POLY_ZEROS_TOO_SMALL # zero(s) are too small to be represented by com-
plex numbers. They are set to 0.

IMSL_POLY_ZEROS_TOO_LARGE # zero(s) are too big to be represented by complex
numbers. They are set to a large number instead.
806

 Nonlinear Equations zeros_poly (complex)
zeros_poly (complex)
Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub, three-stage algorithm. Alterna-
tively, the classical companion matrix method, or Aberth’s method according to an implementation by D. A. Bini,
can be selected.

Synopsis
#include <imsl.h>
f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[], …, 0)

The type d_complex function is imsl_z_zeros_poly.

Required Arguments
int ndeg (Input)

Degree of the polynomial. For the Jenkins-Traub method, ndeg <= 50 is required.

f_complex coef[] (Input)
Array with ndeg + 1 components containing the coefficients of the polynomial in increasing order by
degree. The degree of the polynomial is

coef [n] zn + coef [n − 1] zn-1 + …+ coef [0]
where n = ndeg.

Return Value
A pointer to the complex array of zeros of the polynomial. To release this space, use imsl_free. If no zeros are
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[],

IMSL_COMPANION_METHOD,
IMSL_ABERTH_METHOD,
807

 Nonlinear Equations zeros_poly (complex)
IMSL_MAX_ITERATIONS, int max_itn,
IMSL_RETURN_USER, f_complex root[],
0)

Optional Arguments
IMSL_COMPANION_METHOD

Chooses the classical companion matrix method to find the polynomial roots.
By default, the Jenkins-Traub algorithm is selected.

IMSL_ABERTH_METHOD
Chooses Aberth’s method according to an implementation by Bini to find the polynomial roots. Note
that this method is internally always used in double precision, even if zeros_poly is called in single
precision.
By default, the Jenkins-Traub algorithm is selected.

IMSL_MAX_ITERATIONS, int max_itn (Input)
The maximum number of iterations allowed in Aberth’s method IMSL_ABERTH_METHOD.
Default: max_itn = 30.

IMSL_RETURN_USER, f_complex root[] (Output)
Array with ndeg components containing the zeros of the polynomial.

Description
The function imsl_c_zeros_poly computes the n zeros of the polynomial

p(z) = anzn + an-1 zn-1 + … + a

1

z + a

0

where the coefficients ai for i = 0, 1, …, n are complex and n is the degree of the polynomial.

The function imsl_c_zeros_poly uses the Jenkins-Traub, three-stage complex algorithm (Jenkins and Traub
1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As each zero is found,
the polynomial is deflated to one of lower degree.
808

 Nonlinear Equations zeros_poly (complex)
Alternatively, the classical companion matrix method can be used through optional argument
IMSL_COMPANION_METHOD. The companion matrix method is based on the fact that if Cp denotes the com-

panion matrix associated with p(z), then det(zI - Cp) = p(z), where I is the n x n identity matrix. Thus, det(z0I - Cp) =

0 if and only if z0 is a zero of p(z). This implies that computing the eigenvalues of Cp will yield the roots of p(z). The

companion matrix method is thought to be more robust than the Jenkins-Traub algorithm in most cases.

A second alternative is a variant of Aberth’s method based on an implementation by D. A. Bini (1996). This
method can be used via optional argument IMSL_ABERTH_METHOD. It’s a numerically very stable Newton-type
method with rapid convergence properties that can also be applied to high-degree polynomials.

For larger degree polynomials, use of the double-precision versions of the root-finding methods is recom-
mended. This applies especially to the Jenkins-Traub method.

Copyright Notice for Bini’s code (see https://www.netlib.org/numeralgo/na10):

* All the software contained in this library is protected by copyright. *
* Permission to use, copy, modify, and distribute this software for any *
* purpose without fee is hereby granted, provided that this entire notice *
* is included in all copies of any software which is or includes a copy *
* or modification of this software and in all copies of the supporting *
* documentation for such software. *

* THIS SOFTWARE IS BEING PROVIDED “AS IS”, WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTY. IN NO EVENT, NEITHER THE AUTHORS, NOR THE PUBLISHER, NOR ANY *
* MEMBER OF THE EDITIORIAL BOARD OF THE JOURNAL “NUMERICAL ALGORITHMS” *
* NOR ITS EDITOR - IN - CHIEF, BE LIABLE FOR ANY ERROR IN THE SOFTWARE, *
* ANY MISUSE OF IT OR ANY DAMAGE ARISING OUT OF ITS USE. THE ENTIRE RISK *
* OF USING THE SOFTWARE LIES WITH THE PARTY DOING SO. *

* ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE OF THE TERMS OF THE *
* ABOVE STATEMENT. *

Examples

Example 1

This example finds the zeros of the third-degree polynomial

p(z) = z3 − (3 + 6i) z2 − (8 − 12i) z + 10
809

https://www.netlib.org/numeralgo/na10

 Nonlinear Equations zeros_poly (complex)
where z is a complex variable.

#include <imsl.h>
#define NDEG 3
int main()
{
 f_complex *zeros;
 f_complex coeff[NDEG + 1] = { {10.0, 0.0},
 {-8.0, 12.0},
 {-3.0, -6.0},
 { 1.0, 0.0} };
 zeros = imsl_c_zeros_poly(NDEG, coeff, 0);
 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

 The complex zeros found are
 1 2 3
(1, 1) (1, 2) (1, 3)

Example 2

The same problem is solved with the return option.

#include <imsl.h>
#define NDEG 3
int main()
{
 f_complex zeros[3];
 f_complex coeff[NDEG + 1] = { {10.0, 0.0},
 {-8.0, 12.0},
 {-3.0, -6.0},
 { 1.0, 0.0} };
 imsl_c_zeros_poly(NDEG, coeff, IMSL_RETURN_USER, zeros, 0);
 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

 The complex zeros found are
 1 2 3
(1, 1) (1, 2) (1, 3)
810

 Nonlinear Equations zeros_poly (complex)
Warning Errors

IMSL_ZERO_COEFF The # leading coefficients of the polynomial are
equal to zero. The last # roots will be set to ("infin-
ity",0.0) where "infinity" is the positive machine
infinity.

IMSL_ZERO_COEFF_1 The leading coefficient of the polynomial is equal to
zero. The last root will be set to ("infinity", 0.0)
where "infinity" is the positive machine infinity.

IMSL_FEWER_ZEROS_FOUND Only # roots were found. The "root" vector will con-
tain the value for machine infinity in the last #
locations.

IMSL_POLY_CONSTANT_ZERO The polynomial is identically zero.

IMSL_POLY_CONSTANT_NONZERO The polynomial is a nonzero constant.

IMSL_NO_CONVERGE_MAX_ITER Failure to converge within "max_itn" = # iterations
for at least one of the "nroot" = # roots.

IMSL_POLY_COEFFS_TOO_LARGE At least one of the coefficients of the polynomial is
too large, overflow is likely.

IMSL_POLY_ROOT_BOUNDS_FAIL The computation of some inclusion radii for the
roots of the polynomial may fail.

IMSL_INV_POLY_ZEROS_TOO_SMALL # zero(s) are too small to represent their inverses as
complex numbers. They are replaced by small
numbers.

IMSL_POLY_ZEROS_TOO_SMALL # zero(s) are too small to be represented by com-
plex numbers. They are set to 0.

IMSL_POLY_ZEROS_TOO_LARGE # zero(s) are too big to be represented by complex
numbers. They are set to a large number instead.
811

 Nonlinear Equations zero_univariate
zero_univariate
Finds a zero of a real univariate function.

Synopsis
#include <imsl.h>
void imsl_f_zero_univariate (float fcn(), float *a, float *b, …, 0)

The type double function is imsl_d_zero_univariate.

Required Arguments
float fcn (float x) (Input/Output)

User-supplied function to compute the value of the function of which the zero will be found.

Arguments
float x (Input)

The point at which the function is evaluated.
Return Value

The computed function value at the point x.

float *a (Input/Output)
See b.

float *b (Input/Output)
Two points at which the user-supplied function can be evaluated.
On input, if fcn(a) and fcn(b) are of opposite sign, the zero will be found in the
interval [a, b]and on output b will contain the value of x at which fcn(x)= 0. If
fcn(a) × fcn(b) > 0, and a ≠ b then a search along the x number line is initiated for a point at
which there is a sign change and |b – a| will be used in setting the step size for the initial search. If
a = b on entry then the search is started as described in the description section below.
On output, b is the abscissa at which |fcn(x)| had the smallest value. If fcn(b) ≠ 0 on output, a
will contain the nearest abscissa to output b at which fcn(x) was evaluated and found to have the
opposite sign from fcn(b).

Synopsis with Optional Arguments
#include <imsl.h>
812

 Nonlinear Equations zero_univariate
void imsl_f_zero_univariate (float fcn(), float *a, float *b,

IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_ERR_TOL, float err_tol,
IMSL_MAX_EVALS, int maxfn,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)

float fcn (float x, void *data) (Input)
User supplied function to compute the value of the function of which the zero will be found,
which also accepts a pointer to data that is supplied by the user. See Passing Data to User-
Supplied Functions in the introduction to this manual for more details.

Arguments
float x (Input)

The point at which the function is evaluated.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value
The computed function value at the point x.

IMSL_ERR_TOL, float err_tol (Input)
Error tolerance. If err_tol > 0.0, the zero is to be isolated to an interval of length less than
err_tol. If err_tol < 0.0, an x is desired for which |fcn(x)| is ≤ |err_tol|. If
err_tol = 0.0, the iteration continues until the zero of fcn(x) is isolated as accurately as possi-
ble.
Default: err_tol = 0.0

IMSL_MAX_EVALS, int maxfn (Input)
An upper bound on the number of function evaluations required for convergence. Set maxfn to 0 if
the number of function evaluations is to be unbounded.
Default: maxfn = 0

IMSL_N_EVALS, int *n_evals (Output)
The actual number of function evaluations used.
813

 Nonlinear Equations zero_univariate
Description
The function imsl_f_zero_univariate is based on the JPL Library routine SZERO. The algorithm used is
attributed to Dr. Fred T. Krogh, JPL, 1972. Tests have shown imsl_f_zero_univariate to require fewer
function evaluations, on average, than a number of other algorithms for finding a zero of a continuous function.
Let f be a continuous univariate function. imsl_f_zero_univariate will accept any two points a and b and
initiate a search on the number line for an x such that f(x) = 0 when there is no sign difference between f(a) and
f(b). In either case, b is updated with a new value on each successive iteration. The algorithm description follows.

When f(a) × f(b) >0 at the initial point, iterates for x are generated according to the
formula x = xmin + (xmin - xmax) × ρ, where the subscript “min” is associated with the (f, x) pair that has the smallest

value for ∣ f ∣, the subscript “max” is associated with the (f, x) pair that has the largest value for ∣ f ∣, and ρ is 8 if
r = fmin /(fmax – fmin) ≥ 8, else ρ = max(κ/4, r), where κ is a count of the number of iterations that have been taken

without finding f’s with opposite signs. If a and b have the same value initially, then the next x is a distance
0.008 + |xmin|/4 from xmin taken toward 0. (If a = b = 0, the next x is -.008.)

Let x1 and x2 denote the first two x values that give f values with different signs. Let α < β be the two values of x

that bracket the zero as tightly as is known. Thus α = x1 or α = x2 and β is the other when computing x3. The next

point, x3, is generated by treating x as the linear function q(f) that interpolates the points (f (x1), x1) and (f (x2), x2),

and then computing x3 = q(0), subject to the condition that α + ɛ ≤ x3 ≤ β − ɛ, where

ɛ = 0.875 × max(err_tol, machine precision). (This condition on x3 with updated values for α and β is also

applied to future iterates.)

Let x4, x5, …, xm denote the abscissae on the following iterations. Let a = xm, b = xm-1, and c = xm-2. Either α or β

(defined as above) will coincide with a, andβ will frequently coincide with either b or c. Let p(x) be the quadratic
polynomial in x that passes through the values of f evaluated at a, b, and c. Let q(f) be the quadratic polynomial in
f that passes through the points (f(a), a), (f(b), b), and f(c), c).

Let ζ = α or β, selected so that ζ≠a. If the sign of f has changed in the last 4 iterations and p′(a) × q′(f(a))
and p′(ζ)) × q′(f(ζ)) are both in the interval [1/4, 4], then x is set to q(0). (Note that if p is replaced by f and q is
replaced by x, then both products have the value 1.) Otherwise x is set to a – (a−ζ) (φ/(1+φ)), where φ is selected
based on past behavior and is such that 0 < φ. If the sign of f () does not change for an extended period, φ gets
large.

Example
This example finds a zero of the function
814

 Nonlinear Equations zero_univariate
in the interval [− 10.0, 0.0].

#include <imsl.h>
#include <stdio.h>
float fcn (float x);
int main() {
 int n_evals;
 float a=-10.0, b=0.0;
 imsl_f_zero_univariate(fcn, &a, &b, IMSL_N_EVALS, &n_evals, 0);
 printf("The best approximation to the zero of f is");
 printf(" equal to %6.3f\n", b);
 printf("The number of function evaluations required");
 printf(" was %d\n",n_evals);
}

float fcn (float x) {
 return x*x + x - 2.0;
}

Output

The best approximation to the zero of f is equal to -2.0
The number of function evaluations required was 10

Fatal Errors
IMSL_ERROR_TOL_NOT_SATISFIED The error tolerance criteria was not satisfied. “b”

contains the abscissa at which “|fcn(x)|” had the
smallest value.

IMSL_DISCONTINUITY_IDENTIFIED Apparently “fcn” has a discontinuity between
“a” = # and “b” = #. No zero has been identified.

IMSL_ZERO_NOT_FOUND “fcn(a)*fcn(b)” > 0 where “a” = #” and “b” = #,
but the algorithm is unable to identify function val-
ues with opposite signs.

IMSL_MAX_FCN_EVAL_EXCEEDED The maximum number of function evaluations,
“maxfn” = #, has been exceeded.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".

f x = x2 + x − 2
815

 Nonlinear Equations zeros_function
zeros_function
Finds the real zeros of a real, continuous, univariate function.

Synopsis
#include <imsl.h>
float *imsl_f_zeros_function (float fcn(), …, 0)

The type double function is imsl_d_zeros_function.

Required Arguments
float fcn (float x) (Input/Output)

User-supplied function to compute the value of the function of which the zeros will be found.

Argument

float x (Input)
The point at which the function is evaluated.

Return Value
The computed function value at the point x.

Return Value
A pointer to an array containing the zeros of the function. The zeros are in increasing order. If fewer than the
requested number of zeros were found, the final entries are set to NaN. To release this space, use imsl_free.
If there is a fatal error, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_zeros_function (float fcn(),

IMSL_NUM_ROOTS, int num_roots,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_NUM_ROOTS_FOUND, int *num_roots_found,
IMSL_N_EVALS, int *n_evals,
816

 Nonlinear Equations zeros_function
IMSL_BOUND, float a, float b,
IMSL_MAX_EVALS, int max_evals,
IMSL_XGUESS, float xguess[],
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_X, float err_x,
IMSL_TOLERANCE_MULLER, float tolerance_muller,
IMSL_MIN_SEPARATION, float min_separation,
IMSL_XSCALE, float xscale,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments
IMSL_NUM_ROOTS, int num_roots (Input)

The number of zeros to be found.
Default: num_roots = 1.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to compute the value of the function of which the zeros will be found, which
also accepts a pointer to data that is supplied by the user. See Passing Data to User-Supplied Func-
tions in the introduction to this manual for more details.

Arguments

float x (Input)
The point at which the function is evaluated.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value
The computed function value at the point x.

IMSL_NUM_ROOTS_FOUND, int *num_roots_found (Output)
The number of zeros actually found.

IMSL_N_EVALS, int *n_evals (Output)
The actual number of function evaluations used.

IMSL_BOUND, float a, float b (Input)
The closed interval in which to search for the roots. The function must be defined for all values in this
interval.
Default: The search for the roots is not bounded.
817

 Nonlinear Equations zeros_function
IMSL_MAX_EVALS, int max_evals (Input)
The maximum number of function evaluations allowed. Once this limit is reached, the roots found
are returned.
Default: max_evals = 100

IMSL_XGUESS, float xguess[] (Input)
Array with num_roots components containing initial guesses for the zeros. If a bound on the zeros
is also given, the guesses must satisfy the bound condition.

IMSL_ERR_ABS, float err_abs (Input)
A convergence criterion. A root is accepted if the absolute value of the function at the point is less
than or equal to err_abs.
Default: err _abs= 100 ɛ, where ɛ is the machine precision.

IMSL_ERR_X, float err_x (Input)
A convergence criterion. A root is accepted if it is bracketed within an interval of length err_x.
Default: err_x = 100 ɛ / xscale, where ɛ is the machine precision.

IMSL_TOLERANCE_MULLER, float tolerance_muller (Input)
Müller’s method is started if, during refinement, a point is found for which the absolute value of the
function is less than tolerance_muller and the point is not near an already discovered root. If
tolerance_muller is less than or equal to zero Müller’s method is never used.
Default: tolerance_muller = ɛ / err_abs, where ɛ is the machine precision. With the default
value of err_abs, this equals 0.01.

IMSL_MIN_SEPARATION, float min_separation (Input)
The minimum separation between accepted roots. If two points both satisfy the convergence criteria,
but are within min_separation of each other, only one of the roots is accepted.
Default: min_separation = ɛ1/2/xscale, where ɛ is the machine precision.

IMSL_XSCALE, float xscale (Input)
The scaling in the x-coordinate. The absolute value of the roots divided by xscale should be about
one.
Default: xscale = 1.0

IMSL_RETURN_USER, float x[] (Output)
Array with num_root components containing the computed zeros.
818

 Nonlinear Equations zeros_function
Description
The function imsl_f_zeros_function computes num_roots real zeros of a real, continuous, univariate
function. The search for the zeros of the function can be limited to a specified interval, or extended over the
entire real line. The code is generally more efficient if an interval is specified. The user supplied function must
return valid results for all values in the specified interval. If no interval is given, the user-supplied function must
return valid results for all real numbers.

The function has two convergence criteria. The first criterion accepts a root, x, if

where = err_x.

The second criterion accepts a root if it is known to be inside of an interval of length at most err_abs.

A root is accepted if it satisfies either criteria and is not within min_separation of another accepted root.

If initial guesses for the roots are given, Müller’s method (Müller 1956) is used for each of these guesses. For each
guess, the Müller iteration is stopped if the next step would be outside of the bound, if given. The iteration is also
stopped if it cannot make further progress in finding a root.

If no guess for the zeros were given, or if Müller’s method with the guesses did not find the requested number of
roots, a meta-algorithm, combining Müller’s and Brent’s methods, is used. Müller’s method is used primarily to

find the roots of functions, such as f(x) = x2, where the function does not cross the y=0 line. Brent’s method is
used to find other types of roots.

The meta-algorithm successively refines the interval using a one-dimensional Faure low-discrepancy sequence. If
the optional argument IMSL_BOUND is used to specify a bounded interval, [a,b], the Faure sequence is scaled
from (0,1) to (a,b).

If no bound on the function’s domain is given, the entire real line must be searched for roots. In this case the
Faure sequence is scaled from (0, 1) to (-∞,+∞) using the mapping

where xscale is given by the optional argument IMSL_XSCALE.

At each step of the iteration the next point in the Faure sequence is added to the list of breakpoints defining the
subintervals. Call the points x0=a, x1=b, x2, x3, …. The new point, xs splits an existing subinterval, [xp, xq].

The function is evaluated at xs. If its value is small enough, specifically if

∣ f x ∣ ≤ τ

τ

h u = xscale · tan π u − 1 / 2)
819

 Nonlinear Equations zeros_function
then Müller’s method is used with xp, xq and xs as starting values. If a root is found, it is added to the list of roots.

If more roots are required, the new Faure point is used.

If Müller’s method did not find a root using the new point, the function value at the point is compared with the

function values at the endpoints of the subinterval it divides. If and no root has previously

been found in then Brent’s method is used to find a root in this interval. Similarly, if the function changes

sign over the interval , and a root has not already been found in the subinterval, Brent’s method is used
there.

Examples

Example 1

This example finds a real zero of the function.

#include <imsl.h>
#include <math.h>
#include <stdio.h>
float fcn(float x);
int main()
{
 float *x;
 x = imsl_f_zeros_function (fcn, 0);
 printf("fcn(%6.3f) = %12.3e\n",
 x[0], fcn(x[0]));
}

float fcn(float x)
{
 return exp(x) - 3.0;
}

Output

fcn(1.099) = -6.378e-006

∣ f xs ∣ < tolerance_muller

f xp f xs < 0

xp, xs
xs, xq

f x = ex − 3
820

 Nonlinear Equations zeros_function
Example 2

This example finds two real zeros of function

on the interval [0,20].

#include <imsl.h>
#include <math.h>
float fcn(float x);
int main()
{
 float *x;
 int n_found;
 x = imsl_f_zeros_function (fcn,
 IMSL_NUM_ROOTS, 2,
 IMSL_BOUND, 0.0, 20.0,
 IMSL_NUM_ROOTS_FOUND, &n_found,
 0);
 imsl_f_write_matrix ("x", 1, n_found, x, 0);
}

float fcn(float x)
{
 return sqrt(x)*exp(-x) - 0.3;
}

Output

 x
 1 2
 0.113 1.356

Warning Errors

Fatal Errors

IMSL_ZEROS_MAX_EVALS_EXCEEDED The maximum number of function evaluations
allowed has been exceeded. Any zeros found are
returned.

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".

f x = e−x x − 0.3
821

 Nonlinear Equations zeros_sys_eqn
zeros_sys_eqn

more...

Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_zeros_sys_eqn (void fcn(), int n, …, 0)

The type double function is imsl_d_zeros_sys_eqn.

Required Arguments
void fcn (int n, float x[], float f[]) (Input/Output)

User-supplied function to evaluate the system of equations to be solved, where n is the size of x and
f, x is the point at which the functions are evaluated, and f contains the computed function values
at the point x.

int n (Input)
The number of equations to be solved and the number of unknowns.

Return Value
A pointer to the vector x that is a solution of the system of equations. To release this space, use imsl_free. If
no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_zeros_sys_eqn (void fcn(), int n,

IMSL_XGUESS, float xguess[],
822

 Nonlinear Equations zeros_sys_eqn
IMSL_JACOBIAN, void jacobian(),
IMSL_ERR_REL, float err_rel,
IMSL_MAX_ITN, int max_itn,
IMSL_RETURN_USER, float x[],
IMSL_FNORM, float *fnorm,
IMSL_FCN_W_DATA, void fcn (), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing the initial estimate of the root.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int n, float x[], float fjac[]) (Input/Output)
User-supplied function to evaluate the Jacobian, where n is the number of components in x, x is the
point at which the Jacobian is evaluated, and fjac is the computed n × n Jacobian matrix at the
point x. Note that each derivative ∂fi ∕ ∂xj should be returned in fjac[(i-1)×n+j-1].

IMSL_ERR_REL, float err_rel (Input)
Stopping criterion. The root is accepted if the relative error between two successive approximations
to this root is less than err_rel.
Default: where ɛ is the machine precision

IMSL_MAX_ITN, int max_itn (Input)
The maximum allowable number of iterations.
Default: max_itn = 200

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the best estimate of the root found by f_zeros_sys_eqn.

IMSL_FNORM, float *fnorm (Output)
Scalar with the value

at the point x.

err_rel = ɛ

f 1
2 + … + f n

2

823

 Nonlinear Equations zeros_sys_eqn
IMSL_FCN_W_DATA, void fcn (int n, float x[], float f[] , void *data), void *data (Input)
User supplied function to evaluate the system of equations to be solved, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied
function. See Passing Data to User-Supplied Functions in the introduction to this manual for more
details.

IMSL_JACOBIAN_W_DATA, void jacobian (int n, float x[], float fjac[], void *data),
void *data (Input)
User supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_zeros_sys_eqn is based on the MINPACK subroutine HYBRDJ, which uses a modifica-
tion of the hybrid algorithm due to M.J.D. Powell. This algorithm is a variation of Newton’s method, which takes
precautions to avoid undesirable large steps or increasing residuals. For further description, see Moré et al.
(1980).

Examples

Example 1

The following 2 × 2 system of nonlinear equations

is solved.

#include <imsl.h>
#include <stdio.h>
#define N 2
void fcn(int, float[], float[]);
int main()
{
 float *x;
 x = imsl_f_zeros_sys_eqn(fcn, N, 0);
 imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
}

f 1 x = x1 + x2 − 3

f 2 x = x1
2 + x2

2 − 9
824

 Nonlinear Equations zeros_sys_eqn
void fcn(int n, float x[], float f[])
{
 f[0] = x[0] + x[1] - 3.0;
 f[1] = x[0]*x[0] + x[1] * x[1] - 9.0;
}

Output

The solution to the system is
 1 2
 0 3

Example 2

The following 3 × 3 system of nonlinear equations

is solved with the initial guess (4.0, 4.0, 4.0).

f 1 x = x1 + e
x1−1 + x2 + x3

2 − 27

f 2 x = e
x2−2 / x1 + x3

2 − 10

f 3 x = x3 + sin x2 − 2 + x2
2 − 7
825

 Nonlinear Equations zeros_sys_eqn
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define N 3
void fcn(int, float[], float[]);
int main()
{
 int maxitn = 100;
 float *x, err_rel = 0.0001, fnorm;
 float xguess[N] = {4.0, 4.0, 4.0};
 x = imsl_f_zeros_sys_eqn(fcn, N,
 IMSL_ERR_REL, err_rel,
 IMSL_MAX_ITN, maxitn,
 IMSL_XGUESS, xguess,
 IMSL_FNORM, &fnorm,
 0);
 imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
 printf("\nwith fnorm = %5.4f\n", fnorm);
}

void fcn(int n, float x[], float f[])
{
 f[0] = x[0] + exp(x[0] - 1.0) + (x[1] + x[2]) * (x[1] + x[2]) - 27.0;
 f[1] = exp(x[1] - 2.0) / x[0] + x[2] * x[2] - 10.0;
 f[2] = x[2] + sin(x[1] - 2.0) + x[1] * x[1] - 7.0;
}

Output

The solution to the system is
 1 2 3
 1 2 3
with fnorm = 0.0000

Warning Errors

Fatal Errors

IMSL_TOO_MANY_FCN_EVALS The number of function evaluations has exceeded
max_itn. A new initial guess may be tried.

IMSL_NO_BETTER_POINT Argument err_rel is too small. No further improve-
ment in the approximate solution is possible.

IMSL_NO_PROGRESS The iteration has not made good progress. A new ini-
tial guess may be tried.

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
826

 Optimization Functions
Optimization

Functions
Unconstrained Minimization

Univariate Function
Using function values only .min_uncon 831
Using function and first derivative values .min_uncon_deriv 836
Finds the minimum point of a nonsmooth function

of a single value. min_uncon_golden 841
Multivariate Function

Using quasi-Newton method . min_uncon_multivar 846
Finds the minimum of a nonsmooth function using a direct search

polytope algorithm. min_uncon_polytope 855
Nonlinear Least Squares

Using Levenberg-Marquardt algorithm . nonlin_least_squares 860

Linearly Constrained Minimization
Reads an MPS file containing a linear programming

problem or a quadratic programming problem . read_mps 871
Solves a linear programming problem. linear_programming 881
Dense linear programming . lin_prog 892
Solves a transportation problem . transport 888
Quadratic programming . quadratic_prog 898
Sparse linear programming .sparse_lin_prog 904
Sparse quadratic programming . sparse_quadratic_prog 918
Minimizes a general objective function . min_con_gen_lin 933
Nonlinear least-squares

with simple bounds on the variables bounded_least_squares 941
Finds the minimum of a nonsmooth function with box constraints

using a direct search complex algorithm. min_con_polytope 951
Minimizes a function with linear constraints by a derivative-free,

interpolation-based trust-region method min_con_lin_trust_region 962

Nonlinearly Constrained Minimization
Using a sequential equality constrained QP method constrained_nlp 968

Service Routines
Divided-finite difference Jacobian . jacobian 979
827

 Optimization Usage Notes
Usage Notes

Unconstrained Minimization
The unconstrained minimization problem can be stated as follows:

where f :ℜn →ℜis continuous and has derivatives of all orders required by the algorithms. The functions for
unconstrained minimization are grouped into three categories: univariate functions, multivariate functions, and
nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified interval. For discus-
sion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function imsl_f_min_uncon_multivar. The default is to
use a finite-difference approximation of the gradient of f(x). Here, the gradient is defined to be the vector

However, when the exact gradient can be easily provided, the keyword IMSL_GRAD should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The most common appli-
cation of the function is the nonlinear data-fitting problem where the user is trying to fit the data with a nonlinear
model.

These functions are designed to find only a local minimum point. However, a function may have many local min-
ima. Try different initial points and intervals to obtain a better local solution.

Double-precision arithmetic is recommended for the functions when the user provides only the function values.

Linearly Constrained Minimization
The linearly constrained minimization problem can be stated as follows:

min
x∈Rn

f x

∇ f x =
∂ f x
∂ x1

,
∂ f x
∂ x2

,...
∂ f x
∂ xn
828

 Optimization Usage Notes
where f : Rn → R, A1 and A2 are coefficient matrices, and b1 and b2 are vectors. If f(x) is linear, then the problem is

a linear programming problem. If f(x) is quadratic, the problem is a quadratic programming problem.

The function imsl_f_linear_programming uses an active set strategy to solve linear programming problems,
and is intended as a replacement for the function imsl_f_lin_prog. The two functions have similar interfaces,
which should help facilitate migration from imsl_f_lin_prog to imsl_f_linear_programming. In
general, the function imsl_f_linear_programming should be expected to perform more efficiently than
imsl_f_lin_prog. Both imsl_f_linear_programming and imsl_f_lin_prog are intended for
use with small- to medium-sized linear programming problems. No sparsity is assumed since the coefficients are
stored in full matrix form.

Function imsl_f_transport solves a transportation problem, which is a very sparse linear programming
application.

Function imsl_d_sparse_lin_prog uses an infeasible primal-dual interior-point method to solve sparse lin-
ear programming problems of all sizes. The constraint matrix is stored in sparse coordinate storage format.

The function imsl_f_quadratic_prog is designed to solve convex quadratic programming problems using a
dual quadratic programming algorithm. If the given Hessian is not positive definite, then
imsl_f_quadratic_prog modifies it to be positive definite. In this case, output should be interpreted with
care because the problem has been changed slightly. Here, the Hessian of f(x) is defined to be the n × n matrix

Function imsl_d_sparse_quadratic_prog uses an infeasible primal-dual interior-point method to solve
sparse convex quadratic programming problems of all sizes. The constraint matrix and the Hessian are stored in
sparse coordinate storage format.

Nonlinearly Constrained Minimization
The nonlinearly constrained minimization problem can be stated as follows:

min
x∈Rn

f x

subject to
A1x = b1
A2x ≤ b2

∇2 f x = ∂2

∂ xi∂ x j
f x
829

 Optimization Usage Notes
where f : Rn → R and gi : Rn → R, for i = 1, 2, …, m.

The function imsl_f_constrained_nlp uses a sequential equality constrained quadratic programming algo-
rithm to solve this problem. A more complete discussion of this algorithm can be found in the documentation.

Return Values from User-Supplied Functions
All values returned by user-supplied functions must be valid real numbers. It is the user’s responsibility to check
that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

#include <imsl.h>
#include <math.h>
void fcn(int, int, float[], float[]);
void main()
{
int m=3, n=1;
float *result, fx[3];
float xguess[]={1.0};
result = imsl_f_nonlin_least_squares(fcn, m, n, IMSL_XGUESS, xguess, 0);
fcn(m, n, result, fx);
/* Print results */
imsl_f_write_matrix("The solution is", 1, 1, result, 0);
imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
} /* End of main */
void fcn(int m, int n, float x[], float f[])
{
int i;
float y[3] = {2.0, 4.0, 3.0};
float t[3] = {1.0, 2.0, 3.0};
for (i=0; i<m; i++)
{
/* check for x=0
 do not want to return infinity to nonlin_least_squares */
 if (x[0] == 0.0) {
 f[i] = 10000.;
 } else {
 f[i] = t[i]/x[0] - y[i];
 }
}
} /* End of function */

min
x∈Rn

f x

subject to gi x = 0 for i = 1,2,...m1
gi x ≥ 0 for i = m1 + 1,...m
830

 Optimization min_uncon
min_uncon
Find the minimum point of a smooth function f(x) of a single variable using only function evaluations.

Synopsis
#include <imsl.h>
float imsl_f_min_uncon (float fcn(), float a, float b, …, 0)

The type double functionis imsl_d_min_uncon.

Required Arguments
float fcn(float x) (Input/Output)

User-supplied function to compute the value of the function to be minimized where x is the point at
which the function is evaluated, and fcn is the computed function value at the point x.

float a (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be located.

float b (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be located.

Return Value
The point at which a minimum value of fcn is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_min_uncon (float fcn(), float a, float b,

IMSL_XGUESS, float xguess,
IMSL_STEP, float step,
IMSL_ERR_ABS, float err_abs,
IMSL_MAX_FCN, int max_fcn,
IMSL_FCN_W_DATA, float fcn(), void *data,
831

 Optimization min_uncon
0)

Optional Arguments
IMSL_XGUESS, float xguess (Input)

An initial guess of the minimum point of fcn.
Default: xguess = (a + b)/2

IMSL_STEP, float step (Input)
An order of magnitude estimate of the required change in x.
Default: step = 1.0

IMSL_ERR_ABS, float err_abs (Input)
The required absolute accuracy in the final value of x. On a normal return, there are points on either
side of x within a distance err_abs at which fcn is no less than fcn at x.
Default: err_abs = 0.0001

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FCN_W_DATA, float fcn(float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

Description
The function imsl_f_min_uncon uses a safeguarded quadratic interpolation method to find a minimum
point of a univariate function. Both the code and the underlying algorithm are based on the subroutine ZXLSF
written by M.J.D. Powell at the University of Cambridge.

The function imsl_f_min_uncon finds the least value of a univariate function, f, which is specified by the func-
tion fcn. Other required data are two points a and b that define an interval for finding a minimum point from an
initial estimate of the solution, x0 where x0 = xguess. The algorithm begins the search by moving from x0 to

x = x0 + s where s = step is an estimate of the required change in x and may be positive or negative. The first two

function evaluations indicate the direction to the minimum point and the search strides out along this direction
until a bracket on a minimum point is found or until x reaches one of the endpoints a or b. During this stage, the
832

 Optimization min_uncon
step length increases by a factor of between two and nine per function evaluation. The factor depends on the
position of the minimum point that is predicted by quadratic interpolation of the three most recent function
values.

When an interval containing a solution has been found, we have three points,

x

1

, x

2

, x

3

, with x

1

< x

2

< x

3

, f(x

1

) ≥ f(x

2

), and f(x

2

) ≤ f(x

3

).

There are three main rules in the technique for choosing the new x from these three points. They are (i) the esti-
mate of the minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance
parameter η, which depends on the closeness of f to a quadratic, and (iii) whether x2 is near the center of the

range between x1 and x3 or is relatively close to an end of this range. In outline, the new value of x is as near as

possible to the predicted minimum point, subject to being at least ɛ from x2, and subject to being in the longer

interval between x1 and x2, or x2 and x3, when x2 is particularly close to x1 or x3.

The algorithm is intended to provide fast convergence when f has a positive and continuous second derivative at
the minimum. Also, the algorithim avoids gross inefficiencies in pathological cases, such as

f(x) = x + 1.001∣x∣
833

 Optimization min_uncon
The algorithm can automatically make ɛ large in the pathological cases. In this case, it is usual for a new value of x
to be at the midpoint of the longer interval that is adjacent to the least-calculated function value. The midpoint
strategy is used frequently when changes to f are dominated by computer rounding errors, which will almost cer-
tainly happen if the user requests an accuracy that is less than the square root of the machine precision. In such
cases, the subroutine claims to have achieved the required accuracy if it decides that there is a local minimum
point within distance δ of x, where δ = err_abs, even though the rounding errors in f may cause the existence of
other local minimum points nearby. This difficulty is inevitable in minimization routines that use only function val-
ues, so high precision arithmetic is recommended.

Examples

Example 1

A minimum point of f(x) = ex − 5x is found.

#include <imsl.h>
#include <math.h>
float fcn(float);
int main ()
{
 float a = -100.0;
 float b = 100.0;
 float fx, x;
 x = imsl_f_min_uncon (fcn, a, b, 0);
 fx = fcn(x);
 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

float fcn(float x)
{
 return exp(x) - 5.0*x;
}

Output

The solution is: 1.6094
The function evaluated at the solution is: -3.0472

Example 2

A minimum point of f(x) = x(x3 − 1) + 10 is found with an initial guess x0 = 3.

#include <imsl.h>
834

 Optimization min_uncon
float fcn(float);
int main ()
{
 int max_fcn = 50;
 float a = -10.0;
 float b = 10.0;
 float xguess = 3.0;
 float step = 0.1;
 float err_abs = 0.001;
 float fx, x;
 x = imsl_f_min_uncon (fcn, a, b,
 IMSL_XGUESS, xguess,
 IMSL_STEP, step,
 IMSL_ERR_ABS, err_abs,
 IMSL_MAX_FCN, max_fcn,
 0);
 fx = fcn(x);
 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n", fx);
}
float fcn(float x)
{
 return x*(x*x*x-1.0) + 10.0;
}

Output

The solution is: 0.6298
The function evaluated at the solution is: 9.5275

Warning Errors

Fatal Errors

IMSL_MIN_AT_BOUND The final value of x is at a bound.

IMSL_NO_MORE_PROGRESS Computer rounding errors prevent further refine-
ment of x.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
835

 Optimization min_uncon_deriv
min_uncon_deriv
Finds the minimum point of a smooth function f(x) of a single variable using both function and first derivative
evaluations.

Synopsis
#include <imsl.h>
float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b, …, 0)

The type double function is imsl_d_min_uncon_deriv.

Required Arguments
float fcn (float x) (Input/Output)

User-supplied function to compute the value of the function to be minimized where x is the point at
which the function is evaluated, and fcn is the computed function value at the point x.

float grad (float x) (Input/Output)
User-supplied function to compute the first derivative of the function where x is the point at which
the derivative is evaluated, and grad is the computed value of the derivative at the point x.

float a (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be located.

float b (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be located.

Return Value
The point at which a minimum value of fcn is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b,

IMSL_XGUESS, float xguess,
836

 Optimization min_uncon_deriv
IMSL_ERR_REL, float err_rel,
IMSL_GRAD_TOL, float grad_tol,
IMSL_MAX_FCN, int max_fcn,
IMSL_FVALUE, float *fvalue,
IMSL_GVALUE, float *gvalue,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GRADIENT_W_DATA, float grad(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess (Input)

An initial guess of the minimum point of fcn.
Default: xguess = (a + b)/2

IMSL_ERR_REL, float err_rel (Input)
The required relative accuracy in the final value of x. This is the first stopping criterion. On a normal
return, the solution x is in an interval that contains a local minimum and is less than or equal to max
(1.0, |x|) *err_rel. When the given err_rel is less than zero,

is used as err_rel where ɛ is the machine precision.

Default: err_rel =

IMSL_GRAD_TOL, float grad_tol (Input)
The derivative tolerance used to decide if the current point is a local minimum. This is the second
stopping criterion. x is returned as a solution when grad is less than or equal to grad_tol.
grad_tol should be nonnegative; otherwise, zero would be used.
Default: grad_tol = where ɛ is the machine precision

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FVALUE, float *fvalue (Output)
The function value at point x.

IMSL_GVALUE, float *gvalue (Output)
The derivative value at point x.

ɛ

ɛ

ɛ

837

 Optimization min_uncon_deriv
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

IMSL_GRADIENT_W_DATA, float grad (float x, void *data), void *data, (Input)
User supplied function to compute the first derivative of the function, which also accepts a pointer to
data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied
function. See Passing Data to User-Supplied Functions in the introduction to this manual for more
details.

Description
The function f_min_uncon_deriv uses a descent method with either the secant method or cubic interpola-
tion to find a minimum point sof a univariate function. It starts with an initial guess and two endpoints. If any of
the three points is a local minimum point and has least function value, the function terminates with a solution.
Otherwise, the point with least function value will be used as the starting point.

From the starting point, say xc, the function value fc = f(xc), the derivative value gc = g(xc), and a new point xn

defined by xn = xc - gc are computed. The function fn = f(xn), and the derivative gn = g(xn) are then evaluated. If

either fn ≥ fc or gn has the opposite sign of gc, then there exists a minimum point between xc and xn, and an initial

interval is obtained. Otherwise, since xc is kept as the point that has lowest function value, an interchange

between xn and xc is performed. The secant method is then used to get a new point

Let xn = xs, and repeat this process until an interval containing a minimum is found or one of the convergence cri-

teria is satisfied. The convergence criteria are as follows:

Criterion 1: ∣xc − xn∣ ≤ ɛc

Criterion 2: ∣gc∣ ≤ ɛg

where ɛc = max {1.0, ∣xc∣} ɛ, ɛ is an error tolerance, and ɛg is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. Function and deriv-
ative are then evaluated at that point, and accordingly a smaller interval that contains a minimum point is chosen.
A safeguarded method is used to ensure that the interval be reduced by at least a fraction of the previous inter-
val. Another cubic interpolation is then performed, and this function is repeated until one of the stopping criteria
is met.

xs = xc − gc
gn − gc
xn − xc
838

 Optimization min_uncon_deriv
Examples

Example 1

In this example, a minimum point of f(x) = ex − 5x is found.

#include <imsl.h>
#include <math.h>
float fcn(float);
float deriv(float);
int main ()
{
 float a = -10.0;
 float b = 10.0;
 float fx, gx, x;
 x = imsl_f_min_uncon_deriv (fcn, deriv, a, b, 0);
 fx = fcn(x);
 gx = deriv(x);
 printf ("The solution is: %7.3f\n", x);
 printf ("The function evaluated at the solution is: %9.3f\n", fx);
 printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}

float fcn(float x)
{
 return exp(x) - 5.0*(x);
}

float deriv (float x)
{
 return exp(x) - 5.0;
}

Output

The solution is: 1.609
The function evaluated at the solution is: -3.047
The derivative evaluated at the solution is: -0.001

Example 2

A minimum point of f(x) = x(x3 − 1) + 10 is found with an initial guess x0 = 3.

#include <imsl.h>
#include <stdio.h>
float fcn(float);
float deriv(float);
839

 Optimization min_uncon_deriv
int main ()
{
 int max_fcn = 50;
 float a = -10.0;
 float b = 10.0;
 float xguess = 3.0;
 float fx, gx, x;
 x = imsl_f_min_uncon_deriv (fcn, deriv, a, b,
 IMSL_XGUESS, xguess,
 IMSL_MAX_FCN, max_fcn,
 IMSL_FVALUE, &fx,
 IMSL_GVALUE, &gx,
 0);
 printf ("The solution is: %7.3f\n", x);
 printf ("The function evaluated at the solution is: %7.3f\n", fx);
 printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}
float fcn(float x)
{
 return x*(x*x*x-1) + 10.0;
}
float deriv(float x)
{
 return 4.0*(x*x*x) - 1.0;
}

Output

The solution is: 0.630
The function evaluated at the solution is: 9.528
The derivative evaluated at the solution is: 0.000

Warning Errors

Fatal Errors

IMSL_MIN_AT_LOWERBOUND The final value of x is at the lower bound.

IMSL_MIN_AT_UPPERBOUND The final value of x is at the upper bound.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
840

 Optimization min_uncon_golden
min_uncon_golden
Finds the minimum point of a nonsmooth function of a single variable using the golden section search method.

Synopsis
#include <imsl.h>
float imsl_f_min_uncon_golden (float fcn(), float a, float b, ..., 0)

The typedouble function is imsl_d_min_uncon_golden.

Required Arguments
float fcn (float x) (Input)

User-supplied function, f(x), to be minimized.

float x (Input)
The point at which the function is evaluated.

Return Value
The computed function value at the point x.

float a (Input)
The lower endpoint of the interval in which the minimum of f is to be located.

float b (Input)
The upper endpoint of the interval in which the minimum of f is to be located.

Return Value
The approximate minimum point of the function f on the original interval [a,b]. If no value can be computed,
NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_min_uncon_golden (float fcn(), float a, float b,

IMSL_TOLERANCE, float tol,
841

 Optimization min_uncon_golden
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_LOWER_ENDPOINT, float *lower,
IMSL_UPPER_ENDPOINT, float *upper,
0)

Optional Arguments
IMSL_TOLERANCE, float tol (Input)

The allowable length of the final subinterval containing the minimum point.
Default: tol = , where ɛ is the machine precision.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)

float fcn (float x, void *data)
User-supplied function, f(x), to be minimized, which also accepts a pointer to data that is sup-
plied by the user. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

Arguments
float x (Input)

The point at which the function is evaluated.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed function value at the point x.
void data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_LOWER_ENDPOINT, float *lower (Output)
The lower endpoint of the interval in which the minimum of f is located.

IMSL_UPPER_ENDPOINT, float *upper (Output)
The upper endpoint of the interval in which the minimum of f is located.

Description
The function imsl_f_min_uncon_golden uses the golden section search technique to compute to the
desired accuracy the independent variable value that minimizes a function of one independent variable, where a
known finite interval contains the minimum and where the function is unimodal in the same known finite interval.

Let =tol. The number of iterations required to compute the minimizing value to accuracy is the greatest
integer less than or equal to

ɛ

τ τ
842

 Optimization min_uncon_golden
where aand bdefine the interval and

The first two test points are v1 and v2 that are defined as

v

1

 =a+c(b- a), and v

2

 =b- c(b- a)

If f(v1) < f(v2), then the minimizing value is in the interval (a, v2). In this case, b← v2, v2← v1, and v1 ← a +c(b- a). If

f(v1) ≥ f(v2), the minimizing value is in (v1, b). In this case, a←v1, v1 ← v2, and v2 ← b - c(b − a).

The algorithm continues in an analogous manner where only one new test point is computed at each step. This
process continues until the desired accuracy is achieved. The point, xmin, producing the minimum value for
the current iteration is returned.

Mathematically, the algorithm always produces the minimizing value to the desired accuracy, however, numerical
problems may be encountered. If fis too flat in part of the region of interest, the function may appear to be con-
stant to the computer in that region. The user may rectify the problem by relaxing the requirement on ,
modifying (scaling, etc.) the form of f or executing the program in a higher precision.

Remarks
1. On exit from imsl_f_min_uncon_golden without any error messages, the following conditions

hold:

(upper-lower) ≤tol
lower ≤xmin and xmin ≤upper

f(xmin) ≤f(lower) and f(xmin) ≤f(upper)
2. On exit from imsl_f_min_uncon_golden with IMSL_NOT_UNIMODAL error, the following

conditions hold:

lower ≤xmin and xmin ≤upper
f(xmin) ≥f(lower) and f(xmin) ≥f(upper) (only one equality can hold)

ln τ / b − a
ln 1 − c

+ 1

c = 3 − 5 / 2

τ

τ

843

 Optimization min_uncon_golden
Further analysis of the function f is necessary in order to determine whether it is not unimodal in the math-
ematical sense or whether it appears to be not unimodal to the routine due to rounding errors, in which
case the lower, upper, and xmin returned may be acceptable.

Example
A minimum point of 3x2 - 2x +4 is found.

#include <imsl.h>
#include <stdio.h>
float fcn(float);
int main () {
 float a = 0.0e0, b = 5.0e0, tol = 1.0e-3, lower,
 upper, xmin, fx;
 xmin = imsl_f_min_uncon_golden (fcn, a, b,
 IMSL_TOLERANCE, tol,
 IMSL_LOWER_ENDPOINT, &lower,
 IMSL_UPPER_ENDPOINT, &upper,
 0);
 fx = fcn(xmin);
 printf ("The minimum is at: %8.3f\n", xmin);
 printf ("The function value is: %8.3f\n", fx);
 printf ("The final interval is: (%8.3f, %8.3f)\n",
 lower, upper);
}
float fcn(float x) {
 return 3.0e0*x*x - 2.0e0*x + 4.0e0;
}

Output

The minimum is at: 0.333
The function value is: 3.667
The final interval is: (0.333, 0.334)
844

 Optimization min_uncon_golden
Warning Errors

Fatal Errors

IMSL_TOL_TOO_SMALL tol is too small to be satisfied..

IMSL_NOT_UNIMODAL Due to rounding errors, the function does not
appear to be unimodal.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
845

 Optimization min_uncon_multivar
min_uncon_multivar

more...

Minimizes a function f(x) of n variables using a quasi-Newton method.

Synopsis
#include <imsl.h>
float *imsl_f_min_uncon_multivar (float fcn(), int n, …, 0)

The type double function is imsl_d_min_uncon_multivar.

Required Arguments
float fcn (int n, float x[]) (Input/Output)

User-supplied function to evaluate the function to be minimized where n is the size of x, x is the
point at which the function is evaluated, and fcn is the computed function value at the point x.

int n (Input)
Number of variables.

Return Value
A pointer to the minimum point x of the function. To release this space, use imsl_free. If no solution can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_min_uncon_multivar (float fcn(), int n,

IMSL_XGUESS, float xguess[],
IMSL_GRAD, void grad(),
IMSL_, float xscale[],
846

 Optimization min_uncon_multivar
IMSL_FSCALE, float fscale,
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_MAX_STEP, float max_step,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_GRAD, int max_grad,
IMSL_INIT_HESSIAN, int ihess,
IMSL_RETURN_USER, float x[],
IMSL_FVALUE, float *fvalue,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess of the computed solution.
Default: xguess = 0

IMSL_GRAD, void grad (int n, float x[], float g[]) (Input/Output)
User-supplied function to compute the gradient at the point x where n is the size of x, x is the point
at which the gradient is evaluated, and g is the computed gradient at the point x.

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables. xscale is used mainly in
scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and
IMSL_STEP_TOL for more details.
Default: xscale[] = 1.0

IMSL_FSCALE, float fscale (Input)
Scalar containing the function scaling. fscale is used mainly in scaling the gradient. See keyword
IMSL_GRAD_TOL for more details.
Default: fscale = 1.0

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is calculated as
847

 Optimization min_uncon_multivar
where g = ∇ f(x), s = xscale, and fs = fscale.

Default: grad_tol = , in double where ɛ is the machine precision.

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two points x and y is com-
puted as

where s = xscale.

Default: step_tol = ɛ2/3

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max (ɛ1, ɛ2) where,

ɛ2 = ∥s∥2, s = xscale, and t = xguess.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function. The default is machine dependent.

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_GRAD, int max_grad (Input)
Maximum number of gradient evaluations.
Default: max_grad = 400

∣gi∣ *max ∣xi∣, 1 / si
max ∣ f x ∣, f s

ɛ ɛ3

∣xi − yi∣
max ∣xi∣, 1 / si

ɛ1 = ∑
i=1

n
siti

2

848

 Optimization min_uncon_multivar
IMSL_INIT_HESSIAN, int ihess (Input)
Hessian initialization parameter. If ihess is zero, the Hessian is initialized to the identity matrix; oth-
erwise, it is initialized to a diagonal matrix containing

on the diagonal where t = xguess, fs = fscale, and s = xscale.

Default: ihess = 0

IMSL_RETURN_USER, float x[] (Output)
User-supplied array with n components containing the computed solution.

IMSL_FVALUE, float *fvalue (Output)
Address to store the value of the function at the computed solution.

IMSL_FCN_W_DATA, float fcn (int n, float x[], void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

IMSL_GRADIENT_W_DATA, void grad (int n, float x[], float g[], void *data), void *data, (Input)
User supplied function to compute the gradient at the point x, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function f_min_uncon_multivar uses a quasi-Newton method to find the minimum of a function f(x) of
n variables. The problem is stated as follows:

Given a starting point xc, the search direction is computed according to the formula

where B is a positive definite approximation of the Hessian, and gc is the gradient evaluated at xc. A line search is

then used to find a new point

xn = xc + λd, λ > 0

such that

max ∣ f t ∣, f s * si
2

min
x∈Rn

f x

d = − B−1gc
849

 Optimization min_uncon_multivar
f(xn) ≤ f(xc) + agTd,α ∈ (0, 0.5)

Finally, the optimality condition ∥g(x)∥ ≤ ɛ is checked where ɛ is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

where s = xn − xc and y = gn − gc. Another search direction is then computed to begin the next iteration. For

more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for imsl_f_min_uncon_multivar occurs when the
norm of the gradient is less than the given gradient tolerance grad_tol. The second stopping criterion for
imsl_f_min_uncon_multivar occurs when the scaled distance between the last two steps is less than the
step tolerance step_tol.

Since by default, a finite-difference method is used to estimate the gradient for some single precision calcula-
tions, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such
cases, high precision arithmetic is recommended; the keyword IMSL_GRAD should be used to provide more
accurate gradient evaluation.

On some platforms, imsl_f_min_uncon_multivar can evaluate the user-supplied functions fcn and
grad in parallel. This is done only if the function imsl_omp_options is called to flag user-defined functions as
thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually
the result of writing to global or static variables

B← B − Bss
TB

sTBs
+
yyT

yTs
850

 Optimization min_uncon_multivar
Figure 6, Plot of the Rosenbrock Function

Examples

Example 1

The function

is minimized. In the Plot of the Rosenbrock Function, the solid circle marks the minimum.

#include <stdio.h>
#include <imsl.h>
int main()
{
 int i, n=2;
 float *result, fx;
 static float rosbrk(int, float[]);

f x = 100 x2 − x1
2 2 + 1 − x1

2

851

 Optimization min_uncon_multivar
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Minimize Rosenbrock function */
 result = imsl_f_min_uncon_multivar(rosbrk, n, 0);
 fx = rosbrk(n, result);
 /* Print results */
 printf(" The solution is ");
 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf("\n\n The function value is %8.3f\n", fx);
} /* end of main */

static float rosbrk(int n, float x[])
{
 float f1, f2;
 f1 = x[1] - x[0]*x[0];
 f2 = 1.0 - x[0];
 return 100.0 * f1 * f1 + f2 * f2;
} /* end of function */

Output

The solution is 1.000 1.000
The function value is 0.000

Example 2

The function

is minimized with the initial guess x = (−1.2, 1.0). The initial guess is marked with an open circle in Plot of the
Rosenbrock Function.

#include <stdio.h>
#include <imsl.h>
int main()
{
 int i, n=2;
 float *result, fx;
 float rosbrk(int, float[]);
 void rosgrd(int, float[], float[]);
 static float xguess[2] = {-1.2e0, 1.0e0};
 static float grad_tol = .0001;
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Minimize Rosenbrock function using initial guesses of -1.2 and 1.0 */

f x = 100 x2 − x1
2 2 + 1 − x1

2

852

 Optimization min_uncon_multivar
 result = imsl_f_min_uncon_multivar(rosbrk, n, IMSL_XGUESS, xguess,
 IMSL_GRAD, rosgrd,
 IMSL_GRAD_TOL, grad_tol,
 IMSL_FVALUE, &fx, 0);
 /* Print results */
 printf(" The solution is ");
 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf("\n\n The function value is %8.3f\n", fx);
} /* End of main */

static float rosbrk(int n, float x[])
{
 float f1, f2;
 f1 = x[1] - x[0]*x[0];
 f2 = 1.0e0 - x[0];
 return 100.0 * f1 * f1 + f2 * f2;
} /* End of function */
static void rosgrd(int n, float x[], float g[])
{
 g[0] = -400.0*(x[1]-x[0]*x[0])*x[0] - 2.0*(1.0-x[0]);
 g[1] = 200.0*(x[1]-x[0]*x[0]);
} /* End of function */

Output

The solution is 1.000 1.000
 The function value is 0.000

Informational Errors
IMSL_STEP_TOLERANCE Scaled step tolerance satisfied. The current point

may be an approximate local solution, but it is also
possible that the algorithm is making very slow
progress and is not near a solution, or that
step_tol is too big.
853

 Optimization min_uncon_multivar
Warning Errors

Fatal Errors

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_TOO_MANY_GRAD_EVAL Maximum number of gradient evaluations
exceeded.

IMSL_UNBOUNDED Five consecutive steps have been taken with the
maximum step length.

IMSL_NO_FURTHER_PROGRESS The last global step failed to locate a lower point
than the current x value.

IMSL_FALSE_CONVERGENCE False convergence—The iterates appear to be con-
verging to a noncritical point. Possibly incorrect
gradient information is used, or the function is dis-
continuous, or the other stopping tolerances are too
tight.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
854

 Optimization min_uncon_polytope
min_uncon_polytope
Minimizes a function of n variables using a direct search polytope algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_min_uncon_polytope(void fcn(), int n, ..., 0)

The typedouble function is imsl_d_min_uncon_polytope.

Required Arguments
void fcn (int n, float x[],float *f) (Input)

User-supplied function to evaluate the function to be minimized.

Arguments
int n (Input)
Length of x.
float x[] (Input)
Array of length n at which point the function is evaluated.
float *f (Output)
The computed function value at the point x.

int n (Input)
Dimension of the problem.

Return Value
An array of length n containing the best estimate of the minimum found. To release this space, use imsl_free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_min_uncon_polytope(void fcn(), int n,

IMSL_XGUESS, float xguess[],
855

 Optimization min_uncon_polytope
IMSL_TOLERANCE, float ftol,
IMSL_MAX_FCN, int *maxfcn,
IMSL_SIDE_LENGTH, float *s,
IMSL_FVALUE, float *fvalue,
IMSL_RETURN_USER, float x[],
IMSL_FCN_W_DATA, void fcn(),void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

An array of length n which contains an initial guess to the minimum.
Default: xguess = 0.0

IMSL_TOLERANCE, float ftol (Input)

The error tolerance used is based on two convergence criteria.

First convergence criterion: The algorithm stops when a relative error in the function values
is less than ftol, i.e. when (fcn(worst) - fcn(best)) < ftol * (1 + fabs(fcn(best)))
where fcn(worst) and fcn(best) are the function values of the current worst and best
points, respectively.
Second convergence criterion: The algorithm stops when the standard deviation of the
function values at the n + 1 current points is less than ftol.

If the routine terminates prematurely, try again with a smaller value for ftol.
Default: ftol = 1.e-5 in single precision and 1.e-10 in double precision.

IMSL_MAX_FCN, int *maxfcn (Input/Output)
On input, maximum allowed number of function evaluations. On output, actual number of function
evaluations needed.
Default: maxfcn = 300

IMSL_SIDE_LENGTH, float *s (Input/Output)
On input, real scalar containing the length of each side of the initial simplex. If no reasonable infor-
mation about s is known, s could be set to a number less than or equal to zero and
imsl_f_min_uncon_polytope will generate the starting simplex from the initial guess with a
random number generator. On output, the average distance from the final vertices to their centroid;
see Remark 2.
Default: s = 0.0

IMSL_FVALUE, float *fvalue (Output)
Function value at the computed solution.
856

 Optimization min_uncon_polytope
IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_FCN_W_DATA, void fcn (int n, float x[],float *f, void *data), void *data (Input)
User supplied function to evaluate the function to be minimized, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for
more details.

Description
The routine imsl_f_min_uncon_polytope uses the polytope algorithm to find a minimum point of a func-
tion f(x) of n variables. The polytope method is based on function comparison; no smoothness is assumed. It
starts with n + 1 points x1, x2, …, xn + 1. At each iteration, a new point is generated to replace the worst point xj,

which has the largest function value among these n + 1 points. The new point is constructed by the following
formula:

xk = c + α(c - xj)

where

and α (α > 0) is the reflection coefficient.

When xk is a best point, that is f(xk) ≤ f(xi) for i = 1, …, n + 1, an expansion point is computed xe = c + β(xk - c)

where β(β > 1) is called the expansion coefficient. If the new point is a worst point, then the polytope would be con-
tracted to get a better new point. If the contraction step is unsuccessful, the polytope is shrunk by moving the
vertices halfway toward the current best point. This procedure is repeated until one of the following stopping cri-
teria is satisfied:

Criterion 1:

fworst - fbest≤ ɛf (1. + |fbest|)

Criterion 2:

where fi = f (xi), fj = f (xj), ɛf is a given tolerance and

c = 1n∑i≠ j
xi

1
n + 1∑

i=1

n+1

(f i − f̄)
2 ≤ ε f
857

 Optimization min_uncon_polytope
For a complete description, see Nelder and Mead (1965) or Gill et al. (1981).

Remarks
1. Since imsl_f_min_uncon_polytope uses only function value information at each step to deter-

mine a new approximate minimum, it could be quite inefficient on smooth problems compared to
other methods, such as those implemented in routine imsl_f_min_uncon_multivar that takes
into account derivative information at each iteration. Hence, routine
imsl_f_min_uncon_polytope should be used only as a last resort. Briefly, a set of n + 1 points
in an n-dimensional space is called a simplex. The minimization process iterates by replacing the
point with the largest function value with a new point with a smaller function value. The iteration con-
tinues until all the points cluster sufficiently close to a minimum.

2. The value returned in s is useful for assessing the flatness of the function near the computed mini-
mum. The larger its value for a given value of ftol, the flatter the function tends to be in the
neighborhood of the returned point.

Example
The function

is minimized and the solution is printed.

#include <imsl.h>
#include <stdio.h>
void fcn(int n, float x[], float *f);
#define N 2
int main() {
 float xguess[N] = {-1.2, 1.0};
 float *x, fvalue;
 float ftol = 1.0e-7, s = 1.0;
 x = imsl_f_min_uncon_polytope(fcn, N,
 IMSL_XGUESS, xguess,
 IMSL_TOLERANCE, ftol,
 IMSL_FVALUE, &fvalue,
 IMSL_SIDE_LENGTH, &s,

f̄ =
∑ j=1
n+1 f j
n + 1

f x = 100 x2 − x1
2 2 + 1 − x1

2

858

 Optimization min_uncon_polytope
 0);
 printf("The best estimate for the minimum value of the\n");
 printf("function is x = (%4.2f, %4.2f) with\n", x[0], x[1]);
 printf("function value fvalue = %12.6e\n", fvalue);
}
void fcn(int n, float x[], float *f)
{
 float t1, t2;
 t1 = x[0]*x[0]-x[1];
 t2 = 1.0-x[0];
 *f = 100.0*t1*t1 + t2*t2;
}

Output

The best estimate for the minimum value of the
function is x = (1.00, 1.00) with
function value fvalue = 2.126065e-007

Fatal Errors
IMSL_FCN_EVAL_EXCEEDED_MAXFCN Maximum number of function evaluations exceeded.

IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".
859

 Optimization nonlin_least_squares
nonlin_least_squares

Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_nonlin_least_squares (void fcn(), int m, int n, …, 0)

The type double function is imsl_d_nonlin_least_squares.

Required Arguments
void fcn (int m, int n, float x[], float f[]) (Input/Output)

User-supplied function to evaluate the function that defines the least-squares problem where x is a
vector of length n at which point the function is evaluated, and f is a vector of length m containing
the function values at point x.

int m (Input)
Number of functions.

int n (Input)
Number of variables where n ≤ m.

Return Value
A pointer to the solution x of the nonlinear least-squares problem. To release this space, use imsl_free. If no
solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

more...

more...
860

 Optimization nonlin_least_squares
float *imsl_f_nonlin_least_squares (void fcn(), int m, int n,

IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_TOLERANCE, float tolerance,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_RANK, int *rank,
IMSL_JTJ_INVERSE, float **jtj_inv,
IMSL_JTJ_INVERSE_USER, float jtj_inv[],
IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess.
Default: xguess = 0
861

 Optimization nonlin_least_squares
IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[], int fjac_col_dim) (Input)
User-supplied function to compute the Jacobian where x is a vector of length n at which point the
Jacobian is evaluated, fjac is the computed m × n Jacobian at the point x, and fjac_col_dim is
the column dimension of fjac.
Note that each derivative ∂fi/∂xj should be returned in fjac[(i-1)*fjac_col_dim+j-1]

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables. xscale is used mainly in
scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and
IMSL_STEP_TOL for more detail.
Default: xscale[] = 1.

IMSL_FSCALE, float fscale[] (Input)
Array with m components containing the diagonal scaling matrix for the functions. The i-th compo-
nent of fscale is a positive scalar specifying the reciprocal magnitude of the i-th component
function of the problem.
Default: fscale[] = 1.

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is calculated as

where g = ∇ F(x), s = xscale, and

Default: grad_tol =

 in double where ɛ is the machine precision.

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two points x and y is com-
puted as

where s = xscale.

∣gi∣ *max ∣xi∣,1 / si
1
2∥F x ∥

2
2

∥F x ∥
2
2 =∑

i=1

m
f i x

2

ɛ

ɛ3

∣xi − yy∣
max ∣xi∣, 1 / si
862

 Optimization nonlin_least_squares
Default: step_tol = ɛ2/3 where ɛ is the machine precision.

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.
Default: rfcn_tol = max (10-10, ɛ2/3), max (10-20, ɛ2/3) in double, where ɛ is the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol (Input)
Absolute function tolerance.
Default: afcn_tol = max (10-20, ɛ2), max (10-40, ɛ2) in double, where ɛ is the machine precision.

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max (ɛ1, ɛ2) where,

s = xscale, and t = xguess
IMSL_INIT_TRUST_REGION, float trust_region (Input)

Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent.

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100.

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400.

IMSL_MAX_JACOBIAN, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400.

IMSL_INTERN_SCALE
Internal variable scaling option. With this option, the values for xscale are set internally.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence for the computation of the inverse of JTJ. For
imsl_f_nonlin_least_squares, if IMSL_JACOBIAN is specified, then
tolerance = 100 × imsl_f_machine(4) is the default. Otherwise, the square root of

ɛ1 = ∑
i=1

n
siti

2
1/2
, ɛ2 = ∥s∥2
863

 Optimization nonlin_least_squares
imsl_f_machine(4) is the default. For imsl_d_nonlin_least_squares, if
IMSL_JACOBIAN is specified, then tolerance = 100 × imsl_d_machine(4) is the default.
Otherwise, the square root of imsl_d_machine(4) is the default. See imsl_f_machine.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
The address of a pointer to a real array of length m containing the residuals at the approximate solu-
tion. On return, the necessary space is allocated by imsl_f_nonlin_least_squares.
Typically, float *fvec is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)
A user-allocated array of size m containing the residuals at the approximate solution.

IMSL_FJAC, float **fjac (Output)
The address of a pointer to an array of size m × n containing the Jacobian at the approximate solu-
tion. On return, the necessary space is allocated by imsl_f_nonlin_least_squares.
Typically, float *fjac is declared, and &fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)
A user-allocated array of size m × n containing the Jacobian at the approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
The column dimension of fjac.
Default: fjac_col_dim = n

IMSL_RANK, int *rank (Output)
The rank of the Jacobian is returned in *rank.

IMSL_JTJ_INVERSE, float **jtj_inv (Output)
The address of a pointer to an array of size n × n containing the inverse matrix of JTJ where the J is
the final Jacobian. If JTJ is singular, the inverse is a symmetric g2 inverse of JTJ. (See
imsl_f_lin_sol_nonnegdef in Chapter , “Linear Systems,”for a discussion of generalized
inverses and definition of the g2 inverse.) On return, the necessary space is allocated by
imsl_f_nonlin_least_squares.

IMSL_JTJ_INVERSE_USER, float jtj_inv[] (Output)
A user-allocated array of size n × n containing the inverse matrix of JTJ where the J is the Jacobian at
the solution.

IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim (Input)
The column dimension of jtj_inv.
Default: jtj_inv_col_dim = n
864

 Optimization nonlin_least_squares
IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data), void *data (Input)
User supplied function to evaluate the function that defines the least-squares problem, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float fjac[],
int fjac_col_dim, void *data), void *data (Input)
User supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_nonlin_least_squares is based on the MINPACK routine LMDER by Moré et al.
(1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least-squares problems. The problem
is stated as follows:

where m ≥ n, F :ℜn →ℜm, and fi(x) is the i-th component function of F(x). From a current point, the algorithm

uses the trust region approach,

to get a new point xn, which is computed as

xn = xc − (J(xc)
T J(xc) + μcI)

-1 J(xc)
T F(xc)

where μc = 0 if δc ≥ ∥(J(xc)T J(xc))-1 J(xc)T F(xc)∥2 and μc > 0, otherwise. The value μc is defined by the function. The

vector and matrix F(xc) and J(xc) are the function values and the Jacobian evaluated at the current point xc, respec-

tively. This function is repeated until the stopping criteria are satisfied.

The first stopping criterion for imsl_f_nonlin_least_squares occurs when the norm of the function is
less than the absolute function tolerance afcn_tol. The second stopping criterion occurs when the norm of
the scaled gradient is less than the given gradient tolerance grad_tol. The third stopping criterion for

min12F x TF x = 12∑
i=1

m

f i x
2

min
x∈Rn

∥F xc + J xc xn − xc ∥
2

subject to ∥xn − xc∥2 ≤ δc
865

 Optimization nonlin_least_squares
imsl_f_nonlin_least_squares occurs when the scaled distance between the last two steps is less than
the step tolerance step_tol. For more details, see Levenberg (1944), Marquardt (1963), or Dennis and Schna-
bel (1983, Chapter 10).

Figure 7, Plot of the Nonlinear Fit

On some platforms, imsl_f_nonlin_least_squares can evaluate the user-supplied functions fcn and
jacobian in parallel. This is done only if the function imsl_omp_options is called to flag user-defined func-
tions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are
usually the result of writing to global or static variables
866

 Optimization nonlin_least_squares
Examples

Example 1

In this example, the nonlinear data-fitting problem found in Dennis and Schnabel (1983, p. 225),

where

is solved with the data t =(1, 2, 3) and y =(2, 4, 3).

#include <stdio.h>
#include <imsl.h>
#include <math.h>
void fcn(int, int, float[], float[]);
int main()
{
 int m=3, n=1;
 float *result, fx[3];
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 result = imsl_f_nonlin_least_squares(fcn, m, n, 0);
 fcn(m, n, result, fx);

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Print results */
 imsl_f_write_matrix("The solution is", 1, 1, result, 0);
 imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
} /* End of main */
void fcn(int m, int n, float x[], float f[])
{
 int i;
 float y[3] = {2.0, 4.0, 3.0};
 float t[3] = {1.0, 2.0, 3.0};
 for (i=0; i<m; i++)
 f[i] = exp(x[0]*t[i]) - y[i];
} /* End of function */

min12∑
i=1

3

f i x
2

f i x = e
tix − yi
867

 Optimization nonlin_least_squares
Output

The solution is
 0.4401
 The function values are
 1 2 3
 -0.447 -1.589 0.744

Example 2

In this example, imsl_f_nonlin_least_squares is first invoked to fit the following nonlinear regression
model discussed by Neter et al. (1983, pp. 475-478):

where the ɛi’s are independently distributed each normal with mean zero and variance σ2. The estimate of σ2 is

then computed as

where ei is the i-th residual and J is the Jacobian. The estimated asymptotic variance-covariance matrix of and

 is computed as

Finally, the diagonal elements of this matrix are used together with imsl_f_t_inverse_cdf (see Chapter 9,
Special Functions) to compute 95% confidence intervals on θ1 and θ2.

#include <math.h>
#include <imsl.h>
void exampl(int, int, float[], float[]);
int main()
{
 int i, j, m=15, n=2, rank;
 float a, *result, e[15], jtj_inv[4], s2, dfe;
 char *fmt="%12.5e";
 static float xguess[2] = {60.0, -0.03};
 static float grad_tol = 1.0e-3;
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 result = imsl_f_nonlin_least_squares(exampl, m, n,
 IMSL_XGUESS, xguess,

yi = θ1e
θ2xi + ɛi i = 1,2,...15

s2 =
∑i=1
15 ei

2

15 − rank J

θ
^

1

θ
^

2

est.asy.var θ^ = s2 JTJ
−1
868

 Optimization nonlin_least_squares
 IMSL_GRAD_TOL, grad_tol,
 IMSL_FVEC_USER, e,
 IMSL_RANK, &rank,
 IMSL_JTJ_INVERSE_USER, jtj_inv,
 0);
 dfe = (float) (m - rank);
 s2 = 0.0;
 for (i=0; i<m; i++)
 s2 += e[i] * e[i];
 s2 = s2 / dfe;
 j = n * n;
 for (i=0; i<j; i++)
 jtj_inv[i] = s2 * jtj_inv[i];
 /* Print results */
 imsl_f_write_matrix (
 "Estimated Asymptotic Variance-Covariance Matrix",
 2, 2, jtj_inv, IMSL_WRITE_FORMAT, fmt, 0);
 printf(" \n 95%% Confidence Intervals \n ");
 printf(" Estimate Lower Limit Upper Limit \n ");
 for (i=0; i<n; i++) {
 j = i * (n+1);
 a = imsl_f_t_inverse_cdf (0.975, dfe) * sqrt(jtj_inv[j]);
 printf(" %10.3f %12.3f %12.3f \n", result[i],
 result[i] - a, result[i] + a);
 }
} /* End of main */

void exampl(int m, int n, float x[], float f[])
{
 int i;
 float y[15] = { 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,
 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0 };
 float xdata[15] = { 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
 34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0 };

 for (i=0; i<m; i++)
 f[i] = y[i] - x[0]*exp(x[1]*xdata[i]);
} /* End of function */

Output

Estimated Asymptotic Variance-Covariance Matrix
 1 2
 1 2.17524e+00 -1.80141e-03
 2 -1.80141e-03 2.97216e-06
 95% Confidence Intervals
 Estimate Lower Limit Upper Limit
 58.608 55.422 61.795
 -0.040 -0.043 -0.036
869

 Optimization nonlin_least_squares
Informational Errors

Warning Errors

Fatal Errors

IMSL_STEP_TOLERANCE Scaled step tolerance satisfied. The current point
may be an approximate local solution, but it is also
possible that the algorithm is making very slow
progress and is not near a solution, or that
step_tol is too big.

IMSL_LITTLE_FCN_CHANGE Both the actual and predicted relative reductions in
the function are less than or equal to the relative
function tolerance.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian evaluations
exceeded.

IMSL_UNBOUNDED Five consecutive steps have been taken with the
maximum step length.

IMSL_FALSE_CONVERGE The iterates appear to be converging to a noncritical
point.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
870

 Optimization read_mps
read_mps
Reads an MPS file containing a linear programming problem or a quadratic programming problem.

Synopsis
#include <imsl.h>
imsl_f_mps *imsl_f_read_mps(char *filename, …, 0)

void imsl_f_mps_free(imsl_f_mps *mps)

The type double function is imsl_d_read_mps.

Required Argument
char *filename (Input)

Name of the MPS file to be read. It may be NULL if the optional argument IMSL_FILE is used.

Return Value
A pointer to a structure containing the data read from the MPS file. To release this space use
imsl_f_mps_free.

The returned structure contains the following fields.

Field Description

char* filename Name of the MPS file.

char name[9] Name of the problem.

int nrows Number of rows in the constraint matrix.

int ncolumns Number of columns in the constraint matrix. This is also the number
of variables.

int nonzero Number of non-zeros in the constraint matrix.

int nhessian Number of non-zeros in the Hessian matrix. If zero, then there is no
Hessian matrix.

int ninteger Number of variables required to be integer. This includes binary
variables.

int nbinary Number of variables required to be binary (0 or 1).
871

 Optimization read_mps
float* objective A float array of length ncolumns containing the objective vector.

Imsl_f_sparse_elem* constraint A imsl_f_sparse_elem array of length nonzeros containing the
sparse matrix representation of the constraint matrix. See below for
details.

Imsl_f_sparse_elem* hessian A imsl_f_sparse_elem array of length nhessian containing the
sparse matrix representation of the Hessian matrix. If nhessian is
zero, then this field is NULL.

float* lower_range A float array of length nrows containing the lower constraint
bounds. If a constraint is unbounded below, the corresponding entry
in lower_range is set to negative_infinity, defined below.

float* upper_range A float array of length nrows containing the upper constraint
bounds. If a constraint is unbounded above, the corresponding entry
in upper_range is set to positive_infinity, defined below.

float* lower_bound A float array of length ncolumns containing the lower variable
bounds. If a variable is unbounded below, the corresponding entry in
lower_bound is set to negative_infinity, defined below.

float* upper_bound A float array of length ncolumns containing the upper variable
bounds. If a variable is unbounded above, the corresponding entry in
upper_bound is set to positive_infinity, defined below.

int* variable_type An int array of length ncolumns containing the type of each vari-
able. Variable types are:

0 Continuous

1 Integer

2 Binary (0 or 1)

4 Semicontinuous

char name_objective[9] Name of the set in ROWS used for the objective row.

char name_rhs[9] Name of the RHS set used.

char name_ranges[9] Name of the RANGES set used or the empty string if no RANGES sec-
tion in the file.

char name_bounds[9] Name of the BOUNDS set used or the empty string if no BOUNDS
section in the file.

char** name_row Array of length nrows containing the row names. The name of the i-
th constraint row is name_row[i].

char** name_column Array of length ncolumns containing the column names. The name
of the i-th column and variable is name_column[i].

float negative_infinity Value used for a constraint or bound upper limit when the constraint
or bound is unbounded above. This can be set using an optional
argument. Default is 1.0e+30.

float objective_constant Value of the constant in the objective.

Field Description
872

 Optimization read_mps
This structure stores the constraint and Hessian matrices in a simple sparse matrix format. For each non-zero
element in the matrix, a row index, a column index and a value are given. The following code fragment expands
the sparse constraint matrix in the structure pointed to by mps into a dense matrix:

/* allocate a matrix */
int nr =mps->nrows;
int nc =mps->ncolumns;
float* matrix =(float*)calloc(nr*nc, sizeof(float));
/* expand the sparse matrix */
for (k =0; k < mps->nonzeros; k++) {

 i =mps->constraint[k].row;
 j =mps->constraint[k].col;
 matrix[nc*i+j] =mps->constraint[k].val;

}

Synopsis with Optional Arguments
#include <imsl.h>
imsl_f_mps *imsl_f_read_mps(char *filename,

IMSL_FILE, FILE *file,
IMSL_NAME_OBJECTIVE, char *name_objective,
IMSL_NAME_RHS, char *name_rhs,
IMSL_NAME_RANGES, char *name_ranges,
IMSL_NAME_BOUNDS, char *name_bounds,
IMSL_POSITIVE_INFINITY, float positive_infinity,
IMSL_NEGATIVE_INFINITY, float negative_infinity,
0)

Optional Arguments
IMSL_FILE, FILE *file, (Input)

Handle for MPS file. The file is read but not closed. This option overrides the filename required
argument.

IMSL_NAME_OBJECTIVE,char *name_ojective (Input)
Name of the set in ROWS used for the objective row. An MPS file can contain multiple objective func-
tion sets.
By default, the first objective function set in the MPS file is used. This name is case sensitive.

IMSL_NAME_RHS, char *name_rhs (Input)
Name of the RHS set to be used. An MPS file can contain multiple RHS sets.
By default, the first RHS set in the MPS file is used. This name is case sensitive.
873

 Optimization read_mps
IMSL_NAME_RANGES, char *name_ranges (Input)
Name of the RANGES set to be used. An MPS file can contain multiple RANGES sets.
By default, the first RANGES set in the MPS file is used. This name is case sensitive.

IMSL_NAME_BOUNDS, char *name_bounds (Input)
Name of the BOUNDS set to be used. An MPS file can contain multiple BOUNDS sets.
By default, the first BOUNDS set in the MPS file is used. This name is case sensitive.

IMSL_POSITIVE_INFINITY, float positive_infinity (Input)
Value used for a constraint or bound upper limit when the constraint or bound is unbounded above.
Default: 1.0e+30.

IMSL_NEGATIVE_INFINITY, float negative_infinity (Input)
Value used for a constraint or bound lower limit when the constraint or bound is unbounded below.
Default: -1.0e+30.

Description
An MPS file defines a linear or quadratic programming problem.

A linear programming problem is assumed to have the form:

A quadratic programming problem is assumed to have the form:

The following table maps this notation into the fields in the structure returned by the reader:

C Objective
A Constraint
Q Hessian

lower_range

min
x∈Rn

cTx

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

min
x
1
2x
TQx + cTx

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

bl
874

 Optimization read_mps
If the MPS file specifies an equality constraint or bound, the corresponding lower and upper values in the
returned structure will be exactly equal.

The problem formulation assumes that the constraints and bounds are two-sided. If a particular constraint or
bound has no lower limit, then the corresponding entry in the structure is set to -1.0e+30. If the upper limit is
missing, then the corresponding entry in the structure is set to +1.0e+30.

MPS File Format
There is some variability in the MPS format. This section describes the MPS format accepted by this reader.

An MPS file consists of a number of sections. Each section begins with a name in column 1. With the exception of
the NAME section, the rest of this line is ignored. Lines with a ‘*’or ‘$’in column 1 are considered comment lines
and are ignored.

The body of each section consists of lines divided into fields, as follows:

The format limits MPS names to 8 characters and values to 12 characters. The names in fields 2, 3 and 5 are case
sensitive. Leading and trailing blanks are ignored, but internal spaces are significant.

The sections in an MPS file are as follows.

 NAME

 ROWS

 COLUMNS

 RHS

upper_range

lower_bound

upper_bound

Field Number Columns Contents

1 2-3 Indicator

2 5-12 Name

3 15-22 Name

4 25-36 Value

5 40-47 Name

6 50-61 Value

bu
xl
xu
875

 Optimization read_mps
 RANGES (optional)

 BOUNDS (optional)

 QUADRATIC (optional)

 ENDATA

Sections must occur in the above order.

MPS keywords (defined by the user in MPS data files), section names and indicator values, are case insensitive.
Row, column and set names are case sensitive.

NAME Section

The NAME section contains the single line. A problem name can occur anywhere on the line after NAME and
before columns 62. The problem name is truncated to 8 characters.

ROWS Section

The ROWS section defines the name and type for each row. Field 1 contains the row type and field 2 contains the
row name. Row type values are not case sensitive. Row names are case sensitive. The following row types are
allowed:

COLUMNS Section

The COLUMNS section defines the nonzero entries in the objective and the constraint matrix. The row names
here must have been defined in the ROWS section.

Row Type Meaning

E Equality Constraint.

L Less than or equal constraint.

G Greater than or equal constraint.

N Objective or a free row.

Field Contents

2 Column name.

3 Row name.

4 Value for the entry whose row and col-
umn are given by fields.
876

 Optimization read_mps
NOTE: Fields 5 and 6 are optional.

The COLUMNS section can also contain markers. These are indicated by the name ‘MARKER’ (with the quotes) in
field 3 and the marker type in field 4 or 5.

Marker type ‘INTORG’ (with the quotes) begins an integer group. The marker type ‘INTEND’ (with the quotes) ends
this group. The variables corresponding to the columns defined within this group are required to be integer.

RHS Section

The RHS section defines the right-hand side of the constraints. An MPS file can contain more than one RHS set,
distinguished by the RHS set name. The row names here must be defined in the ROWS section.

If the row name is identical with the name of the objective, then the negative of the value in field 6 is the constant
in the objective function.

RANGES Section

The optional RANGES section defines two-sided constraints. An MPS file can contain more than one range set,
distinguished by the range set name. The row names here must have been defined in the ROWS section.

5 Row name.

6 Value for the entry whose row and col-
umn are given by fields 5 and 2.

Field Contents

2 RHS set name.

3 Row name.

4 Value for the entry whose set and row
are given by fields 2 and 3.

5 Row name.

6 Value for the entry whose set and row
are given by fields 2 and 5.

NOTE: Fields 5 and 6 are optional.

Field Contents

2 Range set name.

3 Row name.

Field Contents
877

 Optimization read_mps
Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints. The two-sided con-

straint for row i depends on the range value, , defined in this section. The right-hand side value, , is defined in
the RHS section. The two-sided constraints for row i are given in the following table:

BOUNDS Section

The optional BOUNDS section defines bounds on the variables. By default, the bounds are . The
bounds can also be used to indicate that a variable must be an integer.

More than one bound can be set for a single variable. For example, to set use a LO bound with value 2

to set and an UP bound with value 6 to add the condition .

An MPS file can contain more than one bounds set, distinguished by the bound set name.

4 Value for the entry whose set and row are
given by fields 2 and 3.

5 Row name.

6 Value for the entry whose set and row are
given by fields 2 and 5.

NOTE: Fields 5 and 6 are optional.

Row Type Lower Constraint Upper Constraint

G

L

E

Field Contents

1 Bounds type.

2 Bounds set name.

3 Column name

4 Value for the entry whose set and column are
given by fields 2 and 3.

5 Column name.

6 Value for the entry whose set and column are
given by fields 2 and 5.

Field Contents

ri bi

bi bi + ∣ri∣
bi − ∣ri∣ bi

bi + min 0, ri bi + max 0, ri

0 ≤ xi ≤ ∞

2 ≤ xi ≤ 6
2 ≤ xi xi ≤ 6
878

 Optimization read_mps
The bound types are as follows. Here are the bound values defined in this section, the are the variables, and
I is the set of integers.

The bound type names are not case sensitive.

If the bound type is UP or UI and then the lower bound is set to .

QUADRATIC Section

The optional QUADRATIC section defines the Hessian for quadratic programming problems. The names HESSIAN,
QUADS, QUADOBJ, QSECTION and QMATRIX are also recognized as beginning the QUADRATIC section.

NOTE: Fields 5 and 6 are optional.

Bounded Type Definition Formula

LO Lower bound

UP Upper bound

FX Fixed variable

FR Free variable

MI Lower bound is minus
infinity

PL Upper bound is positive
infinity

BV Binary variable (variable
must be 0 or 1).

UI Upper bound and integer and

LI Lower bound and integer and

SC Semicontinuous 0 or

Field Contents

2 Column name.

3 Column name

4 Value for the entry whose row and column are
given by fields 2 and 3.

5 Column name.

6 Value for the entry whose row and column are
given by fields 2 and 4.

bi xi

b j ≤ xi
xi ≤ bi
xi = bi
− ∞ ≤ xi ≤ ∞

− ∞ ≤ xi

xi ≤ ∞

xi ∈ 0, 1

xi ≤ bi xi ∈ I
bi ≤ xi xi ∈ I

bi ≤ xi

b j < 0 − ∞
879

 Optimization read_mps
ENDATA Section

The ENDATA section ends the MPS file.

NOTE: Fields 5 and 6 are optional.
880

 Optimization linear_programming
linear_programming
Solves a linear programming problem.

Synopsis
#include <imsl.h>
double *imsl_d_linear_programming (int m, int n, double a[], double b[], double c[], …, 0)

Required Arguments
int m (Input)

Number of constraints.

int n (Input)
Number of variables.

double a[] (Input)
Array of size m × n containing a matrix with coefficients of the m constraints.

double b[] (Input)
Array with m components containing the right-hand side of the constraints; if there are limits on both
sides of the constraints, then b contains the lower limit of the constraints.

double c[] (Input)
Array with n components containing the coefficients of the objective function.

Return Value
A pointer to the solution x of the linear programming problem. To release this space, use imsl_free. If no solu-
tion can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

NOTE: For double precision, the function lin_prog has generally been superseded by the function
linear_programming. Function lin_prog remains in place to ensure compatibility of existing calls.
881

 Optimization linear_programming
double *imsl_d_linear_programming (int m, int n, double a[], double b[], double c[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_UPPER_LIMIT, double bu[],
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, double xlb[],
IMSL_UPPER_BOUND, double xub[],
IMSL_REFINEMENT,
IMSL_EXTENDED_REFINEMENT,
IMSL_OBJ, double *obj,
IMSL_RETURN_USER, double x[],
IMSL_DUAL, double **y,
IMSL_DUAL_USER, double y[],
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of a.
Default: a_col_dim = n

IMSL_UPPER_LIMIT, double bu[] (Input)
Array with m components containing the upper limit of the constraints that have both the lower and
the upper bounds. If no such constraint exists, then bu is not needed.

IMSL_CONSTR_TYPE, int irtype[] (Input)
Array with m components indicating the types of general constraints in the matrix a. Let
ri = ai1x1 + … + ainxn. Then, the value of irtype[i] signifies the following:

Default: irtype = 0

irtype[i] Constraint

0 ri =bi

1 ri ≤bui

2 ri ≥bi

3 bi ≤ri ≤bui

4 Ignore this constraint
882

 Optimization linear_programming
IMSL_LOWER_BOUND, double xlb[] (Input)
Array with n components containing the lower bound on the variables. If there is no lower bound on
a variable, then 1030 should be set as the lower bound.
Default: xlb = 0

IMSL_UPPER_BOUND, double xub[] (Input)
Array with n components containing the upper bound on the variables. If there is no upper bound on
a variable, then −1030 should be set as the upper bound.
Default: no upper bound

IMSL_REFINEMENT (Input)
The coefficient matrices and other data are saved at the beginning of the computation. When fin-
ished this data together with the solution obtained is checked for consistency. If the discrepancy is
too large, the solution process is restarted using the problem data just after processing the equali-
ties, but with the final x values and final active set.
Default: Refinement is not performed.

IMSL_EXTENDED_REFINEMENT (Input)
This is similar to IMSL_REFINEMENT, except it iterates until there is a sign that no further progress
is possible (recommended if all the accuracy possible is desired) .
Default: Extended refinement is not performed.

IMSL_OBJ, double *obj (Output)
Optimal value of the objective function.

IMSL_ITERATION_COUNT, int *iterations (Output)
Number of iterations.

IMSL_RETURN_USER, double x[] (Output)
Array with n components containing the primal solution.

IMSL_DUAL, double **y (Output)
The address of a pointer y to an array with m components containing the dual solution. On return,
the necessary space is allocated by imsl_d_linear_programming. Typically, double *y is
declared, and &y is used as an argument.

IMSL_DUAL_USER, double y[] (Output)
A user-allocated array of size m. On return, y contains the dual solution.

Description
The function imsl_d_linear_programming uses an active set strategy to solve linear programming prob-
lems, i.e., problems of the form
883

 Optimization linear_programming
where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, and xu are the lower

and upper bounds on the constraints and the variables, respectively.

Refer to the following paper for further information: Krogh, Fred, T. (2005), An Algorithm for Linear Programming.

Examples

Example 1

The linear programming problem in the standard form

is solved.

#include <imsl.h>
int main()
{
 int m = 4;
 int n = 6;
 double a[] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 0.0, 1.0, 0.0,
 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
 double b[] = {1.5, 0.5, 1.0, 1.0};
 double c[] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
 double *x;
 /* Solve the LP problem */
 x = imsl_d_linear_programming (m, n, a, b, c, 0);
 /* Print x */
 imsl_d_write_matrix ("x", 1, 6, x, 0);
}

Output

 X

min
x∈Rn

cTx subject to bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

min f (x) = − x1 − 3x2
subject to x1 +x2 +x3 = 1.5

x1 +x2 −x4 = 0.5
x1 +x5 = 1.0

x2 +x6 = 1.0
xi ≥ 0, for i = 1, … ,6
884

http://mathalacarte.com/fkrogh/pub/lp.pdf

 Optimization linear_programming
 1 2 3 4 5 6
 0.5 1.0 0.0 1.0 0.5 0.0

Example 2

This example demonstrates how the function imsl_d_read_mps can be used together with
imsl_d_linear_programming to solve a linear programming problem defined in an MPS file. The MPS file
used in this example is an uncompressed version of the file ‘afiro’, available from
http://www.netlib.org/lp/data/. This example also demonstrates the use of the optional argument
IMSL_REFINEMENT to activate iterative refinement in imsl_d_linear_programming.

#include <stdio.h>
#include <malloc.h>
#include <imsl.h>
int main() {
#define A(I, J) a[(I)*problem->ncolumns+J]
 Imsl_d_mps* problem;
 int i, j, k, *irtype;
 double *x, objective, *a, *bl, *bu, *xlb, *xub;
 /* Read the MPS file. */
 problem = imsl_d_read_mps("afiro", 0);
 /* Setup constraint type array. */
 irtype = (int*) malloc(problem->nrows*sizeof(int));
 for (i = 0; i < problem->nrows; i++)
 irtype[i] = 3;
 /* Setup the constraint matrix. */
 a = (double*) calloc(problem->nrows*problem->ncolumns*sizeof(double),
 sizeof(double));
 for (k = 0; k < problem->nonzeros; k++) {
 i = problem->constraint[k].row;
 j = problem->constraint[k].col;
 A(i, j) = problem->constraint[k].val;
 }
 /* Setup constraint bounds. */
 bl = (double*) malloc(problem->nrows*sizeof(double));
 bu = (double*) malloc(problem->nrows*sizeof(double));
 for (i = 0; i < problem->nrows; i++) {
 bl[i] = problem->lower_range[i];
 bu[i] = problem->upper_range[i];
 }
 /* Setup variable bounds. Be sure to account for
 how unbounded variables should be set. */
 xlb = (double*) malloc(problem->ncolumns*sizeof(double));
 xub = (double*) malloc(problem->ncolumns*sizeof(double));
 for (i = 0; i < problem->ncolumns; i++) {
 xlb[i] = (problem->lower_bound[i] == problem->negative_infinity) ?
 1.0e30 : problem->lower_bound[i];
 xub[i] = (problem->upper_bound[i] == problem->positive_infinity) ?
 -1.0e30 : problem->upper_bound[i];
 }
885

http://www.netlib.org/lp/data/

 Optimization linear_programming
 /* Solve the LP problem. */
 x = imsl_d_linear_programming(problem->nrows, problem->ncolumns,
 a, bl, problem->objective,
 IMSL_UPPER_LIMIT, bu,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_LOWER_BOUND, xlb,
 IMSL_UPPER_BOUND, xub,
 IMSL_REFINEMENT,
 IMSL_OBJ, &objective,
 0);
 /* Output results. */
 printf("Problem Name: %s\n", problem->name);
 printf("objective : %e\n", objective);
 imsl_d_write_matrix("Solution", problem->ncolumns, 1, x, 0);
 /* Free MPS structure. */
 imsl_d_mps_free(problem);
}

Output

Problem Name: AFIRO
objective : -4.647531e+02
 Solution
1 80.0
2 25.5
3 54.5
4 84.8
5 57.9
6 0.0
7 0.0
8 0.0
9 0.0
10 0.0
11 0.0
12 0.0
13 18.2
14 39.7
15 61.3
16 500.0
17 475.9
18 24.1
19 0.0
20 215.0
21 363.9
22 0.0
23 0.0
24 0.0
25 0.0
26 0.0
27 0.0
28 0.0
29 339.9
30 20.1
31 156.5
32 0.0
886

 Optimization linear_programming
Note Errors

Warning Errors

Fatal Errors

IMSL_MULTIPLE_SOLUTIONS Multiple solutions giving essentially the same mini-
mum exist.

IMSL_SOME_CONSTRAINTS_DISCARDED Some constraints were ignored or discarded because
they were too linearly dependent on other active
constraints.

IMSL_ALL_CONSTR_NOT_SATISFIED All constraints are not satisfied. If a feasible solution is
possible then try using refinement by supplying
optional argument IMSL_REFINEMENT.

IMSL_CYCLING_OCCURRING The algorithm appears to be cycling. Using refinement
may help.

IMSL_PROB_UNBOUNDED The problem is unbounded.

IMSL_PIVOT_NOT_FOUND An acceptable pivot could not be found.
887

 Optimization transport
transport

more...

Solves a transportation problem.

Synopsis
#include <imsl.h>
float *imsl_f_transport (int nw, int ns, float wcap[], float sreq[], float cost[], …, 0)

The type double function is imsl_d_transport.

Required Arguments
int nw (Input)

Number of sources.

int ns (Input)
Number of sinks.

float wcap[] (Input)
Array of size nw containing the source (warehouse) capacities.

float sreq[] (Input)
Array of size ns containing the sink (store) requirements.

float cost[] (Input)
Array of size nw × ns containing the cost matrix. costij is the per unit cost to ship from source i to
sink j.

Return Value
A pointer to the solution matrix x of size nw × ns containing the optimal routing. xij units should be shipped

from source i to sink j. To release this space, use imsl_free. If no solution can be computed, then NULL is
returned.
888

 Optimization transport
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_transport (int nw, int ns, float wcap[], float sreq[], float cost[],

IMSL_MAX_ITN, int max_itn,
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
IMSL_TOTAL_COST, float *cmin,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments
IMSL_MAX_ITN, int max_itn (Input)

Upper bound on the number of simplex steps.
Default: max_itn = 0 (no limit)

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array of size nw + ns containing the dual solution. On return, the
necessary space is allocated by imsl_f_transport. Typically, float *y is declared, and &y is used
as an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array of size nw + ns. On return, y contains the dual solution.

IMSL_TOTAL_COST, float *cmin (Output)
Total cost of the optimal routing.

IMSL_RETURN_USER, float x[] (Output)
Array of size nw × ns containing the optimal routing.

Description
The function imsl_f_transport solves the transportation problem

Minimize
889

 Optimization transport
subject to the constraints

where c = cost, w = wcap and s = sreq.

The revised simplex method is used to solve a very sparse linear programming problem with nw + ns constraints

and nw * ns variables. If nw = ns = k, the work per iteration is O(k 2), compared with O(k 3) when a dense sim-
plex algorithm is used. For more details, see Sewell (2005), Section 4.6.

dual[i] gives the decrease in total cost per unit increase in wcap[i], for small increases, and -dual[nw + j]
gives the increase in total cost per unit increase in –sreq[j].

Example
In this example, there are two warehouses with capacities 40 and 20, and three stores, which need 25, 10 and 22
units, respectively.

#include <stdio.h>
#include <imsl.h>
#define NW 2
#define NS 3
int main() {
 int i, j;
 float cmin, *x;
 float wcap[NW] = { 40, 20 };
 float sreq[NS] = { 25, 10, 22 };
 float cost[NW][NS] = {
 { 550, 300, 400 },

∑
i=1

nw

∑
j=1

ns

ci j xi j

∑
j=1

ns

xi j ≤ wi, i = 1,… ,nw,

∑
i=1

nw

xi j = s j, j = 1,… ,ns,

xi j ≥ 0, i = 1,… ,nw, j = 1,… ,ns
890

 Optimization transport
 { 350, 300, 100 }
 };
 x = imsl_f_transport(NW, NS, wcap, sreq, &cost[0][0],
 IMSL_TOTAL_COST, &cmin,
 0);
 printf("Minimum cost is %.2f\n\n", cmin);
 for (i = 0; i < NW; i++) {
 for (j = 0; j < NS; j++) {
 printf("Ship %5.2f units from warehouse %d to store %d\n",
 x[i * NS + j], i, j);
 }
 }
 imsl_free(x);
}

Output
Minimum cost is 19550.00
Ship 25.00 units from warehouse 0 to store 0
Ship 10.00 units from warehouse 0 to store 1
Ship 2.00 units from warehouse 0 to store 2
Ship 0.00 units from warehouse 1 to store 0
Ship 0.00 units from warehouse 1 to store 1
Ship 20.00 units from warehouse 1 to store 2

Warning Errors

Fatal Errors

IMSL_INSUFFICIENT_CAPACITY Insufficient source capacity. Sink needs will not all be
met.

IMSL_MAX_ITN_EXCEEDED Maximum number of iterations exceeded. Try increasing
max_itn or set max_itn = 0.
891

 Optimization lin_prog
lin_prog
Solves a linear programming problem using the revised simplex algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_lin_prog (int m, int n, float a[], float b[], float c[], …, 0)

The type double function is imsl_d_lin_prog.

Required Arguments
int m (Input)

Number of constraints.

int n (Input)
Number of variables.

float a[] (Input)
Array of size m × n containing a matrix with coefficients of the m constraints.

float b[] (Input)
Array with m components containing the right-hand side of the constraints; if there are limits on both
sides of the constraints, then b contains the lower limit of the constraints.

float c[] (Input)
Array with n components containing the coefficients of the objective function.

Return Value
A pointer to the solution x of the linear programming problem. To release this space, use imsl_free. If no solu-
tion can be computed, then NULL is returned.

NOTE: For double precision, the function lin_prog has generally been superseded by
the function linear_programming. Function lin_prog remains in place to ensure
compatibility of existing calls.
892

 Optimization lin_prog
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_prog (int m, int n, float a[], float b[], float c[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_UPPER_LIMIT, float bu[],
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, float xlb[],
IMSL_UPPER_BOUND, float xub[],
IMSL_MAX_ITN, int max_itn,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of a.
Default: a_col_dim = n

IMSL_UPPER_LIMIT, float bu[] (Input)
Array with m components containing the upper limit of the constraints that have both the lower and
the upper bounds. If no such constraint exists, then bu is not needed.

IMSL_CONSTR_TYPE, int irtype[] (Input)
Array with m components indicating the types of general constraints in the matrix a. Let
ri = ai1x1 + … + ainxn. Then, the value of irtype(i) signifies the following:

Default: irtype = 0

irtype(i) Constraint

0 ri =bi

1 ri ≤bui

2 ri ≥bi

3 bi ≤ri ≤bui
893

 Optimization lin_prog
IMSL_LOWER_BOUND, float xlb[] (Input)
Array with n components containing the lower bound on the variables. If there is no lower bound on
a variable, then 1030 should be set as the lower bound.
Default: xlb = 0

IMSL_UPPER_BOUND, float xub[] (Input)
Array with n components containing the upper bound on the variables. If there is no upper bound on
a variable, then −1030 should be set as the upper bound.
Default: xub = ∞

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 10000

IMSL_OBJ, float *obj (Output)
Optimal value of the objective function.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the primal solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with m components containing the dual solution. On return,
the necessary space is allocated by imsl_f_lin_prog. Typically, float *y is declared, and &y is
used as an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array of size m. On return, y contains the dual solution.

IMSL_USE_UPDATED_LP_ALGORITHM (Input)
Calls the function imsl_d_linear_programming to solve the problem. If this optional argu-
ment is present, then the optional argument IMSL_MAX_ITN is ignored. This optional argument is
only valid in double precision.
894

 Optimization lin_prog
Description
The function imsl_f_lin_prog uses a revised simplex method to solve linear programming problems, i.e.,
problems of the form

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, and xu are the lower

and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

Examples

Example 1

The linear programming problem in the standard form

is solved.

#include <imsl.h>
int main()
{
 int m = 4;
 int n = 6;
 float a[] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 0.0, 1.0, 0.0,
 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
 float b[] = {1.5, 0.5, 1.0, 1.0};
 float c[] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
 float *x;
 /* Solve the LP problem */
 x = imsl_f_lin_prog (m, n, a, b, c, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 6, x, 0);

min
x∈Rn

cTx subject to bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

min f (x) = − x1 − 3x2
subject to x1 +x2 +x3 = 1.5

x1 +x2 −x4 = 0.5
x1 +x5 = 1.0

x2 +x6 = 1.0
xi ≥ 0, for i = 1, … ,6
895

 Optimization lin_prog
}

Output

 X
 1 2 3 4 5 6
 0.5 1.0 0.0 1.0 0.5 0.0

Example 2

The linear programming problem in the previous example can be formulated as follows:

This problem can be solved more efficiently.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int irtype[] = {3};
 int m = 1;
 int n = 2;
 float xub[] = {1.0, 1.0};
 float a[] = {1.0, 1.0};
 float b[] = {0.5};
 float bu[] = {1.5};
 float c[] = {-1.0, -3.0};
 float d[1];
 float obj, *x;
 /* Solve the LP problem */
 x = imsl_f_lin_prog (m, n, a, b, c,
 IMSL_UPPER_LIMIT, bu,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_UPPER_BOUND, xub,
 IMSL_DUAL_USER, d,
 IMSL_OBJ, &obj,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 2, x,
 0);
 /* Print d */
 imsl_f_write_matrix ("d", 1, 1, d,
 0);
 printf("\n obj = %g \n", obj);
}

min f (x) = − x1 − 3x2
subject to 0.5 ≤ x1 + x2 ≤ 1.5

0 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 1.0
896

 Optimization lin_prog
Output

 X
 1 2
 0.5 1.0
 D
 -1
obj = -3.5

Warning Errors

Fatal Errors

IMSL_PROB_UNBOUNDED The problem is unbounded.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_PROB_INFEASIBLE The problem is infeasible.

IMSL_NUMERIC_DIFFICULTY Numerical difficulty occurred (moved to a vertex
that is poorly conditioned). If float is currently being
used, using double precision may help.

IMSL_BOUNDS_INCONSISTENT The bounds are inconsistent.
897

 Optimization quadratic_prog
quadratic_prog

more...

Solves a quadratic programming problem subject to linear equality or inequality constraints.

Synopsis
#include <imsl.h>
float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[], float g[], float h[], …, 0)

The type double function is imsl_d_quadratic_prog.

Required Arguments
int m (Input)

The number of linear constraints.

int n (Input)
The number of variables.

int meq (Input)
The number of linear equality constraints.

float a[] (Input)
Array of size m × n containing the equality constraints in the first meq rows, followed by the inequal-
ity constraints.

float b[] (Input)
Array with m components containing right-hand sides of the linear constraints.

float g[] (Input)
Array with n components containing the coefficients of the linear term of the objective function.

float h[] (Input)
Array of size n × n containing the Hessian matrix of the objective function. It must be symmetric pos-
itive definite. If h is not positive definite, the algorithm attempts to solve the QP problem with h
replaced by h + diag* I such that h + diag* I is positive definite.
898

 Optimization quadratic_prog
Return Value
A pointer to the solution x of the QP problem. To release this space, use imsl_free. If no solution can be com-
puted, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[], float g[], float h[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_MAX_ITN, int max_itn,
IMSL_TOLERANCE, float small,
IMSL_H_COL_DIM, int h_col_dim,
IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
IMSL_ADD_TO_DIAG_H, float *diag,
IMSL_OBJ, float *obj,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

Leading dimension of A exactly as specified in the dimension statement of the calling program.
Default: a_col_dim = n

IMSL_H_COL_DIM, int h_col_dim (Input)
Leading dimension of h exactly as specified in the dimension statement of the calling program.
Default: n_col_dim = n

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.If max_itn is set to 0, the iteration count is unbounded.
Default: max_itn = 100000

IMSL_TOLERANCE, float small (Input)
This constant is used in the determination of the positive definiteness of the Hessian H. small is
also used for the convergence criteria of a constraint violation.
Default: small = 10.0 × machine precision for single precision, and 1000.0 × machine precision for
double precision.
899

 Optimization quadratic_prog
IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with m components containing the Lagrange multiplier esti-
mates. On return, the necessary space is allocated by imsl_f_quadratic_prog. Typically,
float *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array with m components. On return, y contains the Lagrange multiplier estimates.

IMSL_ADD_TO_DIAG_H, float *diag (Output)
Scalar equal to the multiple of the identity matrix added to h to give a positive definite matrix.

IMSL_OBJ, float *obj (Output)
The optimal object function found.

Description
The function imsl_f_quadratic_prog is based on M.J.D. Powell’s implementation of the Goldfarb and
Idnani dual quadratic programming (QP) algorithm for convex QP problems subject to general linear equal-
ity/inequality constraints (Goldfarb and Idnani 1983); i.e., problems of the form

given the vectors b1, b2, and g, and the matrices H, A1, and A2. H is required to be positive definite. In this case, a

unique x solves the problem or the constraints are inconsistent. If H is not positive definite, a positive definite per-
turbation of H is used in place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, then H + αI also should be used in the definition of the
Lagrange multipliers.

Examples

Example 1

The quadratic programming problem

min
x∈Rn

gTx + 12x
THx

subject to A1x = b1
A2x ≥ b2
900

 Optimization quadratic_prog
is solved.

#include <imsl.h>
int main()
{
 int m = 2;
 int n = 5;
 int meq = 2;
 float *x;
 float h[] = {2.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 2.0,-2.0, 0.0, 0.0,
 0.0,-2.0, 2.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 2.0,-2.0,
 0.0, 0.0, 0.0,-2.0, 2.0};
 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 1.0,-2.0,-2.0};
 float b[] = {5.0, -3.0};
 float g[] = {-2.0, 0.0, 0.0, 0.0, 0.0};
 /* Solve the QP problem */
 x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 5, x, 0);
}

Output

 X
 1 2 3 4 5
 1 1 1 1 1

Example 2

Another quadratic programming problem

is solved.

min f x = x1
2 + x2

2 + x3
2 + x4

2 + x5
2 − 2x2x3 − 2x4x5 − 2x1

subject to x1 + x2 + x3 + x4 + x5 = 5
x3 − 2x4 − 2x5 = − 3

min f x = x1
2 + x2

2 + x3
2 subject to x1 + 2x2 − x3 = 4

x1 − x2 + x3 = − 2
901

 Optimization quadratic_prog
#include <imsl.h>
float h[] = {2.0, 0.0, 0.0,
 0.0, 2.0, 0.0,
 0.0, 0.0, 2.0};
float a[] = {1.0, 2.0, -1.0,
 1.0, -1.0, 1.0};
float b[] = {4.0, -2.0};
float g[] = {0.0, 0.0, 0.0};
int main()
{
 int m = 2;
 int n = 3;
 int meq = 2;
 float obj;
 float d[2];
 float *x;
 /* Solve the QP problem */
 x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h,
 IMSL_OBJ, &obj,
 IMSL_DUAL_USER, d,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 3, x, 0);
 /* Print d */
 imsl_f_write_matrix ("d", 1, 2, d, 0);
 printf("\n obj = %g \n", obj);
}

Output

 x
 1 2 3
 0.286 1.429 -0.857
 d
 1 2
 1.143 -0.571
 obj = 2.85714
902

 Optimization quadratic_prog
Warning Errors

Fatal Errors

IMSL_NO_MORE_PROGRESS Due to the effect of computer rounding error, a
change in the variables fail to improve the objective
function value; usually the solution is close to
optimum.

IMSL_SYSTEM_INCONSISTENT The system of equations is inconsistent. There is no
solution.
903

 Optimization sparse_lin_prog
sparse_lin_prog
Solves a sparse linear programming problem by an infeasible primal-dual interior-point method.

Synopsis
#include <imsl.h>
double *imsl_d_sparse_lin_prog (int m, int n, int nza,Imsl_d_sparse_elem a[], double b[],

double c[], …, 0)

Required Arguments
int m (Input)

Number of constraints.

int n (Input)
Number of variables.

int nza (Input)
Number of nonzero entries in the constraint matrix A.

Imsl_d_sparse_elem a[] (Input)
An array of length nza containing the location and value of each nonzero coefficient in the constraint
matrix A.

double b[] (Input)
An array of length m containing the right-hand side of the constraints. If there are limits on both sides
of the constraints, then b contains the lower limit of the constraints.

double c[] (Input)
An array of length n containing the coefficients of the objective function.

Return Value
A pointer to an array of length n containing the solution x of the linear programming problem. To release this
space, use imsl_free. If no solution can be computed, then NULL is returned.

NOTE: Function sparse_lin_prog is available in double precision only.
904

 Optimization sparse_lin_prog
Synopsis with Optional Arguments
#include <imsl.h>
double *imsl_d_sparse_lin_prog (int m, int n, int nza,Imsl_d_sparse_elem a[], double b[],

double c[],

IMSL_CONSTR_TYPE, int irtype[],
IMSL_UPPER_LIMIT, double bu[],
IMSL_LOWER_BOUND, double xlb[],
IMSL_UPPER_BOUND, double xub[],
IMSL_OBJ_CONSTANT, double c0,
IMSL_PREORDERING, int preorder,
IMSL_MAX_ITERATIONS, int max_iterations,
IMSL_OPT_TOL, double opt_tol,
IMSL_PRINF_TOL, double prinf_tol,
IMSL_DLINF_TOL, double dlinf_tol,
IMSL_PRINT, int iprint,
IMSL_PRESOLVE, int presolve,
IMSL_CSC_FORMAT, int a_colptr[], int a_rowind[], double a_values[],
IMSL_TERMINATION_STATUS, int *status,
IMSL_OBJ, double *obj,
IMSL_ITERATION_COUNT, int *iterations,
IMSL_DUAL, double **y,
IMSL_DUAL_USER, double y[],
IMSL_PRIMAL_INFEAS, double *err_b, double *err_u,
IMSL_DUAL_INFEAS, double *err_c,
IMSL_CP_RATIO_SMALLEST, double *cp_smallest,
IMSL_CP_RATIO_LARGEST, double *cp_largest,
IMSL_RETURN_USER, double x[],
0)
905

 Optimization sparse_lin_prog
Optional Arguments
IMSL_CONSTR_TYPE, int irtype[] (Input)

An array of length m containing the types of general constraints in the matrix A. Let
ri = ai1x1 + … + ainxn. Then, the value of irtype[i] signifies the following:

Note that irtype[i] = 3 should only be used for constraints i with both a finite lower and a finite
upper bound. For one-sided constraints, use irtype[i] = 1 or irtype[i] = 2. For free con-
straints, use irtype[i] = 4.
Default: irtype = 0

IMSL_UPPER_LIMIT, double bu[] (Input)
Array of length m containing the upper limit of the constraints that have both a lower and an upper
bound. If such a constraint exists, then optional argument IMSL_CONSTR_TYPE must be used to
define the type of the constraints. If irtype[i]≠ 3, i.e. if constraint i is not two-sided, then the
corresponding entry in bu, bu[i], is ignored.
Default: None of the constraints has an upper bound.

IMSL_LOWER_BOUND, double xlb[] (Input)
An array of length n containing the lower bound on the variables. If there is no lower bound on a vari-
able, then −1030 should be set as the lower bound.
Default: xlb = 0.

IMSL_UPPER_BOUND, double xub[] (Input)
An array of length n containing the upper bound on the variables. If there is no upper bound on a
variable, then 1030 should be set as the upper bound.
Default: None of the variables has an upper bound.

IMSL_OBJ_CONSTANT, double c0 (Input)
Value of the constant term in the objective function.
Default: c0 = 0.

irtype[i] Constraint

0 ri =bi

1 ri ≤bi

2 ri ≥bi

3 bi ≤ri ≤bui

4 Ignore this constraint
906

 Optimization sparse_lin_prog
IMSL_PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal
equations or augmented system matrix.

Default: preorder = 0.

IMSL_MAX_ITERATIONS, int max_iterations (Input)
The maximum number of iterations allowed for the primal-dual solver.
Default: max_iterations = 200.

IMSL_OPT_TOL, double opt_tol (Input)
The relative optimality tolerance.
Default: opt_tol = 1.0e-10.

IMSL_PRINF_TOL, double prinf_tol (Input)
The primal infeasibility tolerance.
Default: prinf_tol = 1.0e-8.

IMSL_DLINF_TOL, double dlinf_tol (Input)
The dual infeasibility tolerance.
Default: dlinf_tol = 1.0e-8.

IMSL_PRINT, int iprint (Input)
Printing option.

Default: iprint = 0.

preorder Method

0 A variant of the MDO algorithm using pivotal
cliques.

1 A variant of George and Liu’s Quotient Minimum
Degree algorithm.

iprint Action

0 No printing is performed.

1 Prints statistics on the LP problem and the
solution process.
907

 Optimization sparse_lin_prog
IMSL_PRESOLVE, int presolve (Input)
Presolve the LP problem in order to reduce the problem size or to detect infeasibility or unbounded-
ness of the problem. Depending on the number of presolve techniques used, different presolve
levels can be chosen:

Default: presolve =0.

IMSL_CSC_FORMAT, int a_colptr[], int a_rowind[], double a_values[] (Input)
Accept the constraint matrix A in Harwell-Boeing format. See (Compressed Sparse Column (CSC) For-
mat) in the Introduction to this manual for a discussion of this storage scheme.

If this optional argument is used, then required argument a is ignored.

IMSL_TERMINATION_STATUS, int *status (Output)
The termination status for the problem.

IMSL_OBJ, double *obj (Output)
Optimal value of the objective function.

presolve Description

0 No presolving.

1 Eliminate singleton rows

2 In addition to 1, eliminate redundant (and forcing)
rows.

3 In addition to 1 and 2, eliminate dominated
variables.

4 In addition to 1, 2, and 3, eliminate singleton
columns.

5 In addition to 1, 2, 3, and 4, eliminate doubleton
rows.

6 In addition to 1, 2, 3, 4, and 5, eliminate aggregate
columns.

status Description

0 Optimal solution found.

1 The problem is primal infeasible (or dual unbounded).

2 The problem is primal unbounded (or dual infeasible).

3 Suboptimal solution found (accuracy problems).

4 Iterations limit max_iterations exceeded.

5 An error outside of the solution phase of the algo-
rithm, e.g. a user input or a memory allocation error.
908

 Optimization sparse_lin_prog
IMSL_ITERATION_COUNT, int *iterations (Output)
The number of iterations required by the primal-dual solver.

IMSL_DUAL, double **y (Output)
The address of a pointer y to an internally allocated array of length m containing the dual solution.

IMSL_DUAL_USER, double y[] (Output)
A user-allocated array of length m containing the dual solution.

IMSL_PRIMAL_INFEAS, double *err_b, double *err_u (Output)
The violation of the primal constraints, described by err_b, the primal infeasibility of the solution,

, and by err_u, the violation of the variable bounds, .

IMSL_DUAL_INFEAS, double *err_c (Output)
The violation of the dual constraints, described by err_c, the dual infeasibility of the solution,

.

IMSL_CP_RATIO_SMALLEST, double *cp_smallest (Output)
The ratio of the smallest complementarity product to the average.

IMSL_CP_RATIO_LARGEST, double *cp_largest (Output)
The ratio of the largest complementarity product to the average.

IMSL_RETURN_USER, double x[] (Output)
A user-allocated array of length n containing the primal solution.

Description
The function imsl_d_sparse_lin_prog uses an infeasible primal-dual interior-point method to solve linear
programming problems, i.e., problems of the form

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, and xu are the lower

and upper bounds on the constraints and the variables, respectively.

Internally, imsl_d_sparse_lin_prog transforms the problem given by the user into a simpler form that is
computationally more tractable. After redefining the notation, the new form reads

∥x + s − u∥ ∥b − Ax∥

∥c − AT y − z + w∥

min
x∈Rn

cTx subject to bl ≤ Ax ≤ bu

xl ≤ x ≤ xu
909

 Optimization sparse_lin_prog
Here, is a partition of the index set into upper bounded and standard
variables.

In order to simplify the description, it is assumed in the following that the problem above contains only variables
with upper bounds, i.e. is of the form

The corresponding dual problem is then

The Karush-Kuhn-Tucker (KKT) optimality conditions for (P) and (D) are

where are diagonal matrices and

 is a vector of ones.

Function imsl_d_sparse_lin_prog, like all infeasible interior-point methods, generates a sequence

of iterates, that satisfy for all , but are in general not feasible, i.e. the linear constraints
(1.1)-(1.3) are only satisfied in the limiting case .

min cTx subject to Ax = b
xi + si = ui, xi, si ≥ 0, i∈Iu

x j ≥ 0, j∈Is

Iu ∪ Is = 1, … , n 1, … , n

P min cTx subject to Ax = b,
x + s = u,
x, s ≥ 0

(D) max bT y − uTw subject to AT y + z − w = c,
z, w ≥ 0

Ax = b, (1.1)
x + s = u, (1.2)

AT y + z − w = c, (1.3)
XZe = 0, (1.4)
SWe = 0, (1.5)
x,z,s,w ≥ 0, (1.6)

X = diag x , Z = diag z , S = diag s , W = diag w

e = 1, … , 1)T

xk, sk, yk, zk, wk , k = 0, 1, …

xk, sk, yk, zk, wk > 0 k
k → ∞
910

 Optimization sparse_lin_prog
The barrier parameter , defined by

measures how good the complementarity conditions (1.4), (1.5) are satisfied.

Mehrotra’s predictor-corrector algorithm is a variant of Newton’s method applied to the KKT conditions (1.1)-(1.5).
Function imsl_d_sparse_lin_prog uses a modified version of this algorithm to compute the iterates

. In every step of the algorithm, the search direction vector

is decomposed into two parts, where and denote the affine-scaling and the weighted cen-
tering component, respectively. Here,

where and denote the primal and dual corrector weights, respectively.

The vectors and are determined by solving the linear system

for two different right-hand sides.

For , the right-hand side is defined as

Here, and are the violations of the primal constraints and defines the violations of the dual constraints.

The resulting direction is the pure Newton step applied to the system (1.1)-(1.5).

In order to obtain the corrector direction , the maximum stepsizes in the primal and in the dual space

preserving nonnegativity of and respectively, are determined, and the predicted complementarity
gap,

μ

μ = x
Tz + sTw
2n

xk, sk, yk, zk, wk

Δ: = Δx, Δs, Δy, Δz, Δw

Δ = Δa + Δc
ω, Δa Δc

ω

Δc
ω: = ωPΔxc, ωPΔsc, ωDΔyc, ωDΔzc, ωDΔwc

ωP ωD

Δa Δc: = Δxc, Δsc, Δyc, Δzc, Δwc

A 0 0 0 0
I 0 I 0 0
0 AT 0 I −I
Z 0 0 X 0
0 0 W 0 S

Δx
Δy
Δs
Δz
Δw

=

rb
ru
rc
rxz
rws

2

Δa

rb, ru, rc, rxz, rws = b − Ax, u − x − s, c − AT y − z + w, − XZe, −WSe .

rb ru rc

Δa

Δc αPa αDa
x, s z, w
911

 Optimization sparse_lin_prog
is computed. It is then used to determine the barrier parameter

where denotes the current complementarity gap.

The direction is then computed by choosing

as the right-hand side in the linear system (2).

Function imsl_d_sparse_lin_prog now uses a line search to find the optimal weight that

maximizes the stepsizes in the primal and dual directions of , respectively.

A new iterate is then computed using a step reduction factor :

In addition to the weighted Mehrotra predictor-corrector, imsl_d_sparse_lin_prog also uses multiple
centrality correctors to enlarge the primal-dual stepsizes per iteration step and to reduce the overall number of
iterations required to solve an LP problem. The maximum number of centrality corrections depends on the ratio
of the factorization and solve efforts for system (2) and is therefore problem dependent. For a detailed descrip-
tion of multiple centrality correctors, refer to Gondzio(1994).

The linear system (2) can be reduced to more compact forms, the augmented system (AS)

or further by elimination of to the normal equations (NE) system

where

ga = x + αPaΔxa)
T z + αDaΔza + s + αPaΔsa)

T w + αDaΔwa

μ̂ =
ga
g

2 ga
2n ,

g = xTz + sTw

Δc

rb, ru, rc, rxz, rsw = 0, 0, 0, μ̂e − ΔXaΔZae, μ̂e − ΔWaΔSae

ω^ = ω^ P,ω
^
D

αP, αD Δ = Δa + Δc
ω

α0 = 0.99995

xk+1, sk+1, yk+1, zk+1, wk+1 = xk, sk, yk, zk, wk + α0 αPΔx, αPΔs, αDΔy, αDΔz, αDΔw

−Θ−1 AT
A 0

Δx
Δy =

r
h 3

Δx

AΘATΔy = AΘr + h, 4
912

 Optimization sparse_lin_prog
The matrix on the left-hand side of (3), which is symmetric indefinite, can be transformed into a symmetric qua-
sidefinite matrix by regularization. Since these types of matrices allow for a Cholesky-like factorization, the

resulting linear system can be solved easily for by triangular substitutions. For more information on the

regularization technique, see Altman and Gondzio (1998). For the NE system, matrix is positive definite,

and therefore a sparse Cholesky algorithm can be used to factor and solve the system for by triangular
substitutions with the Cholesky factor .

In function imsl_d_sparse_lin_prog, both approaches are implemented. The AS approach is chosen if
contains dense columns, if there are a considerable number of columns in that are much denser than the
remaining ones or if there are many more rows than columns in the structural part of . Otherwise, the NE
approach is selected.

Function imsl_d_sparse_lin_prog stops with optimal termination status if the current iterate satisfies the
following three conditions:

where prinf_tol, dlinf_tol and opt_tol are primal infeasibility, dual infeasibility and optimality toler-
ances, respectively. The default value is 1.0e-10 for opt_tol and 1.0e-8 for the two other tolerances.

Function imsl_d_sparse_lin_prog is based on the code HOPDM developed by Jacek Gondzio et al.; see
the HOPDM User’s Guide (1995).

Examples

Example 1

The linear programming problem

Θ = X −1Z + S−1W)−1, r = rc − X
−1rxz + S

−1rws − S
−1Wru, h = rb.

Δx, Δy
AΘAT

AΘAT Δy
L

A
A

A

μ
1 + 0.5 ∣cTx∣ + ∣bT y − uTw∣

≤ opt_tol

∥ b − Ax,x + s − u ∥
1 + ∥ b,u ∥ ≤ prinf_tol, and

∥c − AT y − z + w∥
1 + ∥c∥ ≤ dlinf_tol,
913

 Optimization sparse_lin_prog
is solved.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int m = 3, n = 3, nza = 7;
 double obj, *x = NULL;
 Imsl_d_sparse_elem a[] = { 0, 0, 1.0,
 0, 1, 3.0,
 1, 1, 2.0,
 1, 2, 3.0,
 2, 0, 1.0,
 2, 1, 1.0,
 2, 2, 1.0 };
 double b[] = { 3.0, 6.0, 2.0 };
 double c[] = { 2.0, -8.0, 3.0 };
 double xlb[] = { -1.0, 0.0, 0.0 };
 double xub[] = { 5.0, 7.0, 9.0 };
 int irtype[] = { 1, 1, 2 };
 x = imsl_d_sparse_lin_prog(m, n, nza, a, b, c,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_LOWER_BOUND, xlb,
 IMSL_UPPER_BOUND, xub,
 IMSL_OBJ, &obj,
 0);
 imsl_d_write_matrix("x", 1, n, x, 0);
 printf("\nObjective: %lf\n", obj);
}

Output

 x
 1 2 3
 -0.375 1.125 1.250
Objective: -6.000000

min f x = 2x1 − 8x2 + 3x3
subject to x1 + 3x2 ≤ 3

2x2 + 3x3 ≤ 6
x1 + x2 + x3 ≥ 2
−1 ≤ x1 ≤ 5
0 ≤ x2 ≤ 7
0 ≤ x3 ≤ 9
914

 Optimization sparse_lin_prog
Example 2

This example demonstrates how the function imsl_d_read_mps can be used with
imsl_d_sparse_lin_prog to solve a linear programming problem defined in an MPS file. The MPS file used
in this example is an uncompressed version of the file ‘afiro’, available from
http://www.netlib.org/lp/data/.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
 Imsl_d_mps *problem;
 int i, m, n, *irtype, nza;
 double *x, objective, *bl, *bu, *xlb, *xub;
 Imsl_d_sparse_elem *a = NULL;
 /* Read the MPS file. */
 problem = imsl_d_read_mps("afiro", 0);
 m = problem->nrows;
 n = problem->ncolumns;
 /*
 * Setup the constraint matrix.
 */
 nza = problem->nonzeros;
 a = problem->constraint;
 /*
 * Setup constraint bounds and constraint type array.
 */
 irtype = (int*) malloc(m*sizeof(int));
 bl = (double*) malloc(m*sizeof(double));
 bu = (double*) malloc(m*sizeof(double));
 for (i = 0; i < m; i++) {
 if (problem->lower_range[i] == problem->negative_infinity &&
 problem->upper_range[i] == problem->positive_infinity)
 {
 bl[i] = problem->negative_infinity;
 bu[i] = problem->positive_infinity;
 irtype[i] = 4;
 }
 else if (problem->lower_range[i] == problem->negative_infinity)
 {
 irtype[i] = 1;
 bl[i] = problem->upper_range[i];
 bu[i] = problem->positive_infinity;
 }
 else if (problem->upper_range[i] == problem->positive_infinity)
 {
 irtype[i] = 2;
 bl[i] = problem->lower_range[i];
 bu[i] = problem->positive_infinity;
 }
 else
915

http://www.netlib.org/lp/data/

 Optimization sparse_lin_prog
 {
 if (problem->lower_range[i] == problem->upper_range[i])
 {
 irtype[i] = 0;
 bl[i] = problem->lower_range[i];
 bu[i] = problem->positive_infinity;
 }
 else
 {
 irtype[i] = 3;
 bl[i] = problem->lower_range[i];
 bu[i] = problem->upper_range[i];
 }
 }
 }
 /*
 * Set up variable bounds. Be sure to account for
 * how unbounded variables should be set.
 */
 xlb = (double*) malloc(n*sizeof(double));
 xub = (double*) malloc(n*sizeof(double));
 for (i = 0; i < n; i++) {
 xlb[i] = (problem->lower_bound[i] == problem->negative_infinity)?
 -1.0e30:problem->lower_bound[i];
 xub[i] = (problem->upper_bound[i] == problem->positive_infinity)?
 1.0e30:problem->upper_bound[i];
 }
 /*
 * Solve the LP problem.
 */
 x = imsl_d_sparse_lin_prog(m, n, nza,
 a, bl, problem->objective,
 IMSL_UPPER_LIMIT, bu,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_LOWER_BOUND, xlb,
 IMSL_UPPER_BOUND, xub,
 IMSL_OBJ, &objective,
 IMSL_PRESOLVE, 6,
 0);
 printf("Problem Name: %s\n", problem->name);
 printf("objective : %15.10e\n", objective);
 imsl_d_write_matrix("Solution", 1, n, x, 0);
 /*
 * Free memory.
 */
 imsl_d_mps_free(problem);
 free(irtype);
 free(bl);
 free(bu);
 free(xlb);
 free(xub);
 imsl_free(x);
}

916

 Optimization sparse_lin_prog
Output

Problem Name: AFIRO
objective : -4.6475314284e+002
 Solution
 1 2 3 4 5 6
 80.0 25.5 54.5 84.8 65.4 0.0
 7 8 9 10 11 12
 0.0 0.0 0.0 0.0 0.0 0.0
 13 14 15 16 17 18
 18.2 47.2 69.4 500.0 475.9 24.1
 19 20 21 22 23 24
 0.0 215.0 141.7 0.0 0.0 0.0
 25 26 27 28 29 30
 0.0 0.0 0.0 0.0 339.9 242.3
 31 32
 60.9 0.0

Warning Errors

Fatal Errors

IMSL_ALL_FEAS_SOLS_OPTIMAL The coefficients of the objective function are all
equal to zero. Every feasible solution is also optimal.

IMSL_SUBOPTIMAL_SOL_FOUND A suboptimal solution was found after #iterations.

IMSL_MAX_ITERATIONS_REACHED_1 The maximum number of iterations was reached.
The best answer will be returned. “#”=#was used, a
larger value may help complete the algorithm.

IMSL_PRIMAL_UNBOUNDED The primal problem is unbounded.

IMSL_PRIMAL_INFEASIBLE The primal problem is infeasible.

IMSL_DUAL_INFEASIBLE The dual problem is infeasible.

IMSL_INIT_SOL_INFEASIBLE The initial solution for the one-row linear program is
infeasible.

IMSL_PROB_UNBOUNDED The problem is unbounded.

IMSL_DIAG_WEIGHT_TOO_SMALL The diagonal element #[#]=#of the diagonal weight
matrix #is too small.

IMSL_CHOL_FAC_ACCURACY The Cholesky factorization failed because of accu-
racy problems.
917

 Optimization sparse_quadratic_prog
sparse_quadratic_prog
Solves a sparse convex quadratic programming problem by an infeasible primal-dual interior-point method.

Synopsis
#include <imsl.h>
double *imsl_d_sparse_quadratic_prog (int m, int n, int nza,int nzq, Imsl_d_sparse_elem a[],

double b[], double c[], Imsl_d_sparse_elem q[], …, 0)

Required Arguments
int m (Input)

Number of constraints.

int n (Input)
Number of variables.

int nza (Input)
Number of nonzero entries in constraint matrix A.

int nzq (Input)
Number of nonzero entries in the lower triangular part of the matrix Q of the objective function.

Imsl_d_sparse_elem a[] (Input)
An array of length nza containing the location and value of each nonzero coefficient in the constraint
matrix A.

double b[] (Input)
An array of length m containing the right-hand side of the constraints; if there are limits on both sides
of the constraints, then b contains the lower limit of the constraints.

double c[] (Input)
An array of length n containing the coefficients of the linear term of the objective function.

NOTE: Function sparse_quadratic_prog is available in double precision only.
918

 Optimization sparse_quadratic_prog
Imsl_d_sparse_elem q[] (Input)
Array of length nzq containing the location and value of each nonzero coefficient in the lower trian-
gular part of the matrix Q of the objective function. The matrix must be symmetric positive
semidefinite.

Return Value
A pointer to an array of length n containing the solution x of the convex QP problem. To release this space, use
imsl_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
double *imsl_d_sparse_quadratic_prog (int m, int n, int nza, int nzq, Imsl_d_sparse_elem a[],

double b[], double c[], Imsl_d_sparse_elem q[],

IMSL_CONSTR_TYPE, int irtype[],
IMSL_UPPER_LIMIT, double bu[],
IMSL_LOWER_BOUND, double xlb[],
IMSL_UPPER_BOUND, double xub[],
IMSL_OBJ_CONSTANT, double c0,
IMSL_PREORDERING, int preorder,
IMSL_MAX_ITERATIONS, int max_iterations,
IMSL_OPT_TOL, double opt_tol,
IMSL_PRINF_TOL, double prinf_tol,
IMSL_DLINF_TOL, double dlinf_tol,
IMSL_PRINT, int iprint,
IMSL_PRESOLVE, int presolve,
IMSL_CSC_FORMAT, int a_colptr[], int a_rowind[], double a_values[],

int q_colptr[], int q_rowind[], double q_values[],
IMSL_TERMINATION_STATUS, int *status,
IMSL_OBJ, double *obj,
IMSL_ITERATION_COUNT, int *iterations,
IMSL_DUAL, double **y,
IMSL_DUAL_USER, double y[],
IMSL_PRIMAL_INFEAS, double *err_b, double *err_u,
IMSL_DUAL_INFEAS, double *err_c,
IMSL_CP_RATIO_SMALLEST, double *cp_smallest,
919

 Optimization sparse_quadratic_prog
IMSL_CP_RATIO_LARGEST, double *cp_largest,
IMSL_RETURN_USER, double x[],
0)

Optional Arguments
IMSL_CONSTR_TYPE, int irtype[] (Input)

An array of length m indicating the types of general constraints in the matrix A. Let
ri = ai1x1 + … + ainxn. Then, the value of irtype[i] signifies the following:

Note that irtype[i] = 3 should only be used for constraints i with both finite lower and finite upper
bound. For one-sided constraints, use irtype[i] = 1 or irtype[i] = 2. For free constraints, use
irtype[i] = 4.
Default: irtype = 0

irtype[i] Constraint

0 ri =bi

1 ri ≤bi

2 ri ≥bi

3 bi ≤ri ≤bui

4 Ignore this constraint
920

 Optimization sparse_quadratic_prog
IMSL_UPPER_LIMIT, double bu[] (Input)
An array of length m containing the upper limit of the constraints that have both a lower and an
upper bound. If such a constraint exists, then optional argument IMSL_CONSTR_TYPE must be
used to define the type of constraints. If irtype[i]≠ 3, i.e. if constraint i is not two-sided, then
the corresponding entry in bu, bu[i], is ignored.
Default: None of the constraints has an upper bound.

IMSL_LOWER_BOUND, double xlb[] (Input)
An array of length n containing the lower bound on the variables. If there is no lower bound on a vari-
able, then −1030 should be set as the lower bound.
Default: xlb = 0.

IMSL_UPPER_BOUND, double xub[] (Input)
An array of length n containing the upper bound on the variables. If there is no upper bound on a
variable, then 1030 should be set as the upper bound.
Default: None of the variables has an upper bound.

IMSL_OBJ_CONSTANT, double c0 (Input)
Value of the constant term in the objective function.
Default: c0 = 0.

IMSL_PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of the normal
equations or augmented system matrix:

Default: preorder = 0.

IMSL_MAX_ITERATIONS, int max_iterations (Input)
The maximum number of iterations allowed for the primal-dual solver.
Default: max_iterations = 200.

IMSL_OPT_TOL, double opt_tol (Input)
Relative optimality tolerance.
Default: opt_tol = 1.0e-10.

preorder Method

0 A variant of the MDO algorithm
using pivotal cliques.

1 A variant of George and Liu’s Quo-
tient Minimum Degree algorithm.
921

 Optimization sparse_quadratic_prog
IMSL_PRINF_TOL, double prinf_tol (Input)
The primal infeasibility tolerance.
Default: prinf_tol = 1.0e-8.

IMSL_DLINF_TOL, double dlinf_tol (Input)
The dual infeasibility tolerance.
Default: dlinf_tol = 1.0e-8.

IMSL_PRINT, int iprint (Input)
Printing option.

Default: iprint = 0.

IMSL_PRESOLVE, int presolve (Input)
Presolve the QP problem in order to reduce the problem size or to detect infeasibility or unbounded-
ness of the problem. Depending on the number of presolve techniques used different presolve levels
can be chosen:

Default: presolve = 0.

IMSL_CSC_FORMAT, int a_colptr[], int a_rowind[], double a_values[], int q_colptr[],
int q_rowind[], double q_values[] (Input)
Accept the constraint matrix A (via vectors a_colptr, a_rowind and a_values) and the matrix
Q of the objective function (via vectors q_colptr, q_rowind and q_values) in Harwell-Boeing
format. See (Compressed Sparse Column (CSC) Format) in the Introduction to this manual for a dis-
cussion of this storage scheme.

iprint Action

0 No printing is performed.

1 Prints statistics on the QP problem and the solu-
tion process.

presolve Description

0 No presolving.

1 Eliminate singleton rows

2 Additionally to 1, eliminate redundant (and forc-
ing) rows.

3 Additionally to 2, eliminate dominated variables.

4 Additionally to 3, eliminate singleton columns.

5 Additionally to 4, eliminate doubleton rows.

6 Additionally to 5, eliminate aggregate columns.
922

 Optimization sparse_quadratic_prog
If this optional argument is used, then required arguments a and q are ignored.

IMSL_TERMINATION_STATUS, int *status (Output)
The termination status for the problem.

IMSL_OBJ, double *obj (Output)
Optimal value of the objective function.

IMSL_ITERATION_COUNT, int *iterations (Output)
The number of iterations required by the primal-dual solver.

IMSL_DUAL, double **y (Output)
The address of a pointer y to an internally allocated array of length m containing the dual solution.

IMSL_DUAL_USER, double y[] (Output)
A user-allocated array of size m containing the dual solution.

IMSL_PRIMAL_INFEAS, double *err_b, double *err_u (Output)
The violation of the primal constraints, described by err_b, the primal infeasibility of the solution,
and by err_u, the violation of the variable bounds.

IMSL_DUAL_INFEAS, double *err_c (Output)
The violation of the dual constraints, described by err_c, the dual infeasibility of the solution.

IMSL_CP_RATIO_SMALLEST, double *cp_smallest (Output)
The ratio of the smallest complementarity product to the average.

IMSL_CP_RATIO_LARGEST, double *cp_largest (Output)
The ratio of the largest complementarity product to the average.

IMSL_RETURN_USER, double x[] (Output)
A user-allocated array of length n containing the primal solution.

status Description

0 Optimal solution found.

1 The problem is primal infeasible (or dual unbounded).

2 The problem is primal unbounded (or dual infeasible).

3 Suboptimal solution found (accuracy problems).

4 Iterations limit max_iterations exceeded.

5 An error outside of the solution phase of the algo-
rithm, e.g. a user input or a memory allocation error.
923

 Optimization sparse_quadratic_prog
Description
The function imsl_d_sparse_quadratic_prog uses an infeasible primal-dual interior-point method to
solve convex quadratic programming problems, i.e., problems of the form

where c is the objective coefficient vector, Q is the symmetric positive semidefinite coefficient matrix, A is the con-
straint matrix and the vectors bl, bu, xl, and xu are the lower and upper bounds on the constraints and the

variables, respectively.

Internally, imsl_d_sparse_quadratic_prog transforms the problem given by the user into a simpler
form that is computationally more tractable. After redefining the notation, the new form reads

Here, is a partition of the index set into upper bounded and standard
variables.

In order to simplify the description it is assumed in the following that the problem above contains only variables
with upper bounds, i.e. is of the form

The corresponding dual problem is then

min
x∈Rn

cTx + 12x
TQx

subject to bl ≤ Ax ≤ bu
xl ≤ x ≤ xu

min cTx + 12x
TQx

subject to Ax = b
xi + si = ui, xi,si ≥ 0, i ∈ Iu
x j ≥ 0, j ∈ Is.

Iu ∪ Is = 1, … , n 1, … , n

(P)

min cTx + 12x
TQx

subject to Ax = b,
x + s = u,
x,s ≥ 0

max bT y − uTw − 12x
TQx

(D) subject to AT y + z − w − Qx = c,
x,z,w ≥ 0
924

 Optimization sparse_quadratic_prog
The Karush-Kuhn-Tucker (KKT) optimality conditions for (P) and (D) are

where are diagonal matrices and

 is a vector of ones.

Function imsl_d_sparse_quadratic_prog, like all infeasible interior point methods, generates a
sequence

of iterates, that satisfy for all , but are in general not feasible, i.e. the linear constraints
(1.1)-(1.3) are only satisfied in the limiting case .

The barrier parameter , defined by

measures how good the complementarity conditions (1.4), (1.5) are satisfied.

Mehrotra’s predictor-corrector algorithm is a variant of Newton’s method applied to the KKT conditions (1.1)-(1.5).
Function imsl_d_sparse_quadratic_prog uses a modified version of this algorithm to compute the iter-

ates . In every step of the algorithm, the search direction vector

is decomposed into two parts, where and denote the affine-scaling and a weighted center-
ing component, respectively. Here,

where the scalar denotes the corrector weight.

The vectors and are determined by solving the linear system

Ax = b, (1.1)
x + s = u, (1.2)

AT y + z − w − Qx = c, (1.3)
XZe = 0, (1.4)
SWe = 0, (1.5)
x,z,s,w ≥ 0, (1.6)

X = diag x , Z = diag z , S = diag s , W = diag w

e = (1, … ,1)T

xk, sk, yk, zk, wk , k = 0, 1, …

xk, sk, yk, zk, wk > 0 k
k → ∞

μ

μ = x
Tz + sTw
2n

xk, sk, yk, zk, wk

Δ: = Δx, Δs, Δy, Δz, Δw

Δ = Δa + Δc
ω, Δa Δc

ω

Δc
ω: = ω Δxc, Δsc, Δyc, Δzc, Δwc

ω

Δa Δc: = Δxc, Δsc, Δyc, Δzc, Δwc
925

 Optimization sparse_quadratic_prog
for two different right-hand sides.

For , the right-hand side is defined as

Here, and are the violations of the primal constraints and defines the violations of the dual constraints.

The resulting direction is the pure Newton step applied to the system (1.1)-(1.5).

In order to obtain the corrector direction , the maximum stepsize in the primal and dual space preserving

nonnegativity of , is determined and the predicted complementarity gap

is computed. It is then used to determine the barrier parameter

where denotes the current complementarity gap.

The direction is then computed by choosing

as the right-hand side in the linear system (2).

Function imsl_d_sparse_quadratic_prog now uses a linesearch to find the optimal weight that maxi-

mizes the stepsize in the primal and dual direction of .

A 0 0 0 0
I 0 I 0 0
−Q AT 0 I −I
Z 0 0 X 0
0 0 W 0 S

Δx
Δy
Δs
Δz
Δw

=

rb
ru
rc
rxz
rws

2

Δa

rb, ru, rc, rxz, rws = b − Ax, u − x − s, c − AT y − z + w + Qx, − XZe, −WSe .

rb ru rc

Δa

Δc αa
x, s, z, w

ga = x + αaΔxa)
T z + αaΔza + s + αaΔsa)

T w + αaΔwa

μ̂ =
ga
g

2 ga
2n ,

g = xTz + sTw

Δc

rb, ru, rc, rxz, rsw = 0, 0, 0, μ̂e − ΔXaΔZae, μ̂e − ΔWaΔSae

ω^

αPD Δ = Δa + Δc
ω

926

 Optimization sparse_quadratic_prog
A new iterate is then computed using a step reduction factor :

In addition to the weighted Mehrotra predictor-corrector, imsl_d_sparse_quadratic_prog also uses
multiple centrality correctors to enlarge the primal-dual stepsize per iteration step and to reduce the overall
number of iterations required to solve a QP problem. The maximum number of centrality corrections depends
on the ratio of the factorization and solve efforts for system (2) and is therefore problem dependent. For a
detailed description of multiple centrality correctors, refer to Gondzio(1994).

The linear system (2) can be reduced to more compact forms, the augmented system (AS)

or further by elimination of to the normal equations (NE) system

where

The matrix on the left-hand side of (3), which is symmetric indefinite, can be transformed into a symmetric qua-
sidefinite matrix by regularization. Since these types of matrices allow for a Cholesky-like factorization, the

resulting linear system can be solved easily for by triangular substitutions. For more information on the

regularization technique, see Altman and Gondzio (1998). For the NE system, matrix is positive

definite, and therefore a sparse Cholesky algorithm can be used to factor and solve the system
for by triangular substitutions with the Cholesky factor .

In function imsl_d_sparse_quadratic_prog, both approaches are implemented. The AS approach is
chosen if contains dense columns, if there is a considerable number of columns in that are much denser
than the remaining ones or if there are many more rows than columns in the structural part of . Otherwise, the
NE approach is selected.

α0 = 0.99995

xk+1, sk+1, yk+1, zk+1, wk+1 = xk, sk, yk, zk, wk + α0αPD Δx, Δs, Δy, Δz, Δw

−Q − Θ−1 AT

A 0

Δx
Δy =

r
h 3

Δx

A Q + Θ−1)−1ATΔy = A Q + Θ−1)−1r + h, 4

Θ = X −1Z + S−1W)−1, r = rc − X
−1rxz + S

−1rws − S
−1Wru, h = rb.

Δx, Δy

A Q + Θ−1 AT

A Q + Θ−1 AT

Δy L

A A
A

927

 Optimization sparse_quadratic_prog
Function imsl_d_sparse_quadratic_prog stops with optimal termination status if the current iterate
satisfies the following three conditions:

where prinf_tol, dlinf_tol and opt_tol are primal infeasibility, dual infeasibility and optimality toler-
ances, respectively. The default value is 1.0e-10 for opt_tol and 1.0e-8 for the two other tolerances.

Function imsl_d_sparse_quadratic_prog is based on the code HOPDM developed by Jacek Gondzio et
al., see the HOPDM User’s Guide (1995).

Examples

Example 1

The convex quadratic programming problem

is solved.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int m = 2, n = 3, nza = 5, nzq = 4;
 Imsl_d_sparse_elem a[] = { 0, 0, 2.0,
 0, 1, 1.0,
 0, 2, -8.0,
 1, 0, 2.0,
 1, 1, 3.0 };
 Imsl_d_sparse_elem q[] = { 0, 0, 2.0,

μ
1 + 0.5 ∣cTx∣ + ∣bT y − uTw − 0.5xTQx∣

≤ opt_tol

∥ b − Ax,x + s − u ∥
1 + ∥ b,u ∥ ≤ print_tol, and

∥c − AT y − z + w + Qx∥
1 + ∥c∥ ≤ dling_tol,

min f x = 10x1 + 3x3 + 0.5(2x1
2 + 32x2

2 + 4x3
2 − 8x1x2)

subject to 2x1 + x2 − 8x3 ≥ 0
2x1 + 3x2 ≤ 6
0 ≤ x1 ≤ 7
−3 ≤ x2 ≤ 2
−5 ≤ x3 ≤ 20
928

 Optimization sparse_quadratic_prog
 1, 1, 32.0,
 2, 2, 4.0,
 1, 0, -4.0 };
 double b[] = { 0.0, 6.0 };
 double c[] = { 10.0, 0.0, 3.0 };
 double xlb[] = { 0.0, -3.0, -5.0 };
 double xub[] = { 7.0, 2.0, 20.0 };
 int irtype[] = { 2, 1 };
 double *x = NULL;
 double obj;
 x = imsl_d_sparse_quadratic_prog(m, n, nza, nzq, a, b, c, q,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_LOWER_BOUND, xlb,
 IMSL_UPPER_BOUND, xub,
 IMSL_OBJ, &obj,
 0);
 imsl_d_write_matrix("x", 1, n, x, 0);
 printf("\nObjective: %lf\n", obj);
}

Output

 x
 1 2 3
 0.00 0.00 -0.75
Objective: -1.125000

Example 2

This example demonstrates how the function imsl_d_read_mps can be used with
imsl_d_sparse_quadratic_prog to solve a convex quadratic programming problem defined in an MPS
file. The MPS file used in this example is the file ‘qafiro’, available from the QP problems collection QPDATA2 on
István Maros’ home page under http://www.doc.ic.ac.uk/~im/#DATA/.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
 Imsl_d_mps *problem;
 int i, m, n, *irtype, nza, nzq;
 double *x, objective, *bl, *bu, *xlb, *xub;
 Imsl_d_sparse_elem *a = NULL, *q = NULL;
 /* Read the QPS file. */
 problem = imsl_d_read_mps("QAFIRO.QPS", 0);
 m = problem->nrows;
 n = problem->ncolumns;
929

http://www.doc.ic.ac.uk/~im/#DATA/

 Optimization sparse_quadratic_prog
 /*
 * Setup the constraint matrix.
 */
 nza = problem->nonzeros;
 a = problem->constraint;
 /*
 * Setup the Hessian.
 */
 nzq = problem->nhessian;
 q = problem->hessian;
 /*
 * Setup constraint bounds and constraint type array.
 */
 irtype = (int*) malloc(m*sizeof(int));
 bl = (double*) malloc(m*sizeof(double));
 bu = (double*) malloc(m*sizeof(double));
 for (i = 0; i < m; i++) {
 if (problem->lower_range[i] == problem->negative_infinity &&
 problem->upper_range[i] == problem->positive_infinity)
 {
 bl[i] = problem->negative_infinity;
 bu[i] = problem->positive_infinity;
 irtype[i] = 4;
 }
 else if (problem->lower_range[i] == problem->negative_infinity)
 {
 irtype[i] = 1;
 bl[i] = problem->upper_range[i];
 bu[i] = problem->positive_infinity;
 }
 else if (problem->upper_range[i] == problem->positive_infinity)
 {
 irtype[i] = 2;
 bl[i] = problem->lower_range[i];
 bu[i] = problem->positive_infinity;
 }
 else
 {
 if (problem->lower_range[i] == problem->upper_range[i])
 {
 irtype[i] = 0;
 bl[i] = problem->lower_range[i];
 bu[i] = problem->positive_infinity;
 }
 else
 {
 irtype[i] = 3;
 bl[i] = problem->lower_range[i];
 bu[i] = problem->upper_range[i];
 }
 }
 }
 /*
 * Set up variable bounds. Be sure to account for
 * how unbounded variables should be set.
930

 Optimization sparse_quadratic_prog
 */
 xlb = (double*) malloc(n*sizeof(double));
 xub = (double*) malloc(n*sizeof(double));
 for (i = 0; i < n; i++) {
 xlb[i] = (problem->lower_bound[i] == problem->negative_infinity)?
 -1.0e30:problem->lower_bound[i];
 xub[i] = (problem->upper_bound[i] == problem->positive_infinity)?
 1.0e30:problem->upper_bound[i];
 }
 /*
 * Solve the QP problem.
 */
 x = imsl_d_sparse_quadratic_prog(m, n, nza, nzq,
 a, bl, problem->objective, q,
 IMSL_UPPER_LIMIT, bu,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_LOWER_BOUND, xlb,
 IMSL_UPPER_BOUND, xub,
 IMSL_OBJ, &objective,
 IMSL_PRESOLVE, 6,
 0);
 /*
 * Output results.
 */
 printf("Problem Name: %s\n", problem->name);
 printf("objective : %15.10e\n", objective);
 imsl_d_write_matrix("Solution", 1, n, x, 0);
 /*
 * Free memory.
 */
 imsl_d_mps_free(problem);
 free(irtype);
 free(bl);
 free(bu);
 free(xlb);
 free(xub);
 imsl_free(x);
}

931

 Optimization sparse_quadratic_prog
Output

Problem Name: AFIRO
objective : -1.5907817909e+000
 Solution
 1 2 3 4 5 6
 0.38 0.00 0.38 0.40 65.17 0.00
 7 8 9 10 11 12
 0.00 0.00 0.00 0.00 0.00 0.00
 13 14 15 16 17 18
 0.00 65.17 69.08 3.49 3.37 0.11
 19 20 21 22 23 24
 0.00 1.50 12.69 0.00 0.00 0.00
 25 26 27 28 29 30
 0.00 0.00 0.00 0.00 2.41 33.72
 31 32
 5.46 0.00

Warning Errors

Fatal Errors

IMSL_SUBOPTIMAL_SOL_FOUND A suboptimal solution was found after #iterations.

IMSL_MAX_ITERATIONS_REACHED_1 The maximum number of iterations was reached.
The best answer will be returned. “#”=#was used, a
larger value may help complete the algorithm.

IMSL_PRIMAL_UNBOUNDED The primal problem is unbounded.

IMSL_PRIMAL_INFEASIBLE The primal problem is infeasible.

IMSL_DUAL_INFEASIBLE The dual problem is infeasible.

IMSL_INIT_SOL_INFEASIBLE The initial solution for the one-row linear program is
infeasible.

IMSL_PROB_UNBOUNDED The problem is unbounded.

IMSL_DIAG_WEIGHT_TOO_SMALL The diagonal element #[#]=#of the diagonal weight
matrix #is too small.

IMSL_CHOL_FAC_ACCURACY The Cholesky factorization failed because of accu-
racy problems.
932

 Optimization min_con_gen_lin
min_con_gen_lin

more...

Minimizes a general objective function subject to linear equality/inequality constraints.

Synopsis
#include <imsl.h>
float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon,int neq, float a[], float b[],

float xlb[], float xub[], ..., 0)

The type double function is imsl_d_min_con_gen_lin.

Required Arguments
void fcn (int n, float x[], float *f) (Input/Output)

User-supplied function to evaluate the function to be minimized. Argument x is a vector of length n
at which point the function is evaluated, and f contains the function value at x.

int nvar (Input)
Number of variables.

int ncon (Input)
Number of linear constraints (excluding simple bounds).

int neq (Input)
Number of linear equality constraints.

float a[] (Input)
Array of size ncon × nvar containing the equality constraint gradients in the first neq rows fol-
lowed by the inequality constraint gradients.

float b[] (Input)
Array of size ncon containing the right-hand sides of the linear constraints. Specifically, the con-
straints on the variables xi, i = 0, nvar -1, are ak,0x0 + … + ak,nvar-1xnvar-1 = bk, k = 0, …, neq - 1
and ak,0x0 + … + ak,nvar-1xnvar-1 ≤ bk, k = neq, …, ncon - 1. Note that the data that define the
equality constraints come before the data of the inequalities.
933

 Optimization min_con_gen_lin
float xlb[] (Input)
Array of length nvar containing the lower bounds on the variables; choose a very large negative
value if a component should be unbounded below or set xub[i] = xub[i] to freeze the i-th variable.
Specifically, these simple bounds are xlb[i] ≤ xi, for i = 1, …, nvar.

float xub[] (Input)
Array of length nvar containing the upper bounds on the variables; choose a very large positive
value if a component should be unbounded above. Specifically, these simple bounds are xi ≤ xub[i],
for i = 1, nvar.

Return Value
A pointer to the solution x. To release this space, use imsl_free. If no solution can be computed, then NULL is
returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int a, float b, float xlb[],

float xub[],

IMSL_XGUESS, float xguess[],
IMSL_GRADIENT, void gradient(),
IMSL_MAX_FCN, int max_fcn,
IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact,
IMSL_ACTIVE_CONSTRAINTS, int **iact,
IMSL_ACTIVE_CONSTRAINTS_USER, int *iact_user,
IMSL_LAGRANGE_MULTIPLIERS, float **lagrange,
IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user,
IMSL_TOLERANCE, float tolerance,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void gradient(),void *data,
0)
934

 Optimization min_con_gen_lin
Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess.
Default: xguess = 0

IMSL_GRADIENT, void gradient (int n, float x[], float g[]) (Input)
User-supplied function to compute the gradient at the point x, where x is a vector of length n, and g
is the vector of length n containing the values of the gradient of the objective function.

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact (Output)
Final number of active constraints.

IMSL_ACTIVE_CONSTRAINTS, int **iact (Output)
The address of a pointer to an int, which on exit, points to an array containing the nact indices of
the final active constraints.

IMSL_ACTIVE_CONSTRAINTS_USER, int × iact_user (Output)
A user-supplied array of length at least ncon + 2

containing the indices of the final active constraints in the first nact locations.

IMSL_LAGRANGE_MULTIPLIERS, float **lagrange (Output)
The address of a pointer, which on exit, points to an array containing the Lagrange multiplier esti-
mates of the final active constraints in the first nact locations.

IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user (Output)
A user-supplied array of length at least nvar containing the Lagrange multiplier estimates of the
final active constraints in the first nact locations.

IMSL_TOLERANCE, float tolerance (Input)
The nonnegative tolerance on the first order conditions at the calculated solution.
Default: tolerance = , where ɛ is machine epsilon

IMSL_OBJ, float *obj (Output)
The value of the objective function.

IMSL_RETURN_USER, float x[] (Output)
User-supplied array with nvar components containing the computed solution.

ɛ

935

 Optimization min_con_gen_lin
IMSL_FCN_W_DATA, void fcn (int n, float x[], float *f, void *data), void *data (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

IMSL_GRADIENT_W_DATA, void gradient (int n, float x[], float g[], void *data), void *data
(Input)
User-supplied function to compute the gradient at the point x, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_min_con_gen_lin is based on M.J.D. Powell’s TOLMIN, which solves linearly con-
strained optimization problems, i.e., problems of the form

min f (x)

subject to

given the vectors b1, b2, xl ,and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality con-

straints are consistent, the method will revise x0, the initial guess, to satisfy

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of
quadratic programming subproblems to minimize the sum of the constraint or bound violations.

A1x = b1
A2x ≤ b2
xt ≤ x ≤ zu

A1x = b1
936

 Optimization min_con_gen_lin
Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints that have small resid-
uals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set of indices of active

constraints. The following quadratic programming problem

subject to

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 or A2 or a bound constraint

on x. In the latter case, the aj =ei for the bound constraint xi ≤ (xu)i and aj = -ei for the constraint -xi ≤ (xl)i. Here,

ei is a vector with 1 as the i-th component, and zeros elsewhere. Variables λk are the Lagrange multipliers, and Bk

is a positive definite approximation to the second derivative ∇2 f(xk).

After the search direction dk is obtained, a line search is performed to locate a better point. The new point xk+1

=xk +αkdk has to satisfy the conditions

and

The main idea in forming the set Jk is that, if any of the equality constraints restricts the step-length αk, then its

index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation BK, is updated by the BFGS formula, if the condition

holds. Let xk ← xk+1, and start another iteration.

The iteration repeats until the stopping criterion

is satisfied. Here is the supplied tolerance. For more details, see Powell (1988, 1989).

min f xk + dT∇ f xk + 12d
TBkd

a jd = 0, j ∈ Ik
a jd ≤ 0, j ∈ Jk

f xk + αkdk ≤ f xk + 0.1αk dk
T∇ f xk

dK
T∇ f xk + αkdk ≥ 0.7 dk

T∇ f xK

dK
T∇ f xk + αkdk −∇ f xK > 0

∥∇ f xk − AkλK∥
2
≤ τ

τ

937

 Optimization min_con_gen_lin
Since a finite difference method is used to approximate the gradient for some single precision calculations, an
inaccurate estimate of the gradient may cause the algorithm to terminate at a non­critical point. In such cases,
high precision arithmetic is recommended. Also, if the gradient can be easily provided, the option
IMSL_GRADIENT should be used.

On some platforms, imsl_f_min_con_gen_lin can evaluate the user-supplied functions fcn and
gradient in parallel. This is done only if the function imsl_omp_options is called to flag user-defined func-
tions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are
usually the result of writing to global or static variables

Examples

Example 1

In this example, the problem

is solved.

#include <imsl.h>
int main()
{
 void fcn(int, float *, float *);
 int neq = 2;
 int ncon = 2;
 int nvar = 5;
 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 1.0, -2.0, -2.0};
 float b[] = {5.0, -3.0};
 float xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};
 float xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};
 float *x;
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 x = imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
 0);
 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
}
void fcn(int n, float *x, float *f)

min f x = x1
2 + x2

2 + x3
2 + x4

2 + x5
2 − 2x2x3 − 2x4x5 − 2x1

subject to
x1 + x2 + x3 + x4 + x5 = 5
x3 − 2x4 − 2x5 = − 3
0 ≤ x ≤ 10
938

 Optimization min_con_gen_lin
{
 *f = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] + x[4]*x[4]
 - 2.0*x[1]*x[2] - 2.0*x[3] * x[4] - 2.0*x[0];
}

Output

 Solution
 1 2 3 4 5
 1 1 1 1 1

Example 2

In this example, the problem from Schittkowski (1987)

is solved with an initial guess of x0 =10, x1 =10 and x2 =10.

#include <imsl.h>
int main()
{
 void fcn(int, float *, float *);
 void grad(int, float *, float *);
 int neq = 0;
 int ncon = 2;
 int nvar = 3;
 int lda = 2;
 float obj, x[3];
 float a[] = {-1.0, -2.0, -2.0,
 1.0, 2.0, 2.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {20.0, 11.0, 42.0};
 float xguess[] = {10.0, 10.0, 10.0};
 float b[] = {0.0, 72.0};

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
 IMSL_GRADIENT, grad,
 IMSL_XGUESS, xguess,
 IMSL_OBJ, &obj,
 IMSL_RETURN_USER, x,
 0);

min f x = − x0x1x2
subject to
−x0 − 2x1 − 2x2 ≤ 0
x0 + 2x1 + 2x2 ≤ 72
0 ≤ x0 ≤ 20
0 ≤ x1 ≤ 11
0 ≤ x2 ≤ 42
939

 Optimization min_con_gen_lin
 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
 printf("Objective value = %f\n", obj);
}
void fcn(int n, float *x, float *f)
{
 *f = -x[0] * x[1] * x[2];
}
void grad(int n, float *x, float *g)
{
 g[0] = -x[1]*x[2];
 g[1] = -x[0]*x[2];
 g[2] = -x[0]*x[1];
}

Output

 Solution
 1 2 3
 20 11 15
Objective value = -3300.000000

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
940

 Optimization bounded_least_squares
bounded_least_squares

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Mar-
quardt algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_bounded_least_squares (void fcn(), int m, int n, int ibtype, float xlb[],

float xub[], ..., 0)

The type double function is imsl_d_bounded_least_squares.

Required Arguments
void fcn (int m, int n, float x[], float f[]) (Input/Output)

User-supplied function to evaluate the function that defines the least-squares problem where x is a
vector of length n at which point the function is evaluated, and f is a vector of length m containing
the function values at point x.

int m (Input)
Number of functions.

int n (Input)
Number of variables where n ≤ m.

int ibtype (Input)
Scalar indicating the types of bounds on the variables.

more...

more...

ibtype Action

0 User will supply all the bounds.

1 All variables are nonnegative
941

 Optimization bounded_least_squares
float xlb[] (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; out-
put, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value should be set to −106.

float xub[] (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; out-
put, if ibtype 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value should be set to 106.

Return Value
A pointer to the solution x of the nonlinear least-squares problem. To release this space, use imsl_free. If no
solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_bounded_least_squares (void fcn(), int m, int n, int ibtype, float xlb[],

float xub[],

IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other
variables will have the same bounds

ibtype Action
942

 Optimization bounded_least_squares
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[], int fjac_col_dim) (Input)
User-supplied function to compute the Jacobian where x is a vector of length n at which point the
Jacobian is evaluated, fjac is the computed m × n Jacobian at the point x, and fjac_col_dim is
the column dimension of fjac. Note that each partial derivative ∂fi /∂xj should be returned in
fjac[(i-1)*fjac_col_dim+j-1].

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables. Argument xscale is used
mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL
and IMSL_STEP_TOL for more details.
Default: xscale[] = 1

IMSL_FSCALE, float fscale[] (Input)
Array with m components containing the diagonal scaling matrix for the functions. The i-th compo-
nent of fscale is a positive scalar specifying the reciprocal magnitude of the i-th component
function of the problem.
Default: fscale[] = 1

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance.

The second bounded_least_squares stopping criterion occurs when
943

 Optimization bounded_least_squares
 ≤ grad_tol
where gsi(x) is component i of the scaled gradient of F at x, defined as:

 ,

and where J is the Jacobian matrix for m-component function vector F(x) with n-component argument
x with Jji =∇ifj(x), si = xscale[i-1], and fsi = fscale[i-1].

Default: grad_tol = in double where ɛ is the machine precision.

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance.

The third bounded_least_squares stopping criterion occurs when

≤ step_tol,

where Δxi denotes the i-th component of the iteration step Δx,xi is the i-th component of the current

iterate x, and si = xscale[i-1].

Default: step_tol = ɛ2/3, where ɛ is the machine precision

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.

Default: rfcn_tol = max(10-10, ɛ2/3), max(10-20, ɛ2/3) in double, where ɛ is the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol (Input)
Absolute function tolerance.

The first bounded_least_squares stopping criterion occurs when objective function

 ≤ afcn_tol.

Default: afcn_tol = max(10-20, ɛ2), max(10-40, ɛ2) in double, where ɛ is the machine precision

max i=1
n [gsi(x)]

gsi(x) =
∣gi(x)∣ *max ∣xi∣,1 / si

1
2∣∣F x ∣∣22

gi(x) = f si
2 *∇i 12∥F(x)∥2

2 = f si
2 *(JTF)i

∥F(x)∥22 =∑j=1

m
f j(x)

2

ɛ , ɛ3

maxi=1
n {| Δ xi|/max(|xi|,1 / si)}

1
2∥F(x)∥22
944

 Optimization bounded_least_squares
IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max(ɛ1, ɛ2), where

for s = xscale and t = xguess.

IMSL_INIT_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSL_INTERN_SCALE
Internal variable scaling option. With this option, the values for xscale are set internally.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
The address of a pointer to a real array of length m containing the residuals at the approximate solu-
tion. On return, the necessary space is allocated by imsl_f_bounded_least_squares.
Typically, float *fvec is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)
A user-allocated array of size m containing the residuals at the approximate solution.

ɛ1 = ∑
i=1

n
si ti

2
1/2
, ɛ2 = ∥s∥

2

945

 Optimization bounded_least_squares
IMSL_FJAC, float **fjac (Output)
The address of a pointer to an array of size m × n containing the Jacobian at the approximate solu-
tion. On return, the necessary space is allocated by imsl_f_bounded_least_squares.
Typically, float *fjac is declared, and &fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)
A user-allocated array of size m × n containing the Jacobian at the approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
The column dimension of fjac.
Default: fjac_col_dim = n

IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data), void *data, (Input)
User-supplied function to evaluate the function that defines the least-squares problem, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float fjac[],
int fjac_col_dim, void *data), void *data, (Input)
User-supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

Description
The function imsl_f_bounded_least_squares uses a modified Levenberg-Marquardt method and an
active set strategy to solve nonlinear least-squares problems subject to simple bounds on the variables. The
problem is stated as follows:

subject to l ≤x ≤u

where m ≥n, F :ℜn →ℜm, and fi(x) is the i-th component function of F(x). From a given starting point, an active set

IA, which contains the indices of the variables at their bounds, is built. A variable is called a “free variable” if it is
not in the active set. The routine then computes the search direction for the free variables according to the
formula

d =-(JTJ +μ I)-1 JTF

min12F x TF x = 12∑
i=1

m

f i x
2

946

 Optimization bounded_least_squares
where μ is the Levenberg-Marquardt parameter, F =F(x), and J is the Jacobian with respect to the free variables.
The search direction for the variables in IA is set to zero. The trust region approach discussed by Dennis and Sch-
nabel (1983) is used to find the new point. Finally, the optimality conditions are checked. The conditions are

∥g (xi)∥ ≤ɛ, li < xi < ui

g (xi) < 0, xi =ui

g (xi) >0, xi =li

where ɛ is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition
is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates
the optimality condition will be dropped out of IA. For more detail on the Levenberg-Marquardt method, see Lev-
enberg (1944) or Marquardt (1963). For more detail on the active set strategy, see Gill and Murray (1976).

The first stopping criterion for imsl_f_bounded_least_squares occurs when the norm of the function is
less than the absolute function tolerance. The second stopping criterion occurs when the norm of the scaled gra-
dient is less than the scaled gradient tolerance. The third stopping criterion occurs when the scaled distance
between the last two steps is less than the step tolerance. See options IMSL_ABS_FCN_TOL,
IMSL_GRAD_TOL, and IMSL_STEP_TOL for details.

Since a finite-difference method is used to estimate the Jacobian for some single-precision calculations, an inac-
curate estimate of the Jacobian may cause the algorithm to terminate at a noncritical point. In such cases, high-
precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided, the option
IMSL_JACOBIAN should be used.

On some platforms, imsl_f_bounded_least_squares can evaluate the user-supplied functions fcn and
jacobian in parallel. This is done only if the function imsl_omp_options is called to flag user-defined func-
tions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are
usually the result of writing to global or static variables.

Examples

Example 1

In this example, the nonlinear least-squares problem
947

 Optimization bounded_least_squares
where

is solved with an initial guess (-1.2, 1.0).

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define M 2
#define N 2
#define LDFJAC 2
int main()
{
 void rosbck(int, int, float *, float *);
 int ibtype = 0;
 float xlb[N] = {-2.0, -1.0};
 float xub[N] = {0.5, 2.0};
 float *x;
 x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb,
 xub, 0);
 printf("x[0] = %f\n", x[0]);
 printf("x[1] = %f\n", x[1]);
}
void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}

Example 2

This example solves the nonlinear least-squares problem

where

min12 ∑
i=0

1
f i x

2

−2 ≤ x0 ≤ 0.5
−1 ≤ x1 ≤ 2

f 0 x = 10 x1 − x0
2 and f 1 x = 1 − x0

min12 ∑
i=0

1
f i x

2

−2 ≤ x0 ≤ 0.5
−1 ≤ x1 ≤ 2
948

 Optimization bounded_least_squares
This time, an initial guess (-1.2, 1.0) is supplied, as well as the analytic Jacobian. The residual at the approximate
solution is returned.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define M 2
#define N 2
#define LDFJAC 2
int main()
{
 void rosbck(int, int, float *, float *);
 void jacobian(int, int, float *, float *, int);
 int ibtype = 0;
 float xlb[N] = {-2.0, -1.0};
 float xub[N] = {0.5, 2.0};
 float xguess[N] = {-1.2, 1.0};
 float *fvec;
 float *x;
 x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,
 IMSL_JACOBIAN, jacobian,
 IMSL_XGUESS, xguess,
 IMSL_FVEC, &fvec,
 0);
 printf("x[0] = %f\n", x[0]);
 printf("x[1] = %f\n\n", x[1]);
 printf("fvec[0] = %f\n", fvec[0]);
 printf("fvec[1] = %f\n\n", fvec[1]);
}
void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}
void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)
{
 fjac[0] = -20.0*x[0];
 fjac[1] = 10.0;
 fjac[2] = -1.0;
 fjac[3] = 0.0;
}

Output

x[0] = 0.500000
x[1] = 0.250000
fvec[0] = 0.000000
fvec[1] = 0.500000

f 0 x = 10 x1 − x0
2 and f 1 x = 1 − x0
949

 Optimization bounded_least_squares
Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".
950

 Optimization min_con_polytope
min_con_polytope

more...

Minimizes a function of n variables subject to bounds on the variables using a direct search complex algorithm.

Synopsis
#include <imsl.h>

float *imsl_f_min_con_polytope (void fcn(), int n, float xlb[], float xub[], …, 0)

The typedouble function is imsl_d_min_con_polytope.

Required Arguments
voidfcn (int n, float x[], float *f) (Input/Output)

User-supplied function, f(x), to be minimized.

Arguments
int n (Input)
The number of variables.
float x[] (Input)
Array of size n at which point the function is evaluated.
float *f (Output)
The function value at x.

int n (Input)
The number of variables.

float xlb[] (Input)
Array of size n containing the lower bounds on the variables.

float xub[] (Input)
Array of size n containing the upper bounds on the variables.
951

 Optimization min_con_polytope
Return Value
A pointer to the solution x containing the best estimate for the minimum. To release this space, use
imsl_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_min_con_polytope (void fcn(), int n, float xlb[], float xub[],

IMSL_XGUESS, float xguess[],
IMSL_XCPLX, float xcplx[],
IMSL_TOLERANCE, float ftol,
IMSL_REFLCOEF, float alpha,
IMSL_EXPNCOEF, float beta,
IMSL_CNTRCOEF, float gamma,
IMSL_MAX_FCN, int *maxfcn,
IMSL_FVALUE, float *fvalue,
IMSL_RETURN_USER, float x[],
IMSL_FCN_W_DATA, void fcn(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array of size n containing an initial guess of the minimum.
Default: xguess = 0.0.

IMSL_XCPLX, float xcplx[] (Input)
Array of size 2n × n containing the 2 * n initial complex points. If the IMSL_XCPLX optional argu-
ment is used, then the initial guess must be specified in the first row of xcplx, and there is no need
to provide optional argument IMSL_XGUESS. Thus, if both optional arguments IMSL_XCPLX and
IMSL_XGUESS are supplied, IMSL_XGUESS will be ignored.
Default: xcplx is not used.

IMSL_TOLERANCE, float ftol (Input)

First convergence criterion: The algorithm stops when the relative error in the function values
is less than ftol, i.e. when F(worst) – F(best) < ftol * (1 + |F(best)|) where F(worst) and
F(best) are the function values of the current worst and best point, respectively.
952

 Optimization min_con_polytope
Second convergence criterion: The algorithm stops when the standard deviation of the func-
tion values at the 2 * n current points is less than ftol. If the function terminates
prematurely, try again with a smaller value for ftol.
Default: ftol = 1.0e-4 for single and 1.0e-8 for double precision.

IMSL_REFLCOEF, float alpha (Input)
The reflection coefficient. alpha must be greater than 0.
Default: alpha = 1.0.

IMSL_EXPNCOEF, float beta (Input)
The expansion coefficient. beta must be greater than 1.
Default: beta = 2.0.

IMSL_CNTRCOEF, float gamma (Input)
The contraction coefficient. gamma must be greater than 0 and less than 1.
Default: gamma = 0.5.

IMSL_MAX_FCN, int *maxfcn (Input/Output)
On input, the maximum allowed number of function evaluations. On output, the actual number of
function evaluations needed.
Default: maxfcn = 300.

IMSL_FVALUE, float *fvalue (Output)
Function value at the computed solution.

IMSL_RETURN_USER, float x[] (Output)
User-supplied array of size n containing the computed solution.

IMSL_FCN_W_DATA, void fcn (int n, float x[], float *f, void *data), void *data (Input)
User supplied function to evaluate the function to be minimized, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functionsin the Introduction of this manual for more details.

Description
The function imsl_f_min_con_polytope uses the complex method to find a minimum point of a function
of n variables. The method is based on function comparison; no smoothness is assumed. It starts with an initial
complex of 2n points , which is either user-supplied (using optional argument IMSL_XCPLX) or is

otherwise, by default, randomly initialized. At each iteration, a new point is generated to replace the “worst” point
xj, which has the largest function value among these 2n points, as described below.

Each iteration begins by determining the best and two worst points in the present complex, and then construct-
ing a new “reflection” point xr by the formula

x1, x2, … , x2n
953

 Optimization min_con_polytope
xr = c + α(c - xj)

where

is the centroid of the 2n - 1 best points and α (α > 0) is the reflection coefficient. (See optional argument
IMSL_REFLCOEF). Depending on how the new reflection point xr compares with the existing complex points,

the iteration proceeds as follows:

If xr is neither better than the best point nor worse than the second worst point, then xr replaces the worst point

xj and, if neither of the stopping criteria (see below) is satisfied, a new iteration begins.

If xr is a best point, that is, if f(xr) ≤ f(xi) for i = 1, …, 2n, an expansion point xe is computed to see if an even better

point can be obtained by moving further in the reflection direction:

xe = c + β(xr - c)

where β (β > 1) is called the expansion coefficient (see optional argument IMSL_EXPNCOEF), and worst point xj is

replaced by the better of xe and xr and, if neither of the stopping criteria is satisfied, a new iteration begins.

If xr and xj are the two worst points, then the complex is contracted to try to get a better new contraction point xc:

where (0 < < 1) is called the contraction coefficient. (See optional argument IMSL_CNTRCOEF. If the contrac-
tion step is successful (i.e. if min(f(xr), f(xj)) > f(xc)), then worst point xj is replaced by xc. If the contraction step is

unsuccessful, then the complex is shrunk by moving the 2n - 1 worst points halfway towards the current best
point. Following the contraction step, if neither of the stopping criteria is satisfied, a new iteration begins.

Whenever the new point generated is beyond the bound, it will be projected onto the bound. If, at the end of an
iteration, one of the following stopping criteria is satisfied, then the process ends with the best point returned as
the optimum.

Criterion 1:

fworst- fbest ≤ ɛf (1. + |fbest|)

Criterion 2:

c = 1
2n − 1∑i≠ j

xi

xc =
c + γ(x j − c) if f (xr) ≥ f (x j)

c + γ(xr − c) if f (x j) > f (xr)

γ γ
954

 Optimization min_con_polytope
where fi = f(xi), fj = f(xj), and ɛf is a given tolerance. For a complete description, see Nelder and Mead (1965) or Gill

et al. (1981).

Remarks
Since imsl_f_min_con_polytope uses only function-value information at each step to determine a new
approximate minimum, it could be quite inefficient on smooth problems compared to other methods. Hence
function imsl_f_min_con_polytope should be used only as a last resort. Briefly, a set of 2 * n points in ann
-dimensional space is called a complex. The minimization process iterates by replacing the point with the largest
function value by a new point with a smaller function value. The iteration continues until all the points cluster suf-
ficiently close to a minimum.

Examples

Example 1

The problem

is solved with an initial guess (1.2, 1.0), and the solution is printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcn(int n, float x[], float *f);
int main() {
 int n = 2;
 float xguess[] = { -1.2, 1.0 };
 float xlb[] = { -2.0, -1.0 };
 float xub[] = { 0.5, 2.0 };
 float ftol = 1.0e-7;
 float *x = NULL, fvalue;
 x = imsl_f_min_con_polytope(fcn, n, xlb, xub,

1
2n∑

i=1

2n

f i −
∑ j=1
2n f j
2n

2

≤ ɛ2f

min f x = 100 x2 − x1
2 2 + 1 − x1

2

subject to −2 ≤ x1 ≤ 0.5
−1 ≤ x2 ≤ 2
955

 Optimization min_con_polytope
 IMSL_XGUESS, xguess,
 IMSL_TOLERANCE, ftol,
 IMSL_FVALUE, &fvalue,
 0);
 printf("Solution x =(%.2f, %.2f)\n", x[0], x[1]);
 printf("Function value at x = %0.2f\n", fvalue);
 if (x) imsl_free(x);
}
void fcn(int n, float x[], float *f) {
 *f = 100.0 * pow((x[1] - x[0] * x[0]), 2.0) + pow((1.0 - x[0]), 2.0);
}

Output

Solution x =(0.50, 0.25)
Function value at x = 0.25

Example 2

This example is intended to illustrate the use of optional arguments available for
imsl_f_min_con_polytope, and how their use can affect the number of function calls needed to complete
the optimization process. The same problem as in Example 1 is approached in five ways, including the use of a
function penalty in an attempt to constrain the solution space. In each case, the number of function evaluations
required is output.

Solution 1 uses xlb and xub to impose bounds, as in Example 1. Solution 2 through 5 use a function penalty to
impose constraints, and to varying degrees make use of optional arguments IMSL_XCPLX, IMSL_REFLCOEF,
IMSL_EXPNCOEF, and IMSL_CNTRCOEF.

Note that the actual number of function calls required to complete the minimization process may vary, depend-
ing on the computing platform and precision used.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define N 2
void fcn(int n, double x[], double *f);
void print_results(double x[], double fvalue, int max_fcn);
void fcn_penalty(int n, double x[], double *f);
int main() {
 int i, j, n = N;
 double xguess[] = { -1.2, 1.0 };
 double xlb[2], xub[2];
 double xcplx[2 * N][N], xcplx0[2 * N][N];
 int ibtype = 0;
 double ftol = 1.0e-15;
956

 Optimization min_con_polytope
 double alpha, beta, gamma;
 int max_fcn;
 double *x = NULL, fvalue;
 xcplx0[0][0] = xguess[0];
 xcplx0[0][1] = xguess[1];
 xcplx0[1][0] = 0.5;
 xcplx0[1][1] = 2.0;
 xcplx0[2][0] = -2.0;
 xcplx0[2][1] = -1.0;
 xcplx0[3][0] = 0.5;
 xcplx0[3][1] = -1.0;
 /*
 * Solution 1:
 * Constraints imposed with bounds.
 */
 xlb[0] = -2.0;
 xlb[1] = -1.0;
 xub[0] = 0.5;
 xub[1] = 2.0;
 max_fcn = 500;
 x = imsl_d_min_con_polytope(fcn, n, xlb, xub,
 IMSL_XGUESS, xguess,
 IMSL_TOLERANCE, ftol,
 IMSL_FVALUE, &fvalue,
 IMSL_MAX_FCN, &max_fcn,
 0);
 printf("Solution 1:\n-----------\n");
 printf("Constraints imposed with simple bounds.\n");
 printf(" -2.0 <= x[0] <= 0.5\n");
 printf(" -1.0 <= x[1] <= 2.0\n");
 printf("Using randomly generated initial complex and\n");
 printf("default values for step-size coefficients.\n\n");
 print_results(x, fvalue, max_fcn);
 if (x) {
 imsl_free(x);
 x = NULL;
 }
 printf("\n---\n");
 printf("Note: In addition to simple bounds\n");
 printf(" -2 <= x[0] <= 2\n");
 printf(" -2 <= x[1] <= 2\n");
 printf(" Solutions 2-5 include the following constraints\n");
 printf(" imposed with function penalties:\n");
 printf(" -2.0 <= x[0] <= 0.5\n");
 printf(" -1.0 <= x[1] <= 2.0\n");
 printf("---\n\n");
 /*
 * Solution 2:
 * User-supplied initial complex xcplx
 * chosen to be within constraint boundaries
 */
 xlb[0] = xlb[1] = -2.0;
 xub[0] = xub[1] = 2.0;
957

 Optimization min_con_polytope
 /* Set the initial complex. */
 for (i = 0; i < 2 * n; i++)
 for (j = 0; j < n; j++)
 xcplx[i][j] = xcplx0[i][j];
 max_fcn = 1000;
 x = imsl_d_min_con_polytope(fcn_penalty, n, xlb, xub,
 IMSL_XGUESS, xguess,
 IMSL_TOLERANCE, ftol,
 IMSL_FVALUE, &fvalue,
 IMSL_MAX_FCN, &max_fcn,
 IMSL_XCPLX, xcplx,
 0);
 printf("Solution 2:\n-----------\n");
 printf("Using user-specified intial complex and\n");
 printf("default values for step-size coefficients.\n\n");
 print_results(x, fvalue, max_fcn);
 if (x) {
 imsl_free(x);
 x = NULL;
 }
 /*
 * Solution 3:
 * User-supplied initial complex xcplx
 * chosen to be within constraint boundaries, and
 * user-specified values for step-size coefficients.
 */
 /* Reset the initial complex. */
 for (i = 0; i < 2 * n; i++)
 for (j = 0; j < n; j++)
 xcplx[i][j] = xcplx0[i][j];
 max_fcn = 1000;
 alpha = 1.0;
 beta = 3.1841776469083554;
 gamma = 0.33464404002126491;
 x = imsl_d_min_con_polytope(fcn_penalty, n, xlb, xub,
 IMSL_XGUESS, xguess,
 IMSL_TOLERANCE, ftol,
 IMSL_FVALUE, &fvalue,
 IMSL_MAX_FCN, &max_fcn,
 IMSL_XCPLX, xcplx,
 IMSL_REFLCOEF, alpha,
 IMSL_EXPNCOEF, beta,
 IMSL_CNTRCOEF, gamma,
 0);
 printf("Solution 3:\n-----------\n");
 printf("Using user-specified intial complex and\n");
 printf("user-specified values for step-size coefficients.\n");
 printf(" alpha =%25.17e\n", alpha);
 printf(" beta =%25.17e\n", beta);
 printf(" gamma =%25.17e\n\n", gamma);
 print_results(x, fvalue, max_fcn);
958

 Optimization min_con_polytope
 if (x) {
 imsl_free(x);
 x = NULL;
 }
 /*
 * Solution 4:
 * Using randomly generated initial complex and
 * default values for step-size coefficients.
 */
 max_fcn = 1000;
 x = imsl_d_min_con_polytope(fcn_penalty, n, xlb, xub,
 IMSL_XGUESS, xguess,
 IMSL_TOLERANCE, ftol,
 IMSL_FVALUE, &fvalue,
 IMSL_MAX_FCN, &max_fcn,
 0);
 printf("Solution 4:\n-----------\n");
 printf("Using randomly generated initial complex and\n");
 printf("default values for step-size coefficients.\n\n");
 print_results(x, fvalue, max_fcn);
 if (x) {
 imsl_free(x);
 x = NULL;
 }
 /*
 * Solution 5:
 * Using randomly generated initial complex and
 * user-supplied values for step-size coefficients.
 */
 max_fcn = 1000;
 beta = 18.204845270362373;
 gamma = 0.31542073037934792;
 x = imsl_d_min_con_polytope(fcn_penalty, n, xlb, xub,
 IMSL_XGUESS, xguess,
 IMSL_TOLERANCE, ftol,
 IMSL_FVALUE, &fvalue,
 IMSL_MAX_FCN, &max_fcn,
 IMSL_REFLCOEF, alpha,
 IMSL_EXPNCOEF, beta,
 IMSL_CNTRCOEF, gamma,
 0);
 printf("Solution 5:\n-----------\n");
 printf("Using randomly generated initial complex and\n");
 printf("user-supplied values for step-size coefficients.\n");
 printf(" alpha =%25.17e\n", alpha);
 printf(" beta =%25.17e\n", beta);
 printf(" gamma =%25.17e\n\n", gamma);
 print_results(x, fvalue, max_fcn);
 if (x) {
 imsl_free(x);
 x = NULL;
 }
959

 Optimization min_con_polytope
}

void fcn(int n, double x[], double *f) {
 *f = 100.0 * pow((x[1] - x[0] * x[0]), 2.0) + pow((1.0 - x[0]), 2.0);
}

void fcn_penalty(int n, double x[], double *f) {
 if (((-2.0 <= x[0]) && (x[0] <= 0.5)) &&
 ((-1.0 <= x[1]) && (x[1] <= 2.0))) {
 *f = 100.0 * pow((x[1] - x[0] * x[0]), 2.0) + pow((1.0 - x[0]), 2.0);
 }
 else {
 *f = 1000.0;
 }
}

void print_results(double x[], double fvalue, int max_fcn){
 printf("Results:\n");
 printf("x = [%f, %f]\n", x[0], x[1]);
 printf("fvalue = %f\n", fvalue);
 printf("function calls = %d\n\n\n", max_fcn);
}

Output
Solution 1:

Constraints imposed with simple bounds.
 -2.0 <= x[0] <= 0.5
 -1.0 <= x[1] <= 2.0
Using randomly generated initial complex and
default values for step-size coefficients.
Results:
x = [0.500000, 0.250000]
fvalue = 0.250000
function calls = 226

Note: In addition to simple bounds
 -2 <= x[0] <= 2
 -2 <= x[1] <= 2
 Solutions 2-5 include the following constraints
 imposed with function penalties:
 -2.0 <= x[0] <= 0.5
 -1.0 <= x[1] <= 2.0

Solution 2:

Using user-specified intial complex and
default values for step-size coefficients.
Results:
960

 Optimization min_con_polytope
x = [0.500000, 0.250000]
fvalue = 0.250000
function calls = 379

Solution 3:

Using user-specified intial complex and
user-specified values for step-size coefficients.
 alpha = 1.00000000000000000e+000
 beta = 3.18417764690835540e+000
 gamma = 3.34644040021264910e-001
Results:
x = [0.500000, 0.250000]
fvalue = 0.250000
function calls = 323

Solution 4:

Using randomly generated initial complex and
default values for step-size coefficients.
Results:
x = [0.500000, 0.250000]
fvalue = 0.250000
function calls = 430

Solution 5:

Using randomly generated initial complex and
user-supplied values for step-size coefficients.
 alpha = 1.00000000000000000e+000
 beta = 1.82048452703623730e+001
 gamma = 3.15420730379347920e-001
Results:
x = [0.500000, 0.250000]
fvalue = 0.250000
function calls = 294

Warning Errors

Fatal Errors

IMSL_MAX_FCN_EVALS Maximum number of function evaluations,
“max_fcn” = # exceeded.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
961

 Optimization min_con_lin_trust_region
min_con_lin_trust_region

more...

Minimizes a function of n variables subject to linear constraints using a derivative-free, interpolation-based trust-
region method.

Synopsis
#include <imsl.h>
double *imsl_d_min_con_lin_trust_region (void fcn(), int n,

int npt,int m,double a[],double b[],double rhobeg,double rhoend,…, 0)

Required Arguments
void fcn (int n, double x[], double *f) (Input/Output)

User-supplied function to evaluate the function to be minimized.

Arguments

int n (Input)
Length of x.

double x[] (Input)
Array of length n, the point at which the function is evaluated.

double *f (Output)
The computed function value at the point.

int n (Input)
Number of variables, n ≥ 2.

int npt (Input)
The number of interpolation conditions, which is required to be in the interval
[n+2,(n+1)(n+2)/2]. Typical choices are npt=n+6 and npt=2*n+1. Larger values tend to be
highly inefficient when the number of variables is substantial, due to the amount of work and extra
difficulty of adjusting more points.

NOTE: Function min_con_lin_trust_region is available in double precision only.
962

 Optimization min_con_lin_trust_region
int m (Input)
Number of constraints.

double a[] (Input)
Array of size m by n containing the constraints. The constraints are of the form

,
where denotes the i-th constraint.

double b[] (Input)
An array of size m containing the right-hand sides of the constraints.

double rhobeg (Input)
The initial value of a trust region radius, 0 < rhoend <= rhobeg. Typically, rhobeg should be
about 1/10 of the greatest expected change to a variable.

double rhoend (Input)
The final value of a trust region radius, 0 < rhoend <= rhobeg. Variable rhoend should indicate
the accuracy that is required in the final values of the variables.

Return Value
An array of length n containing the best estimate for the minimum. To release this space, use imsl_free. If no
solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
double * imsl_d_min_con_lin_trust_region (void fcn(), int n, int npt,

int m,double a[],double b[],double rhobeg,double rhoend,

IMSL_XGUESS, double xguess[],
IMSL_PRINT, int iprint,
IMSL_MAX_FCN, int *maxfcn,
IMSL_FVALUE, double *fvalue,
IMSL_RETURN_USER, double x[],
IMSL_FCN_W_DATA, double fcn(),void *data,
0)

ai
Tx ≤ bi i = 1, … , m

ai = ai1, … , ain
T

963

 Optimization min_con_lin_trust_region
Optional Arguments
IMSL_XGUESS, double xguess[] (Input)

An array of length n that contains an initial guess to the minimum. If the initial guess is not feasible,
then it is replaced by a feasible starting point determined as the solution of a constrained linear
least-squares problem.
Default: xguess = 0.0

IMSL_MAX_FCN, int *maxfcn (Input/Output)
On input, maximum allowed number of function evaluations. On output, actual number of function
evaluations needed.
Default: maxfcn = 200

IMSL_PRINT, int iprint (Input)
Parameter indicating the desired output level.

Default: iprint = 0
IMSL_FVALUE, double *fvalue (Output)

Function value at the computed solution.

IMSL_RETURN_USER, double x[] (Output)
User-supplied array of length n containing the computed solution.

IMSL_FCN_W_DATA, void fcn (int n, double x[], double *f, void *data) (Input)

void fcn (int n, double x[],double *f, void *data) (Input)
User supplied function to evaluate the function to be minimized. This function also accepts a
pointer to data supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in this manual’s introduction
for more details.

Arguments

int n (Input)
Length of x.

iprint Action

0 No output printed

1 Output only upon return from
imsl_d_min_con_lin_trust_region.

2 The best feasible vector of variables so far and the corresponding
value of the objective function are printed whenever rho is
reduced, where rho is the current lower bound on the trust
region radius.

3 Output each new value of F with its variables.
964

 Optimization min_con_lin_trust_region
double x[] (Input)
Array of length n, the point at which the function is evaluated.

double *f (Output)
The computed function value at the point.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Description
The function imsl_d_min_con_lin_trust_region implements a trust region method that forms qua-
dratic models by interpolation to minimize a multivariate function, subject to general linear inequality constraints.

Usually, many degrees of freedom remain in each new model after satisfying the interpolation conditions. These
remaining degrees of freedom are taken up by minimizing the Frobenius norm of the change to the second deriv-
ative matrix of the model, see Powell (2004).

One new function value is calculated at each iteration, usually at a point where the current model predicts a
reduction in the least value so far reached by the objective function subject to the linear constraints. Alternatively,
the algorithm may choose a new vector of variables to replace an interpolation point that is too far away for reli-
ability, in which case this new point need not satisfy the linear constraints.

Function imsl_d_min_con_lin_trust_region is based on the LINCOA algorithm by Michael J.D. Powell
(2014).

Example
In this example, Rosenbrock’s post office problem,

subject to

is solved using an initial guess of . The solution and optimal value are printed.

#include <imsl.h>
#include <stdio.h>
int main()

min f x = − x1x2x3

x1 + 2x2 + 2x3 − 72 ≤ 0
x1 + 2x2 + 2x3 ≥ 0
0 ≤ xi ≤ 42, i = 1, 2, 3

(x1, x2, x3) = (10, 10, 10)
965

 Optimization min_con_lin_trust_region
{
 void fcn_post_office(int, double *, double *);
 int n = 3, npt = 7, m = 8;
 double rhobeg = 1.0, rhoend = 1.e-9, fvalue;
 double *x = NULL;
 double a[] = { 1.0, 2.0, 2.0,
 -1.0, -2.0, -2.0,
 1.0, 0.0, 0.0,
 -1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, -1.0, 0.0,
 0.0, 0.0, 1.0,
 0.0, 0.0, -1.0 };
 double xguess[] = { 10.0, 10.0, 10.0 };
 double b[] = { 72.0, 0.0, 42.0, 0.0, 42.0, 0.0, 42.0, 0.0 };
 x = imsl_d_min_con_lin_trust_region(fcn_post_office, n, npt, m, a, b,
 rhobeg, rhoend,
 IMSL_FVALUE, &fvalue,
 IMSL_XGUESS, xguess,
 0);
 imsl_d_write_matrix("Solution", 1, n, x, 0);
 printf("\nObjective value = %f\n", fvalue);
 if (x) imsl_free(x);
}
void fcn_post_office(int n, double *x, double *f)
{
 *f = -x[0] * x[1] * x[2];
}

Output

 Solution
 1 2 3
 24 12 12
Objective value = -3456.000000
966

 Optimization min_con_lin_trust_region
Fatal Errors
IMSL_FCN_EVAL_EXCEEDED_MAXFCN Maximum number of function evaluations exceeded.

IMSL_PROB_INFEASIBLE The problem is infeasible.

IMSL_CONSTR_GRAD_ZERO Algorithm has stopped because the gradient of a con-
straint is zero.

IMSL_ROUNDING_ERRORS_IN_X Computer rounding errors prevent further refinement
of "x".

IMSL_DENOMINATOR_ZERO Algorithm has stopped because the denominator of
the updating formula is zero.

IMSL_STOP_USER_FCN Request from user-supplied function to stop algo-
rithm. User flag = "#".
967

 Optimization constrained_nlp
constrained_nlp

more...

Solves a general nonlinear programming problem using a sequential equality constrained quadratic program-
ming method.

Synopsis
#include <imsl.h>
float *imsl_f_constrained_nlp (void fcn(), int m, int meq, int n, int ibtype, float xlb[],

float xub[], …, 0)

The typedoublefunction is imsl_d_constrained_nlp.

Required Arguments
void fcn(int n, float x[], int iact, float *result, int *ierr)(Input)

User supplied function to evaluate the objective function and constraints at a given point.

int n (Input)
Number of variables.

float x[] (Input)
The point at which the objective function or a constraint is evaluated.

int iact (Input)
Integer indicating whether evaluation of the function is requested or evaluation of a con-
straint is requested. If iact is zero, then an objective function evaluation is requested. If
iact is nonzero then the value of iact indicates the index of the constraint to evaluate.
iact =1 to meq for equality constraints and iact =meq+1 to m for inequality constraints.

float result[] (Output)
If iact is zero, then result is the computed objective function at the point x. If iact is
nonzero, then result is the requested constraint value at the point x.

int *ierr (Output)
Address of an integer. On input ierr is set to 0. If an error or other undesirable condition
occurs during evaluation, then ierr should be set to 1. Setting ierr to 1 will result in the
step size being reduced and the step being tried again. (If ierr is set to 1 for xguess, then
an error is issued.)
968

 Optimization constrained_nlp
int m (Input)
Total number of constraints.

int meq (Input)
Number of equality constraints.

int n (Input)
Number of variables.

int ibtype (Input)
Scalar indicating the types of bounds on variables.

float xlb[] (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; out-
put, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value should be set to
imsl_f_machine(8).

float xub[] (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; out-
put, if ibtype 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value should be set to
imsl_f_machine(7).

Return Value
A pointer to the solution x of the nonlinear programming problem. To release this space, use free. If no solution
can be computed, then NULL is returned.

Synopsis with Optional Arugments
#include <imsl.h>

ibtype Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on first variable,
all other variables will have the same bounds.
969

 Optimization constrained_nlp
float *imsl_f_constrained_nlp (void fcn(), int m, int meq, int n, int ibtype, float xlb[],
float xub[],

IMSL_GRADIENT, void grad(),
IMSL_PRINT, int iprint,
IMSL_XGUESS, float xguess[],
IMSL_ITMAX, int itmax,
IMSL_TAU0, float tau0,
IMSL_DEL0, float del0,
IMSL_SMALLW, float smallw,
IMSL_DELMIN, float delmin,
IMSL_SCFMAX, float scfmax,
IMSL_RETURN_USER, float x[],
IMSL_OBJ, float *obj,
IMSL_DIFFTYPE, int difftype,
IMSL_XSCALE, float xscale[],
IMSL_EPSDIF, float epsdif,
IMSL_EPSFCN, float epsfcn,
IMSL_TAUBND, float taubnd,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
0)

Optional Arguments
IMSL_GRADIENT, void grad(int n, float x[], int iact, float result[]) (Input)

User-supplied function to evaluate the gradients at a given point where

Arguments

int n (Input)
Number of variables.

float x[] (Input)
The point at which the gradient of the objective function or gradient of a constraint is
evaluated

int iact (Input)
Integer indicating whether evaluation of the function gradient is requested or evalua-
tion of a constraint gradient is requested. If iact is zero, then an objective function
gradient evaluation is requested. If iact is nonzero then the value of iact indi-
cates the index of the constraint gradient to evaluate. iact =1 to meq for equality
constraints and iact =meq+1 to m for inequality constraints.
970

 Optimization constrained_nlp
float result[] (Output)
If iact is zero, then result is the computed gradient of the objective function at
the point x. If iact is nonzero, then result is the computed gradient of the
requested constraint value at the point x.

IMSL_PRINT, int iprint(Input)
Parameter indicating the desired output level. (Input)

Default: iprint = 0.

IMSL_XGUESS, float xguess[](Input)
Array of length n containing an initial guess of the solution.
Default: xguess = X, (with the smallest value of ∥x∥2) that satisfies the bounds.

IMSL_ITMAX, int itmax(Input)
Maximum number of iterations allowed.
Default: itmax = 200.

IMSL_TAU0, float tau0(Input)
A universal bound describing how much the unscaled penalty-term may deviate from zero.
imsl_f_constrained_nlp assumes that within the region described by

all functions may be evaluated safely. The initial guess, however, may violate these requirements. In
that case an initial feasibility improvement phase is run by imsl_f_constrained_nlp until such
a point is found. A small tau0diminishes the efficiency of imsl_f_constrained_nlp, because

iprint Action

0 No output printed.

1 One line of intermediate results is printed in each iteration.

2 Lines of intermediate results summarizing the most important
data for each step are printed.

3 Lines of detailed intermediate results showing all primal and
dual variables, the relevant values from the working set, prog-
ress in the backtracking and etc are printed

4 Lines of detailed intermediate results showing all primal and
dual variables, the relevant values from the working set, prog-
ress in the backtracking, the gradients in the working set, the
quasi-Newton updated and etc are printed.

∑
i=1

Me
∣gi x ∣ − ∑

i=Me+1

M

min 0, gi x ≤ tau0
971

 Optimization constrained_nlp
the iterates then will follow the boundary of the feasible set closely. Conversely, a large tau0 may
degrade the reliability of the code.
Default tau0 = 1.0.

IMSL_DEL0, float del0(Input)
In the initial phase of minimization a constraint is considered binding if

Good values are between .01 and 1.0. If del0is chosen too small then identification of the correct set of
binding constraints may be delayed. Contrary, if del0is too large, then the method will often escape
to the full regularized SQP method, using individual slack variables for any active constraint, which is
quite costly. For well-scaled problems del0 =1.0 is reasonable.
Default: del0 = .5* tau0

IMSL_SMALLW, float smallw(Input)
Scalar containing the error allowed in the multipliers. For example, a negative multiplier of an
inequality constraint is accepted (as zero) if its absolute value is less than smallw.
Default: smallw = exp(2*log(eps/3)) where eps is the machine precision.

IMSL_DELMIN, float delmin (Input)
Scalar which defines allowable constraint violations of the final accepted result. Constraints are satis-
fied if ∣gi(x)∣≤ delmin for equality constraints, and gi(x) ≥(-delmin) for equality constraints.
Default: delmin = min(.1*del0, max(epsdif, max(1.e-6*del0, smallw))

IMSL_SCFMAX, float scfmax(Input)
Scalar containing the bound for the internal automatic scaling of the objective function. (Input)
Default: scfmax = 1.0e4

IMSL_RETURN_USER, float x[] (Output)
A user allocated array of length n containing the solution x.

IMSL_OBJ, float *obj(Output)
Scalar containing the value of the objective function at the computed solution.

IMSL_LAGRANGE_MULTIPLIERS, float **lagrange(Output)
The address of a pointer, which on exit, points to an array containing the Lagrange multiplier esti-
mates of the constraints.

IMSL_LAGRANGE_MULTIPLIERS_USER, float lagrange_user[](Output)
A user-supplied array of length ncon containing the Lagrange multiplier estimates of the constraints.

gi x
max 1,∥∇gi x ∥

≤ del0 i = Me + 1, … ,M
972

 Optimization constrained_nlp
IMSL_CONSTRAINT_RESIDUALS, float **const_res(Output)
The address of a pointer, which on exit, points to an array containing the constraints residuals.

IMSL_CONSTRAINT_RESIDUALS_USER, float const_res_user[](Output)
A user-supplied array of length ncon containing the constraint residuals.

IMSL_FCN_W_DATA, void fcn(int n, float x[], int iact, float *result, int *ierr, void *data),
void *data, (Input)
User supplied function to evaluate the objective function and constraints at a given point, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See Passing Data to User-Supplied Functions in the introduction to this
manual for more details.

IMSL_GRADIENT_W_DATA, void grad(int n, float x[], int iact, float result[], void *data),
void *data, (Input)
User-supplied function to evaluate the gradients at a given point, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See Passing Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL_DIFFTYPE, int difftype(Input)
Type of numerical differentiation to be used.
Default: difftype = 1

IMSL_XSCALE, float xscale[](Input)
Vector of length n setting the internal scaling of the variables. The initial value given and the objective
function and gradient evaluations however are always in the original unscaled variables. The first

Note: The following optional arguments are valid only if IMSL_GRADIENT is not
supplied.

difftype Action

1 Use a forward difference quotient with discretization
stepsize 0.1(epsfcn)1/2 componentwise relative.

2 Use the symmetric difference quotient with discreti-
zation stepsize 0.1(epsfcn)1/3 componentwise
relative.

3 Use the sixth order approximation computing a Rich-
ardson extrapolation of three symmetric difference
quotient values. This uses a discretization stepsize
0.01(epsfcn)1/7.
973

 Optimization constrained_nlp
internal variable is obtained by dividing values x[i] by xscale[i]. In the absence of other infor-
mation, set all entries to 1.0.
Default: xscale[] = 1.0.

IMSL_EPSDIF, float epsdif(Input)
Relative precision in gradients.
Default: epsdif = ɛ where ɛ is the machine precision.

IMSL_EPSFCN, float epsfcn(Input)
Relative precision of the function evaluation routine.
Default: epsfcn = ɛ where ɛ is the machine precision

IMSL_TAUBND, float taubnd(Input)
Amount by which bounds may be violated during numerical differentiation. Bounds are violated by
taubnd(at most) only if a variable is on a bound and finite differences are taken taken for gradient
evaluations.
Default: taubnd = 1.0

Description
The function constrained_nlp provides an interface to a licensed version of subroutine DONLP2, a code
developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic programming method
with an active set technique, and an alternative usage of a fully regularized mixed constrained subproblem in
case of nonregular constraints (i.e. linear dependent gradients in the “working sets”). It uses a slightly modified
version of the Pantoja-Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details
may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained subproblems. Math.
Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. Res. 47, (1998),
355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:
974

 Optimization constrained_nlp
Although default values are provided for optional input arguments, it may be necessary to adjust these values for
some problems. Through the use of optional arguments, imsl_f_constrained_nlp allows for several
parameters of the algorithm to be adjusted to account for specific characteristics of problems. The DONLP2
Users Guide provides detailed descriptions of these parameters as well as strategies for maximizing the perfo-
mance of the algorithm. The DONLP2 Users Guide is available in the “help” subdirectory of the main IMSL product
installation directory. In addition, the following are a number of guidelines to consider when using
imsl_f_constrained_nlp.

 A good initial starting point is very problem specific and should be provided by the calling program
whenever possible. See optional argument IMSL_XGUESS.

 Gradient approximation methods can have an effect on the success of
imsl_f_constrained_nlp. Selecting a higher order approximation method may be
necessary for some problems. See optional argument IMSL_DIFFTYPE.

 If a two sided constraint li ≤ gi(x) ≤ ui is transformed into two constraints g 2i(x) ≥ 0 and
g 2i+1(x) ≥ 0 , then choose del0 < ½(ui-li) /max{1,∥∇gi(x)∥}, or at least try to provide an estimate for
that value. This will increase the efficiency of the algorithm. See optional argument IMSL_DEL0.

 The parameter ierr provided in the interface to the user supplied function fcn can be very
useful in cases when evaluation is requested at a point that is not possible or reasonable. For
example, if evaluation at the requested point would result in a floating point exception, then setting
ierr to 1 and returning without performing the evaluation will avoid the exception.
imsl_f_constrained_nlp will then reduce the stepsize and try the step again. Note, if ierr
is set to 1 for the initial guess, then an error is issued.

On some platforms, constrained_nlp can evaluate the user-supplied functions fcn and grad in parallel.
This is done only if the function imsl_omp_options is called to flag user-defined functions as thread-safe. A
function is thread-safe if there are no dependencies between calls. Such dependencies are usually the result of
writing to global or static variables.

min
x∈Rn

f x

subject to g j x = 0, for j = 1, … ,me
g j x ≥ 0, for j = me + 1, … ,m
xl ≤ x ≤ xu
975

 Optimization constrained_nlp
Example
The problem

is solved.

#include "imsl.h"
#define M 2
#define ME 1
#define N 2
void grad(int n, float x[], int iact, float result[]);
void fcn(int n, float x[], int iact, float *result, int *ierr);
int main()
{
 int ibtype = 0;
 float *x, ans[2];
 static float xlb[N], xub[N];
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 xlb[0] = xlb[1] = imsl_f_machine(8);
 xub[0] = xub[1] = imsl_f_machine(7);
 x = imsl_f_constrained_nlp(fcn, M, ME, N, ibtype, xlb, xub, 0);
 imsl_f_write_matrix ("The solution is", 1, N, x, 0);
}
/* Himmelblau problem 1 */
void fcn(int n, float x[], int iact, float *result, int *ierr)
{
 float tmp1, tmp2;
 tmp1 = x[0] - 2.0e0;
 tmp2 = x[1] - 1.0e0;
 switch (iact) {
 case 0:
 *result = tmp1 * tmp1 + tmp2 * tmp2;
 break;
 case 1:
 *result = x[0] - 2.0e0 * x[1] + 1.0e0;
 break;
 case 2:
 *result = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;
 break;
 default: ;
 break;
 }
 *ierr = 0;
 return;
}

min F x = x1 − 2
2 + x2 − 1

2

subject to g1 x = x1 − 2x2 + 1 = 0

g2 x = − x1
2 / 4 − x2

2 + 1 ≥ 0
976

 Optimization constrained_nlp
Output

 The solution is
 1 2
 0.8229 0.9114

Fatal Errors
IMSL_STOP_USER_FCN Request from user supplied function to stop algorithm.

User flag = "#".

IMSL_BAD_CONSTR_EVAL Constraint evaluation returns an error with current
point.

IMSL_BAD_OBJ_EVAL Objective evaluation returns an error with current point.

IMSL_WORKING_SET_SINGULAR Working set is singular in dual extended QP.

IMSL_QP_INFEASIBLE QP problem is seemingly infeasible. The solutionpro-
cess is severely corrupted by roundoff, mostprobably a
problem of bad scaling which was notovercome by the
internal scaling techniques.

IMSL_STATIONARY_PT_ERR_1 A stationary point of the penalty function has been
located which is not feasible.

IMSL_STATIONARY_PT_ERR_2 A stationary point of the penalty function has been
located which is not feasible. Or, limiting accuracy
reached for a singular problem, with termination crite-
ria being too strong.

IMSL_STATIONARY_PT_ERR_3 A stationary point of the penalty function which is not
feasible for the original problem has been located. Try
some other initial guess.

IMSL_ITMAX_EXCEEDED Maximum number of iterations limit "itmax" = #
exceeded. The best answer found is returned.

IMSL_STEPSIZE_SELECTION No acceptable stepsize in [sigsm, sigla]. This is often
due to a programming error in the user supplied (ana-
lytic) gradients. It may also be due to termination
criteria that are too stringent for the problem at hand,
because of evaluation impreciseness of functions
and/or gradients or because of ill conditioning of the
(projected) Hessian matrix.

IMSL_SLOW_PRIMAL_PROGRESS Very slow primal progress. The problem is singular or ill-
conditioned.

IMSL_SLOW_PROGRESS_IN_X Very slow progress in X, the problem is singular.
977

 Optimization constrained_nlp
IMSL_LIN_DEP_GRAD The gradients in the working set are linearly dependent,
such that a full regularized QP is solved. It may occur in
a problem that the second order sufficiency condition is
not satisfied and the matrix of gradients of binding con-
straints is singular or very ill-conditioned.

IMSL_SMALL_CHANGE For max(n, 10) consecutive steps, there were only small
changes in the penalty function without the other ter-
mination criteria satisfied.
978

 Optimization jacobian
jacobian
Approximates the Jacobian of m functions in n unknowns using divided differences.

Synopsis
#include <imsl.h>
void imsl_f_jacobian (void fcn(), int m, int n, float y[], float f[], float fjac[], … , 0);

The type double function is imsl_d_jacobian.

Required Arguments
void fcn (int indx, float y[], float f[]) (Input/Output)

User-supplied function to compute the value of the function whose Jacobian is to be calculated using
divided differences and/or the value of the analytic derivative of that function.

Required Arguments
int indx (Input)

Index of the variable whose derivative is to be computed. imsl_f_jacobian sets this
argument to the index of the variable whose derivative is being computed. In those cases
where finite differencing and direct analytic computation are combined to calculate a deriva-
tive (see optional argument IMSL_ACCUMULATE), imsl_f_jacobian makes an extra
call to fcn (with argument indx negative) each time the derivative with respect to variable
indx is calculated, in order to calculate the analytic component of that derivative. Note that
indx runs from 1 to n, where n is the number of variables.

float y[] (Input)
Array of length n containing the point at which the function is to be computed.

float f[] (Output)
Array of length m, where m is the number of functions to be evaluated at point y, containing
the function values at point y. Normally, the user returns the values of the functions evalu-
ated at point y in f. However, when the function can be broken into two parts, a part which is
known analytically and a part to be differenced, fcn is called by imsl_f_jacobian once
with indx positive for the portion to be differenced and again with indx negative for the
portion which is known analytically. In the case where optional argument
IMSL_ACCUMULATE has been specified by the user, fcn must be written to handle the
known analytic portion separately from the part to be differenced. (See Example 4 for an
example where IMSL_ACCUMULATE is used.)

int m (Input)
The number of equations.
979

 Optimization jacobian
int n (Input)
The number of variables.

float y[] (Input)
Array of length n containing the point at which the Jacobian is to be evaluated.

float f[] (Output)
Array of length m containing the function values at point y.

float fjac[] (Input/Output)
m by n array which, on output, contains the estimated Jacobian. Note that if optional argument
IMSL_METHOD, method, is used, then for each variable i for which method[i] is set to
IMSL_DD_SKIP, array elements fjac[j=0,…,m-1][i] are input arguments and must be set
to the analytic derivatives with respect to variable i prior to calling imsl_f_jacobian. (See
description of optional argument IMSL_METHOD and Example 3 below).

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_jacobian (void fcn(), int m, int n, float y[], float f[], float fjac[],

IMSL_YSCALE, float scale[],
IMSL_METHOD, int method[],
IMSL_ACCUMULATE,
IMSL_FACTOR, float factor[],
IMSL_ISTATUS, int istatus[],
IMSL_FCN_W_DATA, void fcn_w_data(),

void *data,
0);

Optional Arguments
IMSL_YSCALE, float scale[] (Input)

An array of length n containing the diagonal scaling matrix for the variables. scale can also be used
to provide appropriate signs for the increments. If the user sets scale[0] to 0.0, then differencing
increment delj (for variable j = 1, …, n) is set to σj * |y[j-1]| * factor[j-1]. Otherwise, delj is
set to σj * |scale[j-1]| * factor[j-1]. (See the discussion of optional argument
IMSL_FACTOR below for more information about the calculation of delj.)
Default: scale[i=0,…,n-1] = 1.0.
980

 Optimization jacobian
IMSL_METHOD, int method[] (Input)
An array of length n containing the methods used to compute the derivatives. method[i] is the
method to be used for variable i. method[i] can be one of the values in the following table:

See Example 2 and Example 3 below for demonstrations of how this optional argument is used.

Note that if (and only if) IMSL_DD_SKIP is specified for a variable i, the required array elements
fjac[j=0,…,m-1][i] must be set to the analytic derivatives with respect to variable i prior to
calling imsl_f_jacobian. See Example 3 below.

Default: If optional argument IMSL_METHOD is not used, then one-sided differences are used for all
variables.

IMSL_ACCUMULATE (Input)
Indicates that divided differences are to be accumulated with a Jacobian value previously initialized by
the user with analytically calculated components of the derivatives via a call to fcn using negative
values of fcn argument indx. See the description of indx above and Example 4 below.

IMSL_FACTOR, float factor[] (Input)
An array of length n containing the percentage factor for differencing.

For each divided difference for variable j = 1, …, n, the differencing increment used is delj. (See the

Description below for a discussion of the differencing methods.) The value of delj is computed as fol-

lows: If scale[0] has been set to 0.0 (see the description of optional argument IMSL_YSCALE
above), define ya,j = |y[j-1]| and σj = 1. Otherwise, if scale[j-1] {< , >} 0, define

ya,j = |scale[j-1]| and σj = {-1 , 1}. Finally, compute delj = σj ya,j factor[j-1].

By changing the sign of scale[j-1], the difference delj can have any desired orientation, such as

staying within bounds on variable j. For central differences, a reduced factor is used for delj that nor-

mally results in relative errors as small as ɛ2/3, where ɛ == machine precision = {imsl_f_machine(4),
imsl_d_machine(4)} for {single, double} precision. The elements of factor must be such that:

ɛ3/4 ≤ factor[j-1] ≤ 0.1.

Default: All elements of factor are set to ɛ1/2 .

Value Description

IMSL_DD_ONE_SIDED Indicates one-sided differences.

IMSL_DD_CENTRAL Indicates central differences.

IMSL_DD_SKIP Indicates that the user has set the input Jacobian
fjac[j=0,…,m-1][i] to the exact analytic deriv-
ative of the function with respect to variable i at
point y[i], and that the calculation of the divided
difference approximation is to be skipped.
981

 Optimization jacobian
IMSL_ISTATUS, int istatus[] (Output)
Array of length 10 containing status information that might prove useful to a user wanting to gain
better control over the differencing parameters. This information can often be ignored. The following
table describes the diagnostic information that is returned in each of the entries of array
istatus[]:

Index Description

0 The number of times a function evaluation was computed.

1 The number of columns in which three attempts were
made to increase a percentage factor for differencing (i.e., a
component in the factor array) but the computed delj (for
j = 1,…, n) remained unacceptably small relative to y[j-1]
or scale[j-1]. In such cases the percentage factor is set
to the square root of machine precision.

2 The number of columns in which the computed delj was
zero to machine precision because y[j-1] or scale[j-1]
was zero. In such cases delj is set to the square root of
machine precision.

3 The number of Jacobian columns that had to be recom-
puted because the largest difference formed in the column
was close to zero relative to scale, where

and i denotes the row index of the largest difference in the
column currently being processed. index = 9 gives the last
column where this occurred.

4 The number of columns whose largest difference is close to
zero relative to scale after the column has been
recomputed.

5 The number of times scale information was not available
for use in the round-off and truncation error tests. This
occurs when

where i is the index of the largest difference for the column
currently being processed.

6 The number of times the increment for differencing (del)
was computed and had to be increased because
(scale[j-1] + delj) - scale[j-1] was too small relative
to y[j-1]or scale[j-1].

7 The number of times a component of the factor array
was reduced because changes in function values were large
and excess truncation error was suspected. index = 8 gives
the last column in which this occurred.

scale = max ∣ f i y ∣ , ∣ f i y + del jej ∣

min ∣ f i y ∣ , ∣ f i y + del jej ∣ = 0
982

 Optimization jacobian
IMSL_FCN_W_DATA, void fcn_w_data(), void *data[] (Input/Output)
User supplied function whose Jacobian is being calculated, and which can also accept a
pointer to data that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See Example 4 for a demonstration of how this optional argument is
used and Passing Data to User-Supplied Functions in the “Introduction” chapter for more
details on the use of IMSL_FCN_W_DATA.

Description
The function imsl_f_jacobian computes the Jacobian matrix for a function f(y) with m components and n
independent variables. imsl_f_jacobian uses divided finite differences to compute the Jacobian. This func-
tion is designed for use in numerical methods for solving nonlinear problems where a Jacobian is evaluated
repeatedly at neighboring arguments. For example, this occurs in a Gauss-Newton method for solving non-linear
least squares problems, or in a non-linear optimization method.

imsl_f_jacobian is suited for applications where the Jacobian is a dense matrix. All cases m < n, m = n, or
m > n are allowed. Both one-sided and central divided differences can be used.

The design allows for computation of derivatives in a variety of contexts. Note that a gradient should be consid-
ered as the special case with m = 1, n ≥ 1. A derivative of a single function of one variable is the case m = 1, n = 1.
Any non-linear solving routine that optionally requests a Jacobian or gradient can use imsl_f_jacobian. This
should be considered if there are special properties or scaling issues associated with f(y). Use the optional argu-
ment IMSL_METHOD to specify different differencing options for numerical differentiation. These can be
combined with some analytic subexpressions or other known relationships.

Two divided differences methods are implemented in imsl_f_jacobian for computing the Jacobian: one-
sided and central differences.

One-sided differences are computed:

8 The index of the last column where the corresponding com-
ponent of the factor array had to be reduced because
excessive truncation error was suspected.

9 The index of the last column where the difference was
small and the column had to be recomputed with an
adjusted increment (see index = 3). The largest derivative in
this column may be inaccurate due to excessive round-off
error.

Index Description
983

 Optimization jacobian
using values of the independent variables at the Jacobian evaluation point y = { yj, j=1,…,n } and differenced

points y + delj ej , where the ej , j=1,…,n are the unit coordinate vectors.

Central differences are computed:

The value for each difference delj depends on the variable yj , the differencing method, and the scaling for that

variable. This difference is computed internally. See IMSL_FACTOR for computational details. fi(y) is evaluated

with user-supplied argument fcn, where index j, variable y, and output f == fi(y) are arguments to fcn.

There are five examples provided that illustrate various ways to use imsl_f_jacobian. For a discussion of
the expected errors for the difference methods, see Ralston (1965).

Function imsl_f_jacobian is based upon the Fortran 77 program SJACG, which was designed and pro-
grammed by D. A. Salane, Sandia Labs (1986) and modified by R. J. Hanson, Rice University (June, 2002) with
advice from F. T. Krogh. See Salane (1986).

Examples

Example 1

In this example, the Jacobian matrix of

f

1

(x) = x

1

x

2

-2

f

2

(x) = x

1

∂ f i y
∂ y j

=
f i y + del jej − f i y

del j

∂ f i y
∂ y j

=
f i y + del jej − f i y − del jej

2 del j
984

 Optimization jacobian
- x

1

x

2

+ 1

is estimated by the finite-difference method at the point (1.0, 1.0).

#include <imsl.h>
#include <stdio.h>
void fcn(int, float*, float*);
int main()
{
 int n = 2, m = 2;
 float fjac[4], y[2], f[2];
 char *fmt="%14.5e";
 y[0] = 1.0;
 y[1] = 1.0;
/* Calculate and print
 * Jacobian one-sided difference approximation: */
 imsl_f_jacobian (fcn, m, n, y, f, fjac, 0);
 imsl_f_write_matrix ("The Jacobian is:", m, n, fjac,
 IMSL_WRITE_FORMAT, fmt, 0);
}
void fcn(int indx, float y[], float f[])
{
 f[0] = y[0]*y[1] - 2.0;
 f[1] = y[0] - y[0]*y[1] + 1.0;
}

Output

 The Jacobian is:
 1 2
1 1.00000e+000 1.00000e+000
2 0.00000e+000 -1.00000e+000

Example 2

A simple use of imsl_f_jacobian is shown. The gradient of the function

f(y

1

,y

2

985

 Optimization jacobian
) = a exp(by

1

) + cy

1

y

2
2

is required for values

a = 2.5e6, b = 3.4, c = 4.5, y

1

= 2.1, y

2

= 3.2

The analytic gradient of this function is:

grad(f) = [ab exp(by1) + cy2
2, 2cy

1

y2]

Note that the comparison of the Jacobian estimates using one-sided and central differences with the exact ana-
lytic Jacobian results given in this example demonstrates the increased accuracy afforded by use of central
differences. However, these estimates require up to twice as many function calculations as do the one-sided dif-
ferences estimates for Jacobians with a large number of variables.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcn(int, float*, float*);
void fcn_drv(float*, float*);
int main()
{
 int n = 2, m = 1, j;
 int method[2];
 float fjac[2], y[2], f[1], scale[2];
 char *fmt="%14.5e";
 y[0] = 2.1;
 y[1] = 3.2;
 scale[0] = 1.0;
 scale[1] = 8000.0;
/* Use one-sided and central differences
986

 Optimization jacobian
 * to approximate gradient and print results: */
 for (j = 0; j <= 1; j++) {
 if (j == 0) {
 method[0] = IMSL_DD_ONE_SIDED;
 method[1] = IMSL_DD_ONE_SIDED;
 } else {
 method[0] = IMSL_DD_CENTRAL;
 method[1] = IMSL_DD_CENTRAL;
 }
 imsl_f_jacobian (fcn, m, n, y, f, fjac,
 IMSL_YSCALE, scale,
 IMSL_METHOD, method,
 0);
 if (j == 0) {
 imsl_f_write_matrix ("One-Sided Jacobian:",
 m, n, fjac, IMSL_WRITE_FORMAT, fmt, 0);
 } else {
 imsl_f_write_matrix ("Central Jacobian:",
 m, n, fjac, IMSL_WRITE_FORMAT, fmt, 0);
 }
 }
/* Calculate analytic Jacobian: */
 fcn_drv (y, fjac);
 imsl_f_write_matrix ("Analytic Jacobian:",
 m, n, fjac,IMSL_WRITE_FORMAT, fmt, 0);
}
void fcn(int indx, float y[], float f[])
{
 float a, b, c;
 a = 2500000.;
 b = 3.4;
 c = 4.5;
 f[0] = a * exp (b * y[0]) + c * y[0] * y[1] * y[1];
}

void fcn_drv(float y[], float fjac[])
{
 float a, b, c;
 a = 2500000.;
 b = 3.4;
 c = 4.5;
 fjac[0] = a * b * exp (b * y[0]) + c * y[1] * y[1];
 fjac[1] = 2 * c * y[0] * y[1];
}

Output

 One-Sided Jacobian:
 1 2
987

 Optimization jacobian
 1.07285e+010 9.26819e+001
 Central Jacobian:
 1 2
 1.07225e+010 6.17690e+001
 Analytic Jacobian:
 1 2
 1.07221e+010 6.04800e+001

Example 3

This example uses the same data as in Example 2. Here we assume that the second component of the gradient is
analytically known. Therefore only the first gradient component needs numerical approximation. The input value
IMSL_DD_SKIP of array element method[1] specifies that numerical differentiation with respect to y2 is

skipped.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcn(int, float*, float*);
int main()
{
 int n = 2, m = 1;
 int method[2];
 float fjac[2], y[2], f[1], scale[2];
 char *fmt="%14.5e";
 y[0] = 2.1;
 y[1] = 3.2;
 scale[0] = 1.0;
 scale[1] = 8000.0;

/* One-sided differences for fjac[0]: */
 method[0] = IMSL_DD_ONE_SIDED;
/* Set method[1] to skip differencing for fjac[1]
 * and initialize it to analytic derivative: */
 method[1] = IMSL_DD_SKIP;
 fjac[1] = 2.0 * 4.5 * y[0] * y[1];
/* Get Gradient approximation: */
 imsl_f_jacobian (fcn, m, n, y, f, fjac,
 IMSL_YSCALE, scale,
 IMSL_METHOD, method,
 0);
/* Print results: */
 imsl_f_write_matrix ("The Jacobian is:", m, n, fjac,
 IMSL_WRITE_FORMAT, fmt, 0);
988

 Optimization jacobian
}
void fcn(int indx, float y[], float f[])
{
 float a, b, c;
 a = 2500000.;
 b = 3.4;
 c = 4.5;
 f[0] = a * exp (b * y[0]) + c * y[0] * y[1] * y[1];
}

Output

 The Jacobian is:
 1 2
 1.07285e+010 6.04800e+001

Example 4

This example uses the same data as in Example 2, computing the Jacobian (gradient) of the function:

f(y

1

, y

2

) = a exp(by

1

) + cy

1

y

2
2

For this example, the analytic derivative of the second term with respect to y1, cy2
2, is provided by the user (in the

example, see case -1: within the user-provided function fcn). This leaves only the first term, a exp(by1), to be

evaluated in order to use direct differencing to calculate the first partial (see case 1: within the user-provided
function fcn). Also, since the first term does not depend on the second variable, y2, it can be left out of the func-

tion evaluation when computing the partial with respect to y2 using differencing methods, potentially avoiding

cancellation errors (see case 2: within the user-provided function fcn). Since the code does not specify the
989

 Optimization jacobian
analytic derivative with respect to y2 for either of the two terms of f(y1, y2), fcn returns f[0] set to 0 for case
-2:. The use of optional argument IMSL_ACCUMULATE thereby allows imsl_f_jacobian to use these
facts to obtain greater accuracy using a minimum number of computations of the exponential function.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
void fcn_w_data(int, float*, float*, void*);
int main()
{
 int n = 2, m = 1;
 float fjac[2], y[2], f[1], scale[2];
 char *fmt="%14.5e";
 float rdata[3];
 y[0] = 2.1;
 y[1] = 3.2;
 scale[0] = 1.0;
 scale[1] = 8000.0;
/* Set up to pass extra information to the function: */
 rdata[0] = 2500000.0;
 rdata[1] = 3.4;
 rdata[2] = 4.5;
/* Use optional argument IMSL_ACCUMULATE so that the
 * user can specify which function components are to be
 * used for divided difference approximation of
 * derivatives and which are to be replaced with exact
 * analytically calculated derivatives. Both components
 * are set to the default one-sided differences method.
 *
 * Calculate and print Jacobian approximation: */
 imsl_f_jacobian (NULL, m, n, y, f, fjac,
 IMSL_YSCALE, scale,
 IMSL_ACCUMULATE,
 IMSL_FCN_W_DATA, fcn_w_data, (void*) rdata,
 0);
 imsl_f_write_matrix ("The Jacobian is:", m, n, fjac,
 IMSL_WRITE_FORMAT, fmt, 0);
}
void fcn_w_data(int indx, float y[], float f[],
 void* data)
{
 float a, b, c;
 float *rdata = (float*) data;
 a = rdata[0];
 b = rdata[1];
 c = rdata[2];
990

 Optimization jacobian
/* Handle both the differenced part and the part that is
 * known analytically for each dependent variable: */
 switch (indx) {
 case 1:
 f[0] = a * exp(b *y[0]);
 break;
 case -1:
 f[0] = c * y[1] *y[1];
 break;
 case 2:
 f[0] = c * y[0] * y[1] * y[1];
 break;
 case -2:
 f[0] = 0.;
 break;
 }
}

Output

 The Jacobian is:

 1 2

1.07285e+010 6.04862e+001

Example 5

This example uses CNL function imsl_f_bounded_least_squares to solve the nonlinear least-squares
problem:

where: f0(x) = 10(x1-x0
2), f1(x) = 1-x0, an initial guess (-1.2, 1.0) is supplied, and the residual at the approximate

solution is returned. This example is identical to Example 2 of imsl_f_bounded_least_squares, except that
Example 2 uses an analytic Jacobian, and this example uses imsl_f_jacobian to approximate the Jacobian
using the default one-sided differences.

Note that the function vector whose sum of squares is to be minimized, rosbck, is supplied directly (as a
required argument) to imsl_f_bounded_least_squares and indirectly to imsl_f_jacobian,
wrapped in function fcn. Function fcn is supplied to imsl_f_jacobian via optional argument
IMSL_FCN_W_DATA, fcn, (void*) idata. imsl_f_jacobian is called from within function
jacobian which is passed to imsl_f_bounded_least_squares via optional argument
IMSL_JACOBIAN, jacobian.

min 1
2 ∑
i=0

1
f i(x)

2

−2 ≤ x0 ≤ 0.5
−1 ≤ x1 ≤ 2
991

 Optimization jacobian
Also note that the array size parameters m and n are passed to function rosbck (which is wrapped in function
fcn for use by imsl_f_jacobian) via integer array idata, which is specified in the optional argument
IMSL_FCN_W_DATA, fcn, (void*) idata. This is an example of how to pass necessary integer data to
imsl_f_jacobian required argument function fcn using IMSL_FCN_W_DATA; an example of passing real
data using IMSL_FCN_W_DATA is given in Example 4 above.

Example 5 demonstrates how imsl_f_jacobian can be used to supply estimates of the Jacobian matrix that
are necessary for solving many optimization problems when the function to be minimized is complex and its Jaco-
bian cannot be calculated analytically.

#include <imsl.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define M 2
#define N 2
#define LDFJAC 2
void rosbck(int m, int n, float *x, float *f);
void jacobian(int m, int n, float *x, float *fjac, int fjac_col_dim);
void fcn(int indx, float *x, float *f, void* data);
void main()
{
 int ibtype = 0;
 float xlb[N] = {-2.0, -1.0};
 float xub[N] = {0.5, 2.0};
 float xguess[N] = {-1.2, 1.0};
 float *fvec;
 float *x;
 x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,
 IMSL_JACOBIAN, jacobian,
 IMSL_XGUESS, xguess,
 IMSL_FVEC, &fvec,
 0);
 printf("x[0] = %f\n", x[0]);
 printf("x[1] = %f\n\n", x[1]);
 printf("fvec[0] = %f\n", fvec[0]);
 printf("fvec[1] = %f\n\n", fvec[1]);
}
void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}
void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)
{
 int idata[2];
 float *f = NULL;
 f = (float*)malloc(m*sizeof(float));
992

 Optimization jacobian
 idata[0] = m;
 idata[1] = n;

 imsl_f_jacobian(NULL, m, n, x, f, fjac,
 IMSL_FCN_W_DATA, fcn, (void*) idata,
 0);
 if (f) free(f);
}
void fcn (int indx, float *x, float *f, void* data)
{
 int *idata = (int*) data;
 int m = idata[0];
 int n = idata[1];
 rosbck (m, n, x, f);
}

Output

x[0] = 0.500000
x[1] = 0.250000
fvec[0] = 0.000000
fvec[1] = 0.500000
993

 Special Functions Functions
Special Functions

Functions
Error and Gamma Functions

Error Functions
Evaluates error function. erf 1001
Evaluates complementary error function . erfc 1003
Evaluates exponentially error function. erfce 1006
Evaluates scaled function . erfe 1008
Evaluates inverse error function .erf_inverse 1010
Evaluates inverse complementary error function. .erfc_inverse 1013
Evaluates beta function . beta 1016
Evaluates logarithmic beta function .log_beta 1019
Evaluates incomplete beta function . beta_incomplete 1021

Gamma Functions
Evaluates gamma function . gamma 1023
Evaluates logarithmic gamma function . log_gamma 1026
Evaluates incomplete gamma function . gamma_incomplete 1029

Psi Function
Evaluates the derivative of the log gamma function . psi 1032
Evaluates the real psi1 function, ψ1(x) . psi1 1034

Bessel Functions
Evaluates function J0. bessel_J0 1036
Evaluates function J1. bessel_J1 1039
Evaluates function Jn. bessel_Jx 1041
Evaluates function Y0 . bessel_Y0 1044
Evaluates function Y1 . bessel_Y1 1047
Evaluates function Yv . bessel_Yx 1049
Evaluates function I0 .bessel_I0 1051
Evaluates function e-|x|I0(x) . bessel_exp_I0 1054
Evaluates function I1 .bessel_I1 1056
Evaluates function e-|x|I1(x) . bessel_exp_I1 1058
Evaluates function Iv . bessel_Ix 1060
Evaluates function K0 . bessel_K0 1062
Evaluates function exK0(x) . bessel_exp_K0 1065
Evaluates function K1 . bessel_K1 1067
994

 Special Functions Functions
Evaluates function exK1(x) . bessel_exp_K1 1069
Evaluates function Kv . bessel_Kx 1071

Elliptic Integrals
Evaluates complete elliptic integral of the first kind elliptic_integral_K 1073
Evaluates complete elliptic integral of the second kind elliptic_integral_E 1075
Evaluates Carlson's elliptic integral of the first kind. elliptic_integral_RF 1077
Evaluates Carlson's elliptic integral of the second kind elliptic_integral_RD 1079
Evaluates Carlson's elliptic integral of the third kind elliptic_integral_RJ 1081
Evaluates special case of Carlson's elliptic integral elliptic_integral_RC 1083

Fresnel Integrals
Evaluates cosine Fresnel integral . fresnel_integral_C 1085
Evaluates sine Fresnel integral . fresnel_integral_S 1087

Airy Functions
Evaluates Airy function . airy_Ai 1089
Evaluates Airy function of the second kind . airy_Bi 1091
Evaluates derivative of the Airy function . airy_Ai_derivative 1093
Evaluates derivative of the Airy function of the second kind airy_Bi_derivative 1095

Kelvin Functions
Evaluates Kelvin function ber of the first kind order 0 kelvin_ber0 1097
Evaluates Kelvin function bei of the first kind order 0 kelvin_bei0 1099
Evaluates Kelvin function ker of the second kind order 0 kelvin_ker0 1101
Evaluates Kelvin function kei of the second kind order 0 kelvin_kei0 1103
Evaluates derivative of the Kelvin function ber kelvin_ber0_derivative 1105
Evaluates derivative of the Kelvin function bei kelvin_bei0_derivative 1107
Evaluates derivative of the Kelvin function ker kelvin_ker0_derivative 1109
Evaluates derivative of the Kelvin function kei. kelvin_kei0_derivative 1111

Statistical Functions
Evaluates normal (Gaussian) distribution function .normal_cdf 1113
Evaluates inverse normal distribution function normal_inverse_cdf 1116
Evaluates chi-squared distribution function . chi_squared_cdf 1118
Evaluates Inverse chi-squared distribution function chi_squared_inverse_cdf 1121
Evaluates F distribution function . F_cdf 1123
Evaluates inverse F distribution function . F_inverse_cdf 1125
Evaluates student’s t distribution function .t_cdf 1127
Evaluates inverse of the Student’s t distribution function t_inverse_cdf 1130
Evaluates gamma distribution function . gamma_cdf 1132
Evaluates binomial distribution function. binomial_cdf 1135
Evaluates hypergeometric distribution functionhypergeometric_cdf 1137
Evaluates Poisson distribution function . poisson_cdf 1140
Evaluates beta distribution function .beta_cdf 1142
Evaluates inverse beta distribution function .beta_inverse_cdf 1144
Evaluates bivariate normal distribution function bivariate_normal_cdf 1146
995

 Special Functions Functions
Basic Financial Functions
Evaluates cumulative interest . cumulative_interest 1149
Evaluates cumulative principal . cumulative_principal 1151
Evaluates depreciation using the fixed-declining methoddepreciation_db 1153
Evaluates depreciation using the double-declining method.depreciation_ddb 1156
Evaluates depreciation using the straight-line method depreciation_sln 1159
Evaluates depreciation using the sum-of-years digits method depreciation_syd 1161
Evaluates depreciation using the variable declining method depreciation_vdb 1163
Evaluates and converts fractional price to decimal price. dollar_decimal 1166
Evaluates and converts decimal price to fractional price. dollar_fraction 1168
Evaluates effective rate .effective_rate 1170
Evaluates future value .future_value 1172
Evaluates future value considering a schedule of

compound interest rates . future_value_schedule 1174
Evaluates interest payment .interest_payment 1176
Evaluates interest rate .interest_rate_annuity 1178
Evaluates internal rate of return. internal_rate_of_return 1181
Evaluates internal rate of return for a schedule of cash flows . . internal_rate_schedule 1184
Evaluates modified internal rate .modified_internal_rate 1187
Evaluates net present value .net_present_value 1189
Evaluates nominal rate . nominal_rate 1191
Evaluates number of periods . number_of_periods 1193
Evaluates periodic payment. .payment 1195
Evaluates present value . present_value 1197
Evaluates present value for a schedule of cash flows present_value_schedule 1199
Evaluates the payment for a principal . principal_payment 1201

Bond Functions
Evaluates accrued interest at maturity. accr_interest_maturity 1203
Evaluates accrued interest periodically . accr_interest_periodic 1205
Evaluates bond-equivalent yield .bond_equivalent_yield 1208
Evaluates convexity . convexity 1210
Evaluates days in coupon period. coupon_days 1213
Evaluates number of coupons . coupon_number 1215
Evaluates days before settlement . days_before_settlement 1217
Evaluates days to next coupon date . days_to_next_coupon 1219
Evaluates depreciation per accounting period. depreciation_amordegrc 1221
Evaluates depreciation . depreciation_amorlinc 1224
Evaluates discount price . discount_price 1227
Evaluates discount rate .discount_rate 1229
Evaluates yield for a discounted security. discount_yield 1231
Evaluates duration . duration 1233
Evaluates the interest rate of a security. interest_rate_security 1236
Evaluates Macauley duration . modified_duration 1238
Evaluates next coupon date .next_coupon_date 1241
996

 Special Functions Functions
Evaluates previous coupon date . previous_coupon_date 1243
Evaluates price per $100 face value periodically. .price 1245
Evaluates price per $100 face value at maturity price_maturity 1248
Evaluates amount received at maturity . received_maturity 1251
Evaluates Treasury bill's price . treasury_bill_price 1254
Evaluates Treasury bill's yield . treasury_bill_yield 1256
Evaluates year fraction . year_fraction 1258
Evaluates yield at maturity. yield_maturity 1260
Evaluates yield periodically . yield_periodic 1263
997

 Special Functions Usage Notes
Usage Notes
Users can perform financial computations by using pre-defined data types. Most of the financial functions require
one or more of the following:

 Date

 Number of payments per year

 A variable to indicate when payments are due

 Day count basis

IMSL C Math Library provides the identifiers for the input, frequency, to indicate the number of payments for
each year. The identifiers are IMSL_ANNUAL, IMSL_SEMIANNUAL, and IMSL_QUARTERLY.

IMSL C Math Library provides the identifiers for the input, when, to indicate when payments are due. The identifi-
ers are IMSL_AT_END_OF_PERIOD, IMSL_AT_BEGINNING_OF_PERIOD.

Identifier (frequency) Meaning

IMSL_ANNUAL One payment per year
(Annual payment)

IMSL_SEMIANNUAL Two payments per year
 (Semi-annual payment)

IMSL_QUARTERLY Four payments per year
(Quarterly payment)

Identifier (when) Meaning

IMSL_AT_END_OF_PERIOD Payments are due at the end of the
period

IMSL_AT_BEGINNING_OF_PERIOD Payments are due at the beginning of
the period
998

 Special Functions Usage Notes
IMSL C Math Library provides the identifiers for the input, basis, to indicate the type of day count basis. Day
count basis is the method for computing the number of days between two dates. The identifiers are
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, and
IMSL_DAY_CNT_BASIS_30E360.

IMSL C Math Library uses the C programming language structure, tm, provided in the standard header
<time.h>, to represent a date. For a detailed description of tm, see Kernighan and Richtie 1988, The C Program-
ming Language, Second Edition, p 255.

The structure tm is declared within <time.h> as follows:

struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

For example, to declare a variable to represent Jan 1, 2001, use the following code segment:
 struct tm date;
 date.tm_year = 101;
 date.tm_mon = 0;
 date.tm_mday = 1;

Additional Information
In preparing the finance and bond functions we incorporated standards used by SIA Standard Securities Calcula-
tion Methods.

More detailed information on finance and bond functionality can be found in the following manuals:

Identifier (basis) Day count basis

IMSL_DAY_CNT_BASIS_NASD US (NASD) 30/360

IMSL_DAY_CNT_BASIS_ACTUALACTUAL Actual/Actual

IMSL_DAY_CNT_BASIS_ACTUAL360 Actual/360

IMSL_DAY_CNT_BASIS_ACTUAL365 Actual/365

IMSL_DAY_CNT_BASIS_30E360 European 30/360

NOTE: IMSL C Math Library only uses the tm_year, tm_mon, and tm_mday fields in structure tm .
999

 Special Functions Usage Notes
 SIA Standard Securities Calculation Methods 1993, vols. 1 & 2, Third Edition.

 Accountants' Handbook, Volume 1, Sixth Edition.

 Microsoft Excel 5, Worksheet Function Reference.
1000

 Special Functions erf
erf
Evaluates the real error function erf(x).

Synopsis
#include <imsl.h>
float imsl_f_erf (float x)

The type double procedure is imsl_d_erf.

Required Arguments
float x (Input)

Point at which the error function is to be evaluated.

Return Value
The value of the error function erf(x).

Description
The error function erf(x) is defined to be

All values of x are legal.

erf x = 2
π 1/2∫0

x

e−t
2
dt
1001

 Special Functions erf
Figure 8, Plot of erf(x)

Example
Evaluate the error function at x = 1∕2.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.5;
 float ans;
 ans = imsl_f_erf(x);
 printf("erf(%f) = %f\n", x, ans);
}

Output

erf(0.500000) = 0.520500
1002

 Special Functions erfc
erfc
Evaluates the real complementary error function erfc(x).

Synopsis
#include <imsl.h>
float imsl_f_erfc (float x)

The type double procedure is imsl_d_erfc.

Required Arguments
float x (Input)

Point at which the complementary error function is to be evaluated.

Return Value
The value of the complementary error function erfc(x).

Description
The complementary error function erfc(x) is defined to be

The argument x must not be so large that the result underflows. Approximately, x should be less than

where s is the smallest representable floating-point number.

erfc x = 2
π ∫x

∞

e−t
2
dt

−ln π s 1/2
1003

 Special Functions erfc
Figure 9, Plot of erfc(x)

Example
Evaluate the error function at x = 1/2.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.5;
 float ans;
 ans = imsl_f_erfc(x);
 printf("erfc(%f) = %f\n", x, ans);
}

Output

erfc(0.500000) = 0.479500
1004

 Special Functions erfc
Alert Errors
IMSL_LARGE_ARG_UNDERFLOW The argument x is so large that the result

underflows.
1005

 Special Functions erfce
erfce
Evaluates the exponentially scaled complementary error function.

Synopsis
#include <imsl.h>
float imsl_f_erfce (float x)

The type double function is imsl_d_erfce.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
Exponentially scaled complementary error function value.

Description
Function imsl_f_erfce computes

where erfc(x) is the complementary error function. See imsl_f_erfc for its definition.

To prevent the answer from underflowing, x must be greater than

where b = imsl_f_machine(2) is the largest representable floating-point number. For more information, see
the description for imsl_f_machine.

ex
2
erfc x

xmin−
~ − ln b / 2
1006

 Special Functions erfce
Example
In this example, imsl_f_erfce(1.0) is computed and printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float value, x;
 x = 1.0;
 value = imsl_f_erfce(x);
 printf("erfce(%6.3f) = %6.3f \n", x, value);
}

Output

erfce(1.000) = 0.428
1007

 Special Functions erfe
erfe
Evaluates a scaled function related to erfc(z).

Synopsis
#include <imsl.h>
f_complex imsl_c_erfe (f_complex z)

The type double complex function is imsl_z_erfe.

Required Arguments
f_complex z (Input)

Complex argument for which the function value is desired.

Return Value
Complex scaled function value related to erfc(z).

Description
Function imsl_c_erfe is defined to be

Let b =imsl_f_machine(2) be the largest floating-point number. The argument z must satisfy

or else the value returned is zero. If the argument z does not satisfy

(ℑz)2 - (ℜz)2 ≤log b,

then b is returned. All other arguments are legal (Gautschi 1969, 1970).

For more information, see the description for imsl_f_machine.

e−z
2
erfc −iz = − ie−z

2 2
π ∫z

∞

et
2
dt

∣z∣ ≤ b
1008

 Special Functions erfe
Example
In this example, imsl_c_erfe(2.5 +2.5i) is computed and printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 f_complex value, z;
 z = imsl_cf_convert(2.5, 2.5);
 value = imsl_c_erfe(z);
 printf("\n erfe(%2.3f + %2.3fi) = %2.3f + %2.3fi \n",
 z.re, z.im, value.re, value.im);
}

Output

erfe(2.500 +2.500i) = 0.117 +0.108i
1009

 Special Functions erf_inverse
erf_inverse
Evaluates the real inverse error function erf-1 (x).

Synopsis
#include <imsl.h>
float imsl_f_erf_inverse (float x)

The type double procedure is imsl_d_erf_inverse.

Required Arguments
float x (Input)

Point at which the inverse error function is to be evaluated. It must be between −1 and 1.

Return Value
The value of the inverse error function erf-1 (x).

Description
The inverse error function erf-1 (x) is such that x = erf (y), where

The inverse error function is defined only for −1 < x < 1.

erf y = 2
π ∫0

y

e−t
2
dt
1010

 Special Functions erf_inverse
Figure 10, Plot of erf-1(x)

Example
Evaluate the inverse error function at x = 1/2.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.5;
 float ans;
 ans = imsl_f_erfc_inverse(x);
 printf("inverse erfc(%f) = %f\n", x, ans);
}

Output

inverse erf(0.500000) = 0.476936
1011

 Special Functions erf_inverse
Warning Errors

Fatal Errors

IMSL_LARGE_ABS_ARG_WARN The answer is less accurate than half precision
because |x| is too large.

IMSL_REAL_OUT_OF_RANGE The inverse error function is defined only for
−1 < x < 1.
1012

 Special Functions erfc_inverse
erfc_inverse
Evaluates the real inverse complementary error function erfc-1 (x).

Synopsis
#include <imsl.h>
float imsl_f_erfc_inverse (float x)

The type double procedure is imsl_d_erfc_inverse.

Required Arguments
float x (Input)

Point at which the inverse complementary error function is to be evaluated. The argument x must be
in the range 0 < x < 2.

Return Value
The value of the inverse complementary error function.

Description
The inverse complementary error function y = erfc-1 (x) is such that x = erfc (y) where
1013

 Special Functions erfc_inverse
Figure 11, Plot of erfc-1(x)

Example
Evaluate the inverse complementary error function at x = 1/2.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.5;
 float ans;
 ans = imsl_f_erf_inverse(x);
 printf("inverse erf(%f) = %f\n", x, ans);
}

erfc y = 2
π ∫y

∞

e−t
2
dt
1014

 Special Functions erfc_inverse
Output

inverse erfc(0.500000) = 0.476936

Alert Errors

Warning Errors

Fatal Errors

IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the result
underflows. Very approximately, x should be less
than

where ɛ is the machine precision.

IMSL_LARGE_ARG_WARN |x| should be less than where ɛ is the
machine precision, to prevent the answer from
being less accurate than half precision.

IMSL_ERF_ALGORITHM The algorithm failed to converge.

IMSL_SMALL_ARG_OVERFLOW
The computation of must not overflow.

IMSL_REAL_OUT_OF_RANGE The function is defined only for 0 < x < 2.

2 − ɛ / 4π

1 / ɛ

ex
2
erfc x
1015

 Special Functions beta
beta
Evaluates the real beta function β(x, y).

Synopsis
#include <imsl.h>
float imsl_f_beta (float x, float y)

The type double procedure is imsl_d_beta.

Required Arguments
float x (Input)

Point at which the beta function is to be evaluated. It must be positive.

float y (Input)
Point at which the beta function is to be evaluated. It must be positive.

Return Value
The value of the beta function β (x, y). If no result can be computed, NaN is returned.

Description
The beta function, β (x, y), is defined to be

The beta function requires that x > 0 and y > 0. It underflows for large arguments.

β x, y =
Γ x Γ y
Γ x + y

= ∫0
1

tx−1 1 − t y−1dt
1016

 Special Functions beta
Figure 12, Plot of β(x,y)

Example
Evaluate the beta function β (0.5, 0.2).

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;
 ans = imsl_f_beta(x, y);
 printf("beta(%f,%f) = %f\n", x, y, ans);
}

Output

beta(0.500000,0.200000) = 6.268653
1017

 Special Functions beta
Alert Errors

Fatal Errors

IMSL_BETA_UNDERFLOW The arguments must not be so large that the result
underflows.

IMSL_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the
result overflows.
1018

 Special Functions log_beta
log_beta
Evaluates the logarithm of the real beta function ln β(x, y).

Synopsis
#include <imsl.h>
float imsl_f_log_beta (float x, float y)

The type double procedure is imsl_d_log_beta.

Required Arguments
float x (Input)

Point at which the logarithm of the beta function is to be evaluated. It must be positive.

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be positive.

Return Value
The value of the logarithm of the beta function β(x, y).

Description
The beta function, β (x, y), is defined to be

and imsl_f_log_beta returns ln β(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for very large arguments.

Example
Evaluate the log of the beta function ln β(0.5, 0.2).

β x, y =
Γ x Γ y
Γ x + y

= ∫0
1

tx−1 1 − t y−1dt
1019

 Special Functions log_beta
#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;
 ans = imsl_f_log_beta(x, y);
 printf("log beta(%f,%f) = %f\n", x, y, ans);
}

Output

log beta(0.500000,0.200000) = 1.835562

Warning Errors
IMSL_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one precision

because the expression−x/(x + y) is too close to −1.
1020

 Special Functions beta_incomplete
beta_incomplete
Evaluates the real regularized incomplete beta function.

Synopsis
#include <imsl.h>
float imsl_f_beta_incomplete (float x, float a, float b)

The type double function is imsl_d_beta_incomplete.

Required Arguments
float x (Input)

Argument at which the regularized incomplete beta function is to be evaluated.

float a (Input)
First shape parameter.

float b (Input)
Second shape parameter.

Return Value
The value of the regularized incomplete beta function.

Description
The regularized incomplete beta function Ix (a, b) is defined

where

is the incomplete beta function,

I x a, b = Bx a, b / B a, b

Bx a,b = ∫
0

x

ta−1 1 − t)b−1dt
1021

 Special Functions beta_incomplete
is the (complete) beta function, and is the gamma function.

The regularized incomplete beta function imsl_f_beta_incomplete (x, a, b) is identical to the beta proba-
bility distribution function imsl_f_beta_cdf (x, a, b) which represents the probability that a beta random
variable X with shape parameters a and b takes on a value less than or equal to x. The regularized incomplete
beta function requires that 0 ≤ x ≤ 1, a > 0, and b > 0 and it underflows for sufficiently small x and large a. This
underflow is not reported as an error. Instead, the value zero is returned.

Example
Suppose X is a beta random variable with shape parameters 12 and 12 (X has a symmetric distribution). This
example finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a
symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsl.h>
#include <stdio.h>
int main()
{
 float p, a, b, x;
 a = 12.0;
 b = 12.0;
 x = 0.6;
 p = imsl_f_beta_incomplete(x, a, b);
 printf("The probability that X is less than %3.1f is %6.4f\n", x, p);
 x = 0.5;
 p -= imsl_f_beta_incomplete(x, a, b);
 printf("The probability that X is between %3.1f and", x);
 printf(" 0.6 is %6.4f\n", p);
}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

B a,b = B1 a,b =
Γ a Γ b
Γ a + b

Γ a
1022

 Special Functions gamma
gamma
Evaluates the real gamma function Γ(x).

Synopsis
#include <imsl.h>
float imsl_f_gamma (float x)

The type double procedure is imsl_d_gamma.

Required Arguments
float x (Input)

Point at which the gamma function is to be evaluated.

Return Value
The value of the gamma function Γ(x).

Description
The gamma function, Γ(x), is defined to be

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows for x << 0 and overflows
for large x. It also overflows for values near negative integers.

Γ x = ∫0
∞

tx−1e−tdt
1023

 Special Functions gamma
Figure 13, Plot of Plot of Γ(x) and 1/Γ(x)

Example
In this example, Γ(1.5) is computed and printed.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_gamma(x);
 printf("Gamma(%f) = %f\n", x, ans);
}

Output

Gamma(1.500000) = 0.886227
1024

 Special Functions gamma
Alert Errors

Warning Errors

Fatal Errors

IMSL_SMALL_ARG_UNDERFLOW The argument x must be large enough that Γ(x) does
not underflow. The underflow limit occurs first for
arguments close to large negative half integers.
Even though other arguments away from these half
integers may yield machine-representable values
of Γ(x), such arguments are considered illegal. Users
who need such values should use the logΓ(x) func-
tion imsl_f_log_gamma.

IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision
because x is too close to a negative integer.

IMSL_ZERO_ARG_OVERFLOW The argument for the gamma function is too close
to zero.

IMSL_NEAR_NEG_INT_FATAL The argument for the function is too close to a nega-
tive integer.

IMSL_LARGE_ARG_OVERFLOW The function overflows because x is too large.

IMSL_CANNOT_FIND_XMIN The algorithm used to find xmin failed. This error
should never occur.

IMSL_CANNOT_FIND_XMAX The algorithm used to find xmax failed. This error
should never occur.
1025

 Special Functions log_gamma
log_gamma
Evaluates the logarithm of the absolute value of the gamma function log ∣Γ(x)∣.

Synopsis
#include <imsl.h>
float imsl_f_log_gamma (float x)

The type double procedure is imsl_d_log_gamma.

Required Arguments
float x (Input)

Point at which the logarithm of the absolute value of the gamma function is to be evaluated.

Return Value
The value of the logarithm of gamma function, log ∣Γ(x)∣.

Description
The logarithm of the absolute value of the gamma function log ∣Γ(x)∣ is computed.
1026

 Special Functions log_gamma
Figure 14, Plot of log ∣Γ(x)∣

Example
In this example, log ∣Γ(3.5)∣ is computed and printed.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float x = 3.5;
 float ans;
 ans = imsl_f_log_gamma(x);
 printf("log gamma(%f) = %f\n", x, ans);
}

Output

log gamma(3.500000) = 1.200974
1027

 Special Functions log_gamma
Warning Errors

Fatal Errors

IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision
because x is too close to a negative integer.

IMSL_NEGATIVE_INTEGER The argument for the function cannot be a negative
integer.

IMSL_NEAR_NEG_INT_FATAL The argument for the function is too close to a nega-
tive integer.

IMSL_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the result overflows.
1028

 Special Functions gamma_incomplete
gamma_incomplete
Evaluates the incomplete gamma function γ(a, x).

Synopsis
#include <imsl.h>
float imsl_f_gamma_incomplete (float a, float x)

The type double procedure is imsl_d_gamma_incomplete.

Required Arguments
float a (Input)

Parameter of the incomplete gamma function is to be evaluated. It must be positive.

float x (Input)
Point at which the incomplete gamma function is to be evaluated. It must be nonnegative.

Return Value
The value of the incomplete gamma function γ(a, x).

Description
The incomplete gamma function, γ(a, x), is defined to be

The incomplete gamma function is defined only for a > 0. Although γ (a, x) is well defined for x > -∞, this algo-
rithm does not calculate γ(a, x) for negative x. For large a and sufficiently large x, γ(a, x) may overflow. γ(a, x) is
bounded by Γ (a), and users may find this bound a useful guide in determining legal values for a.

γ a,x = ∫0
x

ta−1e−tdt for x > 0
1029

 Special Functions gamma_incomplete
Figure 15, Plot of γ(a, x)

Example
Evaluate the incomplete gamma function at a = 1 and x = 3.

#include <stdio.h>
#include <imsl.h>
int main()
{ float x = 3.0;
 float a = 1.0;
 float ans;
 ans = imsl_f_gamma_incomplete(a, x);
 printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}

Output

incomplete gamma(1.000000,3.000000) = 0.950213
1030

 Special Functions gamma_incomplete
Fatal Errors
IMSL_NO_CONV_200_TS_TERMS The function did not converge in 200 terms of Taylor

series.

IMSL_NO_CONV_200_CF_TERMS The function did not converge in 200 terms of the
continued fraction.
1031

 Special Functions psi
psi
Evaluates the derivative of the log gamma function.

Synopsis
#include <imsl.h>

float imsl_f_psi (float x)

The type double function is imsl_d_psi.

Required Arguments
float x (Input)

Argument at which the function is to be evaluated.

Return Values
The value of the derivative of the log gamma function at x. NaN is returned if an error occurs.

Description
The psi function, also called the digamma function, is defined to be

See imsl_f_gamma for the definition of Γ(x).

The argument x must not be exactly zero or a negative integer, or is undefined. Also, x must not be too
close to a negative integer such that the accuracy of the result is less than half precision. If no value can be com-
puted, then NaN is returned.

ψ x = ddx lnΓ x

ψ x
1032

 Special Functions psi
Example
In this example, is evaluated.

#include <imsl.h>
#include <stdio.h>
int main(){
 float x=1.915, ans;
 ans=imsl_f_psi(x);
 printf("psi(%f) = %f\n", x, ans);
}

Output

psi(1.915000) = 0.366452

Warning Errors
IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision

because “x” is too close to a negative integer.

ψ 1.915
1033

 Special Functions psi1
psi1
Evaluates the second derivative of the log gamma function.

Synopsis
#include <imsl.h>
float imsl_f_psi1 (float x)

The type double function is imsl_d_psi1.

Required Arguments
float x (Input)

Argument at which the function is to be evaluated.

Return Value
The value of the second derivative of the log gamma function at x. NaN is returned if an error occurs.

Description
The psi1 function, also called the trigamma function, is defined to be

See imsl_f_gamma for the definition of Γ(x).

The argument x must not be exactly zero or a negative integer, or is undefined. Also, x must not be too
close to a negative integer such that the accuracy of the result is less than half precision.

Example
In this example, is evaluated.

ψ1 x = d
2

dx2
lnΓ x

ψ1 x

ψ1 1.915
1034

 Special Functions psi1
#include <imsl.h>
#include <stdio.h>
int main(){
 float x=1.915, ans;
 ans=imsl_f_psi1(x);
 printf("psi1(%f) = %f\n", x, ans);
}

Output

psi1(1.915000) = 0.681164

Warning Errors
IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision

because “x” is too close to a negative integer.
1035

 Special Functions bessel_J0
bessel_J0
Evaluates the real Bessel function of the first kind of order zero J0(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_J0 (float x)

The type double procedure is imsl_d_bessel_J0.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

If no solution can be computed, NaN is returned.

Description
Because the Bessel function J0(x) is oscillatory, its computation becomes inaccurate as |x| increases.

J0 x = 1π∫0
π

cos x sinθ dθ
1036

 Special Functions bessel_J0
Figure 16, Plot of J0 (x) and J1 (x)

Example
The Bessel function J0(1.5) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_J0(x);
 printf("J0(%f) = %f\n", x, ans);
}

Output

J0(1.500000) = 0.511828
1037

 Special Functions bessel_J0
Warning Errors

Fatal Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than where ɛ is the
machine precision, to prevent the answer from
being less accurate than half precision.

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ɛ where ɛ is the machine
precision for the answer to have any precision.

1 / ɛ
1038

 Special Functions bessel_J1
bessel_J1
Evaluates the real Bessel function of the first kind of order one J1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_J1 (float x)

The type double procedure is imsl_d_bessel_J1.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

If no solution can be computed, NaN is returned.

Description
Because the Bessel function J1(x) is oscillatory, its computation becomes inaccurate as |x| increases.

Example
The Bessel function J1(1.5) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{

J1 x = 1π∫0
π

cos xsinθ − θ dθ
1039

 Special Functions bessel_J1
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_J1(x);
 printf("J1(%f) = %f\n", x, ans);
}

Output

J1(1.500000) = 0.557937

Alert Errors

Warning Errors

Fatal Errors

IMSL_SMALL_ABS_ARG_UNDERFLOW To prevent J1(x) from underflowing, either x must be
zero, or |x| > 2s where s is the smallest represent-
able positive number.

IMSL_LARGE_ABS_ARG_WARN |x| should be less than where ɛ is the
machine precision to prevent the answer from being
less accurate than half precision.

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ɛ where ɛ is the machine
precision for the answer to have any precision.

1 / ɛ
1040

 Special Functions bessel_Jx
bessel_Jx
Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

Synopsis
#include <imsl.h>
f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Jx.

Required Arguments
float xnu (Input)

The lowest order desired. The argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value
A pointer to the n values of the function through the series. Element i contains the value of the Bessel function of
order xnu + i for i = 0, …, n − 1.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],
0)
1041

 Special Functions bessel_Jx
Optional Arguments
IMSL_RETURN_USER, f_complex bessel[] (Output)

Store the sequence of Bessel functions in the user-provided array bessel[].

Description
The Bessel function Jv(z) is defined to be

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987). This code com-

putes Jv(z) from the modified Bessel function Iv(z), using the following relation, with ρ = eip/2:

Example
In this example, J0.3+n-1 (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;
 sequence = imsl_c_bessel_Jx(xnu, z, n, 0);
 for (i = 0; i < n; i++)
 printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output

I sub 0.30 ((1.20,0.50)) =(0.774,-0.107)
I sub 1.30 ((1.20,0.50)) =(0.400,0.159)

Jν z = 1
π ∫0
π
cos z sinθ − νθ dθ −

sin νπ
π ∫0

∞
ez sinh t−νtdt

for ∣arg z∣ < π
2

Yν z =
ρIν z / ρ for − π / 2 < arg z ≤ π

ρ3Iν ρ
3z for − π < arg z ≤ π / 2
1042

 Special Functions bessel_Jx
I sub 2.30 ((1.20,0.50)) =(0.087,0.092)
I sub 3.30 ((1.20,0.50)) =(0.008,0.024)

Fatal Errors
IMSL_BESSEL_CONT_FRAC Continued fractions have failed to converge. The

double precision version of this function provides
the most accurate solution.
1043

 Special Functions bessel_Y0
bessel_Y0
Evaluates the real Bessel function of the second kind of order zero Y0(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_Y0 (float x)

The type double procedure is imsl_d_bessel_Y0.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

If no solution can be computed, NaN is returned.

Description
This function is sometimes called the Neumann function, N0(x), or Weber’s function.

Since Y0(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_Y0 is defined only for x > 0.

Because the Bessel function Y0(x) is oscillatory, its computation becomes inaccurate as x increases.

Y0 x = 1π∫0
π

sin x sinθ dθ − 2π∫0
∞

e−z sinhtdt
1044

 Special Functions bessel_Y0
Figure 17, Plot of Y0(x) and Y1(x)

Example
The Bessel function Y0(1.5) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_Y0(x);
 printf("Y0(%f) = %f\n", x, ans);
}

Output

Y0(1.500000) = 0.382449
1045

 Special Functions bessel_Y0
Warning Errors

Fatal Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than where ɛ is the
machine precision to prevent the answer from being
less accurate than half precision.

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ɛ where ɛ is the machine
precision for the answer to have any precision.

1 / ɛ
1046

 Special Functions bessel_Y1
bessel_Y1
Evaluates the real Bessel function of the second kind of order one Y1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_Y1 (float x)

The type double procedure is imsl_d_bessel_Y1.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

If no solution can be computed, then NaN is returned.

Description
This function is sometimes called the Neumann function, N1(x), or Weber’s function.

Since Y1(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_Y1 is defined only for x > 0.

Because the Bessel function Y1(x) is oscillatory, its computation becomes inaccurate as x increases.

Example
The Bessel function Y1(1.5) is evaluated.

Y1 x = − 1π∫0
π

sin θ − xsinθ dθ − 1π∫0
∞

et − e−t e−z sinh tdt
1047

 Special Functions bessel_Y1
#include <imsl.h>
#include <stdio.h>
int main(){
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_Y1(x);
 printf("Y1(%f) = %f\n", x, ans);
}

Output

Y1(1.500000) = -0.412309

Warning Errors

Fatal Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than where ɛ is the
machine precision to prevent the answer from being
less accurate than half precision.

IMSL_SMALL_ARG_OVERFLOW The argument x must be large enough (x > max (1/b,
s) where s is the smallest repesentable positive
number and b is the largest repesentable number)
that Y1(x) does not overflow.

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ɛ where ɛ is the machine
precision for the answer to have any precision.

1 / ɛ
1048

 Special Functions bessel_Yx
bessel_Yx
Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.

Synopsis
#include <imsl.h>
f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Yx.

Required Arguments
float xnu (Input)

The lowest order desired. The argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value
A pointer to the n values of the function through the series. Element i contains the value of the Bessel function of
order xnu + i for i = 0, …, n − 1.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],
0)
1049

 Special Functions bessel_Yx
Optional Arguments
IMSL_RETURN_USER, f_complex bessel[] (Output)

Store the sequence of Bessel functions in the user-provided array bessel[].

Description
The Bessel function Yv(z) is defined to be

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987). This code com-
putes Yv(z) from the modified Bessel functions Iv(z) and Kv(z), using the following relation:

Example
In this example, Y0.3+n-1 (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;
 sequence = imsl_c_bessel_Yx(xnu, z, n, 0);
 for (i = 0; i < n; i++)
 printf("Y sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output

Y sub 0.30 ((1.20,0.50)) =(-0.013,0.380)
Y sub 1.30 ((1.20,0.50)) =(-0.716,0.338)
Y sub 2.30 ((1.20,0.50)) =(-1.048,0.795)
Y sub 3.30 ((1.20,0.50)) =(-1.625,3.684)

Yν z = 1
π ∫0
π
sin z sin θ − νθ dθ − 1π ∫0

∞
eνt + e−νtcos νπ e−z sinh tdt

for ∣arg z∣ < π
2

Yν ze
πi/2 = e

ν+1 πi/2
Iν z − 2πe

−νπi/2Kν z for − π < arg z ≤ π2
1050

 Special Functions bessel_I0
bessel_I0
Evaluates the real modified Bessel function of the first kind of order zero I0(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_I0 (float x)

The type double procedure is imsl_d_bessel_I0.

Required Arguments
float x (Input)

Point at which the modified Bessel function is to be evaluated.

Return Value
The value of the Bessel function

If no solution can be computed, NaN is returned.

Description
For large ∣x∣, imsl_f_bessel_I0 will overflow.

I0 x = 1π∫0
π

cosh x cosθ dθ
1051

 Special Functions bessel_I0
Figure 18, Plot of I0(x) and I1(x)

Example
The Bessel function I0(1.5) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_I0(x);
 printf("I0(%f) = %f\n", x, ans);
}

Output

I0(1.500000) = 1.646723
1052

 Special Functions bessel_I0
Fatal Errors
IMSL_LARGE_ABS_ARG_FATAL The absolute value of x must not be so large that

e|x| overflows.
1053

 Special Functions bessel_exp_I0
bessel_exp_I0
Evaluates the exponentially scaled modified Bessel function of the first kind of order zero.

Synopsis
#include <imsl.h>
float imsl_f_bessel_exp_I0 (float x)

The type double function is imsl_d_bessel_exp_I0.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function e-∣ x∣ I0(x). If no solution can be computed, NaN is returned.

Description
The Bessel function I0(x) is defined to be

Example
The expression e-4.5I0 (4.5) is computed directly by calling imsl_f_bessel_exp_I0 and indirectly by calling

imsl_f_bessel_I0. The absolute difference is printed. For large x, the internal scaling provided by
imsl_f_bessel_exp_I0 avoids overflow that may occur in imsl_f_bessel_I0.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

I0 x = 1π∫0
π

cosh x cosθ dθ
1054

 Special Functions bessel_exp_I0
int main()
{
 float x = 4.5;
 float ans;
 float error;
 ans = imsl_f_bessel_exp_I0 (x);
 printf("(e**(-4.5))I0(4.5) = %f\n\n", ans);
 error = fabs(ans - (exp(-x)*imsl_f_bessel_I0(x)));
 printf ("Error = %e\n", error);
}

Output

(e**(-4.5))I0(4.5) =0.194198
Error =4.898845e-09
1055

 Special Functions bessel_I1
bessel_I1
Evaluates the real modified Bessel function of the first kind of order one I1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_I1 (float x)

The type double procedure is imsl_d_bessel_I1.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

If no solution can be computed, NaN is returned.

Description
For large |x|, imsl_f_bessel_I1 will overflow. It will underflow near zero.

Example
The Bessel function I1(1.5) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{

I1 x = 1π∫0
π

ex cos θcosθdθ
1056

 Special Functions bessel_I1
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_I1(x);
 printf("I1(%f) = %f\n", x, ans);
}

Output

I1(1.500000) = 0.981666

Alert Errors

Fatal Errors

IMSL_SMALL_ABS_ARG_UNDERFLOW The argument should not be so close to zero
that I1(x) ≈ x/2 underflows.

IMSL_LARGE_ABS_ARG_FATAL The absolute value of x must not be so large that
e|x| overflows.
1057

 Special Functions bessel_exp_I1
bessel_exp_I1
Evaluates the exponentially scaled modified Bessel function of the first kind of order one.

Synopsis
#include <imsl.h>

float imsl_f_bessel_exp_I1 (float x)

The type double function is imsl_d_bessel_exp_I1.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function e-|x| I1(x). If no solution can be computed, NaN is returned.

Description
The function imsl_f_bessel_I1 underflows if ∣x∣ / 2 underflows. The Bessel function I1(x) is defined to be

Example
The expression e-4.5I0(4.5) is computed directly by calling imsl_f_bessel_exp_I1 and in­directly by calling

imsl_f_bessel_I1. The absolute difference is printed. For large x, the internal scaling provided by
imsl_f_bessel_exp_I1 avoids overflow that may occur in insl_f_bessel_I1.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

I1 x = 1π∫0
π

ex cos θcosθdθ
1058

 Special Functions bessel_exp_I1
int main()
{
 float x = 4.5;
 float ans;
 float error;
 ans = imsl_f_bessel_exp_I1 (x);
 printf("(e**(-4.5))I1(4.5) = %f\n\n", ans);
 error = fabs(ans - (exp(-x)*imsl_f_bessel_I1(x)));
 printf ("Error = %e\n", error);
}

Output

(e**(-4.5))I1(4.5) = 0.170959
Error = 1.469216e-09
1059

 Special Functions bessel_Ix
bessel_Ix
Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.

Synopsis
#include <imsl.h>
f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Ix.

Required Arguments
float xnu (Input)

The lowest order desired. Argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value
A pointer to the n values of the function through the series. Element i contains the value of the Bessel function of
order xnu + i for i = 0, …, n − 1.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],
0)
1060

 Special Functions bessel_Ix
Optional Arguments
IMSL_RETURN_USER, f_complex bessel[] (Output)

Store the sequence of Bessel functions in the user-provided array bessel[].

Description
The Bessel function Iv(z) is defined to be

For large arguments, z, Temme’s (1975) algorithm is used to find Iv(z). The Iv(z) values are recurred upward (if this

is stable). This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be
accurate.

For moderate and small arguments, Miller’s method is used.

Example
In this example, J0.3+n-1 (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

#include <imsl.h>
#include<stdio.h>
int main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;
 sequence = imsl_c_bessel_Ix(xnu, z, n, 0);
 for (i = 0; i < n; i++)
 printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output

I sub 0.30 ((1.20,0.50)) =(1.163,0.396)
I sub 1.30 ((1.20,0.50)) =(0.447,0.332)
I sub 2.30 ((1.20,0.50)) =(0.082,0.127)
I sub 3.30 ((1.20,0.50)) =(0.006,0.029)

Iν z = e−νπi/2Jν ze
πi/2 for − π < arg z ≤ π2
1061

 Special Functions bessel_K0
bessel_K0
Evaluates the real modified Bessel function of the second kind of order zero K0(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_K0 (float x)

The type double procedure is imsl_d_bessel_K0.

Required Arguments
float x (Input)

Point at which the modified Bessel function is to be evaluated. It must be positive.

Return Value
The value of the modified Bessel function

If no solution can be computed, then NaN is returned.

Description
Since K0(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_K0 is defined only for x > 0. For

large x, imsl_f_bessel_K0 will underflow.

K0 x = ∫0
∞

cos x sinh t dt
1062

 Special Functions bessel_K0
Figure 19, Plot of K0(x) and K1(x)

Example
The Bessel function K0(1.5) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_K0(x);
 printf("K0(%f) = %f\n", x, ans);
}

Output

K0(1.500000) = 0.213806
1063

 Special Functions bessel_K0
Alert Errors
IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the result,

approximately equal to ,

underflows.

π / 2x e−x
1064

 Special Functions bessel_exp_K0
bessel_exp_K0
Evaluates the exponentially scaled modified Bessel function of the second kind of order zero.

Synopsis
#include <imsl.h>
float imsl_f_bessel_exp_K0 (float x)

The type double function is imsl_d_bessel_exp_K0.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function exK0(x). If no solution can be computed, NaN is returned.

Description
The argument must be greater than zero for the result to be defined. The Bessel function K0(x) is defined to be

Example
The expression

K0 x = ∫0
∞

cos x sinh t dt
1065

 Special Functions bessel_exp_K0
is computed directly by calling imsl_f_bessel_exp_K0 and indirectly by calling imsl_f_bessel_K0. The
absolute difference is printed. For large x, the internal scaling provided by imsl_f_bessel_exp_K0 avoids
underflow that may occur in imsl_f_bessel_K0.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 float x = 0.5;
 float ans;
 float error;
 ans = imsl_f_bessel_exp_K0 (x);
 printf("(e**0.5)K0(0.5) = %f\n\n", ans);
 error = fabs(ans - (exp(x)*imsl_f_bessel_K0(x)));
 printf ("Error = %e\n", error);
}

Output

(e**0.5)K0(0.5) = 1.524109
Error = 2.028498e-08

e K0 0.5
1066

 Special Functions bessel_K1
bessel_K1
Evaluates the real modified Bessel function of the second kind of order one K1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_K1 (float x)

The type double procedure is imsl_d_bessel_K1.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated. It must be positive.

Return Value
The value of the Bessel function

If no solution can be computed, NaN is returned.

Description
Since K1(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_K1 is defined only for x > 0. For

large x, imsl_f_bessel_K1 will underflow. See Figure 9-12 for a graph of K1(x).

Example
The Bessel function K1(1.5) is evaluated.

#include <imsl.h>
#include <stdio.h>

K1 x = ∫0
∞

sin xsinh t sinh t dt
1067

 Special Functions bessel_K1
int main()
{
 float x = 1.5;
 float ans;
 ans = imsl_f_bessel_K1(x);
 printf("K1(%f) = %f\n", x, ans);
}

Output

K1(1.500000) = 0.277388

Alert Errors

Fatal Errors

IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the result,

approximately equal to ,

underflows.

IMSL_SMALL_ARG_OVERFLOW The argument x must be large enough
(x > max (1/b, s) where s is the smallest represent-
able positive number and b is the largest
repesentable number) that K1(x) does not overflow.

π / 2x e−x
1068

 Special Functions bessel_exp_K1
bessel_exp_K1
Evaluates the exponentially scaled modified Bessel function of the second kind of order one.

Synopsis
#include <imsl.h>
float imsl_f_bessel_exp_K1 (float x)

The type double function is imsl_d_bessel_exp_K1.

Required Arguments
float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function exK1(x). If no solution can be computed, NaN is returned.

Description
The result

overflows if x is too close to zero. The definition of the Bessel function

Example
The expression

imsl_f_bessel_exp_K1 = exK1 x ≈ 1x

K1 x = ∫0
∞

sin xsinh t sinh t dt
1069

 Special Functions bessel_exp_K1
is computed directly by calling imsl_f_bessel_exp_K1 and indirectly by calling imsl_f_bessel_K1. The
absolute difference is printed. For large x, the internal scaling provided by imsl_f_bessel_exp_K1 avoids
underflow that may occur in imsl_f_bessel_K1.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
int main()
{
 float x = 0.5;
 float ans;
 float error;
 ans = imsl_f_bessel_exp_K1 (x);
 printf("(e**0.5)K1(0.5) = %f\n\n", ans);
 error = fabs(ans - (exp(x)*imsl_f_bessel_K1(x)));
 printf ("Error = %e\n", error);
}

Output

(e**0.5)K1(0.5) = 2.731010
Error = 5.890406e-08

e K1 0.5
1070

 Special Functions bessel_Kx
bessel_Kx
Evaluates a sequence of modified Bessel functions of the second kind with real order and complex arguments.

Synopsis
#include <imsl.h>
f_complex *imsl_c_bessel_Kx (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Jx.

Required Arguments
float xnu (Input)

The lowest order desired. The argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value
A pointer to the n values of the function through the series. Element i contains the value of the Bessel function of
order xnu + i for i = 0, …, n − 1.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_bessel_Kx (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],
0)
1071

 Special Functions bessel_Kx
Optional Arguments
IMSL_RETURN_USER, f_complex bessel[] (Output)

Store the sequence of Bessel functions in the user-provided array bessel[].

Description
The Bessel function Kv(z) is defined to be

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For moderate or large arguments, z, Temme’s (1975) algorithm is used to find Kv(z). This involves evaluating a con-

tinued fraction. If this evaluation fails to converge, the answer may not be accurate. For small z, a Neumann series
is used to compute Kv(z). Upward recurrence of the Kv(z) is always stable.

Example
In this example, K0.3+n-1 (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;
 sequence = imsl_c_bessel_Kx(xnu, z, n, 0);
 for (i = 0; i < n; i++)
 printf("K sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output

K sub 0.30 ((1.20,0.50)) = (0.246,-0.200)
K sub 1.30 ((1.20,0.50)) = (0.336,-0.362)
K sub 2.30 ((1.20,0.50)) = (0.587,-1.126)
K sub 3.30 ((1.20,0.50)) = (0.719,-4.839)

Kν z = π2e
νπi/2 iJν ze

πi/2 − Yν ze
πi/2 for − π < arg z ≤ π2
1072

 Special Functions elliptic_integral_K
elliptic_integral_K
Evaluates the complete elliptic integral of the kind K(x).

Synopsis
#include <imsl.h>
float imsl_f_elliptic_integral_K (float x)

The type double function is imsl_d_elliptic_integral_K.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The complete elliptic integral K(x).

Description
The complete elliptic integral of the first kind is defined to be

The argument x must satisfy 0 ≤ x < 1; otherwise, imsl_f_elliptic_integral_K returns imsl_f_ma-
chine(2), the largest representable floating-point number. For more information, see the description for machine
(float).

The function K(x) is computed using the routine imsl_f_elliptic_integral_RF and the
relation K(x) = RF(0, 1 - x, 1).

K x = ∫0
π/2 dθ

1 − x sin2θ
1/2 for 0 ≤ x < 1
1073

 Special Functions elliptic_integral_K
Example
The integral K(0) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.0;
 float ans;
 x = imsl_f_elliptic_integral_K (x);
 printf ("K(0.0) = %f\n", x);
}

Output

K(0.0) = 1.570796
1074

 Special Functions elliptic_integral_E
elliptic_integral_E
Evaluates the complete elliptic integral of the second kind E(x).

Synopsis
#include <imsl.h>
float imsl_f_elliptic_integral_E (float x)

The type double function is imsl_d_elliptic_integral_E.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The complete elliptic integral E(x).

Description
The complete elliptic integral of the second kind is defined to be

The argument x must satisfy 0 ≤ x < 1; otherwise, imsl_f_elliptic_integral_E returns imsl_f_ma-
chine(2), the largest representable floating-point number. For more information, see the description for
imsl_f_machine.

The function E(x) is computed using the routine imsl_f_elliptic_integral_RF and
imsl_f_elliptic_integral_RD. The computation is done using the relation

E x = ∫0
π/2
1 − x sin2θ

1/2
dθ for 0 ≤ x < 1
1075

 Special Functions elliptic_integral_E
Example
The integral E(0.33) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.33;
 float ans;
 x = imsl_f_elliptic_integral_E (x);
 printf ("E(0.33) = %f\n", x);
}

Output

E(0.33) = 1.431832

E x = RF 0, 1 − x, 1 − x3RD 0, 1 − x, 1
1076

 Special Functions elliptic_integral_RF
elliptic_integral_RF
Evaluates Carlson’s elliptic integral of the first kind RF(x, y, z).

Synopsis
#include <imsl.h>
float imsl_f_elliptic_integral_RF (float x, float y, float z)

The type double function is imsl_d_elliptic_integral_RF.

Required Arguments
float x (Input)

First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be nonnegative.

Return Value
The complete elliptic integral RF(x, y, z)

Description
Carlson’s elliptic integral of the first kind is defined to be

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, x + z, and y + z must be
greater than or equal to 5s. Should any of these conditions fail, imsl_f_elliptic_integral_RF is set to
b. Here, b = imsl_f_machine(2) is the largest and s = imsl_f_machine(1) is the smallest representable number. For
more information, see the description for imsl_f_machine.

RF x,y,z = 12∫
0

∞

dt
t + x t + y t + z 1/2
1077

 Special Functions elliptic_integral_RF
The function imsl_f_elliptic_integral_RF is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example
The integral RF(0, 1, 2) is computed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.0;
 float y = 1.0;
 float z = 2.0;
 float ans;
 x = imsl_f_elliptic_integral_RF (x, y, z);
 printf ("RF(0, 1, 2) = %f\n", x);
}

Output

RF(0, 1, 2) = 1.311029
1078

 Special Functions elliptic_integral_RD
elliptic_integral_RD
Evaluates Carlson’s elliptic integral of the second kind RD(x, y, z).

Synopsis
#include <imsl.h>

float imsl_f_elliptic_integral_RD (float x, float y, float z)

The type double function is imsl_d_elliptic_integral_RD.

Required Arguments
float x (Input)

First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be positive.

Return Value
The complete elliptic integral RD(x, y, z)

Description
Carlson’s elliptic integral of the first kind is defined to be

The arguments must be nonnegative and less than or equal to 0.69(-lnɛ)1/9s-2/3 where
ɛ = imsl_f_machine(4) is the machine precision, s = imsl_f_machine(1) is the smallest representable

positive number. Furthermore, x + y and z must be greater than max{3s2/3, 3/b2/3}, where

RD x,y,z = 32∫
0

∞

dt
t + x t + y t + z 3

1/2
1079

 Special Functions elliptic_integral_RD
b = imsl_f_machine(2) is the largest floating point number. If any of these conditions are false, then
imsl_f_elliptic_integral_RD returns b. For more information, see the description for
imsl_f_machine.

The function imsl_f_elliptic_integral_RD is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example
The integral RD(0, 2, 1) is computed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 0.0;
 float y = 2.0;
 float z = 1.0;
 float ans;
 x = imsl_f_elliptic_integral_RD (x, y, z);
 printf ("RD(0, 2, 1) = %f\n", x);
}

Output

RD(0, 2, 1) = 1.797210
1080

 Special Functions elliptic_integral_RJ
elliptic_integral_RJ
Evaluates Carlson’s elliptic integral of the third kind RJ (x, y, z, ρ).

Synopsis
#include <imsl.h>
float imsl_f_elliptic_integral_RJ (float x, float y, float z, float rho)

The type double function is imsl_d_elliptic_integral_RJ.

Required Arguments
float x (Input)

First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be positive.

float rho (Input)
Fourth variable of the incomplete elliptic integral. It must be positive.

Return Value
The complete elliptic integral RJ (x, y, z, ρ).

Description
Carlson’s elliptic integral of the third kind is defined to be
1081

 Special Functions elliptic_integral_RJ
The arguments must be nonnegative. In addition, x + y, x + z, y + z and ρ must be greater than or equal to (5s)1/3

and less than or equal to 0.3(b/5)1/3, where s = imsl_f_machine(1) is the smallest representable floating-
point number. Should any of these conditions fail, imsl_f_elliptic_integral_RJ is set to
b = imsl_f_machine(2), the largest floating-point number. For more information, see the description for
imsl_f_machine.

The function imsl_f_elliptic_integral_RJ is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example
The integral RJ (2, 3, 4, 5) is computed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 2.0;
 float y = 3.0;
 float z = 4.0;
 float rho = 5.0;
 float ans;
 x = imsl_f_elliptic_integral_RJ (x, y, z, rho);
 printf ("RJ(2, 3, 4, 5) = %f\n", x);
}

Output

RJ(2, 3, 4, 5) = 0.142976

RJ x,y,z,ρ = 32∫
0

∞

dt
t + x t + y t + z t + ρ 2 1/2
1082

 Special Functions elliptic_integral_RC
elliptic_integral_RC
Evaluates an elementary integral from which inverse circular functions, logarithms and inverse hyperbolic func-
tions can be computed.

Synopsis
#include <imsl.h>
float imsl_f_elliptic_integral_RC (float x, float y)

The type double function is imsl_d_elliptic_integral_RC.

Required Arguments
float x (Input)

First variable of the incomplete elliptic integral. It must be nonnegative and must satisfy the condi-
tions given below.

float y (Input)
Second variable of the incomplete elliptic integral. It must be positive and must satisfy the conditions
given below.

Return Value
The elliptic integral RC (x, y).

Description
Carlson’s elliptic integral of the third kind is defined to be
1083

 Special Functions elliptic_integral_RC
The argument x must be nonnegative, y must be positive, and x +y must be less than or equal to b/5 and greater
than or equal to 5s. If any of these conditions are false, the imsl_f_elliptic_integral_RC is set to b.
Here, b = imsl_f_machine(2) is the largest and s = imsl_f_-machine(1) is the smallest representable
floating-point number. For more information, see the description for imsl_f_machine.

The function imsl_f_elliptic_integral_RC is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example
The integral RC (2.25, 2) is computed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 2.25;
 float y = 2.0;
 float ans;
 x = imsl_f_elliptic_integral_RC (x, y);
 printf ("RC(2.25, 2.0) = %f\n", x);
}

Output

RC(2.25, 2.0) = 0.693147

RC x,y = 12∫
0

∞

dt
t + x t + y 2 1/2
1084

 Special Functions fresnel_integral_C
fresnel_integral_C
Evaluates the cosine Fresnel integral.

Synopsis
#include <imsl.h>
float imsl_f_fresnel_integral_C (float x)

The type double function is imsl_d_fresnel_integral_C.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The cosine Fresnel integral.

Description
The cosine Fresnel integral is defined to be

Example
The Fresnel integral C(1.75) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 1.75;
 float ans;

C x = ∫
0

x

cos(π2 t
2)dt
1085

 Special Functions fresnel_integral_C
 x = imsl_f_fresnel_integral_C (x);
 printf ("C(1.75) = %f\n", x);
}

Output

C(1.75) = 0.321935
1086

 Special Functions fresnel_integral_S
fresnel_integral_S
Evaluates the sine Fresnel integral.

Synopsis
#include <imsl.h>
float imsl_f_fresnel_integral_S (float x)

The type double function is imsl_d_fresnel_integral_S.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The sine Fresnel integral.

Description
The sine Fresnel integral is defined to be

Example
The Fresnel integral S(1.75) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = 1.75;

S x = ∫
0

x

sin(π2 t
2)dt
1087

 Special Functions fresnel_integral_S
 float ans;
 x = imsl_f_fresnel_integral_S (x);
 printf ("S(1.75) = %f\n", x);
}

Output
S(1.75) = 0.499385
1088

 Special Functions airy_Ai
airy_Ai
Evaluates the Airy function.

Synopsis
#include <imsl.h>
float imsl_f_airy_Ai (float x)

The type double function is imsl_d_airy_Ai.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The Airy function evaluated at x, Ai(x).

Description
The airy function Ai(x) is defined to be

The Bessel function Kv(x) is defined in bessel_exp_K0.

If x < -1.31ɛ-2/3, then the answer will have no precision. If x < -1.31ɛ-1/3, the answer will be less accurate than half
precision. Here ɛ = imsl_f_machine(4) is the machine precision.

Finally, x should be less than xmax so the answer does not underflow. Very approximately, xmax = {-1.5lns}2/3,

where s = imsl_f_machine(1), the smallest representable positive number.

For more information, see the description for imsl_f_machine.

Ai x = 1π∫
0

∞

cos xt + 13 t
3 dt = x

3π2
K1/3

2
3x
3/2
1089

 Special Functions airy_Ai
Example
In this example, Ai(-4.9) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = -4.9;
 float ans;
 x = imsl_f_airy_Ai (x);
 printf ("Ai(-4.9) = %f\n", x);
}

Output

Ai(-4.9) = 0.374536
1090

 Special Functions airy_Bi
airy_Bi
Evaluates the Airy function of the second kind.

Synopsis
#include <imsl.h>
float imsl_f_airy_Bi (float x)

The type double function is imsl_d_airy_Bi.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The Airy function of the second kind evaluated at x, Bi(x).

Description
The airy function Bi(x) is defined to be

It can also be expressed in terms of modified Bessel functions of the first kind, Iv(x), and Bessel functions of the

first kind Jv(x) (see bessel_Ix and bessel_Jx):

and

Bi x = 1π∫
0

∞

exp xt − 13 t
3 dt + 1π∫

0

∞

sin xt + 13 t
3 dt

Bi x = x
3 I−1/3

2
3x
3/2 + I1/3

2
3x
3/2 for x > 0
1091

 Special Functions airy_Bi
Let ɛ = imsl_f_machine(4), the machine precision. If x < -1.31ɛ-2/3, then the answer will have no precision.

If x < -1 31ɛ-1/3, the answer will be less accurate than half precision. In addition, x should not be so large

that exp[(2/3)x3/2] overflows. For more information, see the description for imsl_f_machine.

Example
In this example, Bi(-4.9) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = -4.9;
 float ans;
 x = imsl_f_airy_Bi (x);
 printf ("Bi(-4.9) = %f\n", x);
}

Output

Bi(-4.9) = -0.057747

Bi x = −x
3 J−1/3

2
3∣x∣

3/2 − J1/3
2
3∣x∣

3/2 for x < 0
1092

 Special Functions airy_Ai_derivative
airy_Ai_derivative
Evaluates the derivative of the Airy function.

Synopsis
#include <imsl.h>
float imsl_f_airy_Ai_derivative (float x)

The type double function is imsl_d_airy_Ai_derivative.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The derivative of the Airy function.

Description
The airy function Ai′(x) is defined to be the derivative of the Airy function, Ai(x). If x < -1.31ɛ-2/3, then the answer

will have no precision. If x < -1.31ɛ-1/3, the answer will be less accurate than half precision. Here
ɛ = imsl_f_machine(4) is the machine precision. Finally, x should be less than xmax so that the answer does

not underflow. Very approximately, xmax = {-1.51lns}, where s = imsl_f_machine(1), the smallest repre-

sentable positive number. For more information, see the description for imsl_f_machine.

Example
In this example, Ai′(-4.9) is evaluated.
#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = -4.9;
1093

 Special Functions airy_Ai_derivative
 float ans;
 x = imsl_f_airy_Ai_derivative (x);
 printf ("Ai’(-4.9) = %f\n", x);
}

Output
Ai’(-4.9) = 0.146958
1094

 Special Functions airy_Bi_derivative
airy_Bi_derivative
Evaluates the derivative of the Airy function of the second kind.

Synopsis
#include <imsl.h>
float imsl_f_airy_Bi_derivative (float x)

The type double function is imsl_d_airy_Bi_derivative.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The derivative of the Airy function of the second kind.

Description
The airy function Bi′(x) is defined to be the derivative of the Airy function of the second kind, Bi(x). If x < -1.31ɛ-2/3,

then the answer will have no precision. If x < -1.31ɛ-1/3, the answer will be less accurate than half precision. Here

ɛ = imsl_f_machine(4) is the machine precision. In addition, x should not be so large that exp[(2/3)x3/2] over-
flows. For more information, see the description for imsl_f_machine.

Example
In this example, Bi′(-4.9) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float x = -4.9;
1095

 Special Functions airy_Bi_derivative
 float ans;
 x = imsl_f_airy_Bi_derivative (x);
 printf ("Bi’(-4.9) = %f\n", x);
}

Output
Bi’(-4.9) = 0.827219
1096

 Special Functions kelvin_ber0
kelvin_ber0
Evaluates the Kelvin function of the first kind, ber, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_ber0 (float x)

The type double function is imsl_d_kelvin_ber0.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The Kelvin function of the first kind, ber, of order zero evaluated at x.

Description
The Kelvin function ber0(x) is defined to be ℜJ0(xe3π/4). The Bessel function J0(x) is defined

The function imsl_f_kelvin_ber0 is based on the work of Burgoyne (1963).

Example
In this example, ber0 (0.4) is evaluated.

#include <imsl.h>
#include <stdio.h>

J0 x = 1π∫0
π

cos x sinθ dθ
1097

 Special Functions kelvin_ber0
int main()
{
 float x = 0.4;
 float ans;
 x = imsl_f_kelvin_ber0 (x);
 printf ("ber0(0.4) = %f\n", x);
}

Output

ber0(0.4) = 0.999600
1098

 Special Functions kelvin_bei0
kelvin_bei0
Evaluates the Kelvin function of the first kind, bei, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_bei0 (float x)

The type double function is imsl_d_kelvin_bei0.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The Kelvin function of the first kind, bei, of order zero evaluated at x.

Description
The Kelvin function bei0(x) is defined to be ℑJ0(xe3π/4). The Bessel function J0(x) is defined

The function imsl_f_kelvin_bei0 is based on the work of Burgoyne (1963).

In imsl_f_kelvin_bei0, x must be less than 119.

Example
In this example, bei0(0.4) is evaluated.

#include <imsl.h>
#include <stdio.h>

J0 x = 1π∫0
π

cos xsinθ dθ
1099

 Special Functions kelvin_bei0
int main()
{
 float x = 0.4;
 float ans;
 x = imsl_f_kelvin_bei0 (x);
 printf ("bei0(0.4) = %f\n", x);
}

Output

bei0(0.4) = 0.039998
1100

 Special Functions kelvin_ker0
kelvin_ker0
Evaluates the Kelvin function of the second kind, ker, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_ker0 (float x)

The type double function is imsl_d_kelvin_ker0.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The Kelvin function of the second kind, ker, of order zero evaluated at x.

Description
The modified Kelvin function ker0(x) is defined to be ℜK0(xeπ/4). The Bessel function K0(x) is defined

The function imsl_f_kelvin_ker0 is based on the work of Burgoyne (1963). If x < 0, NaN (Not a Number) is
returned. If x ≥ 119, then zero is returned.

Example
In this example, ker0(0.4) is evaluated.

#include <imsl.h>
#include <stdio.h>

K0 x = ∫0
∞

cos x sin t dt
1101

 Special Functions kelvin_ker0
int main()
{
 float x = 0.4;
 float ans;
 x = imsl_f_kelvin_ker0 (x);
 printf ("ker0(0.4) = %f\n", x);
}

Output

ker0(0.4) = 1.062624
1102

 Special Functions kelvin_kei0
kelvin_kei0
Evaluates the Kelvin function of the second kind, kei, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_kei0 (float x)

The type double function is imsl_d_kelvin_kei0.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The Kelvin function of the second kind, kei, of order zero evaluated at x.

Description
The modified Kelvin function kei0(x) is defined to be ℑK0(xeπ/4). The Bessel function K0(x) is defined

The function imsl_f_kelvin_kei0 is based on the work of Burgoyne (1963). If x < 0, NaN (Not a Number) is
returned. If x ≥ 119, zero is returned.

Example
In this example, kei0(0.4) is evaluated.

#include <imsl.h>
#include <stdio.h>

K0 x = ∫0
∞

cos x sin t dt
1103

 Special Functions kelvin_kei0
int main()
{
 float x = 0.4;
 float ans;
 x = imsl_f_kelvin_kei0 (x);
 printf ("kei0(0.4) = %f\n", x);
}

Output

kei0(0.4) = -0.703800
1104

 Special Functions kelvin_ber0_derivative
kelvin_ber0_derivative
Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_ber0_derivative (float x)

The type double function is imsl_d_kelvin_ber0_derivative.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The derivative of the Kelvin function of the first kind, ber, of order zero evaluated at x.

Description
The function ber0′(x) is defined to be

The function imsl_f_kelvin_ber0_derivative is based on the work of Burgoyne (1963).

If |x| > 119, NaN is returned.

Example
In this example, ber0′ (0.6) is evaluated.

#include <imsl.h>
#include <stdio.h>

d
dxber0 x
1105

 Special Functions kelvin_ber0_derivative
int main()
{
 float x = 0.6;
 float ans;
 x = imsl_f_kelvin_ber0_derivative (x);
 printf ("ber0'(0.6) = %f\n", x);
}

Output

ber0'(0.6) = -0.013498
1106

 Special Functions kelvin_bei0_derivative
kelvin_bei0_derivative
Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_bei0_derivative (float x)

The type double function is imsl_d_kelvin_bei0_derivative.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The derivative of the Kelvin function of the first kind, bei, of order zero evaluated at x.

Description
The function bei0′(x) is defined to be

The function imsl_f_kelvin_bei0_derivative is based on the work of Burgoyne (1963). If |x| > 119,
NaN is returned.

Example
In this example, bei0′(0.6) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()

d
dxbei0 x
1107

 Special Functions kelvin_bei0_derivative
{
 float x = 0.6;
 float ans;
 x = imsl_f_kelvin_bei0_derivative (x);
 printf ("bei0’(0.6) = %f\n", x);
}

Output

bei0’(0.6) = 0.299798
1108

 Special Functions kelvin_ker0_derivative
kelvin_ker0_derivative
Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_ker0_derivative (float x)

The type double function is imsl_d_kelvin_ker0_derivative.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The derivative of the Kelvin function of the second kind, ker, of order zero evaluated at x.

Description
The function ker0′(x) is defined to be

The function imsl_f_kelvin_ker0_derivative is based on the work of Burgoyne (1963). If x < 0, NaN
(Not a Number) is returned. If x ≥ 119, zero is returned.

Example
In this example, ker0′(0.6) is evaluated.

#include <imsl.h>
#include <stdio.h>
int main()

d
dxker0 x
1109

 Special Functions kelvin_ker0_derivative
{
 float x = 0.6;
 float ans;
 x = imsl_f_kelvin_ker0_derivative (x);
 printf ("ker0’(0.6) = %f\n", x);
}

Output

ker0’(0.6) = -1.456538
1110

 Special Functions kelvin_kei0_derivative
kelvin_kei0_derivative
Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Synopsis
#include <imsl.h>
float imsl_f_kelvin_kei0_derivative (float x)

The type double function is imsl_d_kelvin_kei0_derivative.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The derivative of the Kelvin function of the second kind, kei, of order zero evaluated at x.

Description
The function kei0′(x) is defined to be

The function imsl_f_kelvin_kei0_derivative is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, zero is returned.

Example
In this example, kei0′(0.6) is evaluated.

#include <imsl.h>
#include <stdio.h>

d
dxkei0 x
1111

 Special Functions kelvin_kei0_derivative
int main()
{
 float x = 0.6;
 float ans;
 x = imsl_f_kelvin_kei0_derivative (x);
 printf ("kei0’(0.6) = %f\n", x);
}

Output

kei0’(0.6) = 0.348164
1112

 Special Functions normal_cdf
normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <imsl.h>
float imsl_f_normal_cdf (float x)

The type double function is imsl_d_normal_cdf.

Required Arguments
float x (Input)

Point at which the normal distribution function is to be evaluated.

Return Value
The probability that a normal random variable takes a value less than or equal to x.

Description
The function imsl_f_normal_cdf evaluates the distribution function, Φ, of a standard normal (Gaussian)
random variable; that is,

The value of the distribution function at the point x is the probability that the random variable takes a value less
than or equal to x.

The standard normal distribution (for which imsl_f_normal_cdf is the distribution function) has mean of 0

and variance of 1. The probability that a normal random variable with mean μ and variance σ2 is less than y is
given by imsl_f_normal_cdf evaluated at (y − μ)/σ.

Φ(x) is evaluated by use of the complementary error function, imsl_f_erfc. The relationship is:

ϕ x = 1
2π ∫−∞

x

e−t
2/2dt
1113

 Special Functions normal_cdf
Figure 20, Plot of Φ(x)

Example
Suppose X is a normal random variable with mean 100 and variance 225. This example finds the probability that X
is less than 90 and the probability that X is between 105 and 110.

#include <imsl.h>
int main()
{
 float p, x1, x2;
 x1 = (90.0-100.0)/15.0;
 p = imsl_f_normal_cdf(x1);
 printf("The probability that X is less than 90 is %6.4f\n\n", p);
 x1 = (105.0-100.0)/15.0;
 x2 = (110.0-100.0)/15.0;
 p = imsl_f_normal_cdf(x2) - imsl_f_normal_cdf(x1);
 printf("The probability that X is between 105 and 110 is %6.4f\n", p);
}

ϕ x = erfc −x / 2.0 / 2
1114

 Special Functions normal_cdf
Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
1115

 Special Functions normal_inverse_cdf
normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis
#include <imsl.h>
float imsl_f_normal_inverse_cdf (float p)

The type double procedure is imsl_d_normal_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the normal distribution function is to be evaluated. The argument
p must be in the open interval (0.0, 1.0).

Return Value
The inverse of the normal distribution function evaluated at p. The probability that a standard normal random
variable takes a value less than or equal to imsl_f_normal_inverse_cdf is p.

Description
The function imsl_f_normal_inverse_cdf evaluates the inverse of the distribution function, Φ, of a stan-

dard normal (Gaussian) random variable; that is, imsl_f_normal_inverse_cdf(p) = Φ-1 (p) where

The value of the distribution function at the point x is the probability that the random variable takes a value less
than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.

The function imsl_f_normal_inverse_cdf(p) is evaluated by use of minimax rational-function approxima-
tions for the inverse of the error function. General descriptions of these approximations are given in Hart et al.
(1968) and Strecok (1968). The rational functions used in imsl_f_normal_inverse_cdf are described by
Kinnucan and Kuki (1968).

ϕ x = 1
2π ∫−∞

x

e−t
2/2dt
1116

 Special Functions normal_inverse_cdf
Example
This example computes the point such that the probability is 0.9 that a standard normal random variable is less
than or equal to this point.

#include <imsl.h>
int main()
{
 float x;
 float p = 0.9;
 x = imsl_f_normal_inverse_cdf(p);
 printf("The 90th percentile of a standard normal is %6.4f.\n", x);
}

Output

The 90th percentile of a standard normal is 1.2816.
1117

 Special Functions chi_squared_cdf
chi_squared_cdf
Evaluates the chi-squared cumulative distribution function (CDF).

Synopsis
#include <imsl.h>
float imsl_f_chi_squared_cdf (float chi_squared, float df)

The type double function is imsl_d_chi_squared_cdf.

Required Arguments
float chi_squared (Input)

Argument for which the chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument df must be greater than
0.

Return Value
The probability p that a chi-squared random variable takes a value less than or equal to chi_squared.

Description
Function imsl_f_chi_squared_cdf evaluates the distribution function, F(x,ν), of a chi-squared random
variable x = chi_squared with ν = df degrees of freedom, where:

and Γ (⋅) is the gamma function. The value of the distribution function at the point x is the probability that the ran-
dom variable takes a value less than or equal to x.

F x, v = 1
2v/2Γ v / 2 ∫0

x

e−t/2tv/2−1dt
1118

 Special Functions chi_squared_cdf
For ν> νmax = 1.e7, imsl_f_chi_squared_cdf uses the Wilson-Hilferty approximation

(Abramowitz and Stegun [A&S] 1964, Equation 26.4.17) for p in terms of the normal CDF, which is evaluated using
function imsl_f_normal_cdf.

For ν≤ νmax, imsl_f_chi_squared_cdf uses series expansions to evaluate p: for x < ν,

imsl_f_chi_squared_cdf calculates p using A&S series 6.5.29, and for x≥ν,
imsl_f_chi_squared_cdf calculates p using the continued fraction expansion of the incomplete gamma
function given in A&S equation 6.5.31.

Figure 21, Plot of Fx (x, df)

Example
Suppose X is a chi-squared random variable with two degrees of freedom. In this example, we find the probability
that X is less than 0.15 and the probability that X is greater than 3.0.

#include <imsl.h>
#include <stdio.h>
int main()
{

1119

 Special Functions chi_squared_cdf
 float chi_squared = 0.15, df = 2.0, p;
 p = imsl_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared"

 " with %1.0f df is less than %4.2f is %5.4f\n",
 df, chi_squared, p);

 chi_squared = 3.0;
 p = 1.0 - imsl_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared"

 " with %1.0f df is greater than %3.1f is %5.4f\n",
 df, chi_squared, p);

}

Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Informational Errors

Alert Errors

IMSL_ARG_LESS_THAN_ZERO Since “chi_squared”= #is less than zero, the dis-
tribution function is zero at “chi_squared.”

IMSL_NORMAL_UNDERFLOW Using the normal distribution for large degrees of
freedom, underflow would have occurred.
1120

 Special Functions chi_squared_inverse_cdf
chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <imsl.h>
float imsl_f_chi_squared_inverse_cdf (float p, float df)

The type double function is imsl_d_chi_squared_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the chi-squared distribution function is to be evaluated. The
argument p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. The argument df must be greater
than 0.

Return Value
The inverse of the chi-squared distribution function evaluated at p. The probability that a chi-squared random
variable takes a value less than or equal to imsl_f_chi_squared_inverse_cdf is p.

Description
The function imsl_f_chi_squared_inverse_cdf evaluates the inverse distribution function of a
chi-squared random variable with ν = df and with probability p. That is, it determines
x = imsl_f_chi_squared_inverse_cdf(p,df) such that

where Γ(⋅) is the gamma function. The probability that the random variable takes a value less than or equal to x is
p.

p = 1
2ν/2Γ ν / 2 ∫0

x

e−t/2tν/2−1dt
1121

 Special Functions chi_squared_inverse_cdf
For ν < 40, imsl_f_chi_squared_inverse_cdf uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to find
the point at which the chi-squared distribution function is equal to p. The distribution function is evaluated using
function imsl_f_chi_squared_cdf.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.18) to
the normal distribution is used. The function imsl_f_normal_cdf is used to evaluate the inverse of the nor-
mal distribution function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
equation 26.4.17) is used.

Example
In this example, the 99-th percentage point is calculated for a chi-squared random variable with two degrees of
freedom. The same calculation is made for a similar variable with 64 degrees of freedom.

#include <imsl.h>
#include <stdio.h>
int main ()
{
 float df, x;
 float p = 0.99;
 df = 2.0;
 x = imsl_f_chi_squared_inverse_cdf(p, df);
 printf("For p = .99 with 2 df, x = %7.3f.\n", x);
 df = 64.0;
 x = imsl_f_chi_squared_inverse_cdf(p,df);
 printf("For p = .99 with 64 df, x = %7.3f.\n", x);
}

Output

For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

Warning Errors
IMSL_UNABLE_TO_BRACKET_VALUE2 Unable to bracket the value of the inverse chi-

squared at "p" = #, with "df" = #.

IMSL_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared could not be
found within a specified number of iterations. An
approximation for
imsl_f_chi_squared_inverse_cdf is returned.
1122

 Special Functions F_cdf
F_cdf
Evaluates the F distribution function.

Synopsis
#include <imsl.h>
float imsl_f_F_cdf (float f, float df_denominator, float df_numerator)

The type double function is imsl_d_F_cdf.

Required Arguments
float f (Input)

Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. The argument df_numerator must be positive.

float df_denominator (Input)
The denominator degrees of freedom. The argument df_denominator must be positive.

Return Value
The probability that an F random variable takes a value less than or equal to the input point, f.

Description
The function imsl_f_F_cdf evaluates the distribution function of a Snedecor’s F random variable with
df_numerator and df_denominator. The function is evaluated by making a transformation to a beta ran-
dom variable and then by evaluating the incomplete beta function. If X is an F variate with ν1 and ν2 degrees of

freedom and Y = (ν1 X)/(ν2 + ν1 X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2.

The function imsl_f_F_cdf also uses a relationship between F random variables that can be expressed as
follows:

FF(f, ν1, ν2) = 1 − FF(1/f, ν2, ν1) where FF is the distribution function for an F random variable.
1123

 Special Functions F_cdf
Figure 22, Plot of FF (f, 1.0, 1.0)

Example
This example finds the probability that an F random variable with one numerator and one denominator degree of
freedom is greater than 648.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float p;
 float F = 648.0;
 float df_numerator = 1.0;
 float df_denominator = 1.0;
 p = 1.0 - imsl_f_F_cdf(F,df_numerator, df_denominator);
 printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate",
 "is greater than 648 is", p);
}

Output

The probability that an F(1,1) variate is greater than 648 is 0.0250.
1124

 Special Functions F_inverse_cdf
F_inverse_cdf
Evaluates the inverse of the F distribution function.

Synopsis
#include <imsl.h>
float imsl_f_F_inverse_cdf (float p, float df_numerator, float df_denominator)

The type double procedure is imsl_d_F_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the F distribution function is to be evaluated. The argument p
must be in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be positive.

Return Value
The value of the inverse of the F distribution function evaluated at p. The probability that an F random variable
takes a value less than or equal to imsl_f_F_inverse_cdf is p.

Description
The function imsl_f_F_inverse_cdf evaluates the inverse distribution function of a Snedecor’s F random
variable with ν1 = df_numerator numerator degrees of freedom and ν2 = df_denominator denominator

degrees of freedom. The function is evaluated by making a transformation to a beta random variable and then by
evaluating the inverse of an incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom and
1125

 Special Functions F_inverse_cdf
Y = (ν1, X)/(ν2 + ν1 X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2. If P ≤ 0.5,

imsl_f_F_inverse_cdf uses this relationship directly; otherwise, it also uses a relationship between F ran-
dom variables that can be expressed as follows:

FF(f, ν
1

, ν
2

) = 1 − FF(1/f, ν
2

, ν
1

)

Example
In this example, the 99-th percentage point is calculated for an F random variable with seven degrees of freedom.
The same calculation is made for a similar variable with one degree of freedom.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float df_denominator = 1.0;
 float df_numerator = 7.0;
 float f;
 float p = 0.99;
 f = imsl_f_F_inverse_cdf(p, df_numerator, df_denominator);
 printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors
IMSL_F_INVERSE_OVERFLOW Function imsl_f_F_inverse_cdf is set to

machine infinity since overflow would occur upon
modifying the inverse value for the F distribution
with the result obtained from the inverse beta
distribution.
1126

 Special Functions t_cdf
t_cdf
Evaluates the Student’s t cumulative distribution function (CDF).

Synopsis
#include <imsl.h>
float imsl_f_t_cdf (float t, float df)

The type double function is imsl_d_t_cdf.

Required Arguments
float t (Input)

Argument for which the Student’s t cumulative distribution function is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value less than or equal to the input t.

Description
Function imsl_f_t_cdf evaluates the cumulative distribution function of a Student’s t random variable with

ν = df degrees of freedom. If t2 ≥ ν, the following identity relating the Student’s t cumulative distribution function
TCDF(t, ν) to the incomplete beta ratio function Ix (a, b) is used:

where

TCDF t ≤ 0,ν = 12 I x
ν
2,
1
2

x = ν
t2 + ν
1127

 Special Functions t_cdf
and

If t2 < ν, the solution space is partitioned into four algorithms as follows: If ν ≥ 64 and t2 / ν ≤ 0.1, a Cornish-
Fisher expansion is used to evaluate the distribution function. If ν < 64 and an integer and ∣t∣ < 2.0, a trigonomet-
ric series is used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some rearrangement). If ν
< 64 and an integer and ∣t∣ > 2.0, a series given by Hill (1970) that converges well for large values of t is used. For

the remaining t2 < ν cases, TCDF(t, ν) is calculated using the identity:

where

Figure 23, Plot of Ft (t,6.0)

TCDF t > 0,ν = 1 − TCDF −t,ν

TCDF t,ν = I x
ν
2,
ν
2

x = t + t2 + ν
2 t2 + ν
1128

 Special Functions t_cdf
Example
This example finds the probability that a t random variable with 6 degrees of freedom is greater in absolute value
than 2.447. The fact that t is symmetric about 0 is used.

#include <imsl.h>
#include <stdio.h>
int main ()
{

 float t = 2.447, df = 6.0, p;
 p = 2.0*imsl_f_t_cdf(-t,df);
 printf("Pr(|t(%1.0f)| > %5.3f) = %6.4f\n", df, t, p);

}

Output

Pr(|t(6)| > 2.447) = 0.0500
1129

 Special Functions t_inverse_cdf
t_inverse_cdf
Evaluates the inverse of the Student’s t distribution function.

Synopsis
#include <imsl.h>
float imsl_f_t_inverse_cdf (float p, float df)

The type double function is imsl_d_t_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the Student’s t distribution function is to be evaluated. Argument
p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The inverse of the Student’s t distribution function evaluated at p. The probability that a Student’s t random vari-
able takes a value less than or equal to imsl_f_t_inverse_cdf is p.

Description
The function imsl_f_t_inverse_cdf evaluates the inverse distribution function of a Student’s t random
variable with ν = df degrees of freedom. If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is
between 1 and 2, the relationship of a t to a beta random variable is exploited, and the inverse of the beta distri-
bution is used to evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values of ν greater

than 2, Hill’s algorithm inverts an integrated expansion in 1/(1 + t2/ν) of the t density. For larger values, an asymp-
totic inverse Cornish-Fisher type expansion about normal deviates is used.
1130

 Special Functions t_inverse_cdf
Example
This example finds the 0.05 critical value for a two-sided t test with six degrees of freedom.

#include <imsl.h>
int main()
{
 float df = 6.0;
 float p = 0.975;
 float t;
 t = imsl_f_t_inverse_cdf(p,df);
 printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}

Output

The two-sided t(6) 0.05 critical value is 2.447

Informational Errors
IMSL_OVERFLOW Function imsl_f_t_inverse_cdf is set to

machine infinity since overflow would occur upon
modifying the inverse value for the F distribution
with the result obtained from the inverse beta
distribution.
1131

 Special Functions gamma_cdf
gamma_cdf
Evaluates the gamma distribution function.

Synopsis
#include <imsl.h>
float imsl_f_gamma_cdf (float x, float a)

The type double procedure is imsl_d_gamma_cdf.

Required Arguments
float x (Input)

Argument for which the gamma distribution function is to be evaluated.

float a (Input)
The shape parameter of the gamma distribution. This parameter must be positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to x.

Description
The function imsl_f_gamma_cdf evaluates the distribution function, F, of a gamma random variable with
shape parameter a, that is,

where Γ(⋅) is the gamma function. (The gamma function is the integral from zero to infinity of the same integrand
as above). The value of the distribution function at the point x is the probability that the random variable takes a
value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale parameter b (which must be
positive) or even as a three-parameter distribution in which the third parameter c is a location parameter.

F x = 1
Γ a ∫0

x

e−tta−1dt
1132

 Special Functions gamma_cdf
In the most general case, the probability density function over (c,∞) is

If T is such a random variable with parameters a, b, and c, the probability that T ≤ t0 can be obtained from

imsl_f_gamma_cdf by setting x = (t0 − c)/b.

If x is less than a or if x is less than or equal to 1.0, imsl_f_gamma_cdf uses a series expansion. Otherwise, a
continued fraction expansion is used. (See Abramowitz and Stegun 1964.)

Example
Let X be a gamma random variable with a shape parameter of four. (In this case, it has an Erlang distribution since
the shape parameter is an integer.) This example finds the probability that X is less than 0.5 and the probability
that X is between 0.5 and 1.0.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float p, x;
 float a = 4.0;
 x = 0.5;
 p = imsl_f_gamma_cdf(x,a);
 printf("The probability that X is less than 0.5 is %6.4f\n", p);
 x = 1.0;
 p = imsl_f_gamma_cdf(x,a) - p;
 printf("The probability that X is between 0.5 and 1.0 is %6.4f\n", p);
}

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

f t = 1
baΓ a

e
− t−c /b

x − c a−1
1133

 Special Functions gamma_cdf
Informational Errors

Fatal Errors

IMSL_LESS_THAN_ZERO The input argument, x, is less than zero.

IMSL_X_AND_A_TOO_LARGE The function overflows because x and a are too
large.
1134

 Special Functions binomial_cdf
binomial_cdf
Evaluates the binomial distribution function.

Synopsis
#include <imsl.h>
float imsl_f_binomial_cdf (int k, int n, float p)

The type double procedure is imsl_d_binomial_cdf.

Required Arguments
int k (Input)

Argument for which the binomial distribution function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that k or fewer successes occur in n independent Bernoulli trials, each of which has a probability p
of success.

Description
The function imsl_f_binomial_cdf evaluates the distribution function of a binomial random variable with
parameters n and p. It does this by summing probabilities of the random variable taking on the specific values in
its range. These probabilities are computed by the recursive relationship
1135

 Special Functions binomial_cdf
To avoid the possibility of underflow, the probabilities are computed forward from zero if k is not greater than
n × p; otherwise, they are computed backward from n. The smallest positive machine number, ɛ, is used as the

starting value for summing the probabilities, which are rescaled by (1 − p)n ɛ if forward computation is performed

and by pnɛ if backward computation is done.

For the special case of p is zero, imsl_f_binomial_cdf is set to 1; and for the case p is 1,
imsl_f_binomial_cdf is set to 1 if k = n and is set to zero otherwise.

Example
Suppose X is a binomial random variable with an n = 5 and a p = 0.95. This example finds the probability that X is
less than or equal to three.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int k = 3;
 int n = 5;
 float p = 0.95;
 float pr;
 pr = imsl_f_binomial_cdf(k,n,p);
 printf("Pr(x <= 3) = %6.4f\n", pr);
}

Output

Pr(x <= 3) = 0.0226

Informational Errors
IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

IMSL_GREATER_THAN_N The input argument, k, is greater than the number
of Bernoulli trials, n.

Pr X = j =
n + 1 − j p
j 1 − p

Pr X = j − 1
1136

 Special Functions hypergeometric_cdf
hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis
#include <imsl.h>
float imsl_f_hypergeometric_cdf (int k, int n, int m, int l)

The type double procedure is imsl_d_hypergeometric_cdf.

Required Arguments
int k (Input)

Argument for which the hypergeometric distribution function is to be evaluated.

int n (Input)
Sample size n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size l must be greater than or equal to n and m.

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from a lot of size l that contains m
defectives.

Description
The function imsl_f_hypergeometric_cdf evaluates the distribution function of a hypergeometric ran-
dom variable with parameters n, l, and m. The hypergeometric random variable x can be thought of as the
number of items of a given type in a random sample of size n that is drawn without replacement from a popula-
tion of size l containing m items of this type. The probability function is
1137

 Special Functions hypergeometric_cdf
where i = max (0, n − l + m).

If k is greater than or equal to i and less than or equal to min (n, m), imsl_f_hypergeometric_cdf sums
the terms in this expression for j going from i up to k. Otherwise, 0 or 1 is returned, as appropriate.

To avoid rounding in the accumulation, imsl_f_hypergeometric_cdf performs the summation differently,
depending on whether k is greater than the mode of the distribution, which is the greatest integer in (m + 1)
(n + 1)/(l + 2).

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. This example evaluates the
distribution function at 7.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int k = 7;
 int l = 1000;
 int m = 70;
 int n = 100;
 float p;
 p = imsl_f_hypergeometric_cdf(k,n,m,l);
 printf("Pr (x <= 7) = %6.4f\n", p);
}

Output

Pr (x <= 7) = 0.599

Pr x = j =

m
j

l − m
n− j

l
n

for j = i, i + 1, … ,min(n,m)
1138

 Special Functions hypergeometric_cdf
Informational Errors

Fatal Errors

IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

IMSL_K_GREATER_THAN_N The input argument, k, is greater than the sample
size.

IMSL_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to n and m.
1139

 Special Functions poisson_cdf
poisson_cdf
Evaluates the Poisson distribution function.

Synopsis
#include <imsl.h>
float imsl_f_poisson_cdf (int k, float theta)

The type double function is imsl_d_poisson_cdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
The probability that a Poisson random variable takes a value less than or equal to k.

Description
The function imsl_f_poisson_cdf evaluates the distribution function of a Poisson random variable with
parameter theta. The mean of the Poisson random variable, theta, must be positive. The probability function
(with θ = theta) is

f(x) = e-q θx/x!, for x = 0, 1, 2, …
The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed.
The function imsl_f_poisson_cdf uses the recursive relationship

f(x + 1) = f(x)q/(x + 1), for x = 0, 1, 2, …, k - 1

with f(0) = e-q.
1140

 Special Functions poisson_cdf
Figure 24, Plot of Fp(k, θ)

Example
Suppose X is a Poisson random variable with θ = 10. This example evaluates the probability that X ≤ 7.

#include <imsl.h>
int main()
{
 int k = 7;
 float theta = 10.0;
 float p;
 p = imsl_f_poisson_cdf(k, theta);
 printf("Pr(x <= 7) = %6.4f\n", p);
}

Output

Pr(x <= 7) = 0.2202

Informational Errors
IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.
1141

 Special Functions beta_cdf
beta_cdf
Evaluates the beta probability distribution function.

Synopsis
#include <imsl.h>
float imsl_f_beta_cdf (float x, float pin, float qin)

The type double function is imsl_d_beta_cdf.

Required Arguments
float x (Input)

Argument for which the beta probability distribution function is to be evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal to x.

Description
Function imsl_f_beta_cdf evaluates the distribution function of a beta random variable with parameters
pin and qin. This function is sometimes called the incomplete beta ratio and with p = pin and q = qin, is
denoted by Ix (p, q). It is given by

where Γ(⋅) is the gamma function. The value of the distribution function by Ix (p, q) is the probability that the ran-

dom variable takes a value less than or equal to x.

I x p, q =
Γ p Γ q
Γ p + q ∫0

x

t p−1 1 − t q−1dt
1142

 Special Functions beta_cdf
The integral in the expression above is called the incomplete beta function and is denoted by βx (p, q). The con-

stant in the expression is the reciprocal of the beta function (the incomplete function evaluated at one) and is
denoted by β(p, q).

Function beta_cdf uses the method of Bosten and Battiste (1974).

Example
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) This example
finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric
beta random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsl.h>
#include <stdio.h>
int main()
{
 float p, pin, qin, x;
 pin = 12.0;
 qin = 12.0;
 x = 0.6;
 p = imsl_f_beta_cdf(x, pin, qin);
 printf(" The probability that X is less than 0.6 is %6.4f\n",
 p);
 x = 0.5;
 p -= imsl_f_beta_cdf(x, pin, qin);
 printf(" The probability that X is between 0.5 and 0.6 is %6.4f\n",
 p);
}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
1143

 Special Functions beta_inverse_cdf
beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis
#include <imsl.h>
float imsl_f_beta_inverse_cdf (float p, float pin, float qin)

The type double function is imsl_d_beta_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the beta distribution function is to be evaluated. Argument p
must be in the open interval (0.0 ,1.0).

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
Function imsl_f_beta_inverse_cdf evaluates the inverse distribution function of a beta random variable
with parameters pin and qin.

Description
With P = p, p = pin, and q = qin, function imsl_f_beta_inverse_cdf returns x such that

where Γ(⋅) is the gamma function. The probability that the random variable takes a value less than or equal to x is
P.

P =
Γ p + q
Γ p Γ q ∫0

x

t p−1 1 − t q−1dt
1144

 Special Functions beta_inverse_cdf
Example
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) This example
finds the value x such that the probability that X ≤ x is 0.9.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float p, pin, qin, x;
 pin = 12.0;
 qin = 12.0;
 p = 0.9;
 x = imsl_f_beta_inverse_cdf(p, pin, qin);
 printf(" X is less than %6.4f with probability 0.9.\n",
 x);
}

Output

X is less than 0.6299 with probability 0.9.
1145

 Special Functions bivariate_normal_cdf
bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis
#include <imsl.h>
float imsl_f_bivariate_normal_cdf (float x, float y, float rho)

The type double function is imsl_d_bivariate_normal_cdf.

Required Arguments
float x (Input)

The x-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value
The probability that a bivariate normal random variable with correlation rho takes a value less than or equal to x
and less than or equal to y.

Description
Function imsl_f_bivariate_normal_cdf evaluates the distribution function F of a bivariate normal dis-
tribution with means of zero, variances of one, and correlation of rho; that is, with ρ =rho, and ∣ρ∣ < 1,
1146

 Special Functions bivariate_normal_cdf
To determine the probability that U ≤u0 and V ≤v0, where (U, V)T is a bivariate normal random variable with mean

μ =(μU, μV)T and variance-covariance matrix

transform (U, V)T to a vector with zero means and unit variances. The input to
imsl_f_bivariate_normal_cdf would be X =(u0 - μU)/σU, Y =(v0 - μV)/σV, and ρ =σUV/(σUσV).

Function imsl_f_bivariate_normal_cdf uses the method of Owen (1962, 1965). Computation of
Owen’s T-function is based on code by M. Patefield and D. Tandy (2000). For ∣ρ∣ =1, the distribution function is
computed based on the univariate statistic, Z =min(x, y), and on the normal distribution function
imsl_f_normal_cdf, which can be found in Chapter 11 of the IMSL C Numerical Stat Library, “Probablility
Distribution Functions and Inverses.”

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance matrix

This example finds the probability that X is less than −2.0 and Y is less than 0.0.

#include <imsl.h>
#include <stdio.h>
int main()
{
 float p, rho, x, y;
 x = -2.0;
 y = 0.0;
 rho = 0.9;
 p = imsl_f_bivariate_normal_cdf(x, y, rho);
 printf(" The probability that X is less than -2.0"
 " and Y is less than 0.0 is %6.4f\n", p);
}

F x,y = 1
2π 1 − ρ2 ∫−∞

x

∫
−∞

y

exp −
u2 − 2ρuv + v2

2 1 − ρ2
dudv

∑ =
σU
2 σUV
σUV σV

2

1.0 0.9
0.9 1.0
1147

 Special Functions bivariate_normal_cdf
Output

The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228
1148

 Special Functions cumulative_interest
cumulative_interest
Evaluates the cumulative interest paid between two periods.

Synopsis
#include <imsl.h>
float imsl_f_cumulative_interest (float rate, int n_periods, float present_value,

int start, int end, int when)

The type double function is imsl_d_cumulative_interest.

Required Arguments
float rate (Input)

Interest rate.

int n_periods (Input)
Total number of payment periods. n_periods cannot be less than or equal to 0.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

int start (Input)
Starting period in the calculation. start cannot be less than 1; or greater than end.

int end (Input)
Ending period in the calculation.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.

Return Value
The cumulative interest paid between the first period and the last period. If no result can be computed, NaN is
returned.
1149

 Special Functions cumulative_interest
Description
Function imsl_f_cumulative_interest evaluates the cumulative interest paid between the first period
and the last period.

It is computed using the following:

where interesti is computed from imsl_f_interest_payment for the i-th period.

Example
In this example, imsl_f_cumulative_interest computes the total interest paid for the first year of a 30-
year $200,000 loan with an annual interest rate of 7.25%. The payment is made at the end of each month.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = 0.0725 / 12;
 int n_periods = 12 * 30;
 float present_value = 200000;
 int start = 1;
 int end = 12;
 float total;
 total = imsl_f_cumulative_interest (rate, n_periods, present_value,
 start, end, IMSL_AT_END_OF_PERIOD);
 printf ("First year interest = $%.2f.\n", total);
}

Output

First year interest = $-14436.52.

∑
i=start

end

interesti
1150

 Special Functions cumulative_principal
cumulative_principal
Evaluates the cumulative principal paid between two periods.

Synopsis
#include <imsl.h>
float imsl_f_cumulative_principal (float rate, int n_periods, float present_value,

int start, int end, int when)

The type double function is imsl_d_cumulative_principal.

Required Arguments
float rate (Input)

Interest rate.

int n_periods (Input)
Total number of payment periods. n_periods cannot be less than or equal
to 0.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

int start (Input)
Starting period in the calculation. start cannot be less than 1; or greater than end.

int end (Input)
Ending period in the calculation.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.
1151

 Special Functions cumulative_principal
Return Value
The cumulative principal paid between the first period and the last period. If no result can be computed, NaN is
returned.

Description
Function imsl_f_cumulative_principal evaluates the cumulative principal paid between the first
period and the last period.

It is computed using the following:

where principali is computed from imsl_f_principal_payment for the i-th period.

Example
In this example, imsl_f_cumulative_principal computes the total principal paid for the first year of a
30-year $200,000 loan with an annual interest rate of 7.25%. The payment is made at the end of each month.

#include <stdio.h>
#include <imsl.h>
int main ()
{
 float rate = 0.0725 / 12;
 int n_periods = 12 * 30;
 float present_value = 200000;
 int start = 1;
 int end = 12;
 float total;
 total = imsl_f_cumulative_principal (rate, n_periods, present_value,
 start, end, IMSL_AT_END_OF_PERIOD);
 printf ("First year principal = $%.2f.\n", total);
}

Output

First year principal = $-1935.73.

∑
i=start

end

principali
1152

 Special Functions depreciation_db
depreciation_db
Evaluates the depreciation of an asset using the fixed-declining balance method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_db (float cost, float salvage, int life, int period, int month)

The type double function is imsl_d_depreciation_db.

Required Arguments
float cost (Input)

Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int period (Input)
Period for which the depreciation is to be computed. period cannot be less than or equal to 0, and
cannot be greater than life +1.

int month (Input)
Number of months in the first year. month cannot be greater than 12 or less than 1.

Return Value
The depreciation of an asset for a specified period using the fixed-declining balance method. If no result can be
computed, NaN is returned.
1153

 Special Functions depreciation_db
Description
Function imsl_f_depreciation_db computes the depreciation of an asset for a specified period using the
fixed-declining balance method. Routine imsl_f_depreciation_db varies depending on the specified
value for the argument period, see table below.

where

Example
In this example, imsl_f_depreciation_db computes the depreciation of an asset, which costs $2,500 ini-
tially, a useful life of 3 periods and a salvage value of $500, for each period.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float cost = 2500;
 float salvage = 500;
 int life = 3;
 int month = 6;
 float db;
 int period;
 for (period = 1; period <= life + 1; period++)

period Formula

period = 1

period = life

period other than 1 or life

NOTE: rate is rounded to three decimal places.

cost × rate × month12

cost − totaldepreciation fromperiods × rate × 12 − month12

cost − total depreciation from prior periods × rate

rate = 1 −
salvage
cost

1
life
1154

 Special Functions depreciation_db
 {
 db = imsl_f_depreciation_db (cost, salvage, life, period, month);
 printf ("For period %i, db = $%.2f.\n", period, db);
 }
}

Output

For period 1, db = $518.75.
For period 2, db = $822.22.
For period 3, db = $481.00.
For period 4, db = $140.69.
1155

 Special Functions depreciation_ddb
depreciation_ddb
Evaluates the depreciation of an asset using the double-declining balance method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_ddb (float cost, float salvage, int life, int period,

float factor)

The type double function is imsl_d_depreciation_ddb.

Required Arguments
float cost (Input)

Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int period (Input)
Period for which the depreciation is to be computed. period cannot be greater than life.

float factor (Input)
Rate at which the balance declines. factor must be positive.

Return Value
The depreciation of an asset using the double-declining balance method for a period specified by the user. If no
result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_ddb computes the depreciation of an asset using the double-declining
balance method for a specified period.
1156

 Special Functions depreciation_ddb
It is computed using the following:

Example
In this example, imsl_f_depreciation_ddb computes the depreciation of an asset, which costs $2,500 ini-
tially, lasts 24 periods and a salvage value of $500, for each period.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float cost = 2500;
 float salvage = 500;
 float factor = 2;
 int life = 24;
 int period;
 float ddb;
 for (period = 1; period <= life; period++)
 {
 ddb = imsl_f_depreciation_ddb (cost, salvage, life, period, factor);
 printf ("For period %i, ddb = $%.2f.\n", period, ddb);
 }
}

Output

For period 1, ddb = $208.33.
For period 2, ddb = $190.97.
For period 3, ddb = $175.06.
For period 4, ddb = $160.47.
For period 5, ddb = $147.10.
For period 6, ddb = $134.84.
For period 7, ddb = $123.60.
For period 8, ddb = $113.30.
For period 9, ddb = $103.86.
For period 10, ddb = $95.21.
For period 11, ddb = $87.27.
For period 12, ddb = $80.00.
For period 13, ddb = $73.33.
For period 14, ddb = $67.22.
For period 15, ddb = $61.62.
For period 16, ddb = $56.48.
For period 17, ddb = $51.78.
For period 18, ddb = $47.46.
For period 19, ddb = $22.09.
For period 20, ddb = $0.00.

cost − salvage total depreciation from prior periods
factor
life
1157

 Special Functions depreciation_ddb
For period 21, ddb = $0.00.
For period 22, ddb = $0.00.
For period 23, ddb = $0.00.
For period 24, ddb = $0.00.
1158

 Special Functions depreciation_sln
depreciation_sln
Evaluates the depreciation of an asset using the straight-line method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_sln (float cost, float salvage, int life)

The type double function is imsl_d_depreciation_sln.

Required Arguments
float cost (Input)

Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

Return Value
The straight line depreciation of an asset for its life. If no result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_sln computes the straight line depreciation of an asset for its life.

It is computed using the following:
1159

 Special Functions depreciation_sln
Example
In this example, imsl_f_depreciation_sln computes the depreciation of an asset, which costs $2,500 ini-
tially, lasts 24 periods and a salvage value of $500.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float cost = 2500;
 float salvage = 500;
 int life = 24;
 float depreciation_sln;
 depreciation_sln = imsl_f_depreciation_sln (cost, salvage, life);
 printf ("The straight line depreciation of the asset for one ");
 printf ("period is $%.2f.\n", depreciation_sln);
}

Output

The straight line depreciation of the asset for one period is $83.33.

cost − salvage / life
1160

 Special Functions depreciation_syd
depreciation_syd
Evaluates the depreciation of an asset using the sum-of-years digits method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_syd (float cost, float salvage, int life, int period)

The type double function is imsl_d_depreciation_syd.

Required Arguments
float cost (Input)

Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int period (Input)
Period for which the depreciation is to be computed. period cannot be greater than life.

Return Value
The sum-of-years digits depreciation of an asset for a specified period. If no result can be computed, NaN is
returned.

Description
Function imsl_f_depreciation_syd computes the sum-of-years digits depreciation of an asset for a
specified period.

It is computed using the following:
1161

 Special Functions depreciation_syd
Example
In this example, imsl_f_depreciation_syd computes the depreciation of an asset, which costs $25,000

initially, lasts 15 years and a salvage value of $5,000, for the 14th year.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float cost = 25000;
 float salvage = 5000;
 int life = 15;
 int period = 14;
 float depreciation_syd;
 depreciation_syd = imsl_f_depreciation_syd (cost, salvage, life, period);
 printf ("The depreciation allowance for the 14th year ");
 printf ("is $%.2f.\n", depreciation_syd);
}

Output

The depreciation allowance for the 14th year is $333.33.

cost − salvage period
life + 1 life

2

1162

 Special Functions depreciation_vdb
depreciation_vdb
Evaluates the depreciation of an asset for any given period using the variable-declining balance method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_vdb (float cost, float salvage, int life, int start, int end,

float factor, int sln)

The type double function is imsl_d_depreciation_vdb.

Required Arguments
float cost (Input)

Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int start (Input)
Starting period in the calculation. start cannot be less than 1; or greater than end.

int end (Input)
Final period for the calculation. end cannot be greater than life.

float factor (Input)
Rate at which the balance declines. factor must be positive.

int sln (Input)
If equal to zero, do not switch to straight-line depreciation even when the depreciation is greater than
the declining balance calculation.
1163

 Special Functions depreciation_vdb
Return Value
The depreciation of an asset for any given period, including partial periods, using the variable-declining balance
method. If no result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_vdb computes the depreciation of an asset for any given period using the
variable-declining balance method using the following:

If sln =0

If sln ≠ 0

where ddbi is computed from imsl_f_depreciation_ddb for the i-th period. k =the first period where

straight line depreciation is greater than the depreciation using the double-declining balance method

.

Example
In this example, imsl_f_depreciation_vdb computes the depreciation of an asset between the 10th and

15th year, which costs $25,000 initially, lasts 15 years and has a salvage value of $5,000.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float cost = 25000;
 float salvage = 5000;
 int life = 15;
 int start = 10;
 int end = 15;
 float factor = 2.;
 int sln = 0;
 float vdb;

∑
i=start+1

end

ddbi

A +∑
i=k

end
cost − A − salvage
end − k + 1

A = ∑
i=start+1

k−1
ddbi
1164

 Special Functions depreciation_vdb
 vdb = imsl_f_depreciation_vdb (cost, salvage, life, start,
 end, factor, sln);
 printf ("The depreciation allowance between the 10th and 15th ");
 printf ("year is $%.2f.\n", vdb);
}

Output

The depreciation allowance between the 10th and 15th year is $976.69.
1165

 Special Functions dollar_decimal
dollar_decimal
Converts a fractional price to a decimal price.

Synopsis
#include <imsl.h>
float imsl_f_dollar_decimal (float fractional_dollar, int fraction)

The type double function is imsl_d_dollar_decimal.

Required Arguments
float fractional_dollar (Input)

Whole number of dollars plus the numerator, as the fractional part.

int fraction (Input)
Denominator of the fractional dollar. fraction must be positive.

Return Value
The dollar price expressed as a decimal number. The dollar price is the whole number part of fractional-dollar
plus its decimal part divided by fraction. If no result can be computed, NaN is returned.

Description
Function imsl_f_dollar_decimal converts a dollar price, expressed as a fraction, into a dollar price,
expressed as a decimal number.

It is computed using the following:

where idollar is the integer part of fractional_dollar, and ifrac is the integer part of log(fraction).

idollar + fractional_dollar − idollar * 10
ifrac+1

fraction
1166

 Special Functions dollar_decimal
Example
In this example, imsl_f_dollar_decimal converts $1 1/4 to $1.25.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float fractional_dollar = 1.1;
 int fraction = 4;
 float dollardec;
 dollardec = imsl_f_dollar_decimal (fractional_dollar, fraction);
 printf ("The fractional dollar $1 1/4 = $%.2f.\n", dollardec);
}

Output

The fractional dollar $1 1/4 =$1.25.
1167

 Special Functions dollar_fraction
dollar_fraction
Converts a decimal price to a fractional price.

Synopsis
#include <imsl.h>
float imsl_f_dollar_fraction (float decimal_dollar, int fraction)

The type double function is imsl_d_dollar_fraction.

Required Arguments
float decimal_dollar (Input)

Dollar price expressed as a decimal number.

int fraction (Input)
Denominator of the fractional dollar. fraction must be positive.

Return Value
The dollar price expressed as a fraction. The numerator is the decimal part of the return value. If no result can be
computed, NaN is returned.

Description
Function imsl_f_dollar_fraction converts a dollar price, expressed as a decimal number, into a dollar
price, expressed as a fractional price. If no result can be computed, NaN is returned.

It can be found by solving the following

where idollar is the integer part of the decimal_dollar, and ifrac is the integer part of log(fraction).

idollar +
decimal_dollar − idollar

10
ifrac+1

/ fraction
1168

 Special Functions dollar_fraction
Example
In this example, imsl_f_dollar_fraction converts $1.25 to $1 1/4.

#include <stdio.h>
#include <imsl.h>
int main()
{

 int numerator, fraction = 4;
 float dollarfrc, decimal_dollar = 1.25;
 dollarfrc = imsl_f_dollar_fraction(decimal_dollar,

 fraction);
 numerator = dollarfrc*10.-((int)dollarfrc)*10;
 printf ("The decimal dollar $1.25 as a "

 "fractional dollar = $%i %i/%i.\n",
 (int)dollarfrc, numerator, fraction);

}

Output

The decimal dollar $1.25 as a fractional dollar = $1 1/4.
1169

 Special Functions effective_rate
effective_rate
Evaluates the effective annual interest rate.

Synopsis
#include <imsl.h>
float imsl_f_effective_rate (float nominal_rate, int n_periods)

The type double function is imsl_d_effective_rate.

Required Arguments
float nominal_rate (Input)

The interest rate as stated on the face of a security.

int n_periods (Input)
Number of compounding periods per year.

Return Value
The effective annual interest rate. If no result can be computed, NaN is returned.

Description
Function imsl_f_effective_rate computes the continuously-compounded interest rate equivalent to a
given periodically-compounded interest rate. The nominal interest rate is the periodically-compounded interest
rate as stated on the face of a security.

It can found by solving the following:
1170

 Special Functions effective_rate
Example
In this example, imsl_f_effective_rate computes the effective annual interest rate of the nominal inter-
est rate, 6%, compounded quarterly.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float nominal_rate = .06;
 int n_periods = 4;
 float effective_rate;
 effective_rate = imsl_f_effective_rate (nominal_rate, n_periods);
 printf ("The effective rate of the nominal rate, 6.0%%, ");
 printf ("compounded quarterly is %.2f%%.\n", effective_rate * 100.);
}

Output

The effective rate of the nominal rate, 6.0%, compounded quarterly is 6.14%.

1 +
nominal_rate
n_periods

n_periods
− 1
1171

 Special Functions future_value
future_value
Evaluates the future value of an investment.

Synopsis
#include <imsl.h>
float imsl_f_future_value (float rate, int n_periods, float payment,

float present_value, int when)

The type double function is imsl_d_future_value.

Required Arguments
float rate (Input)

Interest rate.

int n_periods (Input)
Total number of payment periods.

float payment (Input)
Payment made in each period.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.

Return Value
The future value of an investment. If no result can be computed, NaN is returned.
1172

 Special Functions future_value
Description
Function imsl_f_future_value computes the future value of an investment. The future value is the value,
at some time in the future, of a current amount and a stream of payments.

It can be found by solving the following:

If rate =0

If rate ≠ 0

Example
In this example, imsl_f_future_value computes the value of $30,000 payment made annually at the
beginning of each year for the next 20 years with an annual interest rate of 5%.

#include <imsl.h>
#include <stdio.h>
int main ()
{
 float rate = .05;
 int n_periods = 20;
 float payment = -30000.00;
 float present_value = -30000.00;
 int when = IMSL_AT_BEGINNING_OF_PERIOD;
 float future_value;
 future_value = imsl_f_future_value (rate, n_periods, payment,
 present_value, when);
 printf ("After 20 years, the value of the investments ");
 printf ("will be $%.2f.\n", future_value);
}

Output

After 20 years, the value of the investments will be $1121176.63.

present_value + payment n_periods + future_value = 0

present_value 1 + rate n_periods
+

payment 1 + rate when
1 + rate n_periods − 1

rate + future_value = 0
1173

 Special Functions future_value_schedule
future_value_schedule
Evaluates the future value of an initial principal taking into consideration a schedule of compound interest rates.

Synopsis
#include <imsl.h>
float imsl_f_future_value_schedule (float principal, int count, float schedule[])

The type double function is imsl_d_future_value_schedule.

Required Arguments
float principal (Input)

Principal or present value.

int count (Input)
Number of interest rates in schedule.

float schedule[] (Input)
Array of size count of interest rates to apply.

Return Value
The future value of an initial principal after applying a schedule of compound interest rates. If no result can be
computed, NaN is returned.

Description
Function imsl_f_future_value_schedule computes the future value of an initial principal after applying
a schedule of compound interest rates.

It is computed using the following:

where schedulei =interest rate at the i-th period.

∑
i=1

count

principal * schedulei
1174

 Special Functions future_value_schedule
Example
In this example, imsl_f_future_value_schedule computes the value of a $10,000 investment after 5
years with interest rates of 5%, 5.1%, 5.2%, 5.3% and 5.4%, respectively.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float principal = 10000.0;
 float schedule[5] = { .050, .051, .052, .053, .054 };
 float fvschedule;
 fvschedule = imsl_f_future_value_schedule (principal, 5, schedule);
 printf ("After 5 years the $10,000 investment will have grown ");
 printf ("to $%.2f.\n", fvschedule);
}

Output

After 5 years the $10,000 investment will have grown to $12884.77.
1175

 Special Functions interest_payment
interest_payment
Evaluates the interest payment for an investment for a given period.

Synopsis
#include <imsl.h>
float imsl_f_interest_payment (float rate, int period, int n_periods,

float present_value, float future_value, int when)

The type double function is imsl_d_interest_payment.

Required Arguments
float rate (Input)

Interest rate.

int period (Input)
Payment period.

int n_periods (Input)
Total number of periods.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of payments.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on see the Usage Notes sec-
tion of this chapter.

Return Value
The interest payment for an investment for a given period. If no result can be computed, NaN is returned.
1176

 Special Functions interest_payment
Description
Function imsl_f_interest_payment computes the interest payment for an investment for a given period.

It is computed using the following:

Example
In this example, imsl_f_interest_payment computes the interest payment for the second year of a 25-
year $100,000 loan with an annual interest rate of 8%. The payment is made at the end of each period.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = .08;
 int period = 2;
 int n_periods = 25;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float interest_payment;
 interest_payment = imsl_f_interest_payment (rate, period, n_periods,
 present_value, future_value, when);
 printf ("The interest due the second year on the $100,000 ");
 printf ("loan is $%.2f.\n", interest_payment);
}

Output

The interest due the second year on the $100,000 loan is $-7890.57.

present_value 1 + rate n_periods−1
+ payment 1 + rate *when

1 + rate n_periods−1

rate rate
1177

 Special Functions interest_rate_annuity
interest_rate_annuity
Evaluates the interest rate per period of an annuity.

Synopsis
#include <imsl.h>
float imsl_f_interest_rate_annuity (int n_periods, float payment,

float present_value, float future_value, int when, …, 0)

The type double function is imsl_d_interest_rate_annuity.

Required Arguments
int n_periods (Input)

Total number of periods.

float payment (Input)
Payment made each period.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of payments.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.

Return Value
The interest rate per period of an annuity. If no result can be computed, NaN is returned.
1178

 Special Functions interest_rate_annuity
Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_interest_rate_annuity (int n_periods, float payment,
float present_value, float future_value, int when,
IMSL_XGUESS, float guess,
IMSL_HIGHEST, float max,
0)

Optional Arguments
IMSL_XGUESS, float guess (Input)

Initial guess at the interest rate.

IMSL_HIGHEST, float max (Input)
Maximum value of the interest rate allowed.
Default: 1.0 (100%)

Description
Function imsl_f_interest_rate_annuity computes the interest rate per period of an annuity. An annu-
ity is a security that pays a fixed amount at equally spaced intervals.

It can be found by solving the following:

If rate =0

If rate ≠ 0

Example
In this example, imsl_f_interest_rate_annuity computes the interest rate of a $20,000 loan that
requires 70 payments of $350 each to pay off.

present_value + payment n_periods + future_value = 0

present_value 1 + rate)n_periods +

payment 1 + rate when
1 + rate n_periods − 1

rate + future_value = 0
1179

 Special Functions interest_rate_annuity
#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate;
 int n_periods = 70;
 float payment = -350.;
 float present_value = 20000;
 float future_value = 0.;
 int when = IMSL_AT_BEGINNING_OF_PERIOD;
 rate = imsl_f_interest_rate_annuity (n_periods, payment, present_value,
 future_value, when, 0) * 12;
 printf ("The computed interest rate on the loan is ");
 printf ("%.2f%%.\n", rate * 100.);
}

Output
The computed interest rate on the loan is 7.35%.
1180

 Special Functions internal_rate_of_return
internal_rate_of_return
Evaluates the internal rate of return for a schedule of cash flows.

Synopsis
#include <imsl.h>
float imsl_f_internal_rate_of_return (int count, float values[], …, 0)

The type double function is imsl_d_internal_rate_of_return.

Required Arguments
int count (Input)

Number of cash flows in values. count must be greater than one.

float values[] (Input)
Array of size count of cash flows which occur at regular intervals, which includes the initial
investment.

Return Value
The internal rate of return for a schedule of cash flows. If no result can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_internal_rate_of_return (int count, float values[],

IMSL_XGUESS, float guess,
IMSL_HIGHEST, float max,
IMSL_MAX_EVALS, int max_evals,
0)
1181

 Special Functions internal_rate_of_return
Optional Arguments
IMSL_XGUESS, float guess (Input)

Initial guess at the internal rate of return.

IMSL_HIGHEST, float max (Input)
Maximum value of the internal rate of return allowed.
Default: max = 1.0 (100%).

IMSL_MAX_EVALS, int max_evals (Input)
The maximum number of function evaluations allowed in the computation of the internal rate of
return.
Default: max_evals = 1000.

Description
Function imsl_f_internal_rate_of_return computes the internal rate of return for a schedule of cash
flows. The internal rate of return is the interest rate such that a stream of payments has a net present value of
zero.

It is found by solving the following equation:

where n is the number of cash flows, Ci is the i-th cash flow (including the initial investment C0), and r is the inter-

nal rate of return.

Example
In this example, imsl_f_internal_rate_of_return computes the internal rate of return for nine cash
flows, -$800, $800, $800, $600, $600, $800, $800, $700 and $3,000, with an initial investment of $4,500.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float values[] = { -4500., -800., 800., 800., 600.,
 600., 800., 800., 700., 3000. };
 float internal_rate;
 internal_rate = imsl_f_internal_rate_of_return (10, values, 0);

0 = C0 + ∑
i=1

n−1 Ci
1 + r i
1182

 Special Functions internal_rate_of_return
 printf ("After 9 years, the internal rate of return on the ");
 printf ("cows is %.2f%%.\n", internal_rate * 100.);
}

Output

After 9 years, the internal rate of return on the cows is 7.21%.

Fatal Errors
IMSL_IRR_NOT_COMPUTABLE Unable to compute the internal rate of return.

Check if the sequence of total initial investment
costs and cash inflows enable an internal rate of
return for the given value of “max”. Use or modifica-
tion of variable “guess” might also lead to better
results.
1183

 Special Functions internal_rate_schedule
internal_rate_schedule
Evaluates the internal rate of return for a schedule of cash flows. It is not necessary that the cash flows be
periodic.

Synopsis
#include <imsl.h>
float imsl_f_internal_rate_schedule (int count, float values[], struct tm dates[], …, 0)

The type double function is imsl_d_internal_rate_schedule.

Required Arguments
int count (Input)

Number of cash flows in values. count must be greater than one.

float values[] (Input)
Array of size count of cash flows, which includes the initial investment.

struct tm dates[] (Input)
Array of size count of dates cash flows are made see the Usage Notes section of this chapter.

Return Value
The internal rate of return for a schedule of cash flows that is not necessarily periodic. If no result can be com-
puted, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_internal__rate_schedule (int count, float values[], struct tm dates[],

IMSL_XGUESS, float guess,
IMSL_HIGHEST, float max,
0)
1184

 Special Functions internal_rate_schedule
Optional Arguments
IMSL_XGUESS, float guess (Input)

Initial guess at the internal rate of return.

IMSL_HIGHEST, float max (Input)
Maximum value of the internal rate of return allowed.
Default: 1.0 (100%)

Description
Function imsl_f_internal_rate_schedule computes the internal rate of return for a schedule of cash
flows that is not necessarily periodic. The internal rate such that the stream of payments has a net present value
of zero.

It can be found by solving the following:

In the equation above, di represents the i-th payment date. d1 represents the 1st payment date. valuei represents

the i-th cash flow. rate is the internal rate of return.

Example
In this example, imsl_f_internal_rate_schedule computes the internal rate of return for nine cash
flows, -$800, $800, $800, $600, $600, $800, $800, $700 and $3,000, with an initial investment of $4,500.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float values[10] = { -4500., -800., 800., 800., 600., 600.,
 800., 800., 700., 3000. };
 struct tm dates[10];
 float xirr;
 dates[0].tm_year = 98; dates[0].tm_mon = 0; dates[0].tm_mday = 1;
 dates[1].tm_year = 98; dates[1].tm_mon = 9; dates[1].tm_mday = 1;
 dates[2].tm_year = 99; dates[2].tm_mon = 4; dates[2].tm_mday = 5;
 dates[3].tm_year = 100; dates[3].tm_mon = 4; dates[3].tm_mday = 5;
 dates[4].tm_year = 101; dates[4].tm_mon = 5; dates[4].tm_mday = 1;
 dates[5].tm_year = 102; dates[5].tm_mon = 6; dates[5].tm_mday = 1;
 dates[6].tm_year = 103; dates[6].tm_mon = 7; dates[6].tm_mday = 30;

0 = ∑
i=1

count valuei

1 + rate
di−d1
365
1185

 Special Functions internal_rate_schedule
 dates[7].tm_year = 104; dates[7].tm_mon = 8; dates[7].tm_mday = 15;
 dates[8].tm_year = 105; dates[8].tm_mon = 9; dates[8].tm_mday = 15;
 dates[9].tm_year = 106; dates[9].tm_mon = 10; dates[9].tm_mday = 1;
 xirr = imsl_f_internal_rate_schedule (10, values, dates, 0);
 printf ("After approximately 9 years, the internal\n");
 printf ("rate of return on the cows is %.2f%%.\n", xirr * 100.);
}

Output

After approximately 9 years, the internal
rate of return on the cows is 7.69%.
1186

 Special Functions modified_internal_rate
modified_internal_rate
Evaluates the modified internal rate of return for a schedule of periodic cash flows.

Synopsis
#include <imsl.h>
float imsl_f_modified_internal_rate (int count, float values[], float finance_rate,

float reinvest_rate)

The type double function is imsl_d_modified_internal_rate.

Required Arguments
int count (Input)

Number of cash flows in values and count must greater than one.

float values[] (Input)
Array of size count of cash flows.

float finance_rate (Input)
Interest paid on the money borrowed.

float reinvest_rate (Input)
Interest rate received on the cash flows.

Return Value
The modified internal rate of return for a schedule of periodic cash flows. If no result can be computed, NaN is
returned.

Description
Function imsl_f_modified_internal_rate computes the modified internal rate of return for a schedule
of periodic cash flows. The modified internal rate of return differs from the ordinary internal rate of return in
assuming that the cash flows are reinvested at the cost of capital, not at the internal rate of return.

The modified internal rate of return also eliminates the multiple rates of return problem.
1187

 Special Functions modified_internal_rate
It is computed using the following:

where pnpv is calculated from imsl_f_net_present_value for positive values in values using
reinvest_rate, and where nnpv is calculated from imsl_f_net_present_value for negative values in
values using finance_rate.

Example
In this example, imsl_f_modified_internal_rate computes the modified internal rate of return for an
investment of $4,500 with cash flows of -$800, $800, $800, $600, $600, $800, $800, $700 and $3,000 for 9 years.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float value[] = { -4500., -800., 800., 800., 600., 600., 800.,
 800., 700., 3000. };
 float finance_rate = .08;
 float reinvest_rate = .055;
 float mirr;
 mirr = imsl_f_modified_internal_rate (10, value, finance_rate,
 reinvest_rate);
 printf ("After 9 years, the modified internal rate of return ");
 printf ("on the cows is %.2f%%.\n", mirr * 100.);
}

Output

After 9 years, the modified internal rate of return on the cows is 6.66%.

− pnpv 1 + reinvest_rate
n_periods

nnpv 1 + finance_rate

1
n_periods−1

− 1
1188

 Special Functions net_present_value
net_present_value
Evaluates the net present value of a stream of unequal periodic cash flows, which are subject to a given discount
rate.

Synopsis
#include <imsl.h>
float imsl_f_net_present_value (float rate, int count, float values[])

The type double function is imsl_d_net_present_value.

Required Arguments
float rate (Input)

Interest rate per period.

int count (Input)
Number of cash flows in values.

float values[] (Input)
Array of size count of equally-spaced cash flows.

Return Value
The net present value of an investment. If no result can be computed, NaN is returned.

Description
Function imsl_f_net_present_value computes the net present value of an investment. Net present
value is the current value of a stream of payments, after discounting the payments using some interest rate.

It is found by solving the following:

where valuei= the i-th cash flow.

∑
i=1

count valuei
1 + rate i
1189

 Special Functions net_present_value
Example
In this example, imsl_f_net_present_value computes the net present value of a $10 million prize paid in
20 years ($500,000 per year) with an annual interest rate of 6%.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = 0.06;
 int count = 20;
 float value[20];
 float net_present_value;
 int i;
 for (i = 0; i < count; i++)
 value[i] = 500000.;
 net_present_value = imsl_f_net_present_value (rate, count, value);
 printf ("The net present value of the $10 million prize is $%.2f.\n",
 net_present_value);
}

Output

The net present value of the $10 million prize is $5734963.00.
1190

 Special Functions nominal_rate
nominal_rate
Evaluates the nominal annual interest rate.

Synopsis
#include <imsl.h>
float imsl_f_nominal_rate (float effective_rate, int n_periods)

The type double function is imsl_d_nominal_rate.

Required Arguments
float effective_rate (Input)

The amount of interest that would be charged if the interest was paid in a single lump sum at the end
of the loan.

int n_periods (Input)
Number of compounding periods per year.

Return Value
The nominal annual interest rate. If no result can be computed, NaN is returned.

Description
Function imsl_f_nominal_rate computes the nominal annual interest rate. The nominal interest rate is the
interest rate as stated on the face of a security.

It is computed using the following:

1 + effective_rate
1

n_periods
− 1 * n_periods
1191

 Special Functions nominal_rate
Example
In this example, imsl_f_nominal_rate computes the nominal annual interest rate of the effective interest
rate, 6.14%, compounded quarterly.

#include <stdio.h>
#include <imsl.h>
int main()
{
 double effective_rate = .0614;
 int n_periods = 4;
 double nominal_rate;
 nominal_rate = imsl_d_nominal_rate (effective_rate, n_periods);
 printf ("The nominal rate of the effective rate, 6.14%%, \n");
 printf ("compounded quarterly is %.2f%%.\n", nominal_rate * 100.);
}

Output

The nominal rate of the effective rate, 6.14%,
compounded quarterly is 6.00%.
1192

 Special Functions number_of_periods
number_of_periods
Evaluates the number of periods for an investment for which periodic and constant payments are made and the
interest rate is constant.

Synopsis
#include <imsl.h>
float imsl_f_number_of_periods (float rate, float payment, float present_value,

float future_value, int when)

The type double function is imsl_d_number_of_periods.

Required Arguments
float rate (Input)

Interest rate on the investment.

float payment (Input)
Payment made on the investment.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of payments.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.

Return Value
The number of periods for an investment.
1193

 Special Functions number_of_periods
Description
Function imsl_f_number_of_periods computes the number of periods for an investment based on peri-
odic, constant payment and a constant interest rate.

It can be found by solving the following:

If rate =0

If rate ≠ 0

Example
In this example, imsl_f_number_of_periods computes the number of periods needed to pay off a
$20,000 loan with a monthly payment of $350 and an annual interest rate of 7.25%. The payment is made at the
beginning of each period.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = 0.0725 / 12;
 float payment = -350.;
 float present_value = 20000;
 float future_value = 0.;
 int when = IMSL_AT_BEGINNING_OF_PERIOD;
 float number_of_periods;
 number_of_periods = imsl_f_number_of_periods (rate, payment,
 present_value, future_value, when);
 printf ("Number of payment periods = %f.\n", number_of_periods);
}

Output

Number of payment periods = 70.

present_value + payment n_periods + future_value = 0

present_value 1 + rate n_periods
+

payment 1 + rate when
1 + rate n_periods − 1

rate + future_value = 0
1194

 Special Functions payment
payment
Evaluates the periodic payment for an investment.

Synopsis
#include <imsl.h>
float imsl_f_payment (float rate, int n_periods, float present_value,

float future_value, int when)

The type double function is imsl_d_payment.

Required Arguments
float rate (Input)

Interest rate.

Int n_periods (Input)
Total number of periods.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of payments.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.

Return Value
The periodic payment for an investment. If no result can be computed, NaN is returned.
1195

 Special Functions payment
Description
Function imsl_f_payment computes the periodic payment for an investment.

It can be found by solving the following:

If rate =0

If rate ≠ 0

Example
In this example, imsl_f_payment computes the periodic payment of a 25-year $100,000 loan with an annual
interest rate of 8%. The payment is made at the end of each period.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = .08;
 int n_periods = 25;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float payment;
 payment = imsl_f_payment (rate, n_periods, present_value,
 future_value, when);
 printf ("The payment due each year on the $100,000 ");
 printf ("loan is $%.2f.\n", payment);
}

Output

The payment due each year on the $100,000 loan is $-9367.88.

present_value + payment n_periods + future_value = 0

present_value 1 + rate)n_periods +

payment 1 + rate when
1 + rate n_periods − 1

rate + future_value = 0
1196

 Special Functions present_value
present_value
Evaluates the net present value of a stream of equal periodic cash flows, which are subject to a given discount
rate..

Synopsis
#include <imsl.h>
float imsl_f_present_value (float rate, int n_periods, float payment,

float future_value, int when)

The type double function is imsl_d_present_value.

Required Arguments
float rate (Input)

Interest rate.

int n_periods (Input)
Total number of periods.

float payment (Input)
Payment made in each period.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of payments.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.

Return Value
The present value of an investment. If no result can be computed, NaN is returned.
1197

 Special Functions present_value
Description
Function imsl_f_present_value computes the present value of an investment.

It can be found by solving the following:

If rate =0

If rate ≠ 0

Example
In this example, imsl_f_present_value computes the present value of 20 payments of $500,000 per pay-
ment ($10 million) with an annual interest rate of 6%. The payment is made at the end of each period.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = 0.06;
 float payment = 500000.;
 float future_value = 0.;
 int n_periods = 20;
 int when = IMSL_AT_END_OF_PERIOD;
 float present_value;
 present_value = imsl_f_present_value (rate, n_periods, payment,
 future_value, when);
 printf ("The present value of the $10 million prize is ");
 printf ("$%.2f.\n", present_value);
}

Output

The present value of the $10 million prize is $-5734961.00.

present_value + payment n_periods + future_value = 0

present_value 1 + rate n_periods
+

payment 1 + rate when
1 + rate n_periods − 1

rate + future_value = 0
1198

 Special Functions present_value_schedule
present_value_schedule
Evaluates the present value for a schedule of cash flows. It is not necessary that the cash flows be periodic.

Synopsis
#include <imsl.h>
float imsl_f_present_value_schedule (float rate, int count, float values[], struct

tm dates[])

The type double function is imsl_d_present_value_schedule.

Required Arguments
float rate (Input)

Interest rate.

int count (Input)
Number of cash flows in values or number of dates in dates.

float values[] (Input)
Array of size count of cash flows.

struct tm dates[] (Input)
Array of size count of dates cash flows are made. For a more detailed discussion on dates see the
Usage Notes section of this chapter.

Return Value
The present value for a schedule of cash flows that is not necessarily periodic. If no result can be computed, NaN
is returned.

Description
Function imsl_f_present_value_schedule computes the present value for a schedule of cash flows
that is not necessarily periodic.

It can be found by solving the following:
1199

 Special Functions present_value_schedule
In the equation above, di represents the i-th payment date, d1 represents the 1st payment date, and valuei rep-

resents the i-th cash flow.

Example
In this example, imsl_f_present_value_schedule computes the present value of 3 payments, $1,000,
$2,000 and $1,000, with an interest rate of 5% made on January 3, 1997, January 3, 1999 and January 3, 2000.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = 0.05;
 float values[3] = { 1000.0, 2000.0, 1000.0 };
 struct tm dates[3];
 float xnpv;
 dates[0].tm_year = 97; dates[0].tm_mon = 0; dates[0].tm_mday = 3;
 dates[1].tm_year = 99; dates[1].tm_mon = 0; dates[1].tm_mday = 3;
 dates[2].tm_year = 100; dates[2].tm_mon = 0; dates[2].tm_mday = 3;
 xnpv = imsl_f_present_value_schedule (rate, 3, values, dates);
 printf ("The present value of the cash flows is $%.2f.\n", xnpv);
}

Output

The present value of the cash flows is $3677.90.

∑
i=1

count valuei

1 + rate
di−d1 /365
1200

 Special Functions principal_payment
principal_payment
Evaluates the payment on the principal for a specified period.

Synopsis
#include <imsl.h>
float imsl_f_principal_payment (float rate, int period, int n_periods,

float present_value, float future_value, int when)

The type double function is imsl_d_principal_payment.

Required Arguments
float rate (Input)

Interest rate.

int period (Input)
Payment period.

int n_periods (Input)
Total number of periods.

float present_value (Input)
The current value of a stream of future payments, after discounting the payments using some inter-
est rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of payments.

int when (Input)
Time in each period when the payment is made, either IMSL_AT_END_OF_PERIOD or
IMSL_AT_BEGINNING_OF_PERIOD. For a more detailed discussion on when see the Usage
Notes section of this chapter.

Return Value
The payment on the principal for a given period. If no result can be computed, NaN is returned.
1201

 Special Functions principal_payment
Description
Function imsl_f_principal_payment computes the payment on the principal for a given period.

It is computed using the following:

where paymenti is computed from imsl_f_payment for the i-th period, interesti is calculated from

imsl_f_interest_payment for the i-th period.

Example
In this example, imsl_f_principal_payment computes the principal paid for the first year on a 30-year
$100,000 loan with an annual interest rate of 8%. The payment is made at the end of each year.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float rate = .08;
 int period = 1;
 int n_periods = 30;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float principal;
 principal = imsl_f_principal_payment (rate, period, n_periods,
 present_value, future_value, when);
 printf ("The payment on the principal for the first year of \n");
 printf ("the $100,000 loan is $%.2f.\n", principal);
}

Output

The payment on the principal for the first year of
the $100,000 loan is $-882.74.

paymenti − interesti
1202

 Special Functions accr_interest_maturity
accr_interest_maturity
Evaluates the interest which has accrued on a security that pays interest at maturity.

Synopsis
#include <imsl.h>
float imsl_f_accr_interest_maturity (struct tm issue, struct tm maturity,

float coupon_rate, float par_value, int basis)

The type double function is imsl_d_accr_interest_maturity.

Required Arguments
struct tm issue (Input)

The date on which interest starts accruing. For a more detailed discussion on dates see the Usage
Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float par_value (Input)
Nominal or face value of the security used to calculate interest payments.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The interest which has accrued on a security that pays interest at maturity. If no result can be computed, NaN is
returned.
1203

 Special Functions accr_interest_maturity
Description
Function imsl_f_accr_interest_maturity computes the accrued interest for a security that pays inter-
est at maturity:

In the above equation, A represents the number of days starting at issue date to maturity date and D represents
the annual basis.

Example
In this example, imsl_f_accr_interest_maturity computes the accrued interest for a security that
pays interest at maturity using the US (NASD) 30/360 day count method. The security has a par value of $1,000,
the issue date of October 1, 2000, the maturity date of November 3, 2000, and a coupon rate of 6%.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm issue, maturity;
 float rate = .06;
 float par = 1000.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float accrintm;
 issue.tm_year = 100;
 issue.tm_mon = 9;
 issue.tm_mday = 1;
 maturity.tm_year = 100;
 maturity.tm_mon = 10;
 maturity.tm_mday = 3;
 accrintm = imsl_f_accr_interest_maturity (issue, maturity,
 rate, par, basis);
 printf ("The accrued interest is $%.2f.\n", accrintm);
}

Output

The accrued interest is $5.33.

par_value rate A
D

1204

 Special Functions accr_interest_periodic
accr_interest_periodic
Evaluates the interest which has accrued on a security that pays interest periodically.

Synopsis
#include <imsl.h>
float imsl_f_accr_interest_periodic (struct tm issue, struct tm first_coupon,

struct tm settlement, float coupon_rate, float par_value, int frequency, int basis)

The type double function is imsl_d_accr_interest_periodic.

Required Arguments
struct tm issue (Input)

The date on which interest starts accruing. For a more detailed discussion on dates see the Usage
Notes section of this chapter.

struct tm first_coupon (Input)
First date on which an interest payment is due on the security (e.g. the coupon date). For a more
detailed discussion on dates see the Usage Notes section of this chapter.

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float par_value (Input)
Nominal or face value of the security used to calculate interest payments.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
1205

 Special Functions accr_interest_periodic
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The accrued interest for a security that pays periodic interest. If no result can be computed, NaN is returned.

Description
Function imsl_f_accr_interest_periodic computes the accrued interest for a security that pays peri-
odic interest.

In the equation below, Ai represents the number of days which have accrued for the i-th quasi-coupon period

within the odd period. (The quasi-coupon periods are periods obtained by extending the series of equal payment
periods to before or after the actual payment periods.) NC represents the number of quasi-coupon periods
within the odd period, rounded to the next highest integer. (The odd period is a period between payments that
differs from the usual equally spaced periods at which payments are made.) NLi represents the length of the nor-

mal i-th quasi-coupon period within the odd period. NLi is expressed in days.

Function imsl_f_accr_interest_periodic can be found by solving the following:

Example
In this example, imsl_f_accr_interest_periodic computes the accrued interest for a security that
pays periodic interest using the US (NASD) 30/360 day count method. The security has a par value of $1,000, the
issue date of October 1, 1999, the settlement date of November 3, 1999, the first coupon date of March 31, 2000,
and a coupon rate of 6%.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm issue, first_coupon, settlement;
 float rate = .06;

par_value rate
frequency ∑

i=1

NC Ai
NLi
1206

 Special Functions accr_interest_periodic
 float par = 1000.;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float accrint;
 issue.tm_year = 99;
 issue.tm_mon = 9;
 issue.tm_mday = 1;
 first_coupon.tm_year = 100;
 first_coupon.tm_mon = 2;
 first_coupon.tm_mday = 31;
 settlement.tm_year = 99;
 settlement.tm_mon = 10;
 settlement.tm_mday = 3;
 accrint = imsl_f_accr_interest_periodic (issue, first_coupon,
 settlement, rate, par, frequency, basis);
 printf ("The accrued interest is $%.2f.\n", accrint);
}

Output

The accrued interest is $5.33.
1207

 Special Functions bond_equivalent_yield
bond_equivalent_yield
Evaluates the bond-equivalent yield of a Treasury bill.

Synopsis
#include <imsl.h>
float imsl_f_bond_equivalent_yield (struct tm settlement, struct tm maturity,

float discount_rate)

The type double function is imsl_d_bond_equivalent_yield.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notess ection of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at maturity in lieu of interest
payments.

Return Value
The bond-equivalent yield of a Treasury bill. If no result can be computed, NaN is returned.

Description
Function imsl_f_bond_equivalent_yield computes the bond-equivalent yield for a Treasury bill.

It is computed using the following:

 if DSM < = 182
1208

 Special Functions bond_equivalent_yield
otherwise,

In the above equation, DSM represents the number of days starting at settlement date to maturity date.

Example
In this example, imsl_f_bond_equivalent_yield computes the bond-equivalent yield for a Treasury bill
with the settlement date of July 1, 1999, the maturity date of July 1, 2000, and discount rate of 5% at the issue
date.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float yield;
 settlement.tm_year = 99;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 100;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 yield = imsl_f_bond_equivalent_yield (settlement, maturity, discount);
 printf ("The bond-equivalent yield for the T-bill is %.2f%%.\n",
 yield * 100.);
}

Output

The bond-equivalent yield for the T-bill is 5.29%.

365 * discount_rate
360 − discount_rate *DSM

− DSM365 +
DSM
365

2
− 2 * DSM365 − 1 *

discount_rate *DSM
discount_rate *DSM − 360

DSM
365 − 0.5
1209

 Special Functions convexity
convexity
Evaluates the convexity for a security.

Synopsis
#include <imsl.h>
float imsl_f_convexity (struct tm settlement, struct tm maturity, float coupon_rate,

float yield, int frequency, int basis)

The type double function is imsl_d_convexity.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of
this chapter.
1210

 Special Functions convexity
Return Value
The convexity for a security. If no result can be computed, NaN is returned.

Description
Function imsl_f_convexity computes the convexity for a security. Convexity is the sensitivity of the dura-
tion of a security to changes in yield.

It is computed using the following:

where n is calculated from imsl_coupon_number, and .

Example
In this example, imsl_f_convexity computes the convexity for a security with the settlement date of July 1,
1990, and maturity date of July 1, 2000, using the Actual/365 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float convexity;
 settlement.tm_year = 90;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 100;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 convexity = imsl_f_convexity (settlement, maturity,
 coupon, yield, frequency, basis);
 printf ("The convexity of the bond with ");

1

q * frequency 2
∑
t=1

n
t t + 1 rate

frequency q
−t + n n + 1 q−n

∑
t=1

n rate
frequency q

−t + q−n

q = 1 + yield
frequency
1211

 Special Functions convexity
 printf ("semiannual interest payments is %.4f.\n", convexity);
}

Output

The convexity of the bond with semiannual interest payments is 59.4050.
1212

 Special Functions coupon_days
coupon_days
Evaluates the number of days in the coupon period containing the settlement date.

Synopsis
#include <imsl.h>
float imsl_f_coupon_days (struct tm settlement, struct tm maturity, int frequency,

int basis)

The type double function is imsl_d_coupon_days.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.

Return Value
The number of days in the coupon period which contains the settlement date. If no result can be computed, NaN
is returned.
1213

 Special Functions coupon_days
Description
Function imsl_f_coupon_days computes the number of days in the coupon period that contains the settle-
ment date. For a good discussion on day count basis, see SIA Standard Securities Calculation Methods 1993, vol. 1,
pages 17-35.

Example
In this example, imsl_f_coupon_days computes the number of days in the coupon period of a bond with
the settlement date of November 11, 1996, and the maturity date of March 1, 2009, using the Actual/365 day
count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float coupdays;
 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;
 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;
 coupdays = imsl_f_coupon_days (settlement, maturity, frequency,
 basis);
 printf ("The number of days in the coupon period that\n");
 printf ("contains the settlement date is %.2f.\n", coupdays);
}

Output

The number of days in the coupon period that
contains the settlement date is 182.50.
1214

 Special Functions coupon_number
coupon_number
Evaluates the number of coupons payable between the settlement date and the maturity date.

Synopsis
#include <imsl.h>
int imsl_coupon_number (struct tm settlement, struct tm maturity, int frequency,

int basis)

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on see the Usage Notes section
of this chapter.

Return Value
The number of coupons payable between the settlement date and the maturity date.
1215

 Special Functions coupon_number
Description
Function imsl_coupon_number computes the number of coupons payable between the settlement date
and the maturity date. For a good discussion on day count basis, see SIA Standard Securities Calculation Methods
1993, vol. 1, pages 17-35.

Example
In this example, imsl_coupon_number computes the number of coupons payable with the settlement date
of November 11, 1996, and the maturity date of March 1, 2009, using the Actual/365 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int coupnum;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;
 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;
 coupnum = imsl_coupon_number (settlement, maturity, frequency, basis);
 printf ("The number of coupons payable between the\n");
 printf ("settlement date and the maturity date is %d.\n", coupnum);
}

Output

The number of coupons payable between the
settlement date and the maturity date is 25.
1216

 Special Functions days_before_settlement
days_before_settlement
Evaluates the number of days starting with the beginning of the coupon period and ending with the settlement
date.

Synopsis
#include <imsl.h>
int imsl_days_before_settlement (struct tm settlement, struct tm maturity,

int frequency, int basis)

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on see the Usage Notes section of this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The number of days in the period starting with the beginning of the coupon period and ending with the settle-
ment date.
1217

 Special Functions days_before_settlement
Description
Function imsl_days_before_settlement computes the number of days from the beginning of the cou-
pon period to the settlement date. For a good discussion on day count basis, see SIA Standard Securities
Calculation Methods 1993, vol. 1, pages 17-35.

Example
In this example, imsl_days_before_settlement computes the number of days from the beginning of the
coupon period to November 11, 1996, of a bond with the maturity date of March 1, 2009, using the Actual/365
day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int days;
 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;
 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;
 days = imsl_days_before_settlement (settlement, maturity,
 frequency, basis);
 printf ("The number of days from the beginning of the\n");
 printf ("coupon period to the settlement date is %d.\n", days);
}

Output

The number of days from the beginning of the
coupon period to the settlement date is 71.
1218

 Special Functions days_to_next_coupon
days_to_next_coupon
Evaluates the number of days starting with the settlement date and ending with the next coupon date.

Synopsis
#include <imsl.h>
int imsl_days_to_next_coupon (struct tm settlement, struct tm maturity, int frequency,

int basis)

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E36. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The number of days starting with the settlement date and ending with the next coupon date.
1219

 Special Functions days_to_next_coupon
Description
Function imsl_days_to_next_coupon computes the number of days from the settlement date to the next
coupon date. For a good discussion on day count basis, see SIA Standard Securities Calculation Methods 1993, vol.
1, pp. 17-35.

Example
In this example, imsl_days_to_next_coupon computes the number of days from November 11, 1996, to
the next coupon date of a bond with the maturity date of March 1, 2009, using the Actual/365 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int days;
 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;
 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;
 days = imsl_days_to_next_coupon (settlement, maturity, frequency,
 basis);
 printf ("The number of days from the settlement date to ");
 printf ("the next coupon date is %d.\n", days);
}

Output

The number of days from the settlement date to the next coupon date is 110.
1220

 Special Functions depreciation_amordegrc
depreciation_amordegrc
Evaluates the depreciation for each accounting period. During the evaluation of the function a depreciation coef-
ficient based on the asset life is applied.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_amordegrc (float cost, struct tm issue,

struct tm first_period, float salvage, int period, float rate, int basis)

The type double function is imsl_d_depreciation_amordegrc.

Required Arguments
float cost (Input)

Initial value of the asset.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on dates see the Usage
Notes section of this chapter.

struct tm first_period (Input)
Date of the end of the first period. For a more detailed discussion on dates see the Usage Notes sec-
tion of this chapter.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int period (Input)
Depreciation for the accounting period to be computed.

float rate (Input)
Depreciation rate.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
1221

 Special Functions depreciation_amordegrc
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E36. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The depreciation for each accounting period. If no result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_amordegrc computes the depreciation for each accounting period. This
function is similar to depreciation_amorlinc. However, in this function a depreciation coefficient based
on the asset life is applied during the evaluation of the function.

Example
In this example, imsl_f_depreciation_amordegrc computes the depreciation for the second account-
ing period using the US (NASD) 30/360 day count method. The security has the issue date of November 1, 1999,
end of first period of November 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm issue, first_period;
 float cost = 2400.;
 float salvage = 300.;
 int period = 2;
 float rate = .15;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float amordegrc;
 issue.tm_year = 99;
 issue.tm_mon = 10;
 issue.tm_mday = 1;
 first_period.tm_year = 100;
 first_period.tm_mon = 10;
 first_period.tm_mday = 30;
 amordegrc = imsl_f_depreciation_amordegrc (cost, issue, first_period,
 salvage, period, rate, basis);
 printf ("The depreciation for the second accounting period ");
 printf ("is $%.2f.\n", amordegrc);
}

1222

 Special Functions depreciation_amordegrc
Output

The depreciation for the second accounting period is $335.00.
1223

 Special Functions depreciation_amorlinc
depreciation_amorlinc
Evaluates the depreciation for each accounting period. This function is similar to
depreciation_amordegrc, except that depreciation_amordegrc has a depreciation coefficient that
is applied during the evaluation that is based on the asset life.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_amorlinc (float cost, struct tm issue,

struct tm first_period, float salvage, int period, float rate, int basis)

The type double function is imsl_d_depreciation_amordegrc.

Required Arguments
float cost (Input)

Initial value of the asset.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on dates see the Usage
Notes section of this chapter.

struct tm first_period (Input)
Date of the end of the first period. For a more detailed discussion on dates see the Usage Notes sec-
tion of this chapter.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int period (Input)
Depreciation for the accounting period to be computed.

float rate (Input)
Depreciation rate.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
1224

 Special Functions depreciation_amorlinc
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E36. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The depreciation for each accounting period. If no result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_amorlinc computes the depreciation for each accounting period.

Example
In this example, imsl_f_depreciation_amorlinc computes the depreciation for the second accounting
period using the US (NASD) 30/360 day count method. The security has the issue date of November 1, 1999, end
of first period of November 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm issue, first_period;
 float cost = 2400.;
 float salvage = 300.;
 int period = 2;
 float rate = .15;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float amorlinc;
 issue.tm_year = 99;
 issue.tm_mon = 10;
 issue.tm_mday = 1;
 first_period.tm_year = 100;
 first_period.tm_mon = 10;
 first_period.tm_mday = 30;
 amorlinc = imsl_f_depreciation_amorlinc (cost, issue, first_period,
 salvage, period, rate, basis);
 printf ("The depreciation for the second accounting period ");
 printf ("is $%.2f.\n", amorlinc);
}

1225

 Special Functions depreciation_amorlinc
Output

The depreciation for the second accounting period is $360.00.
1226

 Special Functions discount_price
discount_price
Evaluates the price of a security sold for less than its face value.

Synopsis
#include <imsl.h>
float imsl_f_discount_price (struct tm settlement, struct tm maturity,

float discount_rate, float redemption, int basis)

The type double function is imsl_d_discount_price.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on see the Usage Notes section of this chapter.

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at maturity in lieu of interest
payments.

float redemption (Input)
Redemption value per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The price per face value for a discounted security. If no result can be computed, NaN is returned.
1227

 Special Functions discount_price
Description
Function imsl_f_discount_price computes the price per $100 face value of a discounted security.

It is computed using the following:

In the equation above, DSM represents the number of days starting at the settlement date and ending with the
maturity date. B represents the number of days in a year based on the annual basis.

Example
In this example, imsl_f_discount_price computes the price of the discounted bond with the settlement
date of July 1, 2000, and maturity date of July 1, 2001, at the discount rate of 5% using the US (NASD) 30/360 day
count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float redemption = 100.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float price;
 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 price = imsl_f_discount_price (settlement, maturity, discount,
 redemption, basis);
 printf ("The price of the discounted bond is $%.2f.\n", price);
}

Output

The price of the discounted bond is $95.00.

redemption − discount_rate redemption DSM
B

1228

 Special Functions discount_rate
discount_rate
Evaluates the interest rate implied when a security is sold for less than its value at maturity in lieu of interest
payments.

Synopsis
#include <imsl.h>
float imsl_f_discount_rate (struct tm settlement, struct tm maturity, float price,

float redemption, int basis)

The type double function is imsl_d_discount_rate.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float price (Input)
Price per $100 face value of the security.

float redemption (Input)
Redemption value per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360, For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The discount rate for a security. If no result can be computed, NaN is returned.
1229

 Special Functions discount_rate
Description
Function imsl_f_discount_rate computes the discount rate for a security. The discount rate is the inter-
est rate implied when a security is sold for less than its value at maturity in lieu of interest payments.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the annual basis and DSM represents
the number of days starting with the settlement date and ending with the maturity date.

Example
In this example, imsl_f_discount_rate computes the discount rate of a security which is selling at
$97.975 with the settlement date of February 15, 2000, and maturity date of June 10, 2000, using the Actual/365
day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float price = 97.975;
 float redemption = 100.;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float rate;
 settlement.tm_year = 100;
 settlement.tm_mon = 1;
 settlement.tm_mday = 15;
 maturity.tm_year = 100;
 maturity.tm_mon = 5;
 maturity.tm_mday = 10;
 rate = imsl_f_discount_rate (settlement, maturity, price,
 redemption, basis);
 printf ("The discount rate for the security is %.2f%%.\n", rate * 100.);
}

Output

The discount rate for the security is 6.37%.

redemption − price
price

B
DSM
1230

 Special Functions discount_yield
discount_yield
Evaluates the annual yield of a discounted security.

Synopsis
#include <imsl.h>
float imsl_f_discount_yield (struct tm settlement, struct tm maturity, float price,

float redemption, int basis)

The type double function is imsl_d_discount_yield.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on see the Usage Notes section of this chapter.

float price (Input)
Price per $100 face value of the security.

float redemption (Input)
Redemption value per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed see the Usage Notes section of this
chapter.

Return Value
The annual yield for a discounted security. If no result can be computed, NaN is returned.
1231

 Special Functions discount_yield
Description
Function imsl_f_discount_yield computes the annual yield for a discounted security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the annual basis, and DSM represents
the number of days starting with the settlement date and ending with the maturity date.

Example
In this example, imsl_f_discount_yield computes the annual yield for a discounted security which is sell-
ing at $95.40663 with the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the US (NASD)
30/360 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float price = 95.40663;
 float redemption = 105.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yielddisc;
 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 yielddisc = imsl_f_discount_yield (settlement, maturity,
 price, redemption, basis);
 printf ("The yield on the discounted bond is ");
 printf ("%.2f%%.\n", yielddisc * 100.);
}

Output

The yield on the discounted bond is 1.01%.

redemption − price
price

B
DSM
1232

 Special Functions duration
duration
Evaluates the annual duration of a security where the security has periodic interest payments.

Synopsis
#include <imsl.h>
float imsl_f_duration (struct tm settlement, struct tm maturity, float coupon_rate,

float yield, int frequency, int basis)

The type double function is imsl_d_duration.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

Int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of
this chapter.
1233

 Special Functions duration
Return Value
The annual duration of a security with periodic interest payments. If no result can be computed, NaN is returned.

Description
Function imsl_f_duration computes the Maccaluey's duration of a security with periodic interest payments.
The Maccaluey's duration is the weighted-average time to the payments, where the weights are the present value
of the payments.

It is computed using the following:

In the equation above, DSC represents the number of days starting with the settlement date and ending with the
next coupon date. E represents the number of days within the coupon period. N represents the number of cou-
pons payable from the settlement date to the maturity date. freq represents the frequency of the coupon
payments annually.

Example
In this example, imsl_f_duration computes the annual duration of a security with the settlement date of
July 1, 1995, and maturity date of July 1, 2005, using the Actual/365 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float duration;
 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

DSC
E * 100

1 +
yield
freq

N−1+DSCE
+ ∑
k=1

N 100 * coupon_rate

freq * 1 +
yield
freq

k−1+DSCE
* k − 1 + DSCE

100

1 +
yield
freq

N−1+DSCE
+ ∑
k=1

N 100 * coupon_rate

freq * 1 +
yield
freq

k−1+DSCE

* 1
freq
1234

 Special Functions duration
 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 duration = imsl_f_duration (settlement, maturity, coupon,
 yield, frequency, basis);
 printf ("The annual duration of the bond with ");
 printf ("semiannual interest payments is %.4f.\n", duration);
}

Output

The annual duration of the bond with semiannual interest payments is 7.0420.
1235

 Special Functions interest_rate_security
interest_rate_security
Evaluates the interest rate of a fully invested security.

Synopsis
#include <imsl.h>
float imsl_f_interest_rate_security (struct tm settlement, struct tm maturity,

float investment, float redemption, int basis)

The type double function is imsl_d_interest_rate_security.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float investment (Input)
The total amount one has invested in the security.

float redemption (Input)
Amount to be received at maturity.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion see the Usage Notes section of
this chapter.

Return Value
The interest rate for a fully invested security. If no result can be computed, NaN is returned.
1236

 Special Functions interest_rate_security
Description
Function imsl_f_interest_rate_security computes the interest rate for a fully invested security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the annual basis, and DSM represents
the number of days in the period starting with the settlement date and ending with the maturity date.

Example
In this example, imsl_f_interest_rate_security computes the interest rate of a $7,000 investment
with the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the Actual/365 day count
method. The total amount received at the end of the investment is $10,000.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float investment = 7000.;
 float redemption = 10000.;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float intrate;
 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 intrate = imsl_f_interest_rate_security (settlement, maturity,
 investment, redemption, basis);
 printf ("The interest rate of the bond is %.2f%%.\n", intrate * 100.);
}

Output

The interest rate of the bond is 4.28%.

redemption − investment
investment

B
DSM
1237

 Special Functions modified_duration
modified_duration
Evaluates the modified Macauley duration of a security.

Synopsis
#include <imsl.h>
float imsl_f_modified_duration (struct tm settlement, struct tm maturity,

float coupon_rate, float yield, int frequency, int basis)

The type double function is imsl_d_modified_duration.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.
1238

 Special Functions modified_duration
Return Value
The modified Macauley duration of a security is returned. The security has an assumed par value of $100. If no
result can be computed, NaN is returned.

Description
Function imsl_f_modified_duration computes the modified Macauley duration for a security with an
assumed par value of $100.

It is computed using the following:

where duration is calculated from imsl_f_duration.

Example
In this example, imsl_f_modified_duration computes the modified Macauley duration of a security with
the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the Actual/365 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float mduration;
 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 mduration = imsl_f_modified_duration (settlement, maturity,
 coupon, yield, frequency, basis);
 printf ("The modified Macauley duration of the bond with\n");
 printf ("semiannual interest payments is %.4f.\n", mduration);
}

duration
1 +

yield
frequency
1239

 Special Functions modified_duration
Output

The modified Macauley duration of the bond with
semiannual interest payments is 6.7387.
1240

 Special Functions next_coupon_date
next_coupon_date
Evaluates the first coupon date which follows the settlement date.

Synopsis
#include <imsl.h>
struct tm imsl_next_coupon_date (struct tm settlement, struct tm maturity,

int frequency, int basis)

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.

Return Value
The first coupon date which follows the settlement date.
1241

 Special Functions next_coupon_date
Description
Function imsl_next_coupon_date computes the next coupon date after the settlement date. For a good
discussion on day count basis, see SIA Standard Securities Calculation Methods 1993, vol 1, pages 17-35.

Example
In this example, imsl_next_coupon_date computes the next coupon date of a bond with the settlement
date of November 11, 1996, and the maturity date of March 1, 2009, using the Actual/365 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity, date;
 char* month[] = { "January", "February", "March", "April", "May",
 "June", "July", "August", "September",
 "October", "November", "December" };
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;
 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;
 date = imsl_next_coupon_date (settlement, maturity, frequency, basis);
 printf ("The next coupon date after the settlement date ");
 printf ("is %s %d, %d.\n", month[date.tm_mon], date.tm_mday,
 date.tm_year+1900);
}

Output

The next coupon date after the settlement date is March 1, 1997.
1242

 Special Functions previous_coupon_date
previous_coupon_date
Evaluates the coupon date which immediately precedes the settlement date.

Synopsis
#include <imsl.h>
struct tm imsl_previous_coupon_date (struct tm settlement, struct tm maturity,

int frequency, int basis)

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.

Return Value
The coupon date which immediately precedes the settlement date.
1243

 Special Functions previous_coupon_date
Description
Function imsl_previous_coupon_date computes the coupon date which immediately precedes the set-
tlement date. For a good discussion on day count basis, see SIA Standard Securities Calculation Methods 1993, vol 1,
pages 17-35.

Example
In this example, imsl_previous_coupon_date computes the previous coupon date of a bond with the set-
tlement date of November 11, 1986, and the maturity date of March 1, 1999, using the Actual/365 day count
method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity, date;
 char* month[] = { "January", "February", "March", "April", "May",
 "June", "July", "August", "September",
 "October", "November", "December" };
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;
 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;
 date = imsl_previous_coupon_date (settlement, maturity, frequency, basis);
 printf ("The previous coupon date before the settlement ");
 printf ("date is %s %d, %d.\n", month[date.tm_mon], date.tm_mday,
 date.tm_year+1900);
}

Output

The previous coupon date before the settlement date is September 1, 1996.
1244

 Special Functions price
price
Evaluates the price, per $100 face value, of a security that pays periodic interest.

Synopsis
#include <imsl.h>
float imsl_f_price (struct tm settlement, struct tm maturity, float rate, float yield,

float redemption, int frequency, int basis)

The type double function is imsl_d_price.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

float redemption (Input)
Redemption value per $100 face value of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
1245

 Special Functions price
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.

Return Value
The price per $100 face value of a security that pays periodic interest. If no result can be computed, NaN is
returned.

Description
Function imsl_f_price computes the price per $100 face value of a security that pays periodic interest.It is
computed using the following:

In the above equation, DSC represents the number of days in the period starting with the settlement date and
ending with the next coupon date. E represents the number of days within the coupon period. N represents the
number of coupons payable in the timeframe from the settlement date to the redemption date. A represents the
number of days in the timeframe starting with the beginning of coupon period and ending with the settlement
date.

Example
In this example, imsl_f_price computes the price of a bond that pays coupon every six months with the set-
tlement of July 1, 1995, the maturity date of July 1, 2005, a annual rate of 6%, annual yield of 7% and redemption
value of $105 using the US (NASD) 30/360 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float rate = .06;
 float yield = .07;
 float redemption = 105.;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float price;

redemption

1 +
yield
freq

N−1+DSCE
+ ∑

k=1

N 100 * ratefreq

1 +
yield
freq

k−1+DSCE
− 100 * ratefreq *

A
E

1246

 Special Functions price
 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 price = imsl_f_price (settlement, maturity, rate, yield,
 redemption, frequency, basis);
 printf ("The price of the bond is $%.2f.\n", price);
}

Output

The price of the bond is $95.41.
1247

 Special Functions price_maturity
price_maturity
Evaluates the price, per $100 face value, of a security that pays interest at maturity.

Synopsis
#include <imsl.h>
float imsl_f_price_maturity (struct tm settlement, struct tm maturity, struct tm issue,

float rate, float yield, int basis)

The type double function is imsl_d_price_maturity.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion see the Usage Notes section of this chapter.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on dates see the Usage
Notes section of this chapter.

float rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.
1248

 Special Functions price_maturity
Return Value
The price per $100 face value of a security that pays interest at maturity. If no result can be computed, NaN is
returned.

Description
Function imsl_f_price_maturity computes the price per $100 face value of a security that pays interest
at maturity.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the annual basis. DSM represents the
number of days in the period starting with the settlement date and ending with the maturity date. DIM represents
the number of days in the period starting with the issue date and ending with the maturity date. A represents the
number of days in the period starting with the issue date and ending with the settlement date.

Example
In this example, imsl_f_price_maturity computes the price at maturity of a security with the settlement
date of August 1, 2000, maturity date of July 1, 2001 and issue date of July 1, 2000, using the US (NASD) 30/360
day count method. The security has 5% annual yield and 5% interest rate at the date of issue.

#include <stdio.h>
#include <imsl.h>
#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity, issue;
 float rate = .05;
 float yield = .05;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float pricemat;
 settlement.tm_year = 100;
 settlement.tm_mon = 7;
 settlement.tm_mday = 1;
 maturity.tm_year = 101;
 maturity.tm_mon = 6;

100 + DIM
B * rate * 100

1 + DSM
B * yield

− A
B * rate * 100
1249

 Special Functions price_maturity
 maturity.tm_mday = 1;
 issue.tm_year = 100;
 issue.tm_mon = 6;
 issue.tm_mday = 1;
 pricemat = imsl_d_price_maturity (settlement, maturity, issue,
 rate, yield, basis);
 printf ("The price of the bond is $%.2f.\n", pricemat);
}

Output
The price of the bond is $99.98.
1250

 Special Functions received_maturity
received_maturity
Evaluates the amount one receives when a fully invested security reaches the maturity date.

Synopsis
#include <imsl.h>
float imsl_f_received_maturity (struct tm settlement, struct tm maturity,

float investment, float discount_rate, int basis)

The type double function is imsl_d_received_maturity.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float investment (Input)
The total amount one has invested in the security.

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at maturity in lieu of interest
payments.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.
1251

 Special Functions received_maturity
Return Value
The amount one receives when a fully invested security reaches its maturity date. If no result can be computed,
NaN is returned.

Description
Function imsl_f_received_maturity computes the amount received at maturity for a fully invested
security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the annual basis, and DIM represents
the number of days in the period starting with the issue date and ending with the maturity date.

Example
In this example, imsl_f_received_maturity computes the amount received of a $7,000 investment with
the settlement date of July 1, 1995, maturity date of July 1, 2005 and discount rate of 6%, using the Actual/365 day
count method.

include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float investment = 7000.;
 float discount = .06;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float received;
 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 received = imsl_f_received_maturity (settlement, maturity,
 investment, discount, basis);
 printf ("The amount received at maturity for the ");
 printf ("bond is $%.2f.\n", received);
}

investment
1 − discount_rate * DIMB
1252

 Special Functions received_maturity
Output

The amount received at maturity for the bond is $17521.60.
1253

 Special Functions treasury_bill_price
treasury_bill_price
Evaluates the price per $100 face value of a Treasury bill.

Synopsis
#include <imsl.h>
float imsl_f_treasury_bill_price (struct tm settlement, struct tm maturity,

float discount_rate)

The type double function is imsl_d_treasury_bill_price.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at maturity in lieu of interest
payments.

Return Value
The price per $100 face value of a Treasury bill. If no result can be computed, NaN is returned.

Description
Function imsl_f_treasury_bill_price computes the price per $100 face value for a Treasury bill.

It is computed using the following:
1254

 Special Functions treasury_bill_price
In the equation above, DSM represents the number of days in the period starting with the settlement date and
ending with the maturity date (any maturity date that is more than one calendar year after the settlement date is
excluded).

Example
In this example, imsl_f_treasury_bill_price computes the price for a Treasury bill with the settlement
date of July 1, 2000, the maturity date of July 1, 2001, and a discount rate of 5% at the issue date.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float price;
 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 price = imsl_f_treasury_bill_price (settlement, maturity, discount);
 printf ("The price per $100 face value for the T-bill ");
 printf ("is $%.2f.\n", price);
}

Output

The price per $100 face value for the T-bill is $94.93.

100 1 −
discount_rate *DSM

360
1255

 Special Functions treasury_bill_yield
treasury_bill_yield
Evaluates the yield of a Treasury bill.

Synopsis
#include <imsl.h>
float imsl_f_treasury_bill_yield (struct tm settlement, struct tm maturity,

float price)

The type double function is imsl_d_treasury_bill_yield.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float price (Input)
Price per $100 face value of the Treasury bill.

Return Value
The yield for a Treasury bill. If no result can be computed, NaN is returned.

Description
Function imsl_f_treasury_bill_yield computes the yield for a Treasury bill.

It is computed using the following:
1256

 Special Functions treasury_bill_yield
In the equation above, DSM represents the number of days in the period starting with the settlement date and
ending with the maturity date (any maturity date that is more than one calendar year after the settlement date is
excluded).

Example
In this example, imsl_f_treasury_bill_yield computes the yield for a Treasury bill with the settlement
date of July 1, 2000, the maturity date of July 1, 2001, and priced at $94.93.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float price = 94.93;
 float yield;
 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 yield = imsl_f_treasury_bill_yield (settlement, maturity, price);
 printf ("The yield for the T-bill is %.2f%%.\n", yield * 100.);
}

Output

The yield for the T-bill is 5.27%.

100 − price
price

360
DSM
1257

 Special Functions year_fraction
year_fraction
Evaluates the fraction of a year represented by the number of whole days between two dates.

Synopsis
#include <imsl.h>
float imsl_f_year_fraction (struct tm start, struct tm end, int basis)

The type double function is imsl_d_year_fraction.

Required Arguments
struct tm start (Input)

Initial date. For a more detailed discussion on dates see the Usage Notes section of this chapter.

struct tm end (Input)
Ending date. For a more detailed discussion on dates see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.

Return Value
The fraction of a year represented by the number of whole days between two dates. If no result can be com-
puted, NaN is returned.

Description
Function imsl_f_year_fraction computes the fraction of the year.

It is computed using the following:
1258

 Special Functions year_fraction
where A =the number of days from start to end, D =annual basis.

Example
In this example, imsl_f_year_fraction computes the year fraction between August 1, 2000, and July 1,
2001, using the NASD day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm start, end;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yearfrac;
 start.tm_year = 100;
 start.tm_mon = 7;
 start.tm_mday = 1;
 end.tm_year = 101;
 end.tm_mon = 6;
 end.tm_mday = 1;
 yearfrac = imsl_f_year_fraction (start, end, basis);
 printf ("The year fraction of the 30/360 period is %f.\n", yearfrac);
}

Output

The year fraction of the 30/360 period is 0.916667.

A /D
1259

 Special Functions yield_maturity
yield_maturity
Evaluates the annual yield of a security that pays interest at maturity.

Synopsis
#include <imsl.h>
float imsl_f_yield_maturity (struct tm settlement, struct tm maturity, struct tm issue,

float rate, float price, int basis)

The type double function is imsl_d_yield_maturity.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on dates see the Usage
Notes section of this chapter.

float rate (Input)
Interest rate at date of issue of the security.

float price (Input)
Price per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or
IMSL_DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage
Notes section of this chapter.
1260

 Special Functions yield_maturity
Return Value
The annual yield of a security that pays interest at maturity. If no result can be computed, NaN is returned.

Description
Function imsl_f_yield_maturity computes the annual yield of a security that pays interest at maturity.

It is computed using the following:

In the equation above, DIM represents the number of days in the period starting with the issue date and ending
with the maturity date. DSM represents the number of days in the period starting with the settlement date and
ending with the maturity date. A represents the number of days in the period starting with the issue date and
ending with the settlement date. B represents the number of days in a year based on the annual basis.

Example
In this example, imsl_f_yield_maturity computes the annual yield of a security that pays interest at
maturity which is selling at $95.40663 with the settlement date of August 1, 2000, the issue date of July 1, 2000,
the maturity date of July 1, 2010, and the interest rate of 6% at the issue using the US (NASD) 30/360 day count
method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity, issue;
 float rate = .06;
 float price = 95.40663;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yieldmat;
 settlement.tm_year = 100;
 settlement.tm_mon = 7;
 settlement.tm_mday = 1;
 maturity.tm_year = 110;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 issue.tm_year = 100;
 issue.tm_mon = 6;

1 + DIM
B * rate −

price
100 +

A
B * rate

price
100 +

A
B * rate

* B
DSM
1261

 Special Functions yield_maturity
 issue.tm_mday = 1;
 yieldmat = imsl_f_yield_maturity (settlement, maturity, issue,
 rate, price, basis);
 printf ("The yield on a bond which pays at maturity is ");
 printf ("%.2f%%.\n", yieldmat * 100.);
}

Output

The yield on a bond which pays at maturity is 6.74%.
1262

 Special Functions yield_periodic
yield_periodic
Evaluates the yield of a security that pays periodic interest.

Synopsis
#include <imsl.h>
float imsl_f_yield_periodic (struct tm settlement, struct tm maturity,

float coupon_rate, float price, float redemption, int frequency, int basis, …, 0)

The type double function is imsl_d_yield_periodic.

Required Arguments
struct tm settlement (Input)

The date on which payment is made to settle a trade. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are paid. For a more
detailed discussion on dates see the Usage Notes section of this chapter.

float coupon_rate (Input)
Annual coupon rate.

float price (Input)
Price per $100 face value of the security.

float redemption (Input)
Redemption value per $100 face value of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL, IMSL_SEMIANNUAL or
IMSL_QUARTERLY. For a more detailed discussion on frequency see the Usage Notes section
of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be one of
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_NASD,
1263

 Special Functions yield_periodic
IMSL_DAY_CNT_BASIS_ACTUAL360, IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_-
DAY_CNT_BASIS_30E360. For a more detailed discussion on basis see the Usage Notes
section of this chapter.

Return Value
The yield of a security that pays interest periodically. If no result can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_yield_periodic (struct tm settlement, struct tm maturity,

float coupon_rate, float price, float redemption, int frequency, int basis,

IMSL_XGUESS, float guess,
IMSL_HIGHEST, float max,
0)

Optional Arguments
IMSL_XGUESS, float guess (Input)

Initial guess at the internal rate of return.

IMSL_HIGHEST, float max (Input)
Maximum value of the yield.
Default: 1.0 (100%)

Description
Function imsl_f_yield_periodic computes the yield of a security that pays periodic interest. If there is
one coupon period use the following:

In the equation above, DSR represents the number of days in the period starting with the settlement date and
ending with the redemption date. E represents the number of days within the coupon period. A represents the
number of days in the period starting with the beginning of coupon period and ending with the settlement date.

redemption
100 +

coupon_rate
freq −

price
100 +

A
E *

coupon_rate
freq

price
100 +

A
E *

coupon_rate
freq

freq * E
DSR
1264

 Special Functions yield_periodic
If there is more than one coupon period use the following:

In the equation above, DSC represents the number of days in the period from the settlement to the next coupon
date. E represents the number of days within the coupon period. N represents the number of coupons payable in
the period starting with the settlement date and ending with the redemption date. A represents the number of
days in the period starting with the beginning of the coupon period and ending with the settlement date.

Example
In this example, imsl_f_yield_periodic computes yield of a security which is selling at $95.40663 with
the settlement date of July 1, 1985, the maturity date of July 1, 1995, and the coupon rate of 6% at the issue using
the US (NASD) 30/360 day count method.

#include <stdio.h>
#include <imsl.h>
int main()
{
 struct tm settlement, maturity;
 float coupon_rate = .06;
 float price = 95.40663;
 float redemption = 105.;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yield;
 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;
 maturity.tm_year = 110;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;
 yield = imsl_f_yield_periodic (settlement, maturity, coupon_rate,
 price, redemption, frequency, basis, 0);
 printf ("The yield of the bond is %.2f%%.\n", yield * 100.);
}

Output

The yield of the bond is 7.00%.

price −
redemption

1 +
yield
freq

N−1+DSCE
+ ∑

k=1

N 100 * ratefreq

1 +
yield
freq

k−1+DSCE
− 100 * ratefreq *

A
E = 0
1265

 Statistics and Random Number Generation Functions
Statistics and Random
Number Generation

Functions
Statistics

Univariate summary statistics . simple_statistics 1269
One-way frequency table. table_oneway 1275
Chi-squared one-sample goodness-of-fit test chi_squared_test 1280
Correlation . covariances 1289
Multiple linear regression. regression 1296
Polynomial regression .poly_regression 1306
Numerical ranking . ranks 1315

Random Numbers
Retrieves the current value of the seed . random_seed_get 1322
Initialize a random seed. random_seed_set 1324
Selects the uniform (0, 1) generator . random_option 1325
Generates pseudorandom numbers . random_uniform 1327
Generates pseudorandom normal numbers . random_normal 1330
Generates pseudorandom Poisson numbers random_poisson 1332
Generates pseudorandom gamma numbers . random_gamma 1335
Generates pseudorandom beta . random_beta 1338
Generates pseudorandomstandard exponential random_exponential 1341

Low-discrepancy sequence
Generates a shuffled Faure sequence . faure_next_point 1343
1266

 Statistics and Random Number Generation Usage Notes
Usage Notes

Statistics
The functions in this section can be used to compute some common univariate summary statistics, perform a
one-sample goodness-of-fit test, produce measures of correlation, perform multiple and polynomial regression
analysis, and compute ranks (or a transformation of the ranks, such as normal or exponential scores). See the
IMSL C Stat Library for a more extensive collection of statistical functions and detailed descriptions.

Overview of Random Number Generation
“Random Numbers” describes functions for the generation of random numbers and of random samples and per-
mutations. These functions are useful for applications in Monte Carlo or simulation studies. Before using any of
the random number generators, the generator must be initialized by selecting a seed or starting value. This can be
done by calling the function imsl_random_seed_set. If the user does not select a seed, one is generated using
the system clock. A seed needs to be selected only once in a program, unless two or more separate streams of
random numbers are maintained. There are other utility functions in this chapter for selecting the form of the
basic generator, for restarting simulations, and for maintaining separate simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates,” “deviates,” and “variates” are used
interchangeably. The phrase “pseudorandom” is sometimes used to emphasize that the numbers generated are
really not “random,” since they result from a deterministic process. The usefulness of pseudorandom numbers is
derived from the similarity, in a statistical sense, of samples of the pseudorandom numbers to samples of obser-
vations from the specified distributions. In short, while the pseudorandom numbers are completely deterministic
and repeatable, they simulate the realizations of independent and identically distributed random variables.

The Basic Uniform Generator
The random number generators in this chaptersection use a multiplicative congruential method. The form of the
generator is

xi = cxi

-1

 mod (231 -1).
1267

 Statistics and Random Number Generation Usage Notes
Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root modulo 231 - 1 (which is a

prime), then the generator will have a maximal period of 231 - 2. There are several other considerations, how-
ever. See Knuth (1981) for a good general discussion. The possible values for c in the IMSL generators are 16807,
397204094, and 950706376. The selection is made by the function imsl_random_option. The choice of 16807
will result in the fastest execution time, but other evidence suggests that the performance of 950706376 is best
among these three choices (Fishman and Moore 1982). If no selection is made explicitly, the functions use the
multiplier 16807, which has been in use for some time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function imsl_f_random_uniform. This function is
portable in the sense that, given the same seed, it produces the same sequence in all computer/compiler
environments.

Shuffled Generators
The user also can select a shuffled version of these generators using imsl_random_option. The shuffled gen-
erators use a scheme due to Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128
uniform (0,1) numbers resulting from the simple multiplicative congruential generator. Then, for each xi from the

simple generator, the low-order bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in

the table is then delivered as the random number, and xi, after being scaled into the unit interval, is inserted into

the j-th position in the table. This scheme is similar to that of Bays and Durham (1976), and their analysis is appli-
cable to this scheme as well.

Setting the Seed
The seed of the generator can be set in imsl_random_seed_set and can be retrieved by
imsl_random_seed_get. Prior to invoking any generator in this section, the user can call
imsl_random_seed_set to initialize the seed, which is an integer variable with a value between 1 and
2147483647. If it is not initialized by imsl_random_seed_set, a random seed is obtained from the system
clock. Once it is initialized, the seed need not be set again.

If the user wishes to restart a simulation, by imsl_random_seed_get can be used to obtain the final seed value
of one run to be used as the starting value in a subsequent run. Also, if two simultaneous random number
streams are desired in one run, imsl_random_seed_set and by imsl_random_seed_get can be used
before and after the invocations of the generators in each stream.
1268

 Statistics and Random Number Generation simple_statistics
simple_statistics
Computes basic univariate statistics.

Synopsis
#include <imsl.h>
float *imsl_f_simple_statistics (int n_observations, int _variables, float x[], …, 0)

The type double procedure is imsl_d_simple_statistics.

Required Arguments
int n_observations (Input)

The number of observations.

int n_variables (Input)
The number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the data matrix.

Return Value
A pointer to a matrix containing some simple statistics for each of the columns in x. If MEDIAN and
MEDIAN_AND_SCALE are not used as optional arguments, the size of the matrix is 14 by n_variables. The
columns of this matrix correspond to the columns of x and the rows contain the following statistics:

Row Statistic

0 the mean

1 the variance

2 the standard deviation

3 the coefficient of skewness

4 the coefficient of excess (kurtosis)

5 the minimum value

6 the maximum value
1269

 Statistics and Random Number Generation simple_statistics
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_simple_statistics (int n_observations, int n_variables, float x[],

IMSL_CONFIDENCE_MEANS, float confidence_means,
IMSL_CONFIDENCE_VARIANCES, float confidence_variances,
IMSL_X_COL_DIM, int x_col_dim,
IMSL_STAT_COL_DIM, int stat_col_dim,
IMSL_MEDIAN,
IMSL_MEDIAN_AND_SCALE,
IMSL_RETURN_USER, float simple_statistics[],
0)

Optional Arguments
IMSL_CONFIDENCE_MEANS, float confidence_means (Input)

The confidence level for a two-sided interval estimate of the means (assuming normality) in percent.
Argument confidence_means must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0.
For a one-sided confidence interval with confidence level c, set confidence_means = 100.0 -
2(100 - c). If IMSL_CONFIDENCE_MEANS is not specified, a 95 percent confidence interval is
computed.

7 the range

8 the coefficient of variation (when defined)
If the coefficient of variation is not defined, zero is returned.

9 the number of observations (the counts)

10 a lower confidence limit for the mean (assuming normality)
The default is a 95 percent confidence interval.

11 an upper confidence limit for the mean (assuming normality)

12 a lower confidence limit for the variance (assuming normality)
The default is a 95 percent confidence interval.

13 an upper confidence limit for the variance (assuming normality)

Row Statistic
1270

 Statistics and Random Number Generation simple_statistics
IMSL_CONFIDENCE_VARIANCES, float confidence_variances (Input)
The confidence level for a two-sided interval estimate of the variances (assuming normality) in per-
cent. The confidence intervals are symmetric in probability (rather than in length). For a one-sided
confidence interval with confidence level c, set confidence_means = 100.0 − 2(100 − c). If
IMSL_CONFIDENCE_VARIANCES is not specified, a 95 percent confidence interval is computed.

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_STAT_COL_DIM, int stat_col_dim (Input)
The column dimension of the returned value array, or if IMSL_RETURN_USER is specified, the col-
umn dimension of array simple_statistics.
Default: stat_col_dim = n_variables

IMSL_MEDIAN, or

IMSL_MEDIAN_AND_SCALE
Exactly one of these optional arguments can be specified in order to indicate the additional simple
robust statistics to be computed. If IMSL_MEDIAN is specified, the medians are computed and
stored in one additional row (row number 14) in the returned matrix of simple statistics. If
IMSL_MEDIAN_AND_SCALE is specified, the medians, the medians of the absolute deviations
from the medians, and a simple robust estimate of scale are computed, then stored in three addi-
tional rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

IMSL_RETURN_USER, float simple_statistics[] (Output)
Store the matrix of statistics in the user-provided array simple_statistics. If neither
IMSL_MEDIAN nor IMSL_MEDIAN_AND_SCALE is specified, the matrix is 14 by n_variables.
If IMSL_MEDIAN is specified, the matrix is 15 by n_variables. If IMSL_MEDIAN_AND_SCALE
is specified, the matrix is 17 by n_variables.

Description
For the data in each column of x, imsl_f_simple_statistics computes the sample mean, variance, min-
imum, maximum, and other basic statistics. It also computes confidence intervals for the mean and variance
(under the hypothesis that the sample is from a normal population).

The definitions of some of the statistics are given below in terms of a single variable
x of which the i-th datum is xi.
1271

 Statistics and Random Number Generation simple_statistics
Mean

Variance

Skewness

Excess or Kurtosis

Minimum

Maximum

Range

Coefficient of Variation

x─ =
∑ xi
n

s2 =
∑ xi − x

─ 2

n − 1

∑ xi − x
─ 3 / n

∑ xi − x
─ 2 / n

3/2

∑ xi − x
─ 4 / n

∑ xi − x
─ 2 / n

2 − 3

xmin = min xi

xmax = max xi

xmax − xmin

s / x─ for x─ ≠ 0
1272

 Statistics and Random Number Generation simple_statistics
Median

Median Absolute Deviation

Simple Robust Estimate of Scale

where Φ-1(3/4) ≈ 0.6745 is the inverse of the standard normal distribution function evaluated at 3∕4. This stan-
dardizes MAD in order to make the scale estimate consistent at the normal distribution for estimating the
standard deviation (Huber 1981, pp. 107-108).

Example
This example uses data from Draper and Smith (1981). There are five variables and 13 observations.

#include <imsl.h>
#define N_VARIABLES 5
#define N_OBSERVATIONS 13
int main()
{
 float *simple_statistics;
 float x[] = {7., 26., 6., 60., 78.5,
 1., 29., 15., 52., 74.3,
 11., 56., 8., 20., 104.3,
 11., 31., 8., 47., 87.6,
 7., 52., 6., 33., 95.9,
 11., 55., 9., 22., 109.2,
 3., 71., 17., 6., 102.7,
 1., 31., 22., 44., 72.5,
 2., 54., 18., 22., 93.1,
 21., 47., 4., 26., 115.9,
 1., 40., 23., 34., 83.8,
 11., 66., 9., 12., 113.3,
 10., 68., 8., 12., 109.4};
 char *row_labels[] = {"means", "variances", "std. dev",
 "skewness", "kurtosis", "minima",
 "maxima", "ranges", "C.V.", "counts",
 "lower mean", "upper mean",
 "lower var", "upper var"};
 simple_statistics = imsl_f_simple_statistics(N_OBSERVATIONS,
 N_VARIABLES, x, 0);

median xi =
middle xi after sorting if n is odd
average of middle two xi's if n is even

MAD = median ∣xi − median x j ∣

MAD / ϕ−1 3 / 4
1273

 Statistics and Random Number Generation simple_statistics
 imsl_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
 simple_statistics,
 IMSL_ROW_LABELS, row_labels,
 IMSL_WRITE_FORMAT, "%7.3f",
 0);
}

Output

 * * * Statistics * * *
 1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688
1274

 Statistics and Random Number Generation table_oneway
table_oneway
Tallies observations into a one-way frequency table.

Synopsis
#include <imsl.h>
float *imsl_f_table_oneway (int n_observations, float x[], int n_intervals, …, 0)

The type double function is imsl_d_table_oneway.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the observations.

int n_intervals (Input)
Number of intervals (bins).

Return Value
Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_table_oneway (int n_observations, float x[], int n_intervals,

IMSL_DATA_BOUNDS, float *minimum, float *maximum,
IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound,
IMSL_CUTPOINTS, float cutpoints[],
IMSL_CLASS_MARKS, float class_marks[],
IMSL_RETURN_USER, float table_oneway[],
0)
1275

 Statistics and Random Number Generation table_oneway
Optional Arguments
IMSL_DATA_BOUNDS, float *minimum, float *maximum (Output)

or

IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)
or

IMSL_CUTPOINTS, float cutpoints[] (Input)
or

IMSL_CLASS_MARKS, float class_marks[] (Input)
None, or exactly one, of these four optional arguments can be specified in order to define the inter-
vals or bins for the one-way table. If none is specified, or if IMSL_DATA_BOUNDS is specified,
n_intervals, intervals of equal length, are used with the initial interval starting with the minimum
value in x and the last interval ending with the maximum value in x. The initial interval is closed on
the left and right. The remaining intervals are open on the left and closed on the right. When
IMSL_DATA_BOUNDS is explicitly specified, the minimum and maximum values in x are output in
minimum and maximum. With this option, each interval is of
(maximum−minimum)∕n_intervals length. If IMSL_KNOWN_BOUNDS is specified, two semi-
infinite intervals are used as the initial and last interval. The initial interval is closed on the right and
includes lower_bound as its right endpoint. The last interval is open on the left and includes all val-
ues greater than upper_bound. The remaining n_intervals − 2 intervals are each of length

and are open on the left and closed on the right. Argument n_intervals must be greater than or
equal to three for this option. If IMSL_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the array class_marks of length n_intervals. The class
marks are the midpoints of each of the n_intervals, and each interval is taken to have length
class_marks[1] − class_marks[0]. The argument n_intervals must be greater than or
equal to two for this option. If IMSL_CUTPOINTS is specified, cutpoints (boundaries) must be pro-
vided in the array cutpoints of length n_intervals − 1. This option allows unequal interval
lengths. The initial interval is closed on the right and includes the initial cutpoint as its right endpoint.
The last interval is open on the left and includes all values greater than the last cutpoint. The remain-
ing n_intervals − 2 intervals are open on the left and closed on the right. The argument
n_interval must be greater than or equal to three for this option.

IMSL_RETURN_USER, float table[] (Output)
Counts are stored in the user-supplied array table of length n_intervals.

upper_bound − lower_bound
n_intervals − 2
1276

 Statistics and Random Number Generation table_oneway
Examples

Example 1

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981). They are the measurements (in
inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years.

#include <imsl.h>
int main()
{
 int n_intervals=10;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsl_f_table_oneway (n_observations, x, n_intervals, 0);
 imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

 Counts
 1 2 3 4 5 6
 4 8 5 5 3 1
 7 8 9 10
 3 0 0 1

Example 2

This example selects IMSL_KNOWN_BOUNDS and sets lower_bound = 0.5 and upper_bound = 4.5 so that
the eight interior intervals each have width (4.5 − 0.5)/(10 − 2) = 0.5. The 10 intervals are (−∞ 0.5], (0.5, 1.0], …,
(4.0, .5], and (4.5, ∞].

#include <imsl.h>
int main()
{
 int n_observations=30;
 int n_intervals=10;
 float *table;
 float lower_bound=0.5, upper_bound=4.5;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsl_f_table_oneway (n_observations, x, n_intervals,
 IMSL_KNOWN_BOUNDS, lower_bound,
 upper_bound, 0);
 imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
}

1277

 Statistics and Random Number Generation table_oneway
Output

 Counts
 1 2 3 4 5 6
 2 7 6 6 4 2
 7 8 9 10
 2 0 0 1

Example 3

This example inputs 10 class marks 0.25, 0.75, 1.25, …, 4.75. This defines the class intervals (0.0, 0.5], (0.5, 1.0], …,
(4.0, 4.5], (4.5, 5.0]. Note that unlike the previous example, the initial and last intervals are the same length as the
remaining intervals.

#include <imsl.h>
int main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25, 2.75,
 3.25, 3.75, 4.25, 4.75};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CLASS_MARKS, class_marks,
 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output

 Counts
 1 2 3 4 5 6
 2 7 6 6 4 2
 7 8 9 10
 2 0 0 1

Example 4

This example inputs nine cutpoints 0.5, 1.0, 1.5, 2.0, …, 4.5 to define the same 10 intervals as in Example 3. Here
again, the initial and last intervals are semi-infinite intervals.

#include <imsl.h>
int main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
1278

 Statistics and Random Number Generation table_oneway
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
 4.5};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CUTPOINTS, cutpoints,
 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output

 counts
1 2 3 4 5 6
2 7 6 6 4 2
7 8 9 10
2 0 0 1
1279

 Statistics and Random Number Generation chi_squared_test
chi_squared_test
Performs a chi-squared goodness-of-fit test.

Synopsis
#include <imsl.h>
float imsl_f_chi_squared_test (float user_proc_cdf(), int n_observations,

int n_categories, float x[], …, 0)

The type double function is imsl_d_chi_squared_test.

Required Arguments
float user_proc_cdf (float y) (Input)

User-supplied function that returns the hypothesized, cumulative distribution function at the point y.

int n_observations (Input)
The number of data elements input in x.

int n_categories (Input)
The number of cells into which the observations are to be tallied.

float x[] (Input)
Array with n_observations components containing the vector of data elements for this test.

Return Value
The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_chi_squared_test (float user_proc_cdf(), int n_observations,

int n_categories, float x[],

IMSL_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSL_CUTPOINTS, float **p_cutpoints,
1280

 Statistics and Random Number Generation chi_squared_test
IMSL_CUTPOINTS_USER, float cutpoints[],
IMSL_CUTPOINTS_EQUAL,
IMSL_CHI_SQUARED, float *chi_squared,
IMSL_DEGREES_OF_FREEDOM, float *df,
IMSL_FREQUENCIES, float frequencies[],
IMSL_BOUNDS, float lower_bound, float upper_bound,
IMSL_CELL_COUNTS, float **p_cell_counts,
IMSL_CELL_COUNTS_USER, float cell_counts[],
IMSL_CELL_EXPECTED, float **p_cell_expected,
IMSL_CELL_EXPECTED_USER, float cell_expected[],
IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared,
IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
IMSL_FCN_W_DATA, float user_proc_cdf(), void *data,
0)

Optional Arguments
IMSL_N_PARAMETERS_ESTIMATED, int n_parameters (Input)

The number of parameters estimated in computing the cumulative distribution function.

IMSL_CUTPOINTS, float **p_cutpoints (Output)
The address of a pointer to the cutpoints array. On return, the pointer is initialized (through a mem-
ory allocation request to malloc), and the array is stored there. Typically, float *p_cutpoints is
declared; &p_cutpoints is used as an argument to this function; and
imsl_free(p_cutpoints) is used to free this array.

IMSL_CUTPOINTS_USER, float cutpoints[] (Input or Output)
Array with n_categories − 1 components containing the vector of cutpoints defining the cell
intervals. The intervals defined by the cutpoints are such that the lower endpoint is not included, and
the upper endpoint is included in any interval. If IMSL_CUTPOINTS_EQUAL is specified, equal
probability cutpoints are computed and returned in cutpoints.

IMSL_CUTPOINTS_EQUAL
If IMSL_CUTPOINTS_USER is specified, then equal probability cutpoints can still be used if, in
addition, the IMSL_CUTPOINTS_EQUAL option is specified. If IMSL_CUTPOINTS_USER is not
specified, equal probability cutpoints are used by default.

IMSL_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.
1281

 Statistics and Random Number Generation chi_squared_test
IMSL_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is returned in *df.

IMSL_FREQUENCIES, float frequencies[] (Input)
Array with n_observations components containing the vector frequencies for the observations
stored in x.

IMSL_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSL_BOUNDS is specified, then lower_bound is the lower bound of the range of the distribu-
tion, and upper_bound is the upper bound of this range. If lower_bound = upper_bound, a
range on the whole real line is used (the default). If the lower and upper endpoints are different,
points outside the range of these bounds are ignored. Distributions conditional on a range can be
specified when IMSL_BOUNDS is used. By convention, lower_bound is excluded from the first
interval, but upper_bound is included in the last interval.

IMSL_CELL_COUNTS, float **p_cell_counts (Output)
The address of a pointer to an array containing the cell counts. The cell counts are the observed fre-
quencies in each of the n_categories cells. On return, the pointer is initialized (through a
memory allocation request to malloc), and the array is stored there. Typically, float
*p_cell_counts is declared; &p_cell_counts is used as an argument to this function; and
imsl_free(p_cell_counts) is used to free this array.

IMSL_CELL_COUNTS_USER, float cell_counts[] (Output)
If specified, the n_categories cell counts are returned in the array cell_counts provided by
the user.

IMSL_CELL_EXPECTED, float **p_cell_expected (Output)
The address of a pointer to the cell expected values. The expected value of a cell is the expected
count in the cell given that the hypothesized distribution is correct. On return, the pointer is initial-
ized (through a memory allocation request to malloc), and the array is stored there. Typically,
float *p_cell_expected is declared; &p_cell_expected is used as an argument to this func-
tion; and imsl_free(p_cell_expected) is used to free this array.

IMSL_CELL_EXPECTED_USER, float cell_expected[] (Output)
If specified, the n_categories cell expected values are returned in the array cell_expected
provided by the user.

IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared (Output)
The address of a pointer to an array of length n_categories containing the cell contributions to
chi-squared. On return, the pointer is initialized (through a memory allocation request to malloc),
and the array is stored there. Typically, float *p_cell_chi_squared is declared;
&p_cell_chi_squared is used as an argument to this function; and
imsl_free(p_cell_chi_squared) is used to free this array.
1282

 Statistics and Random Number Generation chi_squared_test
IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
If specified, the cell contributions to chi-squared are returned in the array cell_chi_squared
provided by the user.

IMSL_FCN_W_DATA, float user_proc_cdf (float y, void *data), void *data, (Input)
User supplied function that returns the hypothesized, cumulative distribution function at the point y,
which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be
passed to the user-supplied function. See Passing Data to User-Supplied Functions in the introduc-
tion to this manual for more details.

Description
The function imsl_f_chi_squared_test performs a chi-squared goodness-of-fit test that a random sam-
ple of observations is distributed according to a specified theoretical cumulative distribution. The theoretical
distribution, which may be continuous, discrete, or a mixture of discrete and continuous distributions, is specified
via the user-defined function user_proc_cdf. Because the user is allowed to give a range for the observa-
tions, a test conditional upon the specified range is performed.

Argument n_categories gives the number of intervals into which the observations are to be divided. By
default, equiprobable intervals are computed by imsl_f_chi_squared_test, but intervals that are not
equiprobable can be specified (through the use of optional argument IMSL_CUTPOINTS).

Regardless of the method used to obtain the cutpoints, the intervals are such that the lower endpoint is not
included in the interval, while the upper endpoint is always included. If the cumulative distribution function has
discrete elements, then user-provided cutpoints should always be used since imsl_f_chi_squared_test
cannot determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are − ∞ and +∞, respectively. If
IMSL_BOUNDS is specified, the endpoints are defined by the user via the two arguments lower_bound and
upper_bound.

A tally of counts is maintained for the observations in x as follows. If the cutpoints are specified by the user, the
tally is made in the interval to which xi belongs using the endpoints specified by the user. If the cutpoints are

determined by imsl_f_chi_squared_test, then the cumulative probability at xi, F(xi), is computed via the

function user_proc_cdf. The tally for xi is made in interval number

and is the function that takes the greatest integer that is no larger than the argument of the function. Thus,

if the computer time required to calculate the cumulative distribution function is large, user-specified cutpoints
may be preferred to reduce the total computing time.

⌊mF xi + 1⌋ where m = n_categories
⌊ · ⌋
1283

 Statistics and Random Number Generation chi_squared_test
If the expected count in any cell is less than 1, then a rule of thumb is that the chi-squared approximation may be
suspect. A warning message to this effect is issued in this case, as well as when an expected value is less than 5.

On some platforms, imsl_f_chi_squared_test can evaluate the user-supplied function
user_proc_cdf in parallel. This is done only if the function imsl_omp_options is called to flag user-defined
functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependen-
cies are usually the result of writing to global or static variables

Programming Notes
The user must supply a function user_proc_cdf with calling sequence user_proc_cdf(y), that returns
the value of the cumulative distribution function at any point y in the (optionally) specified range. Many of the
cumulative distribution functions in Special Functions can be used for user_proc_cdf, either directly, if the
calling sequence is correct, or indirectly, if, for example, the sample means and standard deviations are to be
used in computing the theoretical cumulative distribution function.

Examples

Example 1

This example illustrates the use of imsl_f_chi_squared_test on a randomly generated sample from the
normal distribution. One-thousand randomly generated observations are tallied into 10 equiprobable intervals.
The null hypothesis that the sample is from a normal distribution is specified by use of the
imsl_f_normal_cdf (see Special Functions) as the hypothesized distribution function. In this example, the
null hypothesis is not rejected.

#include <imsl.h>
#include <stdio.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000
int main()
{
 float *x, p_value;
 imsl_omp_options(
 IMSL_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 imsl_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsl_f_random_normal (
 N_OBSERVATIONS,
1284

 Statistics and Random Number Generation chi_squared_test
 0);
 /* Perform chi squared test */
 p_value = imsl_f_chi_squared_test (imsl_f_normal_cdf,
 N_OBSERVATIONS,
 N_CATEGORIES, x,
 0);
 /* Print results */
 printf ("p value %7.4f\n", p_value);
}

Output

p value 0.1546

Example 2

In this example, some optional arguments are used for the data in the initial example.

#include <imsl.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000
int main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared", "degrees of freedom",
 "p-value"};
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 imsl_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsl_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 chi_squared_statistics[2] =
 imsl_f_chi_squared_test (imsl_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,
 IMSL_CUTPOINTS, &cutpoints,
 IMSL_CELL_COUNTS, &cell_counts,
 IMSL_CELL_CHI_SQUARED, &cell_chi_squared,
 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsl_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1, cutpoints, 0);
 imsl_f_write_matrix ("Cell Counts", 1, N_CATEGORIES, cell_counts,
 0);
1285

 Statistics and Random Number Generation chi_squared_test
 imsl_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
 N_CATEGORIES, cell_chi_squared,
 0);
}

Output

 Chi Squared Statistics
chi-squared 13.18
degrees of freedom 9.00
p-value 0.15
 Cut Points
 1 2 3 4 5 6
 -1.282 -0.842 -0.524 -0.253 -0.000 0.253
 7 8 9
 0.524 0.842 1.282

 Cell Counts
 1 2 3 4 5 6
 106 109 89 92 83 87
 7 8 9 10
 110 104 121 99
 Cell Contributions to Chi-Squared
 1 2 3 4 5 6
 0.36 0.81 1.21 0.64 2.89 1.69
 7 8 9 10
 1.00 0.16 4.41 0.01

Example 3

In this example, a discrete Poisson random sample of size 1000 with parameter θ = 5.0 is generated via function
imsl_f_random_poisson. In the call to imsl_f_chi_squared_test, function imsl_f_poisson_cdf
is used as function user_proc_cdf.

#include <imsl.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 5.0
float user_proc_cdf(float);
int main()
{ int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
1286

 Statistics and Random Number Generation chi_squared_test
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};
 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7", "8", "9"};
 char *stat_row_labels[] = {"chi-squared", "degrees of freedom",
 "p-value"};
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 imsl_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsl_random_poisson(N_NUMBERS, THETA, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];
 chi_squared_statistics[2] =
 imsl_f_chi_squared_test(user_proc_cdf, N_NUMBERS, N_CATEGORIES, x,
 IMSL_CUTPOINTS_USER, cutpoints,
 IMSL_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSL_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSL_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsl_f_write_matrix("\nChi-squared statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSL_ROW_LABELS, cell_row_labels,
 IMSL_COL_LABELS, cell_col_labels,
 0);
}

float user_proc_cdf(float k)
{
 float cdf_v;
 cdf_v = imsl_f_poisson_cdf ((int) k, THETA);
 return cdf_v;
}

Output

 Chi-squared statistics
chi-squared 10.48
degrees of freedom 9.00
p-value 0.31

 Cell Statistics
1287

 Statistics and Random Number Generation chi_squared_test
Poisson value 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150.0
expected count 40.4 84.2 140.4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7
Poisson value 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expected count 146.2 104.4 65.3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0

Warning Errors

Fatal Errors

IMSL_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSL_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

IMSL_ALL_OBSERVATIONS_MISSING All observations contain missing values.

IMSL_INCORRECT_CDF_1 The function user_proc_cdf is not a cumulative
distribution function. The value at the lower bound
must be nonnegative, and the value at the upper
bound must not be greater than one.

IMSL_INCORRECT_CDF_2 The function user_proc_cdf is not a cumulative
distribution function. The probability of the range of
the distribution is not positive.

IMSL_INCORRECT_CDF_3 The function user_proc_cdf is not a cumulative
distribution function. Its evaluation at an element in
x is inconsistent with either the evaluation at the
lower or upper bound.

IMSL_INCORRECT_CDF_4 The function user_proc_cdf is not a cumulative
distribution function. Its evaluation at a cutpoint is
inconsistent with either the evaluation at the lower
or upper bound.

IMSL_INCORRECT_CDF_5 An error has occurred when inverting the cumula-
tive distribution function. This function must be
continuous and defined over the whole real line.

IMSL_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
1288

 Statistics and Random Number Generation covariances
covariances

more...

Computes the sample variance-covariance or correlation matrix.

Synopsis
#include <imsl.h>

float *imsl_f_covariances (int n_observations, int n_variables, float x[], …, 0)

The type double function is imsl_d_covariances.

Required Arguments
int n_observations (Input)

The number of observations.

int n_variables (Input)
The number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the matrix of data.

Return Value
If no optional arguments are used, imsl_f_covariances returns a pointer to an
n_variables × n_variables matrix containing the sample variance-covariance matrix of the observations.
The rows and columns of this matrix correspond to the columns of x.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_covariances (int n_observations, int n_variables, float x[],
1289

 Statistics and Random Number Generation covariances
IMSL_X_COL_DIM, int x_col_dim,
IMSL_VARIANCE_COVARIANCE_MATRIX,
IMSL_CORRECTED_SSCP_MATRIX,
IMSL_CORRELATION_MATRIX,
IMSL_STDEV_CORRELATION_MATRIX,
IMSL_MEANS, float **p_means,
IMSL_MEANS_USER, float means[],
IMSL_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSL_RETURN_USER, float covariance[],
0)

Optional Arguments
IMSL_X_COL_DIM, int x_col_dim (Input)

The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_VARIANCE_COVARIANCE_MATRIX, or

IMSL_CORRECTED_SSCP_MATRIX, or

IMSL_CORRELATION_MATRIX, or

IMSL_STDEV_CORRELATION_MATRIX
Exactly one of these options can be used to specify the type of matrix to be computed.

IMSL_MEANS, float **p_means (Output)
The address of a pointer to the array containing the means of the variables in x. The components of
the array correspond to the columns of x. On return, the pointer is initialized (through a memory
allocation request to malloc), and the array is stored there. Typically, float *p_means is declared;
&p_means is used as an argument to this function; and imsl_free(p_means) is used to free this
array.

Keyword Type of Matrix

IMSL_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default)

IMSL_CORRECTED_SSCP_MATRIX corrected sums of squares and
crossproducts matrix

IMSL_CORRELATION_MATRIX correlation matrix

IMSL_STDEV_CORRELATION_MATRIX correlation matrix except for the diago-
nal elements which are the standard
deviations
1290

 Statistics and Random Number Generation covariances
IMSL_MEANS_USER, float means[] (Output)
Calculate the n_variables means and store them in the memory provided by the user. The ele-
ments of means correspond to the columns of x.

IMSL_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
The column dimension of array covariance, if IMSL_RETURN_USER is specified, or the column
dimension of the return value otherwise.
Default: covariance_col_dim = n_variables

IMSL_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size
n_variables × n_variables provided by the user.

Description
The function imsl_f_covariances computes estimates of correlations, covariances, or sums of squares
and crossproducts for a data matrix x. The means, (corrected) sums of squares, and (corrected) sums of
crossproducts are computed using the method of provisional means. Let

denote the mean based on i observations for the k-th variable, and let cjki denote the sum of crossproducts (or

sum of squares if j = k) based on i observations. Then, the method of provisional means finds new means and
sums of crossproducts as follows:

The means and crossproducts are initialized as:

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable on observation i + 1, each new

observation leads to the following updates for

and cjki using update constant ri+1:

x─ki

x─k0 = 0.0 k = 1, … ,p
c jk0 = 0.0 j,k = 1, … ,p

x─ki
1291

 Statistics and Random Number Generation covariances
Usage Notes
The function imsl_f_covariances uses the following definition of a sample mean:

where n is the number of observations. The following formula defines the sample covariance, sj k, between vari-

ables j and k:

The sample correlation between variables j and k, rjk, is defined as follows:

Examples

Example 1

The first example illustrates the use of imsl_f_covariances for the first 50 observations in the Fisher iris
data (Fisher 1936). Note in this example that the first variable is constant over the first 50 observations.

#include <imsl.h>
#define N_VARIABLES 5
#define N_OBSERVATIONS 50
int main()
{
 float *covariances;
 float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,

ri+1 =
1
i + 1

x─k,i+1 = x
─
ki + xk,i+1 − x

─
ki ri+1

c jk,i+1 = c jki + x j,i+1 − x
─
ji xk,i+1 − x

─
ki 1 − ri+1

x─k =
∑i=1
n xki
n

s jk =
∑i=1
n x ji − x

─
j xki − x

─
k

n − 1

r jk =
s jk
s jjskk
1292

 Statistics and Random Number Generation covariances
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
 covariances = imsl_f_covariances (N_OBSERVATIONS, N_VARIABLES, x, 0);
 imsl_f_write_matrix ("The default case: variances/covariances",
 N_VARIABLES, N_VARIABLES, covariances,
 IMSL_PRINT_UPPER,
 0);
}

Output

 The default case: variances/covariances
 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111

Example 2

This example illustrates the use of some optional arguments in imsl_f_covariances. Once again, the first
50 observations in the Fisher iris data are used.
1293

 Statistics and Random Number Generation covariances
#include <imsl.h>
#define N_VARIABLES 5
#define N_OBSERVATIONS 50
int main()
{
 char *title;
 float *means, *correlations;
 float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
 correlations = imsl_f_covariances (N_OBSERVATIONS,
 N_VARIABLES-1, x+1,
 IMSL_STDEV_CORRELATION_MATRIX,
 IMSL_X_COL_DIM, N_VARIABLES,
 IMSL_MEANS, &means,
 0);
 imsl_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
 title = "Correlations with Standard Deviations on the Diagonal\n";
 imsl_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
 correlations, IMSL_PRINT_UPPER,
 0);
}

Output

 Means
 1 2 3 4
5.006 3.428 1.462 0.246
Correlations with Standard Deviations on the Diagonal
 1 2 3 4
1294

 Statistics and Random Number Generation covariances
1 0.3525 0.7425 0.2672 0.2781
2 0.3791 0.1777 0.2328
3 0.1737 0.3316
4 0.1054

Warning Errors
IMSL_CONSTANT_VARIABLE Correlations are requested, but the observations on

one or more variables are constant. The corre-
sponding correlations are set to NaN.
1295

 Statistics and Random Number Generation regression
regression
Fits a multiple linear regression model using least squares.

Synopsis
#include <imsl.h>
float *imsl_f_regression (int n_observations, int n_independent, float x[], float y[],

…, 0)

The type double function is imsl_d_regression.

Required Arguments
int n_observations (Input)

The number of observations.

int n_independent (Input)
The number of independent (explanatory) variables.

float x[] (Input)
Array of size n_observations × n_independent containing the matrix of independent
(explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response) variable.

Return Value
If the optional argument IMSL_NO_INTERCEPT is not used, imsl_f_regression returns a pointer to an
array of length n_independent + 1 containing a least-squares solution for the regression coefficients. The
estimated intercept is the initial component of the array.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_regression (int n_observations, int n_independent, float x[], float y[],
1296

 Statistics and Random Number Generation regression
IMSL_X_COL_DIM, int x_col_dim,
IMSL_NO_INTERCEPT,
IMSL_TOLERANCE, float tolerance,
IMSL_RANK, int *rank,
IMSL_COEF_COVARIANCES, float **p_coef_covariances,
IMSL_COEF_COVARIANCES_USER, float coef_covariances[],
IMSL_COV_COL_DIM, int cov_col_dim,
IMSL_X_MEAN, float **p_x_mean,
IMSL_X_MEAN_USER, float x_mean[],
IMSL_RESIDUAL, float **p_residual,
IMSL_RESIDUAL_USER, float residual[],
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSL_X_COL_DIM, int x_col_dim (Input)

The column dimension of x.
Default: x_col_dim = n_independent

IMSL_NO_INTERCEPT
By default, the fitted value for observation i is

where k = n_independent. If IMSL_NO_INTERCEPT is specified, the intercept term

is omitted from the model.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence. For imsl_f_regression,
tolerance = 100 ×imsl_f_machine(4) is the default choice. For imsl_d_regression,
tolerance = 100 × imsl_d_machine(4) is the default. See imsl_f_machine.

IMSL_RANK, int *rank (Output)
The rank of the fitted model is returned in *rank.

β^ 0 + β
^
1x1 + … + β^ kxk

β^ 0
1297

 Statistics and Random Number Generation regression
IMSL_COEF_COVARIANCES, float **p_coef_covariances (Output)
The address of a pointer to the m × m array containing the estimated variances and covariances of
the estimated regression coefficients. Here, m is the number of regression coefficients in the model.
If IMSL_NO_INTERCEPT is specified, m = n_independent; otherwise,
m = n_independent + 1. On return, the pointer is initialized (through a memory allocation request
to malloc), and the array is stored there. Typically, float *p_coef_covariances is declared;
&p_coef_covariances is used as an argument to this function; and
imsl_free(p_coef_covariances) is used to free this array.

IMSL_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
If specified, coef_covariances is an array of length m × m containing the estimated variances
and covariances of the estimated coefficients where m is the number of regression coefficients in the
model.

IMSL_COV_COL_DIM, int cov_col_dim (Input)
The column dimension of array coef_covariance.
Default: cov_col_dim = m where m is the number of regression coefficients in the model.

IMSL_X_MEAN, float **p_x_mean (Output)
The address of a pointer to the array containing the estimated means of the independent variables.
On return, the pointer is initialized (through a memory allocation request to malloc), and the array
is stored there. Typically, float *p_x_mean is declared; &p_x_mean is used as an argument to this
function; and imsl_free(p_x_mean) is used to free this array.

IMSL_X_MEAN_USER, float x_mean[] (Output)
If specified, x_mean is an array of length n_independent provided by the user. On return,
x_mean contains the means of the independent variables.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the pointer is initialized
(through a memory allocation request to malloc), and the array is stored there. Typically,
float *p_residual is declared; &p_residual is used as argument to this function; and
imsl_free(p_residual) is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length n_observations provided by the user. On return,
residual contains the residuals.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)
The address of a pointer to the array containing the analysis of variance table. On return, the pointer
is initialized (through a memory allocation request to malloc), and the array is stored there. Typi-
cally, float *p_anova_table is declared; &p_anova_table is used as argument to this function;
and imsl_free(p_anova_table) is used to free this array.
1298

 Statistics and Random Number Generation regression
The analysis of variance statistics are given as follows:

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
If specified, the 15 analysis of variance statistics listed above are computed and stored in the array
anova_table provided by the user.

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array
coefficients provided by the user. If IMSL_NO_INTERCEPT is specified, the array requires
m = n_independent units of memory; otherwise, the number of units of memory required to
store the coefficients is m = n_independent + 1.

Description
The function imsl_f_regression fits a multiple linear regression model with or without an intercept. By
default, the multiple linear regression model is

yi =β
0

 +β

Element Analysis of Variance Statistics

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)
1299

 Statistics and Random Number Generation regression
1

xi

1

 +β
2

xi

2

 +…+βkxik +ɛi i =1, 2, …, n

where the observed values of the yi’s (input in y) are the responses or values of the dependent variable; the xi1’s,

xi2’s, …, xik’s (input in x) are the settings of the k (input in n_independent) independent variables; β0, β1, …,
βk are the regression coefficients whose estimated values are to be output by imsl_f_regression; and the

ɛi’s are independently distributed normal errors each with mean zero and variance σ2. Here, n is the number of

rows in the augmented matrix (x,y), i.e., n equals n_observations. Note that by default, β0 is included in the

model.

The function imsl_f_regression computes estimates of the regression coefficients by minimizing the sum
of squares of the deviations of the observed response yi from the fitted response

for the n observations. This minimum sum of squares (the error sum of squares) is output as one of the analysis
of variance statistics if IMSL_ANOVA_TABLE (or IMSL_ANOVA_TABLE_USER) is specified and is computed
as

Another analysis of variance statistic is the total sum of squares. By default, the total sum of squares is the sum
of squares of the deviations of yi from its mean

the so-called corrected total sum of squares. This statistic is computed as

When IMSL_NO_INTERCEPT is specified, the total sum of squares is the sum of squares of yi, the so-called

uncorrected total sum of squares. This is computed as

ŷi

SSE =∑
i=1

n

yi − ŷi
2

y─

SST =∑
i=1

n

yi − y
─ 2
1300

 Statistics and Random Number Generation regression
See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analysis,
and many examples.

In order to compute a least-squares solution, imsl_f_regression performs an orthogonal reduction of the
matrix of regressors to upper-triangular form. The reduction is based on one pass through the rows of the aug-
mented matrix (x, y) using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156-162; Gentleman
1974.) This method has the advantage that the loss of accuracy resulting from forming the crossproduct matrix
used in the normal equations is avoided.

By default, the current means of the dependent and independent variables are used to internally center the data
for improved accuracy. Let xi be a column vector containing the j-th row of data for the independent variables. Let

 represent the mean vector for the independent variables given the data for rows 1, 2, …, i. The current mean
vector is defined to be

The i-th row of data has subtracted from it and is then weighted by i/(i − 1). Although a crossproduct matrix is
not computed, the validity of this centering operation can be seen from the following formula for the sum of
squares and crossproducts matrix:

An orthogonal reduction on the centered matrix is computed. When the final computations are performed, the
intercept estimate and the first row and column of the estimated covariance matrix of the estimated coefficients
are updated (if IMSL_COEF_COVARIANCES or IMSL_COEF_COVARIANCES_USER is specified) to reflect
the statistics for the original (uncentered) data. This means that the estimate of the intercept is for the uncen-
tered data.

As part of the final computations, imsl_regression checks for linearly dependent regressors. In particular,
linear dependence of the regressors is declared if any of the following three conditions are satisfied:

 A regressor equals zero.

 Two or more regressors are constant.

 is less than or equal to tolerance. Here, Ri.1,2,…,i-1 is the multiple correlation
coefficient of the i-th independent variable with the first i − 1 independent variables. If no intercept
is in the model, the “multiple correlation” coefficient is computed without adjusting for the mean.

SST =∑
i=1

n

yi
2

x─i

x─i =
∑ j=1
i x j
i

x─i

∑
i=1

n

xi − x
─
n xi − x

─
n
T =∑

i=2

n
i
i − 1 xi − x

─
i xi − x

─
i
T

1 − Ri·1, 2, …, i−1
2

1301

 Statistics and Random Number Generation regression
On completion of the final computations, if the i-th regressor is declared to be linearly dependent upon the previ-
ous i − 1 regressors, then the i-th coefficient estimate and all elements in the i-th row and i-th column of the
estimated variance-covariance matrix of the estimated coefficients (if IMSL_COEF_COVARIANCES or
IMSL_COEF_COVARIANCES_USER is specified) are set to zero. Finally, if a linear dependence is declared, an
informational (error) message, code IMSL_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1

A regression model

is fitted to data taken from Maindonald (1984, pp. 203-204).

#include <imsl.h>
#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9
int main()
{
 float *coefficients;
 float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0};
 float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};
 coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y, 0);
 imsl_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
 coefficients,
 IMSL_COL_NUMBER_ZERO,
 0);
}

Output

 Least-Squares Coefficients
 0 1 2 3
7.733 -0.200 2.333 -1.667

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ɛi i = 1,2, … ,9
1302

 Statistics and Random Number Generation regression
Example 2

A weighted least-squares fit is computed using the model

yi =β
0

xi

0

 +β
1

xi

1

 +β
2

xi

2

 +ɛi i =1, 2, …, 4

and weights 1/i2 discussed by Maindonald (1984, pp. 67-68). In order to compute the weighted least-squares fit,
using an ordinary least-squares function (imsl_f_regression), the regressors (including the column of ones
for the intercept term) and the responses must be transformed prior to invocation of imsl_f_regression.
Specifically, the i-th response and regressors are multiplied by a square root of the i-th weight.
IMSL_NO_INTERCEPT must be specified since the column of ones corresponding to the intercept term in the
untransformed model is transformed by the weights and is regarded as an additional independent variable.

In the example, IMSL_ANOVA_TABLE is specified. The minimum sum of squares for error in terms of the origi-
nal untransformed regressors and responses for this weighted regression is

where wi = 1/i2. Also, since IMSL_NO_INTERCEPT is specified, the uncorrected total sum-of-squares terms of

the original untransformed responses is

SSE =∑
i=1

4

wi yi − ŷi
2

1303

 Statistics and Random Number Generation regression
#include <imsl.h>
#include <math.h>
#define N_INDEPENDENT 3
#define N_COEFFICIENTS N_INDEPENDENT
#define N_OBSERVATIONS 4
int main()
{
 int i, j;
 float *coefficients, w, anova_table[15], power;
 float x[][N_INDEPENDENT] = {1.0, -2.0, 0.0,
 1.0, -1.0, 2.0,
 1.0, 2.0, 5.0,
 1.0, 7.0, 3.0};
 float y[] = {-3.0, 1.0, 2.0, 6.0};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 power = 0.0;
 for (i = 0; i < N_OBSERVATIONS; i++) {
 power += 1.0;
 /* The square root of the weight */
 w = sqrt(1.0 / (power*power));
 /* Transform response */
 y[i] *= w;
 /* Transform regressors */
 for (j = 0; j < N_INDEPENDENT; j++)
 x[i][j] *= w;
 }
 coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSL_NO_INTERCEPT,
 IMSL_ANOVA_TABLE_USER,
 anova_table, 0);
 imsl_f_write_matrix("Least-Squares Coefficients", 1,
 N_COEFFICIENTS, coefficients, 0);
 imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table, IMSL_ROW_LABELS, anova_row_labels,
 IMSL_WRITE_FORMAT, "%10.2f", 0);
}

SST =∑
i=1

4

wiyi
2

1304

 Statistics and Random Number Generation regression
Output

Least-Squares Coefficients
 1 2 3
-1.431 0.658 0.748
 * * * Analysis of Variance * * *
degrees of freedom for regression 3.00
degrees of freedom for error 1.00
total (uncorrected) degrees of freedom 4.00
sum of squares for regression 10.93
sum of squares for error 1.01
total (uncorrected) sum of squares 11.94
regression mean square 3.64
error mean square 1.01
F-statistic 3.60
p-value 0.37
R-squared (in percent) 91.52
adjusted R-squared (in percent) 66.08
est. standard deviation of model error 1.01
overall mean of y -0.08
coefficient of variation (in percent) -1207.73

Warning Errors
IMSL_RANK_DEFICIENT The model is not full rank. There is not a unique

least-squares solution.
1305

 Statistics and Random Number Generation poly_regression
poly_regression
Performs a polynomial least-squares regression.

Synopsis
#include <imsl.h>
float *imsl_f_poly_regression (int n_observations, float x[], float y[], int degree, …, 0)

The type double procedure is imsl_d_poly_regression.

Required Arguments
int n_observations (Input)

The number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
The degree of the polynomial.

Return Value
A pointer to the vector of size degree +1 containing the coefficients of the fitted polynomial. If a fit cannot be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_poly_regression (int n_observations, float xdata[], float ydata[],

int degree,

IMSL_WEIGHTS, float weights[],
IMSL_SSQ_POLY, float **p_ssq_poly,
1306

 Statistics and Random Number Generation poly_regression
IMSL_SSQ_POLY_USER, float ssq_poly[],
IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,
IMSL_SSQ_LOF, float **p_ssq_lof,
IMSL_SSQ_LOF_USER, float ssq_lof[],
IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSL_X_MEAN, float *x_mean,
IMSL_X_VARIANCE, float *x_variance,
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_DF_PURE_ERROR, int *df_pure_error,
IMSL_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSL_RESIDUAL, float **p_residual,
IMSL_RESIDUAL_USER, float residual[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSL_WEIGHTS, float weights[] (Input)

Array with n_observations components containing the vector of weights for the observation. If
this option is not specified, all observations have equal weights of one.

IMSL_SSQ_POLY, float **p_ssq_poly (Output)
The address of a pointer to the array containing the sequential sums of squares and other statistics.
On return, the pointer is initialized (through a memory allocation request to malloc), and the array
is stored there. Typically, float *p_ssq_poly is declared; &p_ssq_poly is used as an argument
to this function; and imsl_free(p_ssq_poly) is used to free this array. Row i corresponds to xi,
i = 1, …, degree, and the columns are described as follows:

IMSL_SSQ_POLY_USER, float ssq_poly[] (Output)
Array of size degree × 4 containing the sequential sums of squares for a polynomial fit described
under optional argument IMSL_SSQ_POLY.

Column Description

1 degrees of freedom

2 sums of squares

3 F-statistic

4 p-value
1307

 Statistics and Random Number Generation poly_regression
IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
The column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

IMSL_SSQ_LOF, float **p_ssq_lof (Output)
The address of a pointer to the array containing the lack-of-fit statistics. On return, the pointer is ini-
tialized (through a memory allocation request to malloc), and the array is stored there. Typically,
float *p_ssq_lof is declared; &p_ssq_lof is used as an argument to this function; and
imsl_free(p_ssq_lof) is used to free this array. Row i corresponds to xi, i = 1, …, degree, and
the columns are described in the following table:

IMSL_SSQ_LOF_USER, float ssq_lof[] (Output)
Array of size degree × 4 containing the matrix of lack-of-fit statistics described under optional argu-
ment IMSL_SSQ_LOF.

IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
The column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSL_X_MEAN, float *x_mean (Output)
The mean of x.

IMSL_X_VARIANCE, float *x_variance (Output)
The variance of x.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)
The address of a pointer to the array containing the analysis of variance table. On return, the pointer
is initialized (through a memory allocation request to malloc), and the array is stored there. Typi-
cally, float *p_anova_table is declared; &p_anova_table is used as an argument to this
function; and imsl_free(p_anova_table) is used to free this array.

Column Description

1 degrees of freedom

2 lack-of-fit sums of squares

3 F-statistic for testing lack-of-fit for a
polynomial model of degree i

4 p-value for the test

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error
1308

 Statistics and Random Number Generation poly_regression
IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
Array of size 15 containing the analysis variance statistics listed under optional argument
IMSL_ANOVA_TABLE.

IMSL_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in df_pure_error.

IMSL_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in ssq_pure_error.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the pointer is initialized
(through a memory allocation request to malloc), and the array is stored there. Typically,
float *p_residual is declared; &p_residual is used as an argument to this function; and
imsl_free(p_residual)is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length n_observations provided by the user. On return,
residual contains the residuals.

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array
coefficients of size degree + 1 provided by the user.

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Element Analysis of Variance Statistic
1309

 Statistics and Random Number Generation poly_regression
Description
The function imsl_f_poly_regression computes estimates of the regression coefficients in a polynomial
(curvilinear) regression model. In addition to the computation of the fit, imsl_f_poly_regression com-
putes some summary statistics. Sequential sums of squares attributable to each power of the independent
variable (stored in ssq_poly) are computed. These are useful in assessing the importance of the higher order
powers in the fit. Draper and Smith (1981, pp. 101-102) and Neter and Wasserman (1974, pp. 278-287) discuss

the interpretation of the sequential sums of squares. The statistic R2 is the percentage of the sum of squares of y
about its mean explained by the polynomial curve. Specifically,

where is the fitted y value at xi and is the mean of y. This statistic is useful in assessing the overall fit of the

curve to the data. R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed using orthogonal polynomials as
the regressor variables. This reparameterization of the polynomial model in terms of orthogonal polynomials has
the advantage that the loss of accuracy resulting from forming powers of the x-values is avoided. All results are
returned to the user for the original model (power form).

The function imsl_f_poly_regression is based on the algorithm of Forsythe (1957). A modification to For-
sythe’s algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A discussion
of Forsythe’s algorithm and Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342-347).

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp. 279-285). The data set con-
tains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service coffee
dispensers. Responses for 14 similar cafeterias are in the data set. A graph of the results also is given.

#include <imsl.h>
#define DEGREE 2
#define NOBS 14
int main()
{
 float *coefficients;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,

R2 =
∑ ŷi − y

─ 2

∑ y1 − y
─ 2100%

y^i y─
1310

 Statistics and Random Number Generation poly_regression
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE, 0);
 imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
 DEGREE + 1, 1, coefficients,
 IMSL_ROW_NUMBER_ZERO,
 0);
}

Output

Least-Squares Polynomial Coefficients
 0 503.3
 1 78.9
 2 -4.0

Figure 25, Figure 10-1 A Polynomial Fit

Example 2

This example is a continuation of the initial example. Here, many optional arguments are used.

#include <stdio.h>
#include <imsl.h>
1311

 Statistics and Random Number Generation poly_regression
#define DEGREE 2
#define NOBS 14
int main()
{
 int iset = 1, dfpe;
 float *coefficients, *anova, sspe, *sspoly, *sslof;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 char *coef_rlab[2];
 char *coef_clab[] = {" ", "intercept", "linear", "quadratic"};
 char *stat_clab[] = {" ", "Degrees of\nFreedom",
 "Sum of\nSquares", "\nF-Statistic",
 "\np-value"};
 char *anova_rlab[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE,
 IMSL_SSQ_POLY, &sspoly,
 IMSL_SSQ_LOF, &sslof,
 IMSL_ANOVA_TABLE, &anova,
 IMSL_DF_PURE_ERROR, &dfpe,
 IMSL_SSQ_PURE_ERROR, &sspe,
 0);
 imsl_write_options(-1, &iset);
 imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
 1, DEGREE + 1, coefficients,
 IMSL_COL_LABELS, coef_clab, 0);
 coef_rlab[0] = coef_clab[2];
 coef_rlab[1] = coef_clab[3];
 imsl_f_write_matrix("Sequential Statistics", DEGREE, 4, sspoly,
 IMSL_COL_LABELS, stat_clab,
 IMSL_ROW_LABELS, coef_rlab,
 IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsl_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, sslof,
 IMSL_COL_LABELS, stat_clab,
 IMSL_ROW_LABELS, coef_rlab,
 IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova,
 IMSL_ROW_LABELS, anova_rlab,
 IMSL_WRITE_FORMAT, "%9.2f",
 0);
1312

 Statistics and Random Number Generation poly_regression
}

Output

 Least-Squares Polynomial Coefficients
 intercept linear quadratic
 503.3 78.9 -4.0
 Sequential Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 1.0 220644.2 3415.8 0.0000
 quadratic 1.0 4387.7 67.9 0.0000
 Lack-of-Fit Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 5.0 4793.7 22.0 0.0004
 quadratic 4.0 405.9 2.3 0.1548
 * * * Analysis of Variance * * *
 degrees of freedom for regression 2.00
 degrees of freedom for error 11.00
 total (corrected) degrees of freedom 13.00
 sum of squares for regression 225031.94
 sum of squares for error 710.55
 total (corrected) sum of squares 225742.48
 regression mean square 112515.97
 error mean square 64.60
 F-statistic 1741.86
 p-value 0.00
 R-squared (in percent) 99.69
 adjusted R-squared (in percent) 99.63
 est. standard deviation of model error 8.04
 overall mean of y 710.99
 coefficient of variation (in percent) 1.13

Warning Errors
IMSL_CONSTANT_YVALUES The y values are constant. A zero-order polynomial

is fit. High order coefficients are set to zero.

IMSL_FEW_DISTINCT_XVALUES There are too few distinct x values to fit the desired
degree polynomial. High order coefficients are set to
zero.

IMSL_PERFECT_FIT A perfect fit was obtained with a polynomial of
degree less than degree. High order coefficients are
set to zero.
1313

 Statistics and Random Number Generation poly_regression
Fatal Errors
IMSL_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSL_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN (not a number). There
are no valid data.

IMSL_CONSTANT_XVALUES The x values are constant.
1314

 Statistics and Random Number Generation ranks
ranks
Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis
#include <imsl.h>
float *imsl_f_ranks (int n_observations, float x[], …, 0)

The type double function is imsl_d_ranks.

Required Arguments
int n_observations (Input)

The number of observations.

float x[] (Input)
Array of length n_observations containing the observations to be ranked.

Return Value
A pointer to a vector of length n_observations containing the rank (or optionally, a transformation of the
rank) of each observation.

Synopsis with Optional Arguments
#include <imsl.h>

float* imsl_f_ranks (int n_observations, float x[],

IMSL_AVERAGE_TIE,
IMSL_HIGHEST,
IMSL_LOWEST,
IMSL_RANDOM_SPLIT,
IMSL_FUZZ, float fuzz_value,
IMSL_RANKS,
IMSL_BLOM_SCORES,
1315

 Statistics and Random Number Generation ranks
IMSL_TUKEY_SCORES,
IMSL_VAN_DER_WAERDEN_SCORES,
IMSL_EXPECTED_NORMAL_SCORES,
IMSL_SAVAGE_SCORES,
IMSL_RETURN_USER, float ranks[],
0)

Optional Arguments
IMSL_AVERAGE_TIE, or

IMSL_HIGHEST, or

IMSL_LOWEST, or

IMSL_RANDOM_SPLIT
Exactly one of these optional arguments may be used to change the method used to assign a score
to tied observations.

IMSL__FUZZ, float fuzz_value (Input)
Value used to determine when two items are tied. If abs(x[i]-x[j]) is less than or equal to
fuzz_value, then x[i] and x[j] are said to be tied. The default value for fuzz_value is 0.0.

IMSL_RANKS, or

IMSL_BLOM_SCORES, or

IMSL_TUKEY_SCORES, or

IMSL_VAN_DER_WAERDEN_SCORES, or

IMSL_EXPECTED_NORMAL_SCORES, or

Keyword Result

IMSL_AVERAGE_TIE average of the scores of the tied
observations (default)

IMSL_HIGHEST highest score in the group of ties

IMSL_LOWEST lowest score in the group of ties

IMSL_RANDOM_SPLIT tied observations are randomly split
using a random number generator.
1316

 Statistics and Random Number Generation ranks
IMSL_SAVAGE_SCORES
Exactly one of these optional arguments may be used to specify the type of values returned.

IMSL_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation of the ranks) of the data in x. If
x[i] has the smallest value among the values in x and there is no other element in x with this value, then
ranks[i] = 1. If both x[i] and x[j] have the same smallest value, then the output value depends upon the
option used to break ties.

When the ties are resolved randomly, the function imsl_f_random_uniform is used to generate random
numbers. Different results may occur from different executions of the program unless the “seed” of the random
number generator is set explicitly by use of the function imsl_random_seed_set.

Keyword Result

IMSL_RANKS ranks (default)

IMSL_BLOM_SCORES Blom version of normal scores

IMSL_TUKEY_SCORES Tukey version of normal scores

IMSL_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal
scores

IMSL_EXPECTED_NORMAL_SCORES expected value of normal order statis-
tics (For tied observations, the average
of the expected normal scores.)

IMSL_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)

Keyword Result

IMSL_AVERAGE_TIE ranks[i] =ranks[j] =1.5

IMSL_HIGHEST ranks[i] =ranks[j] =2.0

IMSL_LOWEST ranks[i] =ranks [j] =1.0

IMSL_RANDOM_SPLIT ranks[i] =1.0 and ranks[j] =2.0
or, randomly,
ranks[i] =2.0 and ranks[j] =1.0
1317

 Statistics and Random Number Generation ranks
The Scores

Normal and other functions of the ranks can optionally be returned. Normal scores can be defined as the
expected values, or approximations to the expected values, of order statistics from a normal distribution. The
simplest approximations are obtained by evaluating the inverse cumulative normal distribution function,
imsl_f_normal_inverse_cdf, at the ranks scaled into the open interval (0,1). In the Blom version (see
Blom 1958), the scaling transformation for the rank ri (1 ≤ ri ≤ n where n is the sample size, n_observations)

is (ri - 3/8)/(n +1/4). The Blom normal score corresponding to the observation with rank ri is

where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if x[i] equals x[j] (within
fuzz_value) and their value is the k-th smallest in the data set, the Blom normal scores are determined for
ranks of k and k + 1. Then, these normal scores are averaged or selected in the manner specified. (Whether the
transformations are made first or ties are resolved first makes no difference except when IMSL_AVERAGE is
specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank riis (ri − 1/3)/(n + 1/3). The Tukey

normal score corresponding to the observation with rank ri is

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation for the rank ri is ri/(n + 1).

The Van der Waerden normal score corresponding to the observation with rank ri is

Ties are handled in the same way as for the Blom normal scores.

When option IMSL_EXPECTED_NORMAL_SCORES is used, the output values are the expected values of the
normal order statistics from a sample of size n_observations. If the value in x[i] is the k-th smallest, then
the value output in ranks[i] is E(zk) where E(⋅) is the expectation operator, and zk is the k-th order statistic in a

sample of size n_observations from a standard normal distribution. Ties are handled in the same way as for
the Blom normal scores.

ϕ−1
ri − 3 / 8
n + 1 / 4

ϕ−1
ri − 1 / 3
n + 1 / 3

ϕ−1
ri
n + 1
1318

 Statistics and Random Number Generation ranks
Savage scores are the expected values of the exponential order statistics from a sample of size
n_observations. These values are called Savage scores because of their use in a test discussed by Savage
(1956) (see Lehmann 1975). If the value in x[i] is the k-th smallest, then the value output in ranks[i] is E(yk)

where yk is the k-th order statistic in a sample of size n_observations from a standard exponential distribu-

tion. The expected value of the k-th order statistic from an exponential sample of size n (n_observations) is

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1

The data for this example, from Hinkley (1977), contains 30 observations. Note that the fourth and sixth observa-
tions are tied, and that the third and twentieth observations are tied.

#include <imsl.h>
#define N_OBSERVATIONS 30
int main()
{
 float *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 ranks = imsl_f_ranks(N_OBSERVATIONS, x, 0);
 imsl_f_write_matrix("Ranks" , 1, N_OBSERVATIONS, ranks, 0);
}

Output

 Ranks
1 2 3 4 5 6
5.0 18.0 6.5 11.5 21.0 11.5
 7 8 9 10 11 12
2.0 15.0 29.0 24.0 27.0 28.0
 13 14 15 16 17 18
16.0 23.0 3.0 17.0 13.0 1.0
19 20 21 22 23 24
4.0 6.5 26.0 19.0 10.0 14.0
 25 26 27 28 29 30
30.0 25.0 9.0 20.0 8.0 22.0

1
n +

1
n − 1 + … + 1

n − k + 1
1319

 Statistics and Random Number Generation ranks
Example 2

This example uses all of the score options with the same data set, which contains some ties. Ties are handled in
several different ways in this example.

#include <imsl.h>
#define N_OBSERVATIONS 30
int main()
{
 float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 char *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
 "Expected Value"};
 /* Blom scores using largest ranks */
 /* for ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_HIGHEST,
 IMSL_BLOM_SCORES,
 IMSL_RETURN_USER, &score[0][0],
 0);
 /* Tukey normal scores using smallest */
 /* ranks for ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_LOWEST,
 IMSL_TUKEY_SCORES,
 IMSL_RETURN_USER, &score[1][0],
 0);
 /* Van der Waerden scores using */
 /* randomly resolved ties */
 imsl_random_seed_set(123457);
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_RANDOM_SPLIT,
 IMSL_VAN_DER_WAERDEN_SCORES,
 IMSL_RETURN_USER, &score[2][0],
 0);
 /* Expected value of normal order */
 /* statistics using averaging to */
 /* break ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_EXPECTED_NORMAL_SCORES,
 IMSL_RETURN_USER, &score[3][0],
 0);
 imsl_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
 (float *)score,
 IMSL_ROW_LABELS, row_labels,
 0);
 /* Savage scores using averaging */
 /* to break ties */
 ranks = imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_SAVAGE_SCORES,
 0);
 imsl_f_write_matrix("Expected values of exponential order "
1320

 Statistics and Random Number Generation ranks
 "statistics", 1,
 N_OBSERVATIONS, ranks,
 0);
}

Output

 Normal Order Statistics
 1 2 3 4 5
Blom -1.024 0.209 -0.776 -0.294 0.473
Tukey -1.020 0.208 -0.890 -0.381 0.471
Van der Waerden -0.989 0.204 -0.753 -0.287 0.460
Expected Value -1.026 0.209 -0.836 -0.338 0.473
 6 7 8 9 10
Blom -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0.753
Expected Value -0.338 -1.616 -0.041 1.616 0.777
 11 12 13 14 15
Blom 1.176 1.361 0.041 0.668 -1.361
Tukey 1.171 1.354 0.041 0.666 -1.354
Van der Waerden 1.131 1.300 0.040 0.649 -1.300
Expected Value 1.179 1.365 0.041 0.669 -1.365
 16 17 18 19 20
Blom 0.125 -0.209 -2.040 -1.176 -0.776
Tukey 0.124 -0.208 -2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 -1.849 -1.131 -0.865
Expected Value 0.125 -0.209 -2.043 -1.179 -0.836
 21 22 23 24 25
Blom 1.024 0.294 -0.473 -0.125 2.040
Tukey 1.020 0.293 -0.471 -0.124 2.015
Van der Waerden 0.989 0.287 -0.460 -0.122 1.849
Expected Value 1.026 0.294 -0.473 -0.125 2.043
 26 27 28 29 30
Blom 0.893 -0.568 0.382 -0.668 0.568
Tukey 0.890 -0.566 0.381 -0.666 0.566
Van der Waerden 0.865 -0.552 0.372 -0.649 0.552
Expected Value 0.894 -0.568 0.382 -0.669 0.568
 Expected values of exponential order statistics
 1 2 3 4 5 6
 0.179 0.892 0.240 0.474 1.166 0.474
 7 8 9 10 11 12
 0.068 0.677 2.995 1.545 2.162 2.495
 13 14 15 16 17 18
 0.743 1.402 0.104 0.815 0.555 0.033
 19 20 21 22 23 24
 0.141 0.240 1.912 0.975 0.397 0.614
 25 26 27 28 29 30
 3.995 1.712 0.350 1.066 0.304 1.277
1321

 Statistics and Random Number Generation random_seed_get
random_seed_get
Retrieves the current value of the seed used in the IMSL random number generators.

Synopsis
#include <imsl.h>
int imsl_random_seed_get ()

Return Value
The value of the seed.

Description
The function imsl_random_seed_get retrieves the current value of the “seed” used in the random number
generators. A reason for doing this would be to restart a simulation, using imsl_random_seed_set to reset
the seed.

Example
This example illustrates the statements required to restart a simulation using imsl_random_seed_get and
imsl_random_seed_set. Also, the example shows that restarting the sequence of random numbers at the
value of the seed last generated is the same as generating the random numbers all at once.

#include <imsl.h>
#define N_RANDOM 5
int main()
{
 int seed = 123457;
 float *r1, *r2, *r;

 imsl_random_seed_set(seed);
 r1 = imsl_f_random_uniform(N_RANDOM, 0);
 imsl_f_write_matrix ("First Group of Random Numbers", 1,
 N_RANDOM, r1, 0);
 seed = imsl_random_seed_get();
 imsl_random_seed_set(seed);
1322

 Statistics and Random Number Generation random_seed_get
 r2 = imsl_f_random_uniform(N_RANDOM, 0);
 imsl_f_write_matrix ("Second Group of Random Numbers", 1,
 N_RANDOM, r2, 0);
 imsl_random_seed_set(123457);
 r = imsl_f_random_uniform(2*N_RANDOM, 0);
 imsl_f_write_matrix ("Both Groups of Random Numbers", 1,
 2*N_RANDOM, r, 0);
}

Output

 First Group of Random Numbers
 1 2 3 4 5
0.9662 0.2607 0.7663 0.5693 0.8448
 Second Group of Random Numbers
 1 2 3 4 5
0.0443 0.9872 0.6014 0.8964 0.3809
 Both Groups of Random Numbers
 1 2 3 4 5 6
0.9662 0.2607 0.7663 0.5693 0.8448 0.0443
 7 8 9 10
0.9872 0.6014 0.8964 0.3809
1323

 Statistics and Random Number Generation random_seed_set
random_seed_set
Initializes a random seed for use in the IMSL random number generators.

Synopsis
#include <imsl.h>
void imsl_random_seed_set (int seed)

Required Arguments
int seed (Input)

The seed of the random number generator. The argument seed must be in the range (0,
2147483646). If seed is zero, a value is computed using the system clock. Hence, the results of pro-
grams using the IMSL random number generators will be different at various times.

Description
The function imsl_random_seed_set is used to initialize the seed used in the IMSL random number gener-
ators. The form of the generators is

xi ≡ cxi

-1

 mod (231 − 1)

The value of x0 is the seed. If the seed is not initialized prior to invocation of any of the routines for random num-

ber generation by calling imsl_random_seed_set, the seed is initialized via the system clock. The seed can
be reinitialized to a clock-dependent value by calling imsl_random_seed_set with seed set to 0.

The effect of imsl_random_seed_set is to set some global values used by the random number generators.

A common use of imsl_random_seed_set is in conjunction with imsl_random_seed_get to restart a
simulation.

Example
See function imsl_random_seed_get.
1324

 Statistics and Random Number Generation random_option
random_option
Selects the uniform (0,1) multiplicative congruential pseudorandom number generator.

Synopsis
#include <imsl.h>
void imsl_random_option (int generator_option)

Required Arguments
int generator_option (Input)
Indicator of the generator. The random number generator is a multiplicative congruential generator with modu-

lus 231 − 1. Argument generator_option is used to choose the multiplier and whether or not shuffling is
done.

Description
The IMSL uniform pseudorandom number generators use a multiplicative congruential method, with or without
shuffling. The value of the multiplier and whether or not to use shuffling are determined by
imsl_random_option. The description of function imsl_f_random_uniform may provide some guidance
in the choice of the form of the generator. If no selection is made explicitly, the generators use the multiplier
16807 without shuffling. This form of the generator has been in use for some time (Lewis et al. 1969).

generator_option Generator

1 multiplier 16807 used

2 multiplier 16807 used with shuffling

3 multiplier 397204094 used

4 multiplier 397204094 used with shuffling

5 multiplier 950706376 used

6 multiplier 950706376 used with shuffling
1325

 Statistics and Random Number Generation random_option
Example
The C statement

imsl_random_option(1)

selects the simple multiplicative congruential generator with multiplier 16807. Since this is the same as the
default, this statement has no effect unless imsl_random_option had previously been called in the same
program to select a different generator.
1326

 Statistics and Random Number Generation random_uniform
random_uniform
Generates pseudorandom numbers from a uniform (0,1) distribution.

Synopsis
#include <imsl.h>
float *imsl_f_random_uniform (int n_random, …, 0)

The type double function is imsl_d_random_uniform.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
A pointer to a vector of length n_random containing the random uniform (0, 1) deviates.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_uniform (int n_random,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

If specified, the array of length n_random containing the random uniform (0, 1) deviates is returned
in the user-provided array r.
1327

 Statistics and Random Number Generation random_uniform
Description
The function imsl_f_random_uniform generates pseudorandom numbers from a uniform (0, 1) distribu-
tion using a multiplicative congruential method. The form of the generator is

xi ≡ cxi

-1

 mod (231 − 1)

Each xi is then scaled into the unit interval (0,1). The possible values for c in the generators are 16807,

397204094, and 950706376. The selection is made by the function imsl_random_option. The choice of
16807 will result in the fastest execution time. If no selection is made explicitly, the functions use the multiplier
16807.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The
function imsl_random_option can be used to select the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table is filled with the first 128 uni-
form (0, 1) numbers resulting from the simple multiplicative congruential generator. Then, for each xi from the

simple generator, the low-order bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in

the table is then delivered as the random number; and xi, after being scaled into the unit interval, is inserted into

the j-th position in the table.

The values returned by imsl_f_random_uniform are positive and less than 1.0. Some values returned may
be smaller than the smallest relative spacing, however. Hence, it may be the case that some value, for example
r[i], is such that 1.0 − r[i] = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be obtained by scaling the output
from imsl_f_random_uniform. The following statements (in single precision) would yield random deviates
from a uniform (a, b) distribution.

float *r;
r =imsl_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i]*(b-a) +a;

Example
In this example, imsl_f_random_uniform is used to generate five pseudorandom uniform numbers. Since
imsl_random_option is not called, the generator used is a simple multiplicative congruential one with a mul-
tiplier of 16807.

#include <imsl.h>
#include <stdio.h>
1328

 Statistics and Random Number Generation random_uniform
#define N_RANDOM 5
int main()
{
 float *r;
 imsl_random_seed_set(123457);
 r = imsl_f_random_uniform(N_RANDOM, 0);
 printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448
1329

 Statistics and Random Number Generation random_normal
random_normal
Generates pseudorandom numbers from a standard normal distribution using an inverse CDF method.

Synopsis
#include <imsl.h>
float *imsl_f_random_normal (int n_random, …, 0)

The type double function is imsl_d_random_normal.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
A pointer to a vector of length n_random containing the random standard normal deviates. To release this
space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_normal (int n_random,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

Pointer to a vector of length n_random that will contain the generated random standard normal
deviates.
1330

 Statistics and Random Number Generation random_normal
Description
Function imsl_f_random_normal generates pseudorandom numbers from a standard normal (Gaussian)
distribution using an inverse CDF technique. In this method, a uniform (0, 1) random deviate is generated. Then,
the inverse of the normal distribution function is evaluated at that point, using the function
imsl_f_normal_inverse_cdf (See Chapter 11 of the IMSL C Stat Library user guide.)

Deviates from the normal distribution with mean mean and standard deviation std_dev can be obtained by
scaling the output from imsl_f_random_normal. The following statements (in single precision) would yield

random deviates from a normal (mean, std_dev2) distribution.

 float *r;
 r = imsl_f_random_normal (n_random, 0);
 for (i=0; i<n_random; i++)
 r[i] = r[i]*std_dev + mean;

Example
In this example, imsl_f_random_normal is used to generate five pseudorandom deviates from a standard
normal distribution.

#include <imsl.h>
#define N_RANDOM 5
int main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;
 imsl_random_seed_set (seed);
 r = imsl_f_random_normal(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145

Remark
The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The
function imsl_random_option can be used to select the form of the generator.
1331

 Statistics and Random Number Generation random_poisson
random_poisson

more...

Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <imsl.h>
int *imsl_random_poisson (int n_random, float theta, …, 0)

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. The argument theta must be positive.

Return Value
If no optional arguments are used, imsl_random_poisson returns a pointer to a vector of length
n_random containing the random Poisson deviates. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
int *imsl_random_poisson (int n_random, float theta,

IMSL_RETURN_USER, int r[],
0)
1332

 Statistics and Random Number Generation random_poisson
Optional Arguments
IMSL_RETURN_USER, int r[] (Output)

If specified, the vector of length n_random of random Poisson deviates is returned in the user-pro-
vided array r.

Description
The function imsl_random_poisson generates pseudorandom numbers from a Poisson distribution with
positive mean theta. The probability function (with θ = theta) is

f(x) = (e-qθx)/x!, for x = 0, 1,2, …
If theta is less than 15, imsl_random_poisson uses an inverse CDF method; otherwise, the PTPE method
of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used. The PTPE method uses a composi-
tion of four regions, a triangle, a parallelogram, and two negative exponentials. In each region except the triangle,
acceptance/rejection is used. The execution time of the method is essentially insensitive to the mean of the
Poisson.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The
function imsl_random_option can be used to select the form of the generator.

Example
In this example, imsl_random_poisson is used to generate five pseudorandom deviates from a Poisson dis-
tribution with mean equal to 0.5.

#include <imsl.h>
#define N_RANDOM 5
int main()
{
 int *r;
 int seed = 123457;
 float theta = 0.5;
 imsl_random_seed_set (seed);
 r = imsl_random_poisson (N_RANDOM, theta, 0);
 imsl_i_write_matrix ("Poisson(0.5) random deviates", 1, 5, r, 0);
}

Output

Poisson(0.5) random deviates
 1 2 3 4 5
1333

 Statistics and Random Number Generation random_poisson
 2 0 1 0 1
1334

 Statistics and Random Number Generation random_gamma
random_gamma
Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <imsl.h>
float *imsl_f_random_gamma (int n_random, float a, …, 0)

The type double procedure is imsl_d_random_gamma.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float a (Input)
The shape parameter of the gamma distribution. This parameter must be positive.

Return Value
If no optional arguments are used, imsl_f_random_gamma returns a pointer to a vector of length
n_random containing the random standard gamma deviates. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_gamma (int n_random, float a,

IMSL_RETURN_USER, float r[],
0)
1335

 Statistics and Random Number Generation random_gamma
Optional Arguments
IMSL_USER_RETURN, float r[] (Output)

If specified, the vector of length n_random containing the random standard gamma deviates is
returned in the user-provided array r.

Description
The function imsl_f_random_gamma generates pseudorandom numbers from a gamma distribution with
shape parameter a and unit scale parameter. The probability density function is

Various computational algorithms are used depending on the value of the shape parameter a. For the special
case of a = 0.5, squared and halved normal deviates are used; and for the special case of a = 1.0, exponential
deviates are generated. Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, described
in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-region rejection procedure developed by
Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and scale parameter b can be gen-
erated by using imsl_f_random_gamma and then multiplying each entry in r by b. The following statements
(in single precision) would yield random deviates from a gamma (a, b) distribution.

float *r;
r =imsl_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *=b;

The Erlang distribution is a standard gamma distribution with the shape parameter having a value equal to a pos-
itive integer; hence, imsl_f_random_gamma generates pseudorandom deviates from an Erlang distribution
with no modifications required.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator.
The function imsl_random_option can be used to select the form of the generator.

Example
In this example, imsl_f_random_gamma is used to generate five pseudorandom deviates from a gamma
(Erlang) distribution with shape parameter equal to 3.0.

#include <imsl.h>

f x = 1
Γ a

xa−1e−x for x ≥ 0
1336

 Statistics and Random Number Generation random_gamma
int main()
{
 int seed = 123457;
 int n_random = 5;
 float a = 3.0;
 float *r;
 imsl_random_seed_set(seed);
 r = imsl_f_random_gamma(n_random, a, 0);
 imsl_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}

Output

 Gamma(3) random deviates
 1 2 3 4 5
6.843 3.445 1.853 3.999 0.779
1337

 Statistics and Random Number Generation random_beta
random_beta
Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <imsl.h>
float *imsl_f_random_beta (float n_random, float pin, float qin, …, 0)

The type double function is imsl_d_random_beta.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
If no optional arguments are used, imsl_f_random_beta returns a pointer to a vector of length n_random
containing the random standard beta deviates. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_beta (float n_random, float pin, float qin,

IMSL_RETURN_USER, float r[],
0)
1338

 Statistics and Random Number Generation random_beta
Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

If specified, the vector of length n_random containing the random standard beta deviates is
returned in r.

Description
The function imsl_f_random_beta generates pseudorandom numbers from a beta distribution with param-
eters pin and qin, both of which must be positive. With p = pin and q = qin, the probability density function is

where Γ(⋅) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p = 1 or q = 1, in which the
inverse CDF method is used, all of the methods use acceptance/rejection. If p and q are both less than 1, the
method of Jöhnk (1964) is used. If either p or q is less than 1 and the other is greater than 1, the method of Atkin-
son (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng (1978), which requires very little
setup time, is used if n_random is less than 4; and algorithm B4PE of Schmeiser and Babu (1980) is used if
n_random is greater than or equal to 4. Note that for p and q both greater than 1, calling
imsl_f_random_beta in a loop getting less than 4 variates on each call will not yield the same set of deviates
as calling imsl_f_random_beta once and getting all the deviates at once.

The values returned in r are less than 1.0 and greater than ɛ where ɛ is the smallest positive number such that
1.0 − ɛ is less than 1.0.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator.
The function imsl_random_option can be used to select the form of the generator.

Example
In this example, imsl_f_random_beta is used to generate five pseudorandom beta (3, 2) variates.

#include <imsl.h>
int main()
{
 int n_random = 5;

f x =
Γ p + q
Γ p Γ q

xp−1 1 − x q−1
for 0 ≤ x ≤ 1
1339

 Statistics and Random Number Generation random_beta
 int seed = 123457;
 float pin = 3.0;
 float qin = 2.0;
 float *r;
 imsl_random_seed_set (seed);
 r = imsl_f_random_beta (n_random, pin, qin, 0);
 imsl_f_write_matrix("Beta (3,2) random deviates", 1, n_random, r, 0);
}

Output
 Beta (3,2) random deviates
 1 2 3 4 5
0.2814 0.9483 0.3984 0.3103 0.8296
1340

 Statistics and Random Number Generation random_exponential
random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <imsl.h>
float *imsl_f_random_exponential (int n_random, …, 0)

The type double function is imsl_d_random_exponential.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
A pointer to an array of length n_random containing the random standard exponential deviates.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_exponential (int n_random,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

If specified, the array of length n_random containing the random standard exponential deviates is
returned in the user-provided array r.
1341

 Statistics and Random Number Generation random_exponential
Description
Function imsl_f_random_exponential generates pseudorandom numbers from a standard exponential

distribution. The probability density function is f(x) = e-x, for x > 0. Function imsl_random_exponential
uses an antithetic inverse CDF technique; that is, a uniform random deviate U is generated, and the inverse of the
exponential cumulative distribution function is evaluated at 1.0 − U to yield the exponential deviate.

Deviates from the exponential distribution with mean θ can be generated by using
imsl_f_random_exponential and then multiplying each entry in r by θ.

Example
In this example, imsl_f_random_exponential is used to generate five pseudorandom deviates from a
standard exponential distribution.

#include <imsl.h>
#define N_RANDOM 5
int main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;
 imsl_random_seed_set(seed);
 r = imsl_f_random_exponential(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Exponential random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Exponential random deviates: 0.0344 1.3443 0.2662 0.5633 0.1686
1342

 Statistics and Random Number Generation faure_next_point
faure_next_point
Computes a shuffled Faure sequence.

Synopsis
#include <imsl.h>
Imsl_faure *imsl_faure_sequence_init (int ndim, …, 0)

float *imsl_f_faure_next_point (Imsl_faure *state, …, 0)

void imsl_faure_sequence_free (Imsl_faure *state)

The type double function is imsl_d_faure_next_point. The functions imsl_faure_sequence_init
and imsl_faure_sequence_free are precision independent.

Required Arguments for imsl_faure_sequence_init
int ndim (Input)

The dimension of the hyper-rectangle.

Return Value for imsl_faure_sequence_init
Returns a structure that contains information about the sequence. The structure should be freed using
imsl_faure_sequence_free after it is no longer needed.

Required Arguments for imsl_faure_next_point
Imsl_faure *state (Input/Output)

Structure created by a call to imsl_faure_sequence_init.

Return Value for imsl_faure_next_point
Returns the next point in the shuffled Faure sequence. To release this space, use imsl_free.
1343

 Statistics and Random Number Generation faure_next_point
Required Arguments for imsl_faure_sequence_free
Imsl_faure *state (Input/Output)

Structure created by a call to imsl_faure_sequence_init.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_faure_sequence_init (int ndim,

IMSL_BASE, int base,
IMSL_SKIP, int skip,
0)

float *imsl_f_faure_next_point (Imsl_faure *state,

IMSL_RETURN_USER, float *user,
IMSL_RETURN_SKIP, int *skip,
0)

Optional Arguments
IMSL_BASE, int base (Input)

The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

IMSL_SKIP, int *skip (Input)
The number of points to be skipped at the beginning of the Faure sequence.
Default: , where and B is the largest representable integer.

IMSL_RETURN_USER, float *user (Output)
User-supplied array of length ndim containing the current point in the sequence.

IMSL_RETURN_SKIP, int *skip (Output)
The current point in the sequence. The sequence can be restarted by initializing a new sequence
using this value for IMSL_SKIP, and using the same dimension for ndim.

Description
Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set , is

⌊basem/2−1⌋ m = ⌊log B / log base⌋

x1, … , xn ∈ 0, 1
d
, d ≥ 1
1344

 Statistics and Random Number Generation faure_next_point
where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and is the number of the xj contained in E.

The sequence x1, x2, …of points [0,1]d is a low-discrepancy sequence if there exists a constant c(d), depending

only on d, such that

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest bound for the discrepancy is
obtained for the smallest prime b≥d, so the optional argument IMSL_BASE defaults to the smallest prime
greater than or equal to the dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

where ai(n) are integers, .

The j-th coordinate of xn is

The generator matrix for the series, , is defined to be

and is an element of the Pascal matrix,

Dn
d
= sup

E
| A E; n

n − λ E | ,

E = 0,t1 × … × 0,td , 0 ≤ t j ≤ 1, 1 ≤ j ≤ d

A E; n

Dn
d
≤ c d

logn d

n

n =∑
i=0

∞

ai n b
i

0 ≤ ai n < b

xn
j
=∑
k=0

∞

∑
d=0

∞

ckd
j
ad n b

−k−1, 1 ≤ j ≤ d

ckd
j

ckd
j
= jd−kckd

ckd
1345

 Statistics and Random Number Generation faure_next_point
It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can be shown
that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into the integer given by
its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence.

Example
In this example, five points in the Faure sequence are computed. The points are in the three-dimensional unit
cube.

Note that imsl_faure_sequence_init (see Synopsis) is used to create a structure that holds the state of
the sequence. Each call to imsl_f_faure_next_point returns the next point in the sequence and updates
the Imsl_faure structure. The final call to imsl_fauer_sequence_free (see Synopsis) frees data items,
stored in the structure, that were allocated by imsl_faure_sequence_init.

#include <stdio.h>
#include <imsl.h>

int main()
{
 Imsl_faure *state;
 float *x;
 int ndim = 3;
 int k;

 state = imsl_faure_sequence_init(ndim, 0);
 for (k = 0; k < 5; k++) {
 x = imsl_f_faure_next_point(state, 0);
 printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
 imsl_free(x);
 }
 imsl_faure_sequence_free(state);
}

Output

 0.334 0.493 0.064
 0.667 0.826 0.397
 0.778 0.270 0.175
 0.111 0.604 0.509

ckd =
d!

c! d − c !
k ≤ d

0 k > d
1346

 Statistics and Random Number Generation faure_next_point
 0.445 0.937 0.842
1347

 Printing Functions Functions
Printing Functions

Functions

Prints a matrix or vector. .write_matrix 1349
Sets the page width and length . page 1356
Sets the printing options . write_options 1358
1348

 Printing Functions write_matrix
write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis
#include <imsl.h>
void imsl_f_write_matrix (char *title, int nra, int nca, float a[], …, 0)

For int a[], use imsl_i_write_matrix.

For double a[], use imsl_d_write_matrix.

For f_complex a[], use imsl_c_write_matrix.

For d_complex a[], use imsl_z_write_matrix.

Required Arguments
char *title (Input)

The matrix title. Use \n within a title to create a new line. Long titles are automatically wrapped.

int nra (Input)
The number of rows in the matrix.

int nca (Input)
The number of columns in the matrix.

float a[] (Input)
Array of size nra × nca containing the matrix to be printed.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_write_matrix (char *title, int nra, int nca, float a[],

IMSL_TRANSPOSE,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_PRINT_ALL,
IMSL_PRINT_LOWER,
1349

 Printing Functions write_matrix
IMSL_PRINT_UPPER,
IMSL_PRINT_LOWER_NO_DIAG,
IMSL_PRINT_UPPER_NO_DIAG,
IMSL_WRITE_FORMAT, char *fmt,
IMSL_ROW_LABELS, char *rlabel[],
IMSL_NO_ROW_LABELS,
IMSL_ROW_NUMBER,
IMSL_ROW_NUMBER_ZERO,
IMSL_COL_LABELS, char *clabel[],
IMSL_NO_COL_LABELS,
IMSL_COL_NUMBER,
IMSL_COL_NUMBER_ZERO,
IMSL_RETURN_STRING, char **string,
IMSL_WRITE_TO_CONSOLE,
0)

Optional Arguments
IMSL_TRANSPOSE

Print aT.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = nca

IMSL_PRINT_ALL, or

IMSL_PRINT_LOWER, or

IMSL_PRINT_UPPER, or

IMSL_PRINT_LOWER_NO_DIAG, or

IMSL_PRINT_UPPER_NO_DIAG
Exactly one of these optional arguments can be specified in order to indicate that either a triangular
part of the matrix or the entire matrix is to be printed. If omitted, the entire matrix is printed.

Keyword Action

IMSL_PRINT_ALL The entire matrix is printed (the default).

IMSL_PRINT_LOWER The lower triangle of the matrix is printed,
including the diagonal.
1350

 Printing Functions write_matrix
IMSL_WRITE_FORMAT, char *fmt (Input)
Character string containing a list of C conversion specifications (formats) to be used when printing
the matrix. Any list of C conversion specifications suitable for the data type may be given. For exam-
ple, fmt = "%10.3f" specifies the conversion character f for the entire matrix. (For the conversion
character f, the matrix must be of type float, double, f_complex, or d_complex). Alternatively,
fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the conversion character e for col-
umns 1 and 2 and the conversion character f for columns 3, 4, and 5. (For complex matrices, two
conversion specifications are required for each column of the matrix so the conversion character e is
used in column 1. The conversion character f is used in column 2 and the real part of column 3.) If
the end of fmt is encountered and if some columns of the matrix remain, format control continues
with the first conversion specification in fmt.

Aside from restarting the format from the beginning, other exceptions to the usual C formatting rules
are as follows:

 Characters not associated with a conversion specification are not allowed. For example, in
the format fmt = "1%d2%d", the characters 1 and 2 are not allowed and result in an
error.

 A conversion character d can be used for floating-point values (matrices of type float, double,
f_complex, or d_complex). The integer part of the floating-point value is printed.

 For printing numbers whose magnitudes are unknown, the conversion character g is useful;
however, the decimal points will generally not be aligned when printing a column of num-
bers. The w (or W) conversion character is a special conversion character used by this
function to select a conversion specification so that the decimal points will be aligned. The
conversion specification ending with w is specified as "%n.dw". Here, n is the field width
and d is the number of significant digits generally printed. Valid values for n are 3, 4, …,
40. Valid values for d are 1, 2, …, n-2. If fmt specifies one conversion specification
ending with w, all elements of a are examined to determine one conversion specification for
printing.

If fmt specifies more than one conversion specification, separate conversion specifications
are generated for each conversion specification ending with w. Set fmt = "10.4w" if you
want a single conversion specification selected automatically with field width 10 and with
four significant digits.

IMSL_PRINT_UPPER The upper triangle of the matrix is printed,
including the diagonal.

IMSL_PRINT_LOWER_NO_DIAG The lower triangle of the matrix is printed,
without the diagonal.

IMSL_PRINT_UPPER_NO_DIAG The upper triangle of the matrix is printed,
without the diagonal.

Keyword Action
1351

 Printing Functions write_matrix
IMSL_NO_ROW_LABELS, or

IMSL_ROW_NUMBER, or

IMSL_ROW_NUMBER_ZERO, or

IMSL_ROW_LABELS, char *rlabel[] (Input)
If IMSL_ROW_LABELS is specified, rlabel is a vector of length nra containing pointers to the
character strings comprising the row labels. Here, nra is the number of rows in the printed matrix.
Use \n within a label to create a new line. Long labels are automatically wrapped. If no row labels are
desired, use the IMSL_NO_ROW_LABELS optional argument. If the numbers 1, 2, …, nra are
desired, use the IMSL_ROW_NUMBER optional argument. If the numbers 1, 2, …, nra − 1 are
desired, use the IMSL_ROW_NUMBER_ZERO optional argument. If none of these optional argu-
ments is used, the numbers 1, 2, 3, …, nra are used for the row labels by default whenever nra > 1.
If nra = 1, the default is no row labels.

IMSL_NO_COL_LABELS, or

IMSL_COL_NUMBER, or

IMSL_COL_NUMBER_ZERO, or

IMSL_COL_LABELS, char *clabel[] (Input)
If IMSL_COL_LABELS is specified, clabel is a vector of length nca + 1 containing pointers to the
character strings comprising the column headings. The heading for the row labels is clabel[0],
and clabel[i], i = 1, …, nca, is the heading for the i-th column. Use \n within a label to create
a new line. Long labels are automatically wrapped. If no column labels are desired, use the
IMSL_NO_COL_LABELS optional argument. If the numbers 1, 2, …, nca, are desired, use the
IMSL_COL_NUMBER optional argument. If the numbers 0, 1, …, nca − 1 are desired, use the
IMSL_COL_NUMBER_ZERO optional argument. If none of these optional arguments is used, the
numbers 1, 2, 3, …, nca are used for the column labels by default whenever nca > 1.
If nca = 1, the default is no column labels.

IMSL_RETURN_STRING, char **string (Output)
The address of a pointer to a NULL-terminated string containing the matrix to be printed. Lines are
new-line separated and the last line does not have a trailing new-line character. Typically
char *string is declared, and &string is used as the argument.

IMSL_WRITE_TO_CONSOLE
This matrix is printed to a console window. If a console has not been allocated, a default console
(80 × 24, white on black, no scrollbars) is created.
1352

 Printing Functions write_matrix
Description
The function imsl_write_matrix prints a real rectangular matrix (stored in a) with optional row and column

labels (specified by rlabel and clabel, respectively, regardless of whether a or aT is printed). An optional for-
mat, fmt, may be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the upper or lower triangles of a
matrix via the IMSL_TRIANGLE option. Generally, the IMSL_TRIANGLE option is used with symmetric matri-
ces, but this is not required. Vectors can be printed by specifying a row or column dimension of 1.

Output is written to the file specified by the function imsl_output_file. The default output file is standard
output (corresponding to the file pointer stdout).

A page width of 78 characters is used. Page width and page length can be reset by invoking function imsl_page.

Horizontal centering, the method for printing large matrices, paging, the method for printing NaN (Not a Num-
ber), and whether or not a title is printed on each page can be selected by invoking function
imsl_write_options.

Examples

Example 1

This example is representative of the most common situation in which no optional arguments are given.

#include <imsl.h>
#define NRA 3
#define NCA 4
int main()
{
 int i, j;
 f_complex a[NRA][NCA];
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j].re = (i+1+(j+1)*0.1);
 a[i][j].im = -a[i][j].re+100;
 }
 }
 /* Write matrix */
 imsl_c_write_matrix ("matrix\na", NRA, NCA, (f_complex *)a, 0);
}

1353

 Printing Functions write_matrix
Output

 matrix
 a
 1 2 3
1 (1.1, 98.9) (1.2, 98.8) (1.3, 98.7)
2 (2.1, 97.9) (2.2, 97.8) (2.3, 97.7)
3 (3.1, 96.9) (3.2, 96.8) (3.3, 96.7)
 4
1 (1.4, 98.6)
2 (2.4, 97.6)
3 (3.4, 96.6)

Example 2

In this example, some of the optional arguments available in the write_matrix functions are demonstrated.

#include <imsl.h>
#define NRA 3
#define NCA 4
int main()
{
 int i, j;
 float a[NRA][NCA];
 char *fmt = "%10.6W";
 char *rlabel[] = {"row 1", "row 2", "row 3"};
 char *clabel[] = { "", "col 1", "col 2", "col 3", "col 4"};
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }
 }
 /* Write matrix */
 imsl_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
 IMSL_WRITE_FORMAT, fmt,
 IMSL_ROW_LABELS, rlabel,
 IMSL_COL_LABELS, clabel,
 IMSL_PRINT_UPPER_NO_DIAG,
 0);
}

Output

 matrix
 a
 col 2 col 3 col 4
row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4
1354

 Printing Functions write_matrix
Example 3

In this example, a row vector of length four is printed.

#include <imsl.h>
#define NRA 1
#define NCA 4
int main()
{
 int i;
 float a[NCA];
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};
 for (i = 0; i < NCA; i++) {
 a[i] = i + 1;
 }
 /* Write matrix */
 imsl_f_write_matrix ("matrix\na", NRA, NCA, a,
 IMSL_COL_LABELS, clabel,
 0);
}

Output

 matrix
 a
 col 1 col 2 col 3 col 4
 1 2 3 4
1355

 Printing Functions page
page
Sets or retrieves the page width or length.

Synopsis
#include <imsl.h>
void imsl_page (Imsl_page_options option, int *page_attribute)

Required Arguments
imsl_page_options option (Input)

Option giving which page attribute is to be set or retrieved. The possible values are:

int *page_attribute (Input, if the attribute is set; Output, otherwise)
The value of the page attribute to be set or retrieved. The page width is the number of characters per
line of output (default 78), and the page length is the number of lines of output per page (default 60).
Ten or more characters per line and 10 or more lines per page are required.

Example
The following example illustrates the use of imsl_page to set the page width to 40 characters. The IMSL func-
tion imsl_f_write_matrix is then used to print a 3 × 4 matrix A, where aij = i + j∕10.

#include <imsl.h>
#define NRA 3
#define NCA 4
int main()
{
 int i, j, page_attribute;
 float a[NRA][NCA];

option Description

IMSL_SET_PAGE_WIDTH Set the page width.

IMSL_GET_PAGE_WIDTH Retrieve the page width.

IMSL_SET_PAGE_LENGTH Set the page length.

IMSL_GET_PAGE_LENGTH Retrieve the page length.
1356

 Printing Functions page
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 page_attribute = 40;
 imsl_page(IMSL_SET_PAGE_WIDTH, &page_attribute);
 imsl_f_write_matrix("a", NRA, NCA, (float *)a, 0);
}

Output

 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
 4
1 1.4
2 2.4
3 3.4
1357

 Printing Functions write_options
write_options
Sets or retrieves an option for printing a matrix.

Synopsis
#include <imsl.h>
void imsl_write_options (Imsl_write_options option, int *option_value)

Required Arguments
Imsl_write_options option (Input)

Option giving the type of the printing attribute to set or retrieve.

int *option_value (Input, if option is to be set; Output, otherwise)
The value of the option attribute selected by option. The values to be used when setting attributes
are described in a table in the description section.

option for Setting option for Retrieving
Attribute
Description

IMSL_SET_DEFAULTS Use the default set-
tings for all parameters

IMSL_SET_CENTERING IMSL_GET_CENTERING Horizontal centering

IMSL_SET_ROW_WRAP IMSL_GET_ROW_WRAP Row wrapping

IMSL_SET_PAGING IMSL_GET_PAGING Paging

IMSL_SET_NAN_CHAR IMSL_GET_NAN_CHAR Method for printing
NaN (not a number)

IMSL_SET_TITLE_PAGE IMSL_GET_TITLE_PAGE Whether or not titles
appear on each page

IMSL_SET_FORMAT IMSL_GET_FORMAT Default format for real
and complex numbers
1358

 Printing Functions write_options
Description
The function imsl_write_options allows the user to set or retrieve an option for printing a matrix. Options
controlled by imsl_write_options are horizontal centering, method for printing large matrices, paging,
method for printing in NaN (not a number), method for printing titles, and the default format for real and com-
plex numbers. (NaN can be retrieved by functions imsl_f_machine and imsl_d_machine. For more
information, see the description for imsl_f_machine.

The values that may be used for the attributes are as follows:

Option Value Meaning

CENTERING 0

1

Matrix is left justified.
Matrix is centered.

ROW_WRAP 0

m

A complete row is printed before the next row is printed.
Wrapping is used if necessary.
Here m is a positive integer. Let n1 be the maximum
number of columns that fit across the page, as deter-
mined by the widths in the conversion specifications
starting with column 1. First, columns 1 through n1 are
printed for rows 1 through m. Let n2 be the maximum
number of columns that fit across the page, starting
with column
n1 + 1. Second, columns n1+1 through n1 + n2 are
printed for rows 1 through m. This continues until the
last columns are printed for rows 1 through m. Printing
continues in this fashion for the next m rows, etc.

PAGING -2

-1

0

k

No paging occurs.
Paging is on. Every invocation of a
imsl_f_write_matrix function begins on a new page,
and paging occurs within each invocation as is needed.
Paging is on. The first invocation of a
imsl_f_write_matrix function begins on a new page,
and subsequent paging occurs as is needed. Paging
occurs in the second and all subsequent calls to a
imsl_f_write_matrix function only as needed.
Turn paging on and set the number of lines printed on
the current page to k lines. If k is greater than or equal to
the page length, then the first invocation of a
imsl_f_write_matrix function begins on a new page.
In any case, subsequent paging occurs as is needed.

NAN_CHAR 0

1

. is printed for NaN.
A blank field is printed for NaN.
1359

 Printing Functions write_options
The w conversion character used by the FORMAT option is a special conversion character that can be used to
automatically select a pretty C conversion specification ending in either e, f, or d. The conversion specification
ending with w is specified as "%n.dw". Here, n is the field width, and d is the number of significant digits generally
printed.

The function imsl_write_options can be invoked repeatedly before using a write_matrix function to
print a matrix. The matrix printing functions retrieve the values set by imsl_write_options to determine
the printing options. It is not necessary to call imsl_write_options if a default value of a printing option is
desired. The defaults are as follows:

Example
The following example illustrates the effect of imsl_write_options when printing a 3 × 4 real matrix A with
IMSL function imsl_f_write_matrix, where aij = i + j∕10. The first call to imsl_write_options sets

horizontal centering so that the matrix is printed centered horizontally on the page. In the next invocation of
imsl_f_write_matrix, the left-justification option has been set via function imsl_write_options, so
the matrix is left justified when printed.

#include <imsl.h>
#define NRA 4
#define NCA 3

TITLE_PAGE 0

1

Title appears only on first page.
Title appears on the first page and all continuation
pages.

FORMAT 0

1

2

Format is "%10.4x".
Format is "%12.6w".
Format is "%22.5e".

Option Default Value Description

CENTERING 0 Left justified

ROW_WRAP 1000 Lines before wrapping

PAGING -2 No paging

NAN_CHAR 0

TITLE_PAGE 0 Title appears only on the first page

FORMAT 0 %10.4w

Option Value Meaning
1360

 Printing Functions write_options
int main()
{
 int i, j, option_value;
 float a[NRA][NCA];
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 /* Activate centering option */
 option_value = 1;
 imsl_write_options (IMSL_SET_CENTERING, &option_value);
 /* Write a matrix */
 imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
 /* Activate left justification */
 option_value = 0;
 imsl_write_options (IMSL_SET_CENTERING, &option_value);
 imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
}

Output

 a
 1 2 3
 1 1.1 1.2 1.3
 2 2.1 2.2 2.3
 3 3.1 3.2 3.3
 4 4.1 4.2 4.3
 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3
1361

 Utilities Functions
Utilities

Functions
Set Output Files

Set output files . output_file 1364
Get library version and license number .version 1368

Time and Date
CPU time used. ctime 1370
Date to days since epoch .date_to_days 1372
Days since epoch to date .days_to_date 1374

Error Handling
Error message options. error_options 1376
Gets error type. error_type 1383
Gets the text of error message . error_message 1384
Gets error code .error_code 1386
Initializes error handling system . initialize_error_handler 1388
Stops the current algorithm and returns to the

 calling program .set_user_fcn_return_flag 1390

C Runtime Library
Frees memory . free 1395
Opens a file . fopen 1397
Closes a file . fclose 1399

OpenMP
OpenMP options . omp_options 1400

Constants
Natural and mathematical constants .constant 1402
Integer machine constants. machine (integer) 1407
Float machine constants .machine (float) 1410

Sorting
Sort float vector . sort 1414
Sort integer vector . sort (integer) 1417

Computing Vector Norms
Compute various norms. vector_norm 1420
Compute various norms. vector_norm (complex) 1423
1362

 Utilities Functions
Linear Algebra Support
Vector-Vector, Matrix-Vector, and Matrix-Matrix-Multiplication

Real Matrix. .mat_mul_rect 1427
Complex matrix . mat_mul_rect (complex) 1431
Real band matrix .mat_mul_rect_band 1435
Complex band matrix. mat_mul_rect_band (complex) 1440
Real coordinate matrix. mat_mul_rect_coordinate 1445
Complex coordinate matrix mat_mul_rect_coordinate (complex) 1450

Vector-Vector, Matrix-Vector, and Matrix-Matrix-Addition
Real band matrix . mat_add_band 1456
Complex band matrix. mat_add_band (complex) 1460
Real coordinate matrix. mat_add_coordinate 1465
Complex coordinate matrix .mat_add_coordinate (complex) 1469

Matrix Norm
Real matrix. matrix_norm 1474
Real band matrix . matrix_norm_band 1477
Real coordinate matrix. matrix_norm_coordinate 1481

Test Matrices of Class
Real matrix. generate_test_band 1485
Complex matrix . generate_test_band (complex) 1488
Real matrix. generate_test_coordinate 1491
Complex. .generate_test_coordinate (complex) 1496
1363

 Utilities output_file
output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_output_file (

IMSL_SET_OUTPUT_FILE, FILE *ofile,
IMSL_GET_OUTPUT_FILE, FILE **pofile,
IMSL_SET_ERROR_FILE, FILE *efile,
IMSL_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments
IMSL_SET_OUTPUT_FILE, FILE *ofile (Input)

Set the output file to ofile.
Default: ofile = stdout

IMSL_GET_OUTPUT_FILE, FILE **pfile (Output)
Set the FILE pointed to by pfile to the current output file.

IMSL_SET_ERROR_FILE, FILE *efile (Input)
Set the error message output file to efile.
Default: efile = stderr

IMSL_GET_ERROR_FILE, FILE **pefile (Output)
Set the FILE pointed to by pefile to the error message output file.

Description
This function allows the file used for printing by IMSL routines to be changed.

If multiple threads are used then default settings are valid for each thread. When using threads it is possible to
set different output files for each thread by calling imsl_output_file in Chapter 15 of the IMSL Stat Numer-
ical Libraries from within each thread. See Example 2 for details.
1364

 Utilities output_file
Examples

Example 1

This example opens the file myfile and changes the output file to this new file. The function
imsl_f_write_matrix then writes to this file.

#include <stdio.h>
#include <imsl.h>
extern FILE* imsl_fopen(char* filename, char* mode);
extern int imsl_fclose(FILE* file);
int main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};
 imsl_f_write_matrix ("x (default file)", 1, 3, x, 0);
 ofile = imsl_fopen("myfile", "w");
 imsl_output_file(
 IMSL_SET_OUTPUT_FILE, ofile,
 0);
 imsl_f_write_matrix ("x (myfile)", 1, 3, x, 0);
 imsl_fclose(ofile);
}

Output

x (default file)
1 2 3
3 2 1

File myfile

x (myfile)
1 2 3
3 2 1

Example 2

This example illustrates how to direct output from IMSL routines that run in separate threads to different files.
First, two threads are created, each calling a different IMSL function, then the results are printed by calling
imsl_f_write_matrix from within each thread. Note that imsl_output_file is called from within each
thread to change the default output file.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
1365

 Utilities output_file
#include <imsl.h>
void *ex1(void* arg);
void *ex2(void* arg);
extern FILE* imsl_fopen(char* filename, char* mode);
extern int imsl_fclose(FILE* file);
int main()
{
 pthread_t thread1;
 pthread_t thread2;
 /* Create two threads. */
 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 /* Wait for threads to finish. */
 if (pthread_join(thread1, NULL) != 0)
 perror("pthread_join"),exit(1);
 if (pthread_join(thread2, NULL) != 0)
 perror("pthread_join"),exit(1);
}
void *ex1(void *arg)
{
 float *rand_nums = NULL;
 FILE *file_ptr;
 /* Open a file to write the result in. */
 file_ptr = imsl_fopen("ex1.out", "w");
 /* Set the output file for this thread. */
 imsl_output_file(
 IMSL_SET_OUTPUT_FILE, file_ptr,
 0);
 /* Compute 5 random numbers. */
 imsl_random_seed_set(12345);
 rand_nums = imsl_f_random_uniform(5, 0);
 /* Output random numbers. */
 imsl_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0);
 if (rand_nums) imsl_free(rand_nums);
 imsl_fclose(file_ptr);
}
void *ex2(void *arg)
{
 int n = 3;
 float *x;
 float a[] = {1.0, 3.0, 3.0, 1.0, 3.0, 4.0, 1.0, 4.0, 3.0};
 float b[] = {1.0, 4.0, -1.0};
 FILE *file_ptr;
 /* Open a file to write the result in. */
1366

 Utilities output_file
 file_ptr = imsl_fopen("ex2.out", "w");
 /* Set the output file for this thread. */
 imsl_output_file(
 IMSL_SET_OUTPUT_FILE, file_ptr,
 0);
 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_gen (n, a, b, 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
 if(x) imsl_free(x);
 imsl_fclose(file_ptr);
}

Output

The content of the file ex1.out is shown below.

Random Numbers
1 0.0966
2 0.8340
3 0.9477
4 0.0359
5 0.0115

Output

The content of the file ex2.out is shown below.

 Solution, x, of Ax = b
 1 2 3
 -2 -2 3
1367

 Utilities version
version
Returns information describing the version of the library, serial number, operating system, and compiler.

Synopsis
#include <imsl.h>
char *imsl_version (Imsl_keyword code)

Required Arguments
Imsl_keyword code (Input)

Index indicating which value is to be returned. It must be IMSL_LIBRARY_VERSION,
IMSL_OS_VERSION, IMSL_COMPILER_VERSION, or IMSL_LICENSE_NUMBER.

Return Value
The requested value is returned. If code is out of range, then NULL is returned. Use imsl_free to release the
returned string.

Description
The function imsl_version returns information describing the version of this library, the version of the oper-
ating system under which it was compiled, the compiler used, and the IMSL number.

Example
This example prints all the values returned by imsl_version on a particular machine. The output is omitted
because the results are system dependent.

#include <imsl.h>
#include <stdio.h>
int main()
{
1368

 Utilities version
char *library_version, *os_version;
 char *compiler_version, *license_number;
library_version = imsl_version(IMSL_LIBRARY_VERSION);

 os_version = imsl_version(IMSL_OS_VERSION);
 compiler_version = imsl_version(IMSL_COMPILER_VERSION);
 license_number = imsl_version(IMSL_LICENSE_NUMBER);
printf("Library version = %s\n", library_version);

 printf("OS version = %s\n", os_version);
 printf("Compiler version = %s\n", compiler_version);
 printf("Serial number = %s\n", license_number);

}

1369

 Utilities ctime
ctime
Returns the number of CPU seconds used.

Synopsis
#include <imsl.h>
double imsl_ctime()

Return Value
The number of CPU seconds used so far by the program.

Example
The CPU time needed to compute

is obtained and printed. The time needed is, of course, machine dependent. The CPU time needed will also vary
slightly from run to run on the same machine.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int k;
 double sum, time;
 /* Sum 1 million values */
 for (sum=0, k=1; k<=1000000; k++)
 sum += k;
 /* Get amount of CPU time used */
 time = imsl_ctime();
 printf("sum = %f\n", sum);
 printf("time = %f\n", time);
}

∑
k=0

1, 000, 000k
1370

 Utilities ctime
Output

sum = 500000500000.000000
time = 2.260000
1371

 Utilities date_to_days
date_to_days
Computes the number of days from January 1, 1900, to the given date.

Synopsis
#include <imsl.h>
int imsl_date_to_days (int day, int month, int year)

Required Arguments
int day (Input)

Day of the input date.

int month (Input)
Month of the input date.

int year (Input)
Year of the input date. The year 1950 would correspond to the year 1950 A.D., and the year 50 would
correspond to year 50 A.D.

Return Value
Number of days from January 1, 1900, to the given date. If negative, it indicates the number of days prior to Janu-
ary 1, 1900.

Description
The function imsl_date_to_days returns the number of days from January 1, 1900, to the given date. The
function imsl_date_to_days returns negative values for days prior to January 1, 1900. A negative year can
be used to specify B.C. Input dates in year 0 and for October 5, 1582, through October 14, 1582, inclusive, do not
exist; consequently, in these cases, imsl_date_to_days issues a terminal error.

The beginning of the Gregorian calendar was the first day after October 4, 1582, which became October 15,
1582. Prior to that, the Julian calendar was in use.
1372

 Utilities date_to_days
Example
The following example uses imsl_date_to_days to compute the number of days from January 15, 1986, to
February 28, 1986.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int day0, day1;
 day0 = imsl_date_to_days(15, 1, 1986);
 day1 = imsl_date_to_days(28, 2, 1986);
 printf("Number of days = %d\n", day1 - day0);
}

Output

Number of days = 44
1373

 Utilities days_to_date
days_to_date
Gives the date corresponding to the number of days since January 1, 1900.

Synopsis
#include <imsl.h>
void imsl_days_to_date (int days, int *day, int *month, int *year)

Required Arguments
int days (Input)

Number of days since January 1, 1900.

int *day (Output)
Day of the output date.

int *month (Output)
Month of the output date.

int *year (Output)
Year of the output date. The year 1950 would correspond to the year 1950 A.D., and the year 50
would correspond to year 50 A.D.

Description
The function imsl_days_to_date computes the date corresponding to the number of days since January 1,
1900. For a negative input value of days, the date computed is prior to January 1, 1900. This function is the
inverse of function imsl_date_to_days.

The beginning of the Gregorian calendar was the first day after October 4, 1582, which became October 15,
1582. Prior to that, the Julian calendar was in use.

Example
The following example uses imsl_days_to_date to compute the date for the 100th day of 1986. This is
accomplished by first using IMSL function imsl_date_to_days to get the “day number” for December 31, 1985.
1374

 Utilities days_to_date
#include <imsl.h>
#include <stdio.h>
int main()
{
 int day0, day, month, year;
 day0 = imsl_date_to_days(31, 12, 1985);
 imsl_days_to_date(day0+100, &day, &month, &year);
 printf("Day 100 of 1986 is (day-month-year) %d-%d-%d\n",
 day, month, year);
}

Output

Day 100 of 1986 is (day-month-year) 10-4-1986
1375

 Utilities error_options
error_options
Sets various error handling options.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_error_options (

IMSL_SET_PRINT, Imsl_error type, int setting,
IMSL_SET_STOP, Imsl_error type, int setting,
IMSL_SET_TRACEBACK, Imsl_error type, int setting,
IMSL_FULL_TRACEBACK, int setting,
IMSL_GET_PRINT, Imsl_error type, int *psetting,
IMSL_GET_STOP, Imsl_error type, int *psetting,
IMSL_GET_TRACEBACK, Imsl_error type, int *psetting,
IMSL_SET_ERROR_FILE, FILE *file,
IMSL_GET_ERROR_FILE, FILE **pfile,
IMSL_ERROR_MSG_PATH, char *path,
IMSL_ERROR_MSG_NAME, char *name,
IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc,
0)

Optional Arguments
IMSL_SET_PRINT, Imsl_error type, int setting (Input)

Printing of type type error messages is turned off if setting is 0; otherwise, printing is turned on.
Default: Printing turned on for IMSL_WARNING, IMSL_FATAL, IMSL_TERMINAL,
IMSL_FATAL_IMMEDIATE, and IMSL_WARNING_IMMEDIATE messages

IMSL_SET_STOP, Imsl_error type, int setting (Input)
Stopping on type type error messages is turned off if setting is 0; otherwise, stopping is turned
on.
Default: Stopping turned on for IMSL_FATAL, IMSL_TERMINAL, and
IMSL_FATAL_IMMEDIATE messages
1376

 Utilities error_options
IMSL_SET_TRACEBACK, Imsl_error type, int setting (Input)
Printing of a traceback on type type error messages is turned off if setting is 0; otherwise, print-
ing of the traceback turned on.
Default: Traceback turned off for all message types

IMSL_FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if setting is 0; otherwise, internal function
names also are listed.
Default: Full traceback turned off

IMSL_GET_PRINT, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of type type error
messages.

IMSL_GET_STOP, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for stopping on type type error
messages.

IMSL_GET_TRACEBACK, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of a traceback for type
type error messages.

IMSL_SET_ERROR_FILE, FILE *file (Input)
Sets the error output file.
Default: file = stderr

IMSL_GET_ERROR_FILE, FILE **pfile (Output)
Sets the FILE * pointed to by pfile to the error output file.

IMSL_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-separated list of directories to be
searched for the file containing the error messages.
Default: system dependent

IMSL_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file = “imslerr.bin”

IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the form
void print_proc (Imsl_error type, long code, char *function_name, char *message).
1377

 Utilities error_options
In this case, type is the error message type number (IMSL_FATAL, etc.), code is the error mes-
sage code number (IMSL_MAJOR_VIOLATION, etc.), function_name is the name of the
function setting the error, and message is the error message to be printed. If print_proc is NULL,
then the default error printing function is used.

Return Value
The return value for this function is void.

Description
This function allows the error handling system to be customized.

If multiple threads are used then default settings are valid for each thread but can be altered for each individual
thread. See Example 3 and Example 4 for multithreaded examples.

Examples

Example 1

In this example, the IMSL_TERMINAL print setting is retrieved. Next, stopping on IMSL_TERMINAL errors is
turned off, then output to standard output is redirected, and an error is deliberately caused by calling
imsl_error_options with an illegal value.
1378

 Utilities error_options
#include <imsl.h>
#include <stdio.h>
int main()
{
 int setting;
 /* Turn off stopping on IMSL_TERMINAL */
 /* error messages and write error */
 /* messages to standard output */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout,
 0);
 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(-1);
 /* Get setting for IMSL_TERMINAL */
 imsl_error_options(IMSL_GET_PRINT, IMSL_TERMINAL, &setting,
 0);
 printf("IMSL_TERMINAL error print setting = %d\n", setting);
}

Output

*** TERMINAL Error from imsl_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.
IMSL_TERMINAL error print setting = 1

Example 2

In this example, IMSL’s error printing function has been substituted for the standard function. Only the first four
lines are printed below.

#include <imsl.h>
#include <stdio.h>
void print_proc(Imsl_error, long, char*, char*);
int main()
{
 /* Turn off tracebacks on IMSL_TERMINAL */
 /* error messages and use a custom */
 /* print function */
 imsl_error_options(IMSL_ERROR_PRINT_PROC, print_proc,
 0);
 /* Call imsl_error_options() with an */
 /* illegal value */
 imsl_error_options(-1);
}
void print_proc(Imsl_error type, long code, char *function_name,
 char *message)
{
 printf("Error message type %d\n", type);
 printf("Error code %d\n", code);
1379

 Utilities error_options
 printf("From function %s\n", function_name);
 printf("%s\n", message);
}

Output

Error message type 5
Error code 103
From function imsl_error_options
There is an error with argument number 1. This may be caused by an incorrect number
of values following a previous optional argument name.

Example 3

In this example, two threads are created and error options is called within each thread to set the error handling
options differently for each thread. Since we expect to generate terminal errors in each thread, we must turn off
stopping on terminal errors for each thread. See Example 4 for a similar example using WIN32 threads. Note
since multiple threads are executing, the order of the errors output may differ on some systems.

#include <imsl.h>
#include <stdlib.h>
#include <pthread.h>
void *ex1(void* arg);
void *ex2(void* arg);
int main()
{
 pthread_t thread1;
 pthread_t thread2;
 /* Create two threads. */
 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 /* Wait for threads to finish. */
 if (pthread_join(thread1, NULL) != 0)
 perror("pthread_join"),exit(1);
 if (pthread_join(thread2, NULL) != 0)
 perror("pthread_join"),exit(1);
}
void *ex1(void* arg)
{
 float res;
 /* Call imsl_error_options to set the error handling
 * options for this thread. Notice that the error printing
 * function wil lbe user defined for this thread only. */
 imsl_error_options(
 IMSL_SET_STOP,
 IMSL_TERMINAL, 0,
 0);
 res = imsl_f_beta(-1.0, .5);
}

1380

 Utilities error_options
void *ex2(void* arg)
{
 float res;
 /* Call imsl_error_options to set the error handling
 * options for this thread. */
 imsl_error_options(
 IMSL_SET_STOP,
 IMSL_TERMINAL, 0,
 IMSL_SET_TRACEBACK,
 IMSL_TERMINAL, 1,
 0);
 res = imsl_f_gamma(-1.0);
}

Output

*** TERMINAL Error from imsl_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsl_f_gamma. The argument for the function can not
*** be a negative integer. Argument "x" = -1.000000e+00.
Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
IMSL_TERMINAL IMSL_NEGATIVE_INTEGER imsl_f_gamma
 USER

Example 4

In this example the WIN32 API is used to demonstrate the same functionality as shown in Example 3 above. Note
since multiple threads are executing, the order of the errors output may differ on some systems.

#include <imsl.h>
#include <stdio.h>
#include <windows.h>
DWORD WINAPI ex1(void *arg);
DWORD WINAPI ex2(void *arg);
int main(int argc, char* argv[])
{
 HANDLE thread[2];
 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);
 WaitForMultipleObjects(2, thread, TRUE, INFINITE);
 system("pause");
}

1381

 Utilities error_options
DWORD WINAPI ex1(void *arg)
{
 float res;
 /* Call imsl_error_options to set the error handling
 * options for this thread. */
 imsl_error_options(
 IMSL_SET_STOP,
 IMSL_TERMINAL, 0,
 0);
 res = imsl_f_beta(-1.0, .5);
}
DWORD WINAPI ex2(void *arg)
{
 float res;
 /* Call imsl_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSL_TERMINAL errors. */
 imsl_error_options(
 IMSL_SET_STOP,
 IMSL_TERMINAL, 0,
 IMSL_SET_TRACEBACK,
 IMSL_TERMINAL, 1,
 0);
 res = imsl_f_gamma(-1.0);
}

Output

*** TERMINAL Error from imsl_f_gamma. The argument for the function can not
*** be a negative integer. Argument "x" = -1.000000e+00.
Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
IMSL_TERMINAL IMSL_NEGATIVE_INTEGER imsl_f_gamma
 USER
*** TERMINAL Error from imsl_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.
1382

 Utilities error_type
error_type
Gets the type corresponding to the error message from the last function called.

Synopsis
#include <imsl.h>
Imsl_error imsl_error_type ()

Return Value
An Imsl_error enum value is returned.

Description
The Imsl_error enum type has seven values: IMSL_NOTE, IMSL_ALERT, IMSL_WARNING, IMSL_FATAL,
IMSL_TERMINAL, IMSL_WARNING_IMMEDIATE and IMSL_FATAL_IMMEDIATE. See Kinds of Errors and
Default Actions for more details.

Example
See error_message for an example.
1383

 Utilities error_message
error_message
Gets the text of the error message from the last function called.

Synopsis
#include <imsl.h>
char *imsl_error_message()

Return Value
Returns the current error message.

Description
If the current error type is positive then the last error message set is returned. It does not matter if the error mes-
sage was printed or not. The current error type is the number returned by imsl_error_type. If the current
error type is zero then NULL is returned.

The returned string can be freed using imsl_free.

Example
This example retrieves the error message from a call to imsl_f_gamma with an illegal argument. Error stopping
is turned off so that the example continues beyond the terminal error.

#include <imsl.h>
#include <stdio.h>
int main(void)
{
 char *msg;
 imsl_error_options(
 IMSL_SET_STOP, IMSL_TERMINAL, 0,
 0);
 imsl_f_gamma(0.0);
 msg = imsl_error_message();
 printf("type = %d\ncode = %d\n", imsl_error_type(), imsl_error_code());
 printf("msg = %s\n", msg);
1384

 Utilities error_message
}

Output

*** TERMINAL Error from imsl_f_gamma. The argument for the function can not
*** be zero.
type = 5
code = 9024
msg = The argument for the function can not be zero.
1385

 Utilities error_code
error_code
Gets the code corresponding to the error message from the last function called.

Synopsis
#include <imsl.h>
long imsl_error_code()

Return Value
This function returns the error message code from the last IMSL function called. The include file imsl.h defines
a name for each error code.

Example
This example turns off stopping on IMSL_TERMINAL error messages and generates an error by calling
imsl_error_options with an illegal value for IMSL_SET_PRINT. The error message code number is
retrieved and printed. In imsl.h, IMSL_INTEGER_OUT_OF_RANGE is defined to be 132.

#include <imsl.h>
#include <stdio.h>
int main()
{
 long code;
 /* Turn off stopping IMSL_TERMINAL */
 /* messages and print error messages */
 /* on standard output. */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout,
 0);
 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(IMSL_SET_PRINT, 100, 0,
 0);
 /* Get the error message code */
 code = imsl_error_code();
 printf("error code = %d\n", code);
}

1386

 Utilities error_code
Output

*** TERMINAL Error from imsl_error_options."type" must be between 1 and 5,
*** but "type" = 100.
error code = 132
1387

 Utilities initialize_error_handler
initialize_error_handler
Initializes the IMSL C Math Library error handling system.

Synopsis
#include <imsl.h>
int imsl_initialize_error_handler ()

Return Value
If the initialization succeeds, zero is returned. If there is an error, a nonzero value is returned.

Description
This function is used to initialize the IMSL C Math Library error handling system for the current thread. It is not
required, but is always allowed.

Use of this function is advised if the possibility of low heap memory exists when calling the IMSL C Math Library
for the first time in the current thread. A successful return from imsl_initialize_error_handler con-
firms that IMSL C Math Library error handling system has been initialized and is operational. The effects of calling
imsl_initialize_error_handler are limited to the calling thread only.

If imsl_initialize_error_handler is not called and initialization of the error handling system fails, an
error message is printed to stderr, and execution is stopped.

Example
In this example, the IMSL C Math Library error handler is initialized prior to calling multiple other IMSL C Math
Library functions. Often this is not required, but is advised if the possibility of low heap memory exists. Even if not
required, the initialization call is always allowed.

The computations performed in this example are based on Example 1 for imsl_f_spline_least_squares.

#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 90
1388

 Utilities initialize_error_handler
/* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))
int main()
{
 int status;
int i, spline_space_dim = 12;

 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_spline *sp;
 /* Initialize the IMSL C Math Library error handler. */
 status = imsl_initialize_error_handler();
 /*

* Verify successful error handler initialization before
* continuing.
*/

 if (status == 0) {
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {

 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);

 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,

spline_space_dim, 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++) {

 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f\n", x, error);

 }
 } else {

 printf("Unable to initialize IMSL C Math Library error handler.\n");
 }

}

1389

 Utilities set_user_fcn_return_flag
set_user_fcn_return_flag
Indicates a condition has occurred in a user-supplied function necessitating a return to the calling function.

Synopsis
#include <imsl.h>
void imsl_set_user_fcn_return_flag (int code)

Required Arguments
int code (Input)

A user-defined number that indicates the reason for the return from the user-supplied function.

Description
Given a certain condition in a user-supplied function, imsl_set_user_fcn_return_flag stops executing
any IMSL algorithm that has called the function and then returns to the calling function or main program. Upon
invocation of imsl_set_user_fcn_return_flag, a flag is set in the IMSL error handler. Upon returning
from the user-supplied function, the error IMSL_STOP_USER_FCN is issued with severity IMSL_FATAL. Typi-
cally, if you use this function, you would disable stopping on IMSL C MATH errors, thus gaining greater control
in situations where you need to prematurely return from an algorithm. (See Programming Notes.)

Programming Notes
 Since the default behavior of IMSL error handling is to stop execution on IMSL_TERMINAL and

IMSL_FATAL errors, execution of the main program stops when the IMSL_STOP_USER_FCN
error message is issued unless you alter this behavior by turning stopping off using
imsl_error_options.

 In a user-supplied function, the user is responsible for checking error conditions such as memory
allocation, return status for any function calls, valid return values, etc.

 Use of this function is valid only if called from within a user-supplied function.
1390

 Utilities set_user_fcn_return_flag
Examples

Example 1

This example is based on imsl_f_int_fcn. In this example, the user, for any hypothetical reason, wants to stop
the evaluation of the user-supplied function, fcn, when x is less than 0.5.

#include <math.h>
#include <imsl.h>
#include <stdio.h>
float fcn(float x);
float q;
float exact;
int main()
{
 /* Turn off stopping on IMSL_FATAL errors. */
 imsl_error_options(IMSL_SET_STOP, IMSL_FATAL, 0, 0);
 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* evaluate the integral */
 q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);
 /* The following lines will be executed because
 stopping is turned off. */
 if (q != q) {
 printf("integral = NaN\n");
 } else {
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 }
}
float fcn(float x)
{
 float y;
 /* For a hypothetical reason, stop execution when x < 0.5. */
 if (x < 0.5) {
 imsl_set_user_fcn_return_flag(1);
 return 0;
 }
 y = x * (exp(x));
 return y;
}

Output

*** FATAL Error IMSL_STOP_USER_FCN from imsl_f_int_fcn. Request
*** from user supplied function to stop algorithm. User flag = "1".
integral = NaN
1391

 Utilities set_user_fcn_return_flag
Example 2

This example is based on imsl_f_chi_squared_test, Example 3. This example demonstrates how to han-
dle the error condition if the user-supplied function calls a C Math Library function. In this example, THETA is set
to 0 to force an error condition in calling the imsl_f_poisson_cdf function in the user-supplied function.

#include <imsl.h>
#include <stdio.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 0.0
float user_proc_cdf(float);
int main()
{
 int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};
 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7",
 "8", "9"};
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};
 /* Turn off stopping on IMSL_FATAL errors. */
 imsl_error_options(IMSL_SET_STOP, IMSL_FATAL, 0, 0);
 imsl_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsl_random_poisson(N_NUMBERS, 5.0, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];
 chi_squared_statistics[2] =
 imsl_f_chi_squared_test(user_proc_cdf, N_NUMBERS,
 N_CATEGORIES, x,
 IMSL_CUTPOINTS_USER, cutpoints,
 IMSL_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSL_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSL_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* The following lines will be executed because
 stopping is turned off. */
 if (chi_squared_statistics[2] != chi_squared_statistics[2]) {
1392

 Utilities set_user_fcn_return_flag
 printf("p-value = NaN\n");
 } else {
 imsl_f_write_matrix("\nChi-squared Statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSL_ROW_LABELS, cell_row_labels,
 IMSL_COL_LABELS, cell_col_labels,
 IMSL_WRITE_FORMAT, "%9.1f",
 0);
 }
}
float user_proc_cdf(float k)
{
 float cdf_v;
 int setting;
 /* The user is responsible for checking error conditions in the
 user-supplied function, even if the user-supplied function
 is calling an IMSL function.
 For theta = 0.0 (an invalid input), imsl_f_poisson_cdf issues
 an IMSL_TERMINAL error. Thus, stopping is turned off on
 IMSL_TERMINAL errors. */
 /* Get the current terminal error stopping setting which will be
 used for restoring the setting later. */
 imsl_error_options(IMSL_GET_STOP, IMSL_TERMINAL, &setting, 0);
 /* Disable stopping on terminal errors. */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0, 0);
 cdf_v = imsl_f_poisson_cdf ((int) k, THETA);
 /* If there is a terminal error, stop and return to main. */
 if (imsl_error_type() == IMSL_TERMINAL) {
 imsl_set_user_fcn_return_flag(1);
 return 0;
 }
 /* Restore stopping setting */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, setting, 0);
 return cdf_v;
}

Output

*** TERMINAL Error from imsl_f_poisson_cdf. The mean of the Poisson
*** distribution, "theta" = 0.000000e+000, must be positive.

*** FATAL Error IMSL_STOP_USER_FCN from imsl_f_chi_squared_test.
*** Request from user supplied function to stop algorithm. User
*** flag = "1".
1393

 Utilities set_user_fcn_return_flag
p-value = NaN
1394

 Utilities free
free
Frees memory returned from an IMSL C Math Library function.

Synopsis
#include <imsl.h>
void imsl_free (void *data)

Required Arguments
void *data (Input)

A pointer to data returned from an IMSL C Math Library function.

Description
The function imsl_free frees memory using the C runtime library used by the IMSL C Math Library for alloca-
tion. It is a wrapper around the standard C runtime function free.

Function imsl_free can always be used to free memory allocated by the IMSL C Math Library, but is required if
an application has linked to multiple copies of the C runtime library, with each copy having its own set of heap
allocation structures. In this situation, using the C runtime function free can result in memory being allocated
with one copy of the C runtime library and freed with a different copy, which may cause abnormal termination.
Using imsl_free ensures that the same C runtime library is used for both allocation and freeing.

Example

This example computes a set of random numbers, prints them, and then frees the array returned from the ran-
dom number generation function.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int seed = 123457;
 int n_random = 5;
 float *r;

Note that imsl_free should be used only to free memory that was allocated by IMSL C Math Library.
1395

 Utilities free

 imsl_random_seed_set (seed);
 r = imsl_f_random_normal(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
 imsl_free(r);
}

Output

Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145
1396

 Utilities fopen
fopen
Opens a file using the C runtime library used by the IMSL C Math Library.

Synopsis
#include <imsl.h>
#include <stdio.h>
FILE *imsl_fopen (char *filename, char *mode)

Required Arguments
char *filename (Input)

The name of the file to be opened.

char *mode (Input)
The type of access to be permitted to the file. This string is passed to the C runtime function fopen,
which determines the valid mode values.

Return Value
A pointer for the file structure, FILE, defined in stdio.h. To close the file, use imsl_fclose. If there is a fatal
error, then NULL is returned.

Description
The function imsl_fopen opens a file using the C runtime library used by the IMSL C Math Library. It is a wrap-
per around the standard C runtime function fopen.

Function imsl_fopen can always be used to open a file which will be used by the IMSL C Math Library, but is
required if an application has linked to multiple copies of the C runtime library, with each copy having its own set
of file instructions. In this situation, using the C runtime function fopen can result in a file being opened with one
copy of the C runtime library and reading or writing to it with a different copy, which may cause abnormal behav-
ior or termination. Using imsl_fopen ensures that the same C runtime library is used for both the open
operation and reading and writing within an IMSL C Math Library function to which the file pointer has been
passed as an input argument.
1397

 Utilities fopen
Example
This example writes a matrix to the file matrix.txt. The function imsl_fopen is used to open a file. This
function returns a file pointer, which is passed to imsl_output_file. The matrix is written by
imsl_f_write_matrix, which uses the file pointer from imsl_output_file. The function
imsl_fclose is then used to close the file.

#include <imsl.h>
#include <stdio.h>
extern FILE* imsl_fopen(char* filename, char* mode);
extern int imsl_fclose(FILE* file);
int main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};
 imsl_f_write_matrix ("x (default file)", 1, 3, x, 0);
 ofile = imsl_fopen("myfile", "w");
 imsl_output_file(
 IMSL_SET_OUTPUT_FILE, ofile,
 0);
 imsl_f_write_matrix ("x (myfile)", 1, 3, x,
 0);
 imsl_fclose(ofile);
}

Output

The content below is stored in the matrix.txt file.
 Matrix written to file matrix.txt
 1 2 3
1 1.1 2.4 3.6
2 4.3 5.1 6.7
3 7.2 8.9 9.3

Note that imsl_fopen should only be used to open a file whose file pointer will be input to an IMSL
C Math Library function. Use imsl_fclose to close files opened with imsl_fopen.

Note: This function is not prototyped in imsl.h. This is to avoid including stdio.h within imsl.h.
An extern declaration should be explicitly used to assure compatibility with linkers.
1398

 Utilities fclose
fclose
Closes a file opened by imsl_fopen.

Synopsis
#include <imsl.h>
#include <stdio.h>
int imsl_fclose (FILE *file)

Required Arguments
FILE *file (Input/Output)

A file pointer returned from imsl_fopen.

Return Value
The return value is zero if the file is successfully closed. If there is an error, EOF is returned. EOF is defined in
stdio.h.

Description
The function imsl_fclose is a wrapper around the standard C runtime function fclose. It is used to close
files opened with imsl_fopen.

Example
See imsl_fopen for an example of its use.

Note that imsl_fopen should only be used to open a file whose file pointer will be input to an
IMSL C Math Library function. Use imsl_fclose to close files opened with imsl_fopen.

Note: This function is not prototyped in imsl.h. This is to avoid including stdio.h within imsl.h.
An extern declaration should be explicitly used to assure compatibility with linkers.
1399

 Utilities omp_options
omp_options
Sets various OpenMP options.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_omp_options (

IMSL_SET_FUNCTIONS_THREAD_SAFE, int setting,
IMSL_GET_FUNCTIONS_THREAD_SAFE, int *psetting,
0)

Return Value
The return value for this function is void.

Optional Arguments
IMSL_SET_FUNCTIONS_THREAD_SAFE, int setting (Input)

If nonzero, user supplied functions are assumed to be thread-safe. This allows user functions to be
evaluated in parallel with different arguments.
Default: User supplied functions are not assumed to be thread-safe and are not evaluated in parallel
by IMSL C Math Library functions.

IMSL_GET_FUNCTIONS_THREAD_SAFE, int *psetting (Output)
Sets the integer pointed to by psetting to zero if user functions are not assumed to be thread-
safe and to one if they are assumed to be thread-safe.

Description
The performance of some IMSL C Math Library functions can be improved if they evaluate user supplied func-
tions in parallel. Unfortunately, incorrect results can occur if the user supplied functions are not thread-safe. By
default, the IMSL C Math Library assumes user supplied functions are not thread-safe and thus will not evaluate
them in parallel. To change this assumption, use the optional argument
IMSL_SET_FUNCTIONS_THREAD_SAFE with its argument equal to one.

This function can be used multiple times in an application to change the thread-safe assumption.
1400

 Utilities omp_options
Example

This example computes the integral . A call to the function imsl_omp_options is used to indicate that

function fcn is thread-safe and so can be safely evaluated by multiple, simultaneous threads.

#include <stdio.h>
#include <math.h>
#include <imsl.h>
float fcn(float x);
int main()
{
 float q;
 float exact;

 imsl_omp_options(IMSL_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

 /* Evaluate the integral and print result */
 q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
 return x * (exp(x));
}

Output

integral = 8.389
exact = 8.389

∫0
2xexdx
1401

 Utilities constant
constant
Returns the value of various mathematical and physical constants.

Synopsis
#include <imsl.h>
float imsl_f_constant (char *name, char *unit)
The type double function is imsl_d_constant.

Required Arguments
char *name (Input)

Character string containing the name of the desired constant. The case of the character string name
does not matter. The names “PI”, “Pi”, “pI”, and “pi” are equivalent. Spaces and underscores are
allowed and ignored.

char *unit (Input)
Character string containing the units of the desired constant. If NULL, then Système International
d’Unités (SI) units are assumed. The case of the character string unit does not matter. The names
“METER”, “Meter” and “meter” are equivalent. unit has the form U1*U2*...
*Um/V1/.../Vn, where Ui and Vi are the names of basic units or are the names of basic units
raised to a power. Basic units must be separated by * or /. Powers are indicated by ^, as in “m^2” for
m2. Examples are, “METER*KILOGRAM/SECOND”, “M*KG/S”, “METER”, or “M/KG^2”.

Return Value
By default, imsl_f_constant returns the desired constant. If no value can be computed, NaN is returned.
1402

 Utilities constant
Description
The names allowed are listed in the following table. Values marked with a ‡ are exact (to machine precision). The
references in the right-hand column are indicated by the code numbers: [1] for Cohen and Taylor (1986), [2] for
Liepman (1964), and [3] for precomputed mathematical constants.

Name Description Value Reference

Amu Atomic mass unit 1.6605655 × 10-27 kg 1

ATM Standard atm pressure 1.01325 × 105 N/m2 ‡ 2

AU Astronomical unit 1.496 × 1011 m

Avogadro Avogadro's number, N 6.022045 × 1023 1/mole 1

Boltzman Boltzman's constant, k 1.380662 × 10-23 J/K 1

C Speed of light, c 2.997924580 × 108 m/s 1

Catalan Catalan's constant 0.915965…‡ 3

E Base of natural logs, e 2.718…‡ 3

ElectronCharge Electron charge, e 1.6021892 × 10-19 C 1

ElectronMass Electron mass, me 9.109534 × 10-31 kg 1

ElectronVolt
Euler

ElectronVolt, ev
Euler's constant, γ

1.6021892 x10 -19J
0.577…‡

1
3

Faraday Faraday constant, F 9.648456 × 104 C/mole 1

FineStructure Fine structure, α 7.2973506 ×10-3 1

Gamma Euler's constant, γ 0.577…‡ 3

Gas Gas constant, R0 8.31441 J/mole/K 1

Gravity Gravitational constant, G 6.6720 × 10-11 N m2/kg2 1

Hbar Planck's constant/2π 1.0545887 × 10-34 J s 1

PerfectGasVolume Std vol ideal gas 2.241383 × 10-2 m3/mole 1

Pi Pi, π 3.141…‡ 3

Planck Planck's constant, h 6.626176 × 10-34 J s 1

ProtonMass Proton mass, Mp 1.6726485 × 10-27 kg 1

Rydberg Rydberg's constant, Rμ 1.097373177 × 107/m 1

Speedlight Speed of light, c 2.997924580 ×108 m/s 1

StandardGravity Standard g 9.80665 m/s2 ‡ 2

StandardPressure Standard atm pressure 1.01325 ×105 N/m2 ‡ 2
1403

 Utilities constant
The units allowed are as follows:

The following metric prefixes may be used with the above units. The one or two letter prefixes may only be used
with one letter unit abbreviations.

StefanBoltzman Stefan-Boltzman, σ 5.67032 × 10-8W/K4/m2 1

WaterTriple Triple point of water 2.7316× 102 K 2

Unit Description

Time day, hour = hr, min, minute, s = sec = second, year

Frequency Hertz = Hz

Mass AMU, g = gram, lb = pound, ounce = oz, slug

Distance Angstrom, AU, feet = foot, in = inch, m = meter = metre, micron, mile,
mill, parsec, yard

Area Acre

Volume 1 = liter=litre

Force dyne, N = Newton

Energy BTU, Erg, J = Joule

Work W = watt

Pressure ATM = atmosphere, bar

Temperature degC = Celsius, degF = Fahrenheit, degK = Kelvin

Viscosity poise, stoke

Charge Abcoulomb, C = Coulomb, statcoulomb

Current A = ampere, abampere, statampere

Voltage Abvolt, V = volt

Magnetic induction T = Telsa, Wb = Weber

Other units I, farad, mole, Gauss, Henry, Maxwell, Ohm

A atto 10-18 d deci 10-1

F femto 10-15 dk deca 102

P pico 10-12 k kilo 103

N nano 10-9 myria 104

U micro 10-6 mega 106

Name Description Value Reference
1404

 Utilities constant
There is no one letter unit abbreviation for myria or mega since m means milli.

Examples

Example 1

In this example, Euler’s constant γ is obtained and printed. Euler’s constant is defined to be

#include <stdio.h>
#include <imsl.h>
int main()
{
 float gamma;
 /* Get gamma */
 gamma = imsl_f_constant("gamma", 0);
 /* Print gamma */
 printf("gamma = %f\n", gamma);
}

Output

gamma = 0.577216

Example 2

In this example, the speed of light is obtained using several different units.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float speed_light;
 /* Get speed of light in meters/second */
 speed_light = imsl_f_constant("Speed Light", "meter/second");
 printf("speed of light = %g meter/second\n", speed_light);
 /* Get speed of light in miles/second */
 speed_light = imsl_f_constant("Speed Light", "mile/second");

M milli 10-3 g giga 109

C centi 10-2 t tera 1012

γ = lim
n→ ∞ ∑

k=1

n−1
1
k − ln n
1405

 Utilities constant
 printf("speed of light = %g mile/second\n", speed_light);
 /* Get speed of light in */
 /* centimeters/nanosecond */
 speed_light = imsl_f_constant("Speed Light", "cm/ns");
 printf("speed of light = %g cm/ns\n", speed_light);
}

Output

speed of light = 2.99792e+08 meter/second
speed of light = 186282 mile/second
speed of light = 29.9793 cm/ns

Warning Errors
IMSL_MASS_TO_FORCE A conversion of units of mass to units of force was

required for consistency.
1406

 Utilities machine (integer)
machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis
#include <imsl.h>
long imsl_i_machine(int n)

Required Arguments
int n (Input)

Index indicating which value is to be returned. It must be between 0 and 12.

Return Value
The requested value is returned. If n is out of range, then NaN is returned.

Description
The function imsl_i_machine returns information describing the computer’s arithmetic. This can be used to
make programs machine independent.

imsl_i_machine(0) = Number of bits per byte

Assume that integers are represented in M-digit, base-A form as

where σ is the sign and 0 ≤ xk < A for k = 0, …, M. Then,

n Definition

0 C, bits per character

1 A, the base

σ∑
k=0

M
xkA

k

1407

 Utilities machine (integer)
Assume that floating-point numbers are represented in N-digit, base B form as

where σ is the sign and 0 ≤ xk < B for k = 1, …, N for and E$ ≤ E ≤ E".

Then,

Example
This example prints all the values returned by imsl_i_machine on a 32-bit machine with IEEE (Institute for
Electrical and Electronics Engineer) arithmetic.

#include <imsl.h>
#include <stdio.h>
int main() {
 int n;
 long ans;
 for (n = 0; n <= 12; n++) {
 ans = imsl_i_machine(n);

2 Ms, the number of base-A digits in a short int

3 , the largest short int

4 Ml, the number of base-A digits in a long int

5 , the largest long int

n Definition

6 B, the base

7 Nf, the number of base-B digits in float

8

9

10 Nd, the number of base-B digits in double

11

12

n Definition

AMs − 1

AM1 − 1

σBE∑
k=1

N
xkB

−k

Emin f ,the smallest float exponent

Emax f ,the largest float exponent

Emind,the smallest double exponent

Emaxd,the largest double exponent
1408

 Utilities machine (integer)
 printf("imsl_i_machine(%d) = %ld\n", n, ans);
 }
}

Output

imsl_i_machine(0) = 8
imsl_i_machine(1) = 2
imsl_i_machine(2) = 15
imsl_i_machine(3) = 32767
imsl_i_machine(4) = 31
imsl_i_machine(5) = 2147483647
imsl_i_machine(6) = 2
imsl_i_machine(7) = 24
imsl_i_machine(8) = -125
imsl_i_machine(9) = 128
imsl_i_machine(10) = 53
imsl_i_machine(11) = -1021
imsl_i_machine(12) = 1024
1409

 Utilities machine (float)
machine (float)
Returns information describing the computer’s floating-point arithmetic.

Synopsis
#include <imsl.h>
float imsl_f_machine(int n)
The type double function is imsl_d_machine.

Required Arguments
int n (Input)

Index indicating which value is to be returned.The index must be between 1 and 8.

Return Value
The requested value is returned. If n is out of range, then NaN is returned.

Description
The function imsl_f_machine returns information describing the computer’s floating-point arithmetic. This
can be used to make programs machine independent. In addition, some of the functions are also important in
setting missing values (see below).

Assume that float numbers are represented in Nf-digit, base B form as

where σ is the sign, 0 ≤ xk < B for k = 1, 2, …, Nf, and

σBE∑
k=1

N
xkB

−k

Emin f ≤ E ≤ Emax f
1410

 Utilities machine (float)
Note that B = imsl_i_machine(6), Nf = imsl_i_machine(7),

and

The ANSI/IEEE Std 754-1985 standard for binary arithmetic uses NaN (not a number) as the result of various oth-
erwise illegal operations, such as computing 0/0. On computers that do not support NaN, a value larger than
imsl_d_machine(2) is returned for imsl_f_machine(6). On computers that do not have a special rep-
resentation for infinity, imsl_f_machine(2) returns the same value as imsl_f_machine(7).

The function imsl_f_machine is defined by the following table:

The function imsl_d_machine retrieves machine constants which define the computer’s double arithmetic.
Note that for double B = imsl_i_machine(6), Nd = imsl_i_machine(10),

n Definition

1
, the smallest positive number

2
, the largest number

3
 , the smallest relative spacing

4
 , the largest relative spacing

5 log10(B)

6 NaN (not a number)

7 positive machine infinity

8 negative machine infinity

Emin f = imsl_i_machine(8)

Emax f = imsl_i_machine(9)

B
Emin f

−1

B
Emax f 1 − B−Nf

B
−N f

B
1−N f
1411

 Utilities machine (float)
and

Missing values in IMSL functions are always indicated by NaN (Not a Number). This is imsl_f_machine(6) in
single precision and imsl_d_machine(6) in double. There is no missing-value indicator for integers. Users
will almost always have to convert from their missing value indicators to NaN.

Example
This example prints all eight values returned by imsl_f_machine and by imsl_d_machine on a machine
with IEEE arithmetic.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int n;
 float fans;
 double dans;
 for (n = 1; n <= 8; n++) {
 fans = imsl_f_machine(n);
 printf("imsl_f_machine(%d) = %g\n", n, fans);
 }
 for (n = 1; n <= 8; n++) {
 dans = imsl_d_machine(n);
 printf("imsl_d_machine(%d) = %g\n", n, dans);
 }
}

Output

imsl_f_machine(1) = 1.17549e-38
imsl_f_machine(2) = 3.40282e+38
imsl_f_machine(3) = 5.96046e-08
imsl_f_machine(4) = 1.19209e-07
imsl_f_machine(5) = 0.30103
imsl_f_machine(6) = NaN
imsl_f_machine(7) = Inf
imsl_f_machine(8) = -Inf
imsl_d_machine(1) = 2.22507e-308
imsl_d_machine(2) = 1.79769e+308
imsl_d_machine(3) = 1.11022e-16
imsl_d_machine(4) = 2.22045e-16
imsl_d_machine(5) = 0.30103

Emin f = imsl_i_machine(11)

Emax f = imsl_i_machine(12)
1412

 Utilities machine (float)
imsl_d_machine(6) = NaN
imsl_d_machine(7) = Inf
imsl_d_machine(8) = -Inf
1413

 Utilities sort
sort
Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can
be returned.

Synopsis
#include <imsl.h>
float *imsl_f_sort (int n, float *x, …, 0)

The type double function is imsl_d_sort.

Required Arguments
int n (Input)

The length of the input vector.

float *x (Input)
Input vector to be sorted.

Return Value
A vector of length n containing the values of the input vector x sorted into ascending order. If an error occurs,
then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_sort (int n, float *x,

IMSL_ABSOLUTE,
IMSL_PERMUTATION, int **perm,
IMSL_PERMUTATION_USER, int perm_user[],
IMSL_RETURN_USER, float y[],
0)
1414

 Utilities sort
Optional Arguments
IMSL_ABSOLUTE

Sort x by absolute value.

IMSL_PERMUTATION, int **perm (Output)
Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, int perm_user[] (Output)
Return the sort permutation in user-supplied space.

IMSL_RETURN_USER, float y[] (Output)
Return the sorted data in user-supplied space.

Description
By default, imsl_f_sort sorts the elements of x into ascending order by algebraic value. The vector is divided
into two parts by choosing a central element T of the vector. The first and last elements of x are compared with T
and exchanged until the three values appear in the vector in ascending order. The elements of the vector are
rearranged until all elements greater than or equal to the central elements appear in the second part of the vec-
tor and all those less than or equal to the central element appear in the first part. The upper and lower subscripts
of one of the segments are saved, and the process continues iteratively on the other segment. When one seg-
ment is finally sorted, the process begins again by retrieving the subscripts of another unsorted portion of the
vector. On completion, xj ≤ xi for j < i. If the option IMSL_ABSOLUTE is selected, the elements of x are sorted

into ascending order by absolute value. If we denote the return vector by y, on completion, |yj| ≤ |yi| for j < i.

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the array x is returned. That is,
after the initialization of permi = i, the elements of perm are moved in the same manner as are the elements of

x.

Examples

Example 1

In this example, an input vector is sorted algebraically.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
1415

 Utilities sort
 float *sorted_result;
 int n;
 n = 4;
 sorted_result = imsl_f_sort (n, x, 0);
 imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

 Sorted vector
 1 2 3 4
-2 1 3 4

Example 2

This example sorts an input vector by absolute value and prints the result stored in user-allocated space.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float sorted_result[4];
 int n;
 n = 4;
 imsl_f_sort (n, x,
 IMSL_ABSOLUTE,
 IMSL_RETURN_USER, sorted_result,
 0);
 imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

 Sorted vector
1 2 3 4
1 -2 3 4
1416

 Utilities sort (integer)
sort (integer)
Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permu-
tation can be returned.

Synopsis
#include <imsl.h>
int *imsl_i_sort (int n, int *x, …, 0)

Required Arguments
int n (Input)

The length of the input vector.

int *x (Input)
Input vector to be sorted.

Return Value
A vector of length n containing the values of the input vector x sorted into ascending order. If an error occurs,
then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
int *imsl_i_sort (int n, int *x,

IMSL_ABSOLUTE,
IMSL_PERMUTATION, int **perm,
IMSL_PERMUTATION_USER, int perm_user[],
IMSL_RETURN_USER, int y[],
0)
1417

 Utilities sort (integer)
Optional Arguments
IMSL_ABSOLUTE

Sort x by absolute value.

IMSL_PERMUTAION, int **perm (Output)
Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, int perm_user[] (Output)
Return the sort permutation in user-supplied space.

IMSL_RETURN_USER, int y[] (Output)
Return the sorted data in user-supplied space.

Description
By default, imsl_i_sort sorts the elements of x into ascending order by algebraic value. The vector is divided
into two parts by choosing a central element T of the vector. The first and last elements of x are compared with T
and exchanged until the three values appear in the vector in ascending order. The elements of the vector are
rearranged until all elements greater than or equal to the central elements appear in the second part of the vec-
tor and all those less than or equal to the central element appear in the first part. The upper and lower subscripts
of one of the segments are saved, and the process continues iteratively on the other segment. When one seg-
ment is finally sorted, the process begins again by retrieving the subscripts of another unsorted portion of the
vector. On completion, xj ≤ xi for j < i. If the option IMSL_ABSOLUTE is selected, the elements of x are sorted

into ascending order by absolute value. If we denote the return vector by y, on completion, |yj∣ ≤ ∣yi∣ for j < i.

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the array x is returned. That is,
after the initialization of permi = i, the elements of perm are moved in the same manner as are the elements of

x.

Examples

Example 1

In this example, an input vector is sorted algebraically.

#include <stdio.h>
#include <imsl.h>
int main()
{
 int x[] = {1, 3, -2, 4};
1418

 Utilities sort (integer)
 int *sorted_result;
 int n;
 n = 4;
 sorted_result = imsl_i_sort (n, x, 0);
 imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

Sorted vector
 1 2 3 4
-2 1 3 4

Example 2

This example sorts an input vector by absolute value and prints the result stored in user-allocated space.

#include <stdio.h>
#include <imsl.h>
int main()
{
 int x[] = {1, 3, -2, 4};
 int sorted_result[4];
 int n;
 n = 4;
 imsl_i_sort (n, x,
 IMSL_ABSOLUTE,
 IMSL_RETURN_USER, sorted_result,
 0);
 imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

Sorted vector
1 2 3 4
1 -2 3 4
1419

 Utilities vector_norm
vector_norm
Computes various norms of a vector or the difference of two vectors.

Synopsis
#include <imsl.h>
float imsl_f_vector_norm (int n, float *x, …., 0)

The type double function is imsl_d_vector_norm.

Required Arguments
int n (Input)

The length of the input vector(s).

float *x (Input)
Input vector for which the norm is to be computed

Return Value
The requested norm of the input vector. If the norm cannot be computed, NaN is returned. By default, the two

norm of x, , is computed.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_vector_norm (int n, float *x,

IMSL_ONE_NORM,
IMSL_INF_NORM, int *index,
IMSL_SECOND_VECTOR, float *y,0)

∥x∥2
1420

 Utilities vector_norm
Optional Arguments
IMSL_ONE_NORM

Compute the one norm,

IMSL_INF_NORM, int *index (Output)
Compute the infinity norm,

IMSL_SECOND_VECTOR, float *y (Input)
Compute the norm of x minus y,

∥x - y∥, instead of ∥x∥

Description
By default, imsl_f_vector_norm computes the Euclidean norm

If the option IMSL_ONE_NORM is selected, the 1-norm

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

max ∣xi∣

is returned. In the case of the infinity norm, the program also returns the index of the element with maximum
modulus. If IMSL_SECOND_VECTOR is selected, then the norm of x −y is computed.

∥x∥1 =∑
i=0

n−1
∣xi∣

∥x∥∞ = max
0 ≤ i < n

∣xi∣

∑
i=0

n−1

xi
2

1
2

∑
i=0

n−1

| xi |
1421

 Utilities vector_norm
Examples

Example 1

In this example, the Euclidean norm of an input vector is computed.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float norm;
 int n;
 n = sizeof(x)/sizeof(*x);
 norm = imsl_f_vector_norm (n, x, 0);
 printf("Euclidean norm of x = %f\n", norm);
}

Output

Euclidean norm of x = 5.477226

Example 2

This example computes max |xi − yi| and prints the norm and index.

#include <stdio.h>
#include <imsl.h>
int main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float y[] = {4.0, 2.0, -1.0, -5.0};
 float norm;
 int index;
 int n;
 n = sizeof(x)/sizeof(*x);
 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, y,
 IMSL_INF_NORM, &index, 0);
 printf("Infinity norm of x-y = %f ", norm);
 printf("at location %d\n", index);
}

Output

Infinity norm of x-y = 9.000000 at location 3
1422

 Utilities vector_norm (complex)
vector_norm (complex)
Computes various norms of a vector or the difference of two vectors.

Synopsis
#include <imsl.h>
float imsl_c_vector_norm (int n, f_complex x[],…, 0)

The type d_complex function is imsl_z_vector_norm.

Required Arguments
int n (Input)

The length of the input vector(s).

f_complex x[] (Input)

Input vector for which the norm is to be computed

Return Value
The requested norm of the input vector. If the norm cannot be computed, NaN is returned. By default, the two
norm of x, ∥x∥2 , is computed.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_c_vector_norm (int n, f_complex x[],

IMSL_ONE_NORM,

IMSL_INF_NORM, int *index,

IMSL_SECOND_VECTOR, f_complex y[],

0)
1423

 Utilities vector_norm (complex)
Optional Arguments
IMSL_ONE_NORM

Compute the one norm,

IMSL_INF_NORM, int *index (Output)

Compute the infinity norm,

The index at which the vector has its maximum absolute value is also returned.

IMSL_SECOND_VECTOR, f_complex y[] (Input)

Compute the norm of x minus y,

∥x - y ∥, instead of ∥x∥

Description
By default, imsl_c_vector_norm computes the Euclidean norm

If the option IMSL_ONE_NORM is selected, the 1-norm

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

max ∣xi∣

is returned. In the case of the infinity norm, the program also returns the index of the element with maximum
modulus. If IMSL_SECOND_VECTOR is selected, then the norm of x - y is computed.

∥x∥1 =∑
i=0

n−1

∣xi∣

∥x∥∞ = max
0 ≤ i < n

∣xi∣

∑
i=0

n−1

xi
2

1
2

∑
i=0

n−1

∣xi∣
1424

 Utilities vector_norm (complex)
Examples

Example 1

In this example, the Euclidean norm of an input vector is computed.

#include <stdio.h>
#include <imsl.h>
int main()
{
 f_complex x[4] = {
 {1.0, 2.0},
 {3.0, 4.0},
 {-2.0, -1.0},
 {4.0, 5.0}
 };
 float norm;
 norm = imsl_c_vector_norm (4, x, 0);
 printf("Euclidean norm of x = %f\n", norm);
}

Output

Euclidean norm of x = 8.717798

Example 2

This example computes max ∣xi - yi∣ and prints the norm and index.

#include <stdio.h>
#include <imsl.h>
int main()
{ f_complex x[4] = {
 {1.0, 2.0},
 {3.0, 4.0},
 {-2.0, -1.0},
 {4.0, 5.0}
 };
 f_complex y[4] = {
 {4.0, 3.0},
 {2.0, 1.0},
 {-1.0, -2.0},
 {-5.0, -4.0}
 };
 float norm;
 int index;
 norm = imsl_c_vector_norm (4, x,
 IMSL_SECOND_VECTOR, y,
 IMSL_INF_NORM, &index,
 0);
1425

 Utilities vector_norm (complex)
 printf("Infinity norm of x-y = %f ", norm);
 printf("at location %d\n", index);
}

Output

Infinity norm of x-y = 12.727922 at location 3
1426

 Utilities mat_mul_rect
mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any
triple product.

Synopsis
#include <imsl.h>
float *imsl_f_mat_mul_rect (char *string, …, 0)

The type double procedure is imsl_d_mat_mul_rect.

Required Arguments
char *string (Input)

String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication. This is always a pointer to a float, even if the result is a single number. To release
this space, use imsl_free. If no answer was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_mat_mul_rect (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, float a[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_MATRIX, int nrowb, int ncolb, float b[],
IMSL_B_COL_DIM, int b_col_dim,
IMSL_X_VECTOR, int nx, float *x,
IMSL_Y_VECTOR, int ny, float *y,
IMSL_RETURN_USER, float ans[],
IMSL_RETURN_COL_DIM, int return_col_dim,
0)
1427

 Utilities mat_mul_rect
Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, float a[] (Input)

The nrowa ×ncola matrix A.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, float b[] (Input)
The nrowb × ncolb matrix A.

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, float *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, float *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, float ans[] (Output)
A user-allocated array containing the result.

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple
product according to the specification given by string. For example, if “A × x” is given, Ax is computed. In
string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with
trans, indicating transpose. The vectors x and y are treated as n × 1 matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose, is
returned. If string contains one multiplication, such as “A × x” or “B × A”, then the indicated product is
returned. Some other legal values for string are “trans(y) × A”, “A × trans(B)”, “x × trans(y)”, or
“trans(x) × y”.

The matrices and/or vectors referred to in string must be given as optional arguments. If string is “B × x”, then
IMSL_B_MATRIX and IMSL_X_VECTOR must be given.
1428

 Utilities mat_mul_rect
Example
Let

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT, and xTAy are computed and printed.

#include <imsl.h>
int main()
{
 float A[] = {1, 2, 9,
 5, 4, 7};
 float B[] = {3, 2,
 7, 4,
 9, 1};
 float x[] = {7, 2, 1};
 float y[] = {3, 4, 2};
 float *ans;
 ans = imsl_f_mat_mul_rect("trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_f_write_matrix("trans(A)", 3, 2, ans, 0);
 ans = imsl_f_mat_mul_rect("A*x",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("A*x", 1, 2, ans, 0);
 ans = imsl_f_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);
 ans = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_f_write_matrix("A*B", 2, 2, ans, 0);
 ans = imsl_f_mat_mul_rect("trans(B)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);
 ans = imsl_f_mat_mul_rect("trans(x)*y",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("trans(x)*y", 1, 1, ans, 0);

A =
1 2 9
5 4 7

B =
3 2
7 4
9 1

x =
7
2
1

y =
3
4
2

1429

 Utilities mat_mul_rect
 ans = imsl_f_mat_mul_rect("x*trans(y)",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("x*trans(y)", 3, 3, ans, 0);
 ans = imsl_f_mat_mul_rect("trans(x)*A*y",
 IMSL_A_MATRIX, 2, 3, A,
 /* use only the first 2 components of x */
 IMSL_X_VECTOR, 2, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Output

 trans(A)
 1 2
1 1 5
2 2 4
3 9 7
 A*x
 1 2
 20 50
 trans(x)*trans(A)
 1 2
 20 50
 A*B
 1 2
1 98 19
2 106 33
 trans(B)*trans(A)
 1 2
1 98 106
2 19 33
trans(x)*y
 31
 x*trans(y)
 1 2 3
1 21 28 14
2 6 8 4
3 3 4 2
trans(x)*A*y
 293
1430

 Utilities mat_mul_rect (complex)
mat_mul_rect (complex)
Computes the transpose of a matrix, the conjugate-transpose of a matrix, a matrix-vector product, a matrix-
matrix product, the bilinear form, or any triple product.

Synopsis
#include <imsl.h>
f_complex *imsl_c_mat_mul_rect (char *string, …, 0)

The type d_complex function is imsl_z_mat_mul_rect.

Required Arguments
char *string (Input)

String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication. This is always a pointer to a f_complex, even if the result is a single number. To
release this space, use imsl_free. If no answer was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_mat_mul_rect (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_Y_VECTOR, int ny, f_complex *y,
IMSL_RETURN_USER, f_complex ans[],
IMSL_RETURN_COL_DIM, int return_col_dim,
0)
1431

 Utilities mat_mul_rect (complex)
Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a (Input)

The nrowa × ncola matrix A.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b (Input)
The nrowb × ncolb matrix B.

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, f_complex *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, f_complex *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, f_complex ans[] (Output)
A user-allocated array containing the result.

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple
product according to the specification given by string. For example, if “A × x” is given, Ax is computed. In
string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with
trans, indicating transpose, or with ctrans, indicating conjugate (or Hermitian) transpose. The vectors x and y
are treated as n × 1 matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose, is
returned. If string contains one multiplication, such as “A × x” or “B × A”, then the indicated product is
returned. Some other legal values for string are “trans(y) × A”, “A × ctrans(B)”, “x × trans(y)”, or
“ctrans(x) × y”.
1432

 Utilities mat_mul_rect (complex)
The matrices and/or vectors referred to in string must be given as optional arguments. If string is “B × x”, then
IMSL_B_MATRIX and IMSL_X_VECTOR must be given.

Example
Let

The arrays AH, Ax, xTAT, AB, BHAT, xTy, and xyH are computed and printed.

#include <imsl.h>
int main()
{
 f_complex A[] = {{1,4}, {2, 3}, {9,6},
 {5,2}, {4,-3}, {7,1}};
 f_complex B[] = {{3,-6}, {2, 4},
 {7, 3}, {4,-5},
 {9, 2}, {1, 3}};
 f_complex x[] = {{7,4}, {2, 2}, {1,-5}};
 f_complex y[] = {{3,4}, {4,-2}, {2, 3}};
 f_complex *ans;
 ans = imsl_c_mat_mul_rect("ctrans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_c_write_matrix("ctrans(A)", 3, 2, ans, 0);
 ans = imsl_c_mat_mul_rect("A*x",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("A*x", 1, 2, ans, 0);
 ans = imsl_c_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);
 ans = imsl_c_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);

A = 1 + 4i 2 + 3i 9 + 6i
5 + 2i 4 − 3i 7 + i B =

3 − 6i 2 + 4i
7 + 3i 4 − 5i
9 + 2i 1 + 3i

x =
7 + 4i
2 + 2i
1 − 5i

y =
3 + 4i
4 + 2i
2 − 3i
1433

 Utilities mat_mul_rect (complex)
 imsl_c_write_matrix("A*B", 2, 2, ans, 0);
 ans = imsl_c_mat_mul_rect("ctrans(B)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_c_write_matrix("ctrans(B)*trans(A)", 2, 2, ans, 0);
 ans = imsl_c_mat_mul_rect("trans(x)*y",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_c_write_matrix("trans(x)*y", 1, 1, ans, 0);
 ans = imsl_c_mat_mul_rect("x*ctrans(y)",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_c_write_matrix("x*ctrans(y)", 3, 3, ans, 0);
}

Output

 ctrans(A)
 1 2
1 (1, -4) (5, -2)
2 (2, -3) (4, 3)
3 (9, -6) (7, -1)
 A*x
 1 2
(28, 3) (53, 2)
 trans(x)*trans(A)
 1 2
(28, 3) (53, 2)
 A*B
 1 2
1 (101, 105) (0, 47)
2 (125, -10) (7, 14)
 ctrans(B)*trans(A)
 1 2
1 (95, 69) (87, -2)
2 (38, 5) (59, -28)
 trans(x)*y
(34, 37)
 x*ctrans(y)
 1 2 3
1 (37, -16) (20, 30) (26, -13)
2 (14, -2) (4, 12) (10, -2)
3 (-17, -19) (14, -18) (-13, -13)
1434

 Utilities mat_mul_rect_band
mat_mul_rect_band
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in
band form.

Synopsis
#include <imsl.h>
float *imsl_f_mat_mul_rect_band (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_band.

Required Arguments
char *string (Input)

String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_f_mat_mul_rect_band (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, float *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, float *b,
IMSL_X_VECTOR, int nx, float *x,
IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result,
IMSL_RETURN_USER_VECTOR, float vector_user[],
0)
1435

 Utilities mat_mul_rect_band
Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, float *a (Input)

The sparse matrix

IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, float *b (Input)
The sparse matrix

IMSL_X_VECTOR, int nx, float *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result, (Output)
If the function imsl_f_mat_mul_rect_band returns data for a band matrix, use this option to
retrieve the number of lower and upper codiagonals of the return matrix.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user supplied sparse
vector_user.

Description
The function imsl_f_mat_mul_rect_band computes a matrix-matrix product or a matrix-­vector product,
where the matrices are specified in band format. The operation performed is specified by string. For example,
if “A*x” is given, Ax is computed. In string, the matrices A and B and the vector x can be used. Any of these
names can be used with trans, indicating transpose. The vector x is treated as a dense n × 1 matrix. If string
contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional arguments. Therefore, if string is
“A*x”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

Examples

Example 1

Consider the matrix

A ∈ ℜnrowa×ncola

B ∈ ℜnrowb×ncolb
1436

 Utilities mat_mul_rect_band
After storing A in band format, multiply A by x = (1, 2, 3, 4)T and print the result.

#include <imsl.h>
int main()
{
 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};
 float x[] = {1.0, 2.0, 3.0, 4.0};
 int n = 4;
 int nuca = 1;
 int nlca = 1;
 float *b;
 /* Set b = A*x */
 b = imsl_f_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_f_write_matrix ("Product, Ax", 1, n, b, 0);
}

Output

 Product, Ax
 1 2 3 4
 0 -7 5 10

Example 2

This example uses the power method to determine the dominant eigenvector of E(100, 10). The same computa-
tion is performed by using imsl_f_eig_sym, described in the chapter Eigensystem Analysis. The iteration stops
when the component-wise absolute difference between the dominant eigenvector found by imsl_f_eig_sym
and the eigenvector at the current iteration is less than the square root of machine unit roundoff.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main()
{
 int i;
 int j;
 int k;

A =

2 −1 0 0
−3 1 −2 0
0 0 −1 2
0 0 2 1
1437

 Utilities mat_mul_rect_band
 int n;
 int c;
 int nz;
 int index;
 int start;
 int stop;
 float *a;
 float *z;
 float *q;
 float *dense_a;
 float *dense_evec;
 float *dense_eval;
 float norm;
 float *evec;
 float error;
 float tolerance;
 n = 100;
 c = 10;
 tolerance = sqrt(imsl_f_machine(4));
 error = 1.0;
 evec = (float*) malloc (n*sizeof(*evec));
 z = (float*) malloc (n*sizeof(*z));
 q = (float*) malloc (n*sizeof(*q));
 dense_a = (float*) calloc (n*n, sizeof(*dense_a));
 a = imsl_f_generate_test_band (n, c,
 0);
 /* Convert to dense format,
 starting with upper triangle */
 start = c;
 for (i=0; i<c; i++, start--)
 for (k=0, j=start; j<n; j++, k++)
 dense_a[k*n + j] = a[i*n + j];
 /* Convert diagonal */
 for (j=0; j<n; j++)
 dense_a[j*n + j] = a[c*n + j];
 /* Convert lower triangle */
 stop = n-1;
 for (i=c+1; i<2*c+1; i++, stop--)
 for (k=i-c, j=0; j<stop; j++, k++)
 dense_a[k*n + j] = a[i*n + j];
 /* Determine dominant eigenvector by a dense method */
 dense_eval = imsl_f_eig_sym (n, dense_a,
 IMSL_VECTORS, &dense_evec,
 0);
 for (i=0; i<n; i++)
 evec[i] = dense_evec[n*i];
 /* Normalize */
 norm = imsl_f_vector_norm (n, evec,
 0);
 for (i=0; i<n; i++)
 evec[i] /= norm;
1438

 Utilities mat_mul_rect_band
 for (i=0; i<n; i++)
 q[i] = 1.0/sqrt((float) n);
 /* Do power method */
 while (error > tolerance) {
 imsl_f_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, c, c, a,
 IMSL_X_VECTOR, n, q,
 IMSL_RETURN_USER_VECTOR, z,
 0);
 /* Normalize */
 norm = imsl_f_vector_norm (n, z,
 0);
 for (i=0; i<n; i++)
 q[i] = z[i]/norm;
 /* Compute maximum absolute error between any
 two elements */
 error = imsl_f_vector_norm (n, q,
 IMSL_SECOND_VECTOR, evec,
 IMSL_INF_NORM, &index,
 0);
 }
 printf ("Maximum absolute error = %e\n", error);
}

Output

Maximum absolute error = 3.367960e-04
1439

 Utilities mat_mul_rect_band (complex)
mat_mul_rect_band (complex)
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices of com-
plex type and stored in band form.

Synopsis
#include <imsl.h>
f_complex *imsl_c_mat_mul_rect_band (char *string, ..., 0)

The equivalent d_complex function is imsl_z_mat_mul_rect_band.

Required Arguments
char *string (Input)

String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication is returned. To release this space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_c_mat_mul_rect_band (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, f_complex *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, f_complex *b,
IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result,
IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
0)
1440

 Utilities mat_mul_rect_band (complex)
Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, f_complex *a (Input)

The sparse matrix

IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, f_complex *b (Input)
The sparse matrix

IMSL_X_VECTOR, int nx, f_complex *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result, (Output)
If the function imsl_c_mat_mul_rect_band returns data for a band matrix, use this option to
retrieve the number of lower and upper codiagonals of the return matrix.

IMSL_RETURN_USER_VECTOR, f_complex vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user supplied sparse
vector_user.

Description
The function imsl_c_mat_mul_rect_band computes a matrix-matrix product or a matrix-vector product,
where the matrices are specified in band format. The operation performed is specified by string. For example,
if “A*x” is given, Ax is computed. In string, the matrices A and B and the vector x can be used. Any of these
names can be used with trans, indicating transpose. The vector x is treated as a dense n × 1 matrix. If string
contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional arguments. Therefore, if string is
“A*x”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

A ∈ ℂnrowa×ncola

B ∈ ℂnrowb×ncolb
1441

 Utilities mat_mul_rect_band (complex)
Examples

Example 1

Let

and

This example computes the product Ax.

#include <imsl.h>
int main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;
 f_complex *z;
 int nlca_z;
 int nuca_z;
 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex x[] =
 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};
 /* Set b = A*x */
 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("Ax", 1, n, b,
 0);
}

A =

−2 4 0 0
6 + i −0.5 + 3i −2 + 2i 0
0 1 + i 3 − 3i −4 − i
0 0 2i 1 − i

x =

3
−1 + i
3

−1 + i
1442

 Utilities mat_mul_rect_band (complex)
Output

 Product, Ax
 1 2 3
(-10.0, -5.0) (9.5, 5.5) (12.0, -12.0)
 4
(0.0, 8.0)

Example 2

Using the same matrix A and vector x given in the last example, the products Ax, ATx, AHx and AAH are computed.

#include <imsl.h>
int main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;
 f_complex *z;
 int nlca_z;
 int nuca_z;
 /* Note that a is in band storage mode */
 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex x[] =
 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};
 /* Set b = A*x */
 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("Ax", 1, n, b,
 0);
 imsl_free(b);
 /* Set b = trans(A)*x */
 b = imsl_c_mat_mul_rect_band ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b,
 0);
 imsl_free(b);
 /* Set b = ctrans(A)*x */
 b = imsl_c_mat_mul_rect_band ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b,
1443

 Utilities mat_mul_rect_band (complex)
 0);
 imsl_free(b);
 /* Set z = A*ctrans(A) */
 z = imsl_c_mat_mul_rect_band ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 IMSL_RETURN_MATRIX_CODIAGONALS, &nlca_z, &nuca_z,
 0);
 imsl_c_write_matrix("A*ctrans(A)", nlca_z+nuca_z+1, n, z,
 0);
}

Output

 Ax
 1 2 3
(-10.0, -5.0) (9.5, 5.5) (12.0, -12.0)
 4
(0.0, 8.0)

 trans(A)x
 1 2 3
(-13.0, -4.0) (12.5, -0.5) (7.0, -15.0)
 4
(-12.0, -1.0)

 ctrans(A)x
 1 2 3
(-11.0, 16.0) (18.5, -0.5) (15.0, 11.0)
 4
(-14.0, 3.0)
 A*ctrans(A)
 1 2 3
1 (0.00, 0.00) (0.00, 0.00) (4.00, -4.00)
2 (0.00, 0.00) (-17.00, -28.00) (-9.50, 3.50)
3 (29.00, 0.00) (54.25, 0.00) (37.00, 0.00)
4 (-17.00, 28.00) (-9.50, -3.50) (-9.00, 11.00)
5 (4.00, 4.00) (4.00, -4.00) (0.00, 0.00)
 4
1 (4.00, 4.00)
2 (-9.00, -11.00)
3 (6.00, 0.00)
4 (0.00, 0.00)
5 (0.00, 0.00)
1444

 Utilities mat_mul_rect_coordinate
mat_mul_rect_coordinate
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices stored in
sparse coordinate form.

Synopsis
#include <imsl.h>
void *imsl_f_mat_mul_rect_coordinate (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_coordinate.

Required Arguments
char *string (Input)

String indicating matrix multiplication to be performed.

Return Value
The returned value is the result of the multiplication. If the result is a vector, the return type is pointer to float. If
the result of the multiplication is a sparse matrix, the return type is pointer to Imsl_f_sparse_elem. To release this
space, use imsl_free.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_f_mat_mul_rect_coordinate (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_f_sparse_elem *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_f_sparse_elem *b,
IMSL_X_VECTOR, int nx, float *x,
IMSL_RETURN_MATRIX_SIZE, int *size,
IMSL_RETURN_USER_VECTOR, float vector_user[],
0)
1445

 Utilities mat_mul_rect_coordinate
Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_f_sparse_elem *a (Input)

The sparse matrix

with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_f_sparse_elem *b (Input)
The sparse matrix

with nzb nonzero elements.

IMSL_X_VECTOR, int nx, float *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)
If the function imsl_f_mat_mul_rect_coordinate returns a vector of type
Imsl_f_sparse_elem, use this option to retrieve the length of the return vector, i.e. the number of non-
zero elements in the sparse matrix generated by the requested computations.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user supplied sparse
vector_user. It’s size depends on the computation.

Description
The function imsl_f_mat_mul_rect_coordinate computes a matrix-matrix product or a matrix-vector
product, where the matrices are specified in coordinate representation. The operation performed is specified by
string. For example, if “A*x” is given, Ax is computed. In string, the matrices A and B and the vector x can be
used. Any of these names can be used with trans, indicating transpose. The vector x is treated as a dense n × 1
matrix.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose is
returned. Some multiplications, such as “A*trans(A)” or “trans(x)*B”, will produce a sparse matrix in coor-
dinate format as a result. Other products such as “B*x” will produce a pointer to a floating type, containing the
resulting vector.

A ∈ ℜnrowa×ncola

B ∈ ℜnrowb×ncolb
1446

 Utilities mat_mul_rect_coordinate
The matrices and/or vector referred to in string must be given as optional arguments. Therefore, if string is
“A*x”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

Examples

Example 1

In this example, a sparse matrix in coordinate form is multipled by a vector.

#include <imsl.h>
int main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;
 /* Set x = A*b */
 x = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, b,
 0);
 imsl_f_write_matrix ("Product Ab", 1, n, x, 0);
}

Output

 Product Ab
 1 2 3 4 5 6
 100 -98 675 344 -302 162
1447

 Utilities mat_mul_rect_coordinate
Example 2

This example uses the power method to determine the dominant eigenvector of E(100, 10). The same computa-
tion is performed by using imsl_f_eig_sym. The iteration stops when the component-wise absolute difference
between the dominant eigenvector found by imsl_f_eig_sym and the eigenvector at the current iteration is
less than the square root of machine unit roundoff.

#include <imsl.h>
#include <math.h>

int main()
{
 int i;
 int n;
 int c;
 int nz;
 int index;
 Imsl_f_sparse_elem *a;
 float *z;
 float *q;
 float *dense_a;
 float *dense_evec;
 float *dense_eval;
 float norm;
 float *evec;
 float error;
 float tolerance;

 n = 100;
 c = 10;
 tolerance = sqrt(imsl_f_machine(4));
 error = 1.0;

 evec = (float*) malloc (n*sizeof(*evec));
 z = (float*) malloc (n*sizeof(*z));
 q = (float*) malloc (n*sizeof(*q));
 dense_a = (float*) calloc (n*n, sizeof(*dense_a));
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Convert to dense format */

 for (i=0; i<nz; i++)
 dense_a[a[i].col + n*a[i].row] = a[i].val;

 /* Determine dominant eigenvector by a dense method */

 dense_eval = imsl_f_eig_sym (n, dense_a,
 IMSL_VECTORS, &dense_evec,
 0);
 for (i=0; i<n; i++) evec[i] = dense_evec[n*i];

 /* Normalize */

 norm = imsl_f_vector_norm (n, evec, 0);
 for (i=0; i<n; i++) evec[i] /= norm;

 for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);
1448

 Utilities mat_mul_rect_coordinate

 /* Do power method */

 while (error > tolerance) {
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, q,
 IMSL_RETURN_USER_VECTOR, z,
 0);

 /* Normalize */

 norm = imsl_f_vector_norm (n, z, 0);
 for (i=0; i<n; i++) q[i] = z[i]/norm;

 /* Compute maximum absolute error between any
 two elements */
 error = imsl_f_vector_norm (n, q,
 IMSL_SECOND_VECTOR, evec,
 IMSL_INF_NORM, &index,
 0);
 }
 printf ("Maximum absolute error = %e\n", error);
}

Output

Maximum absolute error = 3.368035e-04
1449

 Utilities mat_mul_rect_coordinate (complex)
mat_mul_rect_coordinate (complex)
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices stored in
sparse coordinate form.

Synopsis
#include <imsl.h>
void *imsl_c_mat_mul_rect_coordinate (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_coordinate.

Required Arguments
char *string (Input)

String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication. If the result is a vector, the return type is pointer to f_complex. If the result of the
multiplication is a sparse matrix, the return type is pointer to Imsl_c_sparse_elem.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_c_mat_mul_rect_coordinate (char *string,

IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_c_sparse_elem *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_c_sparse_elem *b,
IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_RETURN_MATRIX_SIZE, int *size,
IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
0)
1450

 Utilities mat_mul_rect_coordinate (complex)
Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_c_sparse_elem *a (Input)

The sparse matrix

with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_c_sparse_elem *b (Input)
The sparse matrix

with nzb nonzero elements.

IMSL_X_VECTOR, int nx, f_complex *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)
If the function imsl_c_mat_mul_rect_coordinate returns a vector of type
Imsl_c_sparse_elem, use this option to retrieve the length of the return vector, i.e. the number of non-
zero elements in the sparse matrix generated by the requested computations.

IMSL_RETURN_USER_VECTOR, f_complex vector_user[], (Output)
If the result of the computation is a vector, return the answer in the user supplied space
vector_user. It’s size depends on the computation.

Description
The function imsl_c_mat_mul_rect_coordinate computes a matrix-matrix product or a matrix-vector
product, where the matrices are specified in coordinate representation. The operation performed is specified by
string. For example, if “A*x” is given, Ax is computed. In string, the matrices A and B and the vector x can be
used. Any of these names can be used with trans or ctrans, indicating transpose and conjugate transpose,
respectively. The vector x is treated as a dense n × 1 matrix.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose is
returned. Some multiplications, such as “A*ctrans(A)” or “trans(x)*B”, will produce a sparse matrix in
coordinate format as a result. Other products such as “B*x” will produce a pointer to a complex type, containing
the resulting vector.

A ∈ ℂnrowa×ncola

B ∈ ℂnrowb×ncolb
1451

 Utilities mat_mul_rect_coordinate (complex)
The matrix and/or vector referred to in string must be given as optional arguments. Therefore, if string is
“A*x”, IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

To release this space, use imsl_free.

Examples

Example 1

Let

and

xT = (1 + i, 2 +2i, 3 + 3i, 4 + 4i, 5 +5i, 6 + 6i)

This example computes the product Ax.

#include <imsl.h>
int main()
{
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex b[] = {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
 {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};
 int n = 6;
 int nz = 15;

A =

10 + 7i 0 0 0 0 0
0 3 + 2i −3 −1 + 2i 0 0
0 0 4 + 2i 0 0 0

−2 − 4i 0 0 1 + 6i −1 + 3i 0
−5 + 4i 0 0 −5 12 + 2i −7 + 7i
−1 + 12i −2 + 8i 0 0 0 3 + 7i
1452

 Utilities mat_mul_rect_coordinate (complex)
 f_complex *x;
 /* Set x = A*b */
 x = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, b,
 0);
 imsl_c_write_matrix ("Product Ab", 1, n, x, 0);
}

Output

 Product Ab
 1 2 3
(3, 17) (-19, 5) (6, 18)
 4 5 6
(-38, 32) (-63, 49) (-57, 83)

Example 2

Using the same matrix A and vector x given in the last example, the products Ax, ATx, AHx and AAH are computed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 Imsl_c_sparse_elem *z;
 Imsl_c_sparse_elem a[] =
 {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex x[] =
 {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
 {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};
 int n = 6, nz = 15, nz_z, i;
 f_complex *b;
 /* Set b = A*x */
 b = imsl_c_mat_mul_rect_coordinate ("A*x",
1453

 Utilities mat_mul_rect_coordinate (complex)
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("Ax", 1, n, b,
 0);
 imsl_free(b);
 /* Set b = trans(A)*x */
 b = imsl_c_mat_mul_rect_coordinate ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b,
 0);
 imsl_free(b);
 /* Set b = ctrans(A)*x */
 b = imsl_c_mat_mul_rect_coordinate ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);
 imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b,
 0);
 imsl_free(b);
 /* Set z = A*ctrans(A) */
 z = imsl_c_mat_mul_rect_coordinate ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 IMSL_RETURN_MATRIX_SIZE, &nz_z,
 0);
 printf("\n\n\t\t\t z = A*ctrans(A)\n\n");
 for (i=0; i<nz_z; i++)
 printf ("\t\t\tz(%1d,%1d) = (%6.1f, %6.1f)\n",
 z[i].row, z[i].col, z[i].val.re, z[i].val.im);
}

Output

 Ax
 1 2 3
(3, 17) (-19, 5) (6, 18)
 4 5 6
(-38, 32) (-63, 49) (-57, 83)

 trans(A)x
 1 2 3
(-112, 54) (-58, 46) (0, 12)
 4 5 6
(-51, 5) (34, 78) (-94, 60)
1454

 Utilities mat_mul_rect_coordinate (complex)
 ctrans(A)x
 1 2 3
(54, -112) (46, -58) (12, 0)
 4 5 6
(5, -51) (78, 34) (60, -94)
 z = A*ctrans(A)
 z(0,0) = (149.0, 0.0)
 z(0,3) = (-48.0, 26.0)
 z(0,4) = (-22.0, -75.0)
 z(0,5) = (74.0, -127.0)
 z(1,1) = (27.0, 0.0)
 z(1,2) = (-12.0, 6.0)
 z(1,3) = (11.0, 8.0)
 z(1,4) = (5.0, -10.0)
 z(1,5) = (10.0, -28.0)
 z(2,1) = (-12.0, -6.0)
 z(2,2) = (20.0, 0.0)
 z(3,0) = (-48.0, -26.0)
 z(3,1) = (11.0, -8.0)
 z(3,3) = (67.0, 0.0)
 z(3,4) = (-17.0, 36.0)
 z(3,5) = (-46.0, 28.0)
 z(4,0) = (-22.0, 75.0)
 z(4,1) = (5.0, 10.0)
 z(4,3) = (-17.0, -36.0)
 z(4,4) = (312.0, 0.0)
 z(4,5) = (81.0, 126.0)
 z(5,0) = (74.0, 127.0)
 z(5,1) = (10.0, 28.0)
 z(5,3) = (-46.0, -28.0)
 z(5,4) = (81.0, -126.0)
 z(5,5) = (271.0, 0.0)
1455

 Utilities mat_add_band
mat_add_band
Adds two band matrices, both in band storage mode, C ← αA + βB.

Synopsis
#include <imsl.h>
float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha, float a[], int nlcb,

int nucb, float beta, float b[], int *nlcc, int *nucc, ..., 0)

The type double function is imsl_d_mat_add_band.

Required Arguments
int n (Input)

The order of the matrices A and B.

int nlca (Input)
Number of lower codiagonals of A.

int nuca (Input)
Number of upper codiagonals of A.

float alpha (Input)
Scalar multiplier for A.

float a[] (Input)
An n by n band matrix with nlca lower codiagonals and nuca upper codiagonals stored in band
mode with dimension (nlca + nuca + 1) by n.

int nlcb (Input)
Number of lower codiagonals of B.

int nucb (Input)
Number of upper codiagonals of B.

float beta (Input)
Scalar multiplier for B.
1456

 Utilities mat_add_band
float b[] (Input)
An n by n band matrix with nlcb lower codiagonals and nucb upper codiagonals stored in band
mode with dimension (nlcb + nucb + 1) by n.

int *nlcc (Output)
Number of lower codiagonals of C.

int *nucc (Output)
Number of upper codiagonals of C.

Return Value
A pointer to an array of type float containing the computed sum. NULL is returned in the event of an error or if
the return matrix has no nonzero elements.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha, float a[], int nlcb,

int nucb, float beta, float b[], int *nlcc, int *nucc,

IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_SYMMETRIC,
0)

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression αA + βB.

IMSL_SYMMETRIC,
A, B and C are stored in band symmetric storage mode.
1457

 Utilities mat_add_band
Description
The function imsl_f_mat_add_band forms the sum αA + βB, given the scalars αand β, and, the matrices A
and B in band format. The transpose of A and/or B may be used during the computation if optional arguments
are specified. Symmetric storage mode may be used if the optional argument is specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower codiagonals, nlcc, will be equal to
0.

If the return matrix equals NULL, the return value for the number of lower codiagonals, nlcc, will be equal to -
1 and the number of upper codiagonals, nucc, will be equal to 0.

Examples

Example 1

Add two real matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and one lower codiag-
onal. Matrix B has no upper codiagonals and two lower codiagonals.

#include <imsl.h>
int main()
{
 float a[] = {0.0, 2.0, 3.0, -1.0,
 1.0, 1.0, 1.0, 1.0,
 0.0, 3.0, 4.0, 0.0};
 float b[] = {3.0, 3.0, 3.0, 3.0,
 1.0, -2.0, 1.0, 0.0,
 -1.0, 2.0, 0.0, 0.0};
 int nucb = 0, nlcb = 2;
 int nuca = 1, nlca = 1;
 int nucc, nlcc;
 int n = 4, m;
 float alpha = 1.0, beta = 1.0;
 float *c;
 c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc, 0);
 m = nlcc + nucc + 1;
 imsl_f_write_matrix("C = A + B", m, n, c, 0);
 imsl_free(c);
}

Output

 C = A + B
 1 2 3 4
1 0 2 3 -1
1458

 Utilities mat_add_band
2 4 4 4 4
3 1 1 5 0
4 -1 2 0 0

Example 2

Compute 4*A + 2*B, where

#include <imsl.h>
int main()
{
 float a[] = {0.0, 4.0, 3.0, 1.0,
 3.0, 2.0, 1.0, 2.0};
 float b[] = {0.0, 2.0, 3.0, 1.0,
 5.0, 1.0, 2.0, 2.0};
 int nuca = 1, nlca = 1;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 float alpha = 4.0, beta = 2.0;
 float *c;
 c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc,
 IMSL_SYMMETRIC, 0);
 m = nucc + nlcc + 1;
 imsl_f_write_matrix("C = 4*A + 2*B\n", m, n, c, 0);
 imsl_free(c);
}

Output

 C = 4*A + 2*B
 1 2 3 4
1 0 20 18 6
2 22 10 8 12

A =

3 4 0 0
4 2 3 0
0 3 1 1
0 0 1 2

and B =

5 2 0 0
2 1 3 0
0 3 2 1
0 0 1 2
1459

 Utilities mat_add_band (complex)
mat_add_band (complex)
Adds two band matrices, both in band storage mode, C ←αA + βB.

Synopsis
#include <imsl.h>
f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex alpha, f_complex a[],

int nlcb, int nucb, f_complex beta, f_complex b[], int *nlcc, int *nucc, ..., 0)

The type double function is imsl_z_mat_add_band.

Required Arguments
int n (Input)

The order of the matrices A and B.

int nlca (Input)
Number of lower codiagonals of A.

int nuca (Input)
Number of upper codiagonals of A.

f_complex alpha (Input)
Scalar multiplier for A.

f_complex a[] (Input)
An n by n band matrix with nlca lower codiagonals and nuca upper codiagonals stored in band
mode with dimension (nlca + nuca + 1) by n.

int nlcb (Input)
Number of lower codiagonals of B.

int nucb (Input)
Number of upper codiagonals of B.

f_complex beta (Input)
Scalar multiplier for B.
1460

 Utilities mat_add_band (complex)
f_complex b[] (Input)
An n by n band matrix with nlcb lower codiagonals and nucb upper codiagonals stored in band
mode with dimension (nlcb + nucb + 1) by n.

int *nlcc (Output)
Number of lower codiagonals of C.

int *nucc (Output)
Number of upper codiagonals of C.

Return Value
A pointer to an array of type f_complex containing the computed sum. In the event of an error or if the return
matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex alpha, f_complex a[],

int nlcb, int nucb, f_complex beta, f_complex b[], int *nlcc, int *nucc,

IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
IMSL_SYMMETRIC,
0)

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression αA + βB.

IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with AH in the expression αA + βB.

IMSL_B_CONJUGATE_TRANSPOSE,
Replace B with BH in the expression αA + βB.
1461

 Utilities mat_add_band (complex)
IMSL_SYMMETRIC,
Matrix A, B, and C are stored in band symmetric storage mode.

Description
The function imsl_c_mat_add_band forms the sum αA + βB, given the scalars α and β, and the matrices A
and B in band format. The transpose or conjugate transpose of A and/or B may be used during the computation
if optional arguments are specified. Symmetric storage mode may be used if the optional argument is specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower codiagonals, nlcc, will be equal to
0.

If the return matrix equals NULL, the return value for the number of lower codiagonals, nlcc, will be equal to -
1 and the number of upper codiagonals, nucc, will be equal to 0.

Examples

Example 1

Add two complex matrices of order 4 stored in band mode. Matrix A has one upper codiagonal and one lower
codiagonal. Matrix B has no upper codiagonals and two lower codiagonals.

#include <imsl.h>
int main()
{
 f_complex a[] =
 {{0.0, 0.0}, {2.0, 1.0}, {3.0, 3.0}, {-1.0, 0.0},
 {1.0, 1.0}, {1.0, 3.0}, {1.0, -2.0}, {1.0, 5.0},
 {0.0, 0.0}, {3.0, -2.0}, {4.0, 0.0}, {0.0, 0.0}};
 f_complex b[] =
 {{3.0, 1.0}, {3.0, 5.0}, {3.0, -1.0}, {3.0, 1.0},
 {1.0, -3.0}, {-2.0, 0.0}, {1.0, 2.0}, {0.0, 0.0},
 {-1.0, 4.0}, {2.0, 1.0}, {0.0, 0.0}, {0.0, 0.0}};
 int nucb = 0, nlcb = 2;
 int nuca = 1, nlca = 1;
 int nucc, nlcc;
 int n = 4, m;
 f_complex *c;
 f_complex alpha = {1.0, 0.0};
 f_complex beta = {1.0, 0.0};
 c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc, 0);
 m = nlcc + nucc + 1;
 imsl_c_write_matrix("C = A + B", m, n, c, 0);
 imsl_free(c);
1462

 Utilities mat_add_band (complex)
}

Output

 C = A + B
 1 2 3
1 (0, 0) (2, 1) (3, 3)
2 (4, 2) (4, 8) (4, -3)
3 (1, -3) (1, -2) (5, 2)
4 (-1, 4) (2, 1) (0, 0)
 4
1 (-1, 0)
2 (4, 6)
3 (0, 0)
4 (0, 0)

Example 2

Compute

(3 + 2i)AH + (4 + i) BH

where

#include <imsl.h>
int main()
{
 f_complex a[] =
 {{0.0, 0.0}, {1.0, 3.0}, {3.0, 1.0}, {2.0, 5.0},
 {2.0, 3.0}, {6.0, 2.0}, {4.0, 1.0}, {1.0, 2.0}};
 f_complex b[] =
 {{0.0, 0.0}, {5.0, 1.0}, {2.0, 3.0}, {4.0, 2.0},
 {1.0, 2.0}, {1.0, 3.0}, {3.0, 2.0}, {1.0, 4.0},
 {4.0, 1.0}, {2.0, 3.0}, {2.0, 6.0}, {0.0, 0.0}};
 int nuca = 1, nlca = 0;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 f_complex *c;
 f_complex alpha = {3.0, 2.0};
 f_complex beta = {4.0, 1.0};
 c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc,
 IMSL_A_CONJUGATE_TRANSPOSE,
 IMSL_B_CONJUGATE_TRANSPOSE, 0);
 m = nlcc + nucc + 1;

A =

2 + 3i 1 + 3i 0 0
0 6 + 2i 3 + i 0
0 0 4 + i 2 + 5i
0 0 0 1 + 2i

and B =

1 + 2i 5 + i 0 0
4 + i 1 + 3i 2 + 3i 0
0 2 + 3i 3 + 2i 4 + 2i
0 0 2 + 6i 1 + 4i
1463

 Utilities mat_add_band (complex)
 imsl_c_write_matrix("C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)\n",
 m, n, c, 0);
 imsl_free(c);
}

Output
 C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)
 1 2 3
1 (0, 0) (17, 0) (11, -10)
2 (18, -12) (29, -5) (28, 0)
3 (30, -6) (22, -7) (34, -15)
 4
1 (14, -22)
2 (15, -19)
3 (0, 0)
1464

 Utilities mat_add_coordinate
mat_add_coordinate
Performs element-wise addition on two real matrices stored in coordinate format, C ←αA + βB.

Synopsis
#include <imsl.h>
Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float alpha,

Imsl_f_sparse_elem a[], int nz_b, float beta, Imsl_f_sparse_elem b[], int *nz_c, ..., 0)

The type double function is imsl_d_mat_add_coordinate.

Required Arguments
int n (Input)

The order of the matrices A and B.

int nz_a (Input)
Number of nonzeros in the matrix A.

float alpha (Input)
Scalar multiplier for A.

Imsl_f_sparse_elem a[] (Input)
Vector of length nz_a containing the location and value of each nonzero entry in the matrix A.

int nz_b (Input)
Number of nonzeros in the matrix B.

float beta (Input)
Scalar multiplier for B.

Imsl_f_sparse_elem b[] (Input)
Vector of length nz_b containing the location and value of each nonzero entry in the matrix B.

int *nz_c (Output)
The number of nonzeros in the sum αA + βB.
1465

 Utilities mat_add_coordinate
Return Value
A pointer to an array of type Imsl_f_sparse_elem containing the computed sum. In the event of an error or if the
return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float alpha,

Imsl_f_sparse_elem a[], int nz_b, float beta, Imsl_f_sparse_elem b[], int *nz_c,

IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
0)

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression αA + βB.

Description
The function imsl_f_mat_add_coordinate forms the sum αA + βB, given the scalars α and β, and the
matrices A and B in coordinate format. The transpose of A and/or B may be used during the computation if
optional arguments are specified. The method starts by storing A in a linked list data structure, and performs the
multiply by α. Next the data in matrix B is traversed and if the coordinates of a nonzero element correspond to
those of a nonzero element in A, that entry in the linked list is updated. Otherwise, a new node in the linked list is
created. The multiply by β occurs at this time. Lastly, the linked list representation of C is converted to coordinate
representation, omitting any elements that may have become zero through cancellation.

Examples

Example 1

Add two real matrices of order 4 stored in coordinate format. Matrix A has five nonzero elements. Matrix B has
seven nonzero elements.
1466

 Utilities mat_add_coordinate
#include <imsl.h>
#include <stdio.h>
int main ()
{
 Imsl_f_sparse_elem a[] =
 {0, 0, 3,
 0, 3, -1,
 1, 2, 5,
 2, 0, 1,
 3, 1, 3};
 Imsl_f_sparse_elem b[] =
 {0, 1, -2,
 0, 3, 1,
 1, 0, 3,
 2, 2, 5,
 2, 3, 1,
 3, 0, 4,
 3, 1, 3};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 float alpha = 1.0, beta = 1.0;
 Imsl_f_sparse_elem *c;
 c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c,
 0);
 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);
 imsl_free(c);
}

Output

row column value
 0 0 3.00
 0 1 -2.00
 1 0 3.00
 1 2 5.00
 2 0 1.00
 2 2 5.00
 2 3 1.00
 3 0 4.00
 3 1 6.00

Example 2

Compute 2*AT + 2*BT, where
1467

 Utilities mat_add_coordinate
#include <imsl.h>
#include <stdio.h>
int main ()
{
 Imsl_f_sparse_elem a[] =
 {0, 0, 3,
 0, 3, -1,
 1, 2, 5,
 2, 0, 1,
 3, 1, 3};
 Imsl_f_sparse_elem b[] =
 {0, 1, -2,
 0, 3, 1,
 1, 0, 3,
 2, 2, 5,
 2, 3, 1,
 3, 0, 4,
 3, 1, 3};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 float alpha = 2.0, beta = 2.0;
 Imsl_f_sparse_elem *c;
 c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c,
 IMSL_A_TRANSPOSE,
 IMSL_B_TRANSPOSE,
 0);
 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);
 imsl_free(c);
}

Output

row column value
 0 0 6.00
 0 1 6.00
 0 2 2.00
 0 3 8.00
 1 0 -4.00
 1 3 12.00
 2 1 10.00
 2 2 10.00
 3 2 2.00

A =

3 0 0 −1
0 0 5 0
1 0 0 0
0 3 0 0

and B =

0 −2 0 1
3 0 0 0
0 0 5 1
4 3 0 0
1468

 Utilities mat_add_coordinate (complex)
mat_add_coordinate (complex)
Performs element-wise addition on two complex matrices stored in coordinate format, C←αA + βB.

Synopsis
#include <imsl.h>
Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a, f_complex alpha,

Imsl_c_sparse_elem a[], int nz_b, f_complex beta, Imsl_c_sparse_elem b[], int *nz_c, ..., 0)

The type double function is imsl_z_mat_add_coordinate.

Required Arguments
int n (Input)

The order of the matrices A and B.

int nz_a (Input)
Number of nonzeros in the matrix A.

f_complex alpha (Input)
Scalar multiplier for A.

Imsl_c_sparse_elem a[] (Input)
Vector of length nz_a containing the location and value of each nonzero entry in the matrix A.

int nz_b (Input)
Number of nonzeros in the matrix B.

f_complex beta (Input)
Scalar multiplier for B.

Imsl_c_sparse_elem b[] (Input)
Vector of length nz_b containing the location and value of each nonzero entry in the matrix B.

Int *nz_c (Output)
The number of nonzeros in the sum αA + βB.
1469

 Utilities mat_add_coordinate (complex)
Return Value
A pointer to an array of type Imsl_c_sparse_elem containing the computed sum. In the event of an error or if the
return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a, f_complex alpha,

Imsl_c_sparse_elem a[], int nz_b, f_complex beta, Imsl_c_sparse_elem b[], int *nz_c,

IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
0)

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression αA + βB.

IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with AH in the expression αA + βB.

IMSL_B_CONJUGATE_TRANSPOSE,
Replace B with BH in the expression αA + βB.

Description
The function imsl_c_mat_add_coordinate forms the sum αA + βB, given the scalars αand β and the
matrices A and B in coordinate format. The transpose or conjugate transpose of A and/or B may be used during
the computation if optional arguments are specified. The method starts by storing A in a linked list data structure,
and performs the multiply by α. Next the data in matrix B is traversed and if the coordinates of a nonzero ele-
ment correspond to those of a nonzero element in A, that entry in the linked list is updated. Otherwise, a new
node in the linked list is created. The multiply by β occurs at this time. Lastly, the linked list representation of C is
converted to coordinate representation, omitting any elements that may have become zero through cancellation.
1470

 Utilities mat_add_coordinate (complex)
Examples

Example 1

Add two complex matrices of order 4 stored in coordinate format. Matrix A has five nonzero ele­ments. Matrix B
has seven nonzero elements.

#include <imsl.h>
#include <stdio.h>
int main ()
{
 Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
 0, 3, -1, 2,
 1, 2, 5, -1,
 2, 0, 1, 2,
 3, 1, 3, 0};
 Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
 0, 3, 1, -2,
 1, 0, 3, 0,
 2, 2, 5, 2,
 2, 3, 1, 4,
 3, 0, 4, 0,
 3, 1, 3, -2};
 int nz_a = 5, nz_b = 7, nz_c, n = 4, i;
 f_complex alpha = {1.0, 0.0}, beta = {1.0, 0.0};
 Imsl_c_sparse_elem *c;
 c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a, nz_b, beta,
 b, &nz_c,
 0);
 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f %8.2f\n",
 c[i].row, c[i].col, c[i].val.re, c[i].val.im);
}

Output

row column value
 0 0 3.00 4.00
 0 1 -2.00 1.00
 1 0 3.00 0.00
 1 2 5.00 -1.00
 2 0 1.00 2.00
 2 2 5.00 2.00
 2 3 1.00 4.00
 3 0 4.00 0.00
 3 1 6.00 -2.00
1471

 Utilities mat_add_coordinate (complex)
Example 2

Compute 2+3i*AT + 2-i*BT, where

#include <imsl.h>
#include <stdio.h>
int main ()
{
 Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
 0, 3, -1, 2,
 1, 2, 5, -1,
 2, 0, 1, 2,
 3, 1, 3, 0};
 Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
 0, 3, 1, -2,
 1, 0, 3, 0,
 2, 2, 5, 2,
 2, 3, 1, 4,
 3, 0, 4, 0,
 3, 1, 3, -2};
 int nz_a = 5, nz_b = 7, nz_c, n = 4, i;
 f_complex alpha = {2.0, 3.0}, beta = {2.0, -1.0};
 Imsl_c_sparse_elem *c;
 c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c,
 IMSL_A_TRANSPOSE,
 IMSL_B_TRANSPOSE,
 0);
 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f %8.2f\n",
 c[i].row, c[i].col, c[i].val.re, c[i].val.im);
}

Output

row column value
 0 0 -6.00 17.00
 0 1 6.00 -3.00
 0 2 -4.00 7.00
 0 3 8.00 -4.00
 1 0 -3.00 4.00
 1 3 10.00 2.00
 2 1 13.00 13.00
 2 2 12.00 -1.00

A =

3 + 4i 0 0 −1 + 2i
0 0 5 − i 0

1 + 2i 0 0 0
0 3 + 0i 0 0

and B =

0 −2 + i 0 1 − 2i
3 + 0i 0 0 0
0 0 5 + 2i 1 + 4i

4 + 0i 3 − 2i 0 0
1472

 Utilities mat_add_coordinate (complex)
 3 0 -8.00 -4.00
 3 2 6.00 7.00
1473

 Utilities matrix_norm
matrix_norm
Computes various norms of a rectangular matrix.

Synopsis
#include <imsl.h>
float imsl_f_matrix_norm (int m, int n, float a[], ..., 0)

The type double function is imsl_d_matrix_norm.

Required Arguments
int m (Input)

The number of rows in matrix A.

int n (Input)
The number of columns in matrix A.

float a[] (Input)
Matrix for which the norm will be computed.

Return Value
The requested norm of the input matrix. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_matrix_norm (int m, int n, float a[],

IMSL_ONE_NORM,
IMSL_INF_NORM,
0)
1474

 Utilities matrix_norm
Optional Arguments
IMSL_ONE_NORM,

Compute the 1-norm of matrix A,

IMSL_INF_NORM,
Compute the infinity norm of matrix A,

Description
By default, imsl_f_matrix_norm computes the Frobenius norm

If the option IMSL_ONE_NORM is selected, the 1-norm

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

is returned.

Example
Compute the Frobenius norm, infinity norm, and one norm of matrix A.

#include <imsl.h>
int main()
{
 float a[] = {1.0, 2.0, -2.0, 3.0,
 -2.0, 1.0, 3.0, 0.0,
 0.0, 3.0, 1.0, -7.0,
 5.0, -2.0, 7.0, 6.0,
 4.0, 3.0, 4.0, 0.0};
 int m = 5, n = 4;
 float frobenius_norm, inf_norm, one_norm;

∥A∥2 = ∑
i=0

m−1

∑
j=0

n−1

A i j
2

1
2

∥A∥1 = max
0≤ j≤n−1∑

i=0

m−1
∣Ai j∣

∥A∥∞ = max
0 ≤ i ≤ m− 1∑

j = 0

n− 1

∣A i j∣
1475

 Utilities matrix_norm
 frobenius_norm = imsl_f_matrix_norm(m, n, a, 0);
 inf_norm = imsl_f_matrix_norm(m, n, a, IMSL_INF_NORM, 0);
 one_norm = imsl_f_matrix_norm(m, n, a, IMSL_ONE_NORM, 0);
 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 15.684387
Infinity norm = 20.000000
One norm = 17.000000
1476

 Utilities matrix_norm_band
matrix_norm_band
Computes various norms of a matrix stored in band storage mode.

Synopsis
#include <imsl.h>
float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc, ..., 0)

The type double function is imsl_d_matrix_norm_band.

Required Arguments
int n (Input)

The order of matrix A.

float a[] (Input)
Matrix for which the norm will be computed.

int nlc (Input)
Number of lower codiagonals of A.

int nuc (Input)
Number of upper codiagonals of A.

Return Value
The requested norm of the input matrix, by default, the Frobenius norm. If the norm cannot be com­puted, NaN
is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc,

IMSL_ONE_NORM,
IMSL_INF_NORM,
1477

 Utilities matrix_norm_band
IMSL_SYMMETRIC,
0)

Optional Arguments
IMSL_ONE_NORM,

Compute the 1-norm of matrix A,

IMSL_INF_NORM,
Compute the infinity norm of matrix A,

IMSL_SYMMETRIC,
Matrix A is stored in band symmetric storage mode.

Description
By default, imsl_f_matrix_norm_band computes the Frobenius norm

If the option IMSL_ONE_NORM is selected, the 1-norm

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is stored in band storage mode.

∥A∥2 = ∑
i=0

m−1

∑
j=0

n−1

A i j
2

1
2

∥A∥1 = max
0≤ j≤ n−1

∑
i=0

m−1
∣Ai j∣

∥A∥∞ = max
0≤ i≤m−1∑

j=0

n−1
∣Ai j∣
1478

 Utilities matrix_norm_band
#include <imsl.h>
int main()
{
 float a[] = {0.0, 2.0, 3.0, -1.0,
 1.0, 1.0, 1.0, 1.0,
 0.0, 3.0, 4.0, 0.0};
 int nlc = 1, nuc = 1;
 int n = 4;
 float frobenius_norm, inf_norm, one_norm;
 frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc, 0);
 inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM, 0);
 one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM, 0);
 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 6.557438
Infinity norm = 5.000000
One norm = 8.000000

Example 2

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is stored in symmetric band stor-
age mode.

#include <imsl.h>
int main()
{
 float a[] = {0.0, 0.0, 7.0, 3.0, 1.0, 4.0,
 0.0, 5.0, 1.0, 2.0, 1.0, 2.0,
 1.0, 2.0, 4.0, 6.0, 3.0, 1.0};
 int nlc = 2, nuc = 2;
 int n = 6;
 float frobenius_norm, inf_norm, one_norm;
 frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_SYMMETRIC, 0);
 inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);
 one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);
1479

 Utilities matrix_norm_band
 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 16.941074
Infinity norm = 16.000000
One norm = 16.000000
1480

 Utilities matrix_norm_coordinate
matrix_norm_coordinate
Computes various norms of a matrix stored in coordinate format.

Synopsis
#include <imsl.h>
float imsl_f_matrix_norm_coordinate (int m, int n, int nz, Imsl_f_sparse_elem a[], ..., 0)

The type double function is imsl_d_matrix_norm_coordinate.

Required Arguments
int m (Input)

The number of rows in matrix A.

int n (Input)
The number of columns in matrix A.

int nz (Input)
The number of nonzeros in the matrix A.

Imsl_f_sparse_elem a[] (Input)
Matrix for which the norm will be computed.

Return Value
The requested norm of the input matrix, by default, the Frobenius norm. If the norm cannot be computed, NaN is
returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_matrix_norm_coordinate (int m, int n, int nz, Imsl_f_sparse_elem a[],

IMSL_ONE_NORM,
IMSL_INF_NORM,
IMSL_SYMMETRIC,
1481

 Utilities matrix_norm_coordinate
0)

Optional Arguments
IMSL_ONE_NORM,

Compute the 1-norm of matrix A.

IMSL_INF_NORM,
Compute the infinity norm of matrix A.

IMSL_SYMMETRIC,
Matrix A is stored in symmetric coordinate format.

Description
By default, imsl_f_matrix_norm_coordinate computes the Frobenius norm

If the option IMSL_ONE_NORM is selected, the 1-norm

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is stored in coordinate format.

#include <imsl.h>

∥A∥2 = ∑
i=0

m−1

∑
j=0

n−1

A i j
2

1
2

∥A∥1 = max
0≤ j≤ n−1

∑
i=0

m−1
∣Ai j∣

∥A∥∞ = max
0 ≤ i ≤ m− 1∑

j = 0

n− 1

∣A i j∣
1482

 Utilities matrix_norm_coordinate
int main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int m = 6, n = 6;
 int nz = 15;
 float frobenius_norm, inf_norm, one_norm;
 frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a, 0);
 inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_INF_NORM, 0);
 one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_ONE_NORM, 0);
 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 24.839485
Infinity norm = 15.000000
One norm = 18.000000

Example 2

Compute the Frobenius norm, infinity norm and one norm of matrix A. Matrix A is stored in symmetric coordinate
format.

#include <imsl.h>
int main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 0, 2, -1.0,
 0, 5, 5.0,
 1, 3, 2.0,
 1, 4, 3.0,
 2, 2, 3.0,
 2, 5, 4.0,
1483

 Utilities matrix_norm_coordinate
 4, 4, -1.0,
 4, 5, 4.0};
 int m = 6, n = 6;
 int nz = 9;
 float frobenius_norm, inf_norm, one_norm;
 frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a,
 IMSL_SYMMETRIC, 0);
 inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);
 one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);
 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 15.874508
Infinity norm = 16.000000
One norm = 16.000000
1484

 Utilities generate_test_band
generate_test_band
Generates test matrices of class and E(n, c). Returns in band or band symmetric format.

Synopsis
#include <imsl.h>
float *imsl_f_generate_test_band (int n, int c, ..., 0)

The function imsl_d_generate_test_band is the double precision analogue.

Required Arguments
int n (Input)

Number of rows in the matrix.

int c (Input)
Parameter used to alter structure, also the number of upper/lower codiagonals.

Return Value
A pointer to a vector of type float. To release this space, use imsl_free. If no test was generated, then NULL is
returned.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_f_generate_test_band (int n, int c,

IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments
IMSL_SYMMETRIC_STORAGE,

Return matrix stored in band symmetric format.
1485

 Utilities generate_test_band
Description
The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class E(n, c), to which we will gener-
ally refer to as E-matrices, are symmetric, positive definite matrices of order n with 4 in the diagonal and -1 in the
superdiagonal and subdiagonal. In addition there are two bands with -1 at a distance c from the diagonal. More
precisely:

for any n ≥ 3 and 2 ≤c ≤n - 1.

E-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differen-
tial equations.

By default, imsl_f_generate_test_band returns an E-matrix in band storage mode. Option
IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric storage mode.

Example
This example generates the matrix

and prints the result.

#include <imsl.h>
int main()
{
 int n = 5;
 int c = 3;
 float *a;
 a = imsl_f_generate_test_band (n, c, 0);
 imsl_f_write_matrix ("E(5,3) in band storage", 2*c + 1, n,

ai,i = 4 0 ≤ i < n

ai,i+1 = -1 0 ≤ i < n -1

ai+1,i = -1 0 ≤ i < n - 1

ai,i+c = -1 0≤ i <n - c

ai+c,i = -1 0 ≤ i < n - c

E 5, 3 =

4 −1 0 −1 0
−1 4 −1 0 −1
0 −1 4 −1 0
−1 0 −1 4 −1
0 −1 0 −1 4
1486

 Utilities generate_test_band
 a, 0);
}

Output

 E(5,3) in band storage
 1 2 3 4 5
1 0 0 0 -1 -1
2 0 0 0 0 0
3 0 -1 -1 -1 -1
4 4 4 4 4 4
5 -1 -1 -1 -1 0
6 0 0 0 0 0
7 -1 -1 0 0 0
1487

 Utilities generate_test_band (complex)
generate_test_band (complex)
Generates test matrices of class Ec(n, c). Returns in band or band symmetric format.

Synopsis
#include <imsl.h>
f_complex *imsl_c_generate_test_band (int n, int c, ..., 0)

The function imsl_z_generate_test_band is the double precision analogue.

Required Arguments
int n (Input)

Number of rows in the matrix.

int c (Input)
Parameter used to alter structure, also the number of upper/lower codiagonals

Return Value
A pointer to a vector of type f_complex. To release this space, use imsl_free. If no test was generated, then
NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_c_generate_test_band (int n, int c,

IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments
IMSL_SYMMETRIC_STORAGE,

Return matrix stored in band symmetric format.
1488

 Utilities generate_test_band (complex)
Description
We use the same nomenclature as Østerby and Zlatev (1982). Test matrices of class E(n, c), to which we will gener-
ally refer to as E-matrices, are symmetric, positive definite matrices of order n with (6.0, 0.0) in the diagonal, (-1.0,
1.0) in the superdiagonal and (-1.0, -1.0) subdiagonal. In addition there are two bands at a distance c from the
diagonal with (-1.0, 1.0) in the upper codiagonal and (-1.0, −1.0) in the lower codiagonal. More precisely:

for any n ≥ 3 and 2 ≤c ≤ n − 1.

E-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differen-
tial equations.

By default, imsl_c_generate_test_band returns an E-matrix in band storage mode. Option
IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric storage mode.

ai,i = 6 0 ≤ i < n

ai,i+1 = −1 − i 0 ≤ i < n −1

ai+1,i = −1 − i 0 ≤ i < n − 1

ai,i+c = −1 + i 0 ≤ i < n − c

ai+c,i = −1 + i 0 ≤ i < n − c
1489

 Utilities generate_test_band (complex)
Example
This example generates the following matrix and prints the result:

#include <imsl.h>
int main()
{
 int i;
 int n = 5;
 int c = 3;
 f_complex *a;
 a = imsl_c_generate_test_band (n, c, 0);
 imsl_c_write_matrix ("E(5,3) in band storage", 2*c + 1, n,
 a, 0);
}

Output

 E(5,3) in band storage
 1 2 3
1 (0, 0) (0, 0) (0, 0)
2 (0, 0) (0, 0) (0, 0)
3 (0, 0) (-1, 1) (-1, 1)
4 (6, 0) (6, 0) (6, 0)
5 (-1, -1) (-1, -1) (-1, -1)
6 (0, 0) (0, 0) (0, 0)
7 (-1, -1) (-1, -1) (0, 0)
 4 5
1 (-1, 1) (-1, 1)
2 (0, 0) (0, 0)
3 (-1, 1) (-1, 1)
4 (6, 0) (6, 0)
5 (-1, -1) (0, 0)
6 (0, 0) (0, 0)
7 (0, 0) (0, 0)

Ec 5, 3 =

6 −1 − i 0 −1 + i 0
−1 − i 6 −1 + i 0 −1 + i
0 −1 − i 6 −1 + i 0

−1 − i 0 −1 − i 6 −1 + i
0 −1 − i 0 −1 − i 6
1490

 Utilities generate_test_coordinate
generate_test_coordinate
Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate format.

Synopsis
#include <imsl.h>
Imsl_f_sparse_elem *imsl_f_generate_test_coordinate (int n, int c, int *nz, ..., 0)

The function imsl_d_generate_test_coordinate is the double precision analogue.

Required Arguments
int n (Input)

Number of rows in the matrix.

int c (Input)
Parameter used to alter structure.

int *nz (Output)
Length of the return vector.

Return Value
A pointer to a vector of length nz of type Imsl_f_sparse_elem. To release this space, use imsl_free. If no test
was generated, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_f_generate_test_coordinate (int n, int c, int *nz,

IMSL_D_MATRIX,
IMSL_SYMMETRIC_STORAGE,
0)
1491

 Utilities generate_test_coordinate
Optional Arguments
IMSL_D_MATRIX

Return a matrix of class D(n, c).
Default: Return a matrix of class E(n, c).

IMSL_SYMMETRIC_STORAGE,
For coordinate representation, return only values for the diagonal and lower triangle. This option is
not allowed if IMSL_D_MATRIX is specified.

Description
We use the same nomenclature as Østerby and Zlatev (1982).Test matrices of class E(n, c), to which we will gener-
ally refer to as E-matrices, are symmetric, positive definite matrices of order n with 4 in the diagonal and −1 in
the superdiagonal and subdiagonal. In addition there are two bands with −1 at a distance c from the diagonal.
More precisely

for any n ≥ 3 and 2 ≤ c ≤ n − 1.

E-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differen-
tial equations.

Test matrices of class D(n, c) are square matrices of order n with a full diagonal, three bands at a distance c above
the diagonal and reappearing cyclically under the diagonal, and a 10 ×10 triangle of elements in the upper right
corner. More precisely:

ai,i = 4 0 ≤ i < n

ai,i+1 = −1 0 ≤ i < n − 1

ai+1,i = −1 0 ≤ i < n − 1

ai,i+c = −1 0 ≤i < n − c

ai+c,i = −1 0 ≤ i < n − c

ai,i = 1 0 ≤ i < n

ai,i+c = i + 2 0 ≤ i < n − c

ai,i-n+c = i + 2 n − c ≤ i < n

ai,i+c+1 = −(i + 1) 0 ≤ i < n − c − 1

ai,i-n+c+1 = −(i + 1) n − c −1 ≤ i < n
1492

 Utilities generate_test_coordinate
for any n ≥14 and 1 ≤ c ≤ n -13.

We now show the sparsity pattern of D(20, 5)

By default imsl_f_generate_test_coordinate returns an E-matrix in coordinate representation. By
specifying the IMSL_SYMMETRIC_STORAGE option, only the diagonal and lower triangle are returned. The
scalar nz will contain the number of nonzeros in this representation.

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since D-matrices are not symmetric, the
IMSL_SYMMETRIC_STORAGE option is not allowed.

ai,i+c+2 = 16 0 ≤ i < n − c − 2

ai,i-n+c+2 = 16 n − c − 2 ≤ i < n

ai,n-11+i+j = 100j 1 ≤ i< 11 − j, 0 ≤ j < 10

x x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x

x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x
1493

 Utilities generate_test_coordinate
Examples

Example 1

This example generates the matrix

and prints the result.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;
 a = imsl_f_generate_test_coordinate (n, c, &nz,
 0);
 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d %5.1f\n",
 a[i].row, a[i].col, a[i].val);
}

Output

row col val
 0 0 4.0
 1 1 4.0
 2 2 4.0
 3 3 4.0
 4 4 4.0
 1 0 -1.0
 2 1 -1.0
 3 2 -1.0
 4 3 -1.0
 0 1 -1.0
 1 2 -1.0
 2 3 -1.0
 3 4 -1.0
 3 0 -1.0
 4 1 -1.0
 0 3 -1.0
 1 4 -1.0

E 5, 3 =

4 −1 0 −1 0
−1 4 −1 0 −1
0 −1 4 −1 0
−1 0 −1 4 −1
0 −1 0 −1 4
1494

 Utilities generate_test_coordinate
Example 2

In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;
 a = imsl_f_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);
 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d %5.1f\n",
 a[i].row, a[i].col, a[i].val);
}

Output

row col val
 0 0 4.0
 1 1 4.0
 2 2 4.0
 3 3 4.0
 4 4 4.0
 1 0 -1.0
 2 1 -1.0
 3 2 -1.0
 4 3 -1.0
 3 0 -1.0
 4 1 -1.0
1495

 Utilities generate_test_coordinate (complex)
generate_test_coordinate (complex)
Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate or band storage format, where
possible.

Synopsis
#include <imsl.h>
void *imsl_c_generate_test_coordinate (int n, int c, int *nz, ..., 0)

The function is imsl_z_generate_test_coordinate is the double precision analogue.

Required Arguments
int n (Input)

Number of rows in the matrix.

int c (Input)
Parameter used to alter structure.

int *nz (Output)
Length of the return vector.

Return Value
A pointer to a vector of length nz of type imsl_c_sparse_elem. To release this space, use imsl_free. If no test
was generated, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
void *imsl_c_generate_test_coordinate (int n, int c, int *nz,

IMSL_D_MATRIX,
IMSL_SYMMETRIC_STORAGE,
0)
1496

 Utilities generate_test_coordinate (complex)
Optional Arguments
IMSL_D_MATRIX

Return a matrix of class D(n, c).
Default: Return a matrix of class E(n, c).

IMSL_SYMMETRIC_STORAGE,
For coordinate representation, return only values for the diagonal and lower triangle. This option is
not allowed if IMSL_D_MATRIX is specified.

Description
The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class E(n, c), to which we will gener-
ally refer to as E-matrices, are symmetric, positive definite matrices of order n with (6.0, 0.0) in the diagonal,
(-1.0, 1.0) in the superdiagonal and (-1.0, -1.0) subdiagonal. In addition there are two bands at a distance c from
the diagonal with (-1.0, 1.0) in the upper codiagonal and (-1.0, -1.0) in the lower codiagonal. More precisely:

for any n ≥ 3 and 2 ≤ c ≤ n - 1.

Test matrices of class D(n, c) are square matrices of order n with a full diagonal, three bands at a distance c above
the diagonal and reappearing cyclically under the diagonal, and a 10 × 10 triangle of elements in the upper-right
corner. More precisely:

ai,i = 6 0 ≤ i < n

ai,i+1 = -1 - i 0 ≤ i < n -1

ai+1,i = -1 - i 0 ≤ i < n -1

ai,i+c = -1 + i 0 ≤ i < n -c

ai+c,i = -1 + i 0 ≤ i < n -c

ai,i = 1 0 ≤ i < n

ai,i+c = i + 2 0 ≤ i < n - c

ai,i-n+c = i + 2 n - c ≤ i < n

ai,i+c+1 = -(i + 1) 0 ≤ i < n - c - 1

ai,i+c+1 = -(i + 1) n - c - 1≤ i < n

ai,i+c+2 = 16 0 ≤ i < n - c - 2
1497

 Utilities generate_test_coordinate (complex)
for any n ≥ 14 and 1 ≤ c ≤ n - 13.

The sparsity pattern of D(20, 5) is as follows:

By default imsl_c_generate_test_coordinate returns an E-matrix in coordinate representation. By
specifying the IMSL_SYMMETRIC_STORAGE option, only the diagonal and lower triangle are returned. The
scalar nz will contain the number of non-zeros in this representation.

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since D-matrices are not symmetric, the
IMSL_SYMMETRIC_STORAGE option is not allowed.

ai,i-n+c+2 = 16 n - c - 2≤ i < n

ai,n-11+i+j = 100j 1 ≤ i< 11 - j, 0 ≤ j < 10

x x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x

x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x
1498

 Utilities generate_test_coordinate (complex)
Examples

Example 1

This example generates the matrix

and prints the result.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int i, n = 5, c = 3, nz;
 Imsl_c_sparse_elem *a;
 a = imsl_c_generate_test_coordinate (n, c, &nz,
 0);
 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n",
 a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}

Output

row col val
 0 0 (6.0, 0.0)
 1 1 (6.0, 0.0)
 2 2 (6.0, 0.0)
 3 3 (6.0, 0.0)
 4 4 (6.0, 0.0)
 1 0 (-1.0, -1.0)
 2 1 (-1.0, -1.0)
 3 2 (-1.0, -1.0)
 4 3 (-1.0, -1.0)
 0 1 (-1.0, 1.0)
 1 2 (-1.0, 1.0)
 2 3 (-1.0, 1.0)
 3 4 (-1.0, 1.0)
 3 0 (-1.0, -1.0)
 4 1 (-1.0, -1.0)
 0 3 (-1.0, 1.0)
 1 4 (-1.0, 1.0)

Ec 5,3 =

6 −1 − i 0 −1 + i 0
−1 − i 6 −1 − i 0 −1 + i
0 −1 − i 6 −1 − i 0

−1 − i 0 −1 − i 6 −1 + i
0 −1 − i 0 −1 − i 6
1499

 Utilities generate_test_coordinate (complex)
Example 2

In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

#include <imsl.h>
#include <stdio.h>
int main()
{
 int i, n = 5, c = 3, nz;
 Imsl_c_sparse_elem *a;
 a = imsl_c_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);
 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n",
 a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}

Output

row col val
 0 0 (6.0, 0.0)
 1 1 (6.0, 0.0)
 2 2 (6.0, 0.0)
 3 3 (6.0, 0.0)
 4 4 (6.0, 0.0)
 1 0 (-1.0, -1.0)
 2 1 (-1.0, -1.0)
 3 2 (-1.0, -1.0)
 4 3 (-1.0, -1.0)
 3 0 (-1.0, -1.0)
 4 1 (-1.0, -1.0)
1500

 Reference Material Contents
Reference Material

Contents
User Errors

What Determines Error Severity . 1502
Kinds of Errors and Default Actions. 1502
Errors in Lower-Level Functions . 1504
Functions for Error Handling . 1504
Threads and Error Handling . 1505
Use of Informational Error to Determine Program Action . 1505
Additional Examples . 1505

Complex Data Types and Functions
Single-Precision Complex Operations and Functions . 1507
Double-Precision Complex Operations and Functions . 1508
1501

 Reference Material User Errors
User Errors
IMSL functions attempt to detect user errors and handle them in a way that provides as much information to the
user as possible. To do this, we recognize various levels of severity of errors, and we also consider the extent of
the error in the context of the purpose of the function; a trivial error in one situation may be serious in another.
Functions attempt to report as many errors as they can reasonably detect. Multiple errors present a difficult
problem in error detection because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of limitations of the computer arith-
metic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the assessed
degree of accuracy determines the severity of the error. In cases where the function computes several output
quantities, if some are not computable but most are, an error condition exists; and its severity depends on an
assessment of the overall impact of the error.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in the IMSL C Math Library. Each level has an associated PRINT attri-
bute and a STOP attribute. These attributes have default settings (YES or NO), but they may also be set by the
user. The purpose of having multiple error types is to provide independent control of actions to be taken for
errors of different levels of severity. Upon return from an IMSL function, exactly one error state exists. (A code 0
“error” is no error.) Even if more than one informational error occurs, only one message is printed (if the PRINT
attribute is YES). Multiple errors for which no corrective action within the calling program is reasonable or neces-
sary result in the printing of multiple messages (if the PRINT attribute for their severity level is YES). Errors of any
of the severity levels except IMSL_TERMINAL may be informational errors. The include file, imsl.h, defines
IMSL_NOTE, IMSL_ALERT, IMSL_WARNING, IMSL_FATAL, IMSL_TERMINAL,
IMSL_WARNING_IMMEDIATE, and IMSL_FATAL_IMMEDIATE as an enumerated data type Imsl_error.

IMSL_NOTE. A note is issued to indicate the possibility of a trivial error or simply to provide information about
the computations.

Default attributes: PRINT=NO, STOP=NO.

IMSL_ALERT. An alert indicates that a function value has been set to 0 due to underflow.

Default attributes: PRINT=NO, STOP=NO.
1502

 Reference Material User Errors
IMSL_WARNING. A warning indicates the existence of a condition that may require corrective action by the user
or calling routine. A warning error may be issued because the results are accurate to only a few decimal places,
because some of the output may be erroneous, but most of the output is correct, or because some assumptions
underlying the analysis technique are violated. Usually no corrective action is necessary, and the condition can be
ignored.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL. A fatal error indicates the existence of a condition that may be serious. In most cases, the user or
calling routine must take corrective action to recover.

Default attributes: PRINT=YES, STOP=YES.

IMSL_TERMINAL. A terminal error is serious. It usually is the result of an incorrect specification, such as specify-
ing a negative number as the number of equations. These errors may also be caused by various programming
errors impossible to diagnose correctly in C. The resulting error message may be perplexing to the user. In such
cases, the user is advised to compare carefully the actual arguments passed to the function with the dummy
argument descriptions given in the documentation. Special attention should be given to checking argument order
and data types.

A terminal error is not an informational error, because corrective action within the program is generally not rea-
sonable. In normal usage, execution is terminated immediately when a terminal error occurs. Messages relating
to more than one terminal error are printed if they occur.

Default attributes: PRINT=YES, STOP=YES.

IMSL_WARNING_IMMEDIATE. An immediate warning error is identical to a warning error, except it is printed
immediately.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, except it is printed immediately.

Default attributes: PRINT=YES, STOP=YES.

The user can set PRINT and STOP attributes by calling imsl_error_options as described in Chapter 12,
“Utilities”.
1503

 Reference Material User Errors
Errors in Lower-Level Functions
It is possible that a user’s program may call an IMSL C Math Library function that in turn calls a nested sequence
of lower-level functions. If an error occurs at a lower level in such a nest of functions, and if the lower-level func-
tion cannot pass the information up to the original user-called function, then a traceback of the functions is
produced. The only common situation in which this can occur is when an IMSL C Math Library function calls a
user-supplied routine that in turn calls another IMSL C Math Library function.

Functions for Error Handling
The user may interact in three ways with the IMSL error-handling system:

1. Change the default actions.

2. Determine the code of an informational error so as to take corrective action.

3. Initialize the error handling systems.

The functions that support these actions are:

 imsl_error_options
Sets the actions to be taken when errors occur.

 imsl_error_type
Retrieves the Imsl_error enum error type value.

 imsl_error_code
Retrieves the integer code for an informational error.

 imsl_error_message
Retrieves the error message string.

 imsl_initialize_error_handler
Initializes the IMSL C Math Library error handling system for the current thread. This function is not required
but is always allowed. Use of this function is advised if the possibility of low heap memory exists when calling
the IMSL C Math Library for the first time in the current thread.

These functions are documented in Chapter 15, Utilities.
1504

 Reference Material User Errors
Threads and Error Handling
If multiple threads are used then default settings are valid for each thread but can be altered for each individual
thread. When using threads it is necessary to set options using imsl_error_options for each thread by call-
ing imsl_error_options from within each thread.

See Example 3 and Example 4 of imsl_error_options for multithreaded examples.

Use of Informational Error to Determine Program Action
In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is determined that
the matrix is not nonnegative definite (and often this is not immediately obvious), the program is to take a differ-
ent branch.

x = imsl_f_lin_sol_nonnegdef (n, a, b, 0);
if (imsl_error_code() == IMSL_NOT_NONNEG_DEFINITE) {

/* Handle matrix that is not nonnegative
 definite */

}

Additional Examples
See functions imsl_error_options and imsl_error_code in Chapter 12, Utilities for additional examples.
1505

 Reference Material Complex Data Types and Functions
Complex Data Types and Functions
Users can perform computations with complex arithmetic by using predefined data types. These types are avail-
able in two floating-point precisions:

1. f_complex z for single-precision complex values

2. d_complex w for double-precision complex values

Each complex value is a C language structure that consists of a pair of real values, the real and imaginary part of
the complex number. To access the real part of a single-precision complex number z, use the subexpression
z.re. For the imaginary part, use the subexpression z.im. Use subexpressions w.re and w.im for the real
and imaginary parts of a double-precision complex number w. The structure is declared within imsl.h as
follows:

typedef struct{
float re;
float im;

} f_complex;
Several standard operations and functions are available for users to perform calculations with complex numbers
within their programs. The operations are provided for both single and double precision data types. Notice that
even the ordinary arithmetic operations of “+”, “-”, “*”, and “/” must be performed using the appropriate functions.

A uniform prefix name is used as part of the names for the operations and functions. The prefix imsl_c_ is
used for f_complex data. The prefix imsl_z_ is used with d_complex data.
1506

 Reference Material Complex Data Types and Functions
Single-Precision Complex Operations and Functions

a Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise,
result has the value 0.

Operation Function Name Function Result Function Argument(s)

z = –x z = imsl_c_neg(x) f_complex f_complex
z = x + y z = imsl_c_add(x,y) f_complex f_complex (both)

z = x – y z = imsl_c_sub(x,y) f_complex f_complex (both)

z = x * y z = imsl_c_mul(x,y) f_complex f_complex (both)

z = x / y z = imsl_c_div(x,y) f_complex f_complex (both)

x= =ya z = imsl_c_eq(x,y) Int f_complex (both)

z = x
Drop Precision

z = imsl_cz_convert(x) f_complex d_complex

Operation Function Name Function Result Function Argument(s)

z = a + ib
Ascend Data

z = imsl_cf_convert(a,b) f_complex float (both)

z = z = imsl_c_conjg(x) f_complex f_complex

a = |z| a = imsl_c_abs(z) float f_complex
a = arg (z)
–π < a≤π

a = imsl_c_arg(z) float f_complex

z = z = imsl_c_sqrt(z) f_complex f_complex

z = cos (z) z = imsl_c_cos(z) f_complex f_complex
z = sin (z) z = imsl_c_sin(z) f_complex f_complex
z = exp (z) z = imsl_c_exp(z) f_complex f_complex
z = log (z) z = imsl_c_log(z) f_complex f_complex

z = xa z = imsl_cf_power(x,a) f_complex f_complex, float

z = xy z = imsl_cc_power(x,y) f_complex f_complex (both)

c = ak c = imsl_fi_power(a,k) float float, int

c = ab c = imsl_ff_power(a,b) float float (both)

m = jk m = imsl_ii_power(j,k) Int int (both)

x─

z

1507

 Reference Material Complex Data Types and Functions
Double-Precision Complex Operations and Functions

b Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise,
result has the value 0.

Operation Function Name Function Result Function Argument(s)

z = –x z = imsl_z_neg(x) d_complex d_complex
z = x + y z = imsl_z_add(x,y) d_complex d_complex (both)

z = x – y z = imsl_z_sub(x,y) d_complex d_complex (both)

z = x * y z = imsl_z_mul(x,y) d_complex d_complex (both)

z = x / y z = imsl_z_div(x,y) d_complex d_complex (both)

x==yb z = imsl_z_eq(x,y) Int d_complex (both)

z = x
Drop Precision

z = imsl_zc_convert(x) d_complex f_complex

z = a + ib
Ascend Data

z = imsl_zd_convert(a,b) d_complex double (both)

Operation Function Name Function Result Function Argument(s)

z = x z = imsl_z_conjg(x) d_complex d_complex
a = |z| a = imsl_z_abs(z) Double d_complex
a = arg (z)
–π < a≤π

a = imsl_z_arg(z) Double d_complex

z = z = imsl_z_sqrt(z) d_complex d_complex

z = cos (z) z = imsl_z_cos(z) d_complex d_complex
z = sin (z) z = imsl_z_sin(z) d_complex d_complex
z = exp (z) z = imsl_z_exp(z) d_complex d_complex
z = log (z) z = imsl_z_log(z) d_complex d_complex

z = xa z = imsl_zd_power(x,a) d_complex d_complex, double

z = xy z = imsl_zz_power(x,y) d_complex d_complex (both)

c = ak c = imsl_di_power(a,k) Double double, int

c = ab c = imsl_dd_power(a,b) Double double (both)

m = jk m = imsl_ii_power(j,k) Int int (both)

z

1508

 Reference Material Complex Data Types and Functions
Example
The following sample code computes and prints several quantities associated with complex numbers. Note that
the quantity

has a rounding error associated with it. Also the quotient z = (1 + 2i) / (3 + 4i) has a rounding error. The result is
acceptable in both cases because the relative errors |w – (2 + 2i)|/ |w| and |z * (3 + 4i) – (1 + 2i)|/ |(1 + 2i)| are
approximately the size of machine precision.

#include <imsl.h>
main()
{

f_complex x = {1,2};
f_complex y = {3,4};
f_complex z;
f_complex w;
int isame;
float eps = imsl_f_machine(4);

/* Echo inputs x and y */
printf("Data: x = (%g, %g)\n y = (%g, %g)\n\n",

x.re, x.im, y.re, y.im);
/* Add inputs */

z = imsl_c_add(x,y);
printf("Sum: z = x + y = (%g, %g)\n\n", z.re, z.im);

/* Compute square root of y */
w = imsl_c_sqrt(y);
printf("Square Root: w = sqrt(y) = (%g, %g)\n", w.re, w.im);

/* Check results */
z = imsl_c_mul(w,w);
printf("Check: w*w = (%g, %g)\n", z.re, z.im);
isame = imsl_c_eq(y,z);
printf(" y == w*w = %d\n", isame);
z = imsl_c_sub(z,y);
printf("Difference: w*w - y = (%g, %g) = (%g, %g) * eps\n\n",

z.re, z.im, z.re/eps, z.im/eps);
/* Divide inputs */

z = imsl_c_div(x,y);
printf("Quotient: z = x/y = (%g, %g)\n", z.re, z.im);

/* Check results */
w = imsl_c_sub(x, imsl_c_mul(z, y));
printf("Check: w = x - z*y = (%g, %g) = (%g, %g) * eps\n",

w.re, w.im, w.re/eps, w.im/eps);
}

w = 3 + 4i
1509

 Reference Material Complex Data Types and Functions
Output

Data: x = (1, 2)
y = (3, 4)

Sum: z = x + y = (4, 6)
Square Root: w = sqrt(y) = (2, 1)
Check: w*w = (3, 4)

y == w*w = 0
Difference: w*w - y = (-2.38419e-07, 4.76837e-07) = (-2, 4) * eps
Quotient: z = x/y = (0.44, 0.08)
Check: w = x - z*y = (5.96046e-08, 0) = (0.5, 0) * eps
1510

Appendix AReferences

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Ahrens and Dieter

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from gamma, beta, Poisson, and binomial dis-
tributions, Computing, 12, 223–246.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local procedures, Journal of
the ACM, 17, 589–602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly distributed data
points, ACM Transactions on Mathematical Software, 4, 148–159.

Altman and Gondzio

Altman, Anna, and Jacek Gondzio (1998), Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear
and Quadratic Optimization, Logilab Technical Report 1998.6, Logilab, HEC Geneva, Section of Management Stud-
ies, Geneva.

Anderson et al.

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen (1999), LAPACK Users' Guide, 3rd ed., SIAM, Philadelphia.

Ashcraft

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse symmetric positive definite sys-
tems, Technical Report ETA-TR-51, Engineering Technology Applications Division, Boeing Computer Services,
Seattle, Washington.

Ashcraft et al.

Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix methods for large linear
systems on vector supercomputers. Intern. J. Supercomputer Applic., 1(4), 10–29.
1511

Atkinson (1979)

Atkinson, A.C. (1979), A family of switching algorithms for the computer generation of beta random variates, Bio-
metrika, 66, 141–145.

Atkinson (1978)

Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

Barnett

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of real order to
machine accuracy, Computer Physics Communication, 21, 297–314.

Barrett and Healy

Barrett, J.C., and M. J.R. Healy (1978), A remark on Algorithm AS 6: Triangular decomposition of a symmetric
matrix, Applied Statistics, 27, 379–380.

Bays and Durham

Bays, Carter, and S.D. Durham (1976), Improving a poor random number generator, ACM Transactions on Mathe-
matical Software, 2, 59–64.

Beckers

Beckers, Stan (1980), The Constant Elasticity of Variance Model and Its Implications For Option Pricing , The Jour-
nal of Finance, Vol. 35, No. 3, pp. 661-673.

Bini

Bini, D. A. (1996), Numerical computation of polynomial zeros by means of Aberth's method, Numerical Algorithms
13,179-200.

Blom

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John Wiley & Sons, New York.

Blom and Zegeling

Blom, JG, and Zegeling, PA (1994), A Moving-grid Interface for Systems of One-dimensional Time-dependent Partial Dif-
ferential Equations, ACM Transactions on Mathematical Software, Vol 20, No.2, 194-214.
1512

Boisvert

Boisvert, Ronald (1984), A fourth order accurate fast direct method of the Helmholtz equation, Elliptic Problem
solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando, Florida, 35–44.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio, Communications of the ACM, 17, 156–157.

Brenan, Campbell, and Petzold

Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value Problems in Differential-Algebraic
Equations, Elseview Science Publ. Co.

Brent

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey.

Brent, R.P. (1971), An Algorithm With Guaranteed Convergence for Finding a Zero of a Function, The Computer Journal,
14, 422−425.

Brigham

Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New Jersey.

Burgoyne

Burgoyne, F.D. (1963), Approximations to Kelvin functions, Mathematics of Computation, 83, 295-298.

Carlson

Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische Mathematik, 33, 1−16.

Carlson and Notis

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, ACM Transactions on Mathematical
Software, 7, 398–403.

Carlson and Foley

Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric interpolation, Computer Mathematical Appli-
cations, 21, 29–42.
1513

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters, Communications of the ACM,
21, 317–322.

Cohen and Taylor

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental Physical Constants, Codata
Bulletin, Pergamon Press, New York.

Cooley and Tukey

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex Fourier series, Mathe-
matics of Computation, 19, 297–301.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied Statistics, 17, 190–192.

Courant and Hilbert

Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley & Sons, New York, NY.

Craven and Wahba

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, Numerische Mathematik, 31,
377–403.

Crowe et al.

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse linear equation solver
using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

Davis and Rabinowitz

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic Press, Orlando, Florida.

de Boor

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.
1514

Demmel et al.

Demmel, J.W., J.R. Gilbert, and X.S. Li, (1999), SuperLU Users’ Guide, Tech. Rep. LBNL-44289, Lawrence Berkeley
National Laboratory.

Demmel, J.W., S.C. Eisenstat, J.R. Gilbert, X.S. Li, and J.W.H. Liu, (1999), A Supernodal Approach To Sparse Partial Pivot-
ing, SIAM Journal on Matrix Analysis and its Applications, 20, 720-755.

Demmel, J.W., J. R. Gilbert, and X. S. Li (1999c) , An Asynchronous Parallel Supernodal Algorithm for Sparse Gauss-
ian Elimination, SIAM Journal on Matrix Analysis and its Applications, 20(4), 915- 952.

Dennis and Schnabel

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Dongarra et al.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK User’s Guide, SIAM, Philadelphia.

Doornik

Doornik, J. A., An Improved Ziggurat Method to Generate Normal Random Samples,
http://www.doornik.com/research/ziggurat.pdf.

Draper and Smith

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2nd. ed., John Wiley & Sons, New York.

DuCroz et al.

Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of band matrices using Level-3 BLAS, Proceedings
of CONPAR 90-VAPP IV, Lecture Notes in Computer Science, Springer, Berlin, 222.

Duff et al.

Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for Sparse Matrices, Clarendon Press, Oxford.

Duff et al.

Duff, Ian S., R. G. Grimes, and J. G. Lewis (1992) first ed, Users’ Guide for the Harwell-Boeing Sparse Matrix Collection,
CERFACS, Toulouse Cedex, France.
1515

http://www.doornik.com/research/ziggurat.pdf

Duff and Reid

Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear equations. ACM
Transactions on Mathematical Software, 9, 302–325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations. SIAM Journal on
Scientific and Statistical Computing, 5, 633–641.

Enright and Pryce

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value methods, ACM Transactions
on Mathematical Software, 13, 1–22.

Farebrother and Berry

Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6: Triangular decomposition of a symmetric
matrix, Applied Statistics, 23, 477.

Fernando and Parlett

Fernando, K. V., and B. N. Parlett (1994), Accurate singular values and differential qd algorithms, Numerische Math-
ematik, 67, 191-229.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, 179– 188.

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of multiplicative congruential random num-
ber generators with modulus 231 – 1, Journal of the American Statistical Association, 77, 129–136.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital computer, SIAM
Journal on Applied Mathematics, 5, 74–88.

Franke

Franke, R. (1982), Scattered data interpolation: Tests of some methods, Mathematics of Computation, 38, 181–200.
1516

Garbow et al.

Garbow, B.S., J.M. Boyle, K.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem Routines - EISPACK Guide Extension,
Springer–Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of Weeks’ method for the
inverse Laplace transform problem, ACM Transactions on Mathematical Software, 14, 163–170.

Gautschi

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics of Computation, 22,
251–270.

Gautschi, Walter (1969), Complex error function, Communications of the ACM, 12, 635. Gautschi, Walter (1970), Effi-
cient computation of the complex error function, SIAM Journal on Mathematical Analysis, 7, 187198.

Gear

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood
Cliffs, New Jersey.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear least squares problems,
Applied Statistics, 23, 448–454.

George and Liu

George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Gill and Murray

Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables, NPL Report NAC 92,
National Physical Laboratory, England.

Gill et al.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical aspects of nonlinear pro-
gramming, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-
Verlag, Berlin, Germany.

Gill, P.E., W. Murray, and M.H. Wright (1981), Practical Optimization, Academic Press Inc. Limited, London.
1517

Goldfarb and Idnani

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex quadratic pro-
grams, Mathematical Programming, 27, 1–33.

Golub

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318–334.

Golub and Van Loan

Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, Second Edition, The Johns Hopkins University Press,
Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins University Press, Baltimore,
Maryland.

Golub and Welsch

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics of Computation, 23,
221–230.

Gondzio (1994)

Gondzio, Jacek (1994), Multiple Centrality Corrections in a Primal-Dual Method for Linear Programming, Logilab Tech-
nical Report 1994.20, Logilab, HEC Geneva, Section of Management Studies, Geneva.

Gondzio (1995)

Gondzio, Jacek (1995), HOPDM - Modular Solver for LP Problems, User's Guide to version 2.12, WP-95-50, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria.

Gregory and Karney

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational Algorithms, Wiley-Inter-
science, John Wiley & Sons, New York.

Griffin and Redfish

Griffin, R., and K A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal stor-
age, Communications of the ACM, 13, 54.
1518

Grosse

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34, 29–41.

Guerra and Tapia

Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing, MRC Technical Summary
Report 1452, Mathematics Research Center, University of Wisconsin, Madison.

Hageman and Young

Hageman, Louis A., and David M. Young (1981), Applied Iterative Methods, Academic Press, New York.

Hanson

Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal Sci. Stat. Computing, 7,
#3.

Hanson

Hanson, R. J. (2008), Integrating Feynman-Kac Equations Using Hermite Quintic Finite Elements, White Paper.

Hanson and Krogh

Hanson, R. J., and Krogh, F. T., (2008), Solving Constrained Differential-Algebraic Systems Using Projections, White
Paper.

Hardy

Hardy, R.L. (1971), Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical
Research, 76, 1905–1915.

Hart et al.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J.Maehly, Charles K. Mesztenyi, John R. Rice, Henry G. Thacher,
Jr., and Christoph Witzgall (1968), Computer Approximations, John Wiley & Sons, New York.

Healy

Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a symmetric matrix, Applied Statistics, 17, 195–
197.
1519

Herraman

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics, 17, 289–292.

Higham

Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-norm of a real or complex matrix, with appli-
cations to condition estimation, ACM Transactions on Mathematical Software, 14, 381-396.

Hill

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617–619.

Hindmarsh

Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System Solver, Lawrence Livermore National Labora-
tory Report UCID-30001, Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, Applied Statistics, 26, 67–69.

Huber

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hull et al.

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for DVERK — A subroutine for solving nonstiff ODEs,
Department of Computer Science Technical Report 100, University of Toronto.

Irvine et al.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and smoothing, Construc-
tive Approximation, 2, 129–151.

Jackson et al.

Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical criterion for comparing Runge-Kutta formulas, SIAM
Journal of Numerical Analysis, 15, 618–641.
1520

Jenkins

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on Mathematical Software, 1, 178–
189.

Jenkins and Traub

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic iteration, SIAM
Journal on Numerical Analysis, 7, 545–566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros and its relation to
generalized Rayleigh iteration, Numerishe Mathematik, 14, 252–263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the ACM, 15, 97– 99.

Jöhnk

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-zahlen, Metrika, 8, 5–15.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of Statistics, Volume II, Inference and Relationship,
Third Edition, Charles Griffin & Company, London, Chapter 30.

Kennedy and Gentle

Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New York.

Kernighan and Richtie

Kernighan, Brian W., and Richtie, Dennis M. 1988, "The C Programming Language" Second Edition, 241.

Kinnucan and Kuki

Kinnucan, P., and Kuki, H., (1968), A single precision inverse error function subroutine, Computation Center, University
of Chicago.

Knuth

Knuth, Donald E. (1981), The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd. ed., Addison-
Wesley, Reading, Mass.
1521

Kochanek and Bartels

Kochanek, Doris H. U., and Bartels, Richard H (1984), Interpolating Splines with Local Tension, Continuity, and Bias
Control, ACM SIGGRAPH, vol. 18, no. 3, pp. 33–41.

Krogh

Krogh, Fred, T. (2005), An Algorithm for Linear Programming,
http://mathalacarte.com/fkrogh/pub/lp.pdf, Tujunga, CA.

Krogh, Fred, T. (1974), "Changing Stepsize in the Integration of Differential Equations Using Modified Divided Dif-
ferences" in Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations,Springer
Verlag, Berlin, no. 362, pp. 22-71.

Krogh, Fred T. (1970), Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation, Math. of Comp.
24, 109, 185-190.

Learmonth and Lewis

Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School Random Number Generator Package LLRAN-
DOM, NPS55LW73061A, Naval Postgraduate School, Monterey, California.

Lehmann

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, San Francisco.

Lehoucq, Sorensen, and Yang

Lehoucq, R.B., Sorensen, D.C., and Yang, C. (1998), ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems
with Implicitly Restarted Arnoldi Methods, Society for Industrial and Applied Mathematics, Philadelphia PA.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of Applied Mathe-
matics, 2, 164–168.

Leavenworth

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of the ACM, 3, 602.
1522

http://mathalacarte.com/fkrogh/pub/lp.pdf

Lentini and Pereyra

Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN program for first order nonlinear boundary
value problems, in Lecture Notes in Computer Science, 76, Springer-Verlag, Berlin, 67−88.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number generator for the System/ 360, IBM
Systems Journal, 8, 136–146.

Liepman

Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions, Dover Publications,
New York.

Liu

Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method, Technical Report CS-87-
10, Department of Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. ACM Transactions on Math-
ematical Software, 15, 310-325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice, Technical Report CS-90-04,
Department of Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse factorization.
ACM Transactions on Mathematical Software, 12, 249-264.

Lyness and Giunta

Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion of the Laplace
transform, Mathematics of Computation, 47, 313–322.

Madsen and Sincovec

Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software for partial differen-
tial equations, ACM Transactions on Mathematical Software, 5, #3, 326–351.

Maindonald

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.
1523

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied
Mathematics, 11, 431–441.

Marsaglia and Tsang

Marsaglia, G. and Tsang, W. W (2000), The Ziggurat Method for Generating Random Variables, Journal of Statistical
Software, Volume 5-8, pages 1-7.

Martin and Wilkinson

Martin, R.S., and J.H. Wilkinson (1971), Reduction of the Symmetric Eigenproblem Ax = λBx and Related Problems
to Standard Form, Volume II, Linear Algebra Handbook, Springer, New York.

Martin, R.S., and J.H. Wilkinson (1971), The Modified LR Algorithm for Complex Hessenberg Matrices, Handbook,
Volume II, Linear Algebra, Springer, New York.

Mayle

Mayle, Jan, (1993), Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, SIA Standard Securities
Calculation Methods, Volume I, Third Edition, pages 17-35.

Michelli

Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices and conditionally positive definite func-
tions, Constructive Approximation, 2, 11–22.

Michelli et al.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions, Numerische Mathema-
tik, 26, 279–285.

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp approximation, Construc-
tive Approximation, 1, 93–102.

Moler and Stewart

Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems, SIAM Journal on
Numerical Analysis, 10, 241-256.
1524

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for MINPACK-1, Argonne National Labora-
tory Report ANL-80-74, Argonne, Illinois.

Müller

Müller, D.E. (1956), A method for solving algebraic equations using an automatic computer, Mathematical Tables
and Aids to Computation, 10, 208–215.

Murtagh

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGraw-Hill, New York.

Murty

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

Nelder and Mead

Nelder, J.A., and Mead, R. (1965), A simplex method for function minimization, The Computer Journal, 7(4), 308-313.

Neter and Wasserman

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin, Homewood, Illinois.

Neter et al.

Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied Linear Regression Models, Richard D. Irwin,
Homewood, Illinois.

Ogita et al.

Ogita, T., S. M. Rump, and S. Oishi (2005), Accurate Sum and Dot Product, SIAM J. Sci. Comput., 26(6), 1955-1988.

Østerby and Zlatev

Østerby, Ole, and Zahari Zlatev (1982), Direct Methods for Sparse Matrices, Lecture Notes in Computer Science, 157,
Springer-Verlag, New York.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company, Reading, Mass.
1525

Owen, D.B. (1965), A special case of the bivariate non-central t distribution, Biometrika, 52, 437−446.

Parlett

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Patefield and Tandy

Patefield, W.M. and Tandy, D. (2000), Fast and Accurate Calculation of Owen’s T-Function, J. Statistical Software, 5,
Issue 5, 1-25.

Pennington and Berzins

Pennington, S. V., Berzins, M., (1994), Software for first-order partial differential equations. 63−99.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, Communica-
tions of the ACM, 13, 624.

Petzold

Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver, Proceedings of the IMACS World
Congress, Montreal, Canada.

Piessens et al.

Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K. Kahaner (1983), QUADPACK, Springer-Verlag, New
York.

Powell

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis Pro-
ceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G. A. Watson), 630, Springer-Verlag, Berlin,
Germany, 144–157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani, Mathematical Program-
ming Study, 25, 46–61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimizations calculations, DAMTP Report NA17,
University of Cambridge, England.
1526

Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly constrained optimizations calculations, DAMTP Report
NA2, University of Cambridge, England.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming, DAMTP Report 1983/NA17,
University of Cambridge, Cambridge, England.

Powell, M.J.D. (2004), Least Frobenius norm updating of quadratic models that satisfy interpolation conditions,
Mathematical Programming, 100(1), 183-215.

Powell, M.J.D. (2014), On fast trust region methods for quadratic models with linear constraints, DAMTP report
2014/NA02, University of Cambridge, Cambridge, England.

Ralston

Ralston, Anthony (1965), A First Course in Numerical Analysis, McGraw-Hill, NY.

Rauber et. al.

Rauber, T., G. Rünger, and C. Scholtes (1999), Scalability of Sparse Cholesky Factorization, International Journal of
High Speed Computing, 10, No. 1, 19 - 52.

Reinsch

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10, 177−183.

Rice

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New York.

Saad and Schultz

Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum residual algorithm for solving nonsymmetric
linear systems, SIAM Journal of Scientific and Statistical Computing, 7, 856-869.

Salane

Salane, D.E. (1986), Adaptive Routines for Forming Jacobians Numerically, SAND86-1319, Sandia National
Laboratories.

Sallas and Lionti

Sallas, William M., and Abby M. Lionti (1988), Some useful computing formulas for the nonfull rank linear model
with linear equality restrictions, IMSL Technical Report 8805, IMSL, Houston.
1527

http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2014_02.pdf

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics—the two-sample case, Annals of
Mathematical Statistics, 27, 590–615.

Schmeiser

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete random variates, in Computer
Science and Statistics: Proceedings of the Fifteenth Symposium on the Interface, (edited by James E. Gentle), North-Hol-
land Publishing Company, Amsterdam, 154–160.

Schmeiser and Babu

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via exponential majorizing functions, Opera-
tions Research, 28, 917–926.

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random Variate Generation, Research Memoran-
dum 81–4, School of Industrial Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser and Lal

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating gamma variates, Journal of the Ameri-
can Statistical Association, 75, 679–682.

Seidler and Carmichael

Seidler, Lee J. and Carmichael, D.R., (editors) (1980), Accountants' Handbook, Volume I, Sixth Edition, The Ronald
Press Company, New York.

Sewell

Sewell, Granville (2005), Computational Methods of Linear Algebra, second edition, John Wiley & Sons, New York.

Shampine

Shampine, L.F. (1975), Discrete least squares polynomial fits, Communications of the ACM, 18, 179–180.

Shampine and Gear

Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff ordinary differential equations, SIAM Review, 21,
1–17.
1528

Sincovec and Madsen

Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations, ACM Transactions on
Mathematical Software, 1, #3, 232–260.

Singleton

Singleton, T.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of
the ACM, 12, 185–187.

Smith et al.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler (1976), Matrix Eigensystem
Routines — EISPACK Guide, Springer-Verlag, New York.

Smith

Smith, P.W. (1990), On knots and nodes for spline interpolation, Algorithms for Approximation II, J.C. Mason and
M.G. Cox, Eds., Chapman and Hall, New York.

Sorensen

Sorensen, D.C. (1992), Implicit Application of Polynomial Filters in a k-Step Arnoldi Method, SIAM Journal on Matrix
Analysis and Applications, 13(1): 357-385, Philadelphia, PA.

Spellucci, Peter

Spellucci, P. (1998), An SQP method for general nonlinear programs using only equality constrained subproblems,
Math. Prog., 82, 413-448, Physica Verlag, Heidelberg, Germany

Spellucci, P. (1998), A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. Res.,47,
355-500, Physica Verlag, Heidelberg, Germany.

Stewart

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics of Computation, 22,
144–158.
1529

Stroud and Secrest

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall, Englewood Cliffs, New Jersey.

Temme

Temme, N.M (1975), On the numerical evaluation of the modified Bessel Function of the third kind, Journal of
Computational Physics, 19, 324–337.

Tezuka

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic Publishers, Boston.

Thompson and Barnett

Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions Iν(z) and Kν(z) of real order and complex argu-
ment, Computer Physics Communication, 47, 245–257.

Tukey

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical Statistics, 33, 1–67.

Velleman and Hoaglin

Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics, and Computing of Exploratory Data Analysis,
Duxbury Press, Boston

Verwer et al

Verwer, J. G., Blom, J. G., Furzeland, R. M., and Zegeling, P. A. (1989), A moving-grid method for one-dimensional
PDEs Based on the Method of Lines, Adaptive Methods for Partial Differential Equations, Eds., J. E. Flaherty, P. J.
Paslow, M. S. Shephard, and J. D. Vasiilakis, SIAM Publications, Philadelphia, PA (USA) pp. 160-175.

Walker

Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations, SIAM Journal of
Scientific and Statistical Computing, 9, 152-163.

Watkins

Watkins, David S., L. Elsner (1991), Convergence of algorithm of decomposition type for the eigenvalue problem,
Linear Algebra Applications, 143, pp. 29–47.
1530

Weeks

Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, J. ACM, 13, 419–429.

Wilmott et al

Wilmott, P., Howison, and S., Dewynne, J., (1996), The Mathematics of Financial Derivatives (A Student Introduction),
Cambridge Univ. Press, New York, NY. 317 pages.
1531

Appendix BAlphabetical Summary of
Functions
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]
1532

A

Function Purpose Statement

accr_interest_maturity Evaluates the accrued interest for a security that pays
at maturity.

accr_interest_periodic Evaluates the accrued interest for a security that pays
periodic interest.

airy_Ai Evaluates the Airy function.

airy_Ai_derivative Evaluates the derivative of the Airy function.

airy_Bi Evaluates the Airy function of the second kind.

airy_Bi_derivative Evaluates the derivative of the Airy function of the
second kind.
1533

B

Function Purpose Statement

bessel_exp_I0 Evaluates the exponentially scale modified Bessel
function of the first kind of order zero.

bessel_exp_I1 Evaluates the exponentially scaled modified Bessel
function of the first kind of order one.

bessel_exp_K0 Evaluates the exponentially scaled modified Bessel
function of the second kind of order zero.

bessel_exp_K1 Evaluates the exponentially scaled modified Bessel
function of the second kind of order one.

bessel_I0 Evaluates the real modified Bessel function of the
first kind of order zero I0(x).

bessel_I1 Evaluates the real modified Bessel function of the
first kind of order one I1(x).

bessel_Ix Evaluates a sequence of modified Bessel functions of
the first kind with real order and complex arguments.

bessel_J0 Evaluates the real Bessel function of the first kind of
order zero J0(x).

bessel_J1 Evaluates the real Bessel function of the first kind of
order one J1(x).

bessel_Jx Evaluates a sequence of Bessel functions of the first
kind with real order and complex arguments.

bessel_K0 Evaluates the real modified Bessel function of the
second kind of order zero K0(x).

bessel_K1 Evaluates the real modified Bessel function of the
second kind of order one K1(x).

bessel_Kx Evaluates a sequence of modified Bessel functions of
the second kind with real order and complex
arguments.

bessel_Y0 Evaluates the real Bessel function of the second kind
of order zero Y0(x).

bessel_Y1 Evaluates the real Bessel function of the second kind
of order one Y1(x).

bessel_Yx Evaluates a sequence of Bessel functions of the sec-
ond kind with real order and complex arguments.

beta Evaluates the real beta function β(x, y).
1534

beta_cdf Evaluates the beta probability distribution function.

beta_incomplete Evaluates the real incomplete beta function
Ix = βx(a, b)/β(a, b).

beta_inverse_cdf Evaluates the inverse of the beta distribution
function.

binomial_cdf Evaluates the binomial distribution function.

bivariate_normal_cdf Evaluates the bivariate normal distribution function.

bond_equivalent_yield Evaluates the bond-equivalent for a Treasury yield.

bounded_least_squares Solves a nonlinear least-squares problem subject to
bounds on the variables using a modified Levenberg-
Marquardt algorithm.

bvp_finite_difference Solves a (parameterized) system of differential equa-
tions with boundary conditions at two points, using a
variable order, variable step size finite difference
method with deferred corrections.
1535

C

Function Purpose Statement

chi_squared_cdf Evaluates the chi-squared distribution function.

chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution
function.

chi_squared_test Performs a chi-squared goodness-of-fit test.

constant Returns the value of various mathematical and physi-
cal constants.

constrained_nlp Solves a general nonlinear programming problem
using a sequential equality constrained quadratic pro-
gramming method.

convexity Evaluates the convexity for a security.

convolution Computes the convolution, and optionally, the cor-
relation of two real vectors.

convolution (complex) Computes the convolution, and optionally, the cor-
relation of two complex vectors.

coupon_days Evaluates the number of days in the coupon period
that contains the settlement date.

coupon_number Evaluates the number of coupons payable between
the settlement date and maturity date.

covariances Computes the sample variance-covariance or correla-
tion matrix.

ctime Returns the number of CPU seconds used.

cub_spline_integral Computes the integral of a cubic spline.

cub_spline_interp_e_cnd Computes a cubic spline interpolant, specifying vari-
ous endpoint conditions.

cub_spline_interp_shape Computes a shape-preserving cubic spline.

cub_spline_smooth Computes a smooth cubic spline approximation to
noisy data by using cross-valida­tion to estimate the
smoothing parameter or by directly choosing the
smoothing parameter.

cub_spline_tcb Computes a tension-continuity-bias (TCB) cubic spline
interpolant. This is also called a Kochanek-Bartels
spline and is a generalization of the Catmull–Rom
spline.

cub_spline_value Computes the value of a cubic spline or the value of
one of its derivatives.
1536

cumulative_interest Evaluates the cumulative interest paid between two
periods.

cumulative_principal Evaluates the cumulative principal paid between two
periods.
1537

D

Function Purpose Statement

date_to_days Evaluates the number of days from January 1, 1900,
to the given date.

days_before_settlement Evaluates the number of days from the beginning of
the coupon period to the settlement date.

days_to_date Gives the date corresponding to the number of days
since January 1, 1900.

days_to_next_coupon Evaluates the number of days from settlement date
to the next coupon date.

dea_petzold_gear Solves a first order differential-algebraic system of
equations, g(t, y, y′) = 0, using the Petzold-Gear BDF
method.

depreciation_amordegrc Evaluates the depreciation for each accounting
period. Similar to depreciation_amorlinc.

depreciation_amorlinc Evaluates the depreciation for each accounting
period. Similar to depreciation_amordegrc.

depreciation_db Evaluates the depreciation of an asset for a specified
period using the fixed-declining balance method.

depreciation_ddb Evaluates the depreciation of an asset for a specified
period using the double-declining method.

depreciation_sln Evaluates the straight line depreciation of an asset for
one period.

depreciation_syd Evaluates the sum-of-years digits depreciation of an
asset for a specified period.

depreciation_vdb Evaluates the depreciation of an asset for any given
period, including partial periods, using the double-
declining balance method.

differential_algebraic_eqs Solves a first order differential-algebraic system of
equations, g(t, y, y′) = 0, with optional additional con-
straints and user-defined linear system solver.

discount_price Evaluates the price per $100 face value of a dis-
counted security.

discount_rate Evaluates the discount rate for a security.

discount_yield Evaluates the annual yield for a discounted security.

dollar_decimal Converts a dollar price, expressed as a fraction, into a
dollar price, expressed as a decimal number.
1538

dollar_fraction Converts a dollar price, expressed as a decimal num-
ber, into a dollar price, expressed as a fraction.

duration Evaluates the annual duration of a security with peri-
odic interest payment.
1539

E

Function Purpose Statement

effective_rate Evaluates the effective annual interest rate.

eig_gen Computes the eigenexpansion of a real matrix A.

eig_gen (complex) Computes the eigenexpansion of a complex matrix A.

eig_herm (complex) Computes the eigenexpansion of a complex Hermi-
tian matrix A.

eig_sym Computes the eigenexpansion of a real symmetric
matrix A.

eig_symgen Computes the generalized eigenexpansion of a sys-
tem Ax = λBx. A and B are real and symmetric. B is
positive definite.

elliptic_integral_E Evaluates the complete elliptic integral of the second
kind E(x).

elliptic_integral_K Evaluates the complete elliptic integral of the kind
K(x).

elliptic_integral_RC Evaluates an elementary integral from which inverse
circular functions, logarithms, and inverse hyperbolic
functions can be computed.

elliptic_integral_RD Evaluates Carlson’s elliptic integral of the second kind
RD(x, y, z).

elliptic_integral_RF Evaluates Carlson’s elliptic integral of the first kind
RF(x, y, z).

elliptic_integral_RJ Evaluates Carlson’s elliptic integral of the third kind
RJ(x, y, z, ρ).

erf Evaluates the real error function erf(x).

erf_inverse Evaluates the real inverse error function erf -1(x).

erfc Evaluates the real complementary error function
erfc(x).

erfc_inverse Evaluates the real inverse complementary error func-
tion erfc-1(x).

erfce Evaluates the exponentially scaled complementary
error function.

erfe Evaluates a scaled function related to erfc(z).
1540

error_code Gets the code corresponding to the error message
from the last function called.

error_message Gets the text of the error message from the last func-
tion called.

error_options Sets various error handling options.

error_type Gets the type corresponding to the error message
from the last function called.
1541

F

Function Purpose Statement

F_cdf Evaluates the F distribution function.

F_inverse_cdf Evaluates the inverse of the F distribution function.

fast_poisson_2d Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver
based on the HODIE finite-difference scheme on a
uniform mesh.

faure_next_point Evaluates a shuffled Faure sequence.

fclose Closes a file opened by imsl_fopen.

fcn_derivative Computes the first, second or third derivative of a
user-supplied function.

feynman_kac Solves a generalized Feynman-Kac equation on a
finite interval using Hermite quintic splines.

feynman_kac_evaluate Computes the value of a Hermite quintic spline or the
value of one of its derivatives.

fft_2d_complex Computes the complex discrete two-dimensional
Fourier transform of a complex two-dimensional
array.

fft_complex Computes the complex discrete Fourier transform of
a complex sequence.

fft_complex_init Computes the parameters for imsl_c_fft_complex.

fft_cosine Computes the discrete Fourier cosine transformation
of an even sequence.

fft_cosine_init Computes the parameters needed for
imsl_f_fft_cosine.

fft_real Computes the real discrete Fourier transform of a
real sequence.

fft_real_init Computes the parameters for imsl_f_fft_real.

fft_sine Computes the discrete Fourier sine transformation of
an odd sequence.

fft_sine_init Computes the parameters needed for imsl_f_fft_sine.

fopen Opens a file using the C runtime library used by the
IMSL C Math Library.

free Frees memory returned from an IMSL C Math Library
function.
1542

fresnel_integral_C Evaluates the cosine Fresnel integral.

fresnel_integral_S Evaluates the sine Fresnel integral.

future_value Evaluates the future value of an investment.

future_value_schedule Evaluates the future value of an initial principal after
applying a series of compound interest rates.
1543

G

Function Purpose Statement

gamma Evaluates the real gamma function Γ(x).

gamma_cdf Evaluates the gamma distribution function.

gamma_incomplete Evaluates the incomplete gamma function γ (a, x).

gauss_quad_rule Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight
functions.

geneig Computes the generalized eigenexpansion of a sys-
tem Ax = λBx, with A and B real.

geneig (complex) Computes the generalized eigenexpansion of a sys-
tem Ax = λBx, with A and B complex.

generate_test_band Generates test matrices of class E(n, c).

generate_test_band (complex) Generates test matrices of class Ec(n, c).

generate_test_coordinate Generates test matrices of class D(n, c) and E(n, c).

generate_test_coordinate
(complex)

Generates test matrices of class D(n, c) and E(n, c).
1544

H

Function Purpose Statement

hypergeometric_cdf Evaluates the hypergeometric distribution function.
1545

I

Function Purpose Statement

initialize_error_handler Initializes the IMSL C Math Library error handling
system.

int_fcn Integrates a function using a globally adaptive
scheme based on Gauss-Kronrod rules.

int_fcn_2d Computes a two-dimensional iterated integral.

int_fcn_alg_log Integrates a function with algebraic-logarithmic
singularities.

int_fcn_cauchy Computes integrals of the form

in the Cauchy principal value sense.

int_fcn_fourier Computes a Fourier sine or cosine transform.

int_fcn_hyper_rect Integrates a function on a hyper-rectangle.

int_fcn_inf Integrates a function over an infinite or semi-infinite
interval.

int_fcn_qmc Integrates a function on a hyper-rectangle using a
quasi-Monte Carlo method.

int_fcn_sing Integrates a function, which may have endpoint sin-
gularities, using a globally adaptive scheme based on
Gauss-Kronrod rules.

int_fcn_sing_1d Integrates a function with a possible internal or end-
point singularity.

int_fcn_sing_2d Integrates a function of two variables with a possible
internal or endpoint singularity.

int_fcn_sing_3d Integrates a function of three variables with a possi-
ble internal or endpoint singularity.

int_fcn_sing_pts Integrates a function with singularity points given.

int_fcn_smooth Integrates a smooth function using a nonadaptive
rule.

int_fcn_trig Integrates a function containing a sine or a cosine
factor.

interest_payment Evaluates the interest payment for a given period for
an investment.

interest_rate_annuity Evaluates the interest rate per period for an annuity.

∫a
b f (x)
x − cdx
1546

interest_rate_security Evaluates the interest rate for a fully invested
security.

internal_rate_of_return Evaluates the internal rate of return for a schedule of
cash flows.

internal_rate_schedule Evaluates the internal rate of return for a schedule of
cash flows that is not necessarily periodic.

inverse_laplace Computes the inverse Laplace transform of a com-
plex function.
1547

J

Function Purpose Statement

jacobian Approximates the Jacobian of m functions in n
unknowns using divided differences.
1548

K

Function Purpose Statement

kelvin_bei0 Evaluates the Kelvin function of the first kind, bei, of
order zero.

kelvin_bei0_derivative Evaluates the derivative of the Kelvin function of the
first kind, bei, of order zero.

kelvin_ber0 Evaluates the Kelvin function of the first kind, ber, of
order zero.

kelvin_ber0_derivative Evaluates the derivative of the Kelvin function of the
first kind, ber, of order zero.

kelvin_kei0 Evaluates the Kelvin function of the second kind, kei,
of order zero.

kelvin_kei0_derivative Evaluates the derivative of the Kelvin function of the
second kind, kei, of order zero.

kelvin_ker0 Evaluates the Kelvin function of the second kind, der,
of order zero.

kelvin_ker0_derivative Evaluates the derivative of the Kelvin function of the
second kind, ker, of order zero.
1549

L

Function Purpose Statement

lin_least_squares_gen Solves a linear least-squares problem Ax = b.

lin_lsq_lin_constraints Solves a linear least squares problem with linear
constraints.

lin_prog Solves a linear programming problem using the
revised simplex algorithm.

lin_sol_def_cg Solves a real symmetric definite linear system using a
conjugate gradient method.

lin_sol_gen Solves a real general system of linear equations
Ax = b.

lin_sol_gen (complex) Solves a complex general system of linear equations
Ax = b.

lin_sol_gen_band Solves a real general band system of linear equations
Ax = b.

lin_sol_gen_band (complex) Solves a complex general system of linear equations
Ax = b.

lin_sol_gen_coordinate Solves a sparse system of linear equations Ax = b.

lin_sol_gen_coordinate
(complex)

Solves a system of linear equations Ax = b, with
sparse complex coefficient matrix A.

lin_sol_gen_min_residual Solves a linear system Ax = b using the restarted gen-
eralized minimum residual (GMRES) method.

lin_sol_nonnegdef Solves a real symmetric nonnegative definite system
of linear equations Ax = b.

lin_sol_posdef Solves a real symmetric positive definite system of lin-
ear equations Ax = b.

lin_sol_posdef (complex) Solves a complex Hermitian positive definite system
of linear equations Ax = b.

lin_sol_posdef_band Solves a real symmetric positive definite system of lin-
ear equations Ax = b in band symmetric storage
mode.

lin_sol_posdef_band (complex) Solves a complex Hermitian positive definite system
of linear equations Ax = b in band symmetric storage
mode.

lin_sol_posdef_coordinate Solves a sparse real symmetric positive definite sys-
tem of linear equations Ax = b.
1550

lin_sol_posdef_coordinate
(complex)

Solves a sparse Hermitian positive definite system of
linear equations Ax = b.

lin_svd_gen Computes the SVD, A = USVT, of a real rectangular
matrix A.

lin_svd_gen (complex) Computes the SVD, A = USVH, of a complex rectangu-
lar matrix A.

linear_programming Solves a linear programming problem.

log_beta Evaluates the logarithm of the real beta function ln
β (x, y).

log_gamma Evaluates the logarithm of the absolute value of the
gamma function log |Γ(x)|.
1551

M

Function Purpose Statement

machine (float) Returns information describing the computer’s float-
ing-point arithmetic.

machine (integer) Returns integer information describing the com-
puter’s arithmetic.

mat_add_band Adds two band matrices, both in band storage mode,
C←αA + βB.

mat_add_band (complex) Adds two band matrices, both in band storage mode,
C←αA + βB.

mat_add_coordinate Performs element-wise addition of two real matrices
stored in coordinate format, C←αA + βB.

mat_add_coordinate (complex) Performs element-wise addition on two complex
matrices stored in coordinate format, C ← αA + βB.

mat_mul_rect Computes the transpose of a matrix, a matrix-vector
product, a matrix-matrix product, the bilinear form,
or any triple product.

mat_mul_rect (complex) Computes the transpose of a matrix, the conjugate-
transpose of a matrix, a matrix-vector product, a
matrix-matrix product, the bilinear form, or any triple
product.

mat_mul_rect_band Computes the transpose of a matrix, a matrix-vector
product, or a matrix-matrix product, all matrices
stored in band form.

mat_mul_rect_band (complex) Computes the transpose of a matrix, a matrix-vector
product, or a matrix-matrix product, all matrices of
complex type and stored in band form.

mat_mul_rect_coordinate Computes the transpose of a matrix, a matrix-vector
product, or a matrix-matrix product, all matrices
stored in sparse coordinate form.

mat_mul_rect_coordinate
(complex)

Computes the transpose of a matrix, a matrix-vector
product or a matrix-matrix product, all matrices
stored in sparse coordinate form.

matrix_norm Computes various norms of a rectangular matrix.

matrix_norm_band Computes various norms of a matrix stored in band
storage mode.

matrix_norm_coordinate Computes various norms of a matrix stored in coordi-
nate format.
1552

min_con_gen_lin Minimizes a general objective function subject to lin-
ear equality/inequality constraints.

min_uncon Finds the minimum point of a smooth function f(x) of
a single variable using only function evaluations.

min_uncon_deriv Finds the minimum point of a smooth function f(x) of
a single variable using both function and first deriva-
tive evaluations.

min_uncon_golden Finds the minimum point of a nonsmooth function of
a single variable.

min_uncon_multivar Minimizes a function f(x) of n variables using a quasi-
Newton method.

min_uncon_polytope Minimizes a function of n variables using a direct
search polytope algorithm.

modified_duration Evaluates the modified Macauley duration of a
security.

modified_internal_rate Evaluates the modified internal rate of return for a
series of periodic cash flows.

modified_method_of_lines Solves a system of partial differential equations of the
form ut + f(x, t, u, ux, uxx) using the method of lines.
1553

N

Function Purpose Statement

net_present_value Evaluates the net present value of an investment
based on a series of periodic.

next_coupon_date Evaluates the next coupon date after the settlement
date.

nominal_rate Evaluates the nominal annual interest rate.

nonlin_least_squares Solves a nonlinear least-squares problem using a
modified Levenberg-Marquardt algorithm.

nonneg_least_squares Computes the non-negative least squares (nnls)
solution.

nonneg_matrix_factorization Given an m × n real matrix A≥ 0 and an integer
k≤min (m, n), compute a factorization A≅ FG.

normal_cdf Evaluates the standard normal (Gaussian) distribution
function.

normal_inverse_cdf Evaluates the inverse of the standard normal (Gauss-
ian) distribution function.

number_of_periods Evaluates the number of periods for an investment
based on periodic and constant payment and a con-
stant interest rate.
1554

O

Function Purpose Statement

Ode_adams_krogh Solves an initial-value problem for a system of ordi-
nary differential equations of order one or two using
a variable order Adams method

ode_runge_kutta Solves an initial-value problem for ordinary differen-
tial equations using the Runge-Kutta-Verner fifth-
order and sixth-order method.

omp_options Sets various OpenMP options.

output_file Sets the output file or the error message output file.
1555

P

Function Purpose Statement

page Sets or retrieve the page width or length.

payment Evaluates the periodic payment for an investment.

pde_1d_mg Solves a system of one-dimensional time-dependent
partial differential equations using a moving-grid
interface.

poisson_cdf Evaluates the Poisson distribution function.

poly_regression Performs a polynomial least-squares regression.

present_value Evaluates the present value of an investment.

present_value_schedule Evaluates the present value for a schedule of cash
flows that is not necessarily periodic.

previous_coupon_date Evaluates the previous coupon date before the settle-
ment date.

price Evaluates the price per $100 face value of a security
that pays periodic interest.

price_maturity Evaluates the price per $100 face value of a security
that pays interest at maturity.

principal_payment Evaluates the payment on the principal for a given
period.

psi Evaluates the derivative of the log gamma function.

psi1 Evaluates the second derivative of the log gamma
function.
1556

Q

Function Purpose Statement

quadratic_prog Solves a quadratic programming problem subject to
linear equality or inequality constraints.
1557

R

Function Purpose Statement

radial_evaluate Evaluates a radial basis fit.

radial_scattered_fit Computes an approximation to scattered data in Rn
for n≥ 2 using radial basis functions.

random_beta Generates pseudorandom numbers from a beta
distribution.

random_exponential Generates pseudorandom numbers from a standard
exponential distribution.

random_gamma Generates pseudorandom numbers from a standard
gamma distribution.

random_normal Generates pseudorandom numbers from a standard
normal distribution using an inverse CDF method.

random_option Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

random_poisson Generates pseudorandom numbers from a Poisson
distribution.

random_seed_get Retrieves the current value of the seed used in the
IMSL random number generators.

random_seed_set Initializes a random seed for use in the IMSL random
number generators.

random_uniform Generates pseudorandom numbers from a uniform
(0, 1) distribution.

ranks Computes the ranks, normal scores, or exponential
scores for a vector of observations.

read_mps Reads an MPS file containing a linear programming
problem or a quadratic programming problem.

received_maturity Evaluates the amount received for a fully invested
security.

regression Fits a multiple linear regression model using least
squares.
1558

S

Function Purpose Statement

scattered_2d_interp Computes a smooth bivariate interpolant to scat-
tered data that is locally a quintic polynomial in two
variables.

set_user_fcn_return_flag Indicates a condition has occurred in a user-supplied
function necessitating a return to the calling function.

simple_statistics Computes basic univariate statistics.

smooth_1d_data Smooth one-dimensional data by error detection.

sort Sorts a vector by algebraic value. Optionally, a vector
can be sorted by absolute value, and a sort per­muta-
tion can be returned.

sort (integer) Sorts an integer vector by algebraic value. Optionally,
a vector can be sorted by absolute value, and a sort
permutation can be returned.

sparse_cholesky_smp Computes the Cholesky factorization of a sparse real
symmetric positive definite matrix A by an OpenMP
parallelized supernodal algorithm and solves the
sparse real positive definite system of linear equa-
tions Ax = b.

sparse_cholesky_smp (complex) Computes the Cholesky factorization of a sparse
(complex) Hermitian positive definite matrix A by an
OpenMP parallelized supernodal algorithm and
solves the sparse Hermitian positive definite system
of linear equations Ax = b.

sparse_lin_prog Solves a sparse linear programming problem by an
infeasible primal-dual interior-point method.

sparse_quadratic_prog Solves a sparse convex quadratic programming prob-
lem by an infeasible primal-dual interior-point
method.

spline_2d_integral Evaluates the integral of a tensor-product spline on a
rectangular domain.

spline_2d_interp Computes a two-dimensional, tensor-product spline
interpolant from two-dimensional, tensor-product
data.

spline_2d_least_squares Computes a two-dimensional, tensor-product spline
approximant using least squares.

spline_2d_value Computes the value of a tensor-product spline or the
value of one of its partial deriva­tives.
1559

spline_integral Computes the integral of a spline.

spline_interp Computes a spline interpolant.

spline_knots Computes the knots for a spline interpolant.

spline_least_squares Computes a least-squares spline approximation.

spline_lsq_constrained Computes a least-squares constrained spline
approximation.

spline_nd_interp Performs a multidimensional interpolation and differ-
entiation for up to 7 dimensions.

spline_value Computes the value of a spline or the value of one of
its derivatives.

superlu Computes the LU factorization of a general sparse
matrix by a column method and solves the real
sparse linear system of equations Ax = b.

superlu (complex) Computes the LU factorization of a general complex
sparse matrix by a column method and solves the
complex sparse linear system of equations Ax = b.

superlu_smp Computes the LU factorization of a general sparse
matrix by a left-looking column method using
OpenMP parallelism, and solves the real sparse linear
system of equations Ax = b

superlu_smp (complex) Computes the LU factorization of a general complex
sparse matrix by a left-looking column method using
OpenMP parallelism and solves the complex sparse
linear system of equations Ax = b.
1560

T

Function Purpose Statement

t_cdf Evaluates the Student’s t distribution function.

t_inverse_cdf Evaluates the inverse of the Student’s t distribution
function.

table_oneway Tallies observations into a one-way frequency table.

treasury_bill_price Computes the price per $100 face value for a Trea-
sury bill.

treasury_bill_yield Computes the yield for a Treasury bill.
1561

U

Function Purpose Statement

user_fcn_least_squares Computes a least-squares fit using user-supplied
functions.
1562

V

Function Purpose Statement

vector_norm Computes various norms of a vector or the difference
of two vectors.

vector_norm (complex) Computes various norms of a vector or the difference
of two vectors.

version Returns integer information describing the version of
the library, license number, operating system, and
compiler.
1563

W

Function Purpose Statement

write_matrix Prints a rectangular matrix (or vector) stored in con-
tiguous memory locations.

write_options Sets or retrieve an option for printing a matrix.
1564

Y

Function Purpose Statement

year_fraction Evaluates the year fraction that represents the num-
ber of whole days between two dates.

yield_maturity Evaluates the annual yield of a security that pays
interest at maturity.

yield_periodic Evaluates the yield of a security that pays periodic
interest.
1565

Z

Function Purpose Statement

zeros_function Finds the real zeros of a real, continuous, univariate
function.

zeros_poly Finds the zeros of a polynomial with real coefficients
using the Jenkins-Traub three-stage algorithm.

zeros_poly (complex) Finds the zeros of a polynomial with complex coeffi-
cients using the Jenkins-Traub three-stage algorithm.

zeros_sys_eqn Solves a system of n nonlinear equations f (x) = 0
using a modified Powell hybrid algorithm.

zero_univariate Finds a zero of a real univariate function.
1566

1567

 Product Support Contacting IMSL Support

Product Support

Contacting IMSL Support
Users within support warranty may contact Rogue Wave Software regarding the use of the IMSL C
Numerical Library. IMSL Support can consult on the following topics:

 Clarity of documentation

 Possible IMSL-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of your program.

See https://www.imsl.com/support for IMSL product support.

The following describes the procedure for consultation with IMSL Support:

1. Include your IMSL license number.

2. Include the product name and version number.

3. Include compiler and operating system version numbers.

4. Include the name of the routine for which assistance is needed and a description of the problem.

https://www.imsl.com/support

Index

A
Adams method

variable order 630

Airy functions 1089, 1091, 1093,
1095

approximation 473

B
backward difference formulas 618

band matrices 1456, 1460

band storage mode 1456, 1460,
1477

Bessel functions 1036, 1039, 1041,
1044, 1047, 1049, 1051, 1054,
1056, 1058, 1060, 1062, 1065,
1067, 1069, 1071

beta functions 1016, 1019, 1021,
1144

Black-Scholes Equation
American Put Pricing 706
Cash-or-Nothing Payoff, A

Bet 718
Convertible Bond Pricing 723
European Put Pricing 706
Greeks, Delta, Gamma, and

Theta, Feynman-Kac 706
Vertical Spread Payoff 718

bond functions 1203, 1205, 1208,
1210, 1213, 1215, 1217, 1219,
1221, 1224, 1227, 1229, 1231,
1233, 1236, 1238, 1241, 1243,
1245, 1248, 1251, 1254, 1256,
1258, 1260, 1263

boundary conditions 600

bvp_finite_difference 600

C
chi-squared goodness-of-fit

test 1280

Cholesky factorization 55, 260, 338

column pivoting 222

complex arithmetic 11, 1506

complex Hermitian positive defi-
nite system 85

computer’s arithmetic 1407

computer’s floating-point
arithmetic 1410

Computing Initial Derivatives for
DAE Systems 619, 621

Constant elasticity of variance,
CEV 711

constrained least squares 35

constrained quadratic
programming 968

Constrained_nlp
nonlinear programming 968

Constraints
after Index Reduction 616, 617,

621, 625
Conservation Principles 619,

625

convolution 777, 784

coordinate format 1465, 1469, 1481

correlation 777, 784

correlation matrix 1289

cosine Fresnel integrals 1085

CPU time 1370

cubic Hermite polynomsials 678

cubic spline interpolant 464

cubic splines 360, 369, 383, 387, 449

D
DAE

Index of DAE System 619
Reducing the Index 619

DAE Solver 612

dates and days 1372, 1374

dea_petzold_gear 629

derivatives 585

differential algebraic
equations 591

differential equations 600

differential-algebraic

equations 612

differential-algebraic solver 612

differential-algebraic systems 591

direct search polytope
algorithm 855

discrete Fourier cosine
transformation 758, 761

discrete Fourier sine
transformation 765, 768

distribution functions 1113, 1116,
1118, 1121, 1123, 1125, 1130,
1132, 1135, 1137, 1140, 1142,
1144, 1146

E
eigenvalues 268, 269, 272, 319, 323,

327, 331, 336

eigenvectors 327, 331, 340, 345

elementary integrals 1083

element-wise addition 1465, 1469

elliptic integrals 1073, 1075, 1077,
1079, 1081

equality/inequality constraints 933

equilibrium 590

error detection 463

error functions 1001, 1003, 1010,
1013
complementary

exponentially scaled 1006

error handling 8, 1376, 1386

errors 1502

Euler’s constant 1405

even sequence 758

Examples
Linear ODE

User-Defined Linear Solver
Constraints 625

Swinging Pendulum
Constraints

Index 1 System 621
1568

INDEX
F
fast Fourier transforms 742, 744,

749, 751, 755, 772

fast_poisson_2d 734

Faure 1345

Faure sequence 1343
faure_next_point 1343

Feynman-Kac Differential Equation
Absolute and Relative Toler-

ance, DAE 702
Absolute and Relative Toler-

ances, DAE 700
boundary valuesFeynman-

Kac 592
Differential Algebraic Equation,

DAE 706
Finite Element Method 705
Forcing or Source Term, Feyn-

man-Kac 640, 704, 706
Gauss-Legendre

Integration 701
Initial Values, Feynman-

Kac 706
Optional Arguments, Feynman-

Kac 699
Truncation Error, Feynman-

Kac 641

Feynman-Kac differential
equation 701

financial functions 1149, 1151, 1153,
1156, 1159, 1161, 1163, 1166,
1168, 1170, 1172, 1174, 1176,
1178, 1181, 1184, 1187, 1189,
1191, 1193, 1195, 1197, 1199,
1201

forward differences 979

G
gamma functions 1023, 1026, 1029

logarithmic derivative 1032,
1034

Gauss-Kronrod rules 489, 502

generalized inverses 35, 249

GMRES method 206

Gray code 1346

H
Harding, L.J. 40

Healy’s algorithm 263

Helmholtz’s equation 734

HODIE finite-difference
scheme 734

Householder’ s method 221, 222,
249, 256

hyper-rectangle 1343

I
Index of DAE System 619

initial-value problems 590

integration 418, 489, 494, 502, 507,
513, 518, 524, 530, 536, 541, 546,
552, 571, 576, 580

interior point method 910

interior-point method 918

interpolation 353, 389, 395, 400, 468

J
Jacobian 979

Jenkins-Traub algorithm 802, 807

K
Karush-Kuhn-Tucker (KKT) optimal-

ity conditions 910, 925

Kelvin functions 1097, 1099, 1101,
1103, 1105, 1107, 1109, 1111

L
lack-of-fit test 1306

least squares 353

least-squares approximation 454

least-squares fit 219, 427, 443, 463

least-squares solutions 34

Lebesque measure 1345

Levenberg-Marquardt
algorithm 860

linear equations 68, 74

linear least-squares problem 235

linear programming 881
active set strategy 883

linear system solution 33, 37

loop unrolling and jamming 40

low-discrepancy 1346

LU factorization 47, 90, 101

M
mathematical constants 1402

matrices 33, 34, 47, 55, 62, 260
general 22
Hermitian 22
multiplying 1427
rectangular 22
symmetric 22

matrix multiply 1431

matrix transpose 1435, 1440, 1445,
1450

matrix-matrix product 1435, 1440,
1445, 1450

matrix-vector produce 1450

matrix-vector product 1435, 1440,
1445

Mehrotra’s predictor-corrector
algorithm 911, 925

memory allocation 9

method of lines 678

minimization 828, 829, 831, 836,
846, 855, 860, 881, 892, 898, 918,
933, 962

models
general linear 1384, 1400

modified_method_of_lines 678

MPS 885, 915, 929

Müller’s method 1399

multiple right-hand sides 34

N
nonlinear programming

problem 968

non-negative least squares 35, 228

Non-Negative Matrix
Factorization 35, 241

norms of a vector 1420

O
odd sequence 765

ode_adams
initial-value problem 630

ode_runge_kutta 593

one-way frequency table 1275

order one or two
system of ordinary differential

equations 630
1569

INDEX
ordinary differential
equations 590, 593

output files 1364

P
Partial Differential Equations

A ‘Hot Spot’ Model 667
A Flame Propagation

Model 663
A Model in Cylindrical

Coordinates 660
Black Scholes 673
Electrodynamics Model 649
Inviscid Flow on a Plate 652
Petzold-Gear integrator 642
Population Dynamics 656
Traveling Waves 669

partial differential equations 678

partial pivoting 47, 50

pde_1d_mg 640

Poisson solver 734

polynomial
interpolation 422

polynomial functions 801

polynomials 350

predator-prey model 596

primal-dual 904, 918, 927

printing 1349, 1356, 1358

pseudorandom numbers 1341

PV_WAVE 649

Q
QR factorizations 219

quadrature 486, 487, 488

quasi-Monte Carlo 576

R
radial-basis fit 481

random number generation 1267,
1268

random numbers 1322, 1324, 1325,
1327, 1330, 1332, 1335, 1338

rank deficiency 34

real symmetric definite linear
system 212

real symmetric positive definite
system 80

rectangular matrix 1474

Reducing the Index 619

References
Parabolic PDE

Banded Linear System 619

Runge-Kutta-Verner method 593

S
Savage scores 1315

sine Fresnel integrals 1087

singular value decomposition 35

singularity 35

singularity points 494, 552, 561

smoothed data 463

sort 1414, 1417

sparse Hermitian positive definite
system 177

sparse linear programming 904

sparse quadratic
programming 918

sparse real symmetric positive defi-
nite system 168

splines 350, 351, 352, 353, 407, 411,
414, 436

standard exponential
distributions 1341

statistics 1296

Stiff Solver 612

stiff systems 590

SVD factorization 246, 253

T
test matrices 1485, 1488, 1491, 1496

Thread Safe 15
multithreaded application 15
single-threaded application 15
threads and error

handling 1505

time constants 590

U
uncertainty 36

uniform mesh 734

univariate statistics 1269

User-Defined Linear Solver 617,
625

V
variable order 600

Verner, J.H. 596

version 1368

Z
zero of a real univariate

function 812

zero of a system 822

zeros of a function 816
1570

	Contents
	Introduction
	IMSL C Math Library
	Organization of the Documentation
	Finding the Right Function
	Naming Conventions
	Getting Started and the imsl.h file
	Getting Started
	The imsl.h File

	Error Handling, Underflow, Overflow, and Document Examples
	Memory Allocation for Output Arrays
	Printing Results
	Complex Arithmetic
	Missing Values
	Passing Data to User-Supplied Functions
	Example

	Return Values from User-Supplied Functions
	Example

	Thread Safe Usage
	Error Handling
	Routines that Produce Output

	OpenMP Usage
	Vendor Supplied Libraries Usage
	C++ Usage
	Output

	Matrix Storage Modes
	General Mode
	Rectangular Mode
	Symmetric Mode
	Hermitian Mode
	Sparse Coordinate Storage Format
	Band Storage Format
	Choosing Between Banded and Coordinate Forms
	Compressed Sparse Column (CSC) Format

	Linear Systems
	Functions
	Usage Notes
	Solving Systems of Linear Equations
	Matrix Factorizations
	Matrix Inversions
	Multiple Right-Hand Sides
	Least-Squares Solutions and QR Factorizations
	Non-Negative Matrix Factorization
	Singular Value Decompositions and Generalized Inverses
	Ill-Conditioning and Singularity

	lin_sol_gen
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_gen (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_posdef
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_posdef (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_gen_band
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_gen_band (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_posdef_band
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Output
	Example 2
	Output
	Warning Errors
	Fatal Errors

	lin_sol_posdef_band (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_gen_coordinate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	lin_sol_gen_coordinate (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	superlu
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	superlu (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	superlu_smp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	superlu_smp (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	lin_sol_posdef_coordinate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	lin_sol_posdef_coordinate (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	sparse_cholesky_smp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	sparse_cholesky_smp (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	lin_sol_gen_min_residual
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	lin_sol_def_cg
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	lin_least_squares_gen
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	nonneg_least_squares
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	lin_lsq_lin_constraints
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	nonneg_matrix_factorization
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	lin_svd_gen
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	lin_svd_gen (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	lin_sol_nonnegdef
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	Eigensystem Analysis
	Functions
	Usage Notes
	Error Analysis and Accuracy
	Reformulating Generalized Eigenvalue Problems
	Eigenvalue Computation With ARPACK-Based Functions

	arpack_symmetric
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	arpack_general
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	eig_gen
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	eig_gen (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	eig_sym
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	eig_herm (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	eig_symgen
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	geneig
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	geneig (complex)
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	Interpolation and Approximation
	Functions
	Usage Notes
	Piecewise Polynomials
	Splines and B-Splines
	Cubic Splines
	Tensor Product Splines
	Scattered Data Interpolation
	Multi-dimensional Interpolation
	Least Squares
	Smoothing by Cubic Splines
	Structures for Splines and Piecewise Polynomials
	Example
	Output
	Example
	Output

	cub_spline_interp_e_cnd
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	cub_spline_interp_shape
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	cub_spline_tcb
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	cub_spline_value
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	cub_spline_integral
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Output

	spline_interp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	spline_knots
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	spline_2d_interp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	spline_value
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	spline_integral
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Output
	Warning Errors
	Fatal Errors

	spline_2d_value
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	spline_2d_integral
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Output
	Warning Errors
	Fatal Errors

	spline_nd_interp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output
	Warning Errors
	Fatal Errors

	user_fcn_least_squares
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples
	Warning Errors
	Fatal Errors

	spline_least_squares
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	spline_2d_least_squares
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	cub_spline_smooth
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	spline_lsq_constrained
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	smooth_1d_data
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	scattered_2d_interp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	radial_scattered_fit
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	radial_evaluate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	Quadrature
	Functions
	Usage Notes
	Univariate Quadrature
	Multivariate Quadrature
	Gauss Quadrature

	int_fcn_sing
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_sing_1d
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples
	Fatal Errors

	int_fcn
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_sing_pts
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_alg_log
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_inf
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_trig
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_fourier
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_cauchy
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_smooth
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	int_fcn_2d
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	int_fcn_sing_2d
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example
	Output
	Fatal Errors

	int_fcn_sing_3d
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example
	Output
	Fatal Errors

	int_fcn_hyper_rect
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output
	Warning Errors
	Fatal Errors

	int_fcn_qmc
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output
	Fatal Errors

	gauss_quad_rule
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	fcn_derivative
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	Differential Equations
	Functions
	Usage Notes
	Ordinary Differential Equations
	Differential-algebraic Equations
	Partial Differential Equations

	ode_runge_kutta
	Synopsis
	Required Arguments for imsl_ f_ode_runge_kutta_mgr
	Required Arguments for imsl_f_ode_runge_kutta
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	bvp_finite_difference
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	differential_algebraic_eqs
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	dea_petzold_gear
	ode_adams_krogh
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	Introduction to pde_1d_mg
	Description Summary

	pde_1d_mg
	Synopsis
	Required Arguments for imsl_f_pde_1d_mg_mgr
	Required Arguments for imsl_f_pde_1d_mg
	Synopsis with Optional Arguments for imsl_f_pde_1d_mg_mgr
	Optional Arguments
	Synopsis with Optional Arguments for imsl_f_pde_1d_mg
	Optional Arguments
	Examples
	Fatal Errors

	modified_method_of_lines
	Synopsis
	Required Arguments for imsl_f_modified_method_of_lines_mgr
	Required Arguments for imsl_f_modified_method_of_lines
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	feynman_kac
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	feynman_kac_evaluate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	fast_poisson_2d
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	Transforms
	Functions
	Usage Notes
	Fast Fourier Transforms
	Continuous Versus Discrete Fourier Transform

	fft_real
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	fft_real_init
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fft_complex
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	fft_complex_init
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fft_cosine
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	fft_cosine_init
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fft_sine
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	fft_sine_init
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fft_2d_complex
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	convolution
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	convolution (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	inverse_laplace
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	Nonlinear Equations
	Functions
	Usage Notes
	Zeros of a Polynomial
	Zeros of a Function
	Root of System of Equations

	zeros_poly
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	zeros_poly (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	zero_univariate
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	zeros_function
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	zeros_sys_eqn
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	Optimization
	Functions
	Usage Notes
	Unconstrained Minimization
	Linearly Constrained Minimization
	Nonlinearly Constrained Minimization
	Return Values from User-Supplied Functions

	min_uncon
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	min_uncon_deriv
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	min_uncon_golden
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example
	Warning Errors
	Fatal Errors

	min_uncon_multivar
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Informational Errors
	Warning Errors
	Fatal Errors

	min_uncon_polytope
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example
	Fatal Errors

	nonlin_least_squares
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Informational Errors
	Warning Errors
	Fatal Errors

	read_mps
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	MPS File Format

	linear_programming
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Note Errors
	Warning Errors
	Fatal Errors

	transport
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Errors

	lin_prog
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	quadratic_prog
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	sparse_lin_prog
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	sparse_quadratic_prog
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	min_con_gen_lin
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	bounded_least_squares
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	min_con_polytope
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples
	Warning Errors
	Fatal Errors

	min_con_lin_trust_region
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	constrained_nlp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example
	Fatal Errors

	jacobian
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	Special Functions
	Functions
	Usage Notes
	Additional Information

	erf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	erfc
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors

	erfce
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	erfe
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	erf_inverse
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	erfc_inverse
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Warning Errors
	Fatal Errors

	beta
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	log_beta
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors

	beta_incomplete
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	gamma
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Warning Errors
	Fatal Errors

	log_gamma
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	gamma_incomplete
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Fatal Errors

	psi
	Synopsis
	Required Arguments
	Return Values
	Description
	Example
	Warning Errors

	psi1
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors

	bessel_J0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	bessel_J1
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Warning Errors
	Fatal Errors

	bessel_Jx
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	bessel_Y0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	bessel_Y1
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	bessel_Yx
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	bessel_I0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Fatal Errors

	bessel_exp_I0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	bessel_I1
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	bessel_exp_I1
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	bessel_Ix
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	bessel_K0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors

	bessel_exp_K0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	bessel_K1
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	bessel_exp_K1
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	bessel_Kx
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	elliptic_integral_K
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	elliptic_integral_E
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	elliptic_integral_RF
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	elliptic_integral_RD
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	elliptic_integral_RJ
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	elliptic_integral_RC
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fresnel_integral_C
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fresnel_integral_S
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	airy_Ai
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	airy_Bi
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	airy_Ai_derivative
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	airy_Bi_derivative
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_ber0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_bei0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_ker0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_kei0
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_ber0_derivative
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_bei0_derivative
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_ker0_derivative
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	kelvin_kei0_derivative
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	normal_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	normal_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	chi_squared_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors
	Alert Errors

	chi_squared_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors

	F_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	F_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Fatal Errors

	t_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	t_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors

	gamma_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	binomial_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors

	hypergeometric_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	poisson_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors

	beta_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	beta_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	bivariate_normal_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	cumulative_interest
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	cumulative_principal
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	depreciation_db
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	depreciation_ddb
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	depreciation_sln
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	depreciation_syd
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	depreciation_vdb
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	dollar_decimal
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	dollar_fraction
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	effective_rate
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	future_value
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	future_value_schedule
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	interest_payment
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	interest_rate_annuity
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	internal_rate_of_return
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	internal_rate_schedule
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	modified_internal_rate
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	net_present_value
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	nominal_rate
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	number_of_periods
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	payment
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	present_value
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	present_value_schedule
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	principal_payment
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	accr_interest_maturity
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	accr_interest_periodic
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	bond_equivalent_yield
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	convexity
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	coupon_days
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	coupon_number
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	days_before_settlement
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	days_to_next_coupon
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	depreciation_amordegrc
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	depreciation_amorlinc
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	discount_price
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	discount_rate
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	discount_yield
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	duration
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	interest_rate_security
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	modified_duration
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	next_coupon_date
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	previous_coupon_date
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	price
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	price_maturity
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	received_maturity
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	treasury_bill_price
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	treasury_bill_yield
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	year_fraction
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	yield_maturity
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	yield_periodic
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Statistics and Random Number Generation
	Functions
	Usage Notes
	Statistics
	Overview of Random Number Generation
	The Basic Uniform Generator
	Shuffled Generators
	Setting the Seed

	simple_statistics
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	table_oneway
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Examples

	chi_squared_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Examples
	Warning Errors
	Fatal Errors

	covariances
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Usage Notes
	Examples
	Warning Errors

	regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	poly_regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	ranks
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	random_seed_get
	Synopsis
	Return Value
	Description
	Example

	random_seed_set
	Synopsis
	Required Arguments
	Description
	Example

	random_option
	Synopsis
	Required Arguments
	Description
	Example

	random_uniform
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_normal
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Remark

	random_poisson
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_gamma
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_beta
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_exponential
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	faure_next_point
	Synopsis
	Required Arguments for imsl_faure_sequence_init
	Return Value for imsl_faure_sequence_init
	Required Arguments for imsl_faure_next_point
	Return Value for imsl_faure_next_point
	Required Arguments for imsl_faure_sequence_free
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Printing Functions
	Functions
	write_matrix
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	page
	Synopsis
	Required Arguments
	Example

	write_options
	Synopsis
	Required Arguments
	Description
	Example

	Utilities
	Functions
	output_file
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	version
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	ctime
	Synopsis
	Return Value
	Example

	date_to_days
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	days_to_date
	Synopsis
	Required Arguments
	Description
	Example

	error_options
	Synopsis with Optional Arguments
	Optional Arguments
	Return Value
	Description
	Examples

	error_type
	Synopsis
	Return Value
	Description
	Example

	error_message
	Synopsis
	Return Value
	Description
	Example

	error_code
	Synopsis
	Return Value
	Example

	initialize_error_handler
	Synopsis
	Return Value
	Description
	Example

	set_user_fcn_return_flag
	Synopsis
	Required Arguments
	Description
	Programming Notes
	Examples

	free
	Synopsis
	Required Arguments
	Description

	fopen
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fclose
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	omp_options
	Synopsis with Optional Arguments
	Return Value
	Optional Arguments
	Description
	Example

	constant
	Synopsis
	Required Arguments
	Return Value
	Description
	Examples
	Warning Errors

	machine (integer)
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	machine (float)
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	sort
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	sort (integer)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	vector_norm
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	vector_norm (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_mul_rect
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	mat_mul_rect (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	mat_mul_rect_band
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_mul_rect_band (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_mul_rect_coordinate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_mul_rect_coordinate (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_add_band
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_add_band (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_add_coordinate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mat_add_coordinate (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	matrix_norm
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	matrix_norm_band
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	matrix_norm_coordinate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	generate_test_band
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	generate_test_band (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	generate_test_coordinate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	generate_test_coordinate (complex)
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	Reference Material
	Contents
	User Errors
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-Level Functions
	Functions for Error Handling
	Threads and Error Handling
	Use of Informational Error to Determine Program Action
	Additional Examples

	Complex Data Types and Functions
	Single-Precision Complex Operations and Functions
	Double-Precision Complex Operations and Functions
	Example

	References
	Alphabetical Summary of Functions
	Product Support
	Contacting IMSL Support

	Index

