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 Introduction         IMSL C Stat Library
IMSL C Stat Library
The IMSL C Stat Library, a component of the IMSL C Numerical Library, is a library of C functions useful in scientific 
programming. Each function is designed and documented to be used in research activities as well as by technical 
specialists. A number of the example programs also show graphs of resulting output. 
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Organization of the Documentation
This manual contains a concise description of each function with at least one example demonstrating the use of 
each function, including sample input and results. All information pertaining to a particular function is in one 
place within a chapter. 

Each chapter begins with a table of contents listing the functions included in the chapter followed by an introduc-
tion. Documentation of the functions consists of the following information:

 Section Name: Usually, the common root for the type float and type double versions of the 
function.

 Purpose: A statement of the purpose of the function.

 Synopsis: The form for referencing the function with required arguments listed.

Required Arguments: A description of the required arguments in the order of their occurrence.

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output through this argument. The argu-
ment cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant or an expression; the function 
returns output through this argument.

 Return Value: The value returned by the function.

 Synopsis with Optional Arguments: The form for referencing the function with both required 
and optional arguments listed.

 Optional Arguments: A description of the optional arguments in the order of their occurrence.

 Description: A description of the algorithm and references to detailed information. In many cases, 
other IMSL functions with similar or complementary functions are noted.

 Examples: At least one application of this function showing input and optional arguments.

 Errors: Listing of any errors that may occur with a particular function. A discussion on error types is 
given in the User Errors section of the Reference Material. The errors are listed by their type as 
follows:

Informational Errors: List of informational errors that may occur with the function.

Alert Errors: List of alert errors that may occur with the function.

Warning Errors: List of warning errors that may occur with the function.
3
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Fatal Errors: List of fatal errors that may occur with the function.

 References: References are listed alphabetically by author.
4



 Introduction         Finding the Right Function
Finding the Right Function
The C Stat Library documentation is organized into chapters; each chapter contains functions with similar compu-
tational or analytical capabilities. To locate the right function for a given problem, use either the table of contents 
located in each chapter introduction or the Alphabetical Summary at the end of this manual.

Often, the quickest way to use the C Stat Library is to find an example similar to your problem, then mimic the 
example. Each function documented has at least one example demonstrating its application.
5
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Naming Conventions
Most functions are available in both a type float and a type double version, with names of the two versions sharing 
a common root. Some functions are also available in type int. The following list is of each type and the corre-
sponding prefix of the function name in which multiple type versions exist:

The section names for the functions contain only the common root to make finding the functions easier. For 
example, the functions imsls_f_simple_statistics and imsls_d_simple_statistics can be 
found in Chapter 1, Basic Statistics, in the “simple_statistics” section.

Where appropriate, the same variable name is used consistently throughout the C Stat Library. For example, 
anova_table denotes the array containing the analysis of variance statistics and y denotes a vector of 
responses for a dependent variable.

When writing programs accessing the C Stat Library, choose C names that do not conflict with IMSL external 
names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the following rule is 
observed:

IMPORTANT: Do not choose a name beginning with “imsls_” in any combination of uppercase or lowercase 
characters.

Type Prefix

float imsls_f_
double imsls_d_
int imsls_i_
6
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Getting Started and the imsls.h file

Getting Started
To use any of the C Stat Library functions, you must first write a program in C to call the function. Each function 
conforms to established conventions in programming and documentation. First priority in development is given 
to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions makes it 
easy to use more than one function in a given application. Also, you will find that the design consistency enables 
you to apply your experience with one C Stat Library function to all other C functions that you use.

The imsls.h File
The include file <imsls.h> is used in all the examples in this manual. This file contains prototypes for all IMSL-
defined functions; the structures, Imsls_f_regression, Imsls_d_regression, Imsls_f_poly_regression, Imsls_d_poly_regres-
sion, Imsls_f_arma, and Imsls_d_arma; and the enumerated data types, 
Imsls_arma_method, Imsls_permute, Imsls_dummy_method, Imsls_write_options, Imsls_page_options, and Imsls_error. 
7
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Error Handling, Underflow, Overflow, and 
Document Examples
The functions in the C Stat Library attempt to detect and report errors and invalid input. This error-handling capa-
bility provides automatic protection for the user without requiring the user to make any specific provisions for the 
treatment of error conditions. Errors are classified according to severity and are assigned a code number. By 
default, errors of moderate or higher severity result in messages being automatically printed by the function. 
Moreover, errors of highest severity cause program execution to stop. The severity level, as well as the general 
nature of the error, is designated by an “error type” with symbolic names IMSLS_FATAL, IMSLS_WARNING, 
etc. See the section User Errors in the Reference Material for further details.

In general, the C Stat Library codes are written so that computations are not affected by underflow, provided the 
system (hardware or software) replaces an underflow with the value 0. Normally, system error messages indicat-
ing underflow can be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages indicating over-
flow should be examined for programming errors such as incorrect input data, mismatch of argument types, or 
improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the 
algorithm.

Output from document examples can be system dependent and the user’s results may vary depending upon the 
system used.
8
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Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. By default, an array returned as 
the value of a C Numerical Library function is stored in memory allocated by that function. To release this space, 
use imsls_free. To return the array in memory allocated by the calling program, use the optional argument

IMSLS_RETURN_USER, float a[]
In this way, the allocation of space for the computed answers can be made either by the user or internally by the 
function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user 
or are to be allocated internally by the function. For example, the optional arguments

IMSLS_ANOVA_TABLE_USER, float anova_table[]  (Output)
IMSLS_ANOVA_TABLE, float **p_anova_table  (Output)

specify two mutually exclusive optional arguments. If the first option is chosen, the ANOVA table is stored in the 
user-provided array anova_table. 

In the second option, float **p_anova_table refers to the address of a pointer to the ANOVA table. The 
called function allocates memory for the array and sets *p_anova_table to point to this memory. Typically, 
float *p_anova_table is declared, &p_anova_table is used as an argument to this function. Use 
imsls_free(p_anova_table) to release the space.
9



 Introduction         Printing Results
Printing Results
Most functions in the C Stat Library do not print any of the results; the output is returned in C variables. The C 
Stat Library does contain some special functions just for printing arrays. For example, IMSL function 
imsls_f_write_matrix is convenient for printing matrices of type float. See Chapter 14, Printing Functions, 
for detailed descriptions of these functions.
10
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Missing Values
Some of the functions in the C Stat Library allow the data to contain missing values. These functions recognize as 
a missing value the special value referred to as “Not a Number” or NaN. The actual value is different on different 
computers, but it can be obtained by reference to the function imsls_f_machine, described in Chapter 15, 
Utilities.

The way that missing values are treated depends on the individual function and is described in the documenta-
tion for the function.
11
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Passing Data to User-Supplied Functions 
In some cases it may be advantageous to pass problem-specific data to a user-supplied function through the 
IMSL C Stat Library interface. This ability can be useful if a user-supplied function requires data that is local to the 
user's calling function, and the user wants to avoid using global data to allow the user-supplied function to access 
the data. Functions in IMSL C Stat Library that accept user-supplied functions have an optional argument(s) that 
will accept an alternative user-supplied function, along with a pointer to the data, that allows user-specified data 
to be passed to the function. The example below demonstrates this feature using the IMSL C Stat Library function 
imsls_f_kolmogorov_one and optional argument IMSLS_FCN_W_DATA.

#include <imsls.h>
#include <stdio.h>
float cdf_w_data(float, void *data);
int main()
{
  float *statistics=NULL, *diffs = NULL, *x=NULL;
  int nobs = 100, nmiss;
  float usr_data[] = {0.5, .2886751};
  imsls_random_seed_set(123457);
  x = imsls_f_random_uniform(nobs, 0);
  statistics = imsls_f_kolmogorov_one(NULL, nobs, x,
     IMSLS_N_MISSING, &nmiss,
     IMSLS_DIFFERENCES, &diffs,
     IMSLS_FCN_W_DATA, cdf_w_data, usr_data,
     0);
  printf("D = %8.4f\n", diffs[0]);
  printf("D+ = %8.4f\n", diffs[1]);
  printf("D- = %8.4f\n", diffs[2]);
  printf("Z = %8.4f\n", statistics[0]);
  printf("Prob greater D one sided = %8.4f\n", statistics[1]);
  printf("Prob greater D two sided = %8.4f\n", statistics[2]);
  printf("N missing = %d\n", nmiss);
}
/* 
* User function that accepts additional data in a (void*) pointer.
* This (void*) pointer can be cast to any type and dereferenced to 
* get at any sort of data-type or structure that is needed. 
* For example, to get at the data in this example
* *((float*)data)  contains the value 0.5
* *((float*)data+1) contains the value 0.2886751.
*/
float cdf_w_data(float x, void *data)
{
  float mean, std, z;
  mean = *((float*)data);
  std = *((float*)data+1);
  z = (x-mean)/std;
12
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  return(imsls_f_normal_cdf(z));
}

13
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Return Values from User-Supplied Functions 
All values returned by user-supplied functions must be valid real numbers. It is the user’s responsibility to check 
that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

In addition to the techniques described below, it is also possible to instruct the IMSL C Stat Library to return con-
trol to the calling program in case an unrecoverable error occurs within a user-supplied function. See function 
imsls_set_user_fcn_return_flag for a description of this feature.

Example
#include <imsls.h>
#include <math.h>
#include <stdio.h>
float fcn(int, float[], int, float[]);
int main ()
{
#define N_OBSERVATIONS 4
  int n_independent = 1;
  int n_parameters = 2;
  float *theta_hat;
  float x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0};
  float y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39};
  /* Nonlinear regression */
  theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
     N_OBSERVATIONS, n_independent, (float *)x, y, 0);
  /* Print estimates */
  imsls_f_write_matrix("estimated coefficients", 1, n_parameters,
     theta_hat, 0);
} /* End of main */
float fcn(int n_independent, float x[], int n_parameters, 
         float theta[])
{
  float result, exparg;
  exparg = theta[1]*(x[0] - 8);
  /* check that argument to exp does not get too large  */
  if (exparg > 10.) {
     result = 22000.;
  } else {
     result = theta[0] + (0.49 - theta[0])*exp(exparg);
  }
}

14
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Thread Safe Usage
The IMSL C Stat Library is thread safe based on OpenMP. That means it can be safely called from a multithreaded 
application if the calling program adheres to a few important guidelines. In particular, IMSL C Stat Library’s imple-
mentation of signal handling, error handling, and I/O must be understood.

Error Handling
C Stat Library’s error handling in a multithreaded application behaves similarly to how it behaves in a single-
threaded application. The major difference is that an error stack exists for each thread calling C Stat Library func-
tions. The result of separate error stacks for each thread is greater control of the error handler options for each 
thread. Each thread can set its own options for the C Stat Library error handler using imsls_error_options. 
For an example of setting error handler options for separate threads, see Chapter 15, Utilities, Example 3 of 
imsls_error_options. 

Routines that Produce Output
A number of routines in C Stat Library can be used to produce output. The function imsls_output_file can 
be used to control the file to which the output is directed. In an application with a single thread of execution, a 
single call to imsls_output_file can be used to set the file to which the output will be directed. In a multi-
threaded application each thread must call imsls_output_file to change the default setting of where 
output will be directed. See Chapter 15, Utilities, Example 2 of imsls_output_file for more details.
15
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OpenMP Usage
Thread safety of the IMSL C Stat Library is based on OpenMP. Users of the IMSL C Stat Library are also able to 
leverage shared-memory parallelism by means of native support for the OpenMP API specification within parts of 
the Library. Those parts are flagged by the OpenMP icon shown below.

Parallelism in OpenMP is implemented by means of threads. In the OpenMP programming model, it is assumed 
that memory is shared among threads, such as in multi-core machines. These threads are spawned by OpenMP 
in response to directives embedded in source code. 

The Library’s use of OpenMP is largely transparent to the user. Codes that have been enhanced with OpenMP 
directives will still work properly in serial execution environments. Error handling routines have been extended so 
that the most severe error during a parallel run will be returned to the user.

OpenMP is used by the Library in these main ways:

1. To implement thread safety within the C Stat Library.

2. To speed up computationally intensive functions by exploiting data parallelism in their processing. 

3. To give users more control of scheduling by using the "schedule(runtime)" clause for the parallelized 
for-loops. The scheduling option chosen, set by using the OMP_SCHEDULE environment variable, can 
significantly affect the performance of user's program depending on the workload of the system 
during execution. If OMP_SCHEDULE is not set, the default behavior depends on implementation. 
Please refer to OpenMP specifications on schedule type and chunk.

4. To set and control the number of threads to use for parallel region and nested parallel region by 
using the OMP_NUM_THREADS and OMP_NESTED environment variables. If OMP_NUM_THREADS 
and OMP_NESTED are not set, the default behavior depends on the implementation. Thus, all com-
puting resources may be used, affecting other applications' performance on the system. Please refer 
to OpenMP specifications for more information.

5. To parallelize the evaluation of user-supplied functions in routines that use them, e.g. in the genetic 
algorithm routines.

In this last case, the user must explicitly signal to the Library that the user-supplied functions themselves are 
thread-safe, or by default the user’s function(s) will not evaluate in parallel. The utility imsls_omp_options 
allows the user to assert that all routines passed to the library are thread-safe.
16
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Thread safety implies that function(s) may be executed simultaneously by multiple threads and still function cor-
rectly. Requiring that user-supplied functions be thread-safe is crucial, because the different threads spawned by 
OpenMP may call user-supplied functions simultaneously, and/or in an arbitrary order, and/or with differing 
inputs. Care must therefore be taken to ensure that the parallelized algorithm acts in the same way as its serial 
“ancestor”. Functions whose results depend on the order in which they are executed are not thread-safe and are 
thus not good candidates for parallelization; neither are functions which access and modify global data.

Specifications of the OpenMP standards are provided at (http://www.openmp.org/specifications/). 
17
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Vendor Supplied Libraries Usage
The IMSL C Numerical Library contains functions which may take advantage of functions in vendor supplied 
libraries such as Intel’s® Math Kernel Library (MKL) or Sun’s™ High Performance Library. Functions in the vendor 
supplied libraries are finely tuned for performance to take full advantage of the environment for which they are 
supplied. For these functions, the user of the IMSL C Numerical Library has the option of linking to code which is 
based on either the IMSL legacy functions or the functions in the vendor supplied library. The following icon in the 
function documentation alerts the reader when this is the case:

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in the 
online README file of the product distribution.
18
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C++ Usage
IMSL C Numerical Library functions can be used in both C and C++ applications. It is also possible to wrap library 
functions into C++ classes. 

The function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit test, using a user defined 
cumulative distribution (CDF) function. For C++ usage the user defined function is defined as a member function 
of the abstract class CdfFunction defined as follows:

#include <imsls.h>
#include <math.h>
#include <stdio.h>
class CdfFunction
{
public:
    virtual float cdf(float x) = 0;
};

The function imsls_f_chi_squared_test is wrapped as the C++ class ChiSquaredTest. This implementa-
tion uses the optional argument, IMSLS_FCN_W_DATA, to call local_function which in turn calls the 
method cdf to evaluate the user defined CDF function. For simplicity, this implementation only wraps a single 
optional argument, IMSLS_CHI_SQUARED, the chi-squared test statistic. More could be included in a similar 
manner.

#include <imsl.h>
class ChiSquaredTest
{
private:
    int    m_nObservations, m_nCategories;
public:
    float  m_chi_squared;
    ChiSquaredTest(int nObservations, int nCategories);
    float  test(CdfFunction *Cdf, float *x);
};
static float local_function(float x, void *data)
{
    CdfFunction *Cdf = (CdfFunction*)data;
    return Cdf->cdf(x);
}
ChiSquaredTest:: ChiSquaredTest (int nObservations, int nCategories)
{
    m_nObservations = nObservations;
    m_nCategories = nCategories;
}
float ChiSquaredTest::test(CdfFunction *Cdf, float *x)
{
    float  result;
19
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    result = imsls_f_chi_squared_test(
        NULL, m_nObservations, m_nCategories, x,
        IMSLS_FCN_W_DATA, local_function, Cdf,
        IMSLS_CHI_SQUARED, &m_chi_squared,
        0);
    if (imsls_error_type() >= 3)
    {
        throw imsls_error_message();
    }
    return result;
}

To use ChiSquaredTest the user defined CDF function must be defined as the method cdf in a class that 
extends FcnCdfFunction. The following class, NormalCdf, defines this as the normal cdf:

class NormalCdf : public CdfFunction
{
public:
    NormalCdf();
    float cdf(float x);
};
NormalCdf::NormalCdf()
{
}
float NormalCdf::cdf(float x)
{
    return imsls_f_normal_cdf(x);
}

The following is an example of the use of these classes. Since ChiSquaredTest throws an exception on fatal 
or terminal IMSL errors, printing and stopping on these errors is turned off by a call to imsls_error_options. 
Also, since the user defined function is thread-safe, a call is made to imsls_omp_options to declare this. With 
this setting, the chi-squared test code will use OpenMP to evaluate the cdf function in parallel. Both of these calls 
need be made once per run.

int main()
{
    imsls_error_options(
        IMSLS_SET_PRINT, IMSLS_FATAL, 0,
        IMSLS_SET_PRINT, IMSLS_TERMINAL, 0,
        IMSLS_SET_STOP, IMSLS_FATAL, 0,
        IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
        0);
    imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
    int nCategories = 10;
    int nObservations = 1000;
    imsls_random_seed_set(123457);
    float *x = imsls_f_random_normal(nObservations, 0);
    NormalCdf *normalCdf = new NormalCdf();
    ChiSquaredTest *chiSquaredTest =
        new ChiSquaredTest(nObservations, nCategories);
    float p_value = chiSquaredTest->test(normalCdf, x);
20
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    printf("p-value    = %g\n", p_value);
    printf("chi-squared = %g\n", chiSquaredTest->m_chi_squared);
}

Output

p-value =0.154603
chi-squared =13.1806
21
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Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the word array is used to refer to its 
representation as a C data structure. In the following list of array types, the C Stat Library functions require input 
consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-major 
order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For example, in solving linear 
regression, the pointer points to the estimated coefficients. Normally, the input array values are not changed by 
the functions.

In the C Stat Library, an array is a pointer to a contiguous block of data. An array is not a pointer to a pointer to the 
rows of the matrix. Typical declarations are as follows:

float *a ={1, 2, 3, 4}; 
float b[2][2] ={1, 2, 3, 4}; 
float c[] ={1, 2, 3, 4};

General Mode
A general matrix is a square n × n matrix. The data type of a general array can be int, float, or double.

Rectangular Mode
A rectangular matrix is an m × n matrix. The data type of a rectangular array can be int, float, or double.

Symmetric Mode
A symmetric matrix is a square n × n matrix A, such that AT =A. (The matrix AT is the transpose of A.) The data type 
of a symmetric array can be int, float, or double.
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Basic Statistics

Functions
Simple Summary Statistics

Univariate summary statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simple_statistics     25
Computes empirical quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . empirical_quantiles     35
Mean and variance inference 

for a single normal population. . . . . . . . . . . . . . . . . . . . . . . . . . . normal_one_sample     38
Inferences for two normal populations. . . . . . . . . . . . . . . . . . . . . . . . normal_two_sample     43

Tabulate, Sort, and Rank
Tally observations into a one-way frequency table . . . . . . . . . . . . . . . . . . . table_oneway     55
Tally observations into a two-way frequency table  . . . . . . . . . . . . . . . . . . . .table_twoway     60
Sort data with options to tally cases 

into a multi-way frequency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sort_data     66
Ranks, normal scores, or exponential scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ranks     75
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Usage Notes
The functions for computations of basic statistics generally have relatively simple arguments. In most cases, the 
first required argument is the number of observations. The data are input in either a one- or two-dimensional 
array. As usual, when a two-dimensional array is used, the rows contain observations and the columns represent 
variables. Most of the functions in this chapter allow for missing values. Missing value codes can be set by using 
function imsls_f_machine, described in Chapter 15, Utilities. 

Several functions in this chapter perform statistical tests. These functions generally return a “p-value” for the test, 
often as the return value for the C function. The p-value is between 0 and 1 and is the probability of observing 
data that would yield a test statistic as extreme or more extreme under the assumption of the null hypothesis. 
Hence, a small p-value is evidence for the rejection of the null hypothesis.
24
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simple_statistics
Computes basic univariate statistics.

Synopsis
#include <imsls.h>
float *imsls_f_simple_statistics (int n_observations, int n_variables, float x[], ..., 0)

The type double function is imsls_d_simple_statistics.

Required Arguments
int n_observations  (Input)

Number of observations.

int n_variables  (Input)
Number of variables.

float x[]  (Input)
Array of size n_observations × n_variables containing the data matrix.

Return Value
A pointer to an array containing some simple statistics for each of the columns in x. If IMSLS_MEDIAN and 
IMSLS_MEDIAN_AND_SCALE are not used as optional arguments, the size of the matrix is 
14 × n_variables. The columns of this matrix correspond to the columns of x, and the rows contain the fol-
lowing statistics:

Row Statistic

0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)
25
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_simple_statistics (int n_observations, int n_variables, float x[],

IMSLS_CONFIDENCE_MEANS, float confidence_means,
IMSLS_CONFIDENCE_VARIANCES, float confidence_variances,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_STAT_COL_DIM, int stat_col_dim,
IMSLS_IDO, int ido,
IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE,
IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_RETURN_USER, float simple_statistics[],
0)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined) If the coefficient of variation is 
not defined, 0 is returned.

9 number of observations (the counts)

10 lower confidence limit for the mean (assuming normality) The default is 
a 95−percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality) The default 
is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality)

Row Statistic
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Optional Arguments
IMSLS_CONFIDENCE_MEANS, float confidence_means  (Input)

Confidence level for a two-sided interval estimate of the means (assuming normality) in percent. 
Argument confidence_means must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. 
For a one-sided confidence interval with confidence level c, set 
confidence_means = 100.0 − 2(100 − c). If IMSLS_CONFIDENCE_MEANS is not specified, a 
95-percent confidence interval is computed.

IMSLS_CONFIDENCE_VARIANCES, float confidence_variances  (Input)
The confidence level for a two-sided interval estimate of the variances (assuming normality) in per-
cent. The confidence intervals are symmetric in probability (rather than in length). For a one-sided 
confidence interval with confidence level c, set confidence_means = 100.0 − 2(100 − c). If 
IMSLS_CONFIDENCE_VARIANCES is not specified, a 95-percent confidence interval is 
computed.

IMSLS_X_COL_DIM, int x_col_dim  (Input)
Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_STAT_COL_DIM, int stat_col_dim  (Input)
Column dimension of the returned value array, or if IMSLS_RETURN_USER is specified, the column 
dimension of array simple_statistics.
Default: stat_col_dim = n_variables

IMSLS_IDO, int ido  (Input)
Processing option.
The argument ido must be one of 0, 1, 2, or 3. If ido = 0 (the default), all of the observations are 
input during one invocation. If ido = 1, 2, or 3, blocks of rows of the data can be processed sequen-
tially in separate invocations of imsls_f_simple_statistics; with this option, it is not a 
requirement that all observations be memory resident, thus enabling one to handle large data sets.

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be made. 
Initialization and updating for the n_observations observations of x 
will be performed.
27
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Default: ido =  0

IMSLS_MEDIAN, or

IMSLS_MEDIAN_AND_SCALE
Exactly one of these optional arguments can be specified in order to indicate the additional simple 
robust statistics to be computed. If IMSLS_MEDIAN is specified, the medians are computed and 
stored in one additional row (row number 14) in the returned matrix of simple statistics. If 
IMSLS_MEDIAN_AND_SCALE is specified, the medians, the medians of the absolute deviations 
from the medians, and a simple robust estimate of scale are computed, then stored in three addi-
tional rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

IMSLS_MEDIAN or IMSLS_MEDIAN_AND_SCALE can be specified only when ido is equal to 0.

IMSLS_MISSING_LISTWISE, or

IMSLS_MISSING_ELEMENTWISE
If IMSLS_MISSING_ELEMENTWISE is specified, all non missing data for any variable is used in 
computing the statistics for that variable. If IMSLS_MISSING_LISTWISE is specified and if an 
observation (row of x) contains a missing value, the observation is excluded from computations for 
all variables. The default is IMSLS_MISSING_LISTWISE. In either case, if weights and/or frequen-
cies are specified and the value of the weight and/or frequency is missing, the observation is 
excluded from computations for all variables.

IMSLS_FREQUENCIES, float frequencies[]  (Input)
Array of length n_observations containing the frequency for each observation.
Default: Each observation has a frequency of 1

IMSLS_WEIGHTS, float weights[]  (Input)
Array of length n_observations containing the weight for each observation.
Default: Each observation has a weight of 1

2 This is an intermediate invocation; updating for the n_observations 
observations of x will be performed.

3 This is the final invocation of this function. Updating for the data in x 
and wrap-up computations are performed. Workspace is released. No 
further invocations of imsls_f_simple_statistics with ido greater 
than 1 should be made without first invoking 
imsls_f_simple_statistics with ido = 1.

ido Action
28



 Basic Statistics         simple_statistics
IMSLS_RETURN_USER, float simple_statistics[]  (Output)
User-supplied array containing the matrix of statistics. If neither IMSLS_MEDIAN nor 
IMSLS_MEDIAN_AND_SCALE is specified, the matrix is 14 × n_variables. If IMSLS_MEDIAN 
is specified, the matrix is 15 × n_variables. If IMSLS_MEDIAN_AND_SCALE is specified, the 
matrix is 17 × n_variables.

Description
For the data in each column of x, imsls_f_simple_statistics computes the sample mean, variance, 
minimum, maximum, and other basic statistics. This function also computes confidence intervals for the mean 
and variance (under the hypothesis that the sample is from a normal population).

Frequencies are interpreted as multiple occurrences of the other values in the observations. In other words, a 
row of x with a frequency variable having a value of 2 has the same effect as two rows with frequencies of 1. The 
total of the frequencies is used in computing all the statistics based on moments (mean, variance, skewness, and 
kurtosis). Weights are not viewed as replication factors. The sum of the weights is used only in computing the 
mean (the weighted mean is used in computing the central moments). Both weights and frequencies can be 0, 
but neither can be negative. In general, a 0 frequency means that the row is to be eliminated from the analysis; 
no further processing or error checking is done on the row. A weight of 0 results in the row being counted, and 
updates are made of the statistics.

The definitions of some of the statistics are given below in terms of a single variable x of which the i-th datum is 
xi.
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Variance
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Excess or Kurtosis

Minimum

Maximum

Range

Coefficient of Variation

Median

Median Absolute Deviation
MAD = median {|xi − median {xj}|}

Simple Robust Estimate of Scale

where Φ−1(3/4) ≈ 0.6745 is the inverse of the standard norm

istribution function evaluated at 3/4. This standardizes MAD in order to make the scale estimate consistent at the 
normal distribution for estimating the standard deviation (Huber 1981, pp. 107−108).
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Examples

Example 1

Data from Draper and Smith (1981) are used in this example, which includes 5 variables and 13 observations.

#include <imsls.h>
#define N_VARIABLES            5
#define N_OBSERVATIONS        13
int main()
{
   float      *simple_statistics;
   float      x[] = {
        7., 26., 6., 60., 78.5,
        1., 29., 15., 52., 74.3,
       11., 56., 8., 20., 104.3,
       11., 31., 8., 47., 87.6,
        7., 52., 6., 33., 95.9,
       11., 55., 9., 22., 109.2,
        3., 71., 17., 6., 102.7,
        1., 31., 22., 44., 72.5,
        2., 54., 18., 22., 93.1,
       21., 47., 4., 26., 115.9,
        1., 40., 23., 34., 83.8,
       11., 66., 9., 12., 113.3,
       10., 68., 8., 12., 109.4};
   char       *row_labels[] = {
       "means", "variances", "std. dev", "skewness", "kurtosis", 
       "minima", "maxima", "ranges", "C.V.", "counts", "lower mean", 
       "upper mean", "lower var", "upper var"};
   simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS,
       N_VARIABLES, x, 0);
   imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
       simple_statistics,
       IMSLS_ROW_LABELS, row_labels,
       IMSLS_WRITE_FORMAT, "%7.3f", 0);
}

Output

               * * * Statistics * * *
                 1       2       3       4       5
means        7.462  48.154  11.769  30.000  95.423
variances   34.603 242.141  41.026 280.167 226.314
std. dev     5.882  15.561   6.405  16.738  15.044
skewness     0.688  -0.047   0.611   0.330  -0.195
kurtosis     0.075  -1.323  -1.079  -1.014  -1.342
minima       1.000  26.000   4.000   6.000  72.500
maxima      21.000  71.000  23.000  60.000 115.900
ranges      20.000  45.000  19.000  54.000  43.400
C.V.         0.788   0.323   0.544   0.558   0.158
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counts      13.000  13.000  13.000  13.000  13.000
lower mean   3.907  38.750   7.899  19.885  86.332
upper mean  11.016  57.557  15.640  40.115 104.514
lower var   17.793 124.512  21.096 144.065 116.373
upper var   94.289 659.817 111.792 763.434 616.688

Example 2

Continuing with Example 1 data, the example below invokes the imsls_f_simple_statistics function 
using values of IDO greater than 0.

#include <imsls.h>
#define N_VARIABLES           5
#define N_OBSERVATIONS_BLOCK_1        2
#define N_OBSERVATIONS_BLOCK_2        8
#define N_OBSERVATIONS_BLOCK_3        3
int main()
{
   float      *simple_statistics;   
   float      x1[] = { 7., 26., 6., 60., 78.5,
                        1., 29., 15., 52., 74.3}; 
   float      x2[] = {11., 56., 8., 20., 104.3,
                       11., 31., 8., 47., 87.6,
                        7., 52., 6., 33., 95.9,
                       11., 55., 9., 22., 109.2,
                        3., 71., 17., 6., 102.7,
                        1., 31., 22., 44., 72.5,
                        2., 54., 18., 22., 93.1,
                       21., 47., 4., 26., 115.9}; 
   float      x3[] = { 1., 40., 23., 34., 83.8,
                       11., 66., 9., 12., 113.3,
                       10., 68., 8., 12., 109.4}; 
   char       *row_labels[] = {
       "means", "variances", "std. dev", "skewness","kurtosis", 
       "minima", "maxima", "ranges", "C.V.", "counts", "lower mean", 
       "upper mean", "lower var", "upper var"};
   simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS_BLOCK_1,
                       N_VARIABLES, x1, 
                       IMSLS_IDO, 1, 0);
   simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS_BLOCK_2,
                       N_VARIABLES, x2, 
                       IMSLS_IDO, 2, 0);
   simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS_BLOCK_3,
                       N_VARIABLES, x3, 
                       IMSLS_IDO, 3, 0);
   imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
                       simple_statistics,
                       IMSLS_ROW_LABELS, row_labels,
                       IMSLS_WRITE_FORMAT, "%7.3f", 0);
32



 Basic Statistics         simple_statistics
}

Output

               * * * Statistics * * *
                 1       2       3       4       5
means        7.462  48.154  11.769  30.000  95.423
variances   34.603 242.141  41.026 280.167 226.314
std. dev     5.882  15.561   6.405  16.738  15.044
skewness     0.688  -0.047   0.611   0.330  -0.195
kurtosis     0.075  -1.323  -1.079  -1.014  -1.342
minima       1.000  26.000   4.000   6.000  72.500
maxima      21.000  71.000  23.000  60.000 115.900
ranges      20.000  45.000  19.000  54.000  43.400
C.V.         0.788   0.323   0.544   0.558   0.158
counts      13.000  13.000  13.000  13.000  13.000
lower mean   3.907  38.750   7.899  19.885  86.332
upper mean  11.016  57.557  15.640  40.115 104.514
lower var   17.793 124.512  21.096 144.065 116.373
upper var  94.289  659.816  111.792  763.434  616.688

Warning Errors

IMSLS_ROW_OF_X_CONTAINED_NAN At least one row of “x” contained NaN (a missing 
value).

IMSLS_VAR_IN_X_CONTAINED_NAN At least one observation for a variable in “x” con-
tained NaN (a missing value). Missing observations 
were excluded from calculations for those variables.

IMSLS_CONSTANT_OBSERVATIONS The observations on variable(s) are constant.

IMSLS_LESS_THAN_TWO_VALID_OBS Fewer than two valid observations are present. The 
corresponding statistics are set to NaN (not a num-
ber), (except for the mean, which is not correct if no 
valid observations).

IMSLS_VARIANCE_UNDERFLOW The variance for this variable underflows. Therefore, 
the variance and standard deviation are set to 0, 
and the skewness and kurtosis are set to NaN (not a 
number)

IMSLS_NEGATIVE_VARIANCE The variance is negative for the variable. The corre-
sponding confidence limits for the variance are set 
to NaN (not a number).

IMSLS_NOT_ENOUGH_OBSERVATIONS Fewer than two valid observations are present for 
the variable. The corresponding statistics are set to 
NaN (not a number), (except for the mean, which is 
not correct if no valid observations are present, or is 
correct if one observation is present)
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Fatal Errors

IMSLS_MIN_GREATER_THAN_MAX The maximum value is less than the minimum 
value. The corresponding statistics are set to NaN 
(not a number).

IMSLS_MAX_LESS_THAN_MIN The maximum value is less than the minimum 
value. The corresponding statistics are set to NaN 
(not a number).

IMSLS_SUM_OF_WEIGHTS_ZERO The sum of the weights for variable is zero. The sta-
tistics, except for the minima, maxima, ranges and 
counts, are set to NaN (not a number).

IMSLS_ZERO_SUM_OF_WEIGHTS The sum of the weights is zero. The statistics, except 
for the minima, maxima, ranges and counts, are set 
to NaN (not a number).

IMSLS_LESS_THAN_TWO_VALID_OBS Fewer than two valid observations are present. The 
corresponding statistics are set to NaN (not a num-
ber), (except for the mean, which is not correct if no 
valid observations).

IMSLS_FOURTH_ORDER_UNDERFLOW Since the range of variable is very small, the fourth 
order moment for this variable underflows. There-
fore, the kurtosis is set to NaN (not a number).

IMSLS_HIGH_ORDER_UNDERFLOW Since the range of variable %(I1) is very small, the 
higher order moments for this variable underflow. 
Therefore, the skewness and kurtosis are set to NaN 
(not a number).

IMSLS_CHI_SQUARED_STAT_ERROR An error occurred in determining the chi-squared 
statistic. The lower confidence limit for the variance 
is set to NaN (not a number).

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by 
invoking the function with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the 
previous analysis is terminated by invoking the func-
tion with “ido” = 3.

IMSLS_BAD_N_VARIABLES “n_variables” = #. The number of variables must 
be the same in separate function invocations.
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empirical_quantiles
Computes empirical quantiles.

Synopsis
#include <imsls.h>
float *imsls_f_empirical_quantiles (int n_observations, float x[],int n_qprop, 

float qprop[], ..., 0)

The type double function is imsls_d_empirical_quantiles.

Required Arguments
int n_observations  (Input)

Number of observations.

float x[](Input)
An array of length n_observations containing the data. 

int n_qprop  (Input)
Number of empirical quantiles requested. 

float qprop[ ] (Input)
An array of length n_qprop containing the desired quantile proportions. Each value must lie in the 
interval (0,1). 

Return Value
The function imsls_f_empirical_quantiles returns an array of length n_qprop containing the empiri-
cal quantiles corresponding to the input proportions in qprop. 

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_empirical_quantiles(int n_observations, float x[], int n_qprop, 
float qprop[], 
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IMSLS_N_MISSING, int *n_miss,
IMSLS_XLO, float **xlo,
IMSLS_XLO_USER, float xlo[],
IMSLS_XHI, float **xhi,
IMSLS_XHI_USER, float xhi[],
IMSLS_RETURN_USER, float p_q[],
0)

Optional Arguments
IMSLS_N_MISSING, int *n_miss (Output)

The number of missing values, if any, in x. 

IMSLS_XLO, float **xlo (Output)
An array of length n_qprop containing the largest element of x less than or equal to the desired 
quantile.

IMSLS_XLO_USER, float xlo[] (Output)
Storage for xlo provided by the user. See IMSLS_XLO above.

IMSLS_XHI, float **xhi (Output)
An array of length n_qprop containing the smallest element of x greater than or equal to the 
desired quantile. 

IMSLS_XHI_USER, float xhi[] (Output)
Storage for xhi provided by the user. See IMSLS_XHI above.

IMSLS_RETURN_USER, float p_q[] (Output)
A user-allocated array of length n_qprop. Upon completion p_q contains the empirical quantiles 
corresponding to the input proportions in qprop.

Description
The function imsls_f_empirical_quantiles determines the empirical quantiles, as indicated in the vec-
tor qprop, from the data in x. imsls_f_empirical_quantiles first checks to see if x is sorted; if x is not 
sorted, the routine does either a complete or partial sort, depending on how many order statistics are required 
to compute the quantiles requested.

This function returns the empirical quantiles and, for each quantile, the two order statistics from the sample that 
are at least as large and at least as small as the quantile. For a sample of size n, the quantile corresponding to the 
proportion p is defined as
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where j = ⌊p(n + 1)⌋, f = p(n + 1) − j, and x(j) is the j-th order statistic, if 1 ≤ j < n; otherwise, the empirical quantile 

is the smallest or largest order statistic.

Example
In this example, five empirical quantiles from a sample of size 30 are obtained. Notice that the 0.5 quantile corre-
sponds to the sample median. The data are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the 
measurements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive 
years.

#include <imsls.h>
#include <stdio.h>
int main(){
       float x[30] = {
              0.77, 1.74, 0.81, 1.20, 1.95, 
              1.20, 0.47, 1.43, 3.37, 2.20, 
              3.00, 3.09, 1.51, 2.10, 0.52, 
              1.62, 1.31, 0.32, 0.59, 0.81, 
              2.81, 1.87, 1.18, 1.35, 4.75, 
              2.48, 0.96, 1.89, 0.90, 2.05};
       float qprop[5] = {
              0.01, 0.5, 0.9, 0.95, 0.99};
       float *p_xlo, *p_xhi, *p_q;
       int i;
       p_q = imsls_f_empirical_quantiles(30, x, 5, qprop, 
                     IMSLS_XLO, &p_xlo, 
                     IMSLS_XHI, &p_xhi, 
                     0);
       printf("          Smaller  Empirical  Larger\n");
       printf("Quantile   Datum    Quantile   Datum\n");
       for(i=0; i<5; i++){
              printf("  %4.2f   %7.2f   %7.2f   %7.2f\n", 
              qprop[i], p_xlo[i], p_q[i], p_xhi[i]);
       }
}

Output

         Smaller Empirical Larger
Quantile  Datum   Quantile  Datum
  0.01     0.32    0.32      0.32
  0.50     1.43    1.47      1.51
  0.90     3.00    3.08      3.09
  0.95     3.37    3.99      4.75
  0.99     4.75    4.75      4.75

Q p = 1 − f x j + fx j+1
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normal_one_sample
Computes statistics for mean and variance inferences using a sample from a normal population.

Synopsis
#include <imsls.h>
float imsls_f_normal_one_sample (int n_observations, float x[], ..., 0)

The type double function is imsls_d_normal_one_sample.

Required Arguments
int n_observations  (Input)

Number of observations.

float x[]  (Input)
Array of length n_observations.

Return Value
The mean of the sample.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normal_one_sample (int n_observations, float x[],

IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_MEAN, float *lower_limit, float *upper_limit,
IMSLS_STD_DEV, float *std_dev,
IMSLS_T_TEST, int *df, float *t, float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,float *p_value,
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IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value,
0)

Optional Arguments
IMSLS_CONFIDENCE_MEAN, float confidence_mean  (Input)

Confidence level (in percent) for two-sided interval estimate of the mean. Argument 
confidence_mean must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent), set 
confidence_mean = 100.0 − 2.0 × (100.0 − c). If IMSLS_CONFIDENCE_MEAN is not specified, 
a 95-percent confidence interval is computed.

IMSLS_CI_MEAN, float *lower_limit, float *upper_limit  (Output)
Argument lower_limit contains the lower confidence limit for the mean, and argument 
upper_limit contains the upper confidence limit for the mean.

IMSLS_STD_DEV, float *std_dev  (Output)
Standard deviation of the sample.

IMSLS_T_TEST, int *df, float *t, float *p_value  (Output)
Argument df is the degrees of freedom associated with the t test for the mean, t is the test statistic, 
and p_value is the probability of a larger t in absolute value. The t test is a test, against a two-sided 
alternative, of the hypothesis μ = μ0, where μ0 is the null hypothesis value as described in 
IMSLS_T_TEST_NULL.

IMSLS_T_TEST_NULL, float mean_hypothesis_value  (Input)
Null hypothesis value for t test for the mean.
Default: mean_hypothesis_value = 0.0

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance  (Input)
Confidence level (in percent) for two-sided interval estimate of the variances. Argument 
confidence_variance must be between 0.0 and 100.0 and is often 90.0, 95.0, 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent), set 
confidence_variance = 100.0 − 2.0 × (100.0 − c). If this option is not used, a 95-percent con-
fidence interval is computed.

IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit  (Output)
Contains the lower and upper confidence limits for the variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value  (Output)
Argument df is the degrees of freedom associated with the chi-squared test for variances, 
chi_squared is the test statistic, and p_value is the probability of a larger chi-squared. The chi-
squared test is a test of the hypothesis
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where

is the null hypothesis value as described in IMSLS_CHI_SQUARED_TEST_NULL.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value  (Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

Description
Statistics for mean and variance inferences using a sample from a normal population are computed, including 
confidence intervals and tests for both mean and variance. The definitions of mean and variance are given below. 
The summation in each case is over the set of valid observations, based on the presence of missing values in the 
data.

Mean, return value

Standard deviation, std_dev

The t statistic for the two-sided test concerning the population mean is given by

where s and    are given above. This quantity has a T distribution with n − 1 degrees of freedom.

The chi-squared statistic for the two-sided test concerning the population variance is given by

where s is given above. This quantity has a Χ2 distribution with n − 1 degrees of freedom.

σ2 = σ0
2
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2
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n
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─ 2

n − 1
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s / n
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Examples 

Example 1

This example uses data from Devore (1982, p. 335), which is based on data published in the Journal of Materials. 
There are 15 observations; the mean is the only output. 

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N_OBSERVATIONS 15
   float mean;
   float x[N_OBSERVATIONS] = {
       26.7, 25.8, 24.0, 24.9, 26.4,
       25.9, 24.4, 21.7, 24.1, 25.9,
       27.3, 26.9, 27.3, 24.8, 23.6
   };
   /* Perform analysis */
   mean = imsls_f_normal_one_sample(
       N_OBSERVATIONS, x,
       0);
   /* Print results */
   printf("Sample Mean = %5.2f\n", mean);
}

Output

Sample Mean = 25.3

Example 2

This example uses the same data as the initial example. The hypothesis H0: μ = 20.0 is tested. The extremely large 

t value and the correspondingly small p-value provide strong evidence to reject the null hypothesis.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N_OBSERVATIONS 15
   int    df;
   float mean, s, lower_limit, upper_limit, t, p_value;
   static float x[N_OBSERVATIONS] = {
       26.7, 25.8, 24.0, 24.9, 26.4,
       25.9, 24.4, 21.7, 24.1, 25.9,
       27.3, 26.9, 27.3, 24.8, 23.6
   };
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   /* Perform analysis +*/
   mean = imsls_f_normal_one_sample(
       N_OBSERVATIONS, x,
       IMSLS_STD_DEV, &s,
       IMSLS_CI_MEAN, &lower_limit, &upper_limit,
       IMSLS_T_TEST_NULL, 20.0,
       IMSLS_T_TEST, &df, &t, &p_value,
       0);
   /* Print results */
   printf("Sample Mean              = %5.2f\n", mean);
   printf("Sample Standard Deviation = %5.2f\n", s);
   printf("95%% CI for the mean is (%5.2f,%5.2f)\n", lower_limit,
       upper_limit);
   printf("df = %3d\n", df);
   printf("t = %5.2f\n", t);
   printf("p-value = %8.5f\n", p_value);
}

Output

Sample Mean               = 25.31
Sample Standard Deviation = 1.58
95% CI for the mean is (24.44,26.19)
df = 14
t = 13.03
p-value = 0.00000
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normal_two_sample
Computes statistics for mean and variance inferences using samples from two normal populations.

Synopsis
#include <imsls.h>
float imsls_f_normal_two_sample (int n1_observations, float x1[], 

int n2_observations, float x2[], ..., 0)

The type double function is imsls_d_normal_two_sample.

Required Arguments
int n1_observations  (Input)

Number of observations in the first sample, x1.

float x1[]  (Input)
Array of length n1_observations containing the first sample.

int n2_observations  (Input)
Number of observations in the second sample, x2.

float x2[]  (Input)
Array of length n2_observations containing the second sample.

Return Value
Difference in means, x1_mean − x2_mean.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normal_two_sample (int n1_observations, float x1[], 

int n2_observations, float x2[],

IMSLS_MEANS, float *x1_mean, float *x2_mean,
IMSLS_CONFIDENCE_MEAN, float confidence_mean,
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IMSLS_INTERMEDIATE_RESULTS, float stats[],
IMSLS_UNION, float stats1[], float stats2[],
IMSLS_FINAL_RESULTS, float final_stats[],
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, float *upper_limit,
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, float *upper_limit
IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value,
IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_POOLED_VARIANCE, float *pooled_variance,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value,
IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev,
IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit,
IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F, float *p_value,
0)

Optional Arguments
IMSLS_MEANS, float *x1_mean, float *x2_mean  (Output)

Means of the first and second samples.

IMSLS_CONFIDENCE_MEAN, float confidence_mean  (Input)
Confidence level for two-sided interval estimate of the mean of x1 minus the mean of x2, in percent. 
Argument confidence_mean must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For 
a one-sided confidence interval with confidence level c (at least 50 percent), set 
confidence_mean = 100.0 − 2.0 × (100.0 − c).

Default: confidence_mean = 95.0

IMSLS_INTERMEDIATE_RESULTS, float stats[]   (Input/Output)
Array of length 25 containing intermediate results. On input, stats contains intermediate statistics 
about a previous function invocation. When invoking the function the first time, set all stats ele-
ments to 0.0. On output, imsls_f_normal_two_sample combines the results on the current 
data sets and the intermediate statistics in stats.

NOTE: The following three optional arguments allow the analysis to be applied to subsets of 
the original data sets and then later combined for final results. These optional arguments may 
be useful when analyzing data sets too large to fit into memory, and also allow subsets of the 
data to be analyzed in separate threads and later combined for final results.
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This optional argument can be applied to separate blocks of data when physical memory cannot hold 
the entire data sets.

Note that when IMSLS_INTERMEDIATE_RESULTS optional argument is used, 
imsls_f_normal_two_sample function outputs are valid only if IMSLS_FINAL_RESULTS 
optional argument is specified to calculate the final statistics. See Example 3.

Default: stats = NULL.

IMSLS_UNION, float stats1[], float stats2[]   (Input)
stats1 and stats2 are arrays of length 25 containing the intermediate results about previous 
computations. stats1 and stats2 are the variables provided to the 
IMSLS_INTERMEDIATE_RESULTS optional argument in previous function invocations.

imsls_f_normal_two_sample combines the results on the current data sets and the interme-
diate statistics in stats1 and stats2.  stats1 and stats2 can be NULL. See Example 3.

This option would typically be used in conjunction with the IMSLS_INTERMEDIATE_RESULTS 
option to process a large data set using separate threads or compute nodes. For example, a data set 
could be split into two subsets, where each subset of data is passed into a separate thread or com-
pute node and processed through imsls_f_normal_two_sample with the 
IMSLS_INTERMEDIATE_RESULTS option. The output from each thread is then saved and input 
to a final call of imsls_f_normal_two_sample using option IMSLS_UNON and 
IMSLS_FINAL_RESULTS.

Default: stats1 = NULL and stats2 = NULL.

IMSLS_FINAL_RESULTS, float final_stats[]   (Output)
Array of length 25 containing the final statistics. See Example 3.

Elements of final_stats are:

index final_stats[i]
0 Mean of the first sample.

1 Mean of the second sample.

2 Variance of the first sample.

3 Variance of the second sample.

4 Number of observations in the first sample.

5 Number of observations in the second sample.

Note: final_stats[6] through final_stats[13] depend on the 
assumption of equal variances.

6 Pooled variance.

7 t value, assuming equal variances.
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IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, float *upper_limit  (Output)
Argument lower_limit contains the lower confidence limit, and upper_limit contains the 
upper limit for the mean of the first population minus the mean of the second, assuming equal 
variances. 

8 Probability of a larger t in absolute value, assuming nor-
mality, equal means, and equal variances.

9 Degrees of freedom assuming equal variances.

10 Lower confidence limit for the mean of the first popula-
tion minus the mean of the second, assuming equal 
variances.

11 Upper confidence limit for the mean of the first popula-
tion minus the mean of the second, assuming equal 
variances.

12 Lower confidence limit for the common variance.

13 Upper confidence limit for the common variance.

Note: final_stats[14] through final_stats[18] use approxima-
tions that do not depend on an assumption of equal variances.

14 t value, assuming unequal variances.

15 Approximate probability of a larger t in absolute value, 
assuming normality, equal means, and unequal 
variances.

16 Degrees of freedom assuming unequal variances, for 
Satterthwaite's approximation.

17 Approximate lower confidence limit for the mean of the 
first population minus the mean of the second, assum-
ing equal variances.

18 Approximate upper confidence limit for the mean of the 
first population minus the mean of the second, assum-
ing equal variances.

19 F value (greater than or equal to 1.0).

20 Probability of a larger F in absolute value, assuming nor-
mality and equal variances.

21 Lower confidence limit for the ratio of the variance of 
the first population to the second.

22 Upper confidence limit for the ratio of the variance of 
the first population to the second.

23 Number of missing values of first sample.

24 Number of missing values of second sample.

index final_stats[i]
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IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, float *upper_limit  (Output)
Argument lower_limit contains the approximate lower confidence limit, and upper_limit 
contains the approximate upper limit for the mean of the first population minus the mean of the sec-
ond, assuming unequal variances.

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value  (Output)
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the description of 
IMSLS_T_TEST_NULL.) Argument df contains the degrees of freedom, argument t contains the t 
value, and argument p_value contains the probability of a larger t in absolute value, assuming 
equal means. This test assumes equal variances.

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value  (Output)
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the description of 
IMSLS_T_TEST_NULL.) Argument df contains the degrees of freedom for Satterthwaite’s approx-
imation, argument t contains the t value, and argument p_value contains the approximate 
probability of a larger t in absolute value, assuming equal means. This test does not assume equal 
variances.

IMSLS_T_TEST_NULL, float mean_hypothesis_value  (Input)
Null hypothesis value for the t test. 

Default: mean_hypothesis_value = 0.0

IMSLS_POOLED_VARIANCE, float *pooled_variance  (Output)
Pooled variance for the two samples.

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance  (Input)
Confidence level for inference on variances. Under the assumption of equal variances, the pooled 
variance is used to obtain a two-sided confidence_variance percent confidence interval for 
the common variance if IMSLS_CI_COMMON_VARIANCE is specified. Without making the 
assumption of equal variances, the ratio of the variances is of interest. A two-sided 
confidence_variance percent confidence interval for the ratio of the variance of the first sam-
ple to that of the second sample is computed and is returned if IMSLS_CI_RATIO_VARIANCES 
is specified. The confidence intervals are symmetric in probability. 

Default: confidence_variance = 95.0

IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit  (Output)
Argument lower_limit contains the lower confidence limit, and upper_limit contains the 
upper limit for the common, or pooled, variance. 

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value  (Output)
The chi-squared test for 
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is the common, or pooled, variance, and 

is the null hypothesis value. (See description of IMSLS_CHI_SQUARED_TEST_NULL.) Argument 
df contains the degrees of freedom, argument chi_squared contains the chi-squared value, and 
argument p_value contains the probability of a larger chi-squared in absolute value, assuming 
equal means.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value  (Input)
Null hypothesis value for the chi-squared test.

Default: variance_hypothesis_value = 1.0

IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev  (Output)
Standard deviations of the first and second samples.

IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit  (Output)
Argument lower_limit contains the approximate lower confidence limit, and upper_limit 
contains the approximate upper limit for the ratio of the variance of the first population to the 
second.

IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F, float *p_value  (Output)
The F test for equality of variances. Argument df_numerator and df_denominator contain the 
numerator and denominator degrees of freedom, argument F contains the F test value, and argu-
ment p_value contains the probability of a larger F in absolute value, assuming equal variances.

Description
Function imsls_f_normal_two_sample computes statistics for making inferences about the means and 
variances of two normal populations, using independent samples in x1 and x2. For inferences concerning 
parameters of a single normal population, see function imsls_f_normal_one_sample.

Let μ1 and    be the mean and variance of the first population, and let μ2 and    be the corresponding quanti-

ties of the second population. The function contains test confidence intervals for difference in means, equality of 
variances, and the pooled variance.

The means and variances for the two samples are as follows:

σ2 = σ0
2 where σ2

σ0
2

σ1
2 σ2

2
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and

Inferences about the Means

The test that the difference in means equals a certain value, for example, μ0, depends on whether or not the vari-

ances of the two populations can be considered equal. If the variances are equal and 
mean_hypothesis_value equals 0, the test is the two-sample t test, which is equivalent to an analysis-of-
variance test. The pooled variance for the difference-in-means test is as follows:

The t statistic is as follows:

Also, the confidence interval for the difference in means can be obtained by specifying 
IMSLS_CI_DIFF_FOR_EQUAL_VARS.

If the population variances are not equal, the ordinary t statistic does not have a t distribution and several 
approximate tests for the equality of means have been proposed. (See, for example, Anderson and Bancroft 
1952, and Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the Fisher-Behrens test, 
based on Fisher’s concept of fiducial probability. A procedure used if IMSLS_T_TEST_FOR_UNEQUAL_VARS 
and/or IMSLS_CI_DIFF_FOR_UNEQUAL_VARS are specified is the Satterthwaite’s procedure, as suggested 
by H.F. Smith and modified by F.E. Satterthwaite (Anderson and Bancroft 1952, p. 83).

The test statistic is

where

Under the null hypothesis of μ1 − μ2 = c, this quantity has an approximate t distribution with degrees of freedom 

df (in IMSLS_T_TEST_FOR_UNEQUAL_VARS), given by the following equation:

x─1 = ∑ x1i / n1 ,x
─
2 = ∑ x2ix2i / n2

s1
2 = ∑(x1i − x

─
1)
2 / (n1 − 1), s2

2 = ∑(x2i − x
─
2)
2 / (n2 − 1)

s2 =
n1 − 1 s1 + n2 − 1 s2

n1 + n2 − 2

t =
x─1 − x

─
2 − μ0

s 1 / n1 + 1 / n2

t ′ = x─1 − x
─
2 − μ0 / sd

sd = s1
2 / n1 + s2

2 / n2
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Inferences about Variances

The F statistic for testing the equality of variances is given by   , where    is the larger of    and  

 . If the variances are equal, this quantity has an F distribution with n1 − 1 and n2 − 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide whether to use the regular t test 
or the modified tʹ on a single set of data. The modified tʹ (Satterthwaite’s procedure) is the more conservative 
approach to use if there is doubt about the equality of the variances.

Examples

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on arithmetic tests of two grade-
school classes. The question is whether a group taught by an experimental method has a higher mean score. 
Only the difference in means is output. The data are shown below.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N1_OBSERVATIONS 7

Scores for Standard Group Scores for Experimental Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

164

169

df =
sd
4

s1
2 / n1

2

n1 − 1
+

s2
2 / n2

2

n2 − 1

F = smax
2 / smin

2 smax
2 s1

2

s2
2
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#define N2_OBSERVATIONS 9
   float diff_means;
   float x1[N1_OBSERVATIONS] = {
       72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0
   };
   float x2[N2_OBSERVATIONS] = {
       111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0, 164.0, 169.0
   };
   /* Perform analysis */
   diff_means = imsls_f_normal_two_sample(
       N1_OBSERVATIONS, x1,
       N2_OBSERVATIONS, x2,
       0);
   /* Print results */
   printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
}

Output

x1_mean - x2_mean = -50.48

Example 2

The same data is used for this example as for the initial example. Here, the results of the t test are output. The 
variances of the two populations are assumed to be equal. It is seen from the output that there is strong reason 
to believe that the two means are different (t value of −4.804). Since the lower 97.5-percent confidence limit does 
not include 0, the null hypothesis is that μ1 ≤ μ 2 would be rejected at the 0.05 significance level. (The closeness 

of the values of the sample variances provides some qualitative substantiation of the assumption of equal 
variances.)

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9
   int   df;
   float diff_means, lower_limit, upper_limit, t, p_value, sp2;
   float x1[N1_OBSERVATIONS] = {
       72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0
   };
   float x2[N2_OBSERVATIONS] = {
       111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0, 164.0, 169.0
   };
   /* Perform analysis */
   diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,
       N2_OBSERVATIONS, x2,
       IMSLS_POOLED_VARIANCE, &sp2,
       IMSLS_CI_DIFF_FOR_EQUAL_VARS, &lower_limit, &upper_limit,
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       IMSLS_T_TEST_FOR_EQUAL_VARS, &df, &t, &p_value,
       0);
   /* Print results */
   printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
   printf("Pooled variance = %5.2f\n", sp2);
   printf("95%% CI for x1_mean - x2_mean is (%5.2f,%5.2f)\n",
       lower_limit, upper_limit);
   printf("df = %3d\n", df);
   printf("t = %5.2f\n", t);
   printf("p-value = %8.5f\n", p_value);
}

Output

x1_mean - x2_mean = -50.48
Pooled variance = 434.63
95% CI for x1_mean - x2_mean is (-73.01,-27.94)
df = 14
t = -4.80
p-value = 0.00028

Example 3

The same data is used for this example as for the initial example. This example illustrates the use of the 
IMSLS_INTERMEDIATE_RESULTS, IMSLS_UNION, and IMSLS_FINAL_RESULTS optional arguments 
with "x1" and "x2" divided into three sub-groups. Since there are more "x2" values than "x1" values, 
n1_observations is set to zero on later calls to the function.

This example demonstrates how the analysis can be applied to subsets of the original data sets and then later 
combined for final results. These techniques may be useful when analyzing data sets too large to fit into memory, 
and also allow subsets of the data to be analyzed in separate threads (though this example does not show the 
use of separate threads) and later combined for final results.

#include <imsls.h>
#include <stdio.h>
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9
int main()
{
    int n1, n2, i;
    float diff_means, pooled_variance;
    float x1[N1_OBSERVATIONS] = {
        72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0
    };
    float x2[N2_OBSERVATIONS] = {
        111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
        164.0, 169.0
    };
    float stats1[25], stats2[25], final_stats[25];
    /* Initialize variables. */
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    for (i = 0; i < 25; i++) {
        stats1[i] = 0.0;
        stats2[i] = 0.0;
        final_stats[i] = 0.0;
    }
    /* 
    ** Bring in first group of observations on x1 and x2.
    ** Save intermediate results into variable, stat1.
    **
    ** Total second group:
    **      n1_observations = 3, n2_observations = 3
    */
    /* First call using:  n1_observations = 2, n2_observations = 2 */   
    n1 = 2;
    n2 = 2;
    imsls_f_normal_two_sample(n1, x1, n2, x2,
        IMSLS_INTERMEDIATE_RESULTS, stats1,
        0);

    /* Second call using: n1_observations = 1, n2_observations = 1 */
    n1 = 1;
    n2 = 1;
    imsls_f_normal_two_sample(n1, &x1[2], n2, &x2[2],
        IMSLS_INTERMEDIATE_RESULTS, stats1,
        0);
    /* 
    ** Bring in second group of observations on x1 and x2.
    ** Save intermediate results into variable, stat2.
    **
    ** Total second group:
    **      n1_observations = 4, n2_observations = 4.
    */
    n1 = 4;
    n2 = 4;
    imsls_f_normal_two_sample(n1, &x1[3], n2, &x2[3],
        IMSLS_INTERMEDIATE_RESULTS, stats2,
        0);
    /* 
    ** Bring in third group of observations on x1 and x2
    ** and combine the results in variables, stats1 and stats2,
    ** from the first and second groups.
    **
    ** Total third group:
    **      n1_observations = 0, n2_observations = 2.
    */
    n1 = 0;
    n2 = 2;
    diff_means = imsls_f_normal_two_sample(n1, x1, n2, &x2[7],
        IMSLS_UNION, stats1, stats2,
        IMSLS_FINAL_RESULTS, final_stats,
        IMSLS_POOLED_VARIANCE, &pooled_variance,
        0);
    /* Print results */
    printf("x1_mean - x2_mean = %5.2f\n", diff_means);
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    printf("pooled variance   = %5.2f\n", pooled_variance);
}

Output

x1_mean - x2_mean = -50.48
pooled variance   = 434.63
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table_oneway
Tallies observations into a one-way frequency table.

Synopsis
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[],int n_intervals, ..., 0)

The type double function is imsls_d_table_oneway.

Required Arguments
int n_observations  (Input)

Number of observations.

float x[]  (Input)
Array of length n_observations containing the observations.

int n_intervals  (Input)
Number of intervals (bins).

Return Value
Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[], int n_intervals,

IMSLS_DATA_BOUNDS, float *minimum, float *maximum, or
IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound, or
IMSLS_CUTPOINTS, float cutpoints[], or
IMSLS_CLASS_MARKS, float class_marks[], 
IMSLS_RETURN_USER, float table[], 
0)
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Optional Arguments
IMSLS_DATA_BOUNDS, float *minimum, float *maximum  (Output)

If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals intervals of equal 
length are used with the initial interval starting with the minimum value in x and the last interval end-
ing with the maximum value in x. The initial interval is closed on the left and right. The remaining 
intervals are open on the left and closed on the right. When IMSLS_DATA_BOUNDS is explicitly 
specified, the minimum and maximum values in x are output in minimum and maximum. With this 
option, each interval is of length (maximum − minimum)/n_intervals.

or

IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound  (Input)
If IMSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are used as the initial and last 
intervals. The initial interval is closed on the right and includes lower_bound as its right endpoint. 
The last interval is open on the left and includes all values greater than upper_bound. The remain-
ing n_intervals − 2 intervals are each of length

and are open on the left and closed on the right. Argument n_intervals must be greater than or 
equal to 3 for this option. 

or

IMSLS_CUTPOINTS, float cutpoints[]  (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in the array 
cutpoints of length n_intervals − 1. This option allows unequal interval lengths. The initial 
interval is closed on the right and includes the initial cutpoint as its right endpoint. The last interval is 
open on the left and includes all values greater than the last cutpoint. The remaining 
n_intervals − 2 intervals are open on the left and closed on the right. Argument n_interval 
must be greater than or equal to 3 for this option.

or

IMSLS_CLASS_MARKS, float class_marks[]  (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in ascending order must be pro-
vided in the array class_marks of length n_intervals. The class marks are the midpoints of 
each of the n_intervals. Each interval is assumed to have length 
class_marks [1] − class_marks [0]. Argument n_intervals must be greater than or equal 
to 2 for this option. 

None or exactly one of the four optional arguments described above can be specified in order to 
define the intervals or bins for the one-way table.

upper_bound − lower_bound
n_intervals − 2
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IMSLS_RETURN_USER, float table[]  (Output)
Counts are stored in the array table of length n_intervals, which is provided by the user.

Examples 

Example 1

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981). The measurements (in inches) 
are for precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years.

#include <imsls.h>
int main()
{
   int    n_intervals=10;
   int    n_observations=30;
   float  *table;
   float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
                 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
                 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
                 1.89, 0.90, 2.05};
   table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);
   imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

                              Counts
1 2 3 4 5 6
4 8 5 5 3 1
7 8 9 10
3 0 0 1

Example 2

In this example, IMSLS_KNOWN_BOUNDS is used, and lower_bound = 0.5 and upper_bound = 4.5 are set 
so that the eight interior intervals each have width (4.5 − 0.5)/(10 − 2) = 0.5. The 10 intervals are (−∞, 0.5], (0.5, 
1.0], …, (4.0, 4.5], and (4.5, ∞].

#include <imsls.h>
int main()
{
   int    n_observations=30;
   int    n_intervals=10;
   float  *table;
   float  lower_bound=0.5, upper_bound=4.5;
   float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
                 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
                 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
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                 1.89, 0.90, 2.05};
   table = imsls_f_table_oneway (n_observations, x, n_intervals,
                               IMSLS_KNOWN_BOUNDS, lower_bound, 
                               upper_bound,
                               0);
   imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

                               Counts
        1          2          3          4          5          6
        2          7          6          6          4          2
        7          8          9         10
        2          0          0          1

Example 3

In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines the class intervals (0.0, 0.5], (0.5, 
1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike the previous example, the initial and last intervals are the same length 
as the remaining intervals.

#include <imsls.h>
main()
{
   int       n_intervals=10;
   int       n_observations=30;
   double    *table;
   double    x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 
                    1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
                    0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
                    1.87, 1.18, 1.35, 4.75, 2.48, 0.96,1.89, 
                    0.90, 2.05};
   double    class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25, 
                              2.75, 3.25,3.75, 4.25, 4.75};
   table = imsls_d_table_oneway (n_observations, x, n_intervals,
                               IMSLS_CLASS_MARKS, class_marks,
                               0);
   imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

                               Counts
        1          2          3          4          5          6
        2          7          6          6          4          2
        7          8          9         10
        2          0          0          1
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Example 4

In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same 10 intervals as in Example 2. Here 
again, the initial and last intervals are semi-infinite intervals.

#include <imsls.h>
int main()
{
   int       n_intervals=10;
   int       n_observations=30;
   double    *table;
   double    x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
                    1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 
                    0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
                    1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,
                    0.90, 2.05};
   double    cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5, 
                            3.0, 3.5, 4.0, 4.5};
   table = imsls_d_table_oneway (n_observations, x, n_intervals, 
                               IMSLS_CUTPOINTS, cutpoints, 
                               0);
   imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

                               Counts
1 2 3 4 5          6
2 7 6 6 4          2
7 8 9 10
2 0 0 1
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table_twoway
Tallies observations into two-way frequency table.

Synopsis
#include <imsls.h>
float *imsls_f_table_twoway (int n_observations, float x[], float y[], int nx, int ny, ..., 0)

The type double function is imsls_d_table_twoway.

Required Arguments
int n_observations  (Input)

Number of observations.

float x[]  (Input)
Array of length n_observations containing the data for the first variable.

float y[]  (Input)
Array of length n_observations containing the data for the second variable.

int nx  (Input)
Number of intervals (bins) for variable x.

int ny  (Input)
Number of intervals (bins) for variable y.

Return Value
Pointer to an array of size nx by ny containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_table_twoway (int n_observations, float x[], float y[], int nx, int ny,

IMSLS_DATA_BOUNDS, float *xmin, float *xmax, float *ymin, float *ymax, or
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IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi, or
IMSLS_CUTPOINTS, float cx[], float cy[], or
IMSLS_CLASS_MARKS, float cx[], float cy[],
IMSLS_RETURN_USER, float table[],
0)

Optional Arguments
IMSLS_DATA_BOUNDS, float *xlo, float *xhi, float *ylo, float *yhi  (Output)

If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals intervals of equal 
length are used. Let xmin and xmax be the minimum and maximum values in x, respectively, with 
similar meanings for ymin and ymax. Then, table[0] is the tally of observations with the x value 
less than or equal to xmin + (xmax − xmin)/nx, and the y value less than or equal to 
ymin + (ymax − ymin)/ny. When IMSLS_DATA_BOUNDS is explicitly specified, the minimum and 
maximum values in x and y are output in xmin, xmax, ymin, and ymax.

or

IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi  (Input)
Intervals of equal lengths are used just as in the case of IMSLS_DATA_BOUNDS, except the upper 
and lower bounds are taken as the user supplied variables xlo, xhi, ylo, and yhi, instead of the 
actual minima and maxima in the data. Therefore, the first and last intervals for both variables are 
semi-infinite in length. Arguments nx and ny must be greater than or equal to 3.

or

IMSLS_CUTPOINTS, float cx[], float cy[]  (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in the arrays cx and 
cy, of length (nx-1) and (ny-1) respectively. The tally in table[0] is the number of observa-
tions for which the x value is less than or equal to cx[0], and the y value is less than or equal to 
cy[0]. This option allows unequal interval lengths. Arguments nx and ny must be greater than or 
equal to 2.

or

IMSLS_CLASS_MARKS, float cx[], float cy[]  (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in ascending order must be pro-
vided in the arrays cx and cy. The class marks are the midpoints of each interval. Each interval is 
taken to have length cx[1] − cx[0] in the x direction and cy[1] − cy[0] in the y direction. 
The total number of elements in table may be less than n_observations. Arguments nx and 
ny must be greater than or equal to 2.
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None or exactly one of the four optional arguments described above can be specified in order to 
define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[]  (Output)
Counts are stored in the array table of size nx by ny, which is provided by the user.

Examples 

Example 1

The data for x in this example are the same as those used in the examples for imsls_f_table_oneway. The 
data for y were created by adding small integers to the data in x. This example uses the default tally method, 
IMSLS_DATA_BOUNDS, which may be appropriate when the range of the data is unknown. 

#include <imsls.h>
int main()
{
   int    nx = 5;
   int    ny = 6;
   int    n_observations=30;
   float  *table;
   float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
                 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
                 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
                 1.89, 0.90, 2.05};
   float  y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
                 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
                 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
                 2.89, 2.90, 5.05};
   table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 0);
   imsls_f_write_matrix("counts", nx, ny, table, 
       IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
}

Output

                                 counts
           0          1          2          3          4          5
0          4          2          4          2          0          0
1          0          4          3          2          1          0
2          0          0          1          2          0          1
3          0          0          0          0          1          2
4          0          0          0          0          0          1

Example 2

In this example, xlo, xhi, ylo, and yhi are chosen so that the intervals will be 0 to 1, 1 to 2, and so on for x, 
and 1 to 2, 2 to 3, and so on for y.
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#include <imsls.h>
int main()
{
   int    nx = 5;
   int    ny = 6;
   int    n_observations=30;
   float  *table;
   float  xlo = 1.0;
   float  xhi = 4.0;
   float  ylo = 2.0;
   float  yhi = 6.0;
   float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
                 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
                 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
                 1.89, 0.90, 2.05};
   float  y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
                 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
                 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
                 2.89, 2.90, 5.05};
   table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 
       IMSLS_KNOWN_BOUNDS, xlo, xhi, ylo, yhi, 0);
   imsls_f_write_matrix("counts", nx, ny, table,
       IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
}

Output

                                counts
           0          1          2          3          4          5
0          3          2          4          0          0          0
1          0          5          5          2          0          0
2          0          0          1          3          2          0
3          0          0          0          0          0          2
4          0          0          0          0          1          0

Example 3

In this example, the class boundaries are input in cx and cy. The same intervals are chosen as in Example 2, 
where the first element of cx and cy specify the first cutpoint between classes.

#include <imsls.h>
int main()
{
   int    nx = 5;
   int    ny = 6;
   int    n_observations=30;
   float  *table;
   float  cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5};
   float  cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
   float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
                 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
                 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
                 1.89, 0.90, 2.05};
   float  y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
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                 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
                 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
                 2.89, 2.90, 5.05};
   table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 
       IMSLS_CLASS_MARKS, cmx, cmy, 0);
   imsls_f_write_matrix("counts", nx, ny, table,
       IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
}

Output

                                counts
           0          1          2          3          4          5
0          3          2          4          0          0          0
1          0          5          5          2          0          0
2          0          0          1          3          2          0
3          0          0          0          0          0          2
4          0          0          0          0          1          0

Example 4

This example, uses the IMSLS_CUTPOINTS tally option with cutpoints such that the intervals are specified as in 
the previous examples.

#include <imsls.h>
int main()
{
   int    nx = 5;
   int    ny = 6;
   int    n_observations=30;
   float  *table;
   float  cpx[] = {1, 2, 3, 4};
   float  cpy[] = {2, 3, 4, 5, 6};
   float  x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
                 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
                 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
                 1.89, 0.90, 2.05};
   float  y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
                 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
                 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
                 2.89, 2.90, 5.05};
   table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 
       IMSLS_CUTPOINTS, cpx, cpy, 0);
   imsls_f_write_matrix("counts", nx, ny, table,
       IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output

                                counts
           0          1          2          3          4          5
0          3          2          4          0          0          0
1          0          5          5          2          0          0
2          0          0          1          3          2          0
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3          0          0          0          0          0          2
4          0          0          0          0          1          0
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sort_data
Sorts observations by specified keys, with option to tally cases into a multi-way frequency table.

Synopsis
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables, float x[], int n_keys, ..., 0)

The type double function is imsls_d_sort_data.

Required Arguments
int n_observations  (Input)

Number of observations (rows) in x.

int n_variables  (Input)
Number of variables (columns) in x.

float x[]  (Input/Output)
An n_observations × n_variables matrix containing the observations to be sorted. The 
sorted matrix is returned in x (exception: see optional argument IMSLS_PASSIVE).

int n_keys  (Input)
Number of columns of x on which to sort. The first n_keys columns of x are used as the sorting 
keys (exception: see optional argument IMSLS_INDICES_KEYS).

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables, float x[], int n_keys,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_INDICES_KEYS, int indices_keys[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_ASCENDING, or
IMSLS_DESCENDING,
IMSLS_ACTIVE, or
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IMSLS_PASSIVE,
IMSLS_PERMUTATION, int **permutation,
IMSLS_PERMUTATION_USER, int permutation[],
IMSLS_TABLE, int **n_values, float **values, float **table,
IMSLS_TABLE_USER, int n_values[], float values[], float table[],
IMSLS_LIST_CELLS, int *n_cells, float **list_cells, float **table_unbalanced,
IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[], 

float table_unbalanced[], 
IMSLS_N, int *n_cells, int **n,
IMSLS_N_USER, int *n_cells, int n[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Column dimension of x.

Default: x_col_dim = n_variables
IMSLS_INDICES_KEYS, int indices_keys[]  (Input)

Array of length n_keys giving the column numbers of x which are to be used in the sort.

Default: indices_keys [ ] = 0, 1, …, n_keys − 1

IMSLS_FREQUENCIES, float frequencies[]  (Input)
Array of length n_observations containing the frequency for each observation in x.

Default: frequencies [ ] = 1

IMSLS_ASCENDING, or

IMSLS_DESCENDING 
By default, or if IMSLS_ASCENDING is specified, the sort is in ascending order. If 
IMSLS_DESCENDING is specified, the sort is in descending order.

IMSLS_ACTIVE, or

IMSLS_PASSIVE
By default, or if IMSLS_ACTIVE is specified, the sorted matrix is returned in x. If 
IMSLS_PASSIVE is specified, x is unchanged by imsls_f_sort_data (i.e., x becomes input 
only).

IMSLS_PERMUTATION, int **permutation  (Output)
Address of a pointer to an internally allocated array of length n_observations specifying the 
rearrangement (permutation) of the observations (rows).
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IMSLS_PERMUTATION_USER, int permutation[]  (Output)
Storage for array permutation is provided by the user. See IMSLS_PERMUTATION.

IMSLS_TABLE, int **n_values, float **values, float **table  (Output)
Argument n_values is the address of a pointer to an internally allocated array of length n_keys 
containing in its i-th element (i = 0, 1, …, n_keys − 1), the number of levels or categories of the i-th 
classification variable (column).

Argument values is the address of a pointer to an internally allocated array of length 
n_values [0] + n_values [1] + … + n_values [n_keys − 1] containing the values of the clas-
sification variables. The first n_values [0] elements of values contain the values for the first 
classification variable. The next n_values [1] contain the values for the second variable. The last 
n_values [n_keys − 1] positions contain the values for the last classification variable.

Argument table is the address of a pointer to an internally allocated array of length 
n_values [0] × n_values [1] × … × n_values [n_keys − 1] containing the frequencies in 
the cells of the table to be fit.

Empty cells are included in table, and each element of table is nonnegative. The cells of table 
are sequenced so that the first variable cycles through its n_values [0] categories one time, the 
second variable cycles through its n_values [1] categories n_values [0] times, the third variable 
cycles through its n_values [2] categories n_values [0] × n_values [1] times, etc., up to the 
n_keys-th variable, which cycles through its n_values [n_keys − 1] categories 
n_values [0] × n_values [1] × … × n_values [n_keys − 2] times.

IMSLS_TABLE_USER, int n_values[], float values[], float table[]  (Output)
Storage for arrays n_values, values, and table is provided by the user. If the length of table 
is not known in advance, the upper bound for this length can be taken to be the product of the num-
ber of distinct values taken by all of the classification variables (since table includes the empty 
cells).

IMSLS_LIST_CELLS, int *n_cells, float **list_cells, float **table_unbalanced  (Out-
put)
Number of nonempty cells is returned by n_cells. Argument list_cells is an internally allo-
cated array of size n_cells × n_keys containing, for each row, a list of the levels of n_keys 
corresponding classification variables that describe a cell. 

Argument table_unbalanced is the address of a pointer to an array of length n_cells con-
taining the frequency for each cell.

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[], float table_unbalanced[]  
(Output)
Storage for arrays list_cells and table_unbalanced is provided by the user. See 
IMSLS_LIST_CELLS.
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IMSLS_N, int *n_cells, int **n  (Output)
The integer n_cells returns the number of groups of different observations. A group contains 
observations (rows) in x that are equal with respect to the method of comparison.

Argument n is the address of the pointer to an internally allocated array of length n_cells contain-
ing the number of observations (rows) in each group.

The first n [0] rows of the sorted x are group number 1. The next n [1]rows of the sorted x are group 
number 2, etc. The last n [n_cells − 1] rows of the sorted x are group number n_cells.

IMSLS_N_USER, int *n_cells, int n[]  (Output)
Storage for array n_cells is provided by the user. If the value of n_cells is not known, 
n_observations can be used as an upper bound for the length of n. See IMSLS_N.

Description
Function imsls_f_sort_data can perform both a key sort and/or tabulation of frequencies into a multi-way 
frequency table.

Sorting

Function imsls_f_sort_data sorts the rows of real matrix x using a particular row in x as the keys. The sort 
is algebraic with the first key as the most significant, the second key as the next most significant, etc. When x is 
sorted in ascending order, the resulting sorted array is such that the following is true:

 For i = 0, 1, …, n_observations − 2, 
x [i] [indices_keys [0]] ≤ x [i + 1] [indices_keys [0]]

 For k = 1, …, n_keys − 1, if x [i] [indices_keys [j]] = x [i + 1] [indices_keys [j]] for 
j = 0, 1, …, k − 1, then x [i] [indices_keys [k]] = x [i + 1] [indices_keys [k]]

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the specified columns are considered as 
an additional group. These rows are moved to the end of the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969) with modifications by 
Griffen and Redish (1970) and Petro (1970). 

Frequency Tabulation

Function imsls_f_sort_data determines the distinct values in multivariate data and computes frequencies 
for the data. This function accepts the data in the matrix x, but performs computations only for the variables (col-
umns) in the first n_keys columns of x (Exception: see optional argument IMSLS_INDICES_KEYS). In 
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general, the variables for which frequencies should be computed are discrete; they should take on a relatively 
small number of different values. Variables that are continuous can be grouped first. The 
imsls_f_table_oneway function can be used to group variables and determine the frequencies of groups.

When IMSLS_TABLE is specified, imsls_f_sort_data fills the vector values with the unique values of 
the variables and tallies the number of unique values of each variable in the vector table. Each combination of 
one value from each variable forms a cell in a multi-way table. The frequencies of these cells are entered in 
table so that the first variable cycles through its values exactly once, and the last variable cycles through its val-
ues most rapidly. Some cells cannot correspond to any observations in the data; in other words, “missing cells” 
are included in table and have a value of 0.

When IMSLS_LIST_CELLS is specified, the frequency of each cell is entered in table_unbalanced so that 
the first variable cycles through its values exactly once and the last variable cycles through its values most rapidly. 
All cells have a frequency of at least 1, i.e., there is no “missing cell.” The list_cells array can be considered 
“parallel” to table_unbalanced because row i of list_cells is the set of n_keys values that describes 
the cell for which row i of table_unbalanced contains the corresponding frequency.

Examples

Example 1

The rows of a 10 × 3 matrix x are sorted in ascending order using Columns 0 and 1 as the keys. There are two 
missing values (NaNs) in the keys. The observations containing these values are moved to the end of the sorted 
array.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES   3
int main()
{
   int    n_keys=2;
   float  x[N_OBSERVATIONS][N_VARIABLES] = {
       1.0, 1.0, 1.0, 
       2.0, 1.0, 2.0, 
       1.0, 1.0, 3.0, 
       1.0, 1.0, 4.0, 
       2.0, 2.0, 5.0, 
       1.0, 2.0, 6.0, 
       1.0, 2.0, 7.0, 
       1.0, 1.0, 8.0, 
       2.0, 2.0, 9.0,
       1.0, 1.0, 9.0
   };
   x[4][1]=imsls_f_machine(6);
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   x[6][0]=imsls_f_machine(6);
   imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, 
       &x[0][0], n_keys, 0);
   imsls_f_write_matrix("sorted x", N_OBSERVATIONS, N_VARIABLES,
       (float *)x, 0);
}

Output

              sorted x
           1          2          3
1          1          1          1
2          1          1          9
3          1          1          3
4          1          1          4
5          1          1          8
6          1          2          6
7          2          1          2
8          2          2          9
9  .........          2          7
10         2  .........          5

Example 2

This example uses the same data as the previous example. The permutation of the rows is output in the array 
permutation.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
int main()
{
   int    n_keys=2;
   int    n_cells;
   int    *n;
   int    *permutation;
   float  x[N_OBSERVATIONS][N_VARIABLES]={1.0, 1.0, 1.0,
                                          2.0, 1.0, 2.0,
                                          1.0, 1.0, 3.0,
                                          1.0, 1.0, 4.0,
                                          2.0, 2.0, 5.0,
                                          1.0, 2.0, 6.0,
                                          1.0, 2.0, 7.0,
                                          1.0, 1.0, 8.0,
                                          2.0, 2.0, 9.0,
                                          1.0, 1.0, 9.0};
   x[4][1]=imsls_f_machine(6);
   x[6][0]=imsls_f_machine(6);
   imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES,
                    (float *)x, n_keys,
                    IMSLS_PASSIVE,
                    IMSLS_PERMUTATION, &permutation,
                    IMSLS_N, &n_cells, &n, 0);
   imsls_f_write_matrix("unchanged x ", N_OBSERVATIONS, N_VARIABLES,
                      (float *)x, 0);
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   imsls_i_write_matrix("permutation", 1, N_OBSERVATIONS, permutation,
                      0);
   imsls_i_write_matrix("n", 1, n_cells, n, 0);
}

Output

             unchanged x
           1          2          3
1          1          1          1
2          2          1          2
3          1          1          3
4          1          1          4
5          2 ..........          5
6          1          2          6
7 ..........          2          7
8          1          1          8
9          2          2          9
10         1          1          9
             permutation
1  2  3  4  5  6  7  8  9 10
0  9  2  3  7  5  1  8  6  4
      n
1  2  3  4
5  1  1  1

Example 3

The table of frequencies for a data matrix of size 30 × 2 is output in the array table.

#include <imsls.h>
int main()
{
   int    n_observations=30;
   int    n_variables=2;
   int    n_keys=2;
   int    *n_values;
   int    n_rows, n_columns;
   float  *values;
   float  *table;
   float  x[] = {0.5, 1.5,
                 1.5, 3.5,
                 0.5, 3.5,
                 1.5, 2.5,
                 1.5, 3.5,
                 1.5, 4.5,
                 0.5, 1.5,
                 1.5, 3.5,
                 3.5, 6.5,
                 2.5, 3.5,
                 2.5, 4.5,
                 3.5, 6.5,
                 1.5, 2.5,
                 2.5, 4.5,
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                 0.5, 3.5,
                 1.5, 2.5,
                 1.5, 3.5,
                 0.5, 3.5,
                 0.5, 1.5,
                 0.5, 2.5,
                 2.5, 5.5,
                 1.5, 2.5,
                 1.5, 3.5,
                 1.5, 4.5,
                 4.5, 5.5,
                 2.5, 4.5,
                 0.5, 3.5,
                 1.5, 2.5,
                 0.5, 2.5,
                 2.5, 5.5};
                     
  imsls_f_sort_data (n_observations, n_variables, x, n_keys, 
                    IMSLS_PASSIVE,
                    IMSLS_TABLE, &n_values, &values, &table,
                    0);
  imsls_f_write_matrix("unchanged x", n_observations, n_variables,
                      x, 0);
  n_rows = n_values[0];
  n_columns = n_values[1];s
  imsls_f_write_matrix("row values", 1, n_rows, values, 0);   

imsls_f_write_matrix("column values", 1, n_columns, &values[n_rows],
0);

  imsls_f_write_matrix("table", n_rows, n_columns, table, 0);
}

Output

       unchanged x
            1          2
 1        0.5        1.5
 2        1.5        3.5
 3        0.5        3.5
 4        1.5        2.5
 5        1.5        3.5
 6        1.5        4.5
 7        0.5        1.5
 8        1.5        3.5
 9        3.5        6.5
10        2.5        3.5
11        2.5        4.5
12        3.5        6.5
13        1.5        2.5
14        2.5        4.5
15        0.5        3.5
16        1.5        2.5
17        1.5        3.5
18        0.5        3.5
19        0.5        1.5
20        0.5        2.5
21        2.5        5.5
22        1.5        2.5
23        1.5        3.5
24        1.5        4.5
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25        4.5        5.5
26        2.5        4.5
27        0.5        3.5
28        1.5        2.5
29        0.5        2.5
30        2.5        5.5
                        row values
        1          2          3          4          5
      0.5        1.5        2.5        3.5        4.5
                            column values
        1          2          3          4          5          6
      1.5        2.5        3.5        4.5        5.5        6.5
                                 Table
           1          2          3          4          5          6
1          3          2          4          0          0          0
2          0          5          5          2          0          0
3          0          0          1          3          2          0
4          0          0          0          0          0          2
5          0          0          0          0          1          0
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ranks
Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis
#include <imsls.h> 

float *imsls_f_ranks (int n_observations, float x[], ..., 0)

The type double function is imsls_d_ranks.

Required Arguments
int n_observations  (Input)

Number of observations.

float x[]  (Input)
Array of length n_observations containing the observations to be ranked.

Return Value
A pointer to a vector of length n_observations containing the rank (or optionally, a transformation of the 
rank) of each observation.

Synopsis with Optional Arguments
#include <imsl.h>
float* imsls_f_ranks (int n_observations, float x[], 

IMSLS_AVERAGE_TIE, or
IMSLS_HIGHEST, or
IMSLS_LOWEST, or
IMSLS_RANDOM_SPLIT,
IMSLS_FUZZ, float fuzz_value,
IMSLS_RANKS, or
IMSLS_BLOM_SCORES, or
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IMSLS_TUKEY_SCORES, or
IMSLS_VAN_DER_WAERDEN_SCORES, or
IMSLS_EXPECTED_NORMAL_SCORES, or
IMSLS_SAVAGE_SCORES, 
IMSLS_RETURN_USER, float ranks[],
0)

Optional Arguments
IMSLS_AVERAGE_TIE, or

IMSLS_HIGHEST, or

IMSLS_LOWEST, or

IMSLS_RANDOM_SPLIT
Exactly one of these optional arguments can be used to change the method used to assign a score to 
tied observations.

IMSLS_FUZZ, float fuzz_value  (Input)
Value used to determine when two items are tied. If abs(x [i] − x [j]) is less than or equal to 
fuzz_value, then x[i] and x[j] are said to be tied.

Default: fuzz_value = 0.0

IMSLS_RANKS, or

IMSLS_BLOM_SCORES, or

IMSLS_TUKEY_SCORES, or

IMSLS_VAN_DER_WAERDEN_SCORES, or

IMSLS_EXPECTED_NORMAL_SCORES, or

Argument Method

IMSLS_AVERAGE_TIE average of the scores of the tied 
observations (default)

IMSLS_HIGHEST highest score in the group of ties

IMSLS_LOWEST lowest score in the group of ties

IMSLS_RANDOM_SPLIT tied observations are randomly split 
using a random number generator
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IMSLS_SAVAGE_SCORES
Exactly one of these optional arguments can be used to specify the type of values returned.

IMSLS_RETURN_USER, float ranks[]  (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation of the ranks) of the data in x. If 
x[i] has the smallest value among the values in x and there is no other element in x with this value, then 
ranks [i] = 1. If both x[i] and x[j] have the same smallest value, the output value depends on the option used 
to break ties.

When the ties are resolved randomly, function imsls_f_random_uniform (Chapter 12) is used to generate 
random numbers. Different results may occur from different executions of the program unless the “seed” of the 
random number generator is set explicitly by use of the function imsls_f_random_seed_set (Chapter 12).

Argument Result

IMSLS_RANKS ranks (default)

IMSLS_BLOM_SCORES Blom version of normal scores

IMSLS_TUKEY_SCORES Tukey version of normal scores

IMSLS_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal 
scores

IMSLS_EXPECTED_NORMAL_SCORES expected value of normal order sta-
tistics (for tied observations, the 
average of the expected normal 
scores)

IMSLS_SAVAGE_SCORES Savage scores (the expected value of 
exponential order statistics)

Argument Result

IMSLS_AVERAGE_TIE ranks[i] = ranks[j] = 1.5

IMSLS_HIGHEST ranks[i] = ranks[j] = 2.0

IMSLS_LOWEST ranks[i] = ranks[j] = 1.0

IMSLS_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0
or, randomly,
ranks[i] = 2.0 and ranks[j] = 1.0
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Scores

As an option, normal and other functions of the ranks can be returned. Normal scores can be defined as the 
expected values, or approximations to the expected values, of order statistics from a normal distribution. The 
simplest approximations are obtained by evaluating the inverse cumulative normal distribution function, function 
imsls_f_normal_inverse_cdf (Chapter 11), at the ranks scaled into the open interval (0, 1). In the Blom ver-
sion (see Blom 1958), the scaling transformation for the rank ri (1 ≤ ri ≤ n, where n is the sample size, 

n_observations) is (ri − 3/8)/(n + 1/4). The Blom normal score corresponding to the observation with rank ri 

is 

where Φ(·) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if x [i] equals x [j] (within 
fuzz_value) and their value is the k-th smallest in the data set, the Blom normal scores are determined for 
ranks of k and k + 1. Then, these normal scores are averaged or selected in the manner specified. (Whether the 
transformations are made first or ties are resolved first makes no difference except when 
IMSLS_AVERAGE_TIE is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank ri is (ri − 1/3)/(n + 1/3). The Tukey 

normal score corresponding to the observation with rank ri is as follows:

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation for the rank ri is ri/(n + 1). 

The Van der Waerden normal score corresponding to the observation with rank ri is as follows:

Ties are handled in the same way as for the Blom normal scores.

When option IMSLS_EXPECTED_NORMAL_SCORES is used, the output values are the expected values of the 
normal order statistics from a sample of size n_observations. If the value in x[i] is the k-th smallest, the 
value output in ranks [i] is E(zk), where E(·) is the expectation operator and zk is the k-th order statistic in a sam-

ple of size n_observations from a standard normal distribution. Ties are handled in the same way as for the 
Blom normal scores.

ϕ−1
ri − 3 / 8
n + 1 / 4

ϕ−1
ri − 1 / 3
n + 1 / 3

ϕ−1
ri
n + 1
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Savage scores are the expected values of the exponential order statistics from a sample of size 
n_observations. These values are called Savage scores because of their use in a test discussed by Savage 
1956 (see also Lehmann 1975). If the value in x[i] is the k-th smallest, the value output in ranks [i] is E(yk), 

where yk is the k-th order statistic in a sample of size n_observations from a standard exponential distribu-

tion. The expected value of the k-th order statistic from an exponential sample of size n (n_observations) is 
as follows:

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1

The data for this example, from Hinkley (1977), contains 30 observations. Note that the fourth and sixth observa-
tions are tied and that the third and twentieth observations are tied.

#include <imsls.h>
#define N_OBSERVATIONS         30
int main()
{
   float      *ranks;
   float      x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
                     3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
                     1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
                     4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
   ranks = imsls_f_ranks(N_OBSERVATIONS, x, 0);
   imsls_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0);
}

Output

                                Ranks
        1          2          3          4          5          6
      5.0       18.0        6.5       11.5       21.0       11.5
        7          8          9         10         11         12
      2.0       15.0       29.0       24.0       27.0       28.0
       13         14         15         16         17         18
     16.0       23.0        3.0       17.0       13.0        1.0
       19         20         21         22         23         24
      4.0        6.5       26.0       19.0       10.0       14.0

1
n +

1
n − 1 + … + 1

n − k + 1
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       25         26         27         28         29         30
     30.0       25.0        9.0       20.0        8.0       22.0

Example 2

This example uses all the score options with the same data set, which contains some ties. Ties are handled in sev-
eral different ways in this example.

#include <imsls.h>
#define N_OBSERVATIONS         30
int main()
{
   float      fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
   float      x[] = {
       0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
       3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
       4.75, 2.48, 0.96, 1.89, 0.90, 2.05
   };
   char       *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
       "Expected Value"};
   /* Blom scores using largest ranks */
   /* for ties */
   imsls_f_ranks(N_OBSERVATIONS, x, 
       IMSLS_HIGHEST,
       IMSLS_BLOM_SCORES,
       IMSLS_RETURN_USER,  &score[0][0],
       0);
   /* Tukey normal scores using smallest */
   /* ranks for ties */
   imsls_f_ranks(N_OBSERVATIONS, x,
       IMSLS_LOWEST,
       IMSLS_TUKEY_SCORES,
       IMSLS_RETURN_USER, &score[1][0],
       0);
   /* Van der Waerden scores using */
   /* randomly resolved ties */
   imsls_random_seed_set(123457);
   imsls_f_ranks(N_OBSERVATIONS, x, 
       IMSLS_RANDOM_SPLIT,
       IMSLS_VAN_DER_WAERDEN_SCORES,
       IMSLS_RETURN_USER, &score[2][0],
       0);
   /* Expected value of normal order */
   /* statistics using averaging to */
   /* break ties */
   imsls_f_ranks(N_OBSERVATIONS, x, 
       IMSLS_EXPECTED_NORMAL_SCORES,
       IMSLS_RETURN_USER, &score[3][0],
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       0);
   imsls_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS, 
       (float *)score,
       IMSLS_ROW_LABELS,  row_labels,
       IMSLS_WRITE_FORMAT, "%9.3f",
       0);
   /* Savage scores using averaging */
   /* to break ties */
   ranks = imsls_f_ranks(N_OBSERVATIONS, x, 
       IMSLS_SAVAGE_SCORES,
       0);
   imsls_f_write_matrix("Expected values of exponential order " 
       "statistics", 1, 
       N_OBSERVATIONS, ranks, 
       0);
}

Output

                       Normal Order Statistics
                        1         2         3         4         5
Blom               -1.024     0.209    -0.776    -0.294     0.473
Tukey              -1.020     0.208    -0.890    -0.381     0.471
Van der Waerden    -0.989     0.204    -0.753    -0.287     0.460
Expected Value     -1.026     0.209    -0.836    -0.338     0.473
                        6         7         8         9        10
Blom               -0.294    -1.610    -0.041     1.610     0.776
Tukey              -0.381    -1.599    -0.041     1.599     0.773
Van der Waerden    -0.372    -1.518    -0.040     1.518     0.753
Expected Value     -0.338    -1.616    -0.041     1.616     0.777
                       11        12        13        14        15
Blom                1.176     1.361     0.041     0.668    -1.361
Tukey               1.171     1.354     0.041     0.666    -1.354
Van der Waerden     1.131     1.300     0.040     0.649    -1.300
Expected Value      1.179     1.365     0.041     0.669    -1.365
                       16        17        18        19        20
Blom                0.125    -0.209    -2.040    -1.176    -0.776
Tukey               0.124    -0.208    -2.015    -1.171    -0.890
Van der Waerden     0.122    -0.204    -1.849    -1.131    -0.865
Expected Value      0.125    -0.209    -2.043    -1.179    -0.836
                       21        22        23        24        25
Blom                1.024     0.294    -0.473    -0.125     2.040
Tukey               1.020     0.293    -0.471    -0.124     2.015
Van der Waerden     0.989     0.287    -0.460    -0.122     1.849
Expected Value      1.026     0.294    -0.473    -0.125     2.043
                       26        27        28        29        30
Blom                0.893    -0.568     0.382    -0.668     0.568
Tukey               0.890    -0.566     0.381    -0.666     0.566
Van der Waerden     0.865    -0.552     0.372    -0.649     0.552
Expected Value      0.894    -0.568     0.382    -0.669     0.568
           Expected values of exponential order statistics
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        1          2          3          4          5          6
    0.179      0.892      0.240      0.474      1.166      0.474
        7          8          9         10         11         12
    0.068      0.677      2.995      1.545      2.162      2.495
       13         14         15         16         17         18
    0.743      1.402      0.104      0.815      0.555      0.033
       19         20         21         22         23         24
    0.141      0.240      1.912      0.975      0.397      0.614
       25         26         27         28         29         30
    3.995      1.712      0.350      1.066      0.304      1.277
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Regression

Functions
Multivariate Linear Regression—Model Fitting

Generates regressors for a general linear model  . . . . . . . . . . . . . . . . regressors_for_glm     97
Fits a multivariate linear regression model  . . . . . . . . . . . . . . . . . . . . . . . . . . . regression     107

Multivariate Linear Regression—Statistical Inference and Diagnostics
Produces summary statistics for a regression model  . . . . . . . . . . .regression_summary     124
Computes predicted values, 

confidence intervals, and diagnostics . . . . . . . . . . . . . . . . . . . regression_prediction     133
Construction of a completely testable hypothesis . . . . . . . . . . . . . . . . hypothesis_partial     145
Sums of cross products for a multivariate hypothesis . . . . . . . . . . . . . . hypothesis_scph     152
Tests for the multivariate linear hypothesis . . . . . . . . . . . . . . . . . . . . . . . hypothesis_test     157

Variable Selection
All best regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . regression_selection     165
Stepwise regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . regression_stepwise     176

Polynomial and Nonlinear Regression
Fits a polynomial regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .poly_regression     186
Computes predicted values, confidence intervals, and diagnostics  . . . . poly_prediction     195
Fits a nonlinear regression model . . . . . . . . . . . . . . . . . . . . . . . . . .nonlinear_regression     205
Fits a nonlinear regression model using Powell's algorithm  . . . . nonlinear_optimization     218

Alternatives to Least Squares Regression
LAV, Lpnorm, and LMV criteria regression . . . . . . . . . . . . . . . . . . . . . Lnorm_regression     229
Performs partial least squares (PLS) regression . . . . . . . . . . . . . . . . . . . .pls_regression     248
83



 Regression         Usage Notes
Usage Notes
The regression models in this chapter include the simple and multiple linear regression models, the multivariate 
general linear model, the polynomial model, and the nonlinear regression model. Functions for fitting regression 
models, computing summary statistics from a fitted regression, computing diagnostics, and computing confi-
dence intervals for individual cases are provided. This chapter also provides methods for building a model from a 
set of candidate variables. 

Simple and Multiple Linear Regression
The simple linear regression model is

yi = β
0

+ β
1

xi + ɛi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the dependent variable, the xi’s are 

the settings of the independent (explanatory) variable, β0 and β1 are the intercept and slope parameters (respec-

tively) and the ɛi’s are independently distributed normal errors, each with mean 0 and variance σ2.

The multiple linear regression model is

yi = β
0

+ β
1

xi

1

+ β
2

xi

2

 + ... + βkxik + ɛi i = 1, 2, ..., n
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where the observed values of the yi’s constitute the responses or values of the dependent variable; the 

xi1’s, xi2’s, ..., xik’s are the settings of the k independent (explanatory) variables; β0, β1, ..., βk are the regression 

coefficients; and the ɛi’s are independently distributed normal errors, each with mean 0 and variance σ2.

Function imsls_f_regression fits both the simple and multiple linear regression models using a fast Given’s 
transformation and includes an option for excluding the intercept β0. The responses are input in array y, and the 

independent variables are input in array x, where the individual cases correspond to the rows and the variables 
correspond to the columns.

After the model has been fitted using imsls_f_regression, function imsls_f_regression_summary 
computes summary statistics and imsls_f_regression_prediction computes predicted values, confidence 
intervals, and case statistics for the fitted model. The information about the fit is communicated from 
imsls_f_regression to imsls_f_regression_summary and 
imsls_f_regression_prediction by passing an argument of structure type Imsls_f_regression.

No Intercept Model
Several functions provide the option for excluding the intercept from a model. In most practical applications, the 
intercept should be included in the model. For functions that use the sums of squares and crossproducts matrix 
as input, the no-intercept case can be handled by using the raw sums of squares and crossproducts matrix as 
input in place of the corrected sums of squares and crossproducts. The raw sums of squares and crossproducts 

matrix can be computed as (x1, x2, ..., xk, y)T (x1, x2, ..., xk, y).

Variable Selection
Variable selection can be performed by imsls_f_regression_selection, which computes all best-subset 
regressions, or by imsls_f_regression_stepwise, which computes stepwise regression. The method used 
by imsls_f_regression_selection is generally preferred over that used by 
imsls_f_regression_stepwise because imsls_f_regression_selection implicitly examines all 
possible models in the search for a model that optimizes some criterion while stepwise does not examine all pos-
sible models. However, the computer time and memory requirements for 
imsls_f_regression_selection can be much greater than that for 
imsls_f_regression_stepwise when the number of candidate variables is large.

Polynomial Model
The polynomial model is
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where the observed values of the yi’s constitute the responses or values of the dependent variable; the xi’s are 

the settings of the independent (explanatory) variable; β0, β1, ..., βk are the regression coefficients; and the ɛi’s are 

independently distributed normal errors each with mean 0 and variance σ2.

Function imsls_f_poly_regression fits a polynomial regression model with the option of determining the 
degree of the model and also produces summary information. Function imsls_f_poly_prediction com-
putes predicted values, confidence intervals, and case statistics for the model fit by 
imsls_f_poly_regression.

The information about the fit is communicated from imsls_f_poly_regression to 
imsls_f_poly_prediction by passing an argument of structure type Imsls_f_poly_regression.

Specification of X for the General Linear Model
Variables used in the general linear model are either continuous or classification variables. Typically, multiple 
regression models use continuous variables, whereas analysis of variance models use classification variables. 
Although the notation used to specify analysis of variance models and multiple regression models may look quite 
different, the models are essentially the same. The term “general linear model” emphasizes that a common nota-
tional scheme is used for specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect is referred to in this text as a sin-
gle variable or a product of variables. (The term “effect” is often used in a narrower sense, referring only to a 
single regression coefficient.) In particular, an “effect” is composed of one of the following:

1. A single continuous variable.

2. A single classification variable.

3. Several different classification variables.

4. Several continuous variables, some of which may be the same.

5. Continuous variables, some of which may be the same, and classification variables, which must be 
distinct.

Effects of the first type are common in multiple regression models. Effects of the second type appear as main 
effects in analysis of variance models. Effects of the third type appear as interactions in analysis of variance mod-
els. Effects of the fourth type appear in polynomial models and response surface models as powers and 
crossproducts of some basic variables. Effects of the fifth type appear in one-way analysis of covariance models 
as regression coefficients that indicate lack of parallelism of a regression function across the groups.

yi = β0 + β1xi + β2xi
2 + ... + βkxi

k + ɛi i = 1,2, … n
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The analysis of a general linear model occurs in two stages. The first stage calls function 
imsls_f_regressors_for_glm to specify all regressors except the intercept. The second stage calls 
imsls_f_regression, at which point the model will be specified as either having (default) or not having an 
intercept.

For this discussion, define a variable INTCEP as follows:

The remaining variables (n_continuous, n_class, x_class_columns, n_effects, n_var_effects, 
and indices_effects) are defined for function imsls_f_regressors_for_glm. All these variables 
have defaults except for n_continuous and n_class, both of which must be specified. (See the documenta-
tion for imsls_f_regressors_for_glm for a discussion of the defaults.) The meaning of each of these 
arguments is as follows:

n_continuous (Input)
Number of continuous variables.

n_class (Input)
Number of classification variables.

x_class_columns (Input)
Index vector of length n_class containing the column numbers of x that are the classification 
variables.

n_effects (Input)
Number of effects (sources of variation) in the model, excluding error.

n_var_effects (Input)
Vector of length n_effects containing the number of variables associated with each effect in the 
model.

indices_effects (Input)
Index vector of length 
n_var_effects[0] + n_var_effects[1] + ... + n_var_effects[n_effects - 1]. The first 
n_var_effects[0] elements give the column numbers of x for each variable in the first effect; the 
next n_var_effects[1] elements give the column numbers for each variable in the second effect; 
and finally, the last n_var_effects [n_effects - 1] elements give the column numbers for 
each variable in the last effect.

Option INTCEP Action
IMSLS_NO_INTERCEPT 0 An intercept is not in the model.

IMSLS_INTERCEPT (default) 1 An intercept is in the model.
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Suppose the data matrix has as its first four columns two continuous variables in Columns 0 and 1 and two clas-
sification variables in Columns 2 and 3. The data might appear as follows:

Each distinct value of a classification variable determines a level. The classification variable in Column 2 has two 
levels. The classification variable in Column 3 has three levels. (Integer values are recommended, but not 
required, for values of the classification variables. The values of the classification variables corresponding to the 
same level must be identical.) Some examples of regression functions and their specifications are as follows:

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

INTCEP n_class x_class_columns
β0 + β1x1 1 0

β0+β1x1+β2x1
2 1 0

μ+αi 1 1 2

μ+αi+βj+γij 1 2 2, 3

μij 0 2 2, 3

β0+β1x1+β2x2+β3x1x2 1 0

μ+αi+βx1i+βix1i 1 1 2

n_effects n_var_effects Indices_effects
β0+β1x1 1 1 0

β0+β1x1+β2x1
2 2 1, 2 0, 0, 0

μ+αi 1 1 2

μ+αi+βj+γij 3 1, 1, 2 2, 3, 2, 3
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Functions for Fitting the Model
Function imsls_f_regression fits a multivariate general linear model, where regressors for the general linear 
model have been generated using function imsls_f_regressors_for_glm.

Linear Dependence and the R Matrix
Linear dependence of the regressors frequently arises in regression models—sometimes by design and some-
times by accident. The functions in this chapter are designed to handle linear dependence of the regressors; i.e., 
the n × p matrix X (the matrix of regressors) in the general linear model can have rank less than p. Often, the 
models are referred to as non-full rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of the fitted non-full rank regres-
sion model for estimation and hypothesis testing. In the non-full rank case, not all linear combinations of the 
regression coefficients can be estimated. Those linear combinations that can be estimated are called “estimable 
functions.” If the functions are used to attempt to estimate linear combinations that cannot be estimated, error 
messages are issued. A good general discussion of estimable functions is given by Searle (1971, pp. 180–188).

The check used by functions in this chapter for linear dependence is sequential. The j-th regressor is declared lin-
early dependent on the preceding j - 1 regressors if

is less than or equal to tolerance. Here,

is the multiple correlation coefficient of the j-th regressor with the first j − 1 regressors. When a function 
declares the j-th regressor to be linearly dependent on the first j − 1, the j-th regression coefficient is set to 0. 
Essentially, this removes the j-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the preferred variables to remain in 
the model first. Also, the sequential check is based on many of the computations already performed as this does 
not degrade the overall efficiency of the functions. There is no perfect test for linear dependence when finite pre-
cision arithmetic is used. The optional argument IMSLS_TOLERANCE allows the user some control over the 

μij 1 2 2, 3

β0+β1x1+β2x2+β3x1x2 3 1, 1, 2 0, 1, 0, 1

μ+αi+βx1i+βix1i 3 1, 1, 2 2, 0, 0, 2

n_effects n_var_effects Indices_effects

1 − R j 1, 2, ... j−1
2

R j 1, 2, ... j−1
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check for linear dependence. If a model is full rank, input tolerance = 0.0. However, tolerance should be 
input as approximately 100 times the machine epsilon. The machine epsilon is imsls_f_machine(4) in single 
precision and imsls_d_machine(4) in double precision. (See functions imsls_f_machine and 
imsls_d_machine in Chapter 15,Utilities.)

Functions performing least squares are based on QR decomposition of X or on a Cholesky factorization RTR of 

XTX. Maindonald (1984, Chapters 1−5) discusses these methods extensively. The R matrix used by the regression 
function is a p × p upper-triangular matrix, i.e., all elements below the diagonal are 0. The signs of the diagonal 
elements of R are used as indicators of linearly dependent regressors and as indicators of parameter restrictions 
imposed by fitting a restricted model. The rows of R can be partitioned into three classes by the sign of the corre-
sponding diagonal element:

1. A negative diagonal element means the row corresponds to a linearly independent restriction 
imposed on the regression parameters by AB = Z in a restricted model.

2. A zero diagonal element means a linear dependence of the regressors was declared. The regression 

coefficients in the corresponding row of  are set to 0. This represents an arbitrary restriction that is 
imposed to obtain a solution for the regression coefficients. The elements of the corresponding row 
of R also are set to 0.

Nonlinear Regression Model
The nonlinear regression model is

where the observed values of the yi’s constitute the responses or values of the dependent variable, the xi’s are 

the known vectors of values of the independent (explanatory) variables, f is a known function of an unknown 
regression parameter vector θ, and the ɛi’s are independently distributed normal errors each with mean 0 and 

variance σ2.

Function imsls_f_nonlinear_regression performs the least-squares fit to the data for this model.

Weighted Least Squares
Functions throughout the chapter generally allow weights to be assigned to the observations. The vector 
weights is used throughout to specify the weighting for each row of X.

B
^

yi = f xi; θ + εi i = 1,2, … ,n
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Computations that relate to statistical inference—e.g., t tests, F tests, and confidence intervals—are based on the 

multiple regression model except that the variance of ɛiis assumed to equal σ2 times the reciprocal of the corre-

sponding weight.

If a single row of the data matrix corresponds to ni observations, the vector frequencies can be used to spec-

ify the frequency for each row of X. Degrees of freedom for error are affected by frequencies but are unaffected 
by weights.

Summary Statistics
Function imsls_f_regression_summary can be used to compute and print statistics related to a regression 
for each of the q dependent variables fitted by imsls_f_regression. The summary statistics include the 
model analysis of variance table, sequential sums of squares and F-statistics, coefficient estimates, estimated 
standard errors, t-statistics, variance inflation factors, and estimated variance-covariance matrix of the estimated 
regression coefficients. Function imsls_f_poly_regression includes most of the same functionality for poly-
nomial regressions.

The summary statistics are computed under the model y = Xβ + ɛ, where y is the n × 1 vector of responses, X is 
the n × p matrix of regressors with rank (X) = r, β is the p × 1 vector of regression coefficients, and ɛ is the n × 1 

vector of errors whose elements are independently normally distributed with mean 0 and variance σ2∕wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), most of the computed 

summary statistics are output in the following variables:

anova_table
One-dimensional array usually of length 15. In imsls_f_regression_stepwise, anova_table 
is of length 13 because the last two elements of the array cannot be computed from the input. The 
array contains statistics related to the analysis of variance. The sources of variation examined are the 
regression, error, and total. The first 10 elements of anova_table and the notation frequently 
used for these is described in the following table (here, AOV replaces anova_table):

Model Analysis of Variance Table

Source of 
Variation

Degrees of 
Freedom

Sum of 
Squares Mean Square F p-value

Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9]

Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]

Total DFT = AOV[2] SST = AOV[5]
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If the model has an intercept (default), the total sum of squares is the sum of squares of the devia-
tions of yi from its (weighted) mean  —the so-called corrected total sum of squares, denoted by the 

following:

If the model does not have an intercept (IMSLS_NO_INTERCEPT), the total sum of squares is the 
sum of squares of yi—the so-called uncorrected total sum of squares, denoted by the following:

The error sum of squares is given as follows:

The error degrees of freedom is defined by DFE = n – r.

The estimate of σ2 is given by s2 = SSE∕DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0: β1 = β2 = ... = βk = 0, versus the alternative that 

at least one coefficient is nonzero is given by F = MSR∕s2. The p-value associated with the test is the 
probability of an F larger than that computed under the assumption of the model and the null 
hypothesis. A small p-value (less than 0.05) is customarily used to indicate there is sufficient evidence 
from the data to reject the null hypothesis. Note that the p-value is returned as 0.0 when the value is 
so small that all significant digits have been lost.

The remaining five elements in anova_table frequently are displayed together with the actual 

analysis of variance table. The quantities R-squared (R2 = anova_table[10]) and adjusted R-
squared

are expressed as a percentage and are defined as follows:

R2 = 100(SSR∕SST) = 100(1 – SSE∕SST)

y─

SST =∑
i=1

n

wi yi − y
─ 2

SST =∑
i=1

n

wiyi
2

SSE =∑
i=1

n

wi yi − ŷi
2

Ra
2 = anova_table 11
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The square root of s2(s = anova_table[12]) is frequently referred to as the estimated standard 
deviation of the model error.

The overall mean of the responses  is output in anova_table[13].

The coefficient of variation (CV = anova_table[14]) is expressed as a percentage and defined by 
CV = 100s/  .

coef_t_tests
Two-dimensional matrix containing the regression coefficient vector β as one column and associated 
statistics (estimated standard error, t statistic and p-value) in the remaining columns.

coef_covariances
Estimated variance-covariance matrix of the estimated regression coefficients.

Tests for Lack-of-Fit
Tests for lack-of-fit are computed for the polynomial regression by the function imsls_f_poly_regression. 
The output array ssq_lof contains the lack-of-fit F tests for each degree polynomial 1, 2, ..., k, that is fit to the 
data. These tests are used to indicate the degree of the polynomial required to fit the data well.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functions: 
imsls_f_regression_prediction for linear and nonlinear regressions and imsls_f_poly_prediction 
for polynomial regressions.

Statistics computed include predicted values, confidence intervals, and diagnostics for detecting outliers and 
cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ɛ, where y is the n × 1 vector of responses, X is the n × p 
matrix of regressors with rank (X) = r, β is the p × 1 vector of regression coefficients, and ɛ is the n × 1 vector of 

errors whose elements are independently normally distributed with mean 0 and variance σ2∕wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), the following five diag-

nostics are computed:

1. Leverage

2. Standardized residual

3. Jackknife residual

Ra
2 = 100max 0,1 − s2

SST /DFT

y─

y─
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4. Cook’s distance

5. DFFITS

The definition of these terms is given in the discussion that follows:

Let xi be a column vector containing the elements of the i-th row of X. A case can be unusual either because of xi 

or because of the response yi. The leverage hi is a measure of uniqueness of the xi. The leverage is defined by

where W = diag(w1, w2, …, wn) and (XTWX)- denotes a generalized inverse of XTWX. The average value of the hi’s is 

r∕n. Regression functions declare xi unusual if hi > 2r∕n. Hoaglin and Welsch (1978) call a data point highly influ-

ential (i.e., a leverage point) when this occurs.

Let ei denote the residual

for the i-th case. The estimated variance of ei is (1 – hi)s
2∕wi, where s2 is the residual mean square from the fitted 

regression. The i-th standardized residual (also called the internally studentized residual) is by definition

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi and its predicted value, based on 

the data set in which the i-th case is deleted. This difference equals ei∕(1 − hi). The jackknife residual is obtained 

by standardizing this difference. The residual mean square for the regression in which the i-th case is deleted is 
as follows:

The jackknife residual is defined as

and ti follows a t distribution with n – r − 1 degrees of freedom.

hi = xi
T XTWX

−
xi wi

yi − ŷi

ri = ei
wi

s2 1 − hi

1/2

si
2 =

n − r s2 − wiei
2 / 1 − hi

n − r − 1

ti = ei
wi

si
2 1 − hi
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Cook’s distance for the i-th case is a measure of how much an individual case affects the estimated regression 
coefficients. It is given as follows:

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n − r ) distribution, it should be consid-

ered large. (This value is about 1. This statistic does not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, DFFITS is computed by the formula 
below.

Hoaglin and Welsch (1978) suggest that DFFITS greater than

is large.

Transformations
Transformations of the independent variables are sometimes useful in order to satisfy the regression model. The 
inclusion of squares and crossproducts of the variables

is often needed. Logarithms of the independent variables are used also. (See Draper and Smith 1981, 
pp. 218−222; Box and Tidwell 1962; Atkinson 1985, pp. 177−180; Cook and Weisberg 1982, pp. 78−86.)

When the responses are described by a nonlinear function of the parameters, a transformation of the model 
equation often can be selected so that the transformed model is linear in the regression parameters. For exam-
ple, by taking natural logarithms on both sides of the equation, the exponential model

can be transformed to a model that satisfies the linear regression model provided the ɛi’s have a log-normal dis-

tribution (Draper and Smith, pp. 222−225).

Di =
wihiei

2

rs2 1 − hi
2

DFFITSi = ei
wi

si
2 1 − hi

2

2 r / n

x1, x2, x1
2, x2

2, x1x2

y = e
β0+β1x1ɛ
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When the responses are nonnormal and their distribution is known, a transformation of the responses can often 
be selected so that the transformed responses closely satisfy the regression model, assumptions. The square-
root transformation for counts with a Poisson distribution and the arc-sine transformation for binomial propor-
tions are common examples (Snedecor and Cochran 1967, pp. 325−330; Draper and Smith, pp. 237−239).

Alternatives to Least Squares
The method of least squares has desirable characteristics when the errors are normally distributed, e.g., a least-
squares solution produces maximum likelihood estimates of the regression parameters. However, when errors 
are not normally distributed, least squares may yield poor estimators. Function imsls_f_Lnorm_regression 
offers three alternatives to least squares methodology, Least Absolute Value, LpNorm, and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood estimate when the errors follow a 
Laplace distribution. Option IMSLS_METHOD_LAV is often used when the errors have a heavy tailed distribution 
or when a fit is needed that is resistant to outliers.

A more general approach, minimizing the Lp norm (p ≤ 1), is given by option IMSLS_METHOD_LLP. Although the 
routine requires about 30 times the CPU time for the case p = 1 than would the use of IMSLS_METHOD_LAV, 
the generality of IMSLS_METHOD_LLP allows the user to try several choices for p ≥1 by simply changing the 
input value of p in the calling program. The CPU time decreases as p gets larger. Generally, choices of p between 
1 and 2 are of interest. However, the Lp norm solution for values of p larger than 2 can also be computed.

The minimax (LMV, L∞, Chebyshev) criterion is used by IMSLS_METHOD_LMV. Its estimates are very sensitive to 
outliers, however, the minimax estimators are quite efficient if the errors are uniformly distributed.

Function imsls_f_pls_regression provides an alternative method which is useful when there are many 
inter-related regression variables and relatively few observations. imsls_f_pls_regression finds linear 
combinations of the predictor variables that have highest covariance with Y.

Missing Values
NaN (Not a Number) is the missing value code used by the regression functions. Use function 
imsls_f_machine(6), Chapter 15,Utilities (or functionimsls_d_machine(6) with double-precision regression 
functions) to retrieve NaN. Any element of the data matrix that is missing must be set to imsls_f_machine(6) 
(or imsls_d_machine(6) for double precision). In fitting regression models, any observation containing NaN 
for the independent, dependent, weight, or frequency variables is omitted from the computation of the regres-
sion parameters.
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regressors_for_glm
Generates regressors for a general linear model.

Synopsis
#include <imsls.h>
int imsls_f_regressors_for_glm (int n_observations, float x[], int n_class, int 

n_continuous, ..., 0)

The type double function is imsls_d_regressors_for_glm.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
An n_observations × (n_class + n_continuous) array containing the data. The columns 
must be ordered such that the first n_class columns contain the class variables and the next 
n_continuous columns contain the continuous variables. (Exception: see optional argument 
IMSLS_X_CLASS_COLUMNS.)

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

Return Value
An integer (n_regressors) indicating the number of regressors generated.

Synopsis with Optional Arguments
#include <imsls.h>
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int imsls_f_regressors_for_glm (int n_observations, float x[], int n_class, 
int n_continuous,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_CLASS_COLUMNS, int x_class_columns[],
IMSLS_MODEL_ORDER, int model_order, or
IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[], 

int indices_effects[],
IMSLS_DUMMY, Imsls_dummy_method dummy_method,
IMSLS_REGRESSORS, float **regressors,
IMSLS_REGRESSORS_USER, float regressors[],
IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_class + n_continuous

IMSLS_X_CLASS_COLUMNS, int x_class_columns[] (Input)
Index array of length n_class containing the column numbers of x that are the classification vari-
ables. The remaining variables are assumed to be continuous.
Default: x_class_columns = 0, 1, ..., n_class − 1

IMSLS_MODEL_ORDER, int model_order (Input)
Order of the model. Model order can be specified as 1 or 2. Use optional argument 
IMSLS_INDICES_EFFECTS to specify more complicated models. 
Default: model_order = 1

or

IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[], int indices_effects[] 
(Input)
Variable n_effects is the number of effects (sources of variation) in the model. Variable 
n_var_effects is an array of length n_effects containing the number of variables associated 
with each effect in the model. Argument indices_effects is an index array of length 
n_var_effects[0] + n_var_effects[1]+…+n_var_effects[n_effects − 1]. The 
first n_var_effects[0] elements give the column numbers of x for each variable in the first 
effect. The next n_var_effects[1] elements give the column numbers for each variable in the 
second effect. The last n_var_effects [n_effects − 1] elements give the column numbers for 
each variable in the last effect.
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IMSLS_DUMMY, Imsls_dummy_method dummy_method (Input)
Dummy variable option. Indicator variables are defined for each class variable as described in the 
Description section.

Dummy variables are then generated from the n indicator variables in one of the following three 
ways:

IMSLS_REGRESSORS, float **regressors (Output)
Address of a pointer to the internally allocated array of size n_observations × n_regressors 
containing the regressor variables generated from x.

IMSLS_REGRESSORS_USER, float regressors[] (Output)
Storage for array regressors is provided by the user. See IMSLS_REGRESSORS.

IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim (Input)
Column dimension of regressors.
Default: regressors_col_dim = n_regressors

Description
Function imsls_f_regressors_for_glm generates regressors for a general linear model from a data 
matrix. The data matrix can contain classification variables as well as continuous variables. Regressors for effects 
composed solely of continuous variables are generated as powers and crossproducts. Consider a data matrix 
containing continuous variables as Columns 3 and 4. The effect indices (3, 3) generate a regressor whose i-th 
value is the square of the i-th value in Column 3. The effect indices (3, 4) generates a regressor whose i-th value 
is the product of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification variable are generated using indi-
cator variables. Let the classification variable A take on values a1, a2, ..., an. From this classification variable, 

imsls_f_regressors_for_glm creates n indicator variables. For k = 1, 2, ..., n, we have

dummy_method Method

IMSLS_ALL The n indicator variables are the dummy vari-
ables (default).

IMSLS_LEAVE_OUT_LAST The dummies are the first n − 1 indicator 
variables.

IMSLS_SUM_TO_ZERO The n − 1 dummies are defined in terms of 
the indicator variables so that for balanced 
data, the usual summation restrictions are 
imposed on the regression coefficients.
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For each classification variable, another set of variables is created from the indicator variables. These new vari-
ables are called dummy variables. Dummy variables are generated from the indicator variables in one of three 
manners:

1. The dummies are the n indicator variables.

2. The dummies are the first n – 1 indicator variables.

3. The n – 1 dummies are defined in terms of the indicator variables so that for balanced data, the usual 
summation restrictions are imposed on the regression coefficients.

In particular, for dummy_method = IMSLS_ALL, the dummy variables are Ak = Ik(k = 1, 2, ..., n). For 

dummy_method = IMSLS_LEAVE_OUT_LAST, the dummy variables are Ak = Ik(k = 1, 2, ..., n − 1). For 

dummy_method = IMSLS_SUM_TO_ZERO, the dummy variables are Ak = Ik − In(k = 1, 2, ..., n − 1). The regres-

sors generated for an effect composed of a single-classification variable are the associated dummy variables.

Let mj be the number of dummies generated for the j-th classification variable. Suppose there are two classifica-

tion variables A and B with dummies

and

The regressors generated for an effect composed of two classification variables A and B are

More generally, the regressors generated for an effect composed of several classification variables and several 
continuous variables are given by the Kronecker products of variables, where the order of the variables is speci-
fied in indices_effects. Consider a data matrix containing classification variables in Columns 0 and 1 and 
continuous variables in Columns 2 and 3. Label these four columns A, B, X1, and X2. The regressors generated by 

the effect indices (0, 1, 2, 2, 3) are A ⊗ B ⊗ X1X1X2.

Ik =
1 A = ak
0 otherwise

A1,A2, … Am1

B1,B2, … Bm2

A⊗ B = A1,A2, … Am1 ⊗ B1,B2, … Bm2
= (A1B1,A1B2, … A1Bm2,A2B1,A2B2, …

A2Bm2, … Am1B1,Am1B2, … Am1Bm2)
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Remarks
Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is a continuous variable. The 

model containing the effects A, B, AB, X1, AX1, BX1, and ABX1 is specified as follows (use optional keyword 

IMSLS_INDICES_EFFECTS):

n_class = 2

n_continuous = 1

n_effects = 7

n_var_effects = (1, 1, 2, 1, 2, 2, 3)

indices_effects = (0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2)

For this model, suppose that variable A has two levels, A1 and A2, and that variable B has three levels, B1, B2, and 

B3. For each dummy_method option, the regressors in their order of appearance in regressors are given 

below.

Within a group of regressors corresponding to an interaction effect, the indicator variables composing the regres-
sors vary most rapidly for the last classification variable, next most rapidly for the next to last classification 
variable, etc.

By default, imsls_f_regressors_for_glm internally generates values for n_effects, 
n_var_effects, and indices_effects, which correspond to a first order model with 
NEF = n_continuous + n_class. The variables then are used to create the regressor variables. The effects 
are ordered such that the first effect corresponds to the first column of x, the second effect corresponds to the 
second column of x, etc. A second order model corresponding to the columns (variables) of x is generated if 
IMSLS_MODEL_ORDER with model_order = 2 is specified.

dummy_method regressors
IMSLS_ALL A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, 

A2B3, X1, A1X1, A2X1, B1X1, B2X1, B3X1, A1B1X1, 
A1B2X1, A1B3X1, A2B1X1, A2B2X1, A2B3X1

IMSLS_LEAVE_OUT_LAST A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1, 
A1B1X1, A1B2X1

IMSLS_SUM_TO_ZERO A1 − A2, B1 − B3, B2 − B3, (A1 − A2) (B1 − B2), 
(A1 − A2) (B2 − B3), X1, (A1 − A2) X1, 
(B1− B3)X1, (B2− B3)X1, (A1− A2) (B1− B2)X1, 
(A1  − A2) (B2− B3)X1
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There are

effects, where NVAR = n_continuous + n_class. The first NVAR effects correspond to the columns of x, 
such that the first effect corresponds to the first column of x, the second effect corresponds to the second col-
umn of x, ..., the NVAR-th effect corresponds to the NVAR-th column of x (i.e. x[NVAR − 1]). The next 
n_continuous effects correspond to squares of the continuous variables. The last

effects correspond to the two-variable interactions.

 Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is a continuous 
variable. The effects generated and order of appearance is

 Let the data matrix x = (A, X1, X2), where A is a classification variable and X1 and X2 are continuous 
variables. The effects generated and order of appearance is

 Let the data matrix x = (X1, A, X2) (see IMSLS_CLASS_COLUMNS), where A is a classification 
variable and X1 and X2 are continuous variables. The effects generated and order of appearance is

Higher-order and more complicated models can be specified using IMSLS_INDICES_EFFECTS.

Examples

Example 1

In the following example, there are two classification variables, A and B, with two and three values, respectively. 
Regressors for a one-way model (the default model order) are generated using the IMSLS_ALL dummy method 
(the default dummy method). The five regressors generated are A1, A2, B1, B2, and B3.

#include <imsls.h>
#include <stdio.h>
int main() {

NEF = n_class + 2 * n_continuous + NVAR
2

NVAR
2

A, B, X 1, X 1
2, AB, AX 1, BX 1

A, X 1, X 2, X 1
2, X 2

2,AX 1,AX 2, X 1X 2

X 1, A, X 2, X 1
2, X 2

2, X 1A, X 1X 2, AX 2
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   int n_observations = 6;
   int n_class = 2;
   int n_cont = 0;
   int n_regressors;
   float x[12] = {
       10.0, 5.0,
       20.0, 15.0,
       20.0, 10.0,
       10.0, 10.0,
       10.0, 15.0,
       20.0, 5.0
   };
   n_regressors = imsls_f_regressors_for_glm (n_observations, x,
       n_class, n_cont,
       0);
   printf("Number of regressors = %3d\n", n_regressors);
}

Output

Number of regressors =  5

Example 2

In this example, a two-way analysis of covariance model containing all the interaction terms is fit. First, 
imsls_f_regressors_for_glm is called to produce a matrix of regressors, regressors, from the data 
x. Then, regressors is used as the input matrix into imsls_f_regression to produce the final fit. The 
regressors, generated using dummy_method = IMSLS_LEAVE_OUT_LAST, are the model whose mean func-
tion is

μ + αi + βj + Υij + δxij + ζixij + ηjxij + θijxij i = 1, 2; j = 1, 2, 3

where

α
2

= β
3

= Υ
21

= Υ
22

= Υ
23

= ζ
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2

= η
3

= θ
21

= θ
22

= θ
23

= 0.

#include <imsls.h>
#include <stdio.h>
int main() {
#define N_OBSERVATIONS 18
   int n_class = 2;
   int n_cont = 1;
   float anova[15], *regressors;
   int n_regressors;
   float x[54] = {
       1.0, 1.0, 1.11,
       1.0, 1.0, 2.22,
       1.0, 1.0, 3.33,
       1.0, 2.0, 1.11,
       1.0, 2.0, 2.22,
       1.0, 2.0, 3.33,
       1.0, 3.0, 1.11,
       1.0, 3.0, 2.22,
       1.0, 3.0, 3.33,
       2.0, 1.0, 1.11,
       2.0, 1.0, 2.22,
       2.0, 1.0, 3.33,
       2.0, 2.0, 1.11,
       2.0, 2.0, 2.22,
       2.0, 2.0, 3.33,
       2.0, 3.0, 1.11,
       2.0, 3.0, 2.22,
       2.0, 3.0, 3.33
   };
   float y[N_OBSERVATIONS] = {
       1.0, 2.0, 2.0, 4.0, 4.0, 6.0,
       3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
       2.0, 3.0, 4.0, 5.0, 6.0, 7.0
   };
   int class_col[2] = {0,1};
   int n_effects = 7;
   int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3};
   int indices_effects[12] = {0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2};
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   float *coef;
   char     *reg_labels[] = {
       " ", "Alpha1", "Beta1", "Beta2", "Gamma11", "Gamma12",
       "Delta", "Zeta1", "Eta1", "Eta2", "Theta11", "Theta12"
   };
   char     *labels[] = {
       "degrees of freedom for the model",
       "degrees of freedom for error",
       "total (corrected) degrees of freedom",
       "sum of squares for the model",
       "sum of squares for error",
       "total (corrected) sum of squares",
       "model mean square", "error mean square",
       "F-statistic", "p-value",
       "R-squared (in percent)","adjusted R-squared (in percent)",
       "est. standard deviation of the model error",
       "overall mean of y",
       "coefficient of variation (in percent)"
   };
   n_regressors = imsls_f_regressors_for_glm (N_OBSERVATIONS, x,
       n_class, n_cont,
       IMSLS_X_CLASS_COLUMNS, class_col,
       IMSLS_DUMMY,
       IMSLS_LEAVE_OUT_LAST,
       IMSLS_INDICES_EFFECTS, n_effects, n_var_effects,
          indices_effects,
       IMSLS_REGRESSORS, &regressors,
       0);
   printf("Number of regressors = %3d", n_regressors);
   imsls_f_write_matrix ("regressors", N_OBSERVATIONS, n_regressors,
       regressors,
       IMSLS_COL_LABELS, reg_labels,
       0);
   coef = imsls_f_regression (N_OBSERVATIONS, n_regressors, regressors,
       y,
       IMSLS_ANOVA_TABLE_USER, anova,
       0);
   imsls_f_write_matrix ("* * * Analysis of Variance * * *\n", 15, 1,
       anova,
       IMSLS_ROW_LABELS,  labels,
       IMSLS_WRITE_FORMAT, "%11.4f",
       0);
}

Output

Number of regressors = 11 
                               Regressors
       Alpha1      Beta1      Beta2    Gamma11    Gamma12      Delta
1       1.00       1.00       0.00       1.00       0.00       1.11
2       1.00       1.00       0.00       1.00       0.00       2.22
3       1.00       1.00       0.00       1.00       0.00       3.33
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4       1.00       0.00       1.00       0.00       1.00       1.11
5       1.00       0.00       1.00       0.00       1.00       2.22
6       1.00       0.00       1.00       0.00       1.00       3.33
7       1.00       0.00       0.00       0.00       0.00       1.11
8       1.00       0.00       0.00       0.00       0.00       2.22
9       1.00       0.00       0.00       0.00       0.00       3.33
10      0.00       1.00       0.00       0.00       0.00       1.11
11      0.00       1.00       0.00       0.00       0.00       2.22
12      0.00       1.00       0.00       0.00       0.00       3.33
13      0.00       0.00       1.00       0.00       0.00       1.11
14      0.00       0.00       1.00       0.00       0.00       2.22
15      0.00       0.00       1.00       0.00       0.00       3.33
16      0.00       0.00       0.00       0.00       0.00       1.11
17      0.00       0.00       0.00       0.00       0.00       2.22
18      0.00       0.00       0.00       0.00       0.00       3.33
        Zeta1       Eta1       Eta2    Theta11    Theta12
1       1.11       1.11       0.00       1.11       0.00
2       2.22       2.22       0.00       2.22       0.00
3       3.33       3.33       0.00       3.33       0.00
4       1.11       0.00       1.11       0.00       1.11
5       2.22       0.00       2.22       0.00       2.22
6       3.33       0.00       3.33       0.00       3.33
7       1.11       0.00       0.00       0.00       0.00
8       2.22       0.00       0.00       0.00       0.00
9       3.33       0.00       0.00       0.00       0.00
10      0.00       1.11       0.00       0.00       0.00
11      0.00       2.22       0.00       0.00       0.00
12      0.00       3.33       0.00       0.00       0.00
13      0.00       0.00       1.11       0.00       0.00
14      0.00       0.00       2.22       0.00       0.00
15      0.00       0.00       3.33       0.00       0.00
16      0.00       0.00       0.00       0.00       0.00
17      0.00       0.00       0.00       0.00       0.00
18      0.00       0.00       0.00       0.00       0.00

          * * * Analysis of Variance * * *
degrees of freedom for the model               11.0000
degrees of freedom for error                    6.0000
total (corrected) degrees of freedom           17.0000
sum of squares for the model                   43.9028
sum of squares for error                        0.8333
total (corrected) sum of squares               44.7361
model mean square                               3.9912
error mean square                               0.1389
F-statistic                                    28.7364
p-value                                         0.0003
R-squared (in percent)                         98.1372
adjusted R-squared (in percent)                94.7221
est. standard deviation of the model error      0.3727
overall mean of y                               3.9722
coefficient of variation (in percent)           9.3821
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regression
Fits a multivariate linear regression model using least squares.

Synopsis
#include <imsls.h>
float *imsls_f_regression (int n_rows, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_regression.

Required Arguments
int n_rows (Input)

Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows × n_independent containing the independent (explanatory) variables(s). 
The i-th column of x contains the i-th independent variable.

float y[] (Input)
Array of size n_rows × n_dependent containing the dependent (response) variables(s). The i-th 
column of y contains the i-th dependent variable. See optional argument IMSLS_N_DEPENDENT 
to set the value of n_dependent.

Return Value
If the optional argument IMSLS_NO_INTERCEPT is not used, regression returns a pointer to an array of 
length n_dependent × (n_independent + 1) containing a least-squares solution for the regression coeffi-
cients. The estimated intercept is the initial component of each row, where the i-th row contains the regression 
coefficients for the i-th dependent variable.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regresssion (int n_rows, int n_independent, float x[], float y[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
IMSLS_N_DEPENDENT, int n_dependent,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_TOLERANCE, float tolerance,
IMSLS_RANK, int *rank,
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_X_MEAN, float **x_mean,
IMSLS_X_MEAN_USER, float x_mean[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_SCPE, float **scpe[],
IMSLS_SCPE_USER, float scpe_user[],
IMSLS_WEIGHTS, float weights[],
IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_independent
108



 Regression         regression
IMSLS_Y_COL_DIM, int y_col_dim (Input)
Column dimension of y.
Default: y_col_dim = n_dependent

IMSLS_N_DEPENDENT, int n_dependent (Input)
Number of dependent variables. Input matrix y must be declared of size n_rows by 
n_dependent, where column i of y contains the i-th dependent variable. 
Default: n_dependent = 1

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data (independent, dependent, 
frequencies, and weights) is all stored in the data matrix x. Argument y, and keywords 
IMSLS_FREQUENCIES and IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers of x in which particular 
types of data are stored. Columns are numbered 0 … x_col_dim − 1.

Parameter indind contains the indices of the independent variables.

Parameter inddep contains the indices of the dependent variables.

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights, 
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if 
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are 
not allowed.

Note that required input argument y is not referenced, and can be declared a vector of length 1.

IMSLS_IDO, int ido (Input)
Processing option.
The argument ido must be one of 0, 1, 2, or 3. If ido = 0 (the default), all of the observations are 
input during one invocation. If ido = 1, 2, or 3, blocks of rows of the data can be processed sequen-
tially in separate invocations of imsls_f_regression; with this option, it is not a requirement 
that all observations be memory resident, thus enabling one to handle large data sets.

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be 
made. Initialization and updating for the n_rows observations of x 
will be performed.
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Default: ido = 0

IMSLS_ROWS_ADD, or

IMSLS_ROWS_DELETE
By default (or if IMSLS_ROWS_ADD is specified), the observations in x are added to the discriminant 
statistics. If IMSLS_ROWS_DELETE is specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if there is only one 
invocation).

IMSLS_INTERCEPT, or

IMSLS_NO_INTERCEPT
IMSLS_INTERCEPT is the default where the fitted value for observation i is

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the intercept term

is omitted from the model and the return value from regression is a pointer to an array of length 
n_dependent × n_independent.

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. For regression, 
tolerance = 100 × imsls_f_machine(4) is the default choice. For imsls_d_regression, 
tolerance = 100 × imsls_d_machine(4) is the default. (See imsls_f_machine Chapter 
15,Utilities.)

IMSLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *rank.

2 This is an intermediate invocation; updating for the n_rows obser-
vations of x will be performed.

3 This is the final invocation of this function. Updating for the data in 
x and wrap-up computations are performed. Workspace is 
released No further invocations of imsls_f_regression with ido 
greater than 1 should be made without first invoking 
imsls_f_regression with ido = 1.

ido Action

β^ 0 + β
^
1x1 + ... + β

^
kxk

β^ 0
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IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
Address of a pointer to the n_dependent × m × m internally allocated array containing the esti-
mated variances and covariances of the estimated regression coefficients. Here, m is the number of 
regression coefficients in the model. If IMSLS_NO_INTERCEPT is specified, 
n = n_independent; otherwise, m = n_independent + 1.

The first m × m elements contain the matrix for the first dependent variable, the next m × m ele-
ments contain the matrix for the next dependent variable, ... and so on.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for arrays coef_covariances is provided by the user. See 
IMSLS_COEF_COVARIANCES.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of array coef_covariances.
Default: cov_col_dim = m, where m is the number of regression coefficients in the model

IMSLS_X_MEAN, float **x_mean (Output)
Address of a pointer to the internally allocated array containing the estimated means of the indepen-
dent variables.

IMSLS_X_MEAN_USER, float x_mean[] (Output)
Storage for array x_mean is provided by the user. 
See IMSLS_X_MEAN.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the internally allocated array of size n_rows by n_dependent containing 
the residuals. Residuals may not be requested if ido > 0.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. 
See IMSLS_RESIDUAL.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array of size 
15 × n_dependent containing the analysis of variance table for each dependent variable. The i-th 
column corresponds to the analysis for the i-th dependent variable.

The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom
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The anova statistics may not be requested if ido > 0. Note that the p-value is returned as 0.0 when 
the value is so small that all significant digits have been lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_SCPE, float **scpe (Output)
The address of a pointer to an internally allocated array of size n_dependent × n_dependent 
containing the error (residual) sums of squares and crossproducts. scpe [m][n] contains the sum of 
crossproducts for the m-th and n-th dependent variables.

IMSLS_SCPE_USER, float scpe[] (Output)
Storage for array scpe is provided by the user. See IMSLS_SCPE.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each observation.
Default: weights[] = 1

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Element Analysis of Variance Statistics
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IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info (Output)
Address of the pointer to an internally allocated structure of type Imsls_f_regression containing infor-
mation about the regression fit. This structure is required as input for functions 
imsls_f_regression_prediction and imsls_f_regression_summary. To release 
this space, use imsls_free.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array coefficients 
provided by the user. If IMSLS_NO_INTERCEPT is specified, the array requires 
n_dependent × nunits of memory, where n = n_independent; otherwise, 
n = n_independent + 1.

Description
Function imsls_f_regression fits a multivariate multiple linear regression model with or without an inter-
cept. The multiple linear regression model is

yi = β
0

+ β
1

xi

1

+ β
2

xi

2

+ … + βkxik + ɛi i = 1, 2, …, n

where the observed values of the yi’s are the responses or values of the dependent variable; the xi1’s, xi2’s, …, xik’s 

are the settings of the k (input in n_independent) independent variables; β0, β1, …, βk are the regression 

coefficients whose estimated values are to be output by imsls_f_regression; and the ɛi’s are inde-

pendently distributed normal errors each with mean 0 and variance s2. Here, n is the sum of the frequencies for 
all nonmissing observations, i.e.,
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where fi is equal to frequencies[i] if optional argument IMSLS_FREQUENCIES is specified and equal to 1.0 

otherwise. Note that by default, β0 is included in the model.

More generally, imsls_f_regression fits a multivariate regression model. See the chapter introduction for a 
description of the multivariate model.

Function imsls_f_regression computes estimates of the regression coefficients by minimizing the sum of 
squares of the deviations of the observed response yi from the fitted response

for the n observations. This minimum sum of squares (the error sum of squares) is output as one of the analysis 
of variance statistics if IMSLS_ANOVA_TABLE (or IMSLS_ANOVA_TABLE_USER) is specified and is com-
puted as follows:

Another analysis of variance statistic is the total sum of squares. By default, the total sum of squares is the sum 
of squares of the deviations of yi from its mean

the so-called corrected total sum of squares. This statistic is computed as follows:

When IMSLS_NO_INTERCEPT is specified, the total sum of squares is the sum of squares of yi, the so-called 

uncorrected total sum of squares. This is computed as follows:

See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analysis, 
and many examples.

n = ∑
i=0

n_rows−1
f i

ŷi

SSE =∑
i=1

n

wi yi − ŷi
2

y─

SST =∑
i=1

n

wi yi − y
─ 2

SST =∑
i=1

n

wiyi
2
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In order to compute a least-squares solution, imsls_f_regression performs an orthogonal reduction of 
the matrix of regressors to upper-triangular form. The reduction is based on one pass through the rows of the 
augmented matrix (x, y) using fast Givens transformations. (See Golub  and Van Loan 1983, pp. 156–162; Gentle-
man 1974.) This method has the advantage that the loss of accuracy resulting from forming the crossproduct 
matrix used in the normal equations is avoided.

By default, the current means of the dependent and independent variables are used to internally center the data 
for improved accuracy. Let xi be a column vector containing the j-th row of data for the independent variables. Let 

xi represent the mean vector for the independent variables given the data for rows 1, 2, …, i.

The current mean vector is defined as follows:

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data has

subtracted from it and is multiplied by

where

Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the fol-
lowing formula for the sum of squares and crossproducts matrix:

An orthogonal reduction on the centered matrix is computed. When the final computations are performed, the 
intercept estimate and the first row and column of the estimated covariance matrix of the estimated coefficients 
are updated (if IMSLS_COEF_COVARIANCES or IMSLS_COEF_COVARIANCES_USER is specified) to reflect 
the statistics for the original (uncentered) data. This means that the estimate of the intercept is for the uncen-
tered data.

x─i =
∑
j=1

i
w j f jx j

∑
j=1

i
w j f j

x─i

wi f i
ai
ai−1

ai =∑
j=1

i

w j f j

∑
i=1

n

wi f i xi − x
─
n xi − x

─
n
T =∑

i=2

n ai
ai−1wi f i xi − x

─
i xi − x

─
i
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As part of the final computations, imsls_f_regression checks for linearly dependent regressors. In particu-
lar, linear dependence of the regressors is declared if any of the following three conditions are satisfied:

 A regressor equals 0.

 Two or more regressors are constant.

is less than or equal to tolerance. Here,

is the multiple correlation coefficient of the i-th independent variable with the first i – 1 independent 
variables. If no intercept is in the model, the multiple correlation coefficient is computed without 
adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be linearly dependent upon the pre-
vious i − 1 regressors, the i-th coefficient estimate and all elements in the i-th row and i-th column of the 
estimated variance-covariance matrix of the estimated coefficients (if IMSLS_COEF_COVARIANCES or 
IMSLS_COEF_COVARIANCES_USER is specified) are set to 0. Finally, if a linear dependence is declared, an 
informational (error) message, code IMSLS_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1

A regression model

yi = β
0

+ β
1

xi

1

+ β
2

xi

2

+ β

1 − Ri · 1, 2, ... i−1
2

Ri · 1, 2, ... i−1
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3

xi

3

+ ɛi  i = 1, 2, …, 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

#include <imsls.h>
#define INTERCEPT      1
#define N_INDEPENDENT  3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9
int main()
{
   float      *coefficients;
   float      x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
                                    2.0,-1.0, 6.0,
                                    7.0, 3.0, 5.0,
                                   -3.0, 1.0, 4.0,
                                    2.0,-1.0, 0.0,
                                    2.0, 1.0, 7.0,
                                   -3.0,-1.0, 3.0,
                                    2.0, 1.0, 1.0,
                                    2.0, 1.0, 4.0};
   float      y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};
   coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT, 
                                    (float *)x, y, 0);
   imsls_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS, 
                       coefficients, 
                       IMSLS_COL_NUMBER_ZERO,
                       0);
}

Output

         Least-Squares Coefficients
        0          1          2          3
    7.733     -0.200      2.333     -1.667

Example 2

A weighted least-squares fit is computed using the model

yi = β
0

+ β
1

xi
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1

+ β
2

xi

2

+ ɛi i = 1, 2, …, 4

and weights 1∕i2 discussed by Maindonald (1984, pp. 67−68).

In the example, IMSLS_WEIGHTS is specified. The minimum sum of squares for error in terms of the original 
untransformed regressors and responses for this weighted regression is

where wi = 1/i2, represented in the C code as array w.

#include <imsls.h>
#define N_INDEPENDENT  2
#define N_COEFFICIENTS N_INDEPENDENT + 1
#define N_OBSERVATIONS 4
int main()
{
   int   i;
   float *coefficients, w[N_OBSERVATIONS], anova_table[15], power;
   float x[][N_INDEPENDENT] = {
       -2.0, 0.0,
       -1.0, 2.0,
        2.0, 5.0,
        7.0, 3.0
   };
   float y[] = {-3.0, 1.0, 2.0, 6.0};
   char *anova_row_labels[] = {
       "degrees of freedom for regression",
       "degrees of freedom for error",
       "total (uncorrected) degrees of freedom",
       "sum of squares for regression",
       "sum of squares for error",
       "total (uncorrected) sum of squares",
       "regression mean square",
       "error mean square", "F-statistic",
       "p-value", "R-squared (in percent)",
       "adjusted R-squared (in percent)",
       "est. standard deviation of model error",
       "overall mean of y",
       "coefficient of variation (in percent)"
   };

SSE =∑
i=1

4

wi yi − ŷi
2
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   /* Calculate weights */
   power = 0.0;
   for (i = 0; i < N_OBSERVATIONS; i++) {
       power += 1.0;
       w[i] = 1.0 / (power * power);
   }
   /*Perform analysis */
   coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
       (float *) x, y,
       IMSLS_WEIGHTS, w,
       IMSLS_ANOVA_TABLE_USER, anova_table,
       0);
   /* Print results */
   imsls_f_write_matrix("Least Squares Coefficients", 1,
       N_COEFFICIENTS, coefficients,
       0);
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
       anova_table,
       IMSLS_ROW_LABELS, anova_row_labels,
       IMSLS_WRITE_FORMAT, "%10.2f",
       0);
}

Output

   Least Squares Coefficients
        1          2          3
   -1.431      0.658      0.748

        * * * Analysis of Variance * * *
degrees of freedom for regression            2.00
degrees of freedom for error                 1.00
total (uncorrected) degrees of freedom       3.00
sum of squares for regression                7.68
sum of squares for error                     1.01
total (uncorrected) sum of squares           8.69
regression mean square                       3.84
error mean square                            1.01
F-statistic                                  3.79
p-value                                      0.34
R-squared (in percent)                      88.34
adjusted R-squared (in percent)             65.03
est. standard deviation of model error       1.01
overall mean of y                           -1.51
coefficient of variation (in percent)      -66.55

Example 3

A multivariate regression is performed for a data set with two dependent variables. Also, usage of the keyword 
IMSLS_X_INDICES is demonstrated. Note that the required input variable y is not referenced and is declared 
as a pointer to a float.
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#include <imsls.h>
#include <stdio.h>
#define INTERCEPT      1
#define N_INDEPENDENT  3
#define N_DEPENDENT    2
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9
int main()
{
   float coefficients[N_DEPENDENT*N_COEFFICIENTS];
   float scpe[N_DEPENDENT*N_DEPENDENT];
   float anova_table[15*N_DEPENDENT];
   float  x[] =      {
       7.0, 5.0, 6.0, 7.0, 1.0, 
       2.0,-1.0, 6.0, -5.0, 4.0, 
       7.0, 3.0, 5.0, 6.0, 10.0, 
       -3.0, 1.0, 4.0, 5.0, 5.0, 
       2.0,-1.0, 0.0, 5.0, -2.0, 
       2.0, 1.0, 7.0, -2.0, 4.0, 
       -3.0,-1.0, 3.0, 0.0, -6.0, 
       2.0, 1.0, 1.0, 8.0, 2.0, 
       2.0, 1.0, 4.0, 3.0, 0.0
   };
   int   ifrq = -1, iwt=-1;
   int indind[N_INDEPENDENT] = {0, 1, 2};
   int inddep[N_DEPENDENT] = {3, 4};
   char  *fmt = "%10.4f";
   char  *anova_row_labels[] = {
       "d.f. regression", 
       "d.f. error", 
       "d.f. total (uncorrected)",
       "ssr", 
       "sse", 
       "sst (uncorrected)",
       "msr", 
       "mse", "F-statistic",
       "p-value", "R-squared (in percent)", 
       "adj. R-squared (in percent)",
       "est. s.t.d. of model error", 
       "overall mean of y", 
       "coefficient of variation (in percent)"
   };
   imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT, 
       (float *) x, NULL,
       IMSLS_X_COL_DIM, N_INDEPENDENT+N_DEPENDENT,
       IMSLS_N_DEPENDENT, N_DEPENDENT, 
       IMSLS_X_INDICES, indind, inddep, ifrq, iwt,
       IMSLS_SCPE_USER, scpe, 
       IMSLS_ANOVA_TABLE_USER, anova_table,
       IMSLS_RETURN_USER, coefficients,
       0);
   imsls_f_write_matrix("Least Squares Coefficients", N_DEPENDENT,
       N_COEFFICIENTS, coefficients, 
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       IMSLS_COL_NUMBER_ZERO, 0);
   imsls_f_write_matrix("SCPE", N_DEPENDENT, N_DEPENDENT, scpe, 
       IMSLS_WRITE_FORMAT, "%10.4f", 0);
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 
       15, N_DEPENDENT, 
       anova_table,
       IMSLS_ROW_LABELS, anova_row_labels,
       IMSLS_WRITE_FORMAT, "%10.2f", 
       0);
}

Output

          Least Squares Coefficients
           0          1          2          3
1      7.733     -0.200      2.333     -1.667
2     -1.633      0.400      0.167      0.667
         SCPE
           1          2
1     4.0000    20.0000
2    20.0000   110.0000
    * * * Analysis of Variance * * *
                             1          2
d.f. regression           3.00       3.00
d.f. error                5.00       5.00
d.f. total (uncorre       8.00       8.00
  cted)                                  
ssr                     152.00      56.00
sse                       4.00     110.00
sst (uncorrected)       156.00     166.00
msr                      50.67      18.67
mse                       0.80      22.00
F-statistic              63.33       0.85
p-value                   0.00       0.52
R-squared (in            97.44      33.73
  percent)                               
adj. R-squared           95.90       0.00
  (in percent)                           
est. s.t.d. of            0.89       4.69
  model error                            
overall mean of y         3.00       2.00
coefficient of           29.81     234.52
  variation (in                          
  percent)                               

Example 4

Continuing with Example 1data, the example below invokes the regression function using values of IDO greater 
than 0. Also, usage of the keywords IMSLS_COEF_COVARIANCES and IMSLS_X_MEAN is demonstrated.

#include <imsls.h>
#include <stdio.h>
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#define N_INDEPENDENT 3
#define N_OBSERVATIONS_BLOCK_1 3
#define N_OBSERVATIONS_BLOCK_2 3
#define N_OBSERVATIONS_BLOCK_3 3
#define N_COEFFICIENTS 4
int main()
{
   float coefficients[N_COEFFICIENTS], *coef_covariance=NULL;
   float *anova_table=NULL; 
   float  *residual=NULL, *x_mean=NULL;
   float  x1[][N_INDEPENDENT] = {
       7.0, 5.0, 6.0,
       2.0,-1.0, 6.0,
       7.0, 3.0, 5.0
   };
   float  x2[][N_INDEPENDENT] = {
       -3.0, 1.0, 4.0,
       2.0,-1.0, 0.0,
       2.0, 1.0, 7.0
   };
   float  x3[][N_INDEPENDENT] = {
       -3.0,-1.0, 3.0,
       2.0, 1.0, 1.0,
       2.0, 1.0, 4.0
   };
   float  y1[] = {7.0,-5.0, 6.0};
   float  y2[] = {5.0, 5.0,-2.0};
   float  y3[] = {0.0, 8.0, 3.0};
   imsls_f_regression(N_OBSERVATIONS_BLOCK_1, N_INDEPENDENT, &x1[0][0], y1,
       IMSLS_RETURN_USER, coefficients, 
       IMSLS_IDO, 1, 
       0);
   imsls_f_regression(N_OBSERVATIONS_BLOCK_2, N_INDEPENDENT, &x2[0][0], y2,
       IMSLS_RETURN_USER, coefficients, 
       IMSLS_IDO, 2, 
       0);
   imsls_f_regression(N_OBSERVATIONS_BLOCK_3, N_INDEPENDENT, &x3[0][0], y3,
       IMSLS_RETURN_USER, coefficients, 
       IMSLS_COEF_COVARIANCES, &coef_covariance,
       IMSLS_X_MEAN, &x_mean,
       IMSLS_IDO, 3, 
       0);
   imsls_f_write_matrix("\nLeast Squares Coefficients", 1, 
       N_COEFFICIENTS, coefficients, 0);

   if (coef_covariance){
       imsls_f_write_matrix("\nCoefficient Covariance", 
           N_COEFFICIENTS, N_COEFFICIENTS, coef_covariance,
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           IMSLS_PRINT_UPPER,
           0);
       imsls_free(coef_covariance);
   }
   if (x_mean){
       imsls_f_write_matrix("\nx means", 1, N_INDEPENDENT, x_mean, 0);
       imsls_free(x_mean);
   }
}

Output

          Least Squares Coefficients
1           2           3           4
7.733      -0.200       2.333      -1.667
          Coefficient Covariance
            1           2           3           4
1      0.3951     -0.0120      0.0289     -0.0778
2                  0.0160     -0.0200     -0.0000
3                              0.0556     -0.0111
4                                          0.0222
           x means
1           2           3
2           1           4
                               

Warning Errors

Fatal Errors

IMSLS_RANK_DEFICIENT The model is not full rank. There is not a unique 
least-squares solution.

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by 
invoking the function with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the 
previous analysis is terminated by invoking the func-
tion with “ido” = 3.
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regression_summary
Produces summary statistics for a regression model given the information from the fit.

Synopsis
#include <imsls.h>
void imsls_f_regression_summary (Imsls_f_regression *regression_info, ..., 0)

The type double function is imsls_d_regression_summary.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See 
imsls_f_regression.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_summary (Imsls_f_regression *regression_info,

IMSLS_INDEX_REGRESSION, int idep,
IMSLS_COEF_T_TESTS, float **coef_t_tests
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_COL_DIM, int coef_col_dim,
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
0)
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Optional Arguments
IMSLS_INDEX_REGRESSION, int idep (Input)

Given a multivariate regression fit, this option allows the user to specify for which regression sum-
mary statistics will be computed.
Default: idep = 0

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address of a pointer to the npar × 4 array containing statistics relating to the regression coeffi-
cients, where npar is equal to the number of parameters in the model.

Each row (for each dependent variable) corresponds to a coefficient in the model, where npar is the 
number of parameters in the model. Row i + intcep corresponds to the i-th independent variable, 
where intcep is equal to 1 if an intercept is in the model and 0 otherwise, for i = 0, 1, 2, …, npar – 1.

The statistics in the columns are as follows:

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_T_TESTS.

IMSLS_COEF_COL_DIM, int coef_col_dim (Input)
Column dimension of coef_t_tests.
Default: coef_col_dim = 4

IMSLS_COEF_VIF, float **coef_vif (Output)
Address of a pointer to an internally allocated array of length npar containing the variance inflation 
factor, where npar is the number of parameters. The i + intcep-th column corresponds to the i-th 
independent variable, where i = 0, 1, 2, …, npar - 1, and intcep is equal to 1 if an intercept is in the 
model and 0 otherwise.

The square of the multiple correlation coefficient for the i-th regressor after all others can be 
obtained from coef_vif by

If there is no intercept, or there is an intercept and j = 0, the multiple correlation coefficient is not 
adjusted for the mean.

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient 
estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

1.0 − 1.0
coef_vif i
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IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_VIF.

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
An npar by npar (where npar is equal to the number of parameters in the model) array that is the esti-
mated variance-covariance matrix of the estimated regression coefficients when R is nonsingular and 
is from an unrestricted regression fit. SeeRemarks for an explanation of coef_covariances 
when R is singular and is from a restricted regression fit.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for coef_covariances is provided by the user. See IMSLS_COEF_COVARIANCES.

IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim (Input)
Column dimension of coef_covariances.

Default: coef_cov_col_dim = the number of parameters in the model
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IMSLS_ANOVA_TABLE, float **anova_table (Output)

Address of a pointer to the array of size 15 containing the analysis of variance table.

If the model has an intercept, the regression and total are corrected for the mean; otherwise, the 
regression and total are not corrected for the mean, and anova_table[13] and 
anova_table[14] are set to NaN. Note that the p-value is returned as 0.0 when the value is so 
small that all significant digits have been lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

Description
Function imsls_f_regression_summary computes summary statistics from a fitted general linear model. 
The model is y = Xβ + ɛ, where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 
vector of regression coefficients, and ɛ is the n × 1 vector of errors whose elements are each independently dis-

tributed with mean 0 and variance σ2. Function regression can be used to compute the fit of the model. 
Next, imsls_f_regression_summary uses the results of this fit to compute summary statistics, including 
analysis of variance, sequential sum of squares, t tests, and an estimated variance-covariance matrix of the esti-
mated regression coefficients.

Row Analysis of Variance Statistic
0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2(in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)
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Some generalizations of the general linear model are allowed. If the i-th element of ɛ has variance of

and the weights wi are used in the fit of the model, imsls_f_regression_summary produces summary 

statistics from the weighted least-squares fit. More generally, if the variance-covariance matrix of ɛ is σ2V, 
imsls_f_regression_summary can be used to produce summary statistics from the generalized least-

squares fit. Function regression can be used to perform a generalized least-squares fit, by regressing y* on X* 

where y* = (T -1)Ty, X* = (T-1)TX and T satisfies TTT = V.

The sequential sum of squares for the i-th regression parameter is given by

The regression sum of squares is given by the sum of the sequential sums of squares. If an intercept is in the 
model, the regression sum of squares is adjusted for the mean, i.e.,

is not included in the sum.

The estimate of σ2 is s2 (stored in anova_table[7]) that is computed as SSE/DFE.

If R is nonsingular, the estimated variance-covariance matrix of

(stored in coef_covariances) is computed by s2R-1(R-1)T.

If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a matrix G to be a gi (i = 1, 2, 3, or 4) 

inverse of a matrix A, G must satisfy conditions j (for j ≤ i) for the Moore-Penrose inverse but generally must fail 
conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse of A are as follows:

1. AGA = A.

2. GAG = G.

3. AG is symmetric.

4. GA is symmetric.

In the case where R is singular, the method for obtaining coef_covariances follows the discussion of Main-
donald (1984, pp. 101–103). Let Z be the diagonal matrix with diagonal elements defined by the following:

σ2
wi

Rβ^ i

2

Rβ^
0

2

β^
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Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G to 0. Argument 

coef_covariances is set to s2GGT. (G is a g3 inverse of R, represented by,

the result

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that argument coef_covariances can be used only to get variances and covariances of estimable func-
tions of the regression coefficients, i.e., nonestimable functions (linear combinations of the regression 
coefficients not in the space spanned by the nonzero rows of R) must not be used. See, for example, Maindonald 
(1984, pp. 166–168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in Column 1 of coef_t_tests) 
are computed as square roots of the corresponding diagonal entries in coef_covariances.

For the case where an intercept is in the model, put  equal to the matrix R with the first row and column 
deleted. Generally, the variance inflation factor (VIF) for the i-th regression coefficient is computed as the product 

of the i-th diagonal element of RTR and the i-th diagonal element of its computed inverse. If an intercept is in the 

model, the VIF for those coefficients not corresponding to the intercept uses the diagonal elements of  (see 
Maindonald 1984, p. 40).

Remarks
When R is nonsingular and comes from an unrestricted regression fit, coef_covariances is the estimated 
variance-covariance matrix of the estimated regression coefficients, and coef_covariances = (SSE/DFE) 

(RTR). Otherwise, variances and covariances of estimable functions of the regression coefficients can be obtained 

using coef_covariances, and coef_covariances = (SSE/DFE) (GDGT). Here, D is the diagonal matrix 
with diagonal elements equal to 0 if the corresponding rows of R are restrictions and with diagonal elements 
equal to 1 otherwise. Also, G is a particular generalized inverse of R.

zii =
1 if rii ≠ 0
0 if rii = 0

R
g3

R
g3R

g3
T

R
─

R
─TR
─
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Example
#include <imsls.h>
int main()
{
#define INTERCEPT      1
#define N_INDEPENDENT  4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT    1
   Imsls_f_regression  *regression_info;
   float      *anova_table, *coef_t_tests, *coef_vif, 
               *coefficients, *coef_covariances;
   float      x[][N_INDEPENDENT] = {
       7.0, 26.0, 6.0, 60.0,
       1.0, 29.0, 15.0, 52.0,
      11.0, 56.0, 8.0, 20.0,
      11.0, 31.0, 8.0, 47.0,
       7.0, 52.0, 6.0, 33.0,
      11.0, 55.0, 9.0, 22.0,
       3.0, 71.0, 17.0, 6.0,
       1.0, 31.0, 22.0, 44.0,
       2.0, 54.0, 18.0, 22.0,
      21.0, 47.0, 4.0, 26.0,
       1.0, 40.0, 23.0, 34.0, 
      11.0, 66.0, 9.0, 12.0,
      10.0, 68.0, 8.0, 12.0};
   float       y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 
      102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
   char       *anova_row_labels[] = {
                  "degrees of freedom for regression",
                  "degrees of freedom for error",
                  "total (uncorrected) degrees of freedom",
                  "sum of squares for regression",
                  "sum of squares for error",
                  "total (uncorrected) sum of squares",
                  "regression mean square",
                  "error mean square", "F-statistic",
                  "p-value", "R-squared (in percent)",
                  "adjusted R-squared (in percent)",
                  "est. standard deviation of model error",
                  "overall mean of y",
                  "coefficient of variation (in percent)"};
                               /* Fit the regression model */
   coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT, 
       (float *)x, y,
       IMSLS_REGRESSION_INFO, &regression_info,
       0);
                               /* Generate summary statistics */
   imsls_f_regression_summary (regression_info,
       IMSLS_ANOVA_TABLE, &anova_table, 
       IMSLS_COEF_T_TESTS, &coef_t_tests,
       IMSLS_COEF_VIF, &coef_vif,
       IMSLS_COEF_COVARIANCES, &coef_covariances,
       0);
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                               /* Print results */
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
       anova_table,
       IMSLS_ROW_LABELS, anova_row_labels,
       IMSLS_WRITE_FORMAT, "%10.2f", 0);
   imsls_f_write_matrix("* * * Inference on Coefficients * * *\n", 
       N_COEFFICIENTS, 4, coef_t_tests, 
       IMSLS_WRITE_FORMAT, "%10.2f", 0);
   imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n",
       N_COEFFICIENTS, 1, coef_vif, 
       IMSLS_WRITE_FORMAT, "%10.2f", 0);
   imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n",
       N_COEFFICIENTS, N_COEFFICIENTS, 
       coef_covariances, 
       IMSLS_WRITE_FORMAT, "%10.2f", 0);
}

Output

        * * * Analysis of Variance * * *
degrees of freedom for regression            4.00
degrees of freedom for error                 8.00
total (uncorrected) degrees of freedom      12.00
sum of squares for regression             2667.90
sum of squares for error                    47.86
total (uncorrected) sum of squares        2715.76
regression mean square                     666.97
error mean square                            5.98
F-statistic                                111.48
p-value                                      0.00
R-squared (in percent)                      98.24
adjusted R-squared (in percent)             97.36
est. standard deviation of model error       2.45
overall mean of y                           95.42
coefficient of variation (in percent)        2.56
    * * * Inference on Coefficients * * *
           1          2          3          4
1      62.41      70.07       0.89       0.40
2       1.55       0.74       2.08       0.07
3       0.51       0.72       0.70       0.50
4       0.10       0.75       0.14       0.90
5      -0.14       0.71      -0.20       0.84
* * * Variance Inflation Factors * * *
            1   10668.53
            2      38.50
            3     254.42
            4      46.87
            5     282.51
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          * * * Variance-Covariance Matrix * * *
           1          2          3          4          5
1    4909.95     -50.51     -50.60     -51.66     -49.60
2     -50.51       0.55       0.51       0.55       0.51
3     -50.60       0.51       0.52       0.53       0.51
4     -51.66       0.55       0.53       0.57       0.52
5     -49.60       0.51       0.51       0.52       0.50
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regression_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a regression model.

Synopsis
#include <imsls.h>
float *imsls_f_regression_prediction (Imsls_f_regression *regression_info, 

int n_predict, float x[], ..., 0)

The type double function is imsls_d_regression_prediction.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See 
imsls_f_regression.

int n_predict (Input)
Number of rows in x.

float x[] (Input)
Array of size n_predict by the number of independent variables containing the combinations of 
independent variables in each row for which calculations are to be performed.

Return Value
Pointer to an internally allocated array of length n_predict containing the predicted values.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regression_prediction (Imsls_f_regression *regression_info, int 

n_predict, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
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IMSLS_INDEX_REGRESSION, int idep,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, int iwt,
IMSLS_WEIGHTS, float weights[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], 

float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], 

float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Number of columns in x.
Default: x_col_dim is equal to the number of independent variables, which is input from the struc-
ture regression_info

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Number of columns in y.
Default: y_col_dim = 1
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IMSLS_INDEX_REGRESSION, int idep (Input)
Given a multivariate regression fit, this option allows the user to specify for which regression statistics 
will be computed.
Default: idep = 0

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data (independent, dependent, 
frequencies, and weights) is all stored in the data matrix x. Argument y, and keyword 
IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers of x in which particular 
types of data are stored. Columns are numbered 0, …, x_col_dim − 1.

Parameter indind contains the indices of the independent variables.

Parameter inddep contains the indices of the dependent variables. If there is to be no dependent 
variable, this must be indicated by setting the first element of the vector to −1.

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights, 
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if 
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are 
not allowed.

Note that frequencies are not referenced by function regression_prediction, and is included 
here only for the sake of keyword consistency.

Finally, note that IMSLS_X_INDICES and IMSLS_Y are mutually exclusive keywords, and may not 
be specified in the same call to regression_prediction.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x. The computed prediction inter-
val uses SSE/(DFE*weights[i]) for the estimated variance of a future response, where SSE is sum of 
squares error and DFE is degrees of freedom error.
Default: weights[] = 1

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for both two-sided interval estimates on the mean and for two-sided prediction 
intervals, in percent. Argument confidence must be in the range [0.0, 100.0). For one-sided inter-
vals with confidence level onecl, where 50.0 ≤ onecl < 100.0, set 
confidence = 100.0 − 2.0* (100.0 − onecl).
Default: confidence = 95.0

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length 
n_predict containing the lower confidence limits of Scheffé confidence intervals corresponding to 
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the rows of x. Array upper_limit is the address of a pointer to an internally allocated array of 
length n_predict containing the upper confidence limits of Scheffé confidence intervals corre-
sponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See 
IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length 
n_predict containing the lower-confidence limits of the confidence intervals for two-sided interval 
estimates of the means, corresponding to the rows of x. Array upper_limit is the address of a 
pointer to an internally allocated array of length n_predict containing the upper-confidence limits 
of the confidence intervals for two-sided interval estimates of the means, corresponding to the rows 
of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], float upper_limit[] (Out-
put)
Storage for arrays lower_limit and upper_limit is provided by the user. See 
IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length 
n_predict containing the lower-confidence limits of the confidence intervals for two-sided predic-
tion intervals, corresponding to the rows of x. Array upper_limit is the address of a pointer to an 
internally allocated array of length n_predict containing the upper-confidence limits of the confi-
dence intervals for two-sided prediction intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], float upper_limit[] 
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See 
IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict array contains the pre-
dicted values.
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IMSLS_Y, float y[] (Input)
Array of length n_predict containing the observed responses.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the standard-
ized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[] (Output)
Storage for array standardized_residual is provided by the user. See 
IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the deleted 
residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See 
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length n_predict containing the Cook’s D 
statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length n_predict containing the DFFITS 
statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

IMSLS_Y (or IMSLS_X_INDICES) must be specified if any of the following optional arguments are 
specified.
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Description
The general linear model used by function imsls_f_regression_prediction is

y = Xβ + ɛ
where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector of regression 
coefficients, and ɛ is the n × 1 vector of errors whose elements are independently normally distributed with 
mean 0 and the variance below.

From a general linear model fit using the wi’s as the weights, function imsls_f_regression_prediction 

computes confidence intervals and statistics for the individual cases that constitute the data set. Let xi be a col-

umn vector containing elements of the i-th row of X. The leverage is defined by

where W = diag(w1, w2, …, wn) and (XTWX)− denotes a generalized inverse of XTWX.

Put D = diag (d1, d2, …, dn) with dj = 1 if the j-th diagonal element of R is positive and 0 otherwise. The leverage is 

computed as hi = (aTDa) wi where a is a solution to RTa = xi. The estimated variance of

is given by the following:

where

The computation of the remainder of the case statistics follow easily from their definitions. See Diagnostics for 
Individual Cases for the definition of the case diagnostics.

Informational errors can occur if the input matrix x is not consistent with the information from the fit (contained 
in regression_info), or if excess rounding has occurred. The warning error IMSLS_NONESTIMABLE 
arises when x contains a row not in the space spanned by the rows of R. An examination of the model that was 
fitted and the x for which diagnostics are to be computed is required in order to ensure that only linear combina-

σ2
wi

hi = xi
T XTWX

−
xi wi

ŷ = xi
TB^

his
2

wi

s2 = SSEDFE
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tions of the regression coefficients that can be estimated from the fitted model are specified in x. For further 
details, see the discussion of estimable functions given in Maindonald (1984, pp. 166−168) and Searle (1971, pp. 
180−188).

Often predicted values and confidence intervals are desired for combinations of settings of the independent vari-
ables not used in computing the regression fit. This can be accomplished by defining a new data matrix. Since the 
information about the model fit is input in regression_info, it is not necessary to send in the data set used 
for the original calculation of the fit, i.e., only variable combinations for which predictions are desired need be 
entered in x.

Examples

Example 1

#include <imsls.h>
int main()
{
#define INTERCEPT      1
#define N_INDEPENDENT  4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT    1
   float      *y_hat, *coefficients;
   Imsls_f_regression  *regression_info;
   float      x[][N_INDEPENDENT] = {
       7.0, 26.0, 6.0, 60.0,
       1.0, 29.0, 15.0, 52.0,
      11.0, 56.0, 8.0, 20.0,
      11.0, 31.0, 8.0, 47.0,
       7.0, 52.0, 6.0, 33.0,
      11.0, 55.0, 9.0, 22.0,
       3.0, 71.0, 17.0, 6.0,
       1.0, 31.0, 22.0, 44.0,
       2.0, 54.0, 18.0, 22.0,
      21.0, 47.0, 4.0, 26.0,
       1.0, 40.0, 23.0, 34.0, 
      11.0, 66.0, 9.0, 12.0,
      10.0, 68.0, 8.0, 12.0};
   float       y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 
      102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
                               /* Fit the regression model */
   coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT, 
       (float *)x, y,
       IMSLS_REGRESSION_INFO, &regression_info,
       0);
                               /* Generate case statistics */
   y_hat = imsls_f_regression_prediction(regression_info, 
       N_OBSERVATIONS, (float*)x, 0);
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                               /* Print results */
   imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS, 
       y_hat, 0);
}

Output

                         Predicted Responses
        1          2          3          4          5          6
     78.5       72.8      106.0       89.3       95.6      105.3
        7          8          9         10         11         12
    104.1       75.7       91.7      115.6       81.8      112.3
       13
    111.7

Example 2

#include <imsls.h>
int main()
{
#define INTERCEPT      1
#define N_INDEPENDENT  4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT    1
   float      *y_hat, *leverage, *residual, *standardized_residual,
               *deleted_residual, *dffits, *cooksd, *mean_lower_limit,
               *mean_upper_limit, *new_sample_lower_limit, 
               *new_sample_upper_limit, *scheffe_lower_limit, 
               *scheffe_upper_limit, *coefficients;
   Imsls_f_regression  *regression_info;
   float      x[][N_INDEPENDENT] = {
       7.0, 26.0, 6.0, 60.0,
       1.0, 29.0, 15.0, 52.0,
      11.0, 56.0, 8.0, 20.0,
      11.0, 31.0, 8.0, 47.0,
       7.0, 52.0, 6.0, 33.0,
      11.0, 55.0, 9.0, 22.0,
       3.0, 71.0, 17.0, 6.0,
       1.0, 31.0, 22.0, 44.0,
       2.0, 54.0, 18.0, 22.0,
      21.0, 47.0, 4.0, 26.0,
       1.0, 40.0, 23.0, 34.0, 
      11.0, 66.0, 9.0, 12.0,
      10.0, 68.0, 8.0, 12.0};
   float       y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 
      102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
                               /* Fit the regression model */
   coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT, 
       (float *)x, y,
       IMSLS_REGRESSION_INFO, &regression_info,
       0);
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                               /* Generate the case statistics */
   y_hat = imsls_f_regression_prediction(regression_info, 
       N_OBSERVATIONS, (float*)x, 
       IMSLS_Y,                      y,
       IMSLS_LEVERAGE,               &leverage,
       IMSLS_RESIDUAL,               &residual,
       IMSLS_STANDARDIZED_RESIDUAL,  &standardized_residual,
       IMSLS_DELETED_RESIDUAL,       &deleted_residual,
       IMSLS_COOKSD,                 &cooksd,
       IMSLS_DFFITS,                 &dffits,
       IMSLS_POINTWISE_CI_POP_MEAN,  &mean_lower_limit, 
                                      &mean_upper_limit,
       IMSLS_POINTWISE_CI_NEW_SAMPLE, &new_sample_lower_limit, 
                                      &new_sample_upper_limit,
       IMSLS_SCHEFFE_CI,             &scheffe_lower_limit, 
                                      &scheffe_upper_limit,
       0);
                               /* Print results */
   imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS, 
       y_hat, 0);
   imsls_f_write_matrix("Residuals", 1, N_OBSERVATIONS, residual, 0);
   imsls_f_write_matrix("Standardized Residuals", 1, N_OBSERVATIONS, 
       standardized_residual, 0);
   imsls_f_write_matrix("Leverages", 1, N_OBSERVATIONS, leverage, 0);
   imsls_f_write_matrix("Deleted Residuals", 1, N_OBSERVATIONS,
       deleted_residual, 0);
   imsls_f_write_matrix("Cooks D", 1, N_OBSERVATIONS, cooksd, 0);
   imsls_f_write_matrix("DFFITS", 1, N_OBSERVATIONS, dffits, 0);
   imsls_f_write_matrix("Scheffe Lower Limit", 1, N_OBSERVATIONS,
       scheffe_lower_limit, 0);
   imsls_f_write_matrix("Scheffe Upper Limit", 1, N_OBSERVATIONS,
       scheffe_upper_limit, 0);
   imsls_f_write_matrix("Population Mean Lower Limit", 1, 
       N_OBSERVATIONS, mean_lower_limit, 0);
   imsls_f_write_matrix("Population Mean Upper Limit", 1, 
       N_OBSERVATIONS, mean_upper_limit, 0);
   imsls_f_write_matrix("New Sample Lower Limit", 1, N_OBSERVATIONS,
       new_sample_lower_limit, 0);
   imsls_f_write_matrix("New Sample Upper Limit", 1, N_OBSERVATIONS,
       new_sample_upper_limit, 0);
}

Output

                         Predicted Responses
        1          2          3          4          5          6
     78.5       72.8      106.0       89.3       95.6      105.3
        7          8          9         10         11         12
    104.1       75.7       91.7      115.6       81.8      112.3
       13
    111.7
                              Residuals
        1          2          3          4          5          6
    0.005      1.511     -1.671     -1.727      0.251      3.925
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        7          8          9         10         11         12
   -1.449     -3.175      1.378      0.282      1.991      0.973
       13
   -2.294
                       Standardized Residuals
        1          2          3          4          5          6
    0.003      0.757     -1.050     -0.841      0.128      1.715
        7          8          9         10         11         12
   -0.744     -1.688      0.671      0.210      1.074      0.463
       13
   -1.124
                              Leverages
        1          2          3          4          5          6
   0.5503     0.3332     0.5769     0.2952     0.3576     0.1242
        7          8          9         10         11         12
   0.3671     0.4085     0.2943     0.7004     0.4255     0.2630
       13
   0.3037
                          Deleted Residuals
        1          2          3          4          5          6
    0.003      0.735     -1.058     -0.824      0.120      2.017
        7          8          9         10         11         12
   -0.722     -1.967      0.646      0.197      1.086      0.439
       13
   -1.146
                               Cooks D
        1          2          3          4          5          6
   0.0000     0.0572     0.3009     0.0593     0.0018     0.0834
        7          8          9         10         11         12
   0.0643     0.3935     0.0375     0.0207     0.1708     0.0153
       13
   0.1102
                               DFFITS
        1          2          3          4          5          6
    0.003      0.519     -1.236     -0.533      0.089      0.759
        7          8          9         10         11         12
   -0.550     -1.635      0.417      0.302      0.935      0.262
       13
   -0.757
                         Scheffe Lower Limit
        1          2          3          4          5          6
     70.7       66.7       98.0       83.6       89.4      101.6
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        7          8          9         10         11         12
     97.8       69.0       86.0      106.8       75.0      106.9
       13
    105.9
                         Scheffe Upper Limit
        1          2          3          4          5          6
     86.3       78.9      113.9       95.0      101.9      109.0
        7          8          9         10         11         12
    110.5       82.4       97.4      124.4       88.7      117.7
       13
    117.5
                     Population Mean Lower Limit
        1          2          3          4          5          6
     74.3       69.5      101.7       86.3       92.3      103.3
        7          8          9         10         11         12
    100.7       72.1       88.7      110.9       78.1      109.4
       13
    108.6
                     Population Mean Upper Limit
        1          2          3          4          5          6
     82.7       76.0      110.3       92.4       99.0      107.3
        7          8          9         10         11         12
    107.6       79.3       94.8      120.3       85.5      115.2
       13
    114.8
                       New Sample Lower Limit
        1          2          3          4          5          6
     71.5       66.3       98.9       82.9       89.1       99.3
        7          8          9         10         11         12
     97.6       69.0       85.3      108.3       75.1      106.0
       13
    105.3
                       New Sample Upper Limit
        1          2          3          4          5          6
     85.5       79.3      113.1       95.7      102.2      111.3
        7          8          9         10         11         12
    110.7       82.4       98.1      123.0       88.5      118.7
       13
    118.1
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Warning Errors

Fatal Errors

IMSLS_NONESTIMABLE Within the preset tolerance, the linear combination 
of regression coefficients is nonestimable.

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than 1.0 is computed. 
It is set to 1.0.

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much less than 
0 is computed. It is set to 0.

IMSLS_NONNEG_WEIGHT_REQUEST_2 The weight for row # was #. Weights must be 
nonnegative.
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hypothesis_partial
Constructs an equivalent completely testable multivariate general linear hypothesis HβU = G from a partially test-
able hypothesis HpβU = Gp.

Synopsis
#include <imsls.h>
int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int nhp, float hp[], 

..., 0)

The type double function is imsls_d_hypothesis_partial.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See 
function imsls_f_regression.

int nhp (Input)
Number of rows in the hypothesis matrix, hp.

float hp[] (Input)
The Hp array of size nhp by n_parameters with each row corresponding to a row in the hypothesis 
and containing the constants that specify a linear combination of the regression coefficients. Here, 
n_parameters is the number of coefficients in the fitted regression model.

Return Value
Number of rows in the completely testable hypothesis, nh. This value is also the degrees of freedom for the 
hypothesis. The value nh classifies the hypothesis HpβU = Gp as nontestable (nh = 0), partially testable (0 < nh 

< rank_hp) or completely testable (0 < nh = rank_hp), where rank_hp is the rank of Hp (see keyword 

IMSLS_RANK_HP).
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Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int nhp, float hp[],

IMSLS_GP, float gp[],
IMSLS_U, int nu, float u[],
IMSLS_RANK_HP, int rank_hp
IMSLS_H_MATRIX, float **h,
IMSLS_H_MATRIX_USER, float h[],
IMSLS_G, float **g,
IMSLS_G_USER, float g[],
0)

Optional Arguments
IMSLS_GP, float gp[] (Input)

Array of size nhp by nu containing the Gp matrix, the null hypothesis values. By default, each value of 
Gp is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent variables to be considered. The 
value nu must be greater than 0 and less than or equal to n_dependent, the number of dependent 
variables in the fitted regression model.

Argument u contains the n_dependent by nu U matrix for the test HpBU = Gp. This argument is not ref-

erenced by imsls_f_hypothesis_partial and is included only for consistency with functions 
imsls_f_hypothesis_scph and imsls_f_hypothesis_test. A dummy array of length 1 
may be substituted for this argument.

Default: nu = n_dependent and u is the identity matrix.

IMSLS_RANK_HP, int*rank_hp (Output)
Rank of Hp.

IMSLS_H_MATRIX, float **h (Output)
Address of a pointer to the internally allocated array of size nhp by n_parameters containing the H 
matrix. Each row of h corresponds to a row in the completely testable hypothesis and contains the 
constants that specify an estimable linear combination of the regression coefficients. The actual size 
of H is nh by n_parameters, where nh is the number of rows in the completely testable hypothesis 
returned by imsls_f_hypothesis_partial. Note that nh may be less than or equal to nhp.
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IMSLS_H_MATRIX_USER, float h[] (Output)
Storage for array h is provided by the user. See IMSLS_H.

IMSLS_G, float **g (Output)
Address of a pointer to the internally allocated array of size nhp by nu containing the G matrix. The 
elements of g contain the null hypothesis values for the completely testable hypothesis. The actual 
size of G is nh by nu, where nh is the number of rows in the completely testable hypothesis returned 
by imsls_f_hypothesis_partial. Note that nh may be less than or equal to nhp.

IMSLS_G_USER, float g[] (Output)
Storage for array g is provided by the user. See IMSLS_G.

Description
Once a general linear model y = Xβ + ɛ is fitted, particular hypothesis tests are frequently of interest. If the matrix 
of regressors X is not full rank (as evidenced by the fact that some diagonal elements of the R matrix output from 
the fit are equal to zero), methods that use the results of the fitted model to compute the hypothesis sum of 
squares (see function hypothesis_scph) require specification in the hypothesis of only linear combinations of 

the regression parameters that are estimable. A linear combination of regression parameters cTβ is estimable if 

there exists some vector a such that cT = aTX, i.e., cT is in the space spanned by the rows of X. For a further discus-
sion of estimable functions, see Maindonald (1984, pp. 166−168) and Searle (1971, pp. 180−188). Function 
imsls_f_hypothesis_partial is only useful in the case of non-full rank regression models, i.e., when the 
problem of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the context of a general linear 
hypothesis test Hβ = g is overly restrictive. He extended the notion of a testable hypothesis (a hypothesis com-
posed of estimable functions of the regression parameters) to include partially testable and completely testable 
hypothesis. A hypothesis Hβ = g is partially testable if the intersection of the row space H (denoted by ℜ(H)) and 
the row space of X (ℜ(X)) is not essentially empty and is a proper subset of ℜ(H), i.e., {0} ⊂ ℜ(H) ∩ ℜ(X) ⊂ ℜ(H). A 
hypothesis Hβ = g is completely testable if {0} ⊂ ℜ(H) ∩ ℜ(X) ⊂ ℜ(X). Peixoto also demonstrated a method for 
converting a partially testable hypothesis to one that is completely testable so that the usual method for obtain-
ing sums of squares for the hypothesis from the results of the fitted model can be used. The method replaces Hp 

in the partially testable hypothesis Hpβ = gp by a matrix H whose rows are a basis for the intersection of the row 

space of Hp and the row space of X. A corresponding conversion of the null hypothesis values from gp to g is also 

made. A sum of squares for the completely testable hypothesis can then be computed (see function 
hypothesis_scph). The sum of squares that is computed for the hypothesis Hβ = g equals the difference in the 
error sums of squares from two fitted models—the restricted model with the partially testable hypothesis 
Hpβ = gp and the unrestricted model.
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For the general case of the multivariate model Y = Xβ + ɛ with possible linear equality restrictions on the regres-
sion parameters, imsls_f_hypothesis_partial converts the partially testable hypothesis Hpβ = gp to a 

completely testable hypothesis HβU = G. For the case of the linear model with linear equality restrictions, the defi-
nitions of the estimable functions, nontestable hypothesis, partially testable hypothesis, and completely testable 
hypothesis are similar to those previously given for the unrestricted model with the exception that ℜ(X) is 
replaced by ℜ(R) where R is the upper triangular matrix based on the linear equality restrictions. The nonzero 

rows of R form a basis for the rowspace of the matrix (XT, AT)T. The rows of H form an orthonormal basis for the 
intersection of two subspaces—the subspace spanned by the rows of Hp and the subspace spanned by the rows 

of R. The algorithm used for computing the intersection of these two subspaces is based on an algorithm for 
computing angles between linear subspaces due to Björk and Golub (1973). (See also Golub and Van Loan 1983, 
pp. 429−430). The method is closely related to a canonical correlation analysis discussed by Kennedy and Gentle 
(1980, pp. 561−565). The algorithm is as follows:

1. Compute a QR factorization of

with column permutations so that

Here, P1 is the associated permutation matrix that is also an orthogonal matrix. Determine the rank of Hp as 
the number of nonzero diagonal elements of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the 
first n1 columns of Q1. Set rank_hp = n1.

2. Compute a QR factorization of the transpose of the R matrix (input through regression_info) 
with column permutations so that

Determine the rank of R from the number of nonzero diagonal elements of R, for example n2. Partition 
Q2 = (Q21, Q22) so that Q21 is the first n2 columns of Q2.

3. Form

HP
T

HP
T = Q1R1P1

T

RT = Q2R2P2
T

A = Q11
T Q21
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4. Compute the singular values of A

and the left singular vectors W of the singular value decomposition of A so that

If σ1 < 1, then the dimension of the intersection of the two subspaces is s = 0. Otherwise, assume the dimen-
sion of the intersection to be s if σs = 1 > σs+1. Set nh = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If nhp < n_parameters, R11 equals the 

first nhp rows of R1. Otherwise, R11 contains R1 in its first n_parameters rows and zeros in the remain-

ing rows. Compute a solution Z to the linear system

If this linear system is declared inconsistent, an error message with error code equal to 2 is issued.

7. Partition

so that Z1 is the first n1 rows of Z. Set

The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontestable (nh = 0), partially testable (0 < nh < 

rank_hp), or completely testable (0 < nh = rank_hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example
A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to data. The model is

yij = μ + αi + ɛij  (i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using function imsls_f_regression. The partially testable hypothesis

σ1 ≥ σ2 ≥ ... ≥ σmin n1, n2

WTAV = diag σ1, … σ
min n1,n2

R11
T Z = P1

TGp

ZT = Z1
T, Z2

T

G = W1
TZ1
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is converted to a completely testable hypothesis.

#include <imsls.h>
#include <stdio.h>
#define N_ROWS 3
#define N_INDEPENDENT 1
#define N_DEPENDENT 1
#define N_PARAMETERS 3
#define NHP 2
int main() {

Imsls_f_regression *info;
int n_class = 1;
int n_continuous = 0;
int nh, nreg, rank_hp;
float *coefficients, *x, *g, *h;
float z[N_ROWS*N_INDEPENDENT] = { 1, 2, 2 };
float y[] = {17.3, 24.1, 26.3};
float gp[] = {5, 3};
float hp[NHP*N_PARAMETERS] = {0, 1, 0, 0, 0, 1};
nreg = imsls_f_regressors_for_glm(N_ROWS, z, n_class, n_continuous,

IMSLS_REGRESSORS, &x,
0);

coefficients = imsls_f_regression(N_ROWS, nreg, x, y,
IMSLS_N_DEPENDENT, N_DEPENDENT,
IMSLS_REGRESSION_INFO, &info,
0);

nh = imsls_f_hypothesis_partial(info, NHP, hp,
IMSLS_GP, gp,
IMSLS_H_MATRIX, &h,
IMSLS_G, &g,
IMSLS_RANK_HP, &rank_hp,
0);

if (nh == 0) {
printf("Nontestable Hypothesis\n");

}
else if (nh < rank_hp) {

printf("Partially Testable Hypothesis\n");
}
else {

printf("Completely Testable Hypothesis\n");
}
imsls_f_write_matrix("H Matrix", nh, N_PARAMETERS, h,

0);
imsls_f_write_matrix("G", nh, N_DEPENDENT, g,

0);
imsls_free(coefficients);
imsls_free(info);

H0 : α2=3
α1=5
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imsls_free(x);
imsls_free(h);
imsls_free(g);

}

Output

*** WARNING Error IMSLS_RANK_DEFICIENT from imsls_f_regression. The model *** is 
not full rank. There is not a unique least squares solution. *** The rank of the 
matrix of regressors is 2.
Partially Testable Hypothesis

H Matrix
1 2 3

0.0000 0.7071 -0.7071
G
1.414

Warning Errors
IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed 

tolerance.
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hypothesis_scph
Computes the matrix of sums of squares and crossproducts for the multivariate general linear hypothesis 
HβU = G given the regression fit.

Synopsis
#include <imsls.h>
float *imsls_f_hypothesis_scph (Imsls_f_regression *regression_info, int nh, float h[], 

float *dfh, ..., 0)

The type double function is imsls_d_hypothesis_scph.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See 
function imsls_f_regression.

int nh (Input)
Number of rows in the hypothesis matrix, h.

float h[] (Input)
The H array of size nh by n_coefficients with each row corresponding to a row in the hypothesis and 
containing the constants that specify a linear combination of the regression coefficients. Here, n_coef-
ficients is the number of coefficients in the fitted regression model.

float *dfh (Output)
Degrees of freedom for the sums of squares and crossproducts matrix. This is equal to the rank of 
input matrix h.

Return Value
Array of size nu by nu containing the sums of squares and crossproducts attributable to the hypothesis.

Synopsis with Optional Arguments
#include <imsls.h>
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float *imsls_f_regression_scph (Imsls_f_regression *regression_info, int nh, float h[], 
float *dfh,

IMSLS_G, float g[],
IMSLS_U, int nu, float u[],
IMSLS_RETURN_USER, scph[],
0)

Optional Arguments
IMSLS_G, float g[] (Input)

Array of size nh by nu containing the G matrix, the null hypothesis values. By default, each value of G 
is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent variables to be considered. The 
value nu must be greater than 0 and less than or equal to n_dependent.

Argument u contains the n_dependent by nu Umatrix for the test HpβU = Gp.

Default: nu = n_dependent and u is the identity matrix

IMSLS_RETURN_USER, float scph[] (Output)
If specified, the sums of squares and crossproducts matrix is stored in array scph provided by the 
user, where scph is of size nu by nu.

Description
Function imsls_f_hypothesis_scph computes the matrix of sums of squares and crossproducts for the 
general linear hypothesis HβU = G for the multivariate general linear model Y = Xβ + ɛ.

The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must be completely testable. If the 
hypothesis is not completely testable, function imsls_f_hypothesis_partial can be used to construct an 
equivalent completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980, p. 317) that is extended by Sal-
las and Lionti (1988) for mulitvariate non-full rank models with possible linear equality restrictions. The algorithm 
is as follows:

1. Form .

2. Find C as the solution of RTC = HT. If the equations are declared inconsistent within a computed toler-
ance, a warning error message is issued that the hypothesis is not completely testable.

W = Hβ
^
U − G
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3. For all rows of R corresponding to restrictions, i.e., containing negative diagonal elements from a 
restricted least-squares fit, zero out the corresponding rows of C, i.e., from DC.

4. Decompose DC using Householder transformations and column pivoting to yield a square, upper tri-
angular matrix T with diagonal elements of nonincreasing magnitude and permutation matrix P such 
that

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of T is r if

| trr | > | t

11

 | ɛ ≥ | tr +

1,

 r +

1

 |
where ɛ = 10.0 × imsls_f_machine(4) (10.0 × imsls_d_machine(4) for the double-precision ver-
sion).

Then, zero out all rows of T below r. Set the degrees of freedom for the hypothesis, dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a warning error message is issued 
that the hypothesis is inconsistent within a computed tolerance, i.e., the linear system

HβU = G

Aβ = Z
does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and crossproducts, scph.

In general, the two warning errors described above are serious user errors that require the user to correct 
the hypothesis before any meaningful sums of squares from this function can be computed. However, in 
some cases, the user may know the hypothesis is consistent and completely testable, but the checks in 
imsls_f_hypothesis_scph are too tight. For this reason, imsls_f_hypothesis_scph contin-
ues with the calculations.

Function imsls_f_hypothesis_scph gives a matrix of sums of squares and crossproducts that could 
also be obtained from separate fittings of the two models:

Y¹ = Xβ¹ + ɛ¹ (1)

DCP = Q T
0
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Aβ¹ = Z¹

Hβ¹ = G
and

Y¹ = Xβ¹ + ɛ¹ (2)

Aβ¹ = Z¹

where Y¹ = YU, β¹ = βU, ɛ¹ = ɛU, and Z¹ = ZU. The error sum of squares and crossproducts matrix for (1) minus 
that for (2) is the matrix sum of squares and crossproducts output in scph. Note that this approach avoids 
the question of testability.

Example
The data for this example are from Maindonald (1984, pp. 203−204). A multivariate regression model containing 
two dependent variables and three independent variables is fit using function imsls_f_regression and the 
results stored in the structure info. The sum of squares and crossproducts matrix, scph, is then computed by 
calling imsls_f_hypothesis_scph for the test that the third independent variable is in the model (deter-
mined by the specification of h). The degrees of freedom for scph also is computed.

#include <imsls.h>
#include <stdio.h>
int main()
{
   Imsls_f_regression *info;
   float  *coefficients, *scph;
   float  dfh;
   float  x[] =
       {7.0, 5.0, 6.0,
        2.0,-1.0, 6.0,
        7.0, 3.0, 5.0,
       -3.0, 1.0, 4.0,
        2.0,-1.0, 0.0,
        2.0, 1.0, 7.0,
       -3.0,-1.0, 3.0,
        2.0, 1.0, 1.0,
        2.0, 1.0, 4.0 };
   float  y[] =
       {7.0, 1.0,
       -5.0, 4.0,
        6.0, 10.0,
        5.0, 5.0,
        5.0, -2.0,
       -2.0, 4.0,
        0.0, -6.0,
        8.0, 2.0,
        3.0, 0.0 };
   int  n_observations = 9;
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   int  n_independent = 3;
   int  n_dependent = 2;
   int  nh = 1;
   float h[] = { 0, 0, 0, 1 };
   coefficients = imsls_f_regression(n_observations, n_independent, x,
       y,
       IMSLS_N_DEPENDENT, n_dependent,
       IMSLS_REGRESSION_INFO, &info,
       0);
   scph = imsls_f_hypothesis_scph(info, nh, h, &dfh,
       0);
   printf("Degrees of Freedom Hypothesis = %4.0f\n", dfh);
   imsls_f_write_matrix("Sum of Squares and Crossproducts",
       n_dependent, n_dependent, scph,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS, 
       0);
}

Output

Degrees of Freedom Hypothesis =   1
Sum of Squares and Crossproducts
           100        -40
           -40         16

Warning Errors
IMSLS_HYP_NOT_TESTABLE The hypothesis is not completely testable within the 

computed tolerance. Each row of “h” must be a lin-
ear combination of the rows of “r”.

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed 
tolerance.
156



 Regression         hypothesis_test
hypothesis_test
Performs tests for a multivariate general linear hypothesis HβU = G given the hypothesis sums of squares and 
crossproducts matrix SH.

Synopsis
#include <imsls.h>
float imsls_f_c (Imsls_f_regression *regression_info, float dfh, float *scph, ..., 0)

The type double function is imsls_d_hypothesis_test.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See 
function imsls_f_regression.

float dfh (Input)
Degrees of freedom for the sums of squares and crossproducts matrix.

float *scph (Input)
Array of size nu by nu containing SH, the sums of squares and crossproducts attributable to the 
hypothesis.

Return Value
The p-value corresponding to Wilks’ lambda test.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, float dfh, 

float *scph,

IMSLS_U, int nu, float u[],
IMSLS_WILK_LAMBDA, float *value, float *p_value,
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IMSLS_ROY_MAX_ROOT, float *value, float *p_value,
IMSLS_HOTELLING_TRACE, float *value, float *p_value,
IMSLS_PILLAI_TRACE, float *value, float *p_value,
0)

Optional Arguments
IMSLS_U, int nu, float u[] (Input)

Argument nu is the number of linear combinations of the dependent variables to be considered. The 
value nu must be greater than 0 and less than or equal to n_dependent. Argument u contains the 
n_dependent by nu U matrix for the test HpβU = Gp.
Default: nu = n_dependent and u is the identity matrix

IMSLS_WILK_LAMBDA, float *value, float *p_value (Output)
Wilk’s lamda and p-value.

IMSLS_ROY_MAX_ROOT, float *value, float *p_value (Output)
Roy’s maximum root criterion and p-value.

IMSLS_HOTELLING_TRACE, float *value, float *p_value (Output)
Hotelling’s trace and p-value.

IMSLS_PILLAI_TRACE, float *value, float *p_value (Output)
Pillai’s trace and p-value.

Description
Function imsls_f_hypothesis_test computes test statistics and p-values for the general linear hypothe-
sis HβU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is

where C is a solution to RTC = H,(CTDC)- denotes the generalized inverse of CTDC, and D is a diagonal matrix with 
diagonal elements

For a detailed discussion, see Linear Dependence and the R Matrix in the Usage Notes.

SH = Hβ^U − G
T
CTDC

−
Hβ^U − G

dii =
1 if rii > 0
0 otherwise
158



 Regression         hypothesis_test
The error sum of squares and crossproducts matrix for the model Y = Xβ + ɛ is

which is input in regression_info. The error sum of squares and crossproducts matrix for the hypothesis 
HβU = G computed by imsls_f_hypothesis_test is

Let p equal the order of the matrices SE and SH, i.e.,

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in regression_info) be the 
degrees of freedom for error. Function imsls_f_hypothesis_test computed three test statistics based 
on eigenvalues λi (i = 1, 2, …, p) of the generalized eigenvalue problem SHx = λSEx. These test statistics are as 

follows:

Wilk’s lambda

The associated p-value is based on an approximation discussed by Rao (1973, p. 556). The statistic

has an approximate F distribution with pq and ms − pq ∕ 2 + 1 numerator and denominator degrees of freedom, 
respectively, where

and

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 299−300).

Y − X β^
T
Y − X β^

SE = U
T Y − X β^

T
Y − X β^ U

p =
nu if nu > 0
n
─
dependent otherwise

Λ =
det SE

det SH + SE
=∏

i=1

p
1

1 + λi

F =
ms − pq / 2 + 1

pq
1 − Λ1/s

Λ1/s

s =
1 if p = 1 or q = 1
p2q2 − 4

p2 + q2 − 5
otherwise

m = υ −
p + q − 1
2
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Roy’s maximum root

c = max λi  over all i

where c is output as value. The p-value is based on the approximation

where s = max (p, q) has an approximate F distribution with s and ν + q − s numerator and denominator degrees 
of freedom, respectively. The F test is exact if s = 1; the p-value is also exact. In general, the value output in 
p_value is lower bound on the actual p-value.

Hotelling’s trace

U is output as value. The p-value is based on the approximation of McKeon (1974) that supersedes the approx-
imation of Hughes and Saw (1972). McKeon’s approximation is also discussed by Seber (1984, p. 39). For

the p-value is based on the result that

has an approximate F distribution with pq and b degrees of freedom. The test is exact if min (p, q) = 1. For 
ν ≤ p + 1, the approximation is not valid, and p_value is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary condition for SE to be positive definite 

is ν ≥ p. If SE is not positive definite, a warning error message is issued, and both value and p_value are set 

to NaN.

Because the requirement ν ≥ p can be a serious drawback, imsls_f_hypothesis_test computes a fourth 
test statistic based on eigenvalues θi (i = 1, 2, …, p) of the generalized eigenvalue problem SHw = θ(SH + SE) w. 

This test statistic requires a less restrictive assumption—SH + SE is positive definite. A necessary condition for 

SH + SE to be positive definite is ν + q ≥ p. If SE is positive definite, imsls_f_hypothesis_test avoids the 

computation of the generalized eigenvalue problem from scratch. In this case, the eigenvalues θi are obtained 

from λi by

F =
υ + q − s
s c

U = tr HE−1 =∑
i=1

p

λi

b = 4 +
pq + 2

υ + q − p − 1 υ − 1

υ − p − 3 υ − p

F =
b υ − p − 1
b − 2 pq U
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The fourth test statistic is as follows:

Pillai’s trace

V is output as value. The p-value is based on an approximation discussed by Pillai (1985). The statistic

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and denominator degrees of 
freedom, respectively, where

s = min (p, q)

m = ½(|p − q| −1)

n = ½(ν − p − 1)

The F test is exact if min (p, q) = 1.

Examples

Example 1

The data for this example are from Maindonald (1984, p. 203−204). A multivariate regression model containing 
two dependent variables and three independent variables is fit using function imsls_f_regression and the 
results stored in the structure regression_info. The sum of squares and crossproducts matrix, scph, is 
then computed with a call to imsls_f_hypothesis_scph for the test that the third independent variable is in 
the model (determined by specification of h). Finally, function imsls_f_hypothesis_test is called to com-
pute the p-value for the test statistic (Wilk’s lambda).

#include <imsls.h>
#include <stdio.h>
int main()
{
   Imsls_f_regression *info;
   float  *coefficients, *scph;
   float  dfh, p_value;
   float  x[] = {

θi =
λi

1 + λi

V = tr SH SH + SE
−1 =∑

i=1

p

θi

F = 2n + s + 12m + s + 1
V
s − V
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        7.0, 5.0, 6.0,
        2.0,-1.0, 6.0,
        7.0, 3.0, 5.0,
       -3.0, 1.0, 4.0,
        2.0,-1.0, 0.0,
        2.0, 1.0, 7.0,
       -3.0,-1.0, 3.0,
        2.0, 1.0, 1.0,
        2.0, 1.0, 4.0
   };
   float  y[] = {
        7.0, 1.0,
       -5.0, 4.0,
        6.0, 10.0,
        5.0, 5.0,
        5.0, -2.0,
       -2.0, 4.0,
        0.0, -6.0,
        8.0, 2.0,
        3.0, 0.0
   };
   int  n_observations = 9;
   int  n_independent = 3;
   int  n_dependent = 2;
   int  nh = 1;
   float h[] = {0, 0, 0, 1};
   coefficients = imsls_f_regression(n_observations, n_independent,
       x, y,
       IMSLS_N_DEPENDENT, n_dependent,
       IMSLS_REGRESSION_INFO, &info,
       0);
   scph = imsls_f_hypothesis_scph(info, nh, h, &dfh,
       0);
   p_value = imsls_f_hypothesis_test(info, dfh, scph,
       0);
   printf("P-value = %10.6f\n", p_value);
}

Output

P-value =  0.000010

Example 2

This example is the same as the first example, but more statistics are computed. Also, the U matrix, u, is explicitly 
specified as the identity matrix (which is the same default configuration of U).

#include <imsls.h>
#include <stdio.h>
int main()
{
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   Imsls_f_regression *info;
   float  *coefficients, *scph;
   float  dfh, p_value;
   float  x[] = {
        7.0, 5.0, 6.0,
        2.0,-1.0, 6.0,
        7.0, 3.0, 5.0,
       -3.0, 1.0, 4.0,
        2.0,-1.0, 0.0,
        2.0, 1.0, 7.0,
       -3.0,-1.0, 3.0,
        2.0, 1.0, 1.0,
        2.0, 1.0, 4.0
   };
   float  y[] ={
        7.0, 1.0,
       -5.0, 4.0,
        6.0, 10.0,
        5.0, 5.0,
        5.0, -2.0,
       -2.0, 4.0,
        0.0, -6.0,
        8.0, 2.0,
        3.0, 0.0
   };
   int    n_observations = 9;
   int    n_independent = 3;
   int    n_dependent = 2;
   int    nh = 1;
   float  h[]    = { 0, 0, 0, 1 };
   int    nu = 2;
   float  u[4]={1, 0, 0, 1};
   float  v1, v2, v3, v4, p1, p2, p3, p4;
   coefficients = imsls_f_regression(n_observations, n_independent,
       x, y,
       IMSLS_N_DEPENDENT, n_dependent,
       IMSLS_REGRESSION_INFO, &info,
       0);
   scph = imsls_f_hypothesis_scph(info, nh, h, &dfh,
       0);
   p_value = imsls_f_hypothesis_test(info, dfh, scph,
       IMSLS_U, nu, u,
       IMSLS_WILK_LAMBDA, &v1, &p1, 
       IMSLS_ROY_MAX_ROOT, &v2, &p2, 
       IMSLS_HOTELLING_TRACE, &v3, &p3,
       IMSLS_PILLAI_TRACE, &v4, &p4, 
       0);
   printf("Wilk     value = %10.6f  p-value = %10.6f\n", v1, p1);
   printf("Roy      value = %10.6f  p-value = %10.6f\n", v2, p2);
   printf("Hotelling value = %10.6f  p-value = %10.6f\n", v3, p3);
   printf("Pillai   value = %10.6f  p-value = %10.6f\n", v4, p4);
}
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Output

Wilk      value =   0.003149  p-value =  0.000010
Roy       value = 316.600861  p-value =  0.000010
Hotelling value = 316.600861  p-value =  0.000010
Pillai    value =   0.996851  p-value =  0.000010

Warning Errors

Fatal Errors

IMSLS_SINGULAR_1 “u”*“scpe”*“u” is singular. Only Pillai’s trace can be 
computed. Other statistics are set to NaN.

IMSLS_NO_STAT_1 “scpe” + “scph” is singular. No tests can be 
computed.

IMSLS_NO_STAT_2 No statistics can be computed. Iterations for eigen-
values for the generalized eigenvalue problem 
“scph”*x = (lambda)*(“scph”+“scpe”)*x failed to 
converge.

IMSLS_NO_STAT_3 No statistics can be computed. Iterations for eigen-
values for the generalized eigenvalue problem 
“scph” *x = (lambda)*(“scph”+“u”*“scpe”*“u”)*x 
failed to converge.

IMSLS_SINGULAR_2 “u”*“scpe”*“u” + “scph” is singular. No tests can be 
computed.

IMSLS_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of 
the first zero diagonal element is equal to #.
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regression_selection
Selects the best multiple linear regression models.

Synopsis
#include <imsls.h>
void imsls_f_regression_selection (int n_rows, int n_candidate, float x[], 

float y[], ..., 0)

The type double function is imsls_d_regression_selection.

Required Arguments
int n_rows (Input)

Number of observations or rows in x and y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x. n_candidate must be 
greater than 2.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_selection (int n_rows, int n_candidate, float x[], float y[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_PRINT, or
IMSLS_NO_PRINT,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_R_SQUARED, int max_subset_size, or
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IMSLS_ADJ_R_SQUARED, or
IMSLS_MALLOWS_CP,
IMSLS_MAX_N_BEST, int max_n_best,
IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved,
IMSLS_CRITERIONS, int **index_criterions, float **criterions,
IMSLS_CRITERIONS_USER, int index_criterions[], float criterions[],
IMSLS_INDEPENDENT_VARIABLES, int **index_variables, 

int **independent_variables,
IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[], 

int independent_variables[],
IMSLS_COEF_STATISTICS, int **index_coefficients,
IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
IMSLS_INPUT_COV, int n_observations, float cov[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

The column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_PRINT
Printing is performed. This is the default.

or

IMSLS_NO_PRINT
Printing is not performed.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_R_SQUARED, int max_subset_size (Input)
The R2 criterion is used, where subset sizes 1, 2, ..., max_subset_size are examined. This option 
is the default with max_subset_size = n_candidate.

or
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IMSLS_ADJ_R_SQUARED
The adjusted R2 criterion is used, where subset sizes 1, 2, ..., n_candidate are examined.

or

IMSLS_MALLOWS_CP
Mallows Cp criterion is used, where subset sizes 1, 2, ..., n_candidate are examined.

IMSLS_MAX_N_BEST, int max_n_best (Input)
Number of best regressions to be found. If the R2 criterions are selected, the max_n_best best 
regressions for each subset size examined are found. If the adjusted R2 or Mallows Cp criterion is 
selected, the max_n_best overall regressions are found.
Default: max_n_best = 1

IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved (Input)
Maximum number of good regressions of each subset size to be saved in finding the best regres-
sions. Argument max_n_good_saved must be greater than or equal to max_n_best. Normally, 
max_n_good_saved should be less than or equal to 10. It doesn't ever need to be larger than the 
maximum number of subsets for any subset size. Computing time required is inversely related to 
max_n_good_saved.
Default: max_n_good_saved = 10

IMSLS_CRITERIONS, int **index_criterions, float **criterions (Output)
Argument index_criterions is the address of a pointer to the internally allocated array of 
length nsize + 1(where nsize is equal to max_subset_size if optional argument 
IMSLS_R_SQUARED is specified; otherwise, nsize is equal to n_candidate) containing the loca-
tions in criterions of the first element for each subset size. For I = 0, 1, ..., nsize −1, element 
numbers index_criterions[I], 
index_criterions[I] + 1, ..., index_criterions[I + 1] − 1 of criterions correspond 
to the (I + 1)-st subset size. Argument criterions is the address of a pointer to the internally 
allocated array of length max (index_criterions [nsize] − 1 , n_candidate) containing in its 
first index_criterions [nsize] − 1 elements the criterion values for each subset considered, in 
increasing subset size order.

IMSLS_CRITERIONS_USER, int index_criterions[], float criterions[] (Output)
Storage for arrays index_criterions and criterions is provided by the user. An upper 
bound on the length of criterions is max(max_n_good_saved × nsize, n_candidate). See 
IMSLS_CRITERIONS.

IMSLS_INDEPENDENT_VARIABLES, int **index_variables, 
int **independent_variables (Output)
Argument index_variables is the address of a pointer to the internally allocated array of length 
nsize + 1 (where nsize is equal to max_subset_size if optional argument IMSLS_R_SQUARED is 
167



 Regression         regression_selection
specified; otherwise, nsize is equal to n_candidate) containing the locations in 
independent_variables of the first element for each subset size. For I = 0, 1, ..., nsize − 1, ele-
ment numbers index_variables[I], index_variables[I] + 1, ..., 
index_variables[I + 1] − 1 of independent_variables correspond to the (I+1)-st sub-
set size. Argument independent_variables is the address of a pointer to the internally 
allocated array of length index_variables [nsize] − 1 containing the variable numbers for each 
subset considered and in the same order as in criterions.

IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[], 
int independent_variables[] (Output)
Storage for arrays index_variables and independent_variables is provided by the user. 
An upper bound for the length of independent_variables is as follows:

where nsize is equal to max_subset_size.

See IMSLS_INDEPENDENT_VARIABLES.

IMSLS_COEF_STATISTICS, int **index_coefficients, float **coefficients (Output)
Argument index_coefficients is the address of a pointer to the internally allocated array of 
length ntbest + 1 containing the locations in coefficients or the first row for each of the best 
regressions. Here, ntbest is the total number of best regression found and is equal to 
max_subset_size × max_n_best if IMSLS_R_SQUARED is specified, equal to max_n_best 
if either IMSLS_MALLOWS_CP or IMSLS_ADJ_R_SQUARED is specified, and equal to 
max_n_best × n_candidate, otherwise. For I = 0, 1, ..., ntbest − 1, rows 
index_coefficients[I], index_coefficients[I] + 1, ..., index_coefficients[I + 
1] – 1 of coefficients correspond to the (I + 1)-st regression. Argument coefficients is the 
address of a pointer to the internally allocated array of size (index_coefficients 
[ntbest] − 1) × 5 containing statistics relating to the regression coefficients of the best models. Each 
row corresponds to a coefficient for a particular regression. The regressions are in order of increas-
ing subset size. Within each subset size, the regressions are ordered so that the better regressions 
appear first. The statistic in the columns are as follows (inferences are conditional on the selected 
model):

Column Description

0 variable number

1 coefficient estimate.

2 estimated standard error of the estimate

max_n_good_saved × nsize × nsize + 1
2
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IMSLS_COEF_STATISTICS_USER, int index_coefficients[], float coefficients[] (Out-
put)
Storage for arrays index_coefficients and coefficients is provided by the user. See 
IMSLS_COEF_STATISTICS.

IMSLS_INPUT_COV, int n_observations, float cov[] (Input)
Argument n_observations is the number of observations associated with array cov. Argument 
cov is an (n_candidate + 1) by (n_candidate + 1) array containing a variance-covariance or 
sum of squares and crossproducts matrix, in which the last column must correspond to the depen-
dent variable. Array cov can be computed using imsls_f_covariances. Arguments x and y, 
and optional arguments frequencies and weights are not accessed when this option is speci-
fied. Normally, imsls_f_regression_selection computes cov from the input data 
matrices x and y. However, there may be cases when the user will wish to calculate the covariance 
matrix and manipulate it before calling imsls_f_regression_selection. See the description 
section below for a discussion of such cases.

Description
Function imsls_f_regression_selection finds the best subset regressions for a regression problem 
with n_candidate independent variables. Typically, the intercept is forced into all models and is not a candi-
date variable. In this case, a sum of squares and crossproducts matrix for the independent and dependent 
variables corrected for the mean is computed internally. There may be cases when it is convenient for the user to 
calculate the matrix; see the description of optional argument IMSLS_INPUT_COV.

“Best” is defined, on option, by one of the following three criteria:

 R2 (in percent)

  (adjusted R2 in percent)

3 t-statistic for the test that the coefficient is 
0

4 p-value for the two-sided t test

R2 = 100 1 −
SSEp
SST

Ra
2
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Note that maximizing the criterion is equivalent to minimizing the residual mean square:

 Mallows’ Cp statistic

Here, n is equal to the sum of the frequencies (or n_rows if IMSLS_FREQUENCIES is not specified) and SST is 
the total sum of squares.

SSEp is the error sum of squares in a model containing p regression parameters including β0 (or p − 1 of the 

n_candidate candidate variables). Variable

is the error mean square from the model with all n_candidate variables in the model. Hocking (1972) and 
Draper and Smith (1981, pp. 296−302) discuss these criteria.

Function imsls_f_regression_selection is based on the algorithm of Furnival and Wilson (1974). This 
algorithm finds max_n_good_saved candidate regressions for each possible subset size. These regressions 
are used to identify a set of best regressions. In large problems, many regressions are not computed. They may 
be rejected without computation based on results for other subsets; this yields an efficient technique for consid-
ering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix rather than allow the function 
imsls_f_regression_selection to calculate it. This can be accomplished using optional argument 
IMSLS_INPUT_COV. Three situations in which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares and crossproducts matrix for 
the independent and dependent variables is required. Argument n_observations must be set to 

1 greater than the number of observations. Form ATA, where A = [A, Y], to compute the raw sum of 
squares and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares and crossproducts matrix 
for the constant regressor (= 1.0), independent, and dependent variables is required for cov. In this 
case, cov contains one additional row and column corresponding to the constant regressor. This 

Ra
2 = 100 1 − n − 1

n − p
SSEp
SST

SSEp
n − p

Cp =
SSEp

sn_candidate
2 + 2p − n

sn_candidate
2
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row/column contains the sum of squares and crossproducts of the constant regressor with the inde-
pendent and dependent variables. The remaining elements in cov are the same as in the previous 
case. Argument n_observations must be set to 1 greater than the number of observations.

3. There are m variables to be forced into the models. A sum of squares and crossproducts matrix 
adjusted for the m variables is required (calculated by regressing the candidate variables on the vari-
ables to be forced into the model). Argument n_observations must be set to m less than the 
number of observations.

Programming Notes
Function imsls_f_regression_selection can save considerable CPU time over explicitly computing all 
possible regressions. However, the function has some limitations that can cause unexpected results for users 
who are unaware of the limitations of the software.

1. For n_candidate + 1 > −log2 (ɛ), where ɛ is imsls_f_machine(4) and (imsls_d_machine(4) for 

double precision; see Chapter 15,Utilities), some results can be incorrect. This limitation arises 

because the possible models indicated (the model numbers 1, 2, ..., 2n_candidate) are stored as float-
ing-point values; for sufficiently large n_candidate, the model numbers cannot be stored exactly. 
On many computers, this means imsls_f_regression_selection (for n_candidate > 24) 
and imsls_d_regression_selection (for n_candidate > 49) can produce incorrect 
results.

2. Function imsls_f_regression_selection eliminates some subsets of candidate variables 
by obtaining lower bounds on the error sum of squares from fitting larger models. First, the full 
model containing all n_candidate is fit sequentially using a forward stepwise procedure in which 
one variable enters the model at a time, and criterion values and model numbers for all the candi-
date variables that can enter at each step are stored. If linearly dependent variables are removed 
from the full model, error IMSLS_VARIABLES_DELETED is issued. If this error is issued, some 
submodels that contain variables removed from the full model because of linear dependency can be 
overlooked if they have not already been identified during the initial forward stepwise procedure. If 
error IMSLS_VARIABLES_DELETED is issued and you want the variables that were removed from 
the full model to be considered in smaller models, you can rerun the program with a set of linearly 
independent variables.
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Examples

Example 1

This example uses a data set from Draper and Smith (1981, pp. 629−630). Function 

imsls_f_regression_selection is invoked to find the best regression for each subset size using the R2 
criterion. By default, the function prints the results.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE   4
int main()
{
   float x[N_OBSERVATIONS][N_CANDIDATE] = {
       7., 26., 6., 60.,
       1., 29., 15., 52.,
       11., 56., 8., 20.,
       11., 31., 8., 47.,
       7., 52., 6., 33.,
       11., 55., 9., 22.,
       3., 71., 17., 6.,
       1., 31., 22., 44.,
       2., 54., 18., 22.,
       21., 47., 4., 26.,
       1., 40., 23., 34.,
       11., 66., 9., 12.,
       10., 68., 8., 12.
   };
   float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
       109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
   imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE, 
       &x[0][0], y, 0);
}

Output

Regressions with  1 variable(s) (R-squared)
       Criterion        Variables
            67.5         4
            66.6         2
            53.4         1
            28.6         3

Regressions with  2 variable(s) (R-squared)
       Criterion        Variables
            97.9         1 2
            97.2         1 4
            93.5         3 4
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              68         2 4
            54.8         1 3

Regressions with  3 variable(s) (R-squared)
       Criterion        Variables
            98.2         1 2 4
            98.2         1 2 3
            98.1         1 3 4
            97.3         2 3 4

Regressions with  4 variable(s) (R-squared)
       Criterion        Variables
            98.2         1 2 3 4

     Best Regression with  1 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
       4     -0.7382         0.1546      -4.775  0.0006

     Best Regression with  2 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
       1       1.468         0.1213       12.10  0.0000
       2       0.662         0.0459       14.44  0.0000

     Best Regression with  3 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
       1       1.452         0.1170       12.41  0.0000
       2       0.416         0.1856        2.24  0.0517
       4      -0.237         0.1733       -1.36  0.2054

     Best Regression with  4 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
       1       1.551         0.7448       2.083  0.0708
       2       0.510         0.7238       0.705  0.5009
       3       0.102         0.7547       0.135  0.8959
       4      -0.144         0.7091      -0.203  0.8441

Example 2

This example uses the same data set as the first example, but Mallow’s Cp statistic is used as the criterion rather 

than R2. Note that when Mallow’s Cp statistic (or adjusted R2) is specified, the variable max_n_best indicates the 

total number of “best” regressions (rather than indicating the number of best regressions per subset size, as in the 

case of the R2 criterion). In this example, the three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).

#include <imsls.h>
#define N_OBSERVATIONS 13
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#define N_CANDIDATE   4
int main()
{
   float x[N_OBSERVATIONS][N_CANDIDATE] = 
       {7., 26., 6., 60.,
        1., 29., 15., 52.,
       11., 56., 8., 20.,
       11., 31., 8., 47.,
        7., 52., 6., 33.,
       11., 55., 9., 22.,
        3., 71., 17., 6.,
        1., 31., 22., 44.,
        2., 54., 18., 22.,
       21., 47., 4., 26.,
        1., 40., 23., 34.,
       11., 66., 9., 12.,
       10., 68., 8., 12.};
   float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
       109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
   int   max_n_best = 3;
   imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE, 
       (float *) x, y,
       IMSLS_MALLOWS_CP, 
       IMSLS_MAX_N_BEST,  max_n_best, 
       0);
}

Output

Regressions with  1 variable(s) (Mallows CP)
       Criterion        Variables
             139         4
             142         2
             203         1
             315         3

Regressions with  2 variable(s) (Mallows CP)
       Criterion        Variables
            2.68         1 2
             5.5         1 4
            22.4         3 4
             138         2 4
             198         1 3

Regressions with  3 variable(s) (Mallows CP)
       Criterion        Variables
            3.02         1 2 4
            3.04         1 2 3
             3.5         1 3 4
            7.34         2 3 4

Regressions with  4 variable(s) (Mallows CP)
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       Criterion        Variables
               5         1 2 3 4
1
    Best Regression with  2 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
       1       1.468         0.1213       12.10  0.0000
       2       0.662         0.0459       14.44  0.0000

    Best Regression with  3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
       1       1.452         0.1170       12.41  0.0000
       2       0.416         0.1856        2.24  0.0517
       4      -0.237         0.1733       -1.36  0.2054

   2nd Best Regression with  3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
       1       1.696         0.2046        8.29  0.0000
       2       0.657         0.0442       14.85  0.0000
       3       0.250         0.1847        1.35  0.2089

Warning Errors

Fatal Errors

IMSLS_VARIABLES_DELETED At least one variable is deleted from the full model 
because the variance-covariance matrix “cov” is 
singular.

IMSLS_NO_VARIABLES No variables can enter any model.
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regression_stepwise
Builds multiple linear regression models using forward selection, backward selection, or stepwise selection.

Synopsis
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float x[], float y[], ..., 0)

The type double function is imsls_d_regression_stepwise.

Required Arguments
int n_rows (Input)

Number of rows in x and the number of elements in y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float x[], float y[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS,
IMSLS_N_STEPS, int n_steps,
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IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE,
IMSLS_P_VALUE_IN, float p_value_in,
IMSLS_P_VALUE_OUT, float p_value_out,
IMSLS_TOLERANCE, float tolerance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_COEF_T_TESTS, float **coef_t_tests,
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_LEVEL, int level[],
IMSLS_FORCE, int n_force,
IMSLS_IEND, int *iend,
IMSLS_SWEPT_USER, int swept[],
IMSLS_HISTORY_USER, float history[],
IMSLS_COV_SWEPT_USER, float *covs
IMSLS_INPUT_COV, int n_observations, float *cov,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_FIRST_STEP, or

IMSLS_INTERMEDIATE_STEP, or

IMSLS_LAST_STEP, or
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IMSLS_ALL_STEPS
One or none of these options can be specified. If none of these is specified, the action defaults to 
IMSLS_ALL_STEPS.

IMSLS_N_STEPS, int n_steps (Input)
For nonnegative n_steps, n_steps steps are taken. If n_steps = −1, stepping continues until 
completion.

IMSLS_FORWARD, or

IMSLS_BACKWARD, or

IMSLS_STEPWISE
One or none of these options can be specified. If none is specified, the action defaults to 
IMSLS_BACKWARD.

Argument Action

IMSLS_FIRST_STEP This is the first invocation; additional 
calls will be made. Initialization and 
stepping is performed.

IMSLS_INTERMEDIATE_STEP This is an intermediate invocation. 
Stepping is performed.

IMSLS_LAST_STEP This is the final invocation. Stepping and 
wrap-up computations are performed.

IMSLS_ALL_STEPS This is the only invocation. Initialization, 
stepping, and wrap-up computations 
are performed.

Keyword Action

IMSLS_FORWARD An attempt is made to add a variable to 
the model. A variable is added if its p-
value is less than p_value_in. During 
initialization, only the forced variables 
enter the model.

IMSLS_BACKWARD An attempt is made to remove a vari-
able from the model. A variable is 
removed if its p-value exceeds 
p_value_out. During initialization, all 
candidate independent variables enter 
the model.

IMSLS_STEPWISE A backward step is attempted. If a vari-
able is not removed, a forward step is 
attempted. This is a stepwise step. Only 
the forced variables enter the model 
during initialization.
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IMSLS_P_VALUE_IN, float p_value_in (Input)
Largest p-value for variables entering the model. Variables with p-values less than p_value_in 
may enter the model.
Default: p_value_in = 0.05

IMSLS_P_VALUE_OUT, float p_value_out (Input)
Smallest p-value for removing variables. Variables with p_values greater than p_value_out may 
leave the model. Argument p_value_out must be greater than or equal to p_value_in. A com-
mon choice for p_value_out is 2*p_value_in.
Default: p_value_out = 0.10

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. 
Default: tolerance = 100*eps, where eps = imsls_f_machine(4) for single precision and 
eps = imsls_d_machine(4) for double precision

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array containing the analysis of variance table. The 
analysis of variance statistics are as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

Element Analysis of Variance Statistic

0 degrees of freedom for regression

1 degrees of freedom for error

2 total degrees of freedom

3 sum of squares for regression

4 sum of squares for error

5 total sum of squares

6 regression mean square

7 error mean square

8 F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation
179



 Regression         regression_stepwise
IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address to a pointer to the internally allocated array containing statistics relating to the regression 
coefficient for the final model in this invocation. The rows correspond to the n_candidate inde-
pendent variables. The rows are in the same order as the variables in x (or, if IMSLS_INPUT_COV 
is specified, the rows are in the same order as the variables in cov). Each row corresponding to a 
variable not in the model contains statistics for a model which includes the variables of the final 
model and the variable corresponding to the row in question.

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_T_TESTS.

IMSLS_COEF_VIF, float **coef_vif (Output)
Address to a pointer to the internally allocated array containing variance inflation factors for the final 
model in this invocation. The elements correspond to the n_candidate dependent variables. The 
elements are in the same order as the variables in x (or, if IMSLS_INPUT_COV is specified, the ele-
ments are in the same order as the variables in cov). Each element corresponding to a variable not 
in the model contains statistics for a model which includes the variables of the final model and the 
variables corresponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all others can be 
obtained from coef_vif[i] by the following formula:

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_vif is provided by the user. See IMSLS_COEF_VIF.

IMSLS_LEVEL, int level[] (Input)
Array of length n_candidate + 1 containing levels of priority for variables entering and leaving the 
regression. Each variable is assigned a positive value which indicates its level of entry into the model. 
A variable can enter the model only after all variables with smaller nonzero levels of entry have 

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient 
estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

1.0 − 1.0
coef

─
vif[i]
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entered. Similarly, a variable can only leave the model after all variables with higher levels of entry 
have left. Variables with the same level of entry compete for entry (deletion) at each step. Argument 
level[I] = 0 means the I-th variable is never to enter the model. Argument level[I] = −1 
means the I-th variable is the dependent variable. Argument level[n_candidate] must corre-
spond to the dependent variable, except when IMSLS_INPUT_COV is specified.

Default: 1, 1, ..., 1, −1 where −1 corresponds to level[n_candidate]

IMSLS_FORCE, int n_force (Input)
Variable with levels 1, 2, ..., n_force are forced into the model as independent variables. See 
IMSLS_LEVEL.

IMSLS_IEND, int *iend (Output)
Variable which indicates whether additional steps are possible.

IMSLS_SWEPT_USER, int swept[] (Output)
A user-allocated array of length n_candidate + 1 with information to indicate the independent 
variables in the model. Argument swept[n_candidate] usually corresponds to the dependent 
variable. See IMSLS_LEVEL.

IMSLS_HISTORY_USER, float history[] (Output)
User-allocated array of length n_candidate + 1 containing the recent history of the independent 
variables. Element history[n_candidate] usually corresponds to the dependent variable. See 
IMSLS_LEVEL.

iend Meaning

0 Additional steps may be possible.

1 No additional steps are possible.

swept[i] Status of i-th Variable

−1 Variable i is not in model.

1 Variable i is in model.

history[i] Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during 
initialization.

k> 0.0 Variable was added to the model during 
the k-th step.

k < 0.0 Variable was deleted from model during 
the k-th step.
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IMSLS_COV_SWEPT_USER, float *covs (Output)
User-allocated array of length (n_candidate + 1) × (n_candidate + 1) that results after cov 
has been swept on the columns corresponding to the variables in the model. The estimated vari-
ance-covariance matrix of the estimated regression coefficients in the final model can be obtained by 
extracting the rows and columns of covs corresponding to the independent variables in the final 
model and multiplying the elements of this matrix by anova_table[7].

IMSLS_INPUT_COV, int n_observations float *cov (Input)
An (n_candidate + 1) by (n_candidate + 1) array containing a variance-covariance or sum of 
squares and crossproducts matrix, in which the last column must correspond to the dependent vari-
able. Argument n_observations is an integer specifying the number of observations associated 
with cov. Argument cov can be computed using imsls_f_covariances. Arguments x, y, 
weights, and frequencies are not accessed when this option is specified.

By default, imsls_regression_stepwise computes cov from the input data matrices x and 
y.

Description
Function imsls_f_regression_stepwise builds a multiple linear regression model using forward selec-
tion, backward selection, or forward stepwise (with a backward glance) selection. Function 
imsls_f_regression_stepwise is designed so the user can monitor, and perhaps change, the variables 
added (deleted) to (from) the model after each step. In this case, multiple calls to 
imsls_f_regression_stepwise (using optional arguments IMSLS_FIRST_STEP, 
IMSLS_INTERMEDIATE_STEP, ..., IMSLS_LAST_STEP) are made. Alternatively, 
imsls_f_regression_stepwise can be invoked once (default, or specify optional argument 
IMSLS_ALL_STEPS) in order to perform the stepping until a final model is selected.

Levels of priority can be assigned to the candidate independent variables (use optional argument 
IMSLS_LEVEL). All variables with a priority level of 1 must enter the model before variables with a priority level 
of 2. Similarly, variables with a level of 2 must enter before variables with a level of 3, etc. Variables also can be 
forced into the model (see optional argument IMSLS_FORCE). Note that specifying optional argument 
IMSLS_FORCE without also specifying optional argument IMSLS_LEVEL will result in all variables being 
forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In this case, a sum-of-squares and 
crossproducts matrix for the independent and dependent variables corrected for the mean is required. Other 
possibilities are as follows:
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1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and crossproducts matrix for 
the independent and dependent variables is required as input in cov (see optional argument 
IMSLS_INPUT_COV). Argument n_observations must be set to one greater than the number 
of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and crossproducts matrix 
for the constant regressor (=1), independent and dependent variables are required for cov. In this 
case, cov contains one additional row and column corresponding to the constant regressor. This 
row/column contains the sum-of-squares and crossproducts of the constant regressor with the inde-
pendent and dependent variables. The remaining elements in cov are the same as in the previous 
case. Argument n_observations must be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). Function imsls_f_regression_stepwise 
uses sweeps of the covariance matrix (input in cov, if optional argument IMSLS_INPUT_COV is specified, or 
generated internally by default) to move variables in and out of the model (Hemmerle 1967, Chapter 3). The 
SWEEP operator discussed in Goodnight (1979) is used. A description of the stepwise algorithm is also given by 
Kennedy and Gentle (1980, pp. 335−340). The advantage of stepwise model building over all possible regression 
(see function imsls_f_regression_selection) is that it is less demanding computationally when the num-
ber of candidate independent variables is very large. However, there is no guarantee that the model selected will 

be the best model (highest R2) for any subset size of independent variables.

Example
This example uses a data set from Draper and Smith (1981, pp. 629−630). Backwards stepping is performed by 
default.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE   4
int main()
{
   char          *labels[] = {
       "degrees of freedom for regression",
       "degrees of freedom for error",
       "total degrees of freedom",
       "sum of squares for regression",
       "sum of squares for error",
       "total sum of squares",
       "regression mean square",
       "error mean square",
       "F-statistic",
       "p-value",
       "R-squared (in percent)",
       "adjusted R-squared (in percent)",
       "est. standard deviation of within error"
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   };
   char          *c_labels[] = {
       "variable",
       "estimate",
       "s.e.",
       "t",
       "prob > t"
   };
   float *aov, *tt;
   float x[N_OBSERVATIONS*N_CANDIDATE] = {
       7., 26., 6., 60.,
       1., 29., 15., 52.,
       11., 56., 8., 20.,
       11., 31., 8., 47.,
       7., 52., 6., 33.,
       11., 55., 9., 22.,
       3., 71., 17., 6.,
       1., 31., 22., 44.,
       2., 54., 18., 22.,
       21., 47., 4., 26.,
       1., 40., 23., 34.,
       11., 66., 9., 12.,
       10., 68., 8., 12.
   };
   float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
       109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
   imsls_f_regression_stepwise(N_OBSERVATIONS, N_CANDIDATE,
       &x[0][0], y,
       IMSLS_ANOVA_TABLE, &aov, 
       IMSLS_COEF_T_TESTS, &tt, 
       0);
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 
       13, 1, aov,
       IMSLS_ROW_LABELS, labels,
       IMSLS_WRITE_FORMAT, "%9.2f", 
       0);
   imsls_f_write_matrix("* * * Inference on Coefficients * * *\n", 
       4, 4, tt,
       IMSLS_COL_LABELS, c_labels, 
       IMSLS_WRITE_FORMAT, "%9.2f", 
       0);
}

Output

        * * * Analysis of Variance * * *
degrees of freedom for regression            2.00
degrees of freedom for error                10.00
total degrees of freedom                    12.00
sum of squares for regression             2657.86
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sum of squares for error                    57.90
total sum of squares                      2715.76
regression mean square                    1328.93
error mean square                            5.79
F-statistic                                229.50
p-value                                      0.00
R-squared (in percent)                      97.87
adjusted R-squared (in percent)             97.44
est. standard deviation of within error      2.41
      * * * Inference on Coefficients * * *
variable  estimate      s.e.         t  prob > t
      1      1.47      0.12     12.10      0.00
      2      0.66      0.05     14.44      0.00
      3      0.25      0.18      1.35      0.21
      4     -0.24      0.17     -1.36      0.21

Warning Errors

Fatal Errors

IMSLS_LINEAR_DEPENDENCE_1 Based on “tolerance” = #, there are linear dependen-
cies among the variables to be forced.

IMSLS_NO_VARIABLES_ENTERED No variables entered the model. All elements of 
“anova_table” are set to NaN.
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poly_regression
Performs a polynomial least-squares regression.

Synopsis
#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[], float y[], int degree, ..., 0)

The type double function is imsls_d_poly_regression.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
Degree of the polynomial.

Return Value
A pointer to the array of size degree + 1 containing the coefficients of the fitted polynomial. If a fit cannot be 
computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[], float y[], int degree,

IMSLS_WEIGHTS, float weights[],
IMSLS_SSQ_POLY, float **ssq_poly,
IMSLS_SSQ_POLY_USER, float ssq_poly[],
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IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,
IMSLS_SSQ_LOF, float **ssq_lof,
IMSLS_SSQ_LOF_USER, float ssq_lof[],
IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSLS_X_MEAN, float *x_mean,
IMSLS_X_VARIANCE, float *x_variance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[]
IMSLS_DF_PURE_ERROR, int *df_pure_error,
IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[] (Input)

Array with n_observations components containing the array of weights for the observation. 
Default: weights[] = 1

IMSLS_SSQ_POLY, float **ssq_poly (Output)
Address of a pointer to the internally allocated array containing the sequential sums of squares and 
other statistics. Row i corresponds to xi, i = 0, ..., degree − 1, and the columns are described as 
follows:

IMSLS_SSQ_POLY_USER, float ssq_poly[] (Output)
Storage for array ssq_poly is provided by the user. See IMSLS_SSQ_POLY.

IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
Column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

Column Description

0 degrees of freedom

1 Sums of squares

2 F-statistic

3 p-value
187



 Regression         poly_regression
IMSLS_SSQ_LOF, float **ssq_lof (Output)
Address of a pointer to the internally allocated array containing the lack-of-fit statistics. Row icorre-
sponds to xi, i = 0, ..., degree − 1, and the columns are described in the following table:

IMSLS_SSQ_LOF_USER, float ssq_lof[] (Output)
Storage for array ssq_lof is provided by the user. See IMSLS_SSQ_LOF.

IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
Column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSLS_X_MEAN, float *x_mean (Output)
Mean of x.

IMSLS_X_VARIANCE, float *x_variance (Output)
Variance of x.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array containing the analysis of variance table.

Column Description

0 degrees of freedom

1 lack-of-fit sums of squares

2 F-statistic for testing lack-of-fit for a 
polynomial model of degree i

3 p-value for the test

Column Description

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)
188



 Regression         poly_regression
Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in df_pure_error.

IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in ssq_pure_error.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the array containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info (Output)
Address of a pointer to an internally allocated structure containing the information about the polyno-
mial fit required as input for IMSL function imsls_f_poly_prediction.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array 
coefficients of size degree + 1 provided by the user.

Description
Function imsls_f_poly_regression computes estimates of the regression coefficients in a polynomial 
(curvilinear) regression model. In addition to the computation of the fit, imsls_f_poly_regression com-
putes some summary statistics. Sequential sums of squares attributable to each power of the independent 
variable (stored in ssq_poly) are computed. These are useful in assessing the importance of the higher order 
powers in the fit. Draper and Smith (1981, pp. 101−102) and Neter and Wasserman (1974, pp. 278−287) discuss 

the interpretation of the sequential sums of squares. The statistic R2 is the percentage of the sum of squares of y 
about its mean explained by the polynomial curve. Specifically,

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Column Description
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where

is the fitted yvalue at xi and  is the mean of y. This statistic is useful in assessing the overall fit of the curve to the 

data. R2 must be between 0 and 100 percent, inclusive. R2 = 100 percent indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed using orthogonal polynomials as 
the regressor variables. This reparameterization of the polynomial model in terms of orthogonal polynomials has 
the advantage that the loss of accuracy resulting from forming powers of the x-values is avoided. All results are 
returned to the user for the original model (power form).

Function imsls_f_poly_regression is based on the algorithm of Forsythe (1957). A modification to For-
sythe’s algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A discussion 
of Forsythe’s algorithm and Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342−347).

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp. 279−285). The data set con-
tains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service coffee 
dispensers. Responses for 14 similar cafeterias are in the data set. A graph of the results is also given.

#include <imsls.h>
#define DEGREE         2
#define NOBS          14
int main()
{
   float      *coefficients;
   float      x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
                     4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
   float      y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
                     758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
   coefficients = imsls_f_poly_regression (NOBS, x, y, DEGREE, 0);
   imsls_f_write_matrix("Least-Squares Polynomial Coefficients", 
                       DEGREE + 1, 1, coefficients, 
                       IMSLS_ROW_NUMBER_ZERO,
                       0);

R2 =
∑wi ŷi − y

─ 2

∑wi yi − y
─ 2100%

ŷi

y─
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}

Output

Least-Squares Polynomial Coefficients
           0      503.3
           1       78.9
           2       -4.0

Figure 1, A Polynomial Fit

Example 2

This example is a continuation of the initial example. Here, many optional arguments are used.

#include <imsls.h>
#define DEGREE          2
#define NOBS           14
int main()
{
   int   iset = 1, dfpe;
   float *coefficients, *anova_table, sspe, *ssqpoly, *ssqlof;
   float x[] = {
       0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 4.0, 5.0, 5.0, 6.0, 6.0,
       7.0, 7.0
   };
   float y[] = {
       508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 758.9, 787.6,
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       792.1, 841.4, 831.8, 854.7, 871.4
   };
   char *coef_rlab[2];
   char *coef_clab[] = {" ", "intercept", "linear", "quadratic"};
   char *stat_clab[] = {" ", "Degrees of\nFreedom", "Sum of\nSquares",
       "\nF-Statistic", "\np-value"};
   char *anova_rlab[] = {
       "degrees of freedom for regression", 
       "degrees of freedom for error",
       "total (corrected) degrees of freedom",
       "sum of squares for regression",
       "sum of squares for error",
       "total (corrected) sum of squares",
       "regression mean square",
       "error mean square", "F-statistic",
       "p-value", "R-squared (in percent)",
       "adjusted R-squared (in percent)",
       "est. standard deviation of model error",
       "overall mean of y",
       "coefficient of variation (in percent)"
   };
   coefficients = imsls_f_poly_regression(NOBS, x, y, DEGREE,
       IMSLS_SSQ_POLY, &ssqpoly,
       IMSLS_SSQ_LOF, &ssqlof,
       IMSLS_ANOVA_TABLE, &anova_table,
       IMSLS_DF_PURE_ERROR, &dfpe,
       IMSLS_SSQ_PURE_ERROR, &sspe,
       0);
   imsls_write_options(-1, &iset);
   imsls_f_write_matrix("Least Squares Polynomial Coefficients",
       1, DEGREE + 1, coefficients,
       IMSLS_COL_LABELS, coef_clab,
       0);
   coef_rlab[0] = coef_clab[2];
   coef_rlab[1] = coef_clab[3];
   imsls_f_write_matrix("Sequential Statistics", DEGREE, 4,
       ssqpoly,
       IMSLS_COL_LABELS, stat_clab,
       IMSLS_ROW_LABELS, coef_rlab,
       IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
       0);
   imsls_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4,
       ssqlof,
       IMSLS_COL_LABELS, stat_clab,
       IMSLS_ROW_LABELS, coef_rlab,
       IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
       0);
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,
       1, anova_table,
       IMSLS_ROW_LABELS, anova_rlab,
       IMSLS_WRITE_FORMAT, "%9.2f",
       0);
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}

Output

                    Least Squares Polynomial Coefficients
                        intercept     linear  quadratic
                            503.3       78.9       -4.0
                            Sequential Statistics
                       Degrees of   Sum of                     
                          Freedom  Squares F-Statistic p-value
            linear           1.0 220644.2      3415.8  0.0000
            quadratic        1.0   4387.7        67.9  0.0000
                           Lack-of-Fit Statistics
                       Degrees of   Sum of                     
                          Freedom  Squares F-Statistic p-value
            linear           5.0   4793.7        22.0  0.0004
            quadratic        4.0    405.9         2.3  0.1548
                      * * * Analysis of Variance * * *
              degrees of freedom for regression           2.00
              degrees of freedom for error               11.00
              total (corrected) degrees of freedom       13.00
              sum of squares for regression          225031.94
              sum of squares for error                  710.55
              total (corrected) sum of squares       225742.48
              regression mean square                 112515.97
              error mean square                          64.60
              F-statistic                              1741.86
              p-value                                     0.00
              R-squared (in percent)                     99.69
              adjusted R-squared (in percent)            99.63
              est. standard deviation of model error      8.04
              overall mean of y                         710.99
              coefficient of variation (in percent)       1.13
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Warning Errors

Fatal Errors

IMSLS_CONSTANT_YVALUES The y values are constant. A zero-order polynomial 
is fit. High order coefficients are set to zero.

IMSLS_FEW_DISTINCT_XVALUES There are too few distinct x values to fit the desired 
degree polynomial. High order coefficients are set to 
zero.

IMSLS_PERFECT_FIT A perfect fit was obtained with a polynomial of 
degree less than degree. High order coefficients are 
set to zero.

IMSLS_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSLS_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN. There are no valid 
data.

IMSLS_CONSTANT_XVALUES The x values are constant.
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poly_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a polynomial regression model.

Synopsis
#include <imsls.h>
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, int n_predict, float 

x[], ..., 0)

The type double function is imsls_d_poly_prediction.

Required Arguments
Imsls_f_poly_regression *poly_info (Input)

Pointer to a structure of type Imsls_f_poly_regression. See function imsls_f_poly_regression.

int n_predict (Input)
Length of array x.

float x[] (Input)
Array of length n_predict containing the values of the independent variable for which calculations 
are to be performed.

Return Value
A pointer to an internally allocated array of length n_predict containing the predicted values.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, int n_predict, 

float x[],

IMSLS_CONFIDENCE, float confidence,
IMSLS_WEIGHTS, float weights[],
IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit,
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IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], 

float upper_limit[],
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_CONFIDENCE, float confidence (Input)

Confidence level for both two-sided interval estimates on the mean and for two-sided prediction 
intervals in percent. Argument confidence must be in the range [0.0, 100.0). For one-sided inter-
vals with confidence level onecl, where 50.0 ≤ onecl < 100.0, set confidence = 100.0 – 2.0 * 
(100.0 − onecl).
Default: confidence = 95.0.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x. The computed prediction inter-
val uses SSE/(DFE*weights[i]) for the estimated variance of a future response, where SSE is sum 
of squares error and DFE is degrees of freedom error.
Default: weights[] = 1.

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length 
n_predict containing the lower confidence limits of Scheffé confidence intervals corresponding to 
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the rows of x. Array upper_limit is the address of a pointer to an internally allocated array of 
length n_predict containing the upper confidence limits of Scheffé confidence intervals corre-
sponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length 
n_predict containing the lower confidence limits of the confidence intervals for two-sided interval 
estimates of the means, corresponding to the rows of x. Array upper_limit is the address of a 
pointer to an internally allocated array of length n_predict containing the upper confidence limits 
of the confidence intervals for two-sided interval estimates of the means, corresponding to the rows 
of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], float upper_limit[] (Out-
put)
Storage for arrays lower_limit and upper_limit is provided by the user. See 
IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length 
n_predict containing the lower confidence limits of the confidence intervals for two-sided predic-
tion intervals, corresponding to the rows of x. Array upper_limit is the address of a pointer to an 
internally allocated array of length n_predict containing the upper confidence limits of the confi-
dence intervals for two-sided prediction intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], float upper_limit[] 
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See 
IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict array contains the pre-
dicted values.
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IMSLS_Y float y[] (Input)
Array of length n_predict containing the observed responses.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the standard-
ized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[] (Output)
Storage for array standardized_residual is provided by the user. See 
IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the deleted 
residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See 
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length n_predict containing the Cook’s D 
statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length n_predict containing the DFFITS sta-
tistics, where DFFITS is the change in the predicted value of a point in the absence of the empirical 
value.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

IMSLS_Y must be specified if any of the following optional arguments are specified.
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Description
Function imsls_f_poly_prediction assumes a polynomial model

where the observed values of the yi’s constitute the response, the xi’s are the settings of the independent vari-

able, the βj’s are the regression coefficients and the ɛi’s are the errors that are independently distributed normal 

with mean 0 and the following variance:

Given the results of a polynomial regression, fitted using orthogonal polynomials and weights wi, function 

imsls_f_poly_prediction produces predicted values, residuals, confidence intervals, prediction intervals, 
and diagnostics for outliers and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the independent variable not used in 
computing the regression fit. This is accomplished by simply using a different x matrix when calling 
imsls_f_poly_prediction than was used for the fit (function imsls_f_poly_regression). See 
Example 1.

Results from function imsls_f_poly_regression, which produces the fit using orthogonal polynomials, 
are used for input by the structure poly_info. The fitted model from imsls_f_poly_regression is

where the zi’s are settings of the independent variable x scaled to the interval [−2, 2] and the pj (z)’s are the 

orthogonal polynomials. The XTX matrix for this model is a diagonal matrix with elements dj. The case statistics 

are easily computed from this model and are equal to those from the original polynomial model with βj’s as the 

regression coefficients.

The leverage is computed as follows:

The estimated variance of

is given by the following:

yi = β0 + β1xi + … , βkxi
k + ɛi i = 1,2, … n

σ2
wi

ŷi = α̂0p0 zi + α̂1p1 zi + ... + α̂k pk zi

hi = wi∑
j=0

k

d j
−1p j

2 zi

ŷi
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The computation of the remainder of the case statistics follows easily from the definitions. See Diagnostics for 
Individual Cases for the definition of the case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of settings of the independent 
variables not used in computing the regression fit. This can be accomplished by defining a new data matrix. Since 
the information about the model fit is input in poly_info, it is not necessary to send in the data set used for 
the original calculation of the fit, i.e., only variable combinations for which predictions are desired need be 
entered in x.

Examples

Example 1

A polynomial model is fit to the data discussed by Neter and Wasserman (1974, pp. 279–285). The data set con-
tains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service 
dispensers. Responses for 14 similar cafeterias are in the data set.

#include <imsls.h>
int main()
{
   Imsls_f_poly_regression *poly_info;
   float    *y_hat, *coefficients; 
   int      n_observations = 14;
   int      degree = 2;
   int      n_predict = 8;
   float    x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
                   4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
   float    y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
                   758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
   float    x2[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
   /* Generate the polynomial regression fit*/
   coefficients = imsls_f_poly_regression (n_observations, x, y, 
       degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);
   /* Compute predicted values */
   y_hat = imsls_f_poly_prediction(poly_info, n_predict, x2, 0);
   /* Print predicted values */
   imsls_f_write_matrix("Predicted Values", 1, n_predict, y_hat, 0); 
   imsls_free(coefficients);
   imsls_free(y_hat);
   return;
}

his
2

wi
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Output

                          Predicted Values
        1          2          3          4          5          6
    503.3      578.3      645.4      704.4      755.6      798.8
        7          8
    834.1      861.4

Example 2

Predicted values, confidence intervals, and diagnostics are computed for the data set described in the first 
example.

#include <imsls.h>
int main()
{
#define N_PREDICT 14
   Imsls_f_poly_regression *poly_info;
   float    *coefficients, y_hat[N_PREDICT],
             lower_ci[N_PREDICT], upper_ci[N_PREDICT],
             lower_pi[N_PREDICT], upper_pi[N_PREDICT],
             s_residual[N_PREDICT], d_residual[N_PREDICT],
             leverage[N_PREDICT], cooksd[N_PREDICT], 
             dffits[N_PREDICT], lower_scheffe[N_PREDICT], 
             upper_scheffe[N_PREDICT]; 
   int      n_observations = N_PREDICT;
   int      degree = 2;
   float    x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
                    4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
   float    y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
                    758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
   /* Generate the polynomial regression fit*/
   coefficients = imsls_f_poly_regression (n_observations, x, y, 
       degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);
   /* Compute predicted values and case statistics */
   imsls_f_poly_prediction(poly_info, N_PREDICT, x, 
       IMSLS_RETURN_USER, y_hat, 
       IMSLS_POINTWISE_CI_POP_MEAN_USER, lower_ci, upper_ci, 
       IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, lower_pi, upper_pi, 
       IMSLS_Y, y, 
       IMSLS_STANDARDIZED_RESIDUAL_USER, s_residual, 
       IMSLS_DELETED_RESIDUAL_USER, d_residual, 
       IMSLS_LEVERAGE_USER, leverage, 
       IMSLS_COOKSD_USER, cooksd, 
       IMSLS_DFFITS_USER, dffits,
       IMSLS_SCHEFFE_CI_USER, lower_scheffe, upper_scheffe,
       0);
   /* Print results */
   imsls_f_write_matrix("Predicted Values", 1, N_PREDICT, y_hat, 0); 
   imsls_f_write_matrix("Lower Scheffe CI", 1, N_PREDICT, 
       lower_scheffe, 0); 
   imsls_f_write_matrix("Upper Scheffe CI", 1, N_PREDICT, 
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       upper_scheffe, 0);
   imsls_f_write_matrix("Lower CI", 1, N_PREDICT, lower_ci, 0); 
   imsls_f_write_matrix("Upper CI", 1, N_PREDICT, upper_ci, 0); 
   imsls_f_write_matrix("Lower PI", 1, N_PREDICT, lower_pi, 0); 
   imsls_f_write_matrix("Upper PI", 1, N_PREDICT, upper_pi, 0); 
   imsls_f_write_matrix("Standardized Residual", 1, N_PREDICT, 
       s_residual, 0); 
   imsls_f_write_matrix("Deleted Residual", 1, N_PREDICT, 
       d_residual, 0); 
   imsls_f_write_matrix("Leverage", 1, N_PREDICT, leverage, 0); 
   imsls_f_write_matrix("Cooks Distance", 1, N_PREDICT, cooksd, 0);
   imsls_f_write_matrix("DFFITS", 1, N_PREDICT, dffits, 0); 

   imsls_free(coefficients);
   return;
}

Output

                          Predicted Values
        1          2          3          4          5          6
    503.3      503.3      578.3      578.3      645.4      645.4
        7          8          9         10         11         12
    755.6      755.6      798.8      798.8      834.1      834.1
       13         14
    861.4      861.4
                          Lower Scheffe CI
        1          2          3          4          5          6
    489.8      489.8      569.5      569.5      636.5      636.5
        7          8          9         10         11         12
    745.7      745.7      790.2      790.2      825.5      825.5
       13         14
    847.7      847.7
                          Upper Scheffe CI
        1          2          3          4          5          6
    516.9      516.9      587.1      587.1      654.2      654.2
        7          8          9         10         11         12
    765.5      765.5      807.4      807.4      842.7      842.7
       13         14
    875.1      875.1
                              Lower CI
        1          2          3          4          5          6
    492.8      492.8      571.5      571.5      638.4      638.4
        7          8          9         10         11         12
    747.9      747.9      792.1      792.1      827.4      827.4
       13         14
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    850.7      850.7
                              Upper CI
        1          2          3          4          5          6
    513.9      513.9      585.2      585.2      652.3      652.3
        7          8          9         10         11         12
    763.3      763.3      805.5      805.5      840.8      840.8
       13         14
    872.1      872.1
                              Lower PI
        1          2          3          4          5          6
    482.8      482.8      559.3      559.3      626.4      626.4
        7          8          9         10         11         12
    736.3      736.3      779.9      779.9      815.2      815.2
       13         14
    840.8      840.8
                              Upper PI
        1          2          3          4          5          6
    523.9      523.9      597.3      597.3      664.3      664.3
        7          8          9         10         11         12
    774.9      774.9      817.7      817.7      853.0      853.0
       13         14
    882.1      882.1
                        Standardized Residual
        1          2          3          4          5          6
    0.737     -0.766     -1.366     -0.137      0.859      1.575
        7          8          9         10         11         12
   -0.041      0.456     -1.507     -0.902      0.982     -0.308
       13         14
   -1.051      1.557
                          Deleted Residual
        1          2          3          4          5          6
    0.720     -0.751     -1.429     -0.131      0.848      1.707
        7          8          9         10         11         12
   -0.039      0.439     -1.613     -0.894      0.980     -0.295
       13         14
   -1.056      1.681
                              Leverage
        1          2          3          4          5          6
   0.3554     0.3554     0.1507     0.1507     0.1535     0.1535
        7          8          9         10         11         12
   0.1897     0.1897     0.1429     0.1429     0.1429     0.1429
       13         14
   0.3650     0.3650
                           Cooks Distance
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        1          2          3          4          5          6
   0.0997     0.1080     0.1104     0.0011     0.0446     0.1500
        7          8          9         10         11         12
   0.0001     0.0162     0.1262     0.0452     0.0536     0.0053
       13         14
   0.2116     0.4644
                               DFFITS
        1          2          3          4          5          6
    0.535     -0.558     -0.602     -0.055      0.361      0.727
        7          8          9         10         11         12
   -0.019      0.212     -0.659     -0.365      0.400     -0.120
       13         14
   -0.801      1.274

Warning Errors

Fatal Errors

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than one is computed. 
It is set to 1.0.

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much less than 
zero is computed. It is set to zero.

IMSLS_NEG_WEIGHT “weights[#]” = #. Weights must be nonnegative.
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nonlinear_regression

more...

Fits a multivariate nonlinear regression model.

Synopsis
#include <imsls.h>
float *imsls_f_nonlinear_regression (float fcn(), int n_parameters, 

int n_observations, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_regression.

Required Arguments
float fcn (int n_independent, float xi[], int n_parameters, float theta[])

User-supplied function to evaluate the function that defines the nonlinear regression problem where 
xi is an array of length n_independent at which point the function is evaluated and theta is an 
array of length n_parameters containing the current values of the regression coefficients. Func-
tion fcn returns a predicted value at the point xi. In the following, f(xi;θ), or just fi, denotes the value 
of this function at the point xi, for a given value of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input)
Array of size n_observations by n_independent containing the matrix of independent 
(explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response) variable.
205



 Regression         nonlinear_regression
Return Value

A pointer to an array of length n_parameters containing a solution,  for the nonlinear regression coefficients. 

To release this space, use imsls_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonlinear_regression (float fcn(), int n_parameters, 

int n_observations, int n_independent, float x[], float y[],

IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_THETA_SCALE, float theta_scale[],
IMSLS_GRADIENT_EPS, float gradient_eps,
IMSLS_STEP_EPS, float step_eps,
IMSLS_SSE_REL_EPS, float sse_rel_eps,
IMSLS_SSE_ABS_EPS, float sse_abs_eps,
IMSLS_MAX_STEP, float max_step,
IMSLS_INITIAL_TRUST_REGION, float trust_region,
IMSLS_GOOD_DIGIT, int ndigit,
IMSLS_MAX_ITERATIONS, int max_itn,
IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval,
IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian,
IMSLS_TOLERANCE, float tolerance,
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_R, float **r,
IMSLS_R_USER, float r[],
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_R_RANK, int *rank,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_DF, int *df,
IMSLS_SSE, float *sse,
IMSLS_VARIANCE_COVARIANCE_MATRIX, float **var_covar,
IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float var_covar[],

θ
^
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IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, void fcn(),void *data,
IMSLS_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0.

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], int n_parameters, 
float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where the n_independent data 
values corresponding to the i-th row are input in xi. Argument theta is an array of length 
n_parameters containing the regression coefficients for which the Jacobian is evaluated, fjac is 
the computed n_parameters row of the Jacobian for observation i at theta. Note that each 
derivative ∂f(xi)/∂θj should be returned in fjac [j − 1] for j = 1, 2, ..., n_parameters.

IMSLS_THETA_SCALE, float theta_scale[] (Input)
Array with n_parameters components containing the scaling array for θ. Array theta_scale is 
used mainly in scaling the gradient and the distance between two points. See keywords 
IMSLS_GRADIENT_EPS and IMSLS_STEP_EPS for more details. 
Default: theta_scale[] = 1.

IMSLS_GRADIENT_EPS, float gradient_eps (Input)
Scaled gradient tolerance. The j-th component of the scaled gradient at θ is calculated as

where g = ∇F(θ), t = theta_scale, and

The value F(θ) is the sum of the squared residuals, SSE, at the point θ.

Convergence is declared if |gi| * max{|θi|, 1.0/ti}/SSE is less than gradient_eps for i= 0, 1, 2, …, 

n_parameters, where gi is the i-th component of an internal intermediate gradient vector.

Default:

∣g j∣ *max ∣θ j∣, 1 / t j
1
2∥F θ ∥

2
2

∥F θ ∥
2
2 =∑

i=1

n
yi − f xi;θ

2
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(  in double, where ɛ is the machine precision)

IMSLS_STEP_EPS, float step_eps (Input)
Scaled step tolerance. The j-th component of the scaled step from points θ and θʹ is computed as

where t = theta_scale
Convergence is declared if |gn+ i|/ max{|θi|, 1.0/ti} is less than step_eps for i = 0, 1, 2, …, n, where 

gn+ i is the i-th component of the last step and n = n_parameters.

Default: step_eps = ɛ2/3,where ɛ is the machine precision

IMSLS_SSE_REL_EPS, float sse_rel_eps (Input)
Relative SSE function tolerance.

Convergence is declared if the change in SSE is less than or equal to sse_rel_eps * SSE in abso-
lute value.

Default: sse_rel_eps = max(10-10, ɛ2/3), max(10-20, ɛ2/3) in double, where ɛ is the machine 
precision

IMSLS_SSE_ABS_EPS, float sse_abs_eps (Input)
Absolute SSE function tolerance.

Convergence is declared if SSE is less than sse_abs_eps.

Default: sse_abs_eps = max(10-20,ɛ2), max(10-40, ɛ2) in double, where ɛ is the machine precision

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size.

Default: max_step = 1000 max (ɛ1, ɛ2), where ɛ1 = (tTθ0)1/2, ɛ2 = ∥t∥2, t = theta_scale, and 

θ0 = theta_guess

IMSLS_INITIAL_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSLS_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function. 
Default: machine dependent

gradient_eps = ɛ

ɛ3

∣θ j − θ ′ j∣
max ∣θ j∣, 1 / t j
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IMSLS_MAX_ITERATIONS, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval (Input)
Maximum number of SSE function evaluations.
Default: max_sse_eval = 400

IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSLS_TOLERANCE, float tolerance (Input)
False convergence tolerance.
Default: tolerance = 100* eps, where eps = imsls_f_machine(4) if single precision and 
eps = imsls_d_machine(4) if double precision

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the 
predicted values at the approximate solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the 
residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_R, float **r (Output)
Address of a pointer to an internally allocated array of size n_parameters × n_parameters 
containing the R matrix from a QR decomposition of the Jacobian.

IMSLS_R_USER, float r[] (Output)
Storage for array r is provided by the user. See IMSLS_R.

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of array r.
Default: r_col_dim = n_parameters

IMSLS_R_RANK, int *rank (Output)
Rank of r. Argument rank less than n_parameters may indicate the model is 
overparameterized.
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IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_DF, int *df (Output)
Degrees of freedom.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated regression coefficients.

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **var_covar (Output)
Address of a pointer to an internally allocated array of size n_parameters × n_parameters 
containing the variance/covariance matrix of the coefficients.

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float var_covar[] (Output)
Storage for array var_covar is provided by the user. See 
IMSLS_VARIANCE_COVARIANCE_MATRIX.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int n_parameters, 
float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear regression problem, which 
also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed 
to the user-supplied function. See the Passing Data to User-Supplied Functions at the beginning of 
this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[]), void *data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which also accepts a pointer to data 
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. 
See the Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description
Function imsls_f_nonlinear_regression fits a nonlinear regression model using least squares. The 
nonlinear regression model is
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where the observed values of the yi’s constitute the responses or values of the dependent variable, the known 

xi’s are the vectors of the values of the independent (explanatory) variables, θ is the vector of p regression param-

eters, and the ɛi’s are independently distributed normal errors with mean 0 and variance σ2. For this model, a 

least-squares estimate of θ is also a maximum likelihood estimate of θ.

The residuals for the model are as follows:

A value of θ that minimizes

is a least-squares estimate of θ. Function imsls_f_nonlinear_regression is designed so that the values 
of the function f(xi; θ) are computed one at a time by a user-supplied function.

Function imsls_f_nonlinear_regression is based on MINPACK routines LMDIF and LMDER by Moré et 
al. (1980) that use a modified Levenberg-Marquardt method to generate a sequence of approximations to a min-
imum point. Let

be the current estimate of θ. A new estimate is given by

where sc is a solution to the following:

Here

is the Jacobian evaluated at

yi = f xi; θ + εi i = 1,2, … ,n

ei θ = yi − f xi;θ i = 1,2, … ,n

∑
i=1

n
ei θ

2

θ^c

θ^c + sc

J θ^c
T
J θ^c + μcI sc = J θ^c

T
e θ^c

J θ^c
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The algorithm uses a “trust region” approach with a step bound of δc. A solution of the equations is first obtained 

for

μc = 0. If ∥sc∥
2

< δc

this update is accepted; otherwise, μc is set to a positive value and another solution is obtained. The method is 

discussed by Levenberg (1944), Marquardt (1963), and Dennis and Schnabel (1983, pp. 129−147, 218−338).

If a user-supplied function is specified in IMSLS_JACOBIAN, the Jacobian is computed analytically; otherwise, 
forward finite differences are used to estimate the Jacobian numerically. In the latter case, especially if type float is 
used, the estimate of the Jacobian may be so poor that the algorithm terminates at a noncritical point. In such 
instances, the user should either supply a Jacobian function, use type double, or do both.

The first stopping criterion for imsls_f_nonlinear_regression occurs when SSE is less than the abso-
lute function tolerance. The second stopping criterion occurs when the norm of the scaled gradient is less than 
the given gradient tolerance. The third stopping criterion occurs when the scaled distance between the last two 
steps is less than the step tolerance. The third stopping criterion also generates error 
IMSLS_LITTLE_FCN_CHANGE. The fourth stopping criterion occurs when the relative change in SSE is less 
than sse_rel_eps. The fourth stopping criterion also generates error code IMSLS_FALSE_CONVERGENCE. 
See Dennis and Schnabel (1983, pages 159−161, 278−280, and 347−348) for a discussion of stopping criteria and 
choice of tolerances.

On some platforms, imsls_f_nonlinear_regression can evaluate the user-supplied functions fcn and 
jacobian in parallel. This is done only if the function imsls_omp_options is called to flag user-defined func-
tions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are 
usually the result of writing to global or static variables.

Programming Notes
Nonlinear regression allows substantial flexibility over linear regression because the user can specify the func-
tional form of the model. This added flexibility can cause unexpected convergence problems for users that are 
unaware of the limitations of the software. Also, in many cases, there are possible remedies that may not be 
immediately obvious. The following is a list of possible convergence problems and some remedies. There is not a 
one-to-one correspondence between the problems and the remedies. Remedies for some problems also may be 
relevant for the other problems.

θ^c
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1. A local minimum is found. Try a different starting value. Good starting values often can be obtained 
by fitting simpler models. For example, for a nonlinear function.

good starting values can be obtained from the estimated linear regression coefficients

and

from a simple linear regression of ln y on ln x. The starting values for the nonlinear regression in this case 
would be

If an approximate linear model is not clear, then simplify the model by reducing the number of nonlinear 
regression parameters. For example, some nonlinear parameters for which good starting values are known 
could be set to these values in order to simplify the model for computing starting values for the remaining 
parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the initial estimate. This occurs 
often because of poor scaling of the problem, which might result in the residual sum of squares 
being either very large or very small relative to the precision of the computer. The optional argu-
ments allow control of the scaling.

3. The model is discontinuous as a function of θ. (The functionf(x;θ) can be a discontinuous function of 
x.)

4. Overflow occurs during the computations. Make sure the user-supplied functions do not overflow at 
some value ofθ.

5. The estimate of θ is going to infinity. A parameterization of the problem in terms of reciprocals may 
help.

6. Some components ofθ are outside known bounds. This can sometimes be handled by making a 
function that produces artificially large residuals outside of the bounds (even though this introduces 
a discontinuity in the model function).

f x;θ = θ1e
θ2x

β^ 0

β^ 1

θ1 = e
β^0 and θ2 = β

^
1
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Examples

Example 1

In this example (Draper and Smith 1981, p. 518), the following nonlinear model is fit:

#include <math.h>
#include <imsls.h>
float fcn(int, float[], int, float[]);
int main () 
{
#define N_OBSERVATIONS 4
   int        n_independent = 1;
   int        n_parameters  = 2;
   float      *theta_hat;
   float      x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0};
   float      y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39};
   imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
                               /* Nonlinear regression */
   theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters, 
       N_OBSERVATIONS, n_independent, (float *)x, y, 0); 
                               /* Print estimates */
   imsls_f_write_matrix("estimated coefficients", 1, n_parameters, 
       theta_hat, 0);
}
float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
   return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8)));
}

Output

estimated coefficients
        1          2
   0.3807    -0.0794

Example 2

Consider the nonlinear regression model and data set discussed by Neter et al. (1983, pp. 475−478):

Y = α + 0.49 − α e
−β X−8

+ ɛ
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There are two parameters and one independent variable. The data set considered consists of 15 observations.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
static float fcn(int, float[], int, float[]);
static void jacobian(int, float[], int, float[], float[]);
int main()
{
   int df;
   int n_independent = 1;
   int n_parameters = 2;
   int n_obs        = 15;
   float *theta_hat, *r, *y_hat, *var_covar;
   float grad_eps = 1.0e-9;
   float theta_guess[2] = {60.0, -0.03};
   float a, dfe, normalValue;
   float y[15] = {
       54.0, 50.0, 45.0, 37.0, 35.0,
       25.0, 20.0, 16.0, 18.0, 13.0,
       8.0, 11.0, 8.0, 4.0, 6.0
   };
   float x[15] = {
       2.0, 5.0, 7.0, 10.0, 14.0,
       19.0, 26.0, 31.0, 34.0, 38.0,
       45.0, 52.0, 53.0, 60.0, 65.0
   };
   char *fmt="%15.3f";
   char *dashes=
       "-------------------------------------------------------------";
   /* Nonlinear regression */
   theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters, n_obs,
       n_independent, x, y,
       IMSLS_THETA_GUESS, theta_guess,
       IMSLS_GRADIENT_EPS, grad_eps,
       IMSLS_DF, &df,
       IMSLS_R, &r,
       IMSLS_PREDICTED, &y_hat,
       IMSLS_VARIANCE_COVARIANCE_MATRIX, &var_covar,
       IMSLS_JACOBIAN, jacobian,
       0);
   /* Print results */
   /* Calculate and Print Coefficients & their 95% Confidence Limits */
   printf(" \n                  ESTIMATED COEFFICIENTS \n");
   printf("%s\n", dashes);
   printf(" Coefficient | Lower 95%% Limit |");
   printf(" Estimate | Upper 95%% Limit \n");
   dfe = (float) df;

yi = θ1e
θ2xi + ɛi
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   normalValue = imsls_f_t_inverse_cdf(0.975, dfe);
   a = normalValue * sqrt(var_covar[0]);
   printf("    Theta_1 | %10.3f     | %7.3f | %12.3f\n", 
       theta_hat[0] - a, theta_hat[0], theta_hat[0] + a);
   a = normalValue * sqrt(var_covar[3]);
   printf("    Theta_2 | %10.3f     | %7.3f | %12.3f\n", 
       theta_hat[1] - a, theta_hat[1], theta_hat[1] + a);
   printf("%s\n", dashes);
   imsls_f_write_matrix("Var/Covar matrix", n_parameters, n_parameters,
       var_covar,
       IMSLS_WRITE_FORMAT, fmt,
       0);
   imsls_f_write_matrix("Predicted values", 1, n_obs, y_hat,
       IMSLS_WRITE_FORMAT, "%7.2f",
       0);
}
static float fcn(int n_independent, float x[], int n_parameters,
   float theta[])
{
   return (theta[0] * exp(x[0] * theta[1]));
} /* End of fcn */
static void jacobian(int n_independent, float x[], int n_parameters,
   float theta[], float fjac[])
{
   fjac[0] = exp(theta[1] * x[0]);
   fjac[1] = theta[0] * x[0] * exp(theta[1] * x[0]);
} /* End of jacobian */

Output

                 ESTIMATED COEFFICIENTS
-------------------------------------------------------------
Coefficient | Lower 95% Limit | Estimate | Upper 95% Limit
    Theta_1 |    55.426     | 58.607 |      61.787
    Theta_2 |    -0.043     | -0.040 |      -0.036
-------------------------------------------------------------
        Var/Covar matrix
                1               2
1           2.167          -0.002
2          -0.002           0.000
                          Predicted values
     1       2       3       4       5       6       7       8
 54.15   48.08   44.42   39.45   33.67   27.62   20.94   17.18
     9      10      11      12      13      14      15
 15.26   13.02    9.87    7.48    7.19    5.45    4.40
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Informational Errors

Warning Errors

Fatal Errors

IMSLS_STEP_TOLERANCE Scaled step tolerance satisfied. The current point 
may be an approximate local solution, but it is also 
possible that the algorithm is making very slow 
progress and is not near a solution or that 
“step_eps” is too big.

IMSLS_LITTLE_FCN_CHANGE Both the actual and predicted relative reductions in 
the function are less than or equal to the relative 
function tolerance.

IMSLS_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSLS_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian evaluations 
exceeded.

IMSLS_UNBOUNDED Five consecutive steps have been taken with the 
maximum step length.

IMSLS_FALSE_CONVERGENCE The iterates appear to be converging to a noncritical 
point.

IMSLS_TOO_MANY_FCN_EVAL Maximum number of function evaluations 
exceeded.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm. 
User flag = "#".
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nonlinear_optimization

more...

Fits data to a nonlinear model (possibly with linear constraints) using the successive quadratic programming algo-

rithm (applied to the sum of squared errors, sse = Σ(yi − f(xi; θ))2) and either a finite difference gradient or a user-

supplied gradient.

Synopsis
#include <imsls.h>
float *imsls_f_nonlinear_optimization (float fcn(), int n_parameters, 

int n_observations, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_optimization.

Required Arguments
float fcn (int n_independent, float xi[], int n_parameters, float theta[])

User-supplied function to evaluate the function that defines the nonlinear regression problem where 
xi is an array of length n_independent at which point the function is evaluated and theta is an 
array of length n_parameters containing the current values of the regression coefficients. Func-
tion fcn returns a predicted value at the point xi. In the following, f(xi; θ), or just fi, denotes the 
value of this function at the point xi, for a given value of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float *x (Input)
Array of size n_observations by n_independent containing the matrix of independent 
(explanatory) variables.
218



 Regression         nonlinear_optimization
float y[] (Input)
Array of length n_observations containing the dependent (response) variable.

Return Value

A pointer to an array of length n_parameters containing a solution,  for the nonlinear regression coefficients. 
To release this space, use imsls_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonlinear_optimization (float fcn(), int n_parameters, 

int n_observations, int n_independent, float x[], float y[],

IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[],
IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[],
IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality, float a[], 

float b[],
IMSLS_FREQUENCIES, float frequencies,
IMSLS_WEIGHTS, float weights,
IMSLS_ACC, float acc,
IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval,
IMSLS_PRINT_LEVEL, int print_level,
IMSLS_STOP_INFO, int *stop_info,
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active, int **indices_active, 

float **multiplier,
IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active, int indices_active[], 

float multiplier[],
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
IMSLS_JACOBIAN_W_DATA, float jacobian(), void *data,

θ
^
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0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], int n_parameters, 
float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where the n_independent data 
values corresponding to the i-th row are input in xi. Argument theta is an array of length 
n_parameters containing the regression coefficients for which the Jacobian is evaluated, fjac is 
the computed n_parameters row of the Jacobian for observation i at theta. Note that each 
derivative ∂f(xi)/∂θj should be returned in fjac[j-1] for j= 1, 2, ..., n_parameters. Further note 
that in order to maintain consistency with the other nonlinear solver, nonlinear_regression, 
the Jacobian values must be specified as the negative of the calculated derivatives.

IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[] (Input)
Vector of length n_parameters containing the lower bounds on the parameters; choose a very 
large negative value if a component should be unbounded below or set theta_lb[i] = 
theta_ub[i] to freeze the i-th variable.

Default: All parameters are bounded below by -106.

IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[] (Input)
Vector of length n_parameters containing the upper bounds on the parameters; choose a very 
large value if a component should be unbounded above or set theta_lb[i] = theta_ub[i] to 
freeze the i-th variable.

Default: All parameters are bounded above by 106.

IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality, float a[], float b[] 
(Input)
Argument n_constraints is the total number of linear constraints (excluding simple bounds). 
Argument n_equality is the number of these constraints which are equality constraints; the 
remaining n_constraints − n_equality constraints are inequality constraints. Argument a is 
a n_constraints by n_parameters array containing the equality constraint gradients in the 
first n_equality rows, followed by the inequality constraint gradients. Argument b is a vector of 
length n_constraints containing the right-hand sides of the linear constraints.

Specifically, the constraints on θ are:

ai1 θ1 + ... + aij θj = bi for i= 1, n_equality and j = 1, n_parameter, and
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ak1 θ1 + ... + akj θj ≤ bk for k = n_equality + 1, n_constraints and j = 1, n_parameter.

Default: There are no default linear constraints.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each observation.

Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each observation.

Default: weights[] = 1

IMSLS_ACC, float acc (Input)
The nonnegative tolerance on the first order conditions at the calculated solution.

IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval (Input/Output)
On input max_sse_eval is the maximum number of sse evaluations allowed. On output, 
max_sse_eval contains the actual number of sse evaluations needed.

Default: max_sse_eval = 400

IMSLS_PRINT_LEVEL, int print_level (Input)
Argument print_level specifies the frequency of printing during execution. If 
print_level = 0, there is no printing. Otherwise, after ensuring feasibility, information is printed 
every print_level iterations and whenever an internal tolerance (called tol) is reduced. The print-
ing provides the values of theta and the sse and gradient at the value of theta. If 
print_level is negative, this information is augmented by the current values of 
indices_active, multiplier, and reskt, where reskt is the Kuhn-Tucker residual vector at 
theta.

IMSLS_STOP_INFO, int *stop_info (Output)
Argument stop_info will have one of the following integer values to indicate the reason for leav-
ing the routine:

stop_info Reason for leaving routine

1 θ is feasible, and the condition that depends on acc is satisfied.

2 θ is feasible, and rounding errors are preventing further 
progress.

3 θ is feasible, but sse fails to decrease although a decrease is pre-
dicted by the current gradient vector.

4 The calculation cannot begin because a contains fewer than 
n_constraints constraints or because the lower bound on a 
variable is greater than the upper bound.
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IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active, int **indices_active, 
float **multiplier (Output)
Argument n_active returns the final number of active constraints. Argument indices_active 
is the address of a pointer to an internally allocated integer array of length n_active containing 
the indices of the final active constraints. Argument multiplier is the address of a pointer to an 
internally allocated real array of length n_active containing the Lagrange multiplier estimates of 
the final active constraints.

IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active, int indices_active[], 
float multiplier[] (Output)
Storage for arrays indices_active and multiplier are provided by the user. The maximum 
length needed for these arrays is n_constraints. See 
IMSLS_ACTIVE_CONSTRAINTS_INFO.

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the 
predicted values at the approximate solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the 
residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

5 The equality constraints are inconsistent. These constraints 

include any components of  that are frozen by setting 
theta_lb[i] equal to theta_ub[i].

6 The equality constraints and the bound on the variables are 
found to be inconsistent.

7 There is no possible θ that satisfies all of the constraints.

8 Maximum number of sse evaluations (max_sse_eval) is 
exceeded.

9 θ is determined by the equality constraints.

stop_info Reason for leaving routine

θ
^
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IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated regression coefficients.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[],int n_parameters, 
float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear regression problem, which 
also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed 
to the user-supplied function. See the Passing Data to User-Supplied Functions at the beginning of 
this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[]), void *data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which also accepts a pointer to data 
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function. 
See the Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description
Function imsls_f_nonlinear_optimization is based on M.J.D. Powell’s TOLMIN, which solves linearly 
constrained optimization problems, i.e., problems of the form min f(θ), θ ∈ ℜ, subject to

A

1

θ = b

1

A

2

θ ≤ b

2

θI ≤ θ ≤ θu

given the vectors b1, b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality con-

straints are consistent, the method will revise θ0, the initial guess provided by the user, to satisfy

A

1

θ = b

1
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Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of 
quadratic programming subproblems to minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequality constraints that have small resid-

uals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set of indices of active 

constraints. The following quadratic programming problem

subject to

ajd = 0  j ∈ Ik

ajd ≤ 0  j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 or A2 or a bound constraint 

on θ. In the latter case, the aj = ei for the bound constraint θi ≤ (θu)i and aj = −ei for the constraint θi ≤ (θl)i. 

Here, ei is a vector with a 1 as the i-th component, and zeroes elsewhere. λk are the Lagrange multipliers, and Bk 

is a positive definite approximation to the second derivative ∇2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a better point. The new point 

θk+1 = θk + αkdk has to satisfy the conditions

f (θk + αkdk) ≤ f (θk) + 0.1αk (dk)T∇ f (θk)

and

(dk)T∇ f (θk + αkdk) ≥ 0.7 (dk)T∇ f (θk)

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-length αk, then its 

index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if the condition

(dk)T∇ f (θk + αkdk) − ∇ f (θk) > 0

holds. Let θk ← θk+1, and start another iteration.

The iteration repeats until the stopping criterion

∥∇ f (θk) − Akλk∥
2

≤ τ
is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 1989).

min f θk + dT∇ f θk + 12d
TBkd
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Since a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccu-
rate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high 
precision arithmetic is recommended. Also, whenever the exact gradient can be easily provided, the gradient 
should be passed to imsls_f_nonlinear_optimization using the optional argument 
IMSLS_JACOBIAN.

Examples

Example 1

In this example, a data set is fitted to the nonlinear model function

#include <imsls.h>
#include <math.h>
float fcn(int n_independent, float x[], int n_parameters, float theta[]);
int main()
{
   int    n_parameters  = 1;
   int    n_observations = 11;
   int    n_independent = 1;
   float  *theta_hat;
   float  x[11] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
       0.7, 0.8, 0.9, 1.0};
   float  y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94,
       1.00, 0.73, 0.44, 0.36, 0.02};
   imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
   theta_hat = imsls_f_nonlinear_optimization(fcn, n_parameters,
       n_observations, n_independent, x, y,
       0);
   imsls_f_write_matrix("Theta Hat", 1, n_parameters, theta_hat, 0);
   imsls_free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
   return sin(theta[0]*x[0]);
}

Output

Theta Hat

yi = sin θ0xi + ɛi
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    3.161

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. Smith and S. D. Dubey (1964), 
"Some reliability problems in the chemical industry", Industrial Quality Control, 21 (2), 1964, pp. 64−70] A certain 
product must have 50% available chlorine at the time of manufacture. When it reaches the customer 8 weeks 
later, the level of available chlorine has dropped to 49%. It was known that the level should stabilize at about 
30%. To predict how long the chemical would last at the customer site, samples were analyzed at different times. 
It was postulated that the following nonlinear model should fit the data.

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is 0.30. Using the last data point (x = 
42, y = 0.39) and θ0 = 0.30 and the above nonlinear equation, an estimate for θ1of 0.02 is obtained.

The constraints that θ0 ≥ = 0 and θ1 ≥ = 0 are also imposed. These are equivalent to requiring that the level of 

available chlorine always be positive and never increase with time.

The Jacobian of the nonlinear model equation is also used.

#include <imsls.h>
#include <math.h>
float fcn(int n_independent, float x[], int n_parameters, float theta[]);
void jacobian(int n_independent, float x[], int n_parameters, 
   float theta[], float fjac[]);
int main()
{
   int    n_parameters  = 2;
   int    n_observations = 44;
   int    n_independent = 1;
   float  *theta_hat;
   float  x[44] = {
       8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0,
       12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0,
       20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0,
       26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0,
       36.0, 38.0, 38.0, 40.0, 42.0
   };
   float  y[44] = {
       .49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45,
       .43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41,
       .4, .42, .4, .4, .41, .4, .41, .41, .4, .4, .4, .38, .41,
       .4, .4, .41, .38, .4, .4, .39, .39
   };

yi = θ0 + 0.49 − θ0 e
−θ1 xi−8

+ ɛi
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   float  guess[2] = {0.30, 0.02};
   float  xlb[2] = {0.0, 0.0};
   float  sse;
   imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
   theta_hat =
       imsls_f_nonlinear_optimization(fcn, n_parameters, n_observations,
       n_independent, x, y,
       IMSLS_THETA_GUESS, guess, 
       IMSLS_SIMPLE_LOWER_BOUNDS, xlb,
       IMSLS_JACOBIAN, jacobian,
       IMSLS_SSE, &sse,
       0);
   imsls_f_write_matrix("Theta Hat", 1, 2, theta_hat, 0);
   imsls_free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
   return theta[0] + (0.49-theta[0])*exp(-theta[1]*(x[0]-8.0));
}

void jacobian(int n_independent, float x[], int n_parameters,
   float theta[], float fjac[])
{
   fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0));
   fjac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0));
}

Output

      Theta Hat
        1          2
   0.3901     0.1016

Fatal Errors
IMSLS_BAD_CONSTRAINTS_1 The equality constraints are inconsistent.

IMSLS_BAD_CONSTRAINTS_2 The equality constraints and the bounds on the vari-
ables are found to be inconsistent.

IMSLS_BAD_CONSTRAINTS_3 No vector “theta” satisfies all of the constraints. Spe-
cifically, the current active constraints prevent any 
change in “theta” that reduces the sum of constraint 
violations.
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IMSLS_BAD_CONSTRAINTS_4 The variables are determined by the equality 
constraints.

IMSLS_TOO_MANY_ITERATIONS_1 Number of function evaluations exceeded “maxfcn” 
= #.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm. 
User flag = "#".
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Lnorm_regression
Fits a multiple linear regression model using either the Least Absolute Value (L1), Least Lp norm (Lp ), or Least 

Maximum Value (Minimax or L∞ ) method of multiple linear regression.

Synopsis
#include <imsls.h>
float *imsls_f_Lnorm_regression (int n_rows, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_Lnorm_regression.

Required Arguments
int n_rows (Input)

Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows × n_independent containing the independent (explanatory) variables(s). 
The i-th column of x contains the i-th independent variable.

float y[] (Input)
Array of size n_rows containing the dependent (response) variable.

Return Value
imsls_f_Lnorm_regression returns a pointer to an array of length n_independent + 1 containing a 
least absolute value solution for the regression coefficients. The estimated intercept is the initial component of 
the array, where the i-th component contains the regression coefficients for the i-th dependent variable. If the 
optional argument IMSLS_NO_INTERCEPT is used then the (i-1)-stcomponent contains the regression coeffi-
cients for the i-th dependent variable. imsls_f_Lnorm_regression returns the Lpnorm or least maximum 

value solution for the regression coefficients when appropriately specified in the optional argument list.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_Lnorm_regression (int n_rows, int n_independent, float x[], float y[],

IMSLS_METHOD_LAV, or
IMSLS_METHOD_LLP, float p, or
IMSLS_METHOD_LMV,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_TOLERANCE, float tolerence,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_MAX_INTERATIONS
IMSLS_RANK, int *rank,
IMSLS_ITERATIONS, int *iterations,
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
IMSLS_SEA, float *sum_lav_error,
IMSLS_MAX_RESIDUAL, float *max_residual,
IMSLS_R, float **R_matrix,
IMSLS_R_USER, floatR_matrix[],
IMSLS_DEGREES_OF_FREEDOM, float df_error,
IMSLS_SCALE, float *square_of_scale,
IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual,
IMSLS_EPS, float epsilon,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_METHOD_LAV (Input)

or

IMSLS_METHOD_LLP, float p (Input)

or
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IMSLS_METHOD_LMV, (Input)
By default (or if IMSLS_METHOD_LAV is specified) the function fits a multiple linear regression 
model using the least absolute values criterion.

IMSLS_METHOD_LLP requires the argument p, for  , and fits a multiple linear regression 
model using the Lpnorm criterion.

IMSLS_METHOD_LMV fits a multiple linear regression model using the minimax criterion.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Leading dimension of x exactly as specified in the dimension statement in the calling program.

IMSLS_INTERCEPT (Input)

or

IMSLS_NO_INTERCEPT, (Input)
IMSLS_INTERCEPT is the default where the fitted value for observation i is

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the intercept term

is omitted from the model and the return value from regression is a pointer to an array of length 
n_independent.

IMSLS_TOLERANCE, float tolerence (Input) 
Tolerance used in determining linear dependence. 
Tolerance = 100 × imsls_f_machine(4) is the default.

For more details see Chapter 15,Utilities function imsls_f_machine.

IMSLS_WEIGHTS, floatweights[] (Input) 
Array of size n_rows containing the weights for the independent (explanatory) variable.

IMSLS_FREQUENCIES, float frequencies[] (Input) 
Array of size n_rows containing the frequencies for the independent (explanatory) variable.

IMSLS_MAX_ITERATIONS, int *iterations (Input)
Maximum number of iterations allowed when using the multiple linear regression method. 
IMSLS_MAX_ITERATIONS is only applicable if IMSLS_METHOD_LLP is specified.

Default = 100

p ≥ 1

β^ 0 + β
^
1x1 + ... + β

^
kxk

β^ 0
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IMSLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *rank.

IMSLS_ITERATIONS, int *iterations (Output)
Number of iterations performed.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data containing NaN (not a number) for the dependent or independent variables. 
If a row of data contains NaN for any of these variables, that row is excluded from the computations.

IMSLS_SEA, float sum_lav_error (Output)
Sum of the absolute value of the errors. IMSLS_SEA is only applicable if IMSLS_METHOD_LAV is 
also specified.

IMSLS_MAX_RESIDUAL, float max_residual (Output)
Magnitude of the largest residual. IMSLS_MAX_RESIDUAL is only applicable if 
IMSLS_METHOD_LMV is specified.

IMSLS_R, float **R_matrix (Output)
Upper triangular matrix of dimension (number of coefficients by number of coefficients) containing 
the R matrix from a QR decomposition of the matrix of regressors. IMSLS_R is only applicable if 
IMSLS_METHOD_LLP is specified.

IMSLS_R_USER, float R_matrix[] (Output)
Storage for array R_matrix is provided by the user. See IMSLS_R.

IMSLS_DEGREES_OF_FREEDOM, float df_error (Output)
Sum of the frequencies minus *rank. In least squares fit (p=2) df_error is called the degrees of 
freedom of error. IMSLS_DEGREES_OF_FREEDOM is only applicable if IMSLS_METHOD_LLP is 
specified.

IMSLS_RESIDUALS, float **residual (Output)
Address of a pointer to an array of length n_rows (equal to the number of observations) containing 
the residuals. IMSLS_RESIDUALS is only applicable if IMSLS_METHOD_LLP is specified.

IMSLS_RESIDUALS_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUALS.

IMSLS_SCALE, float *square_of_scale (Output)
Square of the scale constant used in an Lp analysis. An estimated asymptotic variance-covariance 
matrix of the regression coefficients is square_of_scale × (RTR)-1. IMSLS_SCALE is only appli-
cable if IMSLS_METHOD_LLP is specified.
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IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual (Output)
Lpnorm of the residuals. IMSLS_RESIDUALS_LP_NORM is only applicable if 
IMSLS_METHOD_LLP is specified.

IMSLS_EPS, float epsilon (Input)
Convergence criterion. If the maximum relative difference in residuals from the k-th to (k+1)-st iter-
ations is less than epsilon, convergence is declared.

Default: Epsilon = 100 × machine(4). IMSLS_EPS is only applicable if IMSLS_METHOD_LLP 
is specified.

IMSLS_RETURN_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user. See Return Value.

Description

Least Absolute Value Criterion

Function imsls_f_Lnorm_regression computes estimates of the regression coefficients in a multiple lin-
ear regression model. For optional argument IMSLS_LAV (default), the criterion satisfied is the minimization of 
the sum of the absolute values of the deviations of the observed response yi from the fitted response

for a set on n observations. Under this criterion, known as the L1 or LAV (least absolute value) criterion, the 

regression coefficient estimates minimize

The estimation problem can be posed as a linear programming problem. The special nature of the problem, how-
ever, allows for considerable gains in efficiency by the modification of the usual simplex algorithm for linear 
programming. These modifications are described in detail by Barrodale and Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares solution prior to the invocation of 
IMSLS_LAV. This is particularly useful when a least-squares solution has already been computed. The proce-
dure is as follows:

1. Fit the model using least squares and compute the residuals from this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model using IMSLS_LAV.

3. Add the two estimated regression coefficient vectors from Steps 1 and 2. The result is an L1 solution.

ŷi

∑
i=0

n−1

| yi − ŷi |
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When multiple solutions exist for a given problem, option IMSLS_LAV may yield different estimates of the 
regression coefficients on different computers, however, the sum of the absolute values of the residuals should 
be the same (within rounding differences). The informational error indicating nonunique solutions may result 
from rounding accumulation. Conversely, because of rounding the error may fail to result even when the problem 
does have multiple solutions.

Lp Norm Criterion

Optional argument IMSLS_LLP computes estimates of the regression coefficients in a multiple linear regres-
sion model y = Xβ + ɛ under the criterion of minimizing the Lp norm of the deviations for i = 0, ..., n-1 of the 

observed response yi from the fitted response

for a set on n observations and for p ≥ 1. For the case when IMSLS_WEIGHTS and IMSLS_FREQUENCIES 
are not supplied, the estimated regression coefficient vector,

(output in coefficients[]) minimizes the Lp norm

The choice p = 1 yields the maximum likelihood estimate for β when the errors have a Laplace distribution. The 
choice p = 2 is best for errors that are normally distributed. Sposito (1989, pages 36−40) discusses other reason-
able alternatives for p based on the sample kurtosis of the errors.

Weights are useful if the errors in the model have known unequal variances

In this case, the weights should be taken as

Frequencies are useful if there are repetitions of some observations in the data set. If a single row of data corre-
sponds to ni observations, set the frequency fi = ni. In general, IMSLS_LLP minimizes the Lp norm

ŷi

β^

∑
i=0

n−1
∣yi − ŷi∣

P
1/p

σi
2

wi = 1 / σi
2
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The asymptotic variance-covariance matrix of the estimated regression coefficients is given by

where R is from the QR decomposition of the matrix of regressors (output in R-Matrix). An estimate of λ2 is 
output in square_of_scale.

In the discussion that follows, we will first present the algorithm with frequencies and weights all taken to be one. 
Later, we will present the modifications to handle frequencies and weights different from one.

Option call IMSLS_LLP uses Newton’s method with a line search for p > 1.25 and, for p ≤ 1.25, uses a modifica-
tion due to Ekblom (1973, 1987) in which a series of perturbed problems are solved in order to guarantee 
convergence and increase the convergence rate. The cutoff value of 1.25 as well as some of the other implemen-
tation details given in the remaining discussion were investigated by Sallas (1990) for their effect on CPU times.

In each case, for the first iteration a least-squares solution for the regression coefficients is computed using rou-
tine imsls_f_regression. If p = 2, the computations are finished. Otherwise, the residuals from the k-th 
iteration,

are used to compute the gradient and Hessian for the Newton step for the (k + 1)-st iteration for minimizing the 
p-th power of the Lp norm. (The exponent 1/p in the Lp norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the gradient and Hessian at the (k + 1)-
st iteration depend upon

and

In the case 1.25 < p < 2 and

∑
i=0

n−1

f i | wi yi − ŷi |
p
1/p

asy.var β^ = λ2 RTR
−1

ei
k
= yi − ŷi

k

zi
k+1

= ∣ei
k ∣

p−1
sign ei

k

vi
k+1

= ∣ei
k ∣

p−2
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and the Hessian are undefined; and we follow the recommendation of Merle and Spath (1974). Specifically, we 
modify the definition of

to the following:

where  equals 100 × imsls_f_machine(4) (or 100.0 × imsls_d_machine(4) for the double precision 
version) times the square root of the residual mean square from the least-squares fit. (See routines 
imsls_f_machine and imsls_d_machine which are documented in the section “Machine-Dependent 
Constants” in Reference Material.)

Let  be a diagonal matrix with diagonal entries

and let  be a vector with elements

In order to compute the step on the (k + 1)-st iteration, the R from the QR decomposition of

is computed using fast Givens transformations. Let

denote the upper triangular matrix from the QR decomposition. The linear system

is solved for

ei
k
= 0, vi

k+1

vi
k+1

vi
k+1

=
τ p−2 if p < 2 and | ei k | < τ
| ei k |

p−2
otherwise

τ

ν
k+1

vi
k+1

z
k+1

zi
k+1

V
k+1 1/2

X

R
k+1

R
k+1 T

R
k+1
d
k+1

= XTz
k+1
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where   is from the QR decomposition of  . The step taken on the (k + 1)-st iteration is

The first attempted step on the (k + 1)-st iteration is with  . If all of the

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, pages 528−529) for further 
discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the predicted decrease in the p-th 
power of the Lp norm of the residuals, a backtracking linesearch procedure is used. The backtracking procedure 

uses a one-dimensional quadratic model to estimate the backtrack constant p. The value of p is constrained to be 
no less that 0.1.

An approximate upper bound for p is 0.5. If after 10 successive backtrack attempts, α(k) = p1p2...p10 does not pro-

duce a step with a sufficient decrease, then imsls_f_Lnorm_regression issues a message with error code 
5. For further details on the backtrack line-search procedure, see Dennis and Schnabel (1983, pages 126−127).

Convergence is declared when the maximum relative change in the residuals from one iteration to the next is less 
than or equal to epsilon. The relative change

in the i-th residual from iteration k to iteration k + 1 is computed as follows:

where s is the square root of the residual mean square from the least-squares fit on the first iteration.

d
k+1

R
k+1 V

k+1
1/2

X

β^
(k+1)

= β^
(k)
+ α(k+1) 1

p − 1d
(k+1)

α
k+1

ei
k

δi
k+1

δi
k+1

=
0 if ei

k+1
= ei

k
= 0

∣ei
k+1

− ei
k ∣ / max ∣ei

k ∣,∣ei
k+1 ∣,s otherwise
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For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous procedure that incorporate Ekblom’s 
(1973) results. A sequence of perturbed problems are solved with a successively smaller perturbation constant c. 
On the first iteration, the least-squares problem is solved. This corresponds to an infinite c. For the second prob-
lem, c is taken equal to s, the square root of the residual mean square from the least-squares fit. Then, for the 
(j + 1)-st problem, the value of c is computed from the previous value of c according to

Each problem is stated as

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend upon

and

where

The linear system [R(k+1)]TR(k+1)d(k+1)= XTz(k+1) is solved for d(k+1) where R(k+1) is from the QR decomposition of 

[V (k+1)]1?2X. The step taken on the (k + 1)-st iteration is

where the first attempted step is with α(k+1) = 1. If necessary, the backtracking line-search procedure discussed 
earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence epsilon equal to 

max(epsilon, 10−j) where j = 1, 2, 3, ... indexes the problems (j = 0 corresponds to the least-squares problem).

After the convergence of a problem for a particular c, Ekblom’s (1987) extrapolation technique is used to com-

pute the initial estimate of β for the new problem. Let R(k),

c j+1 = c j / 10
5p−4

Minimize∑
i=0

n−1

ei
2 + c2

p/2

zi
k+1

= ei
k
ri
k

vi
k+1

= 1 +
p − 2 ei

k 2

ei
k 2

+ c2
ri
k

ri
k
= ei

k 2

+ c2
p−2 /2

β^
k+1

= β^
k
+ α
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d
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and c be from the last iteration of the last problem. Let

and let t be the vector with elements ti. The initial estimate of β for the new problem with perturbation constant 

0.01c is

where Δc = (0.01c − c) = −0.99c, and where d is the solution of the linear system

Convergence of the sequence of problems is declared when the maximum relative difference in residuals from 
the solution of successive problems is less than epsilon.

The preceding discussion was limited to the case for which weights[i] = 1 and frequencies[i] = 1, i.e., 
the weights and frequencies are all taken equal to one. The necessary modifications to the preceding algorithm to 
handle weights and frequencies not all equal to one are as follows:

1. Replace

in the definitions of

and ti.

2. Replace

These replacements have the same effect as multiplying the i-th row of X and y by

vi
k
, ei

k

ti =
p − 2 vi

k

ei
k 2

+ c2

β^
0
= β^

k
+ Δcd

R
k T

R
k
d = XTt

ei
k
by wi ei

k

zi
k+1
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, δi
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by f i wi
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by f iwivi
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and repeating the row fi times except for the fact that the residuals returned by 

imsls_f_Lnorm_regression are in terms of the original y and X.

Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because on output it corresponds to the 

R from the initial QR decomposition for least squares. The formula for the estimate of λ2 depends on p.

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)

with

where z0.975 is the 97.5 percentile of the standard normal distribution, and where

are the ordered residuals where rank zero residuals are excluded. Note that

For p = 2, the estimator of λ2 is the customary least-squares estimator given by

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 1989)

wi

λ^
2
=

DFE e~
DFE−k+1 − e

~
k

2z0.975

2

k = DFE + k2 − z0.975
DFE
4

ɛ~ m m = 1,2, … DFE

DFE =∑
i=0

n−1 f i − rank

s2 = SSEDFE =
∑i=0
n−1 f iwi(yi − ŷi)

2

∑i=0
n−1 f i − rank
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with

Least Minimum Value Criterion (minimax)

Optional call IMSLS_LMV computes estimates of the regression coefficients in a multiple linear regression 
model. The criterion satisfied is the minimization of the maximum deviation of the observed response yi from the 

fitted response  for a set on n observations. Under this criterion, known as the minimax or LMV (least maximum 
value) criterion, the regression coefficient estimates minimize

The estimation problem can be posed as a linear programming problem. A dual simplex algorithm is appropriate, 
however, the special nature of the problem allows for considerable gains in efficiency by modification of the dual 
simplex iterations so as to move more rapidly toward the optimal solution. The modifications are described in 
detail by Barrodale and Phillips (1975).

When multiple solutions exist for a given problem, IMSLS_LMV may yield different estimates of the regression 
coefficients on different computers, however, the largest residual in absolute value should have the same abso-
lute value (within rounding differences). The informational error indicating nonunique solutions may result from 
rounding accumulation. Conversely, because of rounding, the error may fail to result even when the problem 
does have multiple solutions.

Examples

Example 1

A straight line fit to a data set is computed under the LAV criterion.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};

ω̂p
2 =

m2p−2
p − 1 mp−2

2

mr =
∑
i=0

n−1
f i| wi(yi − ŷi)|

∑
i=0

n−1
f i

r

y^ i

max
0 ≤ i ≤ n−1

∣yi − ŷi∣
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   float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
   float sea;
   int irank, iter, nrmiss;
   float *coefficients = NULL;
   
   coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
                                     IMSLS_SEA, &sea,
                                     IMSLS_RANK, &irank,
                                     IMSLS_ITERATIONS, &iter,
                                     IMSLS_N_ROWS_MISSING, &nrmiss,0); 
   printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
   printf("Rank of Regressors Matrix  = %3d\n", irank);
   printf("Sum Absolute Value of Error = %8.4f\n", sea);
   printf("Number of Iterations       = %3d\n", iter);
   printf("Number of Rows Missing     = %3d\n", nrmiss);
}

Output

B =   0.50     0.50
Rank of Regressors Matrix    =    2
Sum Absolute Value of Error  =    6.00000
Number of Iterations    =    2
Number of Rows Missing    =    0

Figure 2, Least Squares and Least Absolute Value Fitted Lines
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Example 2

Different straight line fits to a data set are computed under the criterion of minimizing the Lp norm by using p 

equal to 1, 1.5, 2.0 and 2.5.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
 float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
 float p, tolerance, convergence_eps, square_of_scale, df_error;
 float Lp_norm_residual;
 float R_matrix[4], residuals[8];
 float *coefficients = NULL;
 int  i, irank, iter, nrmiss;
 int  n_row=2;
 int  n_col=2;
 char *dashes=

 "---------------------------------------------------------";
 tolerance = 100*imsls_f_machine(4);
 convergence_eps = 0.001;
 p = 1.0;
 for(i=0; i<4; i++)
 {  

 coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
 IMSLS_METHOD_LLP, p,
 IMSLS_EPS, convergence_eps,
 IMSLS_RANK, &irank,
 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 IMSLS_R_USER, R_matrix,
 IMSLS_DEGREES_OF_FREEDOM, &df_error,
 IMSLS_RESIDUALS_USER, residuals,
 IMSLS_SCALE, &square_of_scale,
 IMSLS_RESIDUALS_LP_NORM, &Lp_norm_residual,  
 0); 

 printf("Coefficients = %6.2f\t%6.2f\n\n", coefficients[0], 
 coefficients[1]);

 printf("Residuals = %6.2f\t%6.2f\t%6.2f\t%6.2f\n",
 residuals[0], residuals[1], residuals[2], residuals[3]);

 printf("\t%6.2f\t%6.2f\t%6.2f\t%6.2f\n\n", 
 residuals[4], residuals[5], residuals[6], residuals[7]);

 printf("P  = %5.3f\n", p);
 printf("Lp norm of the residuals  = %5.3f\n", Lp_norm_residual);
 printf("Rank of Regressors Matrix  = %3d\n", irank);
 printf("Degrees of Freedom Error  = %5.3f\n", df_error);
 printf("Number of Iterations  = %3d\n", iter);
 printf("Number of Missing Values  = %3d\n", nrmiss);
 printf("Square of Scale Constant  = %5.3f\n", square_of_scale);
 imsls_f_write_matrix("R Matrix\n", n_row, n_col, R_matrix, 0);
 printf("%s\n\n", dashes);
 p += 0.5;

 }
}
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Output

Coefficients =  0.50  0.50
Residuals =  -0.00  2.50  -1.50  0.50

 -0.50  0.50  -0.50  -0.00
P  = 1.000
Lp norm of the residuals  = 6.002
Rank of Regressors Matrix  =  2
Degrees of Freedom Error  = 6.000
Number of Iterations  =  8
Number of Missing Values  =  0
Square of Scale Constant  = 6.248

 R Matrix
 1  2

1  2.828  8.485
2  0.000  3.464
---------------------------------------------------------
Coefficients =  0.39  0.56
Residuals =  0.06  2.39  -1.50  0.50

 -0.55  0.45  -0.61  -0.16
P  = 1.500
Lp norm of the residuals  = 3.712
Rank of Regressors Matrix  =  2
Degrees of Freedom Error  = 6.000
Number of Iterations  =  6
Number of Missing Values  =  0
Square of Scale Constant  = 1.059

 R Matrix
 1  2

1  2.828  8.485
2  0.000  3.464
---------------------------------------------------------
Coefficients =  -0.13  0.75
Residuals =  0.38  2.13  -1.38  0.63

 -0.63  0.38  -0.88  -0.63
P  = 2.000
Lp norm of the residuals  = 2.937
Rank of Regressors Matrix  =  2
Degrees of Freedom Error  = 6.000
Number of Iterations  =  1
Number of Missing Values  =  0
Square of Scale Constant  = 1.438

 R Matrix
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 1  2
1  2.828  8.485
2  0.000  3.464
---------------------------------------------------------
Coefficients =  -0.44  0.87
Residuals =  0.57  1.96  -1.30  0.70

 -0.67  0.33  -1.04  -0.91
P  = 2.500
Lp norm of the residuals  = 2.540
Rank of Regressors Matrix  =  2
Degrees of Freedom Error  = 6.000
Number of Iterations  =  4
Number of Missing Values  =  0
Square of Scale Constant  = 0.789

 R Matrix
 1  2

1  2.828  8.485
2  0.000  3.464

Figure 3, Various LP Fitted Lines
245



 Regression         Lnorm_regression
Example 3

A straight line fit to a data set is computed under the LMV criterion.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float xx[] = {0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0};
   float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0};
   float max_residual;
   int irank, iter, nrmiss;
   float *coefficients = NULL;
   
   coefficients = imsls_f_Lnorm_regression(7, 1, xx, yy,
             IMSLS_METHOD_LMV,
             IMSLS_MAX_RESIDUAL, &max_residual, 
                                     IMSLS_RANK, &irank,
                                     IMSLS_ITERATIONS, &iter,
                                     IMSLS_N_ROWS_MISSING, &nrmiss,
                                     0); 
   printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
   printf("Rank of Regressors Matrix    = %3d\n", irank);
   printf("Magnitude of Largest Residual = %8.4f\n", max_residual);
   printf("Number of Iterations         = %3d\n", iter);
   printf("Number of Rows Missing       = %3d\n", nrmiss);
}

Output

     B =   1.00     1.00
     Rank of Regressors Matrix     =  2
     Magnitude of Largest Residual   = 1.00000
     Number of Iterations      =  3
     Number of Rows Missing    =  0
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Figure 4, Least Squares and Least Maximum Value
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pls_regression
Performs partial least squares (PLS) regression for one or more response variables and one or more predictor 
variables.

Synopsis
#include <imsls.h>
float *imsls_f_pls_regression (int ny, int h, float y[], int nx, int p, float x[], ..., 0)

The type double function is imsls_d_pls_regression.

Required Arguments
int ny (Input)

The number of rows of y.

int h (Input)
The number of response variables.

float y[] (Input)
Array of length ny × h containing the values of the responses.

int nx (Input)
The number of rows of x.

int p (Input)
The number of predictor variables.

float x[] (Input)
Array of length nx × p containing the values of the predictor variables.

Return Value
A pointer to the array of length ix × iy containing the final PLS regression coefficient estimates for the mean-
centered variables, where ix ≤ p is the number of predictor variables in the model, and iy ≤ h is the number of 
response variables. To release this space, use imsls_free. If the estimates cannot be computed, NULL is 
returned.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_pls_regression (int ny, int h, float y[], int nx, int p, float x[],

IMSLS_N_OBSERVATIONS, int nobs,
IMSLS_Y_INDICES, int iy, int iyind[],
IMSLS_X_INDICES, int ix, int ixind[],
IMSLS_N_COMPONENTS, int ncomps,
IMSLS_CROSS_VALIDATATION, int cv,
IMSLS_N_FOLD, int k,
IMSLS_SCALE, int scale,
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_OPT_N_COMPONENTS, int *optcomps,
IMSLS_PREDICTED, float **yhat,
IMSLS_PREDICTED_USER, float yhat[],
IMSLS_RESIDUALS, float **resids,
IMSLS_RESIDUALS_USER, float resids[],
IMSLS_STD_ERRORS, float **se,
IMSLS_STD_ERRORS_USER, float se[],
IMSLS_PRESS, float **press,
IMSLS_PRESS_USER, float press[],
IMSLS_X_SCORES, float **xscrs,
IMSLS_X_SCORES_USER, float xscrs[],
IMSLS_Y_SCORES, float **yscrs,
IMSLS_Y_SCORES_USER, float yscrs[],
IMSLS_X_LOADINGS, float **xldgs,
IMSLS_X_LOADINGS_USER, float xldgs[],
IMSLS_Y_LOADINGS, float **yldgs,
IMSLS_Y_LOADINGS_USER, float yldgs[],
IMSLS_WEIGHTS, float **wts,
IMSLS_WEIGHTS_USER, float wts[],
IMSLS_STANDARD_COEF, float **standard_coef,
IMSLS_STANDARD_COEF_USER, float standard_coef[],
IMSLS_INTERCEPT_TERMS, float **intercepts,
IMSLS_INTERCEPT_TERMS_USER, float intercepts[],
IMSLS_PCT_VAR, float **pctvar,
IMSLS_PCT_VAR_USER, float pctvar[],
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IMSLS_RETURN_USER, float coef[],
0)

Optional Arguments
IMSLS_N_OBSERVATIONS, int nobs (Input)

Positive integer specifying the number of observations to be used in the analysis.

Default: nobs = min(ny, nx).

IMSLS_Y_INDICES, int iy, int iyind[] (Input)
Argument iyind is an array of length iy containing column indices of y specifying which response 
variables to use in the analysis. Each element in iyind must be less than or equal to h-1.

Default: iy = h, iyind = 0, 1, …, h-1.

IMSLS_X_INDICES, int ix, int ixind[] (Input)
Argument ixind is an array of length ix containing column indices of x specifying which predictor 
variables to use in the analysis. Each element in ixind must be less than or equal to p-1.

Default: ix = p, ixind = 0, 1, …, p-1.

IMSLS_N_COMPONENTS, int ncomps (Input)
The number of PLS components to fit. ncomps ≤ ix.

Default: ncomps = ix.

IMSLS_CROSS_VALIDATION, int cv (Input)
If cv = 0, the function fits only the model specified by ncomps. If cv = 1, the function performs K-fold 
cross validation to select the number of components.

Default: cv = 1.

IMSLS_N_FOLD, int k (Input)
The number of folds to use in K-fold cross validation. k must be between 2 and nobs, inclusive. k is 
ignored if cv = 0 is used.

Default: k = 5.

IMSLS_SCALE, int scale (Input)
If scale = 1, y and x are centered and scaled to have mean 0 and standard deviation of 1. If 
scale = 0, y and x are centered to have mean 0 but are not scaled.

Default: scale = 0.

If cv = 1 is used, models with 1 up to ncomps components are tested using cross-validation. The 
model with the lowest predicted residual sum of squares is reported.
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IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0.

IMSLS_OPT_N_COMPONENTS, int *optcomps (Output)
The number of components of the optimal model. The value is identical with ncomps, if  cv = 0 is 
used.

IMSLS_PREDICTED, float **yhat (Output)
Argument yhat is the address of an array of length nobs × iy, containing the predicted values for 
the response variables using the final values of the coefficients.

IMSLS_PREDICTED_USER, float yhat[] (Output)
Storage for array yhat is provided by the user. See IMSLS_PREDICTED.

IMSLS_RESIDUALS, float **resids (Output)
Argument resids is the address of an array of length nobs × iy, containing residuals of the final 
fit for each response variable.

IMSLS_RESIDUALS_USER, float resids[] (Output)
Storage for array resids is provided by the user. See IMSLS_RESIDUALS.

IMSLS_STD_ERRORS, float **se (Output)
Argument se is the address of an array of length ix × iy, containing the standard errors of the PLS 
coefficients.

IMSLS_STD_ERRORS_USER, float se[] (Output)
Storage for array se is provided by the user. See IMSLS_STD_ERRORS.

IMSLS_PRESS, float **press (Output)
Argument press is the address of an array of length ncomps × iy, containing the predicted resid-
ual error sum of squares obtained by cross-validation for each model of size j= 1, … , ncomps 
components. The argument press is ignored if cv = 0 is used for IMSLS_CROSS_VALIDATION.

IMSLS_PRESS_USER, float press[] (Output)
Storage for array press is provided by the user. See IMSLS_PRESS.

iprint Action

0 No Printing.

1 Prints final results only.

2 Prints intermediate and final results.
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IMSLS_X_SCORES, float **xscrs (Output)
Argument xscrs is the address of an array of length nobs × ncomps containing X-scores.

IMSLS_X_SCORES_USER, float xscrs[] (Output)
Storage for array xscrs is provided by the user. See IMSLS_X_SCORES.

IMSLS_Y_SCORES, float **yscrs (Output)
Argument yscrs is the address of an array of length nobs × ncomps containing Y-scores.

IMSLS_Y_SCORES_USER, float yscrs[] (Output)
Storage for array yscrs is provided by the user. See IMSLS_Y_SCORES.

IMSLS_X_LOADINGS, float **xldgs (Output)
Argument xldgs is the address of an array of length ix × ncomps, containing X-loadings.

IMSLS_X_LOADINGS_USER, float xldgs[] (Output)
Storage for array xldgs is provided by the user. See IMSLS_X_LOADINGS.

IMSLS_Y_LOADINGS, float **yldgs (Output)
Argument yldgs is the address of an array of length iy × ncomps, containing Y-loadings.

IMSLS_Y_LOADINGS_USER, float yldgs[] (Output)
Storage for array yldgs is provided by the user. See IMSLS_Y_LOADINGS.

IMSLS_WEIGHTS, float **wts (Output)
Argument wts is the address of an array of length ix × ncomps, containing the weight vectors.

IMSLS_WEIGHTS_USER, float wts[] (Output)
Storage for array wts is provided by the user. See IMSLS_WEIGHTS.

IMSLS_STANDARD_COEF, float **standard_coef (Output)
Argument standard_coef is the address of an array of length ix × iy, containing the final PLS 
regression coefficient estimates for the centered (if scale = 0) or standardized variables (if 
scale = 1). The contents of standard_coef and coef are identical if scale = 0 is used.

IMSLS_STANDARD_COEF_USER, float standard_coef[] (Output)
Storage for array standard_coef is provided by the user. See IMSLS_STANDARD_COEF.

IMSLS_INTERCEPT_TERMS, float **intercepts (Output)
Argument intercepts is the address of an array of length iy, containing the intercept terms of 
the PLS regression.

IMSLS_INTERCEPT_TERMS_USER, float intercepts[] (Output)
Storage for array intercepts is provided by the user. See IMSLS_INTERCEPT_TERMS.
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IMSLS_PCT_VAR, float **pctvar (Output)
Argument pctvar is the address of an array of length 2 × ncomps, containing the percentage of 
variance explained by the model in its first optcomps columns. The first row contains the percent-
age of variance of x explained by each component, the second row the percentage of variance of y 
explained by each component.

IMSLS_PCT_VAR_USER, float pctvar[] (Output)
Storage for array pctvar is provided by the user. See IMSLS_PCT_VAR.

IMSLS_RETURN_USER, float coef[] (Output)
If specified, the final PLS regression coefficient estimates are stored in array coef provided by the 
user.

Description
Function imsls_f_pls_regression performs partial least squares regression for a response matrix 
Y(ny × h) and a set of p explanatory variables, X(nx × p). imsls_f_pls_regression finds linear combina-

tions of the predictor variables that have highest covariance with Y. In so doing, imsls_f_pls_regression 
produces a predictive model for Y using components (linear combinations) of the individual predictors. Other 
names for these linear combinations are scores, factors, or latent variables. Partial least squares regression is an 
alternative method to ordinary least squares for problems with many, highly collinear predictor variables. For fur-
ther discussion see, for example, Abdi (2010), and Frank and Friedman (1993).

In Partial Least Squares (PLS), a score, or component matrix, T, is selected to represent both X and Y as in,

and

The matrices P and Q are the least squares solutions of X and Y regressed on T.

That is,

and

X = TPT + Ex

Y = TQT + Ey

PT = TTT
−1
TTX
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The columns of T in the above relations are often called X-scores, while the columns of P are the X-loadings. The 

columns of the matrix U in Y = UQT + G are the corresponding Y scores, where G is a residual matrix and Q, as 
defined above, contains the Y-loadings.

Restricting T to be linear in X, the problem is to find a set of weight vectors (columns of W) such that T = XW pre-
dicts both X and Y reasonably well.

Formally, W = [w1, ..., wm-1, wm, ...wM] where each wj is a column vector of length p, M ≤ p is the number of com-

ponents, and where the m-th partial least squares (PLS) component wm solves:

where  and  is the Euclidean norm. For further details see Hastie, et. al., pages 80-82 
(2001).

That is, wm is the vector which maximizes the product of the squared correlation between Y and Xα and the vari-

ance of Xα, subject to being orthogonal to each previous weight vector left multiplied by S. The PLS regression 

coefficients  arise from

Algorithms to solve the above optimization problem include NIPALS (nonlinear iterative partial least squares) 
developed by Herman Wold (1966, 1985) and numerous variations, including the SIMPLS algorithm of de Jong 
(1993). imsls_f_pls_regression implements the SIMPLS method. SIMPLS is appealing because it finds a 
solution in terms of the original predictor variables, whereas NIPALS reduces the matrices at each step. For uni-
variate Y it has been shown that SIMPLS and NIPALS are equivalent (the score, loading, and weights matrices will 
be proportional between the two methods).

By default, imsls_f_pls_regression searches for the best number of PLS components using K-fold cross-
validation. That is, for each M = 1, 2,…, p, imsls_f_pls_regression estimates a PLS model with M compo-
nents using all of the data except a hold-out set of size roughly equal to nobs/k. Using the resulting model 
estimates, imsls_f_pls_regression predicts the outcomes in the hold-out set and calculates the pre-
dicted residual sum of squares (PRESS). The procedure then selects the next hold-out sample and repeats for a 
total of K times (i.e., folds). For further details see Hastie, et. al., pages 241-245 (2001).

QT = TTT
−1
TTY

maxα Corr
2(Y ,Xα)Var(Xα)
s.t.

∥α∥ = 1
αTSwl = 0, l = 1, ..., m − 1

S = XTX ∣∣α∣∣ = αTα

β
^

PLS

Y = X β^PLS + Ey = TQ
T + Ey = XWQ

T + Ey , or β
^
PLS = WQ

T
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For each response variable, imsls_f_pls_regression returns results for the model with lowest PRESS. 
The best model (the number of components giving lowest PRESS), generally will be different for different 
response variables.

When requested via the optional argument IMSLS_STD_ERRORS, imsls_f_pls_regression calculates 
modified jackknife estimates of the standard errors as described in Martens and Martens (2000).

Comments
1. imsls_f_pls_regression defaults to leave-one-out cross-validation when there are too few 

observations to form K folds in the data. The user is cautioned that there may be too few observa-
tions to make strong inferences from the results.

2. This implementation of imsls_f_pls_regression does not handle missing values. The user 
should remove missing values or NaN’s from the input data.

Examples

Example 1

The following artificial data set is provided in de Jong (1993).

The first call to imsls_f_pls_regression fixes the number of components to 3 for both response vari-
ables, and the second call performs K-fold cross validation. Note that because the number of folds is equal to n, 
imsls_f_pls_regression performs leave-one-out (LOO) cross-validation.

#include <imsls.h>
#include <stdio.h>
#define  H  2
#define  N  4
#define  P  3

X =

−4 2 1
−4 −2 −1
4 2 −1
4 −2 1

Y =

430 −94
−436 12
−361 −22
367 104
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int main() {
   int iprint=1, ncomps=3;
   float x[N][P] = {
       -4.0, 2.0, 1.0,
       -4.0, -2.0, -1.0,
        4.0, 2.0, -1.0,
        4.0, -2.0, 1.0
   };
   float y[N][H] = {
        430.0, -94.0,
       -436.0, 12.0,
       -361.0, -22.0,
        367.0, 104.0
   };
   float *coef=NULL, *yhat=NULL, *se=NULL;
   float *coef2=NULL, *yhat2=NULL, *se2=NULL;
   /*                            Print out informational error. */
   imsls_error_options(IMSLS_SET_PRINT, IMSLS_ALERT, 1, 0);
   printf("Example 1a: no cross-validation, request %d components.\n",
       ncomps);
   coef = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
       IMSLS_N_COMPONENTS, ncomps,
       IMSLS_CROSS_VALIDATION, 0,
       IMSLS_PRINT_LEVEL, iprint,
       IMSLS_PREDICTED, &yhat,
       IMSLS_STD_ERRORS, &se,
       0);
   printf("\nExample 1b: cross-validation\n");
   coef2 = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
       IMSLS_N_FOLD, N,
       IMSLS_PRINT_LEVEL, iprint,
       IMSLS_PREDICTED, &yhat2,
       IMSLS_STD_ERRORS, &se2,
       0);
}

Output
Example 1a: no cross-validation, request 3 components.
         PLS Coeff
             1            2
1          0.8         10.3
2         17.3        -29.0
3        398.5          5.0
        Predicted Y
             1            2
1          430          -94
2         -436           12
3         -361          -22
4          367          104
        Std. Errors
             1            2
1        131.5          5.1
2        263.0         10.3
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3        526.0         20.5
*** WARNING  Error IMSLS_PLS_REGRESSION_CONVERGED from imsls_f_pls_regression.
***          The PLS regression algorithm converged in 2 iterations, but the
***          number of requested PLS components is 3. The number of computed
***          PLS components is reduced to 2.

Example 1b: cross-validation
Cross-validated results for response 1:
Comp      PRESS
1       3860649
2       5902575
3       5902575
The best model has 1 component(s).
Cross-validated results for response 2:
Comp      PRESS
1         36121
2         8984
3         8984
The best model has 2 component(s).
         PLS Coeff
             1            2
1          6.0         -0.2
2         66.1         -2.2
3        361.4        -11.8
        Predicted Y
             1            2
1        469.5        -15.4
2       -517.6         17.0
3       -205.3          6.7
4        253.4         -8.3
        Std. Errors
             1            2
1        131.2         18.5
2        114.8         10.1
3        561.5         22.5
*** WARNING  Error IMSLS_PLS_REGRESSION_CONVERGED from imsls_f_pls_regression.
***          The PLS regression algorithm converged in 2 iterations, but the
***          number of requested PLS components is 3. The number of computed
***          PLS components is reduced to 2.

Example 2

The data, as appears in S. Wold et al. (2001), is a single response variable, the “free energy of the unfolding of a 
protein”, while the predictor variables are 7 different, highly correlated measurements taken on 19 amino acids.
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#include <imsls.h>
#include <stdio.h>
#define  H  1
#define  N  19
#define  P  7
int main() {
   int iprint=2, ncomps=7;
   float x[N][P] = {
        0.23, 0.31, -0.55, 254.2, 2.126, -0.02,  82.2,
       -0.48, -0.6,  0.51, 303.6, 2.994, -1.24, 112.3,
       -0.61, -0.77,   1.2, 287.9, 2.994, -1.08, 103.7,
        0.45, 1.54,  -1.4, 282.9, 2.933, -0.11,  99.1,
       -0.11, -0.22,  0.29, 335.0, 3.458, -1.19, 127.5,
       -0.51, -0.64,  0.76, 311.6, 3.243, -1.43, 120.5,
         0.0,  0.0,   0.0, 224.9, 1.662,  0.03,  65.0,
        0.15, 0.13, -0.25, 337.2, 3.856, -1.06, 140.6,
         1.2,  1.8,  -2.1, 322.6,  3.35,  0.04, 131.7,
        1.28,  1.7,  -2.0, 324.0, 3.518,  0.12, 131.5,
       -0.77, -0.99,  0.78, 336.6, 2.933, -2.26, 144.3,
         0.9, 1.23,  -1.6, 336.3,  3.86, -0.33, 132.3,
        1.56, 1.79,  -2.6, 366.1, 4.638, -0.05, 155.8,
        0.38, 0.49,  -1.5, 288.5, 2.876, -0.31, 106.7,
         0.0, -0.04,  0.09, 266.7, 2.279,  -0.4,  88.5,
        0.17, 0.26, -0.58, 283.9, 2.743, -0.53, 105.3,
        1.85, 2.25,  -2.7, 401.8, 5.755, -0.31, 185.9,
        0.89, 0.96,  -1.7, 377.8, 4.791, -0.84, 162.7,
        0.71, 1.22,  -1.6, 295.1, 3.054, -0.13, 115.6
   };
   float y[N][H] = {8.5, 8.2, 8.5, 11.0, 6.3, 8.8, 7.1, 10.1, 
       16.8, 15.0, 7.9, 13.3, 11.2, 8.2, 7.4, 8.8, 9.9, 8.8, 12.0};
   float *coef=NULL, *yhat=NULL, *se=NULL;
   float *coef2=NULL, *yhat2=NULL, *se2=NULL;
   printf("Example 2a: no cross-validation, request %d components.\n",
       ncomps);
   coef = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
       IMSLS_N_COMPONENTS, ncomps,
       IMSLS_CROSS_VALIDATION, 0,
       IMSLS_SCALE, 1,
       IMSLS_PRINT_LEVEL, iprint,
       IMSLS_PREDICTED, &yhat,
       IMSLS_STD_ERRORS, &se,
       0);
   printf("\nExample 2b: cross-validation\n");
   coef2 = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
       IMSLS_SCALE, 1,
       IMSLS_PRINT_LEVEL, iprint,
       IMSLS_PREDICTED, &yhat2,
       IMSLS_STD_ERRORS, &se2,
       0);  
}

Output

Example 2a: no cross-validation, request 7 components.
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Standard PLS Coefficients
                 1
            -5.468
             1.668
             0.624
             1.424
            -2.550
             4.870
             4.871
 
 PLS Coeff
          1
     -20.07
       4.63
       1.42
       0.09
      -7.27
      20.93
       0.46
 
Predicted Y
          1
       9.37
       7.30
       8.10
      12.02
       8.79
       6.76
       7.24
      10.45
      15.79
      14.36
       8.41
       9.94
      11.52
       8.64
       8.22
       8.40
      11.13
       8.97
      12.39
Variance Analysis
=============================================
Pctge of Y variance explained
Component    Cum. Pctge
1          42.3
2          45.5
3          61.2
4          68.5
5          71.6
6          78.7
7          78.8
=============================================
Pctge of X variance explained
Component    Cum. Pctge
1          64.2
2          97.7
3          99.0
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4          99.5
5          99.8
6          99.9
7         100.0
Std. Errors
          1
      13.13
       6.72
       1.84
       0.20
       4.68
      14.30
       0.33
Example 2b: cross-validation
Cross-validated results for response 1:
Comp      PRESS 
1        167.5
2        162.9
3        166.5
4        168.8
5        264.6
6        221.1
7        184.7
The best model has 2 component(s).
 
Standard PLS Coefficients
                 1
            0.1598
            0.2163
           -0.1673
            0.0095
           -0.0136
            0.1649
            0.0294
 
 PLS Coeff
          1
     0.5867
     0.6000
    -0.3797
     0.0006
    -0.0388
     0.7089
     0.0028
 
Predicted Y
          1
       9.86
       7.71
       7.35
      11.02
       8.32
       7.46
       9.32
       9.00
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      12.09
      12.09
       6.59
      11.11
      12.46
      10.27
       9.02
       9.51
      12.82
      10.69
      11.09
Variance Analysis
=============================================
Pctge of Y variance explained
Component    Cum. Pctge
1          42.3
2          45.5
=============================================
Pctge of X variance explained
Component    Cum. Pctge
1          64.2
2          97.7
Std. Errors
          1
     0.2615
     0.2029
     0.1302
     0.0041
     0.2078
     0.4279
     0.0064

Warning Errors
IMSLS_PLS_REGRESSION_CONVERGED The PLS regression algorithm converged in # itera-

tions, but the number of requested PLS components 
is #. The number of computed PLS components is 
reduced to #.
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Correlation and Covariance

Functions
Variances, Covariances, and Correlations

Variance-covariance or correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . covariances     264
Partial correlations and covariances . . . . . . . . . . . . . . . . . . . . . . . . . partial_covariances     273
Pooled covariance matrix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pooled_covariances     279
Robust estimate of covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . robust_covariances     286
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Usage Notes
This chapter is concerned with measures of correlation for bivariate data as follows:

 The usual multivariate measures of correlation and covariance for continuous random variables 
are produced by function imsls_f_covariances. 

 For data grouped by some auxiliary variable, function imsls_f_pooled_covariances can be 
used to compute the pooled covariance matrix along with the means for each group. 

 Partial correlations or covariances are computed by imsls_f_partial_covariances. 

 Function imsls_f_robust_covariances computes robust M-estimates of the mean and 
covariance matrix from a matrix of observations.
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covariances

more...

Computes the sample variance-covariance or correlation matrix.

Synopsis
#include <imsls.h> 

float *imsls_f_covariances (int n_rows, int n_variables, float x[], ..., 0)

The type double function is imsls_d_covariances.

Required Arguments
int n_rows  (Input)

Number of rows in x.

int n_variables  (Input)
Number of variables.

float x[]  (Input)
Array of size n_rows × n_variables containing the data.

Return Value
If no optional arguments are used, imsls_f_covariances returns a pointer to an 
n_variables × n_variables array containing the sample variance-covariance matrix of the observations. 
The rows and columns of this array correspond to the columns of x.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_covariances (int n_rows, int n_variables, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
264



 Correlation and Covariance         covariances
IMSLS_MISSING_VALUE_METHOD, int missing_value_method,
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix,
IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[],
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or

IMSLS_CORRELATION_MATRIX, or

IMSLS_STDEV_CORRELATION_MATRIX,

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim,

IMSLS_FREQUENCIES, float frequencies[],

IMSLS_WEIGHTS, float weights[],

IMSLS_SUM_WEIGHTS, float *sumwt,

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float covariance[],

0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Column dimension of array x.

Default: x_col_dim = n_variables
IMSLS_MISSING_VALUE_METHOD, int missing_value_method  (Input)

Method used to exclude missing values in x from the computations, where NaN is interpreted as the 
missing value code. See function imsls_f_machine/imsls_d_machine (Chapter 15, Utilities). The 
methods are as follows:

missing_value_method Action

0 The exclusion is listwise. (The entire row of x is 
excluded if any of the values of the row is equal 
to the missing value code.) 

1 Raw crossproducts are computed from all valid 
pairs and means, and variances are computed 
from all valid data on the individual variables. 
Corrected crossproducts, covariances, and cor-
relations are computed using these quantities.
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IMSLS_INCIDENCE_MATRIX, int **incidence_matrix  (Output)
Address of a pointer to an internally allocated array containing the incidence matrix. If 
missing_value_method is 0, incidence_matrix is 1 × 1 and contains the number of valid 
observations; otherwise, incidence_matrix is n_variables × n_variables and contains 
the number of pairs of valid observations used in calculating the crossproducts for covariance.

IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[]  (Output)
Storage for array incidence_matrix is provided by the user. See 
IMSLS_INCIDENCE_MATRIX.

IMSLS_N_OBSERVATIONS, int *n_observations  (Output)
Sum of the frequencies. If missing_value_method is 0, observations with missing values are 
not included in n_observations; otherwise, all observations are included except for observa-
tions with missing values for the weight or the frequency.

IMSLS_VARIANCE_COVARIANCE_MATRIX
or

IMSLS_CORRECTED_SSCP_MATRIX
or

IMSLS_CORRELATION_MATRIX
or

2 Raw crossproducts, means, and variances are 
computed as in the case of 
missing_value_method = 1. However, cor-
rected crossproducts and covariances are 
computed only from the valid pairs of data. 
Correlations are computed using these covari-
ances and the variances from all valid data.

3 Raw crossproducts, means, variances, and 
covariances are computed as in the case of 
missing_value_method = 2. Correlations are 
computed using these covariances, but the 
variances used are computed from the valid 
pairs of data.

missing_value_method Action
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IMSLS_STDEV_CORRELATION_MATRIX
Exactly one of these options can be used to specify the type of matrix to be computed.

IMSLS_MEANS, float **means  (Output)
Address of a pointer to the internally allocated array containing the means of the variables in x. The 
components of the array correspond to the columns of x.

IMSLS_MEANS_USER, float means[]  (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim  (Input)
Column dimension of array covariance if IMSLS_RETURN_USER is specified; otherwise, the column 
dimension of the return value.

Default: covariance_col_dim = n_variables
IMSLS_FREQUENCIES, float frequencies[]  (Input)

Array of length n_observations containing the frequency for each observation.

Default: frequencies [ ] = 1

IMSLS_WEIGHTS, float weights[]  (Input)
Array of length n_observations containing the weight for each observation.

Default: weights [ ] = 1

IMSLS_SUM_WEIGHTS, float *sum_wt  (Output)
Sum of the weights of all observations. If missing_value_method is equal to 0, observations 
with missing values are not included in sum_wt. Otherwise, all observations are included except for 
observations with missing values for the weight or the frequency.

IMSLS_N_ROWS_MISSING, int *nrmiss  (Output)
Total number of observations that contain any missing values (NaN).

IMSLS_RETURN_USER, float covariance[]  (Output)
If specified, the output is stored in the array covariance of size n_variables × n_variables 
provided by the user.

Keyword Type of Matrix

IMSLS_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default)

IMSLS_CORRECTED_SSCP_MATRIX corrected sums of squares and 
crossproducts matrix

IMSLS_CORRELATION_MATRIX correlation matrix

IMSLS_STDEV_CORRELATION_MATRIX correlation matrix except for the diago-
nal elements which are the standard 
deviations
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Description
Function imsls_f_covariances computes estimates of correlations, covariances, or sums of squares and 
crossproducts for a data matrix x. Weights and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed using the method 
of provisional means. Let xki denote the mean based on i observations for the k-th variable, fi denote the fre-

quency of the i-th observation, wi denote the weight of the i-th observations, and cjki denote the sum of 

crossproducts (or sum of squares if j = k) based on i observations. Then the method of provisional means finds 
new means and sums of crossproducts as shown in the example below.

The means and crossproducts are initialized as follows:

xk

0

= 0.0  for k = 1, …, p

cjk

0

= 0.0 for j, k = 1, …, p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of observation i + 1, each new 

observation leads to the following updates for xki and cjki using the update constant ri+1:

The default value for weights and frequencies is 1. Means and variances are computed based on the valid data 
for each variable or, if required, based on all the valid data for each pair of variables.

Usage Notes
Function imsls_f_covariances defines a sample mean by

ri+1 =
f i+1wi+1

∑
l=1

i+1
f lwl

x─k, i+1 = x
─
ki + xk, i+1 − x

─
ki ri+1

c jk, i+1 = c jki + f i+1wi+1 x j, i+1 − x
─
ji xk, i+1 − x

─
ki 1 − ri+1
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where n is the number of observations. 

The following formula defines the sample covariance, sjk, between variables j and k:

The sample correlation between variables j and k, rjk, is defined as follows:

Examples

Example 1

This example illustrates the use of imsls_f_covariances for the first 50 observations in the Fisher iris data 
(Fisher 1936). Note that the first variable is constant over the first 50 observations.

#include <imsls.h>
#define N_VARIABLES     5
#define N_OBSERVATIONS 50
int main()
{
   float      *covariances, *means;
   float      x[] = {
       1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
       1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
       1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
       1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
       1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
       1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
       1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
       1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
       1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
       1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
       1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
       1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,

x─k =
∑
i=1

n
f iwixki

∑
i=1

nr
f iwi

s jk =
∑
i=1

n
f iwi x ji − x

─
j xki − x

─
k

∑
i=1

n
f i − 1

r jk =
s jk
s jjskk
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       1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
       1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
       1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
       1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
       1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
       1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
       1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
       1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
       1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
       1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
       1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
       1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
       1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
                               /* Perform analysis */
   covariances = imsls_f_covariances (N_OBSERVATIONS, 
       N_VARIABLES, x, 0);
                               /* Print results */
   imsls_f_write_matrix ("The default case: variances/covariances",
       N_VARIABLES, N_VARIABLES, covariances,
       IMSLS_PRINT_UPPER, 0);
}

Output

          The default case: variances/covariances
           1          2          3          4          5
1     0.0000     0.0000     0.0000     0.0000     0.0000
2                0.1242     0.0992     0.0164     0.0103
3                           0.1437     0.0117     0.0093
4                                      0.0302     0.0061
5                                                 0.0111

Example 2

This example, which uses the first 50 observations in the Fisher iris data, illustrates the use of optional 
arguments.

#include <imsls.h>
#define N_VARIABLES     5
#define N_OBSERVATIONS 50
int main()
{
   char       *title;
   float      *means, *correlations;
   float      x[] = {
       1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
       1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
       1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
       1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
       1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
       1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
       1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
       1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
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       1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
       1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
       1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
       1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
       1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
       1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
       1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
       1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
       1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
       1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
       1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
       1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
       1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
       1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
       1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
       1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
       1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
                               /* Perform analysis */
   correlations = imsls_f_covariances (N_OBSERVATIONS, 
       N_VARIABLES-1, x+1,
       IMSLS_STDEV_CORRELATION_MATRIX,
       IMSLS_X_COL_DIM, N_VARIABLES,
       IMSLS_MEANS, &means,
       0);
                               /* Print results */
   imsls_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
   title = "Correlations with Standard Deviations on the Diagonal\n";
   imsls_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1, 
       correlations, IMSLS_PRINT_UPPER, 0);
}

Output 

                   Means
        1          2          3          4
    5.006      3.428      1.462      0.246
Correlations with Standard Deviations on the Diagonal
              1          2          3          4
  1     0.3525     0.7425     0.2672     0.2781
  2                0.3791     0.1777     0.2328
  3                           0.1737     0.3316
  4                                      0.1054
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Warning Errors
IMSLS_CONSTANT_VARIABLE Correlations are requested, but the observations on 

one or more variables are constant. The corre-
sponding correlations are set to NaN.

IMSLS_INSUFFICIENT_DATA Variances and covariances are requested, but fewer 
than two valid observations are present for a vari-
able. The pertinent statistics are set to NaN

IMSLS_ZERO_SUM_OF_WEIGHTS_2 The sum of the weights is zero. The means, vari-
ances, and covariances are set to NaN

IMSLS_ZERO_SUM_OF_WEIGHTS_3 The sum of the weights is zero. The means and cor-
relations are set to NaN

IMSLS_TOO_FEW_VALID_OBS_CORREL Correlations are requested, but fewer than two valid 
observations are present for a variable. The perti-
nent correlation coefficients are set to NaN
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partial_covariances

more...

Computes partial covariances or partial correlations from the covariance or correlation matrix.

Synopsis
#include <imsls.h>
float *imsls_f_partial_covariances (int n_independent, int n_dependent, float x, ..., 0)

The type double function is imsls_d_partial_covariances.

Required Argument
int n_independent  (Input)

Number of “independent” variables to be used in the partial covariances/correlations. The partial 
covariances/correlations are the covariances/correlations between the dependent variables after 
removing the linear effect of the independent variables.

int n_dependent  (Input)
Number of variables for which partial covariances/correlations are desired (the number of “depen-
dent” variables).

float x  (Input)
The n × n covariance or correlation matrix, where n = n_independent + n_dependent. The 
rows/columns must be ordered such that the first n_independent rows/columns contain the 
independent variables, and the last n_dependent row/columns contain the dependent variables. 
Matrix x must always be square symmetric.

Return Value
Matrix of size n_dependent by n_dependent containing the partial covariances (the default) or partial cor-
relations (use keyword IMSLS_PARTIAL_CORR).
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Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_partial_covariances (int n_independent, int n_dependent, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int indices[],
IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,
IMSLS_TEST, int df, int *df_out, float **p_values,
IMSLS_TEST_USER, int df, int *df_out, float p_values[],
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Row/Column dimension of x.

Default: x_col_dim = n_independent + n_dependent.

IMSLS_X_INDICES, int indices[]  (Input)
An array of length x_col_dim containing values indicating the status of the variable as in the fol-
lowing table:

By default, the first n_independent elements of indices are equal to 1, and the last 
n_dependent elements are equal to 0.

IMSLS_PARTIAL_COV  (Input)

or

IMSLS_PARTIAL_CORR  (Input)
By default, and if IMSLS_PARTIAL_COV is specified, partial covariances are calculated. Partial cor-
relations are calculated if IMSLS_PARTIAL_CORR is specified.

indices[i] Variable is...

−1 not used in analysis

0 dependent variable

1 independent variable
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IMSLS_TEST, int df, int *df_out, float **p_values  
(Input, Output, Output)
Argument df is an input integer indicating the number of degrees of freedom associated with the 
input matrix x. If the number of degrees of freedom in x varies from element to element, then a con-
servative choice for df is the minimum degrees of freedom for all elements in x. 

Argument df_out contains the number of degrees of freedom in the test that the partial covari-
ances/correlations are zero. This value will usually be df − n_independent, but will be greater 
than this value if the independent variables are computationally linearly related.

Argument p_values is the address of a pointer to an internally allocated array of size 
n_dependent by n_dependent containing the p-values for testing the null hypothesis that the 
associated partial covariance/correlation is zero. It is assumed that the observations from which x 
was computed follows a multivariate normal distribution and that each element in x has df degrees 
of freedom.

IMSLS_TEST_USER, int df, int *df_out, float p_values[]  (Input, Output, Output)
Storage for array p_values is provided by the user. See IMSLS_TEST above.

IMSLS_RETURN_USER, float c[]  (Output)
If specified, c returns the partial covariances/correlations. Storage for array c is provided by the user.

Description
Function imsls_f_partial_covariances computed partial covariances or partial correlations from an 
input covariance or correlation matrix. If the “independent” variables (the linear “effect” of the independent vari-
ables is removed in computing the partial covariances/correlations) are linearly related to one another, 
imsls_f_partial_covariances detects the linearity and eliminates one or more of the independent 
variables from the list of independent variables. The number of variables eliminated, if any, can be determined 
from argument df_out.

Given a covariance or correlation matrix Σ partitioned as 

function imsls_f_partial_covariances computed the partial covariances (of the standardized variables 
if Σ is a correlation matrix) as 

Σ11 Σ12
Σ21 Σ22
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If partial correlations are desired, these are computed as 

where diag denotes the matrix containing the diagonal of its argument along its diagonal with zeros off the diag-
onal. If Σ11 is singular, then as many variables as required are deleted from Σ11 (and Σ12) in order to eliminate the 

linear dependencies. The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: σ ij|1 = 0, where σij|1 is the (i, j) element in matrix 

Σ22|1. The p-value for a partial correlation tests the null hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in 

matrix P22|1. The p-values are returned in p_values. If the degrees of freedom for x, df, is not known, the 

resulting p-values may be useful for comparison, but they should not by used as an approximation to the actual 
probabilities.

Examples

Example 1

The following example computes partial covariances, scaled from a nine-variable correlation matrix originally 
given by Emmett (1949). The first three rows and columns contain the independent variables and the final six 
rows and columns contain the dependent variables.

#include <imsls.h>
int main()
{
   float *pcov;
   float x[9][9] = {
       6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363,
       3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077,
       1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673,
       3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910,
       1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687,
       2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754,
       2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309,
       1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458,
       4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400
   };
   pcov = imsls_f_partial_covariances(3, 6, &x[0][0], 0);
   imsls_f_write_matrix("Partial Covariances", 6, 6, pcov, 0);
   imsls_free(pcov);
}

Σ22∣1 = Σ22 − Σ21Σ11
−1Σ12

P22∣1 = diag Σ22∣1
−1/2Σ22∣1 diag Σ22∣1

−1/2
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Output

                          Partial Covariances
           1          2          3          4          5          6
1      0.000      0.000      0.000      0.000      0.000      0.000
2      0.000      0.000      0.000      0.000      0.000      0.000
3      0.000      0.000      0.000      0.000      0.000      0.000
4      0.000      0.000      0.000      5.495      1.895      3.084
5      0.000      0.000      0.000      1.895      1.841      1.476
6      0.000      0.000      0.000      3.084      1.476      3.403

Example 2

The following example computes partial correlations from a 9 variable correlation matrix originally given by 
Emmett (1949). The partial correlations between the remaining variables, after adjusting for variables 1, 3 and 9, 
are computed. Note in the output that the row and column labels are numbers, not variable numbers. The corre-
sponding variable numbers would be 2, 4, 5, 6, 7 and 8, respectively.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float *pcorr, *pval;
   int  df;
   float x[9][9] = {
       1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
       0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
       0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452, 0.219, 0.504,
       0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
       0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
       0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
       0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
       0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
       0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
   };
   int indices[9] = {1, 0, 1, 0, 0, 0, 0, 0, 1};
   pcorr = imsls_f_partial_covariances(3, 6, &x[0][0],
       IMSLS_PARTIAL_CORR,
       IMSLS_X_INDICES, indices,
       IMSLS_TEST, 30, &df, &pval,
       0);
   printf ("The degrees of freedom are %d\n\n", df);
   imsls_f_write_matrix("Partial Correlations", 6, 6, pcorr,
       0);
   imsls_f_write_matrix("P-Values", 6, 6, pval,
       0);
   imsls_free(pcorr);
   imsls_free(pval);
}
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Output

The degrees of freedom are 27
                         Partial Correlations
           1          2          3          4          5          6
1      1.000      0.224      0.194      0.211      0.125     -0.061
2      0.224      1.000      0.605      0.720      0.092      0.025
3      0.194      0.605      1.000      0.598      0.123     -0.077
4      0.211      0.720      0.598      1.000      0.035      0.086
5      0.125      0.092      0.123      0.035      1.000      0.062
6     -0.061      0.025     -0.077      0.086      0.062      1.000
                               P-Values
           1          2          3          4          5          6
1     0.0000     0.2525     0.3232     0.2801     0.5249     0.7576
2     0.2525     0.0000     0.0006     0.0000     0.6417     0.9000
3     0.3232     0.0006     0.0000     0.0007     0.5328     0.6982
4     0.2801     0.0000     0.0007     0.0000     0.8602     0.6650
5     0.5249     0.6417     0.5328     0.8602     0.0000     0.7532
6     0.7576     0.9000     0.6982     0.6650     0.7532     0.0000

Warning Errors

Fatal Errors

IMSLS_NO_HYP_TESTS The input matrix “x” has # degrees of freedom, and 
the rank of the dependent variables is #. There are 
not enough degrees of freedom for hypothesis test-
ing. The elements of “p_values” are set to NaN (not 
a number).

IMSLS_INVALID_MATRIX_1 The input matrix “x” is incorrectly specified. A com-
puted correlation is greater than 1 for variables # 
and #.

IMSLS_INVALID_PARTIAL A computed partial correlation for variables # and # 
is greater than 1. The input matrix “x” is not positive 
semi-definite
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pooled_covariances
Compute a pooled variance-covariance from the observations.

Synopsis
#include <imsls.h>
float *imsls_f_pooled_covariances (int n_rows, int n_variables, float *x, 

int n_groups, ..., 0)

The type double function is imsls_d_pooled_covariances.

Required Argument
int n_rows  (Input)

Number of rows (observations) in the input matrix x.

int n_variables  (Input)
Number of variables to be used in computing the covariance matrix. 

float *x  (Input)
A n_rows × n_variables + 1 matrix containing the data. The first n_variables columns cor-
respond to the variables, and the last column (column n_variables) must contain the group 
numbers.

int n_groups  (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of covariances.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_pooled_covariances (int n_rows, int n_variables, float x[], int n_groups,

IMSLS_X_COL_DIM, int x_col_dim,
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IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt, 

IMSLS_IDO, int ido,

IMSLS_ROWS_ADD, or

IMSLS_ROWS_DELETE,

IMSLS_GROUP_COUNTS, int **gcounts, 

IMSLS_GROUP_COUNTS_USER, int gcounts[],

IMSLS_SUM_WEIGHTS, float **sum_weights,

IMSLS_SUM_WEIGHTS_USER, float sum_weights[],

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_U, float **u,

IMSLS_U_USER, float u[],

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float c[],

0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt  (Input)
Each of the four arguments contains indices indicating column numbers of x in which particular 
types of data are stored. Columns are numbered 0 ... x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group numbers are stored.

Parameter ind contains the indices of the variables to be used in the analysis.

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights, 
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if 
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are 
not allowed.

Defaults: igrp = n_variables, ind[ ] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1
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IMSLS_IDO, int ido  (Input)
Processing option.

Default: ido = 0

IMSLS_ROWS_ADD  (Input)

or

IMSLS_ROWS_DELETE  (Input)
By default (or if IMSLS_ROWS_ADD is specified), the observations in x are added into the analysis. If 
IMSLS_ROWS_DELETE is specified, the observations are deleted from the analysis. If ido = 0, 
these optional arguments are ignored (data is always added if there is only one invocation).

IMSLS_GROUP_COUNTS, int **gcounts  (Output)
Address of a pointer to an integer array of length n_groups containing the number of observations 
in each group. Array gcounts is updated when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[]  (Output)
Storage for integer array gcounts is provided by the user. See IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights  (Output)
Address of a pointer to an array of length n_groups containing the sum of the weights times the 
frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[]  (Output)
Storage for array sum_weights is provided by the user. See IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means  (Output)
Address of a pointer to an array of size n_groups × n_variables. The i-th row of means con-
tains the group i variable means.

IMSLS_MEANS_USER, float means[]  (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

ido Action

0 This is the only invocation; all the data are input at 
once. (Default)

1 This is the first invocation with this data; additional 
calls will be made. Initialization and updating for the 
n_rows observations of x will be performed.

2 This is an intermediate invocation; updating for the 
n_rows observations of x will be performed.

3 All statistics are updated for the n_rows observations. 
The covariance matrix computed.
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IMSLS_U, float **u  (Output)
Address of a pointer to an array of size n_variables × n_variables containing the lower 
matrix U, the lower triangular for the pooled sample cross-products matrix. U is computed from the 
pooled sample covariance matrix, S (See the Description section below), as S = UTU.

IMSLS_U_USER, float u[]  (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_N_ROWS_MISSING, int *nrmiss  (Output)
Number of rows of data encountered in calls to imsls_f_pooled_covariances containing 
missing values (NaN) for any of the variables used.

IMSLS_RETURN_USER, float c[]  (Output)
If specified, c returns the covariance matrix. Storage for array c is provided by the user.

Description
Function imsls_f_pooled_covariances computes the pooled variance-covariance matrix from a matrix 
of observations. The within-groups means are also computed. Listwise deletion of missing values is assumed so 
that all observations used are complete; in any row of x, if any element of the observation is missing, the row is 
not used. Function imsls_f_pooled_covariances should be used whenever the user suspects that the 
data has been sampled from populations with different means but identical variance-covariance matrices. If 
these assumptions cannot be made, a different variance-covariance matrix should be estimated within each 
group.

By default, all observations are processed in one call to imsls_f_pooled_covariances. The computations 
are the same as if imsls_f_pooled_covariances were consecutively called with ido equal to 1, 2, and 3. 
For brevity, the following discusses the computations with ido > 0.

When ido = 1 variables are initialized, workspace is allocated and input variables are checked for errors.

If n_rows ≠ 0 (for any value of ido), the group observation totals, Ti, for i = 1, …, g, where g is the number of 

groups, are updated for the n_rows observations in x. The group totals are computed as:

where wij is the observation weight, xij is the j-th observation in the i-th group, and fij is the observation 

frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of the pooled sums of squares and 
crossproducts matrix. (Golub and Van Loan 1983).

Ti =∑
j

wi j f i j xi j
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The group means and the pooled sample covariance matrix S are computed from the intermediate results when 
ido = 3. These quantities are defined by

Examples

Example 1

The following example computes a pooled variance-covariance matrix. The last column of the data set is the 
group indicator.

#include <imsls.h>
int main() {
   int nobs = 6;
   int nvar = 2;
   int n_groups = 2;
   float *cov;
   static float x[6][3] = {
       2.2, 5.6, 1,
       3.4, 2.3, 1,
       1.2, 7.8, 1,
       3.2, 2.1, 2, 
       4.1, 1.6, 2,
       3.7, 2.2, 2};
   cov = imsls_f_pooled_covariances(nobs, nvar, &x[0][0], n_groups, 0);
   imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
   imsls_free(cov);
}

Output

Pooled Covariance Matrix
           1          2
1      0.708     -1.575
2     -1.575      3.883

x─i· =
Ti

∑
j
wi f i

S = 1
∑
i j
f i j − g∑

i, j

wi j f i j xi j − x
─
i· xi j − x

─
i·
T
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Example 2

The following example computes a pooled variance-covariance matrix for the Fisher iris data. To illustrate the use 
of the ido argument, multiple calls to imsls_f_pooled_covariances are made.

The first column of data is the group indicator, requiring either a permutation of the matrix or the use of the 
IMSLS_X_INDICES optional keyword. This example chooses the keyword method.

#include <imsls.h>
int main() {
   int nobs = 150;
   int nvar = 4;
   int n_groups = 3;
   int igrp = 0;
   static int ind[4] = {1, 2, 3, 4};
   int ifrq = -1;
   int iwt = -1;
   float *x, cov[16];
   float *means;
   int i;
   /* Retrieve the Fisher iris data set */
   x = imsls_f_data_sets(3, 0);
   /* Initialize */
   imsls_f_pooled_covariances(0, nvar, x, n_groups, 
       IMSLS_IDO, 1, 
       IMSLS_RETURN_USER, cov, 
       IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
   /* Add 10 rows at a time */
   for (i=0;i<15;i++) {
   imsls_f_pooled_covariances(10, nvar, (x+i*50), n_groups, 
       IMSLS_IDO, 2, 
       IMSLS_RETURN_USER, cov, 
       IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
   }
   /* Calculate cov and free internal workspace */
   imsls_f_pooled_covariances(0, nvar, x, n_groups, 
       IMSLS_IDO, 3, 
       IMSLS_RETURN_USER, cov, 
       IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 
       IMSLS_MEANS, &means, 0);
   imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
   imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
   imsls_free(means);
   imsls_free(x);
}

Output

           Pooled Covariance Matrix
284



 Correlation and Covariance         pooled_covariances
           1          2          3          4
1     0.2650     0.0927     0.1675     0.0384
2     0.0927     0.1154     0.0552     0.0327
3     0.1675     0.0552     0.1852     0.0427
4     0.0384     0.0327     0.0427     0.0419

                     Means
           1          2          3          4
1      5.006      3.428      1.462      0.246
2      5.936      2.770      4.260      1.326
3      6.588      2.974      5.552      2.026

Warning Errors

Fatal Errors

IMSLS_OBSERVATION_IGNORED In call #, row # of the matrix “x” has 
group number = #. The group number must be 
between 1 and #, the number of groups. This obser-
vation will be ignored.

IMSLS_BAD_IDO_4 “ido” = #. Initial allocations must be performed by 
making a call to pooled_covariances with 
“ido” = 1.

IMSLS_BAD_IDO_5 “ido” = #. A new analysis may not begin until the pre
vious analysis is terminated by a call to 
imsls_f_pooled_covariances with “ido” equal 
to 3.
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robust_covariances
Computes a robust estimate of a covariance matrix and mean vector.

Synopsis
#include <imsls.h>
float *imsls_f_robust_covariances (int n_rows, int n_variables, float *x, int n_groups, 

..., 0)

The type double function is imsls_d_robust_covariances.

Required Argument
int n_rows  (Input)

Number of rows (observations) in the input matrix x.

int n_variables  (Input)
Number of variables to be used in computing the covariance matrix.

float *x  (Input)
A n_rows by n_variables + 1 matrix containing the data. The first n_variables columns cor-
respond to the variables, and the last column (column n_variables) must contain the group 
numbers.

int n_groups  (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of covariances.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_robust_covariances (int n_rows, int n_variables, float x[], int n_groups,

IMSLS_X_COL_DIM, int x_col_dim,
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IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,

IMSLS_INITIAL_EST_MEAN,

IMSLS_INITIAL_EST_MEDIAN,

IMSLS_INITIAL_EST_INPUT, float input_means[], float input_cov[],

IMSLS_ESTIMATION_METHOD, int method,

IMSLS_PERCENTAGE, float percentage,

IMSLS_MAX_ITERATIONS, int maxit,

IMSLS_TOLERANCE, float tolerance,

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c,

IMSLS_GROUP_COUNTS, int **gcounts, 

IMSLS_GROUP_COUNTS_USER, int gcounts[],

IMSLS_SUM_WEIGHTS, float **sum_weights,

IMSLS_SUM_WEIGHTS_USER, float sum_weights[],

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_U, float **u,

IMSLS_U_USER, float u[],

IMSLS_BETA, float *beta,

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Row/Column dimension of x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt  (Input)
Each of the four arguments contains indices indicating column numbers of x in which particular 
types of data are stored. Columns are numbered 0 … x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group numbers are stored.

Parameter ind contains the indices of the variables to be used in the analysis. 
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Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights, 
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if 
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are 
not allowed.

Defaults: igrp = n_variables, ind [ ] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1

IMSLS_INITIAL_EST_MEAN  (Input)

or

IMSLS_INITIAL_EST_MEDIAN  (Input)

or

IMSLS_INITIAL_EST_INPUT, float *input_mean, float *input_cov  (Input)
If IMSLS_INITIAL_EST_MEAN is specified, initial estimates are obtained as the usual estimate of 
a mean vector and of a covariance matrix.

If IMSLS_INITIAL_EST_MEDIAN is specified, initial estimates are based upon the median and 
interquartile range are used.

If IMSLS_INITIAL_EST_INPUT is specified, the initial estimates are specified in arrays 
input_mean and input_cov. Argument input_mean is an array of size n_groups by 
n_variables, and input_cov is an array of size n_variables by n_variables.

Default: IMSLS_INITIAL_EST_MEAN
IMSLS_ESTIMATION_METHOD, int method  (Input)

Option parameter giving the algorithm to be used in computing the estimates.

IMSLS_PERCENTAGE, float percentage  (Input)
Percentage of gross errors expected in the data. Argument percentage must be in the range 0.0 
to 100.0 and contains the percentage of outliers expected in the data. If the percentage of gross 
errors expected in the data is not known, a reasonable strategy is to choose a value of percentage 
that is such that larger values do not result in significant changes in the estimates.

Default: percentage = 5.0

IMSLS_MAX_ITERATIONS, int maxit  (Input)
Maximum number of iterations.
Default: maxit = 30

method Method Used

0 Huber’s conjugate-gradient algorithm is used.

1 Stahel’s algorithm is used.
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IMSLS_TOLERANCE, float tolerance  (Input)
Convergence criterion. When the maximum absolute change in a location or covariance estimate is 
less than tolerance, convergence is assumed.

Default: tolerance = 10−4

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c  (Output)
Arguments a, b, and c contain the values for the parameters of the weighting function. See the 
Description section.

IMSLS_GROUP_COUNTS, int **gcounts  (Output)
Address of a pointer to an integer array of length n_groups containing the number of observations 
in each group. 

IMSLS_GROUP_COUNTS_USER, int gcounts[]  (Output)
Storage for integer array gcounts is provided by the user. See IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights  (Output)
Address of a pointer to an array of length n_groups containing the sum of the weights times the 
frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[]  (Output)
Storage for array sum_weights is provided by the user. See IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means  (Output)
Address of a pointer to an array of size n_groups by n_variables. The i-th row of means con-
tains the group i variable means.

IMSLS_MEANS_USER, float means[]  (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_U, float **u  (Output)
Address of a pointer to an array of size n_variables by n_variables containing the lower 
matrix U, the lower triangular for the robust sample cross-products matrix. U is computed from the 
robust sample covariance matrix, S (see the Description section), as S = UTU.

IMSLS_U_USER, float u[]  (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_BETA, float *beta  (Output)
Argument beta contains the constant used to ensure that the estimated covariance matrix has 
unbiased expectation (for a given mean vector) for a multivariate normal density.

IMSLS_N_ROWS_MISSING, int *nrmiss  (Output)
Number of rows of data encountered in calls to robust_covariances containing missing values 
(NaN) for any of the variables used.
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IMSLS_RETURN_USER, float c[]  (Output)
If specified, c returns the covariance matrix. Storage for array c is provided by the user.

Description
Function imsls_f_robust_covariances computes robust M-estimates of the mean and covariance 
matrix from a matrix of observations. A pooled estimate of the covariance matrix is computed when multiple 
groups are present in the input data. M-estimate weights are obtained using the “minimax” weights of Huber 
(1981, pp. 231-235), with percentage expected gross errors. Huber’s (1981) weighting equations are given by:

User specified observation weights and frequencies may be given for each row in x. Listwise deletion of missing 
values is assumed so that all observations used are “complete”.

Let f (x;μi, Σ) denote the density of an observation p-vector x in population (group) i with mean vector μi, for i = 

1, …, τ. Let the covariance matrix Σ be such that Σ = RTR. If 

y = R−T (x − μi)

then

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

In imsls_f_robust_covariances, Σ and μi are estimated as the solutions

of the estimation equations

and

u r =

a2

r2
r < a

1 a ≤ r ≤ b
b2

r2
r > b

w r = min 1,cr

g y = ∣ Σ ∣1/2 f RT y + μi; μi, Σ

Σ
^
,μ̂i

1
n∑
j=1

ni
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where i indexes the τ groups, ni, is the number of observations in group i, fij is the frequency for the j-th observa-

tion in group i, wij is the observation weight specified in column iwt of x, Ip is a p ×  p identity matrix,

w(r) and u(r) are the weighting functions, and where β is a constant computed by the program to make the 

expected weighted Mahalanobis distance (yTy) equal the expected Mahalanobis distance from a multivariate nor-
mal distribution (see Marazzi 1985). The constant β is described more fully below.

Function imsls_f_robust_covariances uses one of two algorithms for solving the estimation equations. 
The first algorithm is discussed in detail in Huber (1981) and is a variant of the conjugate gradient method. The 
second algorithm is due to Stahel (1981) and is discussed in detail by Marazzi (1985). In both algorithms, correc-
tion vectors Tki for the group i means and correction matrix Wk = Ip + Uk for the Cholesky factorization of Σ are 

found such that the updated mean vectors are given by 

and the updated matrix R is given as 

where k is the iteration number and 

When all elements of Uk and Tki are less than ɛ = tolerance, convergence is assumed.

Three methods for obtaining estimates are allowed. In the first method, the sample weighted estimate of Σ is 
computed. In the second method, estimates based upon the median and the interquartile range are used. Finally, 
in the last method, the user inputs initial estimates. 

Function imsls_f_robust_covariances computes estimates based on the “minimax” weights discussed 
above. The constant β is chosen such that E (u(r)r2) = ρβ where the expectation is with respect to a standard 

p-variate multivariate normal distribution. This yields estimates with the correct expectation for the multivariate 
normal distribution (for given mean vector). The expectation is computed via integration of estimated spline func-
tion. 200 knots are used on an equally spaced grid from 0.0 to the 99.999 percentile of 

1
n∑
i=1

τ

∑
j=1

ni

f i jwi j u ri j yi jyi j
T − βI p = 0

ri j = yi j
T yi j
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k
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distribution. An error estimate is computed based upon 100 of these knots. If the estimated relative error is 
greater than 0.0001, a warning message is issued. If β is not computed accurately (i.e., if the warning message is 
issued), the computed estimates are still optimal, but the scale of the estimated covariance matrix may need to 
be multiplied by a constant in order for

to have the correct multivariate normal covariance expectation.

Examples

Example 1

The following example computes a robust variance-covariance matrix. The last column of the data set is the 
group indicator.

#include <imsls.h>
int main()
{
   int nobs = 6;
   int nvar = 2;
   int n_groups = 2;
   float *cov;
   float x[18] = {
       2.2, 5.6, 1,
       3.4, 2.3, 1,
       1.2, 7.8, 1,
       3.2, 2.1, 2, 
       4.1, 1.6, 2,
       3.7, 2.2, 2};
   cov = imsls_f_robust_covariances(nobs, nvar, x, n_groups, 0); 
   imsls_f_write_matrix("Robust Covariance Matrix", nvar, nvar, cov, 
       IMSLS_COL_NUMBER_ZERO,
       IMSLS_ROW_NUMBER_ZERO, 0);
   imsls_free(cov);
}

Output

Robust Covariance Matrix
           0          1
0      0.522     -1.160
1     -1.160      2.862

χp
2

Σ
^
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Example 2

The following example computes estimates of the pooled covariance matrix for the Fisher’s iris data. For compar-
ison, the estimates are first computed via function imsls_f_pooled_covariances. Function 
imsls_f_robust_covariances with percentage = 2.0 is then used to compute the robust estimates. 
As can be seen from the output, the resulting estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are computed using functions 
imsls_f_pooled_covariances and imsls_f_robust_covariances. When outliers are present, 
the estimates of imsls_f_pooled_covariances are adversely affected, while the estimates produced by 
imsls_f_robust_covariances are close the estimates produced when no outliers are present.

#include <imsls.h>
int main()
{
   int    nobs = 150;
   int    nvar = 4;
   int    n_groups = 3;
   float  percentage = 2.0;
   int    igrp = 0;
   int    ifrq = -1;
   int    iwt = -1;
   int    ind[4] = {1, 2, 3, 4};
   float  *x, cov[16], rbcov[16];
   x = imsls_f_data_sets(3, 0);
   imsls_f_pooled_covariances(nobs, nvar, x, n_groups, 
       IMSLS_RETURN_USER, cov,
       IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
   imsls_f_write_matrix("Pooled Covariance with No Outliers", nvar, nvar, 
                        cov, 
       IMSLS_COL_NUMBER_ZERO,
       IMSLS_ROW_NUMBER_ZERO,
       IMSLS_PRINT_UPPER, 0);
   imsls_f_robust_covariances(nobs, nvar, x, n_groups, 
       IMSLS_RETURN_USER, rbcov,
       IMSLS_PERCENTAGE, percentage,
       IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
   imsls_f_write_matrix("Robust Covariance with No Outliers", nvar, nvar, 
                        rbcov, 
       IMSLS_COL_NUMBER_ZERO,
       IMSLS_ROW_NUMBER_ZERO,
       IMSLS_PRINT_UPPER, 0);
   /* Add Outliers */
   x[1] = 100.0;
   x[19] = 100.0;
   x[497] = -100.0;
   imsls_f_pooled_covariances(nobs, nvar, x, n_groups, 
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       IMSLS_RETURN_USER, cov,
       IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
   imsls_f_write_matrix("Pooled Covariance with Outliers", nvar, nvar, 
                        cov, 
       IMSLS_COL_NUMBER_ZERO,
       IMSLS_ROW_NUMBER_ZERO,
       IMSLS_PRINT_UPPER, 0);
   imsls_f_robust_covariances(nobs, nvar, x, n_groups, 
       IMSLS_RETURN_USER, rbcov,
       IMSLS_PERCENTAGE, percentage,
       IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
   imsls_f_write_matrix("Robust Covariance with Outliers", nvar, nvar, 
                        rbcov, 
       IMSLS_COL_NUMBER_ZERO,
       IMSLS_ROW_NUMBER_ZERO,
       IMSLS_PRINT_UPPER, 0);

   imsls_free(x);
}

Output

      Pooled Covariance with No Outliers
           0          1          2          3
0     0.2650     0.0927     0.1675     0.0384
1                0.1154     0.0552     0.0327
2                           0.1852     0.0427
3                                      0.0419
      Robust Covariance with No Outliers
           0          1          2          3
0     0.2474     0.0872     0.1535     0.0360
1                0.1073     0.0538     0.0322
2                           0.1705     0.0412
3                                      0.0401
        Pooled Covariance with Outliers
           0          1          2          3
0      60.43       0.30       0.13      -1.56
1                 70.53       0.17      -0.17
2                             0.19       0.07
3                                       66.38
        Robust Covariance with Outliers
           0          1          2          3
0     0.2555     0.0876     0.1553     0.0359
1                0.1127     0.0545     0.0322
2                           0.1723     0.0412
3                                      0.0424
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Warning Errors

Fatal Errors

IMSLS_NO_CONVERGE_MAX_ITER Failure to converge within “maxit” = # iterations for 
at least one of the “nroot” = # roots.

IMSLS_BAD_GROUP_2 The group number for observation # is equal to #. It 
must be greater than or equal to one and less than 
or equal to #, the number of groups.
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Usage Notes
The functions in this chapter cover a wide variety of commonly used experimental designs. They can be catego-
rized, not only based upon the underlying experimental design that generated the user’s data, but also on 
whether they provide support for missing values, factorial treatment structure, blocking and replication of the 
entire experiment, or multiple locations. 

Typically, responses are stored in the input vector y. For a few functions, such as imsls_f_anova_oneway  and 
imsls_f_anova_factorial the full set of model subscripts is not needed to identify each response. They 
assume the usual pattern, which requires that the last model subscript change most rapidly, followed by the 
model subscript next in line, and so forth, with the first subscript changing at the slowest rate. This pattern is 
referred to as lexicographical ordering.

However, for most of the functions in this chapter, one or more arrays are used to describe the experimental 
conditions associated with each value in the response input vector y. The function imsls_f_split_plot, for 
example, requires three additional input arrays: split, whole and rep. They are used to identify the split-
plot, whole-plot and replicate number associated with each value in y.

Many of the functions described in this chapter permit users to enter missing data values using NaN (Not a Num-
ber) as the missing value code. Use function imsls_f_machine (or function imsls_d_machine with the 
double-precision) to retrieve NaN. Any element of y that is missing must be set to imsls_f_machine(6) or 
imsls_d_machine(6) (for double precision). See imsls_f_machine in Chapter 15, Utilities for a description. 
Functions imsls_f_anova_factorial, imsls_f_anova_nested and imsls_f_anova_balanced 
require complete, balanced data, and do not accept missing values.

As a diagnostic tool for validating model assumptions, some functions in this chapter perform a test for lack of fit 
when replicates are available in each cell of the experimental design.

Completely Randomized Experiments
Completely randomized experiments are analyzed using some variation of the one-way analysis of variance 
(Anova). A completely randomized design (CRD) is the simplest and most common example of a statistically 
designed experiment. Researchers using a CRD are interested in comparing the average effect of two or more 
treatments. In agriculture, treatments might be different plant varieties or fertilizers. In industry, treatments might 
be different product designs, different manufacturing plants, different methods for delivering the product, etc. In 
business, different business processes, such as different shipping methods or alternate approaches to a product 
repair process, might be considered treatments. Regardless of the area, the one thing they have in common is 
that random errors in the observations cause variations in differences between treatment observations, making it 
difficult to confirm the effectiveness of one treatment to another. 
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If observations on these treatments are completely independent then the design is referred to as a completely 
randomized design or CRD. The IMSL C Numerical Library has two functions for analysis of data from CRD: 
imsls_f_anova_oneway and imsls_f_crd_factorial.

Both functions allow users to specify observations with missing values, have unequal group sizes, and output 
treatment means and standard deviations. The primary difference between the functions is that:

1. imsls_f_anova_oneway conducts multiple comparisons of treatment functions; whereas 
imsls_f_crd_factorial requires users to make a call to 
imsls_f_multiple_comparisons to compare treatment means.

2. imsls_f_crd_factorial can analyze treatments with a factorial treatment structure; whereas 
imsls_f_anova_oneway does not analyze factorial structures.

3. imsls_f_crd_factorial can analyze data from CRD experiments that are replicated across 
several blocks or locations. This can happen when the same experiment is repeated at different times 
or different locations.

Factorial Experiments
In some cases, treatments are identified by a combination of experimental factors. For example, in an octane 
study comparing several different gasolines, each gasoline could be developed using a combination of two addi-
tives, denoted below in Table 1, as Additive A and Additive B.

This is referred to as a 2x2 or 22 factorial experiment. There are 4 treatments involved in this study. One contains 
no additives, i.e. Treatment 1. Treatment 2 and 3 contain only one of the additives and treatment 4 contains both. 
A one-way anova, such as found in anova_oneway can analyze these data as four different treatments. Three 
functions, imsls_f_crd_factorial, imsls_f_rcbd_factorial and imsls_f_anova_factorial will 
analyze these data exploiting the factorial treatment structure. These functions allow users to answer structural 
questions about the treatments such as: 

1. Are the average effects of the additives statistically significant? This is referred to as the factor main 
effects.

Table 1 –  2x2 Factorial Experiment

Treatment Additive A Additive B

1 No No

2 Yes No

3 No Yes

4 Yes Yes
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2. Is there an interaction effect between the additives? That is, is the effectiveness of an additive inde-
pendent of the other?

Both imsls_f_crd_factorial and imsls_f_rcbd_factorial support analysis of a factorial experi-
ment with missing values and multiple locations. The function imsls_f_anova_factorial does not 
support analysis of experiments with missing values or experiments replicated over multiple locations. The main 
difference, as the names imply, between imsls_f_crd_factorial and imsls_f_rcbd_factorial is 
that imsls_f_crd_factorial assumes that treatments were completely randomized to experimental units. 
Function imsls_f_rcbd_factorial assumes that treatments are blocked.

Blocking
Blocking is an important technique for reducing the impact of experimental error on the ability of the researcher 
to evaluate treatment differences. Usually this experimental error is caused by differences in location (spatial dif-
ferences), differences in time (temporal differences) or differences in experimental units. Researchers refer to 
these as blocking factors. They are identifiable causes known to cause variation in observations between experi-
mental units.

There are several functions that specifically support blocking in an experiment: imsls_f_rcbd_factorial, 
imsls_f_lattice, and imsls_f_latin_square. The first two functions, imsls_f_rcbd_factorial 
and imsls_f_lattice, support blocking on one factor.

A requirement of RCBD experiments is that every block must contain observations on every treatment. However, 
when the number of treatments ( t ) is greater than the block size ( b ), it is impossible to have every block contain 
observations on every treatment.

In this case, when t > b, an incomplete block design must be used instead of a RCBD. Lattice designs are a type of 
incomplete block design in which the number of treatments is equal to the square of an integer such as t = 
9, 16, 25, etc. Lattice designs were originally described by Yates (1936). The function imsls_f_lattice sup-
ports analysis of data from lattice experiments.

Besides the requirement that   , another characteristic of lattice experiments is that blocks be grouped into 
replicates, where each replicate contains one observation for every treatment. This forces the number of blocks 
in each replicate to be equal to the number of observations per block. That is, the number of blocks per replicate 

and the number of observations per block are both equal to   .

In addition, the number of replicate groups in Lattice experiments is always less than or equal to k+1. If it is equal 
to k+1 then the design is referred to as a Balanced Lattice. If it is less than k+1 then the design is referred to as a 
Partially Balanced Lattice. Tables of these experiments and their analysis are tabulated in Cochran & Cox (1950).

t = k2

k = t
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Consider, for example, a 3 × 3 balanced-lattice, i.e., k = 3 and t = 9. Notice that the number of replicates is  
 . And the number of blocks per replicate and block size are both k = 3. The total number of blocks 

is equal to   . For a balanced-lattice,  

 .

The Anova table for a balanced-lattice experiment, takes the form shared with other balanced incomplete block 
experiments. In these experiments, the error term is divided into two components: the Inter-Block Error and the 
Intra-Block Error. For single and multiple locations, the general format of the Anova tables for Lattice experiments 
is illustrated in Table 3 and Table 4. 

Table 2 – A 3x3 Balanced-Lattice for 
Nine Treatments in Four Replicates

Replicate I Replicate II

Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Replicate III Replicate IV

Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Table 3 – The Anova Table for a Lattice Experiment at One Location

Source DF
Sum of 
Squares Mean Squares

REPLICATES   SSR MSR

TREATMENTS(unadj)   SST MST

TREATMENTS(adj)   SSTa MSTa

BLOCKS(adj)   SSBa MSBa

INTRA-BLOCK ERROR  

 

SSE MSE

TOTAL   SSR

r = k + 1 = 4
b = n_locations · r · k − 1 + 1

b = r · k = k + 1 · k = t + 1 · t = 4 · 3 = 12

t − 1
t − 1
t − 1

r · k − 1

k − 1 r · k − k − 1

r · t − 1
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Latin Square designs are very popular in cases where:

1. two blocking factors are involved

2. the two blocking factors do not interact with treatments, and

3. the number of blocks for each factor is equal to the number of treatments.

Consider an octane study involving 4 test vehicles tested in 4 bays with 4 test gasolines. This is a natural arrange-
ment for a Latin square experiment. In this case there are 4 treatments, and two blocking factors, test vehicle and 
bay, each with 4 levels. The Latin Square for this example would look like the following arrangement.

As illustrated above in Table 5, the letters A-D are used to denote the four test gasolines, or treatments. The 
assignment of each treatment to a particular test vehicle and test bay is described in Table 5. Gasoline A, for 
example, is tested in the following four vehicle/bay combinations: (1/1), (2/3), (3/2), and (4/4). 

Notice that each treatment appears exactly once in every row and column. This balance, together with the 
assumed absence of interactions between treatments and the two blocking factors is characteristic of a Latin 
Square.

Table 4 – The Anova Table for a Lattice Experiment at Multiple Locations

Source DF
Sum of 
Squares Mean Squares

LOCATIONS   SSL MSL

REPLICATES WITHIN 
LOCATIONS   SSR MSR

TREATMENTS(unadj)   SST MST

TREATMENTS(adj)   SSTa MSTa

BLOCKS(adj)   SSB MSB

TOTAL SSTot

Table 5 – A Latin Square Design for t=4 Treatments

Test Vehicle

1 2 3 4

Test 1 A C B D

2 D B A C

Bay 3 C A D B

4 B D C A

p − 1

p r − 1

t − 1
t − 1

p · r k − 1

p k − 1 r · k − k − 1
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The corresponding Anova table for these data contains information on the blocking factors as well as treatment 
differences. Notice that the F-test for one of the two blocking factors, test vehicle, is statistically significant (p 
= 0.048); whereas the other, test bay, is not statistically significant (p = 0.321).

Some researchers might use this as a basis to remove test bay as a blocking factor. In that case, the design can 
then be analyzed as a RCBD experiment since every treatment is repeated once and only once in every block, i.e., 
test vehicle.

Multiple Locations
It is common for a researcher to repeat an experiment and then conduct an analysis of the data. In agricultural 
experiments, for example, it is common to repeat an experiment at several different farms. In other cases, a 
researcher may want to repeat an experiment at a specified frequency, such as week, month or year. If these 
repeated experiments are independent of one another then we can treat them as multiple locations.

Several of the functions in this chapter allow for multiple locations: imsls_f_crd_factorial, 
imsls_f_rcbd_factorial, imsls_f_lattice, imsls_f_latin_square, imsls_f_split_plot, 
imsls_f_split_split_plot, imsls_f_strip_plot, imsls_f_strip_split_plot. All of these functions 
allow for analysis of experiments replicated at multiple locations. By default they all treat locations as a random 
factor. Function imsls_f_split_plot also allows users to declare locations as a fixed effect.

Split-Plot Designs – Nesting and Restricted Randomization
Originally, split-plot designs were developed for testing agricultural treatments, such as varieties of wheat, differ-
ent fertilizers or different insecticides. In these original experiments, growing areas were divided into plots. The 
major treatment factor, such as wheat variety, was randomly assigned to these plots. However, in addition to test-

Table 6 – Latin Square Anova Table for Octane Experiment

Source
Degrees of 
Freedom

Sum of 
Squares

Mean 
Squares F-Test p-Value

Test Vehicle 3 1.5825 0.5275 4.83 0.048

Test Bay 3 0.0472 0.157 1.44 0.321

Gasoline 3 4.247 1.416 12.97 0.005

Error 6 0.655 0.109

TOTAL 15 6.9575
302



 Analysis of Variance  and Designed Experiments         Usage Notes
ing wheat varieties, they wanted to test another treatment factor such as fertilizer. This could have been done 
using a CRD or RCBD design. If a CRD design was used then treatment combinations would need to be randomly 
assigned to plots, such as shown below in Table 7.

In the CRD illustration above, any plot could have any combination of wheat variety (W1, W2, W3 or W4) and fertil-
izer (F1, F2 or F3). There is no restriction on randomization in a CRD. Any of the    treatments can 
appear in any of the 24 plots.

If a RCBD were used, all t=12 treatment combinations would need to be arranged in blocks similar to what is 
described in Table 8, which places one restriction on randomization.

The RCBD arrangement is basically a replicated CRD design with a randomization restriction that treatments are 
divided into two groups of replicates which are assigned to a block of land. Randomization of treatments only 
occurs within each block.

Table 7 – Completely Randomized Experiments – 
Both Factors Randomized

CRD
W3F2 W1F3 W4F1 W2F1

W2F3 W1F1 W1F3 W1F2

W2F2 W3F1 W2F1 W4F2

W3F2 W1F1 W2F3 W1F2

W4F1 W3F2 W3F2 W4F3

W4F3 W3F1 W2F2 W4F2

Table 8 – Randomized Complete Block Experiments – 
Both Factors Randomized Within a Block

RCBD

Block 1 W3F3 W1F3 W4F1 W4F3

W2F3 W1F1 W3F2 W1F2

W2F2 W3F1 W2F1 W4F2

Block 2 W3F2 W1F1 W2F3 W1F2

W4F1 W1F3 W3F2 W4F3

t = 4 × 3 = 12
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At first glance, a split-plot experiment could be mistaken for a RCBD experiment since it is also blocked. The split-
plot arrangement with only one replicate for this experiment is illustrated below in Table 9. Notice that it appears 
as if levels of the fertilizer factor (F1, F2, and F3) are nested within wheat variety (W1, W2, W3 and W4), however 
that is not the case. Varieties were actually randomly assigned to one of four rows in the field. After randomizing 
wheat varieties, fertilizer was randomized within wheat variety.

The essential distinction between split-plot experiments and completely randomized or randomized complete 
block experiments is the presence of a second factor that is blocked, or nested, within each level of the first fac-
tor. This second factor is referred to as the split-plot factor, and the first is referred to as the whole-plot factor. 

Both factors are randomized, but with a restriction on randomization of the second factor, the split-plot factor. 
Whole plots (wheat variety) are randomly assigned, without restriction to plots, or rows in this example. However, 
the randomization of split-plots (fertilizer) is restricted. It is restricted to random assignment within whole-plots. 

Strip-Plot Designs
Strip-plot experiments look similar to split-plot experiments. In fact they are easily confused, resulting in incorrect 
statistical analyses. The essential distinction between strip-plot and split-plot experiments is the application of 
the second factor. In a split-plot experiment, levels of the second factor are nested within the whole-plot factor 
(see Table 11). In strip-plot experiments, the whole-plot factor is completely crossed with the second factor (see 
Table 10). 

This occurs, for example, when an agricultural field is used as a block and the levels of the whole-plot factor are 
applied in vertical strips across the entire field. Levels of the second factor are assigned to horizontal strips across 
the same block.

Table 9 – A Split-Plot Experiment for Wheat (W) and Fertilizer (F)

Split-Plot Design

Block 1 W2 W2F1 W2F3 W2F2

W1 W1F3 W1F1 W1F2

W4 W4F1 W4F3 W4F2

W3 W3F2 W3F1 W3F3

Block 2 W3 W3F2 W3F1 W3F3

W1 W1F3 W1F1 W1F2

W4 W4F1 W4F3 W4F2

W2 W2F1 W2F3 W2F2
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As described in the previous section, in a split-plot experiment the second experimental factor, referred to as the 
split-plot factor, is nested within the first factor, referred to as the whole-plot factor. 

Consider, for example, the semiconductor experiment described in Figure 5, “Split-Plot Randomization.” The 
wafers from each plater, the whole-plot factor, are divided into equal size groups and then randomly assigned to 
an etcher, the split-plot factor. Wafers from different platers are etched separately from those that went through 
another plating machine. Randomization occurred within each level of the whole-plot factor, i.e., plater.

Graphically, as shown below, this arrangement appears similar to a tree or hierarchical structure.

Table 10 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Whole-Plot Factor

A2 A1 A4 A3

Strip Plot B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

B2 A2B2 A1B2 A4B2 A3B2

Table 11 – Split-Plot Experiments –  
Split-Plots Nested within Strip-Plots

Whole-Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B3

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2
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Figure 5, Split-Plot Randomization

Notice that although there are only three etchers, 12 different runs are made using these etchers. The wafers 
randomly assigned to the first plater and first etcher are processed separately from the wafers assigned to other 
plating machines.

In a strip-plot experiment, the second randomization of the wafers to etchers occurs differently, see Figure 6, 
“Strip-Plot Semiconductor Experiment.” Instead of randomizing the wafers from each plater to the three etchers 
and then running them separately from the wafers from another plater, the wafers from each plater are divided 
into three groups and then each randomly assigned to one of the three etchers. However, the wafers from all 
four plating machines assigned to the same etcher are run together.

Figure 6, Strip-Plot Semiconductor Experiment

Strip-plot experiments can be analyzed using imsls_f_strip_plot. Function imsls_f_strip_plot 
returns a strip-plot Anova table with the following general structure:

Table 12 – Strip-Plot Anova Table for Semiconductor Experiment

Source DF SS MS F-Test p-Value

Blocks 1 0.0005 0.0005 0.955 0.431

Whole-Plots: 
Plating 
Machines

2 0.0139 0.0070 64.39 0.015

Whole-Plot 
Error

2 0.0002 0.0001 0.194 0.838
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Split-Split Plot and Strip-Split Plot Experiments
The essential distinction between split-plot and split-split-plot experiments is the presence of a third factor that is 
blocked, or nested, within each level of the whole-plot and split-plot factors. This third factor is referred to as the 
sub-plot factor. A split-plot experiment, see Table 13, has only two factors, denoted by A and B. The second factor 
is nested within the first factor. Randomization of the second factor, the split-plot factor, occurs within each level 
of the first factor.

On the other hand, a split-split plot experiment has three factors, illustrated in Table 14 by A, B and C. The second 
factor is nested within the first factor, and the third factor is nested within the second.

Strip-Plots: 
Etchers

1 0.0033 0.0033 100.0 0.060

Strip-Plot Error 1 <0.0001 <0.0001 0.060 0.830

Whole-Plot x 
Strip-Plot

2 0.0033 0.0017 2.970 0.251

Whole-Plot x 
Strip-Plot Error

2 0.0011 0.0006

TOTAL 11 0.0225

Table 13 – Split-Plot Experiment – 
Split-Plot B Nested within Whole-Plot A

Whole-Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B3

Table 14 – Split-Split Plot Experiment

Whole-Plot Factor

A2 A1 A4 A3

A2B3C2

A2B3C1

A1B2C1

A1B2C2

A4B1C2

A4B1C1

A3B3C2

A3B3C1

Table 12 – Strip-Plot Anova Table for Semiconductor Experiment (Continued)

Source DF SS MS F-Test p-Value
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Contrast the split-split plot experiment to the same experiment run using a strip-split plot design (see Table 15). 
In a strip-split plot experiment factor B is applied in a strip across factor A; whereas, in a split-split plot experi-
ment, factor B is randomly assigned to each level of factor A. In a strip-split plot experiment, the level of factor B 
is constant across a row; whereas in a split-split plot experiment, the levels of factor B change as you go across a 
row, reflecting the fact that for split-plot experiments, factor B is randomized within each level of factor A.

In some studies, split-split-plot or strip-split-plot experiments are replicated at several locations. Functions 
imsls_f_split_split_plot and imsls_f_strip_split_plot can analyze these, even when the number 
of blocks or replicates at each location is different. 

Validating Key Assumptions in Anova
The key output in the analysis of designed experiments is the F-tests in the Anova table for that experiment. The 
validity of these tests relies upon several key assumptions:

1. observational errors are independent of one another,

2. observational errors are Normally distributed, and

3. the variance of observational errors is homogeneous across treatments.

A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B3C2

A4B3C1

A3B2C2

A3B2C1

A2B2C2

A2B2C1

A1B3C1

A1B3C2

A4B2C1

A4B2C2

A3B1C2

A3B1C1

Table 15 – Strip-Split Plot Experiment, Split-Plots Nested Within 
Strip-Plot Factors A and B

Factor A Strip Plots
A2 A1 A4 A3

Factor B 
Strip
Plot

B3 A2B3C2

A2B3C1

A1B3C1

A1B3C2

A4B3C2

A4B3C1

A3B3C2

A3B3C1

B1 A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B1C2

A4B1C1

A3B1C2

A3B1C1

B2 A2B2C2

A2B2C1

A1B2C1

A1B2C2

A4B2C1

A4B2C2

A3B2C2

A3B2C1

Table 14 – Split-Split Plot Experiment (Continued)
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These are referred to as the independence, Normality and homogeneity of variance assumptions. All of these 
assumptions are evaluated by examining the properties of the residuals, which are estimates of the observational 
error for each observation. Residuals are calculated by taking the difference between each observed value in the 
series and its corresponding estimate. In most cases, the residual is the difference between the observed value 
and the mean for that treatment.

The independence assumption can be examined by evaluating the magnitude of the correlations among the 
residuals sorted in the order they were collected. The IMSL function imsls_f_autocorrelation (see Chapter 
8, Times Series and Forecasting) can be used to obtain these correlations. The autocorrelations, to a maximum 
lag of about 20, can be examined to identify any that are statistically significant. 

Residuals should be independent of one another, which implies that all autocorrelations with a lag of 1 or higher 
should be statistically equivalent to zero. If a statistically significant autocorrelation is found, leading a researcher 
to conclude that an autocorrelation is not equal to zero, then this would provide sufficient evidence to conclude 
that the observational errors are not independent of one another.

The second major assumption for analysis of variance is the Normality assumption. In the IMSL C Numerical 
Library, functions imsls_f_shapiro_wilk_normality_test, imsls_f_lilliefors_normality_test , 
and imsls_f_cgi_squared_normality_test (see   Chapter 7, Tests of Goodness of Fit) can be used to 
determine whether the residuals are not Normally distributed. A small p-value from this test provides sufficient 
evidence to conclude that the observational errors are not Normally distributed.

The last assumption, homogeneity of variance, is evaluated by comparing treatment standard errors. This is equiv-

alent to testing whether    , where    is the standard deviation of the observational error for 
the i-th treatment. This test can be conducted using imsls_f_homogeneity. To conduct this test, the residu-
als, and their corresponding treatment identifiers are passed into imsls_f_homogeneity. It calculates the 
p-values for both Bartlett’s and Levene’s tests for equal variance. If a p-value is below the stated significance 
level, a researcher would conclude that the within treatment variances are not homogeneous.

Multiple Testing
It is well known that the risk of committing a Type I error (i.e., a false positive or false discovery) increases with the 
number of tests being performed, even if all the tests use the same cut-off value for significance. The purpose of 
a multiple testing correction is to control the risk of false positives when performing multiple tests of significance. 
Two functions are included in this chapter to correct for multiple tests:  imsls_f_multiple_comparisons 
performs multiple comparisons of treatment means using one of four methods to control the overall Type I error 
rate, and imsls_f_false_discovery_rates calculates false discovery rates and associated q-values, given a 
set of p-values resulting from multiple independent tests.

σ1 = σ2 = ⋯ = σt σi
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Missing Observations
Missing observations create problems with the interpretation and calculation of F-tests for designed experi-
ments. The approach taken in the functions described in this chapter is to estimate missing values using the Yates 
method and then to compute the Anova table using these estimates.

Essentially the Yates method, implemented in imsls_f_yates, replaces missing observations with the values 
that minimize the error sum of squares in the Anova table. The Anova table is calculated using these estimates, 
with one modification. The total degrees of freedom and the error degrees of freedom are both reduced by the 
number of missing observations. 

For simple cases, in which only one observation is missing, formulas have been developed for most designs. See 
Steel and Torrie (1960) and Cochran and Cox (1957) for a description of these formulas. However for more than 
one missing observation, a multivariate optimization is conducted to simultaneously estimate the missing values. 
For the simple case with only one missing value, this approach produces estimates identical to the published for-
mulas for a single missing value.

A potential issue arises when the Anova table contains more than one form of error, such as split-plot and 
strip-plot designs. In every case, missing values are estimated by minimizing the last error term in the table.
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anova_oneway
Analyzes a one-way classification model.

Synopsis
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[], ..., 0)

The type double function is imsls_d_anova_oneway

Required Arguments
int n_groups  (Input)

Number of groups.

int n[]  (Input)
Array of length n_groups containing the number of responses for each group.

float y[]  (Input)
Array of length n [0] + n [1] + … + n [n_groups − 1] containing the responses for each group.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_GROUP_MEANS, float **means,
IMSLS_GROUP_MEANS_USER, float means[],
IMSLS_GROUP_STD_DEVS, float **std_devs,
IMSLS_GROUP_STD_DEVS_USER, float std_devs[],
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IMSLS_GROUP_COUNTS, int **counts,
IMSLS_GROUP_COUNTS_USER, int counts[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_TUKEY, float **ci_diff_means, or
IMSLS_DUNN_SIDAK, float **ci_diff_means, or
IMSLS_BONFERRONI, float **ci_diff_means, or
IMSLS_SCHEFFE, float **ci_diff_means, or
IMSLS_ONE_AT_A_TIME, float **ci_diff_means,
IMSLS_TUKEY_USER, float ci_diff_means[], or
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[], or
IMSLS_BONFERRONI_USER, float ci_diff_means[], or
IMSLS_SCHEFFE_USER, float ci_diff_means[], or
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[],
0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table  (Output)

Address of a pointer to an internally allocated array of size 15 containing the analysis of variance 
table. The analysis of variance statistics are as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.
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Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[]  (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_GROUP_MEANS, float **means  (Output)
Address of a pointer to an internally allocated array of length n_groups containing the group 
means.

IMSLS_GROUP_MEANS_USER, float means[]  (Output)
Storage for array means is provided by the user. See IMSLS_GROUP_MEANS.

IMSLS_GROUP_STD_DEVS, float **std_devs  (Output)
Address of a pointer to an internally allocated array of length n_groups containing the group stan-
dard deviations.

IMSLS_GROUP_STD_DEVS_USER, float std_devs[]  (Output)
Storage for array std_devs is provided by the user. See IMSLS_STD_DEVS.

IMSLS_GROUP_COUNTS, int **counts  (Output)
Address of a pointer to an internally allocated array of length n_groups containing the number of 
nonmissing observations for the groups.

IMSLS_GROUP_COUNTS_USER, int counts[]  (Output)
Storage for array counts is provided by the user. See IMSLS_COUNTS.

IMSLS_CONFIDENCE, float confidence  (Input)
Confidence level for the simultaneous interval estimation.
If IMSLS_TUKEY is specified, confidence must be in the range [90.0, 99.0). Otherwise, confi-
dence is in the range [0.0, 100.0).

Default: confidence = 95.0

IMSLS_TUKEY, float **ci_diff_means  (Output)

or

IMSLS_DUNN_SIDAK, float **ci_diff_means  (Output)

or

13 Overall mean of y.

14 Coefficient of variation (in percent).

Element Analysis of Variance Statistics
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IMSLS_BONFERRONI, float **ci_diff_means  (Output)

or

IMSLS_SCHEFFE, float **ci_diff_means  (Output)

or

IMSLS_ONE_AT_A_TIME, float **ci_diff_means  (Output)
Function imsls_f_anova_oneway computes the confidence intervals on all pairwise differences 
of means using any one of six methods: Tukey, Tukey-Kramer, Dunn-Šidák, Bonferroni, Scheffé, or 
Fisher’s LSD (One-at-a-Time). If IMSLS_TUKEY is specified, the Tukey confidence intervals are calcu-
lated if the group sizes are equal; otherwise, the Tukey-Kramer confidence intervals are calculated.

On return, ci_diff_means contains the address of a pointer to a

internally allocated array containing the statistics relating to the difference of means.

IMSLS_TUKEY_USER, float ci_diff_means[]  (Output)

or

IMSLS_DUNN_SIDAK_USER, float ci_diff_means[]  (Output)

or

IMSLS_BONFERRONI_USER, float ci_diff_means[]  (Output)

or

IMSLS_SCHEFFE_USER, float ci_diff_means[]  (Output)

or

Column Description

0 Group number for the i-th mean.

1 Group number for the j-th mean.

2 Difference of means (i-th mean) − (j-th 
mean).

3 Lower confidence limit for the difference.

4 Upper confidence limit for the difference.

ngroups
2 × 5
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IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[]  (Output)
Storage for array ci_diff_means is provided by the user.

Description
Function imsls_f_anova_oneway performs an analysis of variance of responses from a oneway classifica-
tion design. The model is 

yij = μi + ɛij    i = 1, 2, …, k; j = 1, 2, …, ni

where the observed value yij constitutes the j-th response in the i-th group, μi denotes the population mean for 

the i-th group, and the ɛij arguments are errors that are identically and independently distributed normal with 

mean 0 and variance σ2. Function imsls_f_anova_oneway requires the yij observed responses as input 

into a single vector y with responses in each group occupying contiguous locations. The analysis of variance table 
is computed along with the group sample means and standard deviations. A discussion of formulas and interpre-
tations for the one-way analysis of variance problem appears in most elementary statistics texts, e.g., 
Snedecor and Cochran (1967, Chapter 10).

Function imsls_f_anova_oneway computes simultaneous confidence intervals on all

pairwise comparisons of k means μ1 μ2, …, μk in the one-way analysis of variance model. Any of several methods 

can be chosen. A good review of these methods is given by Stoline (1981). The methods are also discussed in 
many elementary statistics texts, e.g., Kirk (1982, pp. 114−127).

Let s2 be the estimated variance of a single observation. Let v be the degrees of freedom associated with s2. Let

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence intervals for all pairwise differ-
ences of means μi − μj in balanced (n1 = n2 = … = nk = n) one-way designs. The method is exact and uses the 

Studentized range distribution. The formula for the difference μi − μj is given by

where q1−a;k,v is the (1 − α) 100 percentage point of the Studentized range distribution with parameters k and v.

k* =
k k − 1

2

α = 1 − confidence100.0

y─i − y
─
j ± q

1−α;k, v s
2
n
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Tukey-Kramer method: The Tukey-Kramer method is an approximate extension of the Tukey method for the 
unbalanced case. (The method simplifies to the Tukey method for the balanced case.) The method always pro-
duces confidence intervals narrower than the Dunn-Šidák and Bonferroni methods. Hayter (1984) proved that 
the method is conservative, i.e., the method guarantees a confidence coverage of at least (1 − α) 100. Hayter’s 
proof gave further support to earlier recommendations for its use (Stoline 1981). (Methods that are currently bet-
ter are restricted to special cases and only offer improvement in severely unbalanced cases; see, for example, 
Spurrier and Isham 1985.) The formula for the difference μi − μj is given by the following:

Dunn-Šidák method: The Dunn-Šidák method is a conservative method. The method gives wider intervals than 
the Tukey-Kramer method. (For large v and small α and k, the difference is only slight.) The method is slightly bet-
ter than the Bonferroni method and is based on an improved Bonferroni (multiplicative) inequality (Miller 1980, 
pp. 101, 254−255). The method uses the t distribution (see function imsls_f_t_inverse_cdf, Chapter 11, 
Probability Distribution Functions and Inverses). The formula for the difference μi − μj is given by

where tf ;v is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on the Bonferroni (additive) 
inequality (Miller, p. 8). The method uses the t distribution. The formula for the difference μi − μj is given by the 

following:

Scheffé method: The Scheffé method is an overly conservative method for simultaneous confidence intervals on 
pairwise difference of means. The method is applicable for simultaneous confidence intervals on all contrasts, i.e., 
all linear combinations

where the following is true:
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This method can be recommended here only if a large number of confidence intervals on contrasts in addition to 
the pairwise differences of means are to be constructed. The method uses the F distribution (see function 
imsls_f_F_inverse_cdf, Chapter 11, Probability Distribution Functions and Inverses). The formula for the 
difference μi − μj is given by

where F1−a; ( k−1),v is the (1 − α) 100 percentage point of the F distribution with k − 1 and ν degrees of freedom.

One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is appropriate for constructing a single 
confidence interval. The confidence percentage input is appropriate for one interval at a time. The method has 
been used widely in conjunction with the overall test of the null hypothesis μ1 = μ2 = … = μk by the use of the F 

statistic. Fisher’s LSD (least significant difference) test is a two-stage test that proceeds to make pairwise compar-
isons of means only if the overall F test is significant. Milliken and Johnson (1984, p. 31) recommend LSD 
comparisons after a significant F only if the number of comparisons is small and the comparisons were planned 
prior to the analysis. If many unplanned comparisons are made, they recommend Scheffé’s method. If the F test is 
insignificant, a few planned comparisons for differences in means can still be performed by using either Tukey, 
Tukey-Kramer, Dunn-Šidák,or Bonferroni methods. Because the F test is insignificant, Scheffé’s method does not 
yield any significant differences. The formula for the difference μi − μj is given by the following:

Examples

Example 1

This example computes a one-way analysis of variance for data discussed by Searle (1971, Table 5.1, pp. 
165−179). The responses are plant weights for six plants of three different types—three normal, two off-types, 
and one aberrant. The responses are given by type of plant in the following table:

Normal Off-Type Aberrant

101 84 32

105

94

88

∑
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#include <imsls.h>
#include <stdio.h>
int main()
{
   int    n_groups=3;
   int    n[] = {3, 2, 1};
   float  y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
   float  p_value;
   p_value = imsls_f_anova_oneway (n_groups, n, y,
       0);
   printf ("p-value = %6.4f\n", p_value);
}

Output

p-value = 0.002

Example 2

The data used in this example is the same as that used in the initial example. Here, the anova_table is 
printed.

#include <imsls.h>
int main()
{
   int    n_groups=3;
   int    n[] = {3, 2, 1};
   float  y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
   float  p_value;
   float  *anova_table;
   char   *labels[] = {
                  "degrees of freedom for among groups",
                  "degrees of freedom for within groups",
                  "total (corrected) degrees of freedom",
                  "sum of squares for among groups",
                  "sum of squares for within groups",
                  "total (corrected) sum of squares",
                  "among mean square",
                  "within mean square", "F-statistic",
                  "p-value", "R-squared (in percent)",
                  "adjusted R-squared (in percent)",
                  "est. standard deviation of within error",
                  "overall mean of y",
                  "coefficient of variation (in percent)"};
                     /* Perform analysis */
   p_value = imsls_f_anova_oneway (n_groups, n, y,
       IMSLS_ANOVA_TABLE, &anova_table,
       0);
                    /* Print results */
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
       anova_table,
       IMSLS_ROW_LABELS, labels,
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       IMSLS_WRITE_FORMAT, "%11.4f",
       0);
}

Output

        * * * Analysis of Variance * * *
degrees of freedom for among groups          2.0000
degrees of freedom for within groups         3.0000
total (corrected) degrees of freedom         5.0000
sum of squares for among groups           3480.0000
sum of squares for within groups            70.0000
total (corrected) sum of squares          3550.0000
among mean square                         1740.0000
within mean square                          23.3333
F-statistic                                 74.5714
p-value                                      0.0028
R-squared (in percent)                      98.0282
adjusted R-squared (in percent)             96.7136
est. standard deviation of within error      4.8305
overall mean of y                           84.0000
coefficient of variation (in percent)        5.7505

Example 3

Simultaneous confidence intervals are generated for the following measurements of cold-cranking power for five 
models of automobile batteries. Nelson (1989, pp. 232−241) provided the data and approach.

The Tukey method is chosen for the analysis of pairwise comparisons, with a confidence level of 99 percent. The 
means and their confidence limits are output.

#include <imsls.h>
int main()
{
  int   n_groups = 5;
  int   n[] = {4, 4, 4, 4, 4};
  int   permute[] = {2, 3, 4, 0, 1};
  float y[] = {41.0, 43.0, 42.0, 46.0, 42.0, 
               43.0, 46.0, 38.0, 27.0, 26.0,
               28.0, 27.0, 48.0, 45.0, 51.0,
               46.0, 28.0, 32.0, 37.0, 25.0};
  float *anova_table, *ci_diff_means, tmp_diff_means[50];
  float confidence = 99.0;

Model 1 Model 2 Model 3 Model 4 Model 5

41 42 27 48 28

43 43 26 45 32

42 46 28 51 37

46 38 27 46 25
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  char  *labels[] = {
                   "degrees of freedom for among groups",
                   "degrees of freedom for within groups",
                   "total (corrected) degrees of freedom",
                   "sum of squares for among groups",
                   "sum of squares for within groups",
                   "total (corrected) sum of squares",
                   "among mean square",
                   "within mean square", "F-statistic",
                   "p-value", "R-squared (in percent)",
                   "adjusted R-squared (in percent)",
                   "est. standard deviation of within error",
                   "overall mean of y",
                   "coefficient of variation (in percent)"};
  char  *mean_row_labels[] = {
                   "first and second",
                   "first and third",
                   "first and fourth",
                   "first and fifth",
                   "second and third",
                   "second and fourth",
                   "second and fifth",
                   "third and fourth",
                   "third and fifth",
                   "fourth and fifth"};
  char  *mean_col_labels[] = {
                   "Means",
                   "Difference of means",
                   "Lower limit",
                   "Upper limit"};
                       /* Perform analysis */
  
imsls_f_anova_oneway(n_groups, n, y,
       IMSLS_ANOVA_TABLE, &anova_table, 
       IMSLS_CONFIDENCE, confidence, 
       IMSLS_TUKEY, &ci_diff_means,
       0);
                      /* Print anova_table */
  imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 
       1, anova_table, 
       IMSLS_ROW_LABELS, labels,
       IMSLS_WRITE_FORMAT, "%9.2f",
       0);
                     /* Permute ci_diff_means for printing */
  imsls_f_permute_matrix(10, 5, ci_diff_means, permute,
       IMSLS_PERMUTE_COLUMNS,
       IMSLS_RETURN_USER, tmp_diff_means,
       0);
                    /* Print ci_diff_means */
  imsls_f_write_matrix("* * * Differences in Means * * *\n", 10,
       3, tmp_diff_means,
       IMSLS_A_COL_DIM, 5,
       IMSLS_ROW_LABELS, mean_row_labels,
       IMSLS_COL_LABELS, mean_col_labels,
       IMSLS_WRITE_FORMAT, "%11.4g",
       0);
}
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Output

        * * * Analysis of Variance * * *
degrees of freedom for among groups                  4
degrees of freedom for within groups                15
total (corrected) degrees of freedom                19
sum of squares for among groups                   1242
sum of squares for within groups                150.78
total (corrected) sum of squares                  1393
among mean square                               310.56
within mean square                               10.05
F-statistic                                      30.90
p-value                                     4.398e-007
R-squared (in percent)                           89.18
adjusted R-squared (in percent)                  86.29
est. standard deviation of within error           3.17
overall mean of y                                38.05
coefficient of variation (in percent)            8.332
          * * * Differences in Means * * *
Means             Difference Lower limit Upper limit
                    of means                         
first and second        0.75       -8.05        9.55
first and third        16.00        7.20       24.80
first and fourth       -4.50      -13.30        4.30
first and fifth        12.50        3.70       21.30
second and third       15.25        6.45       24.05
second and fourth      -5.25      -14.05        3.55
second and fifth       11.75        2.95       20.55
third and fourth      -20.50      -29.30      -11.70
third and fifth        -3.50      -12.30        5.30
fourth and fifth       17.00        8.20       25.80
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ancovar
Analyzes a one-way classification model with covariates.

Synopsis
#include <imsls.h>
float *imsls_f_ancovar (int ngroup, int ncov, int ni[], float y[], float x[],…, 0)

The type double function is imsls_d_ancovar.

Required Arguments
int ngroup  (Input)

The number of treatment groups.

int ncov  (Input)
The number of covariates.

int ni[]  (Input)
Array of length ngroup containing the number of responses for each group.  

float y[]  (Input)
Array of length n containing the data for the response variable where 
n = ni[0] + ni[1] +…+ ni[ngroup-1].

float x[]  (Input)
Array of size n by ncov containing the data for the covariates.

Return Value
Pointer to an array of length 15 containing the one-way analysis of covariance assuming parallelism, organized as 
follows:

Element Anova Table Value

0 Degrees of freedom for model 
(groups + covariates).

1 Degrees of freedom for error.
322



 Analysis of Variance  and Designed Experiments         ancovar
Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_ancovar (int ngroup, int ncov, int ni[], float y[], float x[],

IMSLS_N_MISSING, int *nmiss,
IMSLS_ADJ_ANOVA, float **adj_aov,
IMSLS_ADJ_ANOVA_USER, float adj_aov[],
IMSLS_PARALLEL_TESTS, float **testpl, 
IMSLS_PARALLEL_TESTS_USER, float testpl[],
IMSLS_XYMEAN, float **xymean,
IMSLS_XYMEAN_USER, float xymean[],
IMSLS_COEF, float **coef,
IMSLS_COEF_USER, float coef[],
IMSLS_COEF_TABLES, float **coef_tables,

IMSLS_COEF_TABLES_USER, float coef_tables[],

2 Total (corrected) degrees of freedom.

3 Sum of squares for model (groups and 
covariates combined).

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square (groups and 
covariates combined).

7 Error mean square.

8 F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall response mean.

14 Coefficient of variation (in percent).

Element Anova Table Value
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IMSLS_REG_ANOVA, float **aov_tables,
IMSLS_REG_ANOVA_USER, float aov_tables[],
IMSLS_R_MATRIX, float **r,
IMSLS_R_MATRIX_USER, float r[],
IMSLS_COV_MEANS, float **covm,
IMSLS_COV_MEANS_USER, float covm[],
IMSLS_COV_COEF, float **covb, 
IMSLS_COV_COEF_USER, float covb[],
IMSLS_RETURN_USER, float aov[],
0)

Optional Arguments 
IMSLS_N_MISSING, int *nmiss  (Output)

The number of cases with missing values in x or y is returned in *nmiss. Cases with any missing 
values are not used in the analysis.

IMSLS_ADJ_ANOVA, float **adj_aov  (Output)
Address of a pointer to an internally allocated array of length 8 containing the partial sum of squares 
for the one-way analysis of covariance organized as follows:

Note that the p-values are returned as 0.0 when the values are so small that all significant digits have 
been lost.

IMSLS_ADJ_ANOVA_USER, float adj_aov[]  (Output)
Storage for the array adj_aov provided by the user. See IMSLS_ADJ_ANOVA for a description.

i adj_aov[i]
0 Degrees of freedom for groups after 

covariates.

1 Degrees of freedom for covariates after 
groups.

2 Sum of squares for groups after 
covariates.

3 Sum of squares for model (groups and 
covariates combined).

4 F -statistic for groups.

5 F -statistic for covariates.

6 p-value for groups.

7 p-value for covariates.
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IMSLS_PARALLEL_TESTS, float **testpl  (Output)
Address of a pointer to an internally allocated array of length 10 containing the parallelism tests for 
the one-way analysis of covariance organized as follows:

IMSLS_PARALLEL_TESTS_USER, float testpl[]  (Output)
Storage for the array testpl provided by the user. See IMSLS_PARALLEL_TESTS for a 
description.

IMSLS_XYMEAN, float **xymean  (Output)
Address of a pointer to an internally allocated array of size ngroup+1 by ncov+3 containing the 
unadjusted means for the covariates and the response variate and the means for the response vari-
ate adjusted for the covariates. Each row for i = 0, 1, …, ngroup-1 corresponds to a group. Row 
ngroup contains overall statistics. The means are organized in xymean columns as follows:

i testpl[i]

0 Extra degrees of freedom for model 
not assuming parallelism.

1 Degrees of freedom for error for 
model not assuming parallelism.

2 Degrees of freedom for error for 
model assuming parallelism.

3 Extra sum of squares for model not 
assuming parallelism.

4 Sum of squares for error for model 
not assuming parallelism.

5 Sum of squares for error for model 
assuming parallelism.

6 Mean square for testpl[0].

7 Mean square for testpl[1].

8 F –statistic.

9 p-value.

Column Description
0 Number of non-missing cases

1 thru ncov Covariate means.

ncov + 1 Response mean.

ncov + 2 Response mean adjusted assuming 
parallelism.
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IMSLS_XYMEAN_USER, float xymean[]  (Output)
Storage for the array xymean provided by the user. See IMSLS_XYMEAN for a description. 

IMSLS_COEF, float **coef  (Output)
Address of a pointer to an internally allocated array of size ngroup + ncov by 4 containing statis-
tics for the regression coefficients for the model assuming parallelism. Each row corresponds to a 
coefficient in the model. For i = 0, 1, …, ngroup-1, row i is for the y intercept for the i-th group. 
The remaining ncov rows are for the covariate coefficients. The statistics in the columns are orga-
nized as follows:

IMSLS_COEF_USER, float coef[]  (Output)
Storage for the array coef provided by the user. See IMSLS_COEF for a description. 

IMSLS_COEF_TABLES, float **coef_tables  (Output)
Address of a pointer to an internally allocated array of size ngroup by ncov+1 by 4 containing sta-
tistics for a linear regression model fitted separately for each of the ngroup treatment groups. This 
array can be viewed as a 3 dimensional array with ngroup rows, ncov+1 columns, and depth of 4. 
Each row corresponds to one of the ngroup treatment groups. Each column corresponds to the 
model coefficients. 

For column = 0, the statistics relate to the intercept in the regression model. For column = 1, 2, …, 
ncov, the statistics relate to the slopes for the covariates. The depth dimension corresponds to the 
columns described for IMSLS_COEF as follows:

IMSLS_COEF_TABLES_USER, float coef_tables[]  (Output)
Storage for the array coef_tables provided by the user. See IMSLS_COEF_TABLES for a 
description. 

Column Description

0 Coefficient estimate.

1 Estimated standard error of the estimate.

2 t-statistic.

3 p-value.

Column Description

0 Coefficient estimate.

1 Estimated standard error of the estimate.

2 t-statistic.

3 p-value.
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IMSLS_REG_ANOVA, float **aov_tables  (Output)
Address of a pointer to an internally allocated array of size ngroup by 15 containing the analysis of 
variance tables for each linear regression model fitted separately to each treatment group. The 15 
values in the i-th row are for treatment group i organized as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

IMSLS_REG_ANOVA_USER, float aov_tables[]  (Output)
Storage for the array aov_tables provided by the user. See IMSLS_REG_ANOVA for a 
description. 

IMSLS_R_MATRIX, float **r  (Output)
Address of a pointer to an internally allocated array of size ngroup+ncov by ngroup + ncov 
containing the R matrix from the QR decomposition. The R matrix is from the regression assuming 
parallelism. 

IMSLS_R_MATRIX_USER, float r[]  (Output)
Storage for the array r provided by the user. See IMSLS_R_MATRIX for a description. 

j aov_tables[i*15+j]

0 Degrees of freedom for regression model 
(covariates).

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for regression model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Error standard deviation.

13 Overall response mean.

14 Coefficient of variation (in percent).
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IMSLS_COV_MEANS, float **covm  (Output)
Address of a pointer to an internally allocated array of size ngroup by ngroup containing the esti-
mated matrix of variances and covariances for the adjusted means assuming parallelism. 

IMSLS_COV_MEANS_USER, float covm[]  (Output)
Storage for the array covm provided by the user. See IMSLS_COV_MEANS for a description.

IMSLS_COV_COEF, float **covb  (Output)
Address of a pointer to an internally allocated array of size ngroup + ncov by ngroup+ncov 
containing the estimated matrix of variances and covariances for the coefficients in coef returned 
using IMSLS_COEF or IMSLS_COEF_USER. 

IMSLS_COV_COEF_USER, float covb[]  (Output)
Storage for the array covb provided by the user. See IMSLS_COV_COEF for a description.

IMSLS_RETURN_USER, float aov[]  (Output)
An array of length 15 provided by the user for the return value. See Return Value above for a 
description.

Description
Function imsls_f_ancovar performs analyses for models that combine the features of a one-way analysis of 
variance model with that of a multiple linear regression model. The basic one-way analysis of covariance model is

where the observed value of yij constitutes the j-th response in the i-th group,    denotes the y intercept for the 

regression function for the i-th group, β1, β2, …, βm are the regression coefficients for the covariates, and the ɛ ij’s 

are independently distributed normal errors with mean zero and variance σ2. This model allows the regression 
function for each group to have different intercepts. However, the remaining m regression coefficients are the 
same for each group, i.e., the regression functions are parallel. 

In practice, sometimes the regression functions are not parallel. In addition to estimates for the model assuming 
parallelism, imsls_f_ancovar computes estimates and summary statistics for the separate regressions for 
each group. These estimates can be examined using the optional arguments IMSLS_COEF_TABLES and 
IMSLS_REG_ANOVA.

Estimates for the β0i’s and β1, β2, …, βm in the model assuming parallelism are returned using the optional argu-

ment IMSLS_COEF. Summary statistics are also computed for this model. 

yi j = β0i + β1xi j1 + β2xi j2 + … + βmxijm + ɛi j i = 1,2, … ,ngroup; j = 1,2, … ,ni

β0i
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The adjusted group means, stored in the last column of xymean, are computed using the formula:

The estimated covariance between the i1-th and i2-th adjusted group mean is given by

where vpq is the entry in covb[(p - 1)(ngroup + ncov) + q -1] and is the estimated covariance between the 

p-th and q-th estimated coefficients in the regression function. 

A discussion of formulas and interpretations for the one-way analysis of covariance problem appears in most ele-
mentary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 14).

Examples

Example 1

This example fits a one-way analysis of covariance model assuming parallelism using data discussed by Snedecor 
and Cochran (Table 14.6.1, pages 432−436). The responses are concentrations of cholesterol (in mg/100 ml) in 
the blood of two groups of women: women from Iowa and women from Nebraska. Age of a woman is the single 
covariate. The cholesterol concentrations and ages of the women according to state are shown in the following 
table. (There are 11 Iowa women and 19 Nebraska women in the study. Only the first 5 women from each state 
are shown here.)

Iowa Nebraska

Age Cholesterol Age Cholesterol

46 181 18 137

52 228 44 173

39 182 33 177

65 249 78 241

54 259 51 225
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There is no evidence from the data to indicate that the regression lines for cholesterol concentration as a func-
tion of age are not parallel for Iowa and Nebraska women (p-value is 0.5425). The parallel line model suggests 
that Nebraska women may have higher cholesterol concentrations than Iowa women. The cholesterol concentra-
tions (adjusted for age) are 195.5 for Iowa women versus 224.2 for Nebraska women. The difference is 28.7 with 
an estimated standard error of

#include <imsls.h>
#include <stdio.h>
int main()
{
int ncov=1, ngroup=2;
int ni[2] = {11, 19};
float *testpl, *aov, *xymean, *covm;
float y[30] = {
       181.0, 228.0, 182.0, 249.0, 259.0, 
       201.0, 121.0, 339.0, 224.0, 112.0, 
       189.0, 137.0, 173.0, 177.0, 241.0, 
       225.0, 223.0, 190.0, 257.0, 337.0, 
       189.0, 214.0, 140.0, 196.0, 262.0, 
       261.0, 356.0, 159.0, 191.0, 197.0
};
float x[30] = {
        46.0, 52.0, 39.0, 65.0, 54.0, 
        33.0, 49.0, 76.0, 71.0, 41.0, 
        58.0, 18.0, 44.0, 33.0, 78.0,  
        51.0, 43.0, 44.0, 58.0, 63.0, 
        19.0, 42.0, 30.0, 47.0, 58.0, 
        70.0, 67.0, 31.0, 21.0, 56.0
};
aov = imsls_f_ancovar(ngroup, ncov, ni, y, x, 
                    IMSLS_PARALLEL_TESTS, &testpl, 
                    IMSLS_XYMEAN, &xymean,
                    IMSLS_COV_MEANS, &covm, 0);
printf("             * * * ANALYSIS OF VARIANCE * * * \n");
printf("                  Sum of         Mean                Prob of\n");
printf("Source   DF      Squares        Square    Overall F  Larger F\n");
printf("Model  %3.0f  %10.2f  %9.2f  %2.2f  %8.6f\n",
              aov[0], aov[3], aov[6], aov[8], aov[9]);
printf("Error  %3.0f  %10.2f  %9.2f  \n", aov[1], aov[4], aov[7]);
printf("Total  %3.0f  %10.2f \n", aov[2], aov[5]);
printf("\n");
printf("  * * * TEST FOR PARALLELISM * * * \n");
printf("  Sum of  Mean  F  Prob of\n");
printf("SOURCE  DF  Squares  Square  TEST  Larger F\n");
printf("Extra due to\n");
printf("Nonparallelism %3.0f %10.2f  %7.2f  %7.5f  %5.4f\n",
             testpl[0], testpl[3], testpl[6], testpl[8], testpl[9]);
printf("Extra Assuming\n");
printf("Nonparallelism %3.0f %10.2f  %7.2f \n", testpl[1], testpl[4],
             testpl[7]);
printf("Error Assuming\n");
printf("Parallelism  %3.0f %10.2f  \n", testpl[2], testpl[5]);

170.4 + 97.4 − 2 2.9 = 16.1
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imsls_f_write_matrix("\nXY Mean Matrix\n", ngroup+1, 4, xymean, 0);
imsls_f_write_matrix("\nVar./Covar. Matrix of Adjusted Group Means\n",
                    ngroup, ngroup, covm, 0);
}

Output

                * * * ANALYSIS OF VARIANCE * * *
                 Sum of        Mean               Prob of
Source  DF      Squares       Square   Overall F  Larger F
Model    2     54432.77     27216.39     14.97    0.000042
Error   27     49103.91      1818.66
Total   29    103536.69
            * * * TEST FOR PARALLELISM * * *
                      Sum of    Mean        F    Prob of
SOURCE          DF   Squares   Square      TEST  Larger F
Extra due to
Nonparallelism   1    709.05    709.05   0.38094  0.5425
Extra Assuming
Nonparallelism  26  48394.86   1861.34
Error Assuming
Parallelism     27  49103.91

                  XY Mean Matrix
            1           2           3           4
1        11.0        53.1       207.7       195.5
2        19.0        45.9       217.1       224.2
3        30.0        48.6       213.7       213.7

Var./Covar. Matrix of Adjusted Group Means
                        1           2
           1       170.4        -2.9
           2        -2.9        97.4

Figure 7, Plot of Cholesterol Concentrations and Fitted Parallel Lines by State
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Example 2

This example fits a one-way analysis of covariance model and performs a test for parallelism using data discussed 
by Snedecor and Cochran (1967, Table 14.8.1, pages 438-443). The responses are weight gains (in pounds per 
day) of 40 pigs for four groups of pigs under varying treatments. Two covariates-initial age (in days) and initial 
weight (in pounds) are used. For each treatment, there are 10 pigs. Only the first five pigs from each treatment 
are shown here. 

For these data, the test for non-parallelism is not statistically significant (p = 0.901). The one-way analysis of cova-
riance test for the treatment means adjusted for the covariates, assuming parallel slopes, is statistically significant 
at a stated significance level of α = 0.05, (p = 0.04931).

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Age Wt. Gain Age Wt. Gain Age Wt. Gain Age Wt. Gain

78 61 1.40 78 74 1.61 78 80 1.67 77 62 1.40

90 59 1.79 99 75 1.31 83 61 1.41 71 55 1.47

94 76 1.72 80 64 1.12 79 62 1.73 78 62 1.37

71 50 1.47 75 48 1.35 70 47 1.23 70 43 1.15

99 61 1.26 94 62 1.29 85 59 1.49 95 57 1.22
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Multiple comparisons can be done using the least significant difference approach of comparing each pair of 
treatment groups with the two-sample student-t test. Since the adjusted means in the one-way analysis of covari-
ance are correlated, the standard error for these comparisons must be computed using the variances and 
covariances in covm. The standard errors for these comparisons are fairly similar ranging from 0.0630 to 0.0638. 
The Student’s t comparisons identify differences between groups 1 and 2, and 1 and 4 as being statistically signif-
icant with p-values of 0.01225 and 0.03854 respectively.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
int main()
{

 int i, j;
 int ncov=2, ngroup=4, nobs=40;
 int ni[4] = {10, 10, 10, 10};
 float aov[15], testpl[10], adj_aov[8], xymean[5*5], covm[4*4];
 float x1[40] = {

 78.0, 90.0, 94.0, 71.0, 99.0, 80.0, 83.0, 75.0, 62.0, 67.0, 
78.0, 99.0, 80.0, 75.0, 94.0, 91.0, 75.0, 63.0, 62.0, 67.0, 
78.0, 83.0, 79.0, 70.0, 85.0, 83.0, 71.0, 66.0, 67.0, 67.0, 
77.0, 71.0, 78.0, 70.0, 95.0, 96.0, 71.0, 63.0, 62.0, 67.0

 };
 float x2[40] = {

 61.0, 59.0, 76.0, 50.0, 61.0, 54.0, 57.0, 45.0, 41.0, 40.0, 
74.0, 75.0, 64.0, 48.0, 62.0, 42.0, 52.0, 43.0, 50.0, 40.0, 
80.0, 61.0, 62.0, 47.0, 59.0, 42.0, 47.0, 42.0, 40.0, 40.0, 
62.0, 55.0, 62.0, 43.0, 57.0, 51.0, 41.0, 40.0, 45.0, 39.0, 

};
 float y[40] = {

 1.40, 1.79, 1.72, 1.47, 1.26, 1.28, 1.34, 1.55, 1.57, 1.26, 
1.61, 1.31, 1.12, 1.35, 1.29, 1.24, 1.29, 1.43, 1.29, 1.26, 
1.67, 1.41, 1.73, 1.23, 1.49, 1.22, 1.39, 1.39, 1.56, 1.36, 
1.40, 1.47, 1.37, 1.15, 1.22, 1.48, 1.31, 1.27, 1.22, 1.36

 };
 float x[40*2], stderror, delta, t, df, pvalue;
 /* setup covariate input matrix */
 for(i=0; i<nobs; i++){

 x[i*ncov  ] = x1[i];
 x[i*ncov+1] = x2[i];

 }
 imsls_f_ancovar(ngroup, ncov, ni, y, x, 

IMSLS_PARALLEL_TESTS_USER, testpl,
 IMSLS_ADJ_ANOVA_USER, adj_aov,
 IMSLS_XYMEAN_USER, xymean,
 IMSLS_COV_MEANS_USER, covm,
 IMSLS_RETURN_USER, aov,
 0);

 printf("\n");
 printf("  * * * TEST FOR PARALLELISM  * * * \n");
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 printf("  Sum of  Mean  F  Prob "
 "of\n");

 printf("SOURCE  DF Squares  Square  TEST  Larger "
 "F\n");

 printf("Extra due to\n");
 printf("Nonparallelism %3.0f %10.2f  %7.2f  %7.5f  %5.3f\n",

 testpl[0], testpl[3], testpl[6], testpl[8], testpl[9]);
 printf("Extra Assuming\n");

 printf("Nonparallelism %3.0f %10.2f  %7.2f \n", 
testpl[1], testpl[4], testpl[7]);

 printf("Error Assuming\n");
 printf("Parallelism  %3.0f %10.2f  \n", testpl[2], testpl[5]);
 printf("\n");
 printf("  * * * ANALYSIS OF VARIANCE * * * \n");
 printf("  Sum of  Mean  Prob "

 "of\n");
 printf("Source  DF  Squares  Square  Overall F  Larger"

 "F\n");
 printf("Model  %3.0f  %f  %f  %f  %5.4f\n",

 aov[0], aov[3], aov[6], aov[8], aov[9]);
 printf("Error  %3.0f  %f  %f  \n", aov[1], aov[4],

 aov[7]);
 printf("Total  %3.0f  %f  \n", aov[2], aov[5]);
 printf("\n");
 printf("  * * * ADJUSTED ANALYSIS OF VARIANCE  * * * \n");
 printf("  Sum of  F  Prob "

 "of\n");
 printf("Source  DF  Squares  TEST  Larger "

 "F\n");
 printf("Groups after Covariates %3.0f  %10.2f  %5.2f  %7.5f\n",

 adj_aov[0], adj_aov[2], adj_aov[4], adj_aov[6]);
 printf("Covariates after Groups %3.0f  %10.2f  %5.2f  %7.5f\n",

 adj_aov[1], adj_aov[3], adj_aov[5], adj_aov[7]);
 printf("\n  * * * GROUP MEANS * * * \n");
 printf("GROUP  | Unadjusted  |  Adjusted |  Std. Error\n");
 for(i=0; i<ngroup; i++) {

 stderror = sqrt(covm[i*ngroup + i]);
 printf("  %d  |  %5.4f  |  %5.4f  |  %7.4f\n", i+1,

 xymean[i*(ngroup+1)+ngroup-1], xymean[i*(ngroup+1)+ngroup],
 stderror);

 }
 printf("\n  * * * STUDENT-T MULTIPLE COMPARISONS * * * \n");
 printf(" GROUPS  |  DIFF  | Std. Error | Student-t | P-Value\n");
 for(i=0; i<ngroup-1; i++){

 for(j=i+1; j<ngroup; j++){
 delta  = xymean[i*(ngroup+1)+ngroup] - 

xymean[j*(ngroup+1)+ngroup];
 stderror = sqrt(covm[i*ngroup+i]+covm[j*ngroup+j]-

 2.0*covm[i*ngroup+j]);
 t  = delta/stderror;
 df  = xymean[i*(ngroup+1)]+xymean[j*(ngroup+1)]-2;
 pvalue = 1.0 - imsls_f_t_cdf(t, df);
 printf(" %d vs %d  |  %7.4f  |  %7.4f  | %7.3f  | "

 "%7.5f\n", i+1, j+1, delta, stderror, t, pvalue);
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 }
 }

}

Output

            * * * TEST FOR PARALLELISM * * *
                      Sum of    Mean        F    Prob of
SOURCE          DF   Squares  Square      TEST  Larger F
Extra due to
Nonparallelism  6      0.05      0.01   0.35534  0.901
Extra Assuming
Nonparallelism 28      0.62      0.02
Error Assuming
Parallelism    34      0.67
            * * * ANALYSIS OF VARIANCE * * *
                 Sum of        Mean               Prob of
Source  DF     Squares       Square   Overall F Larger F
Model    5     0.352517    0.070503   3.576395   0.0105
Error   34     0.670261    0.019714
Total   39     1.022778
         * * * ADJUSTED ANALYSIS OF VARIANCE * * *
                               Sum of       F    Prob of
Source                   DF   Squares     TEST  Larger F
Groups after Covariates  3        0.17    2.90   0.04931
Covariates after Groups  2        0.17    4.44   0.01939
          * * * GROUP MEANS * * *
GROUP | Unadjusted  | Adjusted | Std. Error
  1   |   1.4640    |  1.4614  |   0.0448
  2   |   1.3190    |  1.3068  |   0.0446
  3   |   1.4450    |  1.4429  |   0.0447
  4   |   1.3250    |  1.3418  |   0.0449
     * * * STUDENT-T MULTIPLE COMPARISONS * * *
GROUPS |   DIFF  | Std. Error | Student-t | P-Value
1 vs 2 |  0.1546 |   0.0630   |   2.455   | 0.01225
1 vs 3 |  0.0185 |   0.0637   |   0.290   | 0.38750
1 vs 4 |  0.1196 |   0.0638   |   1.875   | 0.03854
2 vs 3 | -0.1362 |   0.0632   |  -2.153   | 0.97743
2 vs 4 | -0.0350 |   0.0638   |  -0.549   | 0.70528
3 vs 4 |  0.1011 |   0.0631   |   1.602   | 0.06330
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anova_factorial
Analyzes a balanced factorial design with fixed effects.

Synopsis
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float y[],…, 0)

The type double function is imsls_d_anova_factorial.

Required Arguments
int n_subscripts  (Input)

Number of subscripts. Number of factors in the model + 1 (for the error term).

int n_levels  (Input)
Array of length n_subscripts containing the number of levels for each of the factors for the first 
n_subscripts − 1 elements. n_levels [n_subscripts − 1] is the number of observations 
per cell.

float y[]  (Input)
Array of length n_levels [0]*n_levels [1] × … *n_levels [n_subscripts − 1] contain-
ing the responses. Argument y must not contain NaN for any of its elements; i.e., missing values are 
not allowed.

Return Value
The p-value for the overall F test.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float y[],

IMSLS_MODEL_ORDER, int model_order,
IMSLS_PURE_ERROR, or
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IMSLS_POOL_INTERACTIONS,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_TEST_EFFECTS, float **test_effects,
IMSLS_TEST_EFFECTS_USER, float test_effects[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
0)

Optional Arguments
IMSLS_MODEL_ORDER, int model_order  (Input)

Number of factors to be included in the highest-way interaction in the model. Argument 
model_order must be in the interval [1, n_subscripts − 1]. For example, a model_order of 
1 indicates that a main effect model will be analyzed, and a model_order of 2 indicates that two-
way interactions will be included in the model. Default: model_order = n_subscripts − 1.

IMSLS_PURE_ERROR  (Input)

or

IMSLS_POOL_INTERACTIONS  (Input)
IMSLS_PURE_ERROR, the default option, indicates factor n_subscripts is error. Its main effect 
and all its interaction effects are pooled into the error with the other (model_order + 1)-way and 
higher-way interactions. IMSLS_POOL_INTERACTIONS indicates factor n_subscripts is not 
error. Only (model_order + 1)-way and higher-way interactions are included in the error.

IMSLS_ANOVA_TABLE, float **anova_table  (Output)
Address of a pointer to an internally allocated array of size 15 containing the analysis of variance 
table. The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.
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Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[]  (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_TEST_EFFECTS, float **test_effects  (Output)
Address of a pointer to an NEF × 4 internally allocated array containing a matrix containing statistics 
relating to the sums of squares for the effects in the model. Here,

where n is given by n_subscripts if IMSLS_POOL_INTERACTIONS is specified; otherwise, 
n_subscripts − 1.

Suppose the factors are A, B, C, and error. With model_order = 3, rows 0 through NEF − 1 would 
correspond to A, B, C, AB, AC, BC, and ABC, respectively. The columns of test_effects are as 
follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall mean of y.

14 Coefficient of variation (in percent).

Column Description

0 Degrees of freedom.

1 Sum of squares.

2 F-statistic.

3 p-value.

Element Analysis of Variance Statistics

NEF =
n
1 +

n
2 + … +

n
min (n,|model_order|)
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IMSLS_TEST_EFFECTS_USER, float test_effects[]  (Output)
Storage for array test_effects is provided by the user. See IMSLS_TEST_EFFECTS.

IMSLS_MEANS, float **means  (Output)
Address of a pointer to an internally allocated array of length 
(n_levels [0] + 1) × (n_levels [1] + 1) × … × (n_levels[n − 1] + 1) containing the subgroup 
means. 

See argument IMSLS_TEST_EFFECTS for a definition of n. If the factors are A, B, C, and error, the 
ordering of the means is grand mean, A means, B means, C means, AB means, AC means, BC means, 
and ABC means.

IMSLS_MEANS_USER, float means[]  (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Description
Function imsls_f_anova_factorial performs an analysis for an n-way classification design with balanced 
data. For balanced data, there must be an equal number of responses in each cell of the n-way layout. The effects 
are assumed to be fixed effects. The model is an extension of the two-way model to include n factors. The interac-
tions (two-way, three-way, up to n-way) can be included in the model, or some of the higher-way interactions can 
be pooled into error. The argument model_order specifies the number of factors to be included in the high-
est-way interaction. For example, if three-way and higher-way interactions are to be pooled into error, set 
model_order = 2. (By default, model_order = n_subscripts − 1 with the last subscript being the error 
subscript.) Argument IMSLS_PURE_ERROR indicates there are repeated responses within the n-way cell; 
IMSLS_POOL_INTERACTIONS_INTO_ERROR indicates otherwise.

Function imsls_f_anova_factorial requires the responses as input into a single vector y in lexicographi-
cal order, so that the response subscript associated with the first factor varies least rapidly, followed by the 
subscript associated with the second factor, and so forth. Hemmerle (1967, Chapter 5) discusses the computa-
tional method.

Examples 

Example 1

A two-way analysis of variance is performed with balanced data discussed by Snedecor and Cochran (1967, Table 
12.5.1, p. 347). The responses are the weight gains (in grams) of rats that were fed diets varying in the source (A) 
and level (B) of protein. The model is 
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where

for i = 1, 2. The first responses in each cell in the two-way layout are given in the following table:

#include <imsls.h>
#include <stdio.h>
int main ()
{
   int       n_subscripts= 3;
   int       n_levels[3] = {3,2,10};
   float     p_value;
   float     y[60] = {
       73.0, 102.0, 118.0, 104.0, 81.0,
       107.0, 100.0, 87.0, 117.0, 111.0,
       90.0, 76.0, 90.0, 64.0, 86.0,
       51.0, 72.0, 90.0, 95.0, 78.0,
       98.0, 74.0, 56.0, 111.0, 95.0,
       88.0, 82.0, 77.0, 86.0, 92.0,
       107.0, 95.0, 97.0, 80.0, 98.0,
       74.0, 74.0, 67.0, 89.0, 58.0,
       94.0, 79.0, 96.0, 98.0, 102.0,
       102.0, 108.0, 91.0, 120.0, 105.0,
       49.0, 82.0, 73.0, 86.0, 81.0,
       97.0, 106.0, 70.0, 61.0, 82.0};
   p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
       0);
   printf("P-value = %10.6f\n",p_value);
}

Output

P-value =  0.00229

Protein Source (A)

Protein Level (B) Beef Cereal Pork

High 73, 102, 118, 104, 81, 
107, 100, 87, 117, 111

98, 74, 56, 111, 
95, 88, 82, 77, 
86, 92

94, 79, 96, 98, 102, 
102, 108, 91, 120, 105

Low 90, 76, 90, 64, 86, 51, 
72, 90, 95, 78

107, 95, 97, 80, 
98, 74, 74, 67, 
89, 58

49, 82, 73, 86, 81, 97, 
106, 70, 61, 82

yi j k = μ + αi + β j + γi j + ɛi j k i = 1,2; j = 1,2,3; k = 1,2, … ,10

∑
i=1

2

αi = 0;∑
j=1

3

β j = 0;∑
i=1

2

γi j = 0 for j = 1,2,3; and ∑
j=1

3

γi j = 0
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Example 2

In this example, the same model and data is fit as in the initial example, but optional arguments are used for a 
more complete analysis.

#include <imsls.h>
#include <stdio.h>
int main ()
{
   int       n_subscripts= 3;
   int       n_levels[3] = {3,2,10};
   float     p_value;
   float     *test_effects, *means, *anova_table;
   float     y[60] = {
       73.0, 102.0, 118.0, 104.0, 81.0,
       107.0, 100.0, 87.0, 117.0, 111.0,
       90.0, 76.0, 90.0, 64.0, 86.0,
       51.0, 72.0, 90.0, 95.0, 78.0,
       98.0, 74.0, 56.0, 111.0, 95.0,
       88.0, 82.0, 77.0, 86.0, 92.0,
       107.0, 95.0, 97.0, 80.0, 98.0,
       74.0, 74.0, 67.0, 89.0, 58.0,
       94.0, 79.0, 96.0, 98.0, 102.0,
       102.0, 108.0, 91.0, 120.0, 105.0,
       49.0, 82.0, 73.0, 86.0, 81.0,
       97.0, 106.0, 70.0, 61.0, 82.0};
   char     *labels[] = {
       "degrees of freedom for the model",
       "degrees of freedom for error",
       "total (corrected) degrees of freedom",
       "sum of squares for the model",
       "sum of squares for error",
       "total (corrected) sum of squares",
       "model mean square", "error mean square",
       "F-statistic", "p-value",
       "R-squared (in percent)","Adjusted R-squared (in percent)",
       "est. standard deviation of the model error",
       "overall mean of y",
       "coefficient of variation (in percent)"};
   char *test_row_labels[] = {"A", "B", "A*B"};
   char *test_col_labels[] = {"Source", "DF", "Sum of\nSquares",
       "Mean\nSquare", "Prob. of\nLarger F"};
   char *mean_row_labels[] = {"grand mean", "A1", "A2", "A3",
       "B1", "B2", "A1*B1", "A1*B2", "A2*B1", "A2*B2", "A3*B1",
       "A3*B2"};
   /* Perform analysis */
   p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
       IMSLS_ANOVA_TABLE,  &anova_table,
       IMSLS_TEST_EFFECTS, &test_effects, 
       IMSLS_MEANS,        &means,
       0);
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   printf("P-value = %10.6f",p_value);
   /* Print results */
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
       anova_table, 
       IMSLS_ROW_LABELS,  labels,
       IMSLS_WRITE_FORMAT, "%11.4f", 
       0);
   imsls_f_write_matrix("* * * Variation Due to the Model * * *", 3, 4,
       test_effects,
       IMSLS_ROW_LABELS,  test_row_labels,
       IMSLS_COL_LABELS,  test_col_labels,
       IMSLS_WRITE_FORMAT, "%11.4f", 
       0);
   imsls_f_write_matrix("* * * Subgroup Means * * *", 12, 1, means,
       IMSLS_ROW_LABELS,  mean_row_labels,
       IMSLS_WRITE_FORMAT, "%11.4f",
       0);
}

Output

P-value =  0.002299 
          * * * Analysis of Variance * * *
degrees of freedom for the model                5.0000
degrees of freedom for error                   54.0000
total (corrected) degrees of freedom           59.0000
sum of squares for the model                 4612.9346
sum of squares for error                    11585.9990
total (corrected) sum of squares            16198.9336
model mean square                             922.5869
error mean square                             214.5555
F-statistic                                     4.3000
p-value                                         0.0023
R-squared (in percent)                         28.4768
Adjusted R-squared (in percent)                21.8543
est. standard deviation of the model error     14.6477
overall mean of y                              87.8667
coefficient of variation (in percent)          16.6704

         * * * Variation Due to the Model * * *
Source          DF      Sum of        Mean     Prob. Of
                        Squares      Square    Larger F
A           2.0000    266.5330      0.6211      0.5411
B           1.0000   3168.2678     14.7667      0.0003
A*B         2.0000   1178.1337      2.7455      0.0732

* * * Subgroup Means * * *
grand mean     87.8667
 A1             89.6000
 A2             84.9000
 A3             89.1000
 B1             95.1333
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 B2             80.6000
 A1*B1         100.0000
 A1*B2          79.2000
 A2*B1          85.9000
 A2*B2          83.9000
 A3*B1          99.5000
 A3*B2          78.7000

Example 3

This example performs a three-way analysis of variance using data discussed by Peter W.M. John (1971, 
pp. 91−92). The responses are weights (in grams) of roots of carrots grown with varying amounts of applied 
nitrogen (A), potassium (B), and phosphorus (C). Each cell of the three-way layout has one response. Note that the 
ABC interactions sum of squares, which is 186, is given incorrectly by Peter W.M. John (1971, Table 5.2.) The three-
way layout is given in the following table:

#include <imsls.h>
#include <stdio.h>
int main ()
{
   int       n_subscripts= 3;
   int       n_levels[3] = {3,3,3};
   float     p_value;
   float     *test_effects, *anova_table;
   float     y[27] = {
        88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,
        90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75,
        112.3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,
        104.51, 110.94, 102.87};
   char     *labels[] = {
       "degrees of freedom for the model",
       "degrees of freedom for error",
       "total (corrected) degrees of freedom",
       "sum of squares for the model",
       "sum of squares for error",
       "total (corrected) sum of squares",
       "model mean square", "error mean square",
       "F-statistic", "p-value",
       "R-squared (in percent)","Adjusted R-squared (in percent)",
       "est. standard deviation of the model error",
       "overall mean of y",
       "coefficient of variation (in percent)"};
   char     *test_row_labels[] = {"A", "B", "C", "A*B", "A*C", "B*C"};

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87
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   char     *test_col_labels[] = {
       "Source", "DF", "Sum of\nSquares",
       "Mean\nSquare", "Prob. of\nLarger F"};
       /* Perform analysis */
   p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y, 
       IMSLS_ANOVA_TABLE,  &anova_table,
       IMSLS_TEST_EFFECTS, &test_effects,
       IMSLS_POOL_INTERACTIONS, 
       0);
   /* Print results */
   printf("P-value = %10.6f",p_value);
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
       anova_table,
       IMSLS_ROW_LABELS,  labels,
       IMSLS_WRITE_FORMAT, "%11.4f",
       0);
   imsls_f_write_matrix("* * * Variation Due to the Model * * *", 6, 4,
       test_effects,
       IMSLS_ROW_LABELS,  test_row_labels,
       IMSLS_COL_LABELS,  test_col_labels,
       IMSLS_WRITE_FORMAT, "%11.4f", 
       0);
}

Output

P-value =  0.008299 
          * * * Analysis of Variance * * *
degrees of freedom for the model               18.0000
degrees of freedom for error                    8.0000
total (corrected) degrees of freedom           26.0000
sum of squares for the model                 2395.7290
sum of squares for error                      185.7763
total (corrected) sum of squares             2581.5054
model mean square                             133.0961
error mean square                              23.2220
F-statistic                                     5.7315
p-value                                         0.0083
R-squared (in percent)                         92.8036
Adjusted R-squared (in percent)                76.6116
est. standard deviation of the model error      4.8189
overall mean of y                              98.9619
coefficient of variation (in percent)           4.8695
         * * * Variation Due to the Model * * *
Source          DF      Sum of        Mean    Prob. Of
                        Squares      Square    Larger F
A           2.0000    488.3678     10.5152      0.0058
B           2.0000   1090.6559     23.4832      0.0004
C           2.0000     49.1484      1.0582      0.3911
A*B         4.0000    142.5856      1.5350      0.2804
A*C         4.0000     32.3474      0.3482      0.8383
B*C         4.0000    592.6240      6.3800      0.0131
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anova_nested
Analyzes a completely nested random model with possibly unequal numbers in the subgroups. 

Synopsis
#include <imsls.h>
float *imsls_f_anova_nested (int n_factors, int equal_option, int n_levels[], float y[], 

..., 0)

The type double function is imsls_d_anova_nested.

Required Arguments
int n_factors (Input)

Number of factors (number of subscripts) in the model, including error.

int equal_option (Input)
Equal numbers option. 

int n_levels[]  (Input)
Array with the number of levels for each factor.

If equal_option = 1, n_levels is of length n_factors and contains the number of levels for 
each of the factors. 

equal_option Description

0 Unequal numbers in the 
subgroups.

1 Equal numbers in the 
subgroups.
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Example: Suppose there are 3 factors, A, B, and C. A has two levels (A1, A2), B has 3 levels at each level 
of A, and C has 2 levels at each level of B. n_levels = {2,3,2} and the number of observations is 
nobs = 2 × 3 × 2 = 12. 

If equal_option = 0, n_levels contains the number of levels of each factor at each level of the 
factor in which it is nested. 

Example: Suppose there are 3 factors, A, B, and C, with C nested in B and B nested in A. A has two lev-
els (A1, A2), B has up to 3 levels, and C has up to 2 levels. In the equal_option = 0 case, the 
function needs to know explicitly how the number of levels varies throughout. As specified in the 
table, A has two levels (n_levels[0] = 2), B has 3 levels in level 1 of A (n_levels[1] = 3) and 2 
levels in level 2 of A (n_levels[2] = 2). Similarly, factor C has 2 levels in the A1-B1 and A1-B2 
combinations (n_levels[3] = 2, n_levels[4] = 2), but only 1 level in the A1-B3 combination 
(n_levels[5] = 1). n_levels = {2,3,2,2,2,1,1,2} and the number of observations is the sum of 
the number of levels in the last factor, C, nobs = 2 + 2 + 1 + 1 + 2 = 8: 

A levels B levels C levels y indices
1 1 1 0

2 1

2 1 2

2 3

3 1 4

2 5

2 1 1 6

2 7

2 1 8

2 9

3 1 10

2 11

n_levels 2 3 2

nobs 2× 3× 2 =12

equal_option = 1 example
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float y[]  (Input)
Array of length nobs containing the responses.

Return Value
The p-value for the F-statistic, anova_table[9].

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_anova_nested (int n_factors, int equal_option, int n_levels[], float y[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[],
IMSLS_EMS, float **expect_mean_sq,
IMSLS_EMS_USER, float expect_mean_sq[],
IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
0)

A levels B levels C levels y indices
1 1 1 0

2 1

2 1 2

2 3

3 1 4

2 1 1 5

2 1 6

2 7

n_levels 2 3, 2 2 , 2, 1, 1, 2

nobs 2 + 2 + 1 + 1 + 2 = 8

equal_option = 0 example
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Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table,  (Output)

Address of a pointer to an internally allocated array of size 15 containing the analysis of variance 
table. The analysis of variance statistics are as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[]  (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE

IMSLS_CONFIDENCE, float confidence  (Input)
Confidence level for two-sided interval estimates on the variance components, in percent. 
confidence percent confidence intervals are computed, hence, confidence must be in the 
interval [0.0, 100.0). confidence often will be 90.0, 95.0, or 99.0. For one-sided intervals with con-
fidence level ONECL, ONECL in the interval [50.0, 100.0), set confidence = 100.0 - 2.0 × (100.0 -
ONECL).

Default: confidence = 95.0.

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent)

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall mean of y.

14 Coefficient of variation (in percent).
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IMSLS_VARIANCE_COMPONENTS, float **variance_components  (Output)
Address to a pointer to an internally allocated array. variance_components is an n_factors 
by 9 matrix containing statistics relating to the particular variance components in the model. Rows of 
variance_components correspond to the n_factors factors. Columns of 
variance_components are as follows: 

A test for the error variance equal to zero cannot be performed. variance_components 
[(n_factors-1)*9+3] and variance_components [(n_factors-1)*9+4] are set to 
NaN (not a number). Note that the p-value for the F test is returned as 0.0 when the value is so small 
that all significant digits have been lost.

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]  (Output)
Storage for array variance_components is provided by the user. See 
IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **expect_mean_sq  (Output)
Address to a pointer to an internally allocated array of length n_factors * (n_factors +1) / 2 
with expected mean square coefficients. 

IMSLS_EMS_USER, float expect_mean_sq[]  (Output)
Storage for array expect_mean_sq is provided by the user. See IMSLS_EMS.

Column Description

0 Degrees of freedom.

1 Sum of squares.

2 Mean squares.

3 F–statistic.

4 p-value for F test.

5 Variance component estimate.

6 Percent of variance of variance 
explained by variance component.

7 Lower endpoint for a confidence interval 
on the variance component.

8 Upper endpoint for a confidence interval 
on the variance component.
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IMSLS_Y_MEANS, float **y_means  (Output)
Address to a pointer to an internally allocated array containing the subgroup means. 

If the factors are labeled A, B, C, and error, the ordering of the means is grand mean, A means, AB 
means, and then ABC means.

IMSLS_Y_MEANS_USER, float y_means[]  (Output) 
Storage for array y_means is provided by the user. See IMSLS_Y_MEANS

Description
Function imsls_f_anova_nested analyzes a nested random model with equal or unequal numbers in the 
subgroups. The analysis includes an analysis of variance table and computation of subgroup means and variance 
component estimates. Anderson and Bancroft (1952, pages 325-330) discuss the methodology. The analysis of 
variance method is used for estimating the variance components. This method solves a linear system in which 
the mean squares are set to the expected mean squares. A problem that Hocking (1985, pages 324-330) dis-
cusses is that this method can yield negative variance component estimates. Hocking suggests a diagnostic 
procedure for locating the cause of a negative estimate. It may be necessary to reexamine the assumptions of 
the model.

Examples

Example 1

An analysis of a three-factor nested random model with equal numbers in the subgroups is performed using data 
discussed by Snedecor and Cochran (1967, Table 10.16.1, pages 285−288). The responses are calcium concen-
trations (in percent, dry basis) as measured in the leaves of turnip greens. Four plants are taken at random, then 
three leaves are randomly selected from each plant. 

Finally, from each selected leaf two samples are taken to determine calcium concentration. The model is

yijk = μ + αi + βij + eijk  i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the i-th plant, the αi’s are the plant 

effects and are taken to be independently distributed 

Equal 
options Length of y_means

0 1 + sum of values in n_levels for the first (n_factors-1) factors

1 1 + n_levels[0] + n_levels[0] *n_levels[1] + … + n_levels[0]* 
n_levels[1] * … * n_levels[n_factors – 2].
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the βij’s are leaf effects each independently distributed

and the ɛijk’s are errors each independently distributed N(0, σ2). The effects are all assumed to be independently 

distributed. The data are given in the following table:

#include <imsls.h>
#include <stdio.h>
int main()
{
   float pvalue, *aov, *varc, *ymeans, *ems;
   float y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87,
       1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78, 
       3.87, 4.07, 4.12, 3.31, 3.31
   };
   int n_levels[] = {4, 3, 2};
   char *aov_labels[] = {
       "degrees of freedom for model", "degrees of freedom for error",
       "total (corrected) degrees of freedom", 
       "sum of squares for model", "sum of squares for error",
       "total (corrected) sum of squares", "model mean square",
       "error mean square", "F-statistic", "p-value", 
       "R-squared (in percent)", "adjusted R-squared (in percent)",
       "est. standard deviation of within error", "overall mean of y",
       "coefficient of variation (in percent)"

Plant Leaf Samples

1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80

2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19

3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55

4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31

N 0, σ2

N 0, σβ
2
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   };
   char *ems_labels[] = {
       "Effect A and Error",   "Effect A and Effect B",
       "Effect A and Effect A", "Effect B and Error",
       "Effect B and Effect B", "Error and Error"
   };
   char *means_labels[] = {
       "Grand mean",  " A means 1",  " A means 2",
       " A means 3",  " A means 4",  "AB means 1 1",
       "AB means 1 2", "AB means 1 3", "AB means 2 1",
       "AB means 2 2", "AB means 2 3", "AB means 3 1",
       "AB means 3 2", "AB means 3 3", "AB means 4 1",
       "AB means 4 2", "AB means 4 3"
   };
   char *components_labels[] = {
       "degrees of freedom for A", "sum of squares for A", 
       "mean square of A", "F-statistic for A", "p-value for A",
       "Estimate of A", "Percent Variation Explained by A",
       "95% Confidence Interval Lower Limit for A",
       "95% Confidence Interval Upper Limit for A",
       "degrees of freedom for B", "sum of squares for B",
       "mean square of B", "F-statistic for B", "p-value for B",
       "Estimate of B", "Percent Variation Explained by B",
       "95% Confidence Interval Lower Limit for B",
       "95% Confidence Interval Upper Limit for B",
       "degrees of freedom for Error", "sum of squares for Error",
       "mean square of Error", "F-statistic for Error", 
       "p-value for Error", "Estimate of Error", 
       "Percent Explained by Error",
       "95% Confidence Interval Lower Limit for Error",
       "95% Confidence Interval Upper Limit for Error"
   };
   pvalue = imsls_f_anova_nested(3, 1, n_levels, y, 
       IMSLS_ANOVA_TABLE, &aov,
       IMSLS_Y_MEANS, &ymeans,
       IMSLS_VARIANCE_COMPONENTS, &varc,
       IMSLS_EMS, &ems,
       0);
   printf("pvalue = %f\n", pvalue); 
   imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov, 
       IMSLS_ROW_LABELS, aov_labels,
       IMSLS_WRITE_FORMAT, "%11.4g",
       0);
   imsls_f_write_matrix(
       "* * * Expected Mean Square Coefficients * * *", 
       6, 1, ems,
       IMSLS_ROW_LABELS, ems_labels, 
       IMSLS_WRITE_FORMAT, "%6.2f", 
       0);
   imsls_f_write_matrix("* * * Means * * *", 17, 1, ymeans, 
       IMSLS_ROW_LABELS, means_labels,
       IMSLS_WRITE_FORMAT, "%6.2f",
       0);
   imsls_f_write_matrix(
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       "* * Analysis of Variance / Variance Components * *",
       27, 1, varc,
       IMSLS_ROW_LABELS, components_labels,
       IMSLS_WRITE_FORMAT, "%11.4g",
       0);
}

Output

pvalue = 0.000000
 * * * Analysis of Variance * * *

degrees of freedom for model  11
degrees of freedom for error  12
total (corrected) degrees of freedom  23
sum of squares for model  10.19
sum of squares for error  0.07985
total (corrected) sum of squares  10.27
model mean square  0.9264
error mean square  0.006655
F-statistic  139.2
p-value  6.769e-011
R-squared (in percent)  99.22
adjusted R-squared (in percent)  98.51
est. standard deviation of within error  0.08158
overall mean of y  3.012
coefficient of variation (in percent)  2.708
* * * Expected Mean Square Coefficients * * *

 Effect A and Error  1.00
 Effect A and Effect B  2.00
 Effect A and Effect A  6.00
 Effect B and Error  1.00
 Effect B and Effect B  2.00
 Error and Error  1.00

 * * * Means * * *
Grand mean  3.01
A means 1  3.17
A means 2  2.18
A means 3  2.95
A means 4  3.74

AB means 1 1  3.18
AB means 1 2  3.50
AB means 1 3  2.84
AB means 2 1  2.45
AB means 2 2  1.89
AB means 2 3  2.19
AB means 3 1  2.72
AB means 3 2  3.59
AB means 3 3  2.55
AB means 4 1  3.82
AB means 4 2  4.10
AB means 4 3  3.31

 * * Analysis of Variance / Variance Components * *
degrees of freedom for A  3
sum of squares for A  7.56
mean square of A  2.52
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F-statistic for A  7.665
p-value for A  0.009725
Estimate of A  0.3652
Percent Variation Explained by A  68.53
95% Confidence Interval Lower Limit for A  0.03955
95% Confidence Interval Upper Limit for A  5.787
degrees of freedom for B  8
sum of squares for B  2.63
mean square of B  0.3288
F-statistic for B  49.41
p-value for B  5.092e-008
Estimate of B  0.1611
Percent Variation Explained by B  30.22
95% Confidence Interval Lower Limit for B  0.06967
95% Confidence Interval Upper Limit for B  0.6004
degrees of freedom for Error  12
sum of squares for Error  0.07985
mean square of Error  0.006655
F-statistic for Error  ...........
p-value for Error  ...........
Estimate of Error  0.006655
Percent Explained by Error  1.249
95% Confidence Interval Lower Limit for Error  0.003422
95% Confidence Interval Upper Limit for Error  0.01813

Example 2

An analysis of a three-factor nested random model with unequal numbers in the subgroups is performed. The 
data are given in the following table:

A B C

1 1

2

23.0

31.0

19.0

37.0

2 1

2

33.0

29.0

29.0

3 1 36.0 29.0 33.0

4 1

2

3

4

5

6

7

8

9

11.0

23.0

33.0

23.0

26.0

39.0

20.0

24.0

36.0

21.0

18.0
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#include <imsls.h>
int main()
{
   float *aov, *ems, *vc, *ymeans;
   float y[36] = {23.0, 19.0, 31.0, 37.0, 
      33.0, 29.0, 29.0, 
      36.0, 29.0, 33.0, 
      11.0, 21.0, 
      23.0, 18.0, 
      33.0, 23.0, 26.0, 39.0, 20.0, 24.0, 36.0,
      25.0, 33.0, 
      28.0, 31.0, 
      25.0, 42.0, 
      32.0, 36.0, 
      41.0, 35.0, 16.0, 30.0, 40.0, 32.0, 44.0
      };
   int nl[32] = {
      6,                  /*  Factor A */
      2, 2, 1, 9, 1, 10,  /*  Factor B */
      2, 2,               /*  Factor C */
      2, 1, 
      3, 
      2, 2, 1, 1, 1, 1, 1, 1, 1, 
      2, 
      2, 2, 2, 1, 1, 1, 1, 1, 1, 1
      };
   int i, ymeans_length;
   char *aov_labels[] = {
      "degrees of freedom for model", "degrees of freedom for error",
      "total (corrected) degrees of freedom",
      "sum of squares for model", "sum of squares for error",
      "total (corrected) sum of squares", "model mean square",
      "error mean square", "F-statistic", "p-value",
      "R-squared (in percent)", "adjusted R-squared (in percent)",

5 1 25.0 33.0

6 1

2

3

4

5

6

7

8

9

10

28.0

25.0

32.0

41.0

35.0

16.0

30.0

40.0

32.0

44.0

31.0

42.0

36.0

A B C
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      "est. standard deviation of within error",
      "overall mean of y",
      "coefficient of variation (in percent)"
      };
    char *ems_labels[] = {
       "Effect A and Error", "Effect A and Effect B",
       "Effect A and Effect A", "Effect B and Error",
       "Effect B and Effect B", "Error and Error"
      };
    char *means_labels[] = {
       "Grand mean",  " A means 1",  " A means 2",
       " A means 3",  " A means 4",  " A means 5",
       " A means 6",  "AB means 1 1", "AB means 1 2",
       "AB means 2 1", "AB means 2 2", "AB means 3 1",
       "AB means 4 1", "AB means 4 2", "AB means 4 3",
       "AB means 4 4", "AB means 4 5", "AB means 4 6",
       "AB means 4 7", "AB means 4 8", "AB means 4 9",
       "AB means 5 1", "AB means 6 1", "AB means 6 2",
       "AB means 6 3", "AB means 6 4", "AB means 6 5",
       "AB means 6 6", "AB means 6 7", "AB means 6 8",
       "AB means 6 9", "AB means 6 10"
      };
    char *components_labels[] = {
       "degrees of freedom for A", "sum of squares for A",
       "mean square of A", "F-statistic for A", "p-value for A",
       "Estimate of A", "Percent Variation Explained by A",
       "95% Confidence Interval Lower Limit for A",
       "95% Confidence Interval Upper Limit for A",
       "degrees of freedom for B", "sum of squares for B",
       "mean square of B", "F-statistic for B", "p-value for B",
       "Estimate of B", "Percent Variation Explained by B",
       "95% Confidence Interval Lower Limit for B",
       "95% Confidence Interval Upper Limit for B",
       "degrees of freedom for Error", "sum of squares for Error",
       "mean square of Error", "F-statistic for Error",
       "p-value for Error", "Estimate of Error",
       "Percent Explained by Error",
       "95% Confidence Interval Lower Limit for Error",
       "95% Confidence Interval Upper Limit for Error"};
    imsls_f_anova_nested (3, 0, nl, y,
       IMSLS_ANOVA_TABLE, &aov,
       IMSLS_EMS, &ems,
       IMSLS_VARIANCE_COMPONENTS, &vc,
       IMSLS_Y_MEANS, &ymeans, 
       0);
    imsls_f_write_matrix("***AnalysisofVariance ***", 15, 1, aov,
       IMSLS_ROW_LABELS, aov_labels,
       IMSLS_WRITE_FORMAT, "%10.5f",
       0);
    imsls_f_write_matrix("***ExpectedMeanSquare Coefficients ***",
       6, 1, ems, 
       IMSLS_ROW_LABELS, ems_labels,
       IMSLS_WRITE_FORMAT, "%6.2f",
       0);
    /* sum level count for factors 1 and 2 */    
    ymeans_length = 1;      
    for (i=0; i<=6;i++) ymeans_length += nl[i]; 
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    imsls_f_write_matrix("* * * Means ***", ymeans_length, 1, ymeans,
       IMSLS_ROW_LABELS, means_labels,
       IMSLS_WRITE_FORMAT, "%6.2f",
       0);
    imsls_f_write_matrix(
       "** Analysis of Variance / Variance Components **", 27, 1, vc,
       IMSLS_ROW_LABELS, components_labels,
       IMSLS_WRITE_FORMAT, "%10.5f",
       0);
}

Output

            ***AnalysisofVariance ***
degrees of freedom for model              24.00000
degrees of freedom for error              11.00000
total (corrected) degrees of freedom      35.00000
sum of squares for model                1810.80591
sum of squares for error                 310.16650
total (corrected) sum of squares        2120.97241
model mean square                         75.45025
error mean square                         28.19695
F-statistic                                2.67583
p-value                                    0.04587
R-squared (in percent)                    85.37621
adjusted R-squared (in percent)           53.46977
est. standard deviation of within error    5.31008
overall mean of y                         29.52778
coefficient of variation (in percent)     17.98334
***ExpectedMeanSquare Coefficients ***
    Effect A and Error      1.00
    Effect A and Effect B   1.97
    Effect A and Effect A   5.38
    Effect B and Error      1.00
    Effect B and Effect B   1.29
    Error and Error         1.00
  * * * Means ***
Grand mean     29.53
A means 1      27.50
A means 2      30.33
A means 3      32.67
A means 4      24.91
A means 5      29.00
A means 6      33.23
AB means 1 1   21.00
AB means 1 2   34.00
AB means 2 1   31.00
AB means 2 2   29.00
AB means 3 1   32.67
AB means 4 1   16.00
AB means 4 2   20.50
AB means 4 3   33.00
AB means 4 4   23.00
AB means 4 5   26.00
AB means 4 6   39.00
AB means 4 7   20.00
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AB means 4 8   24.00
AB means 4 9   36.00
AB means 5 1   29.00
AB means 6 1   29.50
AB means 6 2   33.50
AB means 6 3   34.00
AB means 6 4   41.00
AB means 6 5   35.00
AB means 6 6   16.00
AB means 6 7   30.00
AB means 6 8   40.00
AB means 6 9   32.00
AB means 6 10  44.00
  * * Analysis of Variance / Variance Components * *
degrees of freedom for A                         5.00000
sum of squares for A                           461.42230
mean square of A                                92.28446
F-statistic for A                                0.98770
p-value for A                                    0.46007
Estimate of A                                   -0.21371
Percent Variation Explained by A              ..........
95% Confidence Interval Lower Limit for A     ..........
95% Confidence Interval Upper Limit for A     ..........
degrees of freedom for B                        19.00000
sum of squares for B                          1349.38354
mean square of B                                71.02019
F-statistic for B                                2.51872
p-value for B                                    0.05965
Estimate of B                                   33.19880
Percent Variation Explained by B                54.07344
95% Confidence Interval Lower Limit for B        0.00000
95% Confidence Interval Upper Limit for B      100.58640
degrees of freedom for Error                    11.00000
sum of squares for Error                       310.16650
mean square of Error                            28.19695
F-statistic for Error                         ..........
p-value for Error                             ..........
Estimate of Error                               28.19695
Percent Explained by Error                      45.92656
95% Confidence Interval Lower Limit for Error   14.14990
95% Confidence Interval Upper Limit for Error   81.28591
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anova_balanced
Analyzes a balanced complete experimental design for a fixed, random, or mixed model.

Synopsis
#include <imsls.h>
float imsls_f_anova_balanced (int n_factors, int n_levels[], float y[], int n_random, 

int index_random_factor[], int n_model_effects, int n_factors_per_effect[], 
int index_factor_per_effect[], ..., 0)

The type double function is imsls_d_anova_balanced.

Required Arguments
int n_factors (Input)

Number of factors (number of subscripts) in the model, including error.

int n_levels[]  (Input)
Array of length n_factors containing the number of levels for each of the factors.

float y[]  (Input)
Array of length n_levels[0] × n_levels[1] × ... × n_levels[n_factors-1] containing 
the responses. y[] must not contain NaN (not a number) for any of its elements, i.e., missing values 
are not allowed.

int n_random (Input)
For positive n_random, |n_random| is the number of random factors. For negative n_random, 
|n_random| is the number of random effects (sources of variation).

int index_random_factor[] (Input)
Index array of length |n_random| containing either the factor numbers to be considered random 
(for n_random positive) or containing the effect numbers to be considered random (for n_random 
negative). If n_random = 0, index_random_factor is not referenced. 

int n_model_effects (Input)
Number of effects (sources of variation) due to the model excluding the overall mean and error.
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int n_factors_per_effect[] (Input)
Array of length n_model_effects containing the number of factors associated with each effect in 
the model.

int index_factor_per_effect[] (Input)
Index vector of length n_factors_per_effect[0] + n_factors_per_effect[1] + . . . + 
n_factors_per_effect[n_model_effects-1]. The first 
n_factors_per_effect[0] elements give the factor numbers in the first effect. The next 
n_factors_per_effect[1] elements give the factor numbers in the second effect. The last 
n_factors_per_effect [n_model_effects-1] elements give the factor numbers in the 
last effect. Main effects must appear before their interactions. In general, an effect E cannot appear 
after an effect F if all of the indices for E appear also in F.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h> 

float imsls_f_anova_balanced (int n_factors, int n_levels[], float y[],int n_random, 
int index_random_factor[], int n_model_effects, int n_factors_per_effect[], 
int index_factor_per_effect[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_MODEL, int model,
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[],
IMSLS_EMS, float **ems,
IMSLS_EMS_USER, float ems[],
IMSLS_Y_MEANS, float **y_means,
0)
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Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table  (Output)

Address of a pointer to an internally allocated array of size 15 containing the analysis of variance 
table. The analysis of variance statistics are as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been 
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[]  (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_MODEL, int model  (Input)
Model Option

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent)

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall mean of Y.

14 Coefficient of variation (in percent).

model Meaning

0 Searle model.

1 Scheffe model .
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For the Scheffe model, effects corresponding to interactions of fixed and random factors have their 
sum over the subscripts corresponding to fixed factors equal to zero. Also, the variance of a random 
interaction effect involving some fixed factors has a multiplier for the associated variance component 
that involves the number of levels in the fixed factors. The Searle model has no summation restric-
tions on the random interaction effects and has a multiplier of one for each variance component. The 
default is model = 0.

IMSLS_CONFIDENCE, float confidence  (Input)
Confidence level for two-sided interval estimates on the variance components, in percent. 
confidence percent confidence intervals are computed, hence, confidence must be in the 
interval [0.0, 100.0). confidence often will be 90.0, 95.0, or 99.0.

For one-sided intervals with confidence level α, α in the interval [50.0, 100.0), set 
confidence = 100.0 - 2.0 × 100.0 - α). 

Default: confidence = 95.0.

IMSLS_VARIANCE_COMPONENTS, float **variance_components  (Output)
Address of a pointer to an array, variance_components. variance_components is an 
(n_model_effects + 1) by 9 array containing statistics relating to the particular variance compo-
nents or effects in the model and the error. Rows of variance_components correspond to the 
n_model_effects effects plus error. 

Elements 5 through 8 contain NaN (not a number) if the effect is fixed, i.e., if there is no variance com-
ponent to be estimated. If the variance component estimate is negative, columns 7 and 8 contain 
NaN. Note that the p-value for the F test is returned as 0.0 when the value is so small that all signifi-
cant digits have been lost.

Column Description

0 Degrees of freedom.

1 Sum of squares.

2 Mean squares.

3 F –statistic.

4 p-value for F test.

5 Variance component estimate.

6 Percent of variance of variance 
explained by variance component.

7 Lower endpoint for a confidence 
interval on the variance component.

8 Upper endpoint for a confidence 
interval on the variance component.
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IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[] (Output) 
Storage for array variance_components is provided by the user. 
See IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **ems  (Output) 
Address of a pointer to an internally allocated array of length 
(n_model_effects + 1) × (n_model_effects + 2)/2 containing expected mean 
square coefficients. Suppose the effects are A, B, and AB. The ordering of the coefficients in ems is as 
follows:

IMSLS_EMS_USER-, float ems[] (Output) 
Storage for ems is provided by the user. See IMSLS_EMS.

IMSLS_Y_MEANS, float **y_means (Output)
Address of a pointer to an internally allocated array of length 
(n_levels[0] + 1) × (n_levels [1] + 1) × ... × (n_levels [n_factors-1] + 1) containing 
the subgroup means. Suppose the factors are A, B, and C. The ordering of the means is grand mean, 
A means, B means, C means, AB means, AC means, BC means, and ABC means. 

IMSLS_Y_MEANS_USER, float y_means (Output)
Storage for y_means is provided by the user. See IMSLS_Y_MEANS.

Description
Function imsls_f_anova_balanced analyzes a balanced complete experimental design for a fixed, ran-
dom, or mixed model. The analysis includes an analysis of variance table, and computation of subgroup means 
and variance component estimates. A choice of two parameterizations of the variance components for the model 
can be made. 

Scheffé (1959, pages 274-289) discusses the parameterization for model = 1. For example, consider the follow-
ing model equation with fixed factor A and random factor B:

yijk = μ + αi + bj + cij + eijk  i = 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n

The fixed effects αi’s are subject to the restriction

Error AB B A

A ems[0] ems[1] ems[2] ems[3]

B ems[4] ems[5] ems[6]

AB ems[7] ems[8]

Error ems[9]
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the bj’s are random effects identically and independently distributed

cij are interaction effects each distributed

and are subject to the restrictions

and the eijk’s are errors identically and independently distributed N(0, σ2). In general, interactions of fixed and 

random factors have sums over subscripts corresponding to fixed factors equal to zero. Also in general, the vari-
ance of a random interaction effect is the associated variance component times a product of ratios for each fixed 
factor in the random interaction term. Each ratio depends on the number of levels in the fixed factor. In the ear-
lier example, the random interaction AB has the ratio (a-1)/a as a multiplier of 

and

In a three-way crossed classification model, an ABC interaction effect with A fixed, B random, and C fixed would 
have variance

Searle (1971, pages 400−401) discusses the parameterization for model = 0. This parameterization does not 
have the summation restrictions on the effects corresponding to interactions of fixed and random factors. Also, 
the variance of each random interaction term is the associated variance component, i.e., without the multiplier. 
This parameterization is also used with unbalanced data, which is one reason for its popularity with balanced 
data also. In the earlier example,

∑
i=1

a

αi = 0

N 0, σB
2

N 0, a − 1a σAB
2

∑
i=1

a

ci j = 0 for j = 1,2, … b

σAB
2

var yijk = σB
2 + a − 1a σAB

2 + σ2

a − 1 c − 1
ac σABC

2
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Searle (1971, pages 400−404) compares these two parameterizations. Hocking (1973) considers these different 
parameterizations and concludes they are equivalent because they yield the same variance-covariance structure 
for the responses. Differences in covariances for individual terms, differences in expected mean square coeffi-
cients and differences in F tests are just a consequence of the definition of the individual terms in the model and 
are not caused by any fundamental differences in the models. For the earlier two-way model, Hocking states that 
the relations between the two parameterizations of the variance components are

where 

are the variance components in the parameterization with model = 0.

The computations for degrees of freedom and sums of squares are the same regardless of the option specified 
by model. imsls_f_anova_balanced first computes degrees of freedom and sum of squares for a full fac-
torial design. Degrees of freedom for effects in the factorial design that are missing from the specified model are 
pooled into the model effect containing the fewest subscripts but still containing the factorial effect. If no such 
model effect exists, the factorial effect is pooled into error. If more than one such effect exists, a terminal error 
message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance components. This method solves a linear sys-
tem in which the mean squares are set to the expected mean squares. A problem that Hocking (1985, pages 
324−330) discusses is that this method can yield a negative variance component estimate. Hocking suggests a 
diagnostic procedure for locating the cause of the negative estimate. It may be necessary to re-examine the 
assumptions of the model.

The percentage of variation explained by each random effect is computed (output in variance_components 
column 6) as the variance of the associated random effect divided by the variance of y. The two parameteriza-
tions can lead to different values because of the different definitions of the individual terms in the model. For 
example, the percentage associated with the AB interaction term in the earlier two-way mixed model is computed 
for model = 1 using the formula

while for the parameterization model = 0, the percentage is computed using the formula

var yijk = σ~B
2 + σ~AB

2 + σ2

σB
2 = σ~B

2 + 1aσ
~
AB
2

σAB
2 = σ~AB

2

σ~B
2 and σ~ AB

2

%variation AB∣Model = 1 =
a − 1
a σAB

2

σB
2 + a − 1a σAB

2 + σ2
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In each case, the variance components are replaced by their estimates (stored in variance_components col-
umn 5).

Confidence intervals on the variance components are computed using the method discussed by Graybill (1976, 
Theorem 15.3.5, page 624, and Note 4, page 620). 

Example 
An analysis of a generalized randomized block design is performed using data discussed by Kirk (1982, Table 
6.10-1, pages 293−297). The model is

yijk = μ + αi + bj + cij + eijk  i = 1, 2, 3, 4;  j = 1, 2, 3, 4;  k = 1, 2

where yijk is the response for the k-th experimental unit in block j with treatment i; the αi’s are the treatment 

effects and are subject to the restriction

the bj’s are block effects identically and independently distributed

cij are interaction effects each distributed

and are subject to the restrictions

and the eijk’s are errors, identically and independently distributed N(0, σ2). The interaction effects are assumed to 

be distributed independently of the errors. 

%variation AB∣Model = 0 =
σ~AB
2

σ~B
2 + σ~AB

2 + σ2

∑
i=1

2

αi = 0

N 0, σB
2

N 0,34σAB
2

∑
i=1

4

ci j = 0 for j = 1,2,3,4
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The data are given in the following table:

#include <imsls.h>
#include <stdio.h>
int main()
{

 float pvalue = -99.;
 int n_levels[] = {4, 4, 2};
 int indrf[] = {2, 3};
 int nfef[] = {1, 1, 2};
 int indef[] = {1, 2, 1, 2};
 float y[] = {3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 

 4.0, 2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0,
 6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0

 };
 float *aov, *y_means, *variance_components, *ems;
 char  *aov_labels[] = {

 "degrees of freedom for model", "degrees of freedom for error",
 "total (corrected) degrees of freedom", 
 "sum of squares for model", "sum of squares for error", 
 "total (corrected) sum of squares", "model mean square", 
 "error mean square", "F-statistic", "p-value", 
 "R-squared (in percent)", "adjusted R-squared (in percent)",
 "est. standard deviation of within error", "overall mean of y",
 "coefficient of variation (in percent)"

 };
 char  *ems_labels[] = {

 "Effect A and Error", "Effect A and Effect AB", 
 "Effect A and Effect B", "Effect A and Effect A",
 "Effect B and Error", "Effect B and Effect AB", 
 "Effect B and Effect B", "Effect AB and Error", 
 "Effect AB and Effect AB", "Error and Error"

 };
 char  *means_labels[] = {

 "Grand mean",  
 " A means 1",  " A means 2",  " A means 3",  " A means 4",
 " B means 1",  " B means 2",  " B means 3",  " B means 4",  
 "AB means 1 1", "AB means 1 2", "AB means 1 3", "AB means 1 4", 
 "AB means 2 1", "AB means 2 2", "AB means 2 3", "AB means 2 4", 
 "AB means 3 1", "AB means 3 2", "AB means 3 3", "AB means 3 4", 
 "AB means 4 1", "AB means 4 2", "AB means 4 3", "AB means 4 4"

 };
 char  *components_labels[] = {

Block

Treatment 1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11
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 "degrees of freedom for A", "sum of squares for A", 
 "mean square of A", "F-statistic for A", "p-value for A",
 "Estimate of A", "Percent Variation Explained by A",
 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A", 
 "degrees of freedom for B", "sum of squares for B",
 "mean square of B", "F-statistic for B", "p-value for B",
 "Estimate of B", "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",
 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for AB", "sum of squares for AB",
 "mean square of AB", "F-statistic for AB", "p-value for AB",
 "Estimate of AB", "Percent Variation Explained by AB",
 "95% Confidence Interval Lower Limit for AB",
 "95% Confidence Interval Upper Limit for AB",
 "degrees of freedom for Error", "sum of squares for Error",
 "mean square of Error", "F-statistic for Error", 
 "p-value for Error", "Estimate of Error", 
 "Percent Explained by Error",
 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"

 };
 pvalue = imsls_f_anova_balanced(3, n_levels, y, 2, indrf, 3, 

 nfef, indef, 
 IMSLS_MODEL, 1, 
 IMSLS_EMS, &ems, 

 IMSLS_VARIANCE_COMPONENTS, &variance_components,
 IMSLS_Y_MEANS, &y_means,
 IMSLS_ANOVA_TABLE, &aov,
 0);

 printf("p value of F statistic = %f\n", pvalue);
 imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov, 

 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0); 

 imsls_f_write_matrix(
 "* * * Expected Mean Square Coefficients * * *", 
 10, 1, ems,
 IMSLS_ROW_LABELS, ems_labels,  
 IMSLS_WRITE_FORMAT, "%6.2f", 
 0);  

 imsls_f_write_matrix(
 "* * Analysis of Variance / Variance Components * *",
 36, 1,
 variance_components,
 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);

 imsls_f_write_matrix("means", 25, 1, y_means,  
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

}
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Output

p value of F statistic = 0.000005
    * * * Analysis of Variance * * *
degrees of freedom for model                              15
degrees of freedom for error                              16
total (corrected) degrees of freedom                      31
       sum of squares for model                        216.5
       sum of squares for error                           19
       total (corrected) sum of squares                235.5
       model mean square                              14.433
       error mean square                              1.1875
       F-statistic                                    12.154
       p-value                                   4.9182e-006
       R-squared (in percent)                         91.932
       adjusted R-squared (in percent)                84.368
       est. standard deviation of within error        1.0897
       overall mean of y                               5.375
       coefficient of variation (in percent)        20.27345
      * * * Expected Mean Square Coefficients * * *
Effect A and Error                              1.00
Effect A and Effect AB                          2.00
Effect A and Effect B                           0.00
Effect A and Effect A                           8.00
Effect B and Error                              1.00
Effect B and Effect AB                          0.00
Effect B and Effect B                           8.00
Effect AB and Error                             1.00
Effect AB and Effect AB                         2.00
Error and Error                                 1.00
      * * Analysis of Variance / Variance Components * *
       degrees of freedom for A                         3.00000
       sum of squares for A                           194.50000
       mean square of A                                64.83334
       F-statistic for A                               32.87324
       p-value for A                                    0.00004
       Estimate of A                                 ..........
       Percent Variation Explained by A              ..........
       95% Confidence Interval Lower Limit for A     ..........
       95% Confidence Interval Upper Limit for A     ..........
       degrees of freedom for B                         3.00000
       sum of squares for B                             4.25000
       mean square of B                                 1.41667
       F-statistic for B                                1.19298
       p-value for B                                    0.34396
       Estimate of B                                    0.02865
       Percent Variation Explained by B                 1.89655
       95% Confidence Interval Lower Limit for B        0.00000
       95% Confidence Interval Upper Limit for B        2.31682
       degrees of freedom for AB                        9.00000
       sum of squares for AB                           17.75000
       mean square of AB                                1.97222
       F-statistic for AB                               1.66082
       p-value for AB                                   0.18016
       Estimate of AB                                   0.39236
       Percent Variation Explained by AB               19.48276
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       95% Confidence Interval Lower Limit for AB       0.00000
       95% Confidence Interval Upper Limit for AB       2.75803
       degrees of freedom for Error                    16.00000
       sum of squares for Error                        19.00000
       mean square of Error                             1.18750
       F-statistic for Error                         ..........
       p-value for Error                             ..........
       Estimate of Error                                1.18750
       Percent Explained by Error                      78.62069
       95% Confidence Interval Lower Limit for Error    0.65868
       95% Confidence Interval Upper Limit for Error    2.75057
  
  
    means
    Grand mean      5.38 
    A means 1       2.75
    A means 2       3.50
    A means 3       6.25
    A means 4       9.00
    B means 1       6.00
    B means 2       5.13
    B means 3       5.13
    B means 4       5.25
    AB means 1 1    4.50
    AB means 1 2    2.00
    AB means 1 3    2.00
    AB means 1 4    2.50
    AB means 2 1    4.50
    AB means 2 2    3.00
    AB means 2 3    3.50
    AB means 2 4    3.00
    AB means 3 1    7.50
    AB means 3 2    6.00
    AB means 3 3    5.50
    AB means 3 4    6.00
    AB means 4 1    7.50
    AB means 4 2    9.50
    AB means 4 3    9.50
    AB means 4 4     9.50
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crd_factorial
Analyzes data from balanced and unbalanced completely randomized experiments. Funtion crd_factorial 
does permit a factorial treatment structure. However, unlike anova_factorial, function crd_factorial 
allows for missing data and one or more locations.

Synopsis
#include <imsls.h>
float *imsls_f_crd_factorial (int n_obs, int n_locations, int n_factors, 

int n_levels[], int model[], float y[], …, 0)

The type double function is imsls_d_crd_factorial.

Required Arguments
int n_obs (Input)

Number of missing and non-missing experimental observations. 

int n_locations (Input)
Number of locations n_locations must be one or greater.

int n_factors  (Input)
Number of factors in the model.

int n_levels[]  (Input)
Array of length n_factors+1. The n_levels[0] through n_levels[n_factors-1] contain 
the number of levels for each factor. The last element, n_levels[n_factors], contains the num-
ber of replicates for each treatment combination within a location.

int model[] (Input)
A n_obs by (n_factors+1) array identifying the location and factor levels associated with each 
observation in y. The first column must contain the location identifier and the remaining columns the 
factor level identifiers in the same order used in n_levels. If n_locations = 1, the first column 
is still required, but its contents are ignored.
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float y[] (Input)
An array of length n_obs containing the experimental observations and any missing values. Missing 
values are indicated by placing a NaN (not a number) in y. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine(6), depending upon whether single or 
double precision is being used, respectively. 

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array containing the ANOVA table, where:

where

and m = model_order.

Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i*6], is the source identifier which identifies the type of effect associated 

with values in that row. The remaining values in a row contain the ANOVA table values using the following 
convention:

The values for the mean squares, F-statistic and p-value are set to NaN for the residual and corrected total 
effects.

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 

3 Mean squares 

4 F-statistic 

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits 
have been lost.

n_anova = a +∑
i=1

m
n_factors

i

a =
2 if n_locations = 1
3 if n_locations > 1 and treatments are not replicated
4 if n_locations = 1 and treatments are not replicated at each location
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The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table. 

The absolute value of the source identifier is equal to the order of the effect in that row. Main effects, for exam-
ple, have a source identifier of –1. Two-way interactions use a source identifier of –2, and so on. 

Notes: By default, model_order = n_factors when treatments are replicated, or n_locations >1. 
However, if treatments are not replicated and n_locations =1, model_order = n_factors -1.

† The number of main effects is equal to n_factors+1 if n_locations >1, and n_factors if 
n_locations =1. The first row of values, anova_table[0] through anova_table[5] contain the loca-
tion effect if n_locations >1. If n_locations=1, then these values are the effects for factor 1. 

⇑The residual term is only provided when treatments are replicated, i.e., n_levels[n_factors]>1.

‡ The number of interaction effects for the nth-way interactions is equal to 

The order of these terms is in ascending order by treatment subscript. The interactions for factor 1 appear first, 
followed by factor 2, factor 3, and so on.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_crd_factorial (int n_obs, int n_locations, int n_factors, 

int n_levels[], int model[], float y[],

Source Identifier ANOVA Source

-1 Main Effects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

. .

-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Effects Error Term

-n_factors-2 Residual ⇑
-n_factors-3 Corrected Total

-1 Main Effects †

n_factors
n_way
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IMSLS_RETURN_USER, float anova_table[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[], 
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[], 
IMSLS_TWO_WAY_MEANS, float **two_way_means, 
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[], 
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined n_anova by 6 array for the anova_table.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value.

IMSLS_CV, float *cv (Output)
Coefficient of Variation computed by:

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 Mean of all the data across every location.

CV =
100 · MSresidual
grand_mean
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IMSLS_FACTOR_MEANS, float **factor_means (Output)
 Address of a pointer to an internally allocated array of length 
n_levels[0] + n_levels[1] + … + n_levels[n_factors-1] containing the factor 
means.

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output)
Address of a pointer to an internally allocated n_factors by 2 array containing factor standard 
errors and their associated degrees of freedom. The first column contains the standard errors for 
comparing two factor means and the second its associated degrees of freedom.

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output)
Address of a pointer to an internally allocated one-dimensional array containing the two-way means 
for all two by two combinations of the factors. The total length of this array when n_factors > 1 is 
equal to:

If n_factors = 1, NULL is returned. If n_factors>1, the means would first be produced for all 
combinations of the first two factors followed by all combinations of the remaining factors using the 
subscript order suggested by the above formula. For example, if the experiment is a 2x2x2 factorial, 
the 12 two-way means would appear in the following order: A1B1, A1B2, A2B1, A2B2, A1C1, A1C2, A2C1, 

A2C2, B1C1, B1C2, B2C1, and B2C2.

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array containing factor standard 
errors and their associated degrees of freedom, where

∑
i=0

f

∑
j=i+1

f +1

n_levels i × n_levels j , where f = n_factors − 2
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The first column contains the standard errors for comparing two 2-way interaction means and the 
second its associated degrees of freedom. The ordering of the rows in this array is similar to that 
used in IMSLS_TWO_WAY_MEANS. For example, if n_factors = 4, then n_two_way = 6 with 
the order AB, AC, AD, BC, BD, CD.

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size 

  

containing the treatment means. The order of the means is organized in ascending order by the 
value of the factor identifier. For example, if the experiment is a 2x2x2 factorial, the 8 means would 
appear in the following order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err (Output)
The array of length 2 containing standard error for comparing treatments based upon the average 
number of replicates per treatment and its associated degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output) 
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to 
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output) 
Storage for the anova_row_labels, provided by the user. The amount of space required will vary 
depending upon the number of factors and n_anova. An upperbound on the required memory is 
char *anova_row_labels[n_anova × 60].

_two_way = n_factor
2

n_levels 0 × n_levels 1 × ⋯ × n_levels n_factors − 1
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Description
The function imsls_f_crd_factorial analyzes factorial experiments replicated in different locations. Miss-
ing observations for each treatment are allowed. All factors are regarded as fixed effects in the analysis. However, 
if multiple locations appear in the data, i.e., n_locations > 1, then all effects involving locations are treated as 
random effects.

If n_locations = 1, then the residual mean square is used as the error mean square in calculating the F-tests 
for all other effects. That is

when n_locations = 1.

If n_locations > 1 then the error mean squares for all factor F-tests is the pooled location interaction. For 
example, if n_factors = 2 then the error sum of squares, degrees of freedom and mean squares are calcu-
lated by:

Example
The following example is based upon data from a 3x2x2 completely randomized design conducted at one loca-
tion. For demonstration purposes, observation 9 is set to missing.

#include <imsls.h>
#include <stdio.h>
int main(){
   int n_obs      = 12;
   int n_locations = 1;
   int n_factors  = 3;
   int n_levels[4] ={3, 2, 2, 1};
   int page_width = 132;
   /* model information */
   int model[]={
       1, 1, 1, 1,
       1, 1, 1, 2,
       1, 1, 2, 1,
       1, 1, 2, 2,
       1, 2, 1, 1,
       1, 2, 1, 2,
       1, 2, 2, 1,
       1, 2, 2, 2,

F =
MSeffect
MSresidual

SSerror = SSA×Locations + SSB×Locations + SSA×B×Locations
df error = df A×Locations + dfB×Locations + df A×B×Locations

MSerror =
SSerror
dferror
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       1, 3, 1, 1,
       1, 3, 1, 2,
       1, 3, 2, 1,
       1, 3, 2, 2
   };
   /* response data */
   float y[] ={
       4.42725419998168950,
       2.12795543670654300,
       2.55254390835762020,
       1.21479606628417970,
       2.47588264942169190,
       5.01306104660034180,
       4.73502767086029050,
       4.58392113447189330,
       5.01421167794615030,
       4.11972457170486450,
       6.51671624183654790,
       4.73365202546119690
   };
   int model_order;
   int i, j, k, l, m, n_missing, i2, j2;
   int n_factor_levels=0, n_treatments=1;
   int n_two_way_means=0, n_two_way_std_err=0;
   int n_two_way_interactions=0;
   int n_subscripts, n_anova_table=2;
   float cv, grand_mean;
   float *anova_table;
   float *two_way_means, *two_way_std_err;
   float *treatment_means, *treatment_std_err;
   float *factor_means;
   float *factor_std_err;
   float aNaN = imsls_f_machine(6);
   char **anova_row_labels;
   char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",
       "Mean \nsquares", "\nF-Test", "\np-Value"};
   /* Compute the length of some of the output arrays. */
   model_order = n_factors-1;
   for (i=0; i < n_factors; i++){
       n_factor_levels = n_factor_levels + n_levels[i];
       n_treatments   = n_treatments*n_levels[i];
       for (j=i+1; j < n_factors; j++){
           n_two_way_interactions++;
       }
   }
   n_two_way_std_err = n_two_way_interactions;
   for (i=0; i < n_factors-1; i++){
       for (j=i+1; j < n_factors; j++){
           n_two_way_means = n_two_way_means + n_levels[i]*n_levels[j];
       }
   } 
   n_subscripts = n_factors;
   n_anova_table = 2;
   for (i=1; i <= model_order; i++){
       n_anova_table +=
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           (int)imsls_f_binomial_coefficient(n_subscripts, i);
   }
   /* Set observation 9 to missing. */
   y[8] = aNaN;
   anova_table = imsls_f_crd_factorial(n_obs, n_locations, n_factors,
       n_levels, model, y,
       IMSLS_N_MISSING, &n_missing,
       IMSLS_CV, &cv,
       IMSLS_GRAND_MEAN, &grand_mean,
       IMSLS_FACTOR_MEANS, &factor_means,
       IMSLS_FACTOR_STD_ERRORS,  &factor_std_err,
       IMSLS_TWO_WAY_MEANS, &two_way_means,
       IMSLS_TWO_WAY_STD_ERRORS,   &two_way_std_err,
       IMSLS_TREATMENT_MEANS, &treatment_means,
       IMSLS_TREATMENT_STD_ERROR, &treatment_std_err,
       IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
       0) ;
   /* Output results. */
   imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
   /* Print ANOVA table. */
   imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***",
       n_anova_table, 6, anova_table, 
       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",
       IMSLS_ROW_LABELS, anova_row_labels,
       IMSLS_COL_LABELS, col_labels,
       0);
   printf("\n\nNumber of Missing Values Estimated: %d", n_missing);
   printf("\nGrand Mean:                      %7.3f", grand_mean);
   printf("\nCoefficient of Variation:        %7.3f", cv);
   m=0;
   /* Print Factor Means. */
   printf("\n\nFactor Means\n");
   for(i=0; i < n_factors; i++){
       printf(" Factor %d: ", i+1);
       for(j=0; j < n_levels[i]; j++){
           printf(" %f ", factor_means[m]);
           m++;
       }
       k = (int)factor_std_err[2*i+1];
       printf("\n             std. err.(df):       %f(%d) \n",
           factor_std_err[2*i], k);
   }
   /* Print Two-Way Means. */
   printf("\n\nTwo-Way Means");
   m = 0;
   l=0;
   for(i=0; i < n_factors-1; i++){
       for(j=i+1; j < n_factors; j++){
           printf("\n Factor %d by Factor %d: \n", i+1, j+1);
           for(i2=0; i2 < n_levels[i]; i2++){
               for(j2=0; j2 < n_levels[j]; j2++){
                   printf(" %f ",two_way_means[m]);
                   m++;
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               }
               printf("\n");
           }
           k = (int)two_way_std_err[l+1];
           printf(" std. err.(df): = %f(%d) \n", two_way_std_err[l], k);
           l+=2;
       }
   }
   /* Print Treatment Means. */
   printf("\n\nTreatment Means\n");
   m = 0;
   for(i=0; i < n_levels[0]; i++){
       for(j=0; j < n_levels[1]; j++){
           for(k=0; k < n_levels[2]; k++){
               printf(" Treatment[%d][%d][%d] Mean: %f \n",
                   i+1, j+1, k+1, treatment_means[m]);
               m++;
           }
       }
   }
   k = (int)treatment_std_err[1];
   printf("\n Treatment Std. Err (df) %f(%d) \n",
       treatment_std_err[0], k);
}

Output

            *** ANALYSIS OF VARIANCE TABLE ***
                              Mean
         ID  DF    SSQ    squares   F-Test  p-Value
[1]      -1   2   13.061    6.530    7.844    0.245
[2]      -1   1    0.107    0.107    0.129    0.781
[3]      -1   1    1.302    1.302    1.563    0.429
[1]x[2]  -2   2    3.768    1.884    2.263    0.425
[1]x[3]  -2   2    5.253    2.626    3.154    0.370
[2]x[3]  -2   1    0.560    0.560    0.672    0.563
Error    -4   1    1.665    1.665 ........ ........
Total    -5  10   25.715 ........ ........ ........

Number of Missing Values Estimated: 1
Grand Mean:                        3.962
Coefficient of Variation:         32.574
Factor Means
 Factor 1:  2.580637  4.201973  5.101940
             std. err.(df):       0.912459(1)
 Factor 2:  3.866924  4.056109
             std. err.(df):       0.745020(1)
 Factor 3:  4.290849  3.632185
             std. err.(df):       0.745020(1)

Two-Way Means
 Factor 1 by Factor 2:
 3.277605  1.883670
 3.744472  4.659474
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 4.578696  5.625184
 std. err.(df): = 1.290412(1)
 Factor 1 by Factor 3:
 3.489899  1.671376
 3.605455  4.798491
 5.777192  4.426688
 std. err.(df): = 1.290412(1)
 Factor 2 by Factor 3:
 3.980268  3.753580
 4.601429  3.510790
 std. err.(df): = 1.053617(1)

Treatment Means
 Treatment[1][1][1] Mean: 4.427254
 Treatment[1][1][2] Mean: 2.127955
 Treatment[1][2][1] Mean: 2.552544
 Treatment[1][2][2] Mean: 1.214796
 Treatment[2][1][1] Mean: 2.475883
 Treatment[2][1][2] Mean: 5.013061
 Treatment[2][2][1] Mean: 4.735028
 Treatment[2][2][2] Mean: 4.583921
 Treatment[3][1][1] Mean: 5.037668
 Treatment[3][1][2] Mean: 4.119725
 Treatment[3][2][1] Mean: 6.516716
 Treatment[3][2][2] Mean: 4.733652
 Treatment Std. Err (df) 1.824918(1)
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rcbd_factorial
Analyzes data from balanced and unbalanced randomized complete-block experiments. Unlike 
imsls_f_anova_factorial, function rcbd_factorial allows for missing data and one or more locations.

Synopsis
#include <imsls.h>
float  *imsls_f_rcbd_factorial (int n_obs, int n_locations, int n_factors, 

int n_levels[], int model[], float y[], …, 0)

The type double function is imsls_d_rcbd_factorial.

Required Arguments
int n_obs (Input)

Number of missing and non-missing experimental observations.

int n_locations (Input)
Number of locations. n_locations must be one or greater.

int n_factors  (Input)
Number of factors in the model.

int n_levels[]  (Input)
Array of length n_factors+1. The n_levels[0] through n_levels[n_factors-1] contain 
the number of levels for each factor. The last element, n_levels[n_factors], contains the 
number of blocks at a location. There must be at least two blocks and two levels for each factor, i.e., 
n_levels[i] ≥ 2 for i =0, 1, …, n_factors.

int model[] (Input)
A n_obs by (n_factors+2) array identifying the location, block and factor levels associated with 
each observation in y. The first column must contain the location identifier and the second column 
must contain the block identifier for the observation associated with that row. The remaining col-
umns, columns 3 through n_factors+2, should contain the factor level identifiers in the same 
order used in n_levels. If n_locations =1, the first column is still required, but its contents 
are ignored.
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float y[] (Input)
An array of length n_obs containing the experimental observations and any missing values. Missing 
values are indicated by placing a NaN (not a number) in y. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine(6), depending upon whether single or 
double precision is being used, respectively.

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array containing the ANOVA table, where:

and m= n_factors.

Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i*6], is the source identifier which identifies the type of effect associated 

with values in that row. The remaining values in a row contain the ANOVA table values using the following 
convention:

The values for the mean squares, F-statistic and p-value are set to NaN for the residual and corrected total 
effects.

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 

3 Mean squares 

4 F-statistic 

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant dig-
its have been lost.

n_anova = a +∑
i=1

m n_factors
i

a =
3 if n_locations = 1
5 if n_locations > 1
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The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[]. 

The absolute value of the source identifier is equal to the order of the effect in that row. Main effects, for exam-
ple, have a source identifier of –1. Two-way interactions use a source identifier of 
 –2, –3 and so on.

Note: The Effects Error Term is equal to the Residual effect if n_locations = 1.

† The number of main effects is equal to n_factors+2 if n_locations > 1, and n_factors +1 if 
n_locations = 1. The first two rows, anova_table[0] through anova_table[10] are used to repre-
sent the location and block effects if n_locations > 1. If n_locations =1, then anova_table[0] 
through anova_table[5]contain the block effects.

‡ The number of interaction effects for the nth-way interactions is equal to 

The order of these terms is in ascending order by treatment subscript. The interactions for factor 1 appear first, 
followed by factor 2, factor 3, and so on.

* The residual term is only produced when there is replication within blocks.

Synopsis with Optional Arguments
#include <imsls.h>

Source
Identifier ANOVA Source

-1 Main Effects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

. .

-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Error Term for Factors and 
Interactions

-n_factors-2 Residual *

-n_factors-3 Corrected Total

n_factors
n_way
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float *imsls_f_rcbd_factorial (int n_obs, int n_locations, int n_factors, 
int n_levels[], int model[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[],
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[],
IMSLS_TWO_WAY_MEANS, float **two_way_means,
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[],
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[]  (Output)

User defined n_anova by 6 array for the anova_table.

IMSLS_N_MISSING, int *n_missing  (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value.

IMSLS_CV, float *cv  (Output)
Coefficient of Variation computed by:

IMSLS_GRAND_MEAN, float *grand_mean  (Output)
Mean of all the data across every location.

CV =
100 · MSresidual
grand_mean
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IMSLS_FACTOR_MEANS, float **factor_means  (Output)
Address of a pointer to an internally allocated array of length 
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] containing the factor means.

IMSLS_FACTOR_MEANS_USER, float factor_means[]  (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err  (Output)
Address of a pointer to an internally allocated n_factors by 2 array containing factor standard 
errors and their associated degrees of freedom. The first column contains the standard errors for 
comparing two factor means and the second its associated degrees of freedom

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means  (Output)
Address of a pointer to an internally allocated one-dimensional array containing the two-way means 
for all two by two combinations of the factors. The total length of this array when n_factors >1 is 
equal to

where 

If n_factors = 1, NULL is returned. If n_factors>1, the means would first be produced for all 
combinations of the first two factors followed by all combinations of the remaining factors using the 
subscript order suggested by the above formula. For example, if the experiment is a 2x2x2 factorial, 
the 12 two-way means would appear in the following order: 
A1B1, A1B2, A2B1, A2B2, A1C1, A1C2, A2C1, A2C2, B1C1, B1C2, B2C1, and B2C2. 

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array containing factor standard 
errors and their associated degrees of freedom, where

∑
i=0

f

∑
j=i+1

f +1

n_levels i × n_levels j

f = n_factors − 2
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The first column contains the standard errors for comparing two 2-way interaction means and the 
second its associated degrees of freedom. The ordering of the rows in this array is similar to that 
used in IMSLS_TWO_WAY_MEANS. For example if n_factors=4, then n_two_way = 6 with the 
order AB, AC, AD, BC, BD, CD. 

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size

containing the treatment means. The order of the means is organized in ascending order by the 
value of the factor identifier. For example, if the experiment is a 2x2x2 factorial, the 8 means would 
appear in the following order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err  (Output)
The array of length 2 containing standard error for comparing treatments based upon the average 
number of replicates per treatment and its associated degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[]  (Output)
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]).

The memory associated with anova_row_labels can be freed with a single call to 
free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required 
will vary depending upon the number of factors and n_anova. An upperbound on the required 
memory is char *anova_row_labels[100 × (n_anova+1)].

n_two_way = n_factors
2

n_levels 0 × n_levels 1 × ⋯ × n_levels n_factors − 1
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Description
The function imsls_f_rcbd_factorial is capable of analyzing randomized complete block factorial exper-
iments replicated in different locations. Missing observations are estimated using the Yates method. Locations, if 
used, and blocks are treated as random factors. All treatment factors are regarded as fixed effects in the analysis. 
If n_locations > 1, then blocks are treated as nested within locations and the number of blocks used at each 
location must be the same.

If n_locations = 1, then the residual mean square is used as the error mean square in calculating the F-tests 
for all other effects. That is

when n_locations = 1.

In this case, the residual mean square is calculating by pooling all interactions between treatments and blocks. 
For example, if treatments are formed from two factors, A and B, then 

When n_locations = 1, then   is also used to calculate the standard errors between means. For 
example, in a two factor experiment:

where 

are the number of observations for each level of the effects A, B and their interaction, respectively.

If n_locations > 1, then the error mean square is used as the denominator of the F-test for effects:

Feffect =
MSeffect
MSresidual

SSresidual = SSA×Blocks + SSB×Blocks + SSA×B×Blocks
df residual = df A×Blocks + df B×Blocks + df A×B×Blocks

MSresidual =
SSresidual
df residual

MSresidual

StdErr(A) =
2 ·MSresidual

NA

StdErr(B) =
2 ·MSresidual

NB

StdErr(A × B) =
2 ·MSresidual

NA×B

NA, NB and NA×B
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The error mean square in this calculation is obtained by pooling all interactions between each factor and loca-
tions. For example n_locations > 1 and n_factors=2 then:

In this case, n_locations > 1, the standard errors for means are calculated using

The F-test for differences between locations is calculated using the mean squares for blocks within locations:

Example
This example is based upon data from an agricultural trial conducted by DOW Agrosciences. This is a three factor, 
3x2x2, experiment replicated in two blocks at one location. For illustration, two observations are set to NaN to 
simulate missing observations. 

#include <imsls.h>
int main(){
   int n_obs      = 24;
   int n_locations = 1;
   int n_factors  = 3;
   int n_levels[4] ={3, 2, 2, 2};
   int model[]={
       1, 1, 1, 1, 1,
       1, 2, 1, 1, 1,
       1, 1, 1, 1, 2,
       1, 2, 1, 1, 2,
       1, 1, 1, 2, 1,
       1, 2, 1, 2, 1,
       1, 1, 1, 2, 2,
       1, 2, 1, 2, 2,
       1, 1, 2, 1, 1,
       1, 2, 2, 1, 1,
       1, 1, 2, 1, 2,
       1, 2, 2, 1, 2,
       1, 1, 2, 2, 1,
       1, 2, 2, 2, 1,
       1, 1, 2, 2, 2,

Feffect =
MSeffect
MSerror

SSerror = SSA×Locations + SSB×Locations + SSA×B×Locations
df error = df A×Locations + df B×Locations + df A×B×Locations
MSerror =

SSerror
df error

MSerror instead of MSresidual

Flocations =
MSlocations

MSblocks location
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       1, 2, 2, 2, 2,
       1, 1, 3, 1, 1,
       1, 2, 3, 1, 1,
       1, 1, 3, 1, 2,
       1, 2, 3, 1, 2,
       1, 1, 3, 2, 1,
       1, 2, 3, 2, 1,
       1, 1, 3, 2, 2,
       1, 2, 3, 2, 2
   };
   float y[] ={
       4.42725419998168950, 2.98526261840015650,
       2.12795543670654300, 4.36357164382934570,
       2.55254390835762020, 2.78596709668636320,
       1.21479606628417970, 2.68143519759178160,
       2.47588264942169190, 4.69543695449829100,
       5.01306104660034180, 3.01919978857040410,
       4.73502767086029050, 0.00000000000000000,
       0.00000000000000000, 5.05780076980590820,
       5.01421167794615030, 3.61517095565795900,
       4.11972457170486450, 4.71947982907295230,
       6.51671624183654790, 4.22036057710647580,
       4.73365202546119690, 4.68545144796371460
   };
   int page_width = 132;
   int model_order;
   int i, n_subscripts, n_anova_table;
   char **aov_labels;
   char *col_labels[] = {" ", "ID", "df", "SS",
       "MS", "F-Test", "P-Value"};
   float *anova_table;
   /* Compute number of rows in the anova table. */
   model_order = n_subscripts = n_factors;
   n_anova_table = 3;
   for (i=1; i <= model_order; i++){
       n_anova_table += imsls_d_binomial_coefficient(n_subscripts, i);
   }
   /* Set missing observations. */
   y[13] = imsls_d_machine(6);
   y[14] = imsls_d_machine(6);
   anova_table = imsls_f_rcbd_factorial(n_obs, n_locations, n_factors,
       n_levels, model, y,
       IMSLS_ANOVA_ROW_LABELS, &aov_labels,
       0) ;
   imsls_page(
       IMSLS_SET_PAGE_WIDTH, &page_width);
   /* Print ANOVA table. */
   imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***",
       n_anova_table, 6, anova_table,
       IMSLS_ROW_LABELS, aov_labels,
       IMSLS_COL_LABELS, col_labels,
       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
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       0);
}

Output

             *** ANALYSIS OF VARIANCE TABLE ***
             ID  df       SS      MS  F-Test P-Value
Blocks       -1   1     0.01    0.01 ....... .......
[1]          -1   2    14.73    7.37    5.15   0.032
[2]          -1   1     0.24    0.24    0.17   0.692
[3]          -1   1     0.15    0.15    0.10   0.756
[1]x[2]      -2   2     5.79    2.89    2.02   0.188
[1]x[3]      -2   2     1.02    0.51    0.36   0.709
[2]x[3]      -2   1     0.20    0.20    0.14   0.719
[1]x[2]x[3]  -3   2     0.13    0.07    0.05   0.956
Error        -4   9    12.88    1.43 ....... .......
Total        -6  21    35.15 ....... ....... .......
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latin_square
Analyzes data from latin-square experiments. Function latin_square also analyzes latin-square experiments 
replicated at several locations.

Synopsis
#include <imsls.h>
float *imsls_f_latin_square (int n, int n_locations, int n_treatments, int row[], 

int col[], int treatment[], float y[], …, 0)

The type double function is imsls_d_latin_square.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_latin_square veri-
fies that:

hint n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1 then the optional 
array locations[] must be included as input to imsls_f_latin_square.

int n_treatments (Input)
Number of treatments. n_treatments must be greater than one. In addition the number of rows 
and columns must be equal to n_treatments.

int row[] (Input)
An array of length n containing the row identifiers for each observation in y. Each row must be 
assigned values from 1 to n_treatments. imsls_f_latin_square verifies that the number 
of unique factor A identifiers is equal to n_treatments.

int col[] (Input)
An array of length n containing the column identifiers for each observation in y. Each column must 
be assigned values from 1 to n_treatments. imsls_f_latin_square verifies that the num-
ber of unique column identifiers is equal to n_treatments.

n = n_locations *n_treatments2
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int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation in y. Each treatment 
must be assigned values from 1 to n_treatments. imsls_f_latin_square verifies that the 
number of unique treatment identifiers is equal to n_treatments.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values 
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be 
set using either the function imsls_f_machine(6) or imsls_d_machine((6), depending upon 
whether single or double precision is being used, respectively. The location, row, column, and treat-
ment number for each observation in y are identified by the corresponding values in the arguments 
locations, row, col, and treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array containing the ANOVA table. Each 
row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that 

row. The remaining values in a row contain the ANOVA table values using the following convention:

The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[]. 

Assignments of identifiers to ANOVA sources use the following coding:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 

3 Mean squares 

4 F-statistic 

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant dig-
its have been lost.

Source 
Identifier ANOVA Source

-1 LOCATIONS †

-2 ROWS
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Note: † If n_locations=1 rows involving location are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_latin_square (int n, int n_locations, int n_treatments, int row[], 

int col[], int treatment[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float l ocation_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[]  (Output)

User defined array of length 42 for storage of the 7 by 6 anova table described as the return argu-
ment for this function. For a detailed description of the format for this table, see the previous 
description of the return arguments for imsls_f_latin_square.

-3 COLUMNS 

-4 TREATMENTS
-5 LOCATIONS × TREATMENTS †

-6 ERROR WITHIN LOCATIONS
-7 CORRECTED TOTAL

Source 
Identifier ANOVA Source
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IMSLS_LOCATIONS, int locations[]  (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers 
must be assigned to each location in the study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing  (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value.

IMSLS_CV, float *cv  (Output)
The coefficient of variation computed by using the within location standard deviation.

IMSLS_GRAND_MEAN, float *grand_mean  (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatments containing the treat-
ment means. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err  (Output)
 Address of a pointer to an internally allocated array of length 2 containing the standard error and 
associated degrees of freedom for comparing two treatment means.  std_err[0] contains the 
standard error and its degrees of freedom are returned in std_err[1].

IMSLS_STD_ERRORS_USER, float std_err[]  (Output)
Storage for the array std_err, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table  (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 7 by 6 
containing the anova tables associated with each location. For each location, the 7 by 6 dimensional 
array corresponds to the anova table for that location. For example, 
location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the value in the k-th column and 
j-th row of the anova-table for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[]  (Output)Storage for the array 
location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]).
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The memory associated with anova_row_labels can be freed with a single call to 
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required 
will vary depending upon the number of factors and n_anova. An upperbound on the required 
memory is char *anova_row_labels[600].

Description
The function imsls_f_latin_square analyzes latin-square experiments, possibly replicated at multiple 
locations. Latin-square experiments block treatments using two factors: rows and columns. The number of levels 
associated with rows and columns must equal the number of treatments. Treatments are blocked by rows and 
columns in a balanced arrangement to ensure that every row contain one replicate of every treatment. The same 
balance is required for every column, see Table 16. Notice that the four treatments, T1, T2, T3, and T4, appear 
exactly once in every column and every row.

A necessary assumption in Latin-Square experiments is that there are no interactions between treatments and 
the row and column blocking factors. For data collected at a single location, the Anova table for a Latin-Square 
experiment is usually organized into five rows, see Table 17.

Table 16 – Latin-Square Experiment with Four Treatments

Columns

C1 C2 C3 C4

Rows

R1 T1 T2 T3 T4

R2 T2 T3 T4 T1

R3 T3 T4 T1 T2

R4 T4 T1 T2 T3

Table 17 – The ANOVA Table for a Latin-Square Experiment at one Location

Source DF Sum of Squares Mean Squares

ROWS   

  

MSR

COLUMNS   

  

MSC

t − 1
SSR = t∑

i=1

t

y─i. − y
─
..)
2

t − 1
SSC = t∑

j=1

t

y─. j − y
─
..)
2
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The statistical model used to represent data is from a single location:

where  is the observation for the k-th treatment in the i-th row and j-th column of the Latin Square, and, 

 is the effect associated with the k-th treatment.  and   are the i-th row and j-th column effects, respec-

tively, and   is the noise associated with this observation.

If multiple locations are involved, imsls_f_latin_square assumes that treatments are crossed with loca-
tions, but that row and column effects are nested within locations, see Table 18. The statistical model used to 
represent these data is:

where

is the effect associated with the kth treatment, and 

TREATMENTS   

  

MST

ERROR   SSE=SSTot-SSR-SSC-SST MSE

TOTAL   

  

Table 17 – The ANOVA Table for a Latin-Square Experiment at one Location (Continued)

Source DF Sum of Squares Mean Squares

t − 1
SST = t∑

k=1

t

y─k − y
─)2

t − 1 t − 2

t2 − 1
SSTot =∑

i=1

t

∑
j=1

t

yi j − y
─
..

2

yi j k = μ + ρi + γ j + τk i j + ɛi j k

yi j k
τ
k i j ρi γ j

ɛi j k

yl i j k = μ + αl + ρi l + γ j l + τk i j + ατl k i j + ɛl i j k

τk i j
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is the interaction effect between location l and treatment k.

Example
This example uses four treatments organized into a latin square. This example also uses the function 
l_print_LSD(), which is defined in the first example for imsls_f_lattice().

#include <math.h>
#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
void l_print_LSD(int n1, int* equalMeans, float *means);
int main()
{

 char **anova_row_labels;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ", 

 "Mean  \nsquares", "\nF-Test", "\np-Value"};
 int i, l, page_width=100;
 int n  = 16; /* Total number of observations */
 int n_treatments = 4;
 int n_locations  = 1;
 int df, *equal_means;

Table 18 – The ANOVA Table for a Latin-Square Experiment at Multiple Locations

SOURCE DF Sum of Squares
Mean 
Squares

LOCATIONS   
  

MSL

ROWS   
  

MSR

COLUMNS   
  

MSC

TREATMENTS   
  

MST

LOCATIONS X 
TREATMENTS   SSLT by difference MSLT

ERROR   
  

MSE

TOTAL   
  

ατl k i j

r − 1 SSL = t2∑
l=1

r
y─l.. − y

─
...)
2

r t − 1 SSR = t∑
l=1

r
∑
i=1

t
y─li. − y

─
l..)
2

r t − 1 SSC = t∑
l=1

r
∑
j=1

t
y─l. j − y

─
l..)
2

t − 1 SST = r · t∑
k=1

t
y─k − y

─
...)
2

r − 1 t − 1

t − 1 r t − 1 − 1−1 SSE = ∑
l=1

r
SSEl

r · t2 − 1 SSTot = ∑
l=1

r
∑
i=1

t
∑
j=1

t
yl i j − y

─
..

2
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 float grand_mean, cv;
 float *aov, *treatment_means, *std_err;
 int col[]={1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4};
 int row[]={3, 2, 4, 1, 1, 4, 2, 3, 2, 3, 1, 4, 4, 1, 3, 2};
 int treatment[]={1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
 float alpha = 0.05;
 float y[]={ 

 1.167,  1.185,  1.655, 1.345, 1.64, 1.29, 1.665, 1.29,
 1.475, 0.71, 1.425, 0.66, 1.565, 1.29, 1.4, 1.18

 };
 printf("\n\n*** Experimental Design ***");
 printf("\n===============================");
 printf("\n| COL  |  1  |  2  |  3  |  4  |");
 printf("\n===============================");
 printf("\n|ROW 1 |  2  |  4  |  3  |  1  |");
 printf("\n===============================");
 printf("\n|ROW 2 |  3  |  1  |  2  |  4  |");
 printf("\n===============================");
 printf("\n|ROW 3 |  1  |  3  |  4  |  2  |");
 printf("\n===============================");
 printf("\n|ROW 4 |  4  |  2  |  1  |  3  |");
 printf("\n===============================");
 aov = imsls_f_latin_square(n, n_locations, n_treatments,  

 row, col, treatment, y, 
 IMSLS_GRAND_MEAN, &grand_mean, 
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means, 
 IMSLS_STD_ERRORS, &std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);

 /* Print ANOVA table. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 imsls_f_write_matrix("\n  *** ANALYSIS OF VARIANCE TABLE ***", 

 7, 6, aov, 
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);

 printf("\n\nGrand Mean:  %7.3f", grand_mean);
 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);
 l = 0;
 printf("Treatment Means: \n");
 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d]  %7.4f \n", i+1, 
 treatment_means[l++]);

 }
 df = (int)std_err[1];
 printf("\n\n");
 printf("Standard Error for Comparing Two Treatment Means: %f \n",

 std_err[0]);
 printf("(df=%d)\n", df);
 equal_means = imsls_f_multiple_comparisons(n_treatments, 

 treatment_means, df, std_err[0]/sqrt(2.0), 
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
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 l_print_LSD(n_treatments, equal_means, treatment_means);
}

Output

*** Experimental Design ***
===============================
| COL  |  1  |  2  |  3  | 4  |
===============================
|ROW 1 |  2  |  4  |  3  |  1  |
===============================
|ROW 2 |  3  |  1  |  2  |  4  |
===============================
|ROW 3 |  1  |  3  |  4  |  2  |
===============================
|ROW 4 |  4  |  2  |  1  |  3  |
===============================

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean

 ID  DF  SSQ  squares  F-Test  p-Value
Locations .............  -1  ...  ........  ........  ........  ........
Rows  .................  -2  3  0.185  0.062  2.064  0.207
Columns ...............  -3  3  0.589  0.196  6.579  0.025
Treatments ............  -4  3  0.352  0.117  3.927  0.073
Locations x Treatments  -5  ...  ........  ........  ........  ........
Error within Locations  -6  6  0.179  0.030  ........  ........
Corrected Total .......  -7  15  1.305  ........  ........  ........

Grand Mean:  1.309
Coefficient of Variation:  13.204
Treatment Means:
treatment[ 1]  1.3380
treatment[ 2]  1.4712
treatment[ 3]  1.0675
treatment[ 4]  1.3587

Standard Error for Comparing Two Treatment Means: 0.122200
(df=6)
[group]  Mean  LSD Grouping
 [3]  1.067500  *
 [1]  1.338000  *  *
 [4]  1.358750  *  *
 [2]  1.471250  *
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lattice
Analyzes balanced and partially-balanced lattice experiments. In these experiments, a requirement is that the 
number of treatments be equal to the square of an integer, such as 9, 16, or 25 treatments. Function lattice 
also analyzes repetitions of lattice experiments.

Synopsis
#include <imsls.h>
float *imsls_f_lattice (int n, int n_locations, int n_reps, int n_blocks, 

int n_treatments, int rep[], int block[], int treatment[], float y[], …, 0)

The type double function is imsls_d_lattice.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_lattice verifies that:

int n_locations  (Input)
Number of locations or repetitions of the lattice experiments. n_locations must be one or 
greater. If n_locations>1 then the optional arguments IMSLS_LOCATIONS must be included 
as input to imsls_f_lattice.

int n_reps  (Input)
Number of replicates per location. Each replicate should consist of t = n_treatments organized 
into    blocks.

int n_blocks  (Input)
Number of blocks per location. For every location, n_blocks must be equal to n_blocks= r·k, 
where r = n_reps and   

int n_treatments  (Input)
Number of treatments t = n_treatments must be equal to k2.

n = n_locations × t × r where
t = n_treatments and r = n_reps

k = t

k = t .
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int rep[]  (Input)
An array of length n containing the replicate identifiers for each observation in y. For a balanced-lat-
tice, the number of replicate identifiers must be equal to n_reps= (k+1). For a partially-balanced 
lattice, the number of replicate identifiers depends upon whether the design is a simple lattice, triple 
lattice, etc. imsls_f_lattice verifies that the number of unique replicate identifiers is equal to 
n_reps. If multiple locations or repetitions of the experiment is conducted, i.e., n_locations>1, 
then the replicate and block numbers contained in rep and block must agree between repetitions.

int block[]  (Input)
An array of length n containing the block identifiers for each observation in y. imsls_f_lattice 
verifies that the number of unique block identifiers is equal to n_blocks. If multiple locations or 
repetitions of the experiment is conducted, i.e., n_locations>1, then block numbers must agree 
between repetitions. That is, the i-th block in every location or repetition must contain the same 
treatments.

int treatment[]  (Input)
An array of length n containing the treatment identifiers for each observation in y. Each treatment 
must be assigned values from 1 to n_treatments. imsls_f_lattice verifies that the number 
of unique treatment identifiers is equal to n_treatments.

float y[]  (Input)
An array of length n containing the experimental observations and any missing values. Missing values 
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be 
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending 
upon whether single or double precision is being used, respectively. The location, replicate, block, 
and treatment number for each observation in y are identified by the corresponding values in the 
arguments locations, rep, block, and treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array containing the ANOVA table. Each 
row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that 

row. The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 

3 Mean squares 
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The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[]. 

Assignments of identifiers to ANOVA sources use the following coding:

Note: † If n_locations=1, all entries in this row are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_lattice(int n, int n_locations, int n_reps, int n_blocks, 

int n_treatments, int rep[], int block[], int treatment[], float y[],

IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,

4 F-statistic 

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant dig-
its have been lost.

Source 
Identifier ANOVA Source

-1 LOCATIONS †

-2 REPLICATES 

-3 TREATMENTS(unadjusted)

-4 TREATMENTS(adjusted)

-5 BLOCKS(adjusted)

-6 INTRA-BLOCK ERROR

-7 CORRECTED TOTAL

j anova_tablei,j = anova_table[i*6+j]
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IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
IMSLS_RETURN_USER, float anova_table[],
0)

Optional Arguments
IMSLS_LOCATIONS, int locations[] (Input)

An array of length n containing the location or repetition identifiers for each observation in y. Unique 
integers must be assigned to each location in the study. This argument is required when 
n_locations>1.

IMSLS_N_MISSING, int *n_missing  (Output)
 Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value.

IMSLS_CV, float *cv  (Output)
 The coefficient of variation computed by using the location standard deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 The overall adjusted mean averaged over every location.

IMSLS_TREATMENT_MEANS, float **treatment_means  (Output)
Address of a pointer to an internally allocated array of size n_treatments containing the adjusted 
treatment means. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err  (Output)
 Address of a pointer to an internally allocated array of length 4 containing the standard error and 
associated degrees of freedom for comparing two treatment means. std_err[0] contains the 
standard error for comparing two treatments that appear in the same block at least once. 
std_err[1] contains the standard error for comparing two treatments that never appear in the 
same block together. std_err[2] contains the standard error for comparing, on average, two 
treatments from the experiment averaged over cases in which the treatments do or do not appear in 
the same block. Finally, std_err[3] contains the degrees of freedom associated with each of 
these standard errors, i.e., std_err[3]= degrees of freedom for intra-block error. 

IMSLS_STD_ERRORS_USER, float std_err[]  (Output)
Storage for the array std_err, provided by the user.
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IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table  (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 7 by 6 
containing the anova tables associated with each location or repetition of the lattice experiment. For 
each location, the 7 by 6 dimensional array corresponds to the anova table for that location. 
For example, location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the value in the k-th col-
umn and j-th row of the anova-table for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[]  (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]); The memory associated with 
anova_row_labels can be freed with a single call to imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required 
will vary depending upon the number of factors and n_anova. An upperbound on the required 
memory is char *anova_row_labels[600];

IMSLS_RETURN_USER, float anova_table[]  (Output)
User defined array of length 42 for storage of the 7 by 6 anova table described as the return argu-
ment for imsls_f_lattice. For a detailed description of the format for this table, see the 
previous description of the return arguments for imsls_d_lattice.

Description
The function imsls_f_lattice analyzes both balanced and partially-balanced lattice experiments, possibly 
repeated at multiple locations. These designs were originally described by Yates (1936). A defining characteristic 
of these classes of lattice experiments is that the number of treatments is always the square of an integer, such 
as t = 9, 16, 25, etc. where t is equal to the number of treatments. 

Another characteristic of lattice experiments is that blocks are organized into replicates, where each replicate 
contains one observation for each treatment. This requires the number of blocks in each replicate to be equal to 
the number of observations per block. That is, the number of blocks per replicate and the number of observa-

tions per block are both equal to   .

For balanced lattice experiments the number of replicates is always    . For partially-balanced lattice experi-
ments, the number of replicates is less than   . Tables of balanced-lattice experiments are tabulated in 
Cochran & Cox (1950) for t=9, 16, 25, 49, 64 and 81. 

k = t

k + 1
k + 1
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The analysis of balanced and partially-balanced experiments is detailed in Cochran & Cox (1950) and Kuehl 
(2000). 

Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9. Notice that the number of replicates is 4 and the 
number of blocks per replicate is equal to 3. The total number of blocks is equal to

For a balanced-lattice, 

The analysis of variance for data from a balanced-lattice experiment, takes the form familiar to other balanced 
incomplete block experiments. In these experiments, the error term is divided into two components: the Inter-
Block Error and the Intra-Block Error. For single and multiple locations, the general format of the anova tables is 
illustrated in the Table 20 and Table 21.

Table 19 – A 3x3 Balanced-Lattice for 
9 Treatments in Four Replicates

Replicate I Replicate II

Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Replicate III Replicate IV

Block 7 (T1, T5, T9) Block 10 (T1, T6, T8)

Block 8 (T2, T6, T7) Block 11 (T2, T4, T9)

Block 9 (T3, T4, T8) Block 12 (T3, T5, T7)

Table 20 – The ANOVA Table for a Lattice Experiment at one Location

SOURCE DF
Sum of 
Squares

Mean 
Squares

REPLICATES   SSR MSR

TREATMENTS(unadj)   SST MST

TREATMENTS(adj)   SSTa MSTa

BLOCKS(adj)   SSBa MSBa

INTRA-BLOCK ERROR   SSI MSI

TOTAL   SSTot

n_blocks = n_locations · r · k − 1 + 1

n_blocks = b = r · k = k + 1 · k = t + 1 · t = 4 · 3 = 12

r − 1
t − 1
t − 1

r · k − 1

k − 1 r · k − k − 1

r · t − 1
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Examples

Example 1

This example is a lattice design for 16 treatments conducted at one location.  A lattice design with t=k2=16 treat-
ments is a balanced lattice design with r= k+1=5 replicates and r k=5(4)=20 blocks.

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void l_print_LSD(int n1, int* equalMeans, float *means);
int main()
{

 char **anova_row_labels = NULL;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ", 

 "Mean  \nsquares", "\nF-Test", "\np-Value"};
 float alpha = 0.05;
 int i, l, page_width = 132;  
 int n  = 80; /* Total number of observations  */
 int n_locations  = 1;  /* Number of locations  */
 int n_treatments =16;  /* Number of treatments  */
 int n_reps  = 5;  /* Number of replicates  */
 int n_blocks  =20;  /* Total number of blocks  */
 int n_aov_rows  = 7;  /* Number of rows in the anova table */
 int rep[]={  

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

 };
 int block[]={  

Table 21 – The ANOVA Table for a Lattice Experiment at Multiple Locations

SOURCE DF
Sum of 
Squares

Mean 
Squares

LOCATIONS   SSL MSL

REPLICATES WITHIN LOCATIONS   SSR MSR

TREATMENTS(unadj)   SST MST

TREATMENTS(adj)   SSTa MSTa

BLOCKS(adj)   SSB MSB

INTRA-BLOCK ERROR   SSI MSI

TOTAL   SSTot

p − 1

p r − 1

t − 1
t − 1

p · r k − 1

p · k − 1 r · k − k − 1

p · r · t − 1
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 1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,  4,  4,  4,  4,
 5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8, 
 9,  9,  9,  9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12,
 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,
 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20

 };
 int treatment[]={  

 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 
 1,  5,  9, 13, 10,  2, 14,  6,  7, 15,  3, 11, 16,  8, 12,  4,  
 1,  6, 11, 16,  5,  2, 15, 12,  9, 14,  3,  8, 13, 10,  7,  4,  
 1, 14,  7, 12, 13,  2, 11,  8,  5, 10,  3, 16,  9,  6, 15,  4,  
 1, 10, 15,  8,  9,  2,  7, 16, 13,  6,  3, 12,  5, 14, 11,  4

 };
 float y[] ={

 147, 152, 167, 150, 127, 155, 162, 172, 
 147, 100, 192, 177, 155, 195, 192, 205,
 140, 165, 182, 152,  97, 155, 192, 142,
 155, 182, 192, 192, 182, 207, 232, 162,
 155, 132, 177, 152, 182, 130, 177, 165,
 137, 185, 152, 152, 185, 122, 182, 192,
 220, 202, 175, 205, 205, 152, 180, 187,
 165, 150, 200, 160, 155, 177, 185, 172,
 147, 112, 177, 147, 180, 205, 190, 167,
 172, 212, 197, 192, 177, 220, 205, 225

 };
 float grand_mean;
 float cv;
 float *aov;
 float *treatment_means;
 float *std_err;
 int  *equal_means;
 int  df;
 aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,  

 n_treatments, rep, block, treatment, y, 
 IMSLS_GRAND_MEAN, &grand_mean, 
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means, 
 IMSLS_STD_ERRORS, &std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print the ANOVA table. */
 imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***", 

 7, 6, aov, 
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);

 printf("\n\nAdjusted Grand Mean:  %7.3f", grand_mean);
 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);
 l = 0;
 printf("Adjusted Treatment Means: \n");
 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d]  %7.4f \n", i+1, 
 treatment_means[l++]);

 }
 df = (int)std_err[3];
 printf("\nStandard Error for Comparing Two Adjusted Treatment ");
 printf("Means: %f \n(df=%d)\n", std_err[2], df);
 equal_means = imsls_f_multiple_comparisons(n_treatments, 
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 treatment_means, df, std_err[2]/(float)sqrt(2.0), 
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);
}
/*
* Function to display means comparison.
*/
void l_print_LSD(int n, int *equalMeans, float *means){

 float x=0.0;
 int i, j, k;
 int iSwitch;
 int *idx;
 idx = (int *) malloc(n * sizeof (int));
 for (k=0; k < n; k++) {

 idx[k]  =k+1;
 }
 /* Sort means in ascending order*/
 iSwitch=1;
 while (iSwitch != 0){

 iSwitch = 0;
 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){
 iSwitch = 1;
 x = means[i];
 means[i] = means[i+1];
 means[i+1] = x;
 j = idx[i];
 idx[i] = idx[i+1];
 idx[i+1] = j;

 }
 }

 }
 printf("[group] \t  Mean \t\tLSD Grouping \n");
 for (i=0; i < n; i++){

 printf("  [%d] \t\t%f", idx[i], means[i]);
 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){
 printf("\t  *");

 }else{ 
 if(equalMeans[j-1]>0) printf("\t");

 }
 }
 if (i < n-1 && equalMeans[i]>0) printf("\t  *");
 printf("\n");

 }
 free(idx);
 idx = NULL;
 return;

}

Output

                     *** ANALYSIS OF VARIANCE TABLE ***
                                                 Mean
                             ID  DF    SSQ   squares  F-Test   p-Value
Locations .................  -1 ... ........ ....... .......   .......
Replicates ................  -2   4  6524.38 1631.10 .......   .......
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Treatments (unadjusted) ...  -3  15 27297.13 1819.81    4.12 4.11e-005
Treatments (adjusted) .....  -4  15 21271.29 1418.09    4.21 8.99e-005
Blocks (adjusted) .........  -5  15 11339.28  755.95 .......   .......
Intra-Block Error .........  -6  45 15173.09  337.18 .......   .......
Corrected Total ...........  -7  79 60333.88 ....... .......   .......
 
Adjusted Grand Mean:     171.450
Coefficient of Variation: 10.710
Adjusted Treatment Means:
treatment[ 1]            166.4533
treatment[ 2]            160.7527
treatment[ 3]            183.6289
treatment[ 4]            175.6298
treatment[ 5]            162.6806
treatment[ 6]            167.6717
treatment[ 7]            168.3821
treatment[ 8]            176.5731
treatment[ 9]            162.6928
treatment[10]            118.5197
treatment[11]            189.0615
treatment[12]            190.4607
treatment[13]            169.4514
treatment[14]            197.0827
treatment[15]            185.3560
treatment[16]            168.8029
Standard Error for Comparing Two Adjusted Treatment Means: 13.221801
(df=45)
[group]          Mean         LSD Grouping
 [10]         118.519737
 [2]          160.752731       *
 [5]          162.680649       *      *
 [9]          162.692841       *      *
 [1]          166.453323       *      *      *
 [6]          167.671661       *      *      *
 [7]          168.382111       *      *      *
 [16]         168.802887       *      *      *
 [13]         169.451370       *      *      *
 [4]          175.629776       *      *      *      *
 [8]          176.573090       *      *      *      *
 [3]          183.628906       *      *      *      *
 [15]         185.355988       *      *      *      *
 [11]         189.061508              *      *      *
 [12]         190.460724                     *      *
 [14]         197.082703                            *

Example 2

This example consists of a 5 × 5 partially-balanced lattice repeated twice. In this case, the number of replicates is 
not k+1 = 6, it is only n_reps = 2. Each lattice consists of total of 50 observations which is repeated twice. The 
first observation in this experiment is missing.

#include <math.h>
#include <imsls.h>
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#include <stdio.h>
#include <stdlib.h>
void l_print_LSD(int n1, int* equalMeans, float *means);
int main()
{
    char **anova_row_labels = NULL;
    char **loc_row_labels  = NULL;
    char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ", 
        "Mean \nsquares", "\nF-Test", "\np-Value"};
    float alpha = 0.05;
    int i, l, page_width = 132;
    int n = 100;          /* Total number of observations     */
    int n_locations = 2; /* Number of locations              */
    int n_treatments =25; /* Number of treatments             */
    int n_reps      = 2; /* Number of replicates/location    */
    int n_blocks    =10; /* Total number of blocks/location  */
    int n_aov_rows  = 7; /* Number of rows in the anova table */
    int rep[]={
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2,
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        1, 1, 1, 1, 1,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2,
        2, 2, 2, 2, 2
    };
    int block[]={       
        1, 1, 1, 1, 1,
        2, 2, 2, 2, 2,
        3, 3, 3, 3, 3,
        4, 4, 4, 4, 4,
        5, 5, 5, 5, 5,
        6, 6, 6, 6, 6, 
        7, 7, 7, 7, 7,
        8, 8, 8, 8, 8, 
        9, 9, 9, 9, 9,
        10, 10, 10, 10, 10,
        1, 1, 1, 1, 1,
        2, 2, 2, 2, 2,
        3, 3, 3, 3, 3,
        4, 4, 4, 4, 4,
        5, 5, 5, 5, 5,
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        6, 6, 6, 6, 6, 
        7, 7, 7, 7, 7,
        8, 8, 8, 8, 8, 
        9, 9, 9, 9, 9,
        10, 10, 10, 10, 10
    };
    int treatment[]={ 
        1, 2, 3, 4, 5,
        6, 7, 8, 9, 10,
        11, 12, 13, 14, 15,
        16, 17, 18, 19, 20,
        21, 22, 23, 24, 25,
        1, 6, 11, 16, 21,
        2, 7, 12, 17, 22,
        3, 8, 13, 18, 23,
        4, 9, 14, 19, 24,
        5, 10, 15, 20, 25,
        1, 2, 3, 4, 5,
        6, 7, 8, 9, 10,
        11, 12, 13, 14, 15,
        16, 17, 18, 19, 20,
        21, 22, 23, 24, 25,
        1, 6, 11, 16, 21,
        2, 7, 12, 17, 22,
        3, 8, 13, 18, 23,
        4, 9, 14, 19, 24,
        5, 10, 15, 20, 25
    };
    int location[]={
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2
    };
    float y[] ={
        6, 7, 5, 8, 6,
        16, 12, 12, 13, 8,
        17, 7, 7, 9, 14,
        18, 16, 13, 13, 14,
        14, 15, 11, 14, 14,
        24, 13, 24, 11, 8,
        21, 11, 14, 11, 23,
        16, 4, 12, 12, 12,
        17, 10, 30, 9, 23,
        15, 15, 22, 16, 19,
        13, 26, 9, 13, 11,
        15, 18, 22, 11, 15,
        19, 10, 10, 10, 16,
        21, 16, 17, 4, 17,
        15, 12, 13, 20, 8,
        16, 7, 20, 13, 21,
        15, 10, 11, 7, 14,
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        7, 11, 15, 15, 16,
        19, 14, 20, 6, 16,
        17, 18, 20, 15, 14
    };
    float grand_mean;
    float cv;
    float *aov;
    float *location_anova_table;
    float *loc_anova_table;
    float *treatment_means;
    float *std_err;
    int   df;
    int   n_missing;
    int   *equal_means;
    /* Set first observation to missing. */
    y[0] = imsls_f_machine(6);
    aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks, 
        n_treatments, rep, block, treatment, y, 
        IMSLS_LOCATIONS, location,
        IMSLS_GRAND_MEAN, &grand_mean, 
        IMSLS_CV, &cv,
        IMSLS_TREATMENT_MEANS, &treatment_means, 
        IMSLS_STD_ERRORS, &std_err,
        IMSLS_LOCATION_ANOVA_TABLE, &location_anova_table,
        IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
        IMSLS_N_MISSING, &n_missing,
        0);
    /* Output results. */
    imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
    /* Print the ANOVA table. */
    imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***", 
        7, 6, aov, 
        IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%9.3g",
        IMSLS_ROW_LABELS, anova_row_labels,
        IMSLS_COL_LABELS, col_labels,
        0);
    /* Print the location ANOVA tables. */
    for (i=0; i < n_locations; i++){
        printf("\n\n\t\t\t\tLOCATION %d", i+1);
        imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***", 
            7, 6, &(location_anova_table[i*42]), 
            IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%9.3g",
            IMSLS_ROW_LABELS, anova_row_labels,
            IMSLS_COL_LABELS, col_labels,
            0);
    }
    printf("\n\nAdjusted Grand Mean:     %7.3f", grand_mean);
    printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);
    l = 0;
    printf("Adjusted Treatment Means: \n");
    for (i=0; i < n_treatments; i++){
        printf("treatment[%2d]             %7.4f \n", i+1,
            treatment_means[l++]);
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    }
    df = (int) std_err[3];
    printf("\nStandard Error for Comparing Two Adjusted Treatment ");
    printf("Means: %f \n(df=%d)\n", std_err[2], df);
    equal_means = imsls_f_multiple_comparisons(n_treatments,
        treatment_means, df, std_err[2]/sqrt(2), IMSLS_LSD,
        IMSLS_ALPHA, alpha,0);
    l_print_LSD(n_treatments, equal_means, treatment_means);
    printf("\n\nNumber of missing observations: %d\n", n_missing);
}
/*
* Function to display means comparison.
*/
void l_print_LSD(int n, int *equalMeans, float *means){
    float x=0.0;
    int i, j, k;
    int iSwitch;
    int *idx;
    idx = (int *) malloc(n * sizeof (int));
    for (k=0; k < n; k++) {
        idx[k]  =k+1;
    }
    /* Sort means in ascending order*/
    iSwitch=1;
    while (iSwitch != 0){
        iSwitch = 0;
        for (i = 0; i < n-1; i++){
            if (means[i] > means[i+1]){
                iSwitch = 1;
                x = means[i];
                means[i] = means[i+1];
                means[i+1] = x;
                j = idx[i];
                idx[i] = idx[i+1];
                idx[i+1] = j;
            }
        }
    }
    printf("[group] \t Mean \t\tLSD Grouping \n");
    for (i=0; i < n; i++){
        printf(" [%d] \t\t%f", idx[i], means[i]);
        for (j=1; j < i+1; j++){
            if(equalMeans[j-1] >= i+2-j){
                printf("\t *");
            }else{ 
                if(equalMeans[j-1]>0) printf("\t");
            }
        }
        if (i < n-1 && equalMeans[i]>0) printf("\t *");
        printf("\n");
    }
    free(idx);
    idx = NULL;
    return;
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}

Output

                       *** ANALYSIS OF VARIANCE TABLE ***
                                                 Mean
                             ID  DF    SSQ   squares  F-Test   p-Value
Locations .................  -1   1    12.19   12.19    0.25     0.622
Replicates within Locations  -2   2   203.99  101.99    7.44   0.00138
Treatments (unadjusted) ...  -3  24   795.46   33.14    0.02         1
Treatments (adjusted) .....  -4  24   951.20   39.63    2.89   0.00591
Blocks (adjusted) .........  -5  16   770.50   48.16    3.51   0.000256
Intra-Block Error .........  -6  55   753.81   13.71 .......   .......
Corrected Total ...........  -7  98  2535.95 ....... .......   .......

                               LOCATION 1
                     *** ANALYSIS OF VARIANCE TABLE ***
                                                 Mean
                             ID  DF    SSQ   squares  F-Test   p-Value
Locations .................  -1 ... ........ ....... .......   .......
Replicates within Locations  -2   1   203.67  203.67 .......   .......
Treatments (unadjusted) ...  -3  24   567.13   23.63    0.78     0.721
Treatments (adjusted) .....  -4  24   661.08   27.54    2.04     0.078
Blocks (adjusted) .........  -5   8   490.51   61.31 .......   .......
Intra-Block Error .........  -6  15   202.93   13.53 .......   .......
Corrected Total ...........  -7  48  1464.24 ....... .......   .......

                               LOCATION 2
                     *** ANALYSIS OF VARIANCE TABLE ***
                                                 Mean
                             ID  DF    SSQ   squares  F-Test   p-Value
Locations .................  -1 ... ........ ....... .......   .......
Replicates within Locations  -2   1     0.32    0.32 .......   .......
Treatments (unadjusted) ...  -3  24   622.52   25.94    1.43     0.196
Treatments (adjusted) .....  -4  24   707.51   29.48    2.83    0.0178
Blocks (adjusted) .........  -5   8   269.76   33.72 .......   .......
Intra-Block Error .........  -6  16   166.92   10.43 .......   .......
Corrected Total ...........  -7  49  1059.52 ....... .......   .......

Adjusted Grand Mean:      14.011
Coefficient of Variation: 26.423
Adjusted Treatment Means:
treatment[ 1]             17.1507
treatment[ 2]             19.2200
treatment[ 3]             11.1261
treatment[ 4]             14.6230
treatment[ 5]             12.6543
treatment[ 6]             11.8133
treatment[ 7]             11.9045
treatment[ 8]             11.3106
treatment[ 9]              9.5576
treatment[10]             11.5889
treatment[11]             22.1321
treatment[12]             12.7233
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treatment[13]             13.1293
treatment[14]             17.8763
treatment[15]             18.6576
treatment[16]             14.6568
treatment[17]             11.4980
treatment[18]             13.1540
treatment[19]              5.4010
treatment[20]             12.9323
treatment[21]             15.4108
treatment[22]             17.0020
treatment[23]             13.9081
treatment[24]             17.6550
treatment[25]             13.1864
Standard Error for Comparing Two Adjusted Treatment Means: 4.617277
(df=55)
[group]          Mean         LSD Grouping
 [19]         5.400988         *
 [9]          9.557555         *      *
 [3]          11.126063        *      *      *
 [8]          11.310598        *      *      *
 [17]         11.497972        *      *      *
 [10]         11.588868        *      *      *
 [6]          11.813338        *      *      *
 [7]          11.904538        *      *      *
 [5]          12.654334        *      *      *
 [12]         12.723251        *      *      *
 [20]         12.932302        *      *      *      *
 [13]         13.129311        *      *      *      *
 [18]         13.154031        *      *      *      *
 [25]         13.186358        *      *      *      *
 [23]         13.908089        *      *      *      *
 [4]          14.623020        *      *      *      *
 [16]         14.656771               *      *      *
 [21]         15.410829               *      *      *
 [22]         17.002029               *      *      *
 [1]          17.150679               *      *      *
 [24]         17.655045               *      *      *
 [14]         17.876268               *      *      *
 [15]         18.657581               *      *      *
 [2]          19.220003                      *      *
 [11]         22.132051                             *
Number of missing observations: 1
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split_plot
Analyzes a wide variety of split-plot experiments with fixed, mixed or random factors. The whole-plots can be 
assigned to experimental units using either a completely randomized or randomized complete block design. 
Function split_plot also analyzes split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float  *imsls_f_split_plot (int n, int n_locations, int n_whole, int n_split, int rep[], 

int whole[], int split[], float y[] …, 0)

The type double function is imsls_d_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_split_plot verifies 
that:

int n_locations (Input)
Number of locations. n_locations must be one or greater.  If n_locations>1, then the 
optional array locations[] must be included as input to imsls_f_split_plot.

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must be greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be greater than one. 

int rep[] (Input)
An array of length n containing the block, or replicate, identifiers for each observation in y. Locations 
can have different numbers of blocks or replicates. Each block or replicate at a single location must 
be assigned a different identifier, but different locations can have the same assignments.

n = ∑
i=1

n_locations
n_whole *n_split *n_blocks[i − 1]
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int whole[] (Input)
An array of length n containing the whole-plot identifiers for each observation in y. Each level of the 
whole-plot factor must be assigned a different integer. imsls_f_split_plot verifies that the 
number of unique whole-plot identifiers is equal to n_whole.

int split[] (Input)
An array of length n containing the split-plot identifiers for each observation in y. Each level of the 
split-plot factor must be assigned a different integer. imsls_f_split_plot verifies that the 
number of unique split-plot identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values 
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be 
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively. At a single location, only one missing 
value per whole-plot is allowed. The location, whole-plot and split-plot for each observation in y are 
identified by the corresponding values in the arguments locations, whole and split.

Return Value
Address of a pointer to the memory location of a two dimensional, 11 by 6 array containing the ANOVA table. 
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that row. 

The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 

3 Mean squares 

4 F-statistic 

5 p-value for this F-statistic
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The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[]. 

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have 
been lost. Assignments of identifiers to ANOVA sources use the following coding:

Synopsis with Optional Arguments
#include <imsl.h>
float  *imsls_f_split_plot (int n, int n_locations, int n_whole, int n_split, int rep[], 

int whole[], int split[], float y[],

IMSLS_LOCATIONS, int locations[],
IMSLS_LOC_RANDOM, or 
IMSLS_LOC_FIXED,
IMSLS_RCBD, or 
IMSLS_CRD,
IMSLS_WHOLE_FIXED, or
IMSLS_WHOLE_RANDOM,

Source 
Identifier ANOVA Source

-1 LOCATION†

-2 BLOCK WITHIN LOCATION‡ 

-3 WHOLE-PLOT

-4 LOCATION × WHOLE-PLOT†

-5 WHOLE-PLOT ERROR 

-6 SPLIT-PLOT

-7 LOCATION × SPLIT-PLOT†

-8 WHOLE-PLOT × SPLIT-PLOT

-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT †

-10 SPLIT-PLOT ERROR ⇑
-11 CORRECTED TOTAL

Notes on table: 
† If n_locations=1 sources involving location are set to missing (NaN).
‡ If IMSLS_CRD is set, entries for block within location are set to missing, and its sum of squares and 
degrees of freedom are pooled into the whole-plot error.
⇑ Split-plot error component calculation varies depending upon the settings for IMSLS_RCBD, 
IMSLS_LOC_FIXED, IMSLS_WHOLE_FIXED, IMSLS_SPLIT_FIXED, and upon whether n_locations = 1. 
See the Description section below for details.
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IMSLS_SPLIT_FIXED, or 
IMSLS_SPLIT_RANDOM,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_BLOCK_SS, float **block_ss,
IMSLS_BLOCK_SS_USER, float block_ss[],
IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss,
IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[],
IMSLS_SPLIT_PLOT_SS, float **split_plot_ss,
IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[],
IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss,
IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[],
IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss,
IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[],
IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss,
IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[],
IMSLS_TOTAL_SS, float **total_ss,
IMSLS_TOTAL_SS_USER, float total_ss[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
IMSLS_RETURN_USER, float anova_table[],
0)
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Optional Arguments
IMSLS_LOCATIONS, int locations[] (Input)

An array of length n containing the location identifiers for each observation in y. Unique integers 
must be assigned to each location in the study. This argument is required when n_locations>1. 

IMSLS_LOC_FIXED (Input)

or 

IMSLS_LOC_RANDOM (Input)
A characteristic controlling whether the location factor is treated as a fixed or random effect, when 
n_locations>1. IMSLS_LOC_FIXED and IMSLS_LOC_RANDOM imply that the factor is a fixed 
effect or random effect, respectively. 

Default: IMSLS_LOC_RANDOM
IMSLS_RCBD,  (Input)

or

IMSLS_CRD,  (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that whole-plots are assigned to 
whole-plot experimental units using a randomized complete block design. IMSLS_CRD implies that 
whole-plots are completely randomized to whole-plot experimental units. 

Default: IMSLS_RCBD
IMSLS_WHOLE_FIXED,  (Input) 

or

IMSLS_WHOLE_RANDOM, (Input)
Whole-plot characteristic. IMSLS_WHOLE_FIXED implies that the whole-plot factor is a fixed effect, 
and IMSLS_WHOLE_RANDOM implies that it is a random effect.

Default: IMSLS_WHOLE_FIXED
IMSLS_SPLIT_FIXED,  (Input)

or

IMSLS_SPLIT_RANDOM, (Input)
Split-plot characteristic. IMSLS_SPLIT_FIXED implies that the split-plot factor is a fixed effect, 
and IMSLS_SPLIT_RANDOM implies that it is a random effect. 

Default: IMSLS_SPLIT_FIXED.
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IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 2 containing the whole-plot and split-
plot coefficients of variation. cv[0] contains the whole-plot C.V., and cv[1] contains the split-plot 
C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
Address of a pointer to an internally allocated array of length n_whole containing the whole-plot 
means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split containing the split-plot 
means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size (n_whole × n_split) containing the 
treatment means. For I > 0 and j > 0, 
treatment_meansi,j = treatment_means[(i-1) × n_split+j-1] contains the mean of the 
observations, averaged over all locations, blocks and replicates, for the j-th split-plot within the i-th 
whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.
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IMSLS_STD_ERRORS, float **std_err (Output)
Address of a pointer to an internally allocated array of length 10 containing five standard errors and 
their associated degrees of freedom.

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length n_locations containing the num-
ber of blocks, or replicates, at each location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_BLOCK_SS, float **block_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for blocks and their associated degrees of freedom for each location.

IMSLS_BLOCK_SS_USER, float block_ss[] (Output)
Storage for the array block_ss, provided by the user. 

IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the error sum of squares for whole-plots and their associated degrees of freedom for each 
location.

IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[] (Output)
Storage for the array whole_plot_ss, provided by the user.

Element

Standard Error for 
Comparisons 
Between Two

Degrees of 
Freedom

std_err[0] Whole-Plot Means std_err[5]
std_err[1] Split-Plot Means std_err[6]
std_err[2] Split-Plots within same 

Whole-Plot
std_err[7]

std_err[3] Whole-Plots within same 
Split-Plot

std_err[8]

std_err[4] Treatment Means 
(same whole-plot, split-
plot and sub-plot)

std_err[9]
423



 Analysis of Variance  and Designed Experiments         split_plot
IMSLS_SPLIT_PLOT_SS, float **split_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for split-plots and their associated degrees of freedom for each location. 

IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[] (Output)
Storage for the array split_plot_ss, provided by the user.

IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for whole-plot by split-plot interaction and their associated degrees of 
freedom for each location.

IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[] (Output)
Storage for the array wholexsplit_plot_ss, provided by the user.

IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for error and their associated degrees of freedom for each location.

IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[] (Output)
Storage for the array whole_plot_error_ss, provided by the user.

IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for split-plots and their associated degrees of freedom for each location.

IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[] (Output)
Storage for the array split_plot_error_ss, provided by the user.

IMSLS_TOTAL_SS, float **total_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the corrected total sum of squares and their associated degrees of freedom for each location.

IMSLS_TOTAL_SS_USER, float total_ss[] (Output)
Storage for the array total_ss, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to 
imsls_free(anova_row_labels).
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IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required 
will vary depending upon the number of factors and n_anova. An upperbound on the required 
memory is char *anova_row_labels[600].

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 66 for storage of the 11 by 6 Anova table described as the return argu-
ment for imsls_f_split_plot. For a detailed description of the format for this table, see the 
previous description of the return arguments for imsls_f_split_plot.

Description
Function imsls_f_split_plot is capable of analyzing a wide variety of split-plot experiments. Whole-plot 
and split-plot factors can each be designated as either fixed or random, allowing for experiments with fixed, ran-
dom or mixed treatment effects. By default, imsls_f_split_plot assumes that all treatment factors are 
fixed effects, i.e. IMSLS_WHOLE_FIXED and IMSLS_SPLIT_FIXED are default settings. Whole-plot or split-
plot factors can each be declared as random effects by setting the optional input arguments 
IMSLS_WHOLE_RANDOM and IMSLS_SPLIT_RANDOM, respectively.

Split-plot experimental designs can also vary in the assignment of the whole-plot factor to its experimental units. 
In some cases, this assignment is completely random. For example, in a drug study the experimental unit might 
be the subject receiving a treatment. The whole-plot factor, possibly different treatments, could be assigned in 
one of two ways. Each subject could receive only one treatment or each could receive all treatments over an 
appropriate period of time. If each subject received only a single randomly selected treatment, then this design 
constitutes a completely randomized design for the whole-plot factor, and the optional input argument 
IMSLS_CRD must be set.

On the other hand, if each subject receives every treatment in random order, then the subject is a blocking factor, 
and this sampling scheme constitutes a randomized complete block design. In this case, it is necessary to assume 
that there are no carry-over effects from one treatment to another. This sampling scheme is the default setting, 
i.e. IMSLS_RCBD is the default setting.

A similar randomization choice occurs in agricultural field trials. A trial designed to test different fertilizers and dif-
ferent seed lots can be conducted in one of two ways. The whole-plot factor, fertilizer, can be applied to different 
fields, or each can be applied to sub-divisions of these fields. In either case, a field is the whole-plot experimental 
unit. In the first case in which only a single randomly selected fertilizer is applied to a single field, the whole-plot 
factor is not blocked and this scheme is called as a completely randomized design, and the optional input argu-
ment IMSLS_CRD must be set. However, if fertilizers are applied to sub-plots within a field, then the whole-plot 
factor is blocked within fields and this assignment is referred to as a randomized complete block design. By 
default, this function assumes that levels of the whole-plot factor are randomly assigned within blocks, i.e. 
IMSLS_RCBD is the default setting for randomizing whole-plots.
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The essential distinction between split-plot experiments and completely randomized or randomized complete 
block experiments is the presence of a second factor that is blocked, or nested, within each level of the whole-
plot factor. This second factor is referred to as the split-plot factor, see Table 22. If levels of this factor were com-
pletely randomized, then two or more treatments with the same split-plot level could be assigned to the same 
whole-plot level, see Table 23.

In some studies, a split-plot experiment is replicated at several locations. Function imsls_f_split_plot can 
also analyze split-plot experiments replicated at multiple locations, even when the number of blocks or replicates 
at each location are different. If only a single replicate or block is used at each location, then location should be 
treated as a blocking factor, with n_locations set equal to one. If n_locations=1, it is assumed that the 
experiment was conducted at a single location with more than one block or replicate at that location. In this case, 
the four entries associated with location in the Anova table will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with replication 
or blocking occurring at each location. Although the number of blocks, or replicates, at each location can be dif-
ferent, the number of levels for whole-plot and split-plot factors, n_whole and n_split, must be the same at 
each location. The location associated with y[i] is specified in location[i], which is a required input argu-
ment when n_locations>1. 

By default, locations are assumed to be random effects. However, they can be specified as fixed effects by setting 
the optional argument IMSLS_LOC_FIXED. This setting changes the calculations of the F-tests for whole-plot 
and split-plot factors. If locations are assumed to be fixed effects, then the whole-plot and split-plot errors at 

Table 22 – Split-Plot Experiments – 
Split-Plot B Nested within Whole-Plot A

Whole Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 23 – Completely Randomized 
Experiments – Both Factors Randomized

CRD

A3B2 A1B3 A4B1 A4B3

A2B3 A1B1 A3B2 A1B2

A2B2 A3B1 A2B1 A4B2
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each location are pooled to form the whole-plot and split-plot errors. This can dramatically increase the degrees 
of freedom associated with the F-test for the treatment factors, resulting in smaller p-values. However, pooling 
the error terms from different locations requires experimenters to assume that the errors at each location are 
approximately the same. This should be verified using a test for homogeneity of variance, such as Bartlett’s or 
Levene’s test.

On the other hand, if locations are assumed to be random effects, then tests involving whole-plots use the inter-
action between whole-plots and locations as the error term for testing whether there are statistically significant 
differences among whole-plot factor levels. However, this assumes that the interaction of whole-plots and loca-
tions is not statistically significant. A test of this assumption uses the pooled whole-plot error. If the interaction 
between whole-plots and locations is statistically significant, then the nature of that interaction should be 
explored since it impacts the interpretation of the significance of the whole-plot treatment factor.

Similarly, when locations are assumed to be random effects, tests involving split-plots do not use the split-plot 
errors pooled across locations. Instead, the error term for split plots is the interaction between locations and 
split-plots. The split-plot by whole-plot interaction is tested against the location by split-plot by whole-plot 
interaction. 

Suppose, for example, that a researcher wanted to conduct an agricultural experiment comparing the effective-
ness of 4 fertilizers with 4 seed lots. One replicate of the experiment is conducted at each of the 3 farms. That is, 
only a single field at each location is assigned to this experiment. 

The field at each farm is divided into 4 whole-plots and the fertilizers are randomly assigned to each of the 4 
whole-plots. Each whole-plot is then further divided into 4 split-plots, and the seed lots are randomly assigned to 
these split-plots.

In this case, each farm is a blocking factor, fertilizers are whole-plots and seed lots are split-plots. The input array 
rep would contain integers from 1 to the number of farms.

However, if each farm allocated more than a single field for this study, then each farm would be treated as a dif-
ferent location with n_locations set equal to the number of farms, and fields would be treated as blocking 
factor. The array rep would contain integers from 1 to the number fields used in a farm, and locations[] 
would contain integers from 1 to the number of farms.

In summary this function can analyze 3x2x2x2=24 different experimental situations, depending upon the settings 
of:

1. Locations (none, fixed or random): specified by setting n_locations, locations[] and 
IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.

2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or IMSLS_RCBD.

3. Whole-plot effect (fixed or random): specified by setting either IMSLS_WHOLE_FIXED or 
IMSLS_WHOLE_RANDOM.
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4. Split-plot effect (fixed or random): specified by setting either IMSLS_SPLIT_FIXED or 
IMSLS_SPLIT_RANDOM.

The default condition depends upon the value for n_locations. If n_locations>1, locations are assumed 
to be a random effect. Assignment of experimental units to whole-plots is assumed to use a RCBD design and 
both whole-plots and split-plots are assumed to be fixed effects.

Example
This example uses data from a split-plot design consisting of two whole-plots and four split-plots.

#include <imsls.h>
#include <stdio.h>
int main()
{
   char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ", "Mean\nsquares",
       "\nF", "\np-value"};
   int i, page_width = 132;
   int n = 24;               /* Total number of observations */
   int n_locations = 1;      /* Number of locations */
   int n_whole = 2;          /* Number of Whole-plots within a location */
   int n_split = 4;          /* Number of Split-plots within a location,
                              Whole_plot */
   int rep[]={
       1, 1, 1, 1, 1, 1, 1, 1,
       2, 2, 2, 2, 2, 2, 2, 2,
       3, 3, 3, 3, 3, 3, 3, 3
   };
   int whole[]={
       1, 1, 1, 1, 2, 2, 2, 2,
       1, 1, 1, 1, 2, 2, 2, 2,
       1, 1, 1, 1, 2, 2, 2, 2
   };
   int split[]={
       1, 2, 3, 4, 1, 2, 3, 4,
       1, 2, 3, 4, 1, 2, 3, 4,
       1, 2, 3, 4, 1, 2, 3, 4
   };
   float y[] ={
       30.0, 40.0, 38.9, 38.2,
       41.8, 52.2, 54.8, 58.2,
       20.5, 26.9, 21.4, 25.1,
       26.4, 36.7, 28.9, 35.9,
       21.0, 25.4, 24.0, 23.3,
       34.4, 41.0, 33.0, 34.9
   };
   float grand_mean;
   float *aov;
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   float *treatment_means;
   float *whole_plot_means;
   float *split_plot_means;
   int *equal_means;
   char **aov_row_labels;
   aov = imsls_f_split_plot(n, n_locations, n_whole, n_split, rep,
       whole, split, y,
       IMSLS_GRAND_MEAN, &grand_mean,
       IMSLS_TREATMENT_MEANS, &treatment_means,
       IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,
       IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,
       IMSLS_ANOVA_ROW_LABELS, &aov_row_labels,
       0);
   /* Output results. */
   imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
   /* Print ANOVA table, without first column. */
   imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***", 11, 6,
       aov,
       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
       IMSLS_ROW_LABELS, aov_row_labels,
       IMSLS_COL_LABELS, col_labels,
       0);
   /* Print the various means. */
   printf("\n\nGrand mean: %f\n", grand_mean);
   imsls_f_write_matrix("Treatment Means", n_whole, n_split,
       treatment_means,
       0);
   imsls_f_write_matrix("Whole-plot Means", n_whole, 1,
       whole_plot_means,
       0);
   imsls_f_write_matrix("Split-plot Means", n_split, 1,
       split_plot_means,
       0);
}

Output

                   *** ANALYSIS OF VARIANCE TABLE ***
                                               Mean
                         ID  DF      SSQ squares       F p-value
Location                 -1 ... ........ ....... ....... .......
Block Within Location    -2   2  1310.28  655.14   30.82   0.031
Whole-Plot               -3   1   858.01  858.01   40.37   0.024
Location x Whole-Plot    -4 ... ........ ....... ....... .......
Whole-Plot Error         -5   2    42.51   21.26    2.03   0.173
Split-Plot               -6   3   227.73   75.91    7.26   0.005
Location x Split-Plot    -7 ... ........ ....... ....... .......
Whole-Plot x Split-Plot  -8   3    13.40    4.47    0.43   0.737
Location x Whole-Plot x  -9 ... ........ ....... ....... .......
  Split-Plot
Split-Plot Error        -10  12   125.39   10.45 ....... .......
Corrected Total         -11  23  2577.33 ....... ....... .......
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Grand mean: 33.870834
                  Treatment Means
            1           2           3           4
1       23.83       30.77       28.10       28.87
2       34.20       43.30       38.90       43.00
Whole-plot Means
1       27.89
2       39.85
Split-plot Means
1       29.02
2       37.03
3       33.50
4       35.93
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split_split_plot
Analyzes data from split-split-plot experiments. The whole-plots can be assigned to experimental units using 
either a completely randomized or randomized complete block design. Function split_split_plot also 
analyzes split-split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float  *imsls_f_split_split_plot (int n, int n_locations, int n_whole, int n_split, int 

n_sub, int rep[], int whole[], int split[], int sub[], float y[], …, 0)

The type double function is imsls_d_split_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_split_split_plot 
verifies that:

int n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1 then the optional 
array locations[] must be included as input. See optional argument IMSLS_LOCATIONS.

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must be greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be greater than one. 

int n_sub (Input)
Number of levels associated with the sub-plot factor. n_sub must be greater than one.

n = ∑
i=1

n_locations

n_whole × n_split × n_sub × n_blocks[i − 1]
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int rep[] (Input)
An array of length n containing the block, or replicate, identifiers for each observation in y. Different 
locations can have different numbers of blocks or replicates. Each block or replicate at a single loca-
tion must be assigned a different identifier, but different locations can have the same assignments.

int whole[] (Input)
An array of length n containing the whole-plot identifiers for each observation in y. Each level of the 
whole-plot factor must be assigned a different integer. imsls_f_split_split_plot verifies 
that the number of unique whole-plot identifiers is equal to n_whole.

int split[] (Input)
An array of length n containing the split-plot identifiers for each observation in y. Each level of the 
split-plot factor must be assigned a different integer. imsls_f_split_split_plot verifies that 
the number of unique split-plot identifiers is equal to n_split.

int sub[] (Input)
An array of length n containing the sub-plot identifiers for each observation in y. Each level of the 
sub-plot factor must be assigned a different integer. imsls_f_split_split_plot verifies that 
the number of unique sub-plot identifiers is equal to n_sub.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values 
cannot be omitted. They are included by placing a NaN (not a number) in y. The NaN value can be set 
using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively. At a single location, only one missing 
value per whole-plot is allowed. The location, whole-plot, split-plot and sub-plot for each observation 
in y are identified by the corresponding values in the arguments locations, whole, split and 
sub.

Return Value
Address of a pointer to the memory location of a two dimensional, 20 by 6 array containing the ANOVA table. 
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that row. 

The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 
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The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[]. 

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have 
been lost. Assignments of identifiers to ANOVA sources use the following coding:

NOTES:

† If n_locations=1 sources involving location are set to missing (NaN).

3 Mean squares 

4 F-statistic 

5 p-value for this F-statistic

Source
Identifier ANOVA Source

-1 LOCATION†
-2 BLOCK WITHIN LOCATION‡ 

-3 WHOLE-PLOT
-4 LOCATION × WHOLE-PLOT†
-5 WHOLE-PLOT ERROR 

-6 SPLIT-PLOT
-7 LOCATION × SPLIT-PLOT†
-8 WHOLE-PLOT × SPLIT-PLOT
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT†
-10 SPLIT-PLOT ERROR*

-11 CORRECTED TOTAL
-12 LOCATION × SUB-PLOT†
-13 WHOLE-PLOT × SUB-PLOT
-14 LOCATION × WHOLE-PLOT × SUB-PLOT†
-15 SPLIT-PLOT × SUB-PLOT
-16 LOCATION × SPLIT-PLOT × SUB-PLOT†
-17 WHOLE-PLOT × SPLIT-PLOT × SUB-PLOT
-18 LOCATION × WHOLE-PLOT × SPLIT-PLOT × SUBPLOT†
-19 SUB-PLOT ERROR
-20 CORRECTED TOTAL

j anova_tablei,j = anova_table[i*6+j]
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‡  If IMSLS_CRD is set, entries for blocks within location are set to missing, and its sum of squares and degrees 
of freedom are pooled into the whole-plot error.

*  Split-plot error component calculation varies depending upon n_locations. See Description below for 
details.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_split_split_plot (int n, int n_locations, int n_whole, int n_split, 

int n_sub, int rep[], int whole[], int split[], int sub[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_RCBD, or
IMSLS_CRD,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_SUB_PLOT_MEANS, float **sub_plot_means,
IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[],
IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means,
IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float whole_split_plot_means[],
IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means,
IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[],
IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means, 
IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
434



 Analysis of Variance  and Designed Experiments         split_split_plot
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[]  (Output)

User defined array of length 120 for storage of the 20 by 6 anova table described as the return argu-
ment for imsls_f_split_split_plot. For a detailed description of the format for this table, 
see the previous description of the return value for imsls_f_split_split_plot.

IMSLS_LOCATIONS, int locations[]  (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers 
must be assigned to each location in the study. This argument is required when n_locations>1.

IMSLS_RCBD  (Input)

or

IMSLS_CRD  (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that whole-plots are assigned to 
whole-plot experimental units using a randomized complete block design. IMSLS_CRD implies that 
whole-plots are completely randomized to whole-plot experimental units. 
Default: IMSLS_RCBD.

IMSLS_N_MISSING, int *n_missing  (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value.

IMSLS_CV, float **cv  (Output)
Address of a pointer to an internally allocated array of length 3 containing the whole-plot, split-plot 
and sub-plot coefficients of variation. cv[0] contains the whole-plot C.V., cv[1] contains the split-plot 
C.V., and cv[2] contains the sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.
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IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_whole containing the whole-plot 
means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split containing the split-plot 
means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_SUB_PLOT_MEANS, float **sub_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_sub containing the sub-plot means.

IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[] (Output)
Storage for the array sub_plot_means, provided by the user.

IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size n_whole by n_split 
containing the whole-plot by split-plot means.

IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float whole_split_plot_means[] (Output)
Storage for the array whole_split_plot_means, provided by the user.

IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_whole by n_sub con-
taining the whole-plot by sub-plot means.

IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[] (Output)
Storage for the array whole_sub_plot_means, provided by the user.

IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size n_split by n_sub con-
taining the split-plot by sub-plot means.

IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[] (Output)
Storage for the array split_sub_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size (n_whole×n_split×n_sub) contain-
ing the treatment means. For i > 0, j > 0 and k > 0, 
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treatment_meansi,j,k = treatment_means[(i-1)*n_split*n_sub+(j-1)*n_sub + k-1] con-
tains the mean of the observations, averaged over all locations, blocks and replicates, for the k-th 
sub-plot within the j-th split-plot within the i-th whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 8 containing five standard errors and 
their associated degrees of freedom. The standard errors are in the first five elements and their asso-
ciated degrees of freedom are reported in std_err[4] through std_err[7].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length n_locations containing the number 
of blocks, or replicates, at each location. 

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
 Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 20 by 6 
containing the anova tables associated with each location. For each location, the 20 by 6 dimensional 
array corresponds to the anova table for that location. For example, 
location_anova_table[(i-1)×120+(j-1)×6 + (k-1)] contains the value in the k-th column and 
j-th row of the returned anova-table for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

Element

Standard Error for

Comparisons Between Two

Degrees of

Freedom
std_err[0] Whole-Plot Means std_err[4]
std_err[1] Split-Plot Means std_err[5]
std_err[2] Sub-Plot Means std_err[6]
std_err[3] Treatment Means (same whole-plot, split-plot 

and sub-plot)
std_err[7]
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IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to 
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required 
will vary depending upon the number of factors and n_anova. An upperbound on the required 
memory is char *anova_row_labels[600].

Description
Function imsls_f_split_split_plot is capable of analyzing a wide variety of split-split-plot experiments. 

Split-split-plot experimental designs can vary in the assignment of whole-plot factors to experimental units. In 
some cases, this assignment is completely random. For example, in a drug study the experimental unit might be 
the subject receiving a treatment. The whole-plot factor, possibly different treatments, could be assigned in one 
of two ways. Each subject could receive only one treatment or each could receive all treatments over an appropri-
ate period of time. If each subject received only a single randomly selected treatment, then this design 
constitutes a completely randomized design for the whole-plot factor, and the optional input argument 
IMSLS_CRD must be set. 

On the other hand, if each subject receives every treatment in random order, then the subject is a blocking factor, 
and this sampling scheme constitutes a randomized complete block design. In this case, it is necessary to assume 
that there are no carry-over effects from one treatment to another. This sampling scheme is the default setting, 
i.e. IMSLS_RCBD is the default setting.

This randomization choice occurs often in agricultural field trials. A trial designed to test different fertilizers and 
different seed lots can be conducted in one of two ways. The whole-plot factor, fertilizer, can be applied to differ-
ent fields, or each can be applied to sub-divisions of these fields. In either case, a field, or a sub-division of a field, 
is the whole-plot experimental unit. In the first case, in which only one randomly selected fertilizer is applied to 
each field, the whole-plot factor is not blocked and this scheme is called as a completely randomized design, and 
the optional input argument IMSLS_CRD must be set. However, if fertilizers are applied to sub-divisions within a 
field, then the whole-plot factor is blocked within fields and this assignment is referred to as a randomized com-
plete block design. By default, imsls_f_split_split_plot assumes that levels of the whole-plot factor 
are randomly assigned within blocks, i.e.IMSLS_RCBD is the default setting for randomizing whole-plots.
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The essential distinction between split-plot and split-split-plot experiments is the presence of a third factor that is 
blocked, or nested, within each level of the whole-plot and split-plot factors. This third factor is referred to as the 
sub-plot factor.

Table 24 – Split-Plot Experiment – 
Split-Plot B Nested within Whole-Plot A

Whole Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 25 – Split-Split Plot Experiment – Sub-Plot Factor C 
Nested Within Split-Plot Factor B, Nested Within Whole-Plot Factor A

Whole Plot Factor A

A2 A1 A4 A3

A2B3C2

A2B3C1

A1B2C1

A1B2C2

A4B1C2

A4B1C1

A3B3C2

A3B3C1

A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B3C2

A4B3C1

A3B2C2

A3B2C1

A2B2C2

A2B2C1

A1B3C1

A1B3C2

A4B2C1

A4B2C2

A3B1C2

A3B1C1
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Contrast the split-split plot experiment to the same experiment run using a strip-split plot design, see Table 26. In 
a strip-split plot experiment factor B is applied in strip across factor A; whereas, in a split-split plot experiment, 
factor B is randomly assigned to each level of factor A. In a strip-split plot experiment, the level of factor B is con-
stant across a row; whereas in a split-split plot experiment, the levels of factor B change as you go across a row, 
reflecting the fact that factor B is randomized within each level of factor A.

In some studies, a split-split-plot experiment is replicated at several locations. Function 
imsls_f_split_split_plot can analyze these, even when the number of blocks or replicates at each 
location is different. If only a single replicate or block is used at each location, then location should be treated as a 
blocking factor, with n_locations set equal to one. If n_locations=1, it is assumed that the experiment 
was conducted at a single location with more than one block or replicate at that location. In this case, all entries in 
the anova table associated with location will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with replication 
or blocking occurring at each location. Although the number of blocks, or replicates, at each location can be dif-
ferent, the number of levels for whole-plot and split-plot factors, n_whole and n_split, must be the same at 
each location. The locations associated with each of the observations in y are specified in the argument 
locations[], which is a required input argument when n_locations>1.

By default, locations are assumed to be random effects. Tests involving whole-plots use the interaction between 
whole-plots and locations as the error term for testing whether there are statistically significant differences 
among whole-plot factor levels. This assumes that the interaction of whole-plots and locations is not statistically 
significant. A test of this assumption uses the pooled whole-plot error. If the interaction between location and 
whole-plots, split-plots or sub-plot is statistically significant, then the nature of that interaction should be 
explored since it impacts the interpretation of the significance of the treatment factors.

Table 26 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A 
and B

Factor A Strip Plots

A2 A1 A4 A3
Factor B
Strip Plots

B3 A2B3C2

A2B3C1

A1B3C1

A1B3C2

A4B3C2

A4B3C1

A3B3C2

A3B3C1

B1 A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B1C2

A4B1C1

A3B1C2

A3B1C1

B2 A2B2C2

A2B2C1

A1B2C1

A1B2C2

A4B2C1

A4B2C2

A3B2C2

A3B2C1
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When n_locations >1 are assumed to be random effects, tests involving split-plots do not use the split-plot 
errors pooled across locations. Instead, the error term for split plots is the interaction between locations and 
split-plots. The split-plot by whole-plot interaction is tested against the location by split-plot by whole-plot 
interaction. 

Suppose, for example, that a researcher wanted to conduct an agricultural experiment comparing the effective-
ness of 4 fertilizers with 3 rates of application and 2 seed lots. One replicate of the experiment is conducted at 
each of the 3 farms. That is, only a single field at each location is assigned to this experiment. 

Each field is divided into 4 whole-plots and the fertilizers are randomly assigned to each of the 4 whole-plots. 
Each whole-plot is then further sub-divided into 3 split-plots which are each randomly assigned one of the three 
fertilizer application rates. Finally, each of these sub-divisions assigned a particular fertilizer and application rate 
is sub-divided into 2 plots and randomly assigned one of the two seed lots.

In this case, each farm is a blocking factor, fertilizers are whole-plots and fertilizer application rate are split plots, 
and seed lots are sub-plots. The input array rep would contain integers from 1 to the number of farms, with 
n_whole=4, n_split=3 and n_sub=2.

However, if each farm allocated more than a single field for this study, then each farm would be treated as a dif-
ferent location with n_locations set equal to the number of farms, and fields might be treated as blocking 
factor. The array rep would contain integers from 1 to the number fields used in a farm, and locations[] 
would contain integers from 1 to the number of farms.

In summary imsls_f_split_split_plot can analyze 3x2=6 different experimental situations, depending 
upon the settings of:

1. Locations (none, fixed or random): specified by setting n_locations, locations[] and 
IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.

2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or IMSLS_RCBD.

The default condition depends upon the value for n_locations. If n_locations>1, locations are assumed 
to be a random effect. Assignment of experimental units to whole-plots is assumed to use a RCBD design and 
whole-plots, split-plots and sub-plots are all assumed to be fixed effects.

Example
This example uses data from a split-split-plot design consisting of two whole-plots, two-split-plots and two 
sub-plots.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
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int main()
{
   char **anova_row_labels;
   char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ", "Mean\nsquares",
       "\nF", "\np-value"};
   char dashes[] =
       "*************************************************************";
   int i, j, k, l, page_width = 132;
   int n = 24;
   int n_locations = 1;
   int n_whole = 2;
   int n_split = 2;
   int n_sub  = 2;
   int rep[]={
       1, 1, 1, 1, 1, 1, 1, 1,
       2, 2, 2, 2, 2, 2, 2, 2,
       3, 3, 3, 3, 3, 3, 3, 3
   };
   int whole[]={
       1, 1, 1, 1, 2, 2, 2, 2,
       1, 1, 1, 1, 2, 2, 2, 2,
       1, 1, 1, 1, 2, 2, 2, 2
   };
   int split[]={
       1, 1, 2, 2, 1, 1, 2, 2,
       1, 1, 2, 2, 1, 1, 2, 2,
       1, 1, 2, 2, 1, 1, 2, 2
   };
   int sub[]={
       1, 2, 1, 2, 1, 2, 1, 2,
       1, 2, 1, 2, 1, 2, 1, 2,
       1, 2, 1, 2, 1, 2, 1, 2
   };
   float y[] ={
       30.0, 40.0, 38.9, 38.2,
       41.8, 52.2, 54.8, 58.2,
       20.5, 26.9, 21.4, 25.1,
       26.4, 36.7, 28.9, 35.9,
       21.0, 25.4, 24.0, 23.3,
       34.4, 41.0, 33.0, 34.9
   };
   float grand_mean, *cv, *aov, *treatment_means;
   float *whole_plot_means, *split_plot_means;
   float *sub_plot_means, *std_err;
   int  *equal_means;
   aov = imsls_f_split_split_plot(n, n_locations, n_whole, n_split,
       n_sub, rep, whole, split, sub, y,
       IMSLS_GRAND_MEAN, &grand_mean,
       IMSLS_CV, &cv,
       IMSLS_TREATMENT_MEANS, &treatment_means,
       IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,
       IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,
       IMSLS_SUB_PLOT_MEANS,  &sub_plot_means,
       IMSLS_STD_ERRORS,      &std_err,
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       IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
       0);
   /* Output results. */
   imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
   /* Print ANOVA table. */
   imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***", 20, 6,
       aov,
       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
       IMSLS_ROW_LABELS, anova_row_labels,
       IMSLS_COL_LABELS, col_labels,
       0);
   printf("\n\nGrand mean:   %7.3f\n", grand_mean);
   printf("Coefficient of Variation ****\n");
   printf(" Whole-Plot: %7.3f\n", cv[0]);
   printf(" Split-Plot: %7.3f\n", cv[1]);
   printf(" Sub-Plot : %7.3f\n", cv[2]);
   l = 0;
   /* Treatment Means */
   printf("\n\n%s\n", dashes);
   printf("Treatment Means: \n");
   for (i=0; i < n_whole; i++){
       for(j=0; j < n_split; j++){
           for(k=0; k < n_sub; k++){
               printf(" treatment[%d][%d][%d] %f \n", i, j, k,
                   treatment_means[l++]);
           }
       }
   }
   printf("\n Standard Error for Comparing Two Treatment Means: %f ",
       std_err[3]);
   printf("\n(df=%f)\n", std_err[7]);
   equal_means = imsls_f_multiple_comparisons(n_whole * n_split * n_sub,
       treatment_means, (int)std_err[7], std_err[3]/sqrt(2),
       IMSLS_LSD,
       IMSLS_ALPHA, .05,
       0);
   printf("\n LSD for Treatment Means (alpha=0.05)");
   imsls_i_write_matrix(" Size of Groups of Means", 1,
       n_whole * n_split * n_sub - 1, equal_means,
       0);
   /* Whole-plot Means */
   printf("\n\n%s", dashes);
   imsls_f_write_matrix("Whole-plot Means", n_whole, 1,
       whole_plot_means,
       0);
   printf("\nStandard Error for Comparing Two Whole-Plot Means: %f ",
       std_err[0]);
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   printf("\n(df=%f)\n", std_err[4]);
   equal_means = imsls_f_multiple_comparisons(n_whole,
       whole_plot_means, (int)std_err[4], std_err[0]/sqrt(2),
       IMSLS_LSD,
       IMSLS_ALPHA, .05,
       0);
   printf("\nLSD for Whole-Plot Means (alpha=0.05) \n");
   imsls_i_write_matrix("Size of Groups of Means", 1, n_whole-1,
       equal_means,
       0);
   /* Split-plot Means */
   printf("\n\n%s",dashes);
   imsls_f_write_matrix("Split-plot Means", n_split, 1,
       split_plot_means,
       0);
   printf("\nStandard Error for Comparing Two Split-Plot Means: %f ",
       std_err[1]);
   printf("\n(df=%f)\n", std_err[5]);
   equal_means = imsls_f_multiple_comparisons(n_split,
       split_plot_means, (int)std_err[5], std_err[1]/sqrt(2),
       IMSLS_LSD,
       IMSLS_ALPHA, .05,
       0);
   printf("\nLSD for Split-Plot Means (alpha=0.05) \n");
   imsls_i_write_matrix("Size of Groups of Means", 1, n_split-1,
       equal_means,
       0);
   /* Sub-plot Means */
   printf("\n\n%s", dashes);
   imsls_f_write_matrix("Sub-plot Means", n_sub, 1, sub_plot_means,
       0);
   printf("\nStandard Error for Comparing Two Sub-Plot Means: %f ",
       std_err[2]);
   printf("\n(df=%f)\n", std_err[6]);
   equal_means = imsls_f_multiple_comparisons(n_sub, sub_plot_means,
       (int)std_err[6], std_err[2]/sqrt(2),
       IMSLS_LSD,
       IMSLS_ALPHA, .05,
       0);
   printf("\nLSD for Sub-Plot Means (alpha=0.05) \n");
   imsls_i_write_matrix(": Size of Groups of Means", 1, n_sub-1,
       equal_means,
       0);
}
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Output
                       *** ANALYSIS OF VARIANCE TABLE ***
                                                        Mean
                                  ID  DF      SSQ squares       F p-value
Location                          -1 ... ........ ....... ....... .......
Blocks Within Location            -2   2  1310.28  655.14   30.82   0.031
Whole-Plot                        -3   1   858.01  858.01   40.37   0.024
Location x Whole-Plot             -4 ... ........ ....... ....... .......
Whole-Plot Error                  -5   2    42.51   21.26    0.86   0.490
Split-Plot                        -6   1    17.17   17.17    0.69   0.452
Location x Split-Plot             -7 ... ........ ....... ....... .......
Whole-Plot x Split-Plot           -8   1     1.55    1.55    0.06   0.815
Location x Whole-Plot x           -9 ... ........ ....... ....... .......
  Split-Plot
Split-Plot Error                 -10   4    99.32   24.83    7.62   0.008
Sub-Plot                         -11   1   163.80  163.80   50.27   0.000
Location x Sub-Plot              -12 ... ........ ....... ....... .......
Whole-Plot x Sub-Plot            -13   1    11.34   11.34    3.48   0.099
Location x Whole-Plot x Sub-Plot -14 ... ........ ....... ....... .......
Split-plot x Sub-Plot            -15   1    46.76   46.76   14.35   0.005
Location x Split-Plot x Sub-Plot -16 ... ........ ....... ....... .......
Whole_plot x Split-Plot          -17   1     0.51    0.51    0.16   0.703
  x Sub-Plot
Location x Whole-Plot x          -18 ... ........ ....... ....... .......
  Split-Plot x Sub-Plot
Sub-Plot Error                   -19   8    26.07    3.26 ....... .......
Corrected Total                  -20  23  2577.33 ....... ....... .......

Grand mean:    33.871
Coefficient of Variation ****
 Whole-Plot: 13.612
 Split-Plot: 14.712
 Sub-Plot :  5.329

*************************************************************
Treatment Means:
 treatment[0][0][0] 23.833334
 treatment[0][0][1] 30.766668
 treatment[0][1][0] 28.100000
 treatment[0][1][1] 28.866669
 treatment[1][0][0] 34.200001
 treatment[1][0][1] 43.299999
 treatment[1][1][0] 38.899998
 treatment[1][1][1] 43.000000
 Standard Error for Comparing Two Treatment Means: 1.473846
(df=8.000000)
 LSD for Treatment Means (alpha=0.05)
  Size of Groups of Means
1  2  3  4  5  6  7
0  3  0  0  0  0  2

*************************************************************
Whole-plot Means
1       27.89
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2       39.85
Standard Error for Comparing Two Whole-Plot Means: 2.661792
(df=2.000000)
LSD for Whole-Plot Means (alpha=0.05)
Size of Groups of Means
          0

*************************************************************
Split-plot Means
1       33.03
2       34.72
Standard Error for Comparing Two Split-Plot Means: 2.876944
(df=4.000000)
LSD for Split-Plot Means (alpha=0.05)
Size of Groups of Means
          2

*************************************************************
Sub-plot Means
1       31.26
2       36.48
Standard Error for Comparing Two Sub-Plot Means: 1.473846
(df=8.000000)
LSD for Sub-Plot Means (alpha=0.05)
: Size of Groups of Means
           0
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strip_plot
Analyzes data from strip-plot experiments. Function strip_plot also analyzes strip-plot experiments repli-
cated at several locations.

Synopsis
#include <imsls.h>
float  *imsls_f_strip_plot(int n, int n_locations, int n_strip_a, int n_strip_b, 

int block[], int strip_a[], int strip_b[], float y[], …, 0)

The type double function is imsls_d_strip_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_strip_plot verifies 
that:

int n_locations (Input)
Number of locations. n_locations must be one or greater.  If n_locations>1 then the 
optional array locations[] must be included as input to imsls_f_strip_plot. See optional 
argument IMSLS_LOCATIONS.

int n_strip_a (Input)
Number of levels associated with the strip factor A. n_strip_a must be greater than one.

int n_strip_b (Input)
Number of levels associated with the strip factor B. n_strip_b must be greater than one.

int block[] (Input) 
An array of length n containing the block identifiers for each observation in y. Locations can have dif-
ferent numbers of blocks. Each block at a single location must be assigned a different identifier, but 
different locations can have the same assignments.

n = ∑
i=1

n_locations

n_strip_a · n_strip_b · n_blocks[i − 1]
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int strip_a[] (Input)
An array of length n containing the factor A strip-plot identifiers for each observation in y. Each level 
of this factor must be assigned a different integer. This function verifies that the number of unique 
factor A strip-plot identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the factor B strip-plot identifiers for each observation in y. Each level 
of this factor must be assigned a different integer. This function verifies that the number of unique 
factor B strip-plot identifiers is equal to n_strip_b.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values 
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be 
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively. The location, strip-plot A, and strip-
plot B for each observation in y are identified by the corresponding values in the arguments 
locations, strip_a, and strip_b.

Return Value
Address of a pointer to the memory location of a two dimensional, 12 by 6 array containing the ANOVA table. 
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i]×6, identifies the source for the effect associated with values in that 

row. The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 

3 Mean squares 

4 F-statistic 

5 p-value for this F-statistic
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The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table. 

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have 
been lost. Assignments of identifiers to ANOVA sources use the following coding:

Notes: † If n_locations=1 sources involving location are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float  *imsls_f_strip_plot (int n, int n_locations, int n_strip_a, int n_strip_b, 

int block[], int strip_a[], int strip_b[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[],
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[],

Source Identifier ANOVA Source

-1 LOCATION†
-2 BLOCK WITHIN LOCATION
-3 STRIP-PLOT A
-4 LOCATION × STRIP-PLOT A†
-5 STRIP-PLOT A ERROR 

-6 STRIP-PLOT B
-7 LOCATION × STRIP-PLOT B†
-8 STRIP-PLOT B ERROR
-9 STRIP-PLOT A × STRIP-PLOT B

-10 LOCATION × STRIP-PLOT A × STRIP-PLOT B †
-11 STRIP-PLOT A × STRIP-PLOT B ERROR
-12 CORRECTED TOTAL
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IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 72 for storage of the 12 by 6 ANOVA table described as the return argu-
ment for imsls_f_strip_plot. For a detailed description of the format for this table, see the 
previous description of the return arguments for imsls_f_strip_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers 
must be assigned to each location in the study. This argument is required when n_locations>1. 

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 3 containing the whole-plot, split-plot 
and sub-plot coefficients of variation. cv[0] contains the whole-plot C.V., cv[1] contains the split-
plot C.V., and cv[2] contains the sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length n_strip_a containing the factor A 
strip-plot means.
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IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output)
Address of a pointer to an internally allocated array of length n_strip_b containing the factor B 
strip-plot means.

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output)
Storage for the array strip_plot_b_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of length (n_strip_a×n_strip_b) contain-
ing the treatment means. For i > 0 and j > 0, 
treatment_meansi,j = treatment_means [(i-1)×n_strip_a +(j-1)] contains the mean of the 
observations, averaged over all locations, blocks and replicates, for the i-th level of the factor A strip-
plot and the j-th level of the factor B strip-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
Address of a pointer to an internally allocated array of length 10 containing five standard errors and 
their associated degrees of freedom. The standard errors are in the first five elements and their asso-
ciated degrees of freedom are reported in std_err[5] through std_err[9].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length n_locations containing the number 
of blocks, or replicates, at each location.

Element

Standard Error for 
Comparisons Between 

Two Degrees of Freedom
std_err[0] Factor A Strip-Plot Means std_err[5]
std_err[1] Factor B Strip-Plot Means std_err[6]
std_err[2] Factor A Strip-Plot Means at 

the same level of Factor B
std_err[7]

std_err[3] Factor B Strip-Plot Means at 
the same level of Factor A

std_err[8]

std_err[4] Treatment Means (same 
strip-plot A and strip-plot B)

std_err[9]
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IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 12 by 6 
containing the Anova tables associated with each location. For each location, the 12 by 6 dimensional 
array corresponds to the Anova table for that location. For example, location_anova_table[(i-
1)×72+(j-1)×6 + (k-1)] contains the value in the k-th column and j-th row of the returned Anova table 
for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to 
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required 
will vary depending upon the number of factors and n_anova. An upperbound on the required 
memory is char *anova_row_labels[600].

Description
Function imsls_f_strip_plot is capable of analyzing a wide variety of strip-plot experiments. 
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The essential distinction between strip-plot and split-plot experiments is the application of factor B. In a split-plot 
experiment, levels of Factor B are nested within Factor A, see Table 28 below. In strip-plot experiments, Factors A 
and B are completely crossed, see Table 27 below. This occurs, for example, when an agricultural field is used as a 
block and the levels of factor A are applied in vertical strips across the entire field. Levels of factor B are assigned 
to horizontal strips across the same block.

In some studies, a strip-plot experiment is replicated at several locations. imsls_f_strip_plot can analyze 
strip-plot experiments replicated at multiple locations, even when the number of blocks or replicates at each 
location are different. If only a single replicate or block is used at each location, then location should be treated as 
a blocking factor, with n_locations set equal to one. If n_locations=1, it is assumed that the experiment 
was conducted at a single location with more than one block or replicate at that location. In this case, the four 
entries associated with location in the ANOVA table will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with blocking 
occurring at each location. Although the number of blocks at each location can be different, the number of levels 
for the factor A and B strip-plots must be the same at each location. The locations associated with each of the 
observations in y are specified in the argument locations[], which is a required input argument when 
n_locations>1. 

Locations are assumed to be random effects, then tests involving factor A strip-plots use the interaction between 
factor A strip-plots and locations as the error term for testing whether there are statistically significant differences 
among the levels of factor A. However, this assumes that the interaction of factor A and locations is not statisti-

Table 27 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Strip Plot Factor A

A2 A1 A4 A3

Strip

Plot

Factor B

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

B2 A2B2 A1B2 A4B2 A3B2

Table 28 – Split-Plot Experiments – Split-Plot B 
Nested within Strip-Plot A

Whole Factor Plot

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2
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cally significant. A test of this assumption is included in the ANOVA table. If the interaction between factor A strip-
plots and locations is statistically significant, then the nature of that interaction should be explored since it 
impacts the interpretation of the significance of the factor A.

Similarly, when locations are assumed to be random effects, tests involving factor B do not use the strip-plot B 
errors pooled across locations. Instead, the error term for factor B is the interaction between locations and factor 
B. 

Example
This example uses data from a strip-plot design with two levels for the first strip and four for the last strip.

#include <stdio.h>
#include <math.h>
#include <imsls.h>
int main()
{

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ", 
 "Mean\nsquares", "\nF", "\np-value"};

 char **anova_row_labels = NULL;
 int i, j, k, l, page_width = 132;
 int n = 24;  
 int n_locations = 1;  
 int n_strip_a  = 2;  
 int n_strip_b  = 4;  
 int block[]={

 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3};

 int strip_a[]={
 1, 1, 1, 1, 2, 2, 2, 2, 
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2};

 int strip_b[]={
 1, 2, 3, 4, 1, 2, 3, 4, 
 1, 2, 3, 4, 1, 2, 3, 4,  
 1, 2, 3, 4, 1, 2, 3, 4};

 float y[] ={
 30.0, 40.0, 38.9, 38.2,
 41.8, 52.2, 54.8, 58.2,
 20.5, 26.9, 21.4, 25.1,
 26.4, 36.7, 28.9, 35.9,
 21.0, 25.4, 24.0, 23.3,
 34.4, 41.0, 33.0, 34.9};

 float grand_mean=0;
 float *cv, *aov, *treatment_means;
 float *strip_plot_a_means, *strip_plot_b_means;
 float *std_err;
 int  n_missing, *equal_means;
 aov = imsls_f_strip_plot(n, n_locations, n_strip_a, n_strip_b, 
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 block, strip_a, strip_b, y, 
 IMSLS_GRAND_MEAN, &grand_mean, 
 IMSLS_CV, &cv,
 IMSLS_N_MISSING,  &n_missing,  
 IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means, 
 IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means, 
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_STD_ERRORS,  &std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);

 /* Output results. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print ANOVA table. */
 imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***", 

 12, 6, aov, 
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);

 printf("\nGrand mean: %f\n", grand_mean);
 /* Print treatment means */
 imsls_f_write_matrix("Treatment Means", n_strip_a, n_strip_b,

 treatment_means, 0);
 printf("\n\nStandard Error for Comparing Two Treatment Means: \n");
 printf("  Same Level of Factor B  %f (df=%f)\n",

 std_err[2], std_err[7]);
 printf("  Same Level of Factor A  %f (df=%f)\n",

 std_err[3], std_err[8]);
 printf("  Different Factor A and B Levels %f (df=%f)\n\n\n\n",

 std_err[4], std_err[9]);

 /* Print factor A means */
 imsls_f_write_matrix("Factor A Means", n_strip_a, 1, 

 strip_plot_a_means, 0);
 printf("\nStandard Error for Comparing Two Factor A Means: \n");
 printf("%f (df=%f)\n", std_err[0], std_err[5]);
 equal_means = imsls_f_multiple_comparisons(n_strip_a, 

 strip_plot_a_means, (int) std_err[5], std_err[0]/sqrt(2), 
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
 0);

 /* Print multiple comparison results */
 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means", 

 1, n_strip_a-1,  equal_means, 0);

 /* Print factor B means */
 imsls_f_write_matrix("\n\nFactor B Means", n_strip_b, 1,

 strip_plot_b_means, 0);
 printf("\nStandard Error for Comparing Two Factor B Means: \n");
 printf("%f (df=%f)\n", std_err[1], std_err[6]);
 equal_means = imsls_f_multiple_comparisons(n_strip_b, 

 strip_plot_b_means, (int)std_err[6], std_err[1]/sqrt(2), 
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
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 0);
 /* Multiple comparison results */
 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means", 

 1, n_strip_b-1, equal_means, 0);
}

Output

                     *** ANALYSIS OF VARIANCE TABLE ***
                                        Mean
                                   ID  DF      SSQ squares       F p-value
Location                           -1 ... ........ ....... ....... .......
Block Within Location              -2   2  1310.28  655.14   19.89   0.009
Strip-Plot A                       -3   1   858.01  858.01   40.37   0.024
Location x Strip-Plot A            -4 ... ........ ....... ....... .......
Strip-Plot A Error                 -5   2    42.51   21.26    4.62   0.061
Strip-Plot B                       -6   3   227.73   75.91    4.66   0.052
Location x Strip-Plot B            -7 ... ........ ....... ....... .......
Strip-Plot B Error                 -8   6    97.76   16.29    3.54   0.075
Strip-Plot A x Strip-Plot B        -9   3    13.40    4.47    0.97   0.466
Location x Strip-Plot A           -10 ... ........ ....... ....... .......
  x Strip-Plot B
Strip-Plot A x Strip-Plot B Error -11   6    27.63    4.60 ....... .......
Corrected Total                   -12  23  2577.33 ....... ....... .......

Grand mean: 33.870834

                  Treatment Means
            1           2           3           4
1       23.83       30.77       28.10       28.87
2       34.20       43.30       38.90       43.00

Standard Error for Comparing Two Treatment Means:
 Same Level of Factor B          2.417643 (df=4.772558)
 Same Level of Factor A          2.639322 (df=9.140633)
 Different Factor A and B Levels 3.121075 (df=8.405353)

Factor A Means
1       27.89
2       39.85
Standard Error for Comparing Two Factor A Means:
 1.882171 (df=2.000000)
LSD Comparison : Size of Groups of Means
                   0
Factor B Means
1       29.02
2       37.03
3       33.50
4       35.93
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Standard Error for Comparing Two Factor B Means:
 2.330465 (df=6.000000)
LSD Comparison : Size of Groups of Means
               1  2  3
               2  3  0
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strip_split_plot
Analyzes data from strip-split-plot experiments. Function strip_split_plot also analyzes strip-split-plot 
experiments replicated at several locations.

Synopsis
#include <imsls.h>
float *imsls_f_strip_split_plot (int n, int n_locations, int n_strip_a, int n_strip_b, 

int n_split, int block[], int strip_a[], int strip_b[], int split[], float y[], …, 0)

The type double function is imsls_d_strip_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_strip_split_plot 
verifies that:

int n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1 then the optional 
array locations[] must be included as input to imsls_f_strip_split_plot.

int n_strip_a (Input)
Number of levels associated with the strip-plot A factor. n_strip_a must be greater than one.

int n_strip_b (Input)
Number of levels associated with the strip-plots B factor. n_strip_b must be greater than one. 

int n_split (Input)
Number of levels associated with the split factor. n_split must be greater than one.

n = ∑
i=1

n_locations

n_strip_a × n_strip_b × n_split × n_blocks[i − 1]
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int block[] (Input)
An array of length n containing the block identifiers for each observation in y. Locations can have dif-
ferent numbers of blocks. Each block at a single location must be assigned a different identifier, but 
different locations can have the same assignments.

int strip_a[] (Input)
An array of length n containing the strip-plot A level identifiers for each observation in y. Each level of 
this factor must be assigned a different integer. imsls_f_strip_split_plot verifies that the 
number of unique strip-plot identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the strip-plot B identifiers for each observation in y. Each level of this 
factor must be assigned a different integer. imsls_f_strip_split_plot verifies that the num-
ber of unique strip-plot identifiers is equal to n_strip_b.

int split[] (Input)
An array of length n containing the split-plot level identifiers for each observation in y. Each level of 
this factor must be assigned a different integer. imsls_f_strip_split_plot verifies that the 
number of unique split-plot identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values 
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be 
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively. The location, strip-plot A, strip-plot B 
and split-plot for each observation in y are identified by the corresponding values in the argument’s 
locations, strip_a, strip_b, and split.

Return Value
Address of a pointer to the memory location of a two dimensional, 22 by 6 array containing the ANOVA table. 
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row, 
anova_tablei,0 = anova_table[i×6], identifies the source for the effect associated with values in that row. 

The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares 

3 Mean squares 
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The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[]. 

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have 
been lost. Assignments of identifiers to ANOVA sources use the following coding:

Notes: † If n_locations=1 sources involving location are set to missing (NaN).

4 F-statistic 

5 p-value for this F-statistic

Source

Identifier ANOVA Source

-1 LOCATION†
-2 BLOCKs WITHIN LOCATION 

-3 STRIP-PLOT A
-4 LOCATION × STRIP-PLOT A †
-5 STRIP-PLOT A ERROR 

-6 SPLIT-PLOT
-7 SPLIT-PLOT × STRIP-PLOT A
-8 LOCATION × SPLIT-PLOT †
-9 SPLIT-PLOT ERROR
-10 LOCATION × SPLIT-PLOT × STRIP-PLOT A †
-11 STRIP-PLOT B
-12 LOCATION × STRIP-PLOT B †
-13 STRIP_PLOT B ERROR
-14 STRIP-PLOT A × STRIP-PLOT B
-15 LOCATION × STRIP-PLOT A × STRIP-PLOT B
-16 STRIP-PLOT A × STRIP-PLOT B ERROR
-17 SPLIT-PLOT × STRIP-PLOT B
-18 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT
-19 LOCATION × SPLIT-PLOT × STRIP-PLOT B †
-20 LOCATION × STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT †
-21 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT ERROR 

-22 CORRECTED TOTAL

j anova_tablei,j = anova_table[i*6+j]
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Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_strip_split_plot (int n, int n_locations,int n_strip_a, int n_strip_b, 

int n_split, int block[], int strip_a[], int strip_b[], int split[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[],
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means,
IMSLS_STRIP_PLOT_AB_MEANS_USER, float strip_plot_ab_means[],
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, 

float **strip_plot_a_split_plot_means,
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER, 

float strip_plot_a_split_plot_means[],
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, 

float **strip_plot_b_split_plot_means,
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS_USER, 

float strip_plot_b_split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)
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Optional Arguments
IMSLS_RETURN_USER, float anova_table[]  (Output)

User defined array of length 132 for storage of the 22 by 6 anova table described as the return argu-
ment for imsls_f_strip_split_plot. For a detailed description of the format for this table, 
see the previous description of the return arguments for imsls_f_strip_split_plot.

IMSLS_LOCATIONS, int locations[]  (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers 
must be assigned to each location in the study. This argument is required when n_locations>1. 

IMSLS_N_MISSING, int *n_missing  (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value. 

IMSLS_CV, float **cv  (Output)
 Address of a pointer to an internally allocated array of length 3 containing the strip-plots and split-
plot coefficients of variation. cv[0] contains the strip-plot A C.V., cv[1] contains the strip-plot B C.V., 
and cv[2] contains the split-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length n_strip_a containing the factor A 
strip-plot means.

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output)
 Address of a pointer to an internally allocated array of length n_strip_b containing the strip-plot 
B means.

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output)
Storage for the array strip_plot_b_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_split containing the strip-plot B 
means.
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IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, float **strip_plot_a_split_plot_means 
(Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_strip_a by n_split 
containing the means for all combinations of the factor A strip-plot and split-plots.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER, 
float strip_plot_a_split_plot_means[] (Output)
Storage for the array strip_a_split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, float **strip_plot_b_split_plot_means 
(Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_strip_b by n_split 
containing the means for all combinations of strip-plot B and split-plots.

IMSLS_STRIP_B_PLOT_SPLIT_PLOT_MEANS_USER, 
float strip_plot_b_split_plot_means[] (Output)
Storage for the array strip_b_split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size n_strip_a by 
n_strip_b containing the means for all combinations of strip-plots.

IMSLS_STRIP_PLOT_AB_MEANS_USER, float strip_plot_ab_means[] (Output)
Storage for the array strip_plot_ab_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size (n_strip_a*n_strip_b*n_split) 
containing the treatment means. For i >0, j >0, and k >0, 
treatment_meansi,j,k = treatment_means (i-1)*n_strip_b × n_split + (j-1) × n_spli
t + (k-1)] contains the mean of the observations, averaged over all locations, blocks and replicates, 
for the i-th level of the factor A strip-plot, the j-th level of the factor B strip-plot, and the k-th level of 
the split-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.
463



 Analysis of Variance  and Designed Experiments         strip_split_plot
IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 20 containing ten standard errors and 
their associated degrees of freedom. The standard errors are in the first 10 elements and their asso-
ciated degrees of freedom are reported in std_err[10] through std_err[19].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length n_locations containing the num-
ber of blocks, or replicates, at each location. This value must be greater than one, n_blocks > 1.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
User provided storage for the array n_blocks.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 22 by 6 
containing the anova tables associated with each location. For each location, the 22 by 6 dimensional 
array corresponds to the anova table for that location. For example, 
location_anova_table[(i-1)×132+(j-1)×6+(k-1)] contains the value in the k-th col-
umn and j-th row of the returned anova table for the i-th location.

Element

Standard Error for

Comparisons Between Two

Degrees of

Freedom
std_err[0] Strip-Plot A Means std_err[10]
std_err[1] Strip-Plot B Means std_err[11]
std_err[2] Split-Plot Means std_err[12]
std_err[3] Strip-Plot A Means at the same level of split-

plots
std_err[13]

std_err[4] Strip-Plot A Means at the same level of strip-
plot B

std_err[14]

std_err[5] Strip-Plot B Means at the same level of split-
plots

std_err[15]

std_err[6] Strip-Plot B Means at the same level of strip-
plot A

std_err[16]

std_err[7] Split-Plot Means at the same level of strip-plot 
A

std_err[17]

std_err[8] Split-Plot Means at the same level of strip-plot 
B

std_err[18]

std_err[9] Treatment Means (same strip-plot A, strip-plot 
B and split-plot)

std_err[19]
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IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
User provided storage for the array location_anova_table.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the 
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]);
The memory associated with anova_row_labels can be freed with a single call to 
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required 
will vary depending upon the number of factors and n_anova. An upperbound on the required 
memory is char *anova_row_labels[800].

Description
Function imsls_f_strip_split_plot is capable of analyzing a wide variety of strip-split plot experiments, 
also referred to as strip-strip plot experiments. By default, imsls_f_strip_split_plot assumes that both 
strip-plot factors, and split-plots are fixed effects, and the location effects, if any, are random effects. The nature 
of randomization used in an experiment determines analysis of the data. Two popular forms of randomization in 
strip-plot and split-plot experiments are illustrated in the following two figures. In both experiments, the strip-
plot factor, factor A, has 4 levels that are randomly assigned to a block or field in four strips. 

In the strip-plot experiment, factor B, has 3 levels that are randomly assigned as strips across each of the four lev-
els of factor A. In this case, factors A and B are completely crossed. The randomization applied to factor B is 
independent of the application of the strip-plots, factor A.

Contrast this to the randomization depicted in Table 30. In this split-plot experiment, the levels of factor B are 
nested within each level of factor A whole-plots. Factor B is randomized independently within each level of factor 
A. Unlike the strip-plot experiment, in the split-plot experiment different levels of factor B appear in the same 
row.

Table 29 – Strip-Plot Experiment - Strip-Plots Completely Crossed

Factor A Strip-Plots

A2 A1 A4 A3

Factor B 

Strip Plots

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

B2 A2B2 A1B2 A4B2 A3B2
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A strip-split plot experiment is a strip-plot experiment with a third factor randomized within each level of strip-
plot factor A, see Table 31. The third factor, referred to as the split-plot factor, is randomly assigned to experimen-
tal units within each level of strip-plot factor A. imsls_f_strip_split_plot analyzes strip-split plot 
experiments consisting of two strip-plot factors and one split-plot factor nested within strip-plot factors A and B.

Table 30 – Split-Plot Experiment – Factor B Split-Plots 
Nested within Factor A Whole-Plots

Whole-Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 31 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors 
A

Factor A Strip Plots

A2 A1 A4 A3

Factor B

Strip Plots

B3 A2B3C2
A2B3C1

A1B3C1

A1B3C2

A4B3C2

A4B3C1

A3B3C2

A3B3C1

B1 A2B1C1
A2B1C2

A1B1C1

A1B1C2

A4B1C2

A4B1C1

A3B1C2

A3B1C1

B2 A2B2C2
A2B2C1

A1B2C1

A1B2C2

A4B2C1

A4B2C2

A3B2C2

A3B2C1
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Strip-split plot experiments are closely related to split-split plot experiments, see Table 32. The main difference 
between the two is that in strip-split plot experiments, the order of the levels for factor B are not applied ran-
domly across factor A. Each level of factor B is constant across any row. In this example, the entire first row is 
assigned to the third level of factor B. In the equivalent split-split plot experiment, the levels of factor B are not 
constant across any row. The levels are randomized within each level of factor A.

In some studies, a strip-split-plot experiment is replicated at several locations. Function 
imsls_f_strip_split_plot can analyze strip-split plot experiments replicated at multiple locations, even 
when the number of blocks or replicates at each location might be different. If only a single replicate or block is 
used at each location, then location should be treated as a blocking factor, with n_locations=1. If 
n_locations=1, it is assumed that either the experiment was conducted at multiple locations, each with a sin-
gle block, or at a single location with more than one block or replicate at that location. When n_locations=1, 
all entries associated with location in the anova table will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with blocking 
occurring at each location. Although the number of blocks at each location can be different, the number of levels 
for the strip-plot and split-plot factors strip-plots must be the same at each location. The locations associated 
with each of the observations in y are specified in the argument locations[], which is a required input argu-
ment when n_locations>1.

By default, locations are assumed to be random effects. Tests involving strip-plots use the interaction between 
strip-plots and locations as the error term for testing whether there are statistically significant differences among 
strip-plots. However, this assumes that the interaction of strip-plots and locations is not statistically significant. A 
test of this assumption is included in the anova table. If any interactions between locations and strip-plot or split-
plot factors are statistically significant, then the nature of these interactions should be explored since this 
impacts the interpretation of the significance of the treatment factors.

Table 32 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within 
Split-Plot Factor B

Whole Plot Factor A

A2 A1 A4 A3

A2B3C2

A2B3C1

A1B2C1

A1B2C2

A4B1C2

A4B1C1

A3B3C2

A3B3C1

A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B3C2

A4B3C1

A3B2C2

A3B2C1

A2B2C2

A2B2C1

A1B3C1

A1B3C2

A4B2C1

A4B2C2

A3B1C2

A3B1C1
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Similarly, when locations are assumed to be random effects, tests involving split-plots do not use the split-plot 
errors pooled across locations. Instead, the error term for split-plots is the interaction between locations and 
split-plots.

Suppose, for example, that a researcher wanted to conduct an agricultural experiment comparing the effective-
ness of 4 fertilizers with 3 seed lots and 3 rates of application. One replicate of the experiment is conducted at 
each of the 3 farms. That is, only a single field at each location is assigned to this experiment. 

Each field is divided into 4 vertical strips and 3 horizontal strips. The vertical strips are randomly assigned to fertil-
izers and the rows are randomly assigned to application rates. Fertilizers and application rates represent strip-
plot factors A and B respectively. Seed lots are randomly assigned to three sub-divisions within each combination 
of strip-plots.

In this case, each farm is a blocking factor, fertilizers are factor A strip-plots, fertilizer application rates are factor B 
strip-plots, and seed lots are split-plots. The input array rep would contain integers from 1 to the number of 
farms.

Example
The experiment was conducted using a 2 x 2 strip_split plot arrangement with each of the four plots divided into 
2 sub-divisions that were randomly assigned one of two split-plot levels. This was replicated 3 times producing an 
experiment with n = 2x2x2x3 = 24 observations. 

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <imsls.h>

Table 33 – Strip-Split Plot Experiment – Fertilizer Strip-Plots, Application Rate Strip-
Plots

Fertilizer Strip Plots

F2 F1 F4 F3

Application Rate

Strip Plot

R3 F2R3S1
F2R3S2
F2R3S3

F1R3S3
F1R3S2
F1R3S1

F4R3S3
F4R3S2
F4R3S1

F3R3S2
F3R3S1
F3R3S3

R2 F2R1S3
F2R1S1
F2R1S2

F1R1S2
F1R1S3
F1R1S1

F4R1S3
F4R1S1
F4R1S2

F3R1S1
F3R1S2
F3R1S3

R1 F2R2S1
F2R2S2
F2R2S3

F1R2S1
F1R2S3
F1R2S2

F4R2S2
F4R2S3
F4R2S1

F3R2S3
F3R2S1
F3R2S2
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void l_printLSD(int n1, int *equalMeans, float *means);
void l_printLSD2Table(int n1, int n2, int* equalMeans, float *means);
void l_printLSD3Table(int n1, int n2, int n3, int* equalMeans,
    float *means);
int main()
{
    char **anova_row_labels;
    char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ", 
        "Mean\nsquares", "\nF", "\np-value"};
    int i, j, k, l, page_width = 132;
    int n = 24;           /* Total number of observations */
    int n_locations = 1;  /* Number of locations */
    int n_strip_a = 2;    /* Number of Factor A strip-plots within a
                          location */
    int n_strip_b = 2;    /* Number of Factor B strip-plots within a
                          location */
    int n_split  = 2;     /* Number of split-plots within each Factor
                          A strip-plot */
    int block[]={
        1, 1, 1, 1, 1, 1, 1, 1,
        2, 2, 2, 2, 2, 2, 2, 2,
        3, 3, 3, 3, 3, 3, 3, 3
    };
    int strip_a[]={
        1, 1, 1, 1, 2, 2, 2, 2, 
        1, 1, 1, 1, 2, 2, 2, 2,
        1, 1, 1, 1, 2, 2, 2, 2
    };
    int strip_b[]={
        1, 1, 2, 2, 1, 1, 2, 2, 
        1, 1, 2, 2, 1, 1, 2, 2, 
        1, 1, 2, 2, 1, 1, 2, 2
    };
    int split[]={
        1, 2, 1, 2, 1, 2, 1, 2, 
        1, 2, 1, 2, 1, 2, 1, 2, 
        1, 2, 1, 2, 1, 2, 1, 2
    };
    float y[] ={
        30.0, 40.0, 38.9, 38.2,
        41.8, 52.2, 54.8, 58.2,
        20.5, 26.9, 21.4, 25.1,
        26.4, 36.7, 28.9, 35.9,
        21.0, 25.4, 24.0, 23.3,
        34.4, 41.0, 33.0, 34.9
    };
    float alpha = 0.05;
    float grand_mean = 0;
    float *cv;
    float *aov;
    float *treatment_means;
    float *strip_plot_a_means;
    float *strip_plot_b_means;
    float *split_plot_means;
    float *strip_a_split_plot_means;
    float *strip_b_split_plot_means;
    float *strip_plot_ab_means;
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    float *std_err;
    int  *equal_means;
    aov = imsls_f_strip_split_plot(n, n_locations, n_strip_a,
        n_strip_b, n_split, block, strip_a, strip_b, split, y, 
        IMSLS_GRAND_MEAN, &grand_mean, 
        IMSLS_CV, &cv,
        IMSLS_TREATMENT_MEANS, &treatment_means, 
        IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means, 
        IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means, 
        IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,
        IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, &strip_a_split_plot_means,
        IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, &strip_b_split_plot_means,
        IMSLS_STRIP_PLOT_AB_MEANS, &strip_plot_ab_means,
        IMSLS_STD_ERRORS, &std_err,
        IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
        0);
    /* Output results. */
    imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
    /* Print ANOVA table, without first column. */
    imsls_f_write_matrix("  *** ANALYSIS OF VARIANCE TABLE ***", 
        22, 6, aov, 
        IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
        IMSLS_ROW_LABELS, anova_row_labels,
        IMSLS_COL_LABELS, col_labels,
        0);
    /* 
    * Print the various means.
    */
    printf("\nGrand mean: %f\n\n", grand_mean);
    printf("Coefficient of Variation\n");
    printf(" Strip-Plot A:     %9.4f\n", cv[0]);
    printf(" Strip-Plot B:     %9.4f\n", cv[1]);
    printf(" Split-Plot:       %9.4f\n\n", cv[2]);
    l = 0;
    /* 
    * Print the Treatment Means.
    */
    printf("\n\n**********************************************");
    printf("***************");
    printf("\nTreatment Means\n");
    for (i=0; i < n_strip_a; i++){
        for(j=0; j < n_strip_b; j++){
            for(k=0; k < n_split; k++){
                printf("treatment[%d][%d][%d]  %9.4f \n", 
                    i+1, j+1, k+1, treatment_means[l++]);
            }
        }
    }
    printf("\nStandard Error for Comparing Two Treatment Means: ");
    printf("%f \n(df=%f)\n", std_err[9], std_err[19]);
    equal_means = imsls_f_multiple_comparisons(
        n_strip_a*n_strip_b*n_split, 
        treatment_means, (int) std_err[19],
        std_err[9]/sqrt(2.0), 
        IMSLS_LSD,
        IMSLS_ALPHA, alpha,
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        0);
    l_printLSD3Table(n_strip_a, n_strip_b, n_split, equal_means,
        treatment_means);
    /* 
    * Print the Strip-plot A Means. 
    */
    printf("\n\n*****************************************************");
    printf("********");
    imsls_f_write_matrix("Strip-plot A Means", n_strip_a, 1,
        strip_plot_a_means, 0);
    printf("\nStandard Error for Comparing Two Strip-Plot A Means: ");
    printf("%f \n(df=%f)\n",
        std_err[0], std_err[10]);
    equal_means = imsls_f_multiple_comparisons(n_strip_a,
        strip_plot_a_means, (int) std_err[10], std_err[0]/sqrt(2.0), 
        IMSLS_LSD,
        IMSLS_ALPHA, alpha,
        0);
    l_printLSD(n_strip_a, equal_means, strip_plot_a_means);
    /* 
    * Print Strip-plot B Means. 
    */
    printf("\n\n****************************************************");
    printf("*********");
    imsls_f_write_matrix("Strip-plot B Means", n_strip_b, 1,
        strip_plot_b_means, 0);
    printf("\nStandard Error for Comparing Two Strip-Plot B Means: ");
    printf("%f \n(df=%f)\n", std_err[1], std_err[11]);
    equal_means = imsls_f_multiple_comparisons(n_strip_b,
        strip_plot_b_means, 
        (int) std_err[11], std_err[1]/sqrt(2.0), 
        IMSLS_LSD,
        IMSLS_ALPHA, alpha,
        0);
    l_printLSD(n_strip_b, equal_means, strip_plot_b_means);
    /* 
    * Print the Split-plot Means. 
    */
    printf("\n\n****************************************************");
    printf("*********");
    imsls_f_write_matrix("Split-plot Means", n_split, 1,
        split_plot_means, 0);
    printf("\nStandard Error for Comparing Two Split-Plot Means: ");
    printf("%f \n(df=%f)\n", std_err[2], std_err[12]);
    equal_means = imsls_f_multiple_comparisons(n_split,
        split_plot_means, 
        (int) std_err[12], std_err[2]/sqrt(2.0), 
        IMSLS_LSD,
        IMSLS_ALPHA, alpha,
        0);
    l_printLSD(n_split, equal_means, split_plot_means);
    /* 
    * Print the Strip-plot A by Split-plot Means. 
    */
    printf("\n\n***************************************************");
    printf("**********");
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    imsls_f_write_matrix("Strip-plot A by Split-plot Means",
        n_strip_a, n_split, strip_a_split_plot_means, 0);
    printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",
        std_err[3], std_err[13]);
    equal_means = imsls_f_multiple_comparisons(n_strip_a*n_split, 
        strip_a_split_plot_means, 
        (int) std_err[13],
        std_err[3]/sqrt(2.0), 
        IMSLS_LSD,
        IMSLS_ALPHA, alpha,
        0);
    l_printLSD2Table(n_strip_a, n_split, equal_means,
        strip_a_split_plot_means);
    /* 
    * Print the Strip-plot A by Strip-plot B Means. 
    */
    printf("\n\n****************************************************");
    printf("*********");
    imsls_f_write_matrix("Strip-plot A by Strip-plot B Means",
        n_strip_a, n_strip_b, strip_plot_ab_means, 0);
    printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",
        std_err[4], std_err[14]);
    equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b, 
        strip_plot_ab_means, (int) std_err[14],
        std_err[4]/sqrt(2.0), 
        IMSLS_LSD,
        IMSLS_ALPHA, alpha,
        0);
    l_printLSD2Table(n_strip_a, n_strip_b, equal_means,
        strip_plot_ab_means);
    /* 
    * Print the Strip-Plot B by Split-Plot Means. 
    */
    printf("\n\n****************************************************");
    printf("*********");
    imsls_f_write_matrix("Strip-Plot B by Split-Plot Means", n_strip_b,
        n_split, strip_b_split_plot_means, 0);
    printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",
        std_err[5], std_err[15]);
    equal_means = imsls_f_multiple_comparisons(n_strip_b*n_split, 
        strip_b_split_plot_means, 
        (int) std_err[15], std_err[5]/sqrt(2.0), 
        IMSLS_LSD,
        IMSLS_ALPHA, alpha,
        0);
    l_printLSD2Table(n_strip_b, n_split, equal_means,
        strip_b_split_plot_means);
}
/* 
* Local functions to output results of means comparisons.
*/
void l_printLSD(int n, int *equalMeans, float *means){
    float x=0.0;
    int i, j, k;
    int iSwitch;
    int *idx;
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    idx = (int *) malloc(n * sizeof (int));
    for (k=0; k < n; k++) {
        idx[k] =k+1;
    }       
    /* Sort means in ascending order*/
    iSwitch=1;
    while (iSwitch != 0){
        iSwitch = 0;
        for (i = 0; i < n-1; i++){
            if (means[i] > means[i+1]){
                iSwitch = 1;
                x = means[i];
                means[i] = means[i+1];
                means[i+1] = x;
                j = idx[i];
                idx[i] = idx[i+1];
                idx[i+1] = j;
            }
        }
    }
    printf("[group] \t Mean \t\tLSD Grouping \n");
    for (i=0; i < n; i++){
        printf(" [%d] \t\t%f", idx[i], means[i]);
        for (j=1; j < i+1; j++){
            if(equalMeans[j-1] >= i+2-j){
                printf("\t *");
            }else{ 
                if(equalMeans[j-1]>=0) printf("\t");
            }
        }
        if (i < n-1 && equalMeans[i]>0) printf("\t *");
        printf("\n");
    }
    free(idx);
    return;
}
void l_printLSD2Table(int n1, int n2, int *equalMeans, float *means){
    float x=0.0;
    int i, j, k, n;
    int iSwitch;
    int *idx;
    n = n1*n2;
    idx = (int *) malloc(2*n * sizeof (int));
    i = 1;
    j = 1;
    for (k=0; k < n; k++) {
        idx[2*k]  = i;
        idx[2*k+1] = j++;
        if (j > n2){
            j = 1;
            i++;
        }
    }
    /* sort means in ascending order*/
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    iSwitch=1;
    while (iSwitch != 0){
        iSwitch = 0;
        for (i = 0; i < n-1; i++){
            if (means[i] > means[i+1]){
                iSwitch = 1;
                x = means[i];
                means[i] = means[i+1];
                means[i+1] = x;
                j = idx[2*i];
                idx[2*i] = idx[2*(i+1)];
                idx[2*(i+1)] = j;
                j = idx[2*i+1];
                idx[2*i+1] = idx[2*(i+1)+1];
                idx[2*(i+1)+1] = j;
            }
        }
    }
    printf("[A][B] \tMean \t\tLSD Grouping \n");
    for (i=0; i < n; i++){
        printf("[%d][%d] \t%f", idx[2*i], idx[2*i+1],means[i]);
        for (j=1; j < i+1; j++){
            if(equalMeans[j-1] >= i+2-j){
                printf("\t*");
            }else{ 
                if(equalMeans[j-1]>0) printf("\t");
            }
        }
        if (i < n-1 && equalMeans[i]>0) printf("\t*");
        printf("\n");
    }
    free(idx);
    idx = NULL;
    return;
}
void l_printLSD3Table(int n1, int n2, int n3, int *equalMeans,
    float *means)
{
    float x=0.0;
    int i, j, k, m, n;
    int iSwitch;
    int *idx;
    n = n1*n2*n3;
    idx = (int *) malloc(3*n * sizeof (int));
    i = 1;
    j = 1;
    k = 1;
    for (m=0; m < n; m++) {
        idx[3*m]  = i;
        idx[3*m+1] = j;
        idx[3*m+2] = k++;
        if (k > n3){
            k = 1;
            j++;
            if (j > n2){
                j = 1;
                i++;
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            }
        }
    }
    /* sort means in ascending order*/
    iSwitch=1;
    while (iSwitch != 0){
        iSwitch = 0;
        for (i = 0; i < n-1; i++){
            if (means[i] > means[i+1]){
                iSwitch = 1;
                x = means[i];
                means[i] = means[i+1];
                means[i+1] = x;
                j = idx[3*i];
                idx[3*i] = idx[3*(i+1)];
                idx[3*(i+1)] = j;
                j = idx[3*i+1];
                idx[3*i+1] = idx[3*(i+1)+1];
                idx[3*(i+1)+1] = j;
                j = idx[3*i+2];
                idx[3*i+2] = idx[3*(i+1)+2];
                idx[3*(i+1)+2] = j;
            }
        }
    }
    printf("[A][B][Split] \t Mean \t\t LSD Grouping \n");
    for (i=0; i < n; i++){
        printf("[%d][%d] [%d] \t%f", idx[3*i], idx[3*i+1], idx[3*i+2],
            means[i]);
        for (j=1; j < i+1; j++){
            if(equalMeans[j-1] >= i+2-j){
                printf("\t*");
            }else{ 
                if(equalMeans[j-1]>0) printf("\t");
            }
        }
        if (i < n-1 && equalMeans[i]>0) printf("\t*");
        printf("\n");
    }
    free(idx);
    return;
}

Output

                      *** ANALYSIS OF VARIANCE TABLE ***
                                                     Mean
                               ID  DF      SSQ squares       F p-value
Location ....................  -1 ... ........ ....... ....... .......
Blocks ......................  -2   2  1310.28  655.14   14.53   0.061
Strip-Plot A ................  -3   1   858.01  858.01   40.37   0.024
Location x A ................  -4 ... ........ ....... ....... .......
Strip-Plot A Error ..........  -5   2    42.51   21.26    1.48   0.385
Split-Plot ..................  -6   1   163.80  163.80   41.22   0.003
Split-Plot x A ..............  -7   1    11.34   11.34    2.85   0.166
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Location x Split-Plot .......  -8 ... ........ ....... ....... .......
Split-Plot Error ............  -9   4    15.90    3.97    1.56   0.338
Location x Split-Plot x A ... -10 ... ........ ....... ....... .......
Strip-Plot B ................ -11   1    17.17   17.17    0.47   0.565
Location x B ................ -12 ... ........ ....... ....... .......
Strip-Plot B Error .......... -13   2    73.51   36.75    2.85   0.260
A x B ....................... -14   1     1.55    1.55    0.12   0.762
Location x A x B ............ -15 ... ........ ....... ....... .......
A x B Error ................. -16   2    25.82   12.91    5.08   0.080
Split-Plot x B .............. -17   1    46.76   46.76   18.39   0.013
Split-Plot x A x B .......... -18   1     0.51    0.51    0.20   0.677
Location x Split-Plot x B ... -19 ... ........ ....... ....... .......
Location x Split-Plot x A x B -20 ... ........ ....... ....... .......
Split-Plot x A x B Error .... -21   4    10.17    2.54 ....... .......
Corrected Total ............. -22  23  2577.33 ....... ....... .......
Grand mean: 33.870834
Coefficient of Variation
 Strip-Plot A:       13.6116
 Strip-Plot B:       17.8986
 Split-Plot:          5.8854

*************************************************************
Treatment Means
treatment[1][1][1]    23.8333
treatment[1][1][2]    30.7667
treatment[1][2][1]    28.1000
treatment[1][2][2]    28.8667
treatment[2][1][1]    34.2000
treatment[2][1][2]    43.3000
treatment[2][2][1]    38.9000
treatment[2][2][2]    43.0000
Standard Error for Comparing Two Treatment Means: 1.302029
(df=4.000000)
[A][B][Split]    Mean           LSD Grouping
[1][1] [1]    23.833334
[1][2] [1]    28.100000      *
[1][2] [2]    28.866669      *
[1][1] [2]    30.766668      *      *
[2][1] [1]    34.200001             *
[2][2] [1]    38.899998
[2][2] [2]    43.000000                      *
[2][1] [2]    43.299999                      *

*************************************************************
Strip-plot A Means
 1       27.89
 2       39.85
Standard Error for Comparing Two Strip-Plot A Means: 1.882171
(df=2.000000)
[group]          Mean         LSD Grouping
 [1]          27.891665
 [2]          39.849998
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*************************************************************
Strip-plot B Means
 1       33.03
 2       34.72
Standard Error for Comparing Two Strip-Plot B Means: 2.474972
(df=2.000000)
[group]          Mean         LSD Grouping
 [1]          33.025002        *
 [2]          34.716667        *

*************************************************************
Split-plot Means
1       31.26
2       36.48
Standard Error for Comparing Two Split-Plot Means: 0.813813
(df=4.000000)
[group]          Mean         LSD Grouping
 [1]          31.258331
 [2]          36.483334

*************************************************************
Strip-plot A by Split-plot Means
              1           2
  1       25.97       29.82
  2       36.55       43.15
Standard Error for Comparing Two Means: 1.150906
(df=4.000000)
[A][B] Mean           LSD Grouping
[1][1] 25.966667
[1][2] 29.816668
[2][1] 36.549999
[2][2] 43.149998

*************************************************************
Strip-plot A by Strip-plot B Means
               1           2
   1       27.30       28.48
   2       38.75       40.95
Standard Error for Comparing Two Means: 2.074280
(df=2.000000)
[A][B] Mean           LSD Grouping
[1][1] 27.299997      *
[1][2] 28.483335      *
[2][1] 38.750000              *
[2][2] 40.949997              *

*************************************************************
Strip-Plot B by Split-Plot Means
              1           2
  1       29.02       37.03
  2       33.50       35.93
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Standard Error for Comparing Two Means: 0.920673
(df=4.000000)
[A][B] Mean           LSD Grouping
[1][1] 29.016668
[2][1] 33.500000      *
[2][2] 35.933334      *      *

[1][2] 37.033333  *
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homogeneity
Conducts Bartlett’s and Levene’s tests of the homogeneity of variance assumption in analysis of variance.

Synopsis
#include <imsls.h>
float *imsls_f_homogeneity (int n, int n_treatment, int treatment[], float y[], …, 0)

The type double is imsls_d_homogeneity.

Required Arguments
int n (Input)

Number of experimental observations.

int n_treatment (Input)
Number of treatments. n_treatment must be greater than one.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation in y. Each level of the 
treatment must be assigned a different integer. imsls_f_homogeneity verifies that the number 
of unique treatment identifiers is equal to n_treatment.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values 
can be included in this array, although they are ignored in the analysis. They are indicated by placing a 
NaN (not a number) in y. The NaN value can be set using either the function imsls_f_machine(6) 
or imsls_d_machine(6), depending upon whether single or double precision is being used, 
respectively.

Return Value
Address of a pointer to the memory location of an array of length 2 containing the p-values for Bartletts and Lev-
ene’s tests. 
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Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_homogeneity (int n, int n_treatment, int n_treatment[], float y[],

IMSLS_RETURN_USER, float p_value[],
IMSLS_LEVENES_MEAN, or
IMSLS_LEVENES_MEDIAN,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_RESIDUALS, float **residuals,
IMSLS_RESIDUALS_USER, float residuals[],
IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals,
IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[],
IMSLS_STD_DEVS, float **std_devs,
IMSLS_STD_DEVS_USER, float std_devs[],
IMSLS_BARTLETTS, float *bartletts,
IMSLS_LEVENES, float *levenes,
0)

Optional Arguments
IMSLS_RETURN_USER, float p_value[] (Output)

User defined array of length 2 for storage of the p-values from Bartlett’s and Levene’s tests for homo-
geneity of variance. The first value returned contains the p-value for Bartlett’s test and the second 
value contains the p-value for Levene’s test.

IMSLS_LEVENES_MEAN (Input)

or

IMSLS_LEVENES_MEDIAN (Input)
Calculates Levene’s test using either the treatment means or medians. IMSLS_LEVENES_MEAN 
indicates that Levene’s test is calculated using the mean, and IMSLS_LEVENES_MEDIAN indicates 
that it is calculated using the median. 

Default: IMSLS_LEVENES_MEAN
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IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number) 
value in y. In these analyses, any missing values are ignored.

IMSLS_CV, float *cv (Output)
The coefficient of variation computed using the grand mean and pooled within treatment standard 
deviation.

IMSLS_GRAND_MEAN, float grand_mean (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatment containing the treatment 
means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_RESIDUALS, float **residuals (Output)
Address of a pointer to an internally allocated array of length n containing the residuals for non-miss-
ing observations. The ordering of the values in this array corresponds to the ordering of values in y 
and identified by the values in treatments.

IMSLS_RESIDUALS_USER, float residuals[] (Output)
Storage for the array residuals, provided by the user.

IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals (Output)
Address of a pointer to an internally allocated array of length n containing the studentized residuals 
for non-missing observations. The ordering of the values in this array corresponds to the ordering of 
values in y and identified by the values in treatments.

IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[] (Output)
Storage for the array studentized_residuals, provided by the user.

IMSLS_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length n_treatment containing the treat-
ment standard deviations.

IMSLS_STD_DEVS_USER, float std_devs[] (Output)
Storage for the array std_devs, provided by the user.

IMSLS_BARTLETTS, float *bartletts (Output)
Test statistic for Bartlett’s test.

IMSLS_LEVENES, float *levenes (Output)
Test statistic for Levene’s test.
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Description
Traditional analysis of variance assumes that variances within treatments are equal. This is referred to as homo-
geneity of variance. The function imsls_f_homogeneity conducts both the Bartlett’s and Levene’s tests for 
this assumption:

versus 

for at least one pair (i ≠ j), where t=n_treatments.

Bartlett’s test, Bartlett (1937), uses the test statistic:

where

and   is the variance of the   non-missing observations in the i-th treatment.   is referred to as the pooled 
variance, and it is also known as the error mean squares from a 1-way analysis of variance.

If the usual assumptions associated with the analysis of variance are valid, then Bartlett’s test statistic is a chi-
squared random variable with degrees of freedom equal to t-1.

The original Levene’s test, Levene (1960) and Snedecor & Cochran (1967), uses a different test statistic, F0, equal 

to:

where 
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  is the j-th observation from the i-th treatment and   is the mean for the i-th treatment. Conover, Johnson, 
and Johnson (1981) compared over 50 similar tests for homogeneity and concluded that one of the best tests 

was Levene’s test when the treatment mean,    is replaced with the treatment median,   . This version of Lev-
ene’s test can be requested by setting IMSLS_LEVENES_MEDIAN. In either case, Levene’s test statistic is 
treated as a F random variable with numerator degrees of freedom equal to (t-1) and denominator degrees of 
freedom (N-t).

The residual for the j-th observation within the i-th treatment,   , returned from IMSLS_RESIDUALS is 

unstandardized, i.e.   . For investigating problems of homogeneity of variance, the studentized resid-
uals returned by IMSLS_STUDENTIZED_RESIDUALS are recommended since they are standardized by the 
standard deviation of the residual. The formula for calculating the studentized residual is:

where the coefficient of variation, returned from IMSLS_CV, is also calculated using the pooled variance and the 
grand mean:

Example
This example applies Bartlett’s and Levene’s test to verify the homogeneity assumption for a one-way analysis of 
variance. There are eight treatments, each with 3 replicates for a total of 24 observations. The estimated treat-
ment standard deviations range from 5.35 to 13.17. 

In this case, Bartlett's test is not statistically significant for a stated significance level of .05; whereas Levene's test 
is significant with p = 0.006.

#include <imsls.h>
#include <stdio.h>
int main()
{
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   int i, page_width = 132;
   int n = 24;
   int n_treatment = 8;
   int treatment[]={
       1, 2, 3, 4, 5, 6, 7, 8,
       1, 2, 3, 4, 5, 6, 7, 8,
       1, 2, 3, 4, 5, 6, 7, 8
   };
   float y[] ={
       30.0, 40.0, 38.9, 38.2,
       41.8, 52.2, 54.8, 58.2,
       20.5, 26.9, 21.4, 25.1,
       26.4, 36.7, 28.9, 35.9,
       21.0, 25.4, 24.0, 23.3,
       34.4, 41.0, 33.0, 34.9
   };
   float bartletts;
   float levenes;
   float grand_mean;
   float cv;
   float *treatment_means;
   float *residuals;
   float *studentized_residuals;
   float *std_devs;
   int n_missing = 0;
   float *p;
   p = imsls_f_homogeneity(n, n_treatment, treatment, y,
       IMSLS_BARTLETTS, &bartletts,
       IMSLS_LEVENES, &levenes,
       IMSLS_LEVENES_MEDIAN,
       IMSLS_N_MISSING, &n_missing,
       IMSLS_GRAND_MEAN, &grand_mean,
       IMSLS_CV, &cv,
       IMSLS_TREATMENT_MEANS, &treatment_means,
       IMSLS_STD_DEVS, &std_devs,
       0);
   printf("\n\n\n *** Bartlett\'s Test ***\n\n");
   printf("Bartlett\'s p-value = %10.3f\n", p[0]);
   printf("Bartlett\'s test statistic = %10.3f\n", bartletts);
   printf("\n\n\n *** Levene\'s Test ***\n\n");
   printf("Levene\'s p-value = %10.3f\n", p[1]);
   printf("Levene\'s test statistic = %10.3f\n", levenes);
   imsls_f_write_matrix("Treatment means", n_treatment, 1,
       treatment_means,
       0);
   imsls_f_write_matrix("Treatment std devs", n_treatment, 1, std_devs,
       0);
   printf("\ngrand_mean = %10.3f\n", grand_mean);
   printf("cv        = %10.3f\n", cv);
   printf("n_missing = %d\n", n_missing);
}
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Output

*** Bartlett's Test ***
Bartlett's p-value        =     0.944
Bartlett's test statistic =     2.257

*** Levene's Test ***
Levene's p-value        =     0.994
Levene's test statistic =     0.135
Treatment means
1       23.83
2       30.77
3       28.10
4       28.87
5       34.20
6       43.30
7       38.90
8       43.00
Treatment std devs
 1        5.35
 2        8.03
 3        9.44
 4        8.13
 5        7.70
 6        8.00
 7       13.92
 8       13.17
grand_mean =    33.871
cv         =    28.378
n_missing  = 0
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multiple_comparisons
Performs multiple comparisons of means using one of Student-Newman-Keuls, LSD, Bonferroni, or Tukey’s 
procedures. 

Synopsis
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means[], int df, float std_error, 

…, 0)

The type double function is imsls_d_multiple_comparisons.

Required Arguments
int n_groups  (Input)

Number of groups i.e., means, being compared.

float means[]  (Input)
Array of length n_groups containing the means.

int df  (Input)
Degrees of freedom associated with std_error.

float std_error  (Input)
Effective estimated standard error of a mean. In fixed effects models, std_error equals the esti-
mated standard error of a mean. For example, in a one-way model

where s2 is the estimate of σ2 and n is the number of responses in a sample mean. In models with 
random components, use

where sedif is the estimated standard error of the difference of two means.

std_error = s2
n

std_error = sedif
2
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Return Value
Pointer to the array of length n_groups - 1 indicating the size of the groups of means declared to be equal. 
Value equal_means [I] = J indicates the I-th smallest mean and the next J - 1 larger means are declared 
equal. Value equal_means [I] = 0 indicates no group of means starts with the I-th smallest mean.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means [], int df, float std_error,

IMSLS_ALPHA, float alpha,
IMSLS_SNK, or
IMSLS_LSD, or
IMSLS_TUKEY, or
IMSLS_BONFERRONI,
IMSLS_RETURN_USER, int *equal_means,
0)

Optional Arguments
IMSLS_ALPHA, float alpha  (Input)

Significance level of test. Argument alpha must be in the interval [0.01, 0.10].

Default: alpha = 0.01

IMSLS_RETURN_USER, int *equal_means  (Output)
If specified, equal_means is an array of length n_groups - 1 specified by the user. On return, 
equal_means contains the size of the groups of means declared to be equal. Value 
equal_means [I] = J indicates the i-th smallest mean and the next J - 1 larger means are 
declared equal. Value equal_means [I] = 0 indicates no group of means starts with the i-th small-
est mean.

IMSLS_SNK
or

IMSLS_LSD
or

IMSLS_TUKEY
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or

IMSLS_BONFERRONI

Description
Function imsls_f_multiple_comparisons performs a multiple comparison analysis of means using one 
of Student-Newman-Keuls, LSD, Bonferroni, or Tukey’s procedures. The null hypothesis is equality of all possible 
ordered subsets of a set of means. The methods are discussed in many elementary statistics texts, e.g., Kirk 
(1982, pp. 123–125).

The output consists of an array of n_groups –1 integers that describe grouping of means that are considered 
not statistically significantly different. 

For example, if n_groups=4 and the returned array is equal to {0, 2, 2} then we conclude that:

1. The smallest mean is significantly different from the others.

2. The second and third smallest means are not significantly different from one another.

3. The second and fourth means are significantly different.

4. The third and fourth means are not significantly different from one another.

These relationships can be depicted graphically as three groups of means:

Argument Method

IMSLS_SNK Student-Newman-Keuls (default)

IMSLS_LSD Least significant difference

IMSLS_TUKEY Tukey’s w-procedure, also called the honestly significant 
difference procedure.

IMSLS_BONFERRONI Bonferroni t statistic

Smallest
Mean

Group 
1

Group 
2

Group 
3

1 x

2 x

3 x x

4 x
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Examples

Example 1

A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp. 123-125). The results show 
that there are three groups of means with three separate sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and 
(43.4, 47.2, 48.7).

In this case, the ordered means are {36.7, 40.3, 43.4, 47.2, 48.7} corresponding to treatments {1, 5, 3, 4, 2}. Since 
the output table is:

we can say that within each of these three groups, means are not significantly different from one another. 

#include <imsls.h>
int main ()
{
   int n_groups      = 5;
   int df            = 45;
   float std_error   = 1.6970563;
   float means[5]    = {36.7, 48.7, 43.4, 47.2, 40.3};
   int *equal_means;
                      /* Perform multiple comparisons tests */
   equal_means = imsls_f_multiple_comparisons(n_groups, means, df, 
       std_error, 0);
                     /* Print results */
   imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1, 
       equal_means, 0);
}

Output

Size of Groups of Means
    1  2  3  4

Treatment Mean
Group 

1
Group 

2
Group 

3

1 36.7 x

5 40.3 x x

3 43.4 x x x

4 47.2 x x

2 48.7 x

1 2 3 4
3 3 3 0
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    3  3  3  0

Example 2

This example uses the same data as the previous example but also uses additional methods by specifying 
optional arguments.

Example 2 uses the same data as Example 1: Ordered treatment means correspond to treatment order 
{1,5,3,4,2}.

The table produced for Bonferroni is:

Thus, these are two groups of similar means.

#include <imsls.h>
int main()
{
   int n_groups      = 5;
   int df            = 45;
   float std_error   = 1.6970563;
   float means[5]    = {36.7, 48.7, 43.4, 47.2, 40.3};
   int equal_means[4];
   /* Student-Newman-Keuls */
   imsls_f_multiple_comparisons(n_groups, means, df, std_error,
       IMSLS_RETURN_USER, equal_means,
       0);
   imsls_i_write_matrix("SNK        ", 1, n_groups-1, equal_means,
       0);
   /* Bonferroni */
   imsls_f_multiple_comparisons(n_groups, means, df, std_error,
       IMSLS_BONFERRONI, 
       IMSLS_RETURN_USER, equal_means, 
       0);

Treatment Mean
Group 

1
Group 

2

1 36.7 x

5 40.3 x x

3 43.4 x x

4 47.2 x

2 48.7 x

1 2 3 4
3 4 0 0
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   imsls_i_write_matrix("Bonferonni ", 1, n_groups-1, equal_means,
       0);
   /* Least Significant Difference */
   imsls_f_multiple_comparisons(n_groups, means, df, std_error,
       IMSLS_LSD, 
       IMSLS_RETURN_USER, equal_means, 
       0);
   imsls_i_write_matrix("LSD        ", 1, n_groups-1, equal_means,
       0);
   /* Tukey's */
   imsls_f_multiple_comparisons(n_groups, means, df, std_error,
       IMSLS_TUKEY,
       IMSLS_RETURN_USER, equal_means,
       0);
   imsls_i_write_matrix("Tukey      ", 1, n_groups-1, equal_means,
       0);
}

Output

SNK
1  2  3  4
3  3  3  0
Bonferonni
1  2  3  4
3  4  0  0
LSD
1  2  3  4
2  2  3  0
Tukey
1  2  3  4
3  3  3  0
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false_discovery_rates
Calculates the False Discovery Rate (FDR) q-values corresponding to a set of p-values resulting from multiple 
simultaneous hypothesis tests.

Synopsis
#include <imsls.h> 

float  *imsls_f_false_discovery_rates (int n_tests, float pvalues[], …, 0)

The type double function is imsls_d_false_discovery_rates.

Required Arguments
int n_tests  (Input)

The number of hypothesis tests.

float pvalues[]  (Input)
An array of length n_tests containing the p-values associated with the tests.

Return Value
Pointer to an array of length n_tests containing the calculated q-values.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_false_discovery_rates (int n_tests, float pvalues[],

IMSLS_LAMBDAS, int n_lamdas, float lambdas[]
IMSLS_GAMMA_PARAM, float gamma,
IMSLS_METHOD, int method, 
IMSLS_SMOOTHING_PAR, float smoothing_par, 
IMSLS_N_SAMPLE, int n_samples,
IMSLS_RANDOM_SEED, int random_seed,
IMSLS_CONFIDENCE, float confid, 
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IMSLS_NULL_PROB, float *pi0, 
IMSLS_UPPER_LIMITS, float **upper_limits, 
IMSLS_UPPER_LIMITS_USER, float upper_limits[], 
IMSLS_RETURN_USER, float qvalues[],
0)

Optional Arguments
IMSLS_LAMBDAS, int n_lamdas, float lambdas[]  (Input)

An array of length n_lambdas containing the grid values on [0,1) used in the estimate of the null 
probability. 

Default: n_lamdas = 19, lambdas = {0.0,0.05,…,0.90}.

IMSLS_GAMMA_PARAM, float gamma  (Input)
Size of the rejection region (0 ≤ gamma ≤ 1.0) used in the calculation of the FDR and pFDR measures. 

Default: gamma = 0.05

IMSLS_METHOD, int method  (Input)
Specifies the method used to remove the dependence of the null probability estimate on the 
lambda variable. method = 1 or method = 0: when method = 0, a bootstrap with n_samples is 
used; when method = 1, a cubic spline smoother is used.

Default: method = 0

IMSLS_SMOOTHING_PAR, float smoothing_par  (Input)
Smoothing parameter (0 ≤ smoothing_par ≤ 1.0) argument for the cubic spline smoother. Only 
used if method = 1.

Default: If method = 1 and this optional argument is not provided, the smoothing parameter is 
selected by cross-validation.

IMSLS_N_SAMPLE, int n_samples  (Input)
Number of bootstrap samples to make for method = 0 or when estimating upper confidence limits 
when IMSLS_CONFIDENCE is present. 

Default: n_samples = 100.

IMSLS_RANDOM_SEED, int random_seed  (Input)
The seed of the random number generator used in generating the bootstrap samples. If 
random_seed is 0, a value is computed using the system clock; hence, the results may be different 
between different calls with the same inputs. 

Default: random_seed = 0.
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IMSLS_CONFIDENCE, float confid  (Input)
Confidence level (0.0 < confid < 100.0). See IMSLS_UPPER_LIMITS.

Default: confid = 95.0

IMSLS_NULL_PROB, float *pi0  (Output) 
The null probability estimate.

IMSLS_UPPER_LIMITS, float **upper_limits  (Output)
Address of a pointer to an array of length 2 containing the (confid)% upper bounds for pFDR and 
FDR. 

IMSLS_UPPER_LIMITS_USER, float upper_limits[]  (Output)
Storage for array upper_limits is supplied by the user. See IMSLS_UPPER_LIMITS.

IMSLS_RETURN_USER, float qvalues[]  (Output)
Storage for the return value is supplied by the user.

Description
Let {p1, p2, ..., pm}be the p-values associated with m independent tests of a statistical hypothesis. The following 

table summarizes the possible outcomes of the m tests. Note that the only known quantities in the table are W, R, 
and, m.

In the above table, V is the number of false discoveries (and the number of type I errors). Whereas the type I error 
rate is the probability of rejecting at least one true null hypothesis, the false discovery rate (FDR) (Benjamini and 
Hochberg (1995)), is the expected proportion of falsely rejected true nulls. In other words, the FDR is the 
expected proportion of “false positives” among the tests that are deemed significant. Using the notations from 
the table,

The denominator R ∨ 1 = max(R,1) avoids division by 0 in case there are no significant results (R = 0). The positive 
false discovery rate, or pFDR, defined in Storey (2001), is conditional on there being at least one significant test 
(R > 0):

Hypothesis Accept Reject Total

Null is true U V m0

Alternative is true T S m1

Total W R m

FDR = E V
R ∨ 1 = E V

R | R > 0 Pr R > 0
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From Theorem 1 in Storey (2001),

where π0 is the probability that an individual hypothesis is null, and Pr[P ≤ γ ∣ H = 0] = γ is the probability an indi-

vidual hypothesis is rejected given that it is null. The parameter γ is the predefined size of the rejection region. 
The denominator is the probability that a test is rejected, given γ. This relationship arises from Baye’s Theorem 
and the assumption that the p-values are independent.

An estimator for m0, the number of true null hypotheses is 

where λ is a significance level on the interval [0,1) and W(λ) is the number of tests that are accepted at level λ That 
is, W(λ) = #{ pi > λ}. An estimator for the probability of a null hypothesis π0 is then:

The parameter λ is a tuning parameter used to estimate the true null distribution. The rationale is that the p-val-
ues of the null hypotheses are uniformly distributed and most of the larger p-values ( >λ) will be from the null 
distribution. See Storey and Tibshirani ( 2003) for further details.

Now using

Storey (2002) gives the following estimators for pFDR and FDR: 

and

pFDR = E V
R | R > 0

pFDR =
π0Pr[P ≤ γ|H = 0]

Pr[P ≤ γ]

m̂0(λ) =
m − R(λ)
1 − λ =

W (λ)
1 − λ

π̂0(λ) =
m̂0(λ)
m =

W (λ)
m(1 − λ)

P
^
r(P ≤ γ) =

R(γ)
m

pFDR
∧

λ(γ) =
π̂0(λ)γ
P
^
(P ≤ γ)

=
W (λ)γ

(1 − λ){R(γ) ∨ 1}{1 − (1 − γ)m}

FDR
∧

λ(γ) = π̂0(λ)γ =
W (λ)γ

(1 − λ){R(γ) ∨ 1}
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Note that 1-(1 - γ)m is a lower bound for   , the probability of at least one significant test, and 

is a conservative estimate for the type I error, given that R > 0.

In imsls_f_false_discovery_rates, the estimates above are calculated on a grid of λ values on [0,1) 
and the minimizer is noted. The calculations are then repeated on B bootstrap samples of the p-values. The 

dependence on λ is removed by one of two methods. In Algorithm 3 of Storey (2002),    minimizes the mean 
squared error between the bootstrap estimates and the original minimum of the estimates over the grid of λ val-

ues. Then,   . A second method, suggested by Storey and Tibshirani (2003), uses a cubic spline 

smoother   on the set of values,   . Then the smoothed value  . Upper confidence 
bounds are determined by taking the (1 - α) quantile of the bootstrapped pFDR and FDR values, using the 

smoothed value   obtained by either method above.

The q-value, introduced in Storey (2001), is the pFDR analogue of the p-value. For independent tests, the q-value 
of the observed p-value is

Whereas a p-value is the minimum type I error rate that can occur while rejecting a test with a given value of the 
test statistic, the q-value is the minimum pFDR that can occur while still rejecting the test. For more details see 
Storey (2001) and Storey (2002). To find the q-values, imsls_f_false_discovery_rates implements the 
algorithm given in Storey and Tibshirani (2003).

Examples

Example 1

The p-values are 20 independent realizations of a uniform (0,1) random variable. The null-probability estimate, 
q-values, and upper confidence limits are returned.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int i,n_tests=20,iseed=123457;
   float p1[20]={

P R > 0

γ
1 − (1 − γ)m

λ
^

π^ 0 = π^ 0 λ
^

f
^
λ λi,π^ 0 λi π^ 0 = f

^
1

π^ 0

q(p) = inf
γ≥p
{pFDR(γ)}
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       0.7897864, 0.5600287, 0.04625103, 0.4892959, 0.598915, 
       0.2149330, 0.9683629, 0.1449932, 0.4999971, 0.2820091, 
       0.3489318, 0.479333, 0.9786092, 0.02232179, 0.2329003, 
       0.3600357, 0.1341173, 0.5148499, 0.5693829, 0.9914673, 
   };
   float *qvals=NULL,sort_p1[20],pi0,*upper_limits=NULL;
   qvals = imsls_f_false_discovery_rates(n_tests,p1, 
       IMSLS_NULL_PROB, &pi0,
       IMSLS_RANDOM_SEED, iseed,
       IMSLS_UPPER_LIMITS,&upper_limits,
       0);
   for(i=0;i<n_tests;i++){
       sort_p1[i]=p1[i];
   }
   imsls_f_sort_data(n_tests,1,sort_p1,1,0);
   printf("\nNull Probability Estimate: %4.3f\n",pi0); 
   imsls_f_write_matrix("Upper Limits for pFDR and FDR:", 
       2, 1, upper_limits, 0); 
   printf("\n\tP-Value\t Q-Value\n");
   for(i=0;i<n_tests;i++){
       printf("\t %4.3f \t %4.3f\n", sort_p1[i], qvals[i]);
   }
}

Output

Null Probability Estimate: 0.500
Upper Limits for pFDR and FDR:
       1       1.000
       2       0.869
  P-Value   Q-Value
   0.022    0.223
   0.046    0.231
   0.134    0.362
   0.145    0.362
   0.215    0.374
   0.233    0.374
   0.282    0.374
   0.349    0.374
   0.360    0.374
   0.479    0.374
   0.489    0.374
   0.500    0.374
   0.515    0.374
   0.560    0.374
   0.569    0.374
   0.599    0.374
   0.790    0.465
   0.968    0.496
   0.979    0.496
   0.991    0.496
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Example 2

This example applies the cubic spline smoothing method to get an estimate of the null probability. Note that the 
p-values are the same as in Example 1, but the null probability estimate is larger in this case. 

#include <imsls.h>
#include <stdio.h>
int main()
{
   int i,n_tests=20,iseed=123457;
   float p1[20]={
       0.7897864, 0.5600287, 0.04625103, 0.4892959, 0.598915, 
       0.2149330, 0.9683629, 0.1449932, 0.4999971, 0.2820091, 
       0.3489318, 0.479333, 0.9786092, 0.02232179, 0.2329003, 
       0.3600357, 0.1341173, 0.5148499, 0.5693829, 0.9914673, 
   };
   float *qvals=NULL,sorted_p1[20],pi0,upper_limits[2];
   qvals = imsls_f_false_discovery_rates(n_tests,p1, 
       IMSLS_NULL_PROB, &pi0,
       IMSLS_METHOD,1,
       IMSLS_RANDOM_SEED,iseed,
       IMSLS_UPPER_LIMITS_USER,upper_limits,
       0);
   for(i=0;i<n_tests;i++){
       sorted_p1[i]=p1[i];
   }
   imsls_f_sort_data(n_tests,1,sorted_p1,1,0);
   printf("\nNull Probability Estimate: %4.3f\n",pi0); 
   imsls_f_write_matrix("Upper Limits for pFDR and FDR:",
       2, 1, upper_limits, 0); 
   printf("\n\tP-Value\t Q-Value\n");
   for(i=0;i<n_tests;i++){
       printf("\t %4.3f \t %4.3f\n",sorted_p1[i],qvals[i]);
   }
}

Output

Null Probability Estimate: 0.870
Upper Limits for pFDR and FDR:
       1           1
       2           1
  P-Value   Q-Value
   0.022    0.388
   0.046    0.402
   0.134    0.631
   0.145    0.631
   0.215    0.651
   0.233    0.651
   0.282    0.651
   0.349    0.651
   0.360    0.651
   0.479    0.651
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   0.489    0.651
   0.500    0.651
   0.515    0.651
   0.560    0.651
   0.569    0.651
   0.599    0.651
   0.790    0.808
   0.968    0.863
   0.979    0.863
   0.991    0.863

Warning Errors
IMSLS_NULL_PROBABILITY_0 The null probability estimate is < = 0. Check that the 

p-values are correct or try lowering the maximum 
“lambda” value, which is currently = #.
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yates
Estimates missing observations in designed experiments using Yate’s method.

Synopsis
#include <imsls.h>
int imsls_f_yates(int n, int n_independent, float x[], …, 0)

The type double function is imsls_d_yates.

Required Arguments
int n (Input)

Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input/Output)
A n by (n_independent+1) 2-dimensional array containing the experimental observations and 
missing values. The first n_independent columns contain values for the independent variables 
and the last column contains the corresponding observations for the dependent variable or 
response. The columns assigned to the independent variables should not contain any missing values. 
Missing values are included in this array by placing a NaN (not a number) in the last column of x. The 
NaN value can be set using either the function imsls_f_machine(6) or 
imsls_d_machine(6), depending upon whether single or double precision is being used, 
respectively. Upon successful completion, missing values are replaced with estimates calculated 
using Yates’ method.

Return Value
The number of missing values replaced with estimates using the Yates procedure. A negative return value indi-
cates that the function was unable to successfully estimate all missing values. Typically this occurs when all of the 
observations for a particular treatment combination are missing. In this case, Yate’s missing value method does 
not produce a unique set of missing value estimates.
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Synopsis with Optional Arugments
#include <imsls.h>
int imsls_f_yates (int n, int n_independent, float x[],

IMSLS_DESIGN, int design,
IMSLS_INITIAL_ESTIMATES, int  n_missing, float initial_estimates[],
IMSLS_GET_SS, float get_ss (int n, int n_independent, int n_levels[], 

float dataMatrix[]),
IMSLS_GET_SS_W_DATA, float fcn (int n, int n_independent, int n_levels[], 

float dataMatrix[], void *data), void *data,
IMSLS_GRAD_TOL, float grad_tol,
IMSLS_STEP_TOL, float step_tol,
IMSLS_MAX_ITN, int **itmax,
IMSLS_MISSING_INDEX, int **missing_index[],
IMSLS_MISSING_INDEX_USER, int missing_index[],
IMSLS_ERROR_SS, float *error_ss,
0)

Optional Arguments
IMSLS_RETURN_USER, int n_missing  (Output)

The number of missing values replaced with Yate’s estimates. A negative return value indicates that 
the function was unable to successfully estimate all missing values.

IMSLS_DESIGN, int design  (Input)
An integer indicating whether a custom or standard design is being used. The association of values 
for this variable and standard designs is described in the following table:

design Description

0 CRD – Completely Randomized Design. The input matrix, x, is 
assumed to have only two columns. The first is used to contain inte-
gers identifying the treatments. The second column should contain 
corresponding observations for the dependent variable. In this case, 
n_independent=1. Default value when n_independent=1.
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Default: design=0 or design=1, depending upon whether n_independent = 1 or 2 respec-
tively. If n_independent > 2, then design must be set to 2, and get_ss must be provided as 
input to imsls_f_yates. 

IMSLS_INITIAL_ESTIMATES, int n_missing, float initial_estimates[]  (Input)
Initial estimates for the missing values. Argument n_missing is the number of missing values. 
Argument initial_estimates is an array of length n_missing containing the initial 
estimates.

Default: For design=0 and design=1, the initial estimates are calculated using the Yates formula 
for those designs. For design=2, the mean of the non-missing observations is used as the initial 
estimate for all missing values.

IMSLS_MAX_ITN, int itmax  (Input)
Maximum number of iterations in the optimization function for finding the missing value estimates 
that minimize the error sum of squares in the analysis of variance.

Default: itmax = 500.

IMSLS_GET_SS, float get_ss(int n, int n_independent, int n_levels[], float dataMatrix[])  
(Input)
A user-supplied function that returns the error sum of squares calculated using the n by 
(n_independent+1) matrix dataMatrix. imsls_f_yates calculates the error sum of 
squares assuming that dataMatrix contains no missing observations. In general, dataMatrix 
should be equal to the input matrix x with missing values replaced by estimates. IMSLS_GET_SS is 
required input when design=2. The array n_levels should be of length n_independent and 
contain the number of levels associated with each of the first n_independent columns in the 
dataMatrix and x arrays.

Arguments

int n  (Input)
Number of observations.

1 RCBD – Randomized Complete Block Design. The input matrix is 
assumed to have only three columns. The first is used to contain the 
treatment identifiers and the second the block identifiers. The last 
column contains the corresponding observations for the dependent 
variable. In this case, n_independent=2. This is the default value 
when n_independent=2.

2 Another design. In this case, the function get_ss is a required input. 
The design matrix is passed to that function. Initial values for missing 
observations are set to the grand mean of the data, unless initial val-
ues are specified using IMSLS_INITIAL_ESTIMATES.

design Description
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int n_independent  (Input)
Number of independent variables.

int n_levels[]  (Input)
An array n_levels and should be of length n_independent and contain the 
number of levels associated with each of the first n_independent columns in the 
dataMatrix and x arrays. 

float dataMatrix[]  (Input)
dataMatrix should be equal to the input matrix x with missing values replaced by 
estimates. dataMatrix should not contain any missing observations.

Return Value
Returns the error sum of squares.

IMSLS_GET_SS_W_DATA, float fcn (int n, int n_independent, int n_levels[], 
float dataMatrix[], void *data), void *data, (Input/Output)

float fcn (int n, int n_independent, int n_levels[], float dataMatrix[], void *data)  
(Input)
A user-supplied function that returns the error sum of squares calculated using the n by 
(n_independent+1) matrix dataMatrix. IMSLS_GET_SS is required input when 
design=2. See the Introduction, Passing Data to User-Supplied Functions at the beginning 
of this manual for more details.
Arguments

int n  (Input)
Number of observations.

int n_independent  (Input)
Number of independent variables.

int n_levels[]  (Input)
An array n_levels and should be of length n_independent and con-
tain the number of levels associated with each of the first 
n_independent columns in the dataMatrix and x arrays. 

float dataMatrix[]  (Input)
dataMatrix should be equal to the input matrix x with missing values 
replaced by estimates. dataMatrix should not contain any missing 
observations.

void *data  (Input/Output)
A pointer to the data to be passed to the user-supplied function.

Return Value
Returns the error sum of squares.

void *data  (Input)
A pointer to the data to be passed to the user-supplied function.

IMSLS_GRAD_TOL, float grad_tol  (Input)
Scaled gradient tolerance used to determine whether the difference between the error sum of 
squares is small enough to stop the search for missing value estimates.
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Default: grad_tol =   , where   is the machine precision.

IMSLS_STEP_TOL, float step_tol  (Input)
Scaled step tolerance used to determine whether the difference between missing value estimates is 
small enough to stop the search for missing value estimates. 

Default: step_tol =   , where  is the machine precision.

IMSLS_MISSING_INDEX, int *missing_index  (Output)
An array of length n_missing containing the indices for the missing values in x. The number of 
missing values, n_missing, is the return value of imsls_f_yates.

IMSLS_MISSING_INDEX_USER, int missing_index[]  (Output)
Storage for the array missing_index, provided by the user.

IMSLS_ERROR_SS, float *errr_ss  (Output)
The value of the error sum of squares calculated using the missing value estimates. If design=2 
then this is equal to the value returned from get_ss using the Yates missing value estimates.

Description
Several functions for analysis of variance require balanced experimental data, i.e. data containing no missing val-
ues within a block and an equal number of replicates for each treatment. If the number of missing observations 
in an experiment is smaller than the Yates method as described in Yates (1933) and Steel and Torrie (1960), can 
be used to estimate the missing values. Once the missing values are replaced with these estimates, the data can 
be passed to an analysis of variance that requires balanced data.

The basic principle behind the Yates method for estimating missing observations is to replace the missing values 
with values that minimize the error sum of squares in the analysis of variance. Since the error sum of squares 
depends upon the underlying model for the analysis of variance, the Yates formulas for estimating missing values 
vary from anova to anova.

Consider, for example, the model underlying experiments conducted using a completely randomized design. If  

  is the i-th observation for the i-th treatment then the error sum of squares for a CRD is calculated using the 
following formula:

If an observation    is missing then SSE is minimized by replacing that missing observation with the estimate 
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For a randomized complete block design (RCBD), the calculation for estimating a single missing observation can 
be derived from the RCBD error sum of squares:

If only a single observation,   , is missing from the j-th block and i-th treatment, the estimate for this missing 
observation can be derived by solving the equation:

The solution is referred to as the Yates formula for a RCBD:

where r = n_blocks, t = n_treatments, yi = total of all non-missing observations from the i-th treatment,  

 =total of all non-missing observations from the j-th block, and y = total of all non-missing observations. 

If more than one observation is missing, imsls_f_yates minimization procedure is used to estimate missing 
values. For a CRD, all missing observations are set equal to their corresponding treatment means calculated using 

the non-missing observations. That is,   .

For RCBD designs with more than one missing value, Yate’s formula for estimating a single missing observation is 
used to obtain initial estimates for all missing values. These are passed to a function minimization routine to 
obtain the values that minimize SSE.

For other designs, specify design=2 and IMSLS_GET_SS. The function get_ss is used to obtain the Yates 
missing value estimates by selecting the estimates that minimize sum of squares returned by get_ss. When 
called, get_ss calculates the error sum of squares at each iteration assuming that the data matrix it receives is 
balanced and contains no missing values. 

x̂i j = ȳi.
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2

yi j

x̂i j = ȳi. + ȳ. j − ȳ̄..
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Example
Missing values can occur in any experiment. Estimating missing values via the Yates method is usually done by 
minimizing the error sum of squares for that experiment. If only a single observation is missing and there is an 
analytical formula for calculating the error sum of squares then a formula for estimating the missing value is fairly 
easily derived. Consider for example a split-plot experiment with a single missing value.

Suppose, for example, that   , the observation for the i-th whole-plot, j-th split plot and k-th block is missing. 
Then the estimate for a single missing observation in the i-th whole plot is equal to:

where r = number of blocks, s = number of split-plots, W = total of all non-missing values in same block as the 

missing observation,   = total of the non-missing observations across blocks of observations from i-th whole-

plot factor level and the j-th split-plot level, and   = the total of all observations, across split-plots and blocks of 
the non-missing observations for the i-th whole plot.

If more than a single observation is missing, then an iterative solution is required to obtain missing value esti-
mates that minimize the error sum of squares.

Function imsls_f_yates simplifies this procedure. Consider, for example, a split-plot experiment conducted 
at a single location using fixed-effects whole and split plots. If there are no missing values, then the error sum of 
squares can be calculated from a 3-way analysis of variance using whole-plot, split-plot and blocks as the 3 fac-
tors. For balanced data without missing values, the errors sum of squares would be equal to the sum of the 3-
way interaction between these factors and the split-plot by block interaction.

Calculating the error sum of squares using this 3-way analysis of variance is achieved using the 
imsls_f_anova_factorial.

#include <imsls.h>
float get_ss(int n, int n_independent, int *n_levels, float *x)
{
/* This routine assumes that the first three columns of dataMatrix   */
/* contain the whole-plot,split-plot and block identifiers in that   */
/* order.  The last column of this matrix, the fourth column, must   */
/* contain the observations from the experiment.  It is assumed that */
/* dataMatrix is balanced and does not contain any missing            */
/* observations.                                                      */
   int i;
   float errorSS, pValue;
   float *test_effects = NULL;
   float *anova_table = NULL;
   float responses[24];
   /* Copy responses from the last column of x into a 1-D array        */
   /* as expected by imsls_f_anova_factorial.                          */
   for (i=0;i<n;i++) {
      responses[i] = x[i*(n_independent+1)+n_independent];

xi j k

Y =
r ·W + s · xi j. − xi..
r − 1 s − 1

xi j.
xi..
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   }
   /* Compute the error sum of squares.                                */
   pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
                           IMSLS_TEST_EFFECTS, &test_effects,
                           IMSLS_ANOVA_TABLE, &anova_table,
                           IMSLS_POOL_INTERACTIONS, 0);
   errorSS = anova_table[4] + test_effects[21];
   /* Free memory returned by imsls_f_anova_factorial.                 */
   if (test_effects != NULL) imsls_free(test_effects);
   if (anova_table != NULL) imsls_free(anova_table);
   return errorSS;
}

The above function is passed to the imsls_f_yates as an argument, together with a matrix containing the 
data for the split-plot experiment. For this example, the following data matrix obtained from an agricultural 
experiment will be used. In this experiment, 4 whole plots were randomly assigned to two 2 blocks. Whole-plots 
were subdivided into 2 split-plots. The whole-plot factor consisted of 4 different seed lots, and the split-plot fac-
tor consisted of 2 seed protectants. The data matrix of this example is an n = 24 by 4 matrix with two missing 
observations.
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The program below uses these data with imsls_f_yates to replace the two missing values with Yates 
estimates.

#include <stdlib.h>
#include <imsls.h>
float get_ss(int n, int n_independent, int *n_levels, float *x);
#define N 24
#define N_INDEPENDENT 3
int main()
{
 char *col_labels[] = {" ", "Whole", "Split", "Block", " "};
 int i;

X =

1 1 1 ∣ NaN
1 2 1 ∣ 53.8
1 3 1 ∣ 49.5
1 1 2 ∣ 41.6
1 2 2 ∣ NaN
1 3 2 ∣ 53.8
2 1 1 ∣ 53.3
2 2 1 ∣ 57.6
2 3 1 ∣ 59.8
2 1 2 ∣ 69.6
2 2 2 ∣ 69.6
2 3 2 ∣ 65.8
3 1 1 ∣ 62.3
3 2 1 ∣ 63.4
3 3 1 ∣ 64.5
3 1 2 ∣ 58.5
3 2 2 ∣ 50.4
3 3 2 ∣ 46.1
4 1 1 ∣ 75.4
4 2 1 ∣ 70.3
4 3 1 ∣ 68.8
4 1 2 ∣ 65.6
4 2 2 ∣ 67.3
4 3 2 ∣ 65.3
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 int n = N;
 int n_independent = N_INDEPENDENT; 
 int whole[N]={1,1,1,1,1,1,
        2,2,2,2,2,2,
        3,3,3,3,3,3,
        4,4,4,4,4,4};
 int split[N]={1,2,3,1,2,3,
        1,2,3,1,2,3,
        1,2,3,1,2,3,
        1,2,3,1,2,3};
 int block[N]={1,1,1,2,2,2,
        1,1,1,2,2,2,
        1,1,1,2,2,2,
        1,1,1,2,2,2};
 float y[N] ={0.0, 53.8, 49.5, 41.6, 0.0, 53.8,
              53.3, 57.6, 59.8, 69.6, 69.6, 65.8,
        62.3, 63.4, 64.5, 58.5, 50.4, 46.1, 
        75.4, 70.3, 68.8, 65.6, 67.3, 65.3};
 
 float x[N][N_INDEPENDENT+1];
 float error_ss;
 int *missing_idx;
 int n_missing;
 /* Set the first and fifth observations to missing values. */
 y[0] = imsls_f_machine(6);
 y[4] = imsls_f_machine(6);
 /* Fill the array x with the classification variables and observations. */
 for (i=0;i<n; i++) {
   x[i][0] = (float)whole[i]; 
   x[i][1] = (float)split[i]; 
   x[i][2] = (float)block[i]; 
   x[i][3] = y[i];
 }
 /* Sort the data since imsls_f_anova_factorial expects sorted data. */
 imsls_f_sort_data(n, n_independent+1, (float*)x, 3, 0);
 
 n_missing = imsls_f_yates(n, n_independent, (float *)&(x[0][0]),
         IMSLS_DESIGN, 2, 
         IMSLS_GET_SS, get_ss,
         IMSLS_ERROR_SS, &error_ss,
         IMSLS_MISSING_INDEX, &missing_idx,
         0);
 printf("Returned error sum of squares = %f\n\n", error_ss);
 printf("Missing values replaced: %d\n", n_missing);
 printf("Whole    Split   Block   Estimate\n");
 for (i=0;i<n_missing;i++) {
   printf("%3d       %3d     %3d     %7.3f\n", 
    (int)x[missing_idx[i]][0],
    (int)x[missing_idx[i]][1],
    (int)x[missing_idx[i]][2],
    x[missing_idx[i]][n_independent]);
 }
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 imsls_f_write_matrix("Sorted x, with estimates", n, n_independent+1,
               (float*)x, 
                      IMSLS_WRITE_FORMAT, "%-4.0f%-4.0f%-4.0f%5.2f", 
              IMSLS_COL_LABELS, col_labels, 
              IMSLS_NO_ROW_LABELS, 0);
 
}
float get_ss(int n, int n_independent, int *n_levels, float *x)
{
 int i;
 float errorSS, pValue;
 float *test_effects = NULL;
 float *anova_table = NULL;
 float responses[24];
 /* 
  * Copy responses from the last column of x into a 1-D array 
  * as expected by imsls_f_anova_factorial. 
  */
 for (i=0;i<n;i++) {
   responses[i] = x[i*(n_independent+1)+n_independent];
 }
 /*
  * Compute the error sum of squares.
  */
 pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
          IMSLS_TEST_EFFECTS, &test_effects,
          IMSLS_ANOVA_TABLE, &anova_table,
          IMSLS_POOL_INTERACTIONS, 0);
 errorSS = anova_table[4] + test_effects[21]; 
 /* Free memory returned by imsls_f_anova_factorial. */
 if (test_effects != NULL) imsls_free(test_effects);
 if (anova_table != NULL) imsls_free(anova_table);
 return errorSS;
}
After running this code to replace missing values with Yates estimates, it would be 
followed by a call to the split-plot analysis of variance:
float *aov_table, y[24];
int expunit[24], whole[24], split[24];
for(int i=0; i < 24; i++){whole[i] = x[i];   split[i] = x[i+24]; 
                         expunit[i]= x[i+48]; y[i]    = x[i+72];}
float aov_table = imsls_f_split_plot (24, 1, 4, 3, expunit, whole, 
                                    split, y[], 0);

Output

Returned error sum of squares = 95.620010
Missing values replaced: 2
Whole    Split   Block   Estimate
 1         1       1      37.300
 1         2       2      58.100
 Sorted x, with estimates
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  Whole Split Block
   1     1     1    37.30
   1     1     2    41.60
   1     2     1    53.80
   1     2     2    58.10
   1     3     1    49.50
   1     3     2    53.80
   2     1     1    53.30
   2     1     2    69.60
   2     2     1    57.60
   2     2     2    69.60
   2     3     1    59.80
   2     3     2    65.80
   3     1     1    62.30
   3     1     2    58.50
   3     2     1    63.40
   3     2     2    50.40
   3     3     1    64.50
   3     3     2    46.10
   4     1     1    75.40
   4     1     2    65.60
   4     2     1    70.30
   4     2     2    67.30
   4     3     1    68.80
   4     3     2    65.30
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Categorical and Discrete Data 
Analysis

Functions
Statistics in the Two-Way Contingency Table

Two-way contingency table analysis . . . . . . . . . . . . . . . . . . . . . . . . . . contingency_table     514
Exact probabilities in an r × c table; total enumeration . . . . . . . . . . . exact_enumeration     528
Exact probabilities in an r × c table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . exact_network     531

Categorical Models
Generalized linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . categorical_glm     538
Logistic regression model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .logistic_regression     555
Logistic regression prediction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . logistic_reg_predict     571
512



 Categorical and Discrete Data Analysis         Usage Notes
Usage Notes
Function imsls_f_contingency_table computes many statistics of interest in a two-way table. Statistics 
computed by this function includes the usual chi-squared statistics, measures of association, Kappa, and many 
others. Exact probabilities for two-way tables can be computed by imsls_f_exact_enumeration, but this 
function uses the total enumeration algorithm and, thus, often uses orders of magnitude more computer time 
than imsls_f_exact_network, which computes the same probabilities by use of the network algorithm (but 
can still be quite expensive).

The function imsls_f_categorical_glm in the second section is concerned with generalized linear models 
(see McCullagh and Nelder 1983) in discrete data. This function can be used to compute estimates and associ-
ated statistics in probit, logistic, minimum extreme value, Poisson, negative binomial (with known number of 
successes), and logarithmic models. Classification variables as well as weights, frequencies and additive constants 
may be used so that general linear models can be fit. Residuals, a measure of influence, the coefficient estimates, 
and other statistics are returned for each model fit. When infinite parameter estimates are required, extended 
maximum likelihood estimation may be used. Log-linear models can be fit in imsls_f_categorical_glm 
through the use of Poisson regression models. Results from Poisson regression models involving structural and 
sampling zeros will be identical to the results obtained from the log-linear model functions but will be fit by a 
quasi-Newton algorithm rather than through iterative proportional fitting.

Two additional functions, imsls_f_logistic_regression and imsls_f_logistic_reg_predict, are 
designed specifically for logistic regression. imsls_f_logistic_regression estimates a logistic regres-
sion model for binomial and multinomial response variables and one or more independent variables. Given an 
estimated model, imsls_f_logistic_reg_predict calculates predicted responses at new values of the 
regression variables.
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contingency_table

Performs a chi-squared analysis of a two-way contingency table.

Synopsis
#include <imsls.h>
float imsls_f_contingency_table (int n_rows, int n_columns, float table[], ..., 0)

The type double function is imsls_d_contingency_table.

Required Arguments
int n_rows (Input)

Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the contingency table.

Return Value
Pearson chi-squared p-value for independence of rows and columns.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_contingency_table (int n_rows, int n_columns, float table[],

IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value,

more...

more...
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IMSLS_LRT, int *df, float *g_squared, float *p_value,
IMSLS_EXPECTED, float **expected,
IMSLS_EXPECTED_USER, float expected[],
IMSLS_CONTRIBUTIONS, float **chi_squared_contributions,
IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[],
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats,
IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[],
IMSLS_STATISTICS, float **statistics,
IMSLS_STATISTICS_USER, float statistics[],
0)

Optional Arguments
IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value (Output)

Argument df is the degrees of freedom for the chi-squared tests associated with the table, 
chi_squared is the Pearson chi-squared test statistic, and argument p_value is the probability 
of a larger Pearson chi-squared.

IMSLS_LRT, int *df, float *g_squared, float *p_value (Output)
Argument df is the degrees of freedom for the chi-squared tests associated with the table, argument 
g_squared is the likelihood ratio G2 (chi-squared), and argument p_value is the probability of a 
larger G2.

IMSLS_EXPECTED, float **expected (Output)
Address of a pointer to the internally allocated array of size (n_rows + 1) × (n_columns + 1) con-
taining the expected values of each cell in the table, under the null hypothesis, in the first n_rows 
rows and n_columns columns. The marginal totals are in the last row and column.

IMSLS_EXPECTED_USER, float expected[] (Output)
Storage for array expected is provided by the user. See IMSLS_EXPECTED.

IMSLS_CONTRIBUTIONS, float **chi_squared_contributions (Output)
Address of a pointer to an internally allocated array of size (n_rows + 1) × (n_columns + 1) con-
taining the contributions to chi-squared for each cell in the table in the first n_rows rows and 
n_columns columns. The last row and column contain the total contribution to chi-squared for 
that row or column.

IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[] (Output)
Storage for array chi_squared_contributions is provided by the user. See 
IMSLS_CONTRIBUTIONS.
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IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats (Output)
Address of a pointer to an internally allocated array of length 5 containing chi-squared statistics asso-
ciated with this contingency table. The last three elements are based on Pearson’s chi-square statistic 
(see IMSLS_CHI_SQUARED).

The chi-squared statistics are given as follows:

IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[] (Output)
Storage for array chi_squared_stat is provided by the user. See 
IMSLS_CHI_SQUARED_STATS.

IMSLS_STATISTICS, float **statistics (Output)
Address of a pointer to an internally allocated array of size 23 × 5 containing statistics associated 
with this table. Each row corresponds to a statistic.

Element Chi-squared Statistics

0 exact mean

1 exact standard deviation

2 Phi

3 contingency coefficient

4 Cramer’s V

Row Statistic

0 Gamma

1 Kendall’s τb

2 Stuart’s τc

3 Somers’ D for rows (given columns)

4 Somers’ D for columns (given rows)

5 product moment correlation

6 Spearman rank correlation

7 Goodman and Kruskal τ for rows (given columns)

8 Goodman and Kruskal τ for columns (given rows)

9 uncertainty coefficient U (symmetric)

10 uncertainty Ur|c (rows)

11 uncertainty Uc|r(columns)

12 optimal prediction λ (symmetric)

13 optimal prediction λr|c (rows)
516



 Categorical and Discrete Data Analysis         contingency_table
If a statistic cannot be computed, or if some value is not relevant for the computed statistic, the entry 
is NaN (Not a Number). The columns are as follows:

In the McNemar tests, column 0 contains the statistic, column 1 contains the chi-squared degrees of 
freedom, column 3 contains the exact p-value (1 degree of freedom only), and column 4 contains the 
chi-squared asymptotic p-value. The Kruskal-Wallis test is the same except no exact p-value is 
computed.

IMSLS_STATISTICS_USER, float statistics[] (Output)
Storage for array statistics provided by the user. See IMSLS_STATISTICS.

14 optimal prediction λc|r (columns)

15 optimal prediction λr|c (rows)

16 optimal prediction λc|r (columns)

17 test for linear trend in row probabilities if n_rows = 2
If n_rows is not 2, a test for linear trend in column 
probabilities if n_columns = 2.

18 Kruskal-Wallis test for no row effect

19 Kruskal-Wallis test for no column effect

20 kappa (square tables only)

21 McNemar test of symmetry (square tables only)

22 McNemar one degree of freedom test of symmetry 
(square tables only)

Column Value

0 estimated statistic

1 standard error for any parameter value

2 standard error under the null hypothesis

3 t value for testing the null hypothesis

4 p-value of the test in column 3

Row Statistic
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Description
Function imsls_f_contingency_table computes statistics associated with an r × c 
(n_rows × n_columns) contingency table. The function computes the chi-squared test of independence, 
expected values, contributions to chi-squared, row and column marginal totals, some measures of association, 
correlation, prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the odds and the log 
odds ratio, and the kappa statistic (if the appropriate optional arguments are selected).

Notation
Let xij denote the observed cell frequency in the ij cell of the table and n denote the total count in the table. Let 

pij = pi∙p∙j denote the predicted cell probabilities under the null hypothesis of independence, where pi∙ and p∙j 

are the row and column marginal relative frequencies. Next, compute the expected cell counts as eij = npij.

Also required in the following are auv and buv for u, v = 1, …, n. Let (rs, cs) denote the row and column response of 

observation s. Then, auv = 1, 0, or −1, depending on whether ru < rv, ru = rv, or ru > rv, respectively. The buv are 

similarly defined in terms of the cs variables.

Chi-squared Statistic
For each cell in the table, the contribution to 2 is given as (xij − eij)

2/eij. The Pearson chi-squared statistic 

(denoted 2) is computed as the sum of the cell contributions to chi-squared. It has (r − 1) (c − 1) degrees of 
freedom and tests the null hypothesis of independence, i.e., H0:pij = pi∙p∙j. The null hypothesis is rejected if the 

computed value of 2 is too large.

The maximum likelihood equivalent of 2, G2 is computed as follows:

G2 is asymptotically equivalent to 2 and tests the same hypothesis with the same degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, 
and Cramer’s V)
There are three measures related to chi-squared that do not depend on sample size:

χ

χ

χ

χ

G2 = − 2∑
i, j

xi j ln xi j / npi j

χ
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Since these statistics do not depend on sample size and are large when the hypothesis of independence is 
rejected, they can be thought of as measures of association and can be compared across tables with different 
sized samples. While both P and V have a range between 0.0 and 1.0, the upper bound of P is actually somewhat 
less than 1.0 for any given table (see Kendall and Stuart 1979, p. 587). The significance of all three statistics is the 

same as that of the 2 statistic, chi_squared.

The distribution of the 2 statistic in finite samples approximates a chi-squared distribution. To compute the 

exact mean and standard deviation of the 2 statistic, Haldane (1939) uses the multinomial distribution with 
fixed table marginals. The exact mean and standard deviation generally differ little from the mean and standard 
deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures of Association
In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-values are reported. Estimates 
of the standard errors are computed in two ways. The first estimate, in Column 1 of the array statistics, is 
asymptotically valid for any value of the statistic. The second estimate, in Column 2 of the array, is only correct 
under the null hypothesis of no association. The z-scores in Column 3 of statistics are computed using this sec-
ond estimate of the standard errors. The p-values in Column 4 are computed from this z-score. See 
Brown and Benedetti (1977) for a discussion and formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns
The measures of association, ɸ, P, and V, do not require any ordering of the row and column categories. Function 
imsls_f_contingency_table also computes several measures of association for tables in which the rows 
and column categories correspond to ranked observations. Two of these tests, the product-moment correlation 
and the Spearman correlation, are correlation coefficients computed using assigned scores for the row and col-
umn categories. The cell indices are used for the product-moment correlation, while the average of the tied ranks 
of the row and column marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are computed like a correlation 

coefficient in the numerator. In all these measures, the numerator is computed as the “covariance” between the 
auv variables and buv variables defined above, i.e., as follows:

phi, φ = χ2 / n

contingency coefficient, P = χ2 / n + χ2

Cramer's V ,V = χ2 / n min r,c

χ

χ
χ

519



 Categorical and Discrete Data Analysis         contingency_table
Recall that auv and buv can take values −1, 0, or 1. Since the product auvbuv = 1 only if auv and buv are both 1 or 

are both −1, it is easy to show that this ‘‘covariance’’ is twice the total number of agreements minus the number 
of disagreements, where a disagreement occurs when auvbuv = −1.

Kendall’s  is computed as the correlation between the auv variables and the buv variables (see 

Kendall and Stuart 1979, p. 593). In a rectangular table (r ≠ c), Kendall’s  cannot be 1.0 (if all marginal totals are 
positive). For this reason, Stuart suggested a modification to the denominator of  in which the denominator 

becomes the largest possible value of the “covariance.” This maximizing value is approximately n2m/(m − 1), 

where m = min (r, c). Stuart’s  uses this approximate value in its denominator. For large n, .

Gamma can be motivated in a slightly different manner. Because the “covariance” of the auv variables and the buv 

variables can be thought of as twice the number of agreements minus the disagreements, 2(A − D), where A is 
the number of agreements and D is the number of disagreements, Gamma is motivated as the probability of 
agreement minus the probability of disagreement, given that either agreement or disagreement occurred. This is 
shown as γ = (A − D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’ D for rows can be 
thought of as the regression coefficient for predicting auv from buv. Moreover, Somer’s D for rows is the probabil-

ity of agreement minus the probability of disagreement, given that the column variable, buv, is not 0. Somers’ D 

for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty
Optimal Prediction Coefficients: The measures in this section do not require any ordering of the row or column 
variables. They are based entirely upon probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under the null hypothesis of indepen-
dence, choose the column with the highest column marginal probability for all rows. In this case, the probability 
of misclassification for any row is 1 minus this marginal probability. If independence is not assumed within each 
row, choose the column with the highest row conditional probability. The probability of misclassification for the 
row becomes 1 minus this conditional probability.

Define the optimal prediction coefficient λc|r for predicting columns from rows as the proportion of the probabil-

ity of misclassification that is eliminated because the random variables are not independent. It is estimated by

∑
u
∑
v

auvbuv

τb
τb

τ

τc τc ≈ mτb /( m − 1)
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where m is the index of the maximum estimated probability in the row (pim) or row margin (pm). A similar coeffi-

cient is defined for predicting the rows from the columns. The symmetric version of the optimal prediction λ is 
obtained by summing the numerators and denominators of λr|c and λc|r, then dividing. Standard errors for 

these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the marginal probabilities. One way to 

correct this is to use row conditional probabilities. The optimal prediction λ* coefficients are defined as the corre-
sponding λ coefficients in which first the row (or column) marginals are adjusted to the same number of 
observations. This yields

where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability of column j given row i.

is similarly defined.

Goodman and Kruskal : A second kind of prediction measure attempts to explain the proportion of the 
explained variation of the row (column) measure given the column (row) measure. Define the total variation in the 
rows as follows:

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal  coefficient for rows is computed as the reduction of 
the total variation for rows accounted for by the columns, divided by the total variation for the rows. To compute 
the reduction in the total variation of the rows accounted for by the columns, note that the total variation for the 
rows within column j is defined as follows:

λc∣r =
1 − p•m − 1 − ∑

i
pim

1 − p•m

λc∣r
* =

∑
i
max j p j∣i − max j ∑

i
p j∣i

R − max j ∑
i
p j∣i p j∣i

λr∣c
*

τ

n / 2 − ∑
i

xi•
2 / 2n

τ
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The total variation for rows within columns is the sum of the qj variables. Consistent with the usual methods in 

the analysis of variance, the reduction in the total variation is given as the difference between the total variation 
for rows and the total variation for rows within the columns.

Goodman and Kruskal’s  for columns is similarly defined. See Bishop et al. (1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the log-likelihood that is 
achieved by the most general model over the independence model, divided by the marginal log-likelihood for the 
rows. This is given by the following equation:

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty coefficient contains the 
same numerator as Ur|c and Uc|r but averages the denominators of these two statistics. Standard errors for U 

are given in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test that assumes the 
column variable is monotonically ordered. It tests the null hypothesis that no row populations are identical, using 
average ranks for the column variable. The Kruskal-Wallis statistic for columns is similarly defined. Conover (1980) 
discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear trend in the row probabilities if 
it is assumed that the column variable is monotonically ordered. In this test, the probabilities for row 1 are pre-
dicted by the column index using weighted simple linear regression. This slope is given by

where

is the average column index. An asymptotic test that the slope is 0 may then be obtained (in large samples) as the 
usual regression test of zero slope.

q j = x• j / 2 − ∑
i

xi j
2 / 2xi•

τ

Ur∣c =
∑
i, j
xi j log xi•x• j / nxi j

∑
i
xi•log xi• / n

β^ =
∑
j
x• j x1 j / x• j − x1• / n j − j─

∑
j
x• j j − j

─ 2

j─ =∑
j

x• j j / n
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In two-column data, a similar test for a linear trend in the column probabilities is computed. This test assumes 
that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the kappa statistic, the rows and 
columns correspond to the responses of two judges. The judges agree along the diagonal and disagree off the 
diagonal. Let

denote the probability that the two judges agree, and let

denote the expected probability of agreement under the independence model. Kappa is then given by 
(p0 − pc)/(1 − pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency table. In other words, it is a 
test of the null hypothesis H0:θij = θji. The multiple degrees-of-freedom version of the McNemar test with 

r (r − 1)/2 degrees of freedom is computed as follows:

The single degree-of-freedom test assumes that the differences, xij − xji, are all in one direction. The single 

degree-of-freedom test will be more powerful than the multiple degrees-of-freedom test when this is the case. 
The test statistic is given as follows:

The exact probability can be computed by the binomial distribution.

p0 =∑
i

xii / n

pc =∑
i

eii / n

∑
i< j

xi j − x ji
2

xi j + x ji

∑
i< j

xi j − x ji
2

∑
i< j

xi j + x ji
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Examples

Example 1

The following example is taken from Kendall and Stuart (1979) and involves the distance vision in the right and 
left eyes. Output contains only the p-value.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int n_rows    = 4;
   int n_columns = 4;
   float table[4][4] =
       {821, 112, 85, 35,
        116, 494, 145, 27,
         72, 151, 583, 87,
         43, 34, 106, 331};
   float p_value;
   p_value = imsls_f_contingency_table(n_rows, n_columns, 
       &table[0][0],
       0);
   printf ("P-value = %10.6f.\n", p_value);
}

Output

P-value =  0.000000.

Example 2

The following example, which illustrates the use of Kappa and McNemar tests, uses the same distance vision data 
as the previous example. The available statistics are output using optional arguments.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int     n_rows = 4;
   int     n_columns = 4;
   int     df1, df2;
   float   table[16] =
       {821.0, 112.0, 85.0, 35.0,
        116.0, 494.0, 145.0, 27.0,
         72.0, 151.0, 583.0, 87.0,
         43.0, 34.0, 106.0, 331.0};
   float   p_value1, p_value2, chi_squared, g_squared;
   float   *expected, *chi_squared_contributions;
   float   *chi_squared_stats, *statistics;
   char    *labels[] = {
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       "Exact mean",
       "Exact standard deviation",
       "Phi",
       "P",
       "Cramer’s V"
   };
   char    *stat_row_labels[] = {"Gamma", "Tau B", "Tau C", 
       "D-Row", "D-Column", "Correlation", "Spearman",
       "GK tau rows", "GK tau cols.", "U - sym.", "U - rows",
       "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",
       "l-star-rows", "l-star-col.", "Lin. trend", 
       "Kruskal row", "Kruskal col.", "Kappa", "McNemar",
       "McNemar df=1"};
   char    *stat_col_labels[] = {"","statistic", "standard error",
       "std. error under Ho", "t-value testing Ho", 
       "p-value"};
   imsls_f_contingency_table (n_rows, n_columns, table,
       IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_value1,
       IMSLS_LRT, &df2, &g_squared, &p_value2,
       IMSLS_EXPECTED, &expected,
       IMSLS_CONTRIBUTIONS, &chi_squared_contributions,
       IMSLS_CHI_SQUARED_STATS, &chi_squared_stats,
       IMSLS_STATISTICS, &statistics,
       0);
   printf("Pearson chi-squared statistic    %11.4f\n", chi_squared);
   printf("p-value for Pearson chi-squared  %11.4f\n", p_value1);
   printf("degrees of freedom               %11d\n", df1);
   printf("G-squared statistic              %11.4f\n", g_squared);
   printf("p-value for G-squared            %11.4f\n", p_value2);
   printf("degrees of freedom               %11d\n", df2);
   imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4, table,
       IMSLS_WRITE_FORMAT, "%11.1f",
       0);
   imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5,
       expected,
       IMSLS_WRITE_FORMAT, "%11.2f",
       0);
   imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n", 5,
       5, chi_squared_contributions,
       IMSLS_WRITE_FORMAT, "%11.2f",
       0);
   imsls_f_write_matrix("* * * Chi-square Statistics * * *\n", 5, 1,
       chi_squared_stats,
       IMSLS_ROW_LABELS, labels,
       IMSLS_WRITE_FORMAT, "%11.4f",
       0);
   imsls_f_write_matrix("* * * Table Statistics * * *\n", 23, 5,
       statistics,
       IMSLS_ROW_LABELS, stat_row_labels,
       IMSLS_COL_LABELS, stat_col_labels,
       IMSLS_WRITE_FORMAT, "%9.4f",
       0);
}
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Output

Pearson chi-squared statistic      3304.3682
p-value for Pearson chi-squared       0.0000
degrees of freedom                         9
G-squared statistic                2781.0188
p-value for G-squared                 0.0000
degrees of freedom                         9
             * * * Table Values * * *
            1           2           3           4
1       821.0       112.0        85.0        35.0
2       116.0       494.0       145.0        27.0
3        72.0       151.0       583.0        87.0
4        43.0        34.0       106.0       331.0
                  * * * Expected Values * * *
            1           2           3           4           5
1      341.69      256.92      298.49      155.90     1053.00
2      253.75      190.80      221.67      115.78      782.00
3      289.77      217.88      253.14      132.21      893.00
4      166.79      125.41      145.70       76.10      514.00
5     1052.00      791.00      919.00      480.00     3242.00
            * * * Contributions to Chi-squared* * *
            1           2           3           4           5
1      672.36       81.74      152.70       93.76     1000.56
2       74.78      481.84       26.52       68.08      651.21
3      163.66       20.53      429.85       15.46      629.50
4       91.87       66.63       10.82      853.78     1023.10
5     1002.68      650.73      619.88     1031.08     3304.37
* * * Chi-square Statistics * * *
Exact mean                    9.0028
Exact standard deviation      4.2402
Phi                           1.0096
P                             0.7105
Cramer’s V                    0.5829
                   * * * Table Statistics * * *
             statistic standard error std. error t-value testing
                                         under Ho           Ho
Gamma           0.7757         0.0123     0.0149         52.1897
Tau B           0.6429         0.0122     0.0123         52.1897
Tau C           0.6293         0.0121  .........         52.1897
D-Row           0.6418         0.0122     0.0123         52.1897
D-Column        0.6439         0.0122     0.0123         52.1897
Correlation     0.6926         0.0128     0.0172         40.2669
Spearman        0.6939         0.0127     0.0127         54.6614
GK tau rows     0.3420         0.0123  .........       .........
GK tau cols.    0.3430         0.0122  .........       .........
U - sym.        0.3171         0.0110  .........       .........
U - rows        0.3178         0.0110  .........       .........
U - cols.       0.3164         0.0110  .........       .........
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Lambda-sym.     0.5373         0.0124  .........       .........
Lambda-row      0.5374         0.0126  .........       .........
Lambda-col.     0.5372         0.0126  .........       .........
l-star-rows     0.5506         0.0136  .........       .........
l-star-col.     0.5636         0.0127  .........       .........
Lin. trend   .........      .........  .........       .........
Kruskal row  1561.4861         3.0000  .........       .........
Kruskal col. 1563.0300         3.0000  .........       .........
Kappa           0.5744         0.0111     0.0106         54.3583
McNemar         4.7625         6.0000  .........       .........
McNemar df=1    0.9487         1.0000  .........          0.3459
               p-value
Gamma           0.0000
Tau B           0.0000
Tau C           0.0000
D-Row           0.0000
D-Column        0.0000
Correlation     0.0000
Spearman        0.0000
GK tau rows  .........
GK tau cols. .........
U - sym.     .........
U - rows     .........
U - cols.    .........
Lambda-sym.  .........
Lambda-row   .........
Lambda-col.  .........
l-star-rows  .........
l-star-col.  .........
Lin. trend   .........
Kruskal row     0.0000
Kruskal col.    0.0000
Kappa           0.0000
McNemar         0.5746
McNemar df=1    0.3301

Warning Errors
IMSLS_DF_GT_30 The degrees of freedom for “IMSLS_CHI_SQUARED” 

are greater than 30. The exact mean, standard devi-
ation, and the normal distribution function should 
be used.

IMSLS_EXP_VALUES_TOO_SMALL Some expected values are less than #. Some asymp-
totic p-values may not be good.

IMSLS_PERCENT_EXP_VALUES_LT_5 Twenty percent of the expected values are calcu-
lated less than 5.
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exact_enumeration
Computes exact probabilities in a two-way contingency table using the total enumeration method.

Synopsis
#include <imsls.h>
float imsls_f_exact_enumeration(int n_rows, int n_columns, float table[], …, 0)

The type double function is imsls_d_exact_enumeration.

Required Arguments
int n_rows (Input)

Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the probability of a more extreme 
table where “extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_enumeration (int n_rows, int n_columns, float table[],

IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_CHECK_NUMERICAL_ERROR, float *check,
0)
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Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probability of the observed table occurring, given that the null hypothesis of independent rows and 
columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value represents the probability of a more 
extreme table where “extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”. The 
p-value is also returned in functional form (see “Return Value”). A table is more extreme if its probabil-
ity (for fixed marginals) is less than or equal to prt.

IMSLS_CHECK_NUMERICAL_ERROR, float *check (Output)
Sum of the probabilities of all tables with the same marginal totals. Parameter check should have a 
value of 1.0. Deviation from 1.0 indicates numerical error.

Description
Function imsls_f_exact_enumeration computes exact probabilities for an r × c contingency table for 
fixed row and column marginals (a marginal is the number of counts in a row or column), where r = n_rows and 
c = n_columns. Let fij denote the count in row i and column j of a table, and let fi∙ and f∙j denote the row and 

column marginals. Under the hypothesis of independence, the (conditional) probability of the fixed marginals of 
the observed table is given by

where f∙∙ is the total number of counts in the table. Pf corresponds to output argument prt.

A “more extreme” table X is defined in the probabilistic sense as more extreme than the observed table if the con-
ditional probability computed for table X (for the same marginal sums) is less than the conditional probability 
computed for the observed table. The user should note that this definition can be considered “two-sided” in the 
cell counts.

Because imsls_f_exact_enumeration used total enumeration in computing the probability of a more 
extreme table, the amount of computer time required increases very rapidly with the size of the table. Tables with 
a large total count f∙∙ or a large value of r × c should not be analyzed using imsls_f_exact_enumeration. 

In such cases, try using imsls_f_exact_network.

P f =
∏
i=1

r
f i•!∏

j=1

c
f • j!

f ••!∏
i=1

r
∏
j=1

c
f i j!
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Example
In this example, the exact conditional probability for the 2 × 2 contingency table

is computed.

#include <stdio.h>
#include <imsls.h>
int main()
{
   float p;
   float table[4] = {8, 12,
                     8, 2};
   p = imsls_f_exact_enumeration(2, 2, table, 0);
   printf("p-value = %9.4f\n", p);
}

Output

p-value =   0.0577

8 12
8 2
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exact_network
Computes Fisher exact probabilities and a hybrid approximation of the Fisher exact method for a two-way contin-
gency table using the network algorithm.

Synopsis
#include <imsls.h>
float imsls_f_exact_network (int n_rows, int n_columns, float table[], ..., 0)

The type double function is imsls_d_exact_network.

Required Arguments
int n_rows (Input)

Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the probability of a more extreme 
table where “extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_network (int n_rows, int n_columns, float table[],

IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent, 

float expected_minimum,
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IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, int factor1, int factor2, int max_attempts, int *n_attempts,
0)

Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probability of the observed table occurring given that the null hypothesis of independent rows and 
columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value represents the probability of a more 
extreme table where “extreme” is in the Neyman-Pearson sense. The p_value is “two-sided”. The p-
value is also returned in functional form (see “Return Value”).

A table is more extreme if its probability (for fixed marginals) is less than or equal to prt.

IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent, 
float expected_minimum. (Input)
Parameter expect is the expected value used in the hybrid approximation to Fisher’s exact test 
algorithm for deciding when to use asymptotic probabilities when computing path lengths. Parame-
ter percent is the percentage of remaining cells that must have estimated expected values greater 
than expect before asymptotic probabilities can be used in computing path lengths. Parameter 
expected_minimum is the minimum cell estimated value allowed for asymptotic chi-squared 
probabilities to be used.

Asymptotic probabilities are used in computing path lengths whenever percent or more of the 
cells in the table have estimated expected values of expect or more, with no cell having expected 
value less than expected_minimum. See the Description section for details.

Defaults: expect = 5.0, percent = 80.0, expected_minimum = 1.0

IMSLS_NO_APPROXIMATION,
The Fisher exact test is used. Arguments expect, percent, and expected_minimum are 
ignored.

IMSLS_WORKSPACE, int factor1, int factor2, int max_attempts, int *n_attempts 
(Input/Output)
The network algorithm requires a large amount of workspace. Some of the workspace requirements 
are well-defined, while most of the workspace requirements can only be estimated. The estimate is 
based primarily on table size.

Note that these defaults correspond to the “Cochran” condition.
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Function imsls_f_exact_enumeration allocates a default amount of workspace suitable for 
small problems. If the algorithm determines that this initial allocation of workspace is inadequate, the 
memory is freed, a larger amount of memory allocated (twice as much as the previous allocation), 
and the network algorithm is re-started. The algorithm allows for up to max_attempts attempts to 
complete the algorithm.

Because each attempt requires computer time, it is suggested that factor1 and factor2 be set 
to some large numbers (like 1,000 and 30,000) if the problem to be solved is large. It is suggested that 
factor2 be 30 times larger than factor1. Although imsls_f_exact_enumeration will 
eventually work its way up to a large enough memory allocation, it is quicker to allocate enough 
memory initially.

The known (well-defined) workspace requirements are as follows: Define f∙∙ = ∑∑fij equal to the sum 

of all cell frequencies in the observed table, nt = f∙∙ + 1, mx = max (n_rows, n_columns), 

mn = min (n_rows, n_columns), t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1) ), 
and t2 = max (400 + mx, + 1, n_rows + n_columns + 1).

The following amount of integer workspace is allocated: 3mx + 2mn + t1.

The following amount of float (or double, if using imsls_d_exact_network) workspace is allo-
cated: nt + t2.

The remainder of the workspace that is required must be estimated and allocated based on 
factor1 and factor2. The amount of integer workspace allocated is 6n (factor1 + factor2). 
The amount of real workspace allocated is n (6factor1 + 2factor2). Variable n is the index for 
the attempt, 1 < n ≤ max_attempts.

Defaults: factor1 = 100, factor2 = 3000, max_attempts = 10

Description
Function imsls_f_exact_network computes Fisher exact probabilities or a hybrid algorithm approxima-
tion to Fisher exact probabilities for an r × c contingency table with fixed row and column marginals (a marginal is 
the number of counts in a row or column), where r = n_rows and c = n_columns. Let fij denote the count in 

row i and column j of a table, and let fi∙ and f∙j denote the row and column marginals. Under the hypothesis of 

independence, the (conditional) probability of the fixed marginals of the observed table is given by

where f∙∙ is the total number of counts in the table. Pf corresponds to output argument prt.

P f =
∏
i=1

r
f i•!∏

j=1

c
f • j!

f ••!∏
i=1

r
∏
j=1

c
f i j!
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A “more extreme” table X is defined in the probabilistic sense as more extreme than the observed table if the con-
ditional probability computed for table X (for the same marginal sums) is less than the conditional probability 
computed for the observed table. The user should note that this definition can be considered “two-sided” in the 
cell counts.

See Example 1 for a comparison of execution times for the various algorithms. Note that the Fisher exact proba-
bility and the usual asymptotic chi-squared probability will usually be different. (The network approximation is 
often 10 times faster than the Fisher exact test, and even faster when compared to the total enumeration 
method.)

Examples

Example 1

The following example demonstrates and compares the various methods of computing the chi-squared p-value 
with respect to accuracy and execution time. As seen in the output of this example, the Fisher exact probability 
and the usual asymptotic chi-squared probability (generated using function imsls_f_contingency_table) 
can be different. Also, note that the network algorithm with approximation can be up to 10 times faster than the 
network algorithm without approximation, and up to 100 times faster than the total enumeration method.

#include <stdio.h>
#include <imsls.h>
int main()
{
   int n_rows = 3;
   int n_columns = 5;
   float p;
   float table[15] = {20, 20, 0, 0, 0,
                      10, 10, 2, 2, 1,
                      20, 20, 0, 0, 0};
   double a, b;
   printf("Asymptotic Chi-Squared p-value\n");
   p = imsls_f_contingency_table(n_rows, n_columns, table, 0);
   printf("p-value = %9.4f\n", p);
   printf("\nNetwork Algorithm with Approximation\n");
   a = imsls_ctime();
   p = imsls_f_exact_network(n_rows, n_columns, table, 0);
   b = imsls_ctime();
   printf("p-value = %9.4f\n", p);
   printf("Execution time = %10.4f\n", b-a);
   printf("\nNetwork Algoritm without Approximation\n");
   a = imsls_ctime();
   p = imsls_f_exact_network(n_rows, n_columns, table, 
       IMSLS_NO_APPROXIMATION, 0);
   b = imsls_ctime();
   printf("p-value = %9.4f\n", p);
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   printf("Execution time = %10.4f\n", b-a);
   printf("\nTotal Enumeration Method\n");
   a = imsls_ctime();
   p = imsls_f_exact_enumeration(n_rows, n_columns, table, 0);
   b = imsls_ctime();
   printf("p-value = %9.4f\n", p);
   printf("Execution time = %10.4f\n", b-a);
}

Output

Asymptotic Chi-Squared p-value
p-value =   0.0323
Network Algorithm with Approximation
p-value =   0.0601
Execution time =    0.0400
Network Algoritm without Approximation
p-value =   0.0598
Execution time =    0.4300
Total Enumeration Method
p-value =   0.0597
Execution time =    3.1400

Example 2

This document example demonstrates the optional keyword IMSLS_WORKSPACE and how different workspace 
settings affect execution time. Setting the workspace available too low results in poor performance since the 
algorithm will fail, re-allocate a larger amount of workspace (a factor of 10 larger) and re-start the calculations. 
(See Test #3, for which n_attempts is returned with a value of 2.) Setting the workspace available very large will 
provide no improvement in performance.

#include <stdio.h>
#include <imsls.h>
int main()
{
   int n_rows = 3;
   int n_columns = 5;
   float p;
   float table[15] = {20, 20, 0, 0, 0,
                      10, 10, 2, 2, 1,
                      20, 20, 0, 0, 0};
   double a, b;
   int i, n_attempts, simulation_size = 10;
   printf("Test #1, factor1 = 1000, factor2 = 30000\n");
   a = imsls_ctime();
   for (i=0; i<simulation_size; i++) {
       p = imsls_f_exact_network(n_rows, n_columns, table, 
           IMSLS_NO_APPROXIMATION,
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           IMSLS_WORKSPACE, 1000, 30000, 10, &n_attempts, 0);
   }
   b = imsls_ctime();
   printf("n_attempts = %2d\n", n_attempts);  
   printf("Execution time = %10.4f\n", b-a);
   printf("\nTest #2, factor1 = 100, factor2 = 3000\n");
   a = imsls_ctime();
   for (i=0; i<simulation_size; i++) {
       p = imsls_f_exact_network(n_rows, n_columns, table, 
           IMSLS_NO_APPROXIMATION,
           IMSLS_WORKSPACE, 100, 3000, 10, &n_attempts, 0);
   }
   b = imsls_ctime();
   printf("n_attempts = %2d\n", n_attempts);  
   printf("Execution time = %10.4f\n", b-a);
   printf("\nTest #3, factor1 = 10, factor2 = 300\n");
   a = imsls_ctime();
   for (i=0; i<simulation_size; i++) {
       p = imsls_f_exact_network(n_rows, n_columns, table, 
           IMSLS_NO_APPROXIMATION,
           IMSLS_WORKSPACE, 10, 300, 10, &n_attempts, 0);
   }
   b = imsls_ctime();
   printf("n_attempts = %2d\n", n_attempts);  
   printf("Execution time = %10.4f\n", b-a);
}

Output

Test #1, factor1 = 1000, factor2 = 30000
n_attempts = 1
Execution time =    4.3700
Test #2, factor1 = 100, factor2 = 3000
n_attempts = 1
Execution time =    4.2900
Test #3, factor1 = 10, factor2 = 300
n_attempts = 2
Execution time =    8.3700

Warning Errors
IMSLS_HASH_TABLE_ERROR_2 The value “ldkey” = # is too small. “ldkey” is calcu-

lated as “factor1”*pow(10,”n_attempt”−1) ending 
this execution attempt.

IMSLS_HASH_TABLE_ERROR_3 The value “ldstp” = # is too small. “ldstp” is calcu-
lated as “factor2”*pow(10,”n_attempt”−1) ending 
this execution attempt.
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Fatal Errors
IMSLS_HASH_TABLE_ERROR_1 The hash table key cannot be computed because 

the largest key is larger than the largest represent-
able integer. The algorithm cannot proceed.
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categorical_glm
Analyzes categorical data using logistic, Probit, Poisson, and other generalized linear models.

Synopsis
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class, int n_continuous, 

int model, float x[], ..., 0)

The type double function is imsls_d_categorical_glm.

Required Arguments
int n_observations (Input)

Number of observations.

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data. The six models are as follows:

model Relationship*
PDF of Response 
Variable

0 Exponential Poisson

1 Logistic Negative Binomial

2 Logistic Logarithmic

3 Logistic Binomial

4 Probit Binomial

5 Log-log Binomial
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* Relationship between the parameter, θ or λ, and a linear model of the explanatory variables, X β.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m containing data for the 
independent variables, dependent variable, and optional parameters.

The columns must be ordered such that the first n_class columns contain data for the class vari-
ables, the next n_continuous columns contain data for the continuous variables, and the next 
column contains the response variable. The final (and optional) m − 1 columns contain the optional 
parameters.

Return Value
An integer value indicating the number of estimated coefficients (n_coefficients) in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class, int n_continuous, 

int model, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_DIST_PARAMETER, int ipar,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy,
IMSLS_EPS, float eps,
IMSLS_TOLERANCE, float tolerance,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects,
IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values, float **class_values,

Note that the lower bound of the response variable is 1 for model = 3 and is 0 for all other models. 
See the Description section for more information about these models.
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IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of input array x.

Default: x_col_dim = n_class + n_continuous +1
IMSLS_X_COL_FREQUENCIES, int ifrq (Input)

Column number ifrg of x containing the frequency of response for each observation.

IMSLS_X_COL_FIXED_PARAMETER, int ifix (Input)
Column number ifix of x containing a fixed parameter for each observation that is added to the 
linear response prior to computing the model parameter. The ‘fixed’ parameter allows one to test 
hypothesis about the parameters via the log-likelihoods.
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IMSLS_X_COL_DIST_PARAMETER, int ipar (Input)
Column number ipar of x containing the value of the known distribution parameter for each 
observation, where x[i][ipar] is the known distribution parameter associated with the i-th observa-
tion. The meaning of the distributional parameter depends upon model as follows:

Default: When model ≠ 2, each observation is assumed to have a parameter value of 1. When 
model = 2, this parameter is not referenced.

IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy (Input)
This keyword allows specification of the variables to be used in the analysis and overrides the default 
ordering of variables described for input argument x. Columns are numbered 0 to x_col_dim-1. 
To avoid errors, always specify the keyword IMSLS_X_COL_DIM when using this keyword.

Argument iclass is an index vector of length n_class containing the column numbers of x that 
correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous containing the column 
numbers of x that correspond to continuous variables.

Argument iy indicates the column of x that contains the dependent variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed when the maximum relative 
change in any coefficient estimate is less than eps from one iteration to the next, or when the rela-
tive change in the log-likelihood criterion from one iteration to the next is less than eps / 100.0.

Default: eps = , where ? is the machine precision.

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. When linear dependence is detected, terminal 
error IMSLS_RANK_DEFICIENT_FATAL is issued and no results are computed.

model Parameter Meaning of x [i] [ipar]

0 E ln (E) is a fixed intercept to be 
included in the linear predictor 
(i.e., the offset).

1 S Number of successes required for 
the negative binomial distribution.

2 - Not used for this model.

3-5 N Number of trials required for the 
binomial distribution.

10 ε
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Computations for a rank deficient model can be forced to continue by specifying a negative toler-
ance. If tolerance is negative, the absolute value of tolerance will be used to determine linear 
dependence, but computations will proceed with warning IMSLS_RANK_DEFICIENT_WARN. In 
this case the results should be carefully inspected and used with caution.

Default: tolerance = 10ɛ, where ɛ is the machine precision.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the Hessian, stored in 
cov, and the Newton step, stored in last_step, at the initial estimates. (The initial estimates must 
be input. Use keyword IMSLS_INITIAL_EST_INPUT).

Default: max_iterations = 30

IMSLS_INTERCEPT (input)

or

IMSLS_NO_INTERCEPT (Input)
By default, or if IMSLS_INTERCEPT is specified, the intercept is automatically included in the 
model. If IMSLS_NO_INTERCEPT is specified, there is no intercept in the model (unless otherwise 
provided for by the user).

IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in the model. Variable 
n_var_effects is an array of length n_effects containing the number of variables associated 
with each effect in the model. Argument indices_effects is an index array of length 
n_var_effects [0] + n_var_effects [1] + …+ n_var_effects [n_effects − 1]. 
The first n_var_effects [0] elements give the column numbers of x for each variable in the first 
effect. The next n_var_effects [1] elements give the column numbers for each variable in the 
second effect. The last n_var_effects [n_effects − 1] elements give the column numbers for 
each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL (Input)

or

IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[] (Input)
By default, or if IMSLS_INIT_EST_INTERNAL is specified, then unweighted linear regression is 
used to obtain initial estimates. If IMSLS_INITIAL_EST_INPUT is specified, then the 
n_coef_input elements of estimates contain initial estimates of the parameters. This requires 
that the user knows the number of coefficients in the model prior to the call to 
imsls_f_categorical_glm, which can be obtained by calling 
imsls_f_regressors_for_glm. The returned value has to be increased by one if optional 
argument IMSLS_INTERCEPT is used in the categorical_glm call.
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IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by each classification variable.

Default: max_class = n_observations × n_class
IMSLS_CLASS_INFO, int **n_class_values, float **class_values (Output)

Argument n_class_values is the address of a pointer to the internally allocated array of length 
n_class containing the number of values taken by each classification variable; the i-th classification 
variable has n_class_values [i] distinct values. Argument class_values is the address of a 
pointer to the internally allocated array of length

containing the distinct values of the classification variables in ascending order. The first 
n_class_values [0] elements of class_values contain the values for the first classification 
variables, the next n_class_values [1] elements contain the values for the second classification 
variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[] (Output)
Storage for arrays n_class_values and class_values is provided by the user. See 
IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size n_coefficients × 4 containing the 
parameter estimates and associated statistics, where n_coefficients can be computed by call-
ing imsls_regressors_for_glm.

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See IMSLS_COEF_STAT.

Column Parameter

0 Coefficient Estimate.

1 Estimated standard deviation of the estimated 
coefficient.

2 Asymptotic normal score for testing that the coefficient 
is zero.

3 The p-value associated with the normal score in column 
2.

∑
i=0

n_class−1
n_class_values i
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IMSLS_CRITERION, float *criterion (Output)
Optimization criterion. The maximized log-likelihood, i.e., the value of the log-likelihood at the final 
parameter estimates.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size 
n_coefficients × n_coefficients containing the estimated asymptotic covariance matrix 
of the coefficients. For max_iterations = 0, this is the Hessian computed at the initial parameter 
estimates, where n_coefficients can be computed by calling 
imsls_regressors_for_glm.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV above.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the means of the design variables. 
The array is of length n_coefficients if IMSLS_NO_INTERCEPT is specified, and of length 
n_coefficients − 1 otherwise, where n_coefficients can be computed by calling 
imsls_regressors_for_glm.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_analysis (Output)
Address of a pointer to the internally allocated array of size n_observations × 5 containing the 
case analysis.

Case statistics are computed for all observations except where missing values prevent their 
computation.

IMSLS_CASE_ANALYSIS_USER, float case_analysis[] (Output)
Storage for array case_analysis is provided by the user. See IMSLS_CASE_ANALYSIS.

Column Statistic

0 Predicted mean for the observation if model = 0. Other-
wise, contains the probability of success on a single trial.

1 The residual.

2 The estimated standard error of the residual.

3 The estimated influence of the observation.

4 The standardized residual.
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IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length n_coefficients containing the 
last parameter updates (excluding step halvings). For max_iterations = 0, last_step contains 
the inverse of the Hessian times the gradient vector, all computed at the initial parameter estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length n_observations indicating which 
observations are included in the extended likelihood.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See IMSLS_OBS_STATUS.

IMSLS_ITERATIONS, int *n, float **iterations (Output)
Address of a pointer to the internally allocated array of size (max_iterations + 1) × 5 contain-
ing in its first n rows information about the start and each iteration of the analysis.

IMSLS_ITERATIONS_USER, int *n, float iterations[] (Output)
Storage for array iterations is provided by the user. See IMSLS_ITERATIONS.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the following arrays or col-
umns of x: ipar, iy, ifrq, ifix, iclass, icontinuous, or indices_effects.

obs_status [i] Status of observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood 
because it contains at least one missing value in 
x.

2 Observation i is not in the likelihood. Its esti-
mated parameter is infinite.

Column Statistic

0 Method of iteration. Equal to 0 if a Q-N step 
was taken. Equal to 1 if a N-R step was taken.

1 Iteration number.

2 Step Size.

3 Maximum scaled coefficient update.

4 Log-likelihood.
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Remarks
1. Dummy variables are generated for the classification variables as follows: An ascending list of all dis-

tinct values of each classification variable is obtained and stored in class_values. Dummy 
variables are then generated for each but the last of these distinct values. Each dummy variable is 
zero unless the classification variable equals the list value corresponding to the dummy variable, in 
which case the dummy variable is one. See keyword IMSLS_LEAVE_OUT_LAST for optional argu-
ment IMSLS_DUMMY in function imsls_f_regressors_for_glm (Chapter 2,Regression).

2. The “product” of a classification variable with a covariate yields dummy variables equal to the product 
of the covariate with each of the dummy variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the usual manner. Each 
dummy variable associated with the first classification variable multiplies each dummy variable asso-
ciated with the second classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest.

Description
Function imsls_f_categorical_glm uses iteratively re-weighted least squares to compute (extended) 
maximum likelihood estimates in some generalized linear models involving categorized data. One of several mod-
els, including the probit, logistic, Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation; or, through the use of optional 
argument IMSLS_X_COL_FREQUENCIES, each row can represent several observations. Also note that classifi-
cation variables and their products are easily incorporated into the models via the usual regression-type 
specifications.

The models available in imsls_f_categorical_glm are:

model PDF of the Response Variable Parameterization

0

1

2

3

f y = λyexp −λ / y! λ = N × exp ω + η

f y =
S + y − 1
y − 1 θS 1 − θ y θ =

exp ω + η

1 + exp ω + η

f y = − 1 − θ y
/ y · ln θ θ =

exp ω + η

1 + exp ω + η

f y = N
y θy 1 − θ N−y θ =

exp ω + η

1 + exp ω + η
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Here, Φ denotes the cumulative normal distribution, N and S are known distribution parameters specified for 
each observation via the optional argument IMSLS_X_COL_DIST_PARAMETER, and ω is an optional fixed 
parameter of the linear response, γi, specified for each observation. (If IMSLS_X_COL_FIXED_PARAMETER is 

not specified, then ω is taken to be 0.) Since the log-log model (model = 5) probabilities are not symmetric with 
respect to 0.5, quantitatively, as well as qualitatively, different models result when the definitions of “success” and 
“failure” are interchanged in this distribution. In this model and all other models involving θ, θ is taken to be the 
probability of a “success.”

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are computed. The frequency or the 
observation in all but binomial distribution models is taken from vector frequencies. In binomial dis-
tribution models, the frequency is taken as the product of n = parameter [i] and 
frequencies [i]. Means are computed as

3. By default, and when IMSLS_INITIAL_EST_INTERNAL is specified, initial estimates of the coef-
ficients are obtained (based upon the observation intervals) as multiple regression estimates relating 
transformed observation probabilities to the observation design vector. For example, in the binomial 
distribution models, θ may be estimated as

and, when model = 3, the linear relationship is given by

4

5

model PDF of the Response Variable Parameterization

f y = N
y θy 1 − θ N−y

θ = ϕ ω + η

f y = N
y θy 1 − θ N−y θ = 1 − exp −exp ω + η

x─ =
∑ f i xi
∑ f i

θ^ = y i /parameter i
547



 Categorical and Discrete Data Analysis         categorical_glm
while if model = 4, Φ−1(θ) = Xβ. When computing initial estimates, standard modifications are made to pre-
vent illegal operations such as division by zero. Regression estimates are obtained at this point, as well as 
later, by use of function imsls_f_regression (Chapter 2,Regression). Also, at this step of the compu-
tations, the regression function is used to detect linear dependence in the model, by the method described 
for imsls_f_regression.

4. Newton-Raphson iteration for the maximum likelihood estimates is implemented via iteratively re-
weighted least squares. Let

denote the log of the probability of the i-th observation for coefficients β. In the least-squares model, the 
weight of the i-th observation is taken as the absolute value of the second derivative of

with respect to

(times the frequency of the observation), and the dependent variable is taken as the first derivative Ψ with 
respect to γi, divided by the square root of the weight times the frequency. The Newton step is given by

where all derivatives are evaluated at the current estimate of γ and βn+1 = β − Δβ. This step is computed as 
the estimated regression coefficients in the least-squares model. Step halving is used when necessary to 
ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient update from one iter-
ation to the next is less than eps or when the relative change in the log-likelihood from one iteration 
to the next is less than eps / 100. Convergence is also assumed after max_iterations or when 
step halving leads to a step size of less than 0.0001 with no increase in the log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon (1981). Let li (γi) denote the 

log-likelihood of the i-th observation evaluated at γi. Then, the standardized residual is computed as

ln θ^ / 1 − θ^ ≈ X β

Ψ xi
T β

Ψ xi
T β

γi = xi
T β

Δβ = (∑ Ψ"(γi)|xixi
T)−1∑Ψ '

(γi)xi
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where

is the value of γi when evaluated at the optimal

The denominator of this expression is used as the “standard error of the residual” while the numerator is 
“raw” residual. Following Cook and Weisberg (1982), the influence of the i-th observation is assumed to be

This quantity is a one-step approximation to the change in the estimates when the i-th observation is 
deleted. Here, the partial derivatives are with respect to β.

Programming Notes
1. Indicator (dummy) variables are created for the classification variables using function 

imsls_f_regressors_for_glm (see Chapter 2,Regression) using keyword 
IMSLS_LEAVE_OUT_LAST as the argument to the IMSLS_DUMMY optional argument.

2. To enhance precision, “centering” of covariates is performed if the model has an intercept and 
n_observations − n_rows_missing > 1. In doing so, the sample means of the design vari-
ables are subtracted from each observation prior to its inclusion in the model. On convergence, the 
intercept, its variance, and its covariance with the remaining estimates are transformed to the uncen-
tered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the first method, the ifrq 
column of x contains the frequency of the observation while y is 0 or 1 depending upon whether the 
observation is a success or failure. In this case, N (distribution parameter) is always 1. The model is 
treated as repeated Bernoulli trials, and interval observations are not possible. A second method for 
specifying binomial models is to use y to represent the number of successes in N trials. In this case, 
frequencies will usually be 1.

ri =
l ′i γ̂i

l ′i γ̂i

γ̂i

β^

l′i γ̂i
T
l ′ ′ γ̂

−1
l′i γ̂i
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Examples

Example 1

The first example is from Prentice (1976) and involves the mortality of beetles after five hours exposure to eight 
different concentrations of carbon disulphide. The table below lists the number of beetles exposed (N) to each 
concentration level of carbon disulphide (x, given as log dosage) and the number of deaths which result (y). The 
data is given as follows:

The number of deaths at each concentration level are fitted as a binomial response using logit (model = 3), pro-
bit (model = 4), and log-log (model = 5) models. Note that the log-log model yields a smaller absolute log 
likelihood (14.81) than the logit model (18.78) or the probit model (18.23). This is to be expected since the 
response curve of the log-log model has an asymmetric appearance, but both the logit and probit models are 
symmetric about θ = 0.5.

#include <imsls.h>
#include <stdio.h>
int main ()
{

 static float x[8][3] = {  
 1.69,  6, 59,
 1.724, 13, 60,  
 1.755, 18, 62, 
 1.784, 28, 56, 
 1.811, 52, 63,  
 1.836, 53, 59, 
 1.861, 61, 62,
 1.883, 60, 60};

 float *coef_statistics, criterion;
 int  n_obs=8, n_class=0, n_continuous=1;
 int n_coef, model=3, ipar=2;
 char *fmt = "%12.4f";

Log Dosage
Number of 

Beetles Exposed
Number of 

Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60
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 static char *clabels[] = {"", "coefficients", "s.e", "z", "p"};
 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,

 model, &x[0][0], 
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics, 
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 3", n_coef, 
 4, coef_statistics, IMSLS_WRITE_FORMAT, fmt, 
 IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, clabels,0);

 printf ("\nLog likelihood  %f \n", criterion);
 model=4;
 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,

 model, &x[0][0], IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics, 
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 4", n_coef, 
 4, coef_statistics, IMSLS_WRITE_FORMAT, fmt, 
 IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);

 printf ("\nLog likelihood  %f \n", criterion);
 model=5;
 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,

 model, &x[0][0], 
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics, 
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 5", n_coef, 
 4, coef_statistics, IMSLS_WRITE_FORMAT, fmt, 
 IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,clabels,0);

 printf ("\nLog likelihood  %f \n", criterion);
}

Output

         Coefficient statistics for model 3
coefficients          s.e            z            p
    -60.7568       5.1876     -11.7118       0.0000
     34.2985       2.9164      11.7607       0.0000
Log likelihood   -18.778181
         Coefficient statistics for model 4
coefficients          s.e            z            p
    -34.9441       2.6412     -13.2305       0.0000
     19.7367       1.4852      13.2888       0.0000
Log likelihood   -18.232355
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         Coefficient statistics for model 5
coefficients          s.e            z            p
    -39.6133       3.2489     -12.1930       0.0000
     22.0685       1.8047      12.2284       0.0000
Log likelihood   -14.807850

Example 2

Consider the use of a loglinear model to analyze survival-time data. Laird and Oliver (1981) investigate patient 
survival post heart valve replacement surgery. Surveillance after surgery of the 109 patients included in the study 
ranged from 3 to 97 months. All patients were classified by heart valve type (aortic or mitral) and by age (less than 
55 years or at least 55 years). The data could be considered as a three-way contingency table where patients are 
classified by valve type, age, and survival (yes or no). However, it would be inappropriate to analyze this data using 
the standard methodology associated with contingency tables, since this methodology ignores survival time.

Consider a variable, say exposure time (Eij), that is defined as the sum of the length of times patients of each 

cross-classification are at risk. The length of time for a patient that dies is the number of months from surgery 
until death and for a survivor, the length of time is the number of months from surgery until the study ends or 
the patient withdraws from the study. Now we can model the effect of A = age and V = valve type on the expected 
number of deaths conditional on exposure time. Thus, for the data (shown in the table below), assume the num-
ber of deaths are independent Poisson random variables with means mij and fit the following model,

where u is the overall mean,

is the effect of age, and

is the effect of the valve type.

Age

Heart Valve Type

Aortic (0) Mitral (1)

< 55 years (Age = 0) Deaths 4 1

Exposure 1259 2082

≥ 55 years (Age = 1) Deaths 7 9

Exposure 1417 1647

log
mi j
Ei j

= u + λi
A + λ j

V

λi
A

λ j
V
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From the coefficient statistics table of the output, note that the risk is estimated to be e1.22 = 3.39 times higher 
for older patients in the study. This increase in risk is significant (p = 0.02). However, the decrease in risk for the 

mitral valve patients is estimated to be e−0.33 = 0.72 times that of the aortic valve patients and this risk is not sig-
nificant (p = 0.45).

#include <imsls.h>
int main ()
{
   int  nobs = 4;
   int  n_class = 2;
   int  n_cont = 0;
   int  model = 0;
   float x[16] = {
       4, 1259, 0, 0,
       1, 2082, 0, 1,
       7, 1417, 1, 0,
       9, 1647, 1, 1
   };
   int iclass[2] = {2, 3};
   int icont[1] = {-1};
   int  n_coef;
   float *coef;
   char *clabels[5] = {"", "coefficient", "std error", "z-statistic", "p-value"};
   char *fmt = "%10.6W";
   n_coef = imsls_f_categorical_glm(nobs, n_class, n_cont, model, x,
      IMSLS_COEF_STAT, &coef,
      IMSLS_X_COL_VARIABLES, iclass, icont, 0,
      IMSLS_X_COL_DIST_PARAMETER, 1,
      0);
       imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef,
       IMSLS_COL_LABELS, clabels, IMSLS_ROW_NUMBER_ZERO,
       IMSLS_WRITE_FORMAT, fmt, 0);
}

Output

             Coefficient Statistics
  coefficient  std error z-statistic    p-value
0     -5.4210     0.3456    -15.6837     0.0000
1     -1.2209     0.5138     -2.3763     0.0177
2      0.3299     0.4382      0.7528     0.4517
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Warning Errors

Fatal Errors

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is assumed.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is assumed.

IMSLS_RANK_DEFICIENT_WARN The model is rank deficient (rank =#). Computa-
tions will proceed per setting of IMSLS_TOLERANCE. 
Check results for accuracy.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified and 
“n_coef_input” = #. The model specified requires 
# coefficients.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the classification 
variables exceeds “max_class” = #.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct 
values for each classification variable must be 
greater than one.

IMSLS_NMAX_EXCEEDED The number of observations to be deleted has 
exceeded “lp_max” = #. Rerun with a different 
model or increase the workspace.

IMSLS_RANK_DEFICIENT_TERM The model is rank deficient (rank =#). No solution 
will be computed. Refer to the documentation of 
optional argument IMSLS_TOLERANCE for other 
options.
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logistic_regression

more...

Fit a binomial or multinomial logistic regression model using iteratively re-weighted least squares.

Synopsis
#include <imsls.h>
float *imsls_f_logistic_regression (int n_observations, int n_independent, 

int n_classes, float x[], float y[], ..., 0)

The type double function is imsls_d_logistic_regression.

Required Arguments
int n_observations (Input)

The number of observations.

int n_independent (Input)
The number of independent variables.

int n_classes (Input)
The number of discrete outcomes, or classes.

float x[] (Input)
An array of length n_observations × n_independent containing the values of the indepen-
dent variables corresponding to the responses in y.

float y[] (Input)
An array of length n_observations × n_classes containing the binomial (n_classes = 2) or 
multinomial (n_classes>2) counts per class. In an alternate format, y is an array of length 
n_observations × (n_classes - 1) containing the counts for all but one class. The missing 
class is treated as the reference class. The optional argument GROUP_COUNTS specifies this format 
for y. In another alternative format, y is an array of length n_observations containing the class 
id’s. See optional argument IMSLS_GROUPS.
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Return Value
Pointer to an array of length n_coefficients × n_classes containing the estimated coefficients. The func-
tion fits a full model, where n_coefficients = 1 + n_independent. The optional arguments 
IMSLS_NO_INTERCEPT, IMSLS_X_INDICES, and IMSLS_X_INTERACTIONS may be used to specify dif-
ferent models. Note that the last column (column n_classes) represents the reference class and is set to all 
zeros.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_logistic_regression (intn_observations, int n_independent, 

int n_classes, float x[], float y[],

IMSLS_GROUP_COUNTS, or
IMSLS_GROUPS,
IMSLS_COLUMN_WISE,
IMSLS_FREQUENCIES, intfrequencies[],
IMSLS_REFERENCE_CLASS, int ref_class,
IMSLS_NO_INTERCEPT,
IMSLS_X_INDICES, int n_xin, int xin[],
IMSLS_X_INTERACTIONS, int n_xinteract, int xinteract[],
IMSLS_TOLERANCE, float tolerance,
IMSLS_MAX_ITER, int max_iter,
IMSLS_INIT_INPUT, int init,
IMSLS_PREV_RESULTS, Imsls_f_model *prev_model,
IMSLS_NEXT_RESULTS, Imsls_f_model **next_model,
IMSLS_COEFFICIENTS, float coefficients[],
IMSLS_LRSTAT, float *lrstat,
0)

Optional Arguments
IMSLS_GROUP_COUNTS (Input)

or
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IMSLS_GROUPS (Input)
These optional arguments specify the format of the input array y. If IMSLS_GROUP_COUNTS is 
present, y is of length n_observations × (n_classes - 1), and contains counts for all but 
one of the classes for each observation. The missing class is treated as the reference class.

If IMSLS_GROUPS is present, the input array y is of length n_observations, and y[i] contains 
the group or class number to which the observation belongs. In this case, frequencies[i] is set 
to 1 for all observations.

Default: y is n_observations × (n_classes), and contains counts for all the classes.

IMSLS_COLUMN_WISE (Input)
If present, the input arrays are column-oriented. That is, contiguous elements in x are values of the 
same independent variable, or column, except at multiples of n_observations.

Default: Input arrays are row-oriented.

IMSLS_FREQUENCIES, intfrequencies[] (Input)
An array of length n_observations containing the number of replications or trials for each of the 
observations. This argument is required if IMSLS_GROUP_COUNTS is specified and any element of 
y > 1.

Default: frequencies[i] = 1.

IMSLS_REFERENCE_CLASS, intref_class (Input)
Number specifying which class or outcome category to use as the reference class. See the 
Description section for details.

Note that the last column of coefficients always represents the reference class. So when 
ref_class <  n_classes, columns ref_class and n_classes are swapped for the output 
coefficients, i.e. coefficients for class n_classes will be returned in column ref_class of 
coefficients. For example, if ref_class = 1 and n_classes = 3, the first column of 
coefficients contains the coefficients for class 3 ( n_classes), the second column contains 
the coefficients for class 2, and the third column contains all zeros for the reference class.

Default: ref_classes=n_classes
IMSLS_NO_INTERCEPT (Input)

If present, the model will not include an intercept term.

Default: The intercept term is included.

IMSLS_X_INDICES, (Input)
An array of length n_xin providing the column indices of x that correspond to the independent 
variables the user wishes to be included in the logistic regression model. For example, suppose there 
are five independent variables x0, x1, …, x4. To fit a model that includes only x2 and x3, set 
n_xin = 2, xin[0] = 2, and xin[1] = 3.
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Default: All n_independent variables are included.

IMSLS_X_INTERACTIONS, (Input)
An array of length n_xinteract × 2 providing pairs of column indices of x that define the interac-
tion terms in the model. Adjacent indices should be unique. For example, suppose there are two 
independent variables x0 and x1. To fit a model that includes their interaction term, x0x1, set 
n_xinteract = 1, xinteract[0] = 0, and xinteract[1] = 1.

Default: No interaction terms are included.

IMSLS_TOLERANCE, float tolerance (Input)
Convergence error criteria. Iteration completes when the normed difference between successive 
estimates is less than tolerance or max_iter iterations are reached.

Default: tolerance = 100.00 × imsls_f_machine(4)
IMSLS_MAX_ITER, intmax_iter (Input)

The maximum number of iterations.

Default: max_iter = 20

IMSLS_INIT_INPUT, intinit (Input)
init must be 0 or 1. If init = 1, initial values for the coefficient estimates are provided in the user 
array coefficients. If init = 0, a default is set within the function. The default setting is the 
zero vector.

Default: init = 0

IMSLS_PREV_RESULTS, Imsls_f_model *prev_model (Input)
Pointer to a structure of type Imsls_f_model containing information about a previous logistic regres-
sion fit. The model is combined with the fit to new data or to IMSLS_NEXT_RESULTS, if provided.

IMSLS_NEXT_RESULTS, Imsls_f_model **next_model (Input/Output)
Address of a pointer to a structure of type Imsls_f_model. If present and NULL, the structure is inter-
nally allocated and on output contains the model information. If present and not NULL, its contents 
are combined with the fit to new data or to IMSLS_PREV_RESULTS, if provided. The combined 
results are returned in next_model.

IMSLS_COEFFICIENTS, floatcoefficients[] (Input/Output)
Storage for the coefficient array of length n_coefficients × n_classes is provided by the 
user. When init = 1, coefficients should contain the desired initial values of the estimates.

IMSLS_LRSTAT, float*lrstat (Output)
The value of the likelihood ratio test statistic.
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Description
Function imsls_f_logistic_regression fits a logistic regression model for discrete dependent variables 
with two or more mutually exclusive outcomes or classes. For a binary response y, the objective is to model the 
conditional probability of success, π1 (x) = Pr[y = 1∣ x], where x = (x1, x2, …, xp)' is a realization of pindependent 

variables. Logistic regression models the conditional probability,  , using the cdf of the logistic distribution. 
In particular,

where

and

are unknown coefficients that are to be estimated.

Solving for the linear component η1 results in the log-odds or logittransformation of π1 (x):

Given a set of N observations (yi, xi), where yi follows a binomial (n, π) distribution with parameters n = 1 and 

π = π1 (xi), the likelihood and log-likelihood are, respectively,

The log-likelihood in terms of the parameters, {β01, β1}, is therefore

where

π1 x

π1(x) =
exp(η1)
1 + exp(η1)

≡ 1
1 + exp( − η1)

η1 = β01 + x
Tβ1

β01, β1 = (β11, β12, … β1p) ′

logit(π1(x)) = log
π1(x)
1 − π1(x)

= η1

L =∏
i=1

N

π(xi)
yi(1 − π(xi))

1−yi

l = ∑
i=1

N
yilog(

π(xi)
1 − π(xi)

) + log(1 − π(xi))

l(β0,β1) =∑
i=1

N

yi ηi1 − log(1 + exp(ηi1))
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With a binary outcome, only one probability needs to be modeled. The second probability can be obtained from 
the constraint, π1 (x) + π2(x) = 1. If each yi is the number of successes in ni independent trials, the log-likelihood 

becomes

or

See optional argument IMSLS_FREQUENCIES to set frequencies ni > 1.

To test the significance of the model, the log-likelihood of the fitted model is compared to that of an inter-
cept-only model. In particular, G = -2 (l(β01) - l(β01, β1)) is a likelihood-ratio test statistic and under the null 

hypothesis, H0 : β11 = β12 = … = β1p = 0, G is distributed as chi-squared with p-1 degrees of freedom. A significant 

result suggests that at least one parameter in the model is non-zero. See Hosmer and Lemeshow (2000) for fur-
ther discussion.

In the multinomial case, the response vector is yi = (yi1, yi2, …, yiK)', where yik = 1 when the i-th observation 

belongs to class kand yik = 0, otherwise. Furthermore, because the outcomes are mutually exclusive,

and π1 (x) + π2 (x) +--- + πK (x) = 1. The last class Kserves as the baseline or reference class in the sense that it is 

not modeled directly but found from

If there are multiple trials, ni > 1, then the constraint on the responses is

The log-likelihood in the multinomial case becomes

η1 = β01 + x
Tβ1

l =∑
i=1

N

yilog(
π(xi)
1 − π(xi)

) + nilog(1 − π(xi))

l(β0,β1) =∑
i=1

N

yiηi1 − nilog(1 + exp(ηi1))

∑
k=1

K

yik = 1

πK(x) = 1 −∑
k=1

K−1

πk(x)

∑
k=1

K

yik = ni
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or

The constraint

is handled by setting ηK = 0 for the K-th class, and then the log-likelihood is

Note that for the multinomial case, the log-odds (or logit) is

Note that each of the logits involve the odds ratio of being in class l versus class K, the reference class. Maximum 
likelihood estimates can be obtained by solving the score equation for each parameter:

To solve the score equations, the function employs a method known as iteratively re-weighted least squares or IRLS. 
In this case the IRLS is equivalent to the Newton-Raphson algorithm (Hastie, et. al., 2009, Thisted, 1988).

Consider the full vector of parameters

the Newton-Raphson iteration is

l(β0l ,βl)l=1
K =∑

i=1

N

∑
l=1

K

yilηil − log ∑
l=1

K

exp(ηil)

l(β0l ,βl)l=1
K =∑

i=1

N

∑
l=1

K

yil (β0l + xi
T βl) − log ∑

l=1

K

exp(β0l + xi
T βl)

∑
k=1

K

πik = 1

l(β0l ,βl)l=1
K−1 =∑

i=1

N

∑
l=1

K−1

yil (β0l + xi
T βl) − log ∑

l=1

K−1

exp(β0l + xi
T βl)

log
πil
πiK = β0l + xi

T βl, l = 1, … K − 1

∂ l β0l,βl

∂ l β jl
= ∑
i=1

N
xi jyil −

xi jexp ηil

1 + ∑
m=1

K−1
exp ηim

= ∑
i=1

N
xi j yil − πil xi

= 0

β = (β01,β11,...βp1,β02,β12,...βp2,...β0K−1,β1K−1,...βpK−1) ′
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where H denotes the Hessian matrix, i.e., the matrix of second partial derivatives defined by

and

and G denotes the gradient vector, the vector of first partial derivatives,

Both the gradient and the Hessian are evaluated at the most recent estimate of the parameters, βn. The iteration 
continues until convergence or until maximum iterations are reached. Following the theory of maximum likeli-

hood estimation (Kendall and Stuart, 1979), standard errors are obtained from Fisher’s information matrix (-H)-1 
evaluated at the final estimates.

When the IMSLS_NEXT_RESULTS option is specified, the function combines estimates of the same model 
from separate fits using the method presented in Xi, Lin, and Chen (2008). To illustrate, let β1and β2be the MLE’s 

from separate fits to two different sets of data, and let H1 and H2 be the associated Hessian matrices. Then the 

combined estimate,

βn+1 = βn −H−1(βn)G(βn)

∂2l β0l, βl
∂ βkl∂ β jl

= − ∑
i=1

N xi j xikexp ηil ∑
m=1

K
exp ηim − xi j xikexp ηil exp ηil

∑
m=1

K
exp ηim

2

= − ∑
i=1

N
xi j xik pil 1 − pil

∂2l β0l, βl
∂ βkv∂ β jl

= − 1
N ∑
i=1

N −xi j xikexp ηil exp ηiv

∑
l=1

K
exp ηil

2 = 1
N ∑
i=1

N xi j xikexp ηil exp ηiv

∑
l=1

K
exp ηil

2 =

= 1
N ∑
i=1

N
xi j xik pil piv

∂ l β0l, βl
∂ l β jl
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approximates the MLE of the combined data set. The model structure, Imsls_f_model**next_model contains 
the combined estimates as well as other elements. See Table 1: Imsls_f_model Data Structure below.

Remarks
Iteration stops when the estimates converge within tolerance, when maximum iterations are reached, or when 
the gradient becomes within tolerance of 0, whichever event occurs first. When the gradient converges before 
the coefficient estimate converges, a condition in the data known as complete or quasi-complete separation may 
be present. Separation in the data means that one or more independent variable perfectly predicts the response. 
When detected, the function stops the iteration, issues a warning, and returns the current values of the model 
estimates. Some of the coefficient estimates and standard errors may not be reliable. Furthermore, overflow 
issues may occur before the gradient converges. In such cases the program issues a fatal error.

Table 34 – The Imsls_f_model Data Structure

Parameter Data Type Description

n_obs int Total number of observations. If the model structure has 
been updated three times, first with 100 observations, next 
with 50, and third with 50, then n_obs = 200.

n_updates int Total number of times the model structure has been 
updated. In the above scenario, n_updates = 3.

n_coefs int Number of coefficients in the model. This parameter must 
be the same for each model update.

coefs float[] An array of length n_coefs×n_classes containing the 
coefficients.

meany float[] An array of length n_classes containing the overall means 
for each class variable.

stderrs float[] An array of length n_coefs×(n_classes - 1) containing 
the estimated standard errors for the estimated coefficients.

grad float[] An array of length n_coefs×(n_classes - 1) containing 
the estimated gradient at the coefficient estimates.

hess float[] An array of length 
n_coefs*(n_classes - 1)×n_coefs×(n_classes - 1) 
containing the estimated Hessian matrix at the coefficient 
estimates.

β = (H1 +H2)
−1(β1

TH1 + β2
TH2)
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Examples

Example 1

The first example is from Prentice (1976) and involves the mortality of beetles after five hours exposure to eight 
different concentrations of carbon disulphide. The table below lists the number of beetles exposed (N) to each 
concentration level of carbon disulphide (x, given as log dosage) and the number of deaths which result (y):

The number of deaths at each concentration level is the binomial response (n_classes = 2) and the log-dos-
age is the single independent variable. Note that this example illustrates the GROUP_COUNTS format for y and 
the optional argument IMSLS_FREQUENCIES.

#include <imsls.h>
int main(){
   float y1[8]={6,13,18,28,52,53,61,60};
   float x1[8]={1.69,1.724,1.755,1.784,1.811,1.836,1.861,1.883};
   float freqs[8]={59,60,62,56,63,59,62,60};
   float *coefs;
   int n_classes=2,n_observations=8,n_independent=1,n_coefs=2;
   coefs=imsls_f_logistic_regression(n_observations,
       n_independent,n_classes,x1,y1,
       IMSLS_GROUP_COUNTS,
       IMSLS_FREQUENCIES,freqs,
       0);
   imsls_f_write_matrix("Coefficient Estimates",
       (n_coefs)*(n_classes-1),1,coefs,0);
}

Output

Coefficient Estimates

Log Dosage
Number of Bee-
tles Exposed Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60
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  1      -60.76
  2       34.30

Example 2

In this example the response is a multinomial random variable with 4 outcome classes. The 3 independent vari-
ables represent 2 categorical variables and 1 continuous variable. A subset of 2 independent variables along with 
the intercept defines the logistic regression model. A test of significance is performed.

#include <imsls.h>
#include <stdio.h>
int main(){
   float x[50*3]={
       3, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 2, 
       2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 3, 1, 2, 
       1, 1, 1, 3, 1, 3, 2, 3, 3, 1, 
       25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084, 
       52.6796, 44.28342, 40.63523, 51.76094, 26.30368, 20.70230, 
       38.74273, 19.47333, 26.42211, 37.05986, 51.67043, 42.40156, 
       33.90027, 35.43282, 44.30369, 46.72387, 46.99262, 36.05923, 
       36.83197, 61.66257, 25.67714, 39.08567, 48.84341, 39.34391, 
       24.73522, 50.55251, 31.34263, 27.15795, 31.72685, 25.00408, 
       26.35457, 38.12343, 49.9403, 42.45779, 38.80948, 43.22799, 
       41.87624, 48.0782, 43.23673, 39.41294, 23.93346, 
       42.8413, 30.40669, 37.77389, 
       1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 
       1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 
       2, 2, 1, 1, 2, 1, 1, 2, 1, 1
   };
   float y[50]={
       1, 2, 3, 4, 3, 3, 4, 4, 4, 4, 2, 1, 4, 1, 1, 1, 4, 4, 3, 1,
       2, 3, 3, 4, 2, 3, 4, 1, 2, 4, 3, 4, 4, 1, 3, 4, 4, 2, 3, 4, 
       2, 2, 4, 3, 1, 4, 3, 4, 2, 3
   };
   float *coefs,*preds,model_pval,lrstat;
   int xindices[2],dof,n_classes=4,n_observations=50,
       n_independent=3,n_coefs=3;
   Imsls_f_model *model=NULL;
   xindices[0]=0;
   xindices[1]=1;
   coefs=imsls_f_logistic_regression(n_observations,
       n_independent,n_classes,x,y,
       IMSLS_GROUPS,
       IMSLS_COLUMN_WISE,
       IMSLS_X_INDICES,2,xindices,
       IMSLS_LRSTAT,&lrstat,
       IMSLS_NEXT_RESULTS,&model,0);
   dof = n_coefs*(n_classes-1) - (n_classes-1);
   model_pval = 1.0 - imsls_f_chi_squared_cdf(lrstat,dof);
   imsls_f_write_matrix("Coefficients",(n_coefs)*(n_classes-1),
       1,coefs,0);
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   imsls_f_write_matrix("Std Errs",n_coefs*(n_classes-1),1,
       model->stderrs,0);
   printf("\nLog-likelihood: %5.2f\n",model->loglike);
   printf("LR test statistic: %5.2f\n%d deg. freedom, "
       "p-value: %5.4f\n",lrstat,dof,model_pval,0);
}

Output

Coefficients
1        2.292
2        0.408
3       -0.111
4       -1.162
5        0.245
6       -0.002
7       -0.067
8        0.178
9       -0.017
 
   Std Errs
1        2.259
2        0.548
3        0.051
4        2.122
5        0.500
6        0.044
7        1.862
8        0.442
9        0.039
Log-likelihood: -62.92
LR test statistic:  7.68
6 deg. freedom, p-value: 0.2623

Example 3

Example 3 uses the same data as in Example 2and an additional set of 50 observations using the same data gen-
erating process. The model structure includes all 3 independent variables and an intercept, and a single model fit 
is approximated from two separate model fits. Example 3 also includes a fit on the full data set for comparison 
purposes.

#include <imsls.h>
#include <stdlib.h>
int main(){
   float x1[50 * 3]={
       3, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 2, 2,
       1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1,
       1, 3, 1, 3, 2, 3, 3, 1,
       25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084,
       52.6796, 44.28342, 40.63523, 51.76094, 26.30368, 20.70230,
       38.74273, 19.47333, 26.42211, 37.05986, 51.67043, 42.40156,
       33.90027, 35.43282, 44.30369, 46.72387, 46.99262, 36.05923,
       36.83197, 61.66257, 25.67714, 39.08567, 48.84341, 39.34391,
       24.73522, 50.55251, 31.34263, 27.15795, 31.72685, 25.00408,
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       26.35457, 38.12343, 49.9403, 42.45779, 38.80948, 43.22799,
       41.87624, 48.0782, 43.23673, 39.41294, 23.93346,
       42.8413, 30.40669, 37.77389,
       1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1,
       1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2,
       1, 1, 2, 1, 1, 2, 1, 1
   };
   float x2[50 * 3]={
       1, 1, 3, 3, 2, 3, 3, 3, 2, 1, 1, 1, 1, 3, 3, 2, 2, 3, 3, 2, 3,
       2, 1, 3, 3, 2, 2, 3, 3, 2, 1, 2, 1, 2, 3, 3, 1, 1, 2, 2, 3, 1,
       1, 2, 2, 1, 1, 2, 3, 1,
       35.66064, 26.68771, 23.11251, 58.14765, 44.95038, 42.45634,
       34.97379, 53.54269, 32.57257, 46.91201, 30.93306, 51.63743,
       34.67712, 53.84584, 14.97474, 44.4485, 47.10448, 43.96467,
       55.55741, 36.63123, 32.35164, 55.75668, 36.83637, 46.7913,
       44.24153, 49.94011, 41.91916, 24.78584, 50.79019, 39.97886,
       34.42149, 41.93271, 28.59433, 38.47255, 32.11676, 37.19347,
       52.89337, 34.64874, 48.61935, 33.99104, 38.32489, 35.53967,
       29.59645, 21.14665, 51.11257, 34.20155, 44.40374, 49.67626,
       58.35377, 28.03744,
       1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2,
       1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2,
       1, 1, 2, 1, 1, 2, 1, 1
   };
   float y1[50]={
       1, 2, 3, 4, 3, 3, 4, 4, 4, 4, 2, 1, 4, 1, 1, 1, 4, 4, 3, 1, 2,
       3, 3, 4, 2, 3, 4, 1, 2, 4, 3, 4, 4, 1, 3, 4, 4, 2, 3, 4, 2, 2,
       4, 3, 1, 4, 3, 4, 2, 3
   };
   float y2[50]={
       1, 4, 1, 4, 1, 1, 3, 1, 2, 4, 3, 1, 3, 2, 4, 4, 4, 2, 3, 2, 1,
       4, 4, 4, 4, 3, 1, 1, 3, 1, 4, 2, 4, 2, 1, 2, 3, 1, 1, 4, 1, 2,
       4, 3, 4, 2, 4, 3, 2, 4
   };
   float x3[100 * 3], y3[100], *coefs;
   int i, j, n_classes=4, n_observations=50;
   int n_independent = 3, n_coefs= 4;
   Imsls_f_model *model1 = NULL, *model12 = NULL, *model3 = NULL;
   /* first call with x1, y1 */
   coefs=imsls_f_logistic_regression(n_observations, n_independent,
       n_classes, x1, y1,
       IMSLS_GROUPS,
       IMSLS_COLUMN_WISE,
       IMSLS_NEXT_RESULTS, &model1,
       0);
   imsls_f_write_matrix("First Model Coefficients:",
       n_coefs * (n_classes - 1), 1, model1->coefs,
       0);
   imsls_f_write_matrix("First Model Standard Errors:",
       n_coefs * (n_classes - 1), 1, model1->stderrs,
       0);
   imsls_free(coefs);
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   /* second call with x2,y2 */
   coefs=imsls_f_logistic_regression(n_observations, n_independent,
       n_classes, x2, y2,
       IMSLS_GROUPS,
       IMSLS_COLUMN_WISE,
       IMSLS_PREV_RESULTS, model1,
       IMSLS_NEXT_RESULTS, &model12,
       0);
   imsls_f_write_matrix("Combined Model Coefficients:",
       n_coefs * (n_classes - 1), 1, model12->coefs,
       0);
   imsls_f_write_matrix("Combined Model Standard Errors:",
       n_coefs * (n_classes - 1), 1, model12->stderrs,
       0);
   /* combine data */
   for(j = 0; j < n_independent; j++){
       for(i=0; i < n_observations; i++){
           y3[i]=y1[i];
           y3[i + n_observations]=y2[i];
           x3[i + j * 2 * n_observations] = x1[i + j * n_observations];
           x3[i + j * 2 * n_observations + n_observations] =
               x2[i + j * n_observations];
       }
   }
   imsls_free(coefs);
   coefs=imsls_f_logistic_regression(2 * n_observations, n_independent,
       n_classes, x3, y3,
       IMSLS_GROUPS,
       IMSLS_COLUMN_WISE,
       IMSLS_NEXT_RESULTS, &model3,
       0);
   imsls_f_write_matrix("Full Data Model Coefficients:",
       n_coefs * (n_classes - 1), 1, model3->coefs,
       0);
   imsls_f_write_matrix("Full Data Model Standard Errors:",
       n_coefs * (n_classes - 1), 1, model3->stderrs,
       0);
}

Output

First Model Coefficients:
     1       1.691
     2       0.350
     3      -0.137
     4       1.057
     5      -1.254
     6       0.242
     7      -0.004
     8       0.115
     9       1.032
    10       0.278
    11       0.016
    12      -1.954
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First Model Standard Errors:
       1       2.389
       2       0.565
       3       0.061
       4       1.025
       5       2.197
       6       0.509
       7       0.047
       8       0.885
       9       2.007
      10       0.461
      11       0.043
      12       0.958
Combined Model Coefficients:
       1      -1.169
       2       0.649
       3      -0.038
       4       0.608
       5      -1.935
       6       0.435
       7       0.002
       8       0.215
       9      -0.193
      10       0.282
      11       0.002
      12      -0.630
Combined Model Standard Errors:
        1       1.489
        2       0.359
        3       0.029
        4       0.588
        5       1.523
        6       0.358
        7       0.030
        8       0.584
        9       1.461
       10       0.344
       11       0.030
       12       0.596
Full Data Model Coefficients:
       1      -1.009
       2       0.640
       3      -0.051
       4       0.764
       5      -2.008
       6       0.436
       7       0.003
       8       0.263
       9      -0.413
      10       0.299
      11       0.004
      12      -0.593
Full Data Model Standard Errors:
         1       1.466
         2       0.350
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         3       0.029
         4       0.579
         5       1.520
         6       0.357
         7       0.029
         8       0.581
         9       1.389
        10       0.336
        11       0.028
        12       0.577

Warning Errors

Fatal Errors

IMSLS_NO_CONV_SEP Convergence did not occur in # iterations. 
“tolerance” = #, the error between estimates = #, 
and the gradient has norm = #. Adjust “tolerance” 
or “max_iter”, or there may be a separation prob-
lem in the data.

IMSLS_EMPTY_INT_RESULTS Intermediate results given to the function are empty 
and may be expected to be non-empty in this 
scenario.

IMSLS_NO_CONV_OVERFLOW The linear predictor = # is too large and will lead to 
overflow when exponentiated. The algorithm fails to 
converge.
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logistic_reg_predict

more...

Predict a binomial or multinomial outcome given an estimated model and new values of the independent 
variables.

Synopsis
#include <imsls.h>
float *imsls_f_logistic_reg_predict (int n_observations, int n_independent, 

int n_classes, float coefs[], float x[], ..., 0)

The type double function is imsls_d_logistic_reg_predict.

Required Arguments
int n_observations (Input)

The number of observations.

int n_independent (Input)
The number of independent variables.

int n_classes (Input)
The number of discrete outcomes, or classes.

float coefs[] (Input)
Array of length n_coefficients × n_classes containing the coefficient estimates of the logis-
tic regression model. n_coefficients is the number of coefficients in the model.

float x[] (Input)
Array of length n_observations × n_independent containing the values of the independent 
variables.
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Return Value
Pointer to an array containing the predicted responses. The predicted value is the predicted number of out-
comes in each class for each new observation provided in x. If frequencies[i] = 1 for all observations, then 
the return value is equivalent to the predicted probabilities. If the option IMSLS_CONFIDENCE is specified, the 
length of the return array is (n_observations × n_classes × 3) and the array includes the lower and upper 
prediction limits. Otherwise, the array is of length (n_observations × n_classes). Note that if the data is 
column-oriented (see IMSLS_COLUMN_WISE), the return value will also be column-oriented.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_logistic_reg_predict (int n_observations, int n_independent, 

int n_classes, float coefs[], float x[],

IMSLS_Y, floaty[],
IMSLS_GROUP_COUNTS, or
IMSLS_GROUPS,
IMSLS_COLUMN_WISE,
IMSLS_FREQUENCIES, int frequencies[],
IMSLS_REFERENCE_CLASS, int ref_class,
IMSLS_NO_INTERCEPT,
IMSLS_X_INDICES, int n_xin, int xin[],
IMSLS_X_INTERACTIONS, int n_xinteract, int xinteract[],
IMSLS_CONFIDENCE, float confid,
IMSLS_MODEL, Imsls_f_model *model,
IMSLS_PREDERR, float*prederr,
IMSLS_RETURN_USER, floatyhat[],
0)

Optional Arguments
IMSLS_Y, floaty[] (Input)

Array containing the actual responses corresponding to the independent variables. If present, the 
expected length for y is n_observations × n_classes unless one of IMSLS_GROUPS or 
IMSLS_GROUP_COUNTS is also present. IMSLS_Y is required when IMSLS_PREDERR is 
requested.

Default: The function expects that y is not given.
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IMSLS_GROUP_COUNTS (Input)

or

IMSLS_GROUPS, (Input) 
These optional arguments specify alternative formats of the input array y. If 
IMSLS_GROUP_COUNTS is present, y is of length n_observations × (n_classes - 1), and 
contains counts for all but one of the classes for each observation. The missing class is treated as the 
reference class. If IMSLS_GROUP_COUNTS is present and if any y[i] > 1, 
IMSLS_FREQUENCIES is required. If IMSLS_GROUPS is present, the input array y is of length 
n_observations and y[i] contains the group number to which the observation belongs. In this 
case, frequencies[i] is set to 1 for all observations.

Default: Unless one of the arguments is present, the function expects that y is 
n_observations × n_classes and contains counts for all the classes.

IMSLS_COLUMN_WISE, (Input)
If present, the input arrays are column-oriented. That is, contiguous elements in x are values of the 
same independent variable, or column, except at multiples of n_observations.

Default: Input arrays are row-oriented.

IMSLS_FREQUENCIES, intfrequencies[] (Input)
Array of length n_observations containing the number of replications or trials for each of the 
observations. This argument is required if IMSLS_GROUP_COUNTS is present and if any y[i] > 1.

Default: frequencies[i] = 1.

IMSLS_REFERENCE_CLASS, intref_class (Input)
Number specifying which class or outcome category to use as the reference class. The purpose of 
the reference class is explained in the Description section.

Default: ref_class = n_classes.

IMSLS_NO_INTERCEPT (Input)
If present, the model will not include an intercept term.

Default: The intercept term is included.

IMSLS_X_INDICES, int n_xin, int xin[] (Input)
An array of length n_xin providing the variable indices of x that correspond to the independent 
variables the user wishes to be included in the logistic regression model.

Default: All n_independent variables are included.

IMSLS_X_INTERACTIONS, int n_xinteract, int xinteract[] (Input)
An array of length n_xinteract × 2 providing pairs of variable indices of x that define the interac-
tion terms in the model. Adjacent indices should be unique.
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Default: No interaction terms are included.

IMSLS_CONFIDENCE, floatconfid (Input)
This value provides the confidence level to use in the calculation of the prediction intervals. If this 
argument is present and valid (0 < confid < 100), confid% prediction intervals are provided for 
each predicted value.

Default: Prediction intervals are not provided.

IMSLS_MODEL, Imsls_f_model*model (Input)
Pointer to a structure of type Imsls_f_model containing information about the logistic regression fit. 
See imsls_f_logistic_regression. Required when IMSLS_CONFIDENCE is present.

Default: Not needed if IMSLS_CONFIDENCE is not present.

IMSLS_PREDERR, float *prederr (Output)
The mean squared prediction error when IMSLS_Y is present.

IMSLS_RETURN_USER, floatyhat[] (Output)
Storage for the return value is provided by the user. See the description of the Return Value above 
for details.

Description
Function imsls_f_logistic_reg_predict calculates the predicted outcomes for a binomial or multino-
mial response variable given an estimated logistic regression model and new observations of the independent 
variables.

For a binary response y, the objective is to estimate the conditional probability of success, 

 , where  is a realization of pindependent variables. In particular, the 
estimated probability of success

where

and

 are the coefficient estimates. Then  . That is,  is the expected value of 
the response under the estimated model given the values of the independent variables.

π1 x = Pr y = 1∣x x = x1, x2, … xp ′

π̂1(x) =
exp(η̂1)
1 + exp(η̂1)

η̂1 = β
^
01 + x

Tβ^ 1

β
^

01,β
^

1 = β
^

11,β
^

12, … β
^

1p ′ y^ = niπ1 xi y^
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Similarly, for a multinomial response, with class Kthe reference class,

Then

and  . If the actual responses are given, the mean squared prediction error is

If requested,  prediction intervals are provided for the predicted values by first finding the predic-

tion standard errors of the logits,  , and then evaluating

to obtain the upper and lower limits for  , where  is the upper  quantile of the standard normal dis-
tribution. Note that properties of the prediction intervals are only valid when the new observations are inside the 
range of the original data used to fit the model. Generally, the model should not be used to extrapolate outside 
the range of the original data. See Hosmer and Lemeshow (2000) for further details.

π̂k(x) =
exp η̂ik

∑
l=1

K
exp η̂il

=
exp η̂ik

1 + ∑
l=1

K−1
exp η̂il

π̂K(x) = 1 −∑
l=1

K−1

π̂l x

y^ k = niπk xi

mspe = 1
NK∑

k=1

K

∑
i=1

N

( ŷik − yik)
2

100 1 − α %

η^ ik = β
^

0k + xi
Tβ
^

k

exp η̂ik ± zα/2SE η̂ik

1 + ∑
l=1

K−1
exp η̂il ± zα/2SE η̂il

π^ k xi zα/2 α / 2
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Examples

Example 1

The model fit to the beetle mortality data of Prentice (1976) is used to predict the expected mortality at three new 
doses. For the original data, seeExample 1 in imsls_f_logistic_regression.

#include <imsls.h>
#include <stdio.h>
int main(){
   float y1[8]={6, 13, 18, 28, 52, 53, 61, 60};
   float x1[8]={1.69, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, 1.883};
   float x2[3]={1.66, 1.87, 1.71};
   float freqs1[8]={59, 60, 62, 56, 63, 59, 62, 60};
   float freqs2[3]={16, 22, 11};
   float *coefs, *yhat;
   int n_classes=2, n_observations=8, n_independent=1,
       n_coefs=2, i,n_new_observations=3;
   coefs=imsls_f_logistic_regression(n_observations,n_independent,
       n_classes,x1,y1,
       IMSLS_GROUP_COUNTS,
       IMSLS_FREQUENCIES,freqs1,
       0);
   imsls_f_write_matrix("Coefficient Estimates",(n_coefs)*(n_classes-1),
       1,coefs,0);
   yhat=imsls_f_logistic_reg_predict(n_new_observations,n_independent,
       n_classes,coefs,x2,IMSLS_FREQUENCIES,freqs2,0);
   printf( "\nDose\t N\tExpected Deaths\n");
   for(i=0;i<n_new_observations;i++){
       printf("%5.2f\t%2.1f\t\t%5.2f\n",
           x2[i],freqs2[i],yhat[2*i]);
   }
}

Output

Coefficient Estimates
  1      -60.76
  2       34.30

Log Dosage
Number of Bee-
tles Exposed Number of Deaths

1.66 16 ??

1.87 22 ??

1.71 11 ??
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Dose   N  Expected Deaths
1.66 16.0        0.34
1.87 22.0       21.28
1.71 11.0        1.19

Example 2

A logistic regression model is fit to artificial (noisy) data with 4 classes and 3 independent variables and used to 
predict class probabilities at 10 new values of the independent variables. Also shown are the mean squared pre-
diction error and upper and lower limits of the 95% prediction interval for each predicted value.

#include <imsls.h>
#include <stdio.h>
int main(){
   float x[50*3]={
       3, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 2, 
       2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 3, 1, 2, 
       1, 1, 1, 3, 1, 3, 2, 3, 3, 1, 
       25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084, 
       52.6796, 44.28342, 40.63523, 51.76094, 26.30368, 20.70230, 
       38.74273, 19.47333, 26.42211, 37.05986, 51.67043, 42.40156, 
       33.90027, 35.43282, 44.30369, 46.72387, 46.99262, 36.05923, 
       36.83197, 61.66257, 25.67714, 39.08567, 48.84341, 39.34391, 
       24.73522, 50.55251, 31.34263, 27.15795, 31.72685, 25.00408, 
       26.35457, 38.12343, 49.9403, 42.45779, 38.80948, 43.22799, 
       41.87624, 48.0782, 43.23673, 39.41294, 23.93346, 
       42.8413, 30.40669, 37.77389, 
       1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 
       1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 
       1, 1, 2, 1, 1, 2, 1, 1
   };
   float y[50]={
       1, 2, 3, 4, 3, 3, 4, 4, 4, 4, 2, 1, 4, 1, 1, 1, 4, 4, 3, 1, 2,
       3, 3, 4, 2, 3, 4, 1, 2, 4, 3, 4, 4, 1, 3, 4, 4, 2, 3, 4, 2, 2, 
       4, 3, 1, 4, 3, 4, 2, 3
   };
   float newx[10*3]={
       2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 
       25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084, 
       52.6796, 44.28342, 40.63523, 51.76094, 
       1, 2, 1, 1, 1, 1, 2, 2, 2, 1
   };
   float newy[10]={
       3, 2, 1, 1, 4, 3, 2, 2, 1, 2
   };
   float *coefs,*yhat,mspe,model_pval,lrstat;
   int i,j,n_classes,n_observations,n_new_obs,n_independent,n_coefs,dof;
   Imsls_f_model *model_info_ptr=NULL;
   n_classes=4;
   n_observations=50;
   n_new_obs=10;
   n_independent=3;
   n_coefs=4;
   coefs=imsls_f_logistic_regression(n_observations,n_independent,
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       n_classes,x,y,
       IMSLS_GROUPS,
       IMSLS_COLUMN_WISE,
       IMSLS_LRSTAT,&lrstat,
       IMSLS_NEXT_RESULTS,&model_info_ptr,
       0);
   yhat=imsls_f_logistic_reg_predict(n_new_obs,n_independent,
       n_classes,coefs,newx,
       IMSLS_Y,newy,
       IMSLS_GROUPS,
       IMSLS_COLUMN_WISE,
       IMSLS_CONFIDENCE,95.0,
       IMSLS_MODEL,model_info_ptr,
       IMSLS_PREDERR,&mspe,
       0);
   dof = n_coefs*(n_classes-1) - (n_classes-1);
   model_pval = 1.0 - 
       imsls_f_chi_squared_cdf(lrstat,dof);
   printf("Model Fit Summary:\n");
   printf("Log-likelihood: %5.2f \n",model_info_ptr->loglike);
   printf("LR test statistic: %5.2f\n",lrstat);
   printf("Degrees of freedom: %d\n", dof);
   printf("P-value: %5.4f\n", model_pval);
   printf("\nPrediction Summary:\n");
   printf("Mean squared prediction error: %4.2f\n", mspe);
   printf("\n%Obs Class Estimate Lower Upper\n");
   for(j=0;j<n_new_obs;j++){
       for(i=0;i<n_classes;i++){
           printf(" %d\t%d     %4.2f   %4.2f  %4.2f\n",j+1,i+1,
               yhat[i*3*n_new_obs+j],
               yhat[(i*3+1)*n_new_obs+j],
               yhat[(i*3+2)*n_new_obs+j]);
       }
   }
}

Output

Model Fit Summary:
Log-likelihood: -58.58 
LR test statistic: 16.37
Degrees of freedom: 9
P-value: 0.0595
Prediction Summary:
Mean squared prediction error: 0.21
Obs Class Estimate Lower Upper
 1    1     0.26   0.14  0.35
 1    2     0.14   0.06  0.20
 1    3     0.31   0.18  0.36
 1    4     0.29   0.10  0.62
 2    1     0.04   0.01  0.14
 2    2     0.27   0.11  0.39
 2    3     0.12   0.04  0.25
 2    4     0.57   0.22  0.85
 3    1     0.23   0.07  0.38
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 3    2     0.13   0.04  0.20
 3    3     0.28   0.12  0.34
 3    4     0.36   0.08  0.77
 4    1     0.06   0.02  0.14
 4    2     0.16   0.07  0.24
 4    3     0.49   0.28  0.54
 4    4     0.29   0.08  0.63
 5    1     0.34   0.17  0.41
 5    2     0.13   0.06  0.19
 5    3     0.30   0.17  0.34
 5    4     0.22   0.05  0.60
 6    1     0.03   0.00  0.09
 6    2     0.16   0.06  0.24
 6    3     0.53   0.27  0.60
 6    4     0.29   0.07  0.67
 7    1     0.04   0.01  0.13
 7    2     0.27   0.10  0.40
 7    3     0.13   0.04  0.26
 7    4     0.57   0.21  0.86
 8    1     0.14   0.04  0.26
 8    2     0.29   0.12  0.37
 8    3     0.12   0.04  0.21
 8    4     0.46   0.15  0.80
 9    1     0.21   0.08  0.33
 9    2     0.27   0.12  0.35
 9    3     0.10   0.03  0.19
 9    4     0.42   0.14  0.77
 10   1     0.01   0.00  0.05
 10   2     0.15   0.04  0.24
 10   3     0.57   0.23  0.67
 10   4     0.28   0.05  0.73
Mean squared prediction error 0.20958

Warning Errors

Fatal Errors

IMSLS_NO_ACTUALS The average squared prediction error cannot be cal-
culated because no actual “y” values are given.

IMSLS_OVERFLOW The linear predictor = # is too large and will lead to 
overflow when exponentiated.
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Nonparametric Statistics

Functions
One sample tests - Nonparametric Statistics

Sign test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sign_test     582
Wilcoxon rank sum test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .wilcoxon_sign_rank     586
Noehter’s test for cyclical trend . . . . . . . . . . . . . . . . . . . . . . . . . . noether_cyclical_trend     590
Cox and Stuarts’ sign test for trends in location 

and dispersion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cox_stuart_trends_test     594
Tie statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tie_statistics     600

Two or more samples
Wilcoxon’s rank sum test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .wilcoxon_rank_sum     603
Kruskal-Wallis test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kruskal_wallis_test     609
Friedman’s test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .friedmans_test     612
Cochran's Q test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cochran_q_test     617
K-sample trends test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .k_trends_test     621
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Usage Notes
Much of what is considered nonparametric imsls_f_k_trends_test statistics is included in other chapters. 
Topics of possible interest in other chapters are: nonparametric measures of location and scale (Chapter 1, Basic 
Statistics), nonparametric measures in a contingency table (Chapter 5, Categorical and Discrete Data Analysis), 
measures of correlation in a contingency table (Chapter 3, Correlation and Covariance), and tests of goodness of 
fit and randomness (Chapter 7, Tests of Goodness of Fit).

Missing Values
Most routines described in this chapter automatically handle missing values (NaN, “Not a Number”; see the 
Introduction of this manual).

Tied Observations
Many of the routines described in this chapter contain an argument IMSLS_FUZZ in the input. Observations 
that are within fuzz of each other in absolute value are said to be tied. Moreover, in some routines, an observa-
tion within fuzz of some value is said to be equal to that value. In routine imsls_f_wilcoxon_sign_rank, 
for example, such observations are eliminated from the analysis. If fuzz = 0.0, observations must be identically 
equal before they are considered to be tied. Other positive values of fuzz allow for numerical imprecision or 
roundoff error.
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sign_test
Performs a sign test.

Synopsis
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_sign_test.

Required Arguments
int n_observations  (Input)

Number of observations.

float x[]  (Input)
Array of length n_observations containing the input data.

Return Value
Binomial probability of n_positive_deviations or more positive differences in 
n_observations − n_zero_deviation trials. Call this value probability. If no option is chosen, the null 
hypothesis is that the median equals 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[],

IMSLS_PERCENTAGE, float percentage,
IMSLS_PERCENTILE, float percentile,
IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations,
IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations,
0)
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Optional Arguments
IMSLS_PERCENTAGE, float percentage  (Input)

Value in the range (0, 1). Argument percentile is the 100 × percentage percentile of the 
population. 

Default: percentage = 0.5

IMSLS_PERCENTILE, float percentile  (Input)
Hypothesized percentile of the population from which x was drawn.
Default: percentile = 0.0

IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations  (Output)
Number of positive differences x[j − 1] − percentile for j = 1, 2, …, n_observations.

IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations  (Output)
Number of zero differences (ties) x[j − 1] − percentile for j = 1, 2, …, n_observations.

Description
Function imsls_f_sign_test tests hypotheses about the proportion p of a population that lies below a 
value q, where p corresponds to argument percentage and q corresponds to argument percentile. In 
continuous distributions, this can be a test that q is the 100 p-th percentile of the population from which x was 
obtained. To carry out testing, imsls_f_sign_test tallies the number of values above q in 
n_positive_deviations. The binomial probability of n_positive_deviations or more values above 
q is then computed using the proportion p and the sample size n_observations (adjusted for the missing 
observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative hypotheses:

 H0: Pr(x ≤ q) ≥ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) < p
Reject H0 if probability is less than or equal to the significance level

 H0: Pr(x ≤ q) ≤ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance level

 H0: Pr (x = q) = p (the p-th quantile is q)
H1: Pr((x ≤ q) < p) or Pr((x ≤ q) > p)
Reject H0 if probability is less than or equal to half the significance level or greater than or equal to 
1 minus half the significance level

The assumptions are as follows:
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1. They are independent and identically distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater than, and equal to exists in 
the observations.

Many uses for the sign test are possible with various values of p and q. For example, to perform a matched sam-
ple test that the difference of the medians of y and z is 0.0, let p = 0.5, q = 0.0, and xi = yi − zi in matched 

observations y and z. To test that the median difference is c, let q = c.

Examples 

Example 1

This example tests the hypothesis that at least 50 percent of a population is negative. Because 0.18 < 0.95, the 
null hypothesis at the 5-percent level of significance is not rejected.

#include <imsls.h>
int main ()
{
   int        n_observations = 19;
   float      probability;
   float      x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, 
         -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 
         45.0, -33.0, -45.0, -12.0};
   probability = imsls_f_sign_test(n_observations, x, 0);
 
   printf("probability = %10.6f\n", probability);
}

Output

probability =  0.179642

Example 2

This example tests the null hypothesis that at least 75 percent of a population is negative. Because 0.923 < 0.95, 
the null hypothesis at the 5-percent level of significance is rejected.

#include <imsls.h>
#include <stdio.h>
int main ()
{
   int   n_observations = 19;
   int   n_positive_deviations, n_zero_deviations;
   float probability;
   float percentage = 0.75;
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   float percentile = 0.0;
   float x[19] = {
       92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0, 22.0,
       2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0
   };
   probability = imsls_f_sign_test(n_observations, x,
       IMSLS_PERCENTAGE, percentage,
       IMSLS_PERCENTILE, percentile,
       IMSLS_N_POSITIVE_DEVIATIONS, &n_positive_deviations,
       IMSLS_N_ZERO_DEVIATIONS, &n_zero_deviations,
       0);
   printf("probability = %10.6f.\n", probability);
   printf("Number of positive deviations is %d.\n",
       n_positive_deviations);
   printf("Number of ties is %d.\n", n_zero_deviations);
}

Output

probability =  0.922543.
Number of positive deviations is 12.
Number of ties is 0.
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wilcoxon_sign_rank
Performs a Wilcoxon signed rank test.

Synopsis
#include <imsls.h>
float *imsls_f_wilcoxon_sign_rank (int n_observations, float x[], ..., 0)

The type double function is imsls_d_wilcoxon_sign_rank.

Required Arguments
int n_observations  (Input)

Number of observations in x. 

float x[]  (Input)
Array of length n_observations containing the data.

Return Value
Pointer to an array of length two containing the values described below. 

The asymptotic probability of not exceeding the standardized (to an asymptotic variance of 1.0) minimum of 
(W+, W-) using method 1 under the null hypothesis that the distribution is symmetric about 0.0.

And, the asymptotic probability of not exceeding the standardized (to an asymptotic variance of 1.0) minimum of 
(W+, W-) using method 2 under the null hypothesis that the distribution is symmetric about 0.0.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_wilcoxon_sign_rank (int n_observations, float  x[],

IMSLS_FUZZ, float fuzz,
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
IMSLS_N_MISSING, float *n_missing,
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IMSLS_RETURN_USER, float prob[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz  (Input)

Nonnegative constant used to determine ties in computing ranks in the combined samples. A tie is 
declared when two observations in the combined sample are within fuzz of each other.

Default value for fuzz is 0.0.

IMSLS_STAT, float **stat  (Output)
Address of a pointer to an internally allocated array of length 10 containing the following statistics: 

IMSLS_STAT_USER, float stat[]  (Output)
Storage for array stat is provided by the user.

See IMSLS_STAT.

IMSLS_N_MISSING, float *n_missing,  (Output)
Number of missing values in y.

IMSLS_RETURN_USER, float prob[]  (Output)
User allocated storage for return values.

See Return Value.

Row Statistics

0 The positive rank sum, W+, using method 1. 

1 The absolute value of the negative rank sum, W-, using method 1.

2 The standardized (to an asymptotic variance of 1.0) minimum of 
(W+, W-) using method 1.

3 The asymptotic probability of not exceeding stat[2] under the 
null hypothesis that the distribution is symmetric about 0.0.

4 The positive rank sum, W+, using method 2.

5 The absolute value of the negative rank sum, W-, using method 2.

6 The standardized (to an asymptotic variance of 1.0) minimum of 
(W+, W-) using method 2.

7 The asymptotic probability of not exceeding stat[6] under the 
null hypothesis that the distribution is symmetric about 0.0.

8 The number of zero observations. 

9 The total number of observations that are tied, and that are not 
within fuzz of zero.
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Description
Function imsls_f_wilcoxon_sign_rank performs a Wilcoxon signed rank test of symmetry about zero. In 
one sample, this test can be viewed as a test that the population median is zero. In matched samples, a test that 
the medians of the two populations are equal can be computed by first computing difference scores. These dif-
ference scores would then be used as input to imsls_f_wilcoxon_sign_rank. A general reference for the 
methods used is Conover (1980).

Function imsls_f_wilcoxon_sign_rank computes statistics for two methods for handling zero and tied 
observations. In the first method, observations within fuzz of zero are not counted, and the average rank of tied 
observations is used. (Observations within fuzz of each other are said to be tied.) In the second method, obser-
vations within fuzz of zero are randomly assigned a positive or negative sign, and the ranks of tied observations 
are randomly permuted.

The W+ and W- statistics are computed as the sums of the ranks of the positive observations and the sum of the 
ranks of the negative observations, respectively. Asymptotic probabilities are computed using standard methods 
(see, e.g., Conover 1980, page 282).

The W+ and W- statistics may be used to test the following hypotheses about the median, M. In deciding whether 
to reject the null hypothesis, use the bracketed statistic if method 2 for handling ties is preferred. Possible null 
hypotheses and alternatives are given as follows:

 H0 : M ≤ 0  H1 : M > 0
Reject if stat[0] [or stat[4]] is too large.

 H0 : M ≥ 0  H1 : M < 0 
Reject if stat[1] [or stat[5]] is too large.

 H0 : M = 0  H1 : M ≠ 0 
Reject if stat[2][or stat[6]] is too small. Alternatively, if an asymptotic test is desired, reject if 
2 * stat[3] [or 2 * stat[7]] is less than the significance level.

Tabled values of the test statistic can be found in the references. If possible, tabled values should be used. If the 
number of nonzero observations is too large, then the asymptotic probabilities computed by 
imsls_f_wilcoxon_sign_rank can be used.

The assumptions required for the hypothesis tests are as follows: 

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent.

3. All Xi’s have the same median.

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that X1 > X3).
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If other assumptions are made, related hypotheses that are more (or less) restrictive can be tested.

Example
This example illustrates the application of the Wilcoxon signed rank test to a test on a difference of two matched 
samples (matched pairs) {X1 = 223, 216, 211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A 
test that the median difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 from each of the differ-
ences prior to calling wilcoxon_sign_rank. As can be seen from the output, the null hypothesis is rejected. 
The warning error will always be printed when the number of observations is 50 or less unless printing is turned 
off for warning errors. 

#include <imsls.h>
#include <stdio.h>
int main()
{
    float *stat=NULL, *result=NULL;
    int nobs = 7, nmiss;
    float fuzz = .0001;
    float x[] = {-25., -21., -19., -15., -13., -11., -8.};
    result = imsls_f_wilcoxon_sign_rank(nobs, x, 
                                   IMSLS_N_MISSING, &nmiss,
                                   IMSLS_FUZZ, fuzz,
                                   IMSLS_STAT, &stat,
                                   0);
    printf("Statistic\t\t\tMethod 1\tMethod 2\n");
    printf("W+\t\t\t\t %3.0f\t\t %3.0f\n", stat[0], stat[4]);
    printf("W-\t\t\t\t %3.0f\t\t %3.0f\n", stat[1], stat[5]);
    printf("Standardized Minimum\t\t%6.4f\t\t%6.4f\n", stat[2], stat[6]);
    printf("p-value\t\t\t\t %6.4f\t\t %6.4f\n\n", stat[3], stat[7]);
    printf("Number of zeros\t\t\t%3.0f\n", stat[8]);
    printf("Number of ties\t\t\t%3.0f\n", stat[9]);
    printf("Number of missing\t\t %d\n", nmiss);      
}

Output

*** WARNING ERROR 4 from imsls_f_wilcoxon_sign_rank. NOBS = 7. The number 
***         of observations, NOBS, is less than 50, and exact 
***         tables should be referenced for probabilities.
Statistic                   Method 1    Method 2
W+.......................      0          0
W-.......................     28         28
Standardized Minimum..... -2.3664     -2.3664
p-value..................  0.0090      0.0090
Number of zeros..........      0
Number of ties...........      0
Number of missing........      0
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noether_cyclical_trend
Performs the Noether test for cyclical trend.

Synopsis
#include <imsls.h>
float *imsls_f_noether_cyclical_trend (int n_observations, float x[], ..., 0)

The type double function is imsls_d_noether_cyclical_trend.

Required Arguments
int n_observations  (Input)

Number of observations in x. n_observations must be greater than or equal to 3. 

float x[]  (Input)
Array of length n_observations containing the data in chronological order.

Return Value
Array, p, of length 3 containing the probabilities of stat[1] or more, stat[2] or more, or stat[3] or more 
monotonic sequences. 

If stat[0] is less than 1, p[0] is set to NaN (not a number).

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_noether_cyclical_trend (int n_observations, float x[],

IMSLS_FUZZ, float fuzz,
IMSLS_STAT, int **stat,
IMSLS_STAT_USER, int stat[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, float p[],
0)
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Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the combined samples. A tie is 
declared when two observations in the combined sample are within fuzz of each other.

Default value for fuzz is 0.0.

IMSLS_STAT, int **stat  (Output)
Address of a pointer to an internally allocated array of length 6 containing the following statistics: 

IMSLS_STAT_USER, int stat[]  (Output)
Storage for array stat is provided by the user. 

See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing  (Output)
Number of missing values in X.

IMSLS_RETURN_USER, float p[]  (Input)
User allocated array of length 3 containing the return values. 

Description
Routine imsls_f_noether_cyclical_trend performs the Noether test for cyclical trend (Noether 1956) 
for a sequence of measurements. In this test, the observations are first divided into sets of three consecutive 
observations. Each set is then inspected, and if the set is monotonically increasing or decreasing, the count vari-
able is incremented. 

Row Statistics

stat[0] The number of consecutive sequences of length three used to 
detect cyclical trend when tying middle elements are eliminated 
from the sequence, and the next consecutive observation is used.

stat[1] The number of monotonic sequences of length three in the set 
defined by stat[0].

stat[2] The number of nonmonotonic sequences where tied threesomes 
are counted as nonmonotonic.

stat[3] The number of monotonic sequences where tied threesomes are 
counted as monotonic.

stat[4] The number of middle observations eliminated because they were 
tied in forming the stat[0] sequences.

stat[5] The number of tied sequences found in forming the stat[2] and 
stat[3] sequences. A sequence is called a tied sequence if the 
middle element is tied with either of the two other elements.
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The count variables, stat[1], stat[2], and stat[3], differ in the manner in which ties are handled. A tie 
can occur in a set (of size three) only if the middle element is tied with either of the two ending elements. Tied 
ending elements are not considered. In stat[1], tied middle observations are eliminated, and a new set of size 
3 is obtained by using the next observation in the sample. In stat[2], the original set of size three is used, and 
tied middle observations are counted as nonmonotonic. In stat[3], tied middle observations are counted as 
monotonic. 

The probabilities of occurrence of the counts are obtained from the binomial distribution with p = 1/3, where p is 
the probability that a random sample of size three from a continuous distribution is monotonic. The binomial 
sample size is, of course, the number of sequences of size three found (adjusted for ties).

Hypothesis test:

H0 : q = Pr(Xi > Xi−1 > Xi−2) + Pr(Xi < Xi −1 < Xi−2) ≤ 1/3  H1 : q > 1/3 

Reject if p[0] (or p[1] or p[2] depending on the method used for handling ties) is less than the significance 
level of the test.

Assumption: The observations are independent and are from a continuous distribution.

Example
A test for cyclical trend in a sequence of 1000 randomly generated observations is performed. Because of the 
sample used, there are no ties and all three test statistics yield the same result.

#include <imsls.h>
#include <stdio.h>
int main()
{
       float *pvalue=NULL;
       int nobs = 1000, nmiss, *stat = NULL;
       float *x = NULL;
       imsls_random_seed_set(123457);
       x = imsls_f_random_uniform(nobs, 0);
       pvalue = imsls_f_noether_cyclical_trend(nobs, x,
                                         IMSLS_STAT, &stat,
                                         IMSLS_N_MISSING, &nmiss,
                                         0);
       imsls_f_write_matrix("P", 0, 2, pvalue, 0);
       imsls_i_write_matrix("STAT", 0, 5, stat, 0);
       printf("\n n missing = %d\n", nmiss);
}

Output

P
 0       1       2
0.6979  0.6979  0.6979
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STAT
 0    1    2    3    4    5
333  107  107  107    0    0
n missing = 0
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cox_stuart_trends_test
Performs the Cox and Stuart sign test for trends in location and dispersion.

Synopsis
#include <imsls.h>
float *imsls_f_cox_stuart_trends_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_ cox_stuart_trends_test.

Required Arguments
int n_observations  (Input)

Number of observations in x. n_observations must be greater than or equal to 3. 

float x[]  (Input)
Array of length n_observations containing the data in chronological order.

Return Value
Array, pstat, of length 8 containing the probabilities. The first four elements of pstat are computed from 
two groups of observations.

I pstat[I]
0 Probability of nstat[0] + nstat[2] or more negative 

signs (ties are considered negative).

1 Probability of obtaining nstat[1] or more positive signs 
(ties are considered negative).

2 Probability of nstat[0] + nstat[2] or more negative 
signs (ties are considered positive).

3 Probability of obtaining nstat[1] or more positive signs 
(ties are considered positive).
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The last four elements of pstat are computed from three groups of observations.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_cox_stuart_trends_test (int n_observations, float x[],

IMSLS_DISPERSION, int k, int ids,
IMSLS_FUZZ, float fuzz,
IMSLS_STAT, int **nstat,
IMSLS_STAT_USER, int nstat[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, float pstat[],
0)

Optional Arguments
IMSLS_DISPERSION, int k, int ids, (Input)

If IMSLS_DISPERSION is supplied, the Cox and Stuart tests for trends in dispersion are com-
puted. Otherwise, as default, the Cox and Stuart tests for trends in location are computed. k is the 
number of consecutive x elements to be used to measure dispersion. If ids is zero, the range is 
used as a measure of dispersion. Otherwise, the centered sum of squares is used. 

IMSLS_FUZZ, float fuzz  (Input)
Value used to determine when elements in x are tied. If |x[i] – x[j]| is less than or equal to 
fuzz, x[i] and x[j] are said to be tied. fuzz must be nonnegative. Default value for fuzz is 0.0.

4 Probability of nstat[0] + nstat[2] or more negative 
signs (ties are considered negative).

5 Probability of obtaining nstat[1] or more positive signs 
(ties are considered negative).

6 Probability of nstat[0] + nstat[2] or more negative 
signs (ties are considered positive).

7 Probability of obtaining nstat[1] or more positive signs 
(ties are considered positive).
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IMSLS_STAT, int **nstat  (Output)
Address of a pointer to an internally allocated array of length 8 containing the following statistics: 

IMSLS_STAT_USER, int nstat[]  (Output)
Storage for array nstat is provided by the user. 

See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values in x.

IMSLS_RETURN_USER, float pstat[]  (Input)
User allocated array of length 8 containing the return values.

Description
Function imsls_f_cox_stuart_trends_test tests for trends in dispersion or location in a sequence of 
random variables depending upon the value of IMSLS_DISPERSION. A derivative of the sign test is used (see 
Cox and Stuart 1955).

Location Test
For the location test (Default) with two groups, the observations are first divided into two groups with the mid-
dle observation thrown out if there are an odd number of observations. Each observation in group one is then 
compared with the observation in group two that has the same lexicographical order. A count is made of the 

i nstat[i]
0 Number of negative differences (two groups).

1 Number of positive differences (two groups).

2 Number of zero differences (two groups).

3 Number of differences used to calculate pstat[0] through 
pstat[3] (two groups).

4 Number of negative differences (three groups).

5 Number of positive differences (three groups)

6 Number of zero differences (three groups).

7 Number of differences used to calculate pstat[4] through 
pstat[7] (three groups).
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number of times a group-one observation is less than (nstat[0]), greater than (nstat[1]), or equal to 
(nstat[2]), its counterpart in group two. Two observations are counted as equal if they are within fuzz of one 
another.

In the three-group test, the observations are divided into three groups, with the center group losing observations 
if the division is not exact. The first and third groups are then compared as in the two-group case, and the counts 
are stored in nstat[4] through nstat[6].

Probabilities in pstat are computed using the binomial distribution with sample size equal to the number of 
observations in the first group (nstat[3] or nstat[7]), and binomial probability p = 0.5.

Dispersion Test
The dispersion tests (when optional argument IMSLS_DISPERSION is supplied) proceed exactly as with the 
tests for location, but using one of two derived dispersion measures. The input value k is used to define 
n_observations/k groups of consecutive observations starting with observation 1. The first k observations 
define the first group, the next k observations define the second group, etc., with the last observations omitted if 
n_observations is not evenly divisible by k. A dispersion score is then computed for each group as either the 
range (ids = 0), or a multiple of the variance (ids ≠ 0) of the observations in the group. The dispersion scores 
form a derived sample. The tests proceed on the derived sample as above.

Ties
Ties are defined as occurring when a group one observation is within fuzz of its last group counterpart. Ties 
imply that the probability distribution of x is not strictly continuous, which means that Pr(x1 > x2) ≠ 0.5 under 

the null hypothesis of no trend (and the assumption of independent identically distributed observations). When 
ties are present, the computed binomial probabilities are not exact, and the hypothesis tests will be conservative.

Hypothesis Tests
In the following, i indexes an observation from group 1, while j indexes the corresponding observation in group 2 
(two groups) or group 3 (three groups).

 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) < Pr(Xi < Xj) 
Hypothesis of upward trend. Reject if pstat[2] (or pstat[6])is less than the significance 
level.
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 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if pstat[1] (or pstat[5]) is less than the significance 
level.

 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) ≠Pr(Xi < Xj) 
Two tailed test. Reject if 2 max(pstat[1], pstat[2]) (or 2 max(pstat[5], pstat[6]) is less 
than the significance level.

Assumptions
1. The observations are a random sample; i.e., the observations are independently and identically 

distributed.

2. The distribution is continuous.

Example
This example illustrates both the location and dispersion tests. The data, which are taken from Bradley (1968), 
page 176, give the closing price of AT&T on the New York stock exchange for 36 days in 1965. Tests for trends in 
location (Default), and for trends in dispersion (IMSLS_DISPERSION) are performed. Trends in location are 
found.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float *pstat=NULL;
 int nobs = 36, ids = 0, k = 2, nmiss, *stat = NULL;
 float fuzz = 0.001;
 float x[] = {

 9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 
 8.75, 8.625, 8.0, 8.25, 8.25, 8.375, 
 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,
 7.75, 7.75, 8.0, 7.5, 7.5, 7.125, 
 7.25, 7.25, 7.125, 6.75,6.5, 7.0, 
 7.0, 6.75, 6.625, 6.625, 7.125, 7.75};

 pstat = imsls_f_cox_stuart_trends_test(nobs, x, 
 IMSLS_FUZZ, fuzz,
 IMSLS_STAT, &stat,
 IMSLS_N_MISSING, &nmiss,
 0);

 imsls_i_write_matrix("nstat", 1, 8, stat, 0);
 imsls_f_write_matrix("pstat", 1, 8, pstat,

 IMSLS_WRITE_FORMAT, "%10.5f", 0);
 printf("n missing = %d\n", nmiss);
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 pstat = imsls_f_cox_stuart_trends_test(nobs, x,  
 IMSLS_DISPERSION, k, ids,
 IMSLS_FUZZ, fuzz,
 IMSLS_STAT, &stat,
 IMSLS_N_MISSING, &nmiss,
 0);

 imsls_i_write_matrix("nstat", 0, 7, stat, 0);
 imsls_f_write_matrix("pstat", 0, 7, pstat, 0);
 printf("n missing = %d\n", nmiss);

}

Output

*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is detected 
in X.
           NSTAT
0   1   2   3   4   5   6   7
0  17   1  18   0  12   0  12
           PSTAT
      0            1            2            3            4
1.00000      0.00007      1.00000      0.00000      1.00000
      5            6            7
0.00024      1.00000      0.00024
n missing = 0
*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is detected 
in X.
           NSTAT
0  1  2  3  4  5  6  7
4  3  2  9  4  2  0  6
                     PSTAT
       0            1            2            3            4
0.253906     0.910156     0.746094     0.500000     0.343750
       5            6            7
0.890625     0.343750     0.890625
n missing = 0
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tie_statistics
Compute tie statistics for a sample of observations.

Synopsis
#include <imsls.h>
float *imsls_f_tie_statistics (int n_observations, float x[], ..., 0)

The type double function is imsls_d_tie_statistics.

Required Arguments
int n_observations  (Input)

Number of observations in x. 

float x[]  (Input)
Array of length n_observations containing the observations. x must be ordered monotonically 
increasing with all missing values removed.

Return Value
Array of length 4 containing the tie statistics.

where tj is the number of ties in the j-th group (rank) of ties, and  is the number of tie groups in the sample.

ties[0] = ∑
j=1

τ
t j t j − 1 / 2

ties[1] = ∑
j=1

τ
t j t j − 1 t j + 1 / 12

ties[2] = ∑
j=1

τ
t j t j − 1 2t j + 5

ties[3] = ∑
j=1

τ
t j t j − 1 t j − 2

τ
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Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_tie_statistics (int n_observations, float x[],

IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float ties[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz  (Input)

Value used to determine ties. Observations i and j are tied if the successive differences 
x[k + 1] – x[k] between observations i and j, inclusive, are all less than fuzz. fuzz must be 
nonnegative. 

Default: fuzz = 0.0
IMSLS_RETURN_USER, float ties[]  (Output)

If specified ties[] returns the tie statistics. Storage for ties[] is provided by the user.

See Return Value.

Description
Function imsls_f_tie_statistics computes tie statistics for a monotonically increasing sample of obser-
vations. “Tie statistics” are statistics that may be used to correct a continuous distribution theory nonparametric 
test for tied observations in the data. Observations i and j are tied if the successive differences X(k + 1) - X(k), 
inclusive, are all less than fuzz. Note that if each of the monotonically increasing observations is equal to its pre-
decessor plus a constant, if that constant is less than fuzz, then all observations are contained in one tie group. 
For example, if fuzz = 0.11, then the following observations are all in one tie group.

          0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example
We want to compute tie statistics for a sample of length 7.

#include <imsls.h>
#include <stdlib.h>
int main()
{
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   float *ties=NULL;
   int nobs = 7;
   float fuzz = .001;
   float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.};
   ties = imsls_f_tie_statistics(nobs, x,
       IMSLS_FUZZ, fuzz,
       0);
   imsls_f_write_matrix("TIES\n", 1, 4, ties,
       IMSLS_WRITE_FORMAT, "%5.2f",
       0);
}

Output

TIES
0      1      2      3
4.00   2.50  84.00   6.00
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wilcoxon_rank_sum
Performs a Wilcoxon rank sum test for comparing the medians of two populations.

Synopsis
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int nx, float x[],int ny, float y[], ..., 0)

The type double function is imsls_d_wilcoxon_rank_sum.

Required Arguments
int nx (Input)

Number of observations in the first sample.

float x[]  (Input)
Array of length nx containing the first sample.

int ny  (Input)
Number of observations in the second sample.

float y[]  (Input)
Array of length ny containing the second sample.

Return Value
The two-sided p-value for the Wilcoxon rank sum statistic computed with average ranks used in the case of ties. 
The p-value is computed using either exact or approximate calculations depending upon the number of observa-
tions and the optional argument IMSLS_EXACT_P_VALUE.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int nx, float x[], int ny, float y[],

IMSLS_FUZZ, float fuzz,
IMSLS_N_MISSING_X, int *nmissx,
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IMSLS_N_MISSING_Y, int *nmissy,
IMSLS_MANN_WHITNEY, float *mann_whitney,
IMSLS_EXACT_P_VALUES, float **p,
IMSLS_EXACT_P_VALUES_USER, float p[],
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz  (Input)

Nonnegative constant used to determine ties in computing ranks in the combined samples. A tie is 
declared when two observations in the combined sample are within fuzz of each other.

Default: fuzz = 100 × imsls_f_machine(4) × max {|xi1|, |xj2|}

IMSLS_N_MISSING_X, int *nmissx  (Output)
Pointer to a scalar for the number of missing observations detected in x.

IMSLS_N_MISSING_Y, int *nmissy  (Output)
Pointer to a scalar for the number of missing observations detected in y.

IMSLS_MANN_WHITNEY, float *mann_whitney  (Output)
Pointer to a scalar for the Mann-Whitney test statistic. Although the test statistics for the Mann-Whit-
ney and Wilcoxon rank sum tests are computed differently, the p-values for these tests are equal 
since the Wilcoxon test statistic is a linear transformation of the Mann-Whitney test statistic.

IMSLS_EXACT_P_VALUES, float **p  (Output)
Address of a pointer to an internally allocated array of length 3 containing the exact p-values accord-
ing to the following table:

IMSLS_EXACT_P_VALUES_USER, float p[]  (Output)
Storage for array p is provided by the user. See IMSLS_EXACT_P_VALUES.

Row p-values

0 The exact left-tailed p-value.

1 The exact right-tailed p-value.

2 The exact two-tailed p-value.
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IMSLS_STAT, float **stat  (Output)
Address of a pointer to an internally allocated array of length 10 containing the following statistics: 

IMSLS_STAT_USER, float stat[]  (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

Description
Function imsls_f_wilcoxon_rank_sum conducts the Wilcoxon rank sum test for identical population dis-
tribution functions. The Wilcoxon test and the Mann-Whitney U test are equivalent. If the difference between the 
two populations can be attributed solely to a difference in location, then the Wilcoxon test becomes a test of 
equality of the population means (or medians) and is the nonparametric equivalent of the two-sample t-test. 
Function imsls_f_wilcoxon_rank_sum obtains ranks in the combined sample after first eliminating miss-
ing values from the data. The rank sum statistic is then computed as the sum of the ranks in the x sample. Three 
methods for handling ties are used. (A tie is counted when two observations are within fuzz of each other.) 
Method 1 uses the largest possible rank for tied observations in the smallest sample, while Method 2 uses the 
smallest possible rank for these observations. Thus, the range of possible rank sums is obtained. 

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x 
observations) adjusted for ties in such a manner that 
W is as small as possible.

1 2 × E(W) − W, where E(W) is the expected value of W.

2 Probability of obtaining a statistic less than or equal to 
min{W, 2 × E(W) − W}.

3 W statistic adjusted for ties in such a manner that W is 
as large as possible.

4 2 × E(W) − W, where E(W) is the expected value of W, 
adjusted for ties in such a manner that W is as large as 
possible.

5 probability of obtaining a statistic less than or equal to 
min{W, 2 × E(W) − W}, adjusted for ties in such a man-
ner that W is as large as possible.

6 W statistic with average ranks used in case of ties.

7 Estimated standard error of stat [6] under the null 
hypothesis of no difference.

8 Standard normal score associated with stat [6].

9 Two-sided p-value associated with stat[8].
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Method 3 uses the average rank of the tied observations for handling tied observations between samples. 
Asymptotic standard normal scores are computed for the W score (based on a variance that has been adjusted 
for ties) when average ranks are used (see Conover 1980, p. 217), and the probability associated with the two-
sided alternative is computed.

The p-value returned in stat[9] is the two-sided p-value calculated using the normal approximation with the 
normal score returned in stat[8]. The p-value returned by this routine is either the approximate or exact two-
sided p-value depending upon the number of observations and IMSLS_EXACT_P_VALUES. The exact two-
sided p-value is returned when the optional argument IMSLS_EXACT_P_VALUES is used or when both nx 
and ny are 25 or less.

Hypothesis Tests
In each of the following tests, the first line gives the hypothesis (and its alternative) under the assumptions 1 to 3 
below, while the second line gives the hypothesis when assumption 4 is also true. The rejection region is the 
same for both hypotheses and is given in terms of Method 3 for handling ties. Another output statistic should be 
used, (stat[0] or stat[3]), if another method for handling ties is desired.

Assumptions
1. Arguments x and y contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater than, or equal to exists 
among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for some constant c(i.e., the 
distribution of y is, at worst, a translation of the distribution of x).

Test Null and Alternative Hypothesis Action

1 H0:Pr(x < y) = 0.5 vs H1:Pr(x < y) ≠ 0.5 or 

H0:E(x) = E(y) vs H1:E(x) ≠ E(y)

Reject if p_value is less than the 
user’s significance level of the test.

2 H0:Pr(x < y) ≤ 0.5 vs H1:Pr(x < y) > 0.5

or
H0:E(x) ≥ E(y) vs H1:E(x) < E(y)

Reject if stat[6] is too small or if 
p[0] is less than the user’s signifi-
cance level of the test

3 H0:Pr(x < y) ≥ 0.5 vs H1:Pr(x < y) < 0.5

or
H0:E(x) ≤ E(y)) vs H1:E(x) > E(y)

Reject if stat[6] is too large or if 
p[1] is less than the user’s signifi-
cance level of the test
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The p-values are calculated using either the large-sample normal approximation or the exact probability calcula-
tions. This approximate calculation is usually considered adequate when the size of one or both samples is 
greater than 50. For smaller samples, the exact probability calculations returned by IMSLS_EXACT_P_VALUES 
are recommended. 

Example
The following example is taken from Conover (1980, p. 224). It involves the mixing time of two mixing machines 
using a total of 10 batches of a certain kind of batter, five batches for each machine. The null hypothesis is not 
rejected at the 5-percent level of significance. The warning error is always printed when one or more ties are 
detected, unless printing for warning errors is turned off. See function imsls_error_options (Chapter 15, 
Utilities).

The statistics are output in the array stat.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   nx = 5;
   int   ny = 5;
   float x[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
   float y[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
   float *stat, *p;
   char  *labels[10] = {
       "Wilcoxon W statistic ......................",
       "2*E(W) - W ................................",
       "p-value ...................................",
       "Adjusted Wilcoxon statistic ...............",
       "Adjusted 2*E(W) - W .......................",
       "Adjusted p-value ..........................",
       "W statistics for averaged ranks............",
       "Standard error of W (averaged ranks) ......",
       "Standard normal score of W (averaged ranks)",
       "Approximate Two-sided p-value of W  ......"
   };
   imsls_f_wilcoxon_rank_sum(nx, x, ny, y,
       IMSLS_EXACT_P_VALUES, &p,
       IMSLS_STAT, &stat,
       0);
   imsls_f_write_matrix("statistics", 10, 1, stat,
       IMSLS_ROW_LABELS, labels,
       IMSLS_WRITE_FORMAT, "%7.3f", 
       0);
   printf("Exact Left-Tailed p-value ................. %8.3f\n", p[0]);
   printf("Exact Right-Tailed p-value ................ %8.3f\n", p[1]);
   printf("Exact Two-sided p-value ................... %8.3f\n", p[2]);
}
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Output

*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
***         At least one tie is detected between the samples.

                    statistics
Wilcoxon W statistic ......................  34.000
2*E(W) - W ................................  21.000
p-value ...................................   0.110
Adjusted Wilcoxon statistic ...............  35.000
Adjusted 2*E(W) - W .......................  20.000
Adjusted p-value ..........................   0.075
W statistics for averaged ranks............  34.500
Standard error of W (averaged ranks) ......   4.758
Standard normal score of W (averaged ranks)   1.471
Approximate Two-sided p-value of W  ......    0.141
Exact Left-Tailed p-value .................   0.937
Exact Right-Tailed p-value ................   0.079
Exact Two-sided p-value ...................   0.159

Warning Errors

Fatal Errors

IMSLS_AT_LEAST_ONE_TIE At least one tie is detected between the samples.

IMSLS_ALL_X_Y_MISSING Each element of x and/or y is a missing (NaN, Not a 
Number) value.
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kruskal_wallis_test
Performs a Kruskal-Wallis test for identical population medians.

Synopsis
#include <imsls.h>
float *imsls_f_kruskal_wallis_test (int n_groups, int ni[], float y[], ..., 0)

The type double function is imsls_d_kruskal_wallis_test.

Required Arguments
int n_groups  (Input)

Number of groups. 

int ni[] (Input)
Array of length n_groups containing the number of responses for each of the n_groups groups.

float y[]  (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the responses for each of the 
n_groups groups. y must be sorted by group, with the ni[0] observations in group 1 coming 
first, the ni[1] observations in group two coming second, and so on.

Return Value
Array of length 4 containing the Kruskal-Wallis statistics. 

i stat[i]
0 Kruskal-Wallis H statistic.

1 Asymptotic probability of a larger H under the null hypothe-
sis of identical population medians.

2 H corrected for ties.

3 Asymptotic probability of a larger H (corrected for ties) 
under the null hypothesis of identical populations.
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Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_kruskal_wallis_test (int n_groups, int ni, float y[],

IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz  (Input)

Constant used to determine ties in y. If (after sorting) |y[i] – y[i + 1]| is less than or equal to 
fuzz, then a tie is counted. fuzz must be nonnegative.

IMSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of Kruskal-Wallis statistics.

Description
The function imsls_f_kruskal_wallis_test generalizes the Wilcoxon two-sample test computed by 
routine imsls_f_wilcoxon_rank_sum to more than two populations. It computes a test statistic for testing 
that the population distribution functions in each of K populations are identical. Under appropriate assumptions, 
this is a nonparametric analogue of the one-way analysis of variance. Since more than two samples are involved, 
the alternative is taken as the analogue of the usual analysis of variance alternative, namely that the populations 
are not identical.

The calculations proceed as follows: All observations are ranked regardless of the population to which they 
belong. Average ranks are used for tied observations (observations within fuzz of each other). Missing observa-
tions (observations equal to NaN, not a number) are not included in the ranking. Let Ri denote the sum of the 

ranks in the i-th population. The test statistic H is defined as:

where N is the total of the sample sizes, ni is the number of observations in the i-th sample, and S2 is computed 

as the (bias corrected) sample variance of the Ri. 

H = 1
S2∑

i=1

K Ri
2

ni −
N N + 1 2

4
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The null hypothesis is rejected when stat[3] (or stat[1]) is less than the significance level of the test. If the 
null hypothesis is rejected, then the procedures given in Conover (1980, page 231) may be used for multiple com-
parisons. The routine imsls_f_kruskal_wallis_test computes asymptotic probabilities using the chi-
squared distribution when the number of groups is 6 or greater, and a Beta approximation (see Wallace 1959) 
when the number of groups is 5 or less. Tables yielding exact probabilities in small samples may be obtained from 
Owen (1962).

Example
The following example is taken from Conover (1980, page 231). The data represents the yields per acre of four 
different methods for raising corn. Since H = 25.5, the four methods are clearly different. The warning error is 
always printed when the Beta approximation is used, unless printing for warning errors is turned off. 

#include <imsls.h>
int main()
{
  int ngroup = 4, ni[] = {9, 10, 7, 8};
  float y[] = {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,
    81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91.,
    93., 96., 95., 94., 78., 82., 81., 77., 79., 81., 80.,
    81.};
  float fuzz = .001, stat[4];
  char *rlabel[] = {"H (no ties)   =",
                 "Prob (no ties) =",
                 "H (ties)      =",
                 "Prob (ties)   ="};
  imsls_f_kruskal_wallis_test(ngroup, ni, y,
    IMSLS_FUZZ, fuzz,
    IMSLS_RETURN_USER, stat,
    0);
  imsls_f_write_matrix(" ", 4, 1, stat,
    IMSLS_ROW_LABELS, rlabel,
    0);
}

Output

*** WARNING ERROR from imsls_kruskal_wallis_test. The chi-squared degrees 
***  of freedom are less than 5, so the Beta approximation is used.
H (no ties)    =    25.46
Prob (no ties) =     0.00
H (ties)       =    25.63
Prob (ties)    =     0.00
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friedmans_test
Performs Friedman’s test for a randomized complete block design.

Synopsis
#include <imsls.h>
float imsls_f_friedmans_test (int n_blocks, int n_treatments, float y[], ..., 0)

The type double function is imsls_d_friedmans_test.

Required Arguments
int n_blocks  (Input)

Number of blocks. 

int n_treatments  (Input)
Number of treatments.

float y[] (Input)
Array of size n_blocks × n_treatments containing the observations. The first 
n_treatments positions of y[] contain the observations on treatments 1, 2, …, n_treatments 
in the first block. The second n_treatments positions contain the observations in the second 
block, etc., and so on.

Return Value
The Chi-squared approximation of the asymptotic p-value for Friedman’s two-sided test statistic. 

Synopsis with Optional Arguments
#include <imsls.h> 

float  imsls_f_friedmans_test ( n_blocks, int n_treatments, float y[],

IMSLS_FUZZ, fuzz,
IMSLS_ALPHA, float alpha,
IMSLS_STAT, float **stat,
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IMSLS_STAT_USER, float stat[],
IMSLS_SUM_RANK, float **sum_ranks,
IMSLS_SUM_RANK_USER, float sum_rank[],
IMSLS_DIFFERENCE, float *difference,
0)

Optional Arguments
IMSLS_FUZZ, float fuzz  (Input)

Constant used to determine ties. In the ordered observations, if |y[i] –y[i + 1]| is less than 
or equal to fuzz, then y[i] and y[i + 1] are said to be tied.

Default value is 0.0.

IMSLS_ALPHA, float alpha  (Input)
Critical level for multiple comparisons. alpha should be between 0 and 1 exclusive. 
Default value is 0.05.

IMSLS_STAT, float **stat  (Output)  
Address of a pointer to an array of length 6 containing the Friedman statistics. Probabilities reported 
are computed under the appropriate null hypothesis.

IMSLS_STAT_USER, float stat[]  (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

IMSLS_SUM_RANK, float **sum_rank  (Output) 
Address of a pointer to an array of length n_treatments containing the sum of the ranks of each 
treatment.

i stat[i]
0 Friedman two-sided test statistic.

1 Approximate F value for stat[0].

2 Page test statistic for testing the ordered alternative that 
the median of treatment i is less than or equal to the 
median of treatment i + 1, with strict inequality holding for 
some i.

3 Asymptotic p-value for stat[0]. Chi-squared 
approximation.

4 Asymptotic p-value for stat[1]. F approximation.

5 Asymptotic p-value for stat[2]. Normal approximation.
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IMSLS_SUM_RANK_USER, float sum_rank[]  (Output)
Storage for array sum_rank is provided by the user. 
See IMSLS_SUM_RANK.

IMSLS_DIFFERENCE, float *difference  (Output)
Minimum absolute difference in two elements of sum_rank to infer at the alpha level of significance 
that the medians of the corresponding treatments are different.

Description
Function imsls_f_friedmans_test may be used to test the hypothesis of equality of treatment effects 
within each block in a randomized block design. No missing values are allowed. Ties are handled by using the 
average ranks. The test statistic is the nonparametric analogue of an analysis of variance F test statistic. 

The test proceeds by first ranking the observations within each block. Let A denote the sum of the squared ranks, 
i.e., let

where Rank(Yij) is the rank of the i-th observation within the j-th block, b = n_blocks is the number of blocks, 

and k = n_treatments is the number of treatments. Let

where 

The Friedman test statistic (stat[0]) is given by:

that, under the null hypothesis, has an approximate chi-squared distribution with k - 1 degrees of freedom. The 
asymptotic probability of obtaining a larger chi-squared random variable is returned in stat[3]. 

A =∑
i=1

k

∑
j=1

b

Rank Yi j
2

B = 1b∑
i=1

k

Ri
2

Ri =∑
j=1

b

Rank Yi j

T =
k − 1 bB − b2k k + 1 2 / 4

A − bk k + 1 2 / 4
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If the F distribution is used in place of the chi-squared distribution, then the usual oneway analysis of variance F-
statistic computed on the ranks is used. This statistic, reported in stat[1], is given by 

and asymptotically follows an F distribution with (k - 1) and (b - 1)(k - 1) degrees of freedom under the null 
hypothesis. stat[4] is the asymptotic probability of obtaining a larger F random variable. (If A = B, stat[0] 

and stat[1] are set to machine infinity, and the significance levels are reported as k!/(k!)b, unless this computa-
tion would cause underflow, in which case the significance levels are reported as zero.) Iman and Davenport 
(1980) discuss the relative advantages of the chi-squared and F approximations. In general, the F approximation 
is considered best. 

The Friedman T statistic is related both to the Kendall coefficient of concordance and to the Spearman rank cor-
relation coefficient. See Conover (1980) for a discussion of the relationships. 

If, at the α = alpha level of significance, the Friedman test results in rejection of the null hypothesis, then an 
asymptotic test that treatments i and j are different is given by: reject H0 if |Ri - Rj| > D, where

where t has (b - 1)(k - 1) degrees of freedom. Page’s statistic (stat[2]) is used to test the same null hypothesis 
as the Friedman test but is sensitive to a monotonic increasing alternative. The Page test statistic is given by

It is largest (and thus most likely to reject) when the Ri are monotonically increasing.

Assumptions
The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually independent (i.e., the results 
within one block have no effect on the results within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each block is equally likely. The alterna-
tive is that at least one of the treatments tends to have larger values than one or more of the other treatments. 
The Friedman test is a test for the equality of treatment means or medians.

F =
b − 1 T

b k − 1 − T

D = t1−α/2 2b A − B / b − 1 k − 1 1/2

Q =∑
i=1

k

jRi
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Example
The following example is taken from Bradley (1968), page 127, and tests the hypothesis that 4 drugs have the 
same effects upon a person’s visual acuity. 

Five subjects were used.

#include <imsls.h>
#include <stdio.h>
int main()
{  

 int n_blocks = 5, n_treatments = 4;
 float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69,.64,

 .62,.41,.57,.28,.35,.65,.57,.53,.60};
 float fuzz = .001, alpha = .05;  
 float pvalue, *sum_rank, stat[6], difference;
 pvalue = imsls_f_friedmans_test(n_blocks, n_treatments, y,

 IMSLS_SUM_RANK, &sum_rank, 
 IMSLS_STAT_USER, stat,  
 IMSLS_DIFFERENCE, &difference, 
 0);

 printf("\np value for Friedman's T = %f\n\n", pvalue);
 printf("Friedman's T = ............  %4.2f\n", stat[0]);
 printf("Friedman's F = ............  %4.2f\n", stat[1]);
 printf("Page Test = ...............  %5.2f\n", stat[2]);
 printf("Prob Friedman's T = .......  %7.5f\n", stat[3]);
 printf("Prob Friedman's F = .......  %7.5f\n", stat[4]);
 printf("Prob Page Test = ..........  %7.5f\n", stat[5]);
 printf("Sum of Ranks = ............  %4.2f %4.2f %4.2f %4.2f\n",

 sum_rank[0], sum_rank[1], sum_rank[2], sum_rank[3]);
 printf("difference = ..............  %7.5f\n", difference);

}

Output

P value for Friedman’s T = 0.040566
p value for Friedman's T = 0.040566
Friedman's T = ............  8.28
Friedman's F = ............  4.93
Page Test = ...............  111.00
Prob Friedman's T = .......  0.04057
Prob Friedman's F = .......  0.01859
Prob Page Test = ..........  0.98495
Sum of Ranks = ............  16.00 17.00 7.00 10.00
difference = ..............  6.656388

The Friedman null hypothesis is rejected at the α = .05 while the Page null hypothesis is not. (A Page test with a 
monotonic decreasing alternative would be rejected, however.) Using sum_rank and difference, one can 
conclude that treatment 3 is different from treatments 1 and 2, and that treatment 4 is different from treatment 
2, all at the α = .05 level of significance.
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cochran_q_test
Performs a Cochran Q test for related observations.

Synopsis
#include <imsls.h>
float imsls_f_cochran_q_test (int n_observations, int n_variables, float x[], .… 0)

The type double function is imsls_d_cochran_q_test.

Required Arguments
int n_observations  (Input)

Number of blocks for each treatment.

int n_variables  (Input)
Number of treatments.

float x[]  (Input)
Array of size n_observations × n_variables containing the matrix of dichotomized data. 
There are n_observations readings of zero or one on each of the n_variables treatments.

Return Value
The p-value, p_value, for the Cochran Q statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_cochran_q_test (int n_observations, int n_variables, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Q_STATISTIC, float *q,
0)
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Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Number of columns in x.

Default: x_col_dim = n_variables
IMSLS_Q_STATISTIC, float *q  (Output)

Cochran’s Q statistic.

Description
Function imsls_f_cochran_q_test computes the Cochran Q test statistic that may be used to determine 
whether or not M matched sets of responses differ significantly among themselves. The data may be thought of 
as arising out of a randomized block design in which the outcome variable must be success or failure, coded as 
1.0 and 0.0, respectively. Within each block, a multivariate vector of 1’s or 0’s is observed. The hypothesis is that 
the probability of success within a block does not depend upon the treatment.

Assumptions
1. The blocks are a random sample from the population of all possible blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis
The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.

H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.

H0:pi1 = pi2 = … = pic for each i.

H1:pij ≠ pik for some i, and some j ≠ k.

where c (equal to n_variables) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.
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Remarks
1. The input data must consist of zeros and ones only. For example, the data may be pass-fail informa-

tion on n_variables questions asked of n_observations people or the test responses of 
n_observations individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with n_variables − 1 degrees 
of freedom if n_observations is not too small. n_observations greater than or equal to 
5 × n_variables is a conservative recommendation.

Example
The following example is taken from Siegal (1956, p. 164). It measures the responses of 18 women to 3 types of 
interviews.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float pq;
   float x[54] = {
       0.0, 0.0, 0.0,
       1.0, 1.0, 0.0,
       0.0, 1.0, 0.0,
       0.0, 0.0, 0.0,
       1.0, 0.0, 0.0,
       1.0, 1.0, 0.0,
       1.0, 1.0, 0.0,
       0.0, 1.0, 0.0,
       1.0, 0.0, 0.0,
       0.0, 0.0, 0.0,
       1.0, 1.0, 1.0,
       1.0, 1.0, 1.0,
       1.0, 1.0, 0.0,
       1.0, 1.0, 0.0,
       1.0, 1.0, 0.0,
       1.0, 1.0, 1.0,
       1.0, 1.0, 0.0,
       1.0, 1.0, 0.0};
   pq = imsls_f_cochran_q_test(18, 3, x,
       0);
   printf("pq = %9.5f\n", pq);
}

Output

pq =  0.00024
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Warning Errors

Fatal Errors

IMSLS_ALL_0_OR_1 “x” consists of either all ones or all zeros. “q” is set to 
NaN (not a number). “pq” is set to 1.0.

IMSLS_INVALID_X_VALUES “x[#][#]” = #. “x” must consist of zeros and ones 
only.
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k_trends_test
Performs a k-sample trends test against ordered alternatives.

Synopsis
#include <imsls.h>
float *imsls_f_ k_trends_test (int n_groups, int ni[], float y[], ..., 0)

The type double function is imsls_d_ k_trends_test.

Required Arguments
int n_groups  (Input)

Number of groups. Must be greater than or equal to 3.

int ni[]  (Input)
Array of length n_groups containing the number of responses for each of the n_groups groups.

float y[]  (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the responses for each of the 
n_groups groups. y must be sorted by group, with the ni[0] observations in group 1 coming 
first, the ni[1] observations in group two coming second, and so on.

Return Value
Array of length 17 containing the test results. 

i stat[i]
0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null 
hypothesis.

2 p-value associated with stat[0].

3 p-value associated with stat[1].

4 Continuity corrected stat[2].

5 Continuity corrected stat [3].
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Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_k_trends_test (int n_groups, int ni, float y[], 

IMSLS_RETURN_USER, float stat[], 
0)

Optional Arguments
IMSLS_RETURN_USER, float stat[] (Output)

User defined array for storage of test results.

Description
Function imsls_f_k_trends_test performs a k-sample trends test against ordered alternatives. The alter-
native to the null hypothesis of equality is that F1(X) < F2(X) < ... Fk(X), where F1, F2, etc., are cumulative 

distribution functions, and the operator < implies that the less than relationship holds for all values of X. While 
the trends test used in k_trends_test requires that the background populations be continuous, ties occur-
ring within a sample have no effect on the test statistic or associated probabilities. Ties between samples are 
important, however. Two methods for handling ties between samples are used. These are:

1. Ties are randomly split (stat[0]).

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewness is zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon stat[0].

10 Coefficient of rank correlation based upon stat[1].

11 Total number of ties between samples.

12 The t-statistic associated with stat [2].

13 The t-statistic associated with stat[3].

14 The t-statistic associated with stat [4].

15 The t-statistic associated with stat[5].

16 Degrees of freedom for each t-statistic.

i stat[i]
622



 Nonparametric Statistics         k_trends_test
2. Ties are counted in a manner that is unfavorable to the alternative hypothesis (stat[1]).

Computational Procedure
Consider the matrices 

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation in the m-th population, and 

each matrix Mkm is nk by nm where ni = ni[i]. Let Skm denote the sum of all elements in Mkm. Then, stat[1] 

is computed as the sum over all elements in Skm, minus the expected value of this sum (computed as

when there are no ties and the distributions in all populations are equal). In stat[0], ties are broken randomly, 
and the element in the summation is taken as 2.0 or 0.0 depending upon the result of breaking the tie. 

stat[2] and stat[3] are computed using the t distribution. The probabilities reported are asymptotic 
approximations based upon the t statistics in stat[12] and stat[13], which are computed as in Jonckheere 
(1954, page 141). 

Similarly, stat[4] and stat[5] give the probabilities for stat[14] and stat[15], the continuity cor-
rected versions of stat[2] and stat[3]. The degrees of freedom for each t statistic (stat[16]) are 
computed so as to make the t distribution selected as close as possible to the actual distribution of the statistic 
(see Jonckheere 1954, page 141). 

stat[6], the variance of the test statistic stat[0], and stat[7], the kurtosis of the test statistic, are com-
puted as in Jonckheere (1954, page 138). The coefficients of rank correlation in stat[8] and stat[9] reduce 

to the Kendall  statistic when there are just two groups. 

Exact probabilities in small samples can be obtained from tables in Jonckheere (1954). Note, however, that the t 
approximation appears to be a good one.

Assumptions
1. The Xmi for each sample are independently and identically distributed according to a single continu-

ous distribution.

2. The samples are independent.

Mkm = mi j
km =

2 if Xki < Xmj
0 otherwise

∑
k<m
nknm

τ
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Hypothesis tests
H0 : F1(X) ≥ F2(X) ≥ ... ≥ Fk(X) 

H1 : F1(X) < F2(X) < ... < Fk(X) 

Reject if stat[2] (or stat[3], or stat[4] or stat[5], depending upon the method used) is too large.

Example
The following example is taken from Jonckheere (1954, page 135). It involves four observations in four indepen-
dent samples.

#include <imsls.h>
int main()
{
   float *stat;
   int n_groups = 4;
   int ni[] = {4, 4, 4, 4};
   char *fmt = "%9.5f";
   char *rlabel[] = {
       "stat[0] - Test Statistic (random) .............",
       "stat[1] - Test Statistic (null hypothesis) ....",
       "stat[2] - p-value for stat[0] .................",
       "stat[3] - p-value for stat[1] .................",
       "stat[4] - Continuity corrected for stat[2] ....",
       "stat[5] - Continuity corrected for stat[3] ....",
       "stat[6] - Expected mean .......................",
       "stat[7] - Expected kurtosis ...................",
       "stat[8] - Total sample size ...................",
       "stat[9] - Rank corr. coef. based on stat[0] ...",
       "stat[10]- Rank corr. coef. based on stat[1] ...",
       "stat[11]- Total number of ties ................",
       "stat[12]- t-statistic associated w/stat[2] ....",
       "stat[13]- t-statistic asscoiated w/stat[3] ....",
       "stat[14]- t-statistic associated w/stat[4] ....",
       "stat[15]- t-statistic asscoiated w/stat[5] ....",
       "stat[16]- Degrees of freedom .................."
   };
   float y[] = {19., 20., 60., 130., 21., 61., 80., 129.,
       40., 99., 100., 149., 49., 110., 151., 160.};
   stat = imsls_f_k_trends_test(n_groups, ni, y,
       0);
   imsls_f_write_matrix("stat", 17, 1, stat,
       IMSLS_WRITE_FORMAT, fmt,
       IMSLS_ROW_LABELS, rlabel,
       0);
}
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Output

stat(0) - Test statistic (random) ...........   46.00000
stat(1) - Test statistic (null hypothesis) ..   46.00000
stat(2) - p-value for stat(0) ...............    0.01483
stat(3) - p-value for stat(1) ...............    0.01483
stat(4) - Continuity corrected stat(2) ......    0.01683
stat(5) - Continuity corrected stat(3) ......    0.01683
stat(6) - Expected mean .....................  458.66666
stat(7) - Expected kurtosis .................   -0.15365
stat(8) - Total sample size .................   16.00000
stat(9)- Rank corr. coef. based on stat(0) .    0.47917
stat(10)- Rank corr. coef. based on stat(1) .    0.47917
stat(11)- Total number of ties ..............    0.00000
stat(12)- t-statistic associated w/stat(2) ..    2.26435
stat(13)- t-statistic associated w/stat(3) ..    2.26435
stat(14)- t-statistic associated w/stat(4) ..    2.20838
stat(15)- t-statistic associated w/stat(5) ..    2.20838
stat(16)- Degrees of freedom ................   36.04963
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Tests of Goodness of Fit

Functions
General Goodness-of-fit tests

Chi-squared goodness-of-fit test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . chi_squared_test     628
Conducts the Shapiro-Wilk test for normality. . . . . . . . . . . . shapiro_wilk_normality_test     640
Performs a Lilliefors test for normality . . . . . . . . . . . . . . . . . . . . . lilliefors_normality_test     643
Performs a chi-squared test for normality . . . . . . . . . . . . . . chi_squared_normality_test     646
One-sample continuous data Kolmogorov-Smirnov  . . . . . . . . . . . . . . . kolmogorov_one     649
Two-sample continuous data Kolmogorov-Smirnov  . . . . . . . . . . . . . . . kolmogorov_two     653
Mardia’s test for multivariate normality  . . . . . . . . . . . . . . . . . . . . multivar_normality_test     657
Anderson-Darling test for normality . . . . . . . . . . . . . . . . . . . . . . . . . . . ad_normality_test     662
Cramer-Von Mises test for normality . . . . . . . . . . . . . . . . . . . . . . . . . cvm_normality_test     665

Tests for Randomness 
Runs test, Paris-serial test, d2 test or triplets tests . . . . . . . . . . . . . . . .randomness_test     668
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Usage Notes
The functions in this chapter are used to test for goodness of fit and randomness. The goodness-of-fit tests are 
described in Conover (1980). There are two goodness-of-fit tests for general distributions, a Kolmog-
orov-Smirnov test and a chi-squared test. The user supplies the hypothesized cumulative distribution function 
for these two tests.

There is one function (Lilliefors) that can be used to test specifically for exponential distributions and five func-
tions (Shapiro-Wilk, Lilliefors, Mardia, Anderson-Darling, and Cramer-von Mises) that can be used to test 
specifically for normal distributions.

When the sample size is less than 5,000 observations, the Shapiro-Wilk test provides an accurate estimate for 
the p-value of this test. Lilliefors test is also popular but it only provides accurate p-value estimates for values 
between 0.01 and 0.1. Values below 0.01 are always returned as 0.01, and values above 0.1 are returned as 0.5. 
The general version of the chi-squared test is also available for the normal distribution.

The tests for randomness are often used to evaluate the adequacy of pseudorandom number generators. These 
tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov functions in this chapter compute exact probabilities in small to moderate sample 
sizes. The chi-squared goodness-of-fit test may be used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov, chi-squared, Anderson-Darling, and Cramer-von Mises goodness-of-fit test functions 
allow for missing values (NaN, not a number) in the input data. The functions that test for randomness do not 
allow for missing values.
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chi_squared_test
Performs a chi-squared goodness-of-fit test.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(), int n_observations, int 

n_categories, float x[], ..., 0)

The type double function is imsls_d_chi_squared_test.

Required Arguments
float user_proc_cdf (float y)  (Input)

User-supplied function that returns the hypothesized, cumulative distribution function at the point y.

int n_observations  (Input)
Number of data elements input in x.

int n_categories  (Input)
Number of cells into which the observations are to be tallied.

float x[]  (Input)
Array with n_observations components containing the vector of data elements for this test.

Return Value
The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(), int n_observations, 

int n_categories, float x[],

IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSLS_IDO, int ido,
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IMSLS_CUTPOINTS, float **cutpoints,
IMSLS_CUTPOINTS_USER, float cutpoints[],
IMSLS_CUTPOINTS_EQUAL,
IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DEGREES_OF_FREEDOM, float *df,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_BOUNDS, float lower_bound, float upper_bound,
IMSLS_CELL_COUNTS, float **cell_counts,
IMSLS_CELL_COUNTS_USER, float cell_counts[],
IMSLS_CELL_EXPECTED, float **cell_expected,
IMSLS_CELL_EXPECTED_USER, float cell_expected[],
IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared,
IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters  (Input)

Number of parameters estimated in computing the cumulative distribution function.

IMSLS_IDO, int ido  (Input)
Processing option. The argument ido must be one of 0, 1, 2, or 3. If ido = 0 (the default), all of the 
observations are input during one invocation. If ido = 1, 2, or 3, blocks of rows of the data can be 
processed sequentially in separate invocations of imsls_f_chi_squared_test; with this 
option, it is not a requirement that all observations be memory resident, thus enabling one to handle 
large data sets.

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be made. 
Initialization and updating for the n_observations observations of x 
will be performed.

2 This is an intermediate invocation; updating for the n_observations 
observations of x will be performed.

3 This is the final invocation of this function. Updating for the data in x 
and wrap-up computations are performed. Workspace is released. No 
further invocations of imsls_f_chi_squared_test with ido greater 
than 1 should be made without first invoking 
imsls_f_chi_squared_test with ido = 1.
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Default: ido =  0

IMSLS_CUTPOINTS, float **cutpoints  (Output)
Address of a pointer to an internally allocated array of length n_categories − 1 containing the 
vector of cutpoints defining the cell intervals. The intervals defined by the cutpoints are such that the 
lower endpoint is not included and the upper endpoint is included in any interval. If 
IMSLS_CUTPOINTS_EQUAL is specified, equal probability cutpoints are computed and returned 
in cutpoints. 

IMSLS_CUTPOINTS_USER, float cutpoints[]  (Input/Output)
Storage for array cutpoints is provided by the user. See IMSLS_CUTPOINTS.

IMSLS_CUTPOINTS_EQUAL
If IMSLS_CUTPOINTS_USER is specified, then equal probability cutpoints can still be used if, in 
addition, the IMSLS_CUTPOINTS_EQUAL option is specified. If IMSLS_CUTPOINTS_USER is 
not specified, equal probability cutpoints are used by default.

IMSLS_CHI_SQUARED, float *chi_squared  (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.

IMSLS_DEGREES_OF_FREEDOM, float *df  (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is returned in *df.

IMSLS_FREQUENCIES, float frequencies[]  (Input)
Array with n_observations components containing the vector frequencies for the observations 
stored in x.

IMSLS_BOUNDS, float lower_bound, float upper_bound  (Input)
If IMSLS_BOUNDS is specified, then lower_bound is the lower bound of the range of the distribu-
tion and upper_bound is the upper bound of this range. If lower_bound = upper_bound, a 
range on the whole real line is used (the default). If the lower and upper endpoints are different, 
points outside the range of these bounds are ignored. Distributions conditional on a range can be 
specified when IMSLS_BOUNDS is used. By convention, lower_bound is excluded from the first 
interval, but upper_bound is included in the last interval.

IMSLS_CELL_COUNTS, float **cell_counts  (Output)
Address of a pointer to an internally allocated array of length n_categories containing the cell 
counts. The cell counts are the observed frequencies in each of the n_categories cells. 

IMSLS_CELL_COUNTS_USER, float cell_counts[]  (Output)
Storage for array cell_counts is provided by the user. See IMSLS_CELL_COUNTS.
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IMSLS_CELL_EXPECTED, float **cell_expected  (Output)
Address of a pointer to an internally allocated array of length n_categories containing the cell 
expected values. The expected value of a cell is the expected count in the cell given that the hypoth-
esized distribution is correct.

IMSLS_CELL_EXPECTED_USER, float cell_expected[]  (Output)
Storage for array cell_expected is provided by the user. See IMSLS_CELL_EXPECTED.

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared  (Output)
Address of a pointer to an internally allocated array of length n_categories containing the cell 
contributions to chi-squared. 

IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[]  (Output)
Storage for array cell_chi_squared is provided by the user. See 
IMSLS_CELL_CHI_SQUARED.

IMSLS_FCN_W_DATA, float user_proc_cdf (float y), void *data, (Input)
User-supplied function that returns the hypothesized, cumulative distribution function, which also 
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to 
the user-supplied function. See the Passing Data to User-Supplied Functions section at the beginning 
of this manual for more details.

Description
Function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit test that a random sample 
of observations is distributed according to a specified theoretical cumulative distribution. The theoretical distri-
bution, which can be continuous, discrete, or a mixture of discrete and continuous distributions, is specified by 
the user-defined function user_proc_cdf. Because the user is allowed to give a range for the observations, a 
test that is conditional on the specified range is performed.

Argument n_categories gives the number of intervals into which the observations are to be divided. By 
default, equiprobable intervals are computed by imsls_f_chi_squared_test, but intervals that are not 
equiprobable can be specified through the use of optional argument IMSLS_CUTPOINTS.

Regardless of the method used to obtain the cutpoints, the intervals are such that the lower endpoint is not 
included in the interval, while the upper endpoint is always included. If the cumulative distribution function has 
discrete elements, then user-provided cutpoints should always be used since imsls_f_chi_squared_test 
cannot determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are −∞ and +∞, respectively. If 
IMSLS_BOUNDS is specified, the endpoints are user-defined by the two arguments lower_bound and 
upper_bound.
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A tally of counts is maintained for the observations in x as follows:

 If the cutpoints are specified by the user, the tally is made in the interval to which xi belongs, using 
the user-specified endpoints.

 If the cutpoints are determined by imsls_f_chi_squared_test, then the cumulative 
probability at xi, F(xi), is computed by the function user_proc_cdf.

The tally for xi is made in interval number ⌊mF(xi) + 1⌋, where m = n_categories and ⌊·⌋ is the function that 

takes the greatest integer that is no larger than the argument of the function. Thus, if the computer time required 
to calculate the cumulative distribution function is large, user-specified cutpoints may be preferred to reduce the 
total computing time.

If the expected count in any cell is less than 1, then the chi-squared approximation may be suspect. A warning 
message to this effect is issued in this case, as well as when an expected value is less than 5.

Programming Notes
Function user_proc_cdf must be supplied with calling sequence user_proc_cdf(y), which returns the 
value of the cumulative distribution function at any point y in the (optionally) specified range. Many of the cumu-
lative distribution functions in Chapter 11, Probability Distribution Functions and Inverses, can be used for 
user_proc_cdf, either directly if the calling sequence is correct or indirectly if, for example, the sample means 
and standard deviations are to be used in computing the theoretical cumulative distribution function.

Examples 

Example 1

This example illustrates the use of imsls_f_chi_squared_test on a randomly generated sample from the 
normal distribution. One-thousand randomly generated observations are tallied into 10 equiprobable intervals. 
The null hypothesis, that the sample is from a normal distribution, is specified by use of imsls_f_normal_cdf 
( Chapter 11), as the hypothesized distribution function. In this example, the null hypothesis is not rejected.

#include <imsls.h>
#include <stdio.h>
#define SEED                   123457
#define N_CATEGORIES               10
#define N_OBSERVATIONS           1000
int main()
{
   float      *x, p_value;
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   imsls_random_seed_set(SEED);
   /* Generate Normal deviates */
   x = imsls_f_random_normal (N_OBSERVATIONS,
       0);
   /* Perform chi squared test */
   p_value = imsls_f_chi_squared_test (imsls_f_normal_cdf,
       N_OBSERVATIONS, N_CATEGORIES, x,
       0);
   /* Print results */
   printf ("p-value = %7.4f\n", p_value);
}

Output

p-value = 0.1546

Example 2

In this example, optional arguments are used for the data in the initial example.

#include <imsls.h>
#define SEED                   123457
#define N_CATEGORIES               10
#define N_OBSERVATIONS           1000
int main()
{
   float      *cell_counts, *cutpoints, *cell_chi_squared;
   float      chi_squared_statistics[3], *x;
   char       *stat_row_labels[] = {"chi-squared",
                                     "degrees of freedom","p-value"};
   imsls_random_seed_set(SEED);
                               /* Generate normal deviates */
   x = imsls_f_random_normal (N_OBSERVATIONS, 0);
                               /* Perform chi squared test */
   chi_squared_statistics[2] = 
       imsls_f_chi_squared_test (imsls_f_normal_cdf, 
                 N_OBSERVATIONS, N_CATEGORIES, x, 
                 IMSLS_CUTPOINTS,        &cutpoints, 
                 IMSLS_CELL_COUNTS,       &cell_counts, 
                 IMSLS_CELL_CHI_SQUARED,  &cell_chi_squared, 
                 IMSLS_CHI_SQUARED,       &chi_squared_statistics[0],
                 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
                 0);
                               /* Print results */
   imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1, 
       chi_squared_statistics,
       IMSLS_ROW_LABELS, stat_row_labels,
       0);
   imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1, 
       cutpoints, 0);
   imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES, 
       cell_counts, 0);
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   imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1, 
       N_CATEGORIES, cell_chi_squared, 
       0);
}

Output

                             Chi Squared Statistics
chi-squared             13.18
degrees of freedom       9.00
p-value                  0.15
                             Cut Points
        1          2          3          4          5          6
   -1.282     -0.842     -0.524     -0.253     -0.000      0.253
        7          8          9
    0.524      0.842      1.282
                             Cell Counts
        1          2          3          4          5          6
      106        109         89         92         83         87
        7          8          9         10
      110        104        121         99
                  Cell Contributions to Chi-Squared
        1          2          3          4          5          6
     0.36       0.81       1.21       0.64       2.89       1.69
        7          8          9         10
     1.00       0.16       4.41       0.01

Example 3

In this example, a discrete Poisson random sample of size 1,000 with parameter θ = 5.0 is generated by function 
imsls_f_random_poisson (Chapter 12, Random Number Generation). In the call to 
imsls_f_chi_squared_test, function imsls_f_poisson_cdf (Chapter 11, Probability Distribution 
Functions and Inverses) is used as function user_proc_cdf.

#include <imsls.h>
#define SEED                   123457
#define N_CATEGORIES           10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS              1000
#define THETA                  5.0
float          user_proc_cdf(float);
int main()
{
   int        i, *poisson;
   float      cell_statistics[3][N_CATEGORIES];
   float      chi_squared_statistics[3], x[N_NUMBERS];
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   float      cutpoints[]      = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 
                                     7.5, 8.5, 9.5};
   char       *cell_row_labels[] = {"count", "expected count", 
                                     "cell chi-squared"};
   char       *cell_col_labels[] = {"Poisson value", "0", "1", "2",
                                     "3", "4", "5", "6", "7", 
                                     "8", "9"};
   char       *stat_row_labels[] = {"chi-squared",
                                     "degrees of freedom","p-value"};
   imsls_random_seed_set(SEED);
                               /* Generate the data */
   poisson = imsls_random_poisson(N_NUMBERS, THETA, 0);
                              /* Copy data to a floating point vector*/
   for (i = 0; i < N_NUMBERS; i++) 
        x[i] = poisson[i];
   chi_squared_statistics[2] = 
       imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS, 
               N_CATEGORIES, x,
               IMSLS_CUTPOINTS_USER,       cutpoints,
               IMSLS_CELL_COUNTS_USER,     &cell_statistics[0][0], 
               IMSLS_CELL_EXPECTED_USER,   &cell_statistics[1][0], 
               IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
               IMSLS_CHI_SQUARED,          &chi_squared_statistics[0],
               IMSLS_DEGREES_OF_FREEDOM,   &chi_squared_statistics[1],
               0);
                               /* Print results */
   imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1, 
                       &chi_squared_statistics[0],
                       IMSLS_ROW_LABELS,    stat_row_labels,
                       0);
   imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES, 
                       &cell_statistics[0][0],
                       IMSLS_ROW_LABELS,    cell_row_labels,
                       IMSLS_COL_LABELS,    cell_col_labels,
                       IMSLS_WRITE_FORMAT,  "%9.1f",
                       0);
}

float user_proc_cdf(float k)
{
   float          cdf_v;
   cdf_v = imsls_f_poisson_cdf ((int) k, THETA);
   return cdf_v;
}

Output

   Chi-squared Statistics
chi-squared             10.48
degrees of freedom       9.00
p-value                  0.31
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                          Cell Statistics
Poisson value            0         1         2         3         4
count                 41.0      94.0     138.0     158.0     150.0
expected count        40.4      84.2     140.4     175.5     175.5
cell chi-squared       0.0       1.1       0.0       1.7       3.7
Poisson value            5         6         7         8         9
count                159.0     116.0      75.0      37.0      32.0
expected count       146.2     104.4      65.3      36.3      31.8
cell chi-squared       1.1       1.3       1.4       0.0       0.0

Example 4

Continuing with Example 1 data, the example below invokes the imsls_f_chi_squared_test function 
using values of ido greater than 0. Also, optional arguments are used for the data.

#include <imsls.h>
#define SEED                   123457
#define N_CATEGORIES               10
#define N_OBSERVATIONS           1000
#define N_OBSERVATIONS_BLOCK_1    300
#define N_OBSERVATIONS_BLOCK_2    300
#define N_OBSERVATIONS_BLOCK_3    400
int main()
{
   float      *cell_counts, *cutpoints, *cell_chi_squared;
   float      chi_squared_statistics[3], *x;
   char       *stat_row_labels[] = {"chi-squared",
                                     "degrees of freedom","p-value"};
   float  lv_x_block_1[N_OBSERVATIONS_BLOCK_1];
   float  lv_x_block_2[N_OBSERVATIONS_BLOCK_2];
   float  lv_x_block_3[N_OBSERVATIONS_BLOCK_3];
   int i;
   imsls_random_seed_set(SEED);
            /* Generate normal deviates */
   x = imsls_f_random_normal (N_OBSERVATIONS, 0);                  
   for(i=0; i<N_OBSERVATIONS_BLOCK_1; i++)
       lv_x_block_1[i]=x[i];  
   for(i=0; i<N_OBSERVATIONS_BLOCK_2; i++)
       lv_x_block_2[i]=x[N_OBSERVATIONS_BLOCK_1+i]; 
   for(i=0; i<N_OBSERVATIONS_BLOCK_3; i++)
       lv_x_block_3[i]=x[N_OBSERVATIONS_BLOCK_1+N_OBSERVATIONS_BLOCK_2+i];  
         /* Perform chi squared test */
   chi_squared_statistics[2] = imsls_f_chi_squared_test
       (imsls_f_normal_cdf,
       N_OBSERVATIONS_BLOCK_1, N_CATEGORIES, lv_x_block_1,
       IMSLS_IDO, 1,
       IMSLS_CUTPOINTS, &cutpoints,
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       IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
       IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
       IMSLS_CELL_COUNTS, &cell_counts,
       IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
       0);
   if (cutpoints) imsls_free (cutpoints);
   if (cell_counts) imsls_free (cell_counts);
   if (cell_chi_squared) imsls_free (cell_chi_squared);
   chi_squared_statistics[2] = imsls_f_chi_squared_test
       (imsls_f_normal_cdf,
       N_OBSERVATIONS_BLOCK_2, N_CATEGORIES, lv_x_block_2,
       IMSLS_IDO, 2, 
       IMSLS_CUTPOINTS, &cutpoints,
       IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
       IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
       IMSLS_CELL_COUNTS, &cell_counts,
       IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,  
       0);
   if (cutpoints) imsls_free (cutpoints);
   if (cell_counts) imsls_free (cell_counts);
   if (cell_chi_squared) imsls_free (cell_chi_squared);
   chi_squared_statistics[2] = imsls_f_chi_squared_test
       (imsls_f_normal_cdf,
       N_OBSERVATIONS_BLOCK_3, N_CATEGORIES, lv_x_block_3,
       IMSLS_IDO, 3, 
       IMSLS_CUTPOINTS, &cutpoints,
       IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
       IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
       IMSLS_CELL_COUNTS, &cell_counts,
       IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,  
       0);
            /* Print results */
   imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1, 
       chi_squared_statistics,
       IMSLS_ROW_LABELS, stat_row_labels,
       0);
   imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1, 
       cutpoints, 0);
   imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES, 
       cell_counts, 0);
   imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1, 
       N_CATEGORIES, cell_chi_squared, 
       0);
   if (cutpoints) imsls_free (cutpoints);
   if (cell_counts) imsls_free (cell_counts);
   if (cell_chi_squared) imsls_free (cell_chi_squared);
}

Output

                             Chi Squared Statistics
chi-squared             13.18
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degrees of freedom       9.00
p-value                  0.15
                             Cut Points
        1          2          3          4          5          6
   -1.282     -0.842     -0.524     -0.253     -0.000      0.253
        7          8          9
    0.524      0.842      1.282
                             Cell Counts
        1          2          3          4          5          6
      106        109         89         92         83         87
        7          8          9         10
      110        104        121         99
                  Cell Contributions to Chi-Squared
        1          2          3          4          5          6
     0.36       0.81       1.21       0.64       2.89       1.69
        7          8          9         10
     1.00       0.16       4.41       0.01

Warning Errors

Fatal Errors

IMSLS_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSLS_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

IMSLS_X_VALUE_OUT_OF_RANGE Row x contains a value which is out of range.

IMSLS_MISSING_DATA_ELEMENT At least one data element is missing.

IMSLS_ALL_OBSERVATIONS_MISSING All observations contain missing values.

IMSLS_INCORRECT_CDF_1 Function user_proc_cdf is not a cumulative distri-
bution function. The value at the lower bound must 
be nonnegative, and the value at the upper bound 
must not be greater than 1.

IMSLS_INCORRECT_CDF_2 Function user_proc_cdf is not a cumulative distri-
bution function. The probability of the range of the 
distribution is not positive.

IMSLS_INCORRECT_CDF_3 Function user_proc_cdf is not a cumulative distri-
bution function. Its evaluation at an element in x is 
inconsistent with either the evaluation at the lower 
or upper bound.
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IMSLS_INCORRECT_CDF_4 Function user_proc_cdf is not a cumulative distri-
bution function. Its evaluation at a cutpoint is 
inconsistent with either the evaluation at the lower 
or upper bound.

IMSLS_INCORRECT_CDF_5 An error has occurred when inverting the cumula-
tive distribution function. This function must be 
continuous and defined over the whole real line.

IMSLS_TOO_MANY_CELL_DELETIONS There are more observations deleted from the cell 
than added.

IMSLS_NO_BOUND_AFTER_100_TRYS After 100 attempts, a bound for the inverse cannot 
be determined. Try again with a different initial 
estimate.

IMSLS_NO_UNIQUE_INVERSE_EXISTS No unique inverse exists.

IMSLS_CONVERGENCE_ASSUMED Over 100 iterations have occurred without conver-
gence. Convergence is assumed.

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by 
invoking the function with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the 
previous analysis is terminated by invoking the func-
tion with “ido” = 3.

IMSLS_BAD_N_CATEGORIES “n_categories” = #. The number of categories 
variable, “n_categories”, must be the same in sep-
arate function calls.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm. 
User flag = "#".
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shapiro_wilk_normality_test
Performs the Shapiro-Wilk test for normality.

Synopsis
#include <imsls.h>
float imsls_f_shapiro_wilk_normality_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_shapiro_wilk_normality_test.

Required Arguments
int n_observations  (Input)

Number of observations. 

float x[]  (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the Shapiro-Wilk test for normality is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_shapiro_wilk_normality_test (int n_observations, float x[],

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w,
0)

Optional Arguments
IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w  (Output) 

A pointer to a scalar for the Shapiro-Wilk W test statistic.
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Description
The Shapiro-Wilk test for normality is thought by D’Agostino and Stevens (1986, p. 406) to be one of the best 
omnibus tests of normality. The function is based on the approximations and code given by Royston (1982a, b, c; 
and 1991). The minimum sample size is 3 and sample sizes as large as 5000 have been validated. In the Shapiro 
and Wilk test, W is given by

where x(i) is the i-th largest order statistic and  is the sample mean. Royston (1982 and 1991) gives approxima-

tions and tabled values that can be used to compute the coefficients ai, i = 1, …, n, and obtains the significance 

level of the W statistic.

Example
This example is taken from Conover (1980, pp. 195, 364). The data consists of 50 two-digit numbers taken from a 
telephone book. The W test fails to reject the null hypothesis of normality at the .05 level of significance.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   n_observations = 50;
   float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 
               37.0, 54.0, 61.0, 73.0, 24.0, 40.0, 
               56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 
               63.0, 75.0, 29.0, 43.0, 57.0, 64.0, 
               77.0, 31.0, 43.0, 58.0, 65.0, 81.0, 
               32.0, 44.0, 58.0, 66.0, 87.0, 33.0, 
               45.0, 58.0, 68.0, 89.0, 33.0, 48.0, 
               58.0, 68.0, 93.0, 35.0, 48.0, 59.0, 
               70.0, 97.0};
   float p_value, shapiro_wilk_w;
   /* Shapiro-Wilk test */
   p_value = imsls_f_shapiro_wilk_normality_test (n_observations, x,
       IMSLS_SHAPIRO_WILK_W, &shapiro_wilk_w, 0);
   printf ("p-value = %11.4f\n", p_value);
   printf ("Shapiro Wilk W statistic = %11.4f\n", 
       shapiro_wilk_w);
}

Output

p-value =     0.3473

W = ∑ aix i
2
/ ∑ xi − x

─ 2

x─
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Shapiro Wilk W statistic =     0.9744
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lilliefors_normality_test
Performs a Lilliefors test for normality.

Synopsis
#include <imsls.h>
float imsls_f_lilliefors_normality_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_lilliefors_normality_test.

Required Arguments
int n_observations  (Input)

Number of observations. Argument n_observations must be greater than 4.

float x[]  (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the Lilliefors test for normality. Probabilities less than 0.01 are reported as 0.01, and probabilities 
greater than 0.10 for the normal distribution are reported as 0.5. 

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_lilliefors_normality_test (int n_observations, float x[],

IMSLS_MAX_DIFFERENCE, float *max_difference,
0)

Optional Arguments
IMSLS_MAX_DIFFERENCE, float *max_difference (Output)

The maximum absolute difference between the empirical and the theoretical distributions is 
returned in max_difference.
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Description
This function computes Lilliefors test and its p-value for a normal distribution in which both the mean and vari-
ance are estimated. The one-sample, two-sided Kolmogorov-Smirnov statistic D is first computed. The p-value is 
then computed using an analytic approximation given by Dallal and Wilkinson (1986). Because Dallal and Wilkin-
son give approximations in the range (0.01, 0.10), if the computed probability of a greater D is less than 0.01, the 
Lilliefors test by convention calls for rejection and the p-value is set to 0.01. If the computed probability of a 
greater D is greater than 0.1, by convention the null hypothesis is accepted and the p-value is set to 0.50. Note 
that because parameters are estimated, p-value in Lilliefors test is not the same as in the Kolmogorov-Smirnov 
Test.

Observations from a normal distribution should not be tied. If tied observations are found, an informational mes-
sage is printed. A general reference for the Lilliefors test is Conover (1980). The original reference for the test for 
normality is Lilliefors (1967).

Example
The data are the head circumference measurements for 50 male infants. The Lilliefors test fails to reject the null 
hypothesis of normality, i.e., p_value is greater than 0.1.

#include <imsls.h>
#include <stdio.h>
int main()
{
  int n_observations = 50;
  float x[] = {37.715, 37.89, 37.538, 35.828, 35.039,
               34.005, 35.766, 35.337, 37.529, 35.857,
               37.827, 35.083, 35.235, 36.782, 35.946,
               35.2,  38.995, 36.889, 35.932, 35.835,
               38.323, 35.624, 30.925, 37.69, 33.759,
               36.697, 39.222, 37.191, 34.814, 36.775,
               35.751, 33.163, 35.205, 32.805, 32.517,
               37.516, 33.654, 37.382, 36.83, 33.465,
               33.613, 35.211, 34.932, 30.645, 35.063,
               34.604, 34.666, 33.789, 34.678, 35.123};
  float p_value, max_diff;
  p_value = imsls_f_lilliefors_normality_test (n_observations, x,
     IMSLS_MAX_DIFFERENCE, &max_diff, 0);
  printf ("p-value = %11.4f\n", p_value);
  printf ("max difference = %f \n", max_diff);
}

Output

p-value =     0.5000
max difference = 0.085558
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Warning Errors

Fatal Errors

IMSLS_TWO_OR_MORE_TIED Two or more elements in “x” are tied.

IMSLS_NEED_AT_LEAST_5 All but # elements of “x” are missing. At least five 
non-missing observations are necessary to 
continue.

IMSLS_NEG_IN_EXPONENTIAL In testing the exponential distribution, an invalid 
element in “x” is found (“x[]” = #). Negative values 
are not possible in exponential distributions.

IMSLS_NO_VARIATION_INPUT There is no variation in the input data. All non-miss-
ing observations are tied.
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chi_squared_normality_test
Performs a chi-squared test for normality.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_normality_test (int n_categories, int n_observations, 

float x[], ..., 0)

The type double function is imsls_d_chi_squared_normality_test.

Required Arguments
int n_categories  (Input)

Number of cells into which the observations are to be tallied. n_categories must be at least 2.

int n_observations  (Input)
Number of observations.

float x[]  (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the chi-squared test for normality. An approximate probability is computed.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_chi_squared_normality_test (int n_categories, int n_observations, 

float x[],

IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DEGREES_OF_FREEDOM, float *df,
0)
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Optional Arguments
IMSLS_CHI_SQUARED, float *chi_squared  (Output)

If specified, the chi-squared test statistic is returned in *chi_squared.

IMSLS_DEGREES_OF_FREEDOM, float *df  (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is returned in *df.

Description
This function computes the chi-squared statistic, its p-value, and the degrees of freedom of the test. Argument 
n_categories finds the number of intervals into which the observations are to be divided. The intervals are 
equiprobable except for the first and last interval, which are infinite in length. 

If more flexibility is desired for the specification of intervals, the same test can be performed with a call to func-
tion imsls_f_chi_squared_test using the optional arguments described for that function.

Example
This example is taken from Conover (1980, pp. 195, 364). The data consists of 50 two-digit numbers taken from a 
telephone book. Since p_value is greater than 0.1 the chi-squared test fails to reject the null hypothesis of 
normality.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   n_observations = 50;
   int   n_categories = 6;
   float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 
                37.0, 54.0, 61.0, 73.0, 24.0, 40.0, 
                56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 
                63.0, 75.0, 29.0, 43.0, 57.0, 64.0, 
                77.0, 31.0, 43.0, 58.0, 65.0, 81.0, 
                32.0, 44.0, 58.0, 66.0, 87.0, 33.0, 
                45.0, 58.0, 68.0, 89.0, 33.0, 48.0, 
                58.0, 68.0, 93.0, 35.0, 48.0, 59.0, 
                70.0, 97.0};
   float p_value, df, chi_squared;
   p_value = imsls_f_chi_squared_normality_test( n_categories, 
      n_observations, x,
      IMSLS_DEGREES_OF_FREEDOM, &df,
      IMSLS_CHI_SQUARED, &chi_squared,
      0);
   printf ("p-value = %11.4f\n", p_value);
   printf ("degrees of freedom = %11.4f\n", df);
   printf ("chi squared test = %11.4f\n", chi_squared);
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}

Output

p-value =     0.4208
degrees of freedom =   5.0000
chi squared test =     4.9600
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kolmogorov_one
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_one (float cdf(), int n_observations, float x[], ..., 0)

The type double function is imsls_d_kolmogorov_one.

Required Arguments
float cdf (float x) (Input)

User-supplied function to compute the cumulative distribution function (CDF) at a given value. The 
form is CDF(x), where x is the value at which cdf is to be evaluated (Input) and cdf is the value of 
CDF at x. (Output)

int n_observations  (Input)
Number of observations.

float x[]  (Input)
Array of size n_observations containing the observations.

Return Value
Pointer to an array of length 3 containing Z, p1, and p2.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_kolmogorov_one (float cdf(), int n_observations, float x[],

IMSLS_DIFFERENCES, float **differences,
IMSLS_DIFFERENCES_USER, float differences[],
IMSLS_N_MISSING, int *n_missing, 
IMSLS_RETURN_USER, float test_statistic[],
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IMSLS_FCN_W_DATA, float cdf(), void *data,
0)

Optional Arguments
IMSLS_DIFFERENCES, float **differences  (Output)

Address of a pointer to the internally allocated array containing Dn , Dn
+, Dn

-.

IMSLS_DIFFERENCES_USER, float differences[]  (Output)
Storage for the array differences is provided by the user.

See IMSLS_DIFFERENCES.
IMSLS_N_MISSING, int *n_missing  (Ouput)

Number of missing values is returned in *n_missing.

IMSLS_RETURN_USER, float test_statistics[]  (Output)
If specified, the Z-score and the p-values for hypothesis test against both one-sided and two-sided 
alternatives is stored in array test_statistics provided by the user.

IMSLS_FCN_W_DATA, float cdf (float x) , void *data, (Input)
User-supplied function to compute the cumulative distribution function, which also accepts a pointer 
to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied 
function. See the Passing Data to User-Supplied Functions section at the beginning of this manual for 
more details.

Description
The routine imsls_f_kolmogorov_one performs a Kolmogorov-Smirnov goodness-of-fit test in one sample. 
The hypotheses tested follow:

where F is the cumulative distribution function (CDF) of the random variable, and the theoretical cdf, F*, is spec-
ified via the user-supplied function cdf. Let n = n_observations - n_missing. The test statistics for both 
one-sided alternatives 

and

• H0:F x = F* x H1:F x ≠ F* x

• H0:F x ≥ F* x H1:F x < F* x

• H0:F x ≤ F* x H1:F x > F* x

Dn
+ = differences 1
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and the two-sided (Dn = differences[0]) alternative are computed as well as an asymptotic z-score 

(test_statistics[0]) and p-values associated with the one-sided (test_statistics[1]) and two-
sided (test_statistics[2]) hypotheses. For n > 80, asymptotic p-values are used (see Gibbons 1971). For 
n ≤ 80, exact one-sided p-values are computed according to a method given by Conover (1980, page 350). An 
approximate two-sided test p-value is obtained as twice the one-sided p-value. The approximation is very close 
for one-sided p-values less than 0.10 and becomes very bad as the one-sided p-values get larger.

Programming Notes
1. The theoretical CDF is assumed to be continuous. If the CDF is not continuous, the statistics

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data will tend to make the p-values 
associated with the test statistics too liberal. The empirical CDF will tend to be closer to the theoreti-
cal CDF than it should be.

3. No attempt is made to check that all points in the sample are in the support of the theoretical CDF. If 
all sample points are not in the support of the CDF, the null hypothesis must be rejected.

Example
In this example, a random sample of size 100 is generated via routine imsls_f_random_uniform (Chapter 12, 
Random Number Generation) for the uniform (0, 1) distribution. We want to test the null hypothesis that the cdf 
is the standard normal distribution with a mean of 0.5 and a variance equal to the uniform (0, 1) variance (1/12).

#include <imsls.h>
#include <stdio.h>
float cdf(float);
int main()
{
   float *statistics=NULL, *diffs = NULL, *x=NULL;
   int nobs = 100, nmiss;
   imsls_random_seed_set(123457);
   x = imsls_f_random_uniform(nobs, 0);
   statistics = imsls_f_kolmogorov_one(cdf, nobs, x, 
                                  IMSLS_N_MISSING, &nmiss,
                                  IMSLS_DIFFERENCES, &diffs,
                                  0);
   printf("D     = %8.4f\n", diffs[0]);
   printf("D+    = %8.4f\n", diffs[1]);

Dn
− = differences 2

Dn
*
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   printf("D-    = %8.4f\n", diffs[2]);
   printf("Z     = %8.4f\n", statistics[0]);
   printf("Prob greater D one sided = %8.4f\n", statistics[1]);
   printf("Prob greater D two sided = %8.4f\n", statistics[2]);
   printf("N missing = %d\n", nmiss);
}
float cdf(float x)
{
   float mean = .5, std = .2886751, z;
   z = (x-mean)/std;
   return(imsls_f_normal_cdf(z));
}

Output

D    =  0.1471
D+   =  0.0810
D-   =  0.1471
Z    =  1.4708
Prob greater D one-sided =  0.0132
Prob greater D two-sided =  0.0264
N missing =   0

Warning Errors

Fatal Errors

IMSLS_TIE_DETECTED # ties were detected in the sample.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm. 
User flag = "#".
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kolmogorov_two
Performs a Kolmogorov-Smirnov two-sample test.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], 

int n_observations_y, float y[], ..., 0)

The type double function is imsls_d_kolmogorov_two.

Required Arguments
int n_observations_x  (Input)

Number of observations in sample one.

float x[]  (Input)
Array of size n_observations_x containing the observations from sample one.

int n_observations_y  (Input)
Number of observations in sample two.

float y[]  (Input)
Array of size n_observations_y containing the observations from sample two.

Return Value
Pointer to an array of length 3 containing Z, p1, and p2.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_kolmogorov_two (int n_observations_x, float x[], 
int n_observations_y, float y[],

IMSLS_DIFFERENCES, float **differences,
IMSLS_DIFFERENCES_USER, float differences[],
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IMSLS_N_MISSING_X, int *xmissing,
IMSLS_N_MISSING_Y, int *ymissing,
IMSLS_RETURN_USER, float test_statistic[],
0)

Optional Arguments
IMSLS_DIFFERENCES, float **differences  (Output)

Address of a pointer to the internally allocated array containing Dn , Dn
+, Dn

-.

IMSLS_DIFFERENCES_USER, float differences[] (Output)
Storage for array differences is provided by the user.

See IMSLS_DIFFERENCES.

IMSLS_N_MISSING_X, int *xmissing  (Ouput)
Number of missing values in the x sample is returned in *xmissing.

IMSLS_N_MISSING_Y, int *ymissing  (Ouput)
Number of missing values in the y sample is returned in *ymissing.

IMSLS_RETURN_USER, float test_statistics[]  (Output)
If specified, the Z-score and the p-values for hypothesis test against both one-sided and two-sided 
alternatives is stored in array test_statistics provided by the user. 

Description
Function imsls_f_kolmogorov_two computes Kolmogorov-Smirnov two-sample test statistics for testing 
that two continuous cumulative distribution functions (CDF’s) are identical based upon two random samples. 
One- or two-sided alternatives are allowed. Exact p-values are computed for the two-sided test when 
n_observations_x × n_observations_y is less than 104. 

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empirical CDF in the Y sample, where 

n = n_observations_x - n_missing_x and m = n_observations_y - n_missing_y, and let the 
corresponding population distribution functions be denoted by F(x) and G(y), respectively. Then, the hypotheses 
tested by imsls_f_kolmogorov_two are as follows:
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The test statistics are given as follows:

Asymptotically, the distribution of the statistic

(returned in test_statistics[0]) converges to a distribution given by Smirnov (1939). 

Exact probabilities for the two-sided test are computed when n*m is less than or equal to 104, according to an 

algorithm given by Kim and Jennrich (1973;). When n*m is greater than 104, the very good approximations given 
by Kim and Jennrich are used to obtain the two-sided p-values. The one-sided probability is taken as one half the 
two-sided probability. This is a very good approximation when the p-value is small (say, less than 0.10) and not 
very good for large p-values.

Example
This example illustrates the imsls_f_kolmogorov_two routine with two randomly generated samples from 
a uniform(0,1) distribution. Since the two theoretical distributions are identical, we would not expect to reject the 
null hypothesis.

#include <imsls.h>
#include <stdio.h>
int main()
{
    float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL;
    int nobsx = 100, nobsy = 60, nmissx, nmissy;
    imsls_random_seed_set(123457);
    x = imsls_f_random_uniform(nobsx, 0);
    y = imsls_f_random_uniform(nobsy, 0);
    statistics = imsls_f_kolmogorov_two(nobsx, x, nobsy, y, 
                                       IMSLS_N_MISSING_X, &nmissx,
                                       IMSLS_N_MISSING_Y, &nmissy,
                                       IMSLS_DIFFERENCES, &diffs,
                                       0);
    printf("D     = %8.4f\n", diffs[0]);
    printf("D+    = %8.4f\n", diffs[1]);

• H0:F x = G x H1:F x ≠ G x

• H0:F x ≤ G x H1:F x > G x

• H0:F x ≥ G x H1:F x < G x

Dmn = max Dmn
+ ,Dmn

− (differences 0 )

Dmn
+ = maxx(Fn(x) − Gm(x)) (differences 1 )

Dmn
− = maxx(Gm(x) − Fn(x)) (differences 2 )

Z = Dmn m * n / m + n
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    printf("D-    = %8.4f\n", diffs[2]);
    printf("Z     = %8.4f\n", statistics[0]);
    printf("Prob greater D one sided = %8.4f\n", statistics[1]);
    printf("Prob greater D two sided = %8.4f\n", statistics[2]);
    printf("Missing X = %d\n", nmissx);
    printf("Missing Y = %d\n", nmissy);
}

Output

D    =  0.1800
D+   =  0.1800
D-   =  0.0100
Z    =  1.1023
Prob greater D one sided =  0.0720
Prob greater D two sided =  0.1440
Missing X =  0
Missing Y =  0 
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multivar_normality_test
Computes Mardia’s multivariate measures of skewness and kurtosis and tests for multivariate normality.

Synopsis
#include <imsls.h>
float *imsls_f_multivar_normality_test (int n_observations, int n_variables, 

float x[], ..., 0)

The type double function is imsls_d_multivar_normality_test.

Required Arguments
int n_observations  (Input)

Number of observations (number of rows of data) x.

int n_variables  (Input)
Dimensionality of the multivariate space for which the skewness and kurtosis are to be computed. 
Number of variables in x.

float x[]  (Input)
Array of size n_observations by n_variables containing the data. 

Return Value
A pointer to an array of dimension 13 containing output statistics 

i stat[i]
0 Estimated skewness.

1 Expected skewness assuming a multivariate normal 
distribution.

2 Asymptotic chi-squared statistic assuming a multivariate 
normal distribution.

3 Probability of a greater chi-squared.

4 Mardia and Foster's standard normal score for skewness.

5 Estimated kurtosis.
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Synopsis with Optional Arguments
#include <imsls.h> 

float imsls_f_multivar_normality_test (int n_observations, int n_variables, 
float x[],

IMSLS_FREQUENCIES, float frequencies[],

IMSLS_WEIGHTS, float weights[],

IMSLS_SUM_FREQ, int *sum_frequencies,

IMSLS_SUM_WEIGHTS, float *sum_weights,

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_R, float **R_matrix,

IMSLS_R_USER, float R_matrix[],

IMSLS_RETURN_USER, float test_statistics[],

0)

Optional Arguments
IMSLS_FREQUENCIES, float frequencies[]  (Input)

Array of size n_observations containing the frequencies. Frequencies must be integer valued. 
Default assumes all frequencies equal one.

6 Expected kurtosis assuming a multivariate normal 
distribution.

7 Asymptotic standard error of the estimated kurtosis.

8 Standard normal score obtained from stat[5] through 
stat[7].

9 p-value corresponding to stat[8].

10 Mardia and Foster's standard normal score for kurtosis.

11 Mardia's SW statistic based upon stat[4] and stat[10].

12 p-value for stat[11].

i stat[i]
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IMSLS_WEIGHTS, float weights[]  (Input)
Array of size n_observations containing the weights. Weights must be greater than non-nega-
tive. Default assumes all weights equal one.

IMSLS_SUM_FREQ, int *sum_frequencies  (Output)
The sum of the frequencies of all observations used in the computations.

IMSLS_SUM_WEIGHTS, float *weights[]  (Output)
The sum of the weights times the frequencies for all observations used in the computations.

IMSLS_N_ROWS_MISSING, int *nrmiss  (Output)
Number of rows of data in x[] containing any missing values (NaN).

IMSLS_MEANS, float **means  (Output)
The address of a pointer to an array of length n_variables containing the sample means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by user. See IMSLS_MEANS.

IMSLS_R, float **R_matrix (Output)
The address of a pointer to an n_variables by n_variables upper triangular matrix contain-
ing the Cholesky RTR factorization of the covariance matrix.

IMSLS_R_USER, float R_matrix[] (Output)
Storage for array R_matrix is provided by user. See IMSLS_R.

IMSLS_RETURN_USER, float stat[]  (Output)
User supplied array of dimension 13 containing the estimates and their associated test statistics. 

Description
Function imsls_f_multivar_normality_test computes Mardia’s (1970) measures b1,p and b2,p of mul-

tivariate skewness and kurtosis, respectfully, for p = n_variables. These measures are then used in 
computing tests for multivariate normality. Three test statistics, one based upon b1,p alone, one based upon b2,p 

alone, and an omnibus test statistic formed by combining normal scores obtained from b1,p and b2,p are com-

puted. On the order of np3, operations are required in computing b1,p when the method of Isogai (1983) is used, 

where n = n_observations. On the order of np2, operations are required in computing b2,p. 

Let 

where 

di j = wiw j xi − x
─)TS−1 x j − x

─
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fi is the frequency of the i-th observation, and wi is the weight for this observation. (Weights wi are defined such 

that xi is distributed according to a multivariate normal, N(μ, Σ/wi) distribution, where Σ is the covariance matrix.) 

Mardia’s multivariate skewness statistic is defined as:

while Mardia’s kurtosis is given as:

Both measures are invariant under the affine (matrix) transformation AX + D, and reduce to the univariate mea-
sures when p = n_variables = 1. Using formulas given in Mardia and Foster (1983), the approximate 
expected value, asymptotic standard error, and asymptotic p-value for b2,p, and the approximate expected value, 

an asymptotic chi-squared statistic, and p-value for the b1,p statistic are computed. These statistics are all com-

puted under the null hypothesis of a multivariate normal distribution. In addition, standard normal scores 
W1(b1,p) and W2(b2,p) (different from but similar to the asymptotic normal and chi-squared statistics above) are 

computed. These scores are combined into an asymptotic chi-squared statistic with two degrees of freedom:

This chi-squared statistic may be used to test for multivariate normality. A p-value for the chi-squared statistic is 
also computed.

Example
In this example, 150 observations from a 5 dimensional standard normal distribution are generated via routine 
imsls_f_random_normal (Chapter 12, Random Number Generation). The skewness and kurtosis statistics are 
then computed for these observations.

#include <imsls.h>
#include <stdio.h>
int main()

S =
∑
i=1

n
wi f i xi − x

─ xi − x
─ T

∑
i=1

n
f i

x─ = 1

∑
i=1

n
wi f i

∑
i=1

n
wi f i xi

b1, p =
1
n2∑

i=1

n

∑
j=1

n

f i f jdi j
3

b2, p =
1
n∑
i=1

n

f idii
2

SW = W1
2 b1, p +W2
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{
  float *x, swt, *xmean, *r, *stats;
  int nobs = 150, ncol = 5, nvar = 5, izero = 0, ni, nrmiss;
  imsls_random_seed_set(123457);
  x = imsls_f_random_normal(nobs*nvar, 0);
  stats = imsls_f_multivar_normality_test(nobs, nvar, x, 
     IMSLS_SUM_FREQ, &ni,
     IMSLS_SUM_WEIGHTS, &swt,
     IMSLS_N_ROWS_MISSING, &nrmiss, 
     IMSLS_R, &r,IMSLS_MEANS, &xmean,
     0);
  printf("Sum of frequencies = %d\nSum of the weights =%8.3f\n", 
     ni, swt);
  printf(" Number rows missing = %3d\n", nrmiss);
  imsls_f_write_matrix("stat", 13, 1, stats, 
     IMSLS_ROW_NUMBER_ZERO, 0);
  imsls_f_write_matrix("means", 1, nvar, xmean, 0);
  imsls_f_write_matrix("R", nvar, nvar, r, 0);
}

Output

Sum of frequencies = 150
Sum of the weights = 150.000
Number rows missing =  0
    stat
0       0.73
1       1.36
2      18.62
3       0.99
4      -2.37
5      32.67
6      34.54
7       1.27
8      -1.48
9       0.14
10      1.62
11      8.24
12      0.02
                          means
        1          2          3          4          5
  0.02623    0.09238    0.06536    0.09819    0.05639
                             R
           1          2          3          4          5
1      1.033     -0.084     -0.065      0.108      0.067
2      0.000      1.049     -0.097     -0.042     -0.021
3      0.000      0.000      1.063      0.006     -0.145
4      0.000      0.000      0.000      0.942     -0.084
5      0.000      0.000      0.000      0.000      0.949
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ad_normality_test
Performs an Anderson-Darling test for normality.

Synopsis
#include <imsls.h>
float imsls_f_ad_normality_test (int nobs, float x[], … , 0)

The type double function is imsls_d_ad_normality_test.

Required Arguments
int nobs  (Input)

Number of observations. nobs must be greater than or equal to 3.

float x[] (Input)
Vector of length nobs containing the observations.

Return Value
The p-value for the Anderson-Darling test of normality.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_ad_normality_test (int nobs, float x[],

IMSLS_STAT, float *adstat,
IMSLS_N_MISSING, int *nmiss,
0)

Optional Arguments
IMSLS_STAT, float *adstat  (Output)

The Anderson-Darling statistic.
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IMSLS_N_MISSING, int *nmiss  (Output)
The number of missing observations.

Description
Given a data sample {Xi, i = 1 .. n}, where n = nobs and Xi = x[i-1], function 

imsls_f_ad_normality_test computes the Anderson-Darling (AD) normality statistic A = adstat and 
the corresponding Return Value (p-value) P = P == {probability that a normally distributed n element sample 
would have an AD statistic > A}. If P is sufficiently small (e.g. P < .05), then the AD test indicates that the null 
hypothesis that the data sample is normally-distributed should be rejected. A is calculated:

where    and  and s are the sample mean and standard deviation respectively. P is calculated 
by first transforming A to an “n-adjusted” statistic A*:

and then calculating P in terms of A* using a parabolic approximation taken from Table 4.9 in Stephens (1986).

Example
The following example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two-digit num-
bers taken from a telephone book. The AD test fails to reject the null hypothesis of normality at the .05 level of 
significance.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int nobs = 50, nmiss;
   float p_value, adstat;
   float x[] = {
       23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 37.0, 54.0, 61.0, 73.0,
       24.0, 40.0, 56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 63.0, 75.0,
       29.0, 43.0, 57.0, 64.0, 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
       32.0, 44.0, 58.0, 66.0, 87.0, 33.0, 45.0, 58.0, 68.0, 89.0,
       33.0, 48.0, 58.0, 68.0, 93.0, 35.0, 48.0, 59.0, 70.0, 97.0};
   p_value = imsls_f_ad_normality_test (nobs, x,
                                        IMSLS_STAT, &adstat,

A = − n − 1n∑
i−1

n

[(2i − 1)ln(ϕ (Yi)) + (2n − 2i + 1)ln(1 − ϕ (Yi))]

Y i = X i − X
─

/ s X
─

A * = A 1.0 + 0.75n + 2.25
n2
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                                        IMSLS_N_MISSING, &nmiss,
                                        0);
   printf ("Anderson-Darling statistic = %11.4f \n", adstat);
   printf ("p-value = %11.4f\n", p_value);
   printf ("# missing values = %4d\n", nmiss);
}

Output

Anderson-Darling statistic =     0.3339 
p-value =     0.5024
# missing values =   0

Informational Errors
 

Fatal Errors
 

IMSLS_PVAL_UNDERFLOW The p-value has fallen below the minimum value of 
# for which its calculation has any accuracy; ZERO is 
returned.

IMSLS_TOO_MANY_MISSING After removing the missing observations only 2 
observations remain. The test cannot proceed.
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cvm_normality_test
Performs a Cramer-von Mises test for normality.

Synopsis
#include <imsls.h>
float imsls_f_cvm_normality_test (int nobs, float x[], … , 0)

The type double function is imsls_d_cvm_normality_test.

Required Arguments
int nobs  (Input)

Number of observations. nobs must be greater than or equal to 3.

float x[]  (Input)
Vector of length nobs containing the observations.

Return Value
The p-value for the Cramer-von Mises test of normality.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_cvm_normality_test (int nobs, float x[],

IMSLS_STAT, float *cvmstat,
IMSLS_N_MISSING, int *nmiss,
0)

Optional Arguments
IMSLS_STAT, float *cvmstat  (Output)

The Cramer-von Mises statistic.
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IMSLS_N_MISSING, int *nmiss  (Output)
The number of missing observations.

Description
Given a data sample {Xi, i=1 .. n}, where n = nobs and Xi = x[i-1], function 

imsls_f_cvm_normality_test computes the Cramer-von Mises (CvM) normality statistic W = cvmstat 
and the corresponding Return Value (p-value) P = P == {probability that a normally distributed n element sample 
would have a CvM statistic > W}. If P is sufficiently small (e.g. P < .05), then the CvM test indicates that the null 
hypothesis that the data sample is normally-distributed should be rejected. W is calculated:

Where    is the cumulative distribution function of standard normal N(0,1) distribution, , 

and  and s are the sample mean and standard deviation respectively. P is calculated by first transforming W to 
an “n-adjusted” statistic W*:

and then calculating P in terms of W* using a parabolic approximation taken from Table 4.9 in Stephens (1986).

Example
This example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two digit numbers taken 
from a telephone book. The CvM test fails to reject the null hypothesis of normality at the .05 level of significance.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int nobs = 50, nmiss;
   float p_value, cvmstat;
   float x[] = {
       23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 37.0, 54.0, 61.0, 73.0,
       24.0, 40.0, 56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 63.0, 75.0,
       29.0, 43.0, 57.0, 64.0, 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
       32.0, 44.0, 58.0, 66.0, 87.0, 33.0, 45.0, 58.0, 68.0, 89.0,
       33.0, 48.0, 58.0, 68.0, 93.0, 35.0, 48.0, 59.0, 70.0, 97.0};
   p_value = imsls_f_cvm_normality_test (nobs, x,
                                        IMSLS_STAT, &cvmstat,

W = 1
12n +∑

i=1

n

ϕ Y i −
2i − 1
2n

2

ϕ Y i Y i = X i − X
─

/ s

X
─

W * = W 1.0 + 0.5n
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                                        IMSLS_N_MISSING, &nmiss,
                                        0);
   printf ("Cramer-von Mises statistic = %11.4f \n", cvmstat);
   printf ("p-value = %11.4f\n", p_value);
   printf ("# missing values = %4d\n", nmiss);
}

Output

Cramer-von Mises statistic =     0.0520 
p-value =     0.4747
# missing values =   0

Informational Errors
 

Fatal Errors
 

IMSLS_PVAL_UNDERFLOW The p-value has fallen below the minimum value of 
# for which its calculation has any accuracy; ZERO is 
returned.

IMSLS_TOO_MANY_MISSING After removing the missing observations only 2 
observations remain. The test cannot proceed.
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randomness_test
Performs a test for randomness.

Synopsis
#include <imsls.h>
float imsls_f_randomness_test (int n_observations, float x[], int n_run, …, 0)

The type double function is imsls_d_randomness_test.

Required Arguments
int n_observations  (Input)

Number of observations in x.

float x[]  (Input)
Array of size n_observations containing the data.

int n_run  (Input)
Length of longest run for which tabulation is desired. For optional arguments IMSLS_PAIRS, 
IMSLS_DSQUARE, and IMSLS_DCUBE, n_run stands for the number of equiprobable cells into 
which the statistics are to be tabulated.

Return Value
The probability of a larger chi-squared statistic for testing the null hypothesis of a uniform distribution.

Synopsis with Optional Arguments
#include <imsls.h> 

float imsls_f_randomness_test (int n_observations, float x[], int n_run,

IMSLS_IDO, int ido,  float intermediate_results[],

IMSLS_RUNS, float **runs_count, float **covariances, or

IMSLS_RUNS_USER, float runs_count[], float covariances[], or

IMSLS_PAIRS, int pairs_lag, float **pairs_count, or
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IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[], or

IMSLS_DSQUARE, float **dsquare_count, or

IMSLS_DSQUARE_USER, float dsquare_count[], or

IMSLS_DCUBE, float **dcube_count, or

IMSLS_DCUBE_USER, float dcube_count[],

IMSLS_RUNS_EXPECT, float **runs_expect,

IMSLS_RUNS_EXPECT_USER, float runs_expect[],

IMSLS_EXPECT, float *expect,

IMSLS_CHI_SQUARED, float *chi_squared,

IMSLS_DF, float *df,

0)

Optional Arguments
IMSLS_IDO, int ido, float intermediate_results[]  (Input/Output) 

Process data in blocks.

int ido   (Input)
Processing option. The argument ido must be 1, 2, or 3. With this option, it is not a require-
ment that all observations be memory resident, thus enabling one to handle large data sets. 
Blocks of rows of the data can be processed sequentially in separate invocations of 
imsls_f_randomness_test. Output argument values are returned only when ido = 3. 
(See Example 5.)

Default:  ido is not used. All the data is input at once.
float intermediate_results[]   (Input/Output)

User-supplied array containing results from invocations of the function. The length of 
intermediate_results is:

ido Action

1 This is the first invocation with this data; additional 
calls will be made. The first set of n_observations 
observations is input in x.

2 This is an intermediate invocation. The next set of 
n_observations observations is input in x.

3 This is the final invocation of this function. No fur-
ther invocations of imsls_f_randomness_test 
with ido greater than 1 should be made without first 
invoking imsls_f_randomness_test with ido = 1. 
The last set of n_observations observations is 
input in x.
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In processing blocks of data, x can have different number of observations, 
n_observations, in separate invocations.

IMSLS_RUNS, float **runs_count, float **covariances,  (Output) 
Indicates the runs test is to be performed. Array of length n_run containing the counts of the num-
ber of runs up of each length is returned in runs_count. n_run by n_run matrix containing the 
variances and covariances of the counts is returned in covariances. IMSLS_RUNS is the default 
test, however, to return the counts and covariances the IMSLS_RUNS argument must be used. 

or

IMSLS_RUNS_USER, float runs_count[], float covariances[]  (Output)
Storage for runs_count and covariances is provided by the user. See IMSLS_RUNS.

or

IMSLS_PAIRS, int pairs_lag (Input), float **pairs_count,  (Output)  
Indicates the pairs test is to be performed. The lag to be used in computing the pairs statistic is 
stored in pairs_lag. Pairs (x[i], x[i + pairs_lag]) for i = 0,…, N - pairs_lag -1 are tabu-
lated, where N is the total sample size. An n_run by n_run matrix containing the count of the 
number of pairs in each cell is returned in pairs_count.

or

IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[]  (Output)
Storage for pairs_lag and pairs_count is provided by the user. See IMSLS_PAIRS.

or

IMSLS_DSQUARE, float **dsquare_count,  (Output)
Indicates the d2 test is to be performed. dsquare_count is an address of a pointer to an internally 
allocated array of length n_run containing the tabulations for the d2 test.

or

IMSLS_DSQUARE_USER, float dsquare_count[]  (Output)
Storage for dsquare_count is provided by the user. 

Test Length

Runs test (IMSLS_RUNS) n_run 

Pairs test (IMSLS_PAIRS) n_run by n_run

d2 test (IMSLS_DSQUARE) n_run

triplets test (IMSLS_DCUBE) n_run by n_run by n_run
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See IMSLS_DSQUARE.

or

IMSLS_DCUBE, float **dcube_count,  (Output)
Indicates the triplets test is to be performed. dcube_count is an address of a pointer to an inter-
nally allocated array of length n_run by n_run by n_run containing the tabulations for the triplets 
test.

or

IMSLS_DCUBE_USER, float dcube_count[]  (Output)
Storage for dcube_count is provided by the user. See IMSLS_DCUBE.

IMSLS_RUNS_EXPECT, float **runs_expect  (Output)
The address of a pointer to an internally allocated array of length n_run containing the expected 
number of runs of each length. This option is valid only for the runs test.

IMSLS_RUNS_EXPECT_USER, float runs_expect[]  (Output)
Storage for runs_expect is provided by the user. See IMSLS_RUNS_EXPECT.

IMSLS_EXPECT, float *expect  (Output)
Expected number of counts for each cell. This argument is valid only if one of IMSLS_PAIRS, 
IMSLS_DSQUARE, or IMSLS_DCUBE is used. It is not valid for the runs test.

IMSLS_CHI_SQUARED, float *chi_squared  (Output)
Chi-squared statistic for testing the null hypothesis of a uniform distribution.

IMSLS_DF, float *df  (Output)
Degrees of freedom for chi-squared.

Description

Runs Up Test

Function imsls_f_randomness_test performs one of four different tests for randomness. Optional argu-
ment IMSLS_RUNS computes statistics for the runs up test. Runs tests are used to test for cyclical trend in 
sequences of random numbers. If the runs down test is desired, each observation should first be multiplied by -
1 to change its sign, and IMSLS_RUNS called with the modified vector of observations. 
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IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each desired length. For i = 1, ..., r - 1, 
where r = n_run, runs_count[i] contains the number of runs of length i. runs_count[n_run] contains the 
number of runs of length n_run or greater. As an example of how runs are counted, the sequence (1, 2, 3, 1) 
contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, IMSLS_RUNS computes the expected values and the covari-
ances of the counts according to methods given by Knuth (1981, pages 65-67). Let R denote a vector of length 
n_run containing the number of runs of each length so that the i-th element of R, ri, contains the count of the 

runs of length i. Let ΣR denote the covariance matrix of R under the null hypothesis of randomness, and let μR 

denote the vector of expected values for R under this null hypothesis, then an approximate chi-squared statistic 
with n_run degrees of freedom is given as 

In general, the larger the value of each element of μR, the better the chi-squared approximation.

Pairs Test

IMSLS_PAIRS computes the pairs test (or the Good’s serial test) on a hypothesized sequence of uniform (0,1) 
pseudo-random numbers. The test proceeds as follows. Subsequent pairs (x[i], x[i + pairs_lag]) are tallied 
into a k × k matrix, where k = n_run. In this tally, element (j, m) of the matrix is incremented, where

where l = pairs_lag, and the notation ⌊ ⌋ represents the greatest integer function, ⌊Y⌋ is the greatest integer 
less than or equal to Y, where Y is a real number. If l = 1, then i = 1, 3, 5, ..., n - 1. If l > 1, then i = 1, 2, 3, ..., n - l, 
where n is the total number of pseudo-random numbers input on the current invocation of IMSLS_PAIRS (i.e., 
n = n_observations).

Given the tally matrix in pairs_count, chi-squared is computed as

where e = Σoij/k
2, and oij is the observed count in cell (i, j) (oij = pairs_count[i][j]). 

χ2 = R − μR
T∑

R

−1 R − μR

j = ⌊kx[i − 1]⌋ + 1
m = ⌊kx[i + l − 1]⌋ + 1

χ2 = ∑
i, j=0

k−1 oi j − e
2

e
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Because pair statistics for the trailing observations are not tallied on any call, the user should call IMSLS_PAIRS 
with n_observations as large as possible. For pairs_lag < 20 and n_observations = 2000, little 
power is lost.

d 2 Test

IMSLS_DSQUARE computes the d2 test for succeeding quadruples of hypothesized pseudo-random uniform (0, 

1) deviates. The d2 test is performed as follows. Let X1, X2, X3, and X4 denote four pseudo-random uniform devi-

ates, and consider

D2 = (X

3

 -X

1

)2 + (X

4

 - X

2

)2

The probability distribution of D2 is given as

when D2 ≤ 1, where π denotes the value of pi. If D2 > 1, this probability is given as

See Gruenberger and Mark (1951) for a derivation of this distribution. 

For each succeeding set of 4 pseudo-random uniform numbers input in X, d2 and the cumulative probability of 

d2 (Pr(D2 ≤ d2)) are computed. The resulting probability is tallied into one of k = n_run equally spaced intervals. 

Let n denote the number of sets of four random numbers input (n = the total number of observations/4). Then, 
under the null hypothesis that the numbers input are random uniform (0, 1) numbers, the expected value for 
each element in dsquare_count is e = n/k. An approximate chi-squared statistic is computed as

Pr D2 ≤ d2 = d2π − 8d
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where oi = dsquare_count[i] is the observed count. Thus, 2 has k - 1 degrees of freedom, and the null 

hypothesis of pseudo-random uniform (0, 1) deviates is rejected if 2 is too large. As n increases, the chi-squared 
approximation becomes better. A useful generalization is that e > 5 yields a good chi-squared approximation.

Triplets Test

IMSLS_DCUBE computes the triplets test on a sequence of hypothesized pseudo-random uniform(0, 1) devi-
ates. The triplets test is computed as follows:

Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3 equal sized cubes, where m = n_run. 

Let i = [mX1] + 1, j = [mX2] + 1, and k = [mX3] + 1. For the triplet (X1, X2, X3), dcube_count[i][j][k] is 

incremented. 

Under the null hypothesis of pseudo-random uniform(0, 1) deviates, the m3 cells are equally probable and each 

has expected value e = n/m3, where n is the number of triplets tallied. An approximate chi-squared statistic is 
computed as

where oijk = dcube_count[i][j][k]. 

The computed chi-squared has m3 - 1 degrees of freedom, and the null hypothesis of pseudo-random uniform 

(0, 1) deviates is rejected if 2 is too large.

Examples 

Example 1

This example illustrates the use of the runs test on 104 pseudo-random uniform deviates. Since the probability of 
a larger chi-squared statistic is 0.1872, there is no strong evidence to support rejection of this null hypothesis of 
randomness.

#include <imsls.h>
#include <stdio.h>
int main()

χ2 =∑
i=0

k−1 oi − e
2

e

χ

χ

χ2 = ∑
i, j,k=0

k−1 oi j k − e
2

e

χ

674



 Tests of Goodness of Fit         randomness_test
{ 
    int nran = 10000, n_run = 6;
    char *fmt = "%8.1f";
    float *x, pvalue, *runs_count, *runs_expect, *covariances, chisq, df;
    imsls_random_seed_set(123457);  
    x = imsls_f_random_uniform(nran, 0);
    pvalue = imsls_f_randomness_test(nran, x, n_run, 
                             IMSLS_CHI_SQUARED, &chisq,
                             IMSLS_DF, &df, 
                             IMSLS_RUNS_EXPECT, &runs_expect,
                             IMSLS_RUNS, &runs_count, &covariances, 
                             0);
    imsls_f_write_matrix("runs_count", 1, n_run, runs_count, 0);
    imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect, 
                             IMSLS_WRITE_FORMAT, fmt,
                             0);
    imsls_f_write_matrix("covariances", n_run, n_run, covariances,
                             IMSLS_WRITE_FORMAT, fmt,
                             0);
    printf("chisq = %f\n", chisq);
    printf("df    = %f\n", df);
    printf("pvalue = %f\n", pvalue);
}

Output

               runs_count 
     1       2       3       4       5       6
1709.0  2046.0   953.0   260.0    55.0     4.0
                 runs_expect
     1       2       3       4       5       6
1667.3  2083.4   916.5   263.8    57.5    11.9
                 Covariances
        1       2       3       4       5       6
1  1278.2  -194.6  -148.9   -71.6   -22.9    -6.7
2  -194.6  1410.1  -490.6  -197.2   -55.2   -14.4
3  -148.9  -490.6   601.4  -117.4   -31.2    -7.8
4   -71.6  -197.2  -117.4   222.1   -10.8    -2.6
5   -22.9   -55.2   -31.2   -10.8    54.8    -0.6
6    -6.7   -14.4    -7.8    -2.6    -0.6    11.7
chisq  =    8.76514
df     =    6.00000
pvalue =   0.187225

Example 2

This example illustrates the calculations of the IMSLS_PAIRS statistics when a random sample of size 104 is 
used and the pairs_lag is 1. The results are not significant. IMSL function imsls_f_random_uniform 
(Chapter 12, Random Number Generation) is used in obtaining the pseudo-random deviates.

#include <imsls.h>
#include <stdio.h>
int main()
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{
    int nran = 10000, n_run = 10;
    float *x, pvalue, *pairs_count, expect, chisq, df;
    imsls_random_seed_set(123467);  
    x = imsls_f_random_uniform(nran, 0);
    pvalue = imsls_f_randomness_test(nran, x, n_run, 
                             IMSLS_CHI_SQUARED, &chisq,
                             IMSLS_DF, &df, 
                             IMSLS_EXPECT, &expect,
                             IMSLS_PAIRS, 5, &pairs_count, 
                              0);
    imsls_f_write_matrix("pairs_count", n_run, n_run, pairs_count, 0);
    printf("expect = %8.2f\n", expect);
    printf("chisq = %8.2f\n", chisq);
    printf("df    = %8.2f\n", df);
    printf("pvalue = %10.4f\n", pvalue);
}

Output

pairs_counts
     1    2    3    4    5    6    7    8    9    10
 1  112   82   95  118  103  103  113  84   90    74
 2  104  106  109  108  101   98  102  92   109   88
 3   88  111   86  106  112   79  103 105   106  101
 4   91  110  108  92    88  108  113  93   105  114
 5  104  105  103  104  101   94   96  87    93  104
 6   98  104  103  104   79   89   92  104   92  100
 7  103   91   97  101  116   83  118  118  106   99
 8  105  105  111   91   93   82  100  104  110   89
 9   92  102   82  101   94   128 102  110  125   98
10   79   99  103   98  104   101  93   93   98  105
expect =    99.95
chisq  =   104.86
df     =    99.00
pvalue =     0.3242

Example 3

In this example, 2000 observations generated via IMSL function imsls_f_random_uniform (Chapter 12, Ran-
dom Number Generation) are input to IMSLS_DSQUARE in one call. In the example, the null hypothesis of a 
uniform distribution is not rejected.

#include <imsls.h>
#include <stdio.h>
int main()
{
    int nran = 2000, n_run = 6;
    float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df;
    imsls_random_seed_set(123457);  
    x = imsls_f_random_uniform(nran, 0);
    pvalue = imsls_f_randomness_test(nran, x, n_run, 
                                    IMSLS_CHI_SQUARED, &chisq,
                                    IMSLS_DF, &df, 
                                    IMSLS_EXPECT, &expect,
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                                    IMSLS_DSQUARE, &dsquare_counts, 
                                    0);
    imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0);
    printf("expect = %10.4f\n", expect);
    printf("chisq = %10.4f\n", chisq);
    printf("df    = %8.2f\n", df);
    printf("pvalue = %10.4f\n", pvalue);
}

Output

            dsquare_counts
   1      2      3      4      5      6
  87     84     78     76     92     83
expect  =    83.3333
chisq   =     2.0560
df      =     5.00
pvalue  =     0.8413

Example 4

In this example, 2001 deviates generated by IMSL function imsls_f_random_uniform (Chapter 12, Random 
Number Generation) are input to IMSLS_DCUBE, and tabulated in 27 equally sized cubes. In the example, the 
null hypothesis is not rejected.

#include <imsls.h>
#include <stdio.h>
int main()
{
    int nran = 2001, n_run = 3;
    float *x, pvalue, *dcube_counts, expect, chisq, df;
    imsls_random_seed_set(123457);  
    x = imsls_f_random_uniform(nran, 0);
    pvalue = imsls_f_randomness_test(nran, x, n_run, 
                                    IMSLS_CHI_SQUARED, &chisq,
                                    IMSLS_DF, &df, 
                                    IMSLS_EXPECT, &expect,
                                    IMSLS_DCUBE, &dcube_counts, 
                                    0);
    imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0);
    imsls_f_write_matrix("dcube_counts", n_run, n_run,
           &dcube_counts[n_run*n_run], 0);
    imsls_f_write_matrix("dcube_counts", n_run, n_run,
           &dcube_counts[2*n_run*n_run], 0);
    printf("expect = %10.4f\n", expect);
    printf("chisq = %10.4f\n", chisq);
    printf("df    = %8.2f\n", df);
    printf("pvalue = %10.4f\n", pvalue);
}

Output

     dcube_counts
      1    2     3
1    26   27    24
2    20   17    32
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3    30   18    21
     dcube_counts
      1     2     3
1    20    16    26
2    22    22    27
3    30    24    26
     dcube_counts
      1     2     3
1    28    30    22
2    23    24    22
3    33    30    27
expect =    24.7037
chisq  =    21.7631
df     =    26.0000
pvalue =   0.701586

Example 5

This example is based on Example 1 to illustrate the use of the IMSLS_IDO optional argument. In this example, 
imsls_f_randomness_test is called 10 times, with 1000 pseudo-random uniform deviates each time. 
Since the probability of a larger chi-squared statistic is 0.1872, there is no strong evidence to support rejection of 
this null hypothesis of randomness.

#include <imsls.h>
#include <stdio.h>
#define NRAN 1000
#define N_RUN 6
int main()
{
    int ido = 1, i;
    char *fmt = "%8.1f";
    float x[NRAN], intermediate_results[N_RUN], pvalue, *runs_count,
        *runs_expect, *covariances, chisq, df;
    imsls_random_seed_set(123457);
    for (i = 0; i < 10; i++) {
        if (i == 9) ido = 3;
        imsls_f_random_uniform(NRAN, IMSLS_RETURN_USER, x, 0);
        pvalue = imsls_f_randomness_test(NRAN, x, N_RUN,
            IMSLS_IDO, ido, intermediate_results,
            IMSLS_CHI_SQUARED, &chisq,
            IMSLS_DF, &df, 
            IMSLS_RUNS_EXPECT, &runs_expect,
            IMSLS_RUNS, &runs_count, &covariances, 
            0);
        ido = 2;
    }
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    imsls_f_write_matrix("runs_count", 1, N_RUN, runs_count,
        IMSLS_WRITE_FORMAT, fmt,
        0);
    imsls_f_write_matrix("runs_expect", 1, N_RUN, runs_expect, 
        IMSLS_WRITE_FORMAT, fmt,
        0);
    imsls_f_write_matrix("covariances", N_RUN, N_RUN, covariances,
        IMSLS_WRITE_FORMAT, fmt,
        0);
    printf("chisq  =  %f\n", chisq);
    printf("df     =  %f\n", df);
    printf("pvalue =  %f\n", pvalue);
}

Output

                        runs_count
       1         2         3         4         5         6
  1709.0    2046.0     953.0     260.0      55.0       4.0
                        runs_expect
       1         2         3         4         5         6
  1667.3    2083.4     916.5     263.8      57.5      11.9
                         covariances
          1         2         3         4         5         6
1    1278.2    -194.6    -148.9     -71.6     -22.9      -6.7
2    -194.6    1410.1    -490.6    -197.2     -55.2     -14.4
3    -148.9    -490.6     601.4    -117.4     -31.2      -7.8
4     -71.6    -197.2    -117.4     222.1     -10.8      -2.6
5     -22.9     -55.2     -31.2     -10.8      54.8      -0.6
6      -6.7     -14.4      -7.8      -2.6      -0.6      11.7
chisq  =  8.765146
df     =  6.000000
pvalue =  0.187223
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Time Series and Forecasting

Functions
ARIMA Models

Computes least-squares or method of moments estimates 
of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . arma     688

Computes maximum likelihood estimates of 
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . max_arma     701

Computes forecasts and
their associated probability limits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . arma_forecast     708

Fits a univariate seasonal or non-seasonal ARIMA time 
series model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . arima     716

Fits a univariate, non-seasonal ARIMA time 
series model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .regression_arima     729

Automatic ARIMA Selection and Fitting Utilities
Automatic selection and fitting of a univariate 

autoregressive time series model.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . auto_uni_ar     739
Estimates the optimum seasonality parameters for a 

time series using an autoregressive model. . . . . . . . . . . . . . . . . . . . . . . seasonal_fit     745
Detects and determines outliers and simultaneously estimates 

the model parameters in a time series . . . . . . . . . . . . . . . . . ts_outlier_identification     754
Computes forecasts for an outlier contaminated 

time series  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ts_outlier_forecast     764
Automatic ARIMA modeling and forecasting in the 

presence of possible outliers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . auto_arima     773
Estimates structural breaks in non-stationary 

univariate time series models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . auto_parm     791

Bayesian Time Series Estimation
Decomposes a time series into trend, seasonal, and an 

error component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .bayesian_seasonal_adj     803

Model Construction and Evaluation Utilities
Performs a Box-Cox transformation  . . . . . . . . . . . . . . . . . . . . . . . . . box_cox_transform     812
Performs differencing on a time series  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .difference     817
Sample autocorrelation function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .autocorrelation     823
Computes the sample cross 

correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . crosscorrelation     829
Computes the multichannel cross-correlation

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . multi_crosscorrelation     836
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Sample partial autocorrelation function . . . . . . . . . . . . . . . . . . . . .partial_autocorrelation     847
Lack-of-fit test based on the correlation function . . . . . . . . . . . . . . . . . . . . . . . lack_of_fit     851
Estimates missing values in a time series . . . . . . . . . . . . . . . . . . . . . . .estimate_missing     855

Exponential Smoothing Methods
Holt-Winters additive or multiplicative method. . . . . . . . . . . . . . . . . . . . . hw_time_series     863

GARCH Modeling
Computes estimates of the parameters of a GARCH

(p,q) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . garch     873

State-Space Models
Performs Kalman filtering and evaluates the likelihood 

function for the state-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kalman     879

Vector Auto-Regression and Error Correction
Estimates a vector auto-regressive time series model 

with optional moving average components. . . . . . . . . . . . . . .vector_autoregression     891
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Usage Notes
The functions in this chapter assume the time series does not contain any missing values. If missing values are 
present, they should be set to NaN (see Chapter 15, Utilities  function imsls_f_machine), and the function will 
return an appropriate error message. To enable fitting of the model, the missing values must be replaced by 
appropriate estimates. 

Model Construction and Evaluation Utilties
A major component of the model identification step concerns determining if a given time series is stationary. The 
sample correlation functions computed by functions imsls_f_autocorrelation, 
imsls_f_crosscorrelation, imsls_f_multi_crosscorrelation, and 
imsls_f_partial_autocorrelation may be used to diagnose the presence of nonstationarity in the data, 
as well as to indicate the type of transformation required to induce stationarity. The family of power transforma-
tions provided by function imsls_f_box_cox_transform coupled with the ability to difference the 
transformed data using function imsls_f_difference affords a convenient method of transforming a wide 
class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also provide insight into the nature of the 
underlying model. Typically, this information is displayed in graphical form via time series plots, plots of the 
lagged data, and various correlation function plots. 

The observed time series may also be compared with time series generated from various theoretical models to 
help identify possible candidates for model fitting. The function imsls_f_random_arma (see Chapter 12, Ran-
dom Number Generation) may be used to generate a time series according to a specified autoregressive moving 
average model.

ARIMA Models
Once the data are transformed to stationarity, a tentative model in the time domain is often proposed and 
parameter estimation, diagnostic checking and forecasting are performed.

ARIMA Model (Autoregressive Integrated Moving Average) 
A small, yet comprehensive, class of stationary time-series models consists of the nonseasonal ARMA processes 
defined by

φ(B) (Wt - μ) = θ(B)At,  t ∈ Z
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where Z = {..., -2, -1, 0, 1, 2, ...} denotes the set of integers, B is the backward shift operator defined by BkWt = Wt-

k, μ is the mean of Wt, and the following equations are true:

φ(B) = 1 - φ
1

B - φ
2

B2 - ... - φpBp, p ≥ 0

θ(B) = 1 - θ
1

B - θ
2

B2 - ... - θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B) Wt = θ
0

+ θ(B)At,  t ∈ Z

where θ0 is an overall constant defined by the following:

See Box and Jenkins (1976, pp. 92-93) for a discussion of the meaning and usefulness of the overall constant.

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing using imsls_f_difference 

induces stationarity, and the model is called ARIMA (AutoRegressive Integrated Moving Average). Parameter esti-

mation is performed on the stationary time series Wt = ∇dZt, where ∇d = (1 - B)d is the backward difference 

operator with period 1 and order d, d > 0.

Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS in a call to function 
imsls_f_arma for preliminary parameter estimates. These estimates can be used as initial values into the 
least-squares procedure by including argument IMSLS_LEAST_SQUARES in a call to function imsls_f_arma. 
Other initial estimates provided by the user can be used. The least-squares procedure can be used to compute 
conditional or unconditional least-squares estimates of the parameters, depending on the choice of the back-
casting length. The parameter estimates from either the method of moments or least-squares procedures can be 

θ0 = μ 1 −∑
i=1

p

ϕi
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input to function imsls_f_arma_forecastthrough the arma_info structure. The functions for preliminary 
parameter estimation, least-squares parameter estimation, and forecasting follow the approach of Box and Jen-
kins (1976, Programs 2 - 4, pp. 498-509).

Regression in Autoregressive Integrated Moving Average
There may be one or more external time series that relate to the time series of interest, which may be useful in 
improving forecasts. Function imsls_f_regression_arima allows for the inclusion of one or more regression 
time series in the above ARIMA model. That is, if there are r time series {Xi,t, i = 1, ...,r} associated with a times 

series Yt, the regression ARIMA model (integrated of order d) is

where

That is, Zt is the residual (indexed by t) of the regression of Yt on {Xi,t, i = 1, ...,r}.

Automatic ARIMA Selection and Fitting Utilities
A popular criterion for comparing autoregressive-moving average (ARMA) models with different lags is a measure 
known as Akaike’s Information Criterion (AIC). The AIC for an ARMA univariate series is calculated by:

where L = the value for the maximum likelihood function for the fitted model, and r = p + q + 1, the number of 
parameters in the ARMA model. To use the criterion, several choices for p and q are fit to a time series and the fit 
with the smallest AIC is considered best. The function, imsls_f_auto_uni_ar uses the AIC criterion to select a 
best fitting AR model. The function imsls_f_auto_arima performs a more comprehensive search, considering 
not only the ARMA parameters, but also the appropriate Box-Cox transformation, degree of differencing and sea-
sonal adjustment, and also filters the data for outliers by calling imsls_f_ts_outlier_identification.

The function imsls_f_auto_parm uses a second criterion, called “Minimum Description Length” or MDL, to 
automatically fit piecewise AR models to a time series with structural breaks (i.e., a potentially non-stationary time 
series having stationary segments).

The MDL is defined as

Wt = ∇dZt

Zt = Yt −∑
t=1

r

βiX i, t

AIC = − 2 · ln(L) + 2r
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where m is the number of structural breaks in the series,    are the locations of the breaks, nj is the 

number of observations in the j-th segment, pj is the order of the AR model fit to the j-th segment, and L is the 

combined likelihood over all segments. imsls_f_auto_parm also allows the choice to use the AIC criterion,

Exponential Smoothing Methods
Exponential smoothing approximates the value of a time series at time t with a weighted average of previous val-
ues, with weights defined in such a way that they decay exponentially over time.

The weights can be determined by a smoothing parameter α and the relation,

⇒

The parameter α is on the interval (0,1) and controls the rate of decay. For values close to 1, the effect decays rap-
idly, whereas for values close to 0, the influence of a past value persists for some time. Exponential smoothing as 
a forecasting procedure is widely used and largely effective for short term, mean level forecasting. With the addi-
tion of a term for linear trend and terms or factors for seasonal patterns, exponential smoothing is an intuitive 
procedure for many series that arise in business applications. The function imsls_f_hw_time_series per-
forms the Holt-Winters method, otherwise known as triple exponential smoothing, and allows for either an additive 
or a multiplicative seasonal effect.

Garch Models
An important assumption in the ARMA model 

φ(B) Wt = θ

MDL(m, τ1, … τm, p1, … pm+1)

= ln m + (m − 1)ln n + ∑
j=1

m+1 2 + p j
2 ln n j − ln L,

τ1,τ2,...τm+1

AIC(m, τ1, … τm, p1, … pm+1) = 2(number of parameters) − 2ln L

= 2 1 + m + ∑
j=1

m+1
2 + p j) − 2ln L

yt = αyt−1 + ŷt

yt =∑
j=0

t−1

αt− j(1 − α) jy j =∑
j=0

t−1

wj y j
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0

 + θ(B)At,  t ∈ Z

is that the errors At are independent random variables with mean 0 and constant variance, σ2.

For some time series, the assumptions of independent errors and constant variance will not hold for the underly-
ing series. For example, in the stock market, large errors in one direction are often followed by large errors in the 
opposite direction. Variability over time can increase with a price level or trading volume. To account for hetero-
scedastic (non-equal) variances, Engle (1982) introduced the Autoregressive Conditional Heteroscedastic or 
ARCH, model:

where the zt’s are independent and identically distributed standard normal random variables. In the ARCH model, 

the variance term depends on previous squared errors, up to a given lag q. A generalized ARCH model, called 
GARCH, was introduced by Bollerslev (1986) and has the form:

In the GARCH model, the variance has an auto-regressive term in addition to the squared error term. The func-
tion imsls_f_garch estimates ARCH or GARCH models.

State-Space Models
A state-space model is represented by two equations: the state equation 

and the observation equation, 

where b(t) is the state variable, Y(t) is the observation variable, u(t) is a vector of inputs, and

State-space models originated in the study of dynamical systems. The system state b(t) is not directly observed 
but is inferred from the observable variable, Y(t), through the relation defined by the function, h. Y(t) is sometimes 
called the measurement variable or output variable. While f and h are completely general functions in the defini-

At = ztσt

σt
2 = σ2 + ∑

i=1

q
αiAt−i

2 ,

At = ztσt

σt
2 = σ2 + ∑

i=1

p
βiσt−i

2 + ∑
i=1

q
αiAt−i

2 ,

ḃ(t) = f (t,b(t),u(t))

Y t = h t,b t ,u t

ḃ(t): = ddtb(t)
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tion, they are most often linear, based on the assumption that the underlying system behaves linearly or 
approximately so. There is often a stochastic or noise term added to the equations and, in the time series con-
text, there are usually no control inputs (u(t) = 0). Under these conditions, the state-space model takes the form,

and

where Z and T are known matrices and w and e are noise variables. Time may evolve continuously or discretely. 
For a discrete time variable, it is customary to write the equations as:

and

where k = …-3, -2, -1, 0, 1, 2, 3, ….

Many time series can be expressed in the state-space form, including ARIMA models (See Section 5.5 in Box, Jen-
kins, and Reinsel (2008)). For ARIMA models, the state-space form is convenient for the calculation of the 
likelihood and forecasts, and for handling missing values. Once a time series is formulated as a state-space 
model, the problem becomes one of solving the equations for the unknown parameters. The Kalman filter 
(imsls_f_kalman) is a recursive method for solving the state-space equations when the functions f and h are 
linear.

b
.
t = Z t b t + w t

Y t = T t b t + e t

b k + 1 = Z k b k + w k

Y k = T k b k + e k
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arma

more...

Computes least-square estimates of parameters for an ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_arma (int n_observations, float z[], int p, int q, ..., 0)

The type double function is imsls_d_arma.

Required Arguments
int n_observations  (Input)

Number of observations.

float z[]  (Input)
Array of length n_observations containing the observations.

int p  (Input)
Number of autoregressive parameters.

int q  (Input)
Number of moving average parameters.

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA parameters. If 
IMSLS_NO_CONSTANT is specified, the 0-th element of this array is 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
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float *imsls_f_arma (int n_observations, float z[], int p, int q,

IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT,
IMSLS_AR_LAGS, int ar_lags[],
IMSLS_MA_LAGS, int ma_lags[],
IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES,
IMSLS_BACKCASTING, int maxbc, float  tolerance,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_ABS_FCN_TOL, float afcntol,
IMSLS_GRAD_TOL, float grad_tol,
IMSLS_STEP_TOL, float step_tol,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_INITIAL_ESTIMATES, float ar[], float ma[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_PARAM_EST_COV, float **param_est_cov,
IMSLS_PARAM_EST_COV_USER, float param_est_cov[],
IMSLS_AUTOCOV, float **autocov,
IMSLS_AUTOCOV_USER, float autocov[],
IMSLS_SS_RESIDUAL, float *ss_residual,
IMSLS_VAR_NOISE, float *avar,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,
0)

Optional Arguments
IMSLS_NO_CONSTANT
or

IMSLS_CONSTANT
If IMSLS_NO_CONSTANT is specified, the time series is not centered about its mean, z_mean. If 
IMSLS_CONSTANT, the default, is specified, the time series is centered about its mean.
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IMSLS_AR_LAGS, int ar_lags[] (Input)
Array of length p containing the order of the autoregressive parameters. The elements of ar_lags 
must be greater than or equal to 1.

Default: ar_lags = [1, 2, ..., p]

IMSLS_MA_LAGS, int ma_lags[]  (Input)
Array of length q containing the order of the moving average parameters. The ma_lags elements 
must be greater than or equal to 1.

Default: ma_lags = [1, 2, ..., q]

IMSLS_METHOD_OF_MOMENTS
or

IMSLS_LEAST_SQUARES
If IMSLS_METHOD_OF_MOMENTS is specified, the autoregressive and moving average parameters 
are estimated by a method of moments procedure. If IMSLS_LEAST_SQUARES is specified, the 
autoregressive and moving average parameters are estimated by a least-squares procedure.

Default: IMSLS_METHOD_OF_MOMENTS is used.

IMSLS_BACKCASTING, int maxbc, float tolerance  (Input)
If IMSLS_BACKCASTING is specified, maxbc is the maximum length of backcasting and must be 
greater than or equal to 0. Argument tolerance is the tolerance level used to determine conver-
gence of the backcast algorithm. Typically, tolerance is set to a fraction of an estimate of the 
standard deviation of the time series.

Default: maxbc = 10; tolerance = 0.01 × standard deviation of z.

IMSLS_RELATIVE_ERROR, float relative_error  (Input)
Stopping criterion for use in the nonlinear equation solver used in both the method of moments and 
least-squares algorithms.

Default: relative_error = 100 × imsls_f_machine(4).

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_ABS_FCN_TOL, float afcntol (Input)
The absolute function tolerance used by the nonlinear least-squares solver that determines the MA 
parameters in the method of moments. This variable is only needed for non-standard ARMA models.

Default: afcntol = max(10-10,ɛ2/3), where ɛ = imsls_f_machine(4) is the machine precision.

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_GRAD_TOL, float grad_tol (Input)
The scaled gradient tolerance used by the nonlinear least-squares solver that determines the MA 
parameters in the method of moments. This variable is only needed for non-standard ARMA models.
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Default: grad_tol =  in single,  in double, where ɛ = imsls_f_machine(4) is the machine 
precision.

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_STEP_TOL, float step_tol (Input)
The scaled step tolerance used by the nonlinear least-squares solver that determines the MA param-
eters in the method of moments. This variable is only needed for non-standard ARMA models.

Default: step_tol = ɛ2/3, where ɛ = imsls_f_machine(4) is the machine precision.

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_MAX_ITERATIONS, int max_iterations  (Input)
Maximum number of iterations allowed in the nonlinear equation solver used in both the method of 
moments and least-squares algorithms.

Default: max_iterations = 200.

IMSLS_MEAN_ESTIMATE, float *z_mean  (Input or Input/Output)
On input, z_mean is an initial estimate of the mean of the time series z. On return, z_mean con-
tains an update of the mean.

If IMSLS_NO_CONSTANT and IMSLS_LEAST_SQUARES are specified, z_mean is not used in 
parameter estimation.

IMSLS_INITIAL_ESTIMATES, float ar[], float ma[]  (Input)
If specified, ar is an array of length p containing preliminary estimates of the autoregressive parame-
ters, and ma is an array of length q containing preliminary estimates of the moving average 
parameters; otherwise, these are computed internally. IMSLS_INITIAL_ESTIMATES is only 
applicable if IMSLS_LEAST_SQUARES is also specified.

IMSLS_RESIDUAL, float **residual  (Output)
Address of a pointer to an internally allocated array of length 
na = (n_observations - max (ar_lags [i]) + maxbc) containing the residuals (including back-
casts) at the final parameter estimate point in the first n_observations -
max(ar_lags[i]) + nb, where nb is the number of values backcast.

IMSLS_RESIDUAL_USER, float residual[]  (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_PARAM_EST_COV, float **param_est_cov  (Output)
Address of a pointer to an internally allocated array containing the variance-covariance matrix of the 
estimated ARMA parameters and (optionally) of the estimated mean of series z. The size of the array 
is np × np, where np = p + q + 1 if z is centered about z_mean, and np = p + q if z is not centered. 
The ordering of variables in param_est_cov is z_mean, ar, and ma. Argument np must be 1 or 
larger.

ε ε
3
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IMSLS_PARAM_EST_COV_USER, float param_est_cov[]  (Output)
Storage for array param_est_cov is provided by the user. See IMSLS_PARAM_EST_COV.

IMSLS_AUTOCOV, float **autocov  (Output)
Address of a pointer to an array of length p + q + 2 containing the variance and autocovariances of 
the time series z. Argument autocov[0] contains the variance of the series z. Argument 
autocov[k] contains the autocovariance at lag k, where k = 0, 1, ..., p + q + 1.

IMSLS_AUTOCOV_USER, float autocov[]  (Output)
Storage for array autocov is provided by the user. See IMSLS_AUTOCOV.

IMSLS_SS_RESIDUAL, float *ss_residual  (Output)
If specified, ss_residual contains the sum of squares of the random shock, 
ss_residual = residual[1]2 + ... + residual[na]2, where na is equal to the number of 
residuals. 

IMSLS_VAR_NOISE, float *avar  (Output)
If specified, avar contains the innovation variance of the series.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[]  (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p containing the 
final autoregressive parameter estimates, and ma is an array of length q containing the final moving 
average parameter estimates. If p or q equals zero, a NULL array may be used.

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info  (Output)
Address of a pointer to an internally allocated structure of type Imsls_f_arma that contains informa-
tion necessary in the call to imsls_f_arma_forecast.

Description
Function imsls_f_arma computes estimates of parameters for a nonseasonal ARMA model given a sample of 
observations, {Wt}, for t = 1, 2, ..., n, where n = n_observations. There are two methods, method of moments 

and least squares, from which to choose. The default is method of moments.

Two methods of parameter estimation, method of moments and least squares, are provided. The user can 
choose the method of moments algorithm with the optional argument IMSLS_METHOD_OF_MOMENTS. The 
least-squares algorithm is used if the user specifies IMSLS_LEAST_SQUARES. If the user wishes to use the 
least-squares algorithm, the preliminary estimates are the method of moments estimates by default. Otherwise, 
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the user can input initial estimates by specifying optional argument IMSLS_INITIAL_ESTIMATES. The fol-
lowing table lists the appropriate optional arguments for both the method of moments and least-squares 
algorithm:

Method of Moments Estimation
The method of moments assumes that the stationary time series {Zt} can be described by a nonseasonal ARMA 

model of the form

φ(B)Zt = θ
0

+ θ(B)At, t ∈ {0, ±1, ±2, ...}

where B is the backward shift operator, μ is the mean of Zt, and

with p autoregressive and q moving average parameters.

Function imsls_f_arma first orders the AR and MA lags in strictly increasing order. Without loss of generality, 
it therefore can be assumed that

1 ≤lφ(1) < lφ(2) < ... < lφ(p), 1 ≤lθ(1) < lθ(2) < ... < lθ(q)

so that the nonseasonal ARMA model is of order (p’, q’), where p’ = lθ (p) and q’ = lθ (q).

Method of Moments Only Least Squares Only

Both Method of 
Moments and Least 
Squares

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR
IMSLS_ABS_FCN_TOL IMSLS_CONSTANT 

(or IMSLS_NO_CONSTANT)
IMSLS_MAX_ITERATIONS

IMSLS_GRAD_TOL IMSLS_BACKCASTING IMSLS_MEAN_ESTIMATE
IMSLS_STEP_TOL IMSLS_INITIAL_ESTIMATES IMSLS_AUTOCOV(_USER)

IMSLS_RESIDUAL(_USER) IMSLS_RETURN_USER
IMSLS_PARAM_EST_COV(_USER) IMSLS_ARMA_INFO
IMSLS_SS_RESIDUAL IMSLS_AR_LAGS

IMSLS_MA_LAGS
IMSLS_VAR_NOISE

ϕ B = 1 − ϕ1B
lϕ 1

− ϕ2B
lϕ 2

− ... − ϕpB
lϕ p

for p ≥ 0

θ B = 1 − θ1B
lθ 1 − θ2B

lθ 2 − ... − θqB
lθ q for q ≥ 0
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In order to keep the notation simple, the following explanations assume the standard ARMA (p, q) model with lφ(i) 

= i, i = 1,...,p, and lθ (i) = i, i = 1,...,q.

Let μ = z_mean be the estimate of the mean μ of the time series{Zt}, where μ equals the following:

The autocovariance function is estimated by

for k = 0, 1, ..., K, where K = p + q. Note that   (0) is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method of moments estimates of the autoregres-
sive parameters using the extended Yule-Walker equations as follows:

where

The overall constant θ0 is estimated by the following:

The moving average parameters are estimated based on a system of nonlinear equations given K = p + q + 1 
autocovariances, σ(k) for k = 1, ..., K, and p autoregressive parameters φi for i = 1, ..., p.

Let Zʹt = φ(B)Zt. The autocovariances of the derived moving average process Zʹt = θ(B)At are estimated by the fol-

lowing relation:

μ̂ =
μ for μ known
1
n ∑
t=1

n
Zt for μ unknown

σ̂ k = 1n∑
t=1

n−k

Zt − μ̂ Zt+k − μ̂

σ^

∑
^
ϕ^ = σ̂

ϕ^ = ϕ^1, … ,ϕ^ p
T

∑
^
i j = σ̂ ∣q + i − j∣ , i, j = 1, … ,p

σ̂i = σ̂ q + i , i = 1, … ,p

θ^0 =
μ̂ for p = 0

μ̂ 1 − ∑
i=1

p
ϕ^ i for p > 0
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The iterative procedure for determining the moving average parameters is based on the relation

where σ(k) denotes the autocovariance function of the original Zt process.

Let  and f =  (f0, f1, ..., fq)T, where

and

The nonlinear system

is solved by a trust-region method. If  is the estimate of  obtained at the i-th iteration and if a full 

Newton step is possible, then the new value at the (i + 1)-th iteration is determined by

where

is a square matrix of order q + 1 with entries

σ̂ ′ k =

σ̂ k for p = 0

∑
i=0

p
∑
j=0

p
ϕ^ iϕ
^
j σ̂ ∣k + i − j∣ for p ≥ 1,ϕ^0 ≡ − 1

σ k =
1 + θ1

2 + ... + θq
2 σA

2 for k = 0

−θk + θ1θk+1 + ... + θq−kθq σA
2 for k ≥ 1

τ = (τ0,τ1,...τq)
T

τ j =
σA for j = 0
−θ jτ0 for j = 1, … ,q

f j(τ0,...,τq) = ∑
i=0

q− j
τiτi+ j − σ̂ ′ j for j = 0,...,q.

f (τ0, … ,τq) = 0

τi = (τ0
i ,...,τq

i ) τ

τi+1 = τi − Ti
−1
f i,

Ti: =
∂ f j
i

∂τk 0≤ j,k≤q
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The estimation procedure begins with the initial value

and terminates at iteration i when either ∥fi∥ is less than relative_error or i equals max_iterations. 

The moving average parameter estimates are obtained from the final estimate of  by setting

The random shock variance is estimated by the following:

See Box and Jenkins (1976, pp. 498-500) for a description of a function that performs similar computations.

Least-squares Estimation
Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form,

φ(B) (Zt - μ) = θ(B)At        for t ∈ {0, ±1, ±2, …}

where B is the backward shift operator, μ is the mean of Zt, and

with p autoregressive and q moving average parameters. Without loss of generality, the following is assumed:

1 ≤ lφ (1) ≤ lφ (2) ≤ … ≤ lφ (p)

1 ≤ lθ (1) ≤ lθ (2) ≤ … ≤ lθ (q)

so that the nonseasonal ARMA model is of order (p’, q’), where p’ = lφ (p) and q’ = lθ (q). Note that the usual hierar-

chical model assumes the following:

lφ (i) = i, 1 ≤ i ≤ p

lθ (j) = j, 1 ≤ j ≤ q

∂ f j
i

∂τk
= τk+ j

i + τk− j
i , τl

i: = 0 for l < 0 and l > q.

τ0 = σ̂ ′ 0 ,0, … ,0
T

τ

θ^ j = − τ j / τ0 for j = 1, … ,q

σ̂A
2 =

σ̂(0) − ∑i=1
p ϕ^ iσ̂ i for q = 0

τ0
2 for q > 0

ϕ B = 1 − ϕ1B
lϕ 1

− ϕ2B
lϕ 2

− ... − ϕpB
lϕ p

for p ≥ 0

θ B = 1 − θ1B
lθ 1 − θ2B

lθ 2 − ... − θqB
lθ q for q ≥ 0
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Consider the sum-of-squares function

where

and T is the backward origin. The random shocks {At} are assumed to be independent and identically distributed

random variables. Hence, the log-likelihood function is given by

where f (μ, φ, θ) is a function of μ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Zt and At required to initialize the 

model. The method of selecting these initial values usually introduces transient bias into the model 
(Box and Jenkins 1976, pp. 210-211). For T = ∞, this dependency vanishes, and estimation problem concerns 
maximization of the unconditional log-likelihood function. Box and Jenkins (1976, p. 213) argue that

dominates

The parameter estimates that minimize the sum-of-squares function are called least-squares estimates. For large 
n, the unconditional least-squares estimates are approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T will enable sufficient approximation of the unconditional sum-of-squares function. 
The values of [AT] needed to compute the unconditional sum of squares are computed iteratively with initial val-

ues of Zt obtained by back forecasting. The residuals (including backcasts), estimate of random shock variance, 

and covariance matrix of the final parameter estimates also are computed. ARIMA parameters can be computed 
by using imsls_f_difference with imsls_f_arma.

ST μ,ϕ,θ = ∑
−T+1

n

At
2

At = E At∣ μ,ϕ,θ,Z

N 0,σA
2

l μ,ϕ,θ,σA = f μ,ϕ,θ − n ln σA −
ST μ,ϕ,θ
2σA
2

S∞ μ,ϕ,θ / 2σA
2

l μ,ϕ,θ,σA
2
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Examples

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each 
year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 
1770 through 1869. The method of moments estimates

for the ARMA(2, 1) model 

where the errors At are independently normally distributed with mean zero and variance .

#include <imsls.h>
#include <stdio.h>
int main()
{
   int p=2, q=1, i, n_observations=100, max_iterations=0;
   float w[176][2], z[100], *parameters, relative_error=0.0;
   imsls_f_data_sets(2, IMSLS_X_COL_DIM, 
       2, IMSLS_RETURN_USER, w, 
       0);
   for (i=0; i<n_observations; i++) z[i] = w[21+i][1];
   parameters = imsls_f_arma(n_observations, &z[0], p, q,
       IMSLS_RELATIVE_ERROR, relative_error,
       IMSLS_MAX_ITERATIONS, max_iterations,
       0);
   printf("AR estimates are %11.4f and %11.4f.\n", 
       parameters[1], parameters[2]);
   printf("MA estimate is %11.4f.\n", parameters[3]);
}

Output

AR estimates are     1.2443 and    -0.5751.
MA estimate is    -0.1241.

Example 2

The data for this example are the same as that for the initial example. Preliminary method of moments estimates 
are computed by default, and the method of least squares is used to find the final estimates. 

θ
^

0,ϕ
^

1
,ϕ
^

2
, and θ

^

1

Zt = θ0 + ϕ1Zt−1 + ϕ2Zt−2 − θ1At−1 + At
σA
2
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#include <imsls.h>
#include <stdio.h>
int main()
{
   int p=2, q=1, i, n_observations=100;
   float w[176][2], z[100], *parameters;
   imsls_f_data_sets(2, IMSLS_X_COL_DIM, 
       2, IMSLS_RETURN_USER, w, 
       0);
   for (i=0; i<n_observations; i++) z[i] = w[21+i][1];
   parameters = imsls_f_arma(n_observations, &z[0], p, q,
       IMSLS_LEAST_SQUARES, 
       0);
   printf("AR estimates are %11.4f and %11.4f.\n", 
       parameters[1], parameters[2]);
   printf("MA estimate is %11.4f.\n", parameters[3]);
}

Output

AR estimates are     1.5300 and    -0.8931.
MA estimate is    -0.1324.

Warning Errors
IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the parameters has 

failed to converge. Solution from last iteration is 
returned. The estimates of the parameters at the 
last iteration may be used as new starting values.

IMSLS_NEED_POSITIVE_GRADTL The gradient tolerance must be nonnegative while 
“grad_tol” = # is given. The algorithm will use 
“grad_tol” = #.

IMSLS_NEGATIVE_STEP_TOL The step tolerance must be nonnegative while 
“step_tol” = # is given. The algorithm will use 
“step_tol” = #.

IMSLS_NEGATIVE_ABS_FCN_TOL The absolute function tolerance must be nonnega-
tive while “afcntol” = # is given. The algorithm will 
use “afcntol” = #.
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Fatal Errors
IMSLS_TOO_MANY_CALLS The number of calls to the function has exceeded 

“itmax”*(“n”+1) = %(i1). The user may try a new ini-
tial guess.

IMSLS_INCREASE_ERRREL The bound for the relative error, “errrel” = %(r1), is 
too small. No further improvement in the approxi-
mate solution is possible. The user should increase 
“errrel”.

IMSLS_NEW_INITIAL_GUESS The iteration has not made good progress. The user 
may try a new initial guess. 
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max_arma
Exact maximum likelihood estimation of the parameters in a univariate ARMA (autoregressive, moving average) 
time series model. 

Synopsis
#include <imsls.h>
float *imsls_f_max_arma(int n_obs, float w[], int p, int q,…,0)

The type double function is imsls_d_max_arma.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

float w[] (Input)
Array of length n_obs containing the time series.

int p (Input)
Non-negative number of autoregressive parameters.

int q (Input)
Non-negative number of moving average parameters.

Return Value
Pointer to an array of length 1+p+q with the estimated constant, AR and MA parameters. If no value can be com-
puted, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_max_arma (int n_obs, float w[], int p, int q,

IMSLS_INITIAL_ESTIMATES, float init_ar[], float init_ma[],
IMSLS_PRINT_LEVEL, int iprint,
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IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_LOG_LIKELIHOOD, float *log_likeli,
IMSLS_VAR_NOISE, float *avar,

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,

IMSLS_MEAN_ESTIMATE, float *w_mean,
IMSLS_RESIDUAL, float **residuals,
IMSLS_RESIDUAL_USER, float residuals[],
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
0)

Optional Arguments
IMSLS_INITIAL_ESTIMATES, float init_ar[], float init_ma[]  (Input)

If specified, init_ar is an array of length p containing preliminary estimates of the autoregressive 
parameters, and init_ma is an array of length q containing preliminary estimates of the moving 
average parameters; otherwise, they are computed internally. If p=0 or q=0, then the corresponding 
arguments are ignored.

IMSLS_PRINT_LEVEL, int iprint  (Input)
Printing options:

Default: iprint = 0.

IMSLS_MAX_ITERATIONS, int maxit  (Input)
Maximum number of estimation iterations.

Default: maxit = 300

IMSLS_VAR_NOISE, float *avar  (Output)
Estimate of innovation variance. 

IMSLS_LOG_LIKELIHOOD, float *log_likeli  (Output)
Value of -2 × (ln(likelihood)) for the fitted model.

iprint Action

0 No Printing.

1 Prints final results only.

2 Prints intermediate and final results.
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IMSLS_ARMA_INFO, Imsls_f_arma **arma_info  (Output)
Address of a pointer to an internally allocated structure of type Imsls_f_arma that contains informa-
tion necessary in the call to imsls_f_arma_forecast.

IMSLS_MEAN_ESTIMATE, float *w_mean  (Input/Output)
Estimate of the mean of the time series w. On return, w_mean contains an update of the mean.

Default: Time series w is centered about its sample mean. 

IMSLS_RESIDUAL, float **residuals  (Output)
Address of a pointer to an internally allocated array of length n_obs containing the residuals of the 
requested ARMA fit.

IMSLS_RESIDUAL_USER, float residuals[]  (Output)
Storage array residuals is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[]  (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p containing the 
final autoregressive parameter estimates, and ma is an array of length q containing the final moving 
average parameter estimates.

Description
The function imsls_f_max_arma is derived from the maximum likelihood estimation algorithm described by 
Akaike, Kitagawa, Arahata and Tada (1979), and the XSARMA routine published in the TIMSAC-78 Library.

Using the notation developed in the Time Domain Methodology at the beginning of this chapter, the stationary 

time series  with mean  can be represented by the nonseasonal autoregressive moving average (ARMA) 
model by the following relationship:

where

B is the backward shift operator defined by  ,

and 

Wt μ

ϕ B Wt − μ = θ B at

t ∈ ZZ = ⋯ , − 2, − 1,0,1,2, ⋯ ,

BkWt = Wt−k

ϕ B = 1 − ϕ1B − ϕ2B
2 − ⋯ − ϕpB

p
, p ≥ 0,
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Function imsls_f_max_arma estimates the AR coefficients   and the MA coefficients 

 using maximum likelihood estimation. 

Function imsls_f_max_arma checks the initial estimates for both the autoregressive and moving average 
coefficients to ensure that they represent a stationary and invertible series respectively.

If 

are the initial estimates for a stationary series then all (complex) roots of the following polynomial will fall outside 
the unit circle:

Initial values for the AR and MA coefficients can be supplied by vectors init_ar and init_ma. Otherwise, esti-
mates are computed internally by the method of moments. imsls_f_max_arma computes the roots of the 
associated polynomials. If the AR estimates represent a non-stationary series, imsls_f_max_arma issues a 
warning message and replaces init_ar with initial values that are stationary. If the MA estimates represent a 
non-invertible series, imsls_f_max_arma issues a terminal error, and new initial values have to be sought.

imsls_f_max_arma also validates the final estimates of the AR coefficients to ensure that they too represent 
a stationary series. This is done to guard against the possibility that the internal log-likelihood optimizer con-
verged to a non-stationary solution. If non-stationary estimates are encountered, imsls_f_max_arma issues 
a fatal error message. Functions imsls_error_options and imsls_error_code (see Chapter 15, Utilities) 
can be used to verify that the stationarity condition was met.

For model selection, the ARMA model with the minimum value for AIC might be preferred,

Function imsls_f_max_arma can also handle white noise processes, i.e. ARMA(0,0) Processes.

θ B = 1 − θ1B − θ2B
2 − ⋯ − θqB

q
, q ≥ 0.

ϕ1,ϕ2, ⋯ ,ϕp
θ1,θ2, ⋯ ,θq

ϕ1,ϕ2, ⋯ ,ϕp

1 − ϕ1z − ϕ2z
2 − ⋯ − ϕpz

p
.

AIC = log_likeli + 2 p + q
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Examples 

Example 1

Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of sunspots observed each 
year from 1770 through 1869. In this example, imsls_f_max_arma is used to fit the following ARMA(2,1) 
model:

with    ,    the sample mean of the time series   .

For these data, imsls_f_max_arma calculated the following model:

Defining the overall constant    by   , we obtain the following equivalent representations:

and

#include <imsls.h>
#include <stdio.h>
int main()
{
   int i;
   int n_obs = 100;
   int p = 2, q = 1;
   float z[176][2];
   float w[100];
   float *parameters = NULL;
   float avar, log_likeli;
   /* get wolfer sunspot data */
   imsls_f_data_sets (2,
       IMSLS_X_COL_DIM, 2,
       IMSLS_RETURN_USER, z,
       0);
   for (i=0; i<n_obs; i++)
       w[i] = z[21+i][1];
   parameters = imsls_f_max_arma (n_obs, w, p, q,
       IMSLS_MAX_ITERATIONS, 12000,
       IMSLS_VAR_NOISE, &avar,
       IMSLS_LOG_LIKELIHOOD, &log_likeli,

w~ t = ϕ1w
~
t−1 + ϕ2w

~
t−2 + at − θ1at−1

w~ t : = wt − μ μ wt

w~ t = 1.22w
~
t−1 − 0.56w

~
t−2 + at + 0.38at−1

ϕ0 ϕ0 : = μ 1 − ∑i=1
p ϕi

wt = ϕ0 + ϕ1wt−1 + ϕ2wt−2 + at − θ1at−1,

wt = 15.76 + 1.22wt−1 − 0.56wt−2 + at + 0.38at−1.
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       0);
   printf("AR estimates are %11.4f and %11.4f.\n", parameters[1],
       parameters[2]);
   printf("MA estimate is %11.4f.\n", parameters[3]);
   printf("Constant estimate is %11.4f.\n", parameters[0]);
   printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli);
   printf("White noise variance = %11.4f.\n", avar);
   if (parameters)
   {
       imsls_free(parameters);
       parameters = NULL;
   }
}

Output

AR estimates are     1.2245 and    -0.5601.
MA estimate is    -0.3831.
Constant estimate is    15.7624.
-2*ln(Maximum Log Likelihood) =   539.5839.
White noise variance =   214.5123.

Example 2

This example is the same as Example 1, but now initial values for the AR and MA parameters are explicitly given.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int i;
   int n_obs = 100;
   int p = 2, q = 1;
   float z[176][2];
   float w[100];
   float parameters[4];
   float avar, log_likeli;
   float init_ar[2] = {1.244e0, -0.575e0};
   float init_ma[1] = {-0.1241e0};
   /* get wolfer sunspot data */
   imsls_f_data_sets (2,
       IMSLS_X_COL_DIM, 2,
       IMSLS_RETURN_USER, z,
       0);
   for (i=0; i<n_obs; i++)
       w[i] = z[21+i][1];
   imsls_f_max_arma (n_obs, w, p, q,
       IMSLS_MAX_ITERATIONS, 12000,
       IMSLS_VAR_NOISE, &avar,
       IMSLS_LOG_LIKELIHOOD, &log_likeli,
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       IMSLS_INITIAL_ESTIMATES, init_ar, init_ma,
       IMSLS_RETURN_USER, &parameters[0], &parameters[1], &parameters[3],
       0);
   printf("AR estimates are %11.4f and %11.4f.\n",
       parameters[1], parameters[2]);
   printf("MA estimate is %11.4f.\n", parameters[3]);
   printf("Constant estimate is %11.4f.\n", parameters[0]);
   printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli);
   printf("White noise variance = %11.4f.\n", avar);
}

Output

AR estimates are     1.2252 and    -0.5607.
MA estimate is    -0.3828.
Constant estimate is    15.7587.
-2*ln(Maximum Log Likelihood) =   539.5839.
White noise variance =   214.5083.
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arma_forecast
Computes forecasts and their associated probability limits for an ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict, ..., 0)

The type double function is imsls_d_arma_forecast.

Required Arguments
Imsls_f_arma *arma_info  (Input)

Pointer to a structure of type Imsls_f_arma that is passed from the imsls_f_arma function.

int n_predict  (Input)
Maximum lead time for forecasts. Argument n_predict must be greater than 0.

Return Value
Pointer to an array of length n_predict × (backward_origin + 3) containing the forecasts up to 
n_predict steps ahead and the information necessary to obtain pairwise confidence intervals. More informa-
tion is given in the description of argument IMSLS_RETURN_USER.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict,

IMSLS_CONFIDENCE, float confidence,
IMSLS_BACKWARD_ORIGIN, int backward_origin,
IMSLS_ONE_STEP_FORECAST, float **forecast,
IMSLS_ONE_STEP_FORECAST_USER, float forecast[],
IMSLS_RETURN_USER, float forecasts[],
0)
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Optional Arguments
IMSLS_CONFIDENCE, float confidence  (Input)

Value in the exclusive interval (0, 100) used to specify the confidence percent probability limits of 
the forecasts. Typical choices for confidence are 90.0, 95.0, and 99.0.

Default: confidence = 95.0.

IMSLS_BACKWARD_ORIGIN, int backward_origin  (Input)
If specified, the maximum backward origin. Argument backward_origin must be greater than or 
equal to 0 and less than or equal to n_observations - max(maxar, maxma), where 
maxar = max(ar_lags[i]), maxma = max (ma_lags[j]), and n_observations = the number of 
observations in the series, as input in function imsls_f_arma. n_predict forecasts beginning 
at origins n_observations - backward_origin +1 through n_observations are 
generated.

Default: backward_origin = 0.

IMSLS_ONE_STEP_FORECAST, float **forecast  (Output)
Address of a pointer to an internally allocated array of length backward_origin + n_predict 
containing forecasts. The first backward_origin forecasts are one-step ahead forecasts for the 
last backward_origin values in the series. The next n_predict values in the returned series 
are forecasts for the next values beyond the series.

IMSLS_ONE_STEP_FORECAST_USER, float forecast[]  (Output)
Storage for array forecast is provided by the user. See IMSLS_ONE_STEP_FORECAST.

IMSLS_RETURN_USER, float forecasts[]  (Output)
If specified, a user-specified array of length n_predict × (backward_origin + 3) as defined 
below.

Also see Examples for additional explanation of how to interpret this output.

Column Content

j forecasts for lead times l = 1, ..., n_predict at ori-
gins n_observations - backward_origin + 1+ j, 
where j = 0, ..., backward_origin

backward_origin + 1 deviations from each forecast that give the confi-
dence percent probability limits

backward_origin + 2 psi weights of the infinite order moving average form 
of the model
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Description
The Box-Jenkins forecasts and their associated probability limits for a nonseasonal ARMA model are computed 
given a sample of n = n_observations {Zt} for t = 1, 2, ..., n, where n_observations = the number of 

observations in the series, as input in function imsls_f_arma.

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form

φ(B)Zt = θ
0

+ θ(B)At

for t ∈ {0, ±1, ±2, ...}, where B is the backward shift operator, θ0 is the constant, and

with p autoregressive and q moving average parameters. Without loss of generality, the following is assumed:

1 ≤ lφ (1) ≤ lφ (2) ≤ … ≤ lφ (p)

1 ≤ lθ (1) ≤ lθ (2) ≤ … ≤ lθ (q)

so that the nonseasonal ARMA model is of order (pʹ, qʹ), where pʹ = lφ(p) and qʹ = lθ(q). Note that the usual hierar-

chical model assumes the following:

lφ (i) = i, 1 ≤ i ≤ p

lθ (j) = j, 1 ≤ j ≤ q

The Box-Jenkins forecast at origin t for lead time l of Zt+l is defined in terms of the difference equation

where the following is true:

ϕ B = 1 − ϕ1B
lϕ 1

− ϕ2B
lϕ 2

− ... − ϕpB
lϕ p

θ B = 1 − θ1B
lθ 1 − θ2B

lθ 2 − ... − θqB
lθ q

Z^ t l = θ0 + ϕ1 Zt+l−lϕ 1
+ ... + ϕp Zt+l−lϕ p

+ At+l − θ1 At+l−lθ 1
− .... − θq At+l−lθ q
710



 Time Series and Forecasting         arma_forecast
The 100(1 - α) percent probability limits for Zt+l are given by

where z(a/2) is the 100(1 - α/2) percentile of the standard normal distribution

(returned from imsls_f_arma) and

are the parameters of the random shock form of the difference equation. Note that the forecasts are computed 
for lead times l = 1, 2, ..., L at origins t = (n - b), (n - b + 1), ..., n, where L = n_predict and 
b = backward_origin.

The Box-Jenkins forecasts minimize the mean-square error

Also, the forecasts can be easily updated according to the following equation:

This approach and others are discussed in Chapter 5, Forecasting of Box and Jenkins (1976).

Zt+k =
Zt+k for k = 0, − 1, − 2, …

Z^ t k for k = 1,2, …

At+k =
Zt+k − Z

^
t+k−1 1 for k = 0, − 1, − 2, …

0 for k = 1,2, …

Z^ t l ± zα/2 1 +∑
j=1

l−1

ψ j
2

1/2

σA

σA
2

ψ j

E Zt+l − Z
^
t l

2

Z^ t+1 l = Z^ t l + 1 + ψlAt+1
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Examples

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each 
year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from 
1770 through 1869. Function imsls_f_arma_forecast computes forecasts and 95-percent probability lim-
its for the forecasts for an ARMA(2, 1) model fit using function imsls_f_arma with the method of moments 
option. With backward_origin = 3, columns zero through three of forecasts provide forecasts starting 
with 1867, 1868, 1869, and 1870, respectively. Note that the values in the first row are the one-step ahead fore-
casts for 1867, 1868, 1869, and 1870; the values in the second row are the two-step ahead forecasts for 1868, 
1869, 1870, and 1871; etc. Column four gives the deviations for computing probability limits, and column five 
gives the psi weights, which can be used to update forecasts when more data is available. For example, the fore-
cast for the 102nd observation (year 1871) given the data through the 100th observation (year 1869) is 77.21; 

and 95-percent probability limits are given by 77.21  56.30. After observation 101 ( Z101 for year 1870) is avail-

able, the forecast can be updated by using

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation 101 (Z101 - 83.72) to give 

the following:

77.21 + 1.37 × (Z

101

- 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are now given by the forecast   
33.22.

#include <imsls.h>
int main()
{
   int   p = 2;
   int   q = 1;
   int   i;
   int   n_observations = 100;
   int   max_iterations = 0;
   int   n_predict = 12;
   int   backward_origin = 3;
   float w[176][2];
   float z[100];
   float *parameters;
   float rel_error = 0.0;

∓

Z^ t l ± zα/2 1 +∑
j=1

l−1

ψ j
2

1/2

σA

∓
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   float *forecasts;
   Imsls_f_arma *arma_info;
   char  *col_labels[] = {
          "Lead Time",
          "Forecast From 1866",
          "Forecast From 1867",
          "Forecast From 1868",
          "Forecast From 1869",
          "Dev. for Prob. Limits",
          "Psi"};
   imsls_f_data_sets(2, IMSLS_X_COL_DIM, 
                     2, IMSLS_RETURN_USER, w, 
                     0);
   for (i=0; i<n_observations; i++) z[i] = w[21+i][1];
   
   parameters = imsls_f_arma(n_observations, &z[0], p, q,
                             IMSLS_RELATIVE_ERROR,
                                rel_error,
                             IMSLS_MAX_ITERATIONS,
                                max_iterations,
                             IMSLS_ARMA_INFO,
                                &arma_info,
                             0);
   printf("Method of Moments initial estimates:\n");
   printf("AR estimates are %11.4f and %11.4f.\n", 
          parameters[1], parameters[2]);
   printf("MA estimate is %11.4f.\n", parameters[3]);
   forecasts = imsls_f_arma_forecast(arma_info, n_predict,
                             IMSLS_BACKWARD_ORIGIN,
                                backward_origin,
                             0);
 
   imsls_f_write_matrix("* * * Forecast Table * * *\n",
                        n_predict, backward_origin+3,
                        forecasts,
                        IMSLS_COL_LABELS, col_labels,
                        IMSLS_WRITE_FORMAT, "%11.4f",
                        0);
}

Output

Method of Moments initial estimates:
AR estimates are     1.2443 and    -0.5751.
MA estimate is    -0.1241.
                    * * * Forecast Table * * *
Lead Time Forecast From Forecast From Forecast From Forecast From
                  1866          1867          1868          1869
       1       18.2833       16.6151       55.1893       83.7196
       2       28.9182       32.0189       62.7606       77.2092
       3       41.0101       45.8275       61.8922       63.4608
       4       49.9387       54.1496       56.4571       50.0987
       5       54.0937       56.5623       50.1939       41.3803
       6       54.1282       54.7780       45.5268       38.2174
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       7       51.7815       51.1701       43.3221       39.2965
       8       48.8417       47.7072       43.2631       42.4582
       9       46.5335       45.4736       44.4577       45.7715
      10       45.3524       44.6861       45.9781       48.0758
      11       45.2103       44.9909       47.1827       49.0371
      12       45.7128       45.8230       47.8072       48.9080
Lead Time Dev. for Prob.         Psi
                 Limits            
       1        33.2179      1.3684
       2        56.2980      1.1274
       3        67.6168      0.6158
       4        70.6432      0.1178
       5        70.7515     -0.2076
       6        71.0869     -0.3261
       7        71.9074     -0.2863
       8        72.5337     -0.1687
       9        72.7498     -0.0452
      10        72.7653      0.0407
      11        72.7779      0.0767
      12        72.8225      0.0720

Example 2

Using the same data as in example 1, option IMSLS_ONE_STEP_FORECAST is used to compute the one-step 
ahead forecasts with backward_origin = 0 and n_predict = 5. This obtains the one-step ahead forecasts for 
the last 10 observations in the series, i.e. years 1860-1869, plus the next 5 years. The upper 90% confidence lim-
its are computed for these forecasts using the deviations in column backward_origin +1 of forecasts.

#include <imsls.h>
#include <stdio.h>
int main()
{
  int p = 2;
  int q = 1;
  int i;
  int n_observations = 100;
  int max_iterations = 0;
  int n_predict = 5;
  int backward_origin = 10;
  int year=1860;
  int devindex;
  float w[176][2];
  float z[100];
  float *parameters;
  float rel_error = 0.0;
  float *forecasts;
  float *one_step_forecast;
  float confidence=90.;
  Imsls_f_arma *arma_info;
  imsls_f_data_sets(2, IMSLS_X_COL_DIM, 2,
    IMSLS_RETURN_USER, w,
    0);
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  for (i=0; i<n_observations; i++) z[i] = w[21+i][1];
  parameters = imsls_f_arma(n_observations, &z[0], p, q,
    IMSLS_RELATIVE_ERROR, rel_error,
    IMSLS_MAX_ITERATIONS, max_iterations,
    IMSLS_ARMA_INFO, &arma_info,
    0);
  /* get one-step ahead forecasts */
  forecasts = imsls_f_arma_forecast(arma_info, n_predict,
    IMSLS_BACKWARD_ORIGIN, backward_origin,
    IMSLS_ONE_STEP_FORECAST, &one_step_forecast,
    IMSLS_CONFIDENCE, confidence,
    0);
  devindex = backward_origin+1;  /* forecasts index for deviations */
  printf ("          ARMA ONE-STEP AHEAD FORECASTS\n");
  printf ("Year  Observed  Forecast    Residual  UCL(90\x25) \n\n");
  for (i=0; i<backward_origin; i++)
    printf ("%d   %7.3f   %7.3f   %7.3f    %7.3f\n", year+i,
    z[n_observations-backward_origin+i], 
    one_step_forecast[i],
    z[n_observations-backward_origin+i]-one_step_forecast[i],
    one_step_forecast[i]+forecasts[devindex]);
  for (i=backward_origin; i<backward_origin+n_predict; i++)
    printf ("%d      -      %7.3f        -     %7.3f\n", 
    year+i, one_step_forecast[i], 
    one_step_forecast[i]+
    forecasts[devindex+(i-backward_origin)*(backward_origin+3)] );
}

Output

          ARMA ONE-STEP AHEAD FORECASTS
Year  Observed  Forecast    Residual  UCL(90%)
1860    95.700   100.737    -5.037    128.615
1861    77.200    81.295    -4.095    109.173
1862    59.100    57.067     2.033     84.944
1863    44.000    44.426    -0.426     72.303
1864    47.000    36.353    10.647     64.230
1865    30.500    47.396   -16.896     75.274
1866    16.300    28.558   -12.258     56.436
1867     7.300    19.804   -12.504     47.682
1868    37.300    16.804    20.496     44.681
1869    73.900    55.213    18.687     83.090
1870      -       83.723        -     111.600
1871      -       77.213        -     124.460
1872      -       63.464        -     120.210
1873      -       50.100        -     109.386
1874      -       41.380        -     100.757
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arima

more...

Fits a univariate seasonal or non-seasonal ARIMA time series model with optional regression variables.

Synopsis
#include <imsls.h>
float *imsls_f_arima (int n_obs, float y[], int model[], ..., 0)

The type double function is imsls_d_arima.

Required Arguments
int n_obs  (Input)

Number of observations.

float y[]  (Input)
Array of length n_obs containing the observations.

int model[]  (Input)
Array of length 3 containing the model order parameters p, d, q.

Return Value
Pointer to an array of length 1 + p + q + P + Q with the estimated constant, autoregressive (AR), and moving aver-
age (MA) parameters. 

Element Description

0 Order of the autoregressive part, p, where p≥ 0.

1 Order of the non-seasonal difference operator, d, 
where d≥ 0.

2 Order of the moving average part, q, where q≥ 0.
716



 Time Series and Forecasting         arima
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arima (int n_obs, float y[], int model[],

IMSLS_SEASONAL_MODEL, int sper, int seasonal_model[],
IMSLS_REGRESSION, int n_cols, float x[],
IMSLS_REGRESSION_INDICES, int n_regressors, int indices[],
IMSLS_REGRESSION_FORECASTS, float xlead[],
IMSLS_INITIAL_EST_INPUT, int n_params, float params[],
IMSLS_NO_TREND,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_DIFFERENCES, float ** differences,
IMSLS_DIFFERENCES_USER, float differences[],
IMSLS_FORECASTS, int n_predict, 

float **forecasts, float **forecast_variances,
IMSLS_FORECASTS_USER, int n_predict, 

float forecasts[], float forecast_variances[],
IMSLS_REGRESSION_COEF, float **coefficients,
IMSLS_REGRESSION_COEF_USER, float coefficients[],
IMSLS_SE_ARMA, float **arma_std_errors,
IMSLS_SE_ARMA_USER, float arma_std_errors[],
IMSLS_VAR_NOISE, float *avar,
IMSLS_SE_COEF, float **regcoef_std_errors,
IMSLS_SE_COEF_USER, float regcoef_std_errors[],
IMSLS_COEF_COVARIANCES, float **coef_covar,
IMSLS_COEF_COVARIANCES_USER, float coef_covar[],
IMSLS_AIC, float *aic,
IMSLS_LOG_LIKELIHOOD, float *log_likelihood,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
0)
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Optional Arguments
IMSLS_SEASONAL_MODEL, int sper, int seasonal_model[]  (Input)

Argument sper specifies the seasonal period, with sper ≥ 0. Argument seasonal_model is an 
array of length 3 containing the seasonal model order parameters P, D, Q.

Default: P = D = Q = 0.

IMSLS_REGRESSION, int n_cols, float x[]  (Input)
Array of length n_obs × n_cols containing the regression variables. Specific columns of x may be 
selected using the optional argument IMSLS_REGRESSION_INDICES. 

Default: n_cols = 0 (No regression variables are included).

IMSLS_REGRESSION_INDICES, int n_regressors, int indices[]  (Input)
Argument n_regressors specifies the length of array indices and the number of regression 
variables to be included in the ARIMA fit. Argument indices contains the indices of the regression 
variables in matrices x and xlead.

Default: All regression variables in x and xlead will be used.

IMSLS_REGRESSION_FORECASTS, float xlead[]  (Input)
Array of length n_predict × n_cols containing the regression variables to be used in obtaining 
forecasts. Specific columns of xlead may be selected using the optional argument 
IMSLS_REGRESSION_INDICES. 

Default: Not used.

Element Description

0 Order of the autoregressive part, P, where P≥ 0.

1 Order of the non-seasonal difference operator, D, 
where D≥ 0.

2 Order of the moving average part, Q, where Q≥ 0.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then 
IMSLS_REGRESSION_FORECASTS is required.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then 
IMSLS_REGRESSION_FORECASTS is required.
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IMSLS_INITIAL_EST_INPUT, int n_params, float params[]  (Input)
Array of length n_params containing initial estimates for the parameters. Note that n_params 
must be equal to p+q+P+Q. The order of each parameter must be as stated, i.e. first the p autoregres-
sive (AR) and q moving average (MA) parameters, followed by the P seasonal AR and Q seasonal MA 
parameters. 

Default: Initial estimates are set by the program. 

IMSLS_NO_TREND, (Input)
If IMSLS_NO_TREND is specified, the function will not include a trend variable. A trend variable has 
the effect of fitting an intercept term in the regression. If the difference operator model[1] = d > 0, 
the effect of trend on the model in the original, undifferenced space is polynomial of order d.

Default: The function includes a trend variable.

IMSLS_MAX_ITERATIONS, int max_iterations  (Input)
Maximum number of iterations.

Default: max_iterations = 100

IMSLS_PRINT_LEVEL, int iprint  (Input)
Printing option.

Default: iprint = 0 

IMSLS_DIFFERENCES, float **differences  (Output)
Address of a pointer to an internally allocated array of length 
n_obs - model[1] - seasonal_model[1]*sper containing the differenced series.

IMSLS_DIFFERENCES_USER, float differences[]  (Output)
Storage for the array differences is provided by user.

IMSLS_FORECASTS, int n_predict, float **forecasts, float **forecast_variances  (Out-
put)
Addresses of pointers to internally allocated arrays of length n_predict containing the forecasts 
and forecast variances for time points t = n+1, n+2, …, n+n_predict, where n = n_obs.

iprint Action

0 No printing

1 Prints final results only.

2 Prints intermediate and final results.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then 
IMSLS_REGRESSION_FORECASTS is required.
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IMSLS_FORECASTS_USER, int n_predict, float forecasts[], float forecast_variances[]  
(Output)
Storage arrays forecasts and forecast_variances are provided by the user. See 
IMSLS_FORECASTS.

IMSLS_REGRESSION_COEF, float **coefficients  (Output)
Address of a pointer to an internally allocated array of length n_regressors+t containing the esti-
mated regression coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

IMSLS_REGRESSION_COEF_USER, float coefficients[]  (Output)
Storage array coefficients is provided by user. See IMSLS_REGRESSION_COEF.

IMSLS_SE_ARMA, float **arma_std_errors  (Output)
Address of a pointer to an internally allocated array of length p+q+P+Q containing the standard 
errors of the ARMA parameter estimates, where p = model[0], q = model[2], P = 
seasonal_model[0] and Q = seasonal_model[2].

IMSLS_SE_ARMA_USER, float arma_std_errors[]  (Output)
Storage array arma_std_errors is provided by user. See IMSLS_SE_ARMA.

IMSLS_VAR_NOISE, float *avar  (Output)
White noise variance estimate. For a regression-only model (p=q=P=Q=0), avar is the mean squared 
regression residual for w_t, the time series after applying any differencing.

IMSLS_SE_COEF, float **regcoef_std_errors  (Output)
Address of a pointer to an internally allocated array of length n_regressors+ t containing the 
standard errors of the regression coefficients, where t = 0 if IMSLS_NO_TREND is specified, other-
wise t = 1.

IMSLS_SE_COEF_USER, float regcoef_std_errors[]  (Output)
Storage array regcoef_std_errors is provided by user. See IMSLS_SE_COEF.

IMSLS_COEF_COVARIANCES, float **coef_covar  (Output)
Address of a pointer to an internally allocated array of length 
(n_regressors+t) × (n_regressors+t) containing the variances and covariances of the regres-
sion coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

IMSLS_COEF_COVARIANCES_USER, float coef_covar[]  (Output)
Storage array coef_covar is provided by user. See IMSLS_COEF_COVARIANCES. 

IMSLS_AIC, float *aic  (Output)
Akaike’s Information Criterion for the fitted ARMA model.

IMSLS_LOG_LIKELIHOOD, float *log_likelihood  (Output)
Value of ln(likelihood) for fitted model.
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IMSLS_RETURN_USER, float *constant, float ar[], float ma[]  (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p+P containing 
the final autoregressive parameter estimates, and ma is an array of length q+Q containing the final 
moving average parameter estimates.

Description
Function imsls_f_arima fits a seasonal or non-seasonal ARIMA time series with the possible inclusion of one 
or more regression variables.

Suppose   ,   , is a time series such that the d-th difference is stationary. Further, suppose    is a 

series of uncorrelated, mean 0 random variables with variance   .

First, for the non-seasonal case, the Auto-Regressive Integrated Moving Average (ARIMA) model for   can 
be expressed as

where B is the backshift operator,   

and 

The notation for this model is ARIMA(p, d, q) where p is the order of the autoregressive polynomial   , d is 

the order of the differencing needed to make    stationary, and q is the order of the moving-average polynomial  

 .

The ARIMA model can be extended to include    regression variables  , by using the residuals 

(of the multiple regression of    on   ) in place of    in the above ARIMA model:

Equivalently,

Y t t = 1,...N at
σa
2

Y t,at

ϕ(B)(1 − B)dY t = θ(B)at

Bzt = zt−1,B
2zt = zt−2,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 + ⋯ − ϕpB

p
,

θ(B) = 1 − θ1B − θ2B
2 − ⋯ − θqB

q

ϕ B
Y t

θ B

K X 1t, X 2t… , XKt

Y t X 1t, X 2t… , XKt Y t

ϕ B 1 − B d Y t − β0 −∑
i=1

K

βiX it = θ B at
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where

is the differenced residual series. Note that if IMSLS_NO_TREND is specified, β0 will be 0.

To estimate the p + q + K (and + 1 for trend) parameters of the specified regression ARIMA model, 
imsls_f_arima uses the iterative generalized least squares method (IGLS) as described in Otto, Bell, and Bur-
man (1987).

The IGLS method iterates between two steps, one step to estimate the regression parameters via generalized 
least squares (GLS) and the second step to estimate the ARMA parameters. In particular, at iteration m, the first 
step finds

by solving the GLS problem with weight matrix

where

That is,  minimizes   , where  ,   is an N by K  + 1 matrix with i-th 

column,   , , and , and  is an N by N weight matrix defined 

using the theoretical autocovariances of the series

The series   is modeled as an ARMA(p,q) process with parameters   and  

 . At iteration m, the second step is then to obtain new estimates of    and    for 

the updated series,  . The function then finds the maximum likelihood estimates,  and   , by minimizing 
the negative log-likelihood over the parameter vector. The log-likelihood is calculated using the innovations algo-
rithm as described in Brockwell & Davis, Chapter 8.

ϕ(B)wt = θ(B)at

wt = 1 − B d Y t − β0 −∑
i=1

K

βiX it

β^m = (β
^
m0,β

^
m1, … ,β^mK)

′

V (i, j) = γw(| j − i|), i, j = 1, … ,N

γw( j − i) = E[wt− jwt−i|ϕ
^
m−1,θ

^
m−1]

β
^

m (Y − X β)′V −1(Y − X β) Y = Y 1,...YN ′ X

X i = (X i1, … ,X iN)
′ i = 1, … ,K X 0 = (1, … ,1)′ V

wm−1,t = (1 − B)
d Y t − βm−1,0 − ∑i=1

K β^m−1,iX it

wm−1, t ϕ
^

m−1 = ϕ
^

m−1,1, … ϕ
^

m−1, p ′

θ^m−1 = (θ
^
m−1,1, … , ϕ^m−1,q)

′ ϕ
^

m θ
^

m

wm, t ϕ
^

m θ
^

m
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The method is essentially the same for a seasonal ARIMA model. The notation for a seasonal model is 
ARIMA (p, d, q)x(P, D, Q)s where P is the order of the seasonal autoregressive polynomial, D (along with d) is the 

order of the differencing needed for stationarity, Q is the order of the seasonal moving-average polynomial, and s 
is the seasonal period. In particular, the seasonal ARIMA model has the form

φ(B) (Bs)wt = θ(B)Θ(Bs)at

where wt = (1 - B)d (1- Bs)D , d,D≥0 are the difference orders, s≥1 is an integer specifying the seasonal period, 

and at is the white noise process as before. The seasonal autoregressive and moving average polynomials are 

given by

(Bs) = 1- 1Bs- 2B2s-⋯- p BPs

and

Θ(Bs) = 1- Θ1Bs- Θ2B2s-⋯-ΘQ BQs

respectively.

Remarks
When forecasts are requested (n_predict > 0), imsls_f_arima requires that future values of the indepen-
dent variables be provided in optional argument IMSLS_REGRESSION_FORECASTS. In effect, 
imsls_f_arima assumes the future X’s are known without error, which is valid for any deterministic function 
of time such as a seasonal indicator. Also, in economics, certain factors that are considered to be leading indica-
tors are treated as deterministic for the purpose of predicting changes in the economy. Users may consider using 
a more general transfer function model if this is an unreasonable assumption. Function imsls_f_arima calcu-
lates forecast variances using the asymptotic result found in Fuller (1996), Theorem 2.9.4. To obtain the standard 
errors of the ARMA parameters, imsls_f_arima calls function imsls_f_arma for the final w series.

Examples

Example 1

The data set consists of annual mileage per passenger vehicle and annual US population (in 10000’s) spanning 
the years 1980 to 2006 (U.S. Energy Information Administration, 2008). Consider modeling the annual mileage 
using US population as a regression variable.

#include <imsls.h>
#include <stdlib.h>
int main()
{

Φ

Y t

Φ Φ Φ Φ
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    int nobs = 24;
    int model[3] = { 1, 0, 0 };
    int n_predict = 5;
    float avar, llike, *result = NULL, *regcoef = NULL, *regstderr = NULL;
    float *coefcovar = NULL, *armastderr = NULL, *fcst = NULL;
    float *fcst_var = NULL;
    float y[29] = {
        9062.0, 8813.0, 8873.0, 9050.0, 9118.0,
        9248.0, 9419.0, 9464.0, 9720.0, 9972.0,
        10157.0, 10504.0, 10571.0, 10857.0, 10804.0,
        10992.0, 11203.0, 11330.0, 11581.0, 11754.0,
        11848.0, 11976.0, 11831.0, 12202.0, 12325.0,
        12460.0, 12510.0, 12485.0, 12293.0
    };
    float regX[29] = { 22722.4681, 22946.5714, 23166.4458,
        23379.1990, 23582.4902, 23792.3795, 24013.2887,
        24228.8918, 24449.8982, 24681.923, 24962.2814,
        25298.0941, 25651.4224, 25991.8588, 26312.5821,
        26627.8393, 26939.4284, 27264.6925, 27585.4104,
        27904.0168, 28217.1936, 28503.9803, 28772.6647,
        29021.0914, 29289.2127, 29556.0549, 29836.2973,
        30129.0332, 30405.9724
    };
    result = imsls_f_arima(nobs, y, model,
        IMSLS_REGRESSION, 1, regX,
        IMSLS_REGRESSION_FORECASTS, &regX[nobs],
        IMSLS_FORECASTS, n_predict, &fcst, &fcst_var,
        IMSLS_VAR_NOISE, &avar,
        IMSLS_LOG_LIKELIHOOD, &llike,
        IMSLS_REGRESSION_COEF, &regcoef,
        IMSLS_SE_COEF, &regstderr,
        IMSLS_COEF_COVARIANCES, &coefcovar,
        IMSLS_SE_ARMA, &armastderr,
        IMSLS_PRINT_LEVEL, 1,
        0);
    if (result) imsls_free(result);
    if (fcst) imsls_free(fcst);
    if (fcst_var) imsls_free(fcst_var);
    if (regcoef) imsls_free(regcoef);
    if (regstderr) imsls_free(regstderr);
    if (coefcovar) imsls_free(coefcovar);
    if (armastderr) imsls_free(armastderr);
}

Output

Final results for ARIMA model (p,d,q)x(P,D,Q)_s = (1,0,0)x(0,0,0)_0
 Final AR parameter estimates/ std errors
          0.56471           0.13500
-2*ln(maximum log likelihood) = 299.944427
 White noise variance = 15425.566406
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 Regression estimates:
      COEFFICIENTS   Regression STD Errors
 0      -3480.87573       689.33929
 1          0.54236         0.02674
 Forecasts with standard deviation
 T       Y fcst          Y fcst std dev
24      12368.37207           124.19970
25      12524.92871           142.63528
26      12683.60254           148.03239
27      12846.14355           149.71263
28      12998.47363           150.24451

Example 2

The data set consists of simulated weekly observations containing a strong annual seasonality. The seasonal vari-
ables are constructed and sent into imsls_f_arima as regression variables.

#include <imsls.h>
#include <math.h>
#include <stdlib.h>
int main()
{
    int nobs = 100, n_predict = 4, n_regressors = 2;
    int i, model[3] = { 2, 0, 0 };
    float PI, *coefcovar = NULL, *regcoef = NULL, *regstderr = NULL;
    float *result = NULL, *armastderr = NULL, *fcst = NULL;
    float *fcstvar = NULL;
    float avar, llike;
    float x[104][2];
    float y[104] = {
        32.27778, 32.63300, 33.13768, 34.4517,
        34.63824, 37.31262, 37.35704, 37.03092,
        36.39894, 35.75541, 35.10829, 34.70107,
        34.69592, 32.75326, 30.85370, 31.10936,
        29.47493, 29.14361, 28.50466, 30.09714,
        28.49403, 27.23268, 23.49674, 22.71225,
        21.42798, 18.68601, 17.40035, 16.06832,
        15.31862, 14.75179, 13.40089, 13.01101,
        12.44863, 11.27890, 11.51770, 14.31982,
        14.67036, 14.76331, 15.35644, 17.04353,
        18.39931, 18.21919, 18.72777, 19.61794,
        22.31733, 23.79600, 25.41326, 25.60497,
        27.93579, 29.21765, 29.60981, 28.46994,
        28.78081, 30.96402, 35.49537, 35.75124,
        36.18933, 37.2627, 35.02454, 33.57089,
        35.00683, 34.83886, 34.19827, 33.73966,
        34.49709, 34.07127, 32.74709, 31.97856,
        31.3029, 30.21916, 27.46015, 26.78431,
        25.32815, 23.97863, 21.83837, 21.00647,
        20.58846, 19.94578, 17.38271, 17.12572,
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        16.71847, 17.45425, 16.15050, 13.07448,
        12.54188, 12.42137, 13.51771, 14.84232,
        14.28870, 13.39561, 15.48938, 16.47175,
        17.62758, 16.57677, 18.20737, 20.8491,
        20.15616, 20.93857, 23.73973, 25.30449,
        26.51106, 29.43261, 32.02672, 32.18846
    };
    /*
    * The data are simulated weekly observations
    * with an annual seasonal cycle
    */
    PI = acos(-1.0);
    for (i = 0; i < nobs + n_predict; i++)
    {
        x[i][0] = sin(2.0 * PI * i / 52.0);
        x[i][1] = cos(2.0 * PI * i / 52.0);
    }
    result = imsls_f_arima(nobs, y, model,
        IMSLS_REGRESSION, 2, x,
        IMSLS_REGRESSION_FORECASTS, &x[100][0],
        IMSLS_FORECASTS, n_predict, &fcst, &fcstvar,
        IMSLS_VAR_NOISE, &avar,
        IMSLS_LOG_LIKELIHOOD, &llike,
        IMSLS_REGRESSION_COEF, &regcoef,
        IMSLS_SE_COEF, &regstderr,
        IMSLS_COEF_COVARIANCES, &coefcovar,
        IMSLS_SE_ARMA, &armastderr,
        IMSLS_PRINT_LEVEL, 1,
        0);
    if (coefcovar) imsls_free(coefcovar);
    if (regcoef) imsls_free(regcoef);
    if (regstderr) imsls_free(regstderr);
    if (result) imsls_free(result);
    if (armastderr) imsls_free(armastderr);
    if (fcst) imsls_free(fcst);
    if (fcstvar) imsls_free(fcstvar);
}

Output

Final results for ARIMA model (p,d,q)x(P,D,Q)_s = (2,0,0)x(0,0,0)_0
 Final AR parameter estimates/ std errors
          0.71727           0.09837
         -0.26694           0.09828
-2*ln(maximum log likelihood) = 270.166840
 White noise variance = 0.868012
 Regression estimates:
      COEFFICIENTS   Regression STD Errors
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 0         24.81011         0.17172
 1          8.91972         0.24034
 2          6.84813         0.24701
 Forecasts with standard deviation
 T       Y fcst          Y fcst std dev
100        26.74694             0.93167
101        28.07994             1.14655
102        29.33769             1.16952
103        30.53127             1.16959

Example 3

The data set consists of the number of monthly accidental deaths in the USA from 1973 to 1978 (Brockwell & 
Davis, 2006). The following example fits a (0,1,1)x(0,1,1) ARIMA model with seasonal period = 12. With monthly 
data, a seasonal period of 12 corresponds to an annual seasonal cycle.

#include <imsls.h>
#include <stdlib.h>
int main()
{
    int nobs = 72, iprint = 1;
    int model[3] = { 0, 1, 1 };
    int seas_model[3] = { 0, 1, 1 };
    int sper = 12;
    int n_predict = 24;
    float params[2] = { .25, .25 };
    float avar, llike;
    float *ses = NULL, *result = NULL;
    float deaths[72] = {
        9007, 8106, 8928, 9137, 10017, 10826, 11317, 10744, 9713, 9938,
        9161, 8927, 7750, 6981, 8038, 8422, 8714, 9512, 10120, 9823,
        8743, 9129, 8710, 8680, 8162, 7306, 8124, 7870, 9387, 9556,
        10093, 9620, 8285, 8433, 8160, 8034, 7717, 7461, 7776, 7925,
        8634, 8945, 10078, 9179, 8037, 8488, 7874, 8647, 7792, 6957,
        7726, 8106, 8890, 9299, 10625, 9302, 8314, 8850, 8265, 8796,
        7836, 6892, 7791, 8129, 9115, 9434, 10484, 9827, 9110, 9070,
        8633, 9240
    };
    result = imsls_f_arima(nobs, deaths, model,
        IMSLS_SEASONAL_MODEL, sper, seas_model,
        IMSLS_LOG_LIKELIHOOD, &llike,
        IMSLS_NO_TREND,
        IMSLS_INITIAL_EST_INPUT, 2, params,
        IMSLS_VAR_NOISE, &avar,
        IMSLS_PRINT_LEVEL, iprint,
        IMSLS_SE_ARMA, &ses, 0);
    if (result) imsls_free(result);
    if (ses) imsls_free(ses);
}
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Output

Final results for ARIMA model (p,d,q)x(P,D,Q)_s = (0,1,1)x(0,1,1)_12
 Final MA parameter estimates/ std errors
          0.42643           0.11604
 Final Seasonal MA parameter estimates/ std errors
          0.55822           0.13508
-2*ln(maximum log likelihood) = 851.065125
 White noise variance = 99502.765625
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regression_arima

more...

Fits a univariate ARIMA (p, d, q) time series model with the inclusion of one or more regression variables. 

Synopsis
#include <imsls.h>
float *imsls_f_regression_arima (int n_obs, float y[], int model[], ..., 0)

The type double function is imsls_d_regression_arima.

Required Arguments
int n_obs  (Input)

Number of observations.

float y[]  (Input)
Array of length n_obs containing the observations.

int model[]  (Input)
Array of length 3 containing the model order parameters p, d, q.

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, autoregressive (AR), and moving average (MA) 
parameters. 

Element Description

0 Order of the autoregressive part, p, where p≥ 0.

1 Order of the non-seasonal difference operator, d, 
where d≥ 0.

2 Order of the moving average part, q, where q≥ 0.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regression_arima (int n_obs, float y[], int model[],

IMSLS_REGRESSION, int n_regressors, float x[],
IMSLS_REGRESSION_FORECASTS, float xlead[],
IMSLS_REGRESSION_INDICES, int n_indices, int indices[],
IMSLS_NO_TREND,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_FORECASTS, int n_predict, 

float **forecasts, float **forecast_variances,
IMSLS_FORECASTS_USER, int n_predict, 

float forecasts[], float forecast_variances[],
IMSLS_REGRESSION_COEF, float **coefficients,
IMSLS_REGRESSION_COEF_USER, float coefficients[],
IMSLS_SE_ARMA, float **arma_std_errors,
IMSLS_SE_ARMA_USER, float arma_std_errors[],
IMSLS_VAR_NOISE, float *avar,
IMSLS_SE_COEF, float **regcoef_std_errors,
IMSLS_SE_COEF_USER, float regcoef_std_errors[],
IMSLS_COEF_COVARIANCES, float **coef_covar,
IMSLS_COEF_COVARIANCES_USER, float coef_covar[],
IMSLS_AIC, float *aic,
IMSLS_LOG_LIKELIHOOD, float *log_likelihood,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
0)

Optional Arguments
IMSLS_REGRESSION, int n_regressors, float x[]  (Input)

Array of length n_obs × n_regressors containing the regression variables. Specific columns of x 
may be selected using the optional argument IMSLS_REGRESSION_INDICES. 

Default: n_regressors = 0 (No regression variables are included).

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then 
IMSLS_REGRESSION_FORECASTS is required.
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IMSLS_REGRESSION_FORECASTS, float xlead[]  (Input)
Array of length n_predict × n_regressors containing the regression variables to be used in 
obtaining forecasts. Specific columns of xlead may be selected using the optional argument 
IMSLS_REGRESSION_INDICES. 

Default: Not used.

IMSLS_REGRESSION_INDICES, int n_indices, int indices[]  (Input)
Argument n_indices specifies the length of array indices and the number of regression vari-
ables to be included in the ARIMA fit. Argument indices contains the indices of the regression 
variables in matrices x and xlead.

Default: All regression variables in x and xlead will be used.

IMSLS_NO_TREND, (Input)
If IMSLS_NO_TREND is specified, the function will not include a trend variable. A trend variable has 
the effect of fitting an intercept term in the regression. If the difference operator model[1] = d > 0, 
the effect of no trend on the model in the original, undifferenced space is polynomial of order d.

Default: The function will include a trend variable.

IMSLS_MAX_ITERATIONS, int max_iterations  (Input)
Maximum number of iterations.

Default: max_iterations = 50

IMSLS_PRINT_LEVEL, int iprint  (Input)
Printing option.

Default: iprint = 0

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then 
IMSLS_REGRESSION_FORECASTS is required.

iprint Action

0 No printing

1 Prints final results only.

2 Prints intermediate and final results.
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IMSLS_FORECASTS, int n_predict, float **forecasts, float **forecast_variances  (Out-
put)
Addresses of pointers to internally allocated arrays of length n_predict containing the forecasts 
and forecast variances for time points t = n+1, n+2, …, n+n_predict, where n = n_obs.

IMSLS_FORECASTS_USER, int n_predict, float forecasts[], float forecast_variances[]  
(Output)
Storage arrays forecast and forecast_variance are provided by user. See 
IMSLS_FORECASTS.

IMSLS_REGRESSION_COEF, float **coefficients  (Output)
Address of a pointer to an internally allocated array of length n_regressors+t containing the esti-
mated regression coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

IMSLS_REGRESSION_COEF_USER, float coefficients[]  (Output)
Storage array coefficients is provided by user. See IMSLS_REGRESSION_COEF.

IMSLS_SE_ARMA, float **arma_std_errors  (Output)
Address of a pointer to an internally allocated array of length p+q containing the standard errors of 
the ARMA parameter estimates, where p = model[0] and q = model[2].

IMSLS_SE_ARMA_USER, float arma_std_errors[]  (Output)
Storage array arma_std_errors is provided by user. See IMSLS_SE_ARMA.

IMSLS_VAR_NOISE, float *avar  (Output)
White noise variance estimate. If model[0]+model[2]= 0 and n_regressors > 0, avar is the 
mean squared regression residual.

IMSLS_SE_COEF, float **regcoef_std_error  (Output)
Address of a pointer to an internally allocated array of length n_regressors+ t containing the 
standard errors of the ARMA parameter estimates, where t = 0 if IMSLS_NO_TREND is specified, 
otherwise t = 1.

IMSLS_SE_COEF_USER, float regcoef_std_errors[]  (Output)
Storage array regcoef_std_errors is provided by user. See IMSLS_SE_COEF.

IMSLS_COEF_COVARIANCES, float **coef_covar  (Output)
Address of a pointer to an internally allocated array of length 
(n_regressors+t) × (n_regressors+t) containing the variances and covariances of the regres-
sion coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then 
IMSLS_REGRESSION_FORECASTS is required.
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IMSLS_COEF_COVARIANCES_USER, float coef_covar[]  (Output)
Storage array coef_covar is provided by user. See IMSLS_COEF_COVARIANCES. 

IMSLS_AIC, float *aic  (Output)
Akaike’s Information Criterion for the fitted ARMA model.

IMSLS_LOG_LIKELIHOOD, float *log_likelihood  (Output)
Value of –2(ln(likelihood)) for fitted model.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[]  (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p containing the 
final autoregressive parameter estimates, and ma is an array of length q containing the final moving 
average parameter estimates.

Description
Function imsls_f_regression_arima fits an ARIMA(p, d, q) to a univariate time series with the possible 
inclusion of one or more regression variables.

Suppose   ,   , is a time series such that the d-th difference is stationary. Further, suppose    is a 

series of uncorrelated, mean 0 random variables with variance   .

The Auto-Regressive Integrated Moving Average (ARIMA) model for   can be expressed as

where B is the backshift operator,   

and 

The notation for this model is ARIMA(p, d, q) where p is the order of the autoregressive polynomial   , d is 

the order of the differencing needed to make    stationary, and q is the order of the moving-average polynomial  

 .

The ARIMA model can be extended to include    regression variables  , by using the residuals 

(of the multiple regression of    on   ) in place of    in the above ARIMA model.

Y t t = 1,...N at
σa
2

Y t,at

ϕ(B)(1 − B)dY t = θ(B)at

Bzt = zt−1,B
2zt = zt−2,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 + ⋯ − ϕpB

p
,

θ(B) = 1 − θ1B − θ2B
2 − ⋯ − θqB

q

ϕ B
Y t

θ B

K X 1t, X 2t… , XKt

Y t X 1t, X 2t… , XKt Y t
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Equivalently,

where

is the differenced residual series.

To estimate the (p + q + K) parameters of the specified regression ARIMA model, 
imsls_f_regression_arima uses the iterative generalized least squares method (IGLS) as described in 
Otto, Bell, and Burman (1987).

The IGLS method iterates between two steps, one step to estimate the regression parameters via generalized 
least squares (GLS) and the second step to estimate the ARMA parameters. In particular, at iteration m, the first 
step finds

by solving the GLS problem with weight matrix

where

That is,    minimizes   , where   ,    is an N by K matrix with i-th 

column,   , , and , and  is an N by N weight matrix defined 

using the theoretical autocovariances of the series

ϕ B 1 − B d Y t − β0 −∑
i=1

K

βiX it = θ B at

ϕ(B)wt = θ(B)at

wt = 1 − B d Y t − β0 −∑
i=1

K

βiX it

β^m = (β
^
m0,β

^
m1, … ,β^mK)

′

V (i, j) = γw(| j − i|), i, j = 1, … ,N

γw( j − i) = E[wt− jwt−i|ϕ
^
m−1,θ

^
m−1]

β
^

m (Y − X β)′V −1(Y − X β) Y = Y 1,...YN ′ X

X i = (X i1, … ,X iN)
′ i = 1, … ,K X 0 = (1, … ,1)′ V
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The series   is modeled as an ARMA(p,q) process with parameters    and  

 . At iteration m, the second step is then to obtain new estimates of    and    for 

the updated series,  . To find the estimates   and   , imsls_f_regression_arima uses the exact 
likelihood method as described in Akaike, Kitagawa, Arahata and Tada (1979) and used in function, 
imsls_f_max_arma.

Remarks
When forecasts are requested (n_predict > 0), imsls_f_regression_arima requires that future values 
of the independent variables be provided in optional argument IMSLS_REGRESSION_FORECASTS. In effect, 
imsls_f_regression_arima assumes the future X’s are known without error, which is valid for any deter-
ministic function of time such as a seasonal indicator. Also, in economics, certain factors that are considered to 
be leading indicators are treated as deterministic for the purpose of predicting changes in the economy. Users 
may consider using a more general transfer function model if this is an unreasonable assumption. Function 
imsls_f_regression_arima calculates forecast variances using the asymptotic result found in Fuller 
(1996), Theorem 2.9.4. To obtain the standard errors of the ARMA parameters, 
imsls_f_regression_arima calls function imsls_f_arma for the final w series.

Examples

Example 1

The data set consists of annual mileage per passenger vehicle and annual US population (in 1000’s) spanning the 
years 1980 to 2006 (U.S. Energy Information Administration, 2008). Consider modeling the annual mileage using 
US population as a regression variable.

#include <imsls.h>
int main() 
{
   int nobs= 24, model[3] = {1, 0, 0};
   int indices[1] = {0}, n_predict=5;
   float avar, llike, *result;
   float *regcoef, *regstderr, *coefcovar, *armastderr;
   float *fcst, *fcst_var;
   float y[29] = {
       9062.0, 8813.0, 8873.0, 9050.0, 9118.0, 
       9248.0, 9419.0, 9464.0, 9720.0, 9972.0, 
       10157.0, 10504.0, 10571.0, 10857.0, 10804.0, 

wm−1,t = (1 − B)
d Y t − βm−1,0 − ∑i=1

K β^m−1,iX it

wm−1, t ϕ
^

m−1 = ϕ
^

m−1,1, … ϕ
^

m−1, p ′

θ^m−1 = (θ
^
m−1,1, … , ϕ^m−1,q)

′ ϕ
^

m θ
^

m

wm, t ϕ
^

m θ
^

m
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       10992.0, 11203.0, 11330.0, 11581.0, 11754.0, 
       11848.0, 11976.0, 11831.0, 12202.0, 12325.0,    
       12460.0, 12510.0, 12485.0, 12293.0 
   };
   float regX[29][2] = {
       {22722.4681, 9062.0}, 
       {22946.5714, 8813.0}, 
       {23166.4458, 8873.0}, 
       {23379.1990, 9050.0}, 
       {23582.4902, 9118.0},
       {23792.3795, 9248.0}, 
       {24013.2887, 9419.0}, 
       {24228.8918, 9464.0}, 
       {24449.8982, 9720.0}, 
       {24681.923, 9972.0},
       {24962.2814, 10157.0}, 
       {25298.0941, 10504.0}, 
       {25651.4224, 10571.0}, 
       {25991.8588, 10857.0}, 
       {26312.5820999999, 10804.0},
       {26627.8393, 10992.0},
       {26939.4284, 11203.0},
       {27264.6925, 11330.0}, 
       {27585.4104, 11581.0}, 
       {27904.0168, 11754.0}, 
       {28217.1936, 11848.0}, 
       {28503.9803, 11976.0}, 
       {28772.6647, 11831.0}, 
       {29021.0914, 12202.0}, 
       {29289.2127, 12325.0},
       {29556.0549, 12460.0}, 
       {29836.2973, 12510.0}, 
       {30129.0332, 12485.0}, 
       {30405.9724, 12293.0} 
   };

   result = imsls_f_regression_arima (nobs, y, model, 
       IMSLS_REGRESSION,2, regX, 
       IMSLS_REGRESSION_FORECASTS, &regX[24][0],
       IMSLS_FORECASTS, n_predict, &fcst, &fcst_var,
       IMSLS_REGRESSION_INDICES, 1, indices,
       IMSLS_VAR_NOISE, &avar,
       IMSLS_LOG_LIKELIHOOD, &llike,
       IMSLS_REGRESSION_COEF, &regcoef,
       IMSLS_SE_COEF, &regstderr,
       IMSLS_COEF_COVARIANCES, &coefcovar,
       IMSLS_SE_ARMA, &armastderr,
       IMSLS_PRINT_LEVEL, 1, 
       0);
}

Output

Final results for regression ARIMA model (p,d,q) = 1, 0, 0s
Final AR parameter estimates/ std errors

 0.73000  0.13498
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-2*ln(maximum log likelihood) = 231.835464
White noise variance = 15427.915039
Regression estimates:

 COEFFICIENTS  Regression STD Errors
0  -3483.13306  687.21167
1  0.54244  0.02666
Forecasts with standard deviation
T  Y fcst  Y fcst std dev

24  12360.51563  124.20916
25  12514.80664  153.78410
26  12673.78906  167.42434
27  12837.66895  174.25776
28  12991.60547  177.79208

Example 2

The data set consists of simulated weekly observations containing a strong annual seasonality. The seasonal vari-
ables are constructed and sent into regression_arima as regression variables.

#include <imsl.h>
#include <imsls.h>
#include <math.h>
int main()
{
   int nobs=100, n_predict=4, n_regressors=2;
   int i, model[3] = {2,0,0};
   float PI, *coefcovar, *regcoef, *regstderr, *result;
   float *armastderr, *fcst, *fcstvar;
   float avar, llike;
   float x[104][2];
   float y[104] = {
       32.27778, 32.63300, 33.13768, 34.4517, 
       34.63824, 37.31262, 37.35704, 37.03092, 
       36.39894, 35.75541, 35.10829, 34.70107, 
       34.69592, 32.75326, 30.85370, 31.10936, 
       29.47493, 29.14361, 28.50466, 30.09714, 
       28.49403, 27.23268, 23.49674, 22.71225, 
       21.42798, 18.68601, 17.40035, 16.06832, 
       15.31862, 14.75179, 13.40089, 13.01101, 
       12.44863, 11.27890, 11.51770, 14.31982, 
       14.67036, 14.76331, 15.35644, 17.04353, 
       18.39931, 18.21919, 18.72777, 19.61794, 
       22.31733, 23.79600, 25.41326, 25.60497, 
       27.93579, 29.21765, 29.60981, 28.46994, 
       28.780810, 30.96402, 35.49537, 35.75124,
       36.18933, 37.2627, 35.02454, 33.57089, 
       35.00683, 34.83886, 34.19827, 33.73966, 
       34.49709, 34.07127, 32.74709, 31.97856, 
       31.3029, 30.21916, 27.46015, 26.78431, 
       25.32815, 23.97863, 21.83837, 21.00647, 
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       20.58846, 19.94578, 17.38271, 17.12572, 
       16.71847, 17.45425, 16.15050, 13.07448, 
       12.54188, 12.42137, 13.51771, 14.84232, 
       14.28870, 13.39561, 15.48938, 16.47175, 
       17.62758, 16.57677, 18.20737, 20.8491, 
       20.15616, 20.93857, 23.73973, 25.30449,
       26.51106, 29.43261, 32.02672, 32.18846 
   };
   /*
   * The data are simulated weekly observations
   * with an annual seasonal cycle
   */
   PI = imsl_f_constant("PI",0);
   for (i=0; i<nobs+n_predict;i++)
   {
       x[i][0] = sin(2*PI*i/ 52.0);
       x[i][1] = cos(2*PI*i/ 52.0);
   }
   result = imsls_f_regression_arima (nobs, y, model, 
       IMSLS_REGRESSION,2, x, 
       IMSLS_REGRESSION_FORECASTS, &x[100][0],
       IMSLS_FORECASTS, n_predict, &fcst, &fcstvar,
       IMSLS_VAR_NOISE, &avar,
       IMSLS_LOG_LIKELIHOOD, &llike,
       IMSLS_REGRESSION_COEF, &regcoef,
       IMSLS_SE_COEF, &regstderr,
       IMSLS_COEF_COVARIANCES, &coefcovar,
       IMSLS_SE_ARMA, &armastderr,
       IMSLS_PRINT_LEVEL, 1, 
       0);
}

Output

Final AR parameter estimates/ std errors
         0.71855              0.09838
        -0.25989              0.09828
-2*ln(maximum log likelihood) = -13.621020
White noise variance = 0.868007
Regression estimates:
         COEFFICIENTS  Regression STD Errors
0            24.81011        0.17177
1             8.91971        0.24042
2             6.84814        0.24709
Forecasts with standard deviation
T              Y fcst                 Y fcst std dev
100           26.74492                0.93167
101           28.07804                1.14725
102           29.33707                1.35615
103           30.53160                1.52323
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auto_uni_ar

  

more...

Automatic selection and fitting of a univariate autoregressive time series model. The lag for the model is auto-
matically selected using Akaike’s information criterion (AIC). Estimates of the autoregressive parameters for the 
model with minimum AIC are calculated using method of moments, method of least squares, or maximum 
likelihood.

Synopsis
#include <imsls.h>
float *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag, int *p, …,0)

The type double function is imsls_d_auto_uni_ar.

Required Arguments
int n_obs  (Input)

Number of observations in the time series.

float z[] (Input)
Array of length n_obs containing the stationary time series.

int maxlag (Input)
Maximum number of autoregressive parameters requested. It is required that 
1≤ maxlag ≤ n_obs/2.

int *p (Output)
Number of autoregressive parameters in the model with minimum AIC.

Return Value
Vector of length 1+ maxlag containing the estimates for the constant and the autoregressive parameters in the 
model with minimum AIC. The estimates are located in the first 1+ p locations of this array.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag, int *p,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_METHOD, int method,
IMSLS_VAR_NOISE, float *avar,
IMSLS_AIC, float *aic,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_RETURN_USER, float *constant, float ar[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option:

Default: iprint = 0.

IMSLS_MAX_ITERATIONS, int maxit  (Input)
Maximum number of estimation iterations.

Default: maxit = 300

IMSLS_METHOD, int method (Input)
Estimation method option:

iprint Action

0 No Printing.

1 Prints final results only.

2 Prints intermediate and final results.

method Action

0 Method of moments.

1 Method of least squares realized 
through Householder 
transformations.

2 Maximum likelihood
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Default: method = 1.

IMSLS_VAR_NOISE, float *avar (Output)
Estimate of innovation variance.

IMSLS_AIC, float *aic (Output)
Minimum AIC.

IMSLS_MEAN_ESTIMATE, float *z_mean (Input/Output)
Estimate of the mean of the time series z. On return, z_mean contains an update of the mean. 

Default: Time series z is centered about its sample mean.

IMSLS_RETURN_USER, float *constant, float ar[]  (Output)
If specified, constant is the constant parameter estimate, ar is an array of length maxlag con-
taining the final autoregressive parameter estimates in its first p locations.

Description
Function auto_uni_ar automatically selects the order of the AR model that best fits the data and then com-
putes the AR coefficients. The algorithm used in auto_uni_ar is derived from the work of Akaike, H., et. al 
(1979) and Kitagawa and Akaike (1978). This code was adapted from the UNIMAR procedure published as part of 
the TIMSAC-78 Library.

The best fit AR model is determined by successively fitting AR models with 0, 1, 2, ..., maxlag autoregressive 
coefficients. For each model, Akaike’s Information Criterion (AIC) is calculated based on the formula

Function auto_uni_ar uses the approximation to this formula developed by Ozaki and Oda (1979),

where    is an estimate of the residual variance of the series, commonly known in time series analysis as the 
innovation variance. By dropping the constant

the calculation is simplified to

AIC = − 2 ln(likelihood) + 2 p + 1

AIC = n_obs − maxlag ln σ̂2 + 2 p + 1 + n_obs − maxlag ln 2π + 1 ,

σ^ 2

n_obs − maxlag ln 2π + 1 ,
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The best fit model is the model with minimum AIC. If the number of parameters in this model is equal to the high-
est order autoregressive model fitted, i.e., p=maxlag, then a model with smaller AIC might exist for larger values 
of maxlag. In this case, increasing maxlag to explore AR models with additional autoregressive parameters 
might be warranted.

If method = 0, estimates of the autoregressive coefficients for the model with minimum AIC are calculated using 
method of moments. If method =1, the coefficients are determined by the method of least squares applied in 
the form described by Kitagawa and Akaike (1978). Otherwise, if method =2, the coefficients are estimated using 
maximum likelihood.

Example
Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of sunspots observed each 
year from 1770 through 1869. In this example, imsls_f_auto_uni_ar found the minimum AIC fit is an 
autoregressive model with 3 lags:

where 

μ the sample mean of the time series   . Defining the overall constant    by   , we 

obtain the following equivalent representation:

The example computes estimates for    for each of the three parameter estimation methods available.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int i;
   int maxlag = 20;
   int n_obs = 100;
   int p;
   float w[176][2];
   float z[100];
   float *parameters = NULL;
   float avar, aic, constant;
   float ar[20];

AIC = n_obs − maxlag ln σ̂2 + 2 p + 1

w~ t = ϕ1w
~
t−1 + ϕ2w

~
t−2 + ϕ3w

~
t−3 + at,

w~ t : = wt − μ,

wt ϕ0 ϕ0 : = μ 1 − ∑i=1
3 ϕi

wt = ϕ0 + ϕ1wt−1 + ϕ2wt−2 + ϕ3wt−3 + at.

ϕ0,ϕ1,ϕ2,ϕ3
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   /* get wolfer sunspot data */
   imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2,
       IMSLS_RETURN_USER, w,
       0);
   for (i=0; i<n_obs; i++)
       z[i] = w[21+i][1];
   /* Compute AR parameters for minimum AIC by method of moments */
   printf("\n\nAIC Automatic Order selection\n");
   printf("AR coefficients estimated using method of moments\n");
   parameters = imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
       IMSLS_VAR_NOISE, &avar,
       IMSLS_METHOD, 0,
       IMSLS_AIC, &aic,
       0);
   printf("Order selected: %d\n", p);
   printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
   printf("Constant estimate is %11.4f.\n", parameters[0]);
   imsls_f_write_matrix(
       "Final AR coefficients estimated by method of moments",
       p, 1, &parameters[1],
       0);
   if (parameters)
   {
       imsls_free(parameters);
       parameters = NULL;
   }
   /* Compute AR parameters for minimum AIC 
   by method of least squares */
   printf("\n\nAIC Automatic Order selection\n");
   printf("AR coefficients estimated using method of least squares\n");
   imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
       IMSLS_VAR_NOISE, &avar,
       IMSLS_METHOD, 1,
       IMSLS_AIC, &aic,
       IMSLS_RETURN_USER, &constant, ar,
       0);
   printf("Order selected: %d\n", p);
   printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
   printf("Constant estimate is %11.4f.\n", constant);
   imsls_f_write_matrix(
       "Final AR coefficients estimated by method of least squares", 
       p, 1, ar,
       0);
   /* Compute AR parameters for minimum AIC 
   by maximum likelihood estimation */
   printf("\n\nAIC Automatic Order selection\n");
   printf("AR coefficients estimated using maximum likelihood\n");
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   imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
       IMSLS_VAR_NOISE, &avar,
       IMSLS_METHOD, 2,
       IMSLS_AIC, &aic,
       IMSLS_RETURN_USER, &constant, ar,
       0);
   printf("Order selected: %d\n", p);
   printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
   printf("Constant estimate is %11.4f.\n", constant);
   imsls_f_write_matrix(
       "Final AR coefficients estimated by maximum likelihood", 
       p, 1, ar,
       0);
}

Output

AIC Automatic Order selection
AR coefficients estimated using method of moments
Order selected: 3
AIC =    633.0114, Variance =   287.2694
Constant estimate is    13.7098.
Final AR coefficients estimated by method of moments
                    1      1.368
                    2     -0.738
                    3      0.078

AIC Automatic Order selection
AR coefficients estimated using method of least squares
Order selected: 3
AIC =    633.0114, Variance =   144.7149
Constant estimate is     9.8934.
Final AR coefficients estimated by method of least squares
                       1      1.604
                       2     -1.024
                       3      0.209

AIC Automatic Order selection
AR coefficients estimated using maximum likelihood
Order selected: 3
AIC =    633.0114, Variance =   218.8337
Constant estimate is    11.3902.
Final AR coefficients estimated by maximum likelihood
                    1      1.553
                    2     -1.001
                    3      0.205
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seasonal_fit
Estimates the optimum seasonality parameters for a time series using an autoregressive model, AR(p), to repre-
sent the time series.

Synopsis
#include <imsls.h>
float *imsls_f_seasonal_fit(int n_obs, float z[], int maxlag, int n_differences, 

int n_s_initial, int s_initial[], …,0)

The type double function is imsls_d_seasonal_fit.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

float z[] (Input)
An array of length n_obs containing the time series. No missing values in the series are allowed.

int maxlag (Input)
The maximum lag allowed when fitting an AR(p) model.

int n_differences (Input)
The number of differences to perform. Argument n_differences must be greater than or equal 
to one.

int n_s_initial (Input)
The number of rows of the array containing the seasonal differences.

int s_initial[] (Input)
Array of dimension n_s_initial by n_differences containing the seasonal differences to 
test. All values of s_initial must be greater than or equal to one. 
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Return Value
Pointer to an array of length n_obs or n_obs-n_lost containing the optimum seasonally adjusted, autore-
gressive series. The first n_lost observations in this series are set to NaN, missing values. The seasonal 

adjustment is done by selecting optimum values for  ,   (m=n_differences) and  in the 
AR model:

where  is the original time series,  is the backward shift operator defined by   ,   ,   is 

Gaussian white noise with   and   , 

 ,  with   , and    is a cen-
tering parameter for the differenced series.

If an error occurred, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_seasonal_fit (int n_obs, float z[], int maxlag, int n_differences, 

int n_s_initial, int s_initial[],

IMSLS_RETURN_USER, float w[],
IMSLS_D_INITIAL, int n_d_initial, int d_initial[],
IMSLS_SET_FIRST_TO_NAN, or 
IMSLS_EXCLUDE_FIRST,
IMSLS_CENTER, int n_center,
IMSLS_LOST, int *n_lost,
IMSLS_BEST_PERIODS, int **s,
IMSLS_BEST_PERIODS_USER, int s[],
IMSLS_BEST_ORDERS, int **d,
IMSLS_BEST_ORDERS_USER, int d[],
IMSLS_AR_ORDER, int *p,
IMSLS_AIC, float *aic,
0)

NOTE that , the identity operator, i.e.,  .

d1, … ,dm s1, … ,sm p

ϕp B Δs1
d1Δs2

d2 ⋯ Δsm
dmZt − μ = at

Zt B BkZt = Zt−k k ≥ 0 at
E at = 0 VAR at = σ2

ϕp B = 1 − ϕ1B − ϕ2B
2 − ⋯ − ϕpB

p,0 ≤ p ≤ maxlag Δs
d = 1 − Bs)d, s > 0,d ≥ 0 μ

Δs
0 = 1 Δs

0Y t = Y t
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Optional Arguments
IMSLS_RETURN_USER, float w[] (Output)

An array of length n_obs supplied by the user to hold the seasonally adjusted series returned by 
imsls_f_seasonal_fit.

IMSLS_D_INITIAL, int n_d_initial, int d_initial[] (Input)
An array of dimension n_d_initial by n_differences containing the candidate values for 
d[], from which the optimum is being selected. All candidate values in d_initial[] must be 
non-negative and n_d_initial ≥ 1. 

Default: n_d_initial=1, d_initial an array of length n_differences filled with ones.

IMSLS_SET_FIRST_TO_NAN  (Input)

or

IMSLS_EXCLUDE_FIRST (Input)
If IMSLS_EXCLUDE_FIRST is specified, the first n_lost values are excluded from w due to differ-
encing. The differenced series w is of length n_obs–n_lost. If IMSLS_SET_FIRST_TO_NAN is 
specified, the first n_lost observations are set to NaN (Not a Number). 

Default: IMSLS_SET_FIRST_TO_NAN.

IMSLS_CENTER, int n_center (Input)
If supplied, IMSLS_CENTER controls the method used to center the differenced series. If 
n_center=0 then the series is not centered. If n_center=1, the mean of the series is used to 
center the data, and if n_center=2, the median is used.

Default: n_center=1.

IMSLS_LOST, int *n_lost (Output)
The number of observations lost due to differencing the time series. This is also equal to the number 
of NaN values that appear in the first n_lost locations of the returned seasonally adjusted series.

IMSLS_BEST_PERIODS, int **s (Output)
Address of a pointer to an internally allocated array of length m=n_differences containing the 
optimum values for the seasonal adjustment parameters  selected from the list of candi-
dates contained in s_initial[].

IMSLS_BEST_PERIODS_USER, int s[] (Output)
A user supplied array of length n_differences for storage of the array s.

IMSLS_BEST_ORDERS, int **d (Output)
Address of a pointer to an internally allocated array of length m=n_differences containing the 
optimum values for the seasonal adjustment parameters  selected from the list of can-
didates contained in d_initial[].

s1, s2, … , sm

d1, d2, … ,dm
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IMSLS_BEST_ORDERS_USER, int d[] (Output)
A user supplied array of length n_differences for storage of the array d.

IMSLS_AR_ORDER, int *p (Output)
The optimum value for the autoregressive lag.

IMSLS_AIC, float *aic (Output)
Akaike’s Information Criterion (AIC) for the optimum seasonally adjusted model.

Description
Many time series contain seasonal trends and cycles that can be modeled by first differencing the series. For 
example, if the correlation is strong from one period to the next, the series might be differenced by a lag of 1. 

Instead of fitting a model to the series   , the model is fitted to the transformed series: . Higher 
order lags or differences are warranted if the series has a cycle every 4 or 13 weeks.

Function imsls_f_seasonal_fit does not center the original series. If IMSLS_CENTER is specified with 

either n_center =1 or n_center =2, then the differenced series,   , is centered before determination of 

minimum AIC and optimum lag. For every combination of rows in s_initial and d_initial, the series   is 
converted to the seasonally adjusted series using the following computation

where  ,   represent specific rows of arrays s_initial and d_initial 

respectively, and   =n_differences.

This transformation of the series  to  is accomplished using function imsls_f_difference. After 
this transformation, 

is (optionally) centered and a call is made to imsls_f_auto_uni_ar to automatically determine the optimum 

lag for an AR(p) representation for . This procedure is repeated for every possible combination of rows 

of s_initial and d_initial. The series with the minimum AIC is identified as the optimum representation 
and returned.

Zt Wt = Zt − Zt−1

Wt

Zt

Wt(s,d) = Δs1
d1Δs2

d2 ⋯ Δsm
dmZt =∏

i=1

m

(1 − B
si)
diZt =∏

i=1

m

∑
j=0

di di
j ( − 1)

jB
j−siZt

s : = s1, … , sm d : = d1, … ,dm
m

Zt Wt s,d

Wt(s,d)

Wt s,d
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Example
Consider the Airline Data (Box, Jenkins and Reinsel 1994, p. 547) consisting of the monthly total number of inter-
national airline passengers from January 1949 through December 1960. Function imsls_f_seasonal_fit 
is used to compute the optimum seasonality representation of the adjusted series

where 

or 

and 

As differenced series with minimum AIC,

is identified.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 int maxlag = 10;
 int nobs = 144;

 int n_differences = 2;
 int n_s_initial = 2;
 int nlost;
 int npar;
 float aic;
 int s_init[] = {

 1, 1,
 1, 12

 };
 int *s = NULL;
 int *d = NULL;
 float *z = NULL;
 float *difference = NULL;
 z = imsls_f_data_sets(4,

 0);

Wt(s,d) = Δs1
d1Δs2

d2Zt = (1 − B
s1)
d1(1 − B

s2)
d2Zt ,

s = 1,1

s = 1,12

d = 1,1 .

Wt = Δ1
1Δ12
1 Zt = Zt − Zt−12 − Zt−1 − Zt−13 ,
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 difference = imsls_f_seasonal_fit(nobs, z, maxlag, n_differences,
 n_s_initial, s_init,
 IMSLS_LOST, &nlost,
 IMSLS_BEST_PERIODS, &s,
 IMSLS_BEST_ORDERS, &d,
 IMSLS_AIC, &aic,
 IMSLS_AR_ORDER, &npar,
 0);

 printf("\nnlost = %d\n", nlost);
 printf("s = (%d, %d)\n", s[0], s[1]);
 printf("d = (%d, %d)\n", d[0], d[1]);
 printf("Order of optimum AR process: %d\n", npar);
 printf("aic = %lf\n", aic);

 printf("\ni\tz[i]\t\tdifference[i]\n");
 for (i=0; i<nobs; i++)

 printf("%d\t%f\t%f\n", i, z[i], difference[i]);
 if (s)
 {

 imsls_free(s);
 s = NULL;

 }
 if (d)
 {

 imsls_free(d);
 d = NULL;

 }
 if (z)
 {

 imsls_free(z);
 z = NULL;

 }
 if (difference)
 {

 imsls_free(difference);
 difference = NULL;

 }
}

Output

nlost = 13
s = (1, 12)
d = (1, 1)
Order of optimum AR process: 1
aic = 949.780334
i    z[i]        difference[i]
0    112.000000  NaN
1    118.000000  NaN
2    132.000000  NaN
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3    129.000000  NaN
4    121.000000  NaN
5    135.000000  NaN
6    148.000000  NaN
7    148.000000  NaN
8    136.000000  NaN
9    119.000000  NaN
10   104.000000  NaN
11   118.000000  NaN
12   115.000000  NaN
13   126.000000  5.000000
14   141.000000  1.000000
15   135.000000  -3.000000
16   125.000000  -2.000000
17   149.000000  10.000000
18   170.000000  8.000000
19   170.000000  0.000000
20   158.000000  0.000000
21   133.000000  -8.000000
22   114.000000  -4.000000
23   140.000000  12.000000
24   145.000000  8.000000
25   150.000000  -6.000000
26   178.000000  13.000000
27   163.000000  -9.000000
28   172.000000  19.000000
29   178.000000  -18.000000
30   199.000000  0.000000
31   199.000000  0.000000
32   184.000000  -3.000000
33   162.000000  3.000000
34   146.000000  3.000000
35   166.000000  -6.000000
36   171.000000  0.000000
37   180.000000  4.000000
38   193.000000  -15.000000
39   181.000000  3.000000
40   183.000000  -7.000000
41   218.000000  29.000000
42   230.000000  -9.000000
43   242.000000  12.000000
44   209.000000  -18.000000
45   191.000000  4.000000
46   172.000000  -3.000000
47   194.000000  2.000000
48   196.000000  -3.000000
49   196.000000  -9.000000
50   236.000000  27.000000
51   235.000000  11.000000
52   229.000000  -8.000000
53   243.000000  -21.000000
54   264.000000  9.000000
55   272.000000  -4.000000
56   237.000000  -2.000000
57   211.000000  -8.000000
58   180.000000  -12.000000
59   201.000000  -1.000000
60   204.000000  1.000000
61   188.000000  -16.000000
62   235.000000  7.000000
751



 Time Series and Forecasting         seasonal_fit
63   227.000000  -7.000000
64   234.000000  13.000000
65   264.000000  16.000000
66   302.000000  17.000000
67   293.000000  -17.000000
68   259.000000  1.000000
69   229.000000  -4.000000
70   203.000000  5.000000
71   229.000000  5.000000
72   242.000000  10.000000
73   233.000000  7.000000
74   267.000000  -13.000000
75   269.000000  10.000000
76   270.000000  -6.000000
77   315.000000  15.000000
78   364.000000  11.000000
79   347.000000  -8.000000
80   312.000000  -1.000000
81   274.000000  -8.000000
82   237.000000  -11.000000
83   278.000000  15.000000
84   284.000000  -7.000000
85   277.000000  2.000000
86   317.000000  6.000000
87   313.000000  -6.000000
88   318.000000  4.000000
89   374.000000  11.000000
90   413.000000  -10.000000
91   405.000000  9.000000
92   355.000000  -15.000000
93   306.000000  -11.000000
94   271.000000  2.000000
95   306.000000  -6.000000
96   315.000000  3.000000
97   301.000000  -7.000000
98   356.000000  15.000000
99   348.000000  -4.000000
100  355.000000  2.000000
101  422.000000  11.000000
102  465.000000  4.000000
103  467.000000  10.000000
104  404.000000  -13.000000
105  347.000000  -8.000000
106  305.000000  -7.000000
107  336.000000  -4.000000
108  340.000000  -5.000000
109  318.000000  -8.000000
110  362.000000  -11.000000
111  348.000000  -6.000000
112  363.000000  8.000000
113  435.000000  5.000000
114  491.000000  13.000000
115  505.000000  12.000000
116  404.000000  -38.000000
117  359.000000  12.000000
118  310.000000  -7.000000
119  337.000000  -4.000000
120  360.000000  19.000000
121  342.000000  4.000000
122  406.000000  20.000000
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123  396.000000  4.000000
124  420.000000  9.000000
125  472.000000  -20.000000
126  548.000000  20.000000
127  559.000000  -3.000000
128  463.000000  5.000000
129  407.000000  -11.000000
130  362.000000  4.000000
131  405.000000  16.000000
132  417.000000  -11.000000
133  391.000000  -8.000000
134  419.000000  -36.000000
135  461.000000  52.000000
136  472.000000  -13.000000
137  535.000000  11.000000
138  622.000000  11.000000
139  606.000000  -27.000000
140  508.000000  -2.000000
141  461.000000  9.000000
142  390.000000  -26.000000
143  432.000000  -1.000000
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ts_outlier_identification
Detects and determines outliers and simultaneously estimates the model parameters in a time series whose 
underlying outlier free series follows a general seasonal or nonseasonal ARMA model.

Synopsis
#include <imsls.h>

float *imsls_f_ts_outlier_identification (int n_obs, int model[], float w[], …,0)

The type double function is imsls_d_ts_outlier_identification.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

int model[] (Input)
Vector of length 4 containing the numbers p, q, s, d of the ARIMA (p, 0, q) × (0, d, 0)s model the outlier 
free series is following.

float w[] (Input)
An array of length n_obs containing the time series.

Return Value
Pointer to an array of length n_obs containing the outlier free time series. If an error occurred, NULL is 
returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_ts_outlier_identification (int n_obs, int model[], float w[],

IMSLS_RETURN_USER, float x[],

IMSLS_DELTA, float delta,

IMSLS_CRITICAL, float critical,
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IMSLS_EPSILON, float epsilon,

IMSLS_RELATIVE_ERROR, float relative_error,

IMSLS_RESIDUAL, float **residual,

IMSLS_RESIDUAL_USER, float residual[],

IMSLS_RESIDUAL_SIGMA, float *res_sigma,

IMSLS_NUM_OUTLIERS, int *num_outliers,

IMSLS_OUTLIER_STATISTICS, int **outlier_stat,

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[],

IMSLS_TAU_STATISTICS, float **tau_stat,

IMSLS_TAU_STATISTICS_USER, float tau_stat[],

IMSLS_OMEGA_WEIGHTS, float **omega,

IMSLS_OMEGA_WEIGHTS_USER, float omega[],

IMSLS_ARMA_PARAM, float **parameters,

IMSLS_ARMA_PARAM_USER, float parameters[],

IMSLS_AIC, float *aic,

0)

Optional Arguments
IMSLS_RETURN_USER, float x[]  (Output)

A user supplied array of length n_obs containing the outlier free series.

IMSLS_DELTA, float delta  (Input)
The dampening effect parameter used in the detection of a Temporary Change Outlier (TC), 
0<delta < 1. 

Default: delta = 0.7

IMSLS_CRITICAL, float critical  (Input)
Critical value used as a threshold for outlier detection, critical > 0.

Default: critical = 3.0

IMSLS_EPSILON, float epsilon  (Input)
Positive tolerance value controlling the accuracy of parameter estimates during outlier detection.

Default: epsilon = 0.001
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IMSLS_RELATIVE_ERROR, float relative_error  (Input)
Stopping criterion for the nonlinear equation solver used in function imsls_f_arma.

Default: relative_error =   .

IMSLS_RESIDUAL, float **residual  (Output)
Address of a pointer to an internally allocated array of length n_obs containing the residuals for the 
outlier free series.

IMSLS_RESIDUAL_USER, float residual[]  (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_RESIDUAL_SIGMA, float *res_sigma  (Output)
Residual standard error of the outlier free series.

IMSLS_NUM_OUTLIERS, int *num_outliers  (Output)
The number of outliers detected.

IMSLS_OUTLIER_STATISTICS, int **outlier_stat  (Output)
Address of a pointer to an internally allocated array of length num_outliers × 2 containing out-
lier statistics. The first column contains the time at which the outlier was observed (t=1,2,...,n_obs) 
and the second column contains an identifier indicating the type of outlier observed.

Outlier types fall into one of five categories: 

Use IMSLS_NUM_OUTLIERS to obtain num_outliers, the number of detected outliers.

If num_outliers = 0, NULL is returned. 

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[]  (Output)
A user allocated array of length n_obs × 2 containing outlier statistics in the first num_outliers 
locations. See IMSLS_OUTLIER_STATISTICS.

If num_outliers = 0, outlier_stat stays unchanged.

IMSLS_TAU_STATISTICS, float **tau_stat  (Output)
Address of a pointer to an internally allocated array of length num_outliers containing the t value 
for each detected outlier. 

If num_outliers = 0, NULL is returned.

0 Innovational Outliers (IO)

1 Additive outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI).

10−10
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IMSLS_TAU_STATISTICS_USER, float tau_stat[]  (Output)
A user allocated array of length n_obs containing the t value for each detected outlier in its first 
num_outliers locations.

If num_outliers = 0, tau_stat stays unchanged.

IMSLS_OMEGA_WEIGHTS, float **omega  (Output)
Address of a pointer to an internally allocated array of length num_outliers containing the com-
puted   weights for the detected outliers.

If num_outliers = 0, NULL is returned. 

IMSLS_OMEGA_WEIGHTS_USER  float omega[]  (Output)
A user allocated array of length n_obs containing the computed   weights for the detected outliers 
in its first num_outliers locations.

If num_outliers = 0, omega stays unchanged.

IMSLS_ARMA_PARAM,  float **parameters  (Output)
Address of a pointer to an internally allocated array of length 1+p+q containing the estimated con-
stant, AR and MA parameters.

IMSLS_ARMA_PARAM_USER  float parameters[]  (Output)
A user allocated array of length 1+p+q containing the estimated constant, AR and MA parameters. 

IMSLS_AIC, float  *aic (Output)
Akaike’s information criterion (AIC).

Description

Consider a univariate time series   that can be described by the following multiplicative seasonal ARIMA 

model of order (p, 0, q) × (0, d, 0)s:

Here,   ,      .    is the lag opera-

tor,   ,    is a white noise process, and    denotes the mean of the series   .

ω

ω

Yt

Y t − μ =
θ B
Δs
dϕ B

at, t = 1, … ,n.

Δs
d = 1 − Bs)d θ B = 1 − θ1B − … − θqB

q, ϕ B = 1 − ϕ1B − … − ϕpB
p
B

BkY t = Y t−k at μ Y t
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In general,    is not directly observable due to the influence of outliers. Chen and Liu (1993) distinguish 
between four types of outliers: innovational outliers (IO), additive outliers (AO), temporary changes (TC) and level 
shifts (LS). If an outlier occurs as the last observation of the series, then Chen and Liu’s algorithm is unable to 
determine the outlier’s classification. In imsls_f_ts_outlier_identification, such an outlier is called 
a UI (unable to identify) and is treated as an innovational outlier.

In order to take the effects of multiple outliers occurring at time points    into account, Chen and Liu 
consider the following model:

Here,    is the observed outlier contaminated series, and    and    denote the magnitude and 

dynamic pattern of outlier   , respectively.    is an indicator function that determines the temporal course 

of the outlier effect,   ,    otherwise. Note that    operates on    via  

 .

The last formula shows that the outlier free series    can be obtained from the original series    by 

removing all occurring outlier effects:

The different types of outliers are characterized by different values for  :

1.   for an innovational outlier,

2.   for an additive outlier,

3.   for a level shift outlier and

4.   for a temporary change outlier.

Y t

t1, t2, … , tm

Y t
* − μ =∑ j=1

m
ω jL j B It t j +

θ B
Δs
dϕ B

at.

Y t
* ωj L j B

j It t j
I t j t j = 1 I t t j = 0 Lj B It

BkI t = I t−k, k = 0,1, …

Y t Y t
*

Yt = Yt
* −∑ j=1

m
ω jL j B It t j

L j B

Lj B =
θ B

Δs
dϕ B

L j B = 1

Lj B = 1 − B)−1

Lj B = 1 − δB)−1, 0 < δ < 1,
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Function imsls_f_ts_outlier_identification is an implementation of Chen and Liu’s algorithm. It 

determines the coefficients in    and the outlier effects in the model for the observed series jointly 
in three stages. The magnitude of the outlier effects is determined by least squares estimates. Outlier detection 
itself is realized by examination of the maximum value of the standardized statistics of the outlier effects. For a 
detailed description, see Chen and Liu’s original paper (1993).

Intermediate and final estimates for the coefficients in    and    are computed by functions 

imsls_f_arma and imsls_f_max_arma. If the roots of   or    lie on or within the unit circle, then 
the algorithm stops with an appropriate error message. In this case, different values for p and q should be tried.

Examples

Example 1

This example is based on estimates of the Canadian lynx population. In order to simulate a measurement error, 
the actual time series value at time point t=30, which is 0.25570e + 01, was replaced by 0.35570e + 01. Function 
imsls_f_ts_outlier_identification is used to fit an AR(2) model of the form  

 ,   , {at} Gaussian White noise, to the given series. Function 

imsls_f_ts_outlier_identification computes parameters   ,    and  

  and identifies an additive outlier at time point t=30.

#include <imsls.h>
#include <stdio.h>
int main(){
    float series[114]={
    0.24300e+01,0.25060e+01,0.27670e+01,0.29400e+01,0.31690e+01,0.34500e+01,
    0.35940e+01,0.37740e+01,0.36950e+01,0.34110e+01,0.27180e+01,0.19910e+01,
    0.22650e+01,0.24460e+01,0.26120e+01,0.33590e+01,0.34290e+01,0.35330e+01,
    0.32610e+01,0.26120e+01,0.21790e+01,0.16530e+01,0.18320e+01,0.23280e+01,
    0.27370e+01,0.30140e+01,0.33280e+01,0.34040e+01,0.29810e+01,0.25570e+01,
    0.25760e+01,0.23520e+01,0.25560e+01,0.28640e+01,0.32140e+01,0.34350e+01,
    0.34580e+01,0.33260e+01,0.28350e+01,0.24760e+01,0.23730e+01,0.23890e+01,
    0.27420e+01,0.32100e+01,0.35200e+01,0.38280e+01,0.36280e+01,0.28370e+01,
    0.24060e+01,0.26750e+01,0.25540e+01,0.28940e+01,0.32020e+01,0.32240e+01,
    0.33520e+01,0.31540e+01,0.28780e+01,0.24760e+01,0.23030e+01,0.23600e+01,
    0.26710e+01,0.28670e+01,0.33100e+01,0.34490e+01,0.36460e+01,0.34000e+01,
    0.25900e+01,0.18630e+01,0.15810e+01,0.16900e+01,0.17710e+01,0.22740e+01,
    0.25760e+01,0.31110e+01,0.36050e+01,0.35430e+01,0.27690e+01,0.20210e+01,
    0.21850e+01,0.25880e+01,0.28800e+01,0.31150e+01,0.35400e+01,0.38450e+01,
    0.38000e+01,0.35790e+01,0.32640e+01,0.25380e+01,0.25820e+01,0.29070e+01,
    0.31420e+01,0.34330e+01,0.35800e+01,0.34900e+01,0.34750e+01,0.35790e+01,
    0.28290e+01,0.19090e+01,0.19030e+01,0.20330e+01,0.23600e+01,0.26010e+01,
    0.30540e+01,0.33860e+01,0.35530e+01,0.34680e+01,0.31870e+01,0.27230e+01,
    0.26860e+01,0.28210e+01,0.30000e+01,0.32010e+01,0.34240e+01,0.35310e+01
    };

ϕ B ,θ B

ϕ B θ B

ϕ B θ B

1 − ϕ1B − ϕ2B
2 Y t = θ0 + at t = 1,2, … ,144

θ0 = 1.052683 ϕ1 = 1.389253
ϕ2 = − 0.752184
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    int i, model[4] = {2,0,1,0}, n_obs = 114;
    int *outlier_stat = NULL, num_outliers;
    float *parameters = NULL, *result = NULL;
    float res_sigma, aic;
    /* Simulate measurement error */
    series[29] = 0.35570e+01;
    result = imsls_f_ts_outlier_identification(n_obs, model, series,
       IMSLS_CRITICAL, 3.5,
       IMSLS_NUM_OUTLIERS, &num_outliers,
       IMSLS_OUTLIER_STATISTICS, &outlier_stat,
       IMSLS_ARMA_PARAM, &parameters,
       IMSLS_RESIDUAL_SIGMA, &res_sigma,
       IMSLS_AIC, &aic, 0);
    printf("\nARMA parameters:\n");
    for (i=0; i<=model[0]+model[1]; i++)
       printf("%d\t\t%lf\n", i, parameters[i]);
    printf("\nNumber of outliers: %d\n\n", num_outliers);
    printf("Outlier statistics:\n");
    printf("Time point\tOutlier type\n");
    for (i=0; i<num_outliers; i++)
       printf(" t=%2d\t\t  Type=%d\n", outlier_stat[2*i],
       outlier_stat[2*i+1]);
    printf("\n\nRSE: %lf\n", res_sigma);
    printf("AIC: %lf\n", aic);
    printf("\nExtract from the series:\n\n");
    printf ("time point   original series   outlier free series\n\n");
    for (i=0; i<36; i++)
       printf ("%2d %21.4f %21.4f\n", i+1, series[i], result[i]);
}

Output

ARMA parameters:
0  1.052683
1  1.389253
2  -0.752184
Number of outliers: 1
Outlier statistics:
Time point  Outlier type
t=30             Type=1
RSE: 0.225020
AIC: 202.958511
Extract from the series:
time point   original series   outlier free series
1                2.4300               2.4300
2                2.5060               2.5060
3                2.7670               2.7670
4                2.9400               2.9400
5                3.1690               3.1690
6                3.4500               3.4500
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7                3.5940               3.5940
8                3.7740               3.7740
9                3.6950               3.6950
10               3.4110               3.4110
11               2.7180               2.7180
12               1.9910               1.9910
13               2.2650               2.2650
14               2.4460               2.4460
15               2.6120               2.6120
16               3.3590               3.3590
17               3.4290               3.4290
18               3.5330               3.5330
19               3.2610               3.2610
20               2.6120               2.6120
21               2.1790               2.1790
22               1.6530               1.6530
23               1.8320               1.8320
24               2.3280               2.3280
25               2.7370               2.7370
26               3.0140               3.0140
27               3.3280               3.3280
28               3.4040               3.4040
29               2.9810               2.9810
30               3.5570               2.7403
31               2.5760               2.5760
32               2.3520               2.3520
33               2.5560               2.5560
34               2.8640               2.8640
35               3.2140               3.2140
36               3.4350               3.4350

Example 2

This example is an artificial realization of an ARMA(1,1) process via formula  

  Gaussian white noise,  E[Yt]=50.0.

An additive outlier with    was added at time point  t=150, a temporary change outlier with    was 
added at time point t=200.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i, n_obs = 300, num_outliers;
 int outlier_stat[300], model[4] = {1,1,1,0};
 float res_sigma, aic;
 float parameters[300], result[300], omega[300];
 
 float series[300]={
   50.0000000,50.2728081,50.6242599,51.0373917,51.9317627,50.3494759,
   51.6597252,52.7004929,53.5499802,53.1673279,50.2373505,49.3373871,
   49.5516472,48.6692696,47.6606636,46.8774185,45.7315445,45.6469727,
   45.9882355,45.5216560,46.0479660,48.1958656,48.6387749,49.9055367,
   49.8077278,47.7858467,47.9386749,49.7691956,48.5425873,49.1239853,
   49.8518791,50.3320694,50.9146347,51.8772049,51.8745689,52.3394470,

Y t − 0.8Y t−1 = 10.0 + at + 0.5at−1, t = 1, … ,300,

ω1 = 4.5 ω2 = 3.0
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   52.7273712,51.4310036,50.6727448,50.8370399,51.2843437,51.8162918,
   51.6933670,49.7038231,49.0189247,49.455703,50.2718010,49.9605980,
   51.3775749,50.2285385,48.2692299,47.6495590,49.2938499,49.1924858,
   49.6449242,50.0446815,51.9972496,54.2576981,52.9835434,50.4193535,
   50.3617897,51.8276901,53.1239929,54.0682144,54.9238319,55.6877632,
   54.8896332,54.0701065,52.2754097,52.2522354,53.1248703,51.1287193,
   50.5003815,49.6504173,47.2453079,45.4555626,45.8449707,45.9765129,
   45.7682228,45.2343674,46.6496811,47.0894432,49.3368340,50.8058052,
   49.9132500,49.5893288,48.2470627,46.9779968,45.6760864,45.7070389,
   46.6158409,47.5303612,47.5630417,47.0389214,46.0352287,45.8161545,
   45.7974396,46.0015373,45.3796463,45.3461685,47.6444016,49.3327446,
   49.3810692,50.2027817,51.4567032,52.3986320,52.5819206,52.7721825,
   52.6919098,53.3274345,55.1345940,56.8962631,55.7791634,55.0616989,
   52.3551178,51.3264084,51.0968323,51.1980476,52.8001442,52.0545082,
   50.8742943,51.5150337,51.2242050,50.5033989,48.7760124,47.4179192,
   49.7319527,51.3320541,52.3918304,52.4140434,51.0845947,49.6485748,
   50.6893463,52.9840813,53.3246994,52.4568024,51.9196091,53.6683121,
   53.4555359,51.7755814,49.2915611,49.8755112,49.4546776,48.6171913,
   49.9643021,49.3766441,49.2551308,50.1021881,51.0769119,55.8328133,
   52.0212708,53.4930801,53.2147255,52.2356453,51.9648819,52.1816330,
   51.9898071,52.5623627,51.0717278,52.2431946,53.6943054,54.3752098,
   54.1492615,53.8523254,52.1093712,52.3982697,51.2405128,50.3018112,
   51.3819618,49.5479546,47.5024452,47.4447708,47.8939056,48.4070015,
   48.2440681,48.7389755,49.7309227,49.1998024,49.5798340,51.1196213,
   50.6288414,50.3971405,51.6084099,52.4564743,51.6443901,52.4080658,
   52.4643364,52.6257210,53.1604691,51.9309731,51.4137230,52.1233368,
   52.9867249,53.3180733,51.9647636,50.7947655,52.3815842,50.8353729,
   49.4136009,52.8355217,52.2234840,51.1392517,48.5245132,46.8700218,
   46.1607285,45.2324257,47.4157829,48.9989090,49.6230736,50.4352913,
   51.1652985,50.2588654,50.7820129,51.0448799,51.2880516,49.6898804,
   49.0288200,49.9338837,48.2214432,46.2103348,46.9550171,47.5595894,
   47.7176018,48.4502945,50.9816895,51.6950073,51.6973495,52.1941261,
   51.8988075,52.5617599,52.0218391,49.5236053,47.9684906,48.2445183,
   48.8275146,49.7176971,51.5649338,52.5627213,52.0182419,50.9688835,
   51.5846901,50.9486771,48.8685837,48.5600624,48.4760094,48.5348396,
   50.4187813,51.2542381,50.1872864,50.4407692,50.6222687,50.4972000,
   51.0036087,51.3367500,51.7368202,53.0463791,53.6261253,52.0728683,
   48.9740753,49.3280830,49.2733917,49.8519020,50.8562126,49.5594254,
   49.6109200,48.3785629,48.0026474,49.4874268,50.1596375,51.8059540,
   53.0288620,51.3321075,49.3114815,48.7999306,47.7201881,46.3433914,
   46.5303612,47.6294632,48.6012459,47.8567657,48.0604057,47.1352806,
   49.5724792,50.5566483,49.4182968,50.5578079,50.6883736,50.6333389,
   51.9766159,51.0595245,49.3751640,46.9667702,47.1658173,47.4411278,
   47.5360374,48.9914742,50.4747620,50.2728043,51.9117165,53.7627792};
 imsls_f_ts_outlier_identification(n_obs, model, series,
       IMSLS_NUM_OUTLIERS, &num_outliers,
       IMSLS_OUTLIER_STATISTICS_USER, outlier_stat,
       IMSLS_OMEGA_WEIGHTS_USER, omega,
       IMSLS_ARMA_PARAM_USER, parameters,
       IMSLS_RETURN_USER, result,
       IMSLS_RESIDUAL_SIGMA, &res_sigma,
       IMSLS_AIC, &aic,
       IMSLS_RELATIVE_ERROR, 1.0e-05,
       0);
 printf("\nARMA parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
     printf("%d\t\t%lf\n", i, parameters[i]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);
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 printf("Outlier statistics:\n");
 printf("Time point\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
     printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
 printf("\nOmega statistics:\n");
 printf("Time point\tomega\n");
 for (i=0; i<num_outliers; i++)
     printf("%d%21.6f\n", outlier_stat[2*i], omega[i]);
 printf("\nRSE: %lf\n", res_sigma);
 printf("AIC: %lf\n\n", aic);
}

Output

ARMA parameters:
0              10.833087
1              0.785139
2              -0.496548
Number of outliers: 2
Outlier statistics:
Time point     Outlier type
150            1
200            3
Omega statistics:
Time point     omega
150            4.477888
200            3.381441
RSE: 1.007223
AIC: 1417.044434
763



 Time Series and Forecasting         ts_outlier_forecast
ts_outlier_forecast
Computes forecasts, their associated probability limits and  weights for an outlier contaminated time series 
whose underlying outlier free series follows a general seasonal or nonseasonal ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_ts_outlier_forecast (int n_obs, float series[], int num_outliers, 

int outlier_statistics[], float omega[], float delta, int model[], float parameters[], 
int n_predict, …, 0)

The type double function is imsls_d_ts_outlier_forecast.

Required Arguments
int n_obs  (Input)

Number of observations in the time series.

float series[]  (Input)
An array of length n_obs by 2 containing the outlier free time series in its first column and the resid-
uals of the series in the second column.

int num_outliers  (Input)
Number of detected outliers in the original outlier contaminated series as computed in 
imsls_f_ts_outlier_identification.

int outlier_statistics[]  (Input)
An array of length num_outliers by 2 containing the outlier statistics from 
imsls_f_ts_outlier_identification. If num_outliers=0, this array is ignored.

float omega[]  (Input)
Array of length num_outliers containing the   weights for the outliers determined in 
imsls_f_ts_outlier_identification. Ignored, if num_outliers=0.

float delta  (Input)
The dynamic dampening effect parameter used in the outlier detection.

ψ

ψ
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int model[]  (Input) 
Vector of length 4 containing the numbers p, q, s, d of the ARIMA   model the 
outlier free series is following.

float parameters[]  (Input)
Vector of length 1+p+q containing the estimated constant, AR and MA parameters as output from 
imsls_f_ts_outlier_identification.

int n_predict  (Input)
Maximum lead time for forecasts. The forecasts are taken at origin t=n_obs, the time point of the 
last observed value, for lead times 1,2,...,n_predict.

Return Value
Pointer to an array of length n_predict by 3. The first column contains the forecasted values for the original 
outlier contaminated series. The second column contains the deviations from each forecast for computing confi-
dence probability limits, and the third column contains the   weights of the infinite moving average form of the 
model.

If an error occurred, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_ts_outlier_forecast(int n_obs, float series[], int num_outliers, 

int outlier_statistics[], float omega[], float delta, int model[], float parameters[], 
int n_predict,

IMSLS_RETURN_USER, float forecast[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast,
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[],
0)

Optional Arguments
IMSLS_RETURN_USER, float forecast[]  (Output)

An array of length n_predict by 3 supplied by the user containing the forecasts for the original 
outlier contaminated series in column 1, deviations from each forecast in column 2 and the   
weights of the infinite moving average form of the model in column 3.

p,0,q × 0,d,0)s

ψ

ψ
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IMSLS_CONFIDENCE, float confidence  (Input)
Value in the exclusive interval (0,100) used to specify the confidence percent probability limits of 
the forecast.Typical choices for confidence are 90.0, 95.0 and 99.0.

Default: confidence = 95.0

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast  (Output)
Address of a pointer to an array of length n_predict by 3 containing the forecasts for the original 
outlier free series in column 1, deviations from each forecast in column 2 and the   weights of the 
infinite moving average form of the model in column 3.

IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[]  (Output)
Storage for array outfree_forecast is provided by the user. For a description, see 
IMSLS_OUT_FREE_FORECAST.

Description

Consider the following model for a given outlier contaminated univariate time series   :

For an explanation of the notation, see the Description section for 
imsls_f_ts_outlier_identification. It follows from the formula above that the Box-Jenkins forecast 

at origin    for lead time   ,   , can be computed as:

Therefore, computation of the forecasts for    is done in two steps:

1. Computation of the forecasts for the outlier free series   .

2. Computation of the forecasts for the original series    by adding the multiple outlier effects to 

the forecasts for   .

Step 1 above: 

Since

ψ

{Y t
*}t =1,…,n

Y t
* = Yt +∑ j=1

m
ω jL j B It t j .

t l Y
^
t

*
(l)

Y^ t
*
l = Y^ t l +∑ j=1

m
ω jL j B It+l t j , l = 1, … ,n_predict.

{Y t
*}

{Y t}

{Y t
*}

{Y t}
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where

the Box-Jenkins forecast at origin    for lead time   ,   , can be computed recursively as:

Here,

and

Step 2 above: 

The formulas for    for the different types of outliers are as follows:

Assuming the outlier occurs at time point   , the outlier impact is therefore:

Innovational outliers (IO)
  

Additive outliers (AO)   

Level shifts (LS)
  

Temporary changes (TC)
  

Innovational outliers (IO)

Additive outliers (AO)

Level shifts (LS)

Temporary changes (TC)

φ B Yt − μ = θ B at,

φ B : = Δs
dϕ B = 1 − φ1B − … − φp+sdB

p+sd
,

t l Y
^
t(l)

Y^ t l = 1 −∑ j=1

p+sdφ j μ +∑ j=1

p+sdφ jY
^
t l − j −∑ j=l

q
θ jat+l− j.

Y^ t l − j =
Yt+l− j for l − j ≤ 0

Y^ t l − j for l − j > 0

ak =
0 for k ≤ max 1,p + sd

Yk − Y
^
k−1 1 for k = max 1,p + sd + 1, … ,n

Lj(B)

Lj(B) =
θ(B)
Δs
dϕ(B)

: = ψ(B) = ∑k=0
∞ ψkB

k, ψ0 = 1

Lj(B) = 1

Lj(B) =
1

1 − B = ∑k=0
∞ Bk

L j(B) =
1

1 − δB = ∑k=0
∞ δkBk

t jω j L j(B) It(t j) =
0 for t < t j,

ωjψk for t = t j + k, k ≥ 0,ωj L j(B) It(t j) =
0 for t ≠ t j,
ωj for t = t j,ωj L j(B) It(t j) =
0 for t < t j,
ωj for t = t j + k, k ≥ 0,ωj L j(B) It(t j) =
0 for t < t j,

ωjδ
k for t = t j + k, k ≥ 0 .
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From these formulas, the forecasts    can be computed easily.

The    percent probability limits for    and    are given by 

where    is the    percentile of the standard normal distribution,    is an estimate of the vari-

ance    of the random shocks (returned from imsls_f_ts_outlier_identification), and the   weights  

 are the coefficients in 

For a detailed explanation of these concepts, see Chapter 5, Forecasting, Box, Jenkins and Reinsel (1994).

Example
This example is a realization of an ARMA(2,1) process described by the model  

 ,   a Gaussian white noise process.

Outliers were artificially added to the outlier free series {Yt}t=1, ...,280 at time points   (level shift,  

 ) and   (additive outlier,   ), resulting in the outlier contaminated series {Zt}t=1, 

...,280. For both series, forecasts were determined for time points t=281, ..., 290 and compared with the actual val-

ues of the series.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float time_series[290] ={
       41.6699982, 41.6699982, 42.0752144, 42.6123962, 43.6161919,
       42.1932831, 43.1055450, 44.3518715, 45.3961258, 45.0790215,
       41.8874397, 40.2159805, 40.2447319, 39.6208458, 38.6873589,
       37.9272423, 36.8718872, 36.8310852, 37.4524879, 37.3440933,
       37.9861374, 40.3810501, 41.3464622, 42.6495285, 42.6096764,
       40.3134537, 39.7971268, 41.5401535, 40.7160759, 41.0363541,
       41.8171883, 42.4190292, 43.0318832, 43.9968109, 44.0419617,
       44.3225212, 44.6082611, 43.2199631, 42.0419197, 41.9679718,
       42.4926224, 43.2091255, 43.2512283, 41.2301674, 40.1057358,
       40.4510574, 41.5329170, 41.5678177, 43.0090141, 42.1592140,
       39.9234505, 38.8394127, 40.4319878, 40.8679352, 41.4551926,
       41.9756317, 43.9878922, 46.5736389, 45.5939293, 42.4487762,

Y^ t
*
(l)

100(1 − α) Y t+l
* Y t+l

Y^ t
*
(l)(or Y^ t(l), resp.) ± uα/2(1 +∑ j=1

l−1ψ j
2)1/2sa,

uα/2 100(1 − α / 2) sa
2

σa
2 ψ

{ψ j}

ψ B : = ∑
k=0

∞
ψkB

k : =
θ B
Δs
dϕ B

, ψ0 = 1.

Y t − Y t−1 + 0.24Y t−2 = 10.0 + at + 0.5at−1 at

t = 150
ω1 = + 2.5 t = 200 ω2 = + 3.2
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       41.5325394, 42.8830910, 44.5771217, 45.8541985, 46.8249474,
       47.5686378, 46.6700745, 45.4120026, 43.2305107, 42.7635345,
       43.7112923, 42.0768661, 41.1835632, 40.3352280, 37.9761467,
       35.9550056, 36.3212509, 36.9925880, 37.2625008, 37.0040665,
       38.5232544, 39.4119797, 41.8316803, 43.7091446, 42.9381447,
       42.1066780, 40.3771248, 38.6518707, 37.0550499, 36.9447708,
       38.1017685, 39.4727097, 39.8670387, 39.3820763, 38.2180786,
       37.7543488, 37.7265244, 38.0290642, 37.5531158, 37.4685936,
       39.8233147, 42.0480766, 42.4053535, 43.0117416, 44.1289330,
       45.0393829, 45.1114540, 45.0086479, 44.6560631, 45.0278931,
       46.7830849, 48.7649765, 47.7991905, 46.5339661, 43.3679199,
       41.6420822, 41.2694893, 41.5959740, 43.5330009, 43.3643608,
       42.1471291, 42.5552788, 42.4521446, 41.7629128, 39.9476891,
       38.3217010, 40.5318718, 42.8811569, 44.4796944, 44.6887932,
       43.1670265, 41.2226143, 41.8330154, 44.3721924, 45.2697029,
       44.4174194, 43.5068550, 44.9793015, 45.0585403, 43.2746620,
       40.3317070, 40.3880501, 40.2627106, 39.6230278, 41.0305252,
       40.9262009, 40.8326912, 41.7084885, 42.9038048, 45.8650513,
       46.5231590, 47.9916115, 47.8463135, 46.5921936, 45.8854408,
       45.9130440, 45.7450371, 46.2964249, 44.9394569, 45.8141251,
       47.5284042, 48.5527802, 48.3950577, 47.8753052, 45.8880005,
       45.7086983, 44.6174774, 43.5567932, 44.5891113, 43.1778679,
       40.9405632, 40.6206894, 41.3330421, 42.2759552, 42.4744949,
       43.0719833, 44.2178459, 43.8956337, 44.1033440, 45.6241455,
       45.3724861, 44.9167595, 45.9180603, 46.9077835, 46.1666603,
       46.6013489, 46.6592331, 46.7291603, 47.1908340, 45.9784355,
       45.1215782, 45.6791115, 46.7379875, 47.3036957, 45.9968834,
       44.4669495, 45.7734680, 44.6315041, 42.9911766, 46.3842583,
       43.7214432, 43.5276833, 41.3946495, 39.7013168, 39.1033401,
       38.5292892, 41.0096245, 43.4535828, 44.6525154, 45.5725899,
       46.2815285, 45.2766647, 45.3481712, 45.5039482, 45.6745682,
       44.0144806, 42.9305000, 43.6785469, 42.2500534, 40.0007210,
       40.4477005, 41.4432716, 42.0058670, 42.9357758, 45.6758842,
       46.8809929, 46.8601494, 47.0449791, 46.5420647, 46.8939934,
       46.2963371, 43.5479164, 41.3864059, 41.4046364, 42.3037987,
       43.6223717, 45.8602371, 47.3016396, 46.8632469, 45.4651413,
       45.6275482, 44.9968376, 42.7558670, 42.0218239, 41.9883728,
       42.2571678, 44.3708687, 45.7483635, 44.8832512, 44.7945862,
       44.8922577, 44.7409401, 45.1726494, 45.5686874, 45.9946709,
       47.3151054, 48.0654068, 46.4817467, 42.8618279, 42.4550323,
       42.5791168, 43.4230957, 44.7787971, 43.8317108, 43.6481781,
       42.4183960, 41.8426285, 43.3475227, 44.4749908, 46.3498306,
       47.8599319, 46.2449913, 43.6044006, 42.4563484, 41.2715340,
       39.8492508, 39.9997292, 41.4410820, 42.9388237, 42.5687332,
       42.6384087, 41.7088661, 43.9399033, 45.4284401, 44.4558411,
       45.1761856, 45.3489113, 45.1892662, 46.3754730, 45.6082802
   };
   int n_obs = 280, i;
   float *parameters = NULL, *result = NULL, *forecast = NULL;
   float *outfree_forecast = NULL, *omega = NULL, *residual = NULL;
   float res_sigma, aic;
   float delta = 0.7;
   float series[560];
   int *outlier_stat = NULL;
   int num_outliers;
   int n_predict = 10;
   int model[4];
   float forecast_table[40];
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   model[0] = 2;
   model[1] = 1;
   model[2] = 1;
   model[3] = 0;
   result = imsls_f_ts_outlier_identification(n_obs, model, time_series,
       IMSLS_RELATIVE_ERROR, 1.0e-5,
       IMSLS_NUM_OUTLIERS, &num_outliers,
       IMSLS_RESIDUAL, &residual,
       IMSLS_OUTLIER_STATISTICS, &outlier_stat,
       IMSLS_OMEGA_WEIGHTS, &omega,
       IMSLS_ARMA_PARAM, &parameters,
       IMSLS_RESIDUAL_SIGMA, &res_sigma,
       IMSLS_AIC, &aic,
       0);
   printf("\nARMA parameters:\n");
   for (i = 0; i <= model[0] + model[1]; i++)
       printf("%d\t\t%lf\n", i, parameters[i]);
   printf("\nNumber of outliers: %d\n\n", num_outliers);
   printf("Outlier statistics:\n");
   printf("Time point\t\tOutlier type\n");
   for (i = 0; i < num_outliers; i++)
       printf("%d\t\t%d\n", outlier_stat[2 * i],
           outlier_stat[2 * i + 1]);
   printf("\n");
   printf("RSE:%lf\n", res_sigma);
   printf("AIC:%lf\n", aic);
   for (i = 0; i < n_obs; i++)
   {
       series[2 * i] = result[i];
       series[2 * i + 1] = residual[i];
   }
   forecast = imsls_f_ts_outlier_forecast(n_obs, series, num_outliers,
       outlier_stat, omega, delta, model, parameters, n_predict,
       IMSLS_OUT_FREE_FORECAST,&outfree_forecast,
       0);
   for (i = 0; i < n_predict; i++)
   {
       forecast_table[4 * i] = time_series[n_obs + i];
       forecast_table[4 * i + 1] = forecast[3 * i];
       forecast_table[4 * i + 2] = forecast[3 * i + 1];
       forecast_table[4 * i + 3] = forecast[3 * i + 2];
   }
   imsls_f_write_matrix("\t* * * Forecast Table for outlier"
       " contaminated series * * *\nOrig. Series \tforecast\tprob."
       " limits\tpsi weights\n", n_predict, 4, forecast_table,
       IMSLS_WRITE_FORMAT, "%11.4f",
       0);
   for (i = 0; i < n_predict; i++)
   {
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       forecast_table[4 * i] = time_series[n_obs + i] - 2.5;
       forecast_table[4 * i + 1] = outfree_forecast[3 * i];
       forecast_table[4 * i + 2] = outfree_forecast[3 * i + 1];
       forecast_table[4 * i + 3] = outfree_forecast[3 * i + 2];
   }
   printf("\n");
   imsls_f_write_matrix("\t* * * Forecast Table for outlier free"
       " series * * *\n\nOutlier free series\tforecast \tprob. limits"
       "\tpsi weights\n", n_predict, 4, forecast_table,
       IMSLS_WRITE_FORMAT, "%11.4f",
       0);
}

Output

ARMA parameters:
0              8.892076
1              0.943928
2              -0.150295
3              -0.559073
Number of outliers: 2
Outlier statistics:
Time point             Outlier type
150            2
200            1
RSE:1.004306
AIC:1323.617310
       * * * Forecast Table for outlier contaminated series * * *
    Orig. Series      forecast       prob. limits   psi weights
               1           2           3           4
  1      42.6384     42.3158      1.9684      1.5030
  2      41.7089     42.7934      3.5535      1.2684
  3      43.9399     43.2822      4.3430      0.9714
  4      45.4284     43.6718      4.7453      0.7263
  5      44.4558     43.9662      4.9560      0.5396
  6      45.1762     44.1854      5.0685      0.4002
  7      45.3489     44.3481      5.1293      0.2966
  8      45.1893     44.4688      5.1625      0.2199
  9      46.3755     44.5582      5.1806      0.1629
 10      45.6083     44.6245      5.1905      0.1208

       * * * Forecast Table for outlier free series * * *
Outlier free series    forecast       prob. limits   psi weights
              1           2           3           4
 1      40.1384     40.5903      1.9684      1.5030
 2      39.2089     41.0679      3.5535      1.2684
 3      41.4399     41.5567      4.3430      0.9714
 4      42.9284     41.9463      4.7453      0.7263
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 5      41.9558     42.2406      4.9560      0.5396
 6      42.6762     42.4599      5.0685      0.4002
 7      42.8489     42.6226      5.1293      0.2966
 8      42.6893     42.7433      5.1625      0.2199
 9      43.8755     42.8327      5.1806      0.1629
10      43.1083     42.8990      5.1905      0.1208
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auto_arima

more...

Automatically identifies time series outliers, determines parameters of a multiplicative seasonal ARIMA 

  model and produces forecasts that incorporate the effects of outliers whose effects persist 
beyond the end of the series.

Synopsis
#include <imsls.h>
float *imsls_f_auto_arima (int n_obs, int tpoints[], float x[], …, 0)

The type double function is imsls_d_auto_arima.

Required Arguments
int n_obs  (Input)

Number of observations in the original time series. Assuming that the series is defined at time points  
 , the actual length of the series, including missing observations is   .

int tpoints[]  (Input)
A vector of length n_obs containing the time points    the time series was observed. It 
is required that    are in strictly ascending order.

float x[]  (Input)
A vector of length n_obs containing the observed time series values   . This series 
can contain outliers and missing observations. Outliers are identified by this function and missing val-
ues are identified by the time values in vector tpoints. If the time interval between two 
consecutive time points is greater than one, i.e.   , then    missing values are 
assumed to exist between   and   at times   . Therefore, the gap free 
series is assumed to be defined for equidistant time points . Missing values are automatically esti-
mated prior to identifying outliers and producing forecasts. Forecasts are generated for both missing 
and observed values.

(p, 0,q) × (0,d, 0)s

t1, … ,tn_obs n = tn_obs − t1 + 1

t1,t2, … tn_obs
t1,t2, … tn_obs

Y 1
*,Y 2

*, ⋯ ,Yn_obs*

ti+1 − ti = m > 1 m − 1
ti ti+1 ti + 1, ti + 2, … , ti+1 − 1
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Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR and MA parameters used to fit the outlier-
free series using an ARIMA (p, 0, q) × (0, d, 0)s model. Upon completion, if d=model[3]=0, then an ARMA(p, q) 

model or AR(p) model is fitted to the outlier-free version of the observed series   . If d=model[3]>0, these 
parameters are computed for an ARMA(p,q) representation of the seasonally adjusted series  

 , where    and s=model[2]≥1.

If an error occurred, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_auto_arima (int n_obs, int tpoints[], float x[],

IMSLS_METHOD, int method,
IMSLS_MAX_LAG, int maxlag,
IMSLS_MODEL, int model[],
IMSLS_DELTA, float delta,
IMSLS_CRITICAL, float critical,
IMSLS_EPSILON, float epsilon,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_RESIDUAL_SIGMA, float *res_sigma,
IMSLS_NUM_OUTLIERS, int *num_outliers,
IMSLS_P_INITIAL, int n_p_initial, int p_initial[],
IMSLS_Q_INITIAL, int n_q_initial, int q_initial[],
IMSLS_S_INITIAL, int n_s_initial, int s_initial[],
IMSLS_D_INITIAL, int n_d_initial, int d_initial[],
IMSLS_OUTLIER_STATISTICS, int **outlier_stat,
IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[],
IMSLS_AIC, float *aic,
IMSLS_AICC, float *aicc,
IMSLS_BIC, float *bic,
IMSLS_MODEL_SELECTION_CRITERION, int criterion,
IMSLS_OUT_FREE_SERIES, float **outfree_series,
IMSLS_OUT_FREE_SERIES_USER, float outfree_series[],

Y t
*

Zt
* = Δs

d ·Y t
* = (1 − Bs)

d ·Y t
*

BsY t
* = Y t−s

*
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IMSLS_CONFIDENCE, float confidence,
IMSLS_NUM_PREDICT, int n_predict,
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast,
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[],
IMSLS_OUTLIER_FORECAST, float **outlier_forecast,
IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[],
IMSLS_SUPPLY_WORK_ARRAYS, int liwork, int iwork[], int lwork, float work[],
IMSLS_RETURN_USER, float parameters[],
0)

Optional Arguments
IMSLS_METHOD, int method  (Input)

The method used in model selection:

For more information, see the “Description” section.

Default: method = 1

IMSLS_MAX_LAG, int maxlag  (Input)
The maximum lag allowed when fitting an AR(p) model.

Default: maxlag = 10
IMSLS_MODEL, int model[]  (Input/Output)

Array of length 4 containing the values for p, q, s, d. If method = 3 is chosen, then the values for p 
and q must be defined. If IMSLS_S_INITIAL and IMSLS_D_INITIAL are not defined, then also 
s and d must be given. If method = 1 or method = 2, then model is ignored as an input array. On 
output, model contains the optimum values for p, q, s, d in model[0], model[1], model[2] 
and model[3], respectively.

IMSLS_DELTA, float delta  (Input)
The dampening effect parameter used in the detection of a Temporary Change Outlier (TC), 
0<delta<1. 

method Description

1 Automatic ARIMA (p, 0, 0) × (0, d, 0)s selection.

2 Grid search. Requires arguments IMSLS_P_INITIAL and 
IMSLS_Q_INITIAL.

3 Specified ARIMA (p, 0, q) × (0, d, 0)s model. Requires argument 
IMSLS_MODEL.
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Default: delta = 0.7

IMSLS_CRITICAL, float critical  (Input)
Critical value used as a threshold for outlier detection, critical > 0.

Default: critical = 3.0

IMSLS_EPSILON, float epsilon  (Input)
Positive tolerance value controlling the accuracy of parameter estimates during outlier detection.

Default: epsilon = 0.001

IMSLS_RELATIVE_ERROR, float relative_error  (Input)
Stopping criterion for use in the nonlinear equation solver used in the method of moments algorithm 
that computes initial parameter estimates for the least-squares algorithm.

Default: relative_error = 102 * imsls_f_machine(4)in single precision and 104 * 
imsls_d_machine(4)in double precision.

IMSLS_RESIDUAL, float **residual  (Output)
Address of a pointer to an internally allocated array of length   , containing  

 , the estimates of the white noise in the outlier free original series.

IMSLS_RESIDUAL_USER, float residual[]  (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RESIDUAL_SIGMA, float *res_sigma  (Output)
Residual standard error (RSE) of the outlier free original series.

IMSLS_NUM_OUTLIERS, int *num_outliers  (Output)
The number of outliers detected.

IMSLS_P_INITIAL, int n_p_initial, int p_initial[]  (Input)
An array with n_p_initial elements containing the candidate values for p, from which the opti-
mum is being selected. All candidate values in p_initial[] must be non-negative and 
n_p_initial ≥ 1. If method=2, then IMSLS_P_INITIAL must be defined. Otherwise, 
n_p_initial and p_initial are ignored.

IMSLS_Q_INITIAL, int n_q_initial, int q_initial[]  (Input)
An array with n_q_initial elements containing the candidate values for q, from which the opti-
mum is being selected. All candidate values in q_initial[] must be non-negative and 
n_q_initial ≥ 1. If method=2, then IMSLS_Q_INITIAL must be defined. Otherwise, 
n_q_initial and q_initial are ignored.

IMSLS_S_INITIAL, int n_s_initial, int s_initial[]  (Input)
A vector of length n_s_initial containing the candidate values for s, from which the optimum is 
being selected. All candidate values in s_initial[] must be positive and n_s_initial ≥ 1.

n = tn_obs − t1 + 1 ≥ n_obs
e^ t
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Default: n_s_initial=1, s_initial={1}

IMSLS_D_INITIAL, int n_d_initial, int d_initial[]  (Input)
A vector of length n_d_initial containing the candidate values for d, from which the optimum is 
being selected. All candidate values in d_initial[] must be non-negative and 
n_d_initial ≥ 1.

Default: n_d_initial=1, d_initial={0}

IMSLS_OUTLIER_STATISTICS, int **outlier_stat  (Output)
Address of a pointer to an internally allocated array of length num_outliers by 2 containing out-
lier statistics. The first column contains the time at which the outlier was observed 
( ) and the second column contains an identifier indicating the type of 
outlier observed. Outlier types fall into one of five categories:

If num_outliers = 0, NULL is returned.

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[]  (Output)
A user allocated array of length n × 2 containing outlier statistics in its first num_outliers rows. 
Here,  . See IMSLS_OUTLIER_STATISTICS. If num_outliers = 0, 
outlier_stat stays unchanged.

IMSLS_AIC, float *aic  (Output)
The AIC (Akaike’s Information Criterion) value for the optimum model. Uses an approximation of the 
maximum log-likelihood based on an estimate of the innovation variance of the series. 

IMSLS_AICC, float *aicc  (Output)
The AICC (corrected AIC) value for the optimum model. Uses an approximation of the maximum log-
likelihood based on an estimate of the innovation variance of the series. 

IMSLS_BIC, float *bic  (Output)
The BIC (Bayesian Information Criterion) value for the optimum model. Uses an approximation of the 
maximum log-likelihood based on an estimate of the innovation variance of the series. 

0 Innovational Outliers (IO)

1 Additive Outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI).

t = t1, t1 + 1, t1 + 2, … , tn_obs

n = tn_obs − t1 + 1 ≥ n_obs
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IMSLS_MODEL_SELECTION_CRITERION, int criterion  (Input) 
The information criterion used for optimum model selection.

Default: criterion = 0.
IMSLS_OUT_FREE_SERIES, float **outfree_series  (Output)

Address of a pointer to an internally allocated array of length n by 2, where   . The 
first column of outfree_series contains the n_obs observations from the original series,   , 
plus estimated values for any time gaps. The second column contains the same values as the first col-
umn adjusted by removing any outlier effects. In effect, the second column contains estimates of the 
underlying outlier-free series,   . If no outliers are detected then both columns will contain identical 
values.

IMSLS_OUT_FREE_SERIES_USER, float outfree_series[]  (Output)
A user allocated array of length n by 2, where   . For further details, see 
IMSLS_OUT_FREE_SERIES.

IMSLS_CONFIDENCE, float confidence  (Input)
Confidence level for computing forecast confidence limits, taken from the exclusive interval (0, 100). 
Typical choices for confidence are 90.0, 95.0 and 99.0.

Default: confidence = 95.0

IMSLS_NUM_PREDICT, int n_predict  (Input)
The number of forecasts requested. Forecasts are made at origin   , i.e. from the last observed 
value of the series.

Default: n_predict = 0

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast  (Output)
Address of a pointer to an internally allocated array of length n_predict by 3. The first column 
contains the forecasted values for the original outlier free series for t=  +1,   + 2,...,   
+ n_predict. The second column contains standard errors for these forecasts, and the third col-
umn contains the psi weights of the infinite order moving average form of the model.

IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[]  (Output)
A user allocated array of length n_predict by 3. For more information, see 
IMSLS_OUT_FREE_FORECAST.

criterion selected information criterion

0 Akaike’s Information Criterion (AIC)

1 Akaike’s Corrected Information Criterion (AICC)

2 Bayesian Information Criterion (BIC)

n = tn_obs − t1 + 1
Y t
*

Y t

n = tn_obs − t1 + 1

tn_obs

tn_obs tn_obs tn_obs
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IMSLS_OUTLIER_FORECAST, float **outlier_forecast  (Output)
Address of a pointer to an internally allocated array of length n_predict by 3. The first column 
contains the forecasted values for the original series for t=  +1,   +2,...,   +n_predict. 
The second column contains standard errors for these forecasts, and the third column contains the  

 weights of the infinite order moving average form of the model.

IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[]  (Output)
A user allocated array of length n_predict by 3. For more information, see 
IMSLS_OUTLIER_FORECAST.

IMSLS_SUPPLY_WORK_ARRAYS, int liwork, int iwork[], int lwork, float work[],  (Input/Out-
put)
The use of this optional argument will increase efficiency and avoid memory fragmentation run-time 
failures for large problems by allowing the user to provide the sizes and locations of the working 
arrays work and iwork. It is also useful if many time series have to be processed sequentially 
because it can significantly reduce the amount of memory that has to be reallocated. This optional 
argument can be used in conjunction with method = 1 and method = 2. With maxt as the max-
imum number of threads that will be active and nobs_act the length of the time series (including 
missing values), it is required that

liwork ≥ 2 × maxt × (2 + nobs_act).
The minimum length of array work depends on the choice of the method. For method 1, it is 
required that

lwork ≥ maxt × (3 × nobs_act + 1 + maxlag).
Method 2 requires

lwork ≥ maxt × (3 × nobs_act + 1 + ub_p + ub_q),
where ub_p and ub_q denote the maximum values in arrays p_initial and q_initial, 
respectively.

Without the use of OpenMP and parallel threading, maxt× = 1.

IMSLS_RETURN_USER, float x[] (Output)
A user allocated array containing the estimated constant, AR and MA parameters in its first 1+p+q 
locations. The values p and q can be estimated by upper bounds: If method=1, an upper bound for 
p would be maxlag, and q= 0. If method=2, upper bounds for p and q would be the maximum val-
ues in arrays p_initial and q_initial, respectively. If method=3, p= model[0] and 
q= model[1].

tn_obs tn_obs tn_obs

ψ
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Description
Function imsls_f_auto_arima determines the parameters of a multiplicative seasonal ARIMA (p, 0, q) × (0,  
d,  0)s model, and then uses the fitted model to identify outliers and prepare forecasts. The order of this model 

can be specified or automatically determined. 

The ARIMA (p, 0, q) × (0, d,  0)s model handled by imsls_f_auto_arima has the following form:

where 

and

It is assumed that all roots of    and    lie outside the unit circle. Clearly, if    this reduces to the 
traditional ARIMA(p, d, q) model.

  is the unobserved, outlier-free time series with mean   , and white noise   . This model is referred to as the 
underlying, outlier-free model. Function imsls_f_auto_arima does not assume that this series is observ-
able. It assumes that the observed values might be contaminated by one or more outliers, whose effects are 
added to the underlying outlier-free series:

Outlier identification uses the algorithm developed by Chen and Liu (1993). Outliers are classified into 1 of 5 
types:

1. innovational

2. additive

3. level shift

4. temporary change and 

5. unable to identify

Once outliers are identified, imsls_f_auto_arima estimates   , the outlier-free series representation of 
the data, by removing the estimated outlier effects.

ϕ B Δs
d Y t − μ = θ B at, t = 1,2, … ,n,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 − ⋯ − ϕpB

p
, θ(B) = 1 − θ1B − θ2B

2 − ⋯ − θqB
q
, Δs

d = (1 − Bs)d

BkY t = Yt−k.

ϕ B θ B s = 1

Y t μ at

Y t
* = Yt + outlier_effectt.

Y t
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Using the information about the adjusted ARIMA (p, 0, q) × (0, d, 0)s model and the removed outliers, forecasts 

are then prepared for the outlier-free series. Outlier effects are added to these forecasts to produce a forecast 

for the observed series,   . If there are no outliers, then the forecasts for the outlier-free series and the 
observed series will be identical.

Model Selection

Users have an option of either specifying specific values for p, q, s and d or have imsls_f_auto_arima auto-
matically select best fit values. Model selection can be conducted in one of three methods listed below 
depending upon the value of variable method.

Method 1: Automatic ARIMA (p, 0, 0) × (0, d, 0)s Selection

This method initially searches for the AR(p) representation with minimum AIC for the noisy data, where 
p = 0,...,maxlag.

If IMSLS_D_INITIAL is defined then the values in s_initial and d_initial are included in the search 
to find an optimum ARIMA (p, 0, 0) × (0, d, 0)s representation of the series. Here, every possible combination of 

values for p, s in s_initial and d in d_initial is examined. The best found ARIMA (p, 0, 0) × (0, d, 0)s repre-

sentation is then used as input for the outlier detection routine.

The optimum values for p, q, s and d are returned in model[0], model[1], model[2] and model[3], 
respectively.

Method 2: Grid Search

The second automatic method conducts a grid search for p and q using all possible combinations of candidate 
values in p_initial and q_initial. Therefore, for this method the definition of IMSLS_P_INITIAL and 
IMSLS_Q_INITIAL is required.

If IMSLS_D_INITIAL is defined, the grid search is extended to include the candidate values for s and d given 
in s_initial and d_initial, respectively.

If IMSLS_D_INITIAL is not defined, no seasonal adjustment is attempted, and the grid search is restricted to 
searching for optimum values of p and q only.

The optimum values of p, q, s and d are returned in model[0], model[1], model[2] and model[3], 
respectively.

Y t
*

781



 Time Series and Forecasting         auto_arima
Method 3: Specified ARIMA (p, 0, q) × (0, d, 0)s Model

In the third method, specific values for p, q, s and d are given. The values for p and q must be defined in 
model[0] and model[1], respectively. If IMSLS_S_INITIAL and IMSLS_D_INITIAL are not defined, 
then values    and    must be specified in model[2] and model[3]. If IMSLS_S_INITIAL and 
IMSLS_D_INITIAL are defined, then a grid search for the optimum values of s and d is conducted using all 
possible combinations of input values in s_initial and d_initial. The optimum values of s and d can be 
found in model[2] and model[3], respectively.

Outliers

The algorithm of Chen and Liu (1993) is used to identify outliers. The number of outliers identified is returned in 
num_outliers. Both the time and classification for these outliers are returned in outlier_stat[]. Outli-
ers are classified into one of five categories based upon the standardized statistic for each outlier type. The time 
at which the outlier occurred is given in the first column of outlier_stat. The outlier identifier returned in 
the second column is according to the descriptions in the following table:

Outlier

Identifier Name General Description

0 (IO)

Innovational 
Outlier

Innovational outliers persist. That is, there is an initial 
impact at the time the outlier occurs. This effect continues 
in a lagged fashion with all future observations. The lag 
coefficients are determined by the coefficient of the under-
lying ARIMA (p, 0, q) × (0, d, 0)s model.

1 (AO)

Additive 
Outlier

Additive outliers do not persist. As the name implies, an 
additive outlier effects only the observation at the time the 
outlier occurs. Hence additive outliers have no effect on 
future forecasts.

2 (LS)

Level Shift

Level shift outliers persist. They have the effect of either 
raising or lowering the mean of the series starting at the 
time the outlier occurs. This shift in the mean is abrupt and 
permanent.

s > 0 d ≥ 0
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Except for additive outliers (AO), the effect of an outlier persists to observations following that outlier. Forecasts 
produced by imsls_f_auto_arima take this into account.

Examples 

Example 1

This example uses time series D from Box, Jenkins and Reinsel (1994), the hourly viscosity readings of a chemical 
process. Method 1 without seasonal adjustment is chosen to find an appropriate AR(p) model for the first 304 
observations of this series, measured at time points t = 1 to t = 304. A forecast is then done at origin t = 304 for 
lead times 1 to 6 and compared with the actual time series values which are stored in array actual.

#include <imsls.h>
#include <stdio.h>
int main()
{
    int n_obs, n_predict, i, num_outliers;
    int *outlier_stat = NULL, model[4], times[304];
    float aic, res_sigma, *parameters = NULL;
    float outlier_forecast[18], forecast_table[24];
    /* Values of series D at time points t=1,...,t=304 */
    float x[304] = {
        8.0,8.0,7.4,8.0,8.0,8.0,8.0,8.8,8.4,8.4,8.0,8.2,8.2,8.2,8.4,
        8.4,8.4,8.6,8.8,8.6,8.6,8.6,8.6,8.6,8.8,8.9,9.1,9.5,8.5,8.4,
        8.3,8.2,8.1,8.3,8.4,8.7,8.8,8.8,9.2,9.6,9.0,8.8,8.6,8.6,8.8,
        8.8,8.6,8.6,8.4,8.3,8.4,8.3,8.3,8.1,8.2,8.3,8.5,8.1,8.1,7.9,
        8.3,8.1,8.1,8.1,8.4,8.7,9.0,9.3,9.3,9.5,9.3,9.5,9.5,9.5,9.5,
        9.5,9.5,9.9,9.5,9.7,9.1,9.1,8.9,9.3,9.1,9.1,9.3,9.5,9.3,9.3,
        9.3,9.9,9.7,9.1,9.3,9.5,9.4,9.0,9.0,8.8,9.0,8.8,8.6,8.6,8.0,

3 (TC)

Temporary 
Change

Temporary change outliers persist and are similar to level 
shift outliers with one major exception. Like level shift out-
liers, there is an abrupt change in the mean of the series at 
the time this outlier occurs. However, unlike level shift out-
liers, this shift is not permanent. The TC outlier gradually 
decays, eventually bringing the mean of the series back to 
its original value. The rate of this decay is modeled using 
the parameter delta. The default of delta= 0.7 is the 
value recommended for general use by Chen and Liu 
(1993).

4 (UI)

Unable to 
Identify

If an outlier is identified as the last observation, then the 
algorithm is unable to determine the outlier’s classifica-
tion. For forecasting, a UI outlier is treated as an IO outlier. 
That is, its effect is lagged into the forecasts. 

Outlier

Identifier Name General Description
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        8.0,8.0,8.0,8.6,8.0,8.0,8.0,7.6,8.6,9.6,9.6,10.0,9.4,9.3,9.2,
        9.5,9.5,9.5,9.9,9.9,9.5,9.3,9.5,9.5,9.1,9.3,9.5,9.3,9.1,9.3,
        9.1,9.5,9.4,9.5,9.6,10.2,9.8,9.6,9.6,9.4,9.4,9.4,9.4,9.6,9.6,
        9.4,9.4,9.0,9.4,9.4,9.6,9.4,9.2,8.8,8.8,9.2,9.2,9.6,9.6,9.8,
        9.8,10.0,10.0,9.4,9.8,8.8,8.8,8.8,8.8,9.6,9.6,9.6,9.2,9.2,9.0,
        9.0,9.0,9.4,9.0,9.0,9.4,9.4,9.6,9.4,9.6,9.6,9.6,10.0,10.0,9.6,
        9.2,9.2,9.2,9.0,9.0,9.6,9.8,10.2,10.0,10.0,10.0,9.4,9.2,9.6,9.7,
        9.7,9.8,9.8,9.8,10.0,10.0,8.6,9.0,9.4,9.4,9.4,9.4,9.4,9.6,10.0,
        10.0,9.8,9.8,9.7,9.6,9.4,9.2,9.0,9.4,9.6,9.6,9.6,9.6,9.6,9.6,
        9.0,9.4,9.4,9.4,9.6,9.4,9.6,9.6,9.8,9.8,9.8,9.6,9.2,9.6,9.2,
        9.2,9.6,9.6,9.6,9.6,9.6,9.6,10.0,10.0,10.4,10.4,9.8,9.0,9.6,9.8,
        9.6,8.6,8.0,8.0,8.0,8.0,8.4,8.8,8.4,8.4,9.0,9.0,9.4,10.0,10.0,
        10.0,10.2,10.0,10.0,9.6,9.0,9.0,8.6,9.0,9.6,9.6,9.0,9.0,8.9,8.8,
        8.7,8.6,8.3,7.9};
    /* Actual values of series D at time points t=305,...,t=310 */
    float actual[6] = {8.5,8.7,8.9,9.1,9.1,9.1};
 
    char *col_labels[] = {
        "Lead Time",
        "Orig. Series",
        "Forecast",
        "Dev. for Prob. Limits",
        "Psi"};
    n_predict = 6;
    n_obs = 304;
    /* Define times from t=1 to t=304 */
    for (i=0;i<n_obs;i++) times[i] = i+1;
    parameters = imsls_f_auto_arima(n_obs, times, x,
        IMSLS_MODEL, model,
        IMSLS_AIC, &aic,
        IMSLS_MAX_LAG, 5,
        IMSLS_CRITICAL, 3.8,
        IMSLS_NUM_OUTLIERS, &num_outliers,
        IMSLS_OUTLIER_STATISTICS, &outlier_stat,
        IMSLS_RESIDUAL_SIGMA, &res_sigma,
        IMSLS_NUM_PREDICT, n_predict,
        IMSLS_OUTLIER_FORECAST_USER, outlier_forecast,
        0);
 printf("\nMethod 1: Automatic ARIMA model selection,"
      " no differencing\n");
 printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0],
      model[1], model[2], model[3]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n\n");
 printf("Time point  Outlier type\n");
 for (i=0; i<num_outliers; i++)
      printf("%d%11d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
 printf("\nAIC = %lf\n", aic);
 printf("RSE = %lf\n\n", res_sigma);
 printf("Parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
      printf("parameters[%d] = %lf\n", i, parameters[i]);
 for (i=0; i<n_predict; i++)
 {
     forecast_table[4*i] = actual[i];
     forecast_table[4*i+1] = outlier_forecast[3*i];
     forecast_table[4*i+2] = outlier_forecast[3*i+1];
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     forecast_table[4*i+3] = outlier_forecast[3*i+2];
 }
 imsls_f_write_matrix("* * * Forecast Table * * *",
     n_predict, 4, forecast_table,
     IMSLS_COL_LABELS, col_labels,
     IMSLS_WRITE_FORMAT, "%11.4f", 0);
}

Output

Method 1: Automatic ARIMA model selection, no differencing
Model chosen: p=1, q=0, s=1, d=0
Number of outliers: 1
Outlier statistics:
Time point  Outlier type
217         3
AIC = 678.224731
RSE = 0.290680
Parameters:
parameters[0] = 1.044163
parameters[1] = 0.887724
                  * * * Forecast Table * * *
Lead Time Orig. Series    Forecast Dev. for Prob.         Psi
                                           Limits            
       1        8.5000      8.0572         0.5697      0.8877
       2        8.7000      8.1967         0.7618      0.7881
       3        8.9000      8.3206         0.8843      0.6996
       4        9.1000      8.4306         0.9699      0.6210
       5        9.1000      8.5282         1.0325      0.5513
       6        9.1000      8.6148         1.0792      0.4894

Example 2

This is the same as Example 1, except now imsls_f_auto_arima uses Method 2 with a possible seasonal 
adjustment. As a result, the unadjusted model with    is chosen as optimum.

#include <imsls.h>
#include <stdio.h>
int main()
{
    int n_obs, n_predict, i, num_outliers;
    int model[4], times[304];
    int n_p_initial = 4, n_q_initial = 4;
    int n_s_initial = 2, n_d_initial = 3;
    int s_initial[2] = {1,2}, d_initial[3] = {0,1,2};
    int p_initial[4] = {0,1,2,3}, q_initial[4] = {0,1,2,3};
    int outlier_stat[608];
    float aic, res_sigma;
    float parameters[7], outlier_forecast[18], forecast_table[24];

p = 3, q = 1, s = 1, d = 0
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    /* Values of series D at time points t=1,...,t=304 */
    float x[310] = {
        8.0,8.0,7.4,8.0,8.0,8.0,8.0,8.8,8.4,8.4,8.0,8.2,8.2,8.2,8.4,
        8.4,8.4,8.6,8.8,8.6,8.6,8.6,8.6,8.6,8.8,8.9,9.1,9.5,8.5,8.4,
        8.3,8.2,8.1,8.3,8.4,8.7,8.8,8.8,9.2,9.6,9.0,8.8,8.6,8.6,8.8,
        8.8,8.6,8.6,8.4,8.3,8.4,8.3,8.3,8.1,8.2,8.3,8.5,8.1,8.1,7.9,
        8.3,8.1,8.1,8.1,8.4,8.7,9.0,9.3,9.3,9.5,9.3,9.5,9.5,9.5,9.5,
        9.5,9.5,9.9,9.5,9.7,9.1,9.1,8.9,9.3,9.1,9.1,9.3,9.5,9.3,9.3,
        9.3,9.9,9.7,9.1,9.3,9.5,9.4,9.0,9.0,8.8,9.0,8.8,8.6,8.6,8.0,
        8.0,8.0,8.0,8.6,8.0,8.0,8.0,7.6,8.6,9.6,9.6,10.0,9.4,9.3,9.2,
        9.5,9.5,9.5,9.9,9.9,9.5,9.3,9.5,9.5,9.1,9.3,9.5,9.3,9.1,9.3,
        9.1,9.5,9.4,9.5,9.6,10.2,9.8,9.6,9.6,9.4,9.4,9.4,9.4,9.6,9.6,
        9.4,9.4,9.0,9.4,9.4,9.6,9.4,9.2,8.8,8.8,9.2,9.2,9.6,9.6,9.8,
        9.8,10.0,10.0,9.4,9.8,8.8,8.8,8.8,8.8,9.6,9.6,9.6,9.2,9.2,9.0,
        9.0,9.0,9.4,9.0,9.0,9.4,9.4,9.6,9.4,9.6,9.6,9.6,10.0,10.0,9.6,
        9.2,9.2,9.2,9.0,9.0,9.6,9.8,10.2,10.0,10.0,10.0,9.4,9.2,9.6,9.7,
        9.7,9.8,9.8,9.8,10.0,10.0,8.6,9.0,9.4,9.4,9.4,9.4,9.4,9.6,10.0,
        10.0,9.8,9.8,9.7,9.6,9.4,9.2,9.0,9.4,9.6,9.6,9.6,9.6,9.6,9.6,
        9.0,9.4,9.4,9.4,9.6,9.4,9.6,9.6,9.8,9.8,9.8,9.6,9.2,9.6,9.2,
        9.2,9.6,9.6,9.6,9.6,9.6,9.6,10.0,10.0,10.4,10.4,9.8,9.0,9.6,9.8,
        9.6,8.6,8.0,8.0,8.0,8.0,8.4,8.8,8.4,8.4,9.0,9.0,9.4,10.0,10.0,
        10.0,10.2,10.0,10.0,9.6,9.0,9.0,8.6,9.0,9.6,9.6,9.0,9.0,8.9,8.8,
        8.7,8.6,8.3,7.9};
    /* Actual values of series D at time points t=305,...,t=310 */
    float actual[6] = {8.5,8.7,8.9,9.1,9.1,9.1};
    char *col_labels[] = {
        "Lead Time",
        "Orig. Series",
        "Forecast",
        "Dev. for Prob. Limits",
        "Psi"};
    n_predict = 6;
    n_obs = 304;
    /* Define times from t=1 to t=304 */
    for (i=0;i<n_obs;i++) times[i] = i+1;
    imsls_f_auto_arima(n_obs, times, x, 
        IMSLS_MODEL, model,
        IMSLS_AIC, &aic,
        IMSLS_CRITICAL, 3.8,
        IMSLS_MAX_LAG, 5,
        IMSLS_METHOD, 2,
        IMSLS_P_INITIAL, n_p_initial, p_initial,
        IMSLS_Q_INITIAL, n_q_initial, q_initial,
        IMSLS_S_INITIAL, n_s_initial, s_initial,
        IMSLS_D_INITIAL, n_d_initial, d_initial,
        IMSLS_NUM_OUTLIERS, &num_outliers,
        IMSLS_OUTLIER_STATISTICS_USER, outlier_stat,
        IMSLS_RESIDUAL_SIGMA, &res_sigma,
        IMSLS_NUM_PREDICT, n_predict,
        IMSLS_OUTLIER_FORECAST_USER, outlier_forecast,
        IMSLS_RETURN_USER, parameters,
        0);
    printf("\nMethod 2: Grid search, differencing allowed\n");
    printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0],
        model[1], model[2], model[3]);
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    printf("\nNumber of outliers: %d\n\n", num_outliers);
    printf("Outlier statistics:\n\n");
    printf("Time point  Outlier type\n");
    for (i=0; i<num_outliers; i++)
        printf("%d%11d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
    printf("\nAIC = %lf\n", aic);
    printf("RSE = %lf\n\n", res_sigma);
    printf("Parameters:\n");
    for (i=0; i<=model[0]+model[1]; i++)
        printf("parameters[%d] = %lf\n", i, parameters[i]);
    for (i=0; i<n_predict; i++)
    {
        forecast_table[4*i] = actual[i];
        forecast_table[4*i+1] = outlier_forecast[3*i];
        forecast_table[4*i+2] = outlier_forecast[3*i+1];
        forecast_table[4*i+3] = outlier_forecast[3*i+2];
    }
    imsls_f_write_matrix("* * * Forecast Table * * *",
        n_predict, 4, forecast_table,
        IMSLS_COL_LABELS, col_labels,
        IMSLS_WRITE_FORMAT, "%11.4f", 0);
}

Output

Method 2: Grid search, differencing allowed
Model chosen: p=3, q=1, s=1, d=0
Number of outliers: 1
Outlier statistics:
Time point  Outlier type
217         3
AIC = 675.885986
RSE = 0.286720
Parameters:
parameters[0] = 1.892720
parameters[1] = 0.184380
parameters[2] = 0.641278
parameters[3] = -0.029176
parameters[4] = -0.743030
                  * * * Forecast Table * * *
Lead Time Orig. Series    Forecast Dev. for Prob.         Psi
                                           Limits            
       1        8.5000      8.0471         0.5620      0.9274
       2        8.7000      8.2004         0.7664      0.8123
       3        8.9000      8.3347         0.8921      0.7153
       4        9.1000      8.4534         0.9785      0.6257
       5        9.1000      8.5569         1.0397      0.5504
       6        9.1000      8.6483         1.0847      0.4819
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Example 3

This example is the same as Example 2 but now Method 3 with the optimum model parameters  
  from Example 2 are chosen for outlier detection and forecasting.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int n_obs, n_predict, i, num_outliers;
   int *outlier_stat = NULL;
   int model[4] = {3,1,1,0}, times[304];
   float aic, res_sigma, *parameters = NULL;
   float outlier_forecast[18], forecast_table[24];
   /* Values of series D at time points t=1,...,t=304 */
   float x[304] = {
       8.0,8.0,7.4,8.0,8.0,8.0,8.0,8.8,8.4,8.4,8.0,8.2,8.2,8.2,8.4,
       8.4,8.4,8.6,8.8,8.6,8.6,8.6,8.6,8.6,8.8,8.9,9.1,9.5,8.5,8.4,
       8.3,8.2,8.1,8.3,8.4,8.7,8.8,8.8,9.2,9.6,9.0,8.8,8.6,8.6,8.8,
       8.8,8.6,8.6,8.4,8.3,8.4,8.3,8.3,8.1,8.2,8.3,8.5,8.1,8.1,7.9,
       8.3,8.1,8.1,8.1,8.4,8.7,9.0,9.3,9.3,9.5,9.3,9.5,9.5,9.5,9.5,
       9.5,9.5,9.9,9.5,9.7,9.1,9.1,8.9,9.3,9.1,9.1,9.3,9.5,9.3,9.3,
       9.3,9.9,9.7,9.1,9.3,9.5,9.4,9.0,9.0,8.8,9.0,8.8,8.6,8.6,8.0,
       8.0,8.0,8.0,8.6,8.0,8.0,8.0,7.6,8.6,9.6,9.6,10.0,9.4,9.3,9.2,
       9.5,9.5,9.5,9.9,9.9,9.5,9.3,9.5,9.5,9.1,9.3,9.5,9.3,9.1,9.3,
       9.1,9.5,9.4,9.5,9.6,10.2,9.8,9.6,9.6,9.4,9.4,9.4,9.4,9.6,9.6,
       9.4,9.4,9.0,9.4,9.4,9.6,9.4,9.2,8.8,8.8,9.2,9.2,9.6,9.6,9.8,
       9.8,10.0,10.0,9.4,9.8,8.8,8.8,8.8,8.8,9.6,9.6,9.6,9.2,9.2,9.0,
       9.0,9.0,9.4,9.0,9.0,9.4,9.4,9.6,9.4,9.6,9.6,9.6,10.0,10.0,9.6,
       9.2,9.2,9.2,9.0,9.0,9.6,9.8,10.2,10.0,10.0,10.0,9.4,9.2,9.6,9.7,
       9.7,9.8,9.8,9.8,10.0,10.0,8.6,9.0,9.4,9.4,9.4,9.4,9.4,9.6,10.0,
       10.0,9.8,9.8,9.7,9.6,9.4,9.2,9.0,9.4,9.6,9.6,9.6,9.6,9.6,9.6,
       9.0,9.4,9.4,9.4,9.6,9.4,9.6,9.6,9.8,9.8,9.8,9.6,9.2,9.6,9.2,
       9.2,9.6,9.6,9.6,9.6,9.6,9.6,10.0,10.0,10.4,10.4,9.8,9.0,9.6,9.8,
       9.6,8.6,8.0,8.0,8.0,8.0,8.4,8.8,8.4,8.4,9.0,9.0,9.4,10.0,10.0,
       10.0,10.2,10.0,10.0,9.6,9.0,9.0,8.6,9.0,9.6,9.6,9.0,9.0,8.9,8.8,
       8.7,8.6,8.3,7.9};
   /* Actual values of series D at time points t=305,...,t=310 */
   float actual[6] = {8.5,8.7,8.9,9.1,9.1,9.1};
   char *col_labels[] = {
       "Lead Time",
       "Orig. Series",
       "Forecast",
       "Dev. for Prob. Limits",
       "Psi"};
     
   n_predict = 6;
   n_obs = 304;
   /* Define times from t=1 to t=304 */
   for (i=0;i<n_obs;i++) times[i] = i+1;
   parameters = imsls_f_auto_arima(n_obs, times, x,
       IMSLS_MODEL, model,

p = 3, q = 1, s = 1, d = 0
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       IMSLS_AIC, &aic,
       IMSLS_CRITICAL, 3.8,
       IMSLS_METHOD, 3,
       IMSLS_NUM_OUTLIERS, &num_outliers,
       IMSLS_OUTLIER_STATISTICS, &outlier_stat,
       IMSLS_RESIDUAL_SIGMA, &res_sigma,
       IMSLS_NUM_PREDICT, n_predict,
       IMSLS_OUTLIER_FORECAST_USER, outlier_forecast,
       0);
   printf("\nMethod 3: Specified ARIMA model\n");
   printf("\nModel: p=%d, q=%d, s=%d, d=%d\n", model[0], model[1],
       model[2], model[3]);
   printf("\nNumber of outliers: %d\n\n", num_outliers);
   printf("Outlier statistics:\n\n");
   printf("Time point  Outlier type\n");
   for (i=0; i<num_outliers; i++)
       printf("%d%11d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
   printf("\nAIC = %lf\n", aic);
   printf("RSE = %lf\n", res_sigma);
   printf("\nParameters:\n");
   for (i=0; i<=model[0]+model[1]; i++)
       printf("parameters[%d] = %lf\n", i, parameters[i]);
   for (i=0; i<n_predict; i++)
   {
       forecast_table[4*i] = actual[i];
       forecast_table[4*i+1] = outlier_forecast[3*i];
       forecast_table[4*i+2] = outlier_forecast[3*i+1];
       forecast_table[4*i+3] = outlier_forecast[3*i+2];
   }
   imsls_f_write_matrix("* * * Forecast Table * * *",
       n_predict, 4, forecast_table,
       IMSLS_COL_LABELS, col_labels,
       IMSLS_WRITE_FORMAT, "%11.4f", 0);
}

Output

Method 3: Specified ARIMA model
Model: p=3, q=1, s=1, d=0
Number of outliers: 1
Outlier statistics:
Time point  Outlier type
217         3
AIC = 675.885925
RSE = 0.286720
Parameters:
parameters[0] = 1.892720
parameters[1] = 0.184380
parameters[2] = 0.641278
parameters[3] = -0.029176
parameters[4] = -0.743030
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                  * * * Forecast Table * * *
Lead Time Orig. Series    Forecast Dev. for Prob.         Psi
                                           Limits            
       1        8.5000      8.0471         0.5620      0.9274
       2        8.7000      8.2004         0.7664      0.8123
       3        8.9000      8.3347         0.8921      0.7153
       4        9.1000      8.4534         0.9785      0.6257
       5        9.1000      8.5569         1.0397      0.5504
       6        9.1000      8.6483         1.0847      0.4819
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auto_parm
Estimates structural breaks in non-stationary univariate time series.

Synopsis
#include <imsls.h> 

int *imsls_f_auto_parm (int nobs, float y[], int *npcs, ..., 0)

The type double function is imsls_d_auto_parm.

Required Arguments
int nobs  (Input)

The number of observations in the time series (y).

float y[]  (Input)
An array of length nobs containing the time series.

int *npcs  (Input/Output)
The number of requested/estimated pieces or segments of the time series. npcs is considered 
input only when IMSLS_AR_MODEL is provided.

Return Value
A pointer to an array (arp) of length npcs × 2 containing the break points and AR orders for the derived model. 
If IMSLS_AR_MODEL is used, the return value is NULL.

Synopsis with Optional Arguments
#include <imsls.h> 

Column Index Description

0 Structural break points   

1 AR order (  ) for each 
segment 

τ j
p j
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int *imsls_f_auto_parm (int nobs, float y[], int *npcs,

IMSLS_MAX_AR_ORDER, int max_ar_order, 
IMSLS_METHOD, int method, 
IMSLS_MODEL_SELECTION_CRITERION, int criterion,
IMSLS_MAXIMUM_LIKELIHOOD, int likelihood,
IMSLS_AR_MODEL, int arp[],
IMSLS_PRINT, int print,
IMSLS_RANDOM_SEED, int seed,
IMSLS_PROB_DISTRIBUTION, float pdistn[],
IMSLS_MIN_OBSERVATIONS, int mspan[],
IMSLS_GA_PARAMETERS, float gaparm[],
IMSLS_ISLAND, int island[],
IMSLS_MAX_MIGRATIONS, int maxmig, 
IMSLS_STOP_ITERATIONS, int stopiters,
IMSLS_SELECTION_CRITERION_VALUE, float *value, 
IMSLS_AR_FIT, float **arfit, 
IMSLS_AR_FIT_USER, float arfit[],
IMSLS_AR_STATS, float **arstat, 
IMSLS_AR_STATS_USER, float arstat[],
0)

Optional Arguments
IMSLS_MAX_AR_ORDER, int max_ar_order (Input)

Maximum order to consider for each AR model.

Default: max_ar_order = 20.

IMSLS_METHOD, int method  (Input)
Method of estimation.

Default: method = 0.

method Method Used

0 Yule –Walker

1 Least Squares

2 Burg
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IMSLS_MODEL_SELECTION_CRITERION, int criterion (Input)
Selection criterion.

Default: criterion = 0.

IMSLS_MAXIMUM_LIKELIHOOD, int likelihood (Input)
Likelihood computation method.

Default: likelihood = 0.

IMSLS_AR_MODEL, int arp[] (Input)
A user specified array of length npcs × 2 containing the break points and AR orders. When this argu-
ment is used, only the AR parameters and quality of the fit are determined.

IMSLS_PRINT, int print (Input)
Printing option.

Default: print = 0.

criterion Criterion Used

0 Minimum Description Length (MDL)

1 Akaike’s Information Criterion (AIC)

likelihood Computation Method

0 Exact

1 Approximate

Column Index Description

0 Structural break points   

1 AR order (  ) for each segment 

print Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results

τ j
p j
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IMSLS_RANDOM_SEED, int seed (Input)
Seed of the random number generator. For the same data and parameter settings, 
imsls_f_auto_parm will return the same results each time if a seed is set. If seed = 0, the sys-
tem clock will be used to generate a seed. The result will be nondeterministic.

Default: seed = 0.

IMSLS_PROB_DISTRIBUTION, float pdistn[] (Input)
Array of length max_ar_order + 1 giving the probability distribution over the AR order variable 
p = 0,…, max_ar_order. i = 0,…, max_ar_order is used to randomly assign an AR order to 
breakpoint position for a given chromosome.  pdistn[i] > = 0 and if Σpdistn is not equal to 1, the 
values will be normalized, i.e., pdistn[i] = pdistn[i]/ Σpdistn.

Default: pdistn[i] = 1/(max_ar_order + 1) for all i.

IMSLS_MIN_OBSERVATIONS, int mspan[] (Input)
Array of length max_ar_order + 1 containing minimum number of observations required for valid 
estimates of AR model with order p = 0, …, max_ar_order.

Default: mspan [p] = 2 ×(number of parameters) + 2 = 2 × (p + 2) + 2.

IMSLS_GA_PARAMETERS, float gaparm[] (Input)
Array of length 4 containing parameters that control the behavior of the genetic algorithm.  These 
values should be strictly greater than zero and less than one to avoid unexpected results.

Note: The following input arguments are for setting up and running the embedded Genetic Algorithm.  In 
most situations, the default values should be used for these arguments. Users may wish to change some 
or all for testing or research purposes.

Index Behavior

0 Probability used to set initial break points in a chromo-
some. Default: min (mspan) / nobs.

1 Probability of crossover used to decide between a 
crossover and a mutation.
Default: 1 – min (mspan) / nobs.

2 In the mutation operation, probability an AR(p) model 
is enforced at the current position.
Default: 0.4.

3 In the mutation operation, probability a break point is 
disallowed at the current position.
Default: 0.3.

Note: gaparm[2] and gaparm[3] must be valid probabilities and their sum must be between 0 and 1. 
1 – gaparm[2] – gaparm[3] is the probability that the chromosome j inherits the parent's chromo-
some j.
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IMSLS_ISLAND, int island[] (Input)
Array of length 5 containing the migration policy parameters. 

IMSLS_MAX_MIGRATIONS, int maxmig (Input)
Maximum number of times that migrations may take place before the function is stopped if conver-
gence has not occurred.

Default: maxmig = 20.

IMSLS_STOP_ITERATIONS, int stopiters (Input)
Number of iterations. The function will declare convergence and stop the iterations if the criterion 
value (MDL/AIC) has not changed after stopiters consecutive migrations.  Otherwise, the algo-
rithm will declare non-convergence and stop after maxmig migrations have taken place. See also 
IMSLS_MAX_MIGRATIONS and island[1]. Note that logically, stopiters < maxmig.

Default: stopiters = 10.

IMSLS_SELECTION_CRITERION_VALUE, float *value (Output)
Final value of the selection criterion.

IMSLS_AR_FIT, float **arfit (Output)
Address of a pointer to an internally allocated array of length npcs × max_ar_order containing 
the AR coefficient estimates φ for each segment.  arfit[i*max_ar_order+j] is the j-th coeffi-
cient for segment i where i = 0, …, npcs - 1 and j = 0, …, arp[i×2 + 1].

Note that the intercept is not reported.

Index Policy

0 Number of islands.
Default: 40.

1 Number of generations that pass before migration 
occurs.  Note that the convergence of the algorithm is 
revised whether migrations take place or not (see argu-
ment island[4]).
Default: 5.

2 Number of subjects that migrate at each migration 
event.
Default: 2.

3 Population size (number of chromosomes) per island.
Default: 40.

4 Migration flag.  If 1, migration is performed.
Default: 1.
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IMSLS_AR_FIT_USER, float arfit[] (Output)
Storage for array arfit is provided by the user. If npcs is output, the user should allocate 
(nobs - 1) × max_ar_order to assure sufficient space. See IMSLS_AR_FIT.

IMSLS_AR_STATS, float **arstat (Output)
Address of a pointer to an internally allocated array of length npcs × 2.

IMSLS_AR_STATS_USER, float arstat[] (Output)
Storage for array arstat is provided by the user. If npcs is output, the user should allocate 
(nobs - 1) × 2 to assure sufficient space. See IMSLS_AR_STATS.

Description
Function imsls_f_auto_parm estimates the structural breaks of a non-stationary time series using, with per-
mission from the authors, the method developed by Davis et al (2006). imsls_f_auto_parm estimates a 
partition of the time index and models the time series in each segment as a separate auto-regressive (AR(p)) pro-
cess. The function returns the estimated breakpoints, the estimated AR(p) models, and supporting statistics.

For the observed time series  the problem is to find m, the number of breaks, their locations,  

 , and   ,   , the order of the AR process in which the j-th segment is 

modeled.  That is,   for  (for convenience,   and  ), where {Xt,j} is an AR 

process of order   

and , the noise sequence, is independent and identically distributed with mean 0 and variance 1. Note that a 

series with m breaks will have m + 1 segments (m + 1 = npcs).

The vector  completely specifies a piecewise AR model. To estimate this vector 

imsls_f_auto_parm optimizes, with respect to this vector, one of two selection criteria: the first is a Mini-
mum Description Length (MDL) criterion, and the second is the Akaike's Information Criterion (AIC). The MDL is 
defined as 

Column Index Description

0 Likelihood values for each of the fitted AR 
models

1 Residual variances for each of the fitted AR 
models

Y t, t = 1, … n
1 < τ1 < τ2 < ⋯ < τm < n pj j = 1, … ,m + 1

Y t = X t, j τ j−1 ≤ t < τ j τ0: = 1 τm+1: = n + 1
pj

X t, j = ϕ j,1X t−1, j + ⋯ + ϕ j,p jX t− j,p j + σtɛt

ɛt

m, τ1, … τm, p1, … pm+1
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while the AIC criterion is given by

where, given a candidate value of the vector  ,   is the  likelihood of the fitted piece-

wise AR model evaluated at the parameter estimates,  

The parameters  of the  j-th AR segment are estimated by the choice of one of three estima-

tion methods: Yule-Walker, Burg, or Least Squares. 

For simplicity, assume the mean of each series {Xt,j} is 0 and that the errors are Gaussian. Then, the piecewise AR 

model has Gaussian likelihood 

where   is the variance-covariance of the  j-th AR segment (of order  ) and  is the vector of observations 

of the j-th segment, i.e.,   .

To find the minimizer    of either MDL or AIC, imsls_f_auto_parm employs a Genetic Algorithm 
with islands, migration, cross-over and mutations. See Davis et.al. (2006) for further details.

Remarks
Function imsls_f_auto_parm approximates locally stationary time series by independent auto-regressive 
processes. Experimental results suggest that imsls_f_auto_parm gives reasonable estimates of the struc-
tural breaks of a given time series, even if the segment series are not autoregressive. Also, based on experimental 
results, MDL gives better results than AIC as a selection criterion.

MDL(m, τ1, … τm, p1, … pm+1)

= ln m + (m − 1)ln n + ∑
j=1

m+1 2 + p j
2 ln n j − ln L

AIC(m, τ1, … τm, p1, … , pm+1) = 2(number of parameters) − 2ln L

= 2(1 + m + ∑
j=1

m+1
2 + p j)) − 2ln L

m, τ1, … τm, p1, … pm+1 L

{γ̂1,ϕ
^
1,1, … ϕ^1,p1, σ̂1

2, … γ̂m+1,ϕ
^
m+1,1, … ϕ^m+1, pm+1, σ̂m+1

2 }.

γ j,ϕ1,1,...ϕ1,p j,σ j
2

L =∏
j=1

m+1

2π
−n j/2∣V j∣−1/2exp −Y jTV jY j

V j p j Y j

Y j = Yτ j,Yτ j+1, … ,Yτ j+1−1)
T

m,τ j, pj
*
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If seed is set out of range, an informational (error) message is issued indicating that the seed will be reset to 
123457. Also if maxmig migrations are reached in the genetic algorithm before the selection criterion value con-
verges an informational message is issued suggesting the increase of maxmig or the use of the double precision 
function.

Example
The examples below illustrate different scenarios using imsls_f_auto_parm. The example series used in 
each case is the airline demand data (Box, Jenkins and Reinsel, 1994), which gives monthly total demand for the 
period January 1949 through December 1960.  Each scenario sets the optional argument, seed = 123457.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N 144

 int n=N, npcs=0, iseed=123457, *arp=NULL, iper, iord, nlost;
 int maxarorder, *arpnull=NULL, arp2[4]={0,2,59,1};
 float x[N], *arfit=NULL, *arstat=NULL, sc, dx[N];
 /* get data */
 imsls_f_data_sets(4, IMSLS_RETURN_USER, x, 0);

/* Example 1: Use default values */
 printf ("Example 1: Use defaults\n\n");
 arp = imsls_f_auto_parm(n, x, &npcs,

 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 2: differenced series set period for the difference.
 iper is in years for this data set */

 printf ("\n\nExample 2: differenced series\n\n");
 iper = 1;

/* set the order for the difference. */
 iord = 1;

/* get differenced series dx */
 imsls_f_difference(n, x, 1, &iper,

 IMSLS_ORDERS, &iord,
 IMSLS_LOST, &nlost,
 IMSLS_RETURN_USER, dx,
0);
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 arp = imsls_f_auto_parm(n-nlost, &dx[nlost], &npcs,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 3: original series, lower order allowed
 lower maximum AR order */
 printf("\n\nExample 3: original series, lower order allowed\n\n");
 maxarorder=5;
 arp = imsls_f_auto_parm(n, x, &npcs,

 IMSLS_MAX_AR_ORDER, maxarorder,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 4: differenced series, lower order allowed */
 printf("\n\nExample 4: differenced series, lower order allowed\n\n");
 maxarorder=5;
 arp = imsls_f_auto_parm(n-nlost, &dx[nlost], &npcs,

 IMSLS_MAX_AR_ORDER, maxarorder,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 5: original series, force fit the segments
 Fit only at the break points */
 printf("\n\nExample 5: original series, force fit the segments\n\n");
 npcs=2;
 arpnull = imsls_f_auto_parm(n, x, &npcs,

 IMSLS_AR_MODEL, arp2,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
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 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

}

Output

Example 1: Use defaults
 ============== final results ===============

number of pieces:  2
selection criteria value: 684.243164
total time: 3.203000  conv:  1
==================== final model estimates =====================
break point  order  est. coeff.  likelihood  resid. var
 arp[ 0]  arp[ 1]  arfit[ 0- 0]  arstat[ 0]  arstat[ 1]

 0  1  0.77542
 186.945  355.025

 arp[ 2]  arp[ 3]  arfit[20-32]  arstat[ 2]  arstat[ 3]
 43  13  1.03700

 -0.07801
 -0.03891
 -0.03452
 0.11961

 -0.12851
 0.01990

 -0.04885
 0.08089

 -0.13117
 0.22122
 0.53862

 -0.61515
 486.666  691.486

Example 2: differenced series
 ============== final results ===============

number of pieces:  1
selection criteria value: 624.283508
total time: 3.031000  conv:  1
==================== final model estimates =====================
break point  order  est. coeff.  likelihood  resid. var
 arp[ 0]  arp[ 1]  arfit[ 0-11]  arstat[ 0]  arstat[ 1]

 0  12  -0.02842
 -0.22436
 -0.16846
 -0.24267
 -0.10573
 -0.22429
 -0.12126
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 -0.26446
 -0.07087
 -0.24327
 -0.07136
 0.57129

 619.321  297.352

Example 3: original series, lower order allowed
 ============== final results ===============

number of pieces:  2
selection criteria value: 705.296631
total time: 2.312000  conv:  1
==================== final model estimates =====================
break point  order  est. coeff.  likelihood  resid. var
arp[ 0]  arp[ 1]  arfit[ 0- 0]  arstat[ 0]  arstat[ 1]

 0  1  0.89533
 270.393  333.563

 arp[ 2]  arp[ 3]  arfit[ 5- 6]  arstat[ 2]  arstat[ 3]
 62  2  1.19788

 -0.35922
 424.270  1632.335

Example 4: differenced series, lower order allowed
 ============== final results ===============

number of pieces:  2
selection criteria value: 698.359497
total time: 2.219000  conv:  1
==================== final model estimates =====================
break point  order  est. coeff.  likelihood  resid. var
 arp[ 0]  arp[ 1]  arfit[ 0- 0]  arstat[ 0]  arstat[ 1]

 0  0  -------
 335.565  357.388

 arp[ 2]  arp[ 3]  arfit[ 5- 5]  arstat[ 2]  arstat[ 3]
 76  1  0.33310

 352.175  1786.345

Example 5: original series, force fit the segments
 ============== final results ===============

number of pieces: 2
selection criteria value:  712.521
==================== final model estimates =====================
break point  order  est. coeff.  likelihood  resid. var
 arp[ 0]  arp[ 1]  arfit[ 0- 1]  arstat[ 0]  arstat[ 1]

 0  2  1.12156
 -0.24876

 258.192  313.889
 arp[ 2]  arp[ 3]  arfit[20-20]  arstat[ 2]  arstat[ 3]
 59  1  0.88605
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 443.696  1937.633

Warning Errors
IMSLS_MAX_MIGRATIONS_EXCEEDED “maxmig” migrations or “stopiters” iterations 

were reached in the genetic algorithm before the 
selection criterion value converged. Try increasing 
“maxmig”, “stopiters” or using the double preci-
sion routine.
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bayesian_seasonal_adj
Decomposes a time series into trend, seasonal, and an error component.

Synopsis
#include <imsls.h> 

float imsls_f_bayesian_seasonal_adj(int nobs, float  w[], …, 0)

The type double function is imsls_d_bayesian_seasonal_adj.

Required Arguments
int nobs  (Input)

The number of equally spaced series values.

float  w[]  (Input)
An array of length nobs containing the stationary time series.

Return Value
The average Akaike Bayesian Information Criterion for the estimated model. NaN is returned on error.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_bayesian_seasonal_adj (int nobs, float w[],

IMSLS_TREND_ORDER, int t_order, 
IMSLS_SEASONAL_ORDER, int s_order,
IMSLS_NUM_PREDICT, int n_predict,
IMSLS_PERIOD, int period, 
IMSLS_SPAN, int span,
IMSLS_RIGIDITY, float rigidity,
IMSLS_MODEL, int model,
IMSLS_PRINT_LEVEL, int print_level,
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IMSLS_NONSEASONAL_TREND,  float **trend,
IMSLS_NONSEASONAL_TREND_USER, float trend[],
IMSLS_SEASONAL, float **seasonal,
IMSLS_SEASONAL_USER, float seasonal[],
IMSLS_IRREGULAR_COMPONENTS, float **irr_comp,
IMSLS_IRREGULAR_COMPONENTS_USER, float irr_comp[],
IMSLS_SERIES_SMOOTHED, float **smoothed,
IMSLS_SERIES_SMOOTHED_USER, float smoothed[],
0)

Optional Arguments
IMSLS_TREND_ORDER, int t_order (Input) 

The order of trend differencing where t_order ≥ 0.
Default: t_order = 2.

IMSLS_SEASONAL_ORDER, int s_order  (Input)
The order of seasonal differencing where s_order ≥ 1.
Default: s_order = 1.

IMSLS_NUM_PREDICT, int n_predict  (Input)
The number of values to forecast where n_predict ≥ 0.
Default: n_predict = 0.

IMSLS_PERIOD, int period (Input)
The number of seasons within a period where period ≥ 1.
Default: period = 12. 

IMSLS_SPAN, int span (Input)
The number of periods to be processed at one time where 1 ≤ span ≤ nobs/period.
Default: span = nobs/period.

IMSLS_RIGIDITY, float rigidity (Input)
Controls the rigidity of the seasonal pattern where 0 ≤ rigidity ≤ 1.0.
Default: rigidity = 1.0.
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IMSLS_MODEL, int model (Input)
Model option.

Default: model = 0.

IMSLS_PRINT_LEVEL, int print_level (Input)
Printing option.

Default: print_level = 0.

IMSLS_NONSEASONAL_TREND, float **trend (Output)
Address of a pointer to an internally allocated array of length nobs + n_predict containing the 
estimated trend component for each data value followed by the trend estimates for the 
n_predict forecasted values.

IMSLS_NONSEASONAL_TREND_USER, float trend[] (Output)
Storage array trend is provided by the user. See IMSLS_NONSEASONAL_TREND.

IMSLS_SEASONAL, float **seasonal (Output)
Address of a pointer to an internally allocated array of length nobs + n_predict containing the 
estimated seasonal components for each data value followed by the estimates for the n_predict 
forecasted seasonal values.

IMSLS_SEASONAL_USER, float seasonal[] (Output)
Storage array seasonal is provided by the user. See IMSLS_SEASONAL above.

IMSLS_IRREGULAR_COMPONENTS, float **irr_comp (Output)
Address of a pointer to an internally allocated array of length nobs containing the estimated irregu-
lar components.

IMSLS_IRREGULAR_COMPONENTS_USER, float irr_comp[]  (Output)
Storage array irr_comp is provided by the user. See IMSLS_IRREGULAR_COMPONENTS above.

model Action

0 Non-additive logistic model

1 Log additive logistic model

print_level Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results
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IMSLS_SERIES_SMOOTHED, float **smoothed  (Output)
Address of a pointer to an internally allocated array of length nobs + n_predict containing the 
estimated smoothed component for each of the time series values followed by the n_predict 
forecast values.

IMSLS_SERIES_SMOOTHED_USER, float smoothed[] (Output)
Storage array smoothed is provided by the user. See IMSLS_SERIES_SMOOTHED above.

Description
Function imsls_f_bayesian_seasonal_adj is based upon the algorithm published by Akaike (1980). This 
algorithm uses a Bayesian approach to the problem of fitting the following autoregressive model for a time series 
Wt decomposed into a trend and a seasonal component. 

Adopting the notation described earlier in the Usage Notes section of this chapter, if

t ∈ ℤ = {…, -2, - 1, 0, 1, 2, … }

then a seasonal autoregressive model can be represented by the following relationship:

Wt = Tt +  St + At

where Wt is the stationary time series with mean μ, Tt denotes an underlying trend, St denotes a seasonal compo-

nent and At denotes a noise or irregular component.

A non-Bayesian approach to this problem would be to estimate the trend and seasonal components by 
minimizing

  

where the difference operator is denoted by ∇ and defined as ∇Tt = (Tt - Tt-1), for k ≥ 1, ∇kTt =∇(∇k-1Tt), with 

∇0Tt =  Tt. Similarly, ∇pSt = (St -  St-p) and ∇l
pSt =∇p(∇p

l-1St), l ≥ 1, with ∇0
pSt = St. 

The period of the seasonal component, p, the trend order, k, and the seasonal order l correspond to parameter 
options IMSLS_PERIOD, IMSLS_TREND_ORDER, and IMSLS_SEASONAL_ORDER respectively. d, z, and r 
are constants determined as follows. 

∑
t=1

N

(Wt − Tt − St)
2 + d2(∇kTt + r2∇p

l St + z
2 (∑

j=0

p−1

St− j)
2)
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In imsls_f_bayesian_seasonal_adj, the approach is to select the parameter d, which controls the 
smoothness of the trend and seasonality estimates, using Bayesian methods. The prior distribution controls the 
smoothness of the trend and seasonal components by assuming low-order Gaussian autoregressive models for 
some differences of these components. The choice of the variance of the Gaussian distribution is realized by 
maximizing the log likelihood of the Bayesian model.

The other smoothing parameters, r and z, are determined by the value of rigidity. The default value for 
rigidity is 1. Larger values of rigidity produce a more rigid seasonal pattern. Normally, a series is first fit 
using the default value for rigidity. The smoothness of the trend and seasonality estimates are examined 
and then rigidity is either increased or decreased depending upon whether more or less seasonal smooth-
ing is needed.

Additionally, imsls_f_bayesian_seasonal_adj selects the optimum autoregressive model as the model 
that minimizes the Akaike Bayesian Information Criterion (ABIC).

ABIC = -2 ln(likelihood)

where the likelihood in this case is the mixed Bayesian maximum likelihood. Smaller values of ABIC represent a 
better fit. The basic minimization procedure is applied to blocks of data of length span*period. The final 
return value of the criterion is averaged over these blocks. By default, the data is treated in one block.

Example
This example uses unadjusted unemployment for women over 20 years of age in the U.S. for 1991-2001, as 
reported by the U.S. Bureau of Labor Statistics (www.bls.gov). 

#include <imsls.h>
#include <stdio.h>
#define NDATA 132
#define NFOCAST 12
int main(){
   float y[]={2968.0, 3009.0, 2962.0, 2774.0, 3040.0, 3165.0,
       3104.0, 3313.0, 3178.0, 3142.0, 3129.0, 3107.0, 3397.0,
       3447.0, 3328.0, 3229.0, 3286.0, 3577.0, 3799.0, 3867.0,
       3655.0, 3360.0, 3310.0, 3369.0, 3643.0, 3419.0, 3108.0,
       3118.0, 3146.0, 3385.0, 3458.0, 3468.0, 3330.0, 3244.0,
       3135.0, 3005.0, 3462.0, 3272.0, 3275.0, 2938.0, 2894.0,
       3106.0, 3150.0, 3289.0, 3136.0, 2829.0, 2776.0, 2467.0,
       2944.0, 2787.0, 2749.0, 2762.0, 2578.0, 2900.0, 3100.0,
       3102.0, 2934.0, 2864.0, 2652.0, 2456.0, 3088.0, 2774.0,
       2701.0, 2555.0, 2677.0, 2741.0, 3052.0, 2966.0, 2772.0,
       2723.0, 2705.0, 2640.0, 2898.0, 2788.0, 2718.0, 2406.0,
       2520.0, 2645.0, 2708.0, 2811.0, 2666.0, 2380.0, 2292.0,
       2187.0, 2750.0, 2595.0, 2554.0, 2213.0, 2218.0, 2449.0,
       2532.0, 2639.0, 2449.0, 2326.0, 2302.0, 2065.0, 2447.0,
       2398.0, 2381.0, 2250.0, 2086.0, 2397.0, 2573.0, 2475.0,
       2299.0, 2054.0, 2127.0, 1935.0, 2425.0, 2245.0, 2298.0,
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       2005.0, 2208.0, 2379.0, 2459.0, 2539.0, 2182.0, 1959.0,
       2012.0, 1834.0, 2404.0, 2329.0, 2285.0, 2175.0, 2245.0,
       2492.0, 2636.0, 2892.0, 2784.0, 2771.0, 2878.0, 2856.0};
   int nobs = NDATA, focast = NFOCAST;
   float trend[NDATA+NFOCAST], seasonal[NDATA+NFOCAST];
   float irr_comp[NDATA], abic=0.0;
   char *months[] = {"Jan","Feb","Mar","Apr","May","Jun","Jul",
       "Aug","Sep","Oct","Nov","Dec"};
   char *years[] = {"","1991","1992","1993","1994","1995",
       "1996","1997","1998","1999","2000","2001","2002"};
   abic = imsls_f_bayesian_seasonal_adj(nobs, y,
       IMSLS_TREND_ORDER, 2,
       IMSLS_SEASONAL_ORDER, 1,
       IMSLS_NUM_PREDICT, focast,
       IMSLS_NONSEASONAL_TREND_USER, &trend,
       IMSLS_SEASONAL_USER, &seasonal,
       IMSLS_IRREGULAR_COMPONENTS_USER, &irr_comp,
       0);
   printf("Average ABIC = %f\n", abic);
   imsls_f_write_matrix("TREND with last 12 values forecasted",
       12, 12, trend,
       IMSLS_TRANSPOSE,
       IMSLS_ROW_LABELS, months,
       IMSLS_COL_LABELS, years,
       IMSLS_WRITE_FORMAT, "%8.1f",
       0);
   imsls_f_write_matrix("SEASONAL with last 12 values forecasted",
       12, 12, seasonal,
       IMSLS_TRANSPOSE,
       IMSLS_ROW_LABELS, months,
       IMSLS_COL_LABELS, years,
       IMSLS_WRITE_FORMAT, "%6.1f",
       0);
   imsls_f_write_matrix("IRREGULAR=Original data-TREND-SEASONAL",
       11, 12, irr_comp,
       IMSLS_TRANSPOSE,
       IMSLS_ROW_LABELS, months,
       IMSLS_COL_LABELS, years,
       IMSLS_WRITE_FORMAT, "%6.1f",
       0);
}

Output

Average ABIC = 1297.640259
                 TREND with last 12 values forecasted
        1991     1992     1993     1994     1995     1996     1997
Jan   2879.8   3318.9   3422.6   3228.7   2827.3   2795.7   2743.1
Feb   2918.2   3359.9   3387.8   3206.0   2815.8   2785.6   2720.6
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Mar   2955.1   3399.1   3355.5   3177.0   2812.4   2777.9   2694.2
Apr   2990.0   3436.1   3329.5   3142.1   2814.7   2773.2   2665.2
May   3022.7   3469.0   3309.6   3103.9   2819.3   2771.3   2636.0
Jun   3052.8   3496.1   3294.8   3064.8   2825.5   2771.0   2607.4
Jul   3082.8   3514.5   3283.8   3025.7   2830.9   2772.4   2580.8
Aug   3116.2   3521.9   3276.0   2987.3   2833.2   2773.6   2557.2
Sep   3153.4   3517.8   3270.3   2949.0   2831.7   2774.7   2536.3
Oct   3193.8   3503.7   3264.8   2911.3   2826.1   2774.5   2518.0
Nov   3235.6   3482.4   3256.8   2876.6   2816.6   2770.4   2503.0
Dec   3277.6   3455.2   3245.3   2847.6   2805.9   2760.2   2491.5
        1998     1999     2000     2001     2002
Jan   2481.3   2352.1   2235.9   2206.0   3166.1
Feb   2469.7   2345.6   2237.6   2239.0   3275.1
Mar   2455.4   2338.1   2239.3   2281.4   3384.1
Apr   2439.0   2328.3   2238.9   2333.1   3493.0
May   2422.8   2315.5   2235.2   2393.9   3602.0
Jun   2408.5   2301.4   2226.3   2464.7   3710.9
Jul   2396.8   2286.0   2212.8   2545.7   3819.9
Aug   2387.7   2269.8   2196.6   2636.7   3928.9
Sep   2380.3   2255.5   2181.3   2735.7   4037.8
Oct   2373.6   2244.6   2171.9   2840.4   4146.8
Nov   2366.6   2238.3   2172.1   2948.2   4255.8
Dec   2359.1   2235.6   2183.3   3057.2   4364.7
                 SEASONAL with last 12 values forecasted
      1991   1992   1993   1994   1995   1996   1997   1998   1999
Jan  162.9  165.6  169.3  172.0  173.8  176.3  176.4  177.3  176.4
Feb   51.4   51.5   50.5   49.5   48.6   48.8   50.0   51.1   51.0
Mar  -24.0  -23.9  -23.4  -18.8  -16.3  -13.0   -8.7   -4.9   -3.0
Apr -191.0 -190.1 -189.1 -188.0 -186.6 -187.8 -188.5 -187.9 -186.6
May -140.6 -143.3 -145.4 -147.4 -148.1 -147.1 -147.1 -147.9 -147.7
Jun   67.2   66.6   65.8   64.4   63.3   62.2   62.7   63.6   64.9
Jul  176.9  180.1  181.6  183.0  185.5  186.6  185.8  186.1  187.2
Aug  251.9  253.0  252.6  253.3  253.1  252.8  253.7  254.4  255.2
Sep   76.4   77.2   77.1   77.3   75.5   73.3   72.6   70.7   68.9
Oct  -79.5  -80.5  -80.1  -80.8  -81.5  -84.3  -87.6  -90.1  -93.4
Nov -119.8 -120.7 -120.5 -120.2 -120.4 -119.7 -119.7 -118.1 -117.6
Dec -235.7 -237.9 -243.0 -247.9 -250.5 -251.2 -254.2 -256.2 -257.5
      2000   2001   2002
Jan  177.2  177.6  177.5
Feb   50.8   51.6   51.5
Mar   -1.9   -1.7   -1.8
Apr -187.2 -186.5 -186.6
May -145.7 -145.6 -145.7
Jun   65.6   65.1   65.0
Jul  186.4  184.7  184.7
Aug  256.8  256.9  256.9
Sep   67.3   67.0   67.0
Oct  -95.1  -94.6  -94.6
Nov -117.3 -116.6 -116.6
Dec -258.1 -257.1 -257.1
                 IRREGULAR=Original data-TREND-SEASONAL
      1991   1992   1993   1994   1995   1996   1997   1998   1999
Jan  -74.7  -87.5   51.1   61.2  -57.1  116.0  -21.5   91.4  -81.5
Feb   39.4   35.6  -19.3   16.5  -77.4  -60.4   17.3   74.2    1.5
Mar   30.9  -47.2 -224.1  116.8  -47.1  -63.9   32.5  103.5   45.9
Apr  -25.0  -17.0  -22.5  -16.1  133.9  -30.5  -70.6  -38.0  108.3
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May  157.8  -39.7  -18.2  -62.6  -93.1   52.8   31.2  -56.9  -81.9
Jun   45.0   14.3   24.4  -23.1   11.2  -92.1  -25.1  -23.2   30.7
Jul -155.6  104.4   -7.4  -58.6   83.6   93.0  -58.6  -50.9   99.9
Aug  -55.0   92.1  -60.6   48.4   15.7  -60.4    0.1   -3.1  -49.9
Sep  -51.8   60.0  -17.4  109.6   26.8  -76.0   57.1   -2.1  -25.3
Oct   27.7  -63.3   59.3   -1.5  119.4   32.8  -50.3   42.5  -97.1
Nov   13.2  -51.7   -1.3   19.5  -44.3   54.3  -91.3   53.5    6.3
Dec   65.1  151.7    2.7 -132.8  -99.4  131.0  -50.3  -37.9  -43.1
      2000   2001
Jan   11.9   20.4
Feb  -43.5   38.4
Mar   60.5    5.3
Apr  -46.7   28.5
May  118.5   -3.3
Jun   87.1  -37.7
Jul   59.9  -94.4
Aug   85.6   -1.6
Sep  -66.6  -18.7
Oct -117.8   25.3
Nov  -42.7   46.4
Dec  -91.2   56.0

Figure 8, Sample Smoothed Predictions from bayesian_seasonal_adj
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Figure 9, Sample Trend Predictions from bayesian_seasonal_adj
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box_cox_transform
Performs a forward or an inverse Box-Cox (power) transformation.

Synopsis
#include <imsls.h>
float *imsls_f_box_cox_transform (int n_observations, float z[], float power, ..., 0)

The type double function is imsls_d_box_cox_transform.

Required Arguments
int n_observations  (Input)

Number of observations in z.

float z[]  (Input)
Array of length n_observations containing the observations.

float power  (Input)
Exponent parameter in the Box-Cox (power) transformation.

Return Value
Pointer to an internally allocated array of length n_observations containing the transformed data. To release 
this space, use imsls_free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_box_cox_transform (int n_observations, float z[], float power,

IMSLS_SHIFT, float shift,
IMSLS_INVERSE_TRANSFORM, 
IMSLS_RETURN_USER, float x[],
0)
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Optional Arguments
IMSLS_SHIFT, float shift  (Input)

Shift parameter in the Box-Cox (power) transformation. Parameter shift must satisfy the relation min 
(z(i)) + shift > 0.

Default: shift = 0.0.

IMSLS_INVERSE_TRANSFORM  (Input)
If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is performed.

IMSLS_RETURN_USER, float x[]  (Output)
User-allocated array of length n_observations containing the transformed data.

Description
Function imsls_f_box_cox_transform performs a forward or an inverse Box-Cox (power) transformation 
of n = n_observations observations {Zt} for t = 1, 2, ..., n.

The forward transformation is useful in the analysis of linear models or models with nonnormal errors or noncon-
stant variance (Draper and Smith 1981, p. 222). In the time series setting, application of the appropriate 
transformation and subsequent differencing of a series can enable model identification and parameter estima-
tion in the class of homogeneous stationary autoregressive-moving average models. The inverse transformation 
can later be applied to certain results of the analysis, such as forecasts and prediction limits of forecasts, in order 
to express the results in the scale of the original data. A brief note concerning the choice of transformations in 
the time series models is given in Box and Jenkins (1976, p. 328).

The class of power transformations discussed by Box and Cox (1964) is defined by

where Zt + ξ > 0 for all t. Since

the family of power transformations is continuous.

Let λ = power and ξ = shift; then, the computational formula used by imsls_f_box_cox_transform is 
given by

X t =

Zt + ξ
λ − 1

λ λ ≠ 0

ln Zt + ξ λ = 0

lim
λ→0

Zt + ξ
λ − 1

λ = ln Zt + ξ
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where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only in the scale and origin of the trans-

formed data. Consequently, the general analysis of the data is unaffected (Draper and Smith 1981, p. 225).

The inverse transformation is computed by

where {Zt} now represents the result computed by imsls_f_box_cox_transform for a forward transfor-

mation of the original data using parameters λ and ξ.

Examples 

Example 1

The following example performs a Box-Cox transformation with power = 2.0 on 10 data points.

#include <imsls.h>
int main() {
   int n_observations = 10;
   float power = 2.0;
   float *x;
   static float z[10] ={
       1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};
   /* Transform Data using Box Cox Transform */
   x = imsls_f_box_cox_transform(n_observations, z, power, 0);
   
   imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0); 
   imsls_free(x);
}

Output

                          Transformed Data
        1          2          3          4          5          6
      1.0        4.0        9.0       16.0       25.0       30.2
        7          8          9         10
     42.2       56.2       64.0      100.0

X t =
Zt + ξ

λ λ ≠ 0

ln Zt + ξ λ = 0

X t =
Zt
1/λ − ξ λ ≠ 0
exp Zt − ξ λ = 0
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Example 2

This example extends the first example—an inverse transformation is applied to the transformed data to return 
to the original data values.

#include <imsls.h>
int main() {
   int n_observations = 10;
   float power = 2.0;
   float *x, *y;
   static float z[10] ={
       1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};
   /* Transform Data using Box Cox Transform */
   x = imsls_f_box_cox_transform(n_observations, z, power, 0);
   
   imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0); 
   /* Perform an Inverse Transform on the Transformed Data */
   y = imsls_f_box_cox_transform(n_observations, x, power, 
           IMSLS_INVERSE_TRANSFORM, 0);
   
   imsls_f_write_matrix("Inverse Transformed Data", 1, n_observations, 
       y, 0); 
   imsls_free(x);
   imsls_free(y);
}

Output

                          Transformed Data
        1          2          3          4          5          6
      1.0        4.0        9.0       16.0       25.0       30.2
        7          8          9         10
     42.2       56.2       64.0      100.0
                      Inverse Transformed Data
        1          2          3          4          5          6
      1.0        2.0        3.0        4.0        5.0        5.5
        7          8          9         10
      6.5        7.5        8.0       10.0
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Fatal Errors
IMSLS_ILLEGAL_SHIFT “shift” = # and the smallest element of “z” is “z[#]” 

= #. “shift” plus “z[#]” = #. “shift” + “z[i]” must be 
greater than 0 for i = 1,…, “n_observations”. 
“n_observations” = #.

IMSLS_BCTR_CONTAINS_NAN One or more elements of “z” is equal to NaN (Not a 
number). No missing values are allowed. The small-
est index of an element of “z” that is equal to NaN is 
#.

IMSLS_BCTR_F_UNDERFLOW Forward transform. “power” = #. “shift” = #. The 
minimum element of “z” is “z[#]” = #. (“z[#]”+ 
“shift”) ^ “power” will underflow.

IMSLS_BCTR_F_OVERFLOW Forward transformation. “power” = #. “shift” = #. 
The maximum element of “z” is “z[#]” = #. 
(“z[#]” + “shift”) ^ “power” will overflow.

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. “power” = #. The minimum 
element of “z” is “z[#]” = #. exp(“z[#]”) will 
underflow.

IMSLS_BCTR_I_OVERFLOW Inverse transformation. “power” = #. The maximum 
element of “z[#]” = #. exp(“z[#]”) will overflow.

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. “power” = #. The element of 
“z” with the smallest absolute value is “z[#]” = #. 
“z[#]” ^ (1/ “power”) will underflow.

IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. “power” = #. The element of 
“z” with the largest absolute value is 
“z[#]” = #. “z[#]” ^ (1/ “power”) will overflow.
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difference
Differences a seasonal or nonseasonal time series.

Synopsis
#include <imsls.h>
float *imsls_f_difference (int n_observations, float z[], int n_differences, 

int periods[], ..., 0)

The type double function is imsls_d_difference.

Required Arguments
int n_observations  (Input)

Number of observations.

float z[]  (Input)
Array of length n_observations containing the time series.

int n_differences  (Input)
Number of differences to perform. Argument n_differences must be greater than or equal to 1.

int periods[]  (Input)
Array of length n_differences containing the periods at which z is to be differenced.

Return Value
Pointer to an array of length n_observations containing the differenced series.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_difference (int n_observations, float z[], int n_differences, 

int periods[],

IMSLS_ORDERS, int orders[],
IMSLS_LOST, int *n_lost,
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IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN, 
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ORDERS, int orders[]  (Input)

Array of length n_differences containing the order of each difference given in periods. The ele-
ments of orders must be greater than or equal to 0.

IMSLS_LOST, int *n_lost  (Output)
Number of observations lost because of differencing the time series z.

IMSLS_EXCLUDE_FIRST  (Input)

or

IMSLS_SET_FIRST_TO_NAN  (Input)
If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded from w due to differencing. 
The differenced series w is of length n_observations - n_lost. If 
IMSLS_SET_FIRST_TO_NAN is specified, the first n_lost observations are set to NaN (Not a 
Number). This is the default if neither IMSLS_EXCLUDE_FIRST nor 
IMSLS_SET_FIRST_TO_NAN is specified.

IMSLS_RETURN_USER, float w[]  (Output)
If specified, w contains the differenced series. If IMSLS_EXCLUDE_FIRST also is specified, w is of 
length n_observations. If IMSLS_SET_FIRST_TO_NAN is specified or neither 
IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is specified, w is of length 
n_observations - n_lost.

Description
Function imsls_f_difference performs m = n_differences successive backward differences of period 
si = periods [i - 1] and order di = orders [i - 1] for i = 1, ..., m on the n = n_observations observations 

{Zt} for t = 1, 2, ..., n.

Consider the backward shift operator B given by

for all k. Then, the backward difference operator with period s is defined by the following:

BkZt = Zt−k
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Note that   and    are defined only for t = (s + 1), ..., n. Repeated differencing with period s is simply

where d ≥ 0 is the order of differencing. Note that

is defined only for t = (sd + 1), ..., n.

The general difference formula used in the function imsls_f_difference is given by

where nL represents the number of observations “lost” because of differencing and NaN represents the missing 

value code. See the functions imsls_f_machine and imsls_d_machineto retrieve missing values. Note that

A homogeneous, stationary time series can be arrived at by appropriately differencing a homogeneous, nonsta-
tionary time series (Box and Jenkins 1976, p. 85). Preliminary application of an appropriate transformation 
followed by differencing of a series can enable model identification and parameter estimation in the class of 
homogeneous stationary autoregressive moving average models.

Examples 

Example 1

Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly total number of international 
airline passengers from January 1949 through December 1960. Function imsls_f_difference is used to 
compute

for t = 14, 15, ..., 24.

ΔsZt = 1 − Bs Zt = Zt − Zt−s for s > 0.

BsZt ΔsZt

Δs
dZt = 1 − Bs dZt =∑

j=0

d
d!

j! d − j ! −1
jBs jZt

Δs
dZt

Wt =
NaN for t = 1, … nL

Δs1
d1Δs2

d2 … Δsm
dmZt for t = nL + 1, … n

nL =∑
j

s jd j

Wt = Δ1Δ12Zt = Zt − Zt−12 − Zt−1 − Zt−13
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#include <imsls.h>
#include <stdio.h>
int main()
{
   int   i;
   int   n_observations = 24;
   int   n_differences = 2;
   int   periods[2] = {1, 12};
   float *z;
   float *difference;
   z = imsls_f_data_sets (4,
       0);
   difference = imsls_f_difference (n_observations, z, n_differences,
       periods,
       0);
   printf ("i\tz[i]\tdifference[i]\n");
   for (i = 0; i < n_observations; i++)
       printf ("%d\t%f\t%f\n", i, z[i], difference[i]);
}

Output

 i     z[i]        difference[i]
 0     112.000000  NaN
 1     118.000000  NaN
 2     132.000000  NaN
 3     129.000000  NaN
 4     121.000000  NaN
 5     135.000000  NaN
 6     148.000000  NaN
 7     148.000000  NaN
 8     136.000000  NaN
 9     119.000000  NaN
10     104.000000  NaN
11     118.000000  NaN
12     115.000000  NaN
13     126.000000  5.000000
14     141.000000  1.000000
15     135.000000 -3.000000
16     125.000000 -2.000000
17     149.000000 10.000000
18     170.000000  8.000000
19     170.000000  0.000000
20     158.000000  0.000000
21     133.000000 -8.000000
22     114.000000 -4.000000
23     140.000000 12.000000
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Example 2

The data for this example is the same as that for the initial example. The first n_lost observations are excluded 
from W due to differencing, and n_lost is also output.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   i;
   int   n_observations = 24;
   int   n_differences = 2;
   int   periods[2] = {1, 12};
   int   n_lost;
   float *z;
   float *difference;
   /* Get airline data */
   z = imsls_f_data_sets (4,
       0);
   /* Compute differenced time series when observations
   lost are excluded from the differencing */
   difference = imsls_f_difference (n_observations, z, n_differences,
       periods,
       IMSLS_EXCLUDE_FIRST,
       IMSLS_LOST, &n_lost,
       0);
   /* Print the number of lost observations */
   printf ("n_lost equals %d\n", n_lost);
   printf ("\n\ni\tz[i]\t       difference[i]\n");
   /* Print the original time series and the differenced
   time series */
   for (i = 0; i < n_observations - n_lost; i++)
       printf ("%d\t%f\t%f\n", i, z[i], difference[i]);
}

Output

n_lost equals 13

 i     z[i]         difference[i]
 0     112.000000   5.000000
 1     118.000000   1.000000
 2     132.000000  -3.000000
 3     129.000000  -2.000000
 4     121.000000  10.000000
 5     135.000000   8.000000
 6     148.000000   0.000000
 7     148.000000   0.000000
 8     136.000000  -8.000000
 9     119.000000  -4.000000
10     104.000000  12.000000
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Fatal Errors
IMSLS_PERIODS_LT_ZERO “period[#]” = #. All elements of “period” must be 

greater than 0.

IMSLS_ORDER_NEGATIVE “order[#]” = #. All elements of “order” must be 
nonnegative.

IMSLS_Z_CONTAINS_NAN “z[#]” = NaN; “z” can not contain missing values. 
There may be other elements of “z” that are equal 
to NaN.
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autocorrelation

more...

Computes the sample autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_autocorrelation (int n_observations, float x[], int lagmax, ...0)

The type double function is imsls_d_autocorrelation.

Required Arguments
int n_observations (Input)

Number of observations in the time series x. n_observations must be greater than or equal to 
2.

float x[] (Input)
Array of length n_observations containing the time series.

int lagmax (Input)
Maximum lag of autocovariance, autocorrelations, and standard errors of autocorrelations to be 
computed. lagmax must be greater than or equal to 1 and less than n_observations.

Return Value
Pointer to an array of length lagmax + 1 containing the autocorrelations of the time series x. The 0-th element 
of this array is 1. The k-th element of this array contains the autocorrelation of lag k where k = 1, ..., lagmax.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_autocorrelation (int n_observations, float x[], int lagmax,
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IMSLS_PRINT_LEVEL, int iprint,
IMSLS_X_MEAN_IN, float x_mean_in,
IMSLS_X_MEAN_OUT, float *x_mean_out,
IMSLS_ACV, float **autocovariances,
IMSLS_ACV_USER, float autocovariances[],
IMSLS_SEAC, float **standard_errors, int se_option, 

IMSLS_SEAC_USER, float standard_errors[], int se_option,

IMSLS_RETURN_USER, float autocorrelations[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option. 

Default = 0.

IMSLS_X_MEAN_IN, float x_mean_in (Input)
User input estimate of the mean of the time series x.

IMSLS_X_MEAN_OUT, float *x_mean_out (Output)
If specified, x_mean_out is the computed arithmetic mean of the time series x.

IMSLS_ACV, float **autocovariances (Output)
Address of a pointer to an array of length lagmax + 1 containing the variance and autocovariances 
of the time series x. The 0-th element of this array is the variance of the time series x. The k-th ele-
ment contains the autocovariance of lag k where k = 1, ..., lagmax.

IMSLS_ACV_USER, float autocovariances[] (Output)
If specified, autocovariances is an array of length lagmax + 1 containing the variance and 
autocovariances of the time series x.

See IMSLS_ACV.

iprint Action

0 No printing is performed.

1 Prints the mean and variance.

2 Prints the mean, variance, and autocovariances.

3 Prints the mean, variance, autocovariances, auto-
correlations, and standard errors of 
autocorrelations.
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IMSLS_SEAC, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length lagmax containing the standard errors of the autocorrela-
tions of the time series x.

Method of computation for standard errors of the autocorrelations is chosen by se_option.

IMSLS_SEAC_USER, float standard_errors[], int se_option (Output)
If specified, autocovariances is an array of length lagmax containing the standard errors of 
the autocorrelations of the time series x. See IMSLS_SEAC.

IMSLS_RETURN_USER, float autocorrelations[] (Output)
If specified, autocorrelations is an array of length lagmax + 1 containing the autocorrelations of the 
time series x. The 0-th element of this array is 1. The k-th element of this array contains the autocor-
relation of lag k where k = 1, …, lagmax.

Description
Function imsls_f_autocorrelation estimates the autocorrelation function of a stationary time series 
given a sample of n = n_observations observations {Xt} for t = 1, 2, …, n.

Let  be the estimate of the mean μ of the time series {Xt} where

The autocovariance function σ(k) is estimated by

se_option Action

1 Compute the standard errors of autocorrelations using 
Barlett’s formula.

2 Compute the standard errors of autocorrelations using 
Moran’s formula.

μ̂

μ̂ =
μ, μ known (x_mean_in)
1
n ∑
t=1

n
X t μ unknown (x_mean_out)

σ̂ k = 1n∑
t=1

n−k

X t − μ̂ X t+k − μ̂ , k = 0,1, … ,K
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where K = lagmax. Note that 

is an estimate of the sample variance. The autocorrelation function ρ(k) is estimated by

Note that 

by definition.

The standard errors of the sample autocorrelations may be optionally computed according to argument 
se_option for the optional argument IMSLS_SEAC. One method (Bartlett 1946) is based on a general 
asymptotic expression for the variance of the sample autocorrelation coefficient of a stationary time series with 
independent, identically distributed normal errors. The theoretical formula is

where 

assumes μ is unknown. For computational purposes, the autocorrelations r(k) are replaced by their estimates 

for |k| ≤ K, and the limits of summation are bounded because of the assumption that r(k) = 0 for all k such that 
|k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the sample autocorrelation coeffi-
cient of a random process with independent, identically distributed normal errors. The theoretical formula is

where μ is assumed to be equal to zero. Note that this formula does not depend on the autocorrelation function.

σ̂ 0

ρ̂ k =
σ̂ k
σ̂ 0

, k = 0,1, … ,K

ρ̂ 0 ≡ 1

var ρ̂ k = 1n∑
i=−∞

∞

ρ2 i + ρ i − k ρ i + k − 4ρ i ρ k ρ i − k + 2ρ2 i ρ2 k

ρ̂ k

ρ̂ k

var ρ̂ k = n − k
n n + 2
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Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Function imsls_f_autocorrelation with optional arguments computes the 
estimated autocovariances, estimated autocorrelations, and estimated standard errors of the autocorrelations.

#include <imsls.h>
#include <stdio.h>
int main()
{
  float *result=NULL, data[176][2], x[100], xmean;
  int i, nobs = 100, lagmax = 20;
  float *acv=NULL, *seac=NULL;

  imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
  for (i=0;i<nobs;i++) x[i] = data[21+i][1];
  result = imsls_f_autocorrelation(nobs, x, lagmax, 
                           IMSLS_X_MEAN_OUT, &xmean,
                           IMSLS_ACV, &acv, 
                           IMSLS_SEAC, &seac, 1,
                           0);   
  printf("Mean    = %8.3f\n", xmean);
  printf("Variance = %8.1f\n", acv[0]);
  printf("\nLag\t  ACV\t\t  AC\t\t  SEAC\n");
  printf("%2d\t%8.1f\t%8.5f\n", 0, acv[0], result[0]);
  for(i=1; i<21; i++)
     printf("%2d\t%8.1f\t%8.5f\t%8.5f\n", i, acv[i], result[i], 
     seac[i-1]);
     
}

Output

Mean     =    46.976
Variance =    1382.9
Lag        ACV          AC         SEAC
 0        1382.9     1.00000
 1        1115.0     0.80629     0.03478
 2         592.0     0.42809     0.09624
 3          95.3     0.06891     0.15678
 4        -236.0    -0.17062     0.20577
 5        -370.0    -0.26756     0.23096
 6        -294.3    -0.21278     0.22899
 7         -60.4    -0.04371     0.20862
 8         227.6     0.16460     0.17848
 9         458.4     0.33146     0.14573
10         567.8     0.41061     0.13441
11         546.1     0.39491     0.15068
12         398.9     0.28848     0.17435
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13         197.8     0.14300     0.19062
14          26.9     0.01945     0.19549
15         -77.3    -0.05588     0.19589
16        -143.7    -0.10394     0.19629
17        -202.0    -0.14610     0.19602
18        -245.4    -0.17743     0.19872
19        -230.8    -0.16691     0.20536
20        -142.9    -0.10332     0.20939

Figure 10, Sample Autocorrelation Function
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crosscorrelation

more...

Computes the sample cross-correlation function of two stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[], float y[], 

int lagmax, ..., 0)

The type double function is imsls_d_crosscorrelation.

Required Arguments
int n_observations (Input)

Number of observations in each time series. n_observations must be greater than or equal to 2.

float x[] (Input) 
Array of length n_observations containing the first time series.

float y[] (Input) 
Array of length n_observations containing the second time series.

int lagmax (Input) 
Maximum lag of cross-covariances and cross-correlations to be computed. lagmax must be greater 
than or equal to 1 and less than n_observations.

Return Value
Pointer to an array of length 2 × lagmax + 1 containing the cross-correlations between the time series x and y. 
The k-th element of this array contains the cross-correlation between x and y at lag(k-lagmax) where k = 0, 
1, …, 2*lagmax. To release this space, use imsls_free. If no solution can be computed, NULL is returned.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[], float y[], int lagmax,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in,
IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out,
IMSLS_VARIANCES, float *x_variance, float *y_variance,
IMSLS_SE_CCF, float **standard_errors, int se_option,
IMSLS_SE_CCF_USER, float standard_errors[], int se_option, 
IMSLS_CROSS_COVARIANCES, float **cross_covariances,
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[],
IMSLS_RETURN_USER, float crosscorrelations[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default = 0.

IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in (Input)
If specified, x_mean_in is the user input of the estimate of the mean of the time series x and 
y_mean_in is the user input of the estimate of the mean of the time series y.

IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out (Output)
If specified, x_mean_out is the mean of the time series x and y_mean_out is the mean of the 
time series y.

iprint Action

0 No printing is performed.

1 Prints the means and variances.

2 Prints the means, variances, and cross-covariances.

3 Prints the means, variances, cross-covariances, cross-cor-
relations, and standard errors of cross-correlations.
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IMSLS_VARIANCES, float *x_variance, float *y_variance (Output)
If specified, x_variance is variance of the time series x and y_variance is variance of the time 
series y.

IMSLS_SE_CCF, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length 2 × lagmax + 1containing the standard errors of the 
cross-correlations between the time series x and y. Method of computation for standard errors of 
the cross-correlations is chosen by se_option.

IMSLS_SE_CCF_USER, float standard_errors[], int se_option (Output)
If specified, standard_errors is an array of length 2 × lagmax + 1 containing the standard 
errors of the cross-correlations between the time series x and y. See IMSLS_SE_CC.

IMSLS_CROSS_COVARIANCES, float **cross_covariances (Output)
Address of a pointer to an array of length 2 × lagmax + 1 containing the cross-covariances between 
the time series x and y. The k-th element of this array contains the cross-covariances between x and 
y at lag (k-lagmax), where k = 0, 1, …, 2 × lagmax.

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[] (Output)
If specified, cross_covariances is a user-specified array of length 2*lagmax + 1 containing 
the cross-covariances between the time series x and y. See IMSLS_CROSS_COVARIANCES.

IMSLS_RETURN_USER, float crosscorrelations[] (Output)
If specified, crosscorrelations is an array of length 2 × lagmax + 1 containing the cross-correlations 
between the time series x and y. The k-th element of this array contains the cross-correlation 
between x and y at lag (k-lagmax) where k = 0, 1, …, 2×lagmax.

Description
Function imsls_f_crosscorrelation estimates the cross-correlation function of two jointly stationary 
time series given a sample of n = n_observations observations {Xt} and {Yt} for t = 1, 2, …, n.

Let   be the estimate of the mean μX of the time series {Xt} where

se_option Action

1 Compute standard errors of cross-correlations using 
Bartlett’s formula.

2 Compute standard errors of cross-correlations using 
Bartlett’s formula with the assumption of no cross-
correlation.

μ̂x
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The autocovariance function of {Xt}, σX(k), is estimated by

where K = lagmax. Note that 

is equivalent to the sample variance x_variance. The autocorrelation function ρX(k) is estimated by

Note that

by definition. Let 

be similarly defined.

The cross-covariance function σXY(k) is estimated by

The cross-correlation function ρXY(k) is estimated by

μ̂X =
μX μX known (x_mean_in)
1
n ∑
t=1

n
X t μX unknown (x_mean_out)

σ̂X k = 1n∑
t=1

n−k

X t − μ̂X X t+k − μ̂X , k = 0,1, … ,K

σ̂X 0

ρ̂X k =
σ̂X k
σ̂X 0

k = 0,1, … ,K

ρ̂X 0 ≡ 1

μ̂Y , σ̂Y k , and ρ̂Y k

σ̂XY k =

1
n ∑
t=1

n−k
X t − μ̂X Y t+k − μ̂Y k = 0,1, … ,K

1
n ∑
t=1−k

n
X t − μ̂X Y t+k − μ̂Y k = − 1, − 2, … , − K
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The standard errors of the sample cross-correlations may be optionally computed according to argument 
se_option for the optional argument IMSLS_SE_CCF. One method is based on a general asymptotic expres-
sion for the variance of the sample cross-correlation coefficient of two jointly stationary time series with 
independent, identically distributed normal errors given by Bartlett (1978, page 352). The theoretical formula is

For computational purposes, the autocorrelations ρX(k) and ρY(k) and the cross-correlations ρXY(k) are replaced 

by their corresponding estimates for |k| ≤ K, and the limits of summation are equal to zero for all k such that 
|k| > K.

A second method evaluates Bartlett’s formula under the additional assumption that the two series have no cross-
correlation. The theoretical formula is

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 377).

An important property of the cross-covariance coefficient is σXY(k) = σYX(-k) for k ≥ 0. This result is used in the 

computation of the standard error of the sample cross-correlation for lag k < 0. In general, the cross-covariance 
function is not symmetric about zero so both positive and negative lags are of interest.

Example
Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X is the input gas rate in cubic 
feet/minute and Y is the percent CO2 in the outlet gas. Function imsls_f_crosscorrelation is used to 

compute the cross-covariances and cross-correlations between time series X and Y with lags from -10 through 
lag  10. In addition, the estimated standard errors of the estimated cross-correlations are computed. The stan-
dard errors are based on the additional assumption that all cross-correlations for X and Y are zero.

#include <imsls.h>
#include <stdio.h>
#define nobs 296

ρ̂XY(k) =
σ̂XY(k)

σ̂X(0)σ̂Y(0)
1/2 k = 0, ± 1, … , ± K

var ρ̂XY k = 1
n − k ∑

i=−∞

∞
ρX i ρY i + ρXY i − k ρXY i + k

−2ρXY k ρX i ρXY i + k + ρXY −i ρY i + k

+ρXY
2 k ρX i + 12 ρX

2 i + 12 ρY
2 i ]

var ρ̂XY k = 1
n − k ∑

i=−∞

∞
ρX i ρY i k ≥ 0
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#define lagmax 10
int main ()
{
   int i;
   float data[nobs][2], x[nobs], y[nobs];
   float *secc = NULL, *ccv = NULL, *cc = NULL;
   float xmean, ymean, xvar, yvar;
   imsls_f_data_sets (7, IMSLS_X_COL_DIM, 2, IMSLS_RETURN_USER, data, 0);
   for (i = 0; i < nobs; i++)
   {
       x[i] = data[i][0];
       y[i] = data[i][1];
   }
   cc = imsls_f_crosscorrelation (nobs, x, y, lagmax,
         IMSLS_OUTPUT_MEANS, &xmean, &ymean,
         IMSLS_VARIANCES, &xvar, &yvar,
         IMSLS_SE_CCF, &secc, 2,
         IMSLS_CROSS_COVARIANCES, &ccv, 0);
   printf ("Mean of series X    = %g\n", xmean);
   printf ("Variance of series X = %g\n\n", xvar);
   printf ("Mean of series Y    = %g\n", ymean);
   printf ("Variance of series Y = %g\n\n", yvar);
   printf ("Lag           CCV          CC        SECC\n\n");
   for (i = 0; i < 2 * lagmax + 1; i++)
       printf ("%-5d%13g%13g%13g\n", i - lagmax, ccv[i], cc[i], secc[i]);
}

Output

Mean of series X     = -0.0568344
Variance of series X = 1.14694
Mean of series Y     = 53.5091
Variance of series Y = 10.2189
Lag           CCV          CC        SECC
-10     -0.404502   -0.118154    0.162754
-9      -0.508491   -0.148529     0.16247
-8       -0.61437   -0.179456    0.162188
-7      -0.705476   -0.206067    0.161907
-6      -0.776167   -0.226716    0.161627
-5      -0.831474   -0.242871    0.161349
-4      -0.891316   -0.260351    0.161073
-3      -0.980605   -0.286432    0.160798
-2       -1.12477   -0.328542    0.160524
-1       -1.34704   -0.393467    0.160252
0        -1.65853   -0.484451    0.159981
1        -2.04865   -0.598405    0.160252
2        -2.48217   -0.725033    0.160524
3        -2.88541    -0.84282    0.160798
4        -3.16536   -0.924592    0.161073
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5        -3.25344   -0.950319    0.161349
6        -3.13113   -0.914593    0.161627
7        -2.83919    -0.82932    0.161907
8        -2.45302   -0.716521    0.162188
9        -2.05269   -0.599584     0.16247
10       -1.69466   -0.495004    0.162754
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multi_crosscorrelation

more...

Computes the multichannel cross-correlation function of two mutually stationary multichannel time series.

Synopsis
#include <imsls.h>

float *imsls_f_multi_crosscorrelation (int n_observations_x, 
int n_channel_x, float x[], int n_observations_y, int n_channel_y, float y[], 
int lagmax, ..., 0)

The type double function is imsls_d_multi_crosscorrelation.

Required Arguments
int n_observations_x  (Input)

Number of observations in each channel of the first time series x. n_observations_x must be 
greater than or equal to two.

int n_channel_x  (Input)
Number of channels in the first time series x. n_channel_x must be greater than or equal to one.

float x[]  (Input)
Array of length n_observations_x by n_channel_x containing the first time series.

int n_observations_y  (Input)
Number of observations in each channel of the second time series y. n_observations_y must 
be greater than or equal to two.

int n_channel_y  (Input)
Number of channels in the second time series y. n_channel_y must be greater than or equal to 
one.

float y[]  (Input) 
Array of length n_observations_y by n_channel_y containing the second time series.
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int lagmax  (Input) 
Maximum lag of cross-covariances and cross-correlations to be computed. lagmax must be greater 
than or equal to one and less than the minimum of n_observations_x and 
n_observations_y.

Return Value
Pointer to an array of length n_channel_x× n_channel_y × (2 × lagmax + 1) containing the cross-cor-
relations between the channels of x and y. The m-th element of this array contains the cross-correlation 
between channel i of the x series and channel j of the y series at lag (k-lagmax) where 

i = 1, …, n_channel_x 

j = 1, …, n_channel_y
k = 0, 1, …, 2*lagmax, and 

m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j))

To release this space, use imsls_free. If no solution can be computed, NULL is return.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_multi_crosscorrelation(int n_observations_x, int n_channel_x, 

float x[], int n_observations_y, int n_channel_y, float y[], int lagmax,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in,
IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out,
IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[],
IMSLS_VARIANCES, float **x_variance, float **y_variance,
IMSLS_VARIANCES_USER, float x_variance[], float y_variance[], 
IMSLS_CROSS_COVARIANCES, float **cross_covariances, 
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[],
IMSLS_RETURN_USER, float crosscorrelations[],
0)
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Optional Arguments
IMSLS_PRINT_LEVEL, int iprint  (Input)

Printing option.

Default = 0.

IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in  (Input)
If specified, x_mean_in is an array of length n_channel_x containing the user input of the esti-
mate of the means of the channels of x and y_mean_in is an array of length n_channel_y 
containing the user input of the estimate of the means of the channels of y.

IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out  (Output)
If specified, x_mean_out is the address of a pointer to an array of length n_channel_x contain-
ing the means of the channels of x and y_mean_out is the address of a pointer to an array of 
length n_channel_y containing the means of the channels of y.

IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[]  (Output)
If specified, x_mean_out is an array of length n_channel_x containing the means of the chan-
nels of x and y_mean_out is an array of length n_channel_y containing the means of the 
channels of y. See IMSLS_OUTPUT_MEANS.

IMSLS_VARIANCES, float **x_variance, float **y_variance  (Output)
If specified, x_variance is the address of a pointer to an array of length n_channel_x contain-
ing the variances of the channels of x and y_variance is the address of a pointer to an array of 
length n_channel_y containing the variances of the channels of y.

IMSLS_VARIANCES_USER, float x_variance[], float y_variance[]  (Output)
If specified, x_variance is an array of length n_channel_x containing the variances of the chan-
nels of x and y_variance is an array of length n_channel_y containing the variances of the 
channels of y. See IMSLS_VARIANCES.

iprint Action

0 No printing is performed.

1 Prints the means and variances.

2 Prints the means, variances, and cross-covariances.

3 Prints the means, variances, cross-covariances, and cross-
correlations.
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IMSLS_CROSS_COVARIANCES, float **cross_covariances  (Output)
Address of a pointer to an array of length n_channel_x × n_channel_y × (2×lagmax + 1) 
containing the cross-covariances between the channels of x and y. The mth element of this array 
contains the cross-covariance between channel i of the x series and channel j of the y series at lag 
(k−lagmax) where 

i = 1, …, n_channel_x
j = 1, …, n_channel_y
k = 0, 1, …, 2*lagmax, and

m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)).

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances  (Output)
If specified, cross_covariances is an array of length 
n_channel_x × n_channel_y × (2×lagmax + 1) containing the cross-covariances between 
the channels of x and y. See IMSLS_CROSS_COVARIANCES.

IMSLS_RETURN_USER, float crosscorrelations[]  (Output)
If specified, crosscorrelations is a user-specified array of length 
n_channel_x × n_channel_y × (2×lagmax + 1) containing the cross-correlations between 
the channels of x and y. See Return Value.

Description
Function imsls_f_multi_crosscorrelation estimates the multichannel cross-correlation function of 
two mutually stationary multichannel time series. Define the multichannel time series X by

X = (X

1

, X

2

, ..., Xp)

where

Xj = (X

1

j, X

2

j, ..., Xnj)
T,  j = 1, 2, ..., p

with n = n_observations_x and p = n_channel_x. Similarly, define the multichannel time series Y by
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Y = (Y

1

, Y

2

, ..., Yq)

where 

Yj = (Y

1

j, Y

2

j, ..., Ymj)
T,  j = 1, 2, ..., q

with m = n_observations_y and q = n_channel_y. The columns of X and Y correspond to individual chan-
nels of multichannel time series and may be examined from a univariate perspective. The rows of X and Y 
correspond to observations of p-variate and q-variate time series, respectively, and may be examined from a mul-
tivariate perspective. Note that an alternative characterization of a multivariate time series X considers the 
columns to be observations of the multivariate time series while the rows contain univariate time series. For 
example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let  be the row vector containing the means of the channels of X. In particular,

where for j = 1, 2, …, p 

Let  be similarly defined for the means of the channels of Y. The cross-covariance of lag k between channel i of 

X and channel j of Y is estimated by 

where i = 1, …, p, j = 1, …, q, and K = lagmax. The summation on t extends over all possible cross-products with N 
equal to the number of cross-products in the sum 

μ̂X

μ̂X = μ̂X1, μ̂X2, … , μ̂X p

μ̂X j =

μX j μX j known (x─mean─in)
1
n ∑
t=1

n
X tj μX j unknown (x─mean─out)

μ̂Y

σ̂X iY j k =

1
N∑
t
X ti − μ̂X i Y t+k, j − μ̂Y j k = 0,1, … ,K

1
N∑
t
X ti − μ̂X i Y t+k, j − μ̂Y j k = − 1, − 2, … , − K
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Let

be the row vector consisting of the estimated variances of the channels of X. In particular,

where

Let

be similarly defined. The cross-correlation of lag k between channel i of X and channel j of Y is estimated by

Example
Consider the Wolfer Sunspot Data (Y) (Box and Jenkins 1976, page 530) along with data on northern light activity 
(X1) and earthquake activity (X2) (Robinson 1967, page 204) to be a three-channel time series. Function 

imsls_f_multi_crosscorrelation is used to compute the cross-covariances and cross-correlations 
between X1 and Y and between X2 and Y with lags from −10 through 10.

#include <imsls.h>
#include <stdio.h>
int main () {
    int i, lagmax, nobsx, nchanx, nobsy, nchany;
    float x[100 * 2], y[100], *result = NULL, *xvar = NULL, *yvar = NULL,
        *xmean = NULL, *ymean = NULL, *ccv = NULL;
    float data[100][4];
    char line[20];
    nobsx = nobsy = 100;
    nchanx = 2;
    nchany = 1;
    lagmax = 10;

σ̂X 0 = x_variance

σ̂X 0 = σ̂X1 0 ,σ̂X2 0 , … ,σ̂X p 0

σ̂X j 0 = 1n∑
t=1

n

X tj − μ̂X j
2 j = 1,2, … ,p

σ̂Y 0 = y_variance

ρ̂X iY j(k) =
σ̂X iY j(k)

σ̂X i(0)σ̂Y j(0)
1/2 k = 0, ± 1, … , ± K
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    imsls_f_data_sets (8, IMSLS_X_COL_DIM, 4, IMSLS_RETURN_USER, data, 0);
    for (i = 0; i < 100; i++)
        {
            y[i] = data[i][1];
            x[i * 2] = data[i][2];
            x[i * 2 + 1] = data[i][3];
        }
    result =
        imsls_f_multi_crosscorrelation (nobsx, nchanx, &x[0], nobsy, nchany,
              &y[0], lagmax, IMSLS_VARIANCES, &xvar,
              &yvar, IMSLS_OUTPUT_MEANS, &xmean, &ymean,
              IMSLS_CROSS_COVARIANCES, &ccv, 0);
    imsls_f_write_matrix ("Channel means of x", 1, nchanx, xmean, 0);
    imsls_f_write_matrix ("Channel variances of x", 1, nchanx, xvar, 0);
    imsls_f_write_matrix ("Channel means of y", 1, nchany, ymean, 0);
    imsls_f_write_matrix ("Channel variances of y", 1, nchany, yvar, 0);
   printf ("\nMultichannel cross-covariance between x and y\n");
    for (i = 0; i < (2 * lagmax + 1); i++)
        {
            sprintf (line, "Lag K = %d", i - lagmax);
            imsls_f_write_matrix (line, nchanx, nchany,
                &ccv[nchanx * nchany * i], 0);
        }
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    printf ("\nMultichannel cross-correlation between x and y\n");
    for (i = 0; i < (2 * lagmax + 1); i++)
        {
            sprintf (line, "Lag K = %d", i - lagmax);
            imsls_f_write_matrix (line, nchanx, nchany,
                &result[nchanx * nchany * i], 0);
        }
}

Output

  Channel means of x
         1           2
     63.43       97.97
Channel variances of x
         1           2
      2644        1978
Channel means of y
         46.94
Channel variances of y
            1384
Multichannel cross-covariance between x and y
 Lag K = -10
1      -20.51
2       70.71
 Lag K = -9
1       65.02
2       38.14
 Lag K = -8
1       216.6
2       135.6
 Lag K = -7
1       246.8
2       100.4
 Lag K = -6
1       142.1
2        45.0
 Lag K = -5
1       50.70
2      -11.81
 Lag K = -4
1       72.68
2       32.69
 Lag K = -3
1       217.9
2       -40.1
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 Lag K = -2
1       355.8
2      -152.6
 Lag K = -1
1       579.7
2      -213.0
  Lag K = 0
1       821.6
2      -104.8
  Lag K = 1
1       810.1
2        55.2
  Lag K = 2
1       628.4
2        84.8
  Lag K = 3
1       438.3
2        76.0
  Lag K = 4
1       238.8
2       200.4
  Lag K = 5
1       143.6
2       283.0
  Lag K = 6
1       253.0
2       234.4
  Lag K = 7
1       479.5
2       223.0
  Lag K = 8
1       724.9
2       124.5
  Lag K = 9
1       925.0
2       -79.5
 Lag K = 10
1       922.8
2      -279.3
Multichannel cross-correlation between x and y
 Lag K = -10
1    -0.01072
2     0.04274
 Lag K = -9
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1     0.03400
2     0.02305
 Lag K = -8
1      0.1133
2      0.0819
 Lag K = -7
1      0.1290
2      0.0607
 Lag K = -6
1     0.07431
2     0.02718
 Lag K = -5
1     0.02651
2    -0.00714
 Lag K = -4
1     0.03800
2     0.01976
 Lag K = -3
1      0.1139
2     -0.0242
 Lag K = -2
1      0.1860
2     -0.0923
 Lag K = -1
1      0.3031
2     -0.1287
  Lag K = 0
1      0.4296
2     -0.0633
  Lag K = 1
1      0.4236
2      0.0333
  Lag K = 2
1      0.3285
2      0.0512
  Lag K = 3
1      0.2291
2      0.0459
  Lag K = 4
1      0.1248
2      0.1211
  Lag K = 5
1      0.0751
2      0.1710
  Lag K = 6
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1      0.1323
2      0.1417
  Lag K = 7
1      0.2507
2      0.1348
  Lag K = 8
1      0.3790
2      0.0752
  Lag K = 9
1      0.4836
2     -0.0481
 Lag K = 10
1      0.4825
2     -0.1688
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partial_autocorrelation
Computes the sample partial autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_partial_autocorrelation (int lagmax, int cf[], …, 0)

The type double function is imsls_d_partial_autocorrelation.

Required Arguments
int lagmax  (Input)

Maximum lag of partial autocorrelations to be computed. 

float cf[]  (Input)
Array of length lagmax + 1 containing the autocorrelations of the time series x.

Return Value
Pointer to an array of length lagmax containing the partial autocorrelations of the time series x.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_partial_autocorrelation (int lagmax, float cf[],

IMSLS_RETURN_USER, float partial_autocorrelations[],
0)

Optional Arguments
IMSLS_RETURN_USER, float partial_autocorrelations[]  (Output)

If specified, the partial autocorrelations are stored in an array of length lagmax provided by the 
user. 
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Description
Function imsls_f_partial_autocorrelation estimates the partial autocorrelations of a stationary 
time series given the K = lagmax sample autocorrelations 

for k = 0, 1, …, K. Consider the AR(k) process defined by

where φkj denotes the j-th coefficient in the process. The set of estimates 

for k = 1, …, K is the sample partial autocorrelation function. The autoregressive parameters

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k) models where k = 1, …, K. Based on 
the sample Yule-Walker equations

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The equations are given by 

and 

This procedure is sensitive to rounding error and should not be used if the parameters are near the nonstation-
arity boundary. A possible alternative would be to estimate {φkk} for successive AR(k) models using least or 

maximum likelihood. Based on the hypothesis that the true process is AR(p), Box and Jenkins (1976, page 65) 
note 

ρ̂ k

X t = ϕk1X t−1 + ϕk2X t−2 + … + ϕkkX t−k + At

ϕ^kk

ϕ^k j

ρ̂ j = ϕ^k1ρ̂ j − 1 + ϕ^k2ρ̂ j − 2 + … + ϕ^kk ρ̂ j − k , j = 1, 2, … k

ϕ^kk =

ρ̂ 1 k = 1

ρ̂ k − ∑
j=1

k−1
ϕ^k−1, jρ̂ k − j

1 − ∑
j=1

k−1
ϕ^k−1, jρ̂ j

k = 2,...K

ϕ^k j =
ϕ^k−1, j − ϕ

^
kkϕ
^
k−1,k− j j = 1,2, … ,k − 1

ϕ^kk j = k
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See Box and Jenkins (1976, pages 82-84) for more information concerning the partial autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. Function imsls_f_partial_autocorrelation is used to compute the esti-
mated partial autocorrelations.

#include <imsls.h>
#include <stdlib.h>
int main()
{
   float *partial = NULL, data[176][2], x[100];
   int i, nobs = 100, lagmax = 20;
   float *ac;
   imsls_f_data_sets(2,
       IMSLS_RETURN_USER, data,
       0);
   for (i=0;i<nobs;i++)
       x[i] = data[21+i][1];
   ac = imsls_f_autocorrelation(100, x, lagmax,
       0);
   partial = imsls_f_partial_autocorrelation(lagmax, ac,
       0);
   imsls_f_write_matrix("Lag     PACF", 20, 1, partial,
       0);
}

Output

Lag     PACF
 1    0.806
 2   -0.635
 3    0.078
 4   -0.059
 5   -0.001
 6    0.172
 7    0.109
 8    0.110
 9    0.079
10    0.079
11    0.069

var ϕ^kk ≃ 1
n k ≥ p + 1
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12   -0.038
13    0.081
14    0.033
15   -0.035
16   -0.131
17   -0.155
18   -0.119
19   -0.016
20   -0.004
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lack_of_fit
Performs lack-of-fit test for a univariate time series or transfer function given the appropriate correlation 
function.

Synopsis
#include <imsls.h>
float *imsls_lack_of_fit (int n_observations, float cf[], int lagmax, int npfree, …, 0)

Required Arguments
int n_observations  (Input)

Number of observations of the stationary time series. 

float cf[] (Input)
Array of length lagmax +1 containing the correlation function.

int lagmax (Input)
Maximum lag of the correlation function.

int npfree (Input)
Number of free parameters in the formulation of the time series model. npfree must be greater 
than or equal to zero and less than lagmax. Woodfield (1990) recommends npfree = p + q for an 
ARMA(p,q) model.

Return Value
Pointer to an array of length 2 with the test statistic, Q, and its p-value, p. Under the null hypothesis, Q has an 
approximate chi-squared distribution with lagmax-lagmin+1-npfree degrees of freedom.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_lack_of_fit (int n_observations, float cf[], int lagmax, int npfree,

IMSLS_LAGMIN, int lagmin,
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IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments
IMSLS_LAGMIN, int lagmin (Input)

Minimum lag of the correlation function. lagmin corresponds to the lower bound of summation in 
the lack of fit test statistic. 

Default value is 1.

IMSLS_RETURN_USER, float stat[]  (Output)
User defined array for storage of lack-of-fit statistics.

Description
Function imsls_f_lack_of_fit may be used to diagnose lack of fit in both ARMA and transfer function 
models. Typical arguments for these situations are: 

Function imsls_f_lack_of_fit performs a portmanteau lack of fit test for a time series or transfer function 
containing n observations given the appropriate sample correlation function

for k = L, L + 1, …, K where L = lagmin and K = lagmax.

The basic form of the test statistic Q is

with L = 1 if 

Model LAGMIN LAGMAX NPFREE
ARMA (p, q) 1

  
p + q

Transfer function 0
  

r + s

n
─
observations

n
─
observations

ρ̂ k

Q = n n + 2 ∑
k=L

K

n − k −1ρ̂ k
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is an autocorrelation function. Given that the model is adequate, Q has a chi-squared distribution with 
K − L + 1 − m degrees of freedom where m = npfree is the number of parameters estimated in the model. If 
the mean of the time series is estimated, Woodfield (1990) recommends not including this in the count of the 
parameters estimated in the model. Thus, for an ARMA(p, q) model set npfree= p + q regardless of whether the 
mean is estimated or not. The original derivation for time series models is due to Box and Pierce (1970) with the 
above modified version discussed by Ljung and Box (1978). The extension of the test to transfer function models 
is discussed by Box and Jenkins (1976, pages 394–395).

Example
Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed 
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed 
from 1770 through 1869. An ARMA(2,1) with nonzero mean is fitted using function imsls_f_arma. The autocor-
relations of the residuals are estimated using function imsls_f_autocorrelation. A portmanteau lack of fit 
test is computed using 10 lags with imsls_f_lack_of_fit. 

#include <imsls.h>
#include <stdio.h>
int main()
{
   int p=2, q=1, i, n_observations=100, max_itereations=0, lagmin=1,
       lagmax=10, npfree=4;
   float data[176][2], x[100], *parameters, *correlations, 
       *residuals, *result;
   /* Get sunspot data for 1770 through 1869, store it in x[]. */
   imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
   for (i=0;i<n_observations;i++) x[i] = data[21+i][1];
   /* Get residuals from ARMA(2,1) for autocorrelation/lack of fit */
   parameters = imsls_f_arma(n_observations, x, p, q,
       IMSLS_LEAST_SQUARES,
       IMSLS_RESIDUAL, &residuals,
       0);
   /* Get autocorrelations from residuals for lack of fit test */
   /* NOTE: number of OBS is equal to number of residuals */
   correlations = imsls_f_autocorrelation(n_observations-p+lagmax,
       residuals, lagmax, 0);
   /* Get lack of fit test statistic and p-value */
   /* NOTE: number of OBS is equal to original number of data */
   result = imsls_f_lack_of_fit(n_observations, correlations, 
       lagmax, npfree, 0);
   /* Print parameter estimates, test statistic, and p-value */

ρ̂ k
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   /* NOTE: Test Statistic Q follows a Chi-squared dist. */
   printf("Lack of Fit Statistic, Q = \t%3.5f\n", result[0]);
   printf("            P-value of Q = \t %1.5f\n\n", result[1]);
}

Output

Lack of Fit Statistic, Q =   23.89239
            P-value of Q =    0.00055
854



 Time Series and Forecasting         estimate_missing
estimate_missing
Estimates missing values in a time series.

Synopsis
#include <imsls.h>
float *imsls_f_estimate_missing(int n_obs, int tpoints[], float z[], …,0)

The type double function is imsls_d_estimate_missing.

Required Arguments
int n_obs (Input)

Number of non-missing observations in the time series. The time series must not contain gaps with 
more than 3 missing values.

int tpoints[] (Input)
Vector of length n_obs containing the time points    at which the time series values were 
observed. The time points must be in strictly increasing order. Time points for missing values must lie 
in the open interval   .

float z[] (Input)
Vector of length n_obs containing the time series values. The values must be ordered in accordance 
with the values in vector tpoints. It is assumed that the time series after estimation of missing val-
ues contains values at equidistant time points where the distance between two consecutive time 
points is one. If the non-missing time series values are observed at time points t1, … tn_obs, then 
missing values between ti and ti+1, i = 1, …, n_obs - 1 , exist if ti+1 - ti > 1. The size of the gap 
between ti and ti+1 is then ti+1 - ti - 1. The total length of the time series with non-missing and esti-
mated missing values is tn_obs - ti + 1, or tpoints[n_obs-1]-tpoints[0]+1.

Return Value
Pointer to an array of length (tpoints[n_obs-1]-tpoints[0]+1) containing the time series together with 
estimates for the missing values. If an error occurred, NULL is returned.

t1, … , tn_obs

t1, tn_obs
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_estimate_missing (int n_obs, int tpoints[], float z[],

IMSLS_METHOD, int method,
IMSLS_MAX_LAG, int maxlag,
IMSLS_NTIMES, int *ntimes,
IMSLS_MEAN_ESTIMATE, float mean_estimate,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_TIMES_ARRAY, int **times,
IMSLS_TIMES_ARRAY_USER, int times[],
IMSLS_MISSING_INDEX, int **missing_index,
IMSLS_MISSING_INDEX_USER, int missing_index[],
IMSLS_RETURN_USER, float u_z[],
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

The method used for estimating the missing values:

If method = 2 is chosen, then all values of gaps beginning at time points    or    are esti-

mated by method 0. If method = 3 is chosen and the first gap starts at   , then the values of 
this gap are also estimated by method 0. If the length of the series before a gap, denoted len, is 
greater than 1 and less than 2⋅  maxlag, then maxlag is reduced to len/2 for the computation of 
the missing values within this gap.

Default: method = 3

Index Description

0 Use median.

1 Use cubic spline interpolation.

2 Use one-step-ahead forecasts from an 
AR(1) model.

3 Use one-step-ahead forecasts from an 
AR(p) model.

t1 + 1 t1 + 2
t1 + 1
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IMSLS_MAX_LAG, int maxlag (Input)
Maximum lag number when method = 3 was chosen.

Default: maxlag = 10

IMSLS_NTIMES, int *ntimes (Output)
Number of elements in the time series with estimated missing values. Note that 
ntimes = tpoints[n_obs-1]-tpoints[0]+1.

IMSLS_MEAN_ESTIMATE, float mean_estimate (Input)
Estimate of the mean of the time series. 

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used by method 2. 

Default: relative_error = 100 × imsls_f_machine(4) for single precision, 
relative_error = 100 × imsls_d_machine(4) for double precision.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equations solver used by method 2.

Default: max_iterations = 200.

IMSLS_TIMES_ARRAY, int **times (Output)
Address of a pointer to an internally allocated array of length ntimes = tpoints[n_obs-1]-
tpoints[0]+1 containing the time points of the time series with estimates for the missing values.

IMSLS_TIMES_ARRAY_USER, int times[] (Output)
Storage for array times is provided by the user. See IMSLS_TIMES_ARRAY.

IMSLS_MISSING_INDEX, int **missing_index (Output)
Address of a pointer to an internally allocated array of length (ntimes-n_obs) containing the 
indices for the missing values in array times. If ntimes-n_obs = 0, then no missing value could be 
found and NULL is returned.

IMSLS_MISSING_INDEX_USER, int missing_index[] (Output)
Storage for array missing_index is provided by the user. See IMSLS_MISSING_INDEX.

IMSLS_RETURN_USER, float u_z[] (Output)
If specified, u_z is a vector of length tpoints[n_obs-1]-tpoints[0]+1 containing the time 
series values together with estimates for missing values.
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Description
Traditional time series analysis as described by Box, Jenkins and Reinsel (1994) requires the observations made at 

equidistant time points   . When observations are missing, the problem occurs to deter-
mine suitable estimates. Function imsls_f_estimate_missing offers 4 estimation methods: 

Method 0 estimates the missing observations in a gap by the median of the last four time series values before 
and the first four values after the gap. If not enough values are available before or after the gap then the number 
is reduced accordingly. This method is very fast and simple, but its use is limited to stationary ergodic series with-
out outliers and level shifts. 

Method 1 uses a cubic spline interpolation method to estimate missing values. Here the interpolation is again 
done over the last four time series values before and the first four values after the gap. The missing values are 
estimated by the resulting interpolant. This method gives smooth transitions across missing values.

Method 2 assumes that the time series before the gap can be well described by an AR(1) process. If the last 

observation prior to the gap is made at time point    then it uses the time series values at    to 

compute the one-step-ahead forecast at origin   . This value is taken as an estimate for the missing value at time 

point   . If the value at    is also missing then the values at time points    are used to 

recompute the AR(1) model, estimate the value at    and so on. The coefficient    in the AR(1) model is com-
puted internally by the method of least squares from function imsls_f_arma.

Finally, method 3 uses an AR(p) model to estimate missing values by a one-step-ahead forecast . First, function 
imsls_f_auto_uni_ar, applied to the time series prior to the missing values, is used to determine the opti-

mum p from the set {0, 1, ..., max_lag} of possible values and to compute the parameters    of the 
resulting AR(p) model. The parameters are estimated by the least squares method based on Householder trans-

formations as described in Kitagawa and Akaike (1978). Denoting the mean of the series    by μ 

the one-step-ahead forecast at origin    ,   , can be computed by the formula

This value is used as an estimate for the missing value. The procedure starting with imsls_f_auto_uni_ar is 
then repeated for every further missing value in the gap. All four estimation methods treat gaps of missing values 
in increasing time order. 

Example
Consider the AR(1) process 

t1, t1 + 1, t1 + 2, … , tn

tm t1, t1 + 1, … , tm
tm

tm+1 tm+1 t1, t1 + 1, … , tm+1
tm+2 ϕ1

ϕ1, … ,ϕp

yt1, yt1+1, … , ytm
tm y^ tm 1

ŷtm 1 = μ 1 −∑ j=1

p
ϕ j +∑ j=1

p
ϕ jytm+1− j.
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We assume that {at} is a Gaussian white noise process,   . Then, E[Yt] = 0 and  

  (see Anderson, p. 174).

The time series in the code below was artificially generated from an AR(1) process characterized by    

and   . This process is stationary with VAR[Yt] = 1. As initial value,    was taken. The 

sequence {at} was generated by a random number generator.

From the original series, we remove the observations at time points t=130, t=140, t=141, t=160, t=175, t=176. 
Then, imsls_f_estimate_missing is used to compute estimates for the missing values by all 4 estimation 
methods available. The estimated values are compared with the actual values.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
int main()
{
   int i, j, k, maxlag = 20, times_1[200], times_2[200], ntemp, 
       n_obs, n_miss, ntimes, miss_ind, *times = NULL, 
       *missing_index = NULL;
   float x_1[200], x_2[200], *result = NULL;
   float  y[200] = {
       1.30540,-1.37166,1.47905,-0.91059,1.36191,-2.16966,3.11254,
       -1.99536,2.29740,-1.82474,-0.25445,0.33519,-0.25480,-0.50574,
       -0.21429,-0.45932,-0.63813,0.25646,-0.46243,-0.44104,0.42733,
       0.61102,-0.82417,1.48537,-1.57733,-0.09846,0.46311,0.49156,
       -1.66090,2.02808,-1.45768,1.36115,-0.65973,1.13332,-0.86285,
       1.23848,-0.57301,-0.28210,0.20195,0.06981,0.28454,0.19745,
       -0.16490,-1.05019,0.78652,-0.40447,0.71514,-0.90003,1.83604,
       -2.51205,1.00526,-1.01683,1.70691,-1.86564,1.84912,-1.33120,
       2.35105,-0.45579,-0.57773,-0.55226,0.88371,0.23138,0.59984,
       0.31971,0.59849,0.41873,-0.46955,0.53003,-1.17203,1.52937,
       -0.48017,-0.93830,1.00651,-1.41493,-0.42188,-0.67010,0.58079,
       -0.96193,0.22763,-0.92214,1.35697,-1.47008,2.47841,-1.50522,
       0.41650,-0.21669,-0.90297,0.00274,-1.04863,0.66192,-0.39143,
       0.40779,-0.68174,-0.04700,-0.84469,0.30735,-0.68412,0.25888,
       -1.08642,0.52928,0.72168,-0.18199,-0.09499,0.67610,0.14636,
       0.46846,-0.13989,0.50856,-0.22268,0.92756,0.73069,0.78998,
       -1.01650,1.25637,-2.36179,1.99616,-1.54326,1.38220,0.19674,
       -0.85241,0.40463,0.39523,-0.60721,0.25041,-1.24967,0.26727,
       1.40042,-0.66963,1.26049,-0.92074,0.05909,-0.61926,1.41550,
       0.25537,-0.13240,-0.07543,0.10413,1.42445,-1.37379,0.44382,
       -1.57210,2.04702,-2.22450,1.27698,0.01073,-0.88459,0.88194,
       -0.25019,0.70224,-0.41855,0.93850,0.36007,-0.46043,0.18645,
       0.06337,0.29414,-0.20054,0.83078,-1.62530,2.64925,-1.25355,
       1.59094,-1.00684,1.03196,-1.58045,2.04295,-2.38264,1.65095,
       -0.33273,-1.29092,0.14020,-0.11434,0.04392,0.05293,-0.42277,
       0.59143,-0.03347,-0.58457,0.87030,0.19985,-0.73500,0.73640,
       0.29531,0.22325,-0.60035,1.42253,-1.11278,1.30468,-0.41923,

Yt = ϕ1Yt−1 + at, t = 1,2,3, …

at ∼ N 0,σ2

VAR Yt = σ2 / 1 − ϕ1
2

ϕ1 = − 0.7

σ2 = 1 − ϕ1
2 = 0.51 Y 0 : = a0
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       -0.38019,0.50937,0.23051,0.46496,0.02459,-0.68478,0.25821,
       1.17655,-2.26629,1.41173,-0.68331
   };
   int tpoints[200] = {
       1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
       25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,
       46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,
       67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,
       88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,
       107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,
       123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,
       139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,
       155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,
       171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,
       187,188,189,190,191,192,193,194,195,196,197,198,199,200
   };

   n_miss = 0;
   times_1[0] = times_2[0] = tpoints[0];
   x_1[0] = x_2[0] = y[0];
   k = 0;
   for (i = 1; i < 200; i++) {
       times_1[i] = tpoints[i];
       x_1[i] = y[i];
       /* Generate series with missing values */
       if (i!=129 && i!= 139 && i!=140 && i!=159 && i!=174 && i!=175) {
           k += 1;
           times_2[k] = times_1[i];
           x_2[k] = x_1[i];
       }
   }
   n_obs = k + 1;
   for (j=0;j<=3;j++) {
       if (j <= 2)
           result = imsls_f_estimate_missing(n_obs, times_2, x_2,
                      IMSLS_METHOD, j,
                      IMSLS_NTIMES, &ntimes,
                      IMSLS_TIMES_ARRAY, &times,
                      IMSLS_MISSING_INDEX, &missing_index,
                      0);
       else
           result = imsls_f_estimate_missing(n_obs, times_2, x_2,
                      IMSLS_METHOD, j,
                      IMSLS_NTIMES, &ntimes,
                      IMSLS_MAX_LAG, 20,
                      IMSLS_TIMES_ARRAY, &times,
                      IMSLS_MISSING_INDEX, &missing_index,
                      0);

       if (!result) {
           if (times) {
               imsls_free(times);
               times = NULL;
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           }
           if (missing_index) {
               imsls_free(missing_index);
               missing_index = NULL;
           }
           return;
       }
       if (j == 0) printf("\nMethod: Median\n");
       if (j == 1) printf("\nMethod: Cubic Spline Interpolation\n");
       if (j == 2) printf("\nMethod: AR(1) Forecast\n");
       if (j == 3) printf("\nMethod: AR(p) Forecast\n");
       printf("ntimes = %d\n", ntimes);
       printf("time\tactual\tpredicted\tdifference\n");
       n_miss = ntimes-n_obs;
       for (i = 0; i < n_miss; i++) {
           miss_ind = missing_index[i];
           printf("%d, %10.5f, %10.5f, %18.6f\n", times[miss_ind],
               x_1[miss_ind], result[miss_ind], 
               fabs(x_1[miss_ind]-result[miss_ind]));
       }
       if (result) {
           imsls_free(result);
           result = NULL;
       }
       if (times) {
           imsls_free(times);
           times = NULL;
       }
       if (missing_index) {
           imsls_free(missing_index);
           missing_index = NULL;
       }
   }
}

Output

Method: Median
ntimes = 200
time   actual     predicted       difference
130,  -0.92074,   0.26132,          1.182060
140,   0.44382,   0.05743,          0.386390
141,  -1.57210,   0.05743,          1.629530
160,   2.64925,   0.04680,          2.602450
175,  -0.42277,   0.04843,          0.471195
176,   0.59143,   0.04843,          0.543005
Method: Cubic Spline Interpolation
ntimes = 200
time   actual     predicted       difference
130,  -0.92074,   1.54109,          2.461829
140,   0.44382,  -0.40730,          0.851119
861



 Time Series and Forecasting         estimate_missing
141,  -1.57210,   2.49709,          4.069194
160,   2.64925,  -2.94712,          5.596371
175,  -0.42277,   0.25066,          0.673430
176,   0.59143,   0.38032,          0.211107
Method: AR(1) Forecast
ntimes = 200
time   actual    predicted          difference
130,  -0.92074,  -0.92971,          0.008968
140,   0.44382,   1.02824,          0.584424
141,  -1.57210,  -0.74527,          0.826832
160,   2.64925,   1.22880,          1.420454
175,  -0.42277,   0.01049,          0.433259
176,   0.59143,   0.03683,          0.554601
Method: AR(p) Forecast
ntimes = 200
time   actual     predicted       difference
130,  -0.92074,  -0.86385,          0.056894
140,   0.44382,   0.98098,          0.537164
141,  -1.57210,  -0.64489,          0.927206
160,   2.64925,   1.18966,          1.459592
175,  -0.42277,  -0.00105,          0.421722
176,   0.59143,   0.03773,          0.553705
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hw_time_series

more...

Calculates parameters and forecasts using the Holt-Winters Multiplicative or Additive forecasting method for sea-
sonal data.

Synopsis
#include <imsls.h> 

float *imsls_f_hw_time_series (int nobs, int nseason, float y[], …, 0)

The type double function is imsls_d_hw_time_series.

Required Arguments
int nobs  (Input)

The number of equally spaced series values.

int nseason  (Input)
The number of time points in a season, or the length of the season. The function requires that 
2 ≤ nseason ≤ nobs unless one of the non-seasonal options is specified, in which case nseason 
is ignored. See the optional arguments for details.

float y[]  (Input)
An array of length nobs containing the values of the time series.

Return Value
Pointer to an array of length (nobs + 1)*3 containing the values of the smoothing parameters followed by the 
level, trend, and seasonal component sequences. Note that if IMSLS_NONSEASONAL_TREND is specified, the 
array is of length (nobs + 1)*2 and if IMSLS_NONSEASONAL_CONSTANT is specified, it is of length 
(nobs + 1).
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_hw_time_series (int nobs, int nseason, float y[],

IMSLS_ADDITIVE, int add, 
IMSLS_SERIES_INCREMENT, int incy,
IMSLS_NONSEASONAL_TREND,
IMSLS_NONSEASONAL_CONSTANT, 
IMSLS_USE_PARAMS, float params[],
IMSLS_N_SAMPLE, int nsamples,
IMSLS_BOUNDS, float bounds[],
IMSLS_INIT_INPUT, int init,
IMSLS_FORECAST_CONFIDENCE, float confid,
IMSLS_RETURN_USER, float sequences[],
IMSLS_FORECASTS, int nforecasts, float **forecasts,
IMSLS_FORECASTS_USER, int nforecasts, float forecasts[],
IMSLS_SERIES_SMOOTHED, float **ysmoothed,
IMSLS_SERIES_SMOOTHED_USER, float ysmoothed[],
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_SS_RESIDUAL, float *sumofsquares,
0)

Optional Arguments
IMSLS_ADDITIVE, int add (Input) 

Specifies the use of the Multiplicative or Additive time series model. add must be 1 or 0. If add = 1 
the Additive model is used.

Default: add = 0. The Multiplicative model is the default.

IMSLS_SERIES_INCREMENT, int incy  (Input)
The constant stride through the series data y. The length of y must be at least 
(nobs-1)×|incy|+1. When incy < 0, the series is incremented in reverse order beginning at 
index nobs*(-incy)-1. 

Default: incy = 1.
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IMSLS_NONSEASONAL_TREND,  (Input)
Remove the seasonal component and fit only the level and trend. If present, the models involve only 
the level (α) and trend (β) parameters. The method is equivalent to double exponential smoothing.

Default: The method includes all three components

IMSLS_NONSEASONAL_CONSTANT,  (Input)
Remove the trend and the seasonal components and fit only the level. If present, the models involve 
only the level (α) parameter. The method is simple exponential smoothing.

Default: The method includes all three components.

IMSLS_USE_PARAMS, float params[] (Input)
An array containing the values of the smoothing parameters for the level (α), the trend (β), and the 
seasonal (γ) component sequences. The array should be length 3 unless 
IMSLS_NONSEASONAL_TREND is specified, in which case it is of length 2 containing values for level 
(α) and the trend (β). Likewise, if IMSLS_NONSEASONAL_CONSTANT is specified, params is of 
length 1 and contains the value for the level parameter (α) only.

Default: Parameter values are selected by minimizing the mean squared one step ahead forecast 
error.

IMSLS_N_SAMPLE, int nsamples (Input)
Number of evaluations of the residual norm that are sampled to obtain starting values for the 
smoothing parameters, (α, β, γ).

Default: nsamples = nobs.

IMSLS_BOUNDS, float bounds[] (Input)
An array of length 6 that contains the lower and upper bounds for each of the smoothing parame-
ters, (α, β, γ). The three lower bounds are followed by the 3 upper bounds. Note that the lower and 
upper bounds must be in the interval [0,1], inclusive. The array is ignored if IMSLS_USE_PARAMS is 
used. 

Default: Lower bounds are all 0 and upper bounds are all 1.

IMSLS_INIT_INPUT, int init (Input)
init must be 1 or 0. If init = 1, the initial values for the level, trend, and seasonal component 
sequences are provided in the user array, sequences. The values must be stored in rows 
1, 2, …, nseason of the return array. See IMSLS_RETURN_USER and the Description section for 
more information.

Default: init = 0. Initial values are computed by the function.
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IMSLS_FORECAST_CONFIDENCE, float confid (Input)
This value provides the confidence level to use in the calculation of the prediction intervals. If this 
argument is present and valid (0.0 < confid < 100.0), prediction intervals are provided for each 
forecast.

Default: Prediction intervals are not provided.

IMSLS_RETURN_USER, float sequences[] (Input/Output)
Storage for the return value is provided by the user. When IMSLS_INIT_INPUT is set to 1, 
sequences must contain initial values for the component sequences on input in rows 
1, 2, …, nseason of the array. Rows 0 and nseason + 1 to nobs are ignored on input. See the 
Description section for the required format of the array.

IMSLS_FORECASTS, int nforecasts, float **forecasts
int nforecasts  (Input)

The number of forecasts desired past the series data.
float **forecasts  (Output)

Address of a pointer to an internally allocated array of length nforecasts. The value of 
the i-th row is the forecast (i + 1) steps past the series data. If the option 
IMSLS_FORECAST_CONFIDENCE is used, the array will be of length nforecasts×3 
and the value of the i-th row is the forecast (i+1) steps ahead followed by the prediction 
interval lower and upper bounds.

IMSLS_FORECASTS_USER, int nforecasts, float forecasts[]
int nforecasts  (Input) 

The number of forecasts desired past the series data.
float forecasts[] (Output)

Storage for array forecasts is provided by the user. See IMSLS_FORECASTS.

IMSLS_SERIES_SMOOTHED, float **ysmoothed  (Output)
The address of a pointer to the internally allocated array of length nobs containing the fitted series 
values.

IMSLS_SERIES_SMOOTHED_USER, float ysmoothed[]  (Output)
Storage for array ysmoothed is provided by the user. See IMSLS_SERIES_SMOOTHED.

IMSLS_COV, float  **cov (Output)
The address of a pointer to an internally allocated array containing the variance-covariance matrix of 
the smoothing parameters estimated by minimizing the mean squared forecast error. The length of 
the array is 3 × 3 unless IMSLS_NONSEASONAL_TREND is specified, in which case it is 2 × 2, or 
unless IMSLS_NONSEASONAL_CONSTANT is specified, in which case it is 1 × 1. IMSLS_COV is 
ignored when the option IMSLS_USE_PARAMS is present.

IMSLS_COV_USER, float cov[]  (Output)
Storage for array cov is provided by the user. See IMSLS_COV.
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IMSLS_SS_RESIDUAL, float *sumofsquares (Output)
The sum of squares of the one step ahead forecast errors.

Description
Function imsls_f_hw_time_series performs the Holt-Winters forecasting method to an equally spaced 

time series, {yt} where N = nobs and    (or    where  

  and   ). The Holt-Winters procedure fits three component sequences known as the 
level, the trend, and the seasonal sequence. There are two formulations, depending on whether the seasonal com-
ponent of the time series is thought to be additive or multiplicative. The seasonal component depends on the 
length of the season, nseason = s, where s = 2,…,N.

Holt-Winters Additive Model

Holt-Winters Multiplicative Model

Note that without a seasonal component, both the additive and multiplicative formulations reduce to the same 
methods. (The seasonal sequence is set to 1 for the multiplicative model, and identically 0 for the additive model.) 

Default Starting Values

  
the level sequence 

  
the trend sequence 

  
the seasonal sequence 

 
the forecast sequence 

  
the level sequence 

  
the trend sequence 

  
the seasonal sequence 

  
the forecast sequence 

t = 1, … ,N t = 0,1 ·incy, 2 ·incy, … ,K ·incy
K ·incy ≤ N incy ≥ 1

Lt = α yt − St−s + 1 − α Lt−1 + bt−1

bt = β Lt − Lt−1 + 1 − β bt−1

St = γ yt − Lt + 1 − γ St−s,

Ft+k = Lt + kbt + St+k−s

Lt = α yt / St−s + 1 − α Lt−1 + bt−1

bt = β Lt − Lt−1 + 1 − β bt−1

St = γ yt / Lt + 1 − γ St−s

Ft+k = Lt + kbt St+k−s
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Initial values are required for these sequences. The software allows the user code to define these initial values 
(see optional argument IMSLS_INIT_INPUT). If they are not provided, then the first two seasons of data are 
used:

The smoothing parameters (α, β, γ) are each in the interval [0,1] and can be specified by the user (see optional 
argument IMSLS_USE_PARAMS), or automatically set by minimizing the within sample one-step ahead mean 
squared forecast error. Note that this objective function is not necessarily convex and solutions will depend on 
starting values. See Chatfield and Yar (1988) for further discussion. Starting values for (α, β, γ) are obtained by 
minimizing the mean squared error over nsamples bootstrap samples of the time series. Experiments suggest 
that this approach helps prevent poor starting values. Note, that solutions may vary for different settings of the 
number of random samples, nsamples.

The return value of the imsls_hw_time_series is the array of length 3*(N + 1) = 3*(nobs + 1) containing 
the smoothing parameter values on the first row, followed by the calculated level, trend, and seasonal sequences. 
When N = nobs and s = nseason, the format of the return value is as follows:

  

  

   (Multiplicative or Additive) 

Series Storage

Row Value

0

1 0 0 S1

2 0 0 S2

⋮ ⋮ ⋮ ⋮
s Ls bs Ss

s+1 Ls+1 bs+1 Ss+1

⋮ ⋮ ⋮ ⋮
N LN bN SN

Ls =
1
s∑
i=1

s

yi, s > 1

bs =
1
s∑
i=1

s yi+s − yi
s , s > 1

Si = yi / Ls or yi − Ls, i = 1, … ,s

α̂ β^ γ̂
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If one of the nonseasonal options is specified, the return value will be of length 2*(nobs + 1) or (nobs + 1) 
accordingly.

The variance-covariance matrix for the parameters (α, β, γ) is 

where ei is the one-step-ahead forecast error, and   is the Jacobian matrix of the series using the forecast model 

and calculating forecasts one step ahead of each datum. Prediction intervals are calculated following Chatfield 
and Yar (1991).

Example
A series of nobs = 12 seasonal data values are analysed using the Multiplicative and the Additive Holt-Winters 
method. The season size is nseason = 4. The objective is to predict one season ahead, nforecasts = 4 using 
each method. The forecasts and prediction interval lower and upper bounds are returned. The mean sum of 
squares of the one-step ahead forecast errors is shown to be smallest using the Multiplicative model.

#include <imsls.h>
#include <stdio.h>
#define NOBS 12
#define NSEASON 4
int main()
{
   float y[NOBS]={23,25,36,31,26,28,48,36,31,42,53,43};
   float *seriesm,*seriesa, *forecasts, *ysmoothed;
   float ss,confidence;
   int nforecasts=NSEASON,nvars=3;
   /* Compute the time series and forecasts 
   using the Multiplicative model. */
   confidence=95.0;
   seriesm=imsls_f_hw_time_series(NOBS,NSEASON,y,
       IMSLS_FORECAST_CONFIDENCE,confidence,
       IMSLS_FORECASTS,nforecasts,&forecasts,
       IMSLS_SERIES_SMOOTHED, &ysmoothed,
       IMSLS_SS_RESIDUAL,&ss,
       0);
   imsls_f_write_matrix(" Input time series ", 1,NOBS,y,0);
   imsls_f_write_matrix(" Smoothed Multiplicative series ",
       1,NOBS, ysmoothed,0);
   imsls_f_write_matrix(" Parameters and internal sequences ",
       NOBS+1,nvars,seriesm,0);
   imsls_f_write_matrix( "Multiplicative forecasts\nwith"
       " 95% prediction interval",
       nforecasts,3,forecasts,0);

cov =
∑ ei

2

N − 2s − 3 J
TJ

−1

J
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   printf("MSS - Multiplicative %3.2f \n",
       ss/(float)(NOBS-NSEASON));
   imsls_free(seriesm);
   imsls_free(forecasts);
   imsls_free(ysmoothed);
   /* Compute the time series and forecasts 
   using the Additive model. */  
   seriesa=imsls_f_hw_time_series(NOBS, NSEASON, y,
       IMSLS_FORECASTS,nforecasts,&forecasts,
       IMSLS_SS_RESIDUAL, &ss, 
       IMSLS_ADDITIVE, 1, 
       IMSLS_FORECAST_CONFIDENCE,confidence,
       IMSLS_SERIES_SMOOTHED,&ysmoothed,
       0);
   imsls_f_write_matrix(" Smoothed Additive series ",
       1,NOBS, ysmoothed,0);
   imsls_f_write_matrix(" Parameters and internal sequences ",
       NOBS+1,nvars,seriesa,0);
   imsls_f_write_matrix( "Additive forecasts\nwith"
       " 95% prediction interval",
       nforecasts,3, forecasts,0);
   printf("MSS - Additive %3.2f \n",
       ss/(float)(NOBS-NSEASON));
}
#undef NOBS
#undef NSEASON

Output

                             Input time series 
         1           2           3           4           5           6
        23          25          36          31          26          28
         7           8           9          10          11          12
        48          36          31          42          53          43
                      Smoothed Multiplicative series 
         1           2           3           4           5           6
     23.00       25.00       36.00       31.00       24.15       27.65
         7           8           9          10          11          12
     41.77       38.04       30.44       33.72       54.51       45.25
   Parameters and internal sequences 
             1           2           3
 1        0.04        1.00        0.44
 2        0.00        0.00        0.80
 3        0.00        0.00        0.87
 4        0.00        0.00        1.25
 5       28.75        1.44        1.08
 6       30.28        1.53        0.83
 7       31.82        1.54        0.87
 8       33.55        1.73        1.33
 9       35.20        1.66        1.05
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10       36.89        1.68        0.83
11       38.93        2.04        0.96
12       40.93        2.00        1.31
13       42.85        1.92        1.03
       Multiplicative forecasts
     with 95% prediction interval
            1           2           3
1       37.26       27.54       46.97
2       44.99       35.24       54.74
3       63.91       53.99       73.83
4       52.14       42.17       62.11
MSS - Multiplicative 15.35 
                         Smoothed Additive series 
         1           2           3           4           5           6
     23.00       25.00       36.00       31.00       23.00       26.32
         7           8           9          10          11          12
     38.58       38.54       34.05       35.73       56.63       43.83
   Parameters and internal sequences 
             1           2           3
 1        0.27        0.64        1.00
 2        0.00        0.00       -5.75
 3        0.00        0.00       -3.75
 4        0.00        0.00        7.25
 5       28.75        0.00        2.25
 6       29.56        0.52       -3.56
 7       30.52        0.81       -2.52
 8       33.86        2.43       14.14
 9       35.61        1.99        0.39
10       36.79        1.47       -5.79
11       39.94        2.55        2.06
12       41.51        1.92       11.49
13       43.22        1.78       -0.22
          Additive forecasts
     with 95% prediction interval
            1           2           3
1       39.21       27.80       50.62
2       48.84       36.37       61.31
3       60.05       45.74       74.35
4       50.13       33.24       67.01
MSS - Additive 21.18
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Warning Errors

Fatal Errors

IMSLS_HW_COV_NOT_EST The covariance matrix could not be estimated. The 
parameter estimates may be at the upper or lower 
bound.

IMSLS_HW_SEASON_SIZE The number for a Holt-Winters series season length 
must be > = 2. Input value is =#.

IMSLS_HW_SERIES_SIZE The number of observations for a Holt-Winters input 
series must be “nobs” > 2*“nseason”+ 3. Now have 
“nobs” = # and “nseason”=#.

IMSLS_HW_SERIES_SIGN The values of the input series, using the Holt-Winters 
Multiplicative method, must be positive. The series 
entry with index = # now has the non-positive value #.
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garch
Computes estimates of the parameters of a GARCH(p,q) model.

Synopsis
#include <imsls.h>
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[], …, 0)

The type double function is imsls_d_garch.

Required Arguments
int p  (Input)

Number of GARCH parameters.

int q  (Input)
Number of ARCH parameters.

int m  (Input)
Length of the observed time series.

float y[]  (Input)
Array of length m containing the observed time series data.

float xguess[]  (Input)
Array of length p + q + 1 containing the initial values for the parameter array x[].

Return Value
Pointer to the parameter array x[] of length p + q + 1 containing the estimated values of sigma squared, fol-
lowed by the q ARCH parameters, and the p GARCH parameters.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_garch (int p, int q, int m, float y[], float xguess[],
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IMSLS_MAX_SIGMA,  float max_sigma,
IMSLS_A, float *a,
IMSLS_AIC, float *aic,
IMSLS_VAR, float *var,
IMSLS_VAR_USER, float var[],
IMSLS_VAR_COL_DIM, int var_col_dim,
IMSLS_RETURN_USER, float x[],
0)

Optional Arguments
IMSLS_MAX_SIGMA,  float  max_sigma (Input)

Value of the upperbound on the first element (sigma) of the array of returned estimated coefficients. 

Default = 10.

IMSLS_A,  float *a  (Output)
Value of Log-likelihood function evaluated at the estimated parameter array x.

IMSLS_AIC,  float *aic  (Output)
Value of Akaike Information Criterion evaluated at the estimated parameter array x.

IMSLS_VAR,  float *var  (Output)
Array of size (p+q+1)x(p+q+1) containing the variance-covariance matrix.

IMSLS_VAR_USER,  float var[]  (Output)
Storage for array var is provided by the user. See IMSLS_VAR.

IMSLS_VAR_COL_DIM,  int var_col_dim  (Input)
Column dimension (p+q+1)of the variance-covariance matrix.

IMSLS_RETURN_USER,  float x[]  (Output) 
If specified, x returns an array of length p +q+1 containing the estimated values of sigma squared, 
followed by the q ARCH parameters, and the p GARCH parameters. Storage for estimated parameter 
array x is provided by the user.

Description
The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model for a time series {wt} is defined as
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where zt’s are independent and identically distributed standard normal random variables, 

The above model is denoted as GARCH(p,q). The βi and αi coefficients will be referred to as GARCH and ARCH 

coefficients, respectively. When βi = 0, i = 1,2,…, p, the above model reduces to ARCH(q) which was proposed by 

Engle (1982). The nonnegativity conditions on the parameters imply a nonnegative variance and the condition on 
the sum of the βi’s and αi’s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have often found to appropriately 
account for conditional heteroskedasticity (Palm 1996). This finding is similar to linear time series analysis based 
on ARMA models. 

It is important to notice that for the above models positive and negative past values have a symmetric impact on 
the conditional variance. In practice, many series may have strong asymmetric influence on the conditional vari-
ance. To take into account this phenomena, Nelson (1991) put forward Exponential GARCH (EGARCH). Lai (1998) 
proposed and studied some properties of a general class of models that extended linear relationship of the con-
ditional variance in ARCH and GARCH into nonlinear fashion

The maximum likelihood method is used in estimating the parameters in GARCH(p,q). The log-likelihood of the 
model for the observed series {wt} with length m is

Thus log(L) is maximized subject to the constraints on the αi, βi, and σ.

In this model, if q = 0, the GARCH model is singular since the estimated Hessian matrix is singular.

The initial values of the parameter vector x entered in vector xguess must satisfy certain constraints. The first 

element of xguess refers to σ2 and must be greater than zero and less than max_sigma. The remaining p+q 
initial values must each be greater than or equal to zero and sum to a value less than one.

To guarantee stationarity in model fitting, 

wt = ztσt

σt
2 = σ2 + ∑

i=1

p
βiσt−i

2 + ∑
i=1

q
αiwt−i

2 ,

0 < σ2 < max_sigma, βi ≥ 0, αi ≥ 0 and

∑
i=2

p+q+1
x i = ∑

i=1

p
βi + ∑

i=1

q
αi < 1.

log(L) = − m2 log(2π) −
1
2 ∑
t=1

m
yt
2 / σt

2 − 12 ∑
t=1

m
logσt

2,

where σt
2 = σ2 + ∑

i=1

p
βiσt−i

2 + ∑
i=1

q
αiwt−i

2 .
875



 Time Series and Forecasting         garch
is checked internally. The initial values should selected from values between zero and one. 

AIC is computed by 

- 2 log (L) + 2(p+q+1),

where log(L) is the value of the log-likelihood function.

Statistical inferences can be performed outside the function GARCH based on the output of the log-likelihood 
function (a), the Akaike Information Criterion (aic), and the variance-covariance matrix (var).

Example
The data for this example are generated to follow a GARCH(p,q) process by using a random number generation 
function sgarch. The data set is analyzed and estimates of sigma, the ARCH parameters, and the GARCH 
parameters are returned. The values of the Log-likelihood function and the Akaike Information Criterion are 
returned from the optional arguments IMSLS_A and IMSLS_AIC.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
void sgarch (int p, int q, int m, float x[],
   float y[], float z[], float y0[], float sigma[]);
#define MAX(a, b) ((a)>(b)?(a):(b))
#define  M     1000
#define  N     (P + Q + 1)
#define  P     2
#define  Q     1
int main ()
{
   float     a, aic, wk1[M + 1000], wk2[M + 1000],
       wk3[M + 1000], x[N], xguess[N], y[M];
   float     *result;
   imsls_random_seed_set (182198625);
   x[0] = 1.3;
   x[1] = .2;
   x[2] = .3;
   x[3] = .4;
   xguess[0] = 1.0;
   xguess[1] = .1;
   xguess[2] = .2;
   xguess[3] = .3;

∑
i=2

p+q+1

x i =∑
i=1

p

βi +∑
i=1

q

αi < 1
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   sgarch (P, Q, M, x, y, wk1, wk2, wk3);
   result = imsls_f_garch(P, Q, M, y, xguess,
       IMSLS_A, &a,
       IMSLS_AIC, &aic, 
       0);
   printf("Sigma estimate is\t%11.4f\n", result[0]);
   printf("ARCH(1) estimate is\t%11.4f\n", result[1]);
   printf("GARCH(1) estimate is\t%11.4f\n", result[2]);
   printf("GARCH(2) estimate is\t%11.4f\n", result[3]);
   printf("\nLog-likelihood function value is\t%11.4f\n", a);
   printf("Akaike Information Criterion value is\t%11.4f\n", aic);
}
void sgarch (int p, int q, int m, float x[],
   float y[], float z[], float y0[], float sigma[])
{
   int       i, j, l;
   float     s1, s2, s3;
   imsls_f_random_normal ( m + 1000, IMSLS_RETURN_USER, z, 0);
   l = MAX (p, q);
   l = MAX (l, 1);
   for (i = 0; i < l; i++) y0[i] = z[i] * x[0];
   /* COMPUTE THE INITIAL VALUE OF SIGMA */
   s3 = 0.0;
   if (MAX (p, q) >= 1) {
       for (i = 1; i < (p + q + 1); i++) s3 += x[i];
   }
   for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3);
   for (i = l; i < (m + 1000); i++) {
       s1 = 0.0;
       s2 = 0.0;
       if (q >= 1) {
           for (j = 0; j < q; j++)
               s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];
       }
       if (p >= 1) {
           for (j = 0; j < p; j++)
               s2 += x[q + 1 + j] * sigma[i - j - 1];
       }
       sigma[i] = x[0] + s1 + s2;
       y0[i] = z[i] * sqrt (sigma[i]);
   }
   /* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS */
   for (i = 0; i < m; i++) y[i] = y0[1000 + i];
}
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Output

Sigma estimate is     1.7629
ARCH(1) estimate is     0.2517
GARCH(1) estimate is     0.3340
GARCH(2) estimate is     0.3034
Log-likelihood function value is -2707.0886
Akaike Information Criterion value is  5422.1772
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kalman
Performs Kalman filtering and evaluates the likelihood function for the state-space model.

Synopsis
#include <imsls.h>
void imsls_f_kalman (int nb, float nb[], float covb[], int *n, float *ss, float *alndet, ..., 0)

The type double function is imsls_d_kalman.

Required Arguments
int nb  (Input)

Number of elements in the state vector.

float b[]  (Input/Output)
Array of length nb containing the estimated state vector. The input is the estimated state vector at 
time k given the observations through time k - 1. The output is the estimated state vector at time 
k + 1 given the observations through time k. On the first call to imsls_f_kalman, the input b must 
be the prior mean of the state vector at time 1.

float covb[]  (Input/Output)
Array of size nb by nb such that covb×σ 2 is the mean squared error matrix for b. Before the first 
call to imsls_f_kalman, covb×σ 2 must equal the variance-covariance matrix of the state 
vector.

int *n  (Input/Output)
Pointer to the rank of the variance-covariance matrix for all the observations. n must be initialized to 
zero before the first call to imsls_f_kalman. In the usual case when the variance-covariance 
matrix is nonsingular, n equals the sum of the ny’s from the invocations to imsls_f_kalman. See 
optional argument IMSLS_UPDATE below for the definition of ny.

float *ss  (Input/Output)
Pointer to the generalized sum of squares. The estimate of σ2 is given by   . ss must be initialized 
to zero before the first call to imsls_f_kalman is made.

ssn
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float *alndet  (Input/Output)
Pointer to the natural log of the product of the nonzero eigenvalues of P where P × σ 2 is the vari-
ance-covariance matrix of the observations. Although alndet is computed, imsls_f_kalman 
avoids the explicit computation of P. alndet must be initialized to zero before the first call to 
imsls_f_kalman. In the usual case when P is nonsingular, alndet is the natural log of the deter-
minant of P.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_kalman (int nb, float b[], float covb[], int *n, float *ss, float *alndet, 

IMSLS_UPDATE, int ny, float *y, float *z, float *r,
IMSLS_Z_COL_DIM, int z_col_dim,
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_T, float *t,
IMSLS_T_COL_DIM, int t_col_dim,
IMSLS_Q, float *q,
IMSLS_Q_COL_DIM, int q_col_dim,
IMSLS_TOLERANCE, float tolerance,
IMSLS_V, float **v,
IMSLS_V_USER, float v[],
IMSLS_COVV, float **covv,
IMSLS_COVV_USER, float covv[],
0)

Optional Arguments
IMSLS_UPDATE, int ny, float *y, float *z, float *r  (Input)

Perform computation of the update equations. 

ny: Number of observations for current update.

y: Array of length ny containing the observations.

z: ny by nb array containing the matrix relating the observations to the state vector in the observa-
tion equation.
r: ny by ny array containing the matrix such that r × σ2 is the variance-covariance matrix of errors 
in the observation equation. 

σ 2 is a positive unknown scalar. Only elements in the upper triangle of r are referenced.
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IMSLS_Z_COL_DIM, int z_col_dim  (Input)
Column dimension of the matrix z.

Default: z_col_dim = nb
IMSLS_R_COL_DIM, int r_col_dim  (Input)

Column dimension of the matrix r.
Default: r_col_dim = ny

IMSLS_T, float *t  (Input)
nb by nb transition matrix in the state equation 
Default: t = identity matrix

IMSLS_T_COL_DIM, int t_col_dim  (Input)
Column dimension of the matrix t.
Default: t_col_dim = nb

IMSLS_Q, float *q  (Input)
nb by nb matrix such that q × σ2 is the variance-covariance matrix of the error vector in the state 
equation. 

Default: There is no error term in the state equation.

IMSLS_Q_COL_DIM, int q_col_dim  (Input)
Column dimension of the matrix q.

Default: q_col_dim = nb
IMSLS_TOLERANCE, float tolerance  (Input)

Tolerance used in determining linear dependence. 

Default: tolerance = 100.0 × imsls_f_machine(4)
IMSLS_V, float **v  (Output)

Address to a pointer v to an array of length ny containing the one-step-ahead prediction error.

IMSLS_V_USER, float v[]  (Output)
Storage for v is provided by the user. See IMSLS_V.

IMSLS_COVV, float **covv  (Output)
The address to a pointer of size ny by ny containing a matrix such that covv × σ2 is the variance-
covariance matrix of v.

IMSLS_COVV_USER, float covv[]  (Output)
Storage for covv is provided by the user. See IMSLS_COVV.
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Description
Function imsls_f_kalman is based on a recursive algorithm given by Kalman (1960), which has come to be 
known as the Kalman filter. The underlying model is known as the state-space model. The model is specified 
stage by stage where the stages generally correspond to time points at which the observations become available. 
The function imsls_f_kalman avoids many of the computations and storage requirements that would be 
necessary if one were to process all the data at the end of each stage in order to estimate the state vector. This is 
accomplished by using previous computations and retaining in storage only those items essential for processing 
of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in y using optional argument 

IMSLS_UPDATE) be the nk × 1 vector of observations that become available at time k. The subscript k is used 

here rather than t, which is more customary in time series, to emphasize that the model is expressed in stages k 
= 1, 2, … and that these stages need not correspond to equally spaced time points. In fact, they need not corre-
spond to time points of any kind. The observation equation for the state-space model is

yk = Zkbk + ek   k = 1, 2, …

Here, Zk (input in z using optional argument IMSLS_UPDATE) is an nk × q known matrix and bk is the q × 1 state 

vector. The state vector bk is allowed to change with time in accordance with the state equation

bk

+1

 = Tk+

1

bk + w k+

1 

k = 1, 2, …
starting with b1 = μ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the transition matrix T k+1 (the identity 

matrix by default, or optionally input using IMSLS_T), which is assumed known. It is assumed that the q-dimen-
sional wks (k = 1, 2,…) are independently distributed multivariate normal with mean vector 0 and variance-

covariance matrix σ 2Qk, that the nk-dimensional eks (k = 1, 2,…) are independently distributed multivariate nor-

mal with mean vector 0 and variance-covariance matrix σ 2Rk, and that the wks and eks are independent of each 

other. Here, μ1 is the mean of b1 and is assumed known, σ 2 is an unknown positive scalar. Qk+1(input in q) and 

Rk (input in r) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations y1, y2, …, yj by 
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By definition, the mean squared error matrix for 

is

At the time of the k-th invocation, we have

and Ck|k-1 which were computed from the (k-1)-st invocation, input in b and covb, respectively. During the k-th 

invocation, function imsls_f_kalman computes the filtered estimate

along with Ck|k. These quantities are given by the update equations:

where

and where 

Here, vk (stored in v) is the one-step-ahead prediction error, and σ 2Hk is the variance-covariance matrix for vk. Hk 

is stored in covv. The “start-up values” needed on the first invocation of imsls_f_kalman are

and C 1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation are completed by 

imsls_f_kalman computing the one-step-ahead estimate 

β^ k∣ j

β^ k∣ j

σ2Ck∣ j = E(β
^
k∣ j − bk)(β

^
k∣ j − bk)

T

β^ k∣k−1

β^ k∣k

β^ k∣k = β
^
k∣k−1 + Ck∣k−1Zk

THk
−1vk

Ck∣k = Ck∣k−1 − Ck∣k−1Zk
THk

−1ZkCk∣k−1

vk = yk − Zkβ
^
k∣k−1

Hk = Rk + ZkCk∣k−1Zk
T

β^ 1∣0 = μ1
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along with Ck+1|k given by the prediction equations:

If both the filtered estimates and one-step-ahead estimates are needed by the user at each time point, 
imsls_f_kalman can be invoked twice for each time point—first without IMSLS_T and IMSLS_Q to 
produce

and Ck|k, and second without IMSLS_UPDATE to produce

and Ck+1|k. (Without IMSLS_T and IMSLS_Q, the prediction equations are skipped. Without IMSLS_UPDATE, 

the update equations are skipped.)

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an estimate of

is needed where k > j + 1. At time j, imsls_f_kalman is invoked with IMSLS_UPDATE to compute

Subsequent invocations of imsls_f_kalman without IMSLS_UPDATE can compute

Computations for

and Ck|j assume the variance-covariance matrices of the errors in the observation equation and state equation 

are known up to an unknown positive scalar multiplier, σ 2. The maximum likelihood estimate of σ 2 based on the 
observations y1, y2, …, ym, is given by

β^ k+1∣k

β^ k+1∣k = Tk+1β
^
k∣k

Ck+1∣k = Tk+1Ck∣kTk+1
T + Qk+1

β^ k∣k

β^ k+1∣k

β^ k∣ j

β^ j+1∣ j

β^ j+2∣ j, β
^
j+3∣ j, … β^ k∣ j

β^ k∣ j
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where

N and SS are the input/output arguments n and ss.

If σ 2 is known, the Rks and Qks can be input as the variance-covariance matrices exactly. The earlier discussion is 

then simplified by letting σ 2 = 1. 

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may be known functions of an 

unknown parameter vector θ. In this case, imsls_f_kalman can be used in conjunction with an optimization 
program (see function imsl_f_min_uncon_multivar, IMSL C/Math/Library, Chapter 8, Optimization) to 
obtain a maximum likelihood estimate of θ. The natural logarithm of the likelihood function for y1, y2, …, ym differs 

by no more than an additive constant from

(Harvey 1981, page 14, equation 2.21). 

Here,

(stored in alndet) is the natural logarithm of the determinant of V where σ 2V is the variance-covariance matrix 
of the observations. 

Minimization of -2L(θ, σ 2; y1, y2, ..., ym) over all θ and σ 2 produces maximum likelihood estimates. Equivalently, 

minimization of -2Lc(θ;y1, y2, ..., ym) where

produces maximum likelihood estimates 

σ̂2 = SS /N

N =∑
k=1

m

nk and SS =∑
k=1

m

vk
THk

−1vk

L(θ,σ2; y1, y2, … , ym) = −
1
2N ln σ

2

− 12 ∑
k=1

m
ln[det Hk ] −

1
2σ
−2 ∑
k=1

m
vk
THk

−1vk

∑
k=1

m

ln[det Hk ]

Lc θ; y1, y2, … , ym = − 12N ln
SS
N − 12∑

k=1

m

ln[det Hk ]
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The minimization of -2Lc(θ;y1, y2, ..., ym) instead of -2L(θ, σ 2; y1, y2, ..., ym), reduces the dimension of the minimi-

zation problem by one. The two optimization problems are equivalent since 

minimizes -2L(θ, σ 2; y1, y2, ..., ym) for all θ, consequently, 

can be substituted for σ 2 in L(θ, σ 2; y1, y2, ..., ym) to give a function that differs by no more than an additive con-

stant from Lc(θ;y1, y2, ..., ym). 

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification for singular distributions 

described by Rao (1973, pages 527–528) is used. The necessary changes in the preceding discussion are as 
follows:

 Replace   by a generalized inverse.

 Replace det(Hk) by the product of the nonzero eigenvalues of Hk. 

 Replace N by   

Maximum likelihood estimation of parameters in the Kalman filter is discussed by Sallas and Harville (1988) and 
Harvey (1981, pages 111–113).

Example 1

Function imsls_f_kalman is used to compute the filtered estimates and one-step-ahead estimates for a sca-
lar problem discussed by Harvey (1981, pages 116-117). The observation equation and state equation are given 
by

where the eks are identically and independently distributed normal with mean 0 and variance σ 2, the wks are 

identically and independently distributed normal with mean 0 and variance 4σ 2, and b1is distributed normal with 

mean 4 and variance 16σ 2. Two invocations of imsls_f_kalman are needed for each time point in order to 
compute the filtered estimate and the one-step-ahead estimate. The first invocation does not use the optional 
arguments IMSLS_T and IMSLS_Q so that the prediction equations are skipped in the computations. The 
update equations are skipped in the computations in the second invocation.

θ^ and σ̂2 = SS /N

σ̂2 θ = SS θ /N

σ̂2 θ

Hk
−1

∑k=1
m rank Hk

yk = bk + ek
bk+1 = bk + wk+1 k = 1,2,3,4
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This example also computes the one-step-ahead prediction errors. Harvey (1981, page 117) contains a misprint 
for the value v4 that he gives as 1.197. The correct value of v4 = 1.003 is computed by imsls_f_kalman.

#include <stdio.h>
#include <imsls.h>
#define NB 1
#define NOBS 4
#define NY 1
int main()
{
   int        nb = NB, nobs = NOBS, ny = NY;
   int        ldcovb, ldcovv, ldq, ldr, ldt, ldz;
   int        i, iq, it, n, nout;
   float      alndet, b[NB], covb[NB][NB], covv[NY][NY], 
              q[NB][NB], r[NY][NY], ss,
              t[NB][NB], tol, v[NY], y[NY], z[NY][NB];
   float      ydata[] = {4.4, 4.0, 3.5, 4.6};
   z[0][0] = 1.0;
   r[0][0] = 1.0;
   q[0][0] = 4.0;
   t[0][0] = 1.0;
   b[0] = 4.0;
   covb[0][0] = 16.0;
   /* Initialize arguments for initial call to imsls_f_kalman. */
   n = 0;
   ss = 0.0;
   alndet = 0.0;
   printf("k/j     b      covb n    ss     alndet    v      covv\n");
   for (i = 0; i < nobs; i++) {
     /* Update */
     y[0] = ydata[i];
     imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet, 
        IMSLS_UPDATE, ny, y, z, r, 
        IMSLS_V_USER, v, 
        IMSLS_COVV_USER, covv, 
        0);
     
     printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n", 
      i, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);
     /* Prediction */
     imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,
        IMSLS_T, t,
        IMSLS_Q, q,
        0);
     
     printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n", 
      i+1, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);
   }
}
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Output

k/j     b      covb n    ss     alndet    v      covv
0/0   4.376   0.941 1   0.009   2.833   0.400  17.000
1/0   4.376   4.941 1   0.009   2.833   0.400  17.000
1/1   4.063   0.832 2   0.033   4.615  -0.376   5.941
2/1   4.063   4.832 2   0.033   4.615  -0.376   5.941
2/2   3.597   0.829 3   0.088   6.378  -0.563   5.832
3/2   3.597   4.829 3   0.088   6.378  -0.563   5.832
3/3   4.428   0.828 4   0.260   8.141   1.003   5.829
4/3   4.428   4.828 4   0.260   8.141   1.003   5.829

Example 2

Function imsls_f_kalman is used with function imsl_f_min_uncon_multivar, (see IMSL 
C/Math/Library, Chapter 8, Optimization) to find a maximum likelihood estimate of the parameter θ in a MA(1) 
time series represented by yk = ɛk - θɛk-1. Function imsls_f_random_arma (see Chapter 12, Random Number 

Generation) is used to generate 200 random observations from an MA(1) time series with θ = 0.5 and σ 2 = 1.

The MA(1) time series is cast as a state-space model of the following form (see Harvey 1981, pages 103–104, 
112):

where the two-dimensional wks are independently distributed bivariate normal with mean 0 and variance σ 2 Qk 

and

The warning error that is printed as part of the output is not serious and indicates that 
imsl_f_min_uncon_multivar (see C/Math/Library, Chapter 8, Optimization) is generally used for multi-
parameter minimization.

#include <stdio.h>
#include <math.h>
#include <imsl.h>
#include <imsls.h>
#define NOBS 200
#define NTHETA 1
#define NB 2
#define NY 1

yk = 1 0 bk

bk =
0 1
0 0

bk−1 + wk

Q1 =
1 + θ2 −θ
−θ θ2

Qk =
1 −θ
−θ θ2

k = 2,3,...200
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float fcn(int ntheta, float theta[]);
float *ydata;
int main ()
{
   int lagma[1];
   float pma[1];
   float *theta; 
   imsls_random_seed_set(123457);
   pma[0] = 0.5;
   lagma[0] = 1;
   ydata = imsls_f_random_arma(200, 0, NULL, 1, pma, 
       IMSLS_ACCEPT_REJECT_METHOD,
       IMSLS_NONZERO_MALAGS, lagma,
       0);
   theta = imsl_f_min_uncon_multivar(fcn, NTHETA, 0);
   printf("* * * Final Estimate for THETA * * *\n");
   printf("Maximum likelihood estimate, THETA = %f\n", theta[0]);
}

float fcn(int ntheta, float theta[])
{
   int i, n;
   float res, ss, alndet;
   float t[] = {0.0, 1.0, 0.0, 0.0};
   float z[] = {1.0, 0.0};
   float q[NB][NB], r[NY][NY], b[NB], covb[NB][NB], y[NY];
   if (fabs(theta[0]) > 1.0) {
       res = 1.0e10;
   } else {
       q[0][0] = 1.0;
       q[0][1] = -theta[0];
       q[1][0] = -theta[0];
       q[1][1] = theta[0]*theta[0];
       r[0][0] = 0.0;
       b[0] = 0.0;
       b[1] = 0.0;
       covb[0][0] = 1.0 + theta[0]*theta[0];
       covb[0][1] = -theta[0];
       covb[1][0] = -theta[0];
       covb[1][1] = theta[0]*theta[0];
       n = 0;
       ss = 0.0;
       alndet = 0.0;
       for (i = 0; i<NOBS; i++) {
           y[0] = ydata[i];
           imsls_f_kalman(NB, b, (float*)covb, &n, &ss, &alndet, 
               IMSLS_UPDATE, NY, y, z, r, 
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               IMSLS_Q, q, 
               IMSLS_T, t, 
               0);
       }
       res = n*log(ss/n) + alndet;
   }
   return(res);
}

Output
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. This routine
***         may be inefficient for a problem of size "n" = 1.
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. The last global
***         step failed to locate a lower point than the current X value. 
***         The current X may be an approximate local minimizer and no more
***         accuracy is possible or the step tolerance may be too large
***         where "step_tol" = 2.422181e-05 is given.
* * * Final Estimate for THETA * * *
Maximum likelihood estimate, THETA = 0.453256
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vector_autoregression
Estimates a vector auto-regressive time series model with optional moving average components.

Synopsis
#include <imsls.h> 

float *imsls_f_vector_autoregression (int n_obs, int n_cols, float y[], int p, …, 0)

The type double function is imsls_d_vector_autoregression.

Required Arguments
int n_obs  (Input)

The number of rows in y.  n_obs is equal to the number of observations of each time series.

int n_cols  (Input)
The number of columns in y.  n_cols = K, the number of individual time series.

float y[]  (Input)
An array of size n_obs by n_cols containing the data. 

int p  (Input)
The autoregressive lag order.

Return Value
An array containing the estimated coefficients. The array has length 
n_cols×(trend+n_xvars+n_cols×(p+q+1)) if a non-trivial A0 is included in the model. Otherwise, the 

array has length n_cols×(trend+n_xvars+n_cols×(p+q)). trend = 1 if IMSLS_TREND is specified, 
and 0 otherwise.

The array elements occur in this order:

 If IMSLS_TREND is specified, the trend coefficient vector (b0) of length K (K=n_cols).

 The coefficient matrix for the deterministic variables (D), of size  K by n_xvars, oriented by 
column.

 The p (or p+1) autoregressive coefficient matrices (A), each of size K by K, oriented by column.
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 The q moving average coefficient matrices (M), each of size K by K, oriented by column.

This arrangement corresponds to the vectorized coefficient matrix,

B = vec[b

0

, D, A

0

, A

1

, …, Ap, M1, M2, …, Mq]

or

B = vec[b

0

, D, A

1

, …, Ap, M1, M

2

, …, Mq]

See also optional argument IMSLS_RETURN_USER for a different form of these output values. To release this 
space, use imsls_free. If no value can be computed, or IMSLS_RETURN_USER is supplied, returns NULL.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_vector_autoregression (int n_obs, int n_cols, float y[], int p,
IMSLS_MA_LAG, int q,
IMSLS_A0,
IMSLS_AR_MODEL, int ar[],
IMSLS_MA_MODEL, int ma[],
IMSLS_AR_CONSTANTS, float ar_c[],
IMSLS_MA_CONSTANTS, float ma_c[],
IMSLS_PRESAMPLE, int n_T,
IMSLS_MAX_LAG, int max_lag,
IMSLS_N_STEPS, int max_steps,
IMSLS_MAX_ITERATIONS, int max_iter,
IMSLS_TOLERANCE, float tol,
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IMSLS_TREND,
IMSLS_SCALE,
IMSLS_CENTER,
IMSLS_X_DATA, int n_xvars, float x[],
IMSLS_ERROR_CORRECTION, int irank,
IMSLS_CAUSALITY, int size_S1, int S1[], int S2[],
IMSLS_CAUSALITY_STATS, float stats[],
IMSLS_VAR_INFO, Imsls_f_regression **var_info,
IMSLS_VARMA_INFO, Imsls_f_regression **varma_info,
IMSLS_UNIT_ROOT, f_complex **ur_evals,
IMSLS_UNIT_ROOT_USER, f_complex ur_evals[],
IMSLS_VECM_COEF, float **vecm_coef,
IMSLS_VECM_COEF_USER, float vecm_coef[],
IMSLS_VECM_EIGENVALUES, f_complex **vecm_eigens,
IMSLS_VECM_EIGENVALUES_USER, f_complex vecm_eigens[],
IMSLS_VECM_ALPHABETA, float **vecm_alphabeta,
IMSLS_VECM_ALPHABETA_USER, float vecm_alphabeta[],
IMSLS_FORECASTS, float **forecasts,
IMSLS_FORECASTS_USER, float forecasts[],
IMSLS_CRITERIA, float criteria[],
IMSLS_LOG_LIKELIHOOD, float *ll,
IMSLS_RETURN_USER, float b0[], float d[], float a[], float m[],
0)

Optional Arguments
IMSLS_MA_LAG, int q  (Input)

Fit a moving average component of order q.  
Default: q = 0.

IMSLS_A0,  (Input)
Indicates that the model has a non-trivial, lower-triangular leading AR operator, A0. See the 
Description section for more details. By default, A0 = Ik, where K = n_cols and Ik is the K by K identity 
matrix. 

IMSLS_AR_MODEL, int ar[]  (Input)
An array used to specify restrictions on the AR coefficient matrices. If IMSLS_A0 is present, ar is of 
length K by K by (p+1). If IMSLS_A0 is not present, ar is K by K by p.  Each element of ar should 
be one of {-1, 0, 1}. If IMSLS_A0 is present, indicating a non-trivial A0, the ordering of AR corre-
sponds to the parameters as follows:
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[α
11,0

,α
21,0

, … αK

1,0

, …, α
1

K,

0

, α
2

K,

0

, …, αKK,

0

,

α
11,1

, α
21,1

, …, αK

1,1

, …, α
1

K,

1

,α
2

K,

1

, …, αKK,

1

, …,
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α
1

K,p,α
2

K,p, …, αKK,p]

If A0 is trivial (equal to the identity matrix), the ordering is the same but the elements αKi,0 are left out 

and the first element is α11,1. If ar[i]=1 or ar[i]=-1, A(k,i) = αki,j is estimated. If ar[i]=0, the 

parameter is restricted to be equal to 0 or some other constant. Constants other than 0 can be spec-
ified in the optional argument IMSLS_AR_CONSTANTS. By default, all parameters are estimated.
Default: ar[i] = 1.

IMSLS_MA_MODEL, int ma[]  (Input)
An array of length K by K by (q+1)if IMSLS_A0, or K by K by q if not IMSLS_A0.  ma is used to 
specify restrictions on the moving-average coefficients. ma is constructed analagously to the ar 
restriction matrix detailed above. If IMSLS_A0, the first K by K by 1 entries in ma are only used when 
ar is not provided, because it is assumed that M0 = A0 . 
Default: ma[i] = 1.  

IMSLS_AR_CONSTANTS, float ar_c[]  (Input)
An array of length K by (p+1)(or K by p) specifying the constants when certain of the AR parame-
ters are restricted. Note that a lower triangular A0 is always assumed, with 1’s on the diagonal. 
However, constants for the lower triangle can be specified using this optional argument. 
Default ar_c[i] = 0.

IMSLS_MA_CONSTANTS, float ma_c[]  (Input)
An array of length K by (q+1)(or K by q) specifying the constants when certain of the MA parame-
ters are restricted. Note that the leading MA coefficient matrix M0 = A0 and thus there is no 
specification for it. 
Default ma_c[i] = 0.

IMSLS_PRESAMPLE, int n_T  (Input).
Specifies the number of rows of y to use as a presample in the estimation procedure. n_T must be 
strictly greater than 0.

Default n_T = max_lag.

IMSLS_MAX_LAG, int max_lag  (Input)
Specifies the maximum AR order or lag to use in the unrestricted VAR model. max_lag must be 
strictly greater than 0.
Default: max_lag = 6.
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IMSLS_N_STEPS, int max_steps  (Input)
Specifies the maximum number of steps ahead. When requested, forecasts are produced for times 
t+h where h = 1, 2, …, max_steps and t = n_T, n_T+1, …, n_obs.
Default: max_steps = 4.

IMSLS_MAX_ITERATIONS, int max_iter  (Input)
Specifies the maximum number of iterations. max_iter > 0.
Default: max_iter = 100.

IMSLS_TOLERANCE, float tol  (Input)
Specifies the error tolerance used in the iterations.
Default: tol = 100×imsls_f_machine(4).

IMSLS_TREND,  (Input)
Indicates that a constant trend (intercept) term should be included in the model.
 Default: No trend.

IMSLS_SCALE,  (Input)
Indicates that the data series in y should be centered and then scaled before the analysis begins. 
Default: No scaling.

IMSLS_CENTER,  (Input)
Indicates that the data series in y should be centered before the analysis begins. Note that if 
IMSLS_SCALE is provided, IMSLS_CENTER has no effect. 
Default: No centering.

IMSLS_X_DATA, int n_xvars, float x[]  (Input)
Input values of the deterministic variables.

int n_xvars  (Input)
The number of deterministic variables.

float x[]  (Input)
The n_obs by n_xvars array containing the values of the deterministic variables.  Note 
that if x is provided when forecasts are requested, x must have additional rows that can be 
used for the forecasts. That is, x is an array of at least (n_obs + max_steps) rows by 
n_xvars.
Default: n_xvars = 0.

IMSLS_ERROR_CORRECTION, int irank  (Input) 
Estimate the error-correcting form of the VAR model assuming the series are integrated of order 1 
and there are 0 <= irank <= n_cols co-integrating relationships. When irank=0, the error-
correcting model is not estimated.
Default: irank = 0.
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IMSLS_CAUSALITY, int size_S1, int S1[], int S2[]  (Input)
Specification for a test of Granger causality.

int size_S1  (Input)
The number of variables with indices given in array S1.  0 <= size_S1 < n_cols. No test is 
performed when size_S1 = 0. 
Default: size_S1 = 0.

float S1[]  (Input)
An array of length size_S1 containing the indices of the variables that are not Granger-
caused by the variables specified in S2, under the null hypothesis. Each index must be 
between 1 and n_cols inclusive and must not equal any index in S2.

float S2[]  (Input)
An array of length n_cols-size_S1 containing the indices of the variables that do not 
Granger-cause the variables specified in S1, under the null hypothesis. Each index must be 
between 1 and n_cols inclusive and must not equal any index in S1.

IMSLS_CAUSALITY_STATS, float stats[]  (Output)
An array of length 2 containing the test statistic value and associated p-value resulting from the 
requested Granger causality test. It is an error to request this output without specifying the test 
using IMSLS_CAUSALITY.

IMSLS_VAR_INFO, Imsls_f_regression **var_info  (Output)
Contains the regression information from the first stage fitting of the model, VAR(max_lag). This 
structure may be used as input to imsls_f_regression_summary. See also  
imsls_f_regression optional argument IMSLS_REGRESSION_INFO.

IMSLS_VARMA_INFO, Imsls_f_regression **varma_info  (Output)
Contains the regression information from the second stage fitting of the model. VARMA(p,q). This 
structure may be used as input to imsls_f_regression_summary. See also  
imsls_f_regression optional argument IMSLS_REGRESSION_INFO.

IMSLS_UNIT_ROOT, f_complex **ur_evals  (Output)
Address of a pointer to a complex array of length K by(p+q) containing the eigenvalues of the 
determinantal polynomial.

IMSLS_UNIT_ROOT_USER, f_complex ur_evals[]  (Output)
Storage for the array ur_evals is provided by the user.

IMSLS_VECM_COEF, float **vecm_coef  (Output)
Address of a pointer to an array of length K by K by (p+1)or (K by K by p) containing the estimated 
parameters when the model is put into the error-correcting form.

IMSLS_VECM_COEF_USER, float vecm_coef[]  (Output)
Storage for the array vecm_coef is provided by the user.
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IMSLS_VECM_EIGENVALUES, f_complex **vecm_eigens  (Output)
Address of a pointer to an array of length K containing the eigenvalues associated with each cointe-
grating rank r, 0 <= r <= K.

IMSLS_VECM_EIGENVALUES_USER, f_complex vecm_eigens[]  (Output)
Storage for the array vecm_eigens is provided by the user.

IMSLS_VECM_ALPHABETA, float **vecm_alphabeta  (Output)
An array of length 2×(K by irank) containing the estimates of the coefficient matrix  of the 
error-correction model. The first K by irank elements correspond to α and the second irank by K 
elements correspond to β’.

IMSLS_VECM_ALPHABETA_USER, float vecm_alphabeta[]  (Output)
Storage for the array vecm_alphabeta is provided by the user.

IMSLS_FORECASTS, float **forecasts  (Output)
An array of length n_obs by n_cols by max_steps containing the 1, 2, …, max_steps ahead 
forecasts based on the final fitted VARMA model. 

IMSLS_FORECASTS_USER, float forecasts[]  (Output)
Storage for the array forecasts is provided by the user.

IMSLS_CRITERA, float criteria[]  (Output)
An array of size 4 containing AIC, BIC, HQ, and FPE fit critieria for the given model. 

IMSLS_LOG_LIKELIHOOD, float *ll (Output)
Log–likelihood of the estimated VARMA(p,q) model.

IMSLS_RETURN_USER, float b0[], float d[], float a[], float m[] (Output)
Storage for the return value is supplied by the user in separate arrays.

float b0[]  (Output)
If IMSLS_TREND is specified, the estimated constant trend coefficient of length 
K (K = n_cols) is returned in b0. If IMSLS_TREND is not specified, b0 is ignored and can 
be NULL.

float d[]  (Output)
If n_xvars > 0, the estimated K by n_xvars coefficient matrix for the deterministic vari-
ables is returned in d. If n_xvars = 0, d is ignored and can be NULL.

float a[]  (Output)
If IMSLS_A0 is specified, the estimated (p+1) autoregressive matrices, each of length 
K by K, are returned in a. If IMSLS_A0 is not specified, the (p) autoregressive matrices, 
each of length K by K, are returned in a. If p = 0, a is ignored and can be NULL. Note that if 
p = 0, q must be greater than 0 (and vice-versa).

Π = αβ′
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float m[]  (Output)
The estimated (q) moving average coefficient matrices, each of length K by K, are returned 
in m. If q = 0, m is ignored and can be NULL. Note that if q = 0, p must be greater than 0 (and 
vice-versa).

Description
This function estimates a vector-autoregression moving average model using one and two-stage multivariate 
least squares regressions.

The general model can be written in operator notation as

A(L)(yt-μ) = M(L)ut + Dxt

where yt is a K-dimensional real-valued time series with stationary mean μ , ut is a K-dimensional white noise 

series with a non-singular covariance matrix, Σu, and xt respresents a matrix of deterministic components such as 

trend or seasonal variables. For autoregression (ar) lag parameter, p ≥ 0 , and moving average (ma) lag parame-
ter, q ≥ 0, the operators are defined as

A(L) = A

0

-A

1

L-A

2

L2-…ApLp

M(L) = M

0

-M

1

L-M

2

L2-…MqLq

where L is the lag or backshift operator, defined as

Lyt = yt-
1

, Lkyt = yt-k

and the Aj, Mj are K×K matrices of coefficients. That is,
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Aj(k,i) = [αki,j], k,i = 1, …,K,  j = 0, …, p

Mj(k,i) = [mki,j], k,i = 1, …,K,  j = 0, …, q

The model has many equivalent forms, such as

A

0

(yt-μ) = A

1

(yt-
1

-μ) + … + Ap(yt-p-μ) + A

0

ut + M1ut-
1

+ … + Mqut-q

A pure vector autoregression with q = 0 is often denoted VAR(p) and the autoregressive moving-average is  
VARMA(p,q).

The estimation procedures for the most part assume that the underlying time series is stable and invertible. 
These conditions are satisfied when

det(IK - A

1

z - … - Apzp) ≠ 0 for |z|≤ 1 (stability condition)

det(IK + M

1

z + … + Mqzq) ≠ 0 for |z|≤ 1 (invertibility condition).

In other words, the conditions for a stable and invertible process are that the roots of the determinantal polyno-
mial are outside the (complex) unit circle, or equivalently, that the eigenvalues of the determinantal matrix have 
modulus less than 1. To provide for unit-root tests, this function returns the eigenvalues of the estimated model 
via the optional argument IMSLS_UNIT_ROOT. In the case of unit-roots, when some fall on the unit circle 
(|z| = 1) there may still be stationary combinations of the variables. This behavior, known as cointegration, is dis-
cussed below.
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Error-Correction form and Cointegration

Another form of expressing the VARMA(p,q) model is the error-correcting form:

A

0

Δyt = Πyt-
1

+ Γ(L)Δyt + M(L)ut

where

Π = -(A

0

-A

1

-…-Ap), 

Γ(L) = (Γ
1

L + Γ
2

L2 + … + ΓpLp), and

M(L) = (M

0

+ M

1

L + … + MqLq) .

The error-correcting or error-correction model (ECM) was developed for economic variables that tend to track 
close to each other due to common trends. The concept is closely aligned with that of cointegration. A K-dimen-
sional process is said to be integrated of order 1, denoted as yt ~ I(1), when yt is non-stationary while the first-

differenced series, Δyt, is stationary. In this case, there may exist a stationary linear combination in the levels (non-

differenced versions). That is, there may exist a

zt = β ′yt = β
1

ty

1

t + β
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2

ty

2

t + … βKtyKt ,

where at least one βit ≠ 0 such that zt is stationary.

The interpretation is that cointegrated variables have common trends that cause them to move together in some 
sense. Consider the price of a commodity in two different locations. At their individual levels, they are non-station-
ary, unpredictable processes, but market forces keep the two prices from being too far apart so the difference in 
their prices is stationary.

We obtain an estimate of each coefficient matrix in the ECM form of the model. Then we are interested in the 
decomposition of Π = αβ ′ where α,β are K×irank (rank irank coefficient matrices). From the ECM form it can 
be deduced that zt = β ′yt is the cointegrating relationship under the given assumptions. However, the cointegrat-

ing rank r is not known in practice. As discussed in Lütkepohl, 2007, Ch. 7, the most common tests for the correct 
cointegrating rank are

H

0

: r = r

0

 vs H

1

: r

0

< r ≤ K

and 

H

0

: r = r

0

 vs H

1

: r = r

0

+ 1
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The likelihood ratio test statistic for testing the first hypothesis is known as the trace test, and the second is 
known as the maximum eigenvalue test (Johansen 1988, 1995). In particular,

where λ1 ≥… ≥ λK are eigenvalues of a particular matrix associated with the likelihood function. To allow for 

various tests, this function returns the eigenvalues λ1 ≥… ≥ λK through the optional argument 

IMSLS_VECM_EIGENVALUES.

The Granger-Causality Test

Partition the K- dimensional time series as yt’ = (zt,xt)’, where zt is of length m and xt is of length K-m. In general, xt 

is said to Granger-cause zt when predictions for zt can be improved by taking xt into account, and vice-versa. In the 

context of a stable and invertible VAR(p) or VARMA(p,q) process, a test for Granger causality amounts to testing for 
certain 0 restrictions on the AR or MA coefficients. Given a partition yt’ = (zt,xt)’, the test of

H

0

: xt does not Granger-cause zt

H

1

: xt does Granger-cause zt

is performed using a version of the Wald statistic which has an approximate F-distribution,

λW / N ≈ F(N,T - K(p + q) - 1)

where N is the number of 0 restrictions induced by the test. This function returns the test statistic and associated 
p-value when a test is specified through the optional argument IMSLS_CAUSALITY.

Comments
1. There are different notational conventions in the literature. Box, Jenkins, and Reinsel typically use 

(Φ,Θ) in place of (A,M) and B instead of L for the backshift or lag operator. Because it is the main refer-
ence for this implementation, we follow the notation used by Lütkepohl (2007).

2. The two-stage regression approach is robust in the sense that results are produced even when there 
are roots close to 1 or less than 1 (in modulus). The estimates can be tested for unstable roots using 
the optional argument IMSLS_UNIT_ROOT.

λ(r0,K) = − T ∑
i=r0+1

K
ln(1 − λi) and

λ(r0,r0 + 1) = − T ln(1 − λr0+1)
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3. In general a collection of K time series yt = (y1t, y2t, …, ykt)′ is said to be cointegrated of order (d-b) 

when they are each individually integrated of order d, but there exists a linear combination 
zt = β ′yt = β1ty1t + β2ty2t + … βKtyKt, with βit ≠ 0 for at least one i, which is integrated of order b. In 

this implementation, only the case where d = 1 and b = 0 is considered. An even more general situa-
tion allows the individual time series to have differing orders of integration. For more details, see, for 
example, Engle and Granger, (1991).

Examples

Example 1

In this example we use a small data set with 2 time series. A VARMA(1,0) model is requested. 

#include <imsls.h>
#include <stdlib.h>
int main(){
    int n_obs=20, n_cols=2;
    int p=1;
    float *coef=NULL;
    float y[]={0, 0,
        -0.148105526820657, 0.0507420782620461,
        -1.13674727366735, 0.862892721126079,
        1.54366183541037, -1.13804802266371,
        -0.0923211737957721, 1.65649055346038,
        0.521764564424907, -2.11208211206815,
        0.843683397890515, 2.56656798707681,
        -2.70330819114831, -2.83452914666041,
        4.93683704766295, 3.95965377457266,
        -4.78314880243807, -2.23136673998374,
        6.24911547448071, 0.40543051970714,
        -6.76582567372196, 0.816818897274206,
        6.21142944093012, -4.247694573354,
        -5.29817270483491, 5.08246614505046,
        4.19557583927549, -5.35697380907112,
        -3.21572784971078, 7.89716072829777,
        0.485717553966479, -8.25930665413043,
        2.69490292018773, 10.9017252520684,
        -5.41090143363388, -10.400477539227,
        8.29423327234419, 9.10321370415527};
    coef=imsls_f_vector_autoregression(n_obs, n_cols, y, p, 0);
    imsls_f_write_matrix("A1", 2, 2, coef,
        IMSLS_TRANSPOSE,
        0);
    if(coef){
        imsls_free(coef);
        coef = NULL;
    }
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}

Output

            A1
             1            2
1       -1.017       -0.296
2        0.273       -1.053

Example 2

In this example, we fit the unrestricted VARMA(1,1) model and request 1 and 2 step ahead forecasts for each 
observation.

#include <imsls.h>
#include <stdlib.h>
int main(){
    int n_obs=50, n_cols=2, p=1, q=1, max_step=2;
    float forecasts[2*2*50];
    float *coef = NULL;
    char   *clabel[] = {"t","t+1,Y1","t+1,Y2 ", "t+2, Y1","t+2, Y2"};
    float y[]=
    {
        0.143280117400598, 0.691517079320758, -1.054002748442,
        1.89368500251305, -0.595435384283415, -1.53385197609914,
        -0.450087415747451, -0.522758296071267, 0.338719815948114,
        1.73890633300759, -0.0420130132503371, -0.00933890926865466,
        -0.939527210947825, -0.279211957506804, 0.985111509818102,
        -0.185903912738057, -0.779058630583496, -1.52829111438157,
        -0.0444517646926054, -0.605935345974391, 1.17870357395841,
        0.979822006409954, -1.75509211790604, -1.02617250037744,
        -2.64443752185661, -0.405444884498378, -0.558146570012133,
        1.17006139568333, -0.14877513906561, 1.67436399145195,
        1.21251151094695, -0.236411746432856, -0.319260279201159,
        1.53774676549506, -0.798919508505848,-1.25907348772775,
        -0.43488363747126, 1.18754392780486, 2.49394567166528,
        -0.505392075680617, -0.939902530453777, -1.3000118234638,
        0.308365204823071, -0.0346715133254558, 0.155821836363299,
        1.53865066350577, -0.446013548645569, 0.421382795732249,
        -0.810472750765929, -0.475790066827614, -1.21547965787564,
        0.873092852598299, 0.314687304446453, -0.166494291509063,
        1.20846773815425, -0.21319122737697, 0.885697825416125,
        1.06749862455588, -0.417811475765902, 1.81350258917296,
        1.06312903931625, -0.357098401483029, -2.54962241395723,
        1.58241298127273, -0.445333714405381, -1.54921054521057,
        0.763932954657703, -0.459132068443737, -0.135020632775658,
        0.768987806710127, -2.21000914520305, -0.416578967811937,
        -0.787803924930718, -0.381994679294779, 0.651886558080692,
        -0.296275077784937, -1.34100151116192, -0.695511844572305,
        -1.38111408367782, -0.453263483406621, 0.546836142779091,
        1.35617195687341, 1.47675672302528, -0.879275538764735,
        1.33724523036386,-1.19560541543992, -0.355724070126155,
        -1.35440645398376, 0.215557787562229, -0.0705280128055462,
        2.64174061572298, 0.622022977819918, 1.85193603585307,
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        1.1425463214074, 1.47034707550646, -0.274392879035261,
        -0.0256438865664471, -1.32768501270967, 1.4002259906097,
        -1.13393234222336, 0.420685154939234, -1.14369662556446,
        -0.229525100642792,-1.14556440309372, -0.0726173507068031,
        0.537003424016424, 2.21081287812981, -0.329847605902733,
        0.658135565199115, 1.25161597712012, 0.324279854980608,
        -0.122777642651712, -0.746398274242844, -0.510384971856952,
        -1.52397549713935,-0.590932096161281, 0.351879848132452,
        -0.486815223667361, -0.582122931146207, -0.129708090826525,
        -1.83261132721672, -0.438855077878885, 0.160891671954672,
        0.130903505342111, -1.0930038744212, 0.858667240391389,
        -0.650140333935879, -0.192590383440759, -0.495902099869389,
        -0.0970274914548782, 0.271597266914655, -1.25629606008009,
        -1.82411099200514, -0.0862331652538604, -1.48736902275701,
        -0.702589236231933, 1.66371111576656, 0.260453048198016,
        0.472465295167692, 2.03959666287312, -1.47220802239244,
        0.584452376204567, 0.29538916638251, -0.424471774108761,
        1.35117053520231, 0.792966672512426, 0.559666965721712,
        1.03877148575442, 0.32764651319845, 0.792431599069095,
        1.79713629328279, 2.53306185903747, 0.382061987152509,
        -0.55974023663989, 0.261351966632211, 0.928359586004826,
        1.05805881312766, -0.448798293155081, -2.8433140252059,
        -1.29380365284521, 1.60167210548413, -0.58790657908656,
        -0.0697276516437701, 0.669259446155372, -0.756109095074059,
        -1.04262502361173, -0.689533522981508, 0.322514092974764,
        -0.62456134593389, 0.343601164613668, 0.406496690190247,
        -0.579352431691941, -0.38067184267295, 1.15818332237678,
        -1.3763494217139, 1.07842256464695, -0.607885118048254,
        -0.551750338671028, -0.688013574614753, -0.66192239892944,
        0.840882344143739, 0.501181908666563, 0.810882707408453,
        -0.373132840815414, -1.53884108045858, -0.0475950419868607,
        -1.11456391432642, -1.39312192248506, 0.374292584707849,
        0.307055843720151, 0.0883771102062163, 1.51499635303431,
        0.544284404231116, 1.62863647405725, 0.666268752934375,
        3.15259591439161, 0.535584045927088, 0.438326104669433,
        1.25375087298954, 1.2784768691421
    };
    coef = imsls_f_vector_autoregression(n_obs, n_cols, y, p,
        IMSLS_MA_LAG, q,
        IMSLS_N_STEPS, max_step,
        IMSLS_FORECASTS_USER, forecasts,
        0);
    imsls_f_write_matrix("* * * Forecasts  * * *\n", n_obs, n_cols*max_step,
        forecasts,
        IMSLS_COL_LABELS, clabel,
        0);
    if(coef){
        imsls_free(coef);
        coef = NULL;
    }
}

Output

                * * * Forecasts  * * *
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t         t+1,Y1      t+1,Y2       t+2, Y1      t+2, Y2
1         0.000        0.000        0.000        0.000
2         0.000        0.000        0.000        0.000
3         0.000        0.000        0.000        0.000
4         0.000        0.000        0.000        0.000
5         0.000        0.000        0.000        0.000
6         0.000        0.000        0.000        0.000
7         0.009       -0.739        0.002       -0.086
8        -0.501        0.893       -0.017       -0.050
9         0.773       -1.779        0.024       -0.479
10       -0.935        0.042       -0.038       -0.251
11        0.164        0.959       -0.067        0.306
12        0.393       -1.377        0.009       -0.263
13       -0.672       -0.873        0.013       -0.058
14       -0.447        0.644        0.036        0.368
15        0.187        1.540        0.027        0.689
16        0.897       -0.117        0.191       -0.172
17        0.020        0.621       -0.039        0.556
18        0.008       -1.719        0.079       -0.444
19       -1.059        0.790       -0.056        0.397
20        0.193        0.264        0.035       -0.319
21        0.194       -1.050       -0.121       -0.377
22       -0.415        0.529       -0.042        0.039
23        0.433        0.658        0.048        0.495
24        0.074        0.493        0.044        0.235
25        0.402       -1.035        0.114       -0.230
26       -0.634        0.428       -0.073        0.351
27        0.109       -0.094        0.059       -0.061
28       -0.026        0.133        0.009       -0.164
29        0.067        1.258       -0.078        0.435
30        0.677        0.780        0.105        0.674
31        0.210       -0.299        0.145       -0.250
32       -0.200       -0.262       -0.086        0.671
33       -0.656       -1.024        0.134       -0.676
34       -0.351       -0.130       -0.169       -0.188
35       -0.152        0.708       -0.084        0.377
36        0.351       -1.377        0.122       -0.147
37       -0.826       -0.399       -0.026       -0.125
38       -0.256        0.717       -0.018       -0.026
39        0.716       -0.898        0.071       -0.139
40       -0.316       -1.153        0.058       -0.236
41       -0.804        1.543       -0.100        0.486
42        0.765        0.139        0.071       -0.257
43        0.443       -0.054        0.039       -0.434
44        0.345       -1.797       -0.050       -0.503
45       -1.165        0.730       -0.124       -0.028
46        0.531        1.303       -0.022        0.174
47        0.765        1.889        0.014        0.390
48        1.281        0.188        0.069       -0.089
49        0.306       -1.741        0.017       -0.569
50       -1.140        0.239       -0.172       -0.441

Example 3

In this example we fit the following VARMA(1,1) restricted model on simulated data of two dimensions:
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In this specification there are 7 free parameters:
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The first stage and the second stage results are shown. From the second stage results, we see that (to two deci-
mals) the estimate is

= (-0.03, 0.00, 0.05, -0.01, -0.06, 0.01)’
#include <imsls.h>
#include <stdlib.h>
int main(){
    int k, n_obs=100, n_cols=2, p=1, q=1;
    int ar[]={0, -1, 0, 0, 1, 1, 1, 1};
    int ma[]={0, -1, 0, 0, 0, 1, 1, 0};
    float ar_c[]={1, 0, 0, 1, 0, 0, 0, 0};
    float ma_c[]={1, 0, 0, 1, 0, 0, 0, 0};
    float *coef=NULL;
    int max_lag=6, n_coef1, n_coef2;
    float *coef_ttests1=NULL, *coef_ttests2=NULL;
    Imsls_f_regression *stage1_var_info=NULL;
    Imsls_f_regression *stage2_varma_info=NULL;
    char *clabel[] = {"id", "coef", "SE", "t-stat", "p-value"};
    float y[]=
    {
        0.143280117400598, 0.691517079320758, -1.054002748442,
        1.89368500251305, -0.595435384283415, -1.53385197609914,
        -0.450087415747451, -0.522758296071267, 0.338719815948114,

1 0
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        1.73890633300759, -0.0420130132503371, -0.00933890926865466,
        -0.939527210947825, -0.279211957506804, 0.985111509818102,
        -0.185903912738057, -0.779058630583496, -1.52829111438157,
        -0.0444517646926054, -0.605935345974391, 1.17870357395841,
        0.979822006409954, -1.75509211790604, -1.02617250037744,
        -2.64443752185661, -0.405444884498378, -0.558146570012133,
        1.17006139568333, -0.14877513906561, 1.67436399145195,
        1.21251151094695, -0.236411746432856, -0.319260279201159,
        1.53774676549506, -0.798919508505848,-1.25907348772775,
        -0.43488363747126, 1.18754392780486, 2.49394567166528,
        -0.505392075680617, -0.939902530453777, -1.3000118234638,
        0.308365204823071, -0.0346715133254558, 0.155821836363299,
        1.53865066350577, -0.446013548645569, 0.421382795732249,
        -0.810472750765929, -0.475790066827614, -1.21547965787564,
        0.873092852598299, 0.314687304446453, -0.166494291509063,
        1.20846773815425, -0.21319122737697, 0.885697825416125,
        1.06749862455588, -0.417811475765902, 1.81350258917296,
        1.06312903931625, -0.357098401483029, -2.54962241395723,
        1.58241298127273, -0.445333714405381, -1.54921054521057,
        0.763932954657703, -0.459132068443737, -0.135020632775658,
        0.768987806710127, -2.21000914520305, -0.416578967811937,
        -0.787803924930718, -0.381994679294779, 0.651886558080692,
        -0.296275077784937, -1.34100151116192, -0.695511844572305,
        -1.38111408367782, -0.453263483406621, 0.546836142779091,
        1.35617195687341, 1.47675672302528, -0.879275538764735,
        1.33724523036386,-1.19560541543992, -0.355724070126155,
        -1.35440645398376, 0.215557787562229, -0.0705280128055462,
        2.64174061572298, 0.622022977819918, 1.85193603585307,
        1.1425463214074, 1.47034707550646, -0.274392879035261,
        -0.0256438865664471, -1.32768501270967, 1.4002259906097,
        -1.13393234222336, 0.420685154939234, -1.14369662556446,
        -0.229525100642792,-1.14556440309372, -0.0726173507068031,
        0.537003424016424, 2.21081287812981, -0.329847605902733,
        0.658135565199115, 1.25161597712012, 0.324279854980608,
        -0.122777642651712, -0.746398274242844, -0.510384971856952,
        -1.52397549713935,-0.590932096161281, 0.351879848132452,
        -0.486815223667361, -0.582122931146207, -0.129708090826525,
        -1.83261132721672, -0.438855077878885, 0.160891671954672,
        0.130903505342111, -1.0930038744212, 0.858667240391389,
        -0.650140333935879, -0.192590383440759, -0.495902099869389,
        -0.0970274914548782, 0.271597266914655, -1.25629606008009,
        -1.82411099200514, -0.0862331652538604, -1.48736902275701,
        -0.702589236231933, 1.66371111576656, 0.260453048198016,
        0.472465295167692, 2.03959666287312, -1.47220802239244,
        0.584452376204567, 0.29538916638251, -0.424471774108761,
        1.35117053520231, 0.792966672512426, 0.559666965721712,
        1.03877148575442, 0.32764651319845, 0.792431599069095,
        1.79713629328279, 2.53306185903747, 0.382061987152509,
        -0.55974023663989, 0.261351966632211, 0.928359586004826,
        1.05805881312766, -0.448798293155081, -2.8433140252059,
        -1.29380365284521, 1.60167210548413, -0.58790657908656,
        -0.0697276516437701, 0.669259446155372, -0.756109095074059,
        -1.04262502361173, -0.689533522981508, 0.322514092974764,
        -0.62456134593389, 0.343601164613668, 0.406496690190247,
        -0.579352431691941, -0.38067184267295, 1.15818332237678,
        -1.3763494217139, 1.07842256464695, -0.607885118048254,
        -0.551750338671028, -0.688013574614753, -0.66192239892944,
        0.840882344143739, 0.501181908666563, 0.810882707408453,
        -0.373132840815414, -1.53884108045858, -0.0475950419868607,
        -1.11456391432642, -1.39312192248506, 0.374292584707849,
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        0.307055843720151, 0.0883771102062163, 1.51499635303431,
        0.544284404231116, 1.62863647405725, 0.666268752934375,
        3.15259591439161, 0.535584045927088, 0.438326104669433,
        1.25375087298954, 1.2784768691421
    };
    coef=imsls_f_vector_autoregression(n_obs, n_cols, y, p, 
        IMSLS_MA_LAG, q,
        IMSLS_A0,
        IMSLS_AR_MODEL, ar, 
        IMSLS_MA_MODEL, ma,
        IMSLS_MAX_LAG, max_lag,
        IMSLS_AR_CONSTANTS, ar_c,
        IMSLS_MA_CONSTANTS, ma_c,
        IMSLS_VAR_INFO, &stage1_var_info,
        IMSLS_VARMA_INFO, &stage2_varma_info,
        0);
    n_coef1=n_cols*max_lag;
    for(k=0;k<n_cols;k++){
        imsls_f_regression_summary(stage1_var_info,
            IMSLS_INDEX_REGRESSION, k,
            IMSLS_COEF_T_TESTS, &coef_ttests1,
            0);
        imsls_f_write_matrix("* * * VAR Stage 1 Coefficients * * *\n", 
            n_coef1, 4, coef_ttests1,
            IMSLS_COL_LABELS, clabel,
            0);
        imsls_free(coef_ttests1);
    }
    /* stage 2 restricted model 
    estimates 1 A0 parameter, 4 A1 parameters, and 2 M1 parameters */
    n_coef2=7;
    imsls_f_regression_summary(stage2_varma_info,
        IMSLS_COEF_T_TESTS, &coef_ttests2,
        0);
    imsls_f_write_matrix("* * * VARMA Stage 2 Coefficients * * *\n", 
        n_coef2, 4, coef_ttests2,
        IMSLS_COL_LABELS, clabel,
        0);
    if(stage1_var_info){
        imsls_free(stage1_var_info);
        stage1_var_info=NULL;
    }
    if(stage2_varma_info){
        imsls_free(stage2_varma_info);
        stage2_varma_info=NULL;
    }
    if(coef){
        imsls_free(coef);
        coef=NULL;
    }
    if(coef_ttests2){
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        imsls_free(coef_ttests2);
        coef_ttests2=NULL;
    }
}

Output

         * * * VAR Stage 1 Coefficients * * *
id         coef           SE       t-stat      p-value
 1        0.229        0.110        2.075        0.041
 2        0.292        0.125        2.345        0.021
 3       -0.274        0.110       -2.501        0.014
 4       -0.242        0.127       -1.896        0.062
 5        0.372        0.116        3.208        0.002
 6        0.280        0.128        2.198        0.031
 7       -0.027        0.116       -0.232        0.817
 8       -0.349        0.128       -2.722        0.008
 9        0.240        0.109        2.208        0.030
10        0.296        0.128        2.316        0.023
11       -0.145        0.110       -1.323        0.190
12       -0.144        0.126       -1.136        0.259
 
         * * * VAR Stage 1 Coefficients * * *
id         coef           SE       t-stat      p-value
 1        0.182        0.099        1.840        0.069
 2        0.177        0.112        1.577        0.119
 3       -0.287        0.099       -2.907        0.005
 4        0.064        0.115        0.561        0.577
 5        0.075        0.104        0.721        0.473
 6        0.066        0.115        0.579        0.564
 7       -0.111        0.104       -1.066        0.290
 8       -0.193        0.115       -1.675        0.098
 9       -0.066        0.098       -0.675        0.501
10        0.018        0.115        0.160        0.873
11        0.034        0.099        0.348        0.729
12        0.092        0.114        0.813        0.418
 
        * * * VARMA Stage 2 Coefficients * * *
id         coef           SE       t-stat      p-value
 1       -0.099        0.232       -0.429        0.668
 2        0.130        0.097        1.346        0.180
 3       -0.050        0.208       -0.240        0.811
 4       -0.618        0.242       -2.559        0.011
 5        0.123        0.115        1.068        0.287
 6        0.204        0.257        0.791        0.430
 7        0.914        0.270        3.388        0.001
911



 Multivariate Analysis         Functions
Multivariate Analysis

Functions
Hierarchical Cluster Analysis

Computes matrix of dissimilarities or similarities . . . . . . . . . . . . . . . . . . . . .dissimilarities     916
Hierarchical cluster analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cluster_hierarchical     921
Retrieves cluster numbers in hierarchical cluster analysis  . . . . . . . . . . . cluster_number     927

K-means Cluster Analysis
Performs a K-means (centroid) cluster analysis  . . . . . . . . . . . . . . . . . . cluster_k_means     932

Principal Component Analysis
Computes principal components . . . . . . . . . . . . . . . . . . . . . . . . . . principal_components     938

Factor Analysis
Extracts factor-loading estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . factor_analysis     945
Performs discriminant function analysis  . . . . . . . . . . . . . . . . . . . . discriminant_analysis     965
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Usage Notes

Cluster Analysis
Function imsls_f_cluster_k_means performs a K-means cluster analysis. Basic K-means clustering attempts 
to find a clustering that minimizes the within-cluster sums-of-squares. In this method of clustering the data, 
matrix X is grouped so that each observation (row in X) is assigned to one of a fixed number, K, of clusters. The 
sum of the squared difference of each observation about its assigned cluster’s mean is used as the criterion for 
assignment. In the basic algorithm, observations are transferred from one cluster or another when doing so 
decreases the within-cluster sums-of-squared differences. When no transfer occurs in a pass through the entire 
data set, the algorithm stops. Function imsls_f_cluster_k_means is one implementation of the basic 
algorithm.

The usual course of events in K-means cluster analysis is to use imsls_f_cluster_k_means to obtain the 
optimal clustering. The clustering is then evaluated by functions described in Chapter 1, Basic Statistics and/or 
other chapters in this manual. Often, K-means clustering with more than one value of K is performed, and the 
value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion of the function 
imsls_f_cluster_k_means assumes the clustering is to be performed on the observations, which corre-
spond to the rows of the input data matrix. If variables, rather than observations, are to be clustered, the data 
matrix should first be transposed. In the documentation for imsls_f_cluster_k_means, the words “observa-
tion” and “variable” are interchangeable.

Principal Components
The idea in principal components is to find a small number of linear combinations of the original variables that 
maximize the variance accounted for in the original data. This amounts to an eigensystem analysis of the covari-
ance (or correlation) matrix. In addition to the eigensystem analysis, imsls_f_principal_components 
computes standard errors for the eigenvalues. Correlations of the original variables with the principal component 
scores also are computed.

Factor Analysis
Factor analysis and principal component analysis, while quite different in assumptions, often serve the same 
ends. Unlike principal components in which linear combinations yielding the highest possible variances are 
obtained, factor analysis generally obtains linear combinations of the observed variables according to a model 
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relating the observed variable to hypothesized underlying factors, plus a random error term called the unique 
error or uniqueness. In factor analysis, the unique errors associated with each variable are usually assumed to be 
independent of the factors. Additionally, in the common factor model, the unique errors are assumed to be 
mutually independent. The factor analysis model is expressed in the following equation:

x − μ = Λf + e

where x is the p vector of observed values, μ is the p vector of variable means, Λ is the p × k matrix of factor load-
ings, f is the k vector of hypothesized underlying random factors, e is the p vector of hypothesized unique random 
errors, p is the number of variables in the observed variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand or was expensive on early com-
puters, quick (but dirty) algorithms that made the calculations possible were developed. One result is the many 
factor extraction methods available today. Generally speaking, in the exploratory or model building phase of a 
factor analysis, a method of factor extraction that is not computationally intensive (such as principal components, 
principal factor, or image analysis) is used. If desired, a computationally intensive method is then used to obtain 
the final factors.

In exploratory factor analysis, the unrotated factor loadings obtained from the factor extraction are generally 
transformed (rotated) to simplify the interpretation of the factors. Rotation is possible because of the overparam-
eterization in the factor analysis model. The method used for rotation may result in factors that are independent 
(orthogonal rotations) or correlated (oblique rotations). Prior information may be available (or hypothesized) in 
which case a Procrustes rotation could be used. When no prior information is available, an analytic rotation can 
be performed. 

The steps generally used in a factor analysis are summarized as follows:

Steps in a Factor Analysis

Step 1

Step 2

Calculate Covariance (Correlation) Matrix
IMSL routine imsls_f_covariances 

(see Correlation and Covariance.

Initial Factor Extraction

imsls_f_factor_analysis
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Step 3

 Step 4

Factor Rotation 
using imsls_f_factor_analysis’ optional arguments

Orthogonal Oblique

No Prior Info.
IMSLS_ORTHOMAX_ROTATION

No Prior Info.
IMSLS_OBLIQUE_PROMAX_ROTATION
IMSLS_DIRECT_OBLIMIN_ROTATION
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION 

Prior Info.
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION

Prior Info.
IMSLS_OBLIQUE_PROCRUSTES_ROTATION

Factor Structure and Variance

imsls_f_factor_analysis 
optional argument 

IMSLS_FACTOR_STRUCTURE
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dissimilarities

more...

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.

Synopsis
#include <imsls.h>
float *imsls_f_dissimilarities (int nrow, int ncol, float x[], …, 0)

The type double function is imsls_d_dissimilarities.

Required Arguments
int nrow (Input)

Number of rows in the matrix.

int ncol (Input)
Number of columns in the matrix.

float x[] (Input)
Array of size nrow by ncol containing the matrix.

Return Value
An array of size m by m containing the computed dissimilarities or similarities, where m = nrow if optional argu-
ment IMSLS_ROWS is used, and m = ncol otherwise.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_dissimilarities (int nrow, int ncol, float x[],

IMSLS_ROWS, or 
IMSLS_COLUMNS,
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IMSLS_INDEX, int ndstm, int ind[],
IMSLS_METHOD, int imeth,
IMSLS_SCALE, int iscale,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float dist[],
0)

Optional Arguments
IMSLS_ROWS  (Input)

or

IMSLS_COLUMNS,  (Input)
Exactly one of these options can be present to indicate whether distances are computed between 
rows or columns of x.

Default: Distances are computed between rows.

IMSLS_INDEX, int ndstm, int ind[]  (Input)
Argument ind is an array of length ndstm containing the indices of the rows (columns if 
IMSLS_ROWS is used) to be used in computing the distance measure.

Default: All rows(columns) are used.

IMSLS_METHOD, int imeth (Input)
Method to be used in computing the dissimilarities or similarities. 

Default: imeth = 0.

imeth Method

0 Euclidean distance (L2 norm)

1 Sum of the absolute differences (L1 norm)

2 Maximum difference (L∞ norm)

3 Mahalanobis distance

4 Absolute value of the cosine of the angle between the 
vectors

5 Angle in radians (0, π) between the lines through the origin 
defined by the vectors

6 Correlation coefficient

7 Absolute value of the correlation coefficient

8 Number of exact matches 
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See the Description section for a more detailed description of each measure.

IMSLS_SCALE, int iscale  (Input)
Scaling option. iscale is not used for methods 3 through 8.

Default: iscale = 0.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.

Default: x_col_dim = ncol.

IMSLS_RETURN_USER, float dist[]  (Output)
User allocated array of size m by m containing the computed dissimilarities or similarities, where m = 
nrow if IMSLS_ROWS is used, and m = ncol otherwise. 

Description
Function imsls_f_dissimilarities computes an upper triangular matrix (excluding the diagonal) of dis-
similarities (or similarities) between the columns or rows of a matrix. Nine different distance measures can be 
computed. For the first three measures, three different scaling options can be employed. Output from 
imsls_f_dissimilarities is generally used as input to clustering or multidimensional scaling functions.

The following discussion assumes that the distance measure is being computed between the columns of the 
matrix, i.e., that IMSLS_COLUMNS is used. If distances between the rows of the matrix are desired, use optional 
argument IMSLS_ROWS.

For imeth = 0 to 2, each row of x is first scaled according to the value of iscale. The scaling parameters are 
obtained from the values in the row scaled as either the standard deviation of the row or the row range; the stan-
dard deviation is computed from the unbiased estimate of the variance. If iscale is 0, no scaling is performed, 
and the parameters in the following discussion are all 1.0. Once the scaling value (if any) has been computed, the 

iscale Scaling Performed

0 No scaling is performed.

1 Scale each column (row, if IMSLS_ROWS is used) by the stan-
dard deviation of the column (row).

2 Scale each column (row, if IMSLS_ROWS is used) by the range 
of the column (row).
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distance between column i and column j is computed via the difference vector zk = (xk - yk)/sk, i = 1, ..., ndstm, 

where xk denotes the k-th element in the i-th column, and yk denotes the corresponding element in the j-th col-

umn. For given zi, the metrics 0 to 2 are defined as:

Distance measures corresponding to imeth = 3 to 8 do not allow for scaling. These measures are defined via 
the column vectors X = (xi), Y = (yi), and Z = (xi - yi) as follows:

For the Mahalanobis distance, any variable used in computing the distance measure that is (numerically) linearly 
dependent upon the previous variables in the ind vector is omitted from the distance measure.

Example
The following example illustrates the use of imsls_f_dissimilarities for computing the Euclidean dis-
tance between the rows of a matrix.

#include <imsls.h>

imeth Metric

0     Euclidean distance

1     L1 norm

2     
L∞ norm

imeth Metric

3
   Mahalanobis distance, where    is the usual 
unbiased sample estimate of the covariance matrix of the 
rows.

4
   the dot product of 
X and Y divided by the length of X times the length of Y .

5 θ, where θ is defined in 4.

6 ρ = the usual (centered) estimate of the correlation between 
X and Y.

7 The absolute value of ρ (where ρ is defined in 6).

8 The number of times xi = yi, where xi and yi are elements of X 
and Y.

∑i=1
ndstmzi

2

∑i=1
ndstm∣zi∣

max
i
∣zi∣

Z ′Σ
^ −1
Z = Σ

^

cos θ = XTY / XTX YTY =
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int main()
{
   int ncol=2, nrow = 4;
   float x [4][2] = {1., 1., 
         1., 0., 
         1.,-1., 
           1., 2.};
   float *dist;
   dist = imsls_f_dissimilarities(nrow, ncol, (float*)x, 0);
   imsls_f_write_matrix("dist", 4, 4, dist, 0);
}

Output

                     dist
           1          2          3          4
1          0          1          2          1
2          0          0          1          2
3          0          0          0          3
4          0          0          0          0
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cluster_hierarchical

more...

Performs a hierarchical cluster analysis given a distance matrix.

Synopsis
#include <imsls.h>
void imsls_f_cluster_hierarchical (int npt, float *dist, …, 0)

The type double function is imsls_d_cluster_hierarchical.

Required Arguments
int  npt  (Input)

Number of data points to be clustered.

floa dist[]  (Input/Ouput)
An npt by npt symmetric matrix containing the distance (or similarity) matrix. dist is a symmetric 
matrix. On input, only the upper triangular part needs to be present. The function 
imsls_f_cluster_hierarchical saves the upper triangular part of dist in the lower trian-
gle. On return from imsls_f_cluster_hierarchical, the upper triangular part of dist is 
restored, and the matrix is made symmetric. 

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_cluster_hierarchical (int npt, float dist[],

IMSLS_METHOD, int imeth,
IMSLS_TRANSFORMATION, int itrans,
IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson,
IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int icrson[],
0)
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Optional Arguments
IMSLS_METHOD, int imeth (Input)

Option giving the clustering method to be used.

Default: imeth = 0.

IMSLS_TRANSFORMATION, int itrans (Input)
Option giving the method to be used for clustering.

Default: itrans = 0.

IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson  (Output)
Argument clevel is the address of an array of length npt - 1 containing the level at which the clus-
ters are joined. clevel[k-1] contains the distance (or similarity) level at which cluster npt + k was 
formed. If the original data in dist was transformed via the optional argument 
IMSLS_TRANSFORMATION, the inverse transformation is applied to the values in clevel prior to 
exit from imsls_f_cluster_hierarchical. Argument iclson is the address of an array of 
length npt - 1 containing the left sons of each merged cluster. Argument icrson is the address of 
an array of length npt - 1 containing the right sons of each merged cluster. Cluster npt + k is 
formed by merging clusters iclson[k-1] and icrson[k-1].

imeth Method

0 Single linkage (minimum distance)

1 Complete linkage (maximum distance)

2 Average distance within (average distance between objects 
within the merged cluster)

3 Average distance between (average distance between 
objects in the two clusters)

4 Ward’s method (minimize the within-cluster sums of 
squares). For Ward’s method, the elements of dist are 
assumed to be Euclidean distances.

imeth Method

0 No transformation is required. The elements of dist are 
distances.

1 Convert similarities to distances by multiplication by -1.0.

2 Convert similarities (usually correlations) to distances by tak-
ing the reciprocal of the absolute value.
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IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int icrson[]  (Output)
Storage for arrays clevel, iclson, and icrson is provided by the user. See 
IMSLS_CLUSTERS.

Description
Function imsls_f_cluster_hierarchical conducts a hierarchical cluster analysis based upon the dis-
tance matrix, or by appropriate use of the IMSLS_TRANSFORMATION optional argument, based upon a 
similarity matrix. Only the upper triangular part of the matrix dist is required as input to 
imsls_f_cluster_hierarchical. 

Hierarchical clustering in imsls_f_cluster_hierarchical proceeds as follows. Initially, each data point 
is considered to be a cluster, numbered 1 to n = npt.

1. If the data matrix contains similarities, they are converted to distances by the method specified by 
IMSLS_TRANSFORMATION. Set k = 1.

2. A search is made of the distance matrix to find the two closest clusters. These clusters are merged to 
form a new cluster, numbered n + k. The cluster numbers of the two clusters joined at this stage are 
saved in icrson and iclson, and the distance measure between the two clusters is stored in 
clevel.

3. Based upon the method of clustering, updating of the distance measure in the row and column of 
dist corresponding to the new cluster is performed.

4. Set k = k + 1. If k < n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two clusters have been joined. The 
IMSLS_METHOD optional argument specifies how the distance of the cluster just merged with each of the 
remaining clusters will be updated. Function imsls_f_cluster_hierarchical allows five methods for 
computing the distances. To understand these measures, suppose in the following discussion that clusters “A” 
and “B” have just been joined to form cluster “Z”, and interest is in computing the distance of Z with another clus-
ter called “C”.
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In general, single linkage will yield long thin clusters while complete linkage will yield clusters that are more spher-
ical. Average linkage and Ward’s linkage tend to yield clusters that are similar to those obtained with complete 
linkage.

Function imsls_f_cluster_hierarchical produces a unique representation of the binary cluster tree 
via the following three conventions; the fact that the tree is unique should aid in interpreting the clusters. First, 
when two clusters are joined and each cluster contains two or more data points, the cluster that was initially 
formed with the smallest level (in clevel) becomes the left son. Second, when a cluster containing more than 
one data point is joined with a cluster containing a single data point, the cluster with the single data point 
becomes the right son. Finally, when two clusters containing only one object are joined, the cluster with the small-
est cluster number becomes the right son.

Comments
1. The clusters corresponding to the original data points are numbered from 1 to npt. The npt - 1 

clusters formed by merging clusters are numbered npt + 1 to npt + (npt - 1).

imeth Method

0 Single linkage method. The distance from Z to C is the minimum of the 
distances (A to C, B to C).

1 Complete linkage method. The distance from Z to C is the maximum of 
the distances (A to C, B to C).

2 Average-distance-within-clusters method. The distance from Z to C is the 
average distance of all objects that would be within the cluster formed 
by merging clusters Z and C. This average may be computed according to 
formulas given by Anderberg (1973, page 139).

3 Average-distance-between-clusters method. The distance from Z to C is 
the average distance of objects within cluster Z to objects within cluster 
C. This average may be computed according to methods given by Ander-
berg (1973, page 140).

4 Ward’s method. Clusters are formed so as to minimize the increase in 
the within-cluster sums of squares. The distance between two clusters is 
the increase in these sums of squares if the two clusters were merged. A 
method for computing this distance from a squared Euclidean distance 
matrix is given by Anderberg (1973, pages 142-145).
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2. Raw correlations, if used as similarities, should be made positive and transformed to a distance mea-
sure. One such transformation can be performed by specifying optional argument 
IMSLS_TRANSFORMATION, with itrans = 2 in imsls_f_cluster_hierarchical.

3. The user may cluster either variables or observations in imsls_f_cluster_hierarchical 
since a dissimilarity matrix, not the original data, is used. Function imsls_f_dissimilarities 
may be used to compute the matrix dist for either the variables or observations.

Example
In the following example, the average distance within clusters method is used to perform a hierarchical cluster 
analysis of the Fisher Iris data. Function imsls_f_data_sets (see Chapter 15, Utilities) is first used to obtain 
the Fisher Iris data. The example is typical in that after the program obtains the data, function 
imsls_f_dissimilarities computes the distance matrix (dist) prior to calling 
imsls_f_cluster_hierarchical.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int iscale=1, ncol=5, nrow=150, nvar=4, npt = 150;
   int i, iclson[149], icrson[149], ind[4] = {1, 2, 3, 4};
   float clevel[149], *dist, *x;
   x = imsls_f_data_sets(3,
       0);
   dist = imsls_f_dissimilarities(nrow, ncol, x, 
       IMSLS_INDEX, nvar, ind,
       IMSLS_SCALE, iscale,
       0);
   imsls_f_cluster_hierarchical(npt, dist, 
       IMSLS_CLUSTERS_USER, clevel, iclson, icrson, 
       IMSLS_METHOD, 2,
       0);
   for (i=0;i<149;i+=15)
       printf("%6.2f\t", clevel[i]);
   printf("\n");
   for (i=0;i<149;i+=15)
       printf("%6d\t", iclson[i]);
   printf("\n");
   for (i=0;i<149;i+=15)
       printf("%6d\t", icrson[i]);
   printf("\n");
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}

Output

 0.00   0.17   0.23   0.27   0.31   0.37   0.41   0.48   0.60   0.78
  143    153     17    140     53    198    186    218    261    249
  102     29      6    113     51     91    212    243    266    262 
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cluster_number
Computes cluster membership for a hierarchical cluster tree.

Synopsis
#include <imsls.h>
int *imsls_cluster_number (int npt, int iclson[], int icrson[], int k, …, 0)

Required Arguments
int npt  (Input)

Number of data points to be clustered.

int iclson[]  (Input)
An array of length npt - 1 containing the left son cluster numbers. 

Cluster npt + i is formed by merging clusters iclson[i-1] and icrson[i-1].

int icrson[]  (Input)
An array of length npt - 1 containing the right son cluster numbers. 

Cluster npt + i is formed by merging clusters iclson[i-1] and icrson[i-1].

int k  (Input)
Desired number of clusters. 

Return Value
An array of length npt containing the cluster membership of each observation. 

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_cluster_number (int npt, int iclson[], int icrson[], int k,

IMSLS_OBS_PER_CLUSTER, int **nclus,
IMSLS_OBS_PER_CLUSTER_USER, int nclus[],
IMSLS_RETURN_USER, int iclus[],
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0)

Optional Arguments
IMSLS_OBS_PER_CLUSTER, int **nclus  (Output)

Address of a pointer to an internally allocated array of length k containing the number of observa-
tions in each cluster.

IMSLS_OBS_PER_CLUSTER_USER, int nclus[]  (Output)
Storage for array nclus is provided by the user. See IMSLS_OBS_PER_CLUSTER. 

IMSLS_RETURN_USER, float iclus[]  (Output)
User allocated array of length npt containing the cluster membership of each observation. 

Description
Given a fixed number of clusters (K) and the cluster tree (vectors icrson and iclson) produced by the hierar-
chical clustering algorithm (see function imsls_f_cluster_hierarchical, function 
imsls_cluster_number determines the cluster membership of each observation. The function 
imsls_cluster_number first determines the root nodes for the K distinct subtrees forming the K clusters 
and then traverses each subtree to determine the cluster membership of each observation. The function 
imsls_cluster_number also returns the number of observations found in each cluster.

Examples

Example 1

In the following example, cluster membership for K = 2 clusters is found for the displayed cluster tree. The output 
vector iclus contains the cluster numbers for each observation.
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#include <imsls.h>
int main()
{
   int k = 2, npt = 5, *iclus;
   int iclson[] = {5, 6, 4, 7};
   int icrson[] = {3, 1, 2, 8};
   iclus = imsls_cluster_number(npt, iclson, icrson, k, 0);
   imsls_i_write_matrix("iclus", 1, 5, iclus, 0); 
}

Output

      iclus
1  2  3  4  5
1  2  1  2  1

Example 2

This example illustrates the typical usage of imsls_cluster_number. The Fisher Iris data (see function 
imsls_f_data_sets, Utilities.) is clustered. First the distance between the irises is computed using function 
imsls_f_dissimilarities. The resulting distance matrix is then clustered using function 
imsls_f_cluster_hierarchical. The cluster membership for 5 clusters is then obtained via function 
imsls_cluster_number using the output from imsls_f_cluster_hierarchical. The need for 5 
clusters can be obtained either by theoretical means or by examining a cluster tree. The cluster membership for 
each of the iris observations is printed.

#include <imsls.h>
#include <stdlib.h>
#define MAX(A,B) ((A)>(B)?(A): (B))
int main()
{
   int ncol = 5, nrow = 150, nvar = 4, npt = 150, k = 5;
   int i, j, *iclson, *icrson, *iclus, *nclus;
   int ind[4] = {1, 2, 3, 4};
   float *clevel, dist[150][150], *x, f_rand;
   int *p_iclus = NULL, *p_nclus = NULL;
   x = imsls_f_data_sets (3,
       0);
   imsls_f_dissimilarities(nrow, ncol, x, 
       IMSLS_INDEX, nvar, ind,
       IMSLS_RETURN_USER, dist,
       0);
   imsls_random_seed_set (4);
   for (i = 0; i < npt; i++)
   {
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       for (j = i + 1; j < npt; j++)
       {
           imsls_f_random_uniform (1,
               IMSLS_RETURN_USER, &f_rand,
               0);
           dist[i][j] = MAX (0.0, dist[i][j] + .001 * f_rand);
           dist[j][i] = dist[i][j];
       }
       dist[i][i] = 0.;
   }
   imsls_f_cluster_hierarchical (npt, (float*)dist, 
       IMSLS_CLUSTERS, &clevel, &iclson, &icrson, 
       0);
   iclus = imsls_cluster_number (npt, iclson, icrson, k, 
       IMSLS_OBS_PER_CLUSTER, &nclus, 
       0);
   imsls_i_write_matrix ("iclus", 25, 5, iclus,
       0);
   imsls_i_write_matrix ("nclus", 1, 5, nclus,
       0);
}

Output

        iclus
    1  2  3  4  5
 1  5  5  5  5  5
 2  5  5  5  5  5
 3  5  5  5  5  5
 4  5  5  5  5  5
 5  5  5  5  5  5
 6  5  5  5  5  5
 7  5  5  5  5  5
 8  5  5  5  5  5
 9  5  5  5  5  5
10  5  5  5  5  5
11  2  2  2  2  2
12  2  2  1  2  2
13  1  2  2  2  2
14  2  2  2  2  2
15  2  2  2  2  2
16  2  2  2  2  2
17  2  2  2  2  2
18  2  2  2  2  2
19  2  2  2  1  2
20  2  2  2  1  2
21  2  2  2  2  2
22  2  3  2  2  2
23  2  2  2  2  2
24  2  2  4  2  2
25  2  2  2  2  2
        nclus
 1   2   3   4   5
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 4  93   1   2  50
931



 Multivariate Analysis         cluster_k_means
cluster_k_means
Performs a K-means (centroid) cluster analysis.

Synopsis
#include <imsls.h>
int *imsls_f_cluster_k_means (int n_observations, int n_variables, float x[], int 

n_clusters, float cluster_seeds, ..., 0)

The type double function is imsls_d_cluster_k_means.

Required Arguments
int n_observations  (Input)

Number of observations.

int n_variables  (Input)
Number of variables to be used in computing the metric.

float x[]  (Input)
Array of length n_observations × n_variables containing the observations to be clustered.

int n_clusters  (Input)
Number of clusters.

float cluster_seeds[]  (Input)
Array of length n_clusters × n_variables containing the cluster seeds, i.e., estimates for the 
cluster centers.

Return Value
The cluster membership for each observation is returned.

Synopsis with Optional Arguments
#include <imsls.h>
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int *imsls_f_cluster_k_means (int n_observations, int n_variables, float x[], 
int n_clusters, float cluster_seeds,

IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_MAX_ITERATIONS, int  max_iterations,
IMSLS_CLUSTER_HISTORY, int *n_itr, int **cluster_history, 
IMSLS_CLUSTER_HISTORY_USER, int *n_itr, int cluster_history[],
IMSLS_CLUSTER_MEANS, float **cluster_means,
IMSLS_CLUSTER_MEANS_USER, float cluster_means[],
IMSLS_CLUSTER_SSQ, float **cluster_ssq,
IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim,
IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim,
IMSLS_CLUSTER_COUNTS, int **cluster_counts,
IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[],
IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[],
IMSLS_RETURN_USER, int cluster_group[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[]  (Input)

Array of length n_observations containing the weight of each observation of matrix x.

Default: weights = 1.

IMSLS_FREQUENCIES, float frequencies[]  (Input)
Array of length n_observations containing the frequency of each observation of matrix x.

Default: frequencies = 1.

IMSLS_MAX_ITERATIONS, int max_iterations  (Input)
Maximum number of iterations.

Default: max_iterations = 30.

IMSLS_CLUSTER_HISTORY, int *n_itr, int **cluster_history  (Output)
cluster_history is a pointer to an array of size n_iter by n_observations containing the 
cluster membership of each observation per iteration. Note that n_iter is the number of com-
pleted iterations in the algorithm.
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IMSLS_CLUSTER_HISTORY_USER, int *n_itr, int cluster_history[]   (Output)
Storage for array cluster_history is provided by the user. cluster_history is an array of 
size max_iterations by n_observations containing the cluster membership of each obser-
vation per iteration. Note that only the first n_itr rows of cluster_history is set upon return.

IMSLS_CLUSTER_MEANS, float **cluster_means  (Output)
The address of a pointer to an internally allocated array of length n_clusters × n_variables 
containing the cluster means.

IMSLS_CLUSTER_MEANS_USER, float cluster_means[]  (Output)
Storage for array cluster_means is provided by the user. See IMSLS_CLUSTER_MEANS.

IMSLS_CLUSTER_SSQ, float **cluster_ssq  (Output)
The address of a pointer to internally allocated array of length n_clusters containing the within 
sum-of-squares for each cluster.

IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[]  (Output)
Storage for array cluster_ssq is provided by the user. See IMSLS_CLUSTER_SSQ.

IMSLS_X_COL_DIM, int x_col_dim  (Input)
Column dimension of x.

Default: x_col_dim = n_variables.

IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim  (Input)
Column dimension for the vector cluster_means.

Default: cluster_means_col_dim = n_variables.

IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim  (Input)
Column dimension for the vector cluster_seeds.

Default: cluster_seeds_col_dim = n_variables.

IMSLS_CLUSTER_COUNTS, int **cluster_counts  (Output)
The address of a pointer to an internally allocated array of length n_clusters containing the num-
ber of observations in each cluster.

IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[]  (Output)
Storage for array cluster_counts is provided by the user. See IMSLS_CLUSTER_COUNTS.

IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[]  (Input)
Vector of length n_variables containing the columns of x to be used in computing the metric. 
Columns are numbered 0, 1, 2, …, n_variables
Default: cluster_variables [ ] = 0, 1, 2, …, n_variables.
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IMSLS_RETURN_USER, int cluster_group[]  (Output)
User-allocated array of length n_observations containing the cluster membership for each 
observation.

Description
Function imsls_f_cluster_k_means is an implementation of Algorithm AS 136 by Hartigan and Wong 
(1979). It computes K-means (centroid) Euclidean metric clusters for an input matrix starting with initial estimates 
of the K-cluster means. The function allows for missing values coded as NaN (Not a Number) and for weights and 
frequencies.

Let p = n_variables be the number of variables to be used in computing the Euclidean distance between 
observations. The idea in K-means cluster analysis is to find a clustering (or grouping) of the observations so as to 
minimize the total within-cluster sums-of-squares. In this case, the total sums-of-squares within each cluster is 
computed as the sum of the centered sum-of-squares over all nonmissing values of each variable. That is,

where νim denotes the row index of the m-th observation in the i-th cluster in the matrix X; ni is the number of 

rows of X assigned to group i; f denotes the frequency of the observation; w denotes its weight; δ is 0 if the j-th 
variable on observation νim is missing, otherwise δ is 1; and

is the average of the nonmissing observations for variable j in group i. This method sequentially processes each 
observation and reassigns it to another cluster if doing so results in a decrease of the total within-cluster sums-
of-squares. See Hartigan and Wong (1979) or Hartigan (1975) for details.

Example
This example performs K-means cluster analysis on Fisher’s Iris data, which is obtained by function 
imsls_f_data_sets (see Chapter 15, Utilities). The initial cluster seed for each iris type is an observation 
known to be in the iris type.

#include <imsls.h>
int main()
{
#define N_OBSERVATIONS 150
#define N_VARIABLES   4
#define N_CLUSTERS    3

ϕ =∑
i=1

K

∑
j=1

p

∑
m=1

ni

f vimwvimδvim, j xvim, j − x
─
i j

2

x─i j
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   float       x[N_OBSERVATIONS][5];
   float       cluster_seeds[N_CLUSTERS][N_VARIABLES];
   float       cluster_means[N_CLUSTERS][N_VARIABLES];
   float       cluster_ssq[N_CLUSTERS];
   int         cluster_variables[N_VARIABLES] = {1, 2, 3, 4};
   int         cluster_counts[N_CLUSTERS];
   int         cluster_group[N_OBSERVATIONS];
   int         i;
                /* Retrieve the data set */
   imsls_f_data_sets(3,
       IMSLS_RETURN_USER, x,
       0);
                /* Assign initial cluster seeds */
   for (i=0; i<N_VARIABLES; i++) {
       cluster_seeds[0][i] = x[0][i+1];
       cluster_seeds[1][i] = x[50][i+1];
       cluster_seeds[2][i] = x[100][i+1];
   }
                /* Perform the analysis */
   imsls_f_cluster_k_means(N_OBSERVATIONS, N_VARIABLES, (float*)x,
       N_CLUSTERS, (float*)cluster_seeds,
       IMSLS_X_COL_DIM, 5,
       IMSLS_CLUSTER_VARIABLE_COLUMNS, cluster_variables,
       IMSLS_CLUSTER_COUNTS_USER, cluster_counts,
       IMSLS_CLUSTER_MEANS_USER, cluster_means,
       IMSLS_CLUSTER_SSQ_USER, cluster_ssq,
       IMSLS_RETURN_USER, cluster_group,
       0);
               /* Print results */
   imsls_i_write_matrix("Cluster Membership", 1, N_OBSERVATIONS,
       cluster_group,
       0);
   imsls_f_write_matrix("Cluster Means", N_CLUSTERS, N_VARIABLES,
       (float*)cluster_means,
       0);
   imsls_f_write_matrix("Cluster Sum of Squares", 1, N_CLUSTERS,
       cluster_ssq,
       0);
   imsls_i_write_matrix("# Observations in Each Cluster", 1,
       N_CLUSTERS, cluster_counts,
       0);
}

Output

                             Cluster Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
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 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1  1  1  1  1  1  1  1  1  1  2  2  3  2  2  2  2  2  2  2
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  2  2
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  2   3   2   3   3   3   3   2   3   3   3   3   3   3   2   2
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  3   3   3   3   2   3   2   3   2   3   3   2   2   3   3   3
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  3   3   2   3   3   3   3   2   3   3   3   2   3   3   3   2
148 149 150
  3   3   2
                 Cluster Means
           1          2          3          4
1      5.006      3.428      1.462      0.246
2      5.902      2.748      4.394      1.434
3      6.850      3.074      5.742      2.071
     Cluster Sum of Squares
        1          2          3
    15.15      39.82      23.88
# Observations in Each Cluster
          1   2   3
         50  62  38

Warning Errors
IMSLS_NO_CONVERGENCE Convergence did not occur.
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principal_components
Computes principal components.

Synopsis
#include <imsls.h>
float *imsls_f_principal_components (int n_variables, float covariances[], ..., 0)

The type double function is imsls_d_principal_components.

Required Arguments
int n_variables  (Input)

Order of the covariance matrix.

float covariances[]  (Input)
Array of length n_variables by n_variables containing the covariance or correlation matrix.

Return Value
An array of length n_variables containing the eigenvalues of the matrix covariances ordered from larg-
est to smallest.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_principal_components (int n_variables, float covariances[],

IMSLS_COVARIANCE_MATRIX, or
IMSLS_CORRELATION_MATRIX,
IMSLS_CUM_PERCENT, float **cum_percent,
IMSLS_CUM_PERCENT_USER, float cum_percent[],
IMSLS_EIGENVECTORS, float **eigenvectors,
IMSLS_EIGENVECTORS_USER, float eigenvectors[],
IMSLS_CORRELATIONS, float **correlations,
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IMSLS_CORRELATIONS_USER, float correlations[],
IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev,
IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[],
IMSLS_COV_COL_DIM, int cov_col_dim, 
IMSLS_RETURN_USER, float eigenvalues[],
0)

Optional Arguments
IMSLS_COVARIANCE_MATRIX  (Input)

Treat the input vector covariances as a covariance matrix.

Default = IMSLS_COVARIANCE_MATRIX.

or

IMSLS_CORRELATION_MATRIX  (Input)
Treat the input vector covariances as a correlation matrix.

Default = IMSLS_COVARIANCE_MATRIX.

IMSLS_CUM_PERCENT, float **cum_percent  (Output)
The address of a pointer to an internally allocated array of length n_variables containing the 
cumulative percent of the total variances explained by each principal component.

IMSLS_CUM_PERCENT_USER, float cum_percent[]  (Output)
Storage for array cum_percent is provided by the user. See IMSLS_CUM_PERCENT.

IMSLS_EIGENVECTORS, float **eigenvectors  (Output)
The address of a pointer to an internally allocated array of length 
n_variables by n_variables containing the eigenvectors of covariances, stored column-
wise. Each vector is normalized to have Euclidean length equal to the value one. Also, the sign of each 
vector is set so that the largest component in magnitude (the first of the largest if there are ties) is 
made positive.

IMSLS_EIGENVECTORS_USER, float eigenvectors[]  (Output)
Storage for array eigenvectors is provided by the user. See IMSLS_EIGENVECTORS.

IMSLS_CORRELATIONS, float **correlations  (Output)
The address of a pointer to an internally allocated array of length 
n_variables by n_variables containing the correlations of the principal components (the col-
umns) with the observed/standardized variables (the rows). If IMSLS_COVARIANCE_MATRIX is 
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specified, then the correlations are with the observed variables. Otherwise, the correlations are with 
the standardized (to a variance of 1.0) variables. In the principal component model for factor analysis, 
matrix correlations is the matrix of unrotated factor loadings.

IMSLS_CORRELATIONS_USER, float correlations[]  (Output)
Storage for array correlations is provided by the user. See IMSLS_CORRELATIONS.

IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev  (Input/Output)
Argument n_degrees_freedom contains the number of degrees of freedom in covariances. 
Argument std_dev is the address of a pointer to an internally allocated array of length 
n_variables containing the estimated asymptotic standard errors of the eigenvalues.

IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[]  (Input/Output)
Storage for array std_dev is provided by the user. See IMSLS_STD_DEV.

IMSLS_COV_COL_DIM int cov_col_dim  (Input)
Column dimension of covariances.
Default: cov_col_dim = n_variables

IMSLS_RETURN_USER, float eigenvalues[]  (Output)
User-supplied array of length n_variables containing the eigenvalues of covariances ordered 
from largest to smallest.

Description
Function imsls_f_principal_components finds the principal components of a set of variables from a 
sample covariance or correlation matrix. The characteristic roots, characteristic vectors, standard errors for the 
characteristic roots, and the correlations of the principal component scores with the original variables are com-
puted. Principal components obtained from correlation matrices are the same as principal components obtained 
from standardized (to unit variance) variables.

The principal component scores are the elements of the vector y = ΓTx, where Γ is the matrix whose columns are 
the characteristic vectors (eigenvectors) of the sample covariance (or correlation) matrix and x is the vector of 
observed (or standardized) random variables. The variances of the principal component scores are the character-
istic roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girschick (1939) and are given more 
recently by Kendall et al. (1983, p. 331). These variances are computed either for covariance matrices or for cor-
relation matrices.
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The correlations of the principal components with the observed (or standardized) variables are given in the 
matrix correlations. When the principal components are obtained from a correlation matrix, 
correlations is the same as the matrix of unrotated factor loadings obtained for the principal components 
model for factor analysis.

Examples 

Example 1

In this example, eigenvalues of the covariance matrix are computed.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
   float *values;
   float covariances[N_VARIABLES * N_VARIABLES] = {
       1.0,  0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
       0.523, 1.0,  0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
       0.395, 0.479, 1.0,  0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
       0.471, 0.506, 0.355, 1.0,  0.691, 0.791, 0.443, 0.285, 0.505,
       0.346, 0.418, 0.27, 0.691, 1.0,  0.679, 0.383, 0.149, 0.409,
       0.426, 0.462, 0.254, 0.791, 0.679, 1.0,  0.372, 0.314, 0.472,
       0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,  0.385, 0.68,
       0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,  0.47,
       0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
   };
   /* Perform analysis */
   values = imsls_f_principal_components(N_VARIABLES, covariances,
       0);
   /* Print results. */
   imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values,
       0);
   /* Free allocated memory. */
   imsls_free(values);
}

Output

                             Eigenvalues
        1          2          3          4          5          6
    4.677      1.264      0.844      0.555      0.447      0.429
 
        7          8          9
    0.310      0.277      0.196
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Example 2

In this example, principal components are computed for a nine-variable correlation matrix.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
   float *values, *eigenvectors, *std_dev, *cum_percent, *a;
   static float covariances[N_VARIABLES * N_VARIABLES] = {
       1.0,  0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
       0.523, 1.0,  0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
       0.395, 0.479, 1.0,  0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
       0.471, 0.506, 0.355, 1.0,  0.691, 0.791, 0.443, 0.285, 0.505,
       0.346, 0.418, 0.27, 0.691, 1.0,  0.679, 0.383, 0.149, 0.409,
       0.426, 0.462, 0.254, 0.791, 0.679, 1.0,  0.372, 0.314, 0.472,
       0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,  0.385, 0.68,
       0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,  0.47,
       0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
   };
   /* Perform analysis */
   values = imsls_f_principal_components(N_VARIABLES, covariances,
       IMSLS_CORRELATION_MATRIX,
       IMSLS_EIGENVECTORS,                   &eigenvectors,
       IMSLS_STD_DEV,                        100, &std_dev,
       IMSLS_CUM_PERCENT,                    &cum_percent,
       IMSLS_CORRELATIONS, &a, 
       0);
   /* Print results */
   imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values,
       0);
   imsls_f_write_matrix("Eigenvectors", N_VARIABLES, N_VARIABLES,
       eigenvectors,
       0);
   imsls_f_write_matrix("STD", 1, N_VARIABLES, std_dev,
       0);
   imsls_f_write_matrix("PCT", 1, N_VARIABLES, cum_percent,
       0);
   imsls_f_write_matrix("A", N_VARIABLES, N_VARIABLES, a,
       0);
   /* Free allocated memory */
   imsls_free(values);
   imsls_free(eigenvectors);
   imsls_free (cum_percent);
   imsls_free (std_dev);
   imsls_free(a);
}

Output

                             Eigenvalues
        1          2          3          4          5          6
    4.677      1.264      0.844      0.555      0.447      0.429
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        7          8          9
    0.310      0.277      0.196
 
                             Eigenvectors
           1          2          3          4          5          6
1     0.3462    -0.2354     0.1386    -0.3317    -0.1088     0.7974
2     0.3526    -0.1108    -0.2795    -0.2161     0.7664    -0.2002
3     0.2754    -0.2697    -0.5585     0.6939    -0.1531     0.1511
4     0.3664     0.4031     0.0406     0.1196     0.0017     0.1152
5     0.3144     0.5022    -0.0733    -0.0207    -0.2804    -0.1796
6     0.3455     0.4553     0.1825     0.1114     0.1202     0.0697
7     0.3487    -0.2714    -0.0725    -0.3545    -0.5242    -0.4355
8     0.2407    -0.3159     0.7383     0.4329     0.0861    -0.1969
9     0.3847    -0.2533    -0.0078    -0.1468     0.0459    -0.1498
 
           7          8          9
1     0.1735    -0.1240    -0.0488
2     0.1386    -0.3032    -0.0079
3     0.0099    -0.0406    -0.0997
4    -0.4022    -0.1178     0.7060
5     0.7295     0.0075     0.0046
6    -0.3742     0.0925    -0.6780
7    -0.2854    -0.3408    -0.1089
8     0.1862    -0.1623     0.0505
9    -0.0251     0.8521     0.1225
 
                                 STD
        1          2          3          4          5          6
   0.6498     0.1771     0.0986     0.0879     0.0882     0.0890
 
        7          8          9
   0.0944     0.0994     0.1113
 
                                 PCT
        1          2          3          4          5          6
    0.520      0.660      0.754      0.816      0.865      0.913
 
        7          8          9
    0.947      0.978      1.000
 
                                   A
           1          2          3          4          5          6
1     0.7487    -0.2646     0.1274    -0.2471    -0.0728     0.5224
2     0.7625    -0.1245    -0.2568    -0.1610     0.5124    -0.1312
3     0.5956    -0.3032    -0.5133     0.5170    -0.1024     0.0990
4     0.7923     0.4532     0.0373     0.0891     0.0012     0.0755
5     0.6799     0.5646    -0.0674    -0.0154    -0.1875    -0.1177
6     0.7472     0.5119     0.1677     0.0830     0.0804     0.0456
7     0.7542    -0.3051    -0.0666    -0.2641    -0.3505    -0.2853
8     0.5206    -0.3552     0.6784     0.3225     0.0576    -0.1290
9     0.8319    -0.2848    -0.0071    -0.1094     0.0307    -0.0981
 
           7          8          9
1     0.0966    -0.0652    -0.0216
2     0.0772    -0.1596    -0.0035
3     0.0055    -0.0214    -0.0442
4    -0.2240    -0.0620     0.3127
5     0.4063     0.0039     0.0021
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6    -0.2084     0.0487    -0.3003
7    -0.1589    -0.1794    -0.0482
8     0.1037    -0.0854     0.0224
9    -0.0140     0.4485     0.0543

Warning Errors
IMSLS_100_DF Because the number of degrees of freedom in 

“covariances” and “n_degrees_freedom” is less 
than or equal to 0, 100 degrees of freedom will be 
used.

IMSLS_COV_NOT_NONNEG_DEF “eigenvalues[#]” = #. One or more eigenvalues 
much less than zero are computed. The matrix 
“covariances” is not nonnegative definite. In order 
to continue computations of “eigenvalues” and 
“correlations,” these eigenvalues are treated as 
0.

IMSLS_FAILED_TO_CONVERGE The iteration for the eigenvalue failed to converge in 
100 iterations before deflating.
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factor_analysis

Extracts initial factor-loading estimates in factor analysis with rotation options.

Synopsis
#include <imsls.h>
float *imsls_f_factor_analysis (int n_variables, float covariances[], int n_factors, 

..., 0)

The type double function is imsls_d_factor_analysis.

Required Arguments
int n_variables  (Input)

Number of variables.

float covariances[]  (Input)
Array of length n_variables×n_variables containing the variance-covariance or correlation 
matrix.

int n_factors  (Input)
Number of factors in the model.

Return Value
An array of length n_variables×n_factors containing the matrix of factor loadings.

Synopsis with Optional Arguments
#include <imsls.h>

more...

more...
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float *imsls_f_factor_analysis (int n_variables, float covariances[], int n_factors,

IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances, or
IMSLS_PRINCIPAL_COMPONENT, or
IMSLS_PRINCIPAL_FACTOR, or
IMSLS_UNWEIGHTED_LEAST_SQUARES, or
IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances, or
IMSLS_IMAGE, or
IMSLS_ALPHA, int df_covariances,
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[],
IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search,
IMSLS_CONVERGENCE_EPS, float convergence_eps,
IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon,
IMSLS_EIGENVALUES, float **eigenvalues,
IMSLS_EIGENVALUES_USER, float eigenvalues[],
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value,
IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient,
IMSLS_N_ITERATIONS, int *n_iterations,
IMSLS_FUNCTION_MIN, float *function_min,
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b, float **t,
IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[], float t[],
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION, float target[], float **b, float **t,
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION_USER, float target[], float b[], 

float t[],
IMSLS_DIRECT_OBLIMIN_ROTATION, float w, int norm, float **b, float **t, 

float **factor_correlations,
IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm, float b[], float t[], 

float factor_correlations[],
IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[], int norm, float **target, 

float **b, float **t, float **factor_correlations,
IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[], int norm, 

float target[], float b[], float t[], float factor_correlations[],
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w, float pivot[], int norm, 

float **target, float **b, float **t, float **factor_correlations,
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w, float pivot[], int norm, 

float target[], float b[], float t[], float factor_correlations[],
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IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float target[], float **b, float **t, 
float **factor_correlations,

IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER,  float target[], float b[], float t[], 
float factor_correlations[],
IMSLS_FACTOR_STRUCTURE, float **s, float **fvar,
IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[],

IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float factor_loadings[],
0)

Optional Arguments
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances  (Input)

Maximum likelihood (common factor model) method used to obtain the estimates. Argument 
df_covariances is the number of degrees of freedom in covariances.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_PRINCIPAL_COMPONENT
Principal component (principal component model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_PRINCIPAL_FACTOR
Principal factor (common factor model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_UNWEIGHTED_LEAST_SQUARES
Unweighted least-squares (common factor model) method used to obtain the estimates. This option 
is the default.

Default: This option is the default.

or

IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances  (Input)
Generalized least-squares (common factor model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or
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IMSLS_IMAGE
Image-factor analysis (common factor model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_ALPHA, int df_covariances  (Input)
Alpha-factor analysis (common factor model) method used to obtain the estimates. Argument 
df_covariances is the number of degrees of freedom in covariances.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[]  (Input)

Array of length n_variables containing the initial estimates of the unique variances.

Default: Initial estimates are taken as the constant 1 − n_factors/2 × n_variables divided by 
the diagonal elements of the inverse of covariances.

IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[]  (Output)
User-allocated array of length n_variables containing the estimated unique variances.

IMSLS_MAX_ITERATIONS, int max_iterations  (Input)
Maximum number of iterations in the iterative procedure.

Default: max_iterations = 60

IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search  (Input)
Maximum number of step halvings allowed during any one iteration.

Default: max_steps_line_search = 10

IMSLS_CONVERGENCE_EPS, float convergence_eps  (Input)
Convergence criterion used to terminate the iterations. For the unweighted least squares, general-
ized least squares or maximum likelihood methods, convergence is assumed when the relative 
change in the criterion is less than convergence_eps. For alpha-factor analysis, convergence is 
assumed when the maximum change (relative to the variance) of a uniqueness is less than 
convergence_eps.

Default: convergence_eps = 0.0001

IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon  (Input)
Convergence criterion used to switch to exact second derivatives. When the largest relative change in 
the unique standard deviation vector is less than switch_epsilon, exact second derivative vec-
tors are used. Argument switch_epsilon is not used with the principal component, principal 
factor, image-factor analysis, or alpha-factor analysis methods.

Default: switch_epsilon = 0.1
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IMSLS_EIGENVALUES, float **eigenvalues  (Output)
The address of a pointer to an internally allocated array of length n_variables containing the 
eigenvalues of the matrix from which the factors were extracted.

IMSLS_EIGENVALUES_USER, float eigenvalues[]  (Output)
Storage for array eigenvalues is provided by the user. See IMSLS_EIGENVALUES.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value  (Output)
Number of degrees of freedom in chi-squared is df; chi_squared is the chi-squared test statistic 
for testing that n_factors common factors are adequate for the data; p_value is the probability 
of a greater chi-squared statistic.

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient  (Output)
Tucker reliability coefficient.

IMSLS_N_ITERATIONS, int *n_iterations  (Output)
Number of iterations.

IMSLS_FUNCTION_MIN, float *function_min  (Output)
Value of the function minimum.

IMSLS_LAST_STEP, float **last_step  (Output)
Address of a pointer to an internally allocated array of length n_variables containing the 
updates of the unique variance estimates when convergence was reached (or the iterations 
terminated).

IMSLS_LAST_STEP_USER, float last_step[]  (Output)
Storage for array last_step is provided by the user. See IMSLS_LAST_STEP.

IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b, float **t (Input/Output)
Nonnegative constant w defines the rotation. If norm =1, row normalization is performed. Otherwise, 
row normalization is not performed. b contains the address of a pointer to the internally allocated 
array of length n_variables by n_factors containing the rotated factor loading matrix. t con-
tains the address of a pointer to the internally allocated array of length n_factors by 
n_factors containing the rotation transformation matrix. w = 0.0 results in quartimax rotations, 
w = 1.0 results in varimax rotations, and w = n_factors/2.0 results in equamax rotations. Other 
nonnegative values of w may also be used, but the best values for w are in the range 
(0.0, 5 × n_factors).

IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[], float t[] (Input/Output)
Storage for b and t are provided by the user. See IMSLS_ORTHOMAX_ROTATION.

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION, float target[], float **b, float **t (Input/Out-
put)
If specified, the n_variables by n_factors target matrix target will be used to compute an 
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orthogonal Procrustes rotation of the factor-loading matrix. b contains the address of a pointer to 
the internally allocated array of length n_variables×n_factors containing the rotated factor 
loading matrix. t contains the address of a pointer to the internally allocated array of length 
n_factors×n_factors containing the rotation transformation matrix. 

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION_USER, float target[], float b[], float t[]  
(Input/Output) 
Storage for b and t are provided by the user. See 
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION.

IMSLS_DIRECT_OBLIMIN_ROTATION, float w, int norm, float **b, float **t, 
float **factor_correlations  (Input/Output)
Computes a direct oblimin rotation. Nonpositive constant w defines the rotation. If norm =1, row 
normalization is performed. Otherwise, row normalization is not performed. b contains the address 
of a pointer to the internally allocated array of length n_variables×n_factors containing the 
rotated factor loading matrix. t contains the address of a pointer to the internally allocated array of 
length n_factors×n_factors containing the rotation transformation matrix. 
factor_correlations contains the address of a pointer to the internally allocated array of 
length n_factors×n_factors containing the factor correlations. The parameter w determines 
the type of direct oblimin rotation to be performed. In general w must be negative. w = 0.0 results in 
direct quartimin rotations. As w approaches negative infinity, the orthogonality among factors will 
increase.

IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm, float b[], float t[], 
float factor_correlations[] (Input/Output)
Storage for b, t and factor_correlations are provided by the user. See 
IMSLS_DIRECT_OBLIMIN_ROTATION.

IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[], int norm, float **target, float **b, 
float **t, float **factor_correlations  (Input/Output)
Computes an oblique promax rotation of the factor loading matrix using a power vector. Nonnega-
tive constant w defines the rotation. power, a vector of length n_factors, contains the power 
vector. If norm =1, row (Kaiser) normalization is performed. Otherwise, row normalization is not per-
formed. b contains the address of a pointer to the internally allocated array of length 
n_variables×n_factors containing the rotated factor loading matrix. t contains the address 
of a pointer to the internally allocated array of length n_factors*n_factors containing the 
rotation transformation matrix. factor_correlations contains the address of a pointer to the 
internally allocated array of length n_factors×n_factors containing the factor correlations. 
target contains the address of a pointer to the internally allocated array of length 
n_variables×n_factors containing the target matrix for rotation, derived from the orthomax 
rotation.  w is used in the orthomax rotation, see the optional argument 
IMSLS_ORTHOMAX_ROTATION for common values of w.
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All power[j] should be greater than 1.0, typically 4.0. Generally, the larger the values of power 
[j], the more oblique the solution will be.

IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[], int norm, float target[], 
float b[], float  t[], float factor_correlations[]   (Input/Output)
 Storage for b, t, factor_correlations, and target are provided by the user. See 
IMSLS_OBLIQUE_PROMAX_ROTATION.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w, float pivot[], int norm, 
float **target , float **b, float **t, float **factor_correlations  (Input/Output)
Computes an oblique pivotal promax rotation of the factor loading matrix using pivot constants. 
Nonnegative constant w defines the rotation. pivot, a vector of length n_factors, contains the 
pivot constants. pivot[j] should be in the interval (0.0, 1.0). If norm = 1, row (Kaiser) normaliza-
tion is performed. Otherwise, row normalization is not performed.  b contains the address of a 
pointer to the internally allocated array of length n_variables×n_factors containing the 
rotated factor loading matrix. t contains the address of a pointer to the internally allocated array of 
length n_factors×n_factors containing the rotation transformation matrix. 
factor_correlations contains the address of a pointer to the internally allocated array of 
length n_factors*n_factors containing the factor correlations. target contains the address 
of a pointer to the internally allocated array of length n_variables×n_factors containing the 
target matrix for rotation, derived from the orthomax rotation. w is used in the orthomax rotation, 
see the optional argument IMSLS_ORTHOMAX_ROTATION for common values of w.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w, float pivot[], int norm, float 
target[], float b[], float t[], float factor_correlations[]  (Input/Output)
 Storage for b, t, factor_correlations, and target are provided by the user. See 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION.

IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float **target, float **b, float **t, 
float **factor_correlations  (Input/Output)
Computes an oblique procrustes rotation of the factor loading matrix using a target matrix. target 
is a hypothesized rotated factor loading matrix based upon prior knowledge with loadings chosen to 
enhance interpretability. A simple structure solution will have most of the weights target[i][j] 
either zero or large in magnitude. b contains the address of a pointer to the internally allocated array 
of length n_variables×n_factors containing the rotated factor loading matrix. t contains the 
address of a pointer to the internally allocated array of length n_factors×n_factors contain-
ing the rotation transformation matrix. factor_correlations contains the address of a pointer 
to the internally allocated array of length n_factors×n_factors containing the factor 
correlations.
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IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER, float target[], float b[], float t[], 
float factor_correlations[] (Input/Output)
Storage for b, t, and factor_correlations are provided by the user. See 
IMSLS_PROCRUSTES_ROTATION.

IMSLS_FACTOR_STRUCTURE, float **s, float **fvar   (Output)
Computes the factor structure and the variance explained by each factor. s contains the address of a 
pointer to the internally allocated array of length n_variables×n_factors containing the fac-
tor structure matrix. fvar contains the address of a pointer to the internally allocated array of 
length n_factors containing the variance accounted for by each of the n_factors rotated fac-
tors. A factor rotation matrix is used to compute the factor structure and the variance. One and only 
one rotation option argument can be specified.

IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[]  (Output)
Storage for s, and fvar are provided by the user. See IMSLS_FACTOR_STRUCTURE.

IMSLS_COV_COL_DIM, int cov_col_dim  (Input)
Column dimension of the matrix covariances.

Default: cov_col_dim = n_variables
IMSLS_RETURN_USER, float factor_loadings[]  (Output)

User-allocated array of length n_variables×n_factors containing the unrotated factor 
loadings.

Description
Function imsls_f_factor_analysis computes factor loadings in exploratory factor analysis models. Mod-
els available in imsls_f_factor_analysis are the principal component model for factor analysis and the 
common factor model with additions to the common factor model in alpha-factor analysis and image analysis. 
Methods of estimation include principal components, principal factor, image analysis, unweighted least squares, 
generalized least squares, and maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as Σ = ΛΛT + Ψ, where Σ is the 
p × p population covariance matrix, Λ is the p × k matrix of factor loadings relating the factors f to the observed 
variables x, and Ψ is the p × p matrix of covariances of the unique errors e. Here, p = n_variables and 
k = n_factors. The relationship between the factors, the unique errors, and the observed variables is given as 
x = Λf + e, where in addition, the expected values of e, f, and x are assumed to be 0. (The sample means can be 
subtracted from x if the expected value of x is not 0.) It also is assumed that each factor has unit variance, the fac-
tors are independent of each other, and that the factors and the unique errors are mutually independent. In the 
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common factor model, the elements of unique errors e also are assumed to be independent of one another so 
that the matrix Ψ is diagonal. This is not the case in the principal component model in which the errors may be 
correlated.

Further differences between the various methods concern the criterion that is optimized and the amount of 
computer effort required to obtain estimates. Generally speaking, the least-squares and maximum likelihood 
methods, which use iterative algorithms, require the most computer time with the principal factor, principal com-
ponent and the image methods requiring much less time since the algorithms in these methods are not iterative. 
The algorithm in alpha-factor analysis is also iterative, but the estimates in this method generally require some-
what less computer effort than the least-squares and maximum likelihood estimates. In all methods, one 
eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods
Both the principal component and principal factor methods compute the factor-loading estimates as

where Γ and the diagonal matrix Δ are the eigenvectors and eigenvalues of a matrix. In the principal component 
model, the eigensystem analysis is performed on the sample covariance (correlation) matrix S, while in the princi-
pal factor model, the matrix (S + Ψ) is used. If the unique error variances Ψ are not known in the principal factor 
mode, then imsls_f_factor_analysis obtains estimates for them.

The basic idea in the principal component method is to find factors that maximize the variance in the original 
data that is explained by the factors. Because this method allows the unique errors to be correlated, some factor 
analysts insist that the principal component method is not a factor analytic method. Usually, however, the esti-
mates obtained by the principal component model and factor analysis model will be quite similar.

It should be noted that both the principal component and principal factor methods give different results when 
the correlation matrix is used in place of the covariance matrix. Indeed, any rescaling of the sample covariance 
matrix can lead to different estimates with either of these methods. A further difficulty with the principal factor 
method is the problem of estimating the unique error variances. Theoretically, these must be known in advance 
and be passed to imsls_f_factor_analysis using optional argument 
IMSLS_UNIQUE_VARIANCES_INPUT. In practice, the estimates of these parameters are produced by 
imsls_f_factor_analysis when IMSLS_UNIQUE_VARIANCES_INPUT is not specified. In either case, 
the resulting adjusted covariance (correlation) matrix

may not yield the n_factors positive eigenvalues required for n_factors factors to be obtained. If this 
occurs, the user must either lower the number of factors to be estimated or give new unique error variance 
values.

Γ^ Δ^
−1/2

S − ψ̂
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Least-squares and Maximum Likelihood Methods
Unlike the previous two methods, the algorithm used to compute estimates in this section is iterative (see Jöre-
skog 1977). As with the principal factor model, the user may either initialize the unique error variances or allow 
imsls_f_factor_analysis to compute initial estimates. Unlike the principal factor method, 
imsls_f_factor_analysis optimizes the criterion function with respect to both Ψ and Γ. (In the principal 
factor method, Ψ is assumed to be known. Given Ψ, estimates for Λ may be obtained.)

The major difference between the methods discussed in this section is in the criterion function that is optimized. 
Let S denote the sample covariance (correlation) matrix, and let Σ denote the covariance matrix that is to be esti-
mated by the factor model. In the unweighted least-squares method, also called the iterated principal factor 
method or the minres method (see Harman 1976, p. 177), the function minimized is the sum-of-squared differ-

ences between S and Σ. This is written as Φu1= 0.5 (trace (S − Σ)2).

Generalized least-squares and maximum likelihood estimates are asymptotically equivalent methods. Maximum 

likelihood estimates maximize the (normal theory) likelihood {Φm1 = trace (Σ−1S) − log (|Σ−1S|)}, while generalized 

least squares optimizes the function Φgs = trace (ΣS−1 − I)2.

In all three methods, a two-stage optimization procedure is used. This proceeds by first solving the likelihood 
equations for Λ in terms of Ψ and substituting the solution into the likelihood. This gives a criterion ɸ (Ψ, Λ (Ψ)), 

which is optimized with respect to Ψ. In the second stage, the estimates    are obtained from the estimates for 
Ψ.

The generalized least-squares and maximum likelihood methods allow for the computation of a statistic 
(IMSLS_CHI_SQUARED_TEST) for testing that n_factors common factors are adequate to fit the model. 
This is a chi-squared test that all remaining parameters associated with additional factors are 0. If the probability 
of a larger chi-squared is so small that the null hypothesis is rejected, then additional factors are needed 
(although these factors may not be of any practical importance). Failure to reject does not legitimize the model. 
The statistic IMSLS_CHI_SQUARED_TEST is a likelihood ratio statistic in maximum likelihood estimation. As 
such, it asymptotically follows a chi-squared distribution with degrees of freedom given by df.

The Tucker and Lewis reliability coefficient, ρ, is returned by IMSLS_TUCKER_RELIABILITY_COEFFICIENT 
when the maximum likelihood or generalized least-squares methods are used. This coefficient is an estimate of 
the ratio of explained variation to the total variation in the data. It is computed as follows:

Λ
^
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where |S| is the determinant of covariances, p = n_variables, k = n_variables, ɸ is the optimized crite-
rion, and d = df_covariances.

Image Analysis Method
The term image analysis is used here to denote the noniterative image method of Kaiser (1963). It is not the 
image analysis discussed by Harman (1976, p. 226). The image method (as well as the alpha-factor analysis 
method) begins with the notion that only a finite number from an infinite number of possible variables have been 
measured. The image factor pattern is calculated under the assumption that the ratio of the number of factors to 
the number of observed variables is near 0, so that a very good estimate for the unique error variances (for stan-
dardized variables) is given as 1 minus the squared multiple correlation of the variable under consideration with 
all variables in the covariance matrix.

First, the matrix D2 = (diag (S−1) )−1 is computed where the operator “diag” results in a matrix consisting of the 
diagonal elements of its argument and S is the sample covariance (correlation) matrix. Then, the eigenvalues Λ 

and eigenvectors Γ of the matrix D−1SD−1 are computed. Finally, the unrotated image-factor pattern is computed 

as DΓ [(Λ − I)2Λ−1]1?2.

Alpha-factor Analysis Method
The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-loading estimates to maximize the cor-
relation between the factors and the complete universe of variables of interest. The basic idea in this method is 
that only a finite number of variables out of a much larger set of possible variables is observed. The population 
factors are linearly related to this larger set, while the observed factors are linearly related to the observed vari-
ables. Let f denote the factors obtainable from a finite set of observed random variables, and let ξ denote the 
factors obtainable from the universe of observable variables. Then, the alpha method attempts to find factor-
loading estimates so as to maximize the correlation between f and ξ. In order to obtain these estimates, the iter-
ative algorithm of Kaiser and Caffrey (1965) is used.

ρ =
mM0 − mMk
mM0 − 1

m = d −
2p + 5
6 − 2k6

M0 =
−ln ∣S∣
p p − 1 / 2

Mk =
ϕ

p − k 2 − p − k / 2
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Rotation Methods
The IMSLS_ORTHOMAX_ROTATION optional argument performs an orthogonal rotation according to an 
orthomax criterion. In this analytic method of rotation, the criterion function

is minimized by finding an orthogonal rotation matrix T such that (λij) = Λ = AT where A is the matrix of unrotated 

factor loadings. Here, ≥ 0 is a user-specified constant (w) yielding a family of rotations, and p is the number of 
variables. 

Kaiser (row) normalization can be performed on the factor loadings prior to rotation by specifying the parameter 
norm =1. In Kaiser normalization, the rows of A are first “normalized” by dividing each row by the square root of 
the sum of its squared elements (Harman 1976). After the rotation is complete, each row of b is “denormalized” 
by multiplication by its initial normalizing constant. 

The method for optimizing Q proceeds by accumulating simple rotations where a simple rotation is defined to be 
one in which Q is optimized for two columns in Λ and for which the requirement that T be orthogonal is satisfied. 
A single iteration is defined to be such that each of the 
n_factors(n_factors - 1)/2 possible simple rotations is performed where n_factors is the number of 
factors. When the relative change in Q from one iteration to the next is less than convergence_eps (the user-
specified convergence criterion), the algorithm stops. convergence_eps = 0.0001 is usually sufficient. Alter-
natively, the algorithm stops when the user-specified maximum number of iterations, max_iterations, is 
reached. max_iterations = 30 is usually sufficient. 

The parameter in the rotation, , is used to provide a family of rotations. When  = 0.0, a direct quartimax rota-

tion results. Other values of  yield other rotations.

The IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION optional argument performs orthogonal Procrustes 
rotation according to a method proposed by Schöneman (1966). Let k = n_factors denote the number of fac-
tors, p = n_variables denote the number of variables, A denote the p × k matrix of unrotated factor loadings, 

T denote the k × k orthogonal rotation matrix (orthogonality requires that TT T be a k × k identity matrix), and let X 
denote the target matrix. The basic idea in orthogonal Procrustes rotation is to find an orthogonal rotation matrix 
T such that B = AT and T provides a least-squares fit between the target matrix X and the rotated loading matrix B. 

Schöneman’s algorithm proceeds by finding the singular value decomposition of the matrix AT X = UΣVT. The rota-

tion matrix is computed as T = UVT.

The IMSLS_DIRECT_OBLIMIN_ROTATION optional argument performs direct oblimin rotation. In this ana-
lytic method of rotation, the criterion function
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is minimized by finding a rotation matrix T such that (λir) = Λ = AT and (TT T )−1 is a correlation matrix. Here,  ≤ 0 

is a user-specified constant (w) yielding a family of rotations, and p is the number of variables. The rotation is said 
to be direct because it minimizes Q with respect to the factor loadings directly, ignoring the reference structure.

Kaiser normalization can be performed on the factor loadings prior to rotation via the parameter norm. In Kaiser 
normalization (see Harman 1976), the rows of the factor loading matrix are first “normalized” by dividing each row 
by the square root of the sum of its squared elements. After the rotation is complete, each row of b is “denormal-
ized” by multiplication by its initial normalizing constant.

The method for optimizing Q is essentially the method first proposed by Jennrich and Sampson (1966). It pro-
ceeds by accumulating simple rotations where a simple rotation is defined to be one in which Q is optimized for a 

given factor in the plane of a second factor, and for which the requirement that (TTT)−1 be a correlation matrix is 
satisfied. An iteration is defined to be such that each of the n_factors[n_factors - 1] possible simple rota-
tions is performed, where n_factors is the number of factors. When the relative change in Q from one 
iteration to the next is less than convergence_eps (the user-specified convergence criterion), the algorithm 
stops. convergence_eps = .0001 is usually sufficient. Alternatively, the algorithm stops when the user-speci-
fied maximum number of iterations, max_iterations, is reached. max_iterations = 30 is usually 
sufficient.

The parameter in the rotation, , is used to provide a family of rotations. Harman (1976) recommends that  be 

strictly less than or equal to zero. When = 0.0, a direct quartimin rotation results. Other values of  yield other 
rotations. Harman (1976) suggests that the direct quartimin rotations yield the most highly correlated factors 

while more orthogonal factors result as  approaches -∞.

IMSLS_OBLIQUE_PROMAX_ROTATION, IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, optional arguments perform oblique rotations using the Pro-
max, pivotal Promax, or oblique Procrustes methods. In all of these methods, a target matrix X is first either 
computed or specified by the user. The differences in the methods relate to how the target matrix is first 
obtained.

Given a p × k target matrix, X, and a p × k orthogonal matrix of unrotated factor loadings, A, compute the rotation 

matrix T as follows: First regress each column of A on X yielding a k × k matrix β. Then, let = diag(βT β) where 
diag denotes the diagonal matrix obtained from the diagonal of the square matrix. Standardize β to obtain T = 
−1?2 β. The rotated loadings are computed as B = AT while the factor correlations can be computed as the 

inverse of the T TT matrix.
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In the Promax method, the unrotated factor loadings are first rotated according to an orthomax criterion via 
optional argument IMSLS_ORTHOMAX_ROTATION. The target matrix X is taken as the elements of the B raised 
to a power greater than one but retaining the same sign as the original loadings. The column i of the rotated 
matrix B is raised to the power power[i]. A power of four is commonly used. Generally, the larger the power, 
the more oblique the solution.

In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax orthogonal solution as in the 
Promax case. Then, rather than raising the i-th column in B to the power pivot[i], the elements xij of X are 

obtained from the elements bij of B by raising the ij element of B to the power pivot[i]/bij. This has the effects 

of greatly increasing in X those elements in B that are greater in magnitude than the pivot elements pivot[i], 
and of greatly decreasing those elements that are less than pivot[i].

In the oblique Procrustes method, the elements of X are specified by the user as input to the routine via the 
target argument. No orthogonal rotation is performed in the oblique Procrustes method.

Factor Structure and Variance 
The IMSLS_FACTOR_STRUCTURE optional argument computes the factor structure matrix (the matrix of cor-
relations between the observed variables and the hypothesized factors) and the variance explained by each of 
the factors (for orthogonal rotations). For oblique rotations, IMSLS_FACTOR_STRUCTURE computes a mea-
sure of the importance of the factors, the sum of the squared elements in each column. 

Let Δ denote the diagonal matrix containing the elements of the variance of the original data along its diagonal. 
The estimated factor structure matrix S is computed as

while the elements of fvar are computed as the diagonal elements of

If the factors were obtained from a correlation matrix (or the factor variances for standardized variables are 
desired), then the variances should all be 1.0. 

Comments
1. Function imsls_f_factor_analysis makes no attempt to solve for n_factors. In general, if 

n_factors is not known in advance, several different values of n_factors should be used and 
the most reasonable value kept in the final solution.

S = Δ
−12A(T−1)T

STΔ
1
2AT
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2. Iterative methods are generally thought to be superior from a theoretical point of view, but in prac-
tice, often lead to solutions that differ little from the noniterative methods. For this reason, it is 
usually suggested that a noniterative method be used in the initial stages of the factor analysis and 
that the iterative methods be used when issues such as the number of factors have been resolved.

3. Initial estimates for the unique variances can be input. If the iterative methods fail for these values, 
new initial estimates should be tried. These can be obtained by use of another factoring method. 
(Use the final estimates from the new method as the initial estimates in the old method.)

Examples

Example 1

In this example, factor analysis is performed for a nine-variable matrix using the default method of unweighted 
least squares.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
#define N_FACTORS  3
   float *a;
   float covariances[N_VARIABLES][N_VARIABLES] = {
       1.0,  0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
       0.523, 1.0,  0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
       0.395, 0.479, 1.0,  0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
       0.471, 0.506, 0.355, 1.0,  0.691, 0.791, 0.443, 0.285, 0.505,
       0.346, 0.418, 0.27, 0.691, 1.0,  0.679, 0.383, 0.149, 0.409,
       0.426, 0.462, 0.254, 0.791, 0.679, 1.0,  0.372, 0.314, 0.472,
       0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,  0.385, 0.68,
       0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,  0.47,
       0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
   };
   /* Perform analysis */
   a = imsls_f_factor_analysis (9, &covariances[0][0], 3,
       0);
   /* Print results */
   imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS, a,
       0);
   imsls_free(a);
}

Output

        Unrotated Loadings
           1          2          3
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1     0.7018    -0.2316     0.0796
2     0.7200    -0.1372    -0.2082
3     0.5351    -0.2144    -0.2271
4     0.7907     0.4050     0.0070
5     0.6532     0.4221    -0.1046
6     0.7539     0.4842     0.1607
7     0.7127    -0.2819    -0.0701
8     0.4835    -0.2627     0.4620
9     0.8192    -0.3137    -0.0199

Example 2

The following data were originally analyzed by Emmett (1949). There are 211 observations on 9 variables. Follow-
ing Lawley and Maxwell (1971), three factors are obtained by the method of maximum likelihood.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N_VARIABLES 9
#define N_FACTORS  3
   float *a;
   float *evals;
   float chi_squared, p_value, reliability_coef, function_min;
   int  chi_squared_df, n_iterations;
   float uniq[N_VARIABLES];
   float covariances[N_VARIABLES][N_VARIABLES] = {
       1.0,  0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
       0.523, 1.0,  0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
       0.395, 0.479, 1.0,  0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
       0.471, 0.506, 0.355, 1.0,  0.691, 0.791, 0.443, 0.285, 0.505,
       0.346, 0.418, 0.27, 0.691, 1.0,  0.679, 0.383, 0.149, 0.409,
       0.426, 0.462, 0.254, 0.791, 0.679, 1.0,  0.372, 0.314, 0.472,
       0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,  0.385, 0.68,
       0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,  0.47,
       0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
   };
   /* Perform analysis */
   a = imsls_f_factor_analysis (9, &covariances[0][0], 3,
       IMSLS_MAXIMUM_LIKELIHOOD,          210,
       IMSLS_SWITCH_EXACT_HESSIAN,        0.01,
       IMSLS_CONVERGENCE_EPS,             0.000001,
       IMSLS_MAX_ITERATIONS,              30,
       IMSLS_MAX_STEPS_LINE_SEARCH,       10,
       IMSLS_EIGENVALUES,                 &evals,
       IMSLS_UNIQUE_VARIANCES_OUTPUT,     uniq,
       IMSLS_CHI_SQUARED_TEST, &chi_squared_df, &chi_squared, &p_value,
       IMSLS_TUCKER_RELIABILITY_COEFFICIENT, &reliability_coef,
       IMSLS_N_ITERATIONS,                &n_iterations,
       IMSLS_FUNCTION_MIN,                &function_min,
       0);
   /* Print results */
   imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
       a, 0);
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   imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, evals, 0);
   imsls_f_write_matrix("Unique Error Variances", 1, N_VARIABLES,
       uniq, 0);
   printf("\n\nchi_squared_df =   %d\n", chi_squared_df);
   printf("chi_squared =      %f\n", chi_squared);
   printf("p_value =          %f\n\n", p_value);
   printf("reliability_coef = %f\n", reliability_coef);
   printf("function_min =     %f\n", function_min);
   printf("n_iterations =     %d\n", n_iterations);
   imsls_free(evals);
   imsls_free(a);
}

Output

        Unrotated Loadings
           1          2          3
1     0.6642    -0.3209     0.0735
2     0.6888    -0.2471    -0.1933
3     0.4926    -0.3022    -0.2224
4     0.8372     0.2924    -0.0354
5     0.7050     0.3148    -0.1528
6     0.8187     0.3767     0.1045
7     0.6615    -0.3960    -0.0777
8     0.4579    -0.2955     0.4913
9     0.7657    -0.4274    -0.0117
 
                             Eigenvalues
        1          2          3          4          5          6
    0.063      0.229      0.541      0.865      0.894      0.974
 
        7          8          9
    1.080      1.117      1.140
 
                       Unique Error Variances
        1          2          3          4          5          6
   0.4505     0.4271     0.6166     0.2123     0.3805     0.1769
 
        7          8          9
   0.3995     0.4615     0.2309

chi_squared_df =   12
chi_squared =      7.149356
p_value =          0.847588
reliability_coef = 1.000000
function_min =     0.035017
n_iterations =     5
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Example 3

This example is a continuation of example 1 and illustrates the use of the IMSLS_FACTOR_STRUCTURE 
optional argument when the structure and an index of factor importance for obliquely rotated loadings are 

desired. A direct oblimin rotation is used to compute the factors, derived from nine variables and using  = -1. 

Note in this example that the elements of fvar are not variances since the rotation is oblique.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
#define N_FACTORS  3
   float *a;
   float w= -1.0;
   int  norm=1;
   float *b, *t, *fcor;
   float *s, *fvar;
   float covariances[9][9] = {
       1.0,  0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
       0.523, 1.0,  0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
       0.395, 0.479, 1.0,  0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
       0.471, 0.506, 0.355, 1.0,  0.691, 0.791, 0.443, 0.285, 0.505,
       0.346, 0.418, 0.27, 0.691, 1.0,  0.679, 0.383, 0.149, 0.409,
       0.426, 0.462, 0.254, 0.791, 0.679, 1.0,  0.372, 0.314, 0.472,
       0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,  0.385, 0.68,
       0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,  0.47,
       0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
   };
   /* Perform analysis */
   a = imsls_f_factor_analysis (9, (float *)covariances, 3,
       IMSLS_MAXIMUM_LIKELIHOOD,          210,
       IMSLS_SWITCH_EXACT_HESSIAN,        0.01,
       IMSLS_CONVERGENCE_EPS,             0.00001,
       IMSLS_MAX_ITERATIONS,              30,
       IMSLS_MAX_STEPS_LINE_SEARCH,       10,
       IMSLS_DIRECT_OBLIMIN_ROTATION, w, norm, &b, &t, &fcor,
       IMSLS_FACTOR_STRUCTURE, &s, &fvar,
       0);
   /* Print results */
   imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
       a,
       0);
   imsls_f_write_matrix("Rotated Loadings", N_VARIABLES, N_FACTORS, b,
       0);
   imsls_f_write_matrix("Transformation Matrix", N_FACTORS, N_FACTORS,
       t,
       0);
   imsls_f_write_matrix("Factor Correlation Matrix", N_FACTORS,
       N_FACTORS, fcor,
       0);
   imsls_f_write_matrix("Factor Structure", N_VARIABLES, N_FACTORS, s,
       0);
   imsls_f_write_matrix("Factor Variance", 1, N_FACTORS, fvar,

γ
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       0);
}

Output

        Unrotated Loadings
           1          2          3
1     0.6642    -0.3209     0.0735
2     0.6888    -0.2471    -0.1933
3     0.4926    -0.3022    -0.2224
4     0.8372     0.2924    -0.0354
5     0.7050     0.3148    -0.1528
6     0.8187     0.3767     0.1045
7     0.6615    -0.3960    -0.0777
8     0.4579    -0.2955     0.4913
9     0.7657    -0.4274    -0.0117
         Rotated Loadings
           1          2          3
1     0.1128    -0.5144     0.2917
2     0.1847    -0.6602    -0.0018
3     0.0128    -0.6354    -0.0585
4     0.7797    -0.1751     0.0598
5     0.7147    -0.1813    -0.0959
6     0.8520     0.0039     0.1820
7     0.0354    -0.6844     0.1510
8     0.0276    -0.0941     0.6824
9     0.0729    -0.7100     0.2493
       Transformation Matrix
           1          2          3
1      0.611     -0.462      0.203
2      0.923      0.813     -0.249
3      0.042      0.728      1.050
     Factor Correlation Matrix
           1          2          3
1      1.000     -0.427      0.217
2     -0.427      1.000     -0.411
3      0.217     -0.411      1.000
         Factor Structure
           1          2          3
1     0.3958    -0.6824     0.5275
2     0.4662    -0.7383     0.3094
3     0.2714    -0.6169     0.2052
4     0.8675    -0.5326     0.3011
5     0.7713    -0.4471     0.1339
6     0.8899    -0.4347     0.3656
7     0.3605    -0.7616     0.4398
8     0.2161    -0.3861     0.7271
9     0.4302    -0.8435     0.5568
         Factor Variance
        1          2          3
    2.170      2.560      0.914
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Warning Errors

Fatal Errors

IMSLS_VARIANCES_INPUT_IGNORED When using the IMSLS_PRINCIPAL_COMPONENT option, 
the unique variances are assumed to be zero. Input for 
IMSLS_UNIQUE_VARIANCES_INPUT is ignored.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is assumed.

IMSLS_NO_DEG_FREEDOM There are no degrees of freedom for the significance 
testing.

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is assumed.

IMSLS_NO_ROTATION n_factors = 1. No rotation is possible.

IMSLS_SVD_ERROR An error occurred in the singular value decomposition of 
tran(A)*X. The rotation matrix, T, may not be correct.

IMSLS_HESSIAN_NOT_POS_DEF The approximate Hessian is not semi-definite on iteration 
#. The computations cannot proceed. Try using different 
initial estimates.

IMSLS_FACTOR_EVAL_NOT_POS “eigenvalues[#]” = #. An eigenvalue corresponding to a 
factor is negative or zero. Either use different initial esti-
mates for “unique_variances” or reduce the number of 
factors.

IMSLS_COV_NOT_POS_DEF “covariances” is not positive semi-definite. The compu-
tations cannot proceed.

IMSLS_COV_IS_SINGULAR The matrix “covariances” is singular. The computations 
cannot continue because variable # is linearly related to 
the remaining variables.

IMSLS_COV_EVAL_ERROR An error occurred in calculating the eigenvalues of the 
adjusted (inverse) covariance matrix. Check 
“covariances.”

IMSLS_ALPHA_FACTOR_EVAL_NEG In alpha factor analysis on iteration #, eigenvalue # is #. 
As all eigenvalues corresponding to the factors must be 
positive, either the number of factors must be reduced or 
new initial estimates for “unique_variances” must be 
given.

IMSLS_RANK_LESS_THAN The rank of TRAN(A)*target = #. This must be greater 
than or equal to n_factors = #.
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discriminant_analysis
Performs a linear or a quadratic discriminant function analysis among several known groups.

Synopsis
#include <imsls.h>
void imsls_f_discriminant_analysis (int n_rows, int n_variables, float x[], 

int n_groups, …, 0)

The type double function is imsls_d_discriminant_analysis.

Required Arguments
int n_rows  (Input)

Number of rows of x to be processed.

int n_variables  (Input)
Number of variables to be used in the discrimination.

float x[]  (Input)
Array of size n_rows by n_variables + 1 containing the data. The first n_variables columns 
correspond to the variables, and the last column (column n_variables) contains the group num-
bers. The groups must be numbered 1, 2, ..., n_groups.

int n_groups  (Input)
Number of groups in the data.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_discriminant_analysis (int n_rows, int n_variables, float x[], 

int n_groups, 

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt, 
IMSLS_METHOD, int method,
IMSLS_IDO, int ido,
965



 Multivariate Analysis         discriminant_analysis
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE,
IMSLS_PRIOR_EQUAL, or
IMSLS_PRIOR_PROPORTIONAL, or
IMSLS_PRIOR_INPUT, float prior_input[],
IMSLS_PRIOR_OUTPUT, float **prior_output,
IMSLS_PRIOR_OUTPUT_USER, float prior_output[],
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[]
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COV, float **covariances,
IMSLS_COV_USER, float covariances[],
IMSLS_COEF, float **coefficients,
IMSLS_COEF_USER, float coefficients[],
IMSLS_CLASS_MEMBERSHIP, int **class_membership,
IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[],
IMSLS_CLASS_TABLE, float **class_table,
IMSLS_CLASS_TABLE_USER, float class_table[],
IMSLS_PROB, float **prob,
IMSLS_PROB_USER, float prob[],
IMSLS_MAHALANOBIS, float **d2,
IMSLS_MAHALANOBIS_USER, float d2[],
IMSLS_STATS, float **stats,
IMSLS_STATS_USER, float stats[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Column dimension of array x.

Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt  (Input)
Each of the four arguments contains indices indicating column numbers of x in which particular 
types of data are stored. Columns are numbered 0 … x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group numbers are stored.
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Parameter ind contains the indices of the variables to be used in the analysis. 

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights, 
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if 
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are 
not allowed.

Defaults: igrp = n_variables, ind[] = 0, 1, ..., n_variables − 1, ifrq = −1, and iwt = −1 

IMSLS_METHOD, int method  (Input)
Method of discrimination. The method chosen determines whether linear or quadratic discrimina-
tion is used, whether the group covariance matrices are computed (the pooled covariance matrix is 
always computed), and whether the leaving-out-one or the reclassification method is used to classify 
each observation.

In the leaving-out-one method of classification, the posterior probabilities are adjusted so as to elim-
inate the effect of the observation from the sample statistics prior to its classification. In the 
classification method, the effect of the observation is not eliminated from the classification function.

When optional argument IMSLS_IDO is specified, the following rules for mixing methods apply; 
Methods 1, 2, 4, and 5 can be intermixed, as can methods 3 and 6. Methods 1, 2, 4, and 5 cannot be 
intermixed with methods 3 and 6. 

Default: method = 1

IMSLS_IDO, int ido  (Input)
Processing option. See Comments 3 and 4 for more information.

method
discrimination 
method

covariances 
computed

classification 
method

1 linear pooled, group reclassification

2 quadratic pooled, group reclassification

3 linear pooled reclassification

4 linear pooled, group leaving-out-one

5 quadratic pooled, group leaving-out-one

6 linear pooled leaving-out-one

ido Action

0 This is the only invocation; all the data are input at once. 
(Default)

1 This is the first invocation with this data; additional calls will 
be made. Initialization and updating for the n_rows observa-
tions of x will be performed.
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Default: ido = 0

IMSLS_ROWS_ADD  (Input)

or

IMSLS_ROWS_DELETE  (Input)
By default (or if IMSLS_ROWS_ADD is specified), then the observations in x are added to the dis-
criminant statistics. If IMSLS_ROWS_DELETE is specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if there is only one 
invocation).

IMSLS_PRIOR_EQUAL  (Input)

or

IMSLS_PRIOR_PROPORTIONAL  (Input)

or

IMSLS_PRIOR_INPUT, float prior_input[]  (Input)
By default, (or if IMSLS_PRIOR_EQUAL is specified), equal prior probabilities are calculated as 
1.0/n_groups.

If IMSLS_PRIOR_PROPORTIONAL is specified, prior probabilities are calculated to be propor-
tional to the sample size in each group. 

If IMSLS_PRIOR_INPUT is specified, then array prior_input is an array of length n_groups 
containing the prior probabilities for each group, such that the sum of all prior probabilities is equal 
to 1.0. Prior probabilities are not used if ido is equal to 1, 2, 5, or 6.

2 This is an intermediate invocation; updating for the n_rows 
observations of x will be performed.

3 All statistics are updated for the n_rows observations. The 
discriminant functions and other statistics are computed.

4 The discriminant functions are used to classify each of the 
n_rows observations of x.

5 The covariance matrices are computed, and workspace is 
released. No further call to discriminant_analysis with 
ido greater than 1 should be made without first calling 
discriminant_analysis with ido = 1.

6 Workspace is released. No further calls to 
discriminant_analysis with ido greater than 1 should be 
made without first calling discriminant_analysis with 
ido = 1. Invocation with this option is not required if a call 
has already been made with ido = 5.

ido Action
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IMSLS_PRIOR_OUTPUT, float **prior_output  (Output)
Address of a pointer to an array of length n_groups containing the most recently calculated or 
input prior probabilities. If IMSLS_PRIOR_PROPORTIONAL is specified, every element of 
prior_output is equal to −1 until a call is made with ido equal to 0 or 3, at which point the pri-
ors are calculated. Note that subsequent calls to discriminant_analysis with 
IMSLS_PRIOR_PROPORTIONAL specified, and ido not equal to 0 or 3 will result in the elements 
of prior_output being reset to −1.

IMSLS_PRIOR_OUTPUT_USER, float prior_output[]  (Output)
Storage for array prior_output is provided by the user. See IMSLS_PRIOR_OUTPUT.

IMSLS_GROUP_COUNTS, int **gcounts  (Output)
Address of a pointer to an integer array of length n_groups containing the number of observations 
in each group. Array gcounts is updated when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[]  (Output)
Storage for integer array gcounts is provided by the user. See IMSLS_GROUP_COUNTS.

IMSLS_MEANS, float **means  (Output)
Address of a pointer to an array of size n_groups by n_variables. The i-th row of means con-
tains the group i variable means. Array means is updated when ido is equal to 0, 1, 2, or 5. The 
means are unscaled until a call is made with ido = 5, where the unscaled means are calculated as 
Σwifi xi and the scaled means as

where xi is the value of the i-th observation, wi is the weight of the i-th observation, and fi is the fre-

quency of the i-th observation.

IMSLS_MEANS_USER, float means[]  (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COV, float **covariances  (Output)
Address of a pointer to an array of size g by n_variables by n_variables containing the 
within-group covariance matrices (methods 1, 2, 4, and 5 only) as the first g-1 matrices, and the 
pooled covariance matrix as the g-th matrix (that is, the first n_variables × n_variables ele-
ments comprise the group 1 covariance matrix, the next n_variables × n_variables 
elements comprise the group 2 covariance, ..., and the last n_variables × n_variables ele-
ments comprise the pooled covariance matrix). If method is 3 or 6 then g is equal to 1. Otherwise, g 
is equal to n_groups + 1. Argument cov is updated when ido is equal to 0, 1, 2, 3, or 5.

IMSLS_COV_USER, float covariances[]  (Output)
Storage for array covariances is provided by the user. See IMSLS_COVARIANCES.

∑wi f ixi
∑wi f i
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IMSLS_COEF, float **coefficients  (Output)
Address of a pointer to an array of size n_groups by (n_variables + 1) containing the linear dis-
criminant coefficients. The first column of coefficients contains the constant term, and the 
remaining columns contain the variable coefficients. Row i − 1 of coefficients corresponds to 
group i, for i = 1, 2, … n_groups. Array coefficients is always computed as the linear discrimi-
nant function coefficients even when quadratic discrimination is specified. Specifically, given the 
linear discriminant function

the intercept  is assigned to coefficients[i×(n_variables+1)] and 

the j-th element of  is assigned to coefficients[i×(n_variables+1)+j], where 

i = 0, …, n_groups-1 and j=1, …, n_variables+1. Array coefficients is updated when 
ido is equal to 0 or 3.

IMSLS_COEF_USER, float coefficients[]  (Output)
Storage for array coefficients is provided by the user. See IMSLS_COEFFICIENTS.

IMSLS_CLASS_MEMBERSHIP, int **class_membership  (Output)
Address of a pointer to an integer array of length n_rows containing the group to which the obser-
vation was classified. Array class_membership is updated when ido is equal to 0 or 4.

If an observation has an invalid group number, frequency, or weight when the leaving-out-one 
method has been specified, then the observation is not classified and the corresponding elements of 
class_membership (and prob, see IMSLS_PROB) are set to zero.

IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[]  (Ouput)
Storage for array class_membership is provided by the user. See 
IMSLS_CLASS_MEMBERSHIP.

IMSLS_CLASS_TABLE, float **class_table  (Output)
Address of a pointer to an array of size n_groups by n_groups containing the classification table. 
Array class_table is updated when ido is equal to 0, 1, or 4. Each observation that is classified 
and has a group number 1.0, 2.0, ..., n_groups is entered into the table. The rows of the table cor-
respond to the known group membership. The columns refer to the group to which the observation 
was classified. Classification results accumulate with each call to 
imsls_f_discriminant_analysis with ido equal to 4. For example, if two calls with ido 
equal to 4 are made, the elements in class_table sum to the total number of valid observations 
in the two calls.

IMSLS_CLASS_TABLE_USER, float class_table[]  (Output)
Storage for array class_table is provided by the user. See IMSLS_CLASS_TABLE.

zi = ln(pi) − 0.5x
─
i
TS p
−1x─i + x

TSp
−1x─i

ln(pi) − 0.5x
─
i
TSp
−1x─i

Sp
−1x─i
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IMSLS_PROB, float **prob  (Output)
Address of a pointer to an array of size n_rows by n_groups containing the posterior probabilities 
for each observation. Argument prob is updated when ido is equal to 0 or 4.

IMSLS_PROB_USER, float prob[]  (Output)
Storage for array prob is provided by the user. See IMSLS_PROB.

IMSLS_MAHALANOBIS, float **d2  (Output)
Address of a pointer to an array of size n_groups by n_groups containing the Mahalanobis 
distances 

between the group means. Argument d2 is updated when ido is equal to 0 or 3.

For linear discrimination, the Mahalanobis distance is computed using the pooled covariance matrix. 
Otherwise, the Mahalanobis distance 

between group means i and j is computed using the within covariance matrix for group i in place of 
the pooled covariance matrix.

IMSLS_MAHALANOBIS_USER, float d2[]  (Output)
Storage for array d2 is provided by the user. See IMSLS_MAHALANOBIS.

IMSLS_STATS, float **stats  (Output)
Address of a pointer to an array of length 4 + 2 × (n_groups + 1) containing various statistics of 
interest. Array stats is updated when ido is equal to 0, 2, 3, or 5. The first element of stats is the 
sum of the degrees of freedom for the within-covariance matrices. The second, third, and fourth ele-
ments of stats correspond to the chi-squared statistic, its degrees of freedom, and the probability 
of a greater chi-squared, respectively, of a test of the homogeneity of the within-covariance matrices 
(not computed if method is equal to 3 or 6). The fifth through 5 + n_groups elements of stats 
contain the log of the determinants of each group’s covariance matrix (not computed if method is 
equal to 3 or 6) and of the pooled covariance matrix (element 4 + n_groups). Finally, the last 
n_groups + 1 elements of stats contain the sum of the weights within each group, and in the last 
position, the sum of the weights in all groups.

IMSLS_STATS_USER, float stats[]  (Output)
Storage for array stats is provided by the user. See IMSLS_STATS_USER.

IMSLS_N_ROWS_MISSING, int *nrmiss  (Output)
Number of rows of data encountered in calls to discriminant_analysis containing missing 
values (NaN) for the classification, group, weight, and/or frequency variables. If a row of data contains 
a missing value (NaN) for any of these variables, that row is excluded from the computations.

Di j
2

Di j
2
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Array nrmiss is updated when ido is equal to 0, 1, 2, or 3.

Comments
1. Common choices for the Bayesian prior probabilities are given by:

prior_input[i] = 1.0∕n_groups  (equal priors)

prior_input[i] = gcounts[i]∕n_rows  (proportional priors)

prior_input[i] = Past history or subjective judgment.

In all cases, the priors should sum to 1.0.

2. Two passes of the data are made. In the first pass, the statistics required to compute the discriminant 
functions are obtained (ido equal to 1, 2, and 3). In the second pass, the discriminant functions are 
used to classify the observations. When ido is equal to 0, all of the data are memory resident, and 
both passes are made in one call to imsls_f_discriminant_analysis. When ido > 0 
(optional argument IMSLS_IDO is specified), a third call to 
imsls_f_discriminant_analysis involving no data is required with ido equal to 5 or 6.

3. Here are a few rules and guidelines for the correct value of ido in a series of calls:

a. Calls with ido = 0 or ido = 1 may be made at any time, subject to rule 2. These calls indicate that a 
new analysis is to begin, and therefore allocate memory and destroy all statistics from previous calls.

b. Each series of calls to imsls_f_discriminant_analysis which begins with ido = 1 must 
end with ido equal to 5 or 6 to ensure the proper release of workspace, subject to rule 3.

c. ido may not be 4 or 5 before a call with ido = 3 has been made.

d. ido may not be 2, 3, 4, 5, or 6
i) Immediately after a call with ido = 0.
ii) Before a call with ido = 1 has been made.
iii) Immediately after a call with ido equal to 5 or 6 has been made.

The following is a valid sequence of ido’s:

ido Explanation

0 Data Set A: Perform a complete analysis. All data to be used in 
the analysis must be present in x. Since cleanup of workspace is 
automatic for ido = 0, no further calls are necessary.

1 Data Set B: Begin analysis. The n_rows observations in x are 
used for initialization.
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4. Because of the internal workspace allocation and saved variables, function 
imsls_f_discriminant_analysis must complete the analysis of a data set before begin-
ning processing of the next data set.

Description
Function imsls_f_discriminant_analysis performs discriminant function analysis using either linear 
or quadratic discrimination. The output includes a measure of distance between the groups, a table summarizing 
the classification results, a matrix containing the posterior probabilities of group membership for each observa-
tion, and the within-sample means and covariance matrices. The linear discriminant function coefficients are also 
computed.

By default (or if optional argument IMSLS_IDO is specified with ido = 0) all observations are input during one 
call, a method of operation that has the advantage of simplicity. Alternatively, one or more rows of observations 
can be input during separate calls. This method does not require that all observations be memory resident, a sig-
nificant advantage with large data sets. Note, however, that the algorithm requires two passes of the data. During 
the first pass the discriminant functions are computed while in the second pass, the observations are classified. 
Thus, with the second method of operation, the data will usually need to be input twice.

2 Data Set B: Continue analysis. New observations placed in x are 
added to (or deleted from, see IMSLS_ROWS_DELETE) the 
analysis.

2 Data Set B: Continue analysis. n_rows new observations placed 
in x are added to (or deleted from, see IMSLS_ROWS_DELETE) 
the analysis.

3 Data Set B: Continue analysis. n_rows new observations are 
added (or deleted) and discriminant functions and other statis-
tics are computed.

4 Data Set B: Classification of each of the n_rows observations in 
the current x matrix.

5 Data Set B: End analysis. Covariance matrices are computed and 
workspace is released. This analysis could also have been ended 
by choosing ido = 6

1 Data Set C: Begin analysis. Note that for this call to be valid the 
previous call must have been made with ido equal to 5 or 6.

3 Data Set C: Continue analysis.

4 Data Set C: Continue analysis.

3 Data Set C: Continue analysis.

6 Data Set C: End analysis.

ido Explanation
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Because both methods result in the same operations being performed, the algorithm is discussed as if only a few 
observations are input during each call. The operations performed during each call depend upon the ido 
parameter. 

The ido = 1 step is the initialization step. “Private” internally allocated saved variables corresponding to means, 
class_table, and covariances are initialized to zero, and other program parameters are set (copies of 
these private variables are written to the corresponding output variables upon return from the function call, 
assuming ido values such that the results are to be returned). Parameters n_rows, x, and method can be 
changed from one call to the next within the two sets {1, 2, 4, 5} and {3, 6} but not between these sets when 
ido > 1. That is, do not specify method = 1 in one call and method = 3 in another call without first making a call 
with ido = 1.

After initialization has been performed in the ido = 1 step, the within-group means are updated for all valid 
observations in x. Observations with invalid group numbers are ignored, as are observation with missing values. 
The LU factorization of the covariance matrices are updated by adding (or deleting) observations via Givens 
rotations.

The ido = 2 step is used solely for adding or deleting observations from the model as in the above paragraph.

The ido = 3 step begins by adding all observations in x to the means and the factorizations of the covariance 
matrices. It continues by computing some statistics of interest: the linear discriminant functions, the prior proba-
bilities (by default, or if IMSLS_PROPORTIONAL_PRIORS is specified), the log of the determinant of each of 
the covariance matrices, a test statistic for testing that all of the within-group covariance matrices are equal, and 
a matrix of Mahalanobis distances between the groups. The matrix of Mahalanobis distances is computed via the 
pooled covariance matrix when linear discrimination is specified; the row covariance matrix is used when the dis-
crimination is quadratic.

Covariance matrices are defined as follows: Let Ni denote the sum of the frequencies of the observations in 

group i and Mi denote the number of observations in group i. Then, if Si denotes the within-group i covariance 

matrix,

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is the j-th observation column vec-

tor (in group i), and    denotes the mean vector of the observations in group i. The mean vectors are computed 
as

Si =
1

Ni − 1∑
j=1

Mi

w j f j x j − x
─ x j − x

─ T

x─
974



 Multivariate Analysis         discriminant_analysis
Given the means and the covariance matrices, the linear discriminant function for group i is computed as:

where ln (pi) is the natural log of the prior probability for the i-th group, x is the observation to be classified, and Sp 

denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group covariance matrices Si. (S will be the 

pooled covariance matrix in linear discrimination, and Si otherwise.) The Mahalanobis distance between group i 

and group j is computed as:

Finally, the asymptotic chi-squared test for the equality of covariance matrices is computed as follows (Morrison 
1976, p. 252):

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is the number of groups, 

and 

where p is the number of variables.

When ido = 4, the estimated posterior probability of each observation x belonging to group i is computed using 
the prior probabilities and the sample mean vectors and estimated covariance matrices under a multivariate nor-
mal assumption. Under quadratic discrimination, the within-group covariance matrices are used to compute the 
estimated posterior probabilities. The estimated posterior probability of an observation x belonging to group i is 

x─ = 1
Wi ∑

j=1

Mi

w j f jx j where Wi =∑
j=1

Mi

w j f j

zi = ln pi − 0.5x
─
i
TS p
−1x─i + x

TSp
−1x─i

Di j
2 = x─i − x

─
j
TS−1 x─i − x

─
j

γ = C−1∑
i=1

k

ni ln ∣Sp∣ − ln ∣Si∣

C−1 = 1 −
2p2 + 3p − 1

6 p + 1 k − 1 ∑
i=1

k
1
ni −

1
∑ jn j
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where

For the leaving-out-one method of classification (method equal to 4, 5 or 6), the sample mean vector and sam-
ple covariance matrices in the formula for 

are adjusted so as to remove the observation x from their computation. For linear discrimination (method equal 
to 1, 3, 4, or 6), the linear discriminant function coefficients are actually used to compute the same posterior 
probabilities.

Using the posterior probabilities, each observation in x is classified into a group; the result is tabulated in the 
matrix class_table and saved in the vector class_membership. Matrix class_table is not altered at 
this stage if x[i][igrp] (see optional argument IMSLS_X_INDICES) contains a group number that is out of 
range. If the reclassification method is specified, then all observations with no missing values in the 
n_variables classification variables are classified. When the leaving-out-one method is used, observations 
with invalid group numbers, weights, frequencies, or classification variables are not classified. Regardless of the 
frequency, a 1 is added (or subtracted) from class_table for each row of x that is classified and contains a 
valid group number.

When method > 3, adjustment is made to the posterior probabilities to remove the effect of the observation in 
the classification rule. In this adjustment, each observation is presumed to have a weight of x[i][iwt] if 
iwt > −1 (and a weight of 1.0 if iwt = −1), and a frequency of 1.0. See Lachenbruch (1975, p. 36) for the 
required adjustment.

Finally, when ido = 5, the covariance matrices are computed from their LU factorizations. Internally allocated and 
saved variables are cleaned up at this step (ido equal to 5 or 6).

q̂i x =
exp −0.5Di

2 x

∑
j=1

k
exp −0.5Dj

2 x

Di
2 x =

x − x─i
TSi
−1 x − x─i + ln∣Si∣ − 2ln pi method = 1 or 2

x − x─i
TS p
−1 x − x─i − 2ln pi method = 3

Di
2
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Examples

Example 1

The following example uses liner discrimination with equal prior probabilities on Fisher’s (1936) Iris data. This 
example illustrates the execution of imsls_f_discriminant_analysis when one call is made (i.e. using 
the default of ido = 0).

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
    int  n_groups = 3;
    int  nrow, nvar, ncol, nrmiss;
    float *x, *xtemp;
    float *prior_out, *means, *cov, *coef;
    float *table, *d2, *stats, *prob;
    int  *counts, *cm;
    static int perm[5] = {1, 2, 3, 4, 0};
    /* Retrieve the Fisher Iris Data Set */
    xtemp = imsls_f_data_sets(3,
        IMSLS_N_OBSERVATIONS, &nrow,
        IMSLS_N_VARIABLES, &ncol,
        0);
    nvar = ncol - 1;
    /* Move the group column to end of the the matrix */
    x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,
        IMSLS_PERMUTE_COLUMNS,
        0);
    imsls_free(xtemp);
    imsls_f_discriminant_analysis (nrow, nvar, x, n_groups,
        IMSLS_METHOD, 3,
        IMSLS_GROUP_COUNTS, &counts,
        IMSLS_COEF, &coef,
        IMSLS_MEANS, &means,
        IMSLS_STATS, &stats,
        IMSLS_CLASS_MEMBERSHIP, &cm,
        IMSLS_CLASS_TABLE, &table,
        IMSLS_PROB, &prob,
        IMSLS_MAHALANOBIS, &d2,
        IMSLS_COV, &cov,
        IMSLS_PRIOR_OUTPUT, &prior_out,
        IMSLS_N_ROWS_MISSING, &nrmiss,
        IMSLS_PRIOR_EQUAL,
        IMSLS_METHOD, 3,
        0);
    imsls_i_write_matrix("Counts", 1, n_groups, counts,
        0);
    imsls_f_write_matrix("Coef", n_groups, nvar+1, coef,
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        0);
    imsls_f_write_matrix("Means", n_groups, nvar, means,
        0);
    imsls_f_write_matrix("Stats", 12, 1, stats,
        0);
    imsls_i_write_matrix("Membership", 1, nrow, cm,
        0);
    imsls_f_write_matrix("Table", n_groups, n_groups, table,
        0);
    imsls_f_write_matrix("Prob", nrow, n_groups, prob,
        0);
    imsls_f_write_matrix("D2", n_groups, n_groups, d2,
        0);
    imsls_f_write_matrix("Covariance", nvar, nvar, cov,
        0);
    imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out,
        0); 
    printf("\nnrmiss = %3d\n", nrmiss);
    free(means);
    free(stats);
    free(counts);
    free(coef);
    free(cm);
    free(table);
    free(prob);
    free(d2);
    free(prior_out);
    free(cov);
}

Output

  Counts
 1   2   3
50  50  50
                           Coef
           1          2          3          4          5
1      -86.3       23.5       23.6      -16.4      -17.4
2      -72.9       15.7        7.1        5.2        6.4
3     -104.4       12.4        3.7       12.8       21.1
                     Means
           1          2          3          4
1      5.006      3.428      1.462      0.246
2      5.936      2.770      4.260      1.326
3      6.588      2.974      5.552      2.026
    Stats
1        147
2 ..........
3 ..........
4 ..........
5 ..........
6 ..........
7 ..........
8        -10
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9         50
10         50
11         50
12        150
                           Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2  2  2  2  2  2  2  2  2  2  3  2  2  2  2  2  2  2  2  2
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2  2  2  3  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  2   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  3   3   2   3   3   3   3   3   3   3   3   3   3   3   3   3
148 149 150
  3   3   3
               Table
           1          2          3
1         50          0          0
2          0         48          2
3          0          1         49
                Prob
             1          2          3
  1      1.000      0.000      0.000
  2      1.000      0.000      0.000
  3      1.000      0.000      0.000
  4      1.000      0.000      0.000
  5      1.000      0.000      0.000
  6      1.000      0.000      0.000
  7      1.000      0.000      0.000
  8      1.000      0.000      0.000
  9      1.000      0.000      0.000
 10      1.000      0.000      0.000
 11      1.000      0.000      0.000
 12      1.000      0.000      0.000
 13      1.000      0.000      0.000
 14      1.000      0.000      0.000
 15      1.000      0.000      0.000
 16      1.000      0.000      0.000
 17      1.000      0.000      0.000
 18      1.000      0.000      0.000
 19      1.000      0.000      0.000
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 20      1.000      0.000      0.000
 21      1.000      0.000      0.000
 22      1.000      0.000      0.000
 23      1.000      0.000      0.000
 24      1.000      0.000      0.000
 25      1.000      0.000      0.000
 26      1.000      0.000      0.000
 27      1.000      0.000      0.000
 28      1.000      0.000      0.000
 29      1.000      0.000      0.000
 30      1.000      0.000      0.000
 31      1.000      0.000      0.000
 32      1.000      0.000      0.000
 33      1.000      0.000      0.000
 34      1.000      0.000      0.000
 35      1.000      0.000      0.000
 36      1.000      0.000      0.000
 37      1.000      0.000      0.000
 38      1.000      0.000      0.000
 39      1.000      0.000      0.000
 40      1.000      0.000      0.000
 41      1.000      0.000      0.000
 42      1.000      0.000      0.000
 43      1.000      0.000      0.000
 44      1.000      0.000      0.000
 45      1.000      0.000      0.000
 46      1.000      0.000      0.000
 47      1.000      0.000      0.000
 48      1.000      0.000      0.000
 49      1.000      0.000      0.000
 50      1.000      0.000      0.000
 51      0.000      1.000      0.000
 52      0.000      0.999      0.001
 53      0.000      0.996      0.004
 54      0.000      1.000      0.000
 55      0.000      0.996      0.004
 56      0.000      0.999      0.001
 57      0.000      0.986      0.014
 58      0.000      1.000      0.000
 59      0.000      1.000      0.000
 60      0.000      1.000      0.000
 61      0.000      1.000      0.000
 62      0.000      0.999      0.001
 63      0.000      1.000      0.000
 64      0.000      0.994      0.006
 65      0.000      1.000      0.000
 66      0.000      1.000      0.000
 67      0.000      0.981      0.019
 68      0.000      1.000      0.000
 69      0.000      0.960      0.040
 70      0.000      1.000      0.000
 71      0.000      0.253      0.747
 72      0.000      1.000      0.000
 73      0.000      0.816      0.184
 74      0.000      1.000      0.000
 75      0.000      1.000      0.000
 76      0.000      1.000      0.000
 77      0.000      0.998      0.002
 78      0.000      0.689      0.311
 79      0.000      0.993      0.007
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 80      0.000      1.000      0.000
 81      0.000      1.000      0.000
 82      0.000      1.000      0.000
 83      0.000      1.000      0.000
 84      0.000      0.143      0.857
 85      0.000      0.964      0.036
 86      0.000      0.994      0.006
 87      0.000      0.998      0.002
 88      0.000      0.999      0.001
 89      0.000      1.000      0.000
 90      0.000      1.000      0.000
 91      0.000      0.999      0.001
 92      0.000      0.998      0.002
 93      0.000      1.000      0.000
 94      0.000      1.000      0.000
 95      0.000      1.000      0.000
 96      0.000      1.000      0.000
 97      0.000      1.000      0.000
 98      0.000      1.000      0.000
 99      0.000      1.000      0.000
100      0.000      1.000      0.000
101      0.000      0.000      1.000
102      0.000      0.001      0.999
103      0.000      0.000      1.000
104      0.000      0.001      0.999
105      0.000      0.000      1.000
106      0.000      0.000      1.000
107      0.000      0.049      0.951
108      0.000      0.000      1.000
109      0.000      0.000      1.000
110      0.000      0.000      1.000
111      0.000      0.013      0.987
112      0.000      0.002      0.998
113      0.000      0.000      1.000
114      0.000      0.000      1.000
115      0.000      0.000      1.000
116      0.000      0.000      1.000
117      0.000      0.006      0.994
118      0.000      0.000      1.000
119      0.000      0.000      1.000
120      0.000      0.221      0.779
121      0.000      0.000      1.000
122      0.000      0.001      0.999
123      0.000      0.000      1.000
124      0.000      0.097      0.903
125      0.000      0.000      1.000
126      0.000      0.003      0.997
127      0.000      0.188      0.812
128      0.000      0.134      0.866
129      0.000      0.000      1.000
130      0.000      0.104      0.896
131      0.000      0.000      1.000
132      0.000      0.001      0.999
133      0.000      0.000      1.000
134      0.000      0.729      0.271
135      0.000      0.066      0.934
136      0.000      0.000      1.000
137      0.000      0.000      1.000
138      0.000      0.006      0.994
139      0.000      0.193      0.807
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140      0.000      0.001      0.999
141      0.000      0.000      1.000
142      0.000      0.000      1.000
143      0.000      0.001      0.999
144      0.000      0.000      1.000
145      0.000      0.000      1.000
146      0.000      0.000      1.000
147      0.000      0.006      0.994
148      0.000      0.003      0.997
149      0.000      0.000      1.000
150      0.000      0.018      0.982
                D2
           1          2          3
1        0.0       89.9      179.4
2       89.9        0.0       17.2
3      179.4       17.2        0.0
                  Covariance
           1          2          3          4
1     0.2650     0.0927     0.1675     0.0384
2     0.0927     0.1154     0.0552     0.0327
3     0.1675     0.0552     0.1852     0.0427
4     0.0384     0.0327     0.0427     0.0419
                  Prior OUT
        1          2          3
   0.3333     0.3333     0.3333
nrmiss =  0

Example 2

Continuing with Fisher’s Iris data, the example below computes the quadratic discriminant functions using values 
of IDO greater than 0. In the first loop, all observations are added to the functions, one at a time. In the second 
loop, each of the observations is classified, one by one, using the leaving-out-one method.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>
int main() {
    int  n_groups = 3;
    int  nrow, nvar, ncol, i, nrmiss;
    float *x, *xtemp;
    float *prior_out, *means, *cov, *coef;
    float *table, *d2, *stats, *prob;
    int  *counts, *cm;
    int perm[5] = {1, 2, 3, 4, 0};
    /* Retrieve the Fisher Iris Data Set */
    xtemp = imsls_f_data_sets(3,
        IMSLS_N_OBSERVATIONS, &nrow,
        IMSLS_N_VARIABLES, &ncol,
        0);
    nvar = ncol - 1;
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    /* Move the group column to end of the the matrix */
    x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm, 
        IMSLS_PERMUTE_COLUMNS,
        0);
    imsls_free(xtemp);
    prior_out = (float *) malloc(n_groups*sizeof(float));
    counts   = (int *)  malloc(n_groups*sizeof(int));
    means    = (float *) malloc(n_groups*nvar*sizeof(float));
    cov      = (float *) malloc(nvar*nvar*(n_groups+1)*sizeof(float));
    coef     = (float *) malloc(n_groups*(nvar+1)*sizeof(float));
    table    = (float *) malloc(n_groups*n_groups*sizeof(float));
    d2       = (float *) malloc(n_groups*n_groups*sizeof(float));
    stats    = (float *) malloc((4+2*(n_groups+1))*sizeof(float));
    cm       = (int *)  malloc(nrow*sizeof(int));
    prob     = (float *) malloc(nrow*n_groups*sizeof(float));
    /*Initialize Analysis*/
    imsls_f_discriminant_analysis (0, nvar, x, n_groups, 
        IMSLS_IDO, 1,
        IMSLS_METHOD, 2,
        0);
    /*Add In Each Observation*/
    for (i=0;i<nrow;i=i+1) {
        imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups, 
            IMSLS_IDO, 2,
            0);
    }
    /*Remove observation 0 from the analysis */
    imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups, 
        IMSLS_ROWS_DELETE,
        IMSLS_IDO, 2,
        0);
    /*Add observation 0 back into the analysis */
    imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups, 
        IMSLS_IDO, 2,
        0);
    /*Compute statistics*/
    imsls_f_discriminant_analysis (0, nvar, x, n_groups, 
        IMSLS_PRIOR_PROPORTIONAL,
        IMSLS_PRIOR_OUTPUT_USER, prior_out,
        IMSLS_IDO, 3,
        0);
    imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0); 
    /*Classify One observation at a time, using proportional priors*/
    for (i=0;i<nrow;i=i+1) {
        imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups, 
            IMSLS_IDO, 4,
            IMSLS_CLASS_MEMBERSHIP_USER, (cm+i),
            IMSLS_PROB_USER, (prob+i*n_groups),
            0);
    }
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    /*Compute covariance matrices and release internal workspace*/
    imsls_f_discriminant_analysis (0, nvar, x, n_groups, 
        IMSLS_IDO, 5, 
        IMSLS_COV_USER, cov, 
        IMSLS_GROUP_COUNTS_USER, counts,
        IMSLS_COEF_USER, coef,
        IMSLS_MEANS_USER, means,
        IMSLS_STATS_USER, stats,
        IMSLS_CLASS_TABLE_USER, table,
        IMSLS_MAHALANOBIS_USER, d2,
        IMSLS_N_ROWS_MISSING, &nrmiss, 0);
    imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
    imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
    imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
    imsls_f_write_matrix("Stats", 12, 1, stats, 0);
    imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
    imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
    imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
    imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0); 
    imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
    printf("\nnrmiss = %3d\n", nrmiss);
    free(means);
    free(stats);
    free(counts);
    free(coef);
    free(cm);
    free(table);
    free(prob);
    free(d2);
    free(prior_out);
    free(cov);
}

Output

            Prior OUT
        1          2          3
   0.3333     0.3333     0.3333
  Counts
 1   2   3
50  50  50
                           Coef
           1          2          3          4          5
1      -86.3       23.5       23.6      -16.4      -17.4
2      -72.9       15.7        7.1        5.2        6.4
3     -104.4       12.4        3.7       12.8       21.1
                     Means
           1          2          3          4
1      5.006      3.428      1.462      0.246
2      5.936      2.770      4.260      1.326
3      6.588      2.974      5.552      2.026
    Stats
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 1      147.0
 2      143.8
 3       20.0
 4        0.0
 5      -13.1
 6      -10.9
 7       -8.9
 8      -10.0
 9       50.0
10       50.0
11       50.0
12      150.0
                               Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2  2  2  2  2  2  2  2  2  2  3  2  2  2  2  2  2  2  2  2
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2  2  2  3  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  2   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  3   3   2   3   3   3   3   3   3   3   3   3   3   3   3   3
148 149 150
  3   3   3
               Table
           1          2          3
1         50          0          0
2          0         48          2
3          0          1         49
                Prob
             1          2          3
  1      1.000      0.000      0.000
  2      1.000      0.000      0.000
  3      1.000      0.000      0.000
  4      1.000      0.000      0.000
  5      1.000      0.000      0.000
  6      1.000      0.000      0.000
  7      1.000      0.000      0.000
  8      1.000      0.000      0.000
  9      1.000      0.000      0.000
 10      1.000      0.000      0.000
 11      1.000      0.000      0.000
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 12      1.000      0.000      0.000
 13      1.000      0.000      0.000
 14      1.000      0.000      0.000
 15      1.000      0.000      0.000
 16      1.000      0.000      0.000
 17      1.000      0.000      0.000
 18      1.000      0.000      0.000
 19      1.000      0.000      0.000
 20      1.000      0.000      0.000
 21      1.000      0.000      0.000
 22      1.000      0.000      0.000
 23      1.000      0.000      0.000
 24      1.000      0.000      0.000
 25      1.000      0.000      0.000
 26      1.000      0.000      0.000
 27      1.000      0.000      0.000
 28      1.000      0.000      0.000
 29      1.000      0.000      0.000
 30      1.000      0.000      0.000
 31      1.000      0.000      0.000
 32      1.000      0.000      0.000
 33      1.000      0.000      0.000
 34      1.000      0.000      0.000
 35      1.000      0.000      0.000
 36      1.000      0.000      0.000
 37      1.000      0.000      0.000
 38      1.000      0.000      0.000
 39      1.000      0.000      0.000
 40      1.000      0.000      0.000
 41      1.000      0.000      0.000
 42      1.000      0.000      0.000
 43      1.000      0.000      0.000
 44      1.000      0.000      0.000
 45      1.000      0.000      0.000
 46      1.000      0.000      0.000
 47      1.000      0.000      0.000
 48      1.000      0.000      0.000
 49      1.000      0.000      0.000
 50      1.000      0.000      0.000
 51      0.000      1.000      0.000
 52      0.000      1.000      0.000
 53      0.000      0.998      0.002
 54      0.000      0.997      0.003
 55      0.000      0.997      0.003
 56      0.000      0.989      0.011
 57      0.000      0.995      0.005
 58      0.000      1.000      0.000
 59      0.000      1.000      0.000
 60      0.000      0.994      0.006
 61      0.000      1.000      0.000
 62      0.000      0.999      0.001
 63      0.000      1.000      0.000
 64      0.000      0.988      0.012
 65      0.000      1.000      0.000
 66      0.000      1.000      0.000
 67      0.000      0.973      0.027
 68      0.000      1.000      0.000
 69      0.000      0.813      0.187
 70      0.000      1.000      0.000
 71      0.000      0.336      0.664
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 72      0.000      1.000      0.000
 73      0.000      0.699      0.301
 74      0.000      0.972      0.028
 75      0.000      1.000      0.000
 76      0.000      1.000      0.000
 77      0.000      0.998      0.002
 78      0.000      0.861      0.139
 79      0.000      0.992      0.008
 80      0.000      1.000      0.000
 81      0.000      1.000      0.000
 82      0.000      1.000      0.000
 83      0.000      1.000      0.000
 84      0.000      0.154      0.846
 85      0.000      0.943      0.057
 86      0.000      0.996      0.004
 87      0.000      0.999      0.001
 88      0.000      0.999      0.001
 89      0.000      1.000      0.000
 90      0.000      0.999      0.001
 91      0.000      0.981      0.019
 92      0.000      0.997      0.003
 93      0.000      1.000      0.000
 94      0.000      1.000      0.000
 95      0.000      0.999      0.001
 96      0.000      1.000      0.000
 97      0.000      1.000      0.000
 98      0.000      1.000      0.000
 99      0.000      1.000      0.000
100      0.000      1.000      0.000
101      0.000      0.000      1.000
102      0.000      0.000      1.000
103      0.000      0.000      1.000
104      0.000      0.006      0.994
105      0.000      0.000      1.000
106      0.000      0.000      1.000
107      0.000      0.004      0.996
108      0.000      0.000      1.000
109      0.000      0.000      1.000
110      0.000      0.000      1.000
111      0.000      0.006      0.994
112      0.000      0.001      0.999
113      0.000      0.000      1.000
114      0.000      0.000      1.000
115      0.000      0.000      1.000
116      0.000      0.000      1.000
117      0.000      0.033      0.967
118      0.000      0.000      1.000
119      0.000      0.000      1.000
120      0.000      0.041      0.959
121      0.000      0.000      1.000
122      0.000      0.000      1.000
123      0.000      0.000      1.000
124      0.000      0.028      0.972
125      0.000      0.001      0.999
126      0.000      0.007      0.993
127      0.000      0.057      0.943
128      0.000      0.151      0.849
129      0.000      0.000      1.000
130      0.000      0.020      0.980
131      0.000      0.000      1.000
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132      0.000      0.009      0.991
133      0.000      0.000      1.000
134      0.000      0.605      0.395
135      0.000      0.000      1.000
136      0.000      0.000      1.000
137      0.000      0.000      1.000
138      0.000      0.050      0.950
139      0.000      0.141      0.859
140      0.000      0.000      1.000
141      0.000      0.000      1.000
142      0.000      0.000      1.000
143      0.000      0.000      1.000
144      0.000      0.000      1.000
145      0.000      0.000      1.000
146      0.000      0.000      1.000
147      0.000      0.000      1.000
148      0.000      0.001      0.999
149      0.000      0.000      1.000
150      0.000      0.061      0.939
                D2
           1          2          3
1        0.0      323.1      706.1
2      103.2        0.0       17.9
3      168.8       13.8        0.0

                  Covariance
           1          2          3          4
1     0.1242     0.0992     0.0164     0.0103
2     0.0992     0.1437     0.0117     0.0093
3     0.0164     0.0117     0.0302     0.0061
4     0.0103     0.0093     0.0061     0.0111
nrmiss =  0
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Warning Errors

Fatal Errors

IMSLS_BAD_OBS_1 In call #, row # of the data matrix, “x”, has group 
number = #. The group number must be an integer 
between 1.0 and “n_groups” = #, inclusively. This obser-
vation will be ignored.

IMSLS_BAD_OBS_2 The leaving out one method is specified but this observa-
tion does not have a valid group number (Its group 
number is #.). This observation (row #) is ignored.

IMSLS_BAD_OBS_3 The leaving out one method is specified but this observa-
tion does not have a valid weight or it does not have a 
valid frequency. This observation (row #) is ignored.

IMSLS_COV_SINGULAR_3 The group # covariance matrix is singular. “stats[1]” 
cannot be computed. “stats[1]” and “stats[3]” are 
set to the missing value code (NaN).

IMSLS_BAD_IDO_1 “ido” = #. Initial allocations must be performed by making 
a call to discriminant_analysis with “ido” = 1.

IMSLS_BAD_IDO_2 “ido” = #. A new analysis may not begin until the previous 
analysis is terminated with “ido” equal to 5 or 6.

IMSLS_COV_SINGULAR_1 The variance-covariance matrix for population number # 
is singular. The computations cannot continue.

IMSLS_COV_SINGULAR_2 The pooled variance-covariance matrix is singular. The 
computations cannot continue.

IMSLS_COV_SINGULAR_4 A variance-covariance matrix is singular. The index of the 
first zero element is equal to #.
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Survival and Reliability Analysis

Functions
Survival Analysis

Computes Kaplan-Meier estimates of survival 
probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kaplan_meier_estimates     992

Analyzes survival and reliability data using Cox’s 
proportional hazards model  . . . . . . . . . . . . . . . . . . . . . . . . . .prop_hazards_gen_lin     999

Analyzes survival data using the generalized 
linear model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . survival_glm     1014

Estimates using various parametric modes . . . . . . . . . . . . . . . . . . . .survival_estimates     1038

Reliability Analysis
Estimates a reliability hazard function using a 

nonparametric approach . . . . . . . . . . . . . . . . . . . . . . . . . . . nonparam_hazard_rate     1045

Actuarial Tables
Produces population and cohort life tables . . . . . . . . . . . . . . . . . . . . . . . . . . life_tables     1055
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Usage Notes
The functions described in this chapter have primary application in the areas of reliability and life testing, but they 
may find application in any situation in which analysis of binomial events over time is of interest. Kalbfleisch and 
Prentice (1980), Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and Chi-
ang (1968) and Tanner and Wong (1984) are references for discussing the models and methods described in this 
chapter. 

Function imsls_f_kaplan_meier_estimates produces Kaplan-Meier (product-limit) estimates of the survival 
distribution in a single population, and these can be printed using the IMSLS_PRINT optional argument. 

Function imsls_f_prop_hazards_gen_lin computes the parameter estimates in a proportional hazards 
model. 

Function imsls_f_survival_glm fits any of several generalized linear models for survival data, and 
imsls_f_survival_estimates computes estimates of survival probabilities based upon the same models.

Function imsls_f_nonparam_hazard_rate performs nonparametric hazard rate estimation using kernel 
functions and quasi-likelihoods. 

Function imsls_f_life_tables computes and (optionally) prints an actuarial table based either upon a 
cohort followed over time or a cross-section of a population.
991



 Survival and Reliability Analysis         kaplan_meier_estimates
kaplan_meier_estimates
Computes Kaplan-Meier estimates of survival probabilities in stratified samples.

Synopsis
#include <imsls.h>
float *imsls_f_kaplan_meier_estimates (int n_observations, int ncol, float x[], ..., 0)

The type double function is imsls_d_kaplan_meier_estimates.

Required Arguments
int n_observations (Input)

Number of observations.

int ncol (Input)
Number of columns in x.

float x[] (Input) 
Two-dimensional data array of size n_observations×ncol.

Return Value
Pointer to an array of length n_observations×2. The first column contains the estimated survival probabili-
ties, and the second column contains Greenwood’s estimate of the standard deviation of these probabilities. If 
the i-th observation contains censor codes out of range or if a variable is missing, then the corresponding ele-
ments of the return value are set to missing (NaN, not a number). Similarly, if an element in the return value is not 
defined, then it is set to missing.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_kaplan_meier_estimates (int n_observations, int ncol, float x[],

IMSLS_PRINT,

IMSLS_X_RESPONSE_COL, int irt,
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IMSLS_CENSOR_CODES_COL, int icen,

IMSLS_FREQ_RESPONSE_COL, int ifrq,

IMSLS_STRATUM_NUMBER_COL, int igrp,

IMSLS_SORTED,

IMSLS_N_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float table[], 

0)

Optional Arguments
IMSLS_PRINT, (Input)

Print Kaplan-Meier estimates of survival probabilities in stratified samples.

IMSLS_X_RESPONSE_COL, int irt  (Input)
Column index for the response times in the data array, x. The interpretation of these times as either 
right-censored or exact failure times depends on IMSLS_CENSOR_CODES_COL.

Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen  (Input)
Column index for the optional censoring codes in the data array, x. If x[i][icen]= 0, the failure 
time x[i] [irt] is treated as an exact time of failure. Otherwise it is treated as a right-censored 
time. 

Default: It is assumed that there is no censor code column in x. All observations are assumed to be 
exact failure times.

IMSLS_FREQ_RESPONSE_COL, int ifrq  (Input)
Column index for the number of responses associated with each row in the data array, x.

Default: It is assumed that there is no frequency response column in x. Each observation in the data 
array is assumed to be for a single failure.

IMSLS_STRATUM_NUMBER_COL, int igrp  (Input)
Column index for the stratum number for each observation in the data array, x. Column igrp of x 
contains a unique value for each stratum in the data. Kaplan-Meier estimates are computed within 
each stratum.

Default: It is assumed that there is no stratum number column in x. The data is assumed to come 
from one stratum.
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IMSLS_SORTED,  (Input)
If this option is used, column irt of x is assumed to be sorted in ascending order within each stra-
tum. Otherwise, a detached sort is conducted prior to analysis. If sorting is performed, all censored 
individuals are assumed to follow tied failures.

Default: Column irt of x is not sorted.

IMSLS_N_MISSING, int *nrmiss  (Output)
Number of rows of data in x containing missing values.

IMSLS_RETURN_USER, float table[]  (Output)
User supplied storage of an array of length n_observations×2 containing the estimated survival 
probabilities and their associated standard deviations. See Return Value section.

Description
Function imsls_f_kaplan_meier_estimates computes Kaplan-Meier (or product-limit) estimates of sur-
vival probabilities for a sample of failure times that can be right censored or exact times. A survival probability S(t) 
is defined as 1 - F(t), where F(t) is the cumulative distribution function of the failure times (t). Greenwood’s esti-
mate of the standard errors of the survival probability estimates are also computed. (See Kalbfleisch and 
Prentice, 1980, pages 13 and 14.) 

Let (ti, δi), for i = 1,…, n denote the failure censoring times and the censoring codes for the n observations in a sin-

gle sample. Here, ti = xi-1, irt is a failure time if δi is 0, where δI = xi-1, icen. Also, ti is a right censoring time if δi is 1. 

Rows in x containing values other than 0 or 1 for δi are ignored. Let the number of observations in the sample 

that have not failed by time s(i) be denoted by n(i), where s(i) is an ordered (from smallest to largest) listing of the 

distinct failure times (censoring times are omitted). Then the Kaplan-Meier estimate of the survival probabilities is 
a step function, which in the interval from s(i) to s(i+1) (including the lower endpoint) is given by

where d(j) denotes the number of failures occurring at time s(j), and n(j) is the number of observation that have 

not failed prior to s(j). 

Note that one row of X may correspond to more than one failed (or censored) observation when the frequency 
option is in effect (ifrq is specified). The Kaplan-Meier estimate of the survival probability prior to time s(1) is 1.0, 

while the Kaplan-Meier estimate of the survival probability after the last failure time is not defined. 

Greenwood’s estimate of the variance of

S^ t =∏
j=1

i n j − d j
n j
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in the interval from s(i) to s(i+1) is given as 

Function imsls_f_kaplan_meier_estimates computes the single sample estimates of the survival 
probabilities for all samples of data included in x during a single call. This is accomplished through the igrp col-
umn of x, which if present, must contain a distinct code for each sample of observations. If igrp is not specified, 
there is no grouping column, and all observations are assumed to come from the same sample. 

When failures and right-censored observations are tied and the data are to be sorted by 
imsls_f_kaplan_meier_estimates (IMSLS_SORTED optional argument is not used), 
imsls_f_kaplan_meier_estimates assumes that the time of censoring for the tied-censored observa-
tions is immediately after the tied failure (within the same sample). When the IMSLS_SORTED optional 
argument is used, the data are assumed to be sorted from smallest to largest according to column irt of x 
within each stratum. Furthermore, a small increment of time is assumed (theoretically) to elapse between the 
failed and censored observations that are tied (in the same sample). Thus, when the IMSLS_SORTED optional 
argument is used, the user must sort all of the data in x from smallest to largest according to column irt (and 
column igrp, if present). By appropriate sorting of the observations, the user can handle censored and failed 
observations that are tied in any manner desired.

The IMSLS_PRINT option prints life tables. One table for each stratum is printed. In addition to the survival 
probabilities at each failure point, the following is also printed: the number of individuals remaining at risk, Green-
wood’s estimate of the standard errors for the survival probabilities, and the Kaplan-Meier log-likelihood. The 
Kaplan-Meier log-likelihood is computed as:

where the sum is with respect to the distinct failure times s(j), d(j).

Example
The following example is taken from Kalbfleisch and Prentice (1980, page 1). The first column in x contains the 
death/censoring times for rats suffering from vaginal cancer. The second column contains information as to 
which of two forms of treatment were provided, while the third column contains the censoring code. Finally, the 
fourth column contains the frequency of each observation. The product-limit estimates of the survival probabili-
ties are computed for both groups with one call to imsls_f_kaplan_meier_estimates. 

S^ t

est.var(S^(t)) = S^
2
(t)∑

j=1

i d( j)
n( j) n( j) − d( j)

ℓ =∑
j

d( j)ln d( j) + n( j) − d( j) ln n( j) − d( j) − n( j)ln n( j)
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Function imsls_f_kaplan_meier_estimates could have been called with the IMSLS_SORTED optional 
argument if the censored observations had been sorted with respect to the failure time variable. IMSLS_PRINT 
option is used to print the life tables.

#include <imsls.h>
int main ()
{
   int icen = 2, ifrq = 3, igrp = 1, ncol = 4, n_observations = 33;
   float x[] = {
      143, 5, 0, 1,
      164, 5, 0, 1,
      188, 5, 0, 2,
      190, 5, 0, 1,
      192, 5, 0, 1,
      206, 5, 0, 1,
      209, 5, 0, 1,
      213, 5, 0, 1,
      216, 5, 0, 1,
      220, 5, 0, 1,
      227, 5, 0, 1,
      230, 5, 0, 1,
      234, 5, 0, 1,
      246, 5, 0, 1,
      265, 5, 0, 1,
      304, 5, 0, 1,
      216, 5, 1, 1,
      244, 5, 1, 1,
      142, 7, 0, 1,
      156, 7, 0, 1,
      163, 7, 0, 1,
      198, 7, 0, 1,
      205, 7, 0, 1,
      232, 7, 0, 2,
      233, 7, 0, 4,
      239, 7, 0, 1,
      240, 7, 0, 1,
      261, 7, 0, 1,
      280, 7, 0, 2,
      296, 7, 0, 2,
      323, 7, 0, 1,
      204, 7, 1, 1,
      344, 7, 1, 1
   };
   imsls_f_kaplan_meier_estimates (n_observations, ncol, x,
         IMSLS_PRINT,
         IMSLS_FREQ_RESPONSE_COL, ifrq,
         IMSLS_CENSOR_CODES_COL, icen,
         IMSLS_STRATUM_NUMBER_COL, igrp, 
         0);
}

Output

                  Kaplan Meier Survival Probabilities
                     For Group Value = 5
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      Number     Number               Survival    Estimated
     at risk    Failing       Time Probability   Std. Error
          19          1        143     0.94737     0.051228
          18          1        164     0.89474     0.070406
          17          2        188     0.78947     0.093529
          15          1        190     0.73684      0.10102
          14          1        192     0.68421      0.10664
          13          1        206     0.63158      0.11066
          12          1        209     0.57895      0.11327
          11          1        213     0.52632      0.11455
          10          1        216     0.47368      0.11455
           8          1        220     0.41447      0.11452
           7          1        227     0.35526      0.11243
           6          1        230     0.29605      0.10816
           5          1        234     0.23684      0.10145
           3          1        246     0.15789     0.093431
           2          1        265    0.078947     0.072792
           1          1        304           0 ............
Total number in group   =     19
Total number failing    =     17
Product Limit Likelihood = -49.1692
                  Kaplan Meier Survival Probabilities
                     For Group Value = 7
      Number     Number               Survival    Estimated
     at risk    Failing       Time Probability   Std. Error
          21          1        142     0.95238     0.046471
          20          1        156     0.90476     0.064056
          19          1        163     0.85714      0.07636
          18          1        198     0.80952     0.085689
          16          1        205     0.75893     0.094092
          15          2        232     0.65774      0.10529
          13          4        233     0.45536      0.11137
           9          1        239     0.40476      0.10989
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           8          1        240     0.35417      0.10717
           7          1        261     0.30357      0.10311
           6          2        280     0.20238     0.090214
           4          2        296     0.10119     0.067783
           2          1        323    0.050595     0.049281
Total number in group   =     21
Total number failing    =     19
Product Limit Likelihood = -50.4277
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prop_hazards_gen_lin
Analyzes survival and reliability data using Cox’s proportional hazards model.

Synopsis
#include <imsls.h>
float *imsls_f_prop_hazards_gen_lin int n_observations, int n_columns, float x[], 

int nef, int n_var_effects[], int indices_effects[], int max_class, int *ncoef,  …, 0)

The type double function is imsls_d_prop_hazards_gen_lin.

Required Arguments
int n_observations (Input)

Number of observations.

int n_columns (Input)
Number of columns in x.

float x[] (Input) 
Array of length n_observations×n_columns containing the data. When optional argument 
itie = 1, the observations in x must be grouped by stratum and sorted from largest to smallest fail-
ure time within each stratum, with the strata separated.

int nef (Input)
Number of effects in the model. In addition to effects involving classification variables, simple covari-
ates and the product of simple covariates are also considered effects.

int n_var_effects[] (Input)
Array of length nef containing the number of variables associated with each effect in the model.

int indices_effects[] (Input)
Index array of length n_var_effects[0] + ... + n_var_effects[nef-1] containing the col-
umn indices of x associated with each effect. The first n_var_effects[0] elements of 
indices_effects contain the column indices of x for the variables in the first effect. The next 
n_var_effects[1] elements in indices_effects contain the column indices for the sec-
ond effect, etc.
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int max_class (Input)
An upper bound on the total number of different values found among the classification variables in 
x. For example, if the model consisted of two class variables, one with the values {1, 2, 3, 4} and a 
second with the values {0, 1}, then the total number of different classification values is 4 + 2 = 6, and 
max_class >= 6. 

int *ncoef  (Output) 
Number of estimated coefficients in the model.

Return Value
Pointer to an array of length ncoef×4, coef, containing the parameter estimates and associated statistics.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_prop_hazards_gen_lin(int n_observations, int n_columns, float x[], 

int nef, int n_var_effects[], int indices_effects[], int max_class, int *ncoef,

IMSLS_RETURN_USER, float cov[],

IMSLS_PRINT_LEVEL, int iprint,

IMSLS_MAX_ITERATIONS, int max_iterations,

IMSLS_CONVERGENCE_EPS, float eps,

IMSLS_RATIO, float ratio,

IMSLS_X_RESPONSE_COL, int irt,

IMSLS_CENSOR_CODES_COL, int icen, 

IMSLS_STRATIFICATION_COL, int istrat,

IMSLS_CONSTANT_COL, int ifix,

IMSLS_FREQ_RESPONSE_COL, int ifrq,

Column Statistic

1 Coefficient estimate  

2 Estimated standard deviation of the estimated coefficient.

3 Asymptotic normal score for testing that the coefficient is 
zero against the two-sided alternative.

4 p-value associated with the normal score in column 3.

β
^
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IMSLS_TIES_OPTION, int itie,

IMSLS_MAXIMUM_LIKELIHOOD, float algl,

IMSLS_N_MISSING, int *nrmiss,

IMSLS_STATISTICS, float **case,

IMSLS_STATISTICS_USER, float case[],

IMSLS_X_MEAN, float **xmean, 

IMSLS_X_MEAN_USER, float xmean[],

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov,

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[],

IMSLS_INITIAL_EST_INPUT, float in_coef[],

IMSLS_UPDATE, float **gr,

IMSLS_UPDATE_USER, float gr[],

IMSLS_DUMMY, int n_class_var, int index_class_var[],

IMSLS_STRATUM_NUMBER, int **igrp, 

IMSLS_STRATUM_NUMBER_USER, int igrp[],

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values,

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float class_values[],

0)

Optional Arguments
IMSLS_RETURN_USER, float coef[] (Output)

If specified, coef is an array of length ncoef×4 containing the parameter estimates and associated 
statistics. See Return Value.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0.

iprint Action

0 No printing is performed.

1 Printing is performed, but observa-
tional statistics are not printed.

2 All output statistics are printed.
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IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. max_iterations = 30 will usually be sufficient. Use 
max_iterations = 0 to compute the Hessian and gradient, stored in cov and gr, at the initial 
estimates. When max_iterations = 0, IMSLS_INITIAL_EST_INPUT must be used.

Default: max_iterations = 30.

IMSLS_CONVERGENCE_EPS, float eps (Input)
Convergence criterion. Convergence is assumed when the relative change in algl from one itera-
tion to the next is less than eps. If eps is zero, eps = 0.0001 is assumed.

Default: eps = 0.0001.

IMSLS_RATIO, float ratio (Input)
Ratio at which a stratum is split into two strata. Let

be the observation proportionality constant, where zk is the design row vector for the k-th observa-

tion and wk is the optional fixed parameter specified by xk, ifix. Let rmin be the minimum value rk in a 

stratum, where, for failed observations, the minimum is over all times less than or equal to the time 
of occurrence of the k-th observation. Let rmax be the maximum value of rk for the remaining obser-

vations in the group. Then, if rmin > ratio rmax, the observations in the group are divided into two 

groups at k. ratio = 1000 is usually a good value. Set ratio = -1.0 if no division into strata is to be 
made.

Default: ratio = 1000.0.

IMSLS_X_RESPONSE_COL, int irt (Input)
Column index in x containing the response variable. For point observations, xi, irt contains the time 
of the i-th event. For right-censored observations, xi, irt contains the right-censoring time. Note that 
because imsls_f_prop_hazards_gen_lin only uses the order of the events, negative “times” 
are allowed.

Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen (Input)
Column index in x containing the censoring code for each observation. Default: A censoring code of 
0 is assumed for all observations.

x

i,icen

Censoring

rk = exp zkβ
^
+ wk
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IMSLS_STRATIFICATION_COL, int istrat (Input)
Column number in x containing the stratification variable. Column istrat in x contains a unique 
number for each stratum. The risk set for an observation is determined by its stratum.

Default: All observations are considered to be in one stratum.

IMSLS_CONSTANT_COL, int ifix (Input)
Column index in x containing a constant, wi, to be added to the linear response. The linear response 
is taken to be  where wi is the observation constant, zi is the observation design row vector, 
and   is the vector of estimated parameters. The “fixed” constant allows one to test hypotheses 
about parameters via the log-likelihoods.

Default: wi is assumed to be 0 for all observations.

IMSLS_FREQ_RESPONSE_COL, int ifrq (Input)
Column index in x containing the number of responses for each observation.

Default: A response frequency of 1 for each observation is assumed.

IMSLS_TIES_OPTION, int itie (Input)
Method for handling ties.

Default: itie = 0.

IMSLS_MAXIMUM_LIKELIHOOD, float *algl  (Output)
The maximized log-likelihood.

IMSLS_N_MISSING, int *nrmiss  (Output)
Number of rows of data in X that contain missing values in one or more columns irt, ifrq, ifix, 
icen, istrat, index_class_var, or indices_effects of x.

0 Exact censoring time xi, irt.

1 Right censored. The exact censoring time is greater 
than xi, irt.

itie Method

0 Breslow’s approximate method.

1 Failures are assumed to occur in the same order as 
the observations input in x. The observations in x 
must be sorted from largest to smallest failure time 
within each stratum, and grouped by stratum. All 
observations are treated as if their failure/censoring 
times were distinct when computing the log-
likelihood.

wi + ziβ
^

β
^
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IMSLS_STATISTICS, float **case  (Output)
Address of a pointer to an array of length n_observations×5 containing the case statistics for 
each observation.

IMSLS_STATISTICS_USER, float case[] (Output)
Storage for case is provided by the user. See IMSLS_STATISTICS.

IMSLS_X_MEAN, float **xmean (Output)
Address of a pointer to an array of length ncoef containing the means of the design variables.

IMSLS_X_MEAN_USER, float xmean[]  (Output)
Storage for xmean is provided by the user. See IMSLS_X_MEAN.

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov  (Output)
Address of a pointer to an array of length ncoef*ncoef containing the estimated asymptotic vari-
ance-covariance matrix of the parameters. For max_iterations = 0, the return value is the 
inverse of the Hessian of the negative of the log-likelihood, computed at the estimates input in 
in_coef.

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[]  (Output)
Storage for cov is provided by the user. See IMSLS_VARIANCE_COVARIANCE_MATRIX.

IMSLS_INITIAL_EST_INPUT, float *in_coef  (Input)
An array of length ncoef containing the initial estimates on input to prop_hazards_gen_lin. 

Default: all initial estimates are taken to be 0.

IMSLS_UPDATE, float **gr  (Output)
Address of a pointer to an array of length ncoef containing the last parameter updates (excluding 
step halvings). For max_iterations = 0, gr contains the inverse of the Hessian times the gradi-
ent vector computed at the estimates input in in_coef.

IMSLS_UPDATE_USER, float gr[] (Output)
Storage for gr is provided by the user. See IMSLS_UPDATE.

Column Statistic

1 Estimated survival probability at the observation time.

2 Estimated observation influence or leverage.

3 A residual estimate.

4 Estimated cumulative baseline hazard rate.

5 Observation proportionality constant.
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IMSLS_DUMMY, int n_class_var, int index_class_var[]  (Input)
Variable n_class_var is the number of classification variables. Dummy variables are generated 
for classification variables using the dummy_method = IMSLS_LEAVE_OUT_LAST of the 
IMSLS_DUMMY option of imsls_f_regressors_for_glm function (see  Regression). Argument 
index_class_var is an index array of length n_class_var containing the column numbers of 
x that are the classification variables. (If n_class_var is equal to zero, index_class_var is 
not used).

Default: n_class_var = 0.

IMSLS_STRATUM_NUMBER, int **igrp  (Output)
Address of a pointer to an array of length n_observations giving the stratum number used for 
each observation. If ratio is not -1.0, additional “strata” (other than those specified by column 
istrat of x) may be generated. igrp also contains a record of the generated strata. See the 
Description section for more detail.

IMSLS_STRATUM_NUMBER_USER, int igrp[]  (Output)
Storage for igrp is provided by the user. See IMSLS_STRATUM_NUMBER.

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values (Output)
n_class_values is an address of a pointer to an array of length n_class_var containing the 
number of values taken by each classification variable. n_class_values[i] is the number of dis-
tinct values for the i-th classification variable. class_values is an address of a pointer to an array 
of length 
n_class_values[0] + n_class_values[1] + … + n_class_values[n_class_var-
1] containing the distinct values of the classification variables. The first n_class_values[0] ele-
ments of class_values contain the values for the first classification variable, the next 
n_class_values[1] elements contain the values for the second classification variable, etc.

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float class_values[]  (Output)
Storage for n_class_values and class_values is provided by the user. The length of 
class_values will not be known in advance, use max_class as the maximum length of 
class_values. See IMSLS_CLASS_VARIABLES.

Description
Function imsls_f_prop_hazards_gen_lin computes parameter estimates and other statistics in Pro-
portional Hazards Generalized Linear Models. These models were first proposed by Cox (1972). Two methods for 
handling ties are allowed in imsls_f_prop_hazards_gen_lin. Time-dependent covariates are not 
allowed. The user is referred to Cox and Oakes (1984), Kalbfleisch and Prentice (1980), Elandt-Johnson and John-
son (1980), Lee (1980), or Lawless (1982), among other texts, for a thorough discussion of the Cox proportional 
hazards model.
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Let λ(t, zi) represent the hazard rate at time t for observation number i with covariables contained as elements of 

row vector zi. The basic assumption in the proportional hazards model (the proportionality assumption) is that 

the hazard rate can be written as a product of a time varying function λ0(t), which depends only on time, and a 

function ƒ(zi), which depends only on the covariable values. The function ƒ(zi) used in 

imsls_f_prop_hazards_gen_lin is given as ƒ(zi) = exp(wi + βzi) where wi is a fixed constant assigned to 

the observation, and β is a vector of coefficients to be estimated. With this function one obtains a hazard rate 
λ(t, zi) = λ0(t) exp(wi + βzi). The form of λ0(t) is not important in proportional hazards models.

The constants wi may be known theoretically. For example, the hazard rate may be proportional to a known 

length or area, and the wi can then be determined from this known length or area. Alternatively, the wi may be 

used to fix a subset of the coefficients β (say, β1) at specified values. When wi is used in this way, constants 

wi = β1z1i are used, while the remaining coefficients in β are free to vary in the optimization algorithm. If user-

specified constants are not desired, the user should set ifix to 0 so that wi = 0 will be used.

With this definition of λ(t, zi), the usual partial (or marginal, see Kalbfleisch and Prentice (1980)) likelihood 

becomes

where R(ti) denotes the set of indices of observations that have not yet failed at time ti (the risk set), ti denotes 

the time of failure for the i-th observation, nd is the total number of observations that fail. Right-censored obser-

vations (i.e., observations that are known to have survived to time ti, but for which no time of failure is known) are 

incorporated into the likelihood through the risk set R(ti). Such observations never appear in the numerator of the 

likelihood. When itie = 0, all observations that are censored at time ti are not included in R(ti), while all observa-

tions that fail at time ti are included in R(ti).

If it can be assumed that the dependence of the hazard rate upon the covariate values remains the same from 
stratum to stratum, while the time-dependent term, λ0(t), may be different in different strata, then 

imsls_f_prop_hazards_gen_lin allows the incorporation of strata into the likelihood as follows. Let k 
index the m = istrat strata. Then, the likelihood is given by

L =∏
i=1

nd exp wi + βzi
∑

j∈R ti
exp wj + βz j
1006



 Survival and Reliability Analysis         prop_hazards_gen_lin
In imsls_f_prop_hazards_gen_lin, the log of the likelihood is maximized with respect to the coefficients 
β. A quasi-Newton algorithm approximating the Hessian via the matrix of sums of squares and cross products of 
the first partial derivatives is used in the initial iterations (the “Q-N” method in the output). When the change in 
the log-likelihood from one iteration to the next is less than 100*eps, Newton-Raphson iteration is used (the “N-
R” method). If, during any iteration, the initial step does not lead to an increase in the log-likelihood, then step 
halving is employed to find a step that will increase the log-likelihood.

Once the maximum likelihood estimates have been computed, imsls_f_prop_hazards_gen_lin com-
putes estimates of a probability associated with each failure. Within stratum k, an estimate of the probability that 
the i-th observation fails at time ti given the risk set R(tki) is given by

A diagnostic “influence” or “leverage” statistic is computed for each noncensored observation as:

where Hs is the matrix of second partial derivatives of the log-likelihood, and 

is computed as: 

Influence statistics are not computed for censored observations.

A “residual” is computed for each of the input observations according to methods given in Cox and Oakes (1984, 
page 108). Residuals are computed as

Ls =∏
k=1

m

∏
i=1

nk exp wki + βzki
∑ j∈R tki

exp wkj + βzkj

pki =
exp wki + zkiβ

∑ j∈R tki
exp wkj + zkjβ

lki = − g′kiHs
−1g′ki

g′ki

g′ki = zki −
zkiexp wki + zkiβ

∑ j∈R tki
exp wkj + zk jβ
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where dkj is the number of tied failures in group k at time tkj. Assuming that the proportional hazards assumption 

holds, the residuals should approximate a random sample (with censoring) from the unit exponential distribu-
tion. By subtracting the expected values, centered residuals can be obtained. (The j-th expected order statistic 
from the unit exponential with censoring is given as

where h is the sample size, and censored observations are not included in the summation.)

An estimate of the cumulative baseline hazard within group k is given as

The observation proportionality constant is computed as 

Programming Notes
1. The covariate vectors zki are computed from each row of the input matrix x via function 

imsls_f_regressors_for_glm (see Chapter 2, Regression). Thus, class variables are easily incor-
porated into the zki. The reader is referred to the document for 

imsls_f_regressors_for_glm in the regression chapter for a more detailed discussion. 

Note that imsls_f_prop_hazards_gen_lin calls imsls_f_regressors_for_glm with 
dummy_method = IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option.

2. The average of each of the explanatory variables is subtracted from the variable prior to computing 
the product zkiβ. Subtraction of the mean values has no effect on the computed log-likelihood or the 

estimates since the constant term occurs in both the numerator and denominator of the likelihood. 
Subtracting the mean values does help to avoid invalid exponentiation in the algorithm and may also 
speed convergence.

rki = exp wki + zkiβ
^ ∑

j∈R tki

dkj

∑
ℓ∈R tk j

exp wkℓ + zkℓβ
^

e j =∑
l≤ j

1
h − l + 1

H^ k0 tik = ∑
tk j≤tki

dk j

∑l∈R tk j
exp wkl + zkl β

^

exp wki + zkiβ
^
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3. Function imsls_f_prop_hazards_gen_lin allows for two methods of handling ties. In the 
first method (itie = 1), the user is allowed to break ties in any manner desired. When this method is 
used, it is assumed that the user has sorted the rows in X from largest to smallest with respect to the 
failure/censoring times xi, irt within each stratum (and across strata), with tied observations (failures 

or censored) broken in the manner desired. The same effect can be obtained with itie = 0 by add-
ing (or subtracting) a small amount from each of the tied observations failure/ censoring times ti = xi, 

irt so as to break the ties in the desired manner.

The second method for handling ties (itie = 0) uses an approximation for the tied likelihood proposed by 
Breslow (1974). The likelihood in Breslow’s method is as specified above, with the risk set at time ti including 
all observations that fail at time ti, while all observations that are censored at time ti are not included. 

(Tied censored observations are assumed to be censored immediately prior to the time ti).

4. If IMSLS_INITIAL_EST_INPUT option is used, then it is assumed that the user has provided ini-
tial estimates for the model coefficients β in in_coef. When initial estimates are provided by the 
user, care should be taken to ensure that the estimates correspond to the generated covariate vec-
tor zki. If IMSLS_INITIAL_EST_INPUT option is not used, then initial estimates of zero are used 

for all of the coefficients. This corresponds to no effect from any of the covariate values.

5. If a linear combination of covariates is monotonically increasing or decreasing with increasing failure 
times, then one or more of the estimated coefficients is infinite and extended maximum likelihood 

estimates must be computed. Such estimates may be written as   where ρ = ∞ at the 

supremum of the likelihood so that  is the finite part of the solution. In 
imsls_f_prop_hazards_gen_lin, it is assumed that extended maximum likelihood esti-
mates must be computed if, within any group k, for any time t,

where ρ = ratio is specified by the user. Thus, for example, if ρ = 10000, then 
imsls_f_prop_hazards_gen_lin does not compute extended maximum likelihood estimates until 
the estimated proportionality constant

is 10000 times larger for all observations prior to t than for all observations after t. When this occurs, 
imsls_f_prop_hazards_gen_lin computes estimates for   by splitting the failures in stratum k into 
two strata at t (see Bryson and Johnson 1981). Censored observations in stratum k are placed into a stratum 
based upon the associated value for 

β
^
= β

^

f + ργ
^

β
^

f

min
tki<t

exp wki + zkiβ
^
> ρmax

tki<t
exp wki + zkiβ

^

exp wki + zkiβ
^

β
^

f
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The results of the splitting are returned in igrp.

The estimates  based upon the stratified likelihood represent the finite part of the extended maximum 
likelihood solution. Function imsls_f_prop_hazards_gen_lin does not compute   explicitly, but an 
estimate for  may be obtained in some circumstances by setting ratio = -1 and optimizing the log-likeli-
hood without forming additional strata. The solution   obtained will be such that  for some 
finite value of ρ > 0. At this solution, the Newton-Raphson algorithm will not have “converged” because the 
Newton-Raphson step sizes returned in gr will be large, at least for some variables. Convergence will be 
declared, however, because the relative change in the log-likelihood during the final iterations will be small.

Example
The following data are taken from Lawless (1982, page 287) and involve the survival of lung cancer patients based 
upon their initial tumor types and treatment type. In the first example, the likelihood is maximized with no strata 
present in the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The input data is printed in 
the output. The model is given as: 

where αi and γj correspond to dummy variables generated from column indices 5 and 6 of x, respectively, x1 cor-

responds to column index 2, x2 corresponds to column index 3, and x3 corresponds to column index 4 of x.

#include <imsls.h>
#define NOBS 40
#define NCOL 7
#define NCLVAR 2
#define NEF 5
int main ()
{
   int icen = 1, iprint = 2, maxcl = 6, ncoef;
   int indef[NEF] = { 2, 3, 4, 5, 6 };
   int nvef[NEF] = { 1, 1, 1, 1, 1 };
   int indcl[NCLVAR] = { 5, 6 };
   float *coef, ratio = 10000.0;
   float x[NOBS * NCOL] = {
      411, 0, 7, 64, 5, 1, 0,
      126, 0, 6, 63, 9, 1, 0,
      118, 0, 7, 65, 11, 1, 0,
      92, 0, 4, 69, 10, 1, 0,
      8, 0, 4, 63, 58, 1, 0,
      25, 1, 7, 48, 9, 1, 0,
      11, 0, 7, 48, 11, 1, 0,
      54, 0, 8, 63, 4, 2, 0,
      153, 0, 6, 63, 14, 2, 0,

exp wki + zkiβ
^

β
^

f

γ^

γ^

β
^

β
^
= β

^

f + ργ
^

ln λ = β1x1 + β2x2 + β3x3 + αi + γ j
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      16, 0, 3, 53, 4, 2, 0,
      56, 0, 8, 43, 12, 2, 0,
      21, 0, 4, 55, 2, 2, 0,
      287, 0, 6, 66, 25, 2, 0,
      10, 0, 4, 67, 23, 2, 0,
      8, 0, 2, 61, 19, 3, 0,
      12, 0, 5, 63, 4, 3, 0,
      177, 0, 5, 66, 16, 4, 0,
      12, 0, 4, 68, 12, 4, 0,
      200, 0, 8, 41, 12, 4, 0,
      250, 0, 7, 53, 8, 4, 0,
      100, 0, 6, 37, 13, 4, 0,
      999, 0, 9, 54, 12, 1, 1,
      231, 1, 5, 52, 8, 1, 1,
      991, 0, 7, 50, 7, 1, 1,
      1, 0, 2, 65, 21, 1, 1,
      201, 0, 8, 52, 28, 1, 1,
      44, 0, 6, 70, 13, 1, 1,
      15, 0, 5, 40, 13, 1, 1,
      103, 1, 7, 36, 22, 2, 1,
      2, 0, 4, 44, 36, 2, 1,
      20, 0, 3, 54, 9, 2, 1,
      51, 0, 3, 59, 87, 2, 1,
      18, 0, 4, 69, 5, 3, 1,
      90, 0, 6, 50, 22, 3, 1,
      84, 0, 8, 62, 4, 3, 1,
      164, 0, 7, 68, 15, 4, 1,
      19, 0, 3, 39, 4, 4, 1,
      43, 0, 6, 49, 11, 4, 1,
      340, 0, 8, 64, 10, 4, 1,
      231, 0, 7, 67, 18, 4, 1
   };
   coef = imsls_f_prop_hazards_gen_lin (NOBS, NCOL, x, NEF,
             nvef, indef, maxcl, &ncoef,
             IMSLS_PRINT_LEVEL, iprint,
             IMSLS_CENSOR_CODES_COL, icen,
             IMSLS_RATIO, ratio,
             IMSLS_DUMMY, NCLVAR, &indcl[0], 0);
}

Output

                     Initial Estimates
     1       2       3       4       5       6       7
0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
Method Iteration Step size Maximum scaled    Log
                            coef. update     likelihood
 Q-N       0                                    -102.4
 Q-N       1     1.0000          0.5034         -91.04
 Q-N       2     1.0000          0.5782         -88.07
 N-R       3     1.0000          0.1131         -87.92
 N-R       4     1.0000         0.06958         -87.89
 N-R       5     1.0000       0.0008145         -87.89
Log-likelihood               -87.88778
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                Coefficient Statistics
   Coefficient     Standard   Asymptotic   Asymptotic
                      error  z-statistic      p-value
1       -0.585        0.137       -4.272        0.000
2       -0.013        0.021       -0.634        0.526
3        0.001        0.012        0.064        0.949
4       -0.367        0.485       -0.757        0.449
5       -0.008        0.507       -0.015        0.988
6        1.113        0.633        1.758        0.079
7        0.380        0.406        0.936        0.349
                  Asymptotic Coefficient Covariance
             1            2            3            4            5
1      0.01873     0.000253    0.0003345     0.005745      0.00975
2                 0.0004235   -4.12e-005    -0.001663   -0.0007954
3                              0.0001397    0.0008111    -0.001831
4                                               0.235      0.09799
5                                                           0.2568
             6            7
1     0.004264     0.002082
2    -0.003079    -0.002898
3    0.0005995     0.001684
4       0.1184      0.03735
5       0.1253     -0.01944
6       0.4008      0.06289
7                    0.1647
                             Case Analysis
       Survival    Influence     Residual   Cumulative        Prop.
    Probability                                 hazard     constant
 1         0.00         0.04         2.05         6.10         0.34
 2         0.30         0.11         0.74         1.21         0.61
 3         0.34         0.12         0.36         1.07         0.33
 4         0.43         0.16         1.53         0.84         1.83
 5         0.96         0.56         0.09         0.05         2.05
 6         0.74 ............         0.13         0.31         0.42
 7         0.92         0.37         0.03         0.08         0.42
 8         0.59         0.26         0.14         0.53         0.27
 9         0.26         0.12         1.20         1.36         0.88
10         0.85         0.15         0.97         0.17         5.76
11         0.55         0.31         0.21         0.60         0.36
12         0.74         0.21         0.96         0.31         3.12
13         0.03         0.06         3.02         3.53         0.86
14         0.94         0.09         0.17         0.06         2.71
15         0.96         0.16         1.31         0.05        28.89
16         0.89         0.23         0.59         0.12         4.82
17         0.18         0.09         2.62         1.71         1.54
18         0.89         0.19         0.33         0.12         2.68
19         0.14         0.23         0.72         1.96         0.37
20         0.05         0.09         1.66         2.95         0.56
21         0.39         0.22         1.17         0.94         1.25
22         0.00         0.00         1.73        21.11         0.08
23         0.08 ............         2.19         2.52         0.87
24         0.00         0.00         2.46         8.89         0.28
25         0.99         0.31         0.05         0.01         4.28
26         0.11         0.17         0.34         2.23         0.15
27         0.66         0.25         0.16         0.41         0.38
28         0.87         0.22         0.15         0.14         1.02
29         0.39 ............         0.45         0.94         0.48
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30         0.98         0.25         0.06         0.02         2.53
31         0.77         0.26         1.03         0.26         3.90
32         0.63         0.35         1.80         0.46         3.88
33         0.82         0.26         1.06         0.19         5.47
34         0.47         0.26         1.65         0.75         2.21
35         0.51         0.32         0.39         0.67         0.58
36         0.22         0.18         0.49         1.53         0.32
37         0.80         0.26         1.08         0.23         4.77
38         0.70         0.16         0.26         0.36         0.73
39         0.01         0.23         0.87         4.66         0.19
40         0.08         0.20         0.81         2.52         0.32
                          Last Coefficient Update
          1           2           3           4           5           6
-1.296e-008  2.269e-009 -5.894e-009 -4.782e-007 -1.787e-007  1.509e-007
         7
4.327e-008
                              Covariate Means
         1           2           3           4           5           6
      5.65       56.58       15.65        0.35        0.28        0.13
         7
      0.53
Distinct Values For Each Class Variable 
Variable 1:          1          2          3          4
Variable 2:          0          1
                    Stratum Numbers For Each Observation
1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
Number of Missing Values         0
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survival_glm
Analyzes censored survival data using a generalized linear model.

Synopsis
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class, int n_continuous, int 

model, float x[], ..., 0)

The type double function is imsls_d_survival_glm.

Required Arguments
int n_observations  (Input)

Number of observations.

int n_class  (Input)
Number of classification variables.

int n_continuous  (Input)
Number of continuous variables.

int model  (Input)
Argument model specifies the model used to analyze the data.

model PDF of the Response Variable

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value
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See the Description section for more information about these models.

float x[]  (Input)
Array of size n_observations by (n_class + n_continuous) + m containing data for the 
independent variables, dependent variable, and optional parameters.

The columns must be ordered such that the first n_class columns contain data for the class vari-
ables, the next n_continuous columns contain data for the continuous variables, and the next 
column contains the response variable. The final (and optional) m − 1 columns contain the optional 
parameters. 

Return Value
An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class, int n_continuous, int 

model, float x[], 

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy,
IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_INFINITY_CHECK, int lp_max, or
IMSLS_NO_INFINITY_CHECK,
IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects,
IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[],

9 Extreme value

10 Weibull

model PDF of the Response Variable
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IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values, float **class_values,
IMSLS_CLASS_INFO_USER, int n_class_values[], 
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step, 
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations, 
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info,
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous + 1

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt  (Input)
Parameter icen is the column in x containing the censoring code for each observation.

x [i] [icen] Censoring type

0 Exact failure at x [i] [irt]

1 Right Censored. The response is greater than 
x [i] [irt].
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Parameter ilt is the column number of x containing the upper endpoint of the failure interval for 
interval- and left-censored observations. If there are no right-censored or interval-censored observa-
tions, ilt should be set to −1.

Parameter irt is the column number of x containing the lower endpoint of the failure interval for 
interval- and right-censored observations. If there are no right-censored or interval-censored obser-
vations, irt should be set to −1. 

Exact failure times are specified in column iy of x. By default, iy is column 
n_class + n_continuous of x. The default can be changed if keyword 
IMSLS_X_COL_VARIABLES is specified.

Note that it is allowable to set iy = irt, since a row with an iy value will never have an irt value, 
and vice versa. This use is illustrated in Example 2.

IMSLS_X_COL_FREQUENCIES, int ifrq  (Input)
Column number of x containing the frequency of response for each observation.

IMSLS_X_COL_FIXED_PARAMETER, int ifix  (Input)
Column number in x containing a fixed parameter for each observation that is added to the linear 
response prior to computing the model parameter. The “fixed” parameter allows one to test hypoth-
esis about the parameters via the log-likelihoods.

IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy  (Input)
This keyword allows specification of the variables to be used in the analysis, and overrides the default 
ordering of variables described for input argument x. Columns are numbered from 0 to 
x_col_dim − 1. To avoid errors, always specify the keyword IMSLS_X_COL_DIM when using this 
keyword.

Argument iclass is an index vector of length n_class containing the column numbers of x that 
correspond to classification variables. 

Argument icontinuous is an index vector of length n_continuous containing the column 
numbers of x that correspond to continuous variables. 

Argument iy corresponds to the column of x which contains the dependent variable. 

2 Left Censored. The response is less than or 
equal to x [i] [irt].

3 Interval Censored. The response is greater 
than x [i] [irt], but less than or equal to 
x [i] [ilt].

x [i] [icen] Censoring type
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IMSLS_EPS, float eps  (Input)
Argument eps is the convergence criterion. Convergence is assumed when the maximum relative 
change in any coefficient estimate is less than eps from one iteration to the next or when the relative 
change in the log-likelihood, criterion, from one iteration to the next is less than eps/100.0.

Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations  (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the Hessian, stored in 
cov, and the Newton step, stored in last_step, at the initial estimates (The initial estimates must 
be input. Use keyword IMSLS_INITIAL_EST_INPUT).

Default: max_iterations = 30

IMSLS_INTERCEPT,  (Input)
Indicates the intercept is automatically included in the model.

Default: IMSLS_INTERCEPT
or

IMSLS_NO_INTERCEPT,  (Input)
Indicates there is no intercept in the model (unless otherwise provided for by the user).

Default: IMSLS_INTERCEPT
IMSLS_INFINITY_CHECK, int lp_max  (Input)

Remove a right- or left-censored observation from the log-likelihood whenever the probability of the 
observation exceeds 0.995. At convergence, use linear programming to check that all removed 
observations actually have infinite linear response

obs_status [i] is set to 2 if the linear response is infinite (See optional argument 
IMSLS_OBS_STATUS). If not all removed observations have infinite linear response, re-compute 
the estimates based upon the observations with finite

Parameter lp_max is the maximum number of observations that can be handled in the linear pro-
gramming. Setting lp_max = n_observations is always sufficient. 

Default: IMSLS_NO_INFINITY_CHECK; lp_max = 0

or

ziβ
^

ziβ
^
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IMSLS_NO_INFINITY_CHECK
Iterates without checking for infinite estimates.

Default: IMSLS_NO_INFINITY_CHECK
IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects[]  (Input)

Use this keyword to specify the effects in the model.

Variable n_effects is the number of effects (sources of variation) in the model. Variable 
n_var_effects is an array of length n_effects containing the number of variables associated 
with each effect in the model. 

Argument indices_effects is an index array of length 
n_var_effects [0] + n_var_effects [1] + … + n_var_effects [n_effects − 1]. The 
first n_var_effects [0] elements give the column numbers of x for each variable in the first 
effect. The next n_var_effects[1] elements give the column numbers for each variable in the 
second effect. The last n_var_effects [n_effects − 1] elements give the column numbers for 
each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL,  (Input)
Indicates unweighted linear regression is used to obtain initial estimates.

Default: IMSLS_INITIAL_EST_INTERNAL
or

IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]  (Input)
Indicates the n_coef_input elements of estimates contain initial estimates of the parameters 
(which requires that the user know the number of coefficients in the model prior to the call to 
survival_glm). See optional argument IMSLS_COEF_STAT for a description of the 
“nuisance” parameter, which is the first element of array estimates.

Default: IMSLS_INITIAL_EST_INTERNAL
IMSLS_MAX_CLASS, int max_class  (Input)

An upper bound on the sum of the number of distinct values taken on by each classification variable. 
Internal workspace usage can be significantly reduced with an appropriate choice of max_class.

Default: max_class = n_observations × n_class
IMSLS_CLASS_INFO, int **n_class_values, float **class_values  (Output)

Argument n_class_values is the address of a pointer to the internally allocated array of length 
n_class containing the number of values taken by each classification variable; the i-th classification 
variable has n_class_values [i] distinct values. Argument class_values is the address of a 
pointer to the internally allocated array of length
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containing the distinct values of the classification variables in ascending order. The first 
n_class_values [0] elements of class_values contain the values for the first classification 
variables, the next n_class_values [1] elements contain the values for the second classification 
variable, etc. 

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[]  (Output)
Storage for arrays n_class_values and class_values is provided by the user. See 
IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics  (Output)
Address of a pointer to an internally allocated array of size n_coefficients × 4 containing the 
parameter estimates and associated statistics:

When present in the model, the first coefficient in coef_statistics is the estimate of the “nui-
sance” parameter, and the remaining coefficients are estimates of the parameters associated with 
the “linear” model, beginning with the intercept, if present. Nuisance parameters are as follows:

IMSLS_COEF_STAT_USER, float coef_statistics[]  (Output)
Storage for array coef_statistics is provided by the user. See IMSLS_COEF_STAT.

IMSLS_CRITERION, float *criterion  (Output)
Optimized criterion. The criterion to be maximized is a constant plus the log-likelihood.

Column Statistic

0 Coefficient estimate.

1 Estimated standard deviation of the estimated 
coefficient.

2 Asymptotic normal score for testing that the coeffi-
cient is zero.

3 The p-value associated with the normal score in Col-
umn 2.

Model Description

0 No nuisance parameter

1 Coefficient of the quadratic term in time, θ
2-9 Scale parameter, σ
10 Shape parameter, θ

∑
i=0

n_class−1
n_class_values i
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IMSLS_COV, float **cov  (Output)
Address of a pointer to the internally allocated array of size n_coefficients by 
n_coefficients containing the estimated asymptotic covariance matrix of the coefficients. For 
max_iterations = 0, this is the Hessian computed at the initial parameter estimates.

IMSLS_COV_USER, float cov[]  (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV.

IMSLS_MEANS, float **means  (Output)
Address of a pointer to the internally allocated array containing the means of the design variables. 
The array is of length n_coefficients − m if IMSLS_NO_INTERCEPT is specified, and of 
length n_coefficients − m − 1 otherwise. Here, m is equal to 0 if model = 0, and equal to 1 
otherwise.

IMSLS_MEANS_USER, float means[]  (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_statistics  (Output)
Address of a pointer to the internally allocated array of size n_observations by 5 containing the 
case analysis below:

If max_iterations = 0, case_statistics is an array of length n_observations contain-
ing the estimated probability (for censored observations) or the estimated density (for non-censored 
observations)

IMSLS_CASE_ANALYSIS_USER, float case_statistics[]  (Output)
Storage for array case_statistics is provided by the user. See IMSLS_CASE_ANALYSIS.

Column Statistic

0 Estimated predicted value.

1 Estimated influence or leverage.

2 Estimated residual.

3 Estimated cumulative hazard.

4 Non-censored observations: Estimated density at the 
observation failure time and covariate values.
Censored observations: The corresponding estimated 
probability.
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IMSLS_LAST_STEP, float **last_step  (Output)
Address of a pointer to the internally allocated array of length n_coefficients containing the 
last parameter updates (excluding step halvings). Parameter last_step is computed as the 
inverse of the matrix of second partial derivatives times the vector of first partial derivatives of the 
log-likelihood. When max_iterations = 0, the derivatives are computed at the initial estimates.

IMSLS_LAST_STEP_USER, float last_step[]  (Output)
Storage for array last_step is provided by the user. See IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status  (Output)
Address of a pointer to the internally allocated array of length n_observations indicating which 
observations are included in the extended likelihood.

IMSLS_OBS_STATUS_USER, int obs_status[]  (Output)
Storage for array obs_status is provided by the user. See IMSLS_OBS_STATUS.

IMSLS_ITERATIONS, int *n, float **iterations  (Output)
Address of a pointer to the internally allocated array of size, n by 5 containing information about 
each iteration of the analysis, where n is equal to the number of iterations.

IMSLS_ITERATIONS_USER, int *n, float iterations[]  (Output)
Storage for array iterations is provided by the user. See IMSLS_ITERATIONS.

obs_status[i] Status of Observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood because 
it contains at least one missing value in x.

2 Observation i is not in the likelihood. Its estimated 
parameter is infinite.

Column Statistic

0 Method of iteration
Q-N Step = 0
N-R Step = 1

1 Iteration number

2 Step size

3 Maximum scaled coefficient update

4 Log-likelihood
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IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info  (Output)
Address of the pointer to an internally allocated structure of type Imsls_f_survival containing informa-
tion about the survival analysis. This structure is required input for function 
imsls_f_survival_estimates.

IMSLS_N_ROWS_MISSING, int *n_rows_missing  (Output)
Number of rows of data that contain missing values in one or more of the following vectors or col-
umns of x: iy, icen, ilt, irt, ifrq, ifix, iclass, icontinuous, or indices_effects.

Comments
1. Dummy variables are generated for the classification variables as follows: An ascending list of all dis-

tinct values of each classification variable is obtained and stored in class_values. Dummy 
variables are then generated for each but the last of these distinct values. Each dummy variable is 
zero unless the classification variable equals the list value corresponding to the dummy variable, in 
which case the dummy variable is one. See keyword IMSLS_LEAVE_OUT_LAST for optional argu-
ment IMSLS_DUMMY in imsls_f_regressors_for_glm (Chapter 2, Regression).

2. The “product” of a classification variable with a covariate yields dummy variables equal to the product 
of the covariate with each of the dummy variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the usual manner. Each 
dummy variable associated with the first classification variable multiplies each dummy variable asso-
ciated with the second classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest.

Description
Function imsls_f_survival_glm computes the maximum likelihood estimates of parameters and associ-
ated statistics in generalized linear models commonly found in survival (reliability) analysis. Although the 
terminology used will be from the survival area, the methods discussed have applications in many areas of data 
analysis, including reliability analysis and event history analysis. These methods can be used anywhere a random 
variable from one of the discussed distributions is parameterized via one of the models available in 
imsls_f_survival_glm. Thus, while it is not advisable to do so, standard multiple linear regression can be 
performed by function imsls_f_survival_glm. Estimates for any of 10 standard models can be computed. 
Exact, left-censored, right-censored, or interval-censored observations are allowed (note that left censoring is the 
same as interval censoring with the left endpoint equal to the left endpoint of the support of the distribution).
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Let η = xTβ be the linear parameterization, where x is a design vector obtained by imsls_f_survival_glm 
via function imsls_f_regressors_for_glm from a row of x, and β is a vector of parameters associated 
with the linear model. Let T denote the random response variable and S(t) denote the probability that T > t. All 
models considered also allow a fixed parameter wi for observation i (input in column ifix of x). Use of this 

parameter is discussed below. There also may be nuisance parameters θ > 0, or σ > 0 to be estimated (along with 
β) in the various models. Let Φ denote the cumulative normal distribution. The survival models available in 
imsls_f_survival_glm are:

Note that the log-least-extreme-value model is a reparameterization of the Weibull model. Moreover, models 0, 1, 
2, 4, 6, 8, and 10 require that T > 0, while all of the remaining models allow any value for T, −∞ < T <∞.

Each row vector in the data matrix can represent a single observation; or, through the use of vector frequencies, 
each row can represent several observations. Also note that classification variables and their products are easily 
incorporated into the models via the usual regression-type specifications.

model Name S (t)

0 Exponential
  

1 Linear hazard
  

2 Log-normal
  

3 Normal
  

4 Log-logistic

  

5 Logistic
  

6 Log least extreme value
  

7 Least extreme value
  

8 Log extreme value
  

9 Extreme value
  

10 Weibull

  

exp −texp wi + η

exp − t + θt2
2 exp wi + η

1 − ϕ
ln t − η − wi

σ

1 − ϕ
t − η − wi

σ

1 + exp
ln t − η − wi

σ

−1

1 + exp
t − η − wi

σ
−1

exp −exp
ln t − η − wi

σ

exp −exp
t − η − wi

σ

1 − exp −exp
ln t − η − wi

σ

1 − exp −exp
t − η − wi

σ

exp − t
exp wi + η

θ
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The constant parameter Wi is input in x and may be used for a number of purposes. For example, if the parame-

ter in an exponential model is known to depend upon the size of the area tested, volume of a radioactive mass, 
or population density, etc., then a multiplicative factor of the exponential parameter λ = exp (xβ) may be known 
apriori. This factor can be input in Wi (Wi is the log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), where β2 is known. Letting Wi = x2β2, esti-

mates for β1 can be obtained via imsls_f_survival_glm with the known fixed values for β2. Standard 

methods can then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistency and validity. Estimates of the means of the “inde-
pendent” or design variables are computed. Means are computed as 

2. If initial estimates are not provided by the user (see optional argument 
IMSLS_INITIAL_EST_INPUT), the initial estimates are calculated as follows

Models 2-10 

a. Kaplan-Meier estimates of the survival probability,

at the upper limit of each failure interval are obtained. (Because upper limits are used, interval- and 
left-censored data are assumed to be exact failures at the upper endpoint of the failure interval.) The 
Kaplan-Meier estimate is computed under the assumption that all failure distributions are identical 
(i.e., all β’s but the intercept, if present, are assumed to be zero). 

b. If there is an intercept in the model, a simple linear regression is performed predicting

where tʹ is computed at the upper endpoint of each failure interval, tʹ = t in models 3, 5, 7, and 9, and 
tʹ = ln (t) in models 2, 4, 6, 8, and 10, and wi is the fixed constant, if present. 

If there is no intercept in the model, then α is fixed at zero, and the model 

is fit instead. In this model, the coefficients β are used in place of the location estimate α above. Here

x─ =
∑ f ixi
∑ f i

S^ t

S−1 S^ t − wi = α + ϕt ′

S−1 S^ t − ϕ^t ′ − wi = x
Tβ
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is estimated from the simple linear regression with α = 0.

c. If the intercept is in the model, then in log-location-scale models (models 1-8), 

and the initial estimate of the intercept is assumed to be   .

In the Weibull model

and the intercept is assumed to be   . Initial estimates of all parameters β, other than the intercept, 
are assumed to be zero. If there is no intercept in the model, the scale parameter is estimated as 
above, and the estimates 

from Step 2 are used as initial estimates for the β’s.
Models 0 and 1

For the exponential models (model = 0 or 1), the “average total time on” test statistic is used to obtain an esti-
mate for the intercept. Specifically, let Tt denote the total number of failures divided by the total time on test. 
The initial estimates for the intercept is then ln(Tt). Initial estimates for the remaining parameters β are 
assumed to be zero, and if model = 1, the initial estimate for the linear hazard parameter θ is assumed to be a 
small positive number. When the intercept is not in the model, the initial estimate for the parameter θ is 
assumed to be a small positive number, and initial estimates of the parameters β are computed via multiple 
linear regression as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian estimate

where lʹiαj is the partial derivative of the i-th term in the log-likelihood with respect to the parameter αj, and 
αj denotes one of the parameters to be estimated.

When the relative change in the log-likelihood from one iteration to the next is 0.1 or less, exact second par-
tial derivatives are used for the Hessian so the Newton-Rapheson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full step is used. If the log-likelihood 
decreases for the initial step size, the step size is halved, and a check for an increase in the log-likelihood 
performed. Step-halving is performed (as a simple line search) until an increase in the log-likelihood is 
detected, or until the step size becomes very small (the initial step size is 1.0).

ϕ^

σ̂ = ϕ^

α^

θ^ = 1 / ϕ^

α^

β^

H^ κ jκl =∑
i

l ′iα jiαl
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4. Convergence is assumed when the maximum relative change in any coefficient update from one iter-
ation to the next is less than eps or when the relative change in the log-likelihood from one iteration 
to the next is less than eps/100. Convergence is also assumed after maxit iterations or when step 
halving leads to a very small step size with no increase in the log-likelihood.

5. If requested (see optional argument IMSLS_INFINITY_CHECK), then the methods of Clarkson 
and Jennrich (1988) are used to check for the existence of infinite estimates in

As an example of a situation in which infinite estimates can occur, suppose that observation j is right-cen-
sored with tj > 15 in a normal distribution model in which the mean is

where xj is the observation design vector. If the design vector xj for parameter βm is such that xjm = 1 and 
xim = 0 for all i ≠ j, then the optimal estimate of βm occurs at

leading to an infinite estimate of both βm and ηj. In imsls_f_survival_glm, such estimates can be 
“computed”.

In all models fit by imsls_f_survival_glm, infinite estimates can only occur when the optimal esti-
mated probability associated with the left- or right-censored observation is 1. If infinity checking is on, left- 
or right-censored observations that have estimated probability greater than 0.995 at some point during the 
iterations are excluded from the log-likelihood, and the iterations proceed with a log-likelihood based on the 
remaining observations. This allows convergence of the algorithm when the maximum relative change in the 
estimated coefficients is small and also allows for a more precise determination of observations with infinite

At convergence, linear programming is used to ensure that the eliminated observations have infinite ηi. If 
some (or all) of the removed observations should not have been removed (because their estimated ηi’s must 
be finite), then the iterations are restarted with a log-likelihood based upon the finite ηi observations. See 
Clarkson and Jennrich (1988) for more details.

When infinity checking is turned off (see optional argument IMSLS_NO_INFINITY_CHECK), no observa-
tions are eliminated during the iterations. In this case, the infinite estimates occur, some (or all) of the coef-
ficient estimates

will become large, and it is likely that the Hessian will become (numerically) singular prior to convergence.

ηi = xi
T β

μ j = x j
T β = η j

β^m = ∞

ηi = xi
T β

β^
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6. The case statistics are computed as follows: Let Ii (θi)denote the log-likelihood of the i-th observa-

tion evaluated at θi, let I’i denote the vector of derivatives of Ii with respect to all parameters, I’h,i 

denote the derivative of Ii with respect to η = xTβ, H denote the Hessian, and E denote expectation. 

Then the columns of case_statistics are:

a. Predicted values are computed as E (T/x) according to standard formulas. If model is 4 or 8, and if 
s ≥ 1, then the expected values cannot be computed because they are infinite.

b. Following Cook and Weisberg (1982), the influence (or leverage) of the i-th observation is assumed to 
be

This quantity is a one-step approximation of the change in the estimates when the i-th observation is 
deleted (ignoring the nuisance parameters).

c. The “residual” is computed as Iʹh,i.

d. The cumulative hazard is computed at the observation covariate values and, for interval observa-
tions, the upper endpoint of the failure interval. The cumulative hazard also can be used as a 
“residual” estimate. If the model is correct, the cumulative hazards should follow a standard exponen-
tial distribution. See Cox and Oakes (1984). 

Programming Notes
Indicator (dummy) variables are created for the classification variables using function 
imsls_f_regressors_for_glm (Chapter 2, Regression)) using keyword IMSLS_LEAVE_OUT_LAST as the 
argument to the IMSLS_DUMMY optional argument.

Examples 

Example 1

This example is taken from Lawless (1982, p. 287) and involves the mortality of patients suffering from lung can-
cer. An exponential distribution is fit for the model

η = μ + αi + γk + β
6

x

3

+ β

I ′i
TH−1I ′i
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7

x

4

+ β
8

x

5

where αi is associated with a classification variable with four levels, and γk is associated with a classification vari-

able with two levels. Note that because the computations are performed in single precision, there will be some 
small variation in the estimated coefficients across different machine environments.

#include <imsls.h>
int main() {
   static float x[40][7] = {
       1.0,   0.0,   7.0,  64.0,   5.0, 411.0,   0.0, 
       1.0,   0.0,   6.0,  63.0,   9.0, 126.0,   0.0,
       1.0,   0.0,   7.0,  65.0,  11.0, 118.0,   0.0,
       1.0,   0.0,   4.0,  69.0,  10.0,  92.0,   0.0,
       1.0,   0.0,   4.0,  63.0,  58.0,   8.0,   0.0,
       1.0,   0.0,   7.0,  48.0,   9.0,  25.0,   1.0,
       1.0,   0.0,   7.0,  48.0,  11.0,  11.0,   0.0,
       2.0,   0.0,   8.0,  63.0,   4.0,  54.0,   0.0,
       2.0,   0.0,   6.0,  63.0,  14.0, 153.0,   0.0,
       2.0,   0.0,   3.0,  53.0,   4.0,  16.0,   0.0,
       2.0,   0.0,   8.0,  43.0,  12.0,  56.0,   0.0,
       2.0,   0.0,   4.0,  55.0,   2.0,  21.0,   0.0,
       2.0,   0.0,   6.0,  66.0,  25.0, 287.0,   0.0,
       2.0,   0.0,   4.0,  67.0,  23.0,  10.0,   0.0,
       3.0,   0.0,   2.0,  61.0,  19.0,   8.0,   0.0,
       3.0,   0.0,   5.0,  63.0,   4.0,  12.0,   0.0,
       4.0,   0.0,   5.0,  66.0,  16.0, 177.0,   0.0,
       4.0,   0.0,   4.0,  68.0,  12.0,  12.0,   0.0,
       4.0,   0.0,   8.0,  41.0,  12.0, 200.0,   0.0,
       4.0,   0.0,   7.0,  53.0,   8.0, 250.0,   0.0,
       4.0,   0.0,   6.0,  37.0,  13.0, 100.0,   0.0,
       1.0,   1.0,   9.0,  54.0,  12.0, 999.0,   0.0,
       1.0,   1.0,   5.0,  52.0,   8.0, 231.0,   1.0,
       1.0,   1.0,   7.0,  50.0,   7.0, 991.0,   0.0,
       1.0,   1.0,   2.0,  65.0,  21.0,   1.0,   0.0,
       1.0,   1.0,   8.0,  52.0,  28.0, 201.0,   0.0,
       1.0,   1.0,   6.0,  70.0,  13.0,  44.0,   0.0,
       1.0,   1.0,   5.0,  40.0,  13.0,  15.0,   0.0,
       2.0,   1.0,   7.0,  36.0,  22.0, 103.0,   1.0,
       2.0,   1.0,   4.0,  44.0,  36.0,   2.0,   0.0,
       2.0,   1.0,   3.0,  54.0,   9.0,  20.0,   0.0,
       2.0,   1.0,   3.0,  59.0,  87.0,  51.0,   0.0,
       3.0,   1.0,   4.0,  69.0,   5.0,  18.0,   0.0,
       3.0,   1.0,   6.0,  50.0,  22.0,  90.0,   0.0,
       3.0,   1.0,   8.0,  62.0,   4.0,  84.0,   0.0,
       4.0,   1.0,   7.0,  68.0,  15.0, 164.0,   0.0,
       4.0,   1.0,   3.0,  39.0,   4.0,  19.0,   0.0,
       4.0,   1.0,   6.0,  49.0,  11.0,  43.0,   0.0,
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       4.0,   1.0,   8.0,  64.0,  10.0, 340.0,   0.0,
       4.0,   1.0,   7.0,  67.0,  18.0, 231.0,   0.0};
   int  n_observations = 40;
   int  n_class = 2;
   int  n_continuous = 3;
   int  model = 0;
   int  n_coef;
   int  icen = 6, ilt = -1, irt = 5;
   int  lp_max = 40;
   float *coef_stat;
   char *fmt = "%12.4f";
   static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
   n_coef = imsls_f_survival_glm(n_observations, n_class, 
       n_continuous, model, &x[0][0], 
       IMSLS_X_COL_CENSORING, icen, ilt, irt, 
       IMSLS_INFINITY_CHECK, lp_max,
       IMSLS_COEF_STAT, &coef_stat,
       0); 
   imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, 
       coef_stat, 
       IMSLS_WRITE_FORMAT, fmt, 
       IMSLS_NO_ROW_LABELS,
       IMSLS_COL_LABELS, clabels,
       0);
}

Output

               Coefficient Statistics
coefficient         s.e.            z            p
    -1.1027       1.3140      -0.8392       0.4016
    -0.3626       0.4446      -0.8156       0.4149
     0.1271       0.4863       0.2613       0.7939
     0.8690       0.5861       1.4825       0.1385
     0.2697       0.3882       0.6948       0.4873
    -0.5400       0.1081      -4.9946       0.0000
    -0.0090       0.0197      -0.4594       0.6460
    -0.0034       0.0117      -0.2912       0.7710

Example 2

This example is the same as Example 1, but more optional arguments are demonstrated.

#include <imsls.h>
#include <stdio.h>
int main() {
   static float x[40][7] = {
       1.0,   0.0,   7.0,  64.0,   5.0, 411.0,   0.0,
       1.0,   0.0,   6.0,  63.0,   9.0, 126.0,   0.0,
       1.0,   0.0,   7.0,  65.0,  11.0, 118.0,   0.0,
       1.0,   0.0,   4.0,  69.0,  10.0,  92.0,   0.0,
       1.0,   0.0,   4.0,  63.0,  58.0,   8.0,   0.0,
       1.0,   0.0,   7.0,  48.0,   9.0,  25.0,   1.0,
       1.0,   0.0,   7.0,  48.0,  11.0,  11.0,   0.0,
1030



 Survival and Reliability Analysis         survival_glm
       2.0,   0.0,   8.0,  63.0,   4.0,  54.0,   0.0,
       2.0,   0.0,   6.0,  63.0,  14.0, 153.0,   0.0,
       2.0,   0.0,   3.0,  53.0,   4.0,  16.0,   0.0,
       2.0,   0.0,   8.0,  43.0,  12.0,  56.0,   0.0,
       2.0,   0.0,   4.0,  55.0,   2.0,  21.0,   0.0,
       2.0,   0.0,   6.0,  66.0,  25.0, 287.0,   0.0,
       2.0,   0.0,   4.0,  67.0,  23.0,  10.0,   0.0,
       3.0,   0.0,   2.0,  61.0,  19.0,   8.0,   0.0,
       3.0,   0.0,   5.0,  63.0,   4.0,  12.0,   0.0,
       4.0,   0.0,   5.0,  66.0,  16.0, 177.0,   0.0,
       4.0,   0.0,   4.0,  68.0,  12.0,  12.0,   0.0,
       4.0,   0.0,   8.0,  41.0,  12.0, 200.0,   0.0,
       4.0,   0.0,   7.0,  53.0,   8.0, 250.0,   0.0,
       4.0,   0.0,   6.0,  37.0,  13.0, 100.0,   0.0,
       1.0,   1.0,   9.0,  54.0,  12.0, 999.0,   0.0,
       1.0,   1.0,   5.0,  52.0,   8.0, 231.0,   1.0,
       1.0,   1.0,   7.0,  50.0,   7.0, 991.0,   0.0,
       1.0,   1.0,   2.0,  65.0,  21.0,   1.0,   0.0,
       1.0,   1.0,   8.0,  52.0,  28.0, 201.0,   0.0,
       1.0,   1.0,   6.0,  70.0,  13.0,  44.0,   0.0,
       1.0,   1.0,   5.0,  40.0,  13.0,  15.0,   0.0,
       2.0,   1.0,   7.0,  36.0,  22.0, 103.0,   1.0,
       2.0,   1.0,   4.0,  44.0,  36.0,   2.0,   0.0,
       2.0,   1.0,   3.0,  54.0,   9.0,  20.0,   0.0,
       2.0,   1.0,   3.0,  59.0,  87.0,  51.0,   0.0,
       3.0,   1.0,   4.0,  69.0,   5.0,  18.0,   0.0,
       3.0,   1.0,   6.0,  50.0,  22.0,  90.0,   0.0,
       3.0,   1.0,   8.0,  62.0,   4.0,  84.0,   0.0,
       4.0,   1.0,   7.0,  68.0,  15.0, 164.0,   0.0,
       4.0,   1.0,   3.0,  39.0,   4.0,  19.0,   0.0,
       4.0,   1.0,   6.0,  49.0,  11.0,  43.0,   0.0,
       4.0,   1.0,   8.0,  64.0,  10.0, 340.0,   0.0,
       4.0,   1.0,   7.0,  67.0,  18.0, 231.0,   0.0
   };
   int  n_observations = 40;
   int  n_class = 2;
   int  n_continuous = 3;
   int  model = 0;
   int  n_coef;
   int  icen = 6, ilt = -1, irt = 5;
   int  lp_max = 40;
   int  n, *ncv, nrmiss, *obs;
   float *iterations, *cv, criterion;
   float *coef_stat, *casex;
   char *fmt = "%12.4f";
   char *fmt2 = "%4d%4d%6.4f%8.4f%8.1f";
   static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
   static char *clabels2[] = {"", "Method", "Iteration", "Step Size",
       "Coef Update", "Log-Likelihood"};
   n_coef = imsls_f_survival_glm(n_observations, n_class, n_continuous,
       model, &x[0][0],
       IMSLS_X_COL_CENSORING, icen, ilt, irt,
       IMSLS_INFINITY_CHECK, lp_max,
       IMSLS_COEF_STAT, &coef_stat,
       IMSLS_ITERATIONS, &n, &iterations,
       IMSLS_CASE_ANALYSIS, &casex,
       IMSLS_CLASS_INFO, &ncv, &cv,
       IMSLS_OBS_STATUS, &obs,
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       IMSLS_CRITERION, &criterion,
       IMSLS_N_ROWS_MISSING, &nrmiss,
       0);
   imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef_stat,
       IMSLS_WRITE_FORMAT, fmt,
       IMSLS_NO_ROW_LABELS,
       IMSLS_COL_LABELS, clabels,
       0);
   imsls_f_write_matrix("Iteration Information", n, 5, iterations,
       IMSLS_WRITE_FORMAT, fmt2,
       IMSLS_NO_ROW_LABELS,
       IMSLS_COL_LABELS, clabels2,
       0);
   printf("\nLog-Likelihood = %12.5f\n", criterion);
   imsls_f_write_matrix("Case Analysis", 1, n_observations, casex,
       IMSLS_WRITE_FORMAT, fmt,
       0);
   imsls_f_write_matrix(
       "Distinct Values for Classification Variable 1", 1, ncv[0],
       &cv[0],
       IMSLS_NO_COL_LABELS,
       0);
   imsls_f_write_matrix(
       "Distinct Values for Classification Variable 2", 1, ncv[1],
       &cv[ncv[0]],
       IMSLS_NO_COL_LABELS,
       0);
   imsls_i_write_matrix("Observation Status", 1, n_observations, obs,
       0);
   printf("\nNumber of Missing Values = %2d\n", nrmiss);
}

Output

               Coefficient Statistics
coefficient         s.e.            z            p
    -1.1027       1.3140      -0.8392       0.4016
    -0.3626       0.4446      -0.8156       0.4149
     0.1271       0.4863       0.2613       0.7939
     0.8690       0.5861       1.4825       0.1385
     0.2697       0.3882       0.6948       0.4873
    -0.5400       0.1081      -4.9946       0.0000
    -0.0090       0.0197      -0.4594       0.6460
    -0.0034       0.0117      -0.2912       0.7710
                 Iteration Information
Method Iteration Step Size Coef Update Log-Likelihood
    0         0    ......    ........         -224.0
    0         1    1.0000      0.9839         -213.4
    1         2    1.0000      3.6033         -207.3
    1         3    1.0000     10.1236         -204.3
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    1         4    1.0000      0.1430         -204.1
    1         5    1.0000      0.0117         -204.1
Log-Likelihood =  -204.13916
                           Case Analysis
          1            2            3            4            5
   262.6884       0.0450      -0.5646       1.5646       0.0008
          6            7            8            9           10
   153.7777       0.0042       0.1806       0.8194       0.0029
         11           12           13           14           15
   270.5347       0.0482       0.5638       0.4362       0.0024
         16           17           18           19           20
    55.3168       0.0844      -0.6631       1.6631       0.0034
         21           22           23           24           25
    61.6845       0.3765       0.8703       0.1297       0.0142
         26           27           28           29           30
   230.4414       0.0025      -0.1085       0.1085       0.8972
         31           32           33           34           35
   232.0135       0.1960       0.9526       0.0474       0.0041
         36           37           38           39           40
   272.8432       0.1677       0.8021       0.1979       0.0030
Distinct Values for Classification Variable 1
        1          2          3          4
Distinct Values for Classification Variable 2
                   0          1
                             Observation Status
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Number of Missing Values = 0

Example 3

In this example, the same data and model as Example 1 are used, but max_iterations is set to zero itera-
tions with model coefficients restricted such that μ = −1.25, β6 = −0.6, and the remaining six coefficients are 

equal to zero. A chi-squared statistic, with 8 degrees of freedom for testing the coefficients is specified as above 
(versus the alternative that it is not as specified), can be computed, based on the output, as 

where 

χ2 = gTΣ^
−1
g

1033



 Survival and Reliability Analysis         survival_glm
is output in cov. The resulting test statistic, Χ2 = 6.107, based upon no iterations is comparable to likelihood ratio 
test that can be computed from the log-likelihood output in this example (−206.6835) and the log-likelihood out-
put in Example 2 (−204.1392).

Neither statistic is significant at the α = 0.05 level.

#include <imsls.h>
#include <stdio.h>
int main() {
   static float x[40][7] = {
       1.0,   0.0,   7.0,  64.0,   5.0, 411.0,   0.0,
       1.0,   0.0,   6.0,  63.0,   9.0, 126.0,   0.0,
       1.0,   0.0,   7.0,  65.0,  11.0, 118.0,   0.0,
       1.0,   0.0,   4.0,  69.0,  10.0,  92.0,   0.0,
       1.0,   0.0,   4.0,  63.0,  58.0,   8.0,   0.0,
       1.0,   0.0,   7.0,  48.0,   9.0,  25.0,   1.0,
       1.0,   0.0,   7.0,  48.0,  11.0,  11.0,   0.0,
       2.0,   0.0,   8.0,  63.0,   4.0,  54.0,   0.0,
       2.0,   0.0,   6.0,  63.0,  14.0, 153.0,   0.0,
       2.0,   0.0,   3.0,  53.0,   4.0,  16.0,   0.0,
       2.0,   0.0,   8.0,  43.0,  12.0,  56.0,   0.0,
       2.0,   0.0,   4.0,  55.0,   2.0,  21.0,   0.0,
       2.0,   0.0,   6.0,  66.0,  25.0, 287.0,   0.0,
       2.0,   0.0,   4.0,  67.0,  23.0,  10.0,   0.0,
       3.0,   0.0,   2.0,  61.0,  19.0,   8.0,   0.0,
       3.0,   0.0,   5.0,  63.0,   4.0,  12.0,   0.0,
       4.0,   0.0,   5.0,  66.0,  16.0, 177.0,   0.0,
       4.0,   0.0,   4.0,  68.0,  12.0,  12.0,   0.0,
       4.0,   0.0,   8.0,  41.0,  12.0, 200.0,   0.0,
       4.0,   0.0,   7.0,  53.0,   8.0, 250.0,   0.0,
       4.0,   0.0,   6.0,  37.0,  13.0, 100.0,   0.0,
       1.0,   1.0,   9.0,  54.0,  12.0, 999.0,   0.0,
       1.0,   1.0,   5.0,  52.0,   8.0, 231.0,   1.0,
       1.0,   1.0,   7.0,  50.0,   7.0, 991.0,   0.0,
       1.0,   1.0,   2.0,  65.0,  21.0,   1.0,   0.0,
       1.0,   1.0,   8.0,  52.0,  28.0, 201.0,   0.0,
       1.0,   1.0,   6.0,  70.0,  13.0,  44.0,   0.0,
       1.0,   1.0,   5.0,  40.0,  13.0,  15.0,   0.0,
       2.0,   1.0,   7.0,  36.0,  22.0, 103.0,   1.0,
       2.0,   1.0,   4.0,  44.0,  36.0,   2.0,   0.0,
       2.0,   1.0,   3.0,  54.0,   9.0,  20.0,   0.0,
       2.0,   1.0,   3.0,  59.0,  87.0,  51.0,   0.0,
       3.0,   1.0,   4.0,  69.0,   5.0,  18.0,   0.0,
       3.0,   1.0,   6.0,  50.0,  22.0,  90.0,   0.0,
       3.0,   1.0,   8.0,  62.0,   4.0,  84.0,   0.0,
       4.0,   1.0,   7.0,  68.0,  15.0, 164.0,   0.0,
       4.0,   1.0,   3.0,  39.0,   4.0,  19.0,   0.0,
       4.0,   1.0,   6.0,  49.0,  11.0,  43.0,   0.0,
       4.0,   1.0,   8.0,  64.0,  10.0, 340.0,   0.0,
       4.0,   1.0,   7.0,  67.0,  18.0, 231.0,   0.0
   };

Σ
^

χLR
2 = 2 206.6835 − 204.1392 = 5.0886
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   int  n_observations = 40;
   int  n_class = 2;
   int  n_continuous = 3;
   int  model = 0;
   int  icen = 6, ilt = -1, irt = 5;
   int  lp_max = 40;
   int  n_coef_input = 8;
   static float estimates[8] = {
       -1.25, 0.0, 0.0, 0.0, 0.0, -0.6, 0.0, 0.0
   };
   int  n_coef;
   float *coef_stat, *means, *cov;
   float criterion, *last_step;
   char *fmt = "%12.4f";
   static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
   n_coef = imsls_f_survival_glm(n_observations, n_class, n_continuous,
       model, &x[0][0],
       IMSLS_X_COL_CENSORING, icen, ilt, irt,
       IMSLS_INFINITY_CHECK, lp_max,
       IMSLS_INITIAL_EST_INPUT, n_coef_input, estimates,
       IMSLS_MAX_ITERATIONS, 0,
       IMSLS_COEF_STAT, &coef_stat,
       IMSLS_MEANS, &means,
       IMSLS_COV, &cov,
       IMSLS_CRITERION, &criterion,
       IMSLS_LAST_STEP, &last_step,
       0);
   imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef_stat,
       IMSLS_WRITE_FORMAT, fmt,
       IMSLS_NO_ROW_LABELS,
       IMSLS_COL_LABELS, clabels,
       0);
   imsls_f_write_matrix("Covariate Means", 1, n_coef-1, means,
       0);
   imsls_f_write_matrix("Hessian", n_coef, n_coef, cov,
       IMSLS_WRITE_FORMAT, fmt,
       IMSLS_PRINT_UPPER,
       0);
   printf("\nLog-Likelihood = %12.5f\n", criterion);
   imsls_f_write_matrix("Newton-Raphson Step", 1, n_coef, last_step,
       IMSLS_WRITE_FORMAT, fmt,
       0);
}

Output

               Coefficient Statistics
coefficient         s.e.            z            p
    -1.2500       1.3833      -0.9036       0.3664
     0.0000       0.4288       0.0000       1.0000
     0.0000       0.5299       0.0000       1.0000
     0.0000       0.7748       0.0000       1.0000
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     0.0000       0.4051       0.0000       1.0000
    -0.6000       0.1118      -5.3652       0.0000
     0.0000       0.0215       0.0000       1.0000
     0.0000       0.0109       0.0000       1.0000
                           Covariate Means
        1          2          3          4          5          6
     0.35       0.28       0.12       0.53       5.65      56.58
        7
    15.65
                               Hessian
             1            2            3            4            5
1       1.9136      -0.0906      -0.1641      -0.1681       0.0778
2                    0.1839       0.0996       0.1191       0.0358
3                                 0.2808       0.1264      -0.0226
4                                              0.6003       0.0460
5                                                           0.1641
             6            7            8
1      -0.0818      -0.0235      -0.0012
2      -0.0005      -0.0008       0.0006
3       0.0104       0.0005      -0.0021
4       0.0193      -0.0016       0.0007
5       0.0060      -0.0040       0.0017
6       0.0125       0.0000       0.0003
7                    0.0005      -0.0001
8                                 0.0001
Log-Likelihood =  -206.68349
                        Newton-Raphson Step
          1            2            3            4            5
     0.1706      -0.3365       0.1333       1.2967       0.2985
          6            7            8
     0.0625      -0.0112      -0.0026
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Warning Errors

Fatal Errors

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for the 
log logistic distribution (“model” = 4) does not exist. 
Predicted values will not be calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for the 
log extreme value distribution(“model” = 8) does not 
exist. Predicted values will not be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one negative eigenvalue. 
An upper bound on the absolute value of the mini-
mum eigenvalue is # corresponding to variable 
index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #. The 
censoring interval has length 0.0. The censoring 
code for this observation is being set to 0.0.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the classification 
variables exceeds “max_class” = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified, and 
“n_coef_input” = #. The model specified requires 
# coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = # and “n_rows_missing” = #. 
“n_observations”−”n_rows_missing” must be 
greater than or equal to 2 in order to estimate the 
coefficients.

IMSLS_SVGLM_1 For the exponential model (“model” = 0) with 
“n_effects” = # and no intercept, “n_coef” has 
been determined to equal 0. With no coefficients in 
the model, processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be deleted from the 
model. Either use a different model or increase the 
workspace.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct 
values for each classification variable must be 
greater than one.
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survival_estimates
Estimates survival probabilities and hazard rates for the various parametric models.

Synopsis
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival *survival_info, 

int n_observations, float xpt[], float time, int npt, float delta, ..., 0)

The type double function is imsls_d_survival_estimates.

Required Arguments
Imsls_f_survival *survival_info  (Input)

Pointer to structure of type Imsls_f_survival containing the estimated survival coefficients and other 
related information. See imsls_f_survival_glm.

int n_observations  (Input)
Number of observations for which estimates are to be calculated.

float xpt[]  (Input)
Array xpt is an array of size n_observations by x_col_dim containing the groups of covari-
ates for which estimates are desired, where x_col_dim is described in the documentation for 
imsls_f_survival_glm. The covariates must be specified exactly as in the call to 
imsls_f_survival_glm which produced survival_info.

float time  (Input)
Beginning of the time grid for which estimates are desired. Survival probabilities and hazard rates are 
computed for each covariate vector over the grid of time points time + i×delta for 
i = 0, 1, …, npt − 1.

int npt  (Input)
Number of points on the time grid for which survival probabilities are desired.

float delta  (Input)
Increment between time points on the time grid.
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Return Value
An array of size npt by (2 ×n_observations + 1) containing the estimated survival probabilities for the 
covariate groups specified in xpt. Column 0 contains the survival time. Columns 1 and 2 contain the estimated 
survival probabilities and hazard rates, respectively, for the covariates in the first row of xpt. In general, the sur-
vival and hazard for row i of xpt is contained in columns 2i − 1 and 2i, respectively, for i = 1, 2, …, npt.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival survival_info, int n_observations, 

float xpt[], float time, int npt, float delta,

IMSLS_XBETA, float **xbeta,
IMSLS_XBETA_USER, float xbeta[],
IMSLS_RETURN_USER, float sprob[],
0)

Optional Arguments
IMSLS_XBETA, float **xbeta  (Output)

Address of a pointer to an array of length n_observations containing the estimated linear 
response

for each row of xpt.

IMSLS_XBETA_USER, float xbeta[]  (Output)
Storage for array xbeta is provided by the user. See IMSLS_XBETA.

IMSLS_RETURN_USER, float sprob[]  (Output)
User supplied array of size npt by (2×n_observations + 1) containing the estimated survival 
probabilities for the covariate groups specified in xpt. Column 0 contains the survival time. Columns 
1 and 2 contain the estimated survival probabilities and hazard rates, respectively, for the covariates 
in the first row of xpt. In general, the survival and hazard for row i of xpt is contained in columns 
2i − 1 and 2i, respectively, for i = 1, 2, …, npt.

w + xβ^
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Description
Function imsls_f_survival_estimates computes estimates of survival probabilities and hazard rates for 
the parametric survival/reliability models fit by function imsls_f_survival_glm.

Let η = xTβ be the linear parameterization, where x is the design vector corresponding to a row of xpt 
(imsls_f_survival_estimates generates the design vector using function 
imsls_f_regressors_for_glm), and β is a vector of parameters associated with the linear model. Let T 
denote the random response variable and S(t) denote the probability that T > t. All models considered also allow 
a fixed parameter w (input in column ifix of xpt). Use of the parameter is discussed in function 
imsls_f_survival_glm. There also may be nuisance parameters θ > 0 or σ > 0. Let Φ denote the cumulative 
normal distribution. The survival models available in imsls_f_survival_estimates are:

Let λ(t) denote the hazard rate at time t. Then λ(t) and S(t) are related at

Model Name S (t)

0 Exponential exp [−t exp (wi + η)]

1 Linear hazard
  

2 Log-normal
  

3 Normal
  

4 Log-logistic

  

5 Logistic
  

6 Log least extreme 
value   

7 Least extreme 
value   

8 Log extreme value
  

9 Extreme value
  

10 Weibull

  

exp − t + θt2
2 exp wi + η

1 − ϕ
ln t − η − wi

σ

1 − ϕ
t − η − wi

σ

1 + exp
ln t − η − wi

σ

−1

1 + exp
t − η − wi

σ
−1

exp −exp
ln t − η − wi

σ

exp −exp
t − η − wi

σ

1 − exp −exp
ln t − η − wi

σ

1 − exp −exp
t − η − wi

σ

exp − t
exp wi + η

θ
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Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume λ(s) = 0 for s < 0), while the remaining mod-
els allow arbitrary values for T, −∞ < T <∞. The computations proceed in function 
imsls_f_survival_estimates as follows:

1. The input arguments are checked for consistency and validity.

2. For each row of xpt, the explanatory variables are generated from the classification and variables 
and the covariates using function imsls_f_regressors_for_glm (see Chapter 2, Regression) 
with dummy_method = IMSLS_LEAVE_OUT_LAST. Given the explanatory variables x, η is com-

puted as η = xTβ, where β is input in survival_info.

3. For each point requested in the time grid, the survival probabilities and hazard rates are computed.

Example
This example is a continuation of the first example given for function imsls_f_survival_glm. Prior to calling 
survival_estimates, imsls_f_survival_glm is invoked to compute the parameter estimates (con-
tained in the structure survival_info). The example is taken from Lawless (1982, p. 287) and involves the 
mortality of patients suffering from lung cancer.

#include <imsls.h>
int main() {
   static float x[40][7] = {
       1.0,   0.0,   7.0,  64.0,   5.0, 411.0,   0.0,
       1.0,   0.0,   6.0,  63.0,   9.0, 126.0,   0.0,
       1.0,   0.0,   7.0,  65.0,  11.0, 118.0,   0.0,
       1.0,   0.0,   4.0,  69.0,  10.0,  92.0,   0.0,
       1.0,   0.0,   4.0,  63.0,  58.0,   8.0,   0.0,
       1.0,   0.0,   7.0,  48.0,   9.0,  25.0,   1.0,
       1.0,   0.0,   7.0,  48.0,  11.0,  11.0,   0.0,
       2.0,   0.0,   8.0,  63.0,   4.0,  54.0,   0.0,
       2.0,   0.0,   6.0,  63.0,  14.0, 153.0,   0.0,
       2.0,   0.0,   3.0,  53.0,   4.0,  16.0,   0.0,
       2.0,   0.0,   8.0,  43.0,  12.0,  56.0,   0.0,
       2.0,   0.0,   4.0,  55.0,   2.0,  21.0,   0.0,
       2.0,   0.0,   6.0,  66.0,  25.0, 287.0,   0.0,
       2.0,   0.0,   4.0,  67.0,  23.0,  10.0,   0.0,
       3.0,   0.0,   2.0,  61.0,  19.0,   8.0,   0.0,
       3.0,   0.0,   5.0,  63.0,   4.0,  12.0,   0.0,
       4.0,   0.0,   5.0,  66.0,  16.0, 177.0,   0.0,
       4.0,   0.0,   4.0,  68.0,  12.0,  12.0,   0.0,
       4.0,   0.0,   8.0,  41.0,  12.0, 200.0,   0.0,
       4.0,   0.0,   7.0,  53.0,   8.0, 250.0,   0.0,
       4.0,   0.0,   6.0,  37.0,  13.0, 100.0,   0.0,
       1.0,   1.0,   9.0,  54.0,  12.0, 999.0,   0.0,

S t = exp ∫−∞
t
λ s ds
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       1.0,   1.0,   5.0,  52.0,   8.0, 231.0,   1.0,
       1.0,   1.0,   7.0,  50.0,   7.0, 991.0,   0.0,
       1.0,   1.0,   2.0,  65.0,  21.0,   1.0,   0.0,
       1.0,   1.0,   8.0,  52.0,  28.0, 201.0,   0.0,
       1.0,   1.0,   6.0,  70.0,  13.0,  44.0,   0.0,
       1.0,   1.0,   5.0,  40.0,  13.0,  15.0,   0.0,
       2.0,   1.0,   7.0,  36.0,  22.0, 103.0,   1.0,
       2.0,   1.0,   4.0,  44.0,  36.0,   2.0,   0.0,
       2.0,   1.0,   3.0,  54.0,   9.0,  20.0,   0.0,
       2.0,   1.0,   3.0,  59.0,  87.0,  51.0,   0.0,
       3.0,   1.0,   4.0,  69.0,   5.0,  18.0,   0.0,
       3.0,   1.0,   6.0,  50.0,  22.0,  90.0,   0.0,
       3.0,   1.0,   8.0,  62.0,   4.0,  84.0,   0.0,
       4.0,   1.0,   7.0,  68.0,  15.0, 164.0,   0.0,
       4.0,   1.0,   3.0,  39.0,   4.0,  19.0,   0.0,
       4.0,   1.0,   6.0,  49.0,  11.0,  43.0,   0.0,
       4.0,   1.0,   8.0,  64.0,  10.0, 340.0,   0.0,
       4.0,   1.0,   7.0,  67.0,  18.0, 231.0,   0.0
   };
   int  n_observations = 40;
   int  n_estimates = 2;
   int  n_class = 2;
   int  n_continuous = 3;
   int  model = 0;
   int  icen = 6, ilt = -1, irt = 5;
   int  lp_max = 40;
   float time = 10.0;
   int  npt = 10;
   float delta = 20.0;
   int  n_coef;
   float *sprob;
   Imsls_f_survival *survival_info;
   char *fmt = "%12.2f%10.4f%10.6f%10.4f%10.6f";
   char *clabels[] = {"", "Time", "S1", "H1", "S2", "H2"};
   n_coef = imsls_f_survival_glm(n_observations, n_class, n_continuous,
       model, &x[0][0],
       IMSLS_X_COL_CENSORING, icen, ilt, irt,
       IMSLS_INFINITY_CHECK, lp_max,
       IMSLS_SURVIVAL_INFO, &survival_info,
       0);
   sprob = imsls_f_survival_estimates(survival_info, n_estimates,
       &x[0][0], time, npt, delta,
       0);
   imsls_f_write_matrix("Survival and Hazard Estimates", npt,
       2 * n_estimates + 1, sprob,
       IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS,
       IMSLS_COL_LABELS, clabels,
       0);
   imsls_free (survival_info);
   imsls_free (sprob);
}
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Output

               Survival and Hazard Estimates
       Time         S1         H1         S2         H2
      10.00     0.9626   0.003807     0.9370   0.006503
      30.00     0.8921   0.003807     0.8228   0.006503
      50.00     0.8267   0.003807     0.7224   0.006503
      70.00     0.7661   0.003807     0.6343   0.006503
      90.00     0.7099   0.003807     0.5570   0.006503
     110.00     0.6579   0.003807     0.4890   0.006503
     130.00     0.6096   0.003807     0.4294   0.006503
     150.00     0.5649   0.003807     0.3770   0.006503
     170.00     0.5235   0.003807     0.3310   0.006503
     190.00     0.4852   0.003807     0.2907   0.006503

Note that the hazard rate is constant over time for the exponential model.

Warning Errors

Fatal Errors

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for the 
log logistic distribution (“model” = 4) does not exist. 
Predicted values will not be calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for the 
log extreme value distribution (“model” = 8) does 
not exist. Predicted values will not be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one negative eigenvalue. 
An upper bound on the absolute value of the mini-
mum eigenvalue is # corresponding to variable 
index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #. The 
censoring interval has length 0.0. The censoring 
code for this observation is being set to 0.0.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the classification 
variables exceeds “max_class” = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified, and 
“n_coef_input” = #. The model specified requires # 
coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = %(i1) and “n_rows_missing” 
= #. “n_observations”−”n_rows_missing” must 
be greater than or equal to 2 in order to estimate 
the coefficients.
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IMSLS_SVGLM_1 For the exponential model (“model” = 0) with 
“n_effects” = # and no intercept, “n_coef” has 
been determined to equal 0. With no coefficients in 
the model, processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be deleted from the 
model. Either use a different model or increase the 
workspace.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct 
values for each classification variable must be 
greater than one.
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nonparam_hazard_rate
Performs nonparametric hazard rate estimation using kernel functions and quasi-likelihoods.

Synopsis
#include <imsls.h>
float *imsls_f_nonparam_hazard_rate (int n_observations, float t[], int n_hazard, 

float hazard_min, float hazard_increment, …, 0)

The type double function is imsls_d_nonparam_hazard_rate.

Required Arguments
int n_observations  (Input)

Number of observations.

float t[]  (Input) 
An array of n_observations containing the failure times. If optional argument 
IMSLS_CENSOR_CODES is used, the values of t may be treated as exact failure times, as right-cen-
sored times, or a combination of exact and right censored times. By default, all times in t are 
assumed to be exact failure times. 

int n_hazard  (Input)
Number of grid points at which to compute the hazard. The function computes the hazard rates over 
the range given by: hazard_min + j * hazard_increment, for j = 0, ..., n_hazard - 1.

float hazard_min  (Input)
First grid value.

float hazard_increment  (Input)
Increment between grid values.

Return Value
Pointer to an array of length n_hazard containing the estimated hazard rates.
1045



 Survival and Reliability Analysis         nonparam_hazard_rate
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonparam_hazard_rate(int n_observations, float t[], int n_hazard, 

float hazard_min, float hazard_increment,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_CENSOR_CODES, int censor_codes[],
IMSLS_WEIGHT, int iwto, 
IMSLS_SORT_OPTION, int isort,
IMSLS_K_GRID, int n_k, int k_min, int k_increment,
IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float beta_increment,
IMSLS_N_MISSING, int *nmiss, 
IMSLS_ALPHA, float *alpha, 
IMSLS_BETA, float *beta,
IMSLS_CRITERION, float *vml, 
IMSLS_K, int *k,
IMSLS_SORTED_EVENT_TIMES, float **event_times,
IMSLS_SORTED_EVENT_TIMES_USER, float event_times[],
IMSLS_SORTED_CENSOR_CODES, int **isorted_censor,
IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[], 
IMSLS_RETURN_USER, float haz[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default: iprint = 0.

iprint Action

0 No printing is performed.

1 The grid estimates and the opti-
mized estimates are printed for each 
value of k.
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IMSLS_CENSOR_CODES, int censor_codes[] (Input)
censor_codes is an array of length n_observations containing the censoring codes for each 
time in t. If censor_codes[i]=0 the failure time t[i] is treated as an exact time of failure. Oth-
erwise it is treated as a right-censored time; that is, the exact time of failure is greater than t[i].

Default: All failure times are treated as exact times of failure with no censoring.

IMSLS_WEIGHT_OPTION, int iwto  (Input)
Weight option. If iwto = 1, then   is used for the i-th 
smallest observation. Otherwise,   is used.

Default: iwto = 0.

IMSLS_SORT_OPTION, int isort  (Input)
Sorting option. If isort = 1, then the event times are not automatically sorted by the function. Oth-
erwise, sorting is performed with exact failure times following tied right-censored times.
Default: isort = 0.

IMSLS_K_GRID, int n_k, int k_min, int k_increment  (Input)
Finds the optimal value of k over the range given by: kmin + (j - 1) × k_increment, for 
j = 1, ..., n_k. Where n_k is the number of values of k to be considered. k_min is the minimum 
value for parameter k. k_increment is the increment between successive values of parameter k. 
Parameter k is the number of nearest neighbors to be used in computing the k-th nearest neighbor 
distance. 

Default: k_min is the smallest possible value of k, k_increment =2, and n_k will be at most 10 
points.

IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float beta_increment  (Input)
For n_beta_grid > 0, a user-defined grid is used. This grid is defined as 
beta_start + (j - 1)*beta_increment, for j = 1, …, n_beta_grid. beta_start is the first 
value to be used in the user-defined grid and beta_increment is the increment between succes-
sive grid values of beta. 

Default: The values in the initial beta search are given as follows: 

Let β* = - 8, - 4, - 2, - 1, - 0.5,0.5,1, and 2, and

For each value of β, vml is computed at the optimizing β. The maximizing β is used to initiate 
the iterations. If the initial β* is determined from the search to be less than -6, then it is pre-
sumed that β is infinite, and an analytic estimate of α based upon infinite β is used. Infinite β 
corresponds to a flat hazard rate.

IMSLS_N_MISSING, int *nmiss  (Output)
Number of missing (NaN, not a number) failure times in t.

weight = ln 1 + 1 / n_observations − i
weight = 1 / n_observations − i

β = e−β
*
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IMSLS_ALPHA, float *alpha  (Output)
Optimal estimate for the parameter α.

IMSLS_BETA, float *beta  (Output)
Optimal estimate for the parameter β.

IMSLS_CRITERION, float *vml  (Output)
Optimum value of the criterion function.

IMSLS_K, int *k (Output)
Optimal estimate for the parameter k.

IMSLS_SORTED_EVENT_TIMES, float **event_times  (Output)
Address of a pointer to an array of length n_observations containing the times of occurrence of 
the events, sorted from smallest to largest.

IMSLS_SORTED_EVENT_TIMES_USER, float event_times[]  (Output)
Storage for event_times is provided by the user. See IMSLS_SORTED_EVENT_TIMES.

IMSLS_SORTED_CENSOR_CODES, int **isorted_censor  (Output)
Address of a pointer to an array of length n_observations containing the sorted censor codes. 
Censor codes are sorted corresponding to the events event_times[i], with censored observa-
tions preceding tied failures.

IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[] (Output)
Storage for isorted_censor is provided by the user. See IMSLS_SORTED_CENSOR_CODE.

IMSLS_RETURN_USER, float haz[] (Output)
If specified, haz is a user supplied array of length n_hazard containing the estimated hazard rates. 

Description
Function imsls_f_nonparam_hazard_rate is an implementation of the methods discussed by Tanner 
and Wong (1984) for estimating the hazard rate in survival or reliability data with right censoring. It uses the 
biweight kernel,

and a modified likelihood to obtain data-based estimates of the smoothing parameters α, β, and k needed in the 
estimation of the hazard rate. For kernel K(x), define the “smoothed” kernel Ks(x - x(j)) as follows:

K(x) =
15
16(1 − x

2)2 for | x | < 1
0 elsewhere
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where djk is the distance to the k-th nearest failure from x(j), and x(j) is the j-th ordered observation (from smallest 

to largest). For given α and β, the hazard at point x is then

where N = n_observations, δi is the i-th observation’s censor code (1 = censored, 0 = failed), and wi is the i-th 

ordered observation’s weight, which may be chosen as either 1/(N - i + 1), or ln(1 + 1/(N - i + 1)). Let

The likelihood is given by

where ∏ denotes product. Since the likelihood leads to degenerate estimates, Tanner and Wong (1984) suggest 
the use of a modified likelihood. The modification consists of deleting observation xi in the calculation of h(xi) and 

H(xi) when the likelihood term for xi is computed using the usual optimization techniques. α and β for given k can 

then be estimated.

Estimates for α and β are computed as follows: for given β, a closed form solution is available for α. The problem 
is thus reduced to the estimation of β. 

A grid search for β is first performed. Experience indicates that if the initial estimate of β from this grid search is 

greater than, say, e6 ,then the modified likelihood is degenerate because the hazard rate does not change with 
time. In this situation, β should be taken to be infinite, and an estimate of α corresponding to infinite β should be 

directly computed. When the estimate of β from the grid search is less than e6, a secant algorithm is used to opti-
mize the modified likelihood. The secant algorithm iteration stops when the change in β from one iteration to the 

next is less than 10−5. Alternatively, the iterations may cease when the value of β becomes greater than e6, at 
which point an infinite β with a degenerate likelihood is assumed.

To find the optimum value of the likelihood with respect to k, a user-specified grid of k-values is used. For each 
grid value, the modified likelihood is optimized with respect to α and β. That grid point, which leads to the small-
est likelihood, is taken to be the optimal k.

KS x − x j = 1
αd jk

K
x − x j

βd jk

h x =∑
i=1

N

1 − δi wiKs x − x i

H x = ∫0
x

h s ds

L =∏
i=1

N
h(xi)

(1−δi)exp( − H(x(i)))
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Programming Notes
1. If sorting of the data is performed by imsls_f_nonparam_hazard_rate, then the sorted array 

will be such that all censored observations at a given time precede all failures at that time. To specify 
an arbitrary pattern of censored/failed observations at a given time point, the isort = 1 option 
must be used. In this case, it is assumed that the times have already been sorted from smallest to 
largest.

2. The smallest value of k must be greater than the largest number of tied failures since djk must be 

positive for all j. (Censored observations are not counted.) Similarly, the largest value of k must be 
less than the total number of failures. If the grid specified for k includes values outside the allowable 
range, then a warning error is issued; but k is still optimized over the allowable grid values.

3. The secant algorithm iterates on the transformed parameter β* = exp(- β). This assures a positive β, 
and it also seems to lead to a more desirable grid search. All results returned to the user are in the 
original parameterization, however.

4. Since local minimums have been observed in the modified likelihood, it is recommended that more 
than one grid of initial values for α and β be used.

5. Function imsls_f_nonparam_hazard_rate assumes that the hazard grid points are new data 
points.

Example
The following example is taken from Tanner and Wong (1984). The data are from Stablein, Carter, and Novak 
(1981) and involve the survival times of individuals with nonresectable gastric carcinoma. Only individuals treated 
with both radiation and chemotherapy are used. For each value of k from 18 to 22 with increment of 2, the 
default grid search for β is performed. Using the optimal value of β in the grid, the optimal parameter estimates 
of α and β are computed for each value of k. The final solution is the parameter estimates for the value of k which 
optimizes the modified likelihood (vml). Because the iprint = 1 is in effect, 
imsls_f_nonparam_hazard_rate prints all of the results in the output.

#include <imsls.h>
#include <stdio.h>
int main ()
{
   int n_observations = 45, iprint = 1, kmin = 18;
   int increment_k = 2, n_k = 3, isort = 1, nmiss, *isorted_censor;
   float *event_times, *haz;
   int n_hazard = 100;
   float hazard_min = 0.0, hazard_inc = 10;
   float t[] = {
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       17.0, 42.0, 44.0, 48.0, 60.0, 72.0, 74.0, 95.0,
       103.0, 108.0, 122.0, 144.0, 167.0, 170.0, 183.0,
       185.0, 193.0, 195.0, 197.0, 208.0, 234.0, 235.0,
       254.0, 307.0, 315.0, 401.0, 445.0, 464.0, 484.0,
       528.0, 542.0, 567.0, 577.0, 580.0, 795.0, 855.0,
       882.0, 892.0,1031.0,1033.0,1306.0,1335.0,1366.0,
       1452.0, 1472.0
   };
   int censor_codes[] = {
       0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0,
       1, 1, 1, 1, 1, 1, 1, 1, 1
   };
   haz = imsls_f_nonparam_hazard_rate (n_observations, t, n_hazard,
       hazard_min, hazard_inc,
       IMSLS_K_GRID, n_k, kmin, increment_k,
       IMSLS_PRINT_LEVEL, iprint,
       IMSLS_N_MISSING, &nmiss,
       IMSLS_SORT_OPTION, isort,
       IMSLS_CENSOR_CODES, censor_codes,
       IMSLS_SORTED_EVENT_TIMES, &event_times,
       IMSLS_SORTED_CENSOR_CODES, &isorted_censor,
       0);
   printf ("\nnmiss = %d\n", nmiss);
   imsls_f_write_matrix ("Sorted Event Times", 1, n_observations,
       event_times,
       IMSLS_WRITE_FORMAT, "%7.1f",
       0);
   imsls_i_write_matrix ("Sorted Censors", 1, n_observations,
       isorted_censor,
       0);
   imsls_f_write_matrix ("Hazard Rates", 1, n_hazard, haz,
       0);
}

Output

                *** Grid search for k =   18 ***
        alpha                   beta                  vml
        4.57832                2980.96             -266.805
        4.54312                54.5982              -266.62
        4.33646                20.0855             -265.541
        4.01933                12.1825             -264.001
        3.54274                7.38906              -262.54
        2.99058                4.48169             -262.512
        2.35154                2.71828             -262.634
        1.58417                1.64872             -262.158
       0.966332                      1             -262.868
                *** Optimal parameter estimates ***
        alpha                   beta                  vml
        1.69515                1.76926             -262.119
1051



 Survival and Reliability Analysis         nonparam_hazard_rate
                *** Grid search for k =   20 ***
        alpha                   beta                  vml
        4.05393                2980.96             -266.526
        4.03284                54.5982             -266.401
        3.90505                20.0855             -265.648
        3.68782                12.1825             -264.402
        3.30434                7.38906             -262.666
        2.82272                4.48169              -262.08
        2.25276                2.71828             -262.445
        1.55578                1.64872             -261.772
       0.955586                      1             -262.618
                *** Optimal parameter estimates ***
        alpha                   beta                  vml
        1.54053                1.63155             -261.771
                *** Grid search for k =   22 ***
        alpha                   beta                  vml
        3.65641                2980.96             -267.595
        3.64159                54.5982             -267.499
        3.55056                20.0855             -266.904
        3.38875                12.1825             -265.859
        3.07147                7.38906             -264.066
        2.64504                4.48169             -263.039
         2.1374                2.71828             -263.335
        1.51261                1.64872              -262.64
       0.936368                      1             -262.683
                *** Optimal parameter estimates ***
        alpha                   beta                  vml
        1.34217                1.45001             -262.561
            *** The final solution    (k =   20) ***
        alpha                   beta                  vml
        1.54053                1.63155             -261.771
nmiss = 0
                         Sorted Event Times
     1       2       3       4       5       6       7       8
  17.0    42.0    44.0    48.0    60.0    72.0    74.0    95.0
     9      10      11      12      13      14      15      16
 103.0   108.0   122.0   144.0   167.0   170.0   183.0   185.0
    17      18      19      20      21      22      23      24
 193.0   195.0   197.0   208.0   234.0   235.0   254.0   307.0
    25      26      27      28      29      30      31      32
 315.0   401.0   445.0   464.0   484.0   528.0   542.0   567.0
    33      34      35      36      37      38      39      40
 577.0   580.0   795.0   855.0   882.0   892.0  1031.0  1033.0
    41      42      43      44      45
1306.0  1335.0  1366.0  1452.0  1472.0
                               Sorted Censors
1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 
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0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1 
39 40 41 42 43 44 45
 1  1  1  1  1  1  1
                            Hazard Rates
        1          2          3          4          5          6
 0.000962   0.001111   0.001276   0.001451   0.001634   0.001819
        7          8          9         10         11         12
 0.002004   0.002185   0.002359   0.002523   0.002675   0.002813
       13         14         15         16         17         18
 0.002935   0.003040   0.003126   0.003193   0.003240   0.003266
       19         20         21         22         23         24
 0.003273   0.003260   0.003229   0.003179   0.003114   0.003034
       25         26         27         28         29         30
 0.002941   0.002838   0.002727   0.002612   0.002495   0.002381
       31         32         33         34         35         36
 0.002273   0.002175   0.002084   0.001998   0.001917   0.001841
       37         38         39         40         41         42
 0.001771   0.001709   0.001655   0.001608   0.001569   0.001537
       43         44         45         46         47         48
 0.001510   0.001484   0.001459   0.001435   0.001411   0.001388
       49         50         51         52         53         54
 0.001365   0.001343   0.001323   0.001304   0.001285   0.001266
       55         56         57         58         59         60
 0.001247   0.001228   0.001208   0.001188   0.001167   0.001146
       61         62         63         64         65         66
 0.001125   0.001103   0.001081   0.001060   0.001040   0.001020
       67         68         69         70         71         72
 0.000999   0.000979   0.000958   0.000936   0.000913   0.000891
       73         74         75         76         77         78
 0.000868   0.000845   0.000821   0.000798   0.000775   0.000752
       79         80         81         82         83         84
 0.000730   0.000708   0.000685   0.000662   0.000640   0.000617
       85         86         87         88         89         90
 0.000595   0.000573   0.000552   0.000530   0.000510   0.000490
       91         92         93         94         95         96
 0.000471   0.000452   0.000434   0.000416   0.000399   0.000383
       97         98         99        100
 0.000366   0.000351   0.000336   0.000321
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Fatal Errors
IMSLS_ALL_OBSERVATIONS_MISSING All observations are missing (NaN, not a number) values.
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life_tables
Produces population and cohort life tables.

Synopsis
#include <imsls.h>
float *imsls_f_life_tables (int n_classes, float age[], float a[], int n_cohort[], …, 0)

The type double function is imsls_d_life_tables.

Required Arguments
int n_classes (Input)

Number of age classes.

float age[] (Input) 
Array of length n_classes + 1 containing the lowest age in each age interval, and in 
age[n_classes], the endpoint of the last age interval. Negative age[0] indicates that the age 
intervals are all of length |age[0]| and that the initial age interval is from 0.0 to |age[0]|. In this 
case, all other elements of age need not be specified. age[n_classes] need not be specified 
when getting a cohort table.

float a[] (Input) 
Array of length n_classes containing the fraction of those dying within each interval who die 
before the interval midpoint. A common choice for all a[i] is 0.5. This choice may also be specified 
by setting a[0] to any negative value. In this case, the remaining values of a need not be specified.

int n_cohort[] (Input)
Array of length n_classes containing the cohort sizes during each interval. If the 
IMSL_POPULATION_LIFE_TABLE option is used, then n_cohort[i] contains the size of the 
population at the midpoint of interval i. Otherwise, n_cohort[i] contains the size of the cohort 
at the beginning of interval i. When requesting a population table, the population sizes in 
n_cohort may need to be adjusted to correspond to the number of deaths in n_deaths. See the 
Description section for more information.
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Return Value
Pointer to an array of length n_classes by 12 containing the life table. The function returns a cohort table by 
default. If the IMSL_POPULATION_LIFE_TABLE option is used, a population table is returned. Entries in the 
ith row are for the age interval defined by age[i]. Column definitions are described in the following table.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_life_tables (int n_classes, float age[], float a[], int n_cohort[],

IMSLS_RETURN_USER, float table[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_POPULATION_SIZE, int initial_pop,
IMSLS_POPULATION_LIFE_TABLE, int *n_deaths,
0)

Column Description

0 Lowest age in the age interval.

1 Fraction of those dying within the interval who die before the 
interval midpoint.

2 Number surviving to the beginning of the interval.

3 Number of deaths in the interval.

4 Death rate in the interval. For cohort table, this column is set 
to NaN (not a number).

5 Proportion dying in the interval.

6 Standard error of the proportion dying in the interval.

7 Proportion of survivors at the beginning of the interval.

8 Standard error of the proportion of survivors at the begin-
ning of the interval.

9 Expected lifetime at the beginning of the interval.

10 Standard error of the expected life at the beginning of the 
interval.

11 Total number of time units lived by all of the population in 
the interval.
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Optional Arguments
IMSLS_RETURN_USER, float table[] (Output)

If specified, table is an user-specified array of length n_classes×12 containing the life table.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0.

IMSLS_POPULATION_SIZE, int initial_pop  (Input)
The population size at the beginning of the first age interval in requesting population table. A default 
value of 10,000 is used to allow easy entry of n_cohorts and n_deaths when numbers are avail-
able as percentages.

Default: initial_pop = 10000.

IMSLS_POPULATION_LIFE_TABLE, int *n_deaths (Input)
Compute a population table. n_deaths is an array of length n_classes containing the number 
of deaths in each age interval.

Description
Function imsls_f_life_tables computes population (current) or cohort life tables based upon the 
observed population sizes at the middle (for population table) or the beginning (for cohort table) of some user-
specified age intervals. The number of deaths in each of these intervals must also be observed.

The probability of dying prior to the middle of the interval, given that death occurs somewhere in the interval, 
may also be specified. Often, however, this probability is taken to be 0.5. For a discussion of the probability mod-
els underlying the life table here, see the references.

Let ti, for i = 0, 1, ..., tn denote the time grid defining the n age intervals, and note that the length of the age inter-

vals may vary. Following Gross and Clark (1975, page 24), let di denote the number of individuals dying in age 

interval i, where age interval i ends at time ti. For population table, the death rate at the middle of the interval is 

given by ri = di/(Mihi), where Mi is the number of individuals alive at the middle of the interval, and hi = ti - ti−1, t0 

iprint Action

0 No printing is performed.

1 The life table is printed.
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= 0. The number of individuals alive at the beginning of the interval may be estimated by Pi = Mi + (1 - ai)di where 

ai is the probability that an individual dying in the interval dies prior to the interval midpoint. For cohort table, Pi is 

input directly while the death rate in the interval, ri, is not needed.

The probability that an individual dies during the age interval from ti−1 to ti is given by qi = di/Pi. It is assumed that 

all individuals alive at the beginning of the last interval die during the last interval. Thus, qn = 1.0. The asymptotic 

variance of qi can be estimated by

For population table, the number of individuals alive in the middle of the time interval (input in n_cohort[i]) 
must be adjusted to correspond to the number of deaths observed in the interval. Function 
imsls_f_life_tables assumes that the number of deaths observed in interval hi occur over a time period 

equal to hi. If di is measured over a period ui, where ui ≠ di, then n_cohort[i] must be adjusted to corre-

spond to di by multiplication by ui/hi, i.e., the value Mi input into imsls_f_life_tables as n_cohort[i] 

is computed as 

Let Si denote the number of survivors at time ti from a hypothetical (for population table) or observed (for cohort 

table) population. Then, S0 = initial_pop for population table, and S0 = n_cohort[0] for cohort table, and 

Si is given by Si = Si−1 - δi−1 where δi = Siqi is the number of individuals who die in the i-th interval. The propor-

tion of survivors in the interval is given by Vi = S /S0 while the asymptotic variance of Vi can be estimated as 

follows.

The expected lifetime at the beginning of the interval is calculated as the total lifetime remaining for all survivors 
alive at the beginning of the interval divided by the number of survivors at the beginning of the interval. If ei 

denotes this average expected lifetime, then the variance of ei can be estimated as (see Chiang 1968)

where var(en) = 0.0.

Finally, the total number of time units lived by all survivors in the time interval can be estimated as:

σi
2 = qi 1 − qi / Pi

Mi
* = Miui / hi

var Vi = Vi
2∑
j=1

i−1 σ j
2

1 − q j
2

var ei =

∑
j=i

n−1
P j
2σ j
2 e j+1 + h j+1 1 − a j

2

P j
2
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Example
This example is taken from Chiang (1968). The cohort life table has thirteen equally spaced intervals, so age[0] 
is set to -5.0. Similarly, the probabilities of death prior to the middle of the interval are all taken to be 0.5, so 
a[0] is set to -1.0. Since IMSLS_PRINT_LEVEL option is used, imsls_f_life_tables prints the life 
table.

#include <imsls.h>
#define N_CLASSES 13
int main ()
{
    int iprint = 1;
    int n_cohort[] =
        { 270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76, 34, 13 };
    float age[N_CLASSES + 1], a[N_CLASSES];
    float *result;
    age[0] = -5.0;
    a[0] = -1.0;
    result = imsls_f_life_tables (N_CLASSES, age, a, n_cohort,
        IMSLS_PRINT_LEVEL, iprint, 0);
}

Output

                            Life Table
Age Class        Age     PDHALF      Alive     Deaths Death Rate
        1          0        0.5        270          2 ..........
        2          5        0.5        268          4 ..........
        3         10        0.5        264          3 ..........
        4         15        0.5        261          7 ..........
        5         20        0.5        254          3 ..........
        6         25        0.5        251          3 ..........
        7         30        0.5        248         16 ..........
        8         35        0.5        232         66 ..........
        9         40        0.5        166         36 ..........
       10         45        0.5        130         54 ..........
       11         50        0.5         76         42 ..........
       12         55        0.5         34         21 ..........
       13         60        0.5         13         13 ..........
Age Class       P(D)  Std(P(D))       P(S)  Std(P(S))   Lifetime
        1   0.007407   0.005218          1          0      43.19
        2    0.01493   0.007407     0.9926   0.005218      38.49
        3    0.01136   0.006523     0.9778   0.008971      34.03
        4    0.02682       0.01     0.9667    0.01092       29.4
        5    0.01181   0.006779     0.9407    0.01437      25.14
        6    0.01195   0.006859     0.9296    0.01557      20.41
        7    0.06452     0.0156     0.9185    0.01665      15.63

Ui = hi Si − δi 1 − ai
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        8     0.2845    0.02962     0.8593    0.02116      11.53
        9     0.2169    0.03199     0.6148    0.02962      10.12
       10     0.4154    0.04322     0.4815    0.03041      7.231
       11     0.5526    0.05704     0.2815    0.02737      5.592
       12     0.6176    0.08334     0.1259    0.02019      4.412
       13          1          0    0.04815    0.01303        2.5
Age Class  Std(Life) Time Units
        1     0.6993       1345
        2     0.6707       1330
        3      0.623       1313
        4      0.594       1288
        5     0.5403       1263
        6     0.5237       1248
        7     0.5149       1200
        8     0.4982        995
        9     0.4602        740
       10     0.4328        515
       11     0.4361        275
       12     0.4167      117.5
       13          0       32.5
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Probability Distribution Functions 
and Inverses

Functions
Discrete Random Variables: Distribution Functions and Probability Functions

Distribution Functions
Binomial distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . binomial_cdf     1066
Binomial probability function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . binomial_pdf     1068
Discrete geometric cumulative distribution function. . . . . . . . . . . . . . . . . geometric_cdf     1070
Inverse of the discrete geometric cumulative

distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . geometric_inverse_cdf     1072
Discrete geometric probability density function . . . . . . . . . . . . . . . . . . . . geometric_pdf     1074
Hypergeometric distribution function . . . . . . . . . . . . . . . . . . . . . . . .hypergeometric_cdf     1076
Hypergeometric probability function  . . . . . . . . . . . . . . . . . . . . . . . .hypergeometric_pdf     1079
Poisson distribution function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . poisson_cdf     1081
Poisson probability function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .poisson_pdf     1084
Discrete uniform cumulative distribution function  . . . . . . . . . . . . . discrete_uniform_cdf     1086
Inverse of the discrete uniform cumulative

distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . discrete_uniform_inverse_cdf     1088
Discrete uniform probability density function . . . . . . . . . . . . . . . . .discrete_uniform_pdf     1090

Continuous Random Variables
Distribution Functions and their Inverses

Beta distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .beta_cdf     1092
Inverse beta distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .beta_inverse_cdf     1094
Noncentral beta cumulative distribution

function (CDF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . non_central_beta_cdf     1096
Inverse of the noncentral beta CDF. . . . . . . . . . . . . . . . non_central_beta_inverse_cdf     1099
Noncentral beta probability density function (PDF) . . . . . . . . . . . non_central_beta_pdf     1102
Bivariate normal distribution function. . . . . . . . . . . . . . . . . . . . . . . bivariate_normal_cdf     1105
Chi-squared distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . chi_squared_cdf     1107
Inverse chi-squared distribution function . . . . . . . . . . . . . . . . .chi_squared_inverse_cdf     1110
Calculates the complement of the chi-squared 

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complementary_chi_squared_cdf     1112
Noncentral chi-squared distribution function . . . . . . . . . . . . . . . . . . non_central_chi_sq     1115
Inverse of the noncentral chi-squared distribution function . . . . non_central_chi_sq_inv     1119
Noncentral chi-squared probability 

density function (PDF)  . . . . . . . . . . . . . . . . . . . . . . . . . . . non_central_chi_sq_pdf     1121
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Exponential cumulative distribution function . . . . . . . . . . . . . . . . . . . . . exponential_cdf     1124
Inverse of the exponential cumulative 

distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . exponential_inverse_cdf     1126
Exponential probability density function. . . . . . . . . . . . . . . . . . . . . . . . . exponential_pdf     1128
F distribution function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F_cdf     1130
Inverse F distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F_inverse_cdf     1133
Calculates the complement of the F distribution 

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complementary_F_cdf     1135
Noncentral F probability density 

function (PDF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .non_central_F_pdf     1138
Noncentral F cumulative distribution 

function (CDF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .non_central_F_cdf     1142
Calculates the complement of the noncentral 

F CDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complementary_non_central_F_cdf     1145
Inverse of the noncentral F distribution function  . . . . . . . . . non_central_F_inverse_cdf     1149
Gamma distribution function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gamma_cdf     1152
Inverse gamma distribution function  . . . . . . . . . . . . . . . . . . . . . . . gamma_inverse_cdf     1155
Lognormal cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . lognormal_cdf     1157
Inverse of the lognormal cumulative distribution function  . . . . . lognormal_inverse_cdf     1159
Lognormal probability density function  . . . . . . . . . . . . . . . . . . . . . . . . . . lognormal_pdf     1161
Normal (Gaussian) distribution function. . . . . . . . . . . . . . . . . . . . . . . . . . . . .normal_cdf     1163
Multivariate normal distribution function  . . . . . . . . . . . . . . . . . multivariate_normal_cdf     1166
Inverse normal distribution function . . . . . . . . . . . . . . . . . . . . . . . . . normal_inverse_cdf     1174
Student’s t distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t_cdf     1176
Inverse Student’s t distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . t_inverse_cdf     1179
Calculates the complement of the Student’s t 

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complementary_t_cdf     1181
Noncentral Student’s t distribution function . . . . . . . . . . . . . . . . . . . . non_central_t_cdf     1185
Inverse of the noncentral Student’s t distribution function . . . . . . non_central_t_inv_cdf     1188
Pareto cumulative probability distribution function. . . . . . . . . . . . . . . . . . . . . pareto_cdf     1193
Pareto probability density function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pareto_pdf     1195

Parameter Estimation
Maximum likelihood estimation for univariate 

probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . . max_likelihood_estimates     1197
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Usage Notes
The distribution function for the (real, single-valued) random variable X is the function F defined for all 
real x by

F(x) = Pr(X ≤ x)

where Pr(⋅) denotes the probability of an event. The distribution function is often called the cumulative distribu-
tion function (CDF).

In general, the CDF does not have an inverse because it is not one-to-one. Nevertheless, a quantile function, also 
called an inverse CDF, is well-defined as

F-1(p) = min {x∈ ℜ : F(x)≥p}, p ∈ (0,1)

Here p represents a probability on the open interval, (0, 1).

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz (1969, 1970a, 
1970b). These are also good references for the specific distributions.

Discrete Distributions
For discrete distributions, the function giving the probability that a random variable takes on specific values is 
called the probability mass function, or just probability function, defined by

f(x) = Pr(X = x)

The CDF for a discrete random variable is

where A is the set such that k ≤ x.

Continuous Distributions
For continuous distributions, a probability function, as defined above, would not be useful because the probabil-
ity of any given point is 0. For such distributions, the useful analog is the probability density function(PDF). The 
integral of the PDF is the probability over the interval. If the continuous random variable X has PDF f, then

F x = Pr[X ≤ x ] =∑
A

f (k)
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The relationship between the CDF and the PDF is

The “_cdf” functions described in this chapter evaluate cumulative distribution functions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the support of the distri-
bution. Thus, the inverse-CDF is a proper inverse function on the interval (0,1) and

F-1(F(x)) = x .

The “_inverse_cdf” functions described in this chapter compute the inverses of the distribution functions. 
The inverses are defined only over the open interval (0,1).

Parameter Notation and Estimation
To emphasize the dependence of a PDF or CDF on one or more parameters, we use the following notation:

f (x∣θ ) or F(x∣θ )

where θ represents one or more distributional parameters. The vertical bar "∣" is read as "given". Some authors 
prefer to use the semi-colon instead of the vertical bar, as in f (x; θ ), to emphasize this dependency. However, the 
vertical bar is more consistent with the notation used for conditional probability distributions. For instance, in the 
Bayesian framework, there is a distribution on the parameters, so in that sense the probability distributions 
treated in this chapter are conditional distributions.

A related task to evaluating a probability density or distribution function is to estimate the values of its parame-
ters. For many of the distributions covered in this chapter, functionimsls_f_max_likelihood_estimates 
provides maximum likelihood estimates of the unknown parameter values given a sample of observations.

Additional Comments
1. In order to keep the calling sequences simple, whenever possible the functions described in this 

chapter are written for standard forms of statistical distributions. Hence, the number of parameters 
for any given distribution may be fewer than the number often associated with the distribution. For 
example, while a gamma distribution is often characterized by two parameters (or even a third, "loca-
tion"), there is only one parameter that is necessary, the "shape".

Pr(a < X ≤ b) = ∫a
b
f (x)dx

F(x) = ∫−∞
x

f (t)dt
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2. The "scale" parameter can be used to scale the variable to the standard gamma distribution. Also, the 
functions relating to the normal distribution,imsls_f_normal_cdf and 
imsls_f_normal_inverse_cdf, are for a normal distribution with mean equal to zero and vari-
ance equal to one. For other means and variances, it is very easy to standardize the variables by 
subtracting the mean and dividing by the square root of the variance.

3. Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to an 
inverse function, it is often impossible to achieve good accuracy because of the nature of the repre-
sentation of numeric values. In this case, it may be better to work with the complementary 
distribution function (one minus the distribution function). If the distribution is symmetric about 
some point (as the normal distribution, for example) or is reflective about some point (as the beta 
distribution, for example), the complementary distribution function has a simple relationship with the 
distribution function. For example, to evaluate the standard normal distribution at 4.0, using 
imsls_f_normal_inverse_cdf directly, the result to six places is 0.999968. Only two of those 
digits are really useful, however. A more useful result may be 1.000000 minus this value, which can 
be obtained to six significant figures as 3.16713E-05 by evaluating 
imsls_f_normal_inverse_cdf at -4.0. For the normal distribution, the two values are related 
by Φ(x) = 1 - Φ(-x), where Φ(⋅) is the normal distribution function. Another example is the beta distri-
bution with parameters 2 and 10. This distribution is skewed to the right, so evaluating 
imsls_f_beta_cdf at 0.7, 0.999953 is obtained. A more precise result is obtained by evaluating 
imsls_f_beta_cdf with parameters 10 and 2 at 0.3. This yields 4.72392E-5. (In both of these 
examples, it is wise not to trust the last digit.)

4. Many of the algorithms used by functions in this chapter are discussed by Abramowitz and Stegun 
(1964). The algorithms make use of various expansions and recursive relationships and often use dif-
ferent methods in different regions.

5. Cumulative distribution functions are defined for all real arguments, however, if the input to one of 
the distribution functions in this chapter is outside the range of the random variable, an error of Type 
1 is issued, and the output is set to zero or one, as appropriate. A Type 1 error is of lowest severity, a 
“note”, and, by default, no printing or stopping of the program occurs. The other common errors that 
occur in the functions of this chapter are Type 2, “alert”, for a function value being set to zero due to 
underflow, Type 3, “warning”, for considerable loss of accuracy in the result returned, and Type 5, “ter-
minal”, for incorrect and/or inconsistent input, complete loss of accuracy in the result returned, or 
inability to represent the result (because of overflow). When a Type 5 error occurs, the result is set to 
NaN (not a number, also used as a missing value code).

6. For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than the 
left endpoint and 1 for values greater than the right endpoint. The functions described in this chapter 
return the correct values for the distribution functions when values outside of the range of the ran-
dom variable are input, but warning error conditions are set in these cases.
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binomial_cdf
Evaluates the binomial distribution function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_cdf (int k, int n, float p)

The type double function is imsls_d_binomial_cdf.

Required Arguments
int k (Input)

Argument for which the binomial distribution function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that k or fewer successes occur in n independent Bernoulli trials, each of which has a probability 
p of success.

Description
The imsls_f_binomial_cdf function evaluates the distribution function of a binomial random variable with 
parameters n and p. It does this by summing probabilities of the random variable taking on the specific values in 
its range. These probabilities are computed by the recursive relationship:

such that:

Pr X = j =
n + 1 − j p
j 1 − p Pr X = j − 1
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To avoid the possibility of underflow, the probabilities are computed forward from 0 if k is not greater than n × p; 
otherwise, they are computed backward from n. The smallest positive machine number, ɛ, is used as the starting 

value for summing the probabilities, which are rescaled by (1 − p)nɛ if forward computation is performed and by 

pnɛ if backward computation is used.

For the special case of p = 0, imsls_f_binomial_cdf is set to 1; for the case p = 1, 
imsls_f_binomial_cdf is set to 1 if k = n and is set to 0 otherwise.

Example
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, the function finds the probabil-
ity that X is less than or equal to 3.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int  k = 3, n = 5;
 float  p = 0.95, pr;
 pr = imsls_f_binomial_cdf(k,n,p);
 printf("Pr(x <= %d) = %6.4f\n", k, pr);

}

Output

Pr(x <= 3) = 0.0226

Informational Errors
IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution func-

tion is set to zero.

IMSLS_GREATER_THAN_N The input argument, k, is greater than the number 
of Bernoulli trials, n.

F(k∣n,p) =∑
i = 0

k

Pr(X = j)
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binomial_pdf
Evaluates the binomial probability function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_pdf (int k, int n, float p)

The type double function is imsls_d_binomial_pdf.

Required Arguments
int k (Input)

Argument for which the binomial probability function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that a binomial random variable takes on a value equal to k.

Description
The function imsls_f_binomial_pdf evaluates the probability that a binomial random variable with param-
eters n and p takes on the value k. Specifically,

where k = {0,1,2,…,n}, n≥1, 0≤p≤1, and

f (k∣n,p) = Pr(X = k) = n
k pk(1 − p)n−k
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These probabilities are computed by the recursive relationship:

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not greater than 
n × p, and are computed backward from n otherwise. The smallest positive machine number, ɛ, is used as the 

starting value for summing the probabilities, which are rescaled by (1-p)nɛ if forward computation is performed 

and by pnɛ if backward computation is done.

For the special case of p = 0, imsls_f_binomial_pdf is set to 0 if k is greater than 0 and to 1 otherwise; 
and for the case p = 1, imsls_f_binomial_pdf is set to 0 if k is less than n and to 1 otherwise.

Examples
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we find the probability that X is 
equal to 3.

#include <stdio.h>
#include <imsls.h>
int main()
{

 int k = 3, n = 5;
 float p = 0.95, prob;
 prob = imsls_f_binomial_pdf(k, n, p);
 printf("The probability that X is equal to "

 "%d is %f\n", k, prob);
}

Output

The probability that X is equal to 3 is 0.021434

n
k = n!

k!(n − k)!

Pr X = k =
n + 1 − k p
k 1 − p Pr X = k − 1
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geometric_cdf
Evaluates the discrete geometric cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_geometric_cdf(intix, floatpin)

The type double function is imsls_d_geometric_cdf.

Required Arguments
intix (Input)

Argument for which the discrete geometric CDF is to be evaluated. ix must be non-negative.

floatpin (Input)
Probability parameter of the discrete geometric CDF (the probability of success for each independent 
trial).  pin must be in the open interval (0, 1).

Return Value
The probability that a discrete geometric random variable takes a value less than or equal to ix. A value of NaN is 
returned if an input value is in error.

Description
The function geometric_cdf evaluates the discrete geometric cumulative distribution function (CDF), defined

where the return value F(I∣p) is the probability that up to I = ix trials would be observed before observing a suc-
cess, and input parameter p = pin is the probability of success for each independent trial.

F I∣p =∑
i=0

I

p 1 − p i = 1 − 1 − p I+1, 0 < p < 1
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Example
In this example, we evaluate the discrete geometric CDF at ix = 3, pin = 0.25.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   ix = 3;
   float pin = 0.25;
   float p;
   p = imsls_f_geometric_cdf(ix, pin);
   printf("The probability that a discrete geometric ");
   printf("random variable\nwith probability ");
   printf("parameter pin = %4.2f is less than ", pin);
   printf("or equal\nto %1i is %8.6f\n\n", ix, p);
}

Output
The probability that a discrete geometric random variable
with probability parameter pin = 0.25 is less than or equal
to 3 is 0.683594
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geometric_inverse_cdf
Evaluates the inverse of the discrete geometric cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
intimsls_f_geometric_inverse_cdf(floatp, floatpin)

The type double function is imsls_d_geometric_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the discrete geometric CDF is to be evaluated.  p must be in the 
open interval (0, 1).

floatpin (Input)
Probability parameter of the discrete geometric CDF (the probability of success for each independent 
trial).  pin must be in the open interval (0, 1).

Return Value
The probability that a discrete geometric random variable takes a value less than or equal to the returned value is 
the input probability, p. A value of -1 is returned if an input value is in error.

Description
The function geometric_inverse_cdf evaluates the inverse CDF of a discrete geometric random 
variable with parameter pin.  The discrete geometric CDF is defined:
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where the return value p = F(I∣P) is the probability that up to I trials would be observed before observing a suc-
cess, and input parameter P = pin is the probability of success for each independent trial. The discrete 
geometric inverse CDF is defined:

which is the smallest integer I such that the discrete geometric CDF is greater than or equal to input argument p= 
p, where 0 < p < 1, and input parameter P = pin.

Example
In this example, we evaluate the inverse probability function at pin = 0.25, p = 0.6835.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   ix;
   float pin = 0.25;
   float p = 0.6835;
   ix = imsls_f_geometric_inverse_cdf(p, pin);
   printf("The probability that a discrete geometric ");
   printf("random variable\nwith probability ");
   printf("parameter pin = %4.2f is less than ", pin);
   printf("or equal\nto %2i is %6.4f\n\n", ix, p);
}

Output
The probability that a discrete geometric random variable
with probability parameter pin = 0.25 is less than or equal
to 3 is 0.6835

p = F(I∣P) =∑
i=0

I

P(1 − P)i = 1 − (1 − P)I+1

I = F−1 p∣P = ⌈ log 1 − plog 1 − P − 1⌉
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geometric_pdf
Evaluates the discrete geometric probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_geometric_pdf(intix, floatpin)

The type double function is imsls_d_geometric_pdf.

Required Arguments
intix (Input)

Argument for which the discrete geometric PDF is to be evaluated. ix must be non-negative.

floatpin (Input)
Probability parameter of the discrete geometric PDF (the probability of success for each independent 
trial).  pin must be in the open interval (0, 1).

Return Value
The probability that a discrete geometric random variable having parameter pin will be equal to ix. A value of 
NaN is returned if an input value is in error.

Description
The function geometric_pdf evaluates the discrete geometric probability density function (PDF), defined

where the return value f(I∣p) is the probability that I = ix trials would be observed before observing a success, 
and input parameter p = pin is the probability of success for each independent trial.

f I | p = p 1 − p I, 0 < p < 1
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Example
In this example, we evaluate the discrete geometric PDF at ix = 3, pin = 0.25.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   ix = 3;
   float pin = 0.25;
   float p;
   p = imsls_f_geometric_pdf(ix, pin);
   printf("The probability density of a discrete ");
   printf("geometric\nrandom variable with ");
   printf("probability parameter pin = %4.2f\n", pin);
   printf("and value ix = %1i is %8.6f\n\n", ix, p);
}

Output
The probability density of a discrete geometric
random variable with probability parameter pin = 0.25
and value ix = 3 is 0.105469
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hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis
#include <imsls.h>
float imsls_f_hypergeometric_cdf (int k, int n, int m, int l)

The type double function is imsls_d_hypergeometric_cdf.

Required Arguments
int k (Input)

Argument for which the hypergeometric distribution function is to be evaluated.

int n (Input)
Sample size. Argument n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size. Argument l must be greater than or equal to n and m.

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from a lot of size l that contains m 
defectives.

Description
Function imsls_f_hypergeometric_cdf evaluates the distribution function of a hypergeometric random 
variable with parameters n, l, and m. The hypergeometric random variable x can be thought of as the number of 
items of a given type in a random sample of size n that is drawn without replacement from a population of size l 
containing m items of this type. The probability function is
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where i = max (0, n − l + m) and

If k is greater than or equal to i and less than or equal to min (n, m), imsls_f_hypergeometric_cdf sums 
the terms in this expression for j going from i up to k; otherwise, 0 or 1 is returned, as appropriate. To avoid 
rounding in the accumulation, imsls_f_hypergeometric_cdf performs the summation differently, 
depending on whether or not k is greater than the mode of the distribution, which is the greatest integer less 
than or equal to (m + 1) (n + 1)/(l + 2).

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this example, evaluate the 
distribution function at 7.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int  k = 7, l = 1000, m = 70, n = 100;
 float  p;
 p = imsls_f_hypergeometric_cdf(k,n,m,l);
 printf("Pr (x <= %d) = %6.4f\n", k, p);

}

Output

Pr (x <= 7) = 0.5995

Pr x = j =

m
j

l − m
n − j
l
n

for j = i, i + 1, … , min n,m

F(k∣n,m,l) =∑
i=0

k

Pr(X = j)
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Informational Errors

Fatal Errors

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution func-
tion is set to zero.

IMSLS_K_GREATER_THAN_N The input argument, k, is greater than the sample 
size.

IMSLS_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to n and m.
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hypergeometric_pdf
Evaluates the hypergeometric probability function.

Synopsis
#include<imsls.h>
floatimsls_f_hypergeometric_pdf (intk, intn, intm, intl)

The type doublefunction is imsls_d_hypergeometric_pdf.

Required Arguments
intk (Input)

Argument for which the hypergeometric probability function is to be evaluated.

intn (Input)
Sample size. n must be greater than zero and greater than or equal to k.

intm (Input)
Number of defectives in the lot.

int l (Input)
Lot size. l must be greater than or equal to n and m.

Return Value
The probability that a hypergeometric random variable takes a value equal to k. This value is the probability that 
exactly k defectives occur in a sample of size n drawn from a lot of size l that contains m defectives.

Description
The function imsls_f_hypergeometic_pdf evaluates the probability function of a hypergeometric ran-
dom variable with parameters n, l, and m. The hypergeometric random variable X can be thought of as the 
number of items of a given type in a random sample of size n that is drawn without replacement from a popula-
tion of size l containing m items of this type. The probability function is
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where

and

imsls_f_hypergeometic_pdf evaluates the expression using log gamma functions.

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this example, we evaluate 
the probability function at 7.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int  k=7, n = 100, l = 1000, m = 70;
 float  pr;
 pr = imsls_f_hypergeometric_pdf(k, n, m, l);
 printf("The probability that X is equal to "

 "%d is %6.4f\n", k, pr);
}

Output

The probability that X is equal to 7 is 0.1628

f (k∣n,m,l) = Pr(X = k) =
m
k

l − m
n − k
l
n

for k = i, i + 1, i + 2, … min(n,m)

m
k = m!

k!(n − k)!

i = max(0, n − l + m).
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poisson_cdf
Evaluates the Poisson distribution function.

Synopsis
#include <imsls.h>
float imsls_f_c (int k, float theta)

The type double function is imsls_d_poisson_cdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
The probability that a Poisson random variable takes a value less than or equal to k.

Description
Function imsls_f_poisson_cdf evaluates the distribution function of a Poisson random variable with 
parameter theta. The mean of the Poisson random variable, theta, must be positive. The probability function 
(with θ = theta) is as follows:

The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed. 
Function imsls_f_poisson_cdf uses the recursive relationship

f x | θ = e−θθx / x!, for x = 0,1,2, …
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with f (0) = e-q.

Figure 11, Plot of Fp (k, θ)

Example
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the probability that X is less than 
or equal to 7.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int  k = 7;
 float  theta = 10.0, p;
 p = imsls_f_poisson_cdf(k, theta);
 printf("Pr(x <= %d) = %6.4f\n", k, p);

}

f x + 1 | θ = f x | θ θ / x + 1 for x = 0,1,2, … ,k − 1
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Output

Pr(x <= 7) = 0.2202

Informational Errors
IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution func-

tion is set to zero.
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poisson_pdf
Evaluates the Poisson probability function.

Synopsis
#include <imsls.h>
float imsls_f_poisson_pdf (int k, float theta)

The type double function is imsls_d_poisson_pdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

floattheta (Input) 
Mean of the Poisson distribution. theta must be positive.

Return Value
Function value, the probability that a Poisson random variable takes a value equal to k.

Description
Function imsls_f_poisson_pdf evaluates the probability function of a Poisson random variable with 
parameter theta. theta, which is the mean of the Poisson random variable, must be positive. The probability 
function (with θ = theta) is

f(x|θ) = e-θ θk/k!,  for k = 0, 1, 2,...

imsls_f_poisson_pdf evaluates this function directly, taking logarithms and using the log gamma function.
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Figure 12, Poisson Probability Function

Example
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the probability function at 7.

#include <imsls.h>
#include <stdio.h>
int main () {

 int  k = 7;
 float theta = 10.0;
 printf ("The probability that X is equal to %d is %g.\n",

 k, imsls_f_poisson_pdf (k, theta));
}

Output

The probability that X is equal to 7 is 0.0900792.
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discrete_uniform_cdf
Evaluates the discrete uniform cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_discrete_uniform_cdf(int ix, int n)

The type double function is imsls_d_discrete_uniform_cdf.

Required Arguments
intix (Input)

Argument for which the discrete uniform CDF is to be evaluated. ix must be positive.

intn (Input)
Scale parameter. n must be positive.

Return Value
The probability that a discrete uniform random variable takes a value less than or equal to ix. A value of NaN is 
returned if an input value is in error.

Description
The function discrete_uniform_cdf evaluates the discrete uniform cumulative distribution function (CDF) 
with scale parameter n, defined

where I = ix and N = n.

F I∣N = IN , 1 ≤ I ≤ N
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Example
In this example, we evaluate the discrete uniform CDF at ix = 3, n = 5.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int   ix = 3;
   int   n = 5;
   float p;
   p = imsls_f_discrete_uniform_cdf(ix, n);
   printf("The probability that a discrete uniform ");
   printf("random variable\nwith scale ");
   printf("parameter n = %1i is less than ", n);
   printf("or equal to %li\nis %6.4f\n\n", ix, p);
}

Output

The probability that a discrete uniform random variable
with scale parameter n = 5 is less than or equal to  3
is 0.6000
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discrete_uniform_inverse_cdf
Evaluates the inverse of the discrete uniform cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
int imsls_f_discrete_uniform_inverse_cdf(float p, int n)

The type double function is imsls_d_discrete_uniform_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the discrete uniform cumulative distribution function is to be 
evaluated.  p must lie in the closed interval [0, 1].

int n (Input)
Scale parameter. n must be positive.

Return Value
The probability that a discrete uniform random variable takes a value less than or equal to the returned value is 
the input probability p. A value of -1 is returned if an input value is in error.

Description
The function discrete_uniform_inverse_cdf evaluates the integer value I of the discrete uniform 
inverse cumulative distribution function (CDF) with probability argument p and scale parameter N, i.e. the small-
est integer I ≤ N with discrete uniform CDF value ≥ p, defined

where p = p, N = n, and  is defined as the smallest integer ≥ real value x.

I = F−1 p∣N = ⌈pN⌉, 0 ≤ p ≤ 1

⌈x⌉
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Example
#include <imsls.h>
#include <stdio.h>
int main()
{
   float p = 0.60;
   int   n = 5;
   int   ix;
   ix = imsls_f_discrete_uniform_inverse_cdf(p, n);
   printf("The probability that a discrete uniform ");
   printf("random variable\nwith scale ");
   printf("parameter n = %1i is less than ", n);
   printf("or equal to %2i\nis %4.2f\n\n", ix, p);
}

Output

The probability that a discrete uniform random variable
with scale parameter n = 5 is less than or equal to  3
is 0.60
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discrete_uniform_pdf
Evaluates the discrete uniform probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_discrete_uniform_pdf(int ix, int n)

The type double function is imsls_d_discrete_uniform_pdf.

Required Arguments
intix (Input)

Argument for which the discrete uniform PDF is to be evaluated. ix must be positive.

intn (Input)
Scale parameter. nmust be positive.

Return Value
The probability that a random variable from a discrete uniform distribution with scale parameter n will be equal 
to ix. A value of NaN is returned if an input value is in error.

Description
The function discrete_uniform_pdf evaluates the discrete uniform probability density function (PDF) with 
scale parameter n, defined

where I = ix and N = n. As a convenience to the user, discrete_uniform_pdf accepts values of I > N, 
returning p = 0. discrete_uniform_pdfreturns an error message for values of I ≤ 0.

p = f I∣N = 1N , 1 ≤ I ≤ N
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Example
In this example, we evaluate the discrete uniform PDF at ix = 3, n = 5.

#include <imsls.h>
#include <stdio.h>
 
int main()
{
   int   ix = 3;
   int   n = 5;
   float p;
 
   p = imsls_f_discrete_uniform_pdf(ix, n);
   printf("The probability density of a discrete ");
   printf("uniform\nrandom variable with ");
   printf("scale parameter n = %1i\n", n);
   printf("and value ix = %1d is %6.4f\n\n", ix, p);
}

Output

The probability density of a discrete uniform
random variable with scale parameter n = 5
and value ix = 3 is 0.2000
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beta_cdf
Evaluates the beta probability distribution function.

Synopsis
#include <imsls.h>
float imsls_f_beta_cdf (float x, float pin, float qin)

The type double function is imsls_d_beta_cdf.

Required Arguments
float x (Input)

Argument for which the beta probability distribution function is to be evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal to x.

Description
Function imsls_f_beta_cdf evaluates the distribution function of a beta random variable with parameters 
pin and qin. It is given by

where Γ (⋅) is the gamma function. This function is sometimes called the incomplete beta ratio and, with p = pin 
and q = qin, is denoted by Ix (p, q).

F x∣p,q =
Γ p Γ q
Γ p + q ∫0

x

t p−1 1 − t q−1dt
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The integral in the expression above is called the incomplete beta function and is denoted by βx(p, q). The con-

stant in the expression is the reciprocal of the beta function (the incomplete function evaluated at 1) and is 
denoted by β(p, q).

Function imsls_f_beta_cdf uses the method of Bosten and Battiste (1974).

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric distribution). This example 
finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric 
beta random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  pin = 12.0, qin = 12.0, x = 0.6, p;
 p = imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is less than "

 "%3.1f is %6.4f\n",x , p);
 x = 0.5;
 p -= imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is between "

 "%3.1f and", x);
 printf(" 0.6 is %6.4f\n", p);

}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
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beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis
#include <imsls.h>
float imsls_f_beta_inverse_cdf (float p, float pin, float qin)

The type double function is imsls_d_beta_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the beta distribution function is to be evaluated. Argument p 
must be in the open interval (0.0, 1.0).

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
Function imsls_f_beta_inverse_cdf returns the inverse distribution function of a beta random variable 
with parameters pin and qin.

Description
With P = p, p = pin, and q = qin, the beta_inverse_cdf returns x such that

where Γ (⋅) is the gamma function. In other words:

P =
Γ p + q
Γ p Γ q ∫0

x

t p−1 1 − t q−1dt
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The probability that the random variable takes a value less than or equal to x is P.

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric distribution). In this example, 
we find the value x such that the probability that X is less than or equal to x is 0.9.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  pin = 12.0, qin = 12.0, p = 0.9, x;
 x = imsls_f_beta_inverse_cdf(p, pin, qin);
 printf(" X is less than %6.4f with "

 "probability %3.1f.\n", x, p);
}

Output

X is less than 0.6299 with probability 0.9.

F−1(P∣pin,qin) = x
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non_central_beta_cdf
Evaluates the noncentral beta cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_beta_cdf (float x, float shape1, float shape2, float lambda)

The type double function is imsls_d_non_central_beta_cdf.

Required Arguments
float x (Input)

Argument for which the noncentral beta cumulative distribution function is to be evaluated. x must 
be non-negative and less than or equal to 1.

float shape1 (Input)
First shape parameter of the noncentral beta distribution. shape1 must be positive.

float shape2 (Input)
Second shape parameter of the noncentral beta distribution. shape2 must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability that a noncentral beta random variable takes a value less than or equal to x.

Description
The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square ran-
dom variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random variable 

with 2α2 degrees of freedom which is statistically independent of Z, then
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is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply defined 
in terms of the noncentral F CDF

where Fx(x∣α1, α2, λ) is a noncentral beta CDF with x = x, α1= shape1, α2 = shape2, and noncentrality parame-

ter λ = lambda; FF(f ∣ 2α1, 2α2, λ) is a noncentral F CDF with argument f, numerator and denominator degrees 

of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; and

(See documentation for function imsls_f_non_central_F_cdf for a discussion of how the noncentral F CDF 
is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example
This example traces out a portion of a noncentral beta distribution with parameters shape1 = 50, shape2 = 5, 
and lambda = 10.
#include <imsls.h>
#include <stdio.h>
int main()
{
    int i;
    float f[] = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.8, 4.0};
    float x, shape1 = 50., shape2 = 5., lambda =10.;
    float bcdfv, fcdfv, bcdfvexpect;
    printf ("shape1: %4.0f\n", shape1);
    printf ("shape2: %4.0f\n", shape2);
    printf ("lambda: %4.0f\n\n", lambda);
    printf ("  x  ncbetcdf(x)  ncbetcdf(x)\n");
    printf ("  expected\n");
    for (i=0; i<8; i++) {
        x = (shape1*f[i]) / (shape1*f[i] + shape2);

X = Z
Z + Y =

α1F
α1F + α2

F =
α2Z
α1Y

=
α2X

α1 1 − X

Fx(x∣α1,α2,λ) = FF( f ∣2α1,2α2,λ)

f =
α2
α1

x
1 − x ; x =

α1 f
α1 f + α2
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        fcdfv = imsls_f_non_central_F_cdf
           (f[i], 2.*shape1, 2.*shape2, lambda);
        bcdfvexpect = fcdfv;
        bcdfv = imsls_f_non_central_beta_cdf
            (x, shape1, shape2, lambda);
        printf (" %8.4f %12.4e %12.4e\n",
             x, bcdfvexpect, bcdfv);
    }
}

Output

shape1:  50
shape2:  5
lambda:  10
      x     ncbetcdf(x)   ncbetcdf(x)
             expected
    0.0000  0.0000e+000  0.0000e+000
    0.8000  4.8879e-003  4.8879e-003
    0.8889  2.0263e-001  2.0263e-001
    0.9231  5.2114e-001  5.2114e-001
    0.9412  7.3385e-001  7.3385e-001
    0.9524  8.5041e-001  8.5041e-001
    0.9655  9.4713e-001  9.4713e-001
    0.9756  9.8536e-001  9.8536e-001
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non_central_beta_inverse_cdf
Evaluates the inverse of the noncentral beta cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_beta_inverse_cdf (float p, float shape1, float shape2, 

float lambda)

The type double function is imsls_d_non_central_beta_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral beta cumulative distribution function is to be eval-
uated. p must be non-negative and less than or equal to 1.

float shape1 (Input)
First shape parameter of the noncentral beta distribution. shape1 must be positive.

float shape2 (Input)
Second shape parameter of the noncentral beta distribution. shape2 must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
If the probability that a noncentral beta random variable takes a value less than or equal to x is p, then x is the 
return value of the noncentral beta inverse CDF evaluated at p.

Description
The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square ran-
dom variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random variable 

with 2α2 degrees of freedom which is statistically independent of Z, then
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is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply defined 
in terms of the noncentral F CDF:

where Fx(x∣α1, α2, λ) is a noncentral beta CDF with x = x, α1= shape1,α2 = shape2, and noncentrality parame-

ter λ = lambda; FF(f ∣ 2α1, 2α2, λ) is a noncentral F CDF with argument f , numerator and denominator degrees 

of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; p = the probability that 

F < f = the probability that X < x; and

(See documentation for function imsls_f_non_central_F_cdf for a discussion of how the noncentral F 
CDF is defined and calculated.) The correspondence between the arguments of function 
imsls_f_non_central_beta_inverse_cdf and the variables in the above equations is as follows: 
α1 = shape1, α2 = shape2, λ = lambda, and p = p.

Function imsls_f_non_central_beta_inverse_cdf evaluates

by first evaluating

and then solving for x using

(See documentation for function imsls_f_non_central_F_inverse_cdf for a discussion of how the inverse 
noncentral F CDF is calculated.)

X = Z
Z + Y =

α1F
α1F + α2

F =
α2Z
α1Y

=
α2X

α1 1 − X

p = Fx(x∣α1,α2,λ) = FF( f ∣2α1,2α2,λ)

f =
α2
α1

x
1 − x ; x =

α1 f
α1 f + α2

x = Fx
−1(p∣α1,α2,λ)

f = FF
−1(p∣2α1,2α2,λ)

x =
α1 f

α1 f + α2
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Example
This example traces out a portion of an inverse noncentral beta distribution with parameters shape1 = 50, 
shape2 = 5, and lambda = 10.
#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float shape1 = 50., shape2 = 5., lambda =10.;
 float x, p, bcdfinv;
 printf ("shape1: %4.0f\n", shape1);
 printf ("shape2: %4.0f\n", shape2);
 printf ("lambda: %4.0f\n\n", lambda);
 printf ("  x  p = cdf(x)  cdfinv(p)\n");
 for (i=0; i<8; i++) {

 x = (shape1*f[i]) / (shape1*f[i] + shape2);
 p = imsls_f_non_central_beta_cdf

 (x, shape1, shape2, lambda);
 bcdfinv = imsls_f_non_central_beta_inverse_cdf

 (p, shape1, shape2, lambda);
 printf ("  %12.4e  %12.4e  %12.4e\n", x, p, bcdfinv);

 }
}

Output
shape1:  50
shape2:  5
lambda:  10

 x  p = cdf(x)  cdfinv(p)
 0.0000e+000  0.0000e+000  0.0000e+000
 8.0000e-001  4.8879e-003  8.0000e-001
 8.8889e-001  2.0263e-001  8.8889e-001
 9.2308e-001  5.2114e-001  9.2308e-001
 9.4118e-001  7.3385e-001  9.4118e-001
 9.5238e-001  8.5041e-001  9.5238e-001
 9.6552e-001  9.4713e-001  9.6552e-001
 9.7561e-001  9.8536e-001  9.7561e-001
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non_central_beta_pdf
Evaluates the noncentral beta probability density function (PDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_beta_pdf (float x, float shape1, float shape2, float lambda)

The type double function is imsls_d_non_central_beta_pdf.

Required Arguments
float x (Input)

Argument for which the noncentral beta probability density function is to be evaluated. x must be 
non-negative and less than or equal to 1.

float shape1 (Input)
First shape parameter of the noncentral beta distribution. shape1 must be positive.

float shape2 (Input)
Second shape parameter of the noncentral beta distribution. shape2 must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability density associated with a noncentral beta random variable with value x.

Description
The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square ran-
dom variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random variable 

with 2α2 degrees of freedom which is statistically independent of Z, then
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is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The PDF for noncentral beta variable X can thus be simply defined 
in terms of the noncentral F PDF:

where  is a noncentral beta PDF with x = x, α1= shape1, α2 = shape2, and noncentrality param-

eter λ = lambda;  is a noncentral F PDF with argument f, numerator and denominator degrees 

of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; and:

(See documentation for function imsls_f_non_central_F_pdf for a discussion of how the noncentral F PDF 
is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example
This example traces out a portion of a noncentral beta distribution with parameters shape1 = 50, shape2 = 5, 
and lambda = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int i;
   float f[] = {0., .4, .8, 3.2, 5.6, 8.8, 14., 18.};
   float x, shape1 = 50., shape2 = 5., lambda =10.;
   float bpdfv, fpdfv, bpdfvexpect, dfdx;
   printf ("shape1: %4.0f\n", shape1);
   printf ("shape2: %4.0f\n", shape2);

X = Z
Z + Y =

α1F
α1F + α2

F =
α2Z
α1Y

=
α2X

α1 1 − X

f x(x∣α1,α2,λ) = f F( f ∣2α1,2α2,λ)
df
dx

f x(x∣α1,α2,λ)
f F( f ∣2α1,2α2,λ)

f =
α2
α1

x
1 − x ; x =

α1 f
α1 f + α2

;

df
dx =

α2 + α1 f
2

α1α2 =
α2
α1

1

1 − x 2
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   printf ("lambda: %4.0f\n\n", lambda);
   printf ("     x     ncbetpdf(x)   ncbetpdf(x)\n");
   printf ("             expected\n");
   for (i=0; i<8; i++) {
       x = (shape1*f[i]) / (shape1*f[i] + shape2);
       dfdx = (shape2/shape1) / ((1. - x) * (1. - x));
       fpdfv = imsls_f_non_central_F_pdf
           (f[i], 2.*shape1, 2.*shape2, lambda);
       bpdfvexpect = dfdx * fpdfv;
       bpdfv = imsls_f_non_central_beta_pdf
           (x, shape1, shape2, lambda);
       printf (" %8.4f %12.4e %12.4e\n",
           x, bpdfvexpect, bpdfv);
   }
}

Output

shape1:  50
shape2:   5
lambda:  10
     x     ncbetpdf(x)   ncbetpdf(x)
             expected
   0.0000  0.0000e+000  0.0000e+000
   0.8000  2.4372e-001  2.4372e-001
   0.8889  6.5862e+000  6.5862e+000
   0.9697  4.0237e+000  4.0237e+000
   0.9825  9.1954e-001  9.1954e-001
   0.9888  2.1910e-001  2.1910e-001
   0.9929  4.3665e-002  4.3665e-002
   0.9945  1.7522e-002  1.7522e-002
1104



 Probability Distribution Functions and Inverses         bivariate_normal_cdf
bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis
#include <imsls.h>
float imsls_f_bivariate_normal_cdf (float x, float y, float rho)

The type double function is imsls_d_bivariate_normal_cdf.

Required Arguments
float x (Input)

The x-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value
The probability that a bivariate normal random variable with correlation rho takes a value less than or equal to x 
and less than or equal to y.

Description
Function imsls_f_bivariate_normal_cdf evaluates the distribution function F of a bivariate normal dis-
tribution with means of zero, variances of one, and correlation of rho; that is, with ρ = rho, and ∣ρ∣ < 1,
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To determine the probability that U ≤ u0 and V ≤ v0, where (U, V)T is a bivariate normal random variable with 

mean μ = (μU, μV)T and variance-covariance matrix

transform (U, V)T to a vector with zero means and unit variances. The input to 
imsls_f_bivariate_normal_cdf would be X = (u0 – μU)/σU, Y = (v0 – μV)/σV, and ρ = σUV/(σUσV).

Function imsls_f_bivariate_normal_cdf uses the method of Owen (1962, 1965). Computation of 
Owen’s T-function is based on code by M. Patefield and D. Tandy (2000). For ∣ρ∣ = 1, the distribution function is 
computed based on the univariate statistic, Z = min(x, y), and on the normal distribution function 
imsls_f_normal_cdf.

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance matrix as follows:

In this example, we find the probability that Xis less than −2.0 and Y is less than 0.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  rho = 0.9, x = -2.0, y = 0.0, p;
 p = imsls_f_bivariate_normal_cdf(x, y, rho);
 printf(" The probability that X is less than %4.1f\n"

 " and Y is less than %3.1f is %6.4f\n", x, y, p);
}

Output

The probability that X is less than -2.0
and Y is less than 0.0 is 0.0228

F x,y = 1
2π 1 − ρ2 ∫−∞

x

∫
−∞

y

exp −
u2 − 2ρuv + v2

2 1 − ρ2
dudv

∑ =
σU
2 σUV
σUV σV

2

1.0 0.9
0.9 1.0
1106



 Probability Distribution Functions and Inverses         chi_squared_cdf
chi_squared_cdf
Evaluates the chi-squared cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_cdf (float chi_squared, float df)

The type double function is imsls_d_chi_squared_cdf.

Required Arguments
float chi_squared (Input)

Argument for which the chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument df must be greater than 0.

Return Value
The probability p that a chi-squared random variable takes a value less than or equal to chi_squared.

Description
Function imsls_f_chi_squared_cdf evaluates the distribution function, F(x∣v) , of a chi-squared random 
variable x = chi_squared with ν = df degrees of freedom, where:

and Γ (⋅) is the gamma function. The value of the distribution function at the point x is the probability that the ran-
dom variable takes a value less than or equal to x.

For v > vmax = 1.e7, imsls_f_chi_squared_cdf uses the Wilson-Hilferty approximation 

(Abramowitz and Stegun [A&S] 1964, Equation 26.4.17) for p in terms of the normal CDF, which is evaluated using 
function imsls_f_normal_cdf.

F(x∣v) = 1
2v/2Γ v / 2 ∫0

x

e−t/2tv/2−1dt
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For v ≤ vmax, imsls_f_chi_squared_cdf uses series expansions to evaluate p: for x < ν, 

imsls_f_chi_squared_cdf calculates p using A&S series 6.5.29, and for x > ν, 
imsls_f_chi_squared_cdf calculates p using the continued fraction expansion of the incomplete gamma 
function given in A&S equation 6.5.31.

Figure 13, Plot of Fx (x, df)

Example
Suppose X is a chi-squared random variable with two degrees of freedom. In this example, we find the probability 
that X is less than 0.15 and the probability that X is greater than 3.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  chi_squared = 0.15, df = 2.0, p;
 p  = imsls_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared"

 " with %1.0f df is less than %4.2f is %5.4f\n",
 df, chi_squared, p);

 chi_squared = 3.0;
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 p  = 1.0 - imsls_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared"

 " with %1.0f df is greater than %3.1f is %5.4f\n",
 df, chi_squared, p);

}

Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Informational Errors

Alert Errors

IMSLS_ARG_LESS_THAN_ZERO Since “chi_squared” = # is less than zero, the dis-
tribution function is zero at “chi_squared.”

IMSLS_NORMAL_UNDERFLOW Using the normal distribution for large degrees of 
freedom, underflow would have occurred.
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chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_inverse_cdf (float p, float df)

The type double function is imsls_d_chi_squared_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the chi-squared distribution function is to be evaluated. Argu-
ment p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument df must be greater than 0.

Return Value
The inverse at the chi-squared distribution function evaluated at p. The probability that a chi-squared random 
variable takes a value less than or equal to imsls_f_chi_squared_inverse_cdf is p.

Description
Function imsls_f_chi_squared_inverse_cdf evaluates the inverse distribution function of a chi-
squared random variable with ν = df and with probability p. That is, it determines 
x = imsls_f_chi_squared_inverse_cdf (p, df), such that

where Γ (⋅) is the gamma function. The probability that the random variable takes a value less than or equal to x is 
p.

p = F(x | υ) = 1
2v/2Γ v / 2 ∫0

x

e−t/2tv/2−1dt
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For ν < 40, imsls_f_chi_squared_inverse_cdf uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to 
find the point at which the chi-squared distribution function is equal to p. The distribution function is evaluated 
using IMSL function imsls_f_chi_squared_cdf.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, Equation 26.4.18) to 
the normal distribution is used. IMSL function imsls_f_normal_cdf is used to evaluate the inverse of the nor-
mal distribution function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964, 
Equation 26.4.17) is used.

Example
In this example, we find the 99-th percentage point of a chi-squared random variable with 2 degrees of freedom 
and of one with 64 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main ()
{  

float  p = 0.99, df = 2.0, x;
 x  = imsls_f_chi_squared_inverse_cdf(p, df);
 printf("For p = %3.2f with %1.0f df, x = %7.3f.\n",

 p, df, x);
 df = 64.0;
 x  = imsls_f_chi_squared_inverse_cdf(p,df);
 printf("For p = %3.2f with %2.0f df, x = %7.3f.\n",

 p, df, x);
}

Output

For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

Warning Errors
IMSLS_UNABLE_TO_BRACKET_VALUE The bounds that enclose “p” could not be found. An 

approximation for 
imsls_f_chi_squared_inverse_cdf is returned.

IMSLS_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared could not be 
found within a specified number of iterations. An 
approximation for 
imsls_f_chi_squared_inverse_cdf is returned.
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complementary_chi_squared_cdf
Evaluates the complement of the chi-squared cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_complementary_chi_squared_cdf (float chi_squared, float df)

The type double function is imsls_d_complementary_chi_squared_cdf.

Required Arguments
float chi_squared (Input) 

Argument for which the complementary chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the complementary chi-squared distribution. df must be greater 
than 0.

Return Value
The probability p that a chi-squared random variable takes a value greater than chi_squared.

Description
Function imsls_f_complementary_chi_squared_cdf evaluates the complement of the CDF, 

 , of a chi-squared random variable x = chi_squared with ν = df degrees of freedom, where,

is the chi-squared CDF and Γ (⋅) is the gamma function. The value of the complementary chi-squared CDF at the 
point x is the probability that the random variable takes a value greater than x.

1 − F x|ν

F x|v = 1
2v/2Γ v / 2 ∫0

x

e−t/2tv/2−1dt
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For ν > vmax = 1.e7, imsls_f_complementary_chi_squared_cdf uses the Wilson-Hilferty approxima-

tion (Abramowitz and Stegun [A&S] 1964, Equation 26.4.17) for p in terms of the normal CDF, which is evaluated 
using function imsls_f_normal_cdf.

For v ≤ vmax, imsls_f_complementary_chi_squared_cdf uses series expansions to evaluate p: for 

x < ν, imsls_f_complementary_chi_squared_cdf calculates p using A&S series 6.5.29, and for x ≥ ν, 
imsls_f_complementary_chi_squared_cdf calculates p using the continued fraction expansion of the 
incomplete gamma function given in A&S equation 6.5.31.

Function imsls_f_complementary_chi_squared_cdf provides higher right tail accuracy for the com-
plementary chi-squared distribution than does function 1 - imsls_f_chi_squared_cdf.

Figure 14, Plot of Fx (x, df)
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Example
In this example, we find the probability that X, a chi-squared random variable, is less than 0.15 and the probability 
that X is greater than 3.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float chi_squared = 0.15, df = 2.0, p;
 p = imsls_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared\n");
 printf(" with df = %1.0f is less than %4.2f is %6.4f\n",

 df, chi_squared, p);
 chi_squared = 3.0;
 p = imsls_f_complementary_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared\n");
 printf(" with df = %1.0f is greater than %4.2f is %6.4f\n",

 df, chi_squared, p);
}

Output

The probability that chi-squared
with df = 2 is less than 0.15 is 0.0723
The probability that chi-squared
with df = 2 is greater than 3.00 is 0.2231

Informational Errors
IMSLS_COMP_CHISQ_ZERO Since “chi_squared” = # is less than zero, the distri-

bution function is one at “chi_squared”.
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non_central_chi_sq
Evaluates the noncentral chi-squared distribution function.

Synopsis
#include <imsls.h>
floatimsls_f_non_central_chi_sq (floatchi_squared, floatdf , floatdelta)

The type double function is imsls_d_non_central_chi_sq.

Required Arguments
float chi_squared (Input)

Argument for which the noncentral chi-squared distribution function is to be evaluated.

floatdf (Input)
Number of degrees of freedom of the noncentral chi-squared distribution. Argument df must be 
greater than 0.

float delta (Input)
The noncentrality parameter.delta must be nonnegative, and delta + df must be less than or equal 
to 200,000.

Return Value
The probability that a noncentral chi-squared random variable takes a value less than or equal to 
chi_squared.

Description
Function imsls_f_non_central_chi_sq evaluates the distribution function of a noncentral chi-squared 
random variable with df degrees of freedom and noncentrality parameter alam, that is, with v = df, λ = alam, 
and x = chi_squared,
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where Γ (⋅) is the gamma function. This is a series of central chi-squared distribution functions with Poisson 
weights. The value of the distribution function at the point x is the probability that the random variable takes a 
value less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution function above, or alternatively 
and equivalently, as the sum of squares of independent normal random variables. If Yi have independent normal 

distributions with means μi and variances equal to one and

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality parameter equal to

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the chi-squared 
distribution.

Function imsls_f_non_central_chi_sq determines the point at which the Poisson weight is greatest, 
and then sums forward and backward from that point, terminating when the additional terms are sufficiently 
small or when a maximum of 1000 terms have been accumulated. The recurrence relation 26.4.8 of Abramowitz 
and Stegun (1964) is used to speed the evaluation of the central chi-squared distribution functions.

F x|υ,λ =∑
i=0

∞ e−λ/2 λ / 2 i

i! ∫0
x
t
v+2i /2−1

e−t/2

2
v+2i /2

Γ v + 2i
2

dt

X =∑
i=1

n

Y i
2

∑
i=1

n

μi
2
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Figure 15, Noncentral Chi-squared Distribution Function

Example
In this example, imsls_f_non_central_chi_sq is used to compute the probability that a random variable 
that follows the noncentral chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of free-
dom is less than or equal to 8.642.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float chsq = 8.642, df = 2.0, alam = 1.0, p;
 p = imsls_f_non_central_chi_sq(chsq, df, alam);
 printf("The probability that a noncentral chi-squared "

 "random\nvariable with %2.0f df and noncentrality "
 "parameter %3.1f is less\nthan %5.3f is %5.3f.\n",
 df, alam, chsq, p);

}

Output

The probability that a noncentral chi-squared random
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variable with 2 df and noncentrality parameter 1.0 is less
than 8.642 is 0.950
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non_central_chi_sq_inv
Evaluates the inverse of the noncentral chi-squared function.

Synopsis
#include<imsls.h>
floatimsls_f_non_central_chi_sq_inv (floatp, floatdf, floatdelta)

The type double function is imsls_d_non_central_chi_sq_inv.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral chi-squared distribution function is to be evalu-
ated. p must be in the open interval (0.0, 1.0).

floatdf (Input)
Number of degrees of freedom of the noncentral chi-squared distribution. Argument df must be 
greater than 0.

float delta (Input)
The noncentrality parameter.delta must be nonnegative, and delta + df must be less than or equal 
to 200,000.

Return Value
The probability that a noncentral chi-squared random variable takes a value less than or equal to 
imsls_f_non_central_chi_sq_inv is p.

Description
Function imsls_f_non_central_chi_sq_inv evaluates the inverse distribution function of a noncentral 
chi-squared random variable with df degrees of freedom and noncentrality parameter delta; that is, with P = p, 
v = df, and λ = delta, it determines c0 (= imsls_f_non_central_chi_sq_inv (p, df, delta)), 

such that
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where Γ (⋅) is the gamma function. In other words:

The probability that the random variable takes a value less than or equal to c0is P.

Function imsls_f_non_central_chi_sq_inv uses bisection and modified regula falsi to invert the distri-
bution function, which is evaluated using function imsls_f_non_central_chi_sq. See 
imsls_f_non_central_chi_sq for an alternative definition of the noncentral chi-squared random vari-
able in terms of normal random variables.

Example
In this example, we find the 95-th percentage point for a noncentral chi-squared random variable with 2 degrees 
of freedom and noncentrality parameter 1.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int df = 2;
 float p = .95, delta = 1.0, chi_squared;
 chi_squared = imsls_f_non_central_chi_sq_inv(p, df, delta);
 printf("The %4.2f noncentral chi-squared critical value is "

 "%6.4f.\n", 1.0-p, chi_squared);
}

Output

The 0.05 noncentral chi-squared critical value is 8.6422.

P =∑
i=0

∞ e−λ/2(λ / 2)i
i! ∫0

c0 x(v+2i)/2−1e−x/2

2
(v+2i)/2 Γ(v + 2i2 )

dx

F−1(P∣df ,delta) = x
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non_central_chi_sq_pdf
Evaluates the noncentral chi-squared probability density function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq_pdf (floatx, floatdf, floatlambda)

The type doublefunction is imsls_d_non_central_chi_sq_pdf.

Required Arguments
floatx (Input)

Argument for which the noncentral chi-squared probability density function is to be evaluated. x 
must be greater than or equal to 0.

floatdf (Input)
Number of degrees of freedom of the noncentral chi-squared distribution. df must be greater than 
0.

floatlambda (Input)
Noncentrality parameter. lambda must be greater than or equal to 0.

Return Value
The probability density associated with a noncentral chi-squared random variable with value x.

Description
The noncentral chi-squared distribution is a generalization of the chi-squared distribution. If {Xi}are k indepen-

dent, normally distributed random variables with means μi and variances σ2
i, then the random variable:
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is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution has 
two parameters: k which specifies the number of degrees of freedom (i.e. the number of Xi), and λ which is 

related to the mean of the random variables Xi by:

The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with k + 2i degrees of 
freedom, where i is the value of a Poisson distributed random variable with parameter λ / 2. Thus, the probability 
density function is given by:

where the (central) chi-squared PDF f(x∣k)is given by:

where Γ (⋅)is the gamma function. The above representation of F(x∣k,λ)can be shown to be equivalent to the 
representation:

Function imsls_f_non_central_chi_sq_pdf evaluates the probability density function of a noncentral 
chi-squared random variable with df degrees of freedom and noncentrality parameter lambda, corresponding 
to k = df, λ = lambda, and x = x.

Function imsls_f_non_central_chi_sq evaluates the cumulative distribution function incorporating the 
above probability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central chi-
squared distribution.

X =∑
i=1

k X i
σi

2

λ =∑
i=1

k μi
σi

2

F x|k,λ =∑
i=0

∞ e−λ/2 λ / 2 i

i! f x,k + 2i

f x|k =
x / 2 k/2e−x/2

xΓ k / 2 for x > 0, else 0

F x|k,λ =
e
− λ+x /2

x / 2 k/2

x ∑
i=0

∞

ϕi

ϕi =
λx / 4 i

i!Γ k / 2 + i
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Example
This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of freedom 
and noncentrality parameter λ = 40.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float x[] = {0, 8, 40, 136, 280, 400};
 float df = 100, lambda = 40.0, pdfv;
 printf ("\n\n df: %4.0f;  lambda: %4.0f\n\n",

 df, lambda);
 printf ("  x  pdf(x)\n");
 for (i=0; i<6; i++) {

 pdfv = imsls_f_non_central_chi_sq_pdf(x[i], df, lambda);
 printf (" %5.0f  %12.4e\n",x[i], pdfv);

 }
}

Output

df: 100; lambda:  40
   x      pdf(x)
    0  0.0000e+000
    8  4.7644e-044
   40  3.4621e-014
  136  2.1092e-002
  280  4.0027e-010
  400  1.1250e-022
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exponential_cdf
Evaluates the exponential cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_exponential_cdf(float x, float b)

The type double function is imsls_d_exponential_cdf.

Required Arguments
float x (Input)

Argument for which the exponential CDF is to be evaluated. x must be non-negative.

float b (Input)
Scale parameter of the exponential CDF.  b must be positive.

Return Value
The probability that an exponential random variable takes a value less than or equal to x. A value of NaN is 
returned if an input value is in error.

Description
The function imsls_f_exponential_cdf evaluates the exponential cumulative distribution function (CDF).  
This function is a special case of the gamma CDF

Setting a=1 and applying the scale parameter b = b yields the exponential CDF

G x = 1
Γ a ∫0

x

e
− tbta−1dt
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This relationship between the gamma and exponential CDFs is used by imsls_f_exponential_cdf.

Example
In this example, we evaluate the exponential CDF at x = 2.0, b = 1.0.

#include <imsls.h>  
#include <stdio.h>
int main()
{
   float x = 2.0;
   float b = 1.0;
   float p;
   p = imsls_f_exponential_cdf(x,b);
   printf("The probability that exponential random ");
   printf("variable X with\nscale parameter b = ");
   printf("%3.1f is less than or equal to %3.1f", b, x);
   printf("\nis %6.4f\n\n", p);
}

Output
The probability that exponential random variable X with
scale parameter b = 1.0 is less than or equal to 2.0
is 0.8647

F x = ∫0
x

e
− tbdt = 1 − e

− xb
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exponential_inverse_cdf
Evaluates the inverse of the exponential cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
float imsls_f_exponential_inverse_cdf(floatp, floatb)

The type double function is imsls_d_exponential_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the exponential CDF is to be evaluated. p must lie in the closed 
interval [0, 1].

floatb (Input)
Scale parameter of the exponential CDF. b must be positive.

Return Value
Function value, the value of the inverse of the exponential CDF. A value of NaN is returned if an input value is in 
error.

Description
The function imsls_f_exponential_inverse_cdf(p, b) evaluates F-1(p∣b), the inverse CDF of an 
exponential random variable with probability argument p = p and scale parameter b = b:

F-1(p∣b) = -blog(1-p)

The probability that an exponential random variable takes a value less than or equal to the returned value is p.

Example
In this example, we evaluate the exponential inverse CDF at p = 0.8647, b = 1.0.:
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#include <imsls.h>
#include <stdio.h>
int main()
{
   float p = 0.8647;
   float b = 1.0;
   float x;
   x = imsls_f_exponential_inverse_cdf(p, b);
   printf("The probability that exponential random ");
   printf("variable X with\nscale parameter b = ");
   printf("%3.1f is less than or equal to %6.4f", b, x);
   printf("\nis %6.4f\n\n", p);
}

Output
The probability that exponential random variable X with
scale parameter b = 1.0 is less than or equal to 2.0003
is 0.8647
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exponential_pdf
Evaluates the exponential probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_exponential_pdf(floatx, floatb)

The type double function is imsls_d_exponential_pdf.

Required Arguments
floatx (Input)

Argument for which the exponential PDF is to be evaluated. x must be non-negative.

floatb (Input)
Scale parameter of the exponential PDF.  b must be positive.

Return Value
The value of the exponential probability density function with argument x and scale parameter b. A value of NaN 
is returned if an input value is in error.

Description
The function imsls_f_exponential_pdf evaluates the exponential probability density function.  The expo-
nential distribution is a special case of the gamma distribution and is defined as

Example
In this example, we evaluate the exponential PDF at x = 2.0, b = 1.0.

#include <imsls.h>

f x∣b = Γ x∣1,b = 1be
− xb
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#include <stdio.h>
int main()
{
   float x = 2.0;
   float b = 1.0;
   float p;
   p = imsls_f_exponential_pdf(x,b);
   printf("The probability density of exponential ");
   printf("random variable X\nwith scale parameter b = ");
   printf("%3.1f and value x = %3.1f is %6.4f\n\n", b, x, p);
}

Output
The probability density of exponential random variable X
with scale parameter b = 1.0 and value x = 2.0 is 0.1353
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F_cdf
Evaluates the F distribution function. 

Synopsis
#include <imsls.h>
float imsls_f_F_cdf (float f, float df_numerator, float df_denominator)

The type double function is imsls_d_F_cdf.

Required Arguments
float f (Input)

Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
The denominator degrees of freedom. Argument df_denominator must be positive.

Return Value
The probability that an F random variable takes a value less than or equal to the input point, f.

Description
Function imsls_f_F_cdf evaluates the distribution function of a Snedecor’s F random variable with 
df_numerator and df_denominator. The function is evaluated by making a transformation to a beta ran-
dom variable, then evaluating the incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom 

and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q= ν2/2. Function 

imsls_f_F_cdf also uses a relationship between F random variables that can be expressed as

FF(f|v1, v
2

) = 1 - FF(1/f|v
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2

, v
1

)

where FF is the distribution function for an F random variable.

Figure 16, Plot of FF(f, 1.0, 1.0)

Example
This example finds the probability that an F random variable with one numerator and one denominator degree of 
freedom is greater than 648.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  F = 648.0, df_numerator = 1.0;
 float  df_denominator = 1.0, p;
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 p = 1.0 - imsls_f_F_cdf(F,df_numerator, df_denominator);
 printf("The probability that an F(%1.0f,%1.0f) variate"

 "is greater than %3.0f is %6.4f.\n", df_numerator,
 df_denominator, F, p);

}

Output

The probability that an F(1,1) variate is greater than 648 is 0.0250.
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F_inverse_cdf
Evaluates the inverse of the F distribution function.

Synopsis
#include <imsls.h>
float imsls_f_F_inverse_cdf (float p, float df_numerator, float df_denominator)

The type double function is imsls_d_F_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the F distribution function is to be evaluated. Argument p must be 
in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be positive.

Return Value
The value of the inverse of the F distribution function evaluated at p. The probability that an F random variable 
takes a value less than or equal to imsls_f_F_inverse_cdf is p.

Description
Function imsls_f_F_inverse_cdf evaluates the inverse distribution function of a Snedecor’s F random 
variable with ν1 = df_numerator numerator degrees of freedom and ν2 = df_denominator denominator 

degrees of freedom. The function is evaluated by making a transformation to a beta random variable, then evalu-
ating the inverse of an incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom and 
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Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2. If p ≤ 0.5, 

imsls_f_F_inverse_cdf uses this relationship directly; otherwise, it also uses a relationship between F 
random variables that can be expressed as follows:

FF(f|v

1

, v

2

) = 1 - FF(1/f|v

2

, v

1

)

Example
This example finds the 99-th percentage point for an F random variable with 7 and 1 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  df_denominator = 1.0, df_numerator = 7.0, p = 0.99, f;
 f = imsls_f_F_inverse_cdf(p, df_numerator, df_denominator);
 printf("The F(7,1) 0.01 critical value is %6.3f\n", f);

}

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors
IMSLS_F_INVERSE_OVERFLOW Function imsls_f_F_inverse_cdf overflows. This 

is because df_numerator or df_denominator and 
p are too large. The return value is set to machine 
infinity.
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complementary_F_cdf
Evaluates the complement of the F distribution function. 

Synopsis
#include <imsls.h>
float imsls_f_complementary_F_cdf (float f, float df_numerator, float df_denominator)

The type double function is imsls_d_complementary_F_cdf.

Required Arguments
float f (Input)

Argument for which Pr(x > f) is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
The denominator degrees of freedom. Argument df_denominator must be positive.

Return Value
The probability that an F random variable takes a value greater than f.

Description
Function imsls_f_complementary_F_cdf evaluates one minus the distribution function of a Snedecor’s F 
random variable with df_numerator and df_denominator. The function is evaluated by making a transfor-
mation to a beta random variable, then evaluating the incomplete beta function. If X is an F variate with ν1 and ν2 

degrees of freedom and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q= ν2/2. Func-

tion imsls_f_comlementary_F_cdf also uses a relationship between F random variables that can be 
expressed as
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where FF is the distribution function for an F random variable.

This function provides higher right tail accuracy for the F distribution.

Figure 17, Plot of FF(f/df_n, df_d)

Example
This example finds the probability that an F random variable with one numerator and one denominator degree of 
freedom is greater than 648.

#include <imsls.h>
#include <stdio.h>

FF( f ∣υ1,υ2) = FF(1 f | υ2,υ1)
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int main()
{

 float  F = 648.0, df_numerator = 1.0, df_denominator = 1.0, p;
 p = imsls_f_complementary_F_cdf(F,df_numerator, df_denominator);
 printf("The probability that an F(%2.1f,%2.1f) variate is greater",

 df_numerator, df_denominator);
 printf(" than %5.1f is %6.4f.\n", F, p);

}

Output

The probability that an F(1.0,1.0) variate is greater than 648.0 is 0.0250.
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non_central_F_pdf
Evaluates the noncentral F probability density function (PDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_F_pdf (float f, float df_numerator, float df_denominator, float 

lambda)

The type double function is imsls_d_non_central_F_pdf.

Required Arguments
float f (Input)

Argument for which the noncentral F probability density function is to be evaluated. f must be non-
negative.

float df_numerator (Input)
Numerator degrees of freedom of the noncentral F distribution. df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the noncentral F distribution. df_denominator must be 
positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability density associated with a noncentral F random variable with value f.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y 

is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then
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is a noncentral F-distributed random variable whose PDF is given by

where

and Γ (⋅) is the gamma function, ν1 = df_numerator, ν2 = df_denominator, λ= lambda, and f = f.

With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.

The efficiency of the calculation of the above series is enhanced by:

1. calculating each term Φkin the series recursively in terms of either the term Φk-1preceding it or the 

term Φk+1following it, and.

2. initializing the sum with the largest series term and adding the subsequent terms in order of 
decreasing magnitude

Special cases:

F = X / v1 / Y / v2

PDF f ∣ν1,ν2,λ = Ψ∑
k=0

∞

ϕk

Ψ =
e−λ/2 ν1 f

ν1/2 ν2
ν2/2

f ν1 f + ν2
ν1+ν2 /2

Γ ν2 / 2

ϕk =
RkΓ

ν1 + ν2
2 + k

k!Γ
ν1
2 + k

R =
λν1 f

2 ν1 f + ν2
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Example
This example traces out a portion of a noncentral F distribution with parameters df_numerator = 100, 
df_denominator = 10, and lambda = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0., .4, .8, 3.2, 5.6, 8.8, 14., 18.};
 float df_numerator = 100., df_denominator = 10., lambda =10., pdfv;
 printf ("df_numerator:  %4.0f\n", df_numerator);
 printf ("df_denominator: %4.0f\n", df_denominator);
 printf ("lambda:  %4.0f\n\n", lambda);
 printf ("  f  pdf(f)\n");
 for (i=0; i<8; i++) {

 pdfv = imsls_f_non_central_F_pdf
 (f[i], df_numerator, df_denominator, lambda);

 printf (" %5.1f  %12.4e\n", f[i], pdfv);
 }

}

Output

df_numerator:   100
df_denominator:  10
lambda:          10
   f      pdf(f)
  0.0  0.0000e+000
  0.4  9.7488e-002

For R = λ f = 0:

PDF( f ∣v1,v2,λ) = ΨΦ0 = Ψ
Γ([v1 + v2]/2)
Γ(v1 / 2)

For λ = 0:

PDF( f ∣v1,v2,λ) =
(v1 f )

v1/2(v2)
v2/2Γ([v1 + v2]/2)

f (v1 f + v2)
(v1+v2)/2Γ(v1 / 2)Γ(v2 / 2)

For f = 0:

PDF( f ∣v1,v2,λ) =
e−λ/2 f

v1/2−1(v1 / v2)
v1/2Γ([v1 + v2]/2)

Γ(v1 / 2)Γ(v2 / 2)
=

0 if v1 > 2;

e−λ/2 if v1 = 2
∞ if v1 < 2
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  0.8  8.1312e-001
  3.2  3.6948e-002
  5.6  2.8302e-003
  8.8  2.7661e-004
 14.0  2.1963e-005
 18.0  5.3483e-006
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non_central_F_cdf
Evaluates the noncentral F cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_F_cdf (float f, float df_numerator, float df_denominator, 

float lambda)

The type double function is imsls_d_non_central_F_cdf.

Required Arguments
float f (Input)

Argument for which the noncentral F cumulative distribution function is to be evaluated. f must be 
non-negative.

float df_numerator (Input)
Numerator degrees of freedom of the noncentral F distribution. df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the noncentral F distribution. df_denominator must be 
positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability that a noncentral F random variable takes a value less than or equal to f.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y 

is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then
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is a noncentral F-distributed random variable whose CDF is given by:

where:

and Γ (⋅) is the gamma function. The above series expansion for the noncentral F CDF was taken from Butler and 
Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below:

F = X / ν1 / Y / ν2

CDF f |ν1,ν2,λ =∑
j=0

∞

c j

c j = ωjIx
ν1
2 + j,

ν2
2

ωj = e
−λ/2 λ / 2) j / j! = λ

2 jω j−1

I x a,b ≡ incomplete beta function ratio ≡
Bx a,b
B a,b

Bx a,b ≡ incomplete beta function ≡ ∫
0

x

ta−1 1 − t)b−1dt

= xa∑
j=0

∞ Γ j + 1 − b
a + j Γ 1 − b j!x

j

x =
ν1 f

ν2 + ν1 f
< = = > f =

ν2x
ν1 1 − x

B a, b = B1 a, b =
Γ a Γ b
Γ a + b

Ix a + 1, b = I x a, b − Tx a, b

Tx a, b =
Γ a + b

Γ a + 1 Γ b x
a 1 − x)b = Tx a − 1, b

a − 1 + b
a x
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extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and 
Bhattacharjee (1973).

The correspondence between the arguments of function imsls_f_non_central_F_cdf and the variables 
in the above equations is as follows: ν1 = df_numerator, ν2 = df_denominator, λ = lambda, and f = f.

For λ = 0, the noncentral F distribution is the same as the F distribution.

Example
This example traces out a portion of a noncentral F cumulative distribution function with parameters 
df_numerator = 100, df_denominator = 10, and lambda = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0., .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float df_numerator = 100., df_denominator = 10., lambda =10., cdfv;
 printf ("\n df_numerator:  %4.0f\n", df_numerator);
 printf (" df_denominator: %4.0f\n", df_denominator);
 printf (" lambda:  %4.0f\n\n", lambda);
 printf ("  f  CDF(f)\n\n");
 for (i=0; i<8; i++) {

 cdfv = imsls_f_non_central_F_cdf
 (f[i], df_numerator, df_denominator, lambda);

 printf (" %5.1f  %12.4e \n", f[i], cdfv);
 }

}

Output

df_numerator:   100
df_denominator:  10
lambda:          10
   f      cdf(f)
  0.0  0.0000e+000
  0.4  4.8879e-003
  0.8  2.0263e-001
  1.2  5.2114e-001
  1.6  7.3385e-001
  2.0  8.5041e-001
  2.8  9.4713e-001
  4.0  9.8536e-001

I x a + 1, b = I x a, b − Tx a, b
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complementary_non_central_F_cdf
Evaluates the complementary noncentral F cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_complementary_non_central_F_cdf (float f, float df_numerator, 

float df_denominator, float lambda)

The type double function is imsls_d_complementary_non_central_F_cdf.

Required Arguments
float f (Input)

Argument for which the complementary noncentral F cumulative distribution function is to be evalu-
ated. f must be non-negative.

float df_numerator (Input)
Numerator degrees of freedom of the complementary noncentral F distribution. df_numerator 
must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the complementary noncentral F distribution. 
df_denominator must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability that a noncentral F random variable takes a value greater than f.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y 

is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then
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is a noncentral F-distributed random variable whose CDF is given by:

where:

and Γ (⋅) is the gamma function. The above series expansion for the noncentral F CDF, denoted by F(⋅), was taken 
from Butler and Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below:

F = X / ν1 / Y / ν2

F f ∣ν1,ν2,λ =∑
j=0

∞

c j

c j = ωjIx
ν1
2 + j,

ν2
2

ωj = e
−λ/2 λ / 2) j / j! = λ

2 jω j−1

I x a,b ≡ incomplete beta function ratio ≡
Bx a,b
B a,b

Bx a,b ≡ incomplete beta function ≡ ∫
0

x

ta−1 1 − t)b−1dt

= xa∑
j=0

∞ Γ j + 1 − b
a + j Γ 1 − b j!x

j

x =
ν1 f

ν2 + ν1 f
< = = > f =

ν2x
ν1 1 − x

B a, b = B1 a, b =
Γ a Γ b
Γ a + b

Ix a + 1, b = I x a, b − Tx a, b

Tx a, b =
Γ a + b

Γ a + 1 Γ b x
a 1 − x)b = Tx a − 1, b

a − 1 + b
a x
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extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and 
Bhattacharjee (1973).

The series approximation of the complementary (cmp) noncentral F CDF, denoted by F(⋅), is obtainable by using 
the following identities:

Thus:

The correspondence between the arguments of function 
imsls_f_complementary_non_central_F_cdf and the variables in the above equations is as follows: 
ν1 = df_numerator, ν2 = df_denominator, λ = lambda, and f = f.

Also, we can use the above expansion of  and the identities:

to recursively calculate  .

For λ = 0, the noncentral F distribution is the same as the F distribution.

Example
This example traces out a portion of a complementary noncentral F cumulative distribution function with param-
eters df_numerator = 100, df_denominator = 10, and lambda = 10.

I x a + 1, b = I x a, b − Tx a, b

∑
j=0

∞

ωj = 1

I1−x b, a = 1 − I x a, b

I1−x b,a + 1 = 1 − I x a + 1,b = 1 − I x a,b + Tx a,b = I1−x b,a + Tx a,b

F─( f ∣ν1,ν2,λ) = 1 − ∑
j=0

∞
c j = ∑

j=0

∞
ωj[1 − I x(

ν1
2 + j,

ν2
2 )]

= ∑
j=0

∞
ωjI1−x(

ν2
2 ,
ν1
2 + j)

F
─
f ∣ν1,ν2,λ

I1−x b, a + 1 = I1−x b, a + Tx a, b

Tx a, b =
Γ a + b

Γ a + 1 Γ b x
a 1 − x)b = Tx a − 1, b

a − 1 + b
a x

F
─
f |ν1,ν2,λ
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#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float df_numerator = 100.0, df_denominator = 10.0;
 float lambda =10.0, cmpcdfv;
 printf ("\n df_numerator:  %4.0f\n", df_numerator);
 printf (" df_denominator: %4.0f\n", df_denominator);
 printf (" lambda:  %4.0f\n\n", lambda);
 printf ("  f  cmpCDF(f)\n\n");
 for (i=0; i<8; i++) {

 cmpcdfv = imsls_f_complementary_non_central_F_cdf
 (f[i], df_numerator, df_denominator, lambda);

 printf (" %5.1f  %12.4e \n", f[i], cmpcdfv);
 }

}

Output

df_numerator:   100
df_denominator:  10
lambda:          10
   f    cmpCDF(f)
  0.0  1.0000e+000 
  0.4  9.9511e-001 
  0.8  7.9737e-001 
  1.2  4.7886e-001 
  1.6  2.6615e-001 
  2.0  1.4959e-001 
  2.8  5.2875e-002 
  4.0  1.4642e-002
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non_central_F_inverse_cdf
Evaluates the inverse of the noncentral F cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_F_inverse_cdf (float p, float df_numerator, 

float df_denominator float lambda)

The type double function is imsls_d_non_central_F_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral F cumulative distribution function is to be evalu-
ated. p must be non-negative and less than one.

float df_numerator (Input)
Numerator degrees of freedom of the noncentral F distribution. df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the noncentral F distribution. df_denominator must be 
positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The inverse of the noncentral F distribution function evaluated at p. The probability that a noncentral F random 
variable takes a value less than or equal to imsls_f_non_central_F_inverse_cdf is p.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y 

is a chi-square random variable with ν2 degrees of freedom that is statistically independent of X, then
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is a noncentral F-distributed random variable whose cumulative distribution function p = CDF(f, ν1, ν2, λ) is 

defined as the probability p that F ≤ f and is evaluated using function imsls_f_non_central_F_cdf (f, 
df_numerator, df_denominator, lambda), where ν1 = df_numerator, ν2 = df_denominator, 

λ = lambda, and p = p.

Function imsls_f_non_central_F_inverse_cdf evaluates

Function imsls_f_non_central_F_inverse_cdf uses bisection and modified regula falsi search algo-
rithms to invert the distribution function CDF(f∣ ν1, ν2, λ). For sufficiently small p, an accurate approximation of 

CDF-1(p∣ ν1, ν2, λ) can be used which requires no such inverse search algorithms.

Example
This example traces out a portion of a noncentral F cumulative distribution function with parameters 
df_numerator = 100, df_denominator = 10, and lambda =10 and for each value of f prints 

f, p==CDF(f), and CDF-1(p).

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0., .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float df_numerator = 100.0, df_denominator = 10.0;
 float lambda =10.0, cdfv, cdfiv;
 printf ("\n df_numerator:  %4.0f\n", df_numerator);
 printf (" df_denominator: %4.0f\n", df_denominator);
 printf (" lambda:  %4.0f\n\n", lambda);
 printf ("  f  p = cdf(f)  cdfinv(p)\n\n");
 for (i=0; i<8; i++) {

 cdfv = imsls_f_non_central_F_cdf
 (f[i], df_numerator, df_denominator, lambda);

 cdfiv = imsls_f_non_central_F_inverse_cdf
 (cdfv, df_numerator, df_denominator, lambda);

 printf (" %5.1f  %12.4e  %7.3f\n", f[i], cdfv, cdfiv);
 }

}

F = X / ν1 / Y / ν2

f = CDF−1 p|ν1,ν1,λ
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Output

df_numerator:   100
df_denominator:  10
lambda:          10
   f    p = cdf(f)  cdfinv(p)
  0.0  0.0000e+000   0.000
  0.4  4.8879e-003   0.400
  0.8  2.0263e-001   0.800
  1.2  5.2114e-001   1.200
  1.6  7.3385e-001   1.600
  2.0  8.5041e-001   2.000
  2.8  9.4713e-001   2.800
  4.0  9.8536e-001   4.000
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gamma_cdf
Evaluates the gamma distribution function.

Synopsis
#include <imsls.h>
float imsls_f_gamma_cdf (float x, float a)

The type double function is imsls_d_gamma_cdf.

Required Arguments
float x (Input)

Argument for which the gamma distribution function is to be evaluated.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to x.

Description
Function imsls_f_gamma_cdf evaluates the distribution function, F, of a gamma random variable with shape 
parameter a,

where Γ(⋅) is the gamma function. (The gamma function is the integral from 0 to ∞ of the same integrand as 
above.) The value of the distribution function at the point x is the probability that the random variable takes a 
value less than or equal to x.

F x = 1
Γ a ∫

0

x

e−tta−1dt
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The gamma distribution is often defined as a two-parameter distribution with a scale parameter b (which must be 
positive) or as a three-parameter distribution in which the third parameter c is a location parameter. In the most 
general case, the probability density function over (c, ∞) is as follows:

If T is a random variable with parameters a, b, and c, the probability that T ≤ t0 can be obtained from 

imsls_f_gamma_cdf by setting x = (t0 − c)/b.

If x is less than a or less than or equal to 1.0, imsls_f_gamma_cdf uses a series expansion; otherwise, a con-
tinued fraction expansion is used. (See Abramowitz and Stegun 1964.)

Example
Let X be a gamma random variable with a shape parameter of four. (In this case, it has an Erlang distribution since 
the shape parameter is an integer.) This example finds the probability that X is less than 0.5 and the probability 
that X is between 0.5 and 1.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  x = 0.5, a = 4.0, p;
 p = imsls_f_gamma_cdf(x,a);
 printf("The probability that X is less than "

 "%3.1f is %6.4f\n", x, p);
 x = 1.0;
 p = imsls_f_gamma_cdf(x,a) - p;
 printf("The probability that X is between 0.5 and "

 "%3.1f is %6.4f\n", x, p);
}

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

f t = 1
baΓ a e

− t−c /b
x − c a−1
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Informational Errors

Fatal Errors

IMSLS_ARG_LESS_THAN_ZERO Since “x” = # is less than zero, the distribution func-
tion is zero at “x”.

IMSLS_X_AND_A_TOO_LARGE Since “x” = # and “a” = # are so large, the algorithm 
would overflow.
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gamma_inverse_cdf
Evaluates the inverse of the gamma distribution function.

Synopsis
#include <imsls.h>
floatimsls_f_gamma_inverse_cdf (floatp, floata)

The type doublefunction is imsls_d_gamma_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the gamma distribution function is to be evaluated. p must be in 
the open interval (0.0, 1.0).

floata (Input)
The shape parameter of the gamma distribution. This parameter must be positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to the returned value is p.

Description
Function imsls_f_gamma_inverse_cdf evaluates the inverse distribution function of a gamma random 
variable with shape parameter a, that is, it determines x (=imsls_f_gamma_inverse_cdf (p, a)), such that

where Γ(⋅) is the gamma function. In other words:

The probability that the random variable takes a value less than or equal to x is P. See the documentation for 
function imsls_f_gamma_cdf for further discussion of the gamma distribution.

P = 1
Γ a ∫0

x

e−tta−1dt

F−1(P∣a) = x
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Function imsls_f_gamma_inverse_cdf uses bisection and modified regula falsi to invert the distribution 
function, which is evaluated using function imsls_f_gamma_cdf.

Example 
In this example, we find the 95-th percentage point for a gamma random variable with shape parameter of 4.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float p = .95, a = 4.0, x;
 x = imsls_f_gamma_inverse_cdf(p,a);
 printf("The %4.2f gamma(%1.0f) critical value is %6.4f\n",

 1.0 - p, a, x);
}

Output

The 0.05 gamma(4) critical value is 7.7537
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lognormal_cdf
Evaluates the lognormal cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_lognormal_cdf(float x, float amu, float sigma)

The type double function is imsls_d_lognormal_cdf.

Required Arguments
floatx (Input)

Argument for which the lognormal CDF is to be evaluated. x must be non-negative.

floatamu (Input)
Location parameter of the lognormal CDF.

floatsigma (Input)
Shape parameter of the lognormal CDF.  sigma must be positive.

Return Value
The probability that a lognormal random variable takes a value less than or equal to x. A value of NaN is returned 
if an input value is in error.

Description
The function imsls_f_lognormal_cdf evaluates the lognormal cumulative distribution function (CDF), 
defined as

where

F x∣μ,σ = 1
σ 2π ∫0

x
1
t e

−12
log t −μ

σ
2

dt = ϕ
log x − μ

σ
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is the standard normal CDF.

Example
In this example, we evaluate the CDF at x = 0.7137, amu = 0.0, 
sigma = 0.5.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float x = 0.7137;
   float amu = 0.0;
   float sigma = 0.5;
   float p;
   p = imsls_f_lognormal_cdf(x,amu,sigma);
   printf("The probability that lognormal random ");
   printf("variable X\n");
   printf("with location parameter amu = %3.1f ", amu);
   printf("and shape parameter\nsigma = %3.1f ", sigma);
   printf("is less than or equal to ");
   printf("%6.4f is %6.4f\n\n", x, p);
}

Output
The probability that lognormal random varisable X
with location parameter amu = 0.0 and shape parameter
sigma = 0.5 is less than or equal to 0.7137 is 0.2500

ϕ y = 1
2π ∫−∞

y

e
−12 u

2

du
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lognormal_inverse_cdf
Evaluates the inverse of the lognormal cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_lognormal_inverse_cdf(float p, float amu, float sigma)

The type double function is imsls_d_lognormal_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the lognormal CDF is to be evaluated. p must lie in the closed 
interval [0, 1].

floatamu (Input)
Location parameter of the lognormal CDF.

floatsigma (Input)
Shape parameter of the lognormal CDF.  sigma must be positive.

Return Value
Function value, the probability that a lognormal random variable takes a value less than or equal to the returned 
value is the input probability p. A value of NaN is returned if an input value is in error.

Description
The function imsls_f_lognormal_inverse_cdf evaluates the inverse CDF of a lognormal random vari-
able with location parameter amu and scale parameter sigma. The probability that a standard lognormal 
random variable takes a value less than or equal to the returned value is p (p=P).
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where

In other words

Example
In this example, we evaluate the inverse CDF at p = 0.25,  amu = 0.0, sigma = 0.5.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float p = 0.25;
   float amu = 0.0;
   float sigma = 0.5;
   float x;
   x = imsls_f_lognormal_inverse_cdf(p, amu, sigma);
   printf("The probability that lognormal random ");
   printf("variable X\n");
   printf("with location parameter amu = %3.1f ", amu);
   printf("and shape parameter\nsigma = %3.1f ", sigma);
   printf("is less than or equal to ");
   printf("%6.4f is %4.2f\n\n", x, p);
}

Output
The probability that lognormal random variable X
with location parameter amu = 0.0 and shape parameter
sigma = 0.5 is less than or equal to 0.7137 is 0.25

P = 1
σ 2π ∫

0

x
e
−12

log(t)−μ
σ

2

t dt = φ
log(x) − μ

σ

φ(y) = 1
2π ∫

−∞

y

e
−12u

2

du

F−1 = (P∣μ,σ) = x
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lognormal_pdf
Evaluates the lognormal probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_lognormal_pdf(float x, float amu, float sigma)

The type double function is imsls_d_lognormal_pdf.

Required Arguments
floatx (Input)

Argument for which the lognormal PDF is to be evaluated. x must be non-negative.

floatamu (Input)
Location parameter of the lognormal PDF.

floatsigma (Input)
Shape parameter of the lognormal PDF.  sigma must be positive.

Return Value
The probability density of a lognormally distributed random variable with value x, location parameter amu, and 
shape parameter sigma. A value of NaN is returned if an input value is in error.

Description
The function imsls_f_lognormal_pdf evaluates the lognormal probability density function (PDF), defined 
as
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Example
In this example, we evaluate the PDF at x = 1.0, amu = 0.0, sigma = 0.5.

#include <imsls.h>
#include <stdio.h>
int main()
{
   float x = 1.0;
   float amu = 0.0;
   float sigma = 0.5;
   float pdfv;
   pdfv = imsls_f_lognormal_pdf(x, amu, sigma);
   printf("The probability density of lognormal random ");
   printf("variable X\n");
   printf("with location parameter amu = %3.1f, ", amu);
   printf("shape parameter\nsigma = %3.1f, ", sigma);
   printf("and value x = %3.1f is %6.4f\n\n", x, pdfv);
}

Output
The probability density of lognormal random variable X
with location parameter amu = 0.0, shape parameter
sigma = 0.5, and value x = 1.0 is 0.7979

f x∣μ,σ = 1
xσ 2π e

−
log x −μ 2

2σ2
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normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>
float imsls_f_normal_cdf (float x)

The type double function is imsls_d_normal_cdf.

Required Arguments
float x (Input)

Point at which the normal distribution function is to be evaluated.

Return Value
The probability that a normal random variable takes a value less than or equal to x.

Description
Function imsls_f_normal_cdf evaluates the distribution function, F(x), of a standard normal (Gaussian) ran-
dom variable as follows:

The value of the distribution function at the point x is the probability that the random variable takes a value less 
than or equal to x.

The standard normal distribution (for which imsls_f_normal_cdf is the distribution function) has mean of 0 

and variance of 1. The probability that a normal random variable with mean μ and variance σ2 is less than y is 
given by imsls_f_normal_cdf evaluated at (y − μ)/σ.

F x = 1
2π ∫
−∞

x

e−t
2/2dt
1163



 Probability Distribution Functions and Inverses         normal_cdf
Figure 18, Plot of F(x)

Example
Suppose X is a normal random variable with mean 100 and variance 225. This example finds the probability that X 
is less than 90 and the probability that X is between 105 and 110.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  p, x1, x2;
 x1  = (90.0-100.0)/15.0;
 p  = imsls_f_normal_cdf(x1);
 printf("The probability that X is less than 90 "

 "is %6.4f\n", p);
 x1 = (105.0-100.0)/15.0;
 x2 = (110.0-100.0)/15.0;
 p  = imsls_f_normal_cdf(x2) - imsls_f_normal_cdf(x1);
 printf("The probability that X is between 105 and "

 "110 is %6.4f\n", p);
}
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Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
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multivariate_normal_cdf

more...

Evaluates the cumulative distribution function for the multivariate normal distribution.

Synopsis
#include <imsls.h>
float imsls_f_multivariate_normal_cdf (int k, float h[], float mean[], float sigma[], …,0)

The type double function is imsls_d_multivariate_normal_cdf.

Required Arguments
intk (Input)

The number of variates in the multivariate normal distribution. The number of variates must be 
greater than or equal to 1 and less than or equal to 1100.

float h[] (Input)
Array of length k containing the upper bounds for calculating the cumulative distribution function, 

 .

float mean[] (Input)
Array of length k containing the mean of the multivariate normal distribution, i.e., 

 .

float sigma[] (Input)
Array of length k by k containing the positive definite symmetric variance-covariance matrix for the 
multivariate normal distribution, i.e.,  .

Return Value
The value of the cumulative distribution function for a multivariate normal random variable, 

 .

F X 1 < h1, X 2 < h2, ⋯ , Xk < hk

E x1, x2, ... xk = μT = μ1, μ2, ... μk

Var x1, x2, ... xk = ∑

F X 1 < h1, X 2 < h2, ⋯ , Xk < hk
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Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_multivariate_normal_cdf (int k, float h[], float mean[], float sigma[],

IMSLS_PRINT,
IMSLS_ERR_ABS, float err_abs,
IMSLS_ERR_REL, float err_rel,
IMSLS_TOLERANCE, float tolerance,
IMSLS_MAX_EVALS, int max_evals,
IMSLS_RANDOM_SEED, int random_seed,
IMSLS_ERR_EST, float *err_est,
0)

Optional Arguments
IMSLS_PRINT, (Input)

Print intermediate computations.

Default: No printing.

IMSLS_ERR_ABS, float err_abs (Input)
The absolute accuracy requested for the calculated cumulative probability.

Default: err_abs = 1.0e-3.

IMSLS_ERR_REL, float err_rel (Input)
The relative accuracy desired.

Default: err_rel = 1.0e-5.

IMSLS_TOLERANCE, float tolerance (Input)
The minimum value for the smallest eigenvalue of sigma. If the smallest eigenvalue is less than 
tolerance, then the terminal error IMSLS_SIGMA_SINGULAR is issued. Default: tolerance= 
ɛ, where ɛ is the machine precision.

IMSLS_MAX_EVALS, int max_evals (Input)
The maximum number of function evaluations allowed. If this limit is exceeded, the 
IMSLS_MAX_EVALS_EXCEEDED warning message is issued and the optimization terminates.

Default: max_evals = 1000×k.
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IMSLS_RANDOM_SEED, int random_seed (Input)
The value of the random seed used for generating quadrature points. By using different seeds on dif-
ferent calls to this function, slightly different answers will be obtained in the digits beyond the 
estimated error. If random_seed = 0, then the seed is set to the value of the system clock which 
will automatically generate slightly different answers for each call.

Default: random_seed = 7919.

IMSLS_ERR_EST, float *err_est (Output)
The estimated error.

Description
Function imsls_f_multivariate_normal_cdf evaluates the cumulative distribution function F of a mul-
tivariate normal distribution with E(X1, X2, ⋯, Xk) =μ and Var(X1, X2, ⋯, Xk) =∑. The input arrays mean and sigma 

are used as the values for μ and ∑, respectively. The formula for the CDF calculation is given by the multiple inte-
gral described in Johnson and Kotz (1972):

∑ must be positive definite, i.e. |∑| >0.

In the special case of non-negative equal correlations (i.e. Cov(Xm, Xn) = ρ≥0, m≠n), the above integral is trans-

formed into a univariate integral using the transformation developed by Dunnett and Sobel(1955). This produces 
very accurate and fast calculations even for a large number of variates.

If k > 2 and the correlations are not equal or both equal and negative, the Cholesky decomposition transforma-
tion described by Genz (1992) is used (with permission from the author). This transforms the problem into a 
definite integral involving k-1 variables which is solved numerically using randomized Korobov rules if k ≤ 100, 
see Cranley and Patterson (1976) and Keast (1973); otherwise, the integral is solved using quasi-random Richt-
meyer points described in Davis and Rabinowitz (1984).

Setting σi = Var(Xi) and denoting the correlation matrix related to ∑ by W = (ρmn), where

an integral transformation transforms F(h1, h2, ⋯, hk) into the standardized k-variate normal distribution with cor-

relation matrix W:

F(h1,h2,...,hk) = (2π)
−k/2|∑ |−1/2 ∫

−∞

h1
∫
−∞

h2
... ∫
−∞

hk
e
−12(x−μ)

Τ∑−1(x−μ)
dxkdxk−1...dx1

ρmn = Cov(Xm,Xn)/( σm σn),

Φ (
h1 − μ1
σ1
,...,

hk − μk
σk
) = (2π)−k/2∣W∣−1/2 ∫−∞

(h1−μ1)/ σ1...∫−∞
(hk−μk)/ σk e

−12u
ΤW−1u

duk...du1.
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Therefore, it’s also possible to compute the integral with the correlation matrix W defined in argument sigma if 
in addition the variances σ1, ⋯, σk are known: If, with respect to the variance-covariance matrix, the bounds of 

the integral are h1, ⋯, hk and the means are μ1, ⋯, μk, set required argument h to h[i] =  and 

required argument mean to mean[i] = 0 for i = 0, ⋯, k-1 .

Examples

Example 1

This example evaluates the cumulative distribution function for a trivariate normal random variable. There are 
three calculations. The first calculation is of F(1.96,1.96, 1.96) for a trivariate normal variable with μ = {0, 0, 0}, and

In this case, imsls_f_multivariate_normal_cdf calculates F(1.96, 1.96, 1.96) = 0.958179.

The second calculation involves a trivariate variable with the same correlation matrix as the first calculation but 
with a mean of μ = {0, 1, -1}. This is the same distribution as the first example shifted by the mean. The calculation 
of F(1.96, 2.96, 0.96) verifies that this probability is equal to the same value as reported for the first case.

The last calculation is the same calculation reported in Genz (1992) for a trivariate normal random variable with μ 
= {0, 0, 0} and

In this example the calculation of F(1, 4, 2) = 0.827985.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float bounds1[3] = {1.96, 1.96, 1.96};
 float bounds2[3] = {1.96, 2.96, 0.96};
 float bounds3[3] = {1.0, 4.0, 2.0};
 float mean1[3]  = {0.0, 0.0, 0.0};
 float mean2[3]  = {0.0, 1.0, -1.0};
 float stdev1[9]  = {1.0, 0.9, 0.9, 

0.9, 1.0, 0.9,
 0.9, 0.9, 1.0};

(hi+1 − μi+1)/ σi+1

∑ =
1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

∑ =
1 3 / 5 1 / 3
3 / 5 1 11 / 15
1 / 3 11 / 15 1
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 float stdev2[9]  = {1.0, 0.6,  1.0/3.0, 
0.6, 1.0, 11.0/15.0,

 1.0/3.0, 11.0/15.0, 1.0};
 float f;
 char *fmt = {"%5.3W"};
 imsls_f_write_matrix("Mean Vector", 1, 3, mean1,

 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix("Correlation Matrix", 3, 3,
 stdev1,  IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 f = imsls_f_multivariate_normal_cdf(3, bounds1, mean1,
 stdev1, 0);

 printf("\nF(X1<%f, X2<%f, X3<%f) = %f\n\n", 
bounds1[0], bounds1[1], bounds1[2], f);

 imsls_f_write_matrix("Mean Vector\n", 1, 3, mean2, 
IMSLS_NO_ROW_LABELS,

 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix("Correlation Matrix", 3, 3,
 stdev1,  IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 f = imsls_f_multivariate_normal_cdf(3, bounds2, mean2,
 stdev1, 0);

 printf("\nF(X1<%f, X2<%f, X3<%f) = %f\n", 
bounds2[0], bounds2[1], bounds2[2], f);

 imsls_f_write_matrix("Mean Vector", 1, 3, mean1, 
IMSLS_NO_ROW_LABELS,

 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix("Correlation Matrix", 3, 3, stdev2,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 f = imsls_f_multivariate_normal_cdf(3, bounds3, mean1,
 stdev2, 0);
 printf("\nF(X1<%f, X2<%f, X3<%f) = %f\n", 

bounds3[0], bounds3[1], bounds3[2], f);
}

Output

   Mean Vector
   0     0     0
Correlation Matrix
 1.0   0.9   0.9
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 0.9   1.0   0.9
 0.9   0.9   1.0
F(X1<1.960000, X2<1.960000, X3<1.960000) = 0.958179

  Mean Vector
   0     1    -1
Correlation Matrix
 1.0   0.9   0.9
 0.9   1.0   0.9
 0.9   0.9   1.0
F(X1<1.960000, X2<2.960000, X3<0.960000) = 0.958179
   Mean Vector
   0     0     0
Correlation Matrix
 1.00  0.60  0.33
 0.60  1.00  0.73
 0.33  0.73  1.00
F(X1<1.000000, X2<4.000000, X3<2.000000) = 0.827985

Example 2

This example illustrates the calculation of the cdf for a multivariate normal distribution with a mean of μ = {1, 0, -
1, 0, 1, -1}, and a correlation matrix of

The optional argument IMSLS_PRINT is used to illustrate the type of intermediate output available from this 
function. This function sorts the variables by the limits for the cdf calculation specified in x. This improves the 
accuracy of the calculations, see Genz (1992). In this case, F(X1<1, X2< 2.5, X3< 2, X4< 0.5, X5< 0, X6< 0.8) = 
0.087237 with an estimated error of 8.7e-05.

By increasing the correlation of X2 and X3 from 0.1 to 0.7, the correlation matrix becomes singular. This function 

checks for this condition and issues an error when sigma is not symmetric or positive definite.

#include <imsls.h>
#include <stdio.h>

∑ =

1 0.1 0.2 0.3 0.4 0
0.1 1 0.6 0.1 0.2 0.5
0.2 0.6 1 0 0.1 0.2
0.3 0.1 0 1 0 0.5
0.4 0.2 0.1 0 1 0.3
0 0.5 0.2 0.5 0.3 1
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int main()
{

 float bounds[6] = {1.0, 2.5, 2.0, 0.5, 0.0, 0.8};
 float mean[6]  = {1.0, 0.0, -1.0, 0.0, 1.0, -1.0};
 float s1[6*6]  = {1.0, 0.1, 0.2, 0.3, 0.4, 0.0,

 0.1, 1.0, 0.6, 0.1, 0.2, 0.5,
 0.2, 0.6, 1.0, 0.0, 0.1, 0.2,
 0.3, 0.1, 0.0, 1.0, 0.0, 0.5,
 0.4, 0.2, 0.1, 0.0, 1.0, 0.3,
 0.0, 0.5, 0.2, 0.5, 0.3, 1.0};

 /* The following matrix is not positive definite */
 float s2[6*6] = {1.0, 0.1, 0.2, 0.3, 0.4, 0.0,

 0.1, 1.0, 0.6, 0.7, 0.2, 0.5,
 0.2, 0.6, 1.0, 0.0, 0.1, 0.2,
 0.3, 0.7, 0.0, 1.0, 0.0, 0.5,
 0.4, 0.2, 0.1, 0.0, 1.0, 0.3,
 0.0, 0.5, 0.2, 0.5, 0.3, 1.0};

 float f, err;
 int i, k=6;
 f = imsls_f_multivariate_normal_cdf(k, bounds, mean, s1,

 IMSLS_PRINT,
 IMSLS_ERR_EST, &err,
 0);

 printf("F(X1<%2.1f, X2<%2.1f, X3<%2.1f, ",
 bounds[0], bounds[1], bounds[2]);

 printf("X4<%2.1f, X5<%2.1f, X6<%2.1f) = %f\n", 
bounds[3], bounds[4], bounds[5], f);

 printf("Estimated Error = %g\n", err);
 /* example of error message when sigma is not positive definite */
 f = imsls_f_multivariate_normal_cdf(k, bounds, mean, s2,

 IMSLS_ERR_EST, &err,
 0);

}

Output

              Original H Limits
  1.0    2.5    2.0    0.5    0.0    0.8
            Original Sigma Matrix
  1.0    0.1    0.2    0.3    0.4    0.0
  0.1    1.0    0.6    0.1    0.2    0.5
  0.2    0.6    1.0    0.0    0.1    0.2
  0.3    0.1    0.0    1.0    0.0    0.5
  0.4    0.2    0.1    0.0    1.0    0.3
  0.0    0.5    0.2    0.5    0.3    1.0
             Sorted Sigma Matrix
  1.0    0.3    0.4    0.0    0.1    0.2
  0.3    1.0    0.0    0.5    0.1    0.0
  0.4    0.0    1.0    0.3    0.2    0.1
  0.0    0.5    0.3    1.0    0.5    0.2
  0.1    0.1    0.2    0.5    1.0    0.6
  0.2    0.0    0.1    0.2    0.6    1.0
Eigenvalues of Sigma
eigenvalue[0] = 2.215651
eigenvalue[1] = 1.256233
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eigenvalue[2] = 1.165661
eigenvalue[3] = 0.843083
eigenvalue[4] = 0.324266
eigenvalue[5] = 0.195106
Condition Number of Sigma = 7.327064
Cholesky Decomposition of Sorted Sigma Matrix
1.000  0.300  0.400  0.000  0.100  0.200
0.300  0.954 -0.126  0.524  0.073 -0.063
0.400 -0.126  0.908  0.403  0.186  0.013
0.000  0.524  0.403  0.750  0.515  0.303
0.100  0.073  0.186  0.515  0.827  0.515
0.200 -0.063  0.013  0.303  0.515  0.774
Prob. = 0.0872375 Error = 3.10012e-005
F(X1<1.0, X2<2.5, X3<2.0, X4<0.5, X5<0.0, X6<0.8) = 0.087237
Estimated Error = 3.10012e-005
eigenvalue[0] = 2.477894
eigenvalue[1] = 1.250438
eigenvalue[2] = 1.039730
eigenvalue[3] = 0.854005
eigenvalue[4] = 0.382186
eigenvalue[5] = -0.004253
*** FATAL   Error IMSLS_SIGMA_SINGULAR from
***         imsls_f_multivariate_normal_cdf.
***         "sigma" is not positive definite. Its smallest eigenvalue is
***         "e[5]"=-4.252925e-003 which is less than
***         "tolerance"=1.192093e-007.

Warning Errors

Fatal Errors

IMSLS_MAX_EVALS_EXCEEDED The maximum number of iterations for the CDF cal-
culation has exceeded max_evals. Required 
accuracy may not have been achieved.

IMSLS_SIGMA_SINGULAR “sigma” is not positive definite. Its smallest eigen-
value is “e[#]”=#, which is less than “tolerance” = 
#.
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normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>
float imsls_f_normal_inverse_cdf (float p)

The type double function is imsls_d_normal_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the normal distribution function is to be evaluated. Argument p 
must be in the open interval (0.0, 1.0).

Return Value
The inverse of the normal distribution function evaluated at p. The probability that a standard normal random 
variable takes a value less than or equal to imsls_f_normal_inverse_cdf is p.

Description
Function imsls_f_normal_inverse_cdf evaluates the inverse of the distribution function, F(x), of a stan-

dard normal (Gaussian) random variable, imsls_f_normal_inverse_cdf(p) = F−1(x), where

The value of the distribution function at the point x is the probability that the random variable takes a value less 
than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.

F x = 1
2π ∫
−∞

x

e−t
2/2dt
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Function imsls_f_normal_inverse_cdf is evaluated by use of minimax rational-function approximations 
for the inverse of the error function. General descriptions of these approximations are given in Hart et al. (1968) 
and Strecok (1968). The rational functions used in imsls_f_normal_inverse_cdf are described by 
Kinnucan and Kuki (1968).

Example
This example computes the point such that the probability is 0.9 that a standard normal random variable is less 
than or equal to this point.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  p = 0.9, x;
 x = imsls_f_normal_inverse_cdf(p);
 printf("The %2.0fth percentile of a standard normal is "

 "%6.4f.\n", p*100.0, x);
}

Output

The 90th percentile of a standard normal is 1.2816.
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t_cdf
Evaluates the Student’s t cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_t_cdf (float t, float df)

The type double function is imsls_d_t_cdf.

Required Arguments
float t (Input)

Argument for which the Student’s t cumulative distribution function is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value less than or equal to the input t.

Description
Function imsls_f_t_cdf evaluates the cumulative distribution function of a Student’s t random variable with 

ν = df degrees of freedom. If t2 ≥ ν, the following identity relating the Student’s t cumulative distribution func-

tion, F(t, ν) to the incomplete beta ratio function  is used:

where

and

I x a, b

F t|ν = 12 I x
ν
2,
1
2 ,t ≤ 0,t2 ≥ v

x = ν
t2 + ν
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If t2 < ν, the solution space is partitioned into four algorithms as follows: If ν ≥ 64 and t2/ν ≤ 0.1, a Cornish-Fisher 
expansion is used to evaluate the distribution function. If ν < 64 and an integer and |t| < 2.0, a trigonometric 
series is used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some rearrangement). If 
ν < 64 and an integer and |t| ≥ 2.0, a series given by Hill (1970) that converges well for large values of t is used. 

For the remaining t2 < ν cases, F(t|ν) is calculated using the identity:

where

Figure 19, Plot of Ft (t, 6.0)

Example
This example finds the probability that a t random variable with 6 degrees of freedom is greater in absolute value 
than 2.447. The fact that t is symmetric about 0 is used.

F t|ν = 1 − F −t,ν ,t > 0,t2 ≥ v

F t|ν = I x
ν
2,
ν
2

x = t + t2 + ν
2 t2 + ν
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#include <imsls.h>
#include <stdio.h>
int main ()
{

 float  t = 2.447, df = 6.0, p;
 p  = 2.0*imsls_f_t_cdf(-t,df);
 printf("Pr(|t(%1.0f)| > %5.3f) = %6.4f\n", df, t, p);

}

Output

Pr(|t(6)| > 2.447) = 0.0500
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t_inverse_cdf
Evaluates the inverse of the Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_t_inverse_cdf (float p, float df)

The type double function is imsls_d_t_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the Student’s t distribution function is to be evaluated. Argument 
p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The inverse of the Student’s t distribution function evaluated at p. The probability that a Student’s t random vari-
able takes a value less than or equal to imsls_f_t_inverse_cdf is p.

Description
Function imsls_f_t_inverse_cdf evaluates the inverse distribution function of a Student’s t random vari-
able with ν = df degrees of freedom. If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between 
1 and 2, the relationship of a t to a beta random variable is exploited and the inverse of the beta distribution is 
used to evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values of ν greater than 2, 

Hill’s algorithm inverts an integrated expansion in 1/(1 + t2/ν) of the t density. For larger values, an asymptotic 
inverse Cornish-Fisher type expansion about normal deviates is used.
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Example
This example finds the 0.05 critical value for a two-sided t test with 6 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  df = 6.0, p = 0.975, t;
 t  = imsls_f_t_inverse_cdf(p,df);
 printf("The two-sided t(%1.0f) %4.2f critical value is "

 "%6.3f\n", df, (1.0-p)*2.0, t);
}

Output

The two-sided t(6) 0.05 critical value is 2.447

Informational Errors
IMSLS_OVERFLOW Function imsls_f_t_inverse_cdf is set to 

machine infinity since overflow would occur upon 
modifying the inverse value for the F distribution 
with the result obtained from the inverse beta 
distribution.
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complementary_t_cdf
Evaluates the complement of the Student’s t distribution.

Synopsis
#include <imsls.h>
float imsls_f_complementary_t_cdf (float t, float df)

The type double function is imsls_d_complementary_t_cdf.

Required Arguments
float t (Input)

Argument for which Pr(x > t) is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value greater than t.

Description
Function imsls_f_complementary_t_cdf evaluates one minus the distribution function of a Student’s t 

random variable with ν = df degrees of freedom. If t2 ≥ ν, the following identity relating the complementary Stu-

dent’s t cumulative distribution function, denoted by  , to the incomplete beta ratio function  is 
used:

where

F
─
t|ν Ix a, b

F─ t|ν = 12 I x
ν
2,
1
2 , t > 0, t2 ≥ v
1181
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and

If t2 < ν, the solution space is partitioned into four algorithms as follows: If ν ≥ 64 and t2/ν ≤ 0.1, a Cornish-Fisher 
expansion is used to evaluate the distribution function. If ν < 64 and an integer and |t| < 2.0, a trigonometric 
series is used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some rearrangement). If ν 
< 64 and an integer and |t| ≥ 2.0, a series given by Hill (1970) that converges well for large values of t is used. 

For the remaining t2 < ν cases,  is calculated using the identity:

where

This function provides higher right tail accuracy for the Student's t distribution.

x = ν
t2 + ν

F─ t|ν = 1 − F─ −t | ν , t ≤ 0, t2 ≥ v

F
─
t|ν

F─(t|ν) = I1−x(
ν
2,
ν
2)

x = t + t2 + ν
2 t2 + ν
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Figure 20, Plot of Ft (t, df)
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Example
This example finds the 2-tail probability that a Student’s t random variable exceeds 2.447.

#include <imsls.h>
#include <stdio.h>
int main ()
{

 float  t = 2.447, df = 6.0, p;
 p  = 2.0*imsls_f_complementary_t_cdf(t,df);
 printf("Pr(|t(%1.0f)| > %4.3f) = %6.4f\n", df, t, p);

}

Output

Pr(|t(6)| > 2.447) = 0.0500
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non_central_t_cdf
Evaluates the noncentral Student’s t distribution function.

Synopsis
#include <imsls.h>

floatimsls_f_non_central_t_cdf(float t, int df, float delta)

The type double function is imsls_d_non_central_t_cdf.

Required Arguments
float t (Input)

Argument for which the noncentral Student’s t distribution function is to be evaluated.

intdf (Input)
Number of degrees of freedom of the noncentral Student’s t distribution. Argument df must be 
greater than or equal to 0.0.

float delta (Input) 
The noncentrality parameter.

Return Value
The probability that a noncentral Student’s t random variable takes a value less than or equal to t.

Description
Function imsls_f_non_central_t_cdf evaluates the distribution function F of a noncentral t random vari-
able with df degrees of freedom and noncentrality parameter delta; that is, with v = df, δ = delta, and t0 = t,
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where Γ(⋅) is the gamma function. The value of the distribution function at the point t0 is the probability that the 

random variable takes a value less than or equal to t0.

The noncentral t random variable can be defined by the distribution function above, or alternatively and equiva-
lently, as the ratio of a normal random variable and an independent chi-squared random variable. If w has a 
normal distribution with mean δ and variance equal to one, u has an independent chi-squared distribution with v 
degrees of freedom, and

then x has a noncentral t distribution with degrees of freedom and noncentrality parameter δ.

The distribution function of the noncentral t can also be expressed as a double integral involving a normal density 
function (see, for example, Owen 1962, page 108). The function TNDF uses the method of Owen (1962, 1965), 
which uses repeated integration by parts on that alternate expression for the distribution function.

Figure 21, Noncentral Student’s t Distribution Function

F t0 = ∫−∞
t0 vv/2e−δ

2/2

π Γ v / 2 v + x2
v+1 /2∑

i=0

∞ Γ v + i + 1 / 2 δx i 2 / v + x2
i/2

i! dx

x = w / u / v
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Example
Suppose t is a noncentral t random variable with 6 degrees of freedom and noncentrality parameter 6. In this 
example, we find the probability that t is less than 12.0. (This can be checked using the table on page 111 of Owen 
1962, with η = 0.866, which yields λ = 1.664.)

#include <imsls.h>
#include <stdio.h>
int main()
{

 int df = 6;
 float t = 12.0, delta = 6.0, p;
 p = imsls_f_non_central_t_cdf(t, df, delta);
 printf("The probability that t is less than %2.0f "

 "is %6.4f.\n", t, p);
}

Output
The probability that T is less than 12.0 is 0.9501
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non_central_t_inv_cdf
Evaluates the inverse of the noncentral Student’s tdistribution function.

Synopsis
#include <imsls.h>
floatimsls_f_non_central_t_inv_cdf(float p, int df, float delta)

The type double function is imsls_d_non_central_t_inv_cdf.

Required Arguments
floatp (Input)

A Probability for which the inverse of the noncentral Student’s tdistribution function is to be 
evaluated.p must be in the open interval (0.0, 1.0).

intdf (Input)
Number of degrees of freedom of the noncentral Student’s t distribution. Argument df must be 
greater than or equal to 0.0

float delta (Input)
The noncentrality parameter.

Return Value
The probability that a noncentral Student’s t random variable takes a value less than or equal to t is p.

Description
Function imsls_f_non_central_t_inv_cdf evaluates the inverse distribution function of a noncentral t 
random variable with df degrees of freedom and noncentrality parameter delta; that is, with P = p, v = df, and 
δ = delta, it determines t0 (= imsls_f_non_central_t_inv_cdf (p, df, delta)), such that
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where Γ(⋅) is the gamma function. In other words:

The probability that the random variable takes a value less than or equal to t0 is P. See 

imsls_f_non_central_t_cdf for an alternative definition in terms of normal and chi-squared random vari-
ables. The function imsls_f_non_central_t_inv_cdf uses bisection and modified regula falsi to invert 
the distribution function, which is evaluated using function imsls_f_non_central_t_cdf.

Example
In this example, we find the 95-th percentage point for a noncentral t random variable with 6 degrees of freedom 
and noncentrality parameter 6.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int df = 6;
 float p = 0.95, delta = 6.0, t;
 t = imsls_f_non_central_t_inv_cdf(p, df, delta);
 printf("The %4.2f noncentral t critical value is "

 "%6.4f.\n", 1.0-p, t);
}

Output

The 0.05 noncentral t critical value is 11.995.

P = ∫−∞
t0 vv/2e−δ

2/2

π Γ(v / 2)(v + x2)(v+1)/2∑
i=0

∞

Γ((v + i + 1)/2)(δ
i

i! )(
2x2

v + x2
)i/2dx

F−1 = (P∣df ,delta) = x
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non_central_t_pdf
Evaluates the noncentral Student's t probability density function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_pdf (floatt, floatdf, floatdelta)

The type doublefunction is imsls_d_non_central_t_pdf.

Required Arguments
floatt (Input)

Argument for which the noncentral Student’s t probability density function is to be evaluated.

floatdf (Input)
Number of degrees of freedom of the noncentral Student’s t distribution. df must be greater than 0.

floatdelta (Input)
Noncentrality parameter.

Return Value
The probability density associated with a noncentral Student’s t random variable with value t.

Description
If w is a normally distributed random variable with unit variance and mean δ and u is a chi-square random vari-
able with ν degrees of freedom that is statistically independent of w, then

is a noncentral t-distributed random variable with ν degrees of freedom and noncentrality parameter δ, that 
is,with ν = df, and δ = delta. The probability density function for the noncentral t-distribution is:

T = w / u / v
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where

and t = t.

For δ = 0, the PDF reduces to the (central) Student’s tPDF:

and, for t = 0, the PDF becomes:

Example
This example calculates the noncentral Student’s tPDF for a distribution with 2 degrees of freedom and noncen-
trality parameter δ = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float t[] = {-.5, 1.5, 3.5, 7.5, 51.5, 99.5};
 float df = 2.0, delta =10.0, pdfv;
 printf ("\n\n df: %4.0f;  delta: %4.0f\n\n", df, delta);
 printf ("  t  pdf(t)\n");
 for (i=0; i<6; i++) {

 pdfv = imsls_f_non_central_t_pdf(t[i], df, delta);
 printf (" %5.1f  %12.4e\n",t[i], pdfv);

 }
}

f t|v,δ = vv/2e−δ
2/2

π Γ v / 2 v + t2
v+1 /2∑

i=0

∞

ϕi

ϕi =
Γ v + i + 1 / 2 δt i 2 / v + t2

i/2

i!

f t|v,0 =
Γ v + 1 / 2 1 + t2 / v

− v+1 /2

vπ Γ v / 2

f 0|v,δ =
Γ v + 1 / 2 e−δ

2/2

vπ Γ v / 2
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Output

df:   2; delta:  10
   t      pdf(t)
 -0.5  1.6399e-024
  1.5  7.4417e-010
  3.5  2.8972e-003
  7.5  7.8853e-002
 51.5  1.4215e-003
 99.5  2.0290e-004
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pareto_cdf
Evaluates the Pareto cumulative probability distribution function.

Synopsis
#include <imsls.h>
float imsls_f_pareto_cdf (float x, float xm, float k)

The type double function is imsls_d_pareto_cdf.

Required Arguments
float x (Input)

Argument for which the Pareto distribution function is to be evaluated.

float xm (Input)
The scale parameter.

float k (Input)
The shape parameter.

Return Value
The probability that a Pareto random variable takes a value less than or equal to x. NaN is returned on error.

Description
The imsls_f_pareto_cdf function evaluates the distribution function, F, of a Pareto random variable with 
scale parameter xmand shape parameter k. It is given by:

where xm > 0 and k > 0. The function is only defined for x ≥ xm.

F x|xm, k = 1 −
xm
x

k
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Example
Suppose X is a Pareto random variable with xm = 0.4 and k = 0.7. The function finds the probability that X is less 

than or equal to 0.5.

#include <imsls.h>
#include <stdio.h>
int main(){
   float x = 0.5;
   float xm = 0.4;
   float k = 0.7;
   float pr = 0.0;
   pr = imsls_f_pareto_cdf(x, xm, k); 
   printf("Pr(x <= %3.1f) = %6.4f\n", x, pr);
}

Output

Pr(x <= 0.5) = 0.1446
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pareto_pdf
Evaluates the Pareto probability density function.

Synopsis
#include <imsls.h>
float imsls_f_pareto_pdf (float x, float xm, float k)

The type double function is imsls_d_pareto_pdf.

Required Arguments
float x (Input)

Argument for which the function is to be evaluated.

float xm (Input)
The scale parameter.

float k (Input)
The shape parameter.

Return Value
The probability density at x. NaN is returned on error.

Description
The probability density function of the Pareto distribution is:

where the scale parameter xm > 0 and the shape parameter k > 0. The function is only defined for x ≥ xm.

f x|xm, k = k x
k
m

xk+1
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Example
In this example, we evaluate the Pareto PDF at x = 0.5, xm = 0.4 and k = 0.7.

#include <imsls.h>
#include <stdio.h>
int main(){
   float x = 0.5;
   float xm = 0.4;
   float k = 0.7;
   float pr = 0.0;
   pr = imsls_f_pareto_pdf(x, xm, k);
   printf("The probability density of a Pareto random");
   printf("variable X with\na scale parameter xm = ");
   printf("%3.1f and a shape parameter ", xm);
   printf("k = %3.1f\nand value x = %3.1f is %6.4f.\n",
       k, x, pr);
}

Output

The probability density of a Pareto random variable X with
a scale parameter xm = 0.4 and a shape parameter k = 0.7
and value x = 0.5 is 1.1975.
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max_likelihood_estimates
Calculates maximum likelihood estimates (MLE) for the parameters of one of several univariate probability 
distributions.

Synopsis
#include <imsls.h>
float*imsls_f_max_likelihood_estimates (int n_observations, float x[], int ipdf, ..., 0)

The type double function is imsls_d_max_likelihood_estimates.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the data.

int ipdf (Input)
Specifies the probability density function.

Distribution ipdf n_parameters  i parameters[i]

Discrete uniform 0 1 0 scale - upper limit

Bernoulli 1 1 0 probability of success (mean)

Binomial (1) 2 1 0 probability of success

Negative binomial (2) 3 1 0 probability of success

Poisson 4 1 0 location (mean) - θ
Geometric 5 1 0 probability of success

Continuous uniform 6 2 0
1

scale - lower boundary
scale - upper boundary

Beta 7 2 0
1

shape - p
shape - q

Exponential 8 1 0 scale - b
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Note: 1 - The binomial distribution requires the optional argument IMSLS_NUMBER_OF_TRIALS.

Note: 2 - The negative binomial distribution requires the optional argument 
IMSLS_NUMBER_OF_FAILURES.

Return Value
A pointer to an array of length n_parameters containing the parameter values (see ipdf table above).

Gamma 9 2 0
1

shape - k
scale - θ

Weibull 10 2 0
1

scale - λ
shape - k

Rayleigh 11 1 0 scale - α
Extreme value 12 2 0

1
location - μ
scale - σ

Generalized extreme value 13 3 0
1
2

location - μ
scale - σ
shape - β

Pareto 14 2 0
1

scale (lower boundary) xm
shape - k

Generalized Pareto 15 2 0
1

scale - σ
shape - α

Normal 16 2 0
1

location(mean) - μ
scale(variance) - σ2

Log-normal 17 2 0
1

location(mean of log(x)) - μ
scale(variance of log(x)) - σ2

Logistic 18 2 0
1

location(mean) - μ
scale - s

Log-logistic 19 2 0
1

scale(exp(mean)) - eμ
shape - β

Inverse Gaussian 20 2 0
1

location(mean) - μ
shape - λ

Distribution ipdf n_parameters  i parameters[i]
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_max_likelihood_estimates (int n_observations, float x[], int ipdf,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_N_PARAMETERS, int *n_parameters,
IMSLS_NUMBER_OF_TRIALS, int n_trials,
IMSLS_NUMBER_OF_FAILURES, int n_failures,
IMSLS_MLOGLIKE, float *mloglike,
IMSLS_STD_ERRORS, float **se,
IMSLS_STD_ERRORS_USER, float se[],
IMSLS_HESSIAN, float **hess,
IMSLS_HESSIAN_USER, float hess[],
IMSLS_RETURN_USER, float param[],
IMSLS_PARAM_LB, float paramlb[],
IMSLS_PARAM_UB, float paramub[],
IMSLS_INITIAL_ESTIMATES, float initial_estimates[],
IMSLS_XSCALE, float xscale[],
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_MAX_FCN, int maxfcn,
IMSLS_MAX_GRAD, int maxgrad,
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default: iprint = 0.

IMSLS_N_PARAMETERS, int*n_parameters (Output)
The number of parameters in the distribution specified by ipdf.

iprint Action

0 No printing

1 Print final results only

2 Print intermediate and final results
1199



 Probability Distribution Functions and Inverses         max_likelihood_estimates
IMSLS_NUMBER_OF_TRIALS, int n_trials (Input)
The number of trials. n_trials is required for the binomial distribution, (ipdf = 2).

Default: Not used, except for ipdf = 2.

IMSLS_NUMBER_OF_FAILURES, int n_failures (Input)
The number of failures. n_failures is required for the negative binomial distribution, (ipdf = 3).

Default: Not used, except for ipdf = 3.

IMSLS_MLOGLIKE, float *mloglike (Output)
Minus log-likelihood evaluated at the parameter estimates.

IMSLS_STD_ERRORS, float**se (Output)
Address of a pointer to an internally allocated array of length n_parameters containing the stan-
dard errors of the parameter estimates.

IMSLS_STD_ERRORS_USER, float se[] (Output)
Storage for array se is provided by the user. See IMSLS_STD_ERRORS.

IMSLS_HESSIAN, float**hess (Output)
Address of a pointer to an internally allocated array of length n_parameters × n_parameters 
containing the Hessian matrix.

IMSLS_HESSIAN_USER, float hess[] (Output)
Storage for array hess is provided by the user. See IMSLS_HESSIAN.

IMSLS_RETURN_USER, float param[] (Output)
User-allocated array of length n_parameters containing the estimated parameters.

IMSLS_PARAM_LB, float paramlb[] (Input)
Array of length n_parameters containing the lower bounds of the parameters.

Note: The following optional arguments are used in cases in which a quasi-Newton method is used to 
solve the likelihood problem (ipdf = 7,9,10,12,13,15,18,19).

Exceptions paramlb
Extreme value distribution 
(ipdf = 12)

paramlb[1] = 0.25, for the scale 
parameter

Generalized Pareto distribution 
(ipdf = 15)

paramlb[1] = -5.0, for the shape 
parameter

Generalized extreme value distribu-
tion (ipdf = 13)

paramlb[2] = -10.0, for the shape 
parameter
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Default: The default lower bound depends on the range of the parameter. That is, if the range of the 
parameter is positive for the desired distribution, paramlb[i] = 0.01. If the range of the parame-
ter is non-negative (≥ 0), then paramlb[i] = 0.0. If the range of the parameter is unbounded, then 
paramlb[i] = -10000.00.

IMSLS_PARAM_UB, float paramub[] (Input)
Array of length n_parameters containing the upper bounds of the parameters.

Default: paramub[i] = 10000.0.

IMSLS_INITIAL_ESTIMATES, float initial_estimates[] (Input)
Array of length n_parameters containing the initial estimates of the parameters.

Default: Method of moments estimates are used for initial estimates.

IMSLS_XSCALE, float xscale[] (Input)
Array of length n_parameters containing the scaling factors for the parameters. xscale is used 
in the optimization algorithm in scaling the gradient and the distance between two points.

Default: xscale[i] = 1.0.

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of iterations.

Default: maxit = 100.

IMSLS_MAX_FCN, int maxfcn (Input)
Maximum number of function evaluations.

Default: maxfcn = 400.

IMSLS_MAX_GRAD, int maxgrad (Input)
Maximum number of gradient evaluations.

Default: maxgrad = 400.

Exceptions paramlb
Generalized Pareto distribution 
(ipdf = 15)

paramub[1] = -5.0, for the shape 
parameter

Generalized extreme value distri-
bution (ipdf = 13)

paramub[2] = -10.0, for the shape 
parameter
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Description
Function imsls_f_max_likelihood_estimates calculates maximum likelihood estimates for the param-
eters of a univariate probability distribution, where the distribution is one specified by ipdf and where the input 
data x is (assumed to be) a random sample from that distribution.

Let {xi, i=1, ..., N} represent a random sample from a probability distribution with density function  , which 

depends on a vector  containing the values of the parameters of the distribution. The values in θ are 
fixed but unknown and the problem is to find an estimate for θ given the sample data.

The likelihood function is defined to be the product

The estimator

That is, the estimator that maximizes L also maximizes log L and is the maximum likelihood estimate, or MLE for θ.

The likelihood problem is in general a constrained non-linear optimization problem, where the constraints are 
determined by the permissible range of θ. In some situations, the problem has a closed form solution. Otherwise, 
imsls_f_max_likelihood_estimates uses a quasi-Newton method to solve the likelihood problem. If 
optional argument IMSLS_INITIAL_ESTIMATES is not supplied, method of moments estimates serve as 
starting values of the parameters. In some cases, method of moments estimators may not exist, such as when 
certain moments of the true distribution do not exist; thus it is possible that the starting values are not truly 
method of moments estimates.

Upper and lower bounds, when needed for the optimization, have default values for each selection of ipdf 
(defaults will vary depending on the allowable range of the parameters). It is possible that the optimization will 
fail. In such cases, the user may try adjusting upper and lower bounds using the optional arguments 
IMSLS_PARAM_LB, IMSLS_PARAM_UB, or adjusting up or down the scaling factors using optional argument 
IMSLS_XSCALE, which can sometimes help the optimization converge.

f x∣θ
θ∈ ℜp

L(θ | {xi;i = 1, … ,N}) = ∏
i=1,…,N

f (xi | θ)

θ^MLE = arg maxθL(θ | {x1, x2, … , xN)
= arg maxθ ∏

i=1,…,N
f (xi | θ)

= arg maxθ ∑
i=1,…,N

log( f (xi | θ))
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Standard errors and covariances are supplied, in most cases, using the asymptotic properties of MLestimators. 
Under some general regularity conditions, MLestimates are consistent and asymptotically normally distributed 
with variance-covariance equal to the inverse Fisher’s Informationmatrix evaluated at the true value of the param-
eter, θ0:

imsls_f_max_likelihood_estimates approximates the asymptotic variance using the negative inverse 
Hessian evaluated at the MLestimate:

The Hessian is approximated numerically for all but a few cases where it can be determined in closed form.

In cases when the asymptotic result does not hold, standard errors may be available from the known sampling 
distribution. For example, the MLestimate of the Pareto distribution location parameter is the minimum of the 
sample. The variance is estimated using the known sampling distribution of the minimum or first order-statistic 
for the Pareto distribution.

For further details regarding the properties of the estimators and the theory of the maximum likelihood method, 
see Kendall and Stuart (1979). The different probability distributions have wide coverage in the statistical litera-
ture. See Johnson and Kotz (1970a, 1970b, or later editions).

Parameter estimation (including maximum likelihoood) for the generalized Pareto distribution is studied in Hosk-
ing and Wallis (1987) and Giles and Feng (2009), and estimation for the generalized extreme value distribution is 
treated in Hosking, Wallis, and Wood (1985).

Remarks
1. The location parameter is not estimated for the generalized Pareto distribution (ipdf=15). Instead, 

the minimum of the sample is subtracted from each observation before the estimation procedure.

2. Only the probability of success parameter is estimated for the binomial and negative binomial distri-
butions, (ipdf = 2,3). The number of trials and the number of failures, respectively, must be 
provided using optional arguments IMSLS_NUMBER_OF_TRIALS or 
IMSLS_NUMBER_OF_FAILURES.

Var(θ^) = I(θ0)
−1 = − E

∂2logL
∂θ2 θ0

−1

Var(θ^) ≈ −
∂2logL
∂θ2 θ=θ^MLE

−1
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3. imsls_f_max_likelihood_estimates issues an error if missing or NaN values are encoun-
tered in the input data. Missing or NaN values should be removed before calling 
imsls_f_max_likelihood_estimates.

Examples

Example 1

The data are N= 100 observations generated from the logistic distribution with location parameter  and 

parameter  .

#include <imsls.h>
int main() {

 int ipdf = 18, n_observations = 100;
 float *p_hess, *p_se, *param, mloglike;
 float x[100] = {

 2.020394,2.562315,-0.5453395,1.258546,0.7704533, 0.3662717,
 0.6885536,2.619634,-0.49581,2.972249,0.5356222,0.4262079,
 1.023666,0.8286033,1.319018,2.123659,0.3904647,-0.1196832,
 1.629261,1.069602,0.9438083,1.314796,1.404453,-0.5496156,
 0.8326595,1.570288,1.326737,0.9619384,-0.1795268,1.330161,
 -0.2916453,0.7430826,1.640854,1.582755,1.559261,0.6177695,
 1.739638,1.308973,0.568709,0.2587071,0.745583,1.003815,
 1.475413,1.444586,0.4515438,1.264374,1.788313,1.062330,
 2.126034,0.3626510,1.365612,0.5044735,2.51385,0.7910572,
 0.5932584,1.140248,2.104453,1.345562,-0.9120445,0.0006519341,
 1.049729,-0.8246097,0.8053433,1.493787,-0.5199705,2.285175,
 0.9005916,2.108943,1.40268,1.813626,1.007817,1.925250,1.037391,
 0.6767235,-0.3574937,0.696697,1.104745,-0.7691124,1.554932,
 2.090315,0.60919,0.4949385,-2.449544,0.668952,0.9480486,
 0.9908558,-1.495384,2.179275,0.1858808,-0.3715074,0.1447150,
 0.857202,1.805844,0.405371,1.425935,0.3187476,1.536181,
 -0.6352768,0.5692068,1.706736};

 param = imsls_f_max_likelihood_estimates(n_observations, x, ipdf, 
IMSLS_PRINT_LEVEL, 2,

 IMSLS_HESSIAN, &p_hess,
 IMSLS_STD_ERRORS, &p_se,
 IMSLS_MLOGLIKE, &mloglike,
 0);

}

Output

Maximum likelihood estimation for the logistic distribution
Starting Estimates:  0.90677  0.51128
Initial -log-likelihood:  132.75304

-log-likelihood  132.61490

μ = 0.85
σ = 0.5
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MLE for parameter  1  0.95321
MLE for parameter  2  0.50953
Std error for parameter  1  0.08825
Std error for parameter  2  0.04354

 Hessian
 1  2

1  -128.5  -7.6
2  -7.6  -527.9

Example 2

The data are N = 100 observations generated from the generalized extreme value distribution with location 

parameter  , scale parameter  , and shape parameter  .

#include <imsls.h>
int main() {

 int ipdf = 13, n_observations = 100;
 float *p_hess, *p_se, *param, mloglike;
 float x[100] = {

 0.7688048,0.1944504,-0.2992029,-0.3853738,
 -1.185593,0.3056149,-0.4407711,0.5001115,
 0.3635027,-1.058632,-0.2927695,-0.3205969,
 0.03367599,0.8850839,1.860485,0.4841038,
 0.5421101,1.883694,1.707392,0.2166106,
 1.537204,1.340291,0.4589722,1.616080,
 -0.8389288,0.7057426,1.532988,1.161350,
 0.9475416,0.4995294,-0.2392898,0.8167126,

 0.992479,-0.8357962,-0.3194499,1.233603,
 2.321555,-0.3715629,-0.1735171,0.4624801,
 -0.6249577,0.7040129,-0.3598889,0.7121399,
 -0.5178735,-1.069429,0.7169358,0.4148059,
 1.606248,-0.4640152,1.463425,0.9544342,
 -1.383239,0.1393160,0.622689,0.365793,
 0.7592438,0.810005,0.3483791,2.375727,
 -0.08124195,-0.4726068,0.1496043,0.4961212,
 1.532723,-0.1106993,1.028553,0.856018,
 -0.6634978,0.3573150,0.06391576,0.3760349,
 -0.5998756,0.4158309,-0.2832369,-1.023551,
 1.116887,1.237714,1.900794,0.6010037,
 1.599663,-0.3341879,0.5278575,0.5497694,
 0.6392933,0.592865,1.646261,-1.042950,
 -1.113611,1.229645,1.655998,0.6913992,
 0.4548073,0.4982649,-1.073640,-0.4765107,
 -0.8692533,-0.8316462,-0.03609102,0.655814};

 param = imsls_f_max_likelihood_estimates(n_observations,
 x, ipdf,
 IMSLS_PRINT_LEVEL, 2,
 IMSLS_HESSIAN, &p_hess,
 IMSLS_STD_ERRORS, &p_se,

μ = 0 σ = 1.0 ξ = − 0.25
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 IMSLS_MLOGLIKE, &mloglike,
 0);

}

Output

Maximum likelihood estimation for the generalized extreme value distribution
Starting Estimates:  -0.00888  0.67451  0.00000
Initial -log-likelihood:  135.43817

-log-likelihood  126.09406
MLE for parameter  1  0.07541
MLE for parameter  2  0.85112
MLE for parameter  3  -0.27974
Std error for parameter  1  0.09419
Std error for parameter  2  0.06906
Std error for parameter  3  0.06603

 Hessian
 1  2  3

1  -141.7  -53.9  -112.4
2  -53.9  -340.8  -239.7
3  -112.4  -239.7  -439.7

Warning Errors
IMSLS_HESSIAN_NOT_CALCULATED The Hessian is not calculated for the requested 

distribution.

IMSLS_HESSIAN_NOT_USED The Hessian is not used to calculate the standard errors 
of the estimates for the # distribution.

IMSLS_HESSIAN_NOT_CALC_2 For the Pareto distribution, the Hessian cannot be cal-
culated because the parameter estimate is 0.
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Random Number Generation

Functions
Univariate Discrete Distributions

Generates pseudorandom binomial numbers . . . . . . . . . . . . . . . . . . .random_binomial     1215
Generates pseudorandom geometric numbers . . . . . . . . . . . . . . . . random_geometric     1218
Generates pseudorandom hypergeometric numbers  . . . . . . . random_hypergeometric     1220
Generates pseudorandom logarithmic numbers . . . . . . . . . . . . . . .random_logarithmic     1223
Generates pseudorandom negative binomial numbers . . . . . . . .random_neg_binomial     1225
Generates pseudorandom Poisson numbers  . . . . . . . . . . . . . . . . . . . random_poisson     1228
Generates pseudorandom discrete uniform numbers . . . . . . random_uniform_discrete     1230
Generates pseudorandom numbers from 

a general discrete distribution . . . . . . . . . . . . . . . . . . . . . random_general_discrete     1232
Sets up a table to generate pseudorandom numbers from 

a general discrete distribution . . . . . . . . . . . . . . . . . . . . . . . . . discrete_table_setup     1237

Univariate Continuous Distributions
Generates pseudorandom beta numbers  . . . . . . . . . . . . . . . . . . . . . . . . . random_beta     1243
Generates pseudorandom Cauchy numbers. . . . . . . . . . . . . . . . . . . . .random_cauchy     1246
Generates pseudorandom chi_squared numbers . . . . . . . . . . . . .random_chi_squared     1248
Generates pseudorandom exponential numbers. . . . . . . . . . . . . . random_exponential     1250
Generates pseudorandom mixed 

exponential numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . random_exponential_mix     1252
Generates pseudorandom gamma numbers . . . . . . . . . . . . . . . . . . . . random_gamma     1255
Generates peudorandom lognormal numbers . . . . . . . . . . . . . . . . . random_lognormal     1258
Generates pseudorandom normal numbers  . . . . . . . . . . . . . . . . . . . . . random_normal     1261
Generates pseudorandom numbers from a 

stable distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .random_stable     1264
Generates pseudorandom Student’s t . . . . . . . . . . . . . . . . . . . . . . . . random_student_t     1267
Generates pseudorandom triangular numbers  . . . . . . . . . . . . . . . . . random_triangular     1269
Generates pseudorandom uniform numbers . . . . . . . . . . . . . . . . . . . . random_uniform     1271
Generates pseudorandom Von Mises numbers  . . . . . . . . . . . . . . . random_von_mises     1274
Generates pseudorandom Weibull numbers . . . . . . . . . . . . . . . . . . . . . random_weibull     1276
Generates pseudorandom numbers from a general 

continuous distribution  . . . . . . . . . . . . . . . . . . . . . . . .random_general_continuous     1279
Sets up table to generate pseudorandom numbers 
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from a general continuous distribution  . . . . . . . . . . . . . . . continuous_table_setup     1282

Multivariate Continuous Distributions
Generates multivariate normal vectors  . . . . . . . . . . . . . . .random_normal_multivariate     1286
Generates a pseudorandom orthogonal matrix 

or a correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . random_orthogonal_matrix     1290
Generates pseudorandom numbers from a multivariate distribution 

determined from a given sample. . . . . . . . . . . . . . . . . . . random_mvar_from_data     1293
Generates pseudorandom numbers from a 

multinomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random_multinomial     1297
Generates pseudorandom points on a unit circle or 

K-dimensional sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random_sphere     1300
Generates a pseudorandom two-way table . . . . . . . . . . . . . . . . random_table_twoway     1303
Generates multivariate Gaussian Copula vectors . . . . random_mvar_gaussian_copula     1306
Generates multivariate Student’s t Copula vectors . . . . . . . . . .random_mvar_t_copula     1311
Generates a canonical correlation matrix  . . . . . . . . . . . . . . . . . . canonical_correlation     1317

Order Statistics
Generates pseudorandom order statistics from a standard 

normal distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .random_order_normal     1323
Generates pseudorandom order statistics from a 

uniform (0, 1) distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . random_order_uniform     1326

Stochastic Processes
Generates pseudorandom ARMA 

process numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random_arma     1329
Generates pseudorandom numbers from a 

nonhomogeneous Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . random_npp     1334

Samples and Permutations
Generates a pseudorandom permutation  . . . . . . . . . . . . . . . . . . . random_permutation     1338
Generates a simple pseudorandom sample of indices . . . . . . random_sample_indices     1340
Generates a simple pseudorandom sample from 

a finite population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .random_sample     1342

Utility Functions
Selects the uniform (0, 1) generator  . . . . . . . . . . . . . . . . . . . . . . . . . . . random_option     1346
Retrieves the uniform (0, 1) multiplicative congruential 

pseudorandom number generator  . . . . . . . . . . . . . . . . . . . . . . random_option_get     1348
Retrieves the current value of the seed . . . . . . . . . . . . . . . . . . . . . . . random_seed_get     1349
Retrieves a seed for the congruential generators . . . . . .random_substream_seed_get     1351
Initializes a random seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random_seed_set     1353
Sets the current table used in the shuffled generato . . . . . . . . . . . . . random_table_set     1354
Retrieves the current table used in the shuffled generator  . . . . . . . . random_table_get     1355
Sets the current able used in the GFSR generator . . . . . . . . random_GFSR_table_set     1357
Retrieves the current table used in the GFSR generator. . . . random_GFSR_table_get     1358
Initializes the 32-bit Mersenne Twister 

generator using an array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random_MT32_init     1362
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Retrieves the current table used in the 32-bit 
Mersenne Twister generator . . . . . . . . . . . . . . . . . . . . . . random_MT32_table_get     1363

Sets the current table used in the 32-bit 
Mersenne Twister generator . . . . . . . . . . . . . . . . . . . . . . random_MT32_table_set     1366

Initializes the 64-bit Mersenne Twister 
generator using an array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random_MT64_init     1367

Retrieves the current table used in the 64-bit 
Mersenne Twister generato  . . . . . . . . . . . . . . . . . . . . . . random_MT64_table_get     1368

Sets the current table used in the 64-bit 
Mersenne Twister generator . . . . . . . . . . . . . . . . . . . . . . random_MT64_table_set     1371

Low-discrepancy sequence
Generates a shuffled Faure sequence  . . . . . . . . . . . . . . . . . . . . . . . . faure_next_point     1372
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Usage Notes

Overview of Random Number Generation
This chapter describes functions for the generation of random numbers that are useful for applications in Monte 
Carlo or simulation studies. Before using any of the random number generators, the generator must be initialized 
by selecting a seed or starting value. The user can do this by calling the function imsls_random_seed_set. If 
the user does not select a seed, one is generated using the system clock. A seed needs to be selected only once 
in a program, unless two or more separate streams of random numbers are maintained. Other utility functions in 
this chapter can be used to select the form of the basic generator to restart simulations and to maintain separate 
simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates”, “deviates”, and “variates” are 
used interchangeably. The phrase “pseudorandom” is sometimes used to emphasize that the numbers generated 
are really not “random” since they result from a deterministic process. The usefulness of pseudorandom num-
bers is derived from the similarity, in a statistical sense, of samples of the pseudorandom numbers to samples of 
observations from the specified distributions. In short, while the pseudorandom numbers are completely deter-
ministic and repeatable, they simulate the realizations of independent and identically distributed random 
variables.

Basic Uniform Generators
The random number generators in this chapter use either a multiplicative congruential method or a generalized 
feedback shift register. The selection of the type of generator is made by calling the function 
imsls_random_option. If no selection is made explicitly, a multiplicative generator (with multiplier 16807) is 
used. Whatever distribution is being simulated, uniform (0, 1) numbers are first generated and then transformed 
if necessary. These functions are portable in the sense that, given the same seed and for a given type of genera-
tor, they produce the same sequence in all computer/compiler environments. There are many other issues that 
must be considered in developing programs for the methods described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators
The form of the multiplicative congruential generators is

xi ≡ cxi−

1

mod (231 - 1)
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Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root modulo 231 − 1 (which is a 

prime), then the generator will have a maximal period of 231 − 2. There are several other considerations, how-
ever. See Knuth (1981) for a good general discussion. The possible values for c in the generators are 16807, 
397204094, and 950706376. The selection is made by the function imsls_random_option. The choice of 
16807 will result in the fastest execution time, but other evidence suggests that the performance of 950706376 
is best among these three choices (Fishman and Moore 1982). If no selection is made explicitly, the functions use 
the multiplier 16807, which has been in use for some time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function imsls_f_random_uniform. This function is 
portable in the sense that, given the same seed, it produces the same sequence in all computer/compiler 
environments.

Shuffled Generators 
The user also can select a shuffled version of these generators using imsls_random_option. The shuffled gen-
erators use a scheme due to Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128 
uniform (0,1) numbers resulting from the simple multiplicative congruential generator. Then, for each xi from the 

simple generator, the low-order bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in 

the table is then delivered as the random number; and xi, after being scaled into the unit interval, is inserted into 

the j-th position in the table. This scheme is similar to that of Bays and Durham (1976), and their analysis is appli-
cable to this scheme as well.

The Generalized Feedback Shift Register Generator
The GFSR generator uses the recursion Xt = Xt−1563 ⊕ Xt−96. This generator, which is different from earlier GFSR 

generators, was proposed by Fushimi (1990), who discusses the theory behind the generator and reports on sev-
eral empirical tests of it. Background discussions on this type of generator can be found in Kennedy and Gentle 
(1980), pages 150−162.

Setting the Seed
The seed of the generator can be set in imsls_random_seed_set and can be retrieved by 
imsls_random_seed_get. Prior to invoking any generator in this section, the user can call 
imsls_random_seed_set to initialize the seed, which is an integer variable with a value between 1 and 
2147483647. If it is not initialized by imsls_random_seed_set, a random seed is obtained from the system 
clock. Once it is initialized, the seed need not be set again.
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If the user wants to restart a simulation, imsls_random_seed_get can be used to obtain the final seed value 
of one run to be used as the starting value in a subsequent run. Also, if two simultaneous random number 
streams are desired in one run, imsls_random_seed_set and imsls_random_seed_get can be used 
before and after the invocations of the generators in each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting the seed, the user must also reset 
some values in a table. For the shuffled generators, this is done using the functions 
imsls_f_random_table_get and imsls_f_random_table_set; and for the GFSR generator; the table is 
retrieved and set by the functions imsls_random_GFSR_table_get and imsls_random_GFSR_table_set. 
The tables for the shuffled generators are separate for single and double precision; so, if precisions are mixed in 
a program, it is necessary to manage each precision separately for the shuffled generators.

Timing Considerations
The generation of the uniform (0,1) numbers is done by the function imsls_f_random_uniform. The particular 
generator selected in imsls_random_option, that is, the value of the multiplier and whether shuffling is done 
or whether the GFSR generator is used, affects the speed of imsls_f_random_uniform. The smaller multi-
plier (16807, selected by iopt = 1) is faster than the other multipliers. The multiplicative congruential generators 
that do not shuffle are faster than the ones that do. The GFSR generator is roughly as fast as the fastest multipli-
cative congruential generator, but the initialization for it (required only on the first invocation) takes longer than 
the generation of thousands of uniform random numbers. Precise statements of relative speeds depend on the 
computing system.

Distributions Other than the Uniform
The nonuniform generators use a variety of transformation procedures. All of the transformations used are exact 
(mathematically). The most straightforward transformation is the inverse CDF technique, but it is often less efficient 
than others involving acceptance/rejection and mixtures. See Kennedy and Gentle (1980) for discussion of these 
and other techniques.

Many of the nonuniform generators in this chapter use different algorithms depending on the values of the 
parameters of the distributions. This is particularly true of the generators for discrete distributions. Schmeiser 
(1983) gives an overview of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on different computers, because of 
rounding, the nonuniform generators that use acceptance/rejection may occasionally produce different 
sequences on different computer/compiler environments.
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Although the generators for nonuniform distributions use fast algorithms, if a very large number of deviates from 
a fixed distribution are to be generated, it might be worthwhile to consider a table-sampling method, as imple-
mented in the functions imsls_f_random_general_discrete, imsls_f_discrete_table_setup, 
imsls_f_random_general_continuous, and imsls_f_continuous_table_setup. After an initialization 
stage, which may take some time, the actual generation may proceed very fast.

Tests
Extensive empirical tests of some of the uniform random number generators available in 
imsls_f_random_uniform are reported by Fishman and Moore (1982 and 1986). Results of tests on the gen-
erator using the multiplier 16807 with and without shuffling are reported by Learmonth and Lewis (1973b). If the 
user wishes to perform additional tests, the functions in Chapter 7, Tests of Goodness of Fit, may be of use. Often 
in Monte Carlo applications, it is appropriate to construct an ad hoc test that is sensitive to departures that are 
important in the given application. For example, in using Monte Carlo methods to evaluate a one-dimensional 
integral, autocorrelations of order one may not be harmful, but they may be disastrous in evaluating a two-
dimensional integral. Although generally the functions in this chapter for generating random deviates from non-
uniform distributions use exact methods, and, hence, their quality depends almost solely on the quality of the 
underlying uniform generator, it is often advisable to employ an ad hoc test of goodness of fit for the transforma-
tions that are to be applied to the deviates from the nonuniform generator.

Copula Generators and Canonical Correlation
A copula is a multivariate cumulative probability distribution (CDF) whose arguments are random variables uni-
formly distributed on the interval [0, 1] corresponding to the probabilities (variates) associated with arbitrarily 
distributed marginal deviates. The copula structure allows the multivariate CDF to be partitioned into the copula, 
which has associated with it information characterizing the dependence among the marginal variables, and the 
set of separate marginal deviates, each of which has its own distribution structure.

Two functions, imsls_f_random_mvar_gaussian_copula and imsls_f_random_mvar_t_copula, allow 
the user to specify a correlation structure (in the form of a Cholesky matrix) which can be used to imprint correla-
tion information on a sequence of multivariate random vectors. Each call to one of these functions returns a 
random vector whose elements (variates) are each uniformly distributed on the interval [0, 1] and correlated 
according to a user-specified Cholesky matrix. These variate vector sequences may then be inverted to marginal 
deviate sequences whose distributions and imprinted correlations are user-specified.

Function imsls_f_random_mvar_gaussian_copula generates a random Gaussian copula vector by 
inverting a vector of uniform [0, 1] random numbers to an N(0, 1) deviate vector, imprinting the N(0,1) vector with 
the correlation information by multiplying it with the Cholesky matrix, and then using the N(0,1) CDF to map the 
Cholesky-imprinted deviate vector back to a vector of imprinted uniform [0, 1] variates.
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Function imsls_f_random_mvar_t_copula inverts a vector of uniform [0, 1] random numbers to an 
N(0, 1) deviate vector, imprints the vector with correlation information by multiplying it with the Cholesky matrix, 
transforms the imprinted N(0, 1) vector to an imprinted Student’s t vector (where each element is Student’s t dis-

tributed with    degrees of freedom) by dividing each element of the imprinted N(0, 1) vector by , where s is 

a random deviate taken from a chi-squared distribution with    degrees of freedom, and finally maps each ele-
ment of the resulting imprinted Student’s t vector back to a uniform [0, 1] distributed variate using the Student’s t 
CDF.

The third copula function, imsls_f_canonical_correlation, extracts a “canonical correlation” matrix 
from a sequence of multivariate deviate vectors whose component marginals are arbitrarily distributed. This is 
accomplished by first extracting the empirical CDF from each of the marginal deviate sequences and then using 
this empirical CDF to map the deviates to uniform [0, 1] variates which are then inverted to N(0, 1) deviates. Each 
element Ci j of the canonical correlation matrix can then be extracted by averaging the products zit zjt of N(0, 1) 

deviates i and j over the t-indexed sequence. The utility of function imsls_f_canonical_correlation is 
that because the canonical correlation matrix is derived from N(0, 1) deviates, the correlation is unbiased, i.e. 
undistorted by the arbitrary marginal distribution structures of the original deviate vector sequences. This is 
important in such financial applications as portfolio optimization, where correlation is used to estimate and mini-
mize risk.

Additional Notes on Usage

The generators for continuous distributions are available in both single and double-precision versions. This is 
merely for the convenience of the user; the double-precision versions should not be considered more “accurate,” 
except possibly for the multivariate distributions.

v s v

v
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random_binomial
Generates pseudorandom numbers from a binomial distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_binomial(int n_random, int n, float p, …, 0)

The type double function is imsls_d_random_binomial.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

int n  (Input)
Number of Bernoulli trials.

float p  (Input)
Probability of success on each trial. Parameter p must be greater than 0.0 and less than 1.0.

Return Value
An integer array of length n_random containing the random binomial deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_binomial (int n_random, int n, float p, 

IMSLS_RETURN_USER, int ir[],
0)
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Optional Arguments
IMSLS_RETURN_USER, int ir[]  (Output)

User-supplied integer array of length n_random containing the random binomial deviates.

Description
Function imsls_f_random_binomial generates pseudorandom numbers from a binomial distribution with 
parameters n and p. Parameters n and p must be positive, and p must less than 1. The probability function (with 
n = n and p = p) is 

for x = 0, 1, 2, …, n.

The algorithm used depends on the values of n and p. If np < 10 or p is less than machine epsilon (see 
imsls_f_machine, Chapter 15, Utilities), the inverse CDF technique is used; otherwise, the BTPE algorithm of 
Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection method 
using a composition of four regions. (TPE=Triangle, Parallelogram, Exponential, left and right.)

Example
In this example, imsls_f_random_binomial generates five pseudorandom binomial deviates from a bino-
mial distribution with parameters 20 and 0.5.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   int  n = 20;
   float p = 0.5;
   int  *ir;
   imsls_random_seed_set(123457);
   ir = imsls_f_random_binomial(n_random, n, p,
       0);
   imsls_i_write_matrix("Binomial (20, 0.5) random deviates:", 1,
       n_random, ir,
       IMSLS_NO_COL_LABELS,
       0);
}

f x =
n
x px 1 − p n−x
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Output

Binomial (20, 0.5) random deviates:
      14   9  12  10  12
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random_geometric
Generates pseudorandom numbers from a geometric distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_geometric(int n_random, float p, …, 0)

The type double function is imsls_d_random_geometric. 

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float p  (Input)
Probability of success on each trial. Parameter p must be positive and less than 1.0.

Return Value
An integer array of length n_random containing the random geometric deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_geometric (int n_random, float p, 

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[]  (Output)

User-supplied integer array of length n_random containing the random geometric deviates.
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Description
Function imsls_f_random_geometric generates pseudorandom numbers from a geometric distribution 
with parameter P, where P is the probability of getting a success on any trial. A geometric deviate can be inter-
preted as the number of trials until the first success (including the trial in which the first success is obtained). The 
probability function is

for x = 1, 2, … and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than (log (Ui))/(log (1 − P)), where the Ui 

are independent uniform(0, 1) random numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P. Such deviates can be obtained by 
subtracting 1 from each element of ir (the returned vector of random deviates).

Example
In this example, imsls_f_random_geometric generates five pseudorandom geometric deviates from a 
geometric distribution with parameter an equal to 0.3.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float p = 0.3;
   int *ir;
   imsls_random_seed_set(123457);
   ir = imsls_f_random_geometric(n_random, p,
       0);
   imsls_i_write_matrix("Geometric(0.3) random deviates:", 1, n_random,
       ir,
       IMSLS_NO_COL_LABELS,
       0);
}

Output 

Geometric(0.3) random deviates:
      1   4   1   2   1

f x = P 1 − P x−1
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random_hypergeometric
Generates pseudorandom numbers from a hypergeometric distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_hypergeometric(int n_random, int n, int m, int l, …, 0)

The type double function is imsls_d_random_hypergeometric.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

int n  (Input)
Number of items in the sample. Parameter n must be positive.

int m  (Input)
Number of special items in the population, or lot. Parameter m must be positive.

int l  (Input)
Number of items in the lot. Parameter l must be greater than both n and m.

Return Value
An integer array of length n_random containing the random hypergeometric deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_hypergeometric (int n_random, int n, int m, int l,

IMSLS_RETURN_USER, int ir[],
0)
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Optional Arguments
IMSLS_RETURN_USER, int ir[]  (Output)

User-supplied integer array of length n_random containing the random hypergeometric deviates.

Description
Function imsls_f_random_hypergeometric generates pseudorandom numbers from a hypergeometric 
distribution with parameters N, M, and L. The hypergeometric random variable X can be thought of as the num-
ber of items of a given type in a random sample of size N that is drawn without replacement from a population of 
size L containing M items of this type. The probability function is

for x = max (0, N − L + M), 1, 2, …, min (N, M)

If the hypergeometric probability function with parameters N, M, and L evaluated at N − L + M (or at 0 if this is 
negative) is greater than the machine epsilon (see imsls_f_machine, Chapter 15, Utilities), and less than 1.0 
minus the machine epsilon, then imsls_f_random_hypergeometric uses the inverse CDF technique. The 
function recursively computes the hypergeometric probabilities, starting at x = max (0, N − L + M) and using the 
ratio

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, the 
imsls_f_random_hypergeometric generates integer deviates uniformly in the interval [1, L − i] for 
i = 0, 1, ..., and at the i-th step, if the generated deviate is less than or equal to the number of special items 
remaining in the lot, the occurrence of one special item is tallied and the number of remaining special items is 
decreased by one. This process continues until the sample size of the number of special items in the lot is 
reached, whichever comes first. This method can be much slower than the inverse CDF technique. The timing 
depends on N. If N is more than half of L (which in practical examples is rarely the case), the user may wish to 
modify the problem, replacing N by L − N, and to consider the generated deviates to be the number of special 
items not included in the sample.

f x =

M
x

L − M
N − x
L
N

f X = x + 1
f X = x
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Example
In this example, imsls_f_random_hypergeometric generates five pseudorandom hypergeometric devi-
ates from a hypergeometric distribution to simulate taking random samples of size 4 from a lot containing 20 
items, of which 12 are defective. The resulting hypergeometric deviates represent the numbers of defectives in 
each of the five samples of size 4.

#include <imsls.h>
int main()
{
   int n_random = 5;
   int n = 4;
   int m = 12;
   int l = 20;
   int *ir;
   imsls_random_seed_set(123457);
   ir = imsls_f_random_hypergeometric(n_random, n, m, l,
       0);
   imsls_i_write_matrix("Hypergeometric random deviates: ", 1,
       n_random, ir,
       IMSLS_NO_COL_LABELS,
       0);
}

Output

Hypergeometric random deviates: 
        4   2   3   3   3

Fatal Errors
IMSLS_LOT_SIZE_TOO_SMALL The lot size must be greater than the sample size 

and the number of defectives in the lot. Lot size = #. 
Sample size = #. Number of defectives in the lot = #.
1222



 Random Number Generation         random_logarithmic
random_logarithmic
Generates pseudorandom numbers from a logarithmic distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_logarithmic(int n_random, float a, …, 0)

The type double function is imsls_d_random_logarithmic.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float a  (Input)
Parameter of the logarithmic distribution. Parameter a must be positive and less than 1.0.

Return Value
An integer array of length n_random containing the random logarithmic deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_logarithmic (int n_random, float a,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[]  (Output)

User-supplied integer array of length n_random containing the random logarithmic deviates.
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Description
Function imsls_f_random_logarithmic generates pseudorandom numbers from a logarithmic distribu-
tion with parameter a. The probability function is 

for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. If a is less than 0.95, Kemp’s algo-
rithm LS, which is a “chop-down” variant of an inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, 
which gives special treatment to the highly probable values of 1 and 2 is used.

Example
In this example, imsls_f_random_logarithmic generates five pseudorandom logarithmic deviates from a 
logarithmic distribution with parameter a equal to 0.3.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float a = 0.3;
   int  *ir;
   imsls_random_seed_set(123457);
   ir = imsls_f_random_logarithmic(n_random, a,
       0);
   imsls_i_write_matrix("logarithmic random deviates:", 1, n_random, ir,
       IMSLS_NO_COL_LABELS,
       0);
}

Output 

logarithmic random deviates:
      2   1   1   1   2

f x = − ax
x ln 1 − a
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random_neg_binomial
Generates pseudorandom numbers from a negative binomial distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_neg_binomial(int n_random, float rk, float p, …, 0)

The type double function is imsls_d_random_neg_binomial.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float rk  (Input)
Negative binomial parameter. Parameter rk must be positive. If rk is an integer, the generated devi-
ates can be thought of as the number of failures in a sequence of Bernoulli trials before rk 
successes occur.

float p  (Input)
Probability of failure on each trial. Parameter p must be greater than machine epsilon (see 
imsls_f_machine, Chapter 15, Utilities) and less than 1.0.

Return Value
An integer array of length n_random containing the random negative binomial deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_neg_binomial (int n_random, float rk, float p,

IMSLS_RETURN_USER, int ir[],
0)
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Optional Arguments
IMSLS_RETURN_USER, int ir[]  (Output)

User-supplied integer array of length n_random containing the random negative binomial deviates.

Description
Function imsls_f_random_neg_binomial generates pseudorandom numbers from a negative binomial 
distribution with parameters rk and p. Parameters rk and p must be positive and p must be less than 1. The 
probability function (with r = rk and p = p) is

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can be thought of as modeling the 
length of a sequence of Bernoulli trials until r successes are obtained, where p is the probability of getting a fail-
ure on any trial. In this form, the random variable takes values r, r + 1, r + 2, … and can be obtained from the 
negative binomial random variable defined above by adding r to the negative binomial variable. This latter form is 
also equivalent to the sum of r geometric random variables defined as taking values 1, 2, 3, ...

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon, 
imsls_f_random_neg_binomial uses the inverse CDF technique; otherwise, for each negative binomial 
deviate, imsls_f_random_neg_binomial generates a gamma (r, p/(1 − p)) deviate Y and then generates a 
Poisson deviate with parameter Y.

Example
In this example, imsls_f_random_neg_binomial generates five pseudorandom negative binomial devi-
ates from a negative binomial (Pascal) distribution with parameters r equal to 4 and p equal to 0.3.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float rk = 4.0;
   float p = 0.3;
   int  *ir;
   imsls_random_seed_set(123457);
   ir = imsls_f_random_neg_binomial(n_random, rk, p,
       0);

f x = r + x − 1
x 1 − p rpx
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   imsls_i_write_matrix(
       "Negative Binomial (4.0, 0.3) random deviates: ", 1, n_random,
       ir,
       IMSLS_NO_COL_LABELS,
       0);
}

Output

Negative Binomial (4.0, 0.3) random deviates: 
               5   1   3   2   3
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random_poisson

more...

Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <imsls.h>
int *imsls_random_poisson(int n_random, float theta, …, 0)

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float theta  (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
An array of length n_random containing the random Poisson deviates. 

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_poisson (int n_random, float theta,

IMSLS_RETURN_USER, int r[],
0)

Optional Arguments
IMSLS_RETURN_USER, int r[]  (Output)

User-supplied array of length n_random containing the random Poisson deviates.
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Description
Function imsls_random_poisson generates pseudorandom numbers from a Poisson distribution with pos-
itive mean theta. The probability function (with θ = theta) is

If theta is less than 15, imsls_random_poisson uses an inverse CDF method; otherwise, the PTPE method 
of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used. The PTPE method uses a composi-
tion of four regions, a triangle, a parallelogram, and two negative exponentials. In each region except the triangle, 
acceptance/rejection is used. The execution time of the method is essentially insensitive to the mean of the 
Poisson.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.

Example
In this example, imsls_random_poisson is used to generate five pseudorandom deviates from a Poisson 
distribution with mean equal to 0.5.

#include <imsls.h>
#define N_RANDOM 5
int main()
{
   int        *r;
   int        seed = 123457;
   float      theta = 0.5;
   imsls_random_seed_set (seed);
   r = imsls_random_poisson (N_RANDOM, theta, 0);
   imsls_i_write_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM, r, 0);
}

Output

Poisson(0.5) random deviates
     1   2   3   4   5
     2   0   1   0   1

f x = e−θθx / x! for x = 0,1,2, …
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random_uniform_discrete
Generates pseudorandom numbers from a discrete uniform distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_uniform_discrete(int n_random, int k, …, 0)

The type double function is imsls_d_random_uniform_discrete. 

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

int k  (Input)
Parameter of the discrete uniform distribution. The integers 1, 2, ..., k occur with equal probability. 
Parameter k must be positive.

Return Value
An integer array of length n_random containing the random discrete uniform deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_uniform_discrete (int n_random, int k, 

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[]  (Output)

User-supplied integer array of length n_random containing the random discrete uniform deviates.
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Description
Function imsls_f_random_uniform_discrete generates pseudorandom numbers from a uniform dis-
crete distribution over the integers 1, 2, ...k. A random integer is generated by multiplying k by a uniform (0, 1) 
random number, adding 1.0, and truncating the result to an integer. This, of course, is equivalent to sampling with 
replacement from a finite population of size k.

Example
In this example, imsls_f_random_uniform_discrete generates five pseudorandom discrete uniform 
deviates from a discrete uniform distribution over the integers 1 to 6.

#include <imsls.h>
int main()
{
   int n_random = 5;
   int k = 6;
   int *ir;
   imsls_random_seed_set(123457);
   ir = imsls_f_random_uniform_discrete(n_random, k,
       0);
   imsls_i_write_matrix("Discrete uniform (1, 6) random deviates:" , 1,
       n_random, ir,
       IMSLS_NO_COL_LABELS,
       0);
}

Output

Discrete uniform (1, 6) random deviates:
            6   2   5   4   6
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random_general_discrete
Generates pseudorandom numbers from a general discrete distribution using an alias method or optionally a 
table lookup method.

Synopsis
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int nmass, 

float probs[], …, 0)

The type double function is imsls_d_random_general_discrete.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

int imin  (Input)
Smallest value the random deviate can assume.

This is the value corresponding to the probability in probs[0].

int nmass  (Input)
Number of mass points in the discrete distribution.

float probs[]  (Input)
Array of length nmass containing probabilities associated with the individual mass points. The ele-
ments of probs must be nonnegative and must sum to 1.0. 

If the optional argument IMSLS_TABLE is used, then probs is a vector of length at least 
nmass + 1 containing in the first nmass positions the cumulative probabilities and, possibly, indexes 
to speed access to the probabilities. IMSL function imsls_f_discrete_table_setup can be used 
to initialize probs properly. If no elements of probs are used as indexes, probs [nmass] is 0.0 on 
input. The value in probs[0] is the probability of imin. The value in probs [nmass-1] must be 
exactly 1.0 (since this is the CDF at the upper range of the distribution.) 
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Return Value
An integer array of length n_random containing the random discrete deviates. To release this space, use 
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int nmass, float probs[],

IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk,
IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[],
IMSLS_SET_INDEX_VECTORS, int iwk[], float wk[],
IMSLS_RETURN_USER, int ir[],
IMSLS_TABLE,
0)

Optional Arguments
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk  (Output)

Retrieve indexing vectors that can be used to increase efficiency when multiple calls will be made to 
imsls_f_random_general_discrete with the same values in probs.

IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[]  (Output)
User-supplied arrays of length nmass used to retrieve indexing vectors that can be used to increase 
efficiency when multiple calls will be made to imsls_f_random_general_discrete with the 
same values in probs. 

IMSLS_SET_INDEX_VECTORS, int *iwk, float *wk  (Input)
Arrays of length nmass that can be used to increase efficiency when multiple calls will be made to 
imsls_f_random_general_discrete with the same values in probs. These arrays are 
obtained by using one of the options IMSLS_GET_INDEX_VECTORS or 
IMSLS_GET_INDEX_VECTORS_USER in the first call to 
imsls_f_random_general_discrete.

IMSLS_TABLE, (Input)
Generate pseudorandom numbers from a general discrete distribution using a table lookup method. 
If this option is used, then probs is a vector of length at least nmass + 1 containing in the first 
nmass positions the cumulative probabilities and, possibly, indexes to speed access to the 
probabilities. 
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IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of length n_random containing the random discrete deviates.

Description
Function imsls_f_random_general_discrete generates pseudorandom numbers from a discrete dis-
tribution with probability function given in the vector probs; that is

Pr(X = i) = pj

for i = imin, imin + 1, …, imin + nm - 1 where j = i - imin + 1, pj = probs[j-1], imin = imin, and nm = nmass.

The algorithm is the alias method, due to Walker (1974), with modifications suggested by Kronmal and Peterson 
(1979). The method involves a setup phase, in which the vectors iwk and wk are filled. After the vectors are filled, 
the generation phase is very fast. To increase efficiency, the first call to 
imsls_f_random_general_discrete can retrieve the arrays iwk and wk using the optional arguments 
IMSLS_GET_INDEX_VECTORS or IMSLS_GET_INDEX_VECTORS_USER , then subsequent calls can be 
made using the optional argument IMSLS_SET_INDEX_VECTORS.

If the optional argument IMSLS_TABLE is used, imsls_f_random_general_discrete generates pseu-
dorandom deviates from a discrete distribution, using the table probs, which contains the cumulative 
probabilities of the distribution and, possibly, indexes to speed the search of the table. The function 
imsls_f_discrete_table_setup can be used to set up the table probs. 
imsls_f_random_general_discrete uses the inverse CDF method to generate the variates.

Examples

Example 1

In this example, imsls_f_random_general_discrete is used to generate five pseudorandom variates 
from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

When imsls_f_random_general_discrete is called the first time, IMSLS_GET_INDEX_VECTORS is 
used to initialize the index vectors iwk and wk. In the next call, IMSLS_GET_INDEX_VECTORS is used, so the 
setup phase is bypassed.
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#include <imsls.h>
int main()
{
   int nr = 5, nmass = 5, iopt = 0, imin = 1, *iwk, *ir;
   float probs[] = {.05, .45, .31, .04, .15};
   float *wk;
   imsls_random_seed_set(123457);
   ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
       IMSLS_GET_INDEX_VECTORS, &iwk, &wk,
       0);
   imsls_i_write_matrix("Random deviates", 1, 5, ir,
       IMSLS_NO_COL_LABELS,
       0);
   imsls_free(ir);
   ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
       IMSLS_SET_INDEX_VECTORS, iwk, wk,
       0);
   imsls_i_write_matrix("Random deviates", 1, 5, ir,
       IMSLS_NO_COL_LABELS, 
       0);
}

Output

 Random deviates
3   2   2   3   5
 Random deviates
1   3   4   5   3

Example 2

In this example, imsls_f_discrete_table_setup is used to set up a table and then 
imsls_f_random_general_discrete is used to generate five pseudorandom variates from the binomial 
distribution with parameters 20 and 0.5.

#include <imsls.h>
#include <stdlib.h>
float prf(int ix);
int main()
{
   int nndx = 12, imin = 0, nmass = 21, nr = 5;
   float del = 0.00001, *cumpr; 
   int *ir = NULL;
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   cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin,
       &nmass,
       0);
   imsls_random_seed_set(123457);
   ir = imsls_f_random_general_discrete(nr, imin, nmass, cumpr,
       IMSLS_TABLE,
       0);
   imsls_i_write_matrix("Binomial (20, 0.5) random deviates", 1, 5, ir,
       IMSLS_NO_COL_LABELS,
       0);
}
float prf(int ix)
{
   int n = 20;
   float p = .5;
   return imsls_f_binomial_pdf (ix, n, p);
}

Output

Binomial (20, 0.5) random deviates
       14    9   12   10   12
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discrete_table_setup
Sets up table to generate pseudorandom numbers from a general discrete distribution.

Synopsis
#include <imsls.h>
float *imsls_f_discrete_table_setup (float prf(), float del, int nndx, int *imin, 

int *nmass, ..., 0)

The type double function is imsls_d_discrete_table_setup.

Required Arguments
float prf(int ix) (Input)

User-supplied function to compute the probability associated with each mass point of the distribu-
tion The argument to the function is the point at which the probability function is to be evaluated. ix 
can range from imin to the value at which the cumulative probability is greater than or equal to 1.0 
- del.

float del  (Input)
Maximum absolute error allowed in computing the cumulative probability. Probabilities smaller than 
del are ignored; hence, del should be a small positive number. If del is too small, however, the 
return value, cumpr [nmass-1] must be exactly 1.0 since that value is compared to 1.0 - del.

int nndx  (Input)
The number of elements of cumpr available to be used as indexes. nndx must be greater than or 
equal to 1. In general, the larger nndx is, to within sixty or seventy percent of nmass, the more effi-
cient the generation of random numbers using imsls_f_random_general_discrete will be.

int *imin  (Input/Output)
Pointer to a scalar containing the smallest value the random deviate can assume.  (Input/Output)
imin is not used if optional argument IMSLS_INDEX_ONLY is used. By default, prf is evaluated 
at imin. If this value is less than del, imin is incremented by 1 and again prf is evaluated at 
imin. This process is continued until prf(imin) ≥ del. imin is output as this value and the 
return value cumpr [0] is output as prf(imin).
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int *nmass  (Input/Output)
Pointer to a scalar containing the number of mass points in the distribution. Input, if 
IMSLS_INDEX_ONLY is used; otherwise, output.
By default, nmass is the smallest integer such that prf(imin + nmass - 1) > 1.0 - del. nmass 
does include the points iminin + j for which prf(iminin + j) < del, for j = 0, 1, ..., iminout -
iminin, where iminin denotes the input value of imin and iminout denotes its output value.

Return Value
Array, cumpr, of length nmass + nndx containing in the first nmass positions, the cumulative probabilities and 
in some of the remaining positions, indexes to speed access to the probabilities. To release this space, use 
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_discrete_table_setup(float prf(), float del, int nndx, int *imin, 

int *nmass,
IMSLS_INDEX_ONLY, 
IMSLS_RETURN_USER, float cumpr[], int lcumpr,
IMSLS_FCN_W_DATA, float prf(), void *data,
0)

Optional Arguments
IMSLS_INDEX_ONLY,  (Input)

Fill only the index portion of the result, cumpr, using the values in the first nmass positions. prf is 
not used and may be a dummy function; also, imin is not used. The optional argument 
IMSLS_RETURN_USER is required if IMSLS_INDEX_ONLY is used.

IMSLS_RETURN_USER, float cumpr[], int lcumpr (Input/Output)
cumpr is a user-allocated array of length nmass + nndx containing in the first nmass positions, the 
cumulative probabilities and in some of the remaining positions, indexes to speed access to the 
probabilities. lcumpr is the actual length of cumpr as specified in the calling function. Since, by 
default, the logical length of cumpr is determined in imsls_f_discrete_table_setup, 
lcumpr is used for error checking. If the option IMSLS_INDEX_ONLY is used, then only the index 
portion of cumpr is filled.
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IMSLS_FCN_W_DATA, float prf(int ix), void *data  (Input)
User-supplied function to compute the probability associated with each mass point of the distribu-
tion, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to 
be passed to the user-supplied function. See the Passing Data to User-Supplied Functions section at 
the beginning of this manual for more details.

Description
Function imsls_f_discrete_table_setup sets up a table that function 
imsls_f_random_general_discrete uses to generate pseudorandom deviates from a discrete distribution. 
The distribution can be specified either by its probability function prf or by a vector of values of the cumulative 
probability function. Note that prf is not the cumulative probability distribution function. If the cumulative prob-
abilities are already available in cumpr, the only reason to call imsls_f_discrete_table_setup is to 
form an index vector in the upper portion of cumpr so as to speed up the generation of random deviates by the 
function imsls_f_random_general_discrete.

Examples

Example 1

In this example, imsls_f_discrete_table_setup is used to set up a table to generate pseudorandom 
variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly in cumpr and request 3 indexes to be com-
puted (nndx = 4). Since the number of mass points is so small, the indexes would not have much effect on the 
speed of the generation of the random variates.

#include <imsls.h>
#include <stdlib.h>
float prf(int ix);
int main()
{
   int i, lcumpr = 9, ir[5];
   int nndx = 4, imin = 1, nmass = 5, nr = 5;
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   float cumpr[9], del = 0.00001, *p_cumpr = NULL;
   i = 0;
   cumpr[i++] = .05;
   cumpr[i++] = .5;
   cumpr[i++] = .81;
   cumpr[i++] = .85;
   cumpr[i++] = 1.0;
   imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass,
       IMSLS_INDEX_ONLY,
       IMSLS_RETURN_USER, cumpr, lcumpr,
       0);
   imsls_f_write_matrix("Cumulative probabilities and indexes",
       1, lcumpr, cumpr,
       0);
}
float prf(int ix)
{
   return 0.;
}

Output

                Cumulative probabilities and indexes
        1          2          3          4          5          6
     0.05       0.50       0.81       0.85       1.00       3.00
        7          8          9
     1.00       2.00       5.00

Example 2

This example, imsls_f_random_general_discrete is used to set up a table to generate binomial vari-
ates with parameters 20 and 0.5. The function imsls_f_binomial_pdf (Chapter 11, Probability Distribution 
Functions and Inverses) is used to compute the probabilities.

#include <stdio.h>
#include <imsls.h>
float prf(int ix);
int main()
{
 int lcumpr = 33;
 int nndx = 12, imin = 0, nmass = 21, nr = 5;
 float del = 0.00001, *cumpr; 
 int *ir = NULL;

 cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);
 printf("The smallest point with positive probability using \n");
 printf("the given del is %d and all points after \n", imin);
 printf("point number %d (counting from the input value\n", nmass);
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 printf("of IMIN) have zero probability.\n");
 imsls_f_write_matrix("Cumulative probabilities and indexes", 
          nmass+nndx, 1, cumpr, 
          IMSLS_WRITE_FORMAT, "%11.7f", 0);
}
float prf(int ix)
{
 int n = 20;
 float p = .5;
 return imsls_f_binomial_pdf(ix, n, p);
}

Output

The smallest point with positive probability using 
the given del is 1 and all points after 
point number 19 (counting from the input value
of IMIN) have zero probability.
Cumulative probabilities and indexes
           1   0.0000191
           2   0.0002003
           3   0.0012875
           4   0.0059080
           5   0.0206938
           6   0.0576583
           7   0.1315873
           8   0.2517219
           9   0.4119013
          10   0.5880987
          11   0.7482781
          12   0.8684127
          13   0.9423417
          14   0.9793062
          15   0.9940920
          16   0.9987125
          17   0.9997997
          18   0.9999809
          19   1.0000000
          20  11.0000000
          21   1.0000000
          22   7.0000000
          23   8.0000000
          24   9.0000000
          25   9.0000000
          26  10.0000000
          27  11.0000000
          28  11.0000000
          29  12.0000000
          30  13.0000000
          31  19.0000000
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Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm. 
User flag = "#".
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random_beta

more...

Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <imsls.h> 

float *imsls_f_random_beta(int n_random, float pin, float qin, …, 0)

The type double function is imsls_d_random_beta.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float pin  (Input)
First beta distribution parameter. Argument pin must be positive.

float qin  (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
If no optional arguments are used, imsls_f_random_beta returns an array of length n_random containing 
the random standard beta deviates. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_random_beta (int n_random, float pin, float qin,
IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

Array of length n_random containing the random standard beta deviates.

Description
Function imsls_f_random_beta generates pseudorandom numbers from a beta distribution with parame-
ters pin and qin, both of which must be positive. With p = pin and q = qin, the probability density function is 

where Γ (⋅) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p = 1 or q = 1, in which the 
inverse CDF method is used, all of the methods use acceptance/rejection. If p and q are both less than 1, the 
method of Jöhnk (1964) is used. If either p or q is less than 1 and the other is greater than 1, the method of Atkin-
son (1979) is used. If both p and q are greater than 1, algorithm BB (Cheng 1978), which requires very little setup 
time, is used if n_random is less than 4; and algorithm B4PE of Schmeiser  and Babu (1980) is used if 
n_random is greater than or equal to 4. Note that for p and q both greater than 1, calling 
imsls_f_random_beta in a loop getting less than four variates on each call will not yield the same set of 
deviates as calling imsls_f_random_beta once and getting all the deviates at once because two different 
algorithms are used.

The values returned in r are less than 1.0 and greater than ɛ, where ɛ is the smallest positive number such that 
1.0 − ɛ is less than 1.0.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator; 
function imsls_random_option can be used to select the form of the generator.

Example
In this example, imsls_f_random_beta generates five pseudorandom beta (3, 2) variates.

#include <imsls.h>
int main()
{
   int        n_random = 5;
   int        seed = 123457;
   float      pin = 3.0;

f x =
Γ p + q
Γ p Γ q x

p−1
1 − x q−1

for 0 ≤ x ≤ 1
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   float      qin = 2.0;
   float      *r;
   imsls_random_seed_set (seed);     
   r = imsls_f_random_beta (n_random, pin, qin, 0);
   imsls_f_write_matrix("Beta (3,2) random deviates", 1, n_random, 
                         r, 0);
}

Output

               Beta (3,2) random deviates
        1          2          3          4          5
   0.2814     0.9483     0.3984     0.3103     0.8296
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random_cauchy
Generates pseudorandom numbers from a Cauchy distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_cauchy(int n_random, …, 0)

The type double function is imsls_d_random_cauchy.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random Cauchy deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_cauchy (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random Cauchy deviates.
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Description
Function imsls_f_random_cauchy generates pseudorandom numbers from a Cauchy distribution. The 
probability density function is 

where T is the median and T − S is the first quartile. This function first generates standard Cauchy random num-
bers (T = 0 and S = 1) using the technique described below, and then scales the values using T and S. 

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1) deviate, u, as 
tan [π (u − 0.5)]. Rather than evaluating a tangent directly, however, random_cauchy generates two uniform 
(−1, 1) deviates, x1 and x2. These values can be thought of as sine and cosine values. If 

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate; otherwise, x1 and x2 are rejected 

and two new uniform (−1, 1) deviates are generated. This method is also equivalent to taking the ration of two 
independent normal deviates.

Example
In this example, imsls_f_random_cauchy generates five pseudorandom Cauchy numbers. The generator 
used is a simple multiplicative congruential with a multiplier of 16807.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int n_random = 5;
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_cauchy(n_random, 0);
   printf("Cauchy random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n", 
       r[0], r[1], r[2], r[3], r[4]);
}

Output

Cauchy random deviates:  3.5765 0.9353 15.5797 2.0815 -0.1333

f x = S
π S2 + x − T 2

x1
2 + x2

2
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random_chi_squared
Generates pseudorandom numbers from a chi-squared distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_chi_squared(int n_random, float df, …, 0)

The type double function is imsls_d_random_chi_squared.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float df  (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random chi-squared deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_chi_squared (int n_random, float df, 

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random chi-squared deviates.
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Description
Function imsls_f_random_chi_squared generates pseudorandom numbers from a chi-squared distribu-
tion with df degrees of freedom. If df is an even integer less than 17, the chi-squared deviate r is generated as 

where n = df/2 and the ui are independent random deviates from a uniform (0, 1) distribution. If df is an odd 

integer less than 17, the chi-squared deviate is generated in the same way, except the square of a normal deviate 
is added to the expression above. If df is greater than 16 or is not an integer, and if it is not too large to cause 
overflow in the gamma random number generator, the chi-squared deviate is generated as a special case of a 
gamma deviate, using function imsls_random_gamma. If overflow would occur in imsls_f_random_gamma, 
the chi-squared deviate is generated in the manner described above, using the logarithm of the product of uni-
forms, but scaling the quantities to prevent underflow and overflow.

Example
In this example, imsls_f_random_chi_squared generates five pseudorandom chi-squared deviates with 
five degrees of freedom.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float df = 5.0;
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_chi_squared(n_random, df,
       0);
   imsls_f_write_matrix("Chi-Squared random deviates: ", 1, n_random, r,
       IMSLS_NO_COL_LABELS,
       0);
}

Output 

              Chi-Squared random deviates: 
    12.09       0.48       1.80      14.87       1.75

r = − 2ln ∏
i=1

n

ui
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random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_exponential(int n_random, …, 0)

The type double function is imsls_d_random_exponential.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random standard exponential deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random standard exponential deviates.
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Description
Function imsls_f_random_exponential generates pseudorandom numbers from a standard exponential 

distribution. The probability density function is f (x) = e−x, for x > 0. Function 
imsls_f_random_exponential uses an antithetic inverse CDF technique; that is, a uniform random devi-
ate U is generated, and the inverse of the exponential cumulative distribution function is evaluated at 1.0 − U to 
yield the exponential deviate.

Deviates from the exponential distribution with mean θ can be generated by using 
imsls_f_random_exponential and then multiplying each entry in r by θ.

Example
In this example, imsls_f_random_exponential generates five pseudorandom deviates from a standard 
exponential distribution.

#include <imsls.h>
#include <stdio.h>
#define N_RANDOM 5
int main()
{
   int   seed = 123457;
   int   n_random = N_RANDOM;
   float *r;
   imsls_random_seed_set(seed);
   r = imsls_f_random_exponential(n_random,
       0);
   printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
       "Exponential random deviates", r[0], r[1], r[2], r[3], r[4]);
}

Output

Exponential random deviates:  0.0344 1.3443 0.2662 0.5633 0.1686
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random_exponential_mix

more...

Generates pseudorandom numbers from a mixture of two exponential distributions.

Synopsis
#include <imsls.h>
float *imsls_f_random_exponential_mix(int n_random, float theta1, float theta2, 

float p, …, 0)

The type double function is imsls_d_random_exponential_mix. 

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float theta1  (Input)
Mean of the exponential distribution which has the larger mean.

float theta2  (Input)
Mean of the exponential distribution which has the smaller mean. Parameter theta2 must be posi-
tive and less than or equal to theta1.

float p  (Input)
Mixing parameter. Parameter p must be non-negative and less than or equal to 
theta1/(theta1 − theta2).

Return Value
An array of length n_random containing the random deviates of a mixture of two exponential distributions.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential_mix (int n_random, float theta1, float theta2, float p, 

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random deviates.

Description
Function imsls_f_random_exponential_mix generates pseudorandom numbers from a mixture of two 
exponential distributions. The probability density function is 

for x > 0, where p = p, θ1 = theta1, and θ2 = theta2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p is interpretable as a probability; 
and imsls_f_random_exponential_mix with probability p generates an exponential deviate with mean 
θ1, and with probability 1 − p generates an exponential with mean θ2. When p is greater than 1, but less than 

θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or the sum of two exponentials with means θ1 and 

θ2 is generated. The probabilities are q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential 

and the sum of the two exponentials.

Example
In this example, imsls_f_random_exponential_mix is used to generate five pseudorandom deviates 
from a mixture of exponentials with means 2 and 1, respectively, and with mixing parameter 0.5.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float theta1 = 2.0;
   float theta2 = 1.0;
   float p = 0.5;

f x =
p
θ1
e
−x/θ1 +

1 − p
θ2

e
−x/θ2
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   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_exponential_mix(n_random, theta1, theta2, p,
       0);
   imsls_f_write_matrix("Mixed exponential random deviates: ", 1,
       n_random, r,
       IMSLS_NO_COL_LABELS,
       0);
}

Output 

           Mixed exponential random deviates: 
    0.070      1.302      0.630      1.976      0.372
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random_gamma

more...

Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_gamma(int n_random, float a, …, 0)

The type double function is imsls_d_random_gamma.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float a  (Input)
Shape parameter of the gamma distribution. This parameter must be positive.

Return Value
An array of length n_random containing the random standard gamma deviates. 

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_gamma (int n_random, float a,

IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_USER_RETURN, float r[]  (Output)

User-supplied array of length n_random containing the random standard gamma deviates.

Description
Function imsls_f_random_gamma generates pseudorandom numbers from a gamma distribution with 
shape parameter a and unit scale parameter. The probability density function is

Various computational algorithms are used depending on the value of the shape parameter a. For the special 
case of a = 0.5, squared and halved normal deviates are used; for the special case of a = 1.0, exponential deviates 
are generated. Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, described in 
Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-region rejection procedure developed by 
Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and scale parameter b can be gen-
erated by using imsls_f_random_gamma and then multiplying each entry in r by b. The following statements 
(in single precision) would yield random deviates from a gamma (a, b) distribution.

float *r;
r = imsls_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter having a value equal to a pos-
itive integer; hence, imsls_f_random_gamma generates pseudorandom deviates from an Erlang distribution 
with no modifications required.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.

Example
In this example, imsls_f_random_gamma generates five pseudorandom deviates from a gamma (Erlang) dis-
tribution with shape parameter equal to 3.0.

#include <imsls.h>
int main()

f x = 1
Γ a x

a−1e−x for x ≥ 0
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{
   int        seed = 123457;
   int        n_random = 5;
   float      a = 3.0;
   float      *r;
   imsls_random_seed_set(seed);
   r = imsls_f_random_gamma(n_random, a, 0);
   imsls_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}

Output

                Gamma(3) random deviates
        1          2          3          4          5
    6.843      3.445      1.853      3.999      0.779
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random_lognormal

more...

Generates pseudorandom numbers from a lognormal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_lognormal(int n_random, float mean, float std, …, 0)

The type double function is imsls_d_random_lognormal. 

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float mean  (Input)
Mean of the underlying normal distribution.

float std  (Input)
Standard deviation of the underlying normal distribution.

Return Value
An array of length n_random containing the random deviates of a lognormal distribution. The log of each ele-
ment of the vector has a normal distribution with mean mean and standard deviation std.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_lognormal (int n_random, float mean, float std, 

IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random lognormal deviates.

Description
Function imsls_f_random_lognormal generates pseudorandom numbers from a lognormal distribution 
with parameters mean and std. The scale parameter in the underlying normal distribution, std, must be posi-
tive. The method is to generate normal deviates with mean mean and standard deviation std and then to 
exponentiate the normal deviates.

With μ = mean and σ = std, the probability density function for the lognormal distribution is

for x > 0. The mean and variance of the lognormal distribution are exp (μ + σ2/2) and 

exp (2μ + 2σ2) − exp (2μ + σ2), respectively.

Example
In this example, imsls_f_random_lognormal is used to generate five pseudorandom lognormal deviates 
with a mean of 0 and standard deviation of 1.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float mean = 0.0;
   float std = 1.0;
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_lognormal(n_random, mean, std,
       0);
   imsls_f_write_matrix("lognormal random deviates:", 1, n_random, r,
       IMSLS_NO_COL_LABELS,
       0);
}

f x = 1
σx 2π exp −

1
2σ2

ln x − μ 2
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Output 

               lognormal random deviates:
    7.780      2.954      1.086      3.588      0.293
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random_normal

more...

Generates pseudorandom numbers from a normal, N (μ, σ2), distribution.

Synopsis
#include <imsls.h> 

float *imsls_f_random_normal(int n_random, …, 0)

The type double function is imsls_d_random_normal.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random normal deviates. 

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_random_normal (int n_random,
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
IMSLS_ZIGGURAT_METHOD,
IMSLS_RETURN_USER, float r[],
0)
1261



 Random Number Generation         random_normal
Optional Arguments
IMSLS_MEAN, float mean  (Input)

Parameter mean contains the mean, μ, of the N(μ, σ2) from which random normal deviates are to be 
generated.

Default: mean = 0.0

IMSLS_VARIANCE, float variance  (Input)
Parameter variance contains the variance of the N (μ, σ2) from which random normal deviates are to 
be generated.

Default: variance = 1.0

IMSLS_ZIGGURAT_METHOD,  (Input)
By default, random numbers are generated using an inverse CDF technique. When optional argu-
ment IMSLS_ZIGGURAT_METHOD is specified, the Ziggurat method is used instead. See the 
“Description” section for details about each method.

IMSLS_RETURN_USER, float r[]  (Output)
User-supplied array of length n_random containing the generated random standard normal 
deviates.

Description
By default, function imsls_f_random_normal generates pseudorandom numbers from a normal (Gaussian) 
distribution using an inverse CDF technique. In this method, a uniform (0, 1) random deviate is generated. The 
inverse of the normal distribution function is then evaluated at that point, using the function 
imsls_f_normal_inverse_cdf (Chapter 11, Probability Distribution Functions and Inverses).

If optional argument IMSLS_ZIGGURAT_METHOD is specified, function imsls_f_random_normal gener-
ates pseudorandom numbers using the Ziggurat method. This method cuts the density into many small pieces. 
For each random number generated, an interval is chosen at random and a random normal is generated from 
the chosen interval. In this implementation, the density is cut into 256 pieces, but symmetry is used so that only 
128 pieces are needed by the computation. Following Doornik (2005), different uniform random deviates are 
used to determine which slice to use and to determine the normal deviate from the slice. This method is faster 
than the default inverse CDF technique.

Remarks
Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.
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Example
In this example, imsls_f_random_normal generates five pseudorandom deviates from a standard normal 
distribution.

#include <imsls.h>
#include <stdio.h>
#define N_RANDOM 5
int main()
{
   int        seed = 123457;
   int        n_random = N_RANDOM;
   float      *r;
   imsls_random_seed_set (seed);
   r = imsls_f_random_normal(n_random, 0);
   printf("%s:\n%8.4f%8.4f%8.4f%8.4f%8.4f\n",
          "Standard normal random deviates",
          r[0], r[1], r[2], r[3], r[4]);
}

Output

Standard normal random deviates:
-0.6412 0.7266 0.1747 1.0145
1263



 Random Number Generation         random_stable
random_stable
Generates pseudorandom numbers from a stable distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_stable(int n_random, float alpha, float bprime, …, 0)

The type double function is imsls_d_random_stable.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float alpha  (Input)
Characteristic exponent of the stable distribution. This parameter must be positive and less than or 
equal to 2.

float bprime  (Input)
Skewness parameter of the stable distribution. When bprime = 0, the distribution is symmetric. 
Unless alpha = 1, bprime is not the usual skewness parameter of the stable distribution. bprime 
must be greater than or equal to - 1 and less than or equal to 1.

Return Value
An integer array of length n_random containing the random deviates. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_stable (int n_random, float alpha, float bprime, 

IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random deviates.

Description
Function imsls_f_random_stable generates pseudorandom numbers from a stable distribution with 
parameters alpha and bprime. alpha is the usual characteristic exponent parameter α and bprime is 
related to the usual skewness parameter β of the stable distribution. With the restrictions 0 < α ≤ 2 and  - 1 ≤ β 
≤ 1, the characteristic function of the distribution is 

φ(t) = exp[-| t |α exp(πiβ(1 - |1 - α|)sign(t)/2)]  for α ≠ 1

and

φ(t) = exp[-| t |(1 + 2iβ ln| t |)sign(t)/π)]  for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is normal with mean 0 and vari-
ance 2; and if α = 1, the distribution is Cauchy.

The parameterization using bprime and the algorithm used here are due to Chambers, Mallows, and Stuck 
(1976). The relationship between bprime = β’ and the standard β is

β’ = -tan(π(1 - α)/2) tan(-πβ(1 - |1 - α|)/2)  for α ≠ 1

and

β’ = β  for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential random variate.

Example
In this example, imsls_f_random_stable is used to generate five pseudorandom symmetric stable variates 
with characteristic exponent 1.5. The tails of this distribution are heavier than those of a normal distribution, but 
not so heavy as those of a Cauchy distribution. The variance of this distribution does not exist, however. (This is 
the case for any stable distribution with characteristic exponent less than 2.)

#include <imsls.h>
int main()
{
   int nr = 5;
   float alpha = 1.5, bprime = 0.0, *r;
   imsls_random_seed_set(123457);
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   r = imsls_f_random_stable(nr, alpha, bprime,
       0);
   imsls_f_write_matrix("Stable random deviates", 5, 1, r,
       IMSLS_NO_ROW_LABELS,
       0);
}

Output

Stable random deviates
          4.409
          1.056
          2.546
          5.672
          2.166
1266



 Random Number Generation         random_student_t
random_student_t
Generates pseudorandom numbers from a Student’s t distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_student_t(int n_random, float df, …, 0)

The type double function is imsls_d_random_student_t.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float df  (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random deviates of a Student’s t distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_student_t (int n_random, float df,

IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_MEAN, float mean  (Input)

Mean of the Student’s t distribution.
Default: mean = 0.0

IMSLS_VARIANCE, float variance  (Input)
Variance of the Student’s t distribution.
Default: variance = 1.0

IMSLS_RETURN_USER, float r[]  (Output)
User-supplied array of length n_random containing the random Student’s t deviates.

Description
Function imsls_f_random_student_t generates pseudorandom numbers from a Student’s t distribution 
with df degrees of freedom, using a method suggested by Kinderman et al. (1977). The method (“TMX” in the ref-
erence) involves a representation of the t density as the sum of a triangular density over (−2, 2) and the 
difference of this and the t density. The mixing probabilities depend on the degrees of freedom of the t distribu-
tion. If the triangular density is chosen, the variate is generated as the sum of two uniforms; otherwise, an 
acceptance/rejection method is used to generate the difference density.

Example
In this example, imsls_f_random_student_t generates five pseudorandom deviates from a Student’s t 
distribution with 12 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int  seed = 123457, n_random = 5;
 float  df = 12.0, *r;
 imsls_random_seed_set (seed);
 r = imsls_f_random_student_t (n_random, df, 0);
 printf("Student's t deviates with %8.4f degrees "

 "of freedom:", df);
 printf("\n%8.4f %8.4f %8.4f %8.4f %8.4f\n",

 r[0], r[1], r[2], r[3], r[4]);
}

Output

Student's t deviates with 12.0000 degrees of freedom:
 0.6152  1.1468  0.0877  1.3318 -0.9933
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random_triangular

more...

Generates pseudorandom numbers from a triangular distribution on the interval (0, 1).

Synopsis
#include <imsls.h>
float *imsls_f_random_triangular(int n_random, …, 0)

The type double function is imsls_d_random_triangular.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random deviates of a triangular distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_triangular (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random triangular deviates.
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Description
Function imsls_f_random_triangular generates pseudorandom numbers from a triangular distribution 
over the unit interval. The probability density function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for 
0.5 < x ≤ 1. An inverse CDF technique is used.

Example
In this example, imsls_f_random_triangular is used to generate five pseudorandom deviates from a tri-
angular distribution.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_triangular(n_random,
       0);
   imsls_f_write_matrix("Triangular random deviates:", 1, n_random, r,
       IMSLS_NO_COL_LABELS,
       0);
}

Output 

               Triangular random deviates:
   0.8700     0.3610     0.6581     0.5360     0.7215
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random_uniform
Generates pseudorandom numbers from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h> 

float *imsls_f_random_uniform(int n_random, …, 0)

The type double function is imsls_d_random_uniform.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random uniform (0, 1) deviates.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_random_uniform (int n_random,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random uniform (0, 1) deviates.
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Description
Function imsls_f_random_uniform generates pseudorandom numbers from a uniform (0, 1) distribution 
using a multiplicative congruential method. The form of the generator is as follows:

xi ≡ cxi−

1

mod (231 − 1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the generators are 16807, 

397204094, and 950706376. The selection is made by the function imsls_random_option. The choice of 
16807 will result in the fastest execution time. If no selection is made explicitly, the functions use the multiplier 
16807.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table is filled with the first 128 uni-
form (0, 1) numbers resulting from the simple multiplicative congruential generator. Then, for each xi from the 

simple generator, the low-order bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in 

the table is then delivered as the random number, and xi, after being scaled into the unit interval, is inserted into 

the j-th position in the table.

The values returned by imsls_f_random_uniform are positive and less than 1.0. However, some values 
returned may be smaller than the smallest relative spacing; hence, it may be the case that some value, for exam-
ple r [i], is such that 1.0 − r [i] = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be obtained by scaling the output 
from imsls_f_random_uniform. The following statements (in single precision) would yield random deviates 
from a uniform (a, b) distribution.

float *r;
r = imsls_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i] = r[i]*(b-a) + a;

Example
In this example, imsls_f_random_uniform generates five pseudorandom uniform numbers. Since function 
imsls_random_option is not called, the generator used is a simple multiplicative congruential one with a 
multiplier of 16807.

#include <imsls.h>
#include <stdio.h>
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#define N_RANDOM 5
int main()
{
   float    *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_uniform(N_RANDOM, 0);
   printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
           r[0], r[1], r[2], r[3], r[4]);
}

Output

Uniform random deviates:  0.9662 0.2607 0.7663 0.5693 0.8448
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random_von_mises
Generates pseudorandom numbers from a von Mises distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_von_mises(int n_random, float c, …, 0)

The type double function is imsls_d_random_von_mises. 

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float c  (Input)
Parameter of the von Mises distribution. This parameter must be greater than one-half of machine 
epsilon (On many machines, the lower bound for c is 10−3).

Return Value
An array of length n_random containing the random deviates of a von Mises distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_von_mises (int n_random, float c,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random containing the random von Mises deviates.
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Description
Function imsls_f_random_von_mises generates pseudorandom numbers from a von Mises distribution 
with parameter c, which must be positive. With c = c, the probability density function is 

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of order 0. The probability density is 

equal to 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution as the majorizing distribu-
tion. It is due to Nest and Fisher (1979).

Example
In this example, imsls_f_random_von_mises is used to generate five pseudorandom von Mises variates 
with c = 1.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float c = 1.0;
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_von_mises(n_random, c,
       0);
   imsls_f_write_matrix("Von Mises random deviates:", 1, n_random, r,
       IMSLS_NO_COL_LABELS,
       0);
}

Output

               Von Mises random deviates:
    0.247     -2.433     -1.022     -2.172     -0.503

f x = 1
2πI0 c

exp c cos x
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random_weibull
Generates pseudorandom numbers from a Weibull distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_weibull(int n_random, float a, …, 0)

The type double function is imsls_d_random_weibull. 

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

float a  (Input)
Shape parameter of the Weibull distribution. This parameter must be positive.

Return Value
An array of length n_random containing the random deviates of a Weibull distribution.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_weibull (int n_random, float a,
IMSLS_B, float b,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_B, float b  (Input)

Scale parameter of the two parameter Weibull distribution.
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Default: b = 1.0

IMSLS_RETURN_USER, float r[]  (Output)
User-supplied array of length n_random containing the random Weibull deviates.

Description
Function imsls_f_random_weibull generates pseudorandom numbers from a Weibull distribution with 
shape parameter a and scale parameter b. The probability density function is

for x ≥ 0, a > 0, and b > 0. Function imsls_f_random_weibull uses an antithetic inverse CDF technique to 
generate a Weibull variate; that is, a uniform random deviate U is generated and the inverse of the Weibull cumu-
lative distribution function is evaluated at 1.0 − U to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 and scale parameter b equal to 

Example
In this example, imsls_f_random_weibull is used to generate five pseudorandom deviates from a Weibull 
distribution with shape parameter equal to 3.0.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   float a = 3.0;
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_weibull(n_random, a,
       0);
   imsls_f_write_matrix("Weibull random deviates:", 1, n_random, r,

f x = abxa−1exp −bxa

r x = 1
α2
xe
− x2/ 2α2

2α

α = 3 2
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       IMSLS_NO_COL_LABELS,
       0);
}

Output

                Weibull random deviates:
    0.325      1.104      0.643      0.826      0.552

Warning Errors
IMSLS_SMALL_A The shape parameter is so small that a relatively 

large proportion of the values of deviates from the 
Weibull cannot be represented.
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random_general_continuous

more...

Generates pseudorandom numbers from a general continuous distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_general_continuous(int n_random, int ndata, float table[], …, 0)

The type double function is imsls_d_random_general_continuous.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

int ndata  (Input)
Number of points at which the CDF is evaluated for interpolation. ndata must be greater than or 
equal to 4. 

float *table  (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative distribution function. The first col-
umn of table contains abscissas of the cumulative distribution function in ascending order, the 
second column contains the values of the CDF (which must be strictly increasing beginning with 0.0 
and ending at 1.0) and the remaining columns contain values used in interpolation. This table is set 
up using function imsls_f_continous_table_setup.

Return Value
An array of length n_random containing the random discrete deviates. To release this space, use imsls_free.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_general_continuous (int n_random, int ndata, float table[],

IMSLS_TABLE_COL_DIM, int table_col_dim, 
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim  (Intput)

Column dimension of the matrix table.

Default: table_col_dim = 5
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random continuous deviates.

Description
Function imsls_f_random_general_continuous generates pseudorandom numbers from a continu-
ous distribution using the inverse CDF technique, by interpolation of points of the distribution function given in 
table, which is set up by function imsls_f_continuous_table_setup. A strictly monotone increasing dis-
tribution function is assumed. The interpolation is by an algorithm attributable to Akima (1970), using piecewise 
cubics. The use of this technique for generation of random numbers is due to Guerra, Tapia, and Thompson 
(1976), who give a description of the algorithm and accuracy comparisons between this method and linear inter-
polation. The relative errors using the Akima interpolation are generally considered very good.

Example
In this example, imsls_f_continuous_table_setup is used to set up a table for generation of beta pseudo-
random deviates. The CDF for this distribution is computed by the function imsls_f_beta_cdf (Chapter 11, 
Probability Distribution Functions and Inverses). The table contains 100 points at which the CDF is evaluated and 
that are used for interpolation.

#include <imsls.h>
float cdf(float);
int main()
{
   int i, iopt=0, ndata= 100;
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   float table[100][5], x = 0.0, *r;
   for (i=0;i<ndata;i++) {
       table[i][0] = x;
       x += .01;
   }
   imsls_f_continuous_table_setup(cdf, iopt, ndata, (float*)table,
       0);
   imsls_random_seed_set(123457);
   r = imsls_f_random_general_continuous (5, ndata, &table[0][0],
       0);
   imsls_f_write_matrix("Beta (3, 2) random deviates", 5, 1, r,
       0);
}
float cdf(float x)
{
   return imsls_f_beta_cdf(x, 3., 2.);
}

Output

*** WARNING Error from imsls_f_continuous_table_setup. The values of the
***         CDF in the second column of table did not begin at 0.0 and end
***         at 1.0, but they have been adjusted. Prior to adjustment,
***         table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.
Beta (3, 2) random deviates
      1     0.9208
      2     0.4641
      3     0.7668
      4     0.6536
      5     0.8171
 

1281



 Random Number Generation         continuous_table_setup
continuous_table_setup

more...

Sets up a table to generate pseudorandom numbers from a general continuous distribution.

Synopsis
#include <imsls.h>
void imsls_f_continuous_table_setup(float cdf(), int iopt, int ndata, float *table, …, 0)

The type double function is imsls_d_continuous_table_setup.

Required Arguments
float cdf(float x) (Input)

User-supplied function to compute the cumulative distribution function. The argument to the func-
tion is the point at which the distribution function is to be evaluated

int iopt  (Input)
Indicator of the extent to which table is initialized prior to calling 
imsls_f_continuous_table_setup.

iopt Action

0 imsls_f_continuous_table_setup fills the last 
four columns of table. The user inputs the points at 
which the CDF is to be evaluated in the first column of 
table. These must be in ascending order.

1 imsls_f_continuous_table_setup fills the last 
three columns of table. The user supplied function 
cdf is not used and may be a dummy function; 
instead, the cumulative distribution function is speci-
fied in the first two columns of table. The abscissas 
(in the first column) must be in ascending order and 
the function must be strictly monotonically increasing.
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int ndata  (Input)
Number of points at which the CDF is evaluated for interpolation. ndata must be greater than or 
equal to 4. 

float *table  (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative distribution function. The first col-
umn of table contains abscissas of the cumulative distribution function in ascending order, the 
second column contains the values of the CDF (which must be strictly increasing), and the remaining 
columns contain values used in interpolation. The first row of table corresponds to the left limit of 
the support of the distribution and the last row corresponds to the right limit of the support; that is, 
table[0][1] = 0.0 and table[ndata-1][ 1] = 1.0.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_continuous_table_setup (float cdf(), int iopt, int ndata, float table[],

IMSLS_TABLE_COL_DIM, 
IMSLS_FCN_W_DATA, float cdf(), void *data,
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim  (Intput)

Column dimension of the array table.
Default: table_col_dim = 5

IMSLS_FCN_W_DATA, float cdf(float x), void *data  (Input)
User-supplied function to compute the cumulative distribution function, which also accepts a pointer 
to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied 
function. See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual 
for more details.

Description
Function imsls_f_continuous_table_setup sets up a table that function 
imsls_f_random_general_continuous can use to generate pseudorandom deviates from a continuous dis-
tribution. The distribution is specified by its cumulative distribution function, which can be supplied either in 
tabular form in table or by a function cdf. See the documentation for the function 
imsls_f_random_general_continuous for a description of the method.
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On some platforms, imsls_f_continuous_table_setup can evaluate the user-supplied function cdf in 
parallel. This is done only if the function imsls_omp_options is called to flag user-defined functions as thread-
safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the 
result of writing to global or static variables.

Example
In this example, imsls_f_continuous_table_setup is used to set up a table to generate pseudorandom 
variates from a beta distribution. This example is continued in the documentation for function 
imsls_f_random_general_continuous to generate the random variates.

#include <stdio.h>
#include <imsls.h>
float cdf(float);
int main()
{
   int i, iopt=0, ndata= 100;
   float table[100][5], x = 0.0;
   imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
   for (i=0;i<ndata;i++) {
       table[i][0] = x;
       x += .01;
   }
   imsls_f_continuous_table_setup(cdf, iopt, ndata, &table[0][0], 0);
   printf("The first few values from the table:\n");
   for (i=0;i<10;i++) 
       printf("%4.2f\t%8.4f\n", table[i][0], table[i][1]);
}

float cdf(float x)
{
   return imsls_f_beta_cdf(x, 3., 2.);
}

Output

*** WARNING Error from imsls_f_continuous_table_setup. The values of the
***         CDF in the second column of table did not begin at 0.0 and end
***         at 1.0, but they have been adjusted. Prior to adjustment,
***         table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.
The first few values from the table:
0.00   0.0000
0.01   0.0000
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0.02   0.0000
0.03   0.0001
0.04   0.0002
0.05   0.0005
0.06   0.0008
0.07   0.0013
0.08   0.0019
0.09   0.0027 

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm. 
User flag = "#".
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random_normal_multivariate
Generates pseudorandom numbers from a multivariate normal distribution.

Synopsis
#include <imsls.h> 

float *imsls_f_random_normal_multivariate(int n_vectors, int length, 
float *covariances, …, 0)

The type double function is imsls_d_random_normal_multivariate.

Required Arguments
int n_vectors  (Input)

Number of random multivariate normal vectors to generate.

int length  (Input)
Length of the multivariate normal vectors.

float *covariances  (Input)
Array of size length × length containing the variance-covariance matrix.

Return Value
An array of length n_vectors × length containing the random multivariate normal vectors stored 
consecutively. 

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_random_normal_multivariate (int n_vectors, int length, 
float *covariances,
IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_vectors × length containing the random multivariate normal 
vectors stored consecutively.

Description
Function imsls_f_random_normal_multivariate generates pseudorandom numbers from a multivari-
ate normal distribution with mean vector consisting of all zeros and variance-covariance matrix covariances. 
First, the Cholesky factor of the variance-covariance matrix is computed. Then, independent random normal devi-
ates with mean 0 and variance 1 are generated, and the matrix containing these deviates is postmultiplied by the 
Cholesky factor. Because the Cholesky factorization is performed in each invocation, it is best to generate as 
many random vectors as needed at once.

Deviates from a multivariate normal distribution with means other than 0 can be generated by using 
imsls_f_random_normal_multivariate and then by adding the vectors of means to each row of the 
result.

Example 1
In this example, imsls_f_random_normal_multivariate generates five pseudorandom normal vectors 
of length 2 with variance-covariance matrix equal to the following:

#include <imsls.h>
int main()
{
   int n_vectors = 5;
   int length = 2;
   float covariances[] = {.5, .375, .375, .5};
   float *random;
   imsls_random_seed_set (123457);
   random = imsls_f_random_normal_multivariate (n_vectors, length, 
       covariances, 0);
   imsls_f_write_matrix ("multivariate normal random deviates",
       n_vectors, length, random, 0);
}

0.500 0.375
0.375 0.500
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Output
multivariate normal random deviates
                 1            2
    1        1.451        1.595
    2        0.058        0.641
    3       -0.867       -0.492
    4       -0.933       -1.413
    5       -0.325       -0.527

Example 2
Using the same variance-covariance matrix as above, imsls_f_random_normal_multivariate gener-
ates 10 pseudorandom normal vectors of length 2 in 2 blocks of 5. After resetting the random number generator, 
in this case the Mersenne Twister, imsls_f_random_normal_multivariate then generates all 10 ran-
dom vectors at once. Because the generator is reset, the values in the third call match the combined values of the 
first two.

#include <imsls.h>
int main(){
        int seed = 123457, j;
        int n_vectors, l_vectors;
        float *r1 = NULL, *r2 = NULL, *r3 = NULL;
        float covariances[] = {1.0, 0.5, 0.5, 1.0};
        unsigned long long *itable;
        imsls_random_option(9);
        imsls_random_seed_set (seed);
        n_vectors = 5;
        l_vectors = 2;
        /* Generate the first matrix. */
        r1 = imsls_f_random_normal_multivariate (n_vectors, l_vectors, 
                covariances, 0);
        printf("multivariate random normal deviates");
        imsls_f_write_matrix ("\nmatrix 1: ",   n_vectors, l_vectors, 
                r1, 0);
        /* Generate the second matrix.*/
        r2 = imsls_f_random_normal_multivariate (n_vectors, l_vectors, 
                covariances, 0);
        imsls_f_write_matrix ("\nmatrix 2: ", n_vectors, l_vectors, r2, 0);
        /* Reset the generator. Setting itable[0] to a value > 625 resets
           the generator to its original state.*/
        imsls_random_MT64_table_get (&itable,0);
        itable[0] = 1000;
        imsls_random_MT64_table_set (itable);
        /* Generate all rows after resetting the generator. */
        n_vectors = 10;
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        r3 = imsls_f_random_normal_multivariate (n_vectors, l_vectors,
                covariances, 0);
        imsls_f_write_matrix ("\nmatrix 3: ", n_vectors, l_vectors, r3, 0);
        imsls_free(r1);
        imsls_free(r2);
        imsls_free(r3);
        imsls_free(itable);
}

Output
multivariate random normal deviates 
 
        matrix 1: 
             1            2
1        1.321        0.598
2        0.055        1.050
3       -0.546       -1.876
4        0.724        1.548
5       -0.591        0.764
 
 
        matrix 2: 
             1            2
1      -0.0288      -0.7060
2      -0.9761      -0.0418
3       0.8074      -0.8965
4      -0.6163      -0.7335
5      -0.4368       0.0183
 
 
         matrix 3: 
              1            2
 1        1.321        0.598
 2        0.055        1.050
 3       -0.546       -1.876
 4        0.724        1.548
 5       -0.591        0.764
 6       -0.029       -0.706
 7       -0.976       -0.042
 8        0.807       -0.896
 9       -0.616       -0.734
10       -0.437        0.018
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random_orthogonal_matrix
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Synopsis
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix(int n, …, 0)

The type double function is imsls_d_random_orthogonal_matrix.

Required Arguments
int n  (Input)

The order of the matrix to be generated.

Return Value
n by n random orthogonal matrix. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix (int n, 

IMSLS_EIGENVALUES, float *eigenvalues[],
IMSLS_A_MATRIX, float *a,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_EIGENVALUES, float *eigenvalues  (Input)

A vector of length n containing the eigenvalues of the correlation matrix to be generated. The ele-
ments of eigenvalues must be positive, they must sum to n, and they cannot all be equal.
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IMSLS_A_MATRIX, float *a  (Input)
n by n random orthogonal matrix. A random correlation matrix is generated using the orthogonal 
matrix input in a. The option IMSLS_EIGENVALUES must also be supplied if IMSLS_A_MATRIX 
is used.

IMSLS_A_COL_DIM, int a_col_dim  (Input)
Column dimension of the matrix a.

Default: a_col_dim = n
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n × n containing the random correlation matrix.

Description
Function imsls_f_random_orthogonal_matrix generates a pseudorandom orthogonal matrix from the 
invariant Haar measure. For each column, a random vector from a uniform distribution on a hypersphere is 
selected and then is projected onto the orthogonal complement of the columns already formed. The method is 
described by Heiberger (1978). (See also Tanner and Thisted 1982.)

If the optional argument IMSLS_EIGENVALUES is used, a correlation matrix is formed by applying a sequence 

of planar rotations to the matrix AT DA, where D = diag(eigenvalues[0], ..., 
eigenvalues [n-1]), so as to yield ones along the diagonal. The planar rotations are applied in such an order 
that in the two by two matrix that determines the rotation, one diagonal element is less than 1.0 and one is 
greater than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not known. Bendel and Mickey (1978) 
and Johnson and Welch (1980) discuss the distribution.

For larger matrices, rounding can become severe; and the double precision results may differ significantly from 
single precision results.

Example
In this example, imsls_f_random_orthogonal_matrix is used to generate a 4 by 4 pseudorandom cor-
relation matrix with eigenvalues in the ratio 1:2:3:4. 

#include <imsls.h>
int main()
{
   int  i, n = 4;
   float *a, *cor;
   float ev[] = {1., 2., 3., 4.};
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   for (i = 0; i < 4; i++)
       ev[i] = 4. * ev[i]/10.;
   imsls_random_seed_set(123457);
   a = imsls_f_random_orthogonal_matrix(n,
       0);
   imsls_f_write_matrix("Random orthogonal matrix", 4, 4, (float*)a,
       0);
   cor = imsls_f_random_orthogonal_matrix(n,
       IMSLS_EIGENVALUES, ev,
       IMSLS_A_MATRIX, a,
       0);
   imsls_f_write_matrix("Random correlation matrix", 4, 4, (float*)cor,
       0);
}

Output

           Random orthogonal matrix
           1          2          3          4
1    -0.8804    -0.2417     0.4065    -0.0351
2     0.3088    -0.3002     0.5520     0.7141
3    -0.3500     0.5256    -0.3874     0.6717
4    -0.0841    -0.7584    -0.6165     0.1941
           Random correlation matrix
           1          2          3          4
1      1.000     -0.236     -0.326     -0.110
2     -0.236      1.000      0.191     -0.017
3     -0.326      0.191      1.000     -0.435
4     -0.110     -0.017     -0.435      1.000
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random_mvar_from_data
Generates pseudorandom numbers from a multivariate distribution determined from a given sample.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_from_data(int n_random, int ndim, int nsamp, float x[], 

int nn …, 0)

The type double function is imsls_d_random_mvar_from_data.

Required Arguments
int n_random  (Input)

Number of random multivariate vectors to generate.

int ndim  (Input)
The length of the multivariate vectors, that is, the number of dimensions.

int nsamp  (Input)
Number of given data points from the distribution to be simulated.

float x[]  (Input)
Array of size nsamp × ndim matrix containing the given sample.

int nn  (Input)
Number of nearest neighbors of the randomly selected point in x that are used to form the output 
point in the result.

Return Value
n_random × ndim matrix containing the random multivariate vectors in its rows. To release this space, use 
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
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float *imsls_f_random_mvar_from_data (int n_random, int ndim, int nsamp, float x[], int nn,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Column dimension of the matrix x.

Default: x_col_dim = ndim
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random × ndim containing the random correlation matrix.

Description
Given a sample of size n (= nsamp) of observations of a k-variate random variable, 
imsls_f_random_mvar_from_data generates a pseudorandom sample with approximately the same 
moments as the given sample. The sample obtained is essentially the same as if sampling from a Gaussian kernel 
estimate of the sample density. (See Thompson 1989.) Function imsls_f_random_mvar_from_data uses 
methods described by Taylor and Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An observation, xj, is chosen randomly; its 

nearest m (= nn) neighbors,

are determined; and the mean

of those nearest neighbors is calculated. Next, a random sample u1, u2, ..., um is generated from a uniform distri-

bution with lower bound

and upper bound

x j1, x j2,...x jm

x─ j

1
m −

3 m − 1
m2
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The random variate delivered is

The process is then repeated until n_random such simulated variates are generated and stored in the rows of 
the result.

Example
In this example, imsls_f_random_mvar_from_data is used to generate 5 pseudorandom vectors of 
length 4 using the initial and final systolic pressure and the initial and final diastolic pressure from Data Set A in 
Afifi and Azen (1979) as the fixed sample from the population to be modeled. (Values of these four variables are 
in the seventh, tenth, twenty-first, and twenty-fourth columns of data set number nine in function 
imsls_f_data_sets, Chapter 15, Utilities.)

#include <imsls.h>
int main()
{
   int i, nrrow, nrcol, nr = 5, k=4, nsamp = 113, nn = 5;
   float x[113][4], rdata[113][34], *r;
   imsls_random_seed_set(123457);
   imsls_f_data_sets(9,
       IMSLS_N_OBSERVATIONS, &nrrow,
       IMSLS_N_VARIABLES, &nrcol,
       IMSLS_RETURN_USER, rdata,
       0);
   for (i=0;i<nrrow;i++) {
       x[i][0] = rdata[i][6];
       x[i][1] = rdata[i][9];
       x[i][2] = rdata[i][20];
       x[i][3] = rdata[i][23];
   }
   r = imsls_f_random_mvar_from_data(nr, k, nsamp, &x[0][0], nn,
       0);
   imsls_f_write_matrix("Random variates", 5, 4, r,
       0);
}

1
m +

3 m − 1
m2

∑
l=1

m

ul x jl − x
─
j + x

─
j
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Output

                Random variates
           1          2          3          4
1      162.8       90.5      153.7      104.9
2      153.4       78.3      176.7       85.2
3       93.7       48.2      153.5       71.4
4      101.8       54.2      113.1       56.3
5       91.7       58.8       48.4       28.1
1296



 Random Number Generation         random_multinomial
random_multinomial
Generates pseudorandom numbers from a multinomial distribution.

Synopsis
#include <imsls.h>
int *imsls_random_multinomial(int n_random, int n, int k, float p[], …, 0)

Required Arguments
int n_random  (Input)

Number of random multinomial vectors to generate.

int n  (Input)
Multinomial parameter indicating the number of independent trials.

int k  (Input)
The number of mutually exclusive outcomes on any trial. k is the length of the multinomial vectors. k 
must be greater than or equal to 2.

float p[]  (Input)
Vector of length k containing the probabilities of the possible outcomes. The elements of p must be 
positive and must sum to 1.0.

Return Value
n_random by k matrix containing the random multinomial vectors in its rows. To release this space, use 
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_multinomial (int n_random, int n, int k, float p[],

IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length n_random × k containing the random deviates.

Description
Function imsls_random_multinomial generates pseudorandom numbers from a K-variate multinomial 
distribution with parameters n and p. k and n must be positive. Each element of p must be positive and the ele-
ments must sum to 1. The probability function (with n = n, k = k, and pi = p[i-1]) is

for xi ≥ 0 and

The deviate in each row of r is produced by generation of the binomial deviate x0 with parameters n and pi and 

then by successive generations of the conditional binomial deviates xj given x0, x1, …, xj−2 with parameters n -
x0 - x1 - … - xj−2 and pj /(1 - p0 - p1 − … −pj−2).

Example
In this example, imsls_random_multinomial is used to generate five pseudorandom 3-dimensional multi-
nomial variates with parameters n = 20 and p = [0.1, 0.3, 0.6].

#include <imsls.h>
int main()
{
   int nr = 5, n = 20, k = 3, *ir;
   float p[3] = {.1, .3, .6};
   imsls_random_seed_set(123457);
   ir = imsls_random_multinomial(nr, n, k, p,
       0);
   imsls_i_write_matrix("Multinomial random_deviates", 5, 3, ir,
       IMSLS_NO_ROW_LABELS,
       IMSLS_NO_COL_LABELS,
       0);

f x1, x2, ... xk = n!
x1! x2! ... xk!

p1
x1 p2

x2 ... pk
xk

∑
i=0

k−1

xi = n
1298
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}

Output

Multinomial random_deviates
        5   4  11
        3   6  11
        3   3  14
        5   5  10
        4   5  11
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random_sphere
Generates pseudorandom points on a unit circle or K-dimensional sphere

Synopsis
#include <imsls.h>
float *imsls_f_random_sphere(int n_random, int k, …, 0)

The type double function is imsls_d_random_sphere.

Required Arguments
int n_random  (Input)

Number of random numbers to generate.

int k (Input)
Dimension of the circle (k = 2) or of the sphere.

Return Value
n_random by k matrix containing the random Cartesian coordinates on the unit circle or sphere. To release this 
space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_sphere (int n_random, int k, 

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of size n_random by k containing the random Cartesian coordinates on the 
unit circle or sphere.
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Description
Function imsls_f_random_sphere generates pseudorandom coordinates of points that lie on a unit circle 
or a unit sphere in K-dimensional space. For points on a circle (k = 2), pairs of uniform (-1, 1) points are gener-
ated and accepted only if they fall within the unit circle (the sum of their squares is less than 1), in which case they 
are scaled so as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are used. For three dimensions, two 
independent uniform (-1, 1) deviates U1 and U2 are generated and accepted only if the sum of their squares S1 is 

less than 1. Then, the coordinates

are formed. For four dimensions, U1, U2, and S1 are produced as described above. Similarly, U3, U4, and S2 are 

formed. The coordinates are then

and

For spheres in higher dimensions, K independent normal deviates are generated and scaled so as to lie on the 
unit sphere in the manner suggested by Muller (1959).

Example
In this example, imsls_f_random_sphere is used to generate two uniform random deviates from the sur-
face of the unit sphere in three space.

#include <imsls.h>
int main()
{
   int n_random = 2;
   int k = 3;
   float *z;
   char *rlabel[] = {"First point", "Second point"};
   imsls_random_seed_set(123457);
   z = imsls_f_random_sphere(n_random, k,
       0);
   imsls_f_write_matrix("Coordinates", n_random, k, z,
       IMSLS_ROW_LABELS, rlabel,
       IMSLS_NO_COL_LABELS,
       0);

Z1 = 2U1 1 − S1 ,Z2 = 2U2 1 − S1 , and Z3 = 1 − 2S1

Z1 = U1, Z2 = U2, Z3 = U3 1 − S1 / S2

Z4 = U4 1 − S1 / S2
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}

Output

                  Coordinates
First point      0.8893     0.2316     0.3944
Second point     0.1901     0.0396    -0.9810
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random_table_twoway
Generates a pseudorandom two-way table.

Synopsis
#include <imsls.h>
int *imsls_random_table_twoway(int nrow, int ncol, int nrtot[], int nctot[], …, 0)

Required Arguments
int nrow  (Input)

Number of rows in the table.

int ncol  (Input)
Number of columns in the table.

int nrtot[]  (Input)
Array of length nrow containing the row totals.

int nctot[]  (Input)
Array of length ncol containing the column totals. The elements of nrtot and nctot must be 
nonnegative and must sum to the same quantity.

Return Value
nrow by ncol random matrix with the given row and column totals. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[], int nctot[],

IMSLS_RETURN_USER, int ir[],
 0)
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Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of size nrow by ncol containing the random matrix with the given row and col-
umn totals.

Description
Function imsls_random_table_twoway generates pseudorandom entries for a two-way contingency table 
with fixed row and column totals. The method depends on the size of the table and the total number of entries in 
the table. If the total number of entries is less than twice the product of the number of rows and columns, the 
method described by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In this method, a work 
vector is filled with row indices so that the number of times each index appears equals the given row total. This 
vector is then randomly permuted and used to increment the entries in each row so that the given row total is 
attained.

For tables with larger numbers of entries, the method of Patefield (1981) is used. This method can be consider-
ably faster in these cases. The method depends on the conditional probability distribution of individual elements, 
given the entries in the previous rows. The probabilities for the individual elements are computed starting from 
their conditional means.

Example
In this example, imsls_random_table_twoway is used to generate a two by three table with row totals 3 
and 5, and column totals 2, 4, and 2.

#include <imsls.h>
int main()
{
   int *itable, nrow = 2, ncol = 3;
   int nrtot[2] = {3, 5};
   int nctot[3] = {2, 4, 2};
   char *title = "A random contingency table with fixed"
       " marginal totals";
   imsls_random_seed_set(123457);
   itable = imsls_random_table_twoway(nrow, ncol, nrtot, nctot,
       0);
   imsls_i_write_matrix(title, nrow, ncol, itable,
       IMSLS_NO_ROW_LABELS,
       IMSLS_NO_COL_LABELS,
       0);
}
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Output

A random contingency table with fixed marginal totals
                     0  2  1
                     2  2  1
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random_mvar_gaussian_copula
Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Gaussian Cop-
ula distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_gaussian_copula(int n, float chol[], …, 0)

The type double function is imsls_d_ random_mvar_gaussian_copula.

Required Arguments
int n  (Input)

Number of random numbers to generate.

float chol[]  (Input)
Array of size n × n containing the upper-triangular Cholesky factorization of the correlation matrix 
of order n.

Return Value
An array of length n containing the pseudorandom numbers from a multivariate Gaussian Copula distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_mvar_gaussian_copula (int n, float chol[],

IMSLS_RETURN_USER, r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, r[]  (Output)

User-supplied array of length n containing the pseudorandom numbers from a multivariate Gaussian 
Copula distribution.

Description
Function imsls_f_random_mvar_gaussian_copula generates pseudorandom numbers from a multi-
variate Gaussian Copula distribution which are uniformly distributed on the interval (0,1) representing the 
probabilities associated with standard normal N(0,1) deviates imprinted with correlation information from input 
upper-triangular Cholesky matrix chol. Cholesky matrix chol is defined as the “square root” of a user-defined 
correlation matrix, that is chol is an upper triangular matrix such that the transpose of chol × chol is the cor-
relation matrix. First, a length n array of independent random normal deviates with mean 0 and variance 1 is 
generated, and then this deviate array is post-multiplied by Cholesky matrix chol. Finally, the Cholesky-imprinted 
random N(0,1) deviates are mapped to output probabilities using the N(0,1) cumulative distribution function 
(CDF).

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information con-
tained in Cholesky matrix chol can then be generated by inverting the output probabilities using user-specified 
inverse CDF functions.

Example: Using Gaussian Copulas to Imprint and Extract Correlation 
Information
This example uses function imsls_f_random_mvar_gaussian_copula to generate a multivariate 
sequence gcdevt whose marginal distributions are user-defined and imprinted with a user-specified input cor-
relation matrix corrin and then uses function imsls_f_canonical_correlation to extract an output 
canonical correlation matrix corrout from this multivariate random sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multivari-
ate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a user-defined 
correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate deviate input 
sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. cumulative distribution 
function values representing the probability that each random variable has a value less than or equal to the input 
deviate. The variates are then inverted, using the inverse standard normal CDF function, to N(0,1) deviates; and 
finally, a canonical covariance matrix is extracted from the multivariate N(0,1) sequence using the standard sum 
of products.
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This example demonstrates that function imsls_f_random_mvar_gaussian_copula correctly embeds 
the user-defined correlation information into an arbitrary marginal distribution sequence by extracting the 
canonical correlation from these sequences and showing that they differ from the original correlation matrix by a 
small relative error, which generally decreases as the number of multivariate sequence vectors increases.

#include <imsls.h>
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NVAR 3
int main()
{
   int lmax=15000, i, j, k, kmax, kk;
   float chol[NVAR*NVAR], gcvart[NVAR], *gcdevt, corrout[NVAR*NVAR],
       relerr, arg1=10.0, arg2=15.0, rs, rs00;
   float corrin[] = { 
              1.0, -0.9486832, 0.8164965,
       -0.9486832,        1.0, -0.6454972,
        0.8164965, -0.6454972,       1.0
   };
   printf("Off-diagonal elements of Input Correlation Matrix:\n\n");
   for (i = 1; i < NVAR; i++) {
       for (j = 0; j < i; j++) {
           printf(" CorrIn(%d,%d) = %10.6f\n",
               i, j, corrin[i*NVAR + j]);
       }
   }
   printf("\nOff-diagonal elements of Output Correlation Matrices\n");
   printf("calculated from Gaussian Copula imprinted multivariate\n");
   printf("sequence:\n");
   /*
   * Compute the Cholesky factorization of corrin
   *
   * Use IMSL function imsl_f_lin_sol_posdef to generate
   * the NVAR by NVAR upper triangular matrix chol from
   * the Cholesky decomposition R*RT of input correlation
   * matrix corrin:
   */
   imsl_f_lin_sol_posdef (NVAR, corrin, NULL,
       IMSL_FACTOR_USER, chol,
       IMSL_FACTOR_ONLY,
       0);
   kmax = lmax / 100;
   for (kk = 1; kk <= 3; kk++) {
       gcdevt = (float *) malloc(kmax * NVAR * sizeof(float));
       printf("\n# of vectors in multivariate sequence: %7d\n\n", 
           kmax);
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       /* use Congruential RN generator, with multiplier 16807 */
       imsls_random_option(1);
       /* set RN generator seed to be 123457 */
       imsls_random_seed_set(123457);
       for (k = 0; k < kmax; k++) {
           /*
           * generate a NVAR-length random Gaussian Copula
           * variate output vector gcvart which is uniformly
           * distributed on the interval [0,1] and imprinted
           * with correlation information from input Cholesky
           * matrix chol:
           */
           imsls_f_random_mvar_gaussian_copula(NVAR, chol,
               IMSLS_RETURN_USER, gcvart,
               0);
           for (j = 0; j < 3; j++) {
               /*
               * invert Gaussian Copula probabilities to deviates
               * using variable-specific inversions: j = 0: Chi
               * Square; j = 1: F; j = 2: Normal(0,1); will end
               * up with deviate sequences ready for mapping to
               * canonical correlation matrix:
               */
               if (j == 0) {
                   /* convert probs into ChiSquare(df=10) deviates */
                   gcdevt[k*NVAR + j] =
                       imsls_f_chi_squared_inverse_cdf(gcvart[j], arg1);
               } else if (j == 1) {
                   /* convert probs into F(dfn=15,dfd=10) deviates */
                   gcdevt[k*NVAR + j] =
                       imsls_f_F_inverse_cdf(gcvart[j], arg2, arg1);
               } else {
                   /*
                   * convert probs into Normal(mean=0,variance=1)
                   * deviates:
                   */
                   gcdevt[k*NVAR + j] =
                       imsls_f_normal_inverse_cdf(gcvart[j]);
               }
           }
       }
       /*
       * extract Canonical Correlation matrix from arbitrarily
       * distributed deviate sequences gcdevt (k=1..kmax, j=1..NVAR)
       * which have been imprinted with corrin (i=1..NVAR, j=1..NVAR)
       * above:
       */
       imsls_f_canonical_correlation(kmax, NVAR, gcdevt,
           IMSLS_RETURN_USER, corrout, 
           0);
       for (i = 1; i < NVAR; i++) {
           for (j = 0; j <= i-1; j++) {
               rs00 = corrin[i*NVAR + j];
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               rs = corrout[i*NVAR + j];
               relerr = fabs((rs - rs00)/rs00);
               printf(" CorrOut(%d,%d) = %10.6f; relerr = %10.6f\n",
                   i, j, corrout[i*NVAR + j], relerr);
           }
       }
       free(gcdevt);
       kmax *= 10;
   }
}

Output

Off-diagonal elements of Input Correlation Matrix:
 CorrIn(1,0) = -0.948683
 CorrIn(2,0) =  0.816496
 CorrIn(2,1) = -0.645497
Off-diagonal elements of Output Correlation Matrices
calculated from Gaussian Copula imprinted multivariate
sequence:
# of vectors in multivariate sequence:    150
 CorrOut(1,0) = -0.940215; relerr =  0.008926
 CorrOut(2,0) =  0.794511; relerr =  0.026927
 CorrOut(2,1) = -0.616082; relerr =  0.045570
# of vectors in multivariate sequence:   1500
 CorrOut(1,0) = -0.947444; relerr =  0.001306
 CorrOut(2,0) =  0.808306; relerr =  0.010031
 CorrOut(2,1) = -0.635650; relerr =  0.015255
# of vectors in multivariate sequence:  15000
 CorrOut(1,0) = -0.948263; relerr =  0.000443
 CorrOut(2,0) =  0.817261; relerr =  0.000936
 CorrOut(2,1) = -0.646206; relerr =  0.001098
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random_mvar_t_copula
Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Student’s t Cop-
ula distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_t_copula(float df, int n, float chol[], …, 0)

The type double function is imsls_d_random_mvar_t_copula.

Required Arguments
float df  (Input)

Degrees of freedom. df must be greater than 2.

int n  (Input)
Number of random numbers to generate.

float chol[]  (Input)
An array of size n × n containing the upper-triangular Cholesky factorization of the correlation matrix 
of order n.

Return Value
An array of length n containing the pseudorandom numbers from a multivariate Student’s t Copula distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_mvar_t_copula (float df, int n, float chol[],

IMSLS_RETURN_USER, r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, r[]  (Output)

User-supplied array of length n containing the pseudorandom numbers from a multivariate 
Student’s t Copula distribution.

Description
Function imsls_f_random_mvar_t_copula generates pseudorandom numbers from a multivariate Stu-
dent’s t Copula distribution which are uniformly distributed on the interval (0,1) representing the probabilities 
associated with Student’s t deviates with df degrees of freedom imprinted with correlation information from 
input upper-triangular Cholesky matrix chol. Cholesky matrix chol is defined as the “square root” of a user-
defined correlation matrix. That is, chol is an upper triangular matrix such that the transpose of chol times 
chol is the correlation matrix. First, a length n array of independent random normal deviates with mean 0 and 
variance 1 is generated, and then this deviate array is post-multiplied by Cholesky matrix chol. Each of the n ele-
ments of the resulting vector of Cholesky-imprinted random deviates is then divided by

where   = df and s is a random deviate taken from a chi-squared distribution with df degrees of freedom. Each 
element of the Cholesky-imprinted standard normal N(0,1) array is a linear combination of normally distributed 
random numbers and is therefore itself normal, and the division of each element by 

insures that each element of the resulting array is Student’s t distributed. Finally, each element of the Cholesky-
imprinted Student’s t array is mapped to an output probability using the Student’s t cumulative distribution func-
tion (CDF) with df degrees of freedom.

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information con-
tained in Cholesky matrix chol can then be generated by inverting the output probabilities using user-specified 
inverse CDF functions.

s v ,

v

s v
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Example: Using Student’s t Copulas to Imprint and Extract 
Correlation Information
This example uses function imsls_f_random_mvar_t_copula to generate a multivariate sequence 
tcdevt whose marginal distributions are user-defined and imprinted with a user-specified input correlation 
matrix corrin and then uses function imsls_f_canonical_correlation to extract an output canoni-
cal correlation matrix corrout from this multivariate random sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multivari-
ate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a user-defined 
correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate deviate input 
sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. cumulative distribution 
function values representing the probability that each random variable has a value less than or equal to the input 
deviate. The variates are then inverted, using the inverse standard normal CDF function, to N(0,1) deviates; and 
finally, a canonical covariance matrix is extracted from the multivariate N(0,1) sequence using the standard sum 
of products.

This example demonstrates that function imsls_f_random_mvar_t_copula correctly imbeds the user-
defined correlation information into an arbitrary marginal distribution sequence by extracting the canonical cor-
relation from these sequences and showing that they differ from the original correlation matrix by a small relative 
error.

Recall that a Gaussian Copula array sequence, whose probabilities are mapped directly from Cholesky-imprinted 
N(0,1) deviates, has the property that the relative error between the input and output correlation matrices gener-
ally decreases as the number of multivariate sequence vectors increases. This is understandable because the 
correlation imprinting and extraction processes both act upon N(0,1) marginal distributions, and one would 
expect that a larger sample would therefore result in more accurate imprinting and extraction of correlation 
information.

In contrast, the imprinting of correlation information onto the Student’s t vector sequence is accomplished by 
imprinting onto an N(0,1) array and then dividing the array components by a scaled chi-squared random deviate, 
thereby introducing noise into the imprinting process. (An array of Student’s t deviates cannot be Cholesky-
imprinted directly, because a linear combination of Student’s t deviates is not Student’s t distributed.) A larger 
sample would thus contain additional correlation information and additional noise, so the accuracy would be 
expected to plateau. This is illustrated in the example below, which should be compared with the Gaussian Cop-
ula example given for CNL function imsls_f_random_mvar_gaussian_copula.

#include <imsls.h>
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NVAR 3
1313



 Random Number Generation         random_mvar_t_copula
int main()
{
   int lmax=15000, i, j, k, kmax, kk;
   float chol[NVAR*NVAR], tcvart[NVAR], *tcdevt, corrout[NVAR*NVAR],
       df=5.0, relerr, arg1=10.0, arg2=15.0, rs, rs00;
   float corrin[] = {
              1.0, -0.9486832, 0.8164965,
       -0.9486832,        1.0, -0.6454972,
        0.8164965, -0.6454972,       1.0
   };
   printf("Off-diagonal elements of Input Correlation Matrix:\n\n");
   for (i = 1; i < NVAR; i++) {
       for (j = 0; j < i; j++) {
           printf(" CorrIn(%d,%d) = %10.6f\n",
               i, j, corrin[i*NVAR + j]);
       }
   }
   printf("\n Degrees of freedom df = %6.2f\n", df);
   printf("\n Imprinted random sequences distributions:");
   printf("\n 1: Chi, 2: F, 3: Normal;\n");
   printf("\nOff-diagonal elements of Output Correlation Matrices\n");
   printf("calculated from Student's t Copula imprinted\n");
   printf("multivariate sequence:\n");
   /*
   * Compute the Cholesky factorization of corrin
   *
   * Use IMSL function imsl_f_lin_sol_posdef to generate
   * the NVAR by NVAR upper triangular matrix chol from
   * the Cholesky decomposition R*RT of input correlation
   * matrix corrin:
   */
   imsl_f_lin_sol_posdef (NVAR, corrin, NULL,
       IMSL_FACTOR_USER, chol,
       IMSL_FACTOR_ONLY,
       0);
   kmax = lmax / 100;
   for (kk = 1; kk <= 3; kk++) {
       tcdevt = (float *) malloc(kmax * NVAR * sizeof(float));
       printf("\n# of vectors in multivariate sequence: %7d\n\n", 
           kmax);
       /* use Congruential RN generator, with multiplier 16807 */
       imsls_random_option(1);
       /* set RN generator seed to be 123457 */
       imsls_random_seed_set(123457);
       for (k = 0; k < kmax; k++) {
           /*
           * generate a NVAR-length random Student's t Copula
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           * variate output vector tcvart which is uniformly
           * distributed on the interval [0,1] and imprinted
           * with correlation information from input Cholesky
           * matrix chol:
           */
           imsls_f_random_mvar_t_copula(df, NVAR, chol, 
               IMSLS_RETURN_USER, tcvart, 
               0);
           for (j = 0; j < 3; j++) {
               /*
               * invert Student's t Copula probabilities to
               * deviates using variable-specific
               * inversions: j = 0: Chi Square; j = 1: F;
               * j = 2: Normal(0,1); will end up with deviate
               * sequences ready for mapping to canonical
               * correlation matrix:
               */
               if (j == 0) {
                   /* convert probs into ChiSquare(df=10) deviates */
                   tcdevt[k*NVAR + j] =
                       imsls_f_chi_squared_inverse_cdf(tcvart[j], arg1);
               } else if (j == 1) {
                   /* convert probs into F(dfn=15,dfd=10) deviates */
                   tcdevt[k*NVAR + j] = 
                       imsls_f_F_inverse_cdf(tcvart[j], arg2, arg1);
               } else {
                   /*
                   * convert probs into Normal(mean=0,variance=1)
                   * deviates:
                   */
                   tcdevt[k*NVAR + j] = 
                       imsls_f_normal_inverse_cdf(tcvart[j]);
               }
           }
       }
       /*
       * extract Canonical Correlation matrix from arbitrarily
       * distributed deviate sequences tcdevt (k=1..kmax, j=1..NVAR)
       * which have been imprinted with corrin (i=1..NVAR, j=1..NVAR)
       * above:
       */
       imsls_f_canonical_correlation (kmax, NVAR, tcdevt, 
           IMSLS_RETURN_USER, corrout, 
           0);
       for (i = 1; i < NVAR; i++) {
           for (j = 0; j <= i-1; j++) {
               rs00 = corrin[i*NVAR + j];
               rs = corrout[i*NVAR + j];
               relerr = fabs((rs - rs00)/rs00);
               printf(" CorrOut(%d,%d) = %10.6f; relerr = %10.6f\n",
                   i, j, corrout[i*NVAR + j], relerr);
           }
       }
       free (tcdevt);
       kmax *= 10;
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   }
}

Output

Off-diagonal elements of Input Correlation Matrix:
 CorrIn(1,0) = -0.948683
 CorrIn(2,0) =  0.816496
 CorrIn(2,1) = -0.645497
 Degrees of freedom df =   5.00
 Imprinted random sequences distributions:
 1: Chi, 2: F, 3: Normal;
Off-diagonal elements of Output Correlation Matrices
calculated from Student's t Copula imprinted
multivariate sequence:
# of vectors in multivariate sequence:    150
 CorrOut(1,0) = -0.953573; relerr =  0.005154
 CorrOut(2,0) =  0.774720; relerr =  0.051166
 CorrOut(2,1) = -0.621418; relerr =  0.037303
# of vectors in multivariate sequence:   1500
 CorrOut(1,0) = -0.944316; relerr =  0.004603
 CorrOut(2,0) =  0.810164; relerr =  0.007756
 CorrOut(2,1) = -0.636348; relerr =  0.014174
# of vectors in multivariate sequence:  15000
 CorrOut(1,0) = -0.946770; relerr =  0.002017
 CorrOut(2,0) =  0.808564; relerr =  0.009715
 CorrOut(2,1) = -0.636321; relerr =  0.014216
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canonical_correlation

more...

Given an input array of deviate values, generates a canonical correlation array.

Synopsis
#include <imsls.h>
float *imsls_f_canonical_correlation(int nseq, int nvar, float devt[], …, 0)

The type double function is imsls_d_canonical_correlation.

Required Arguments
int nseq  (Input)

Number of steps in each deviate variable sequence.

int nvar  (Input)
Number of deviate variables.

float devt[]  (Input)
An array of length nseq × nvar of deviate values containing nseq row elements for each of nvar 
variables (columns).

Return Value
An array of length nvar × nvar containing the canonical correlation array.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_canonical_correlation(int nseq, int nvar, float devt[], 

IMSLS_RETURN_USER, corr[],
0)
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Optional Arguments
IMSLS_RETURN_USER, corr[]  (Output)

User-supplied array of length nvar × nvar containing canonical correlation array.

Description
Function imsls_f_canonical_correlation generates a canonical correlation matrix from an arbitrarily 
distributed multivariate deviate sequence devt with nvar deviate variables, nseq elements in each deviate 
sequence, and a Gaussian Copula dependence structure.

Function imsls_f_canonical_correlation first maps each of the j = 0, ..., nvar-1 input deviate 
sequences devt[k = 0, ..., nseq-1][ j] into a corresponding sequence of variates, say Vkj (where variates are 

values of the empirical cumulative probability function, CDF(x), defined as the probability that random deviate vari-
able X ≤ x). The variate matrix element Vkj is then mapped into standard normal N(0,1) distributed deviates zkj 

using the inverse standard normal CDF imsls_f_normal_inverse_cdf(Vkj) and then the standard covari-

ance estimator

(where m = nseq and i and j have values between 1 and nvar) is used to calculate the canonical correlation 
matrix corr, where Ci j = corr[i-1][j-1] = the return value canonical correlation array.

If a multivariate distribution has Gaussian marginal distributions, then the standard “empirical” correlation matrix 
given above is “unbiased”, i.e. an accurate measure of dependence among the variables. But when the marginal 
distributions depart significantly from Gaussian, i.e. are skewed or flattened, then the empirical correlation may 
become biased. One way to remove such bias from dependence measures is to map the non-Gaussian-distrib-
uted marginal deviates to N(0,1) deviates (by mapping the non-Gaussian marginal deviates to empirically derived 
marginal CDF variate values, then inverting the variates to N(0,1) deviates as described above), and calculating the 
standard empirical correlation matrix from these N(0,1) deviates as in the equation above. The resulting “canoni-
cal correlation” matrix thereby avoids the bias that would occur if the empirical correlation matrix were extracted 
from the non-Gaussian marginal distributions directly.

The canonical correlation matrix may be of value in such applications as Markowitz portfolio optimization, where 
an unbiased measure of dependence is required to evaluate portfolio risk, defined in terms of the portfolio vari-
ance which is in turn defined in terms of the correlation among the component portfolio instruments.

The utility of the canonical correlation derives from the observation that a “copula” multivariate distribution with 
uniformly-distributed deviates (corresponding to the CDF probabilities associated with the marginal deviates) 
may be mapped to arbitrarily distributed marginals, so that an unbiased dependence estimator derived from one 

Ci j =
1
m∑
k=1

m

zkizk j
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set of marginals N(0,1) (distributed marginals) can be used to represent the dependence associated with arbi-
trarily-distributed marginals. The “Gaussian Copula” (whose variate arguments are derived from N(0,1) marginal 
deviates) is a particularly useful structure for representing multivariate dependence.

Example: Using Gaussian Copulas to Imprint and Extract Correlation 
Information
This example uses function imsls_f_random_mvar_gaussian_copula to generate a multivariate sequence 
gcdevt whose marginal distributions are user-defined and imprinted with a user-specified input correlation 
matrix corrin and then uses function imsls_f_canonical_correlation to extract an output canoni-
cal correlation matrix corrout from this multivariate random sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multivari-
ate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a user-defined 
correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate deviate input 
sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. cumulative distribution 
function values representing the probability that each random variable has a value less than or equal to the input 
deviate. The variates are then inverted, using the inverse standard normal CDF function, to N(0,1) deviates; and 
finally, a canonical covariance matrix is extracted from the multivariate N(0,1) sequence using the standard sum 
of products.

This example demonstrates that function imsls_f_random_mvar_gaussian_copula correctly embeds 
the user-defined correlation information into an arbitrary marginal distribution sequence by extracting the 
canonical correlation from these sequences and showing that they differ from the original correlation matrix by a 
small relative error, which generally decreases as the number of multivariate sequence vectors increases.

#include <imsls.h>
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NVAR 3
int main()
{
   int lmax=15000, i, j, k, kmax, kk;
   float chol[NVAR*NVAR], gcvart[NVAR], *gcdevt, corrout[NVAR*NVAR],
       relerr, arg1=10.0, arg2=15.0, rs, rs00;
   float corrin[] = { 
              1.0, -0.9486832, 0.8164965,
       -0.9486832,        1.0, -0.6454972,
        0.8164965, -0.6454972,       1.0
   };
   printf("Off-diagonal elements of Input Correlation Matrix:\n\n");
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   for (i = 1; i < NVAR; i++) {
       for (j = 0; j < i; j++) {
           printf(" CorrIn(%d,%d) = %10.6f\n",
               i, j, corrin[i*NVAR + j]);
       }
   }
   printf("\nOff-diagonal elements of Output Correlation Matrices\n");
   printf("calculated from Gaussian Copula imprinted multivariate\n");
   printf("sequence:\n");
   /*
   * Compute the Cholesky factorization of corrin
   *
   * Use IMSL function imsl_f_lin_sol_posdef to generate
   * the NVAR by NVAR upper triangular matrix chol from
   * the Cholesky decomposition R*RT of input correlation
   * matrix corrin:
   */
   imsl_f_lin_sol_posdef (NVAR, corrin, NULL,
       IMSL_FACTOR_USER, chol,
       IMSL_FACTOR_ONLY,
       0);
   kmax = lmax / 100;
   for (kk = 1; kk <= 3; kk++) {
       gcdevt = (float *) malloc(kmax * NVAR * sizeof(float));
       printf("\n# of vectors in multivariate sequence: %7d\n\n", 
           kmax);
       /* use Congruential RN generator, with multiplier 16807 */
       imsls_random_option(1);
       /* set RN generator seed to be 123457 */
       imsls_random_seed_set(123457);
       for (k = 0; k < kmax; k++) {
           /*
           * generate a NVAR-length random Gaussian Copula
           * variate output vector gcvart which is uniformly
           * distributed on the interval [0,1] and imprinted
           * with correlation information from input Cholesky
           * matrix chol:
           */
           imsls_f_random_mvar_gaussian_copula(NVAR, chol,
               IMSLS_RETURN_USER, gcvart,
               0);
           for (j = 0; j < 3; j++) {
               /*
               * invert Gaussian Copula probabilities to deviates
               * using variable-specific inversions: j = 0: Chi
               * Square; j = 1: F; j = 2: Normal(0,1); will end
               * up with deviate sequences ready for mapping to
               * canonical correlation matrix:
               */
               if (j == 0) {
                   /* convert probs into ChiSquare(df=10) deviates */
                   gcdevt[k*NVAR + j] =
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                       imsls_f_chi_squared_inverse_cdf(gcvart[j], arg1);
               } else if (j == 1) {
                   /* convert probs into F(dfn=15,dfd=10) deviates */
                   gcdevt[k*NVAR + j] =
                       imsls_f_F_inverse_cdf(gcvart[j], arg2, arg1);
               } else {
                   /*
                   * convert probs into Normal(mean=0,variance=1)
                   * deviates:
                   */
                   gcdevt[k*NVAR + j] =
                       imsls_f_normal_inverse_cdf(gcvart[j]);
               }
           }
       }
       /*
       * extract Canonical Correlation matrix from arbitrarily
       * distributed deviate sequences gcdevt (k=1..kmax, j=1..NVAR)
       * which have been imprinted with corrin (i=1..NVAR, j=1..NVAR)
       * above:
       */
       imsls_f_canonical_correlation(kmax, NVAR, gcdevt,
           IMSLS_RETURN_USER, corrout, 
           0);
       for (i = 1; i < NVAR; i++) {
           for (j = 0; j <= i-1; j++) {
               rs00 = corrin[i*NVAR + j];
               rs = corrout[i*NVAR + j];
               relerr = fabs((rs - rs00)/rs00);
               printf(" CorrOut(%d,%d) = %10.6f; relerr = %10.6f\n",
                   i, j, corrout[i*NVAR + j], relerr);
           }
       }
       free(gcdevt);
       kmax *= 10;
   }
}

Outputs

Off-diagonal elements of Input Correlation Matrix:
 CorrIn(1,0) = -0.948683
 CorrIn(2,0) =  0.816496
 CorrIn(2,1) = -0.645497
Off-diagonal elements of Output Correlation Matrices
calculated from Gaussian Copula imprinted multivariate
sequence:
# of vectors in multivariate sequence:    150
 CorrOut(1,0) = -0.940215; relerr =  0.008926
 CorrOut(2,0) =  0.794511; relerr =  0.026927
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 CorrOut(2,1) = -0.616082; relerr =  0.045570
# of vectors in multivariate sequence:   1500
 CorrOut(1,0) = -0.947444; relerr =  0.001306
 CorrOut(2,0) =  0.808306; relerr =  0.010031
 CorrOut(2,1) = -0.635650; relerr =  0.015255
# of vectors in multivariate sequence:  15000
 CorrOut(1,0) = -0.948263; relerr =  0.000443
 CorrOut(2,0) =  0.817261; relerr =  0.000936
 CorrOut(2,1) = -0.646206; relerr =  0.001098
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random_order_normal
Generates pseudorandom order statistics from a standard normal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_normal(int ifirst, int ilast, int n, …, 0)

The type double function is imsls_d_random_order_normal.

Required Arguments
int ifirst (Input)

First order statistic to generate.

int ilast (Input)
Last order statistic to generate. 
ilast must be greater than or equal to ifirst. The full set of order statistics from ifirst to 
ilast is generated. If only one order statistic is desired, set ilast = ifirst. 

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 - ifirst containing the random order statistics in ascending order. The first ele-
ment is the ifirst order statistic in a random sample of size n from the standard normal distribution. To 
release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_normal (int ifirst, int ilast, int n, 

IMSLS_RETURN_USER, float r[],
0)
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Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 - ifirst containing the random order statistics in 
ascending order.

Description
Function imsls_f_random_order_normal generates the ifirst through the ilast order statistics 
from a pseudorandom sample of size n from a normal (0, 1) distribution. Function 
imsls_f_random_order_normal uses the function imsls_f_random_order_uniform to generate 
order statistics from the uniform (0, 1) distribution and then obtains the normal order statistics using the inverse 
CDF transformation.

Each call to imsls_f_random_order_normal yields an independent event so order statistics from differ-
ent calls may not have the same order relations with each other.

Example
In this example, imsls_f_random_order_normal is used to generate the fifteenth through the nineteenth 
order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>
int main()
{
    float *r = NULL;
    imsls_random_seed_set(123457);
    r = imsls_f_random_order_normal(15, 19, 20, 0);
    printf("The 15th through the 19th order statistics from a \n");
    printf("random sample of size 20 from a normal distribution\n");
    imsls_f_write_matrix("", 5, 1, r, 0);
}

Output

The 15th through the 19th order statistics from a 
random sample of size 20 from a normal distribution
1     0.4056
2     0.4681
3     0.4697
4     0.9067
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5     0.9362
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random_order_uniform
Generates pseudorandom order statistics from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_uniform(int ifirst, int ilast, int n, …, 0)

The type double function is imsls_d_random_order_uniform.

Required Arguments
int ifirst (Input)

First order statistic to generate.

int ilast  (Input)
Last order statistic to generate. ilast must be greater than or equal to ifirst. The full set of 
order statistics from ifirst to ilast is generated. If only one order statistic is desired, set 
ilast = ifirst. 

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 - ifirst containing the random order statistics in ascending order. The first ele-
ment is the ifirst order statistic in a random sample of size n from the uniform (0, 1) distribution. To release 
this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_uniform (int ifirst, int ilast, int n, 

IMSLS_RETURN_USER, float r[],
 0)
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Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 - ifirst containing the random order statistics in 
ascending order.

Description
Function imsls_f_random_order_uniform generates the ifirst through the ilast order statistics 
from a pseudorandom sample of size n from a uniform (0, 1) distribution. Depending on the values of ifirst 
and ilast, different methods of generation are used to achieve greater efficiency. If ifirst = 1 and 
ilast = n, that is, if the full set of order statistics are desired, the spacings between successive order statistics 
are generated as ratios of exponential variates. If the full set is not desired, a beta variate is generated for one of 
the order statistics, and the others are generated as extreme order statistics from conditional uniform distribu-
tions. Extreme order statistics from a uniform distribution can be obtained by raising a uniform deviate to an 
appropriate power.

Each call to imsls_f_random_order_uniform yields an independent event. This means, for example, that 
if on one call the fourth order statistic is requested and on a second call the third order statistic is requested, the 
“fourth” may be smaller than the “third”. If both the third and fourth order statistics from a given sample are 
desired, they should be obtained from a single call to imsls_f_random_order_uniform (by specifying 
ifirst less than or equal to 3 and ilast greater than or equal to 4).

Example
In this example, imsls_f_random_order_uniform is used to generate the fifteenth through the nine-
teenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>
int main()
{
 float *r = NULL;
 imsls_random_seed_set(123457);
 r = imsls_f_random_order_uniform(15, 19, 20, 0);
 printf("The 15th through the 19th order statistics from a \n");
 printf("random sample of size 20 from a uniform distribution\n");
 imsls_f_write_matrix("", 5, 1, r, 0);
}
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Output

The 15th through the 19th order statistics from a 
random sample of size 20 from a uniform distribution
1     0.6575
2     0.6802
3     0.6807
4     0.8177
5     0.8254
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random_arma
Generates a time series from a specific ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_random_arma(int n_observations, int p, float ar[], int q, float ma[], …, 0)

The type double function is imsls_d_random_arma. 

Required Arguments
int n_observations  (Input)

Number of observations to be generated. Parameter n_observations must be greater than or 
equal to one.

int p  (Input)
Number of autoregressive parameters. Parameter p must be greater than or equal to zero.

float ar[]  (Input)
Array of length p containing the autoregressive parameters.

int q  (Input)
Number of moving average parameters. Parameter q must be greater than or equal to zero.

float ma[]  (Input)
Array of length q containing the moving average parameters.

Return Value
An array of length n_observations containing the generated time series.

Synopsis with Optional Arguments
#include <imsls.h>
1329



 Random Number Generation         random_arma
float *imsls_f_random_arma (int n_observations, int p, float ar[], int q, float ma[], 
IMSLS_ARMA_CONSTANT, float constant,
IMSLS_VAR_NOISE, float *a_variance, or
IMSLS_INPUT_NOISE, float *a_input,
IMSLS_OUTPUT_NOISE, float **a_return,
IMSLS_OUTPUT_NOISE_USER, float a_return[],
IMSLS_NONZERO_ARLAGS, int *ar_lags,
IMSLS_NONZERO_MALAGS, int *ma_lags,
IMSLS_INITIAL_W, float *w_initial,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ARMA_CONSTANT, float constant  (Input)

Overall constant. See Description.

Default: constant = 0.

IMSLS_VAR_NOISE, float a_variance  (Input)
If IMSLS_VAR_NOISE is specified (and IMSLS_INPUT_NOISE is not specified) the noise at will 
be generated from a normal distribution with mean 0 and variance a_variance.

Default: a_variance = 1.0

or

IMSLS_INPUT_NOISE, float *a_input  (Input)
If IMSLS_INPUT_NOISE is specified, the user will provide an array of length n_observations + 
max (ma_lags[i]) containing the random noises. If this option is specified, then 
IMSLS_VAR_NOISE should not be specified (a warning message will be issued and the option 
IMSLS_VAR_NOISE will be ignored).

IMSLS_OUTPUT_NOISE, float **a_return  (Output)
An address of a pointer to an internally allocated array of length n_observations + 
max (ma_lags[i]) containing the random noises.

IMSLS_OUTPUT_NOISE_USER, float a_return[]  (Output)
Storage for array a_return is provided by user. See IMSLS_OUTPUT_NOISE.

IMSLS_NONZERO_ARLAGS, int ar_lags[]  (Input)
An array of length p containing the order of the nonzero autoregressive parameters.
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Default: ar_lags = [1, 2, ..., p]

IMSLS_NONZERO_MALAGS, int ma_lags  (Input)
An array of length q containing the order of the nonzero moving average parameters.

Default: ma_lags = [1, 2, ..., q]

IMSLS_INITIAL_W, float w_initial[]  (Input)
Array of length max (ar_lags[i]) containing the initial values of the time series.

Default: all the elements in w_initial = constant/(1 − ar [0] − ar [1] −… − ar [p − 1])

IMSLS_ACCEPT_REJECT_METHOD,  (Input)
If IMSLS_ACCEPT_REJECT_METHOD is specified, the random noises will be generated from a 
normal distribution using an acceptance/rejection method. If IMSLS_ACCEPT_REJECT_METHOD 
is not specified, the random noises will be generated using an inverse normal CDF method. This argu-
ment will be ignored if IMSLS_INPUT_NOISE is specified.

IMSLS_RETURN_USER, float r[]  (Output)
User-supplied array of length n_observations containing the generated time series.

Description
Function imsls_f_random_arma simulates an ARMA(p, q) process, {Wt}, for t = 1, 2, ..., n (with 

n = n_observations, p = p, and q = q). The model is 

Let μ be the mean of the time series {Wt}. The overall constant θ0 (constant) is 

Time series whose innovations have a nonnormal distribution may be simulated by providing the appropriate 
innovations in a_input and start values in w_initial.

The time series is generated according to the following model:

X[i] = constant + ar[0] ∙ X[i − ar_lags[0] ] + … +

ar[p − 1] ∙ X[i − ar_lags[p − 1] ] +

ϕ B Wt = θ0 + θ B At t ∈ Z

ϕ B = 1 − ϕ1B − ϕ2B
2 − ... − ϕpB

P

θ B = 1 − θ1B − θ2B
2 − ... − θqB

q

θ0 =
μ p = 0

μ 1 − ∑i=1
p ϕi p > 0
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A[i] − ma[0] ∙ A[i − ma_lags[0] ] − … −
ma[q − 1] ∙ A[i − ma_lags[q − 1] ]

where the constant is related to the mean of the series, 

as follows:

and where

X[t] = W[t], t = 0, 1, …, n_observations − 1

and

W[t] = w_initial[t + p], t = −p, −p + 1, …, −2, −1

and A is either a_input (if IMSLS_INPUT_NOISE is specified) or a_return (otherwise).

Examples

Example 1

In this example, imsls_f_random_arma is used to generate a time series of length five, using an ARMA 
model with three autoregressive parameters and two moving average parameters. 

#include <imsls.h>
int main()
{
   int  n_random = 5;
   int  np = 3;
   float phi[3] = {0.5, 0.25, 0.125};
   int  nq = 2;
   float theta[2] = {-0.5, -0.25};
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_arma(n_random, np, phi, nq, theta,
       0);
   imsls_f_write_matrix("ARMA random deviates:", 1, n_random, r,
       IMSLS_NO_COL_LABELS,
       0);
}

W─

constant = W─· 1 − ar 0 − ... − ar q − 11
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Output

                  ARMA random deviates:
    0.863      0.809      1.904      0.110      2.266

Example 2

In this example, a time series of length 5 is generated using an ARMA model with 3 autoregressive parameters 
and 2 moving average parameters. The start values are 0.1, 0.05 and 0.0375. Constant and noise are also input.

#include <imsls.h>
int main()
{
   int  n_random = 5;
   int  np = 3;
   float phi[3] = {0.5, 0.25, 0.125};
   int  nq = 2;
   float theta[2] = {-0.5, -0.25};
   float wi[3] = {0.1, 0.05, 0.0375};
   float theta0 = 1.0;
   float avar  = 0.1;
   float *r;
   imsls_random_seed_set(123457);
   r = imsls_f_random_arma(n_random, np, phi, nq, theta,
       IMSLS_ACCEPT_REJECT_METHOD,
       IMSLS_INITIAL_W, wi,
       IMSLS_ARMA_CONSTANT, theta0,
       IMSLS_VAR_NOISE, avar,
       0);
   imsls_f_write_matrix("ARMA random deviates:", 1, n_random, r,
       IMSLS_NO_COL_LABELS,
       0);
}

Output

                  ARMA random deviates:
    1.403      2.220      2.286      2.888      2.832

Warning Errors
IMSLS_RNARM_NEG_VAR VAR(a) = “a_variance” = #, VAR(a) must be greater 

than 0. The absolute value of # is used for VAR(a).

IMSLS_RNARM_IO_NOISE Both IMSLS_INPUT_NOISE and 
IMSLS_OUTPUT_NOISE are specified. 
IMSLS_INPUT_NOISE is used.
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random_npp
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Synopsis
#include <imsls.h>
float *imsls_f_random_npp(float tbegin, float tend, float ftheta(), float theta_min, 

float theta_max, int neub, int *ne, …, 0)

The type double function is imsls_d_random_npp.

Required Arguments
float tbegin  (Input)

Lower endpoint of the time interval of the process. tbegin must be nonnegative. Usually, 
tbegin = 0.

float tend  (Input)
Upper endpoint of the time interval of the process. tend must be greater than tbegin.

float ftheta(float t) (Input)
User-supplied function to provide the value of the rate of the process as a function of time. This func-
tion must be defined over the interval from tbegin to tend and must be nonnegative in that 
interval. 

float theta_min  (Input)
Minimum value of the rate function ftheta() in the interval (tbegin, tend). If the actual mini-
mum is unknown, set theta_min = 0.0.

float theta_max  (Input)
Maximum value of the rate function ftheta() in the interval (tbegin, tend). If the actual maxi-
mum is unknown, set theta_max to a known upper bound of the maximum. The efficiency of 
imsls_f_random_npp is less the greater theta_max exceeds the true maximum.

int neub  (Input)
Upper bound on the number of events to be generated. In order to be reasonably sure that the full 
process through time tend is generated, calculate neub as neub = X + 10.0 × sqrt(X), where 
X = theta_max × (tend – tbegin). 
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int *ne  (Output)
Number of events actually generated. If ne is less that neub, the time tend is reached before neub 
events are realized.

Return Value
An array of length neub containing the times to events in the first ne elements. To release this space, use 
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), float theta_min, 

float theta_max, int neub, int *ne, 

IMSLS_RETURN_USER, float r[],
IMSLS_FCN_W_DATA, float ftheta(), void *data,
0)

Optional Arguments
IMSLS_RETURN_USER, float r[]   (Output)

User-supplied array of length neub containing the times to events in the first ne elements.

IMSLS_FCN_W_DATA, float ftheta(float t), void *data  (Input)
User-supplied function to provide the value of the rate of the process as a function of time, which 
also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed 
to the user-supplied function. See the Passing Data to User-Supplied Functions at the beginning of 
this manual for more details.

Description
Function imsls_f_random_npp simulates a one-dimensional nonhomogeneous Poisson process with rate 
function ftheta in a fixed interval (tbegin, tend].

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Function imsls_f_random_npp uses a method 

of thinning a nonhomogeneous Poisson process {N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1], where the 

number of events, N*, in the interval (t0, t1] has a Poisson distribution with parameter
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The function

is called the integrated rate function. In imsls_f_random_npp, λ*(t) is taken to be a constant 
λ*(= theta_max) so that at time ti, the time of the next event ti+1 is obtained by generating and cumulating 

exponential random numbers 

with parameter λ*, until for the first time

where the uj,i are independent uniform random numbers between 0 and 1. This process is continued until the 

specified number of events, neub, is realized or until the time, tend, is exceeded. This method is due to Lewis 
and Shedler (1979), who also review other methods. The most straightforward (and most efficient) method is by 
inverting the integrated rate function, but often this is not possible.

If theta_max is actually greater than the maximum of λ(t) in (t0, t1], the function will work, but less efficiently. 

Also, if λ(t) varies greatly within the interval, the efficiency is reduced. In that case, it may be desirable to divide the 
time interval into subintervals within which the rate function is less variable. This is possible because the process 
is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for the required number of events to 
be realized. Care must be taken; however, that ftheta is defined over the entire interval.

After simulating a given number of events, the next event can be generated by setting tbegin to the time of the 
last event (the sum of the elements in R) and calling imsls_f_random_npp again. Cox and Lewis (1966) dis-
cuss modeling applications of nonhomogeneous Poisson processes.

Example
In this example, imsls_f_random_npp is used to generate the first five events in the time 0 to 20 (if that 
many events are realized) in a nonhomogeneous process with rate function

λ(t) = 0.6342 exp(0.001427t)

for 0 < t ≤ 20.

μ0 = ∫t0
t1
λ t dt

Λ t = ∫0
t′
λ t dt

E1,i
* , E2,i

* , ...

u j, i ≤ ti + E1, i
* + ... + E j, i

* / λ*
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Since this is a monotonically increasing function of t, the minimum is at t = 0 and is 0.6342, and the maximum is 
at t = 20 and is 0.6342 exp(0.02854) = 0.652561.

#include <stdio.h>
#include <imsls.h>
float ftheta (float t);
int main()
{
   int i, neub = 5, ne;
   float *r, tmax= .652561, tmin = .6342, tbeg=0., tend=20.;
   imsls_random_seed_set(123457);
   r = imsls_f_random_npp(tbeg, tend, ftheta, tmin, tmax, neub, &ne, 0);
   printf("Inter-event times for the first ");
   printf("%d events in the process:\n", ne);
   for (i=0; i<ne; i++) printf("\t%f\n", r[i]);
}

float ftheta (float t)
{
   return 0.6342*exp(0.001427*t);
}

Output

Inter-event times for the first 5 events in the process:
  0.052660
  0.407979
  0.258399
  0.019767
  0.167641 

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm. 
User flag = "#".
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random_permutation
Generates a pseudorandom permutation.

Synopsis
#include <imsls.h>
int *imsls_random_permutation (int k, ..., 0)

Required Arguments
int k  (Input)

Number of integers to be permuted.

Return Value
An array of length k containing the random permutation of the integers from 1 to k. To release this space, use 
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_permutation (int k,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length k containing the random permutation of the integers from 1 to k.
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Description
Function imsls_random_permutation generates a pseudorandom permutation of the integers from 1 to 
k. It begins by filling a vector of length k with the consecutive integers 1 to k. Then, with M initially equal to k, a 
random index J between 1 and M (inclusive) is generated. The element of the vector with the index M and the ele-
ment with index J swap places in the vector. M is then decremented by 1 and the process repeated until M = 1.

Example
In this example, imsls_random_permutation is called to produce a pseudorandom permutation of the 
integers from 1 to 10.

#include <stdio.h>
#include <imsls.h>
int main()
{
    int *ir, k = 10;
    imsls_random_seed_set(123457);
    ir = imsls_random_permutation(k, 0);
 
    printf("Random permutation of the integers from 1 to 10\n");   
    imsls_i_write_matrix("", 1, k, ir, 
          IMSLS_NO_COL_LABELS, 0);
}

Output

Random permutation of the integers from 1 to 10
  5    9    2    8    1    6    4    7    3   10
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random_sample_indices
Generates a simple pseudorandom sample of indices.

Synopsis
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop, ..., 0)

Required Arguments
int nsamp  (Input)

Sample size desired.

int npop (Input)
Number of items in the population.

Return Value
An array of length nsamp containing the indices of the sample. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop, 

 IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length nsamp containing the indices of the sample.
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Description
Function imsls_random_sample_indices generates the indices of a pseudorandom sample, without 
replacement, of size nsamp numbers from a population of size npop. If nsamp is greater than npop/2, the inte-
gers from 1 to npop are selected sequentially with a probability conditional on the number selected and the 
number remaining to be considered. If, when the i-th population index is considered, j items have been included 
in the sample, then the index i is included with probability (nsamp- j)/(npop + 1-i).

If nsamp is not greater than npop/2, a O(nsamp) algorithm due to Ahrens and Dieter (1985) is used. Of the 
methods discussed by Ahrens and Dieter, the one called SG* is used in imsls_random_sample_indices. 
It involves a preliminary selection of q indices using a geometric distribution for the distances between each 
index and the next one. If the preliminary sample size q is less than nsamp, a new preliminary sample is chosen, 
and this is continued until a preliminary sample greater in size than nsamp is chosen. This preliminary sample is 
then thinned using the same kind of sampling as described above for the case in which the sample size is greater 
than half of the population size. Function imsls_random_sample_indices does not store the preliminary 
sample indices, but rather restores the state of the generator used in selecting the sample initially, and then 
passes through once again, making the final selection as the preliminary sample indices are being generated.

Example
In this example, imsls_random_sample_indices is used to generate the indices of a pseudorandom sam-
ple of size 5 from a population of size 100.

#include <imsls.h>
int main()
{
   int *ir, nsamp = 5, npop = 100;
   imsls_random_seed_set(123457);
   ir = imsls_random_sample_indices(nsamp, npop,
       0);
   imsls_i_write_matrix("Random Sample", 1, nsamp, ir,
       IMSLS_NO_COL_LABELS,
       0);
}

Output

                  
    Random Sample
 2  22  53  61  79
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random_sample
Generates a simple pseudorandom sample from a finite population.

Synopsis
#include <imsls.h>
float *imsls_f_random_sample(int nrow, int nvar, float population[], int nsamp, …, 0)

The type double function is imsls_d_random_sample.

Required Arguments
int nrow  (Input)

Number of rows of data in population.

int nvar  (Input)
Number of variables in the population and in the sample.

float population[]  (Input)
nrow by nvar matrix containing the population to be sampled. If either of the optional arguments 
IMSLS_FIRST_CALL or IMSLS_ADDITIONAL_CALL are specified, then population con-
tains a different part of the population on each invocation, otherwise population contains the 
entire population.

int nsamp  (Input)
The sample size desired.

Return Value
nsamp by nvar matrix containing the sample. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
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float *imsls_f_random_sample (int nrow, int nvar, float population[], int nsamp,
IMSLS_FIRST_CALL, int **index, int *npop,
IMSLS_FIRST_CALL_USER, int index[], int *npop,
IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp,
IMSLS_POPULATION_COL_DIM, int population_col_dim,
IMSLS_RETURN_USER, int samp[],
 0)

Optional Arguments
IMSLS_FIRST_CALL, int **index, int *npop  (Output)

This is the first invocation with this data; additional calls to imsls_f_random_sample may be 
made to add to the population. Additional calls should be made using the optional argument 
IMSLS_ADDITIONAL_CALL. Argument index is the address of a pointer to an internally allo-
cated array of length nsamp containing the indices of the sample in the population. Argument npop 
returns the number of items in the population. If the population is input a few items at a time, the 
first call to imsls_f_random_sample should use IMSLS_FIRST_CALL, and subsequent calls 
should use IMSLS_ADDITIONAL_CALL. See example 2.

IMSLS_FIRST_CALL_USER, int index[], int *npop  (Output)
Storage for index is provided by the user. See IMSLS_FIRST_CALL. 

IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp  (Input/Output)
This is an additional invocation of imsls_f_random_sample, and updating for the subpopula-
tion in population is performed. Argument index is a pointer to an array of length nsamp 
containing the indices of the sample in the population, as returned using optional argument 
IMSLS_FIRST_CALL. Argument npop, also obtained using optional argument 
IMSLS_FIRST_CALL, returns the number of items in the population. It is not necessary to know 
the number of items in the population in advance. npop is used to cumulate the population size and 
should not be changed between calls to imsls_f_random_sample. Argument samp is a pointer 
to the array of size nsamp by nvar containing the sample. samp is the result of calling 
imsls_f_random_sample with optional argument IMSLS_FIRST_CALL. See Example 2.

IMSLS_POPULATION_COL_DIM, int population_col_dim  (Input)
Column dimension of the matrix population.

Default: x_col_dim = nvar
IMSLS_RETURN_USER, int samp[] (Output)

User-supplied array of size nrow by nvar containing the sample. This option should not be used if 
IMSLS_ADDITIONAL_CALL is used.
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Description
Function imsls_f_random_sample generates a pseudorandom sample from a given population, without 
replacement, using an algorithm due to McLeod and Bellhouse (1983).

The first nsamp items in the population are included in the sample. Then, for each successive item from the pop-
ulation, a random item in the sample is replaced by that item from the population with probability equal to the 
sample size divided by the number of population items that have been encountered at that time.

Examples

Example 1

In this example, imsls_f_random_sample is used to generate a sample of size 5 from a population stored in 
the matrix population. 

#include <imsls.h>
int main()
{
   int nrow = 176, nvar = 2, nsamp = 5;
   float *population;
   float *sample;
   population = imsls_f_data_sets(2,
       0);
   imsls_random_seed_set(123457);
   sample = imsls_f_random_sample(nrow, nvar, population, nsamp,
       0);
   imsls_f_write_matrix("The sample", nsamp, nvar, sample,
       IMSLS_NO_ROW_LABELS,
       IMSLS_NO_COL_LABELS,
       0);
}

Output

     The sample
     1764         36
     1828         62
     1923          6
     1773         35
     1769        106
1344



 Random Number Generation         random_sample
Example 2

Function imsls_f_random_sample is now used to generate a sample of size 5 from the same population as 
in the example above except the data are input to imsls_f_random_sample one observation at a time. This 
is the way imsls_f_random_sample may be used to sample from a large data file. Notice that the number 
of records need not be known in advance.

#include <stdio.h>
#include <imsls.h>
int main()
{
 int i, nrow = 176, nvar = 2, nsamp = 5;
 int *index, npop;
 float *population; 
 float *sample; 
 population = imsls_f_data_sets(2, 0);
 imsls_random_seed_set(123457);
 sample = imsls_f_random_sample(1, 2, population, nsamp, 
         IMSLS_FIRST_CALL, &index, &npop,
         0);
 for (i = 1; i < 176; i++) {
   imsls_f_random_sample(1, 2, &population[2*i], nsamp, 
       IMSLS_ADDITIONAL_CALL, index, &npop, sample, 
       0);
 }
 printf("The population size is %d\n", npop);
 imsls_i_write_matrix("Indices of random sample", 5, 1, index, 0);

 imsls_f_write_matrix("The sample", nsamp, nvar, sample, 
          IMSLS_NO_ROW_LABELS,
          IMSLS_NO_COL_LABELS,
          0);
}

Output

The population size is 176
Indices of random sample
         1   16
         2   80
         3  175
         4   25
         5   21
     The sample
     1764         36
     1828         62
     1923          6
     1773         35
     1769        106
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random_option
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator or a generalized feedback 
shift register (GFSR) method.

Synopsis
#include <imsls.h>
void imsls_random_option (int generator_option)

Required Arguments
int generator_option  (Input)

Indicator of the generator. Argument generator_option is used to choose the multiplier and 
whether or not shuffling is done, or the GFSR method.

generator_option Generator

1 The multiplier 16807 is used.

2 The multiplier 16807 is used with shuffling.

3 The multiplier 397204094 is used.

4 The multiplier 397204094 is used with shuffling.

5 The multiplier 950706376 is used.

6 The multiplier 950706376 is used with shuffling.

7 GFSR, with the recursion Xt = Xt−1563 ⊕ Xt−96 is used.

8 A 32-bit Mersenne Twister generator is used. The float 
and double random numbers are generated from 32-bit 
integers.

9 A 64-bit Mersenne Twister generator is used. The float 
and double random numbers are generated from 64-bit 
integers. This ensures that all bits of both float and dou-
bles are random.
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Description
The uniform pseudorandom number generators use a multiplicative congruential method, with or without shuf-
fling. The value of the multiplier and whether or not to use shuffling are determined by 
imsls_random_option. The description of function imsls_f_random_uniform may provide some guid-
ance in the choice of the form of the generator. If no selection is made explicitly, the generators use the multiplier 
16807 without shuffling. This form of the generator has been in use for some time (see Lewis et al. 1969).

Both of the Mersenne Twister generators have a period of 219937-1 and a 623-dimensional equidistribution prop-
erty. See Matsumoto et al. 1998 for details. 

The IMSL Mersenne Twister generators are derived from code copyright (C) 1997 - 2002, Makoto Matsumoto and 
Takuji Nishimura, All rights reserved. It is subject to the following notice:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The IMSL 32-bit Mersenne Twister generator is based on the Matsumoto and Nishimura code ‘mt19937ar’ and 
the 64-bit code is based on ‘mt19937-64’.

Example
See function imsls_random_GFSR_table_get.
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random_option_get
Retrieves the uniform (0, 1) multiplicative congruential pseudorandom number generator.

Synopsis
#include <imsls.h>
int imsls_random_option_get ()

Return Value
Indicator of the generator.

Description
The function imsls_random_option_get retrieves the uniform (0, 1) multiplicative congruential pseudoran-
dom number generator or the GRSR method. The uniform pseudorandom number generators use a 
multiplicative congruential method, with or without shuffling. The value of the multiplier and whether or not to 
use shuffling are determined by imsls_random_option. 

Result Generator

1 The multiplier 16807 is used.

2 The multiplier 16807 is used with shuffling.

3 The multiplier 397204094 is used.

4 The multiplier 397204094 is used with shuffling.

5 The multiplier 950706376 is used.

6 The multiplier 950706376 is used with shuffling.

7 GFSR, with the recursion Xt = Xt−1563 ⊕ Xt−96 is used
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random_seed_get
Retrieves the current value of the seed used in the random number generators.

Synopsis
#include <imsls.h>
int imsls_random_seed_get ( )

Return Value
The value of the seed.

Description
Function imsls_random_seed_get retrieves the current value of the “seed” used in the random number 
generators. A reason for doing this would be to restart a simulation, using function 
imsls_random_seed_set to reset the seed.

Example
This example illustrates the statements required to restart a simulation using imsls_random_seed_get and 
imsls_random_seed_set. The example shows that restarting the sequence of random numbers at the value 
of the seed last generated is the same as generating the random numbers all at once.

#include <imsls.h>
#define    N_RANDOM    5
int main()
{
   int        seed = 123457;
   float     *r1, *r2, *r;
    
   imsls_random_seed_set(seed);
   r1 = imsls_f_random_uniform(N_RANDOM, 0);
   imsls_f_write_matrix ("First Group of Random Numbers", 1,
                          N_RANDOM, r1, 0);
   seed = imsls_random_seed_get();
   imsls_random_seed_set(seed);
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   r2 = imsls_f_random_uniform(N_RANDOM, 0);
   imsls_f_write_matrix ("Second Group of Random Numbers", 1, 
                          N_RANDOM, r2, 0);
   imsls_random_seed_set(123457);
   r = imsls_f_random_uniform(2*N_RANDOM, 0);
   imsls_f_write_matrix ("Both Groups of Random Numbers", 1, 
                          2*N_RANDOM, r, 0);
}

Output

              First Group of Random Numbers
        1          2          3          4          5
   0.9662     0.2607     0.7663     0.5693     0.8448
             Second Group of Random Numbers
        1          2          3          4          5
   0.0443     0.9872     0.6014     0.8964     0.3809
                    Both Groups of Random Numbers
        1          2          3          4          5          6
   0.9662     0.2607     0.7663     0.5693     0.8448     0.0443
        7          8          9         10
   0.9872     0.6014     0.8964     0.3809
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random_substream_seed_get
Retrieves a seed for the congruential generators that do not do shuffling that will generate random numbers 
beginning 100,000 numbers farther along.

Synopsis
#include <imsls.h>
int imsls_random_substream_seed_get (int iseed1)

Required Arguments
int iseed1  (Input)

The seed that yields the first stream.

Return Value
The seed that yields a stream beginning 100,000 numbers beyond the stream that begins with iseed1.

Description
Given a seed, iseed1, imsls_random_substream_seed_get determines another seed, such that if one 
of the IMSL multiplicative congruential generators, using no shuffling, went through 100,000 generations starting 
with iseed1, the next number in that sequence would be the first number in the sequence that begins with the 
returned seed.

Note that imsls_random_substream_seed_get works only when a multiplicative congruential generator 
without shuffling is used. This means that either the function imsls_random_option has not been called at 
all or that it has been last called with generator_option taking a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use the inverse CDF method, the dis-
tance between the sequences generated starting with iseed1 and starting with the returned seed may be less 
than 100,000. This is because the nonuniform generators that use other techniques may require more than one 
uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known distance apart is for blocking Monte 
Carlo experiments or for running parallel streams
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Example
In this example, imsls_random_substream_seed_get is used to determine seeds for 4 separate 
streams, each 200,000 numbers apart, for a multiplicative congruential generator without shuffling. (Since 
imsls_random_option is not invoked to select a generator, the multiplier is 16807.) Since the streams are 
200,000 numbers apart, each seed requires two invocations of imsls_random_substream_seed_get. All 
of the streams are non-overlapping, since the period of the underlying generator is 2,147,483,646. The resulting 
seed are then verified by checking the seed after generating random sequences of length 200,000.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int i, is1, is2, is3, is4;
   float *r;
   is1 = 123457;
   is2 = imsls_random_substream_seed_get(is1);
   is2 = imsls_random_substream_seed_get(is2);
   is3 = imsls_random_substream_seed_get(is2);
   is3 = imsls_random_substream_seed_get(is3);
   is4 = imsls_random_substream_seed_get(is3);
   is4 = imsls_random_substream_seed_get(is4);
   printf("Seeds for four separate streams:\n");
   printf("%d\t%d\t%d\t%d\n\n", is1, is2, is3, is4);
   imsls_random_seed_set(is1);
   for (i=0;i<3;i++) {
       r = imsls_f_random_uniform(200000,
           0);
       printf("seed after %d random numbers: %d\n", (i + 1) * 200000,
           imsls_random_seed_get());
       if (r)
           imsls_free(r);
   }
}

Output

Seeds for four separate streams:
123457  2016130173  85016329  979156171
seed after 200000 random numbers: 2016130173
seed after 400000 random numbers: 85016329
seed after 600000 random numbers: 979156171
1352



 Random Number Generation         random_seed_set
random_seed_set
Initializes a random seed for use in the random number generators.

Synopsis
#include <imsls.h>
void imsls_random_seed_set (int seed)

Required Arguments
int seed  (Input)

The seed of the random number generator. The argument seed must be in the range (0, 
2147483646). If seed is 0, a value is computed using the system clock; hence, the results of pro-
grams using the random number generators will be different at various times.

Description
Function imsls_random_seed_set is used to initialize the seed used in the random number generators. 
The form of the generators is as follows:

xi ≡ cxi−

1

mod (231 − 1)

The value of x0 is the seed. If the seed is not initialized prior to invocation of any of the functions for random 

number generation by calling imsls_random_seed_set, the seed is initialized by the system clock. The seed 
can be reinitialized to a clock-dependent value by calling imsls_random_seed_set with seed set to 0.

The effect of imsls_random_seed_set is to set some global values used by the random number genera-
tors. A common use of imsls_random_seed_set is in conjunction with function 
imsls_random_seed_get to restart a simulation.

Example
See function imsls_random_seed_get.
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random_table_set
Sets the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_set (float table[])

The type double function is imsls_d_random_table_set.

Required Arguments
float table[]  (Input)

Array of length 128 used in the shuffled generators.

Description
The values in table are initialized by the IMSL random number generators. The values are all positive except if 
the user wishes to reinitialize the array, in which case the first element of the array is input as a nonpositive value. 
(Usually, one should avoid reinitializing these arrays, but it might be necessary sometimes in restarting a simula-
tion.) If the first element of table is set to a nonpositive value on the call to imsls_random_table_set, on 
the next invocation of a function to generate random numbers using a shuffled method , the appropriate array 
will be reinitialized.

Example
See function imsls_random_GFSR_table_get.
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random_table_get
Retrieves the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_get (float **table, ..., 0)

The type double function is imsls_d_random_table_get.

Required Arguments
float **table  (Output)

Address of a pointer to an array of length 128 containing the table used in the shuffled generators. 
Typically, float *table is declared and &table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_random_table_get (float **table,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[]  (Output)

User-supplied array of length 128 containing the table used in the shuffled generators.

Description
Function imsls_f_random_table_get retrieves the current table used in the shuffled generator. A reason 
for doing this would be to restart a simulation, using function imsls_f_random_table_set to reset the table. 
To restart a simulation using a shuffled generator, both the seed and the table must be reset (see 
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random_GFSR_table_get example). The tables for the shuffled generators are separate for single and double 
precision, so, if precisions are mixed in a program, it is necessary to manage each precision separately for the 
shuffled generators.

Example
See function imsls_random_GFSR_table_get.
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random_GFSR_table_set
Sets the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_f_random_GFSR_table_set (int table[])

Required Arguments
int table [] (Input)

Array of length 1565 used in the GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The values are all positive except if 
the user wishes to reinitialize the array, in which case the first element of the array is input as a nonpositive value. 
(Usually, one should avoid reinitializing these arrays, but it might be necessary sometimes in restarting a simula-
tion.) If the first element of table is set to a nonpositive value on the call to 
imsls_random_GFSR_table_set, on the next invocation of a function to generate random numbers using 
a GFSR method, the appropriate array will be reinitialized.

Example
See function imsls_random_GFSR_table_get.
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random_GFSR_table_get
Retrieves the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_random_GFSR_table_get (int **table, ..., 0)

Required Arguments
int **table  (Output)

Address of a pointer to an array of length 1565 containing the table used in the GFSR generators. 
Typically, int *table is declared and &table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_GFSR_table_get (int **table,

IMSLS_RETURN_USER, int r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int r[]  (Output)

User-supplied array of length 1565 containing the table used in the GFSR generators.

Description
Function imsls_f_random_GFSR_table_get retrieves the current table used in the GFSR generator. A 
reason for doing this would be to restart a simulation, using function imsls_f_random_GFSR_table_set to 
reset the table. To restart a simulation using a GFSR generator, both the seed and the table must be reset (see 
example). The tables for the GFSR generators are separate for single and double precision, so, if precisions are 
mixed in a program, it is necessary to manage each precision separately for the GFSR generators.
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Example
In this example, three separate simulation streams are used, each with a different form of the generator. Each 
stream is stopped and restarted. (Although this example is obviously an artificial one, there may be reasons for 
maintaining separate streams and stopping and restarting them because of the nature of the usage of the ran-
dom numbers coming from the separate streams.)

#include <imsls.h>
#include <stdio.h>
int main()
{
   float *r, *table;
   int nr, iseed1, iseed2, iseed7;
   int *itable;
   nr = 5;
   iseed1 = 123457;
   iseed2 = 123457;
   iseed7 = 123457;
   /* Begin first stream, iopt = 1 (by default) */
   imsls_random_seed_set (iseed1);
   r = imsls_f_random_uniform (nr,
       0);
   iseed1 = imsls_random_seed_get ();
   imsls_f_write_matrix ("First stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   printf("   Output seed\t%d\n\n", iseed1);
   imsls_free(r);
   /* Begin second stream, iopt = 2 */
   imsls_random_option (2);
   imsls_random_seed_set (iseed2);
   r = imsls_f_random_uniform (nr,
       0);
   iseed2 = imsls_random_seed_get ();
   imsls_f_random_table_get (&table,
       0);
   imsls_f_write_matrix ("Second stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   printf("   Output seed\t%d\n\n", iseed2);
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   imsls_free(r);
   /* Begin third stream, iopt = 7 */
   imsls_random_option (7);
   imsls_random_seed_set (iseed7);
   r = imsls_f_random_uniform (nr,
       0);
   iseed7 = imsls_random_seed_get ();
   imsls_random_GFSR_table_get (&itable,
       0);
   imsls_f_write_matrix ("Third stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   printf("   Output seed\t%d\n\n", iseed7);
   imsls_free(r);
   /* Reinitialize seed and resume first stream */
   imsls_random_option (1);
   imsls_random_seed_set (iseed1);
   r = imsls_f_random_uniform (nr,
       0);
   iseed1 = imsls_random_seed_get ();
   imsls_f_write_matrix ("First stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   printf("   Output seed\t%d\n\n", iseed1);
   imsls_free(r);
   /* Reinitialize seed and table for shuffling and resume second
    * stream */
   imsls_random_option (2);
   imsls_random_seed_set (iseed2);
   imsls_f_random_table_set (table);
   r = imsls_f_random_uniform (nr,
       0);
   iseed2 = imsls_random_seed_get ();
   imsls_f_write_matrix ("Second stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   printf("   Output seed\t%d\n\n", iseed2);
   imsls_free(r);
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   /* Reinitialize seed and table for GFSR and resume third stream. */
   imsls_random_option (7);
   imsls_random_seed_set (iseed7);
   imsls_random_GFSR_table_set (itable);
   r = imsls_f_random_uniform (nr,
       0);
   iseed7 = imsls_random_seed_get ();
   imsls_f_write_matrix ("Third stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   printf("   Output seed\t%d\n\n", iseed7);
   imsls_free(r);
}

Output

                   First stream output
   0.9662     0.2607     0.7663     0.5693     0.8448
Output seed  1814256879

                  Second stream output
   0.7095     0.1861     0.4794     0.6038     0.3790
Output seed  1965912801

                   Third stream output
   0.3914     0.0263     0.7622     0.0281     0.8997
Output seed  1932158269

                   First stream output
   0.0443     0.9872     0.6014     0.8964     0.3809
Output seed  817878095

                  Second stream output
   0.2557     0.4788     0.2258     0.3455     0.5811
Output seed  2108806573

                   Third stream output
   0.7519     0.5084     0.9070     0.0910     0.6917
Output seed  1485334679
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random_MT32_init
Initializes the 32-bit Mersenne Twister generator using an array.

Synopsis
#include <imsls.h>
void imsls_random_MT32_init (int key_length, unsigned int key[])

Required Arguments
int key_length (Input)

Length of the array key.

unsigned int key[] (Input)
Array of length key_length used to initialize the 32-bit Mersenne Twister generator.

Description
By default, the Mersenne Twister random number generator is initialized using the current seed value (see 
imsls_random_seed_get). The seed is limited to one integer for initialization. This function allows an arbitrary 
length array to be used for initialization. 

This function completely replaces the use of the seed for initialization of the 32-bit Mersenne Twister generator. 

Example
See function imsls_random_MT32_table_get.
1362



 Random Number Generation         random_MT32_table_get
random_MT32_table_get
Retrieves the current table used in the 32-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT32_table_get (unsigned int **table, ..., 0)

Required Arguments
unsigned int **table (Output)

Address of a pointer to an array of length 625 containing the table used in the 32-bit Mersenne 
Twister generator. Typically, unsigned int *table is declared and &table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_MT32_table_get (int **table,

IMSLS_RETURN_USER, int r[],
0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length 625 containing the table used in the 32-bit Mersenne Twister 
generator.

Description
The values in table contain the state of the 32-bit Mersenne Twister random number generator. The table can 
be used by imsls_random_MT32_table_set to set the generator back to this state.
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Example
In this example, four simulation streams are generated. The first series is generated with the seed used for initial-
ization. The second series is generated using an array for initialization. The third series is obtained by resetting 
the generator back to the state it had at the beginning of the second stream. Therefore, the second and third 
streams are identical. The fourth stream is obtained by resetting the generator back to its original, uninitialized 
state, and having it reinitialize using the seed. The fourth and first streams are therefore the same.

#include <imsls.h>
int main()
{
   unsigned int init[] = {0x123, 0x234, 0x345, 0x456};
   float  *r;
   int    iseed = 123457; 
   int    *itable;
   int    nr = 5;
   /* Initialize Mersenne Twister series with a seed */
   imsls_random_option (8);
   imsls_random_seed_set (iseed);
   r = imsls_f_random_uniform (nr, 0);
   imsls_f_write_matrix ("First stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   /* Reinitialize Mersenne Twister series with an array */
   imsls_random_option (8);
   imsls_random_MT32_init(4, init);
   /* Save the state of the series */
   imsls_random_MT32_table_get(&itable, 0);
   r = imsls_f_random_uniform (nr, 0);
   imsls_f_write_matrix ("Second stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   /* Restore the state of the series */
   imsls_random_MT32_table_set(itable);
   r = imsls_f_random_uniform (nr, 0);
   imsls_f_write_matrix ("Third stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   /* Reset the series - it will reinitialize from the seed */
   itable[0] = 1000;
   imsls_random_MT32_table_set(itable);
   r = imsls_f_random_uniform (nr, 0);
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   imsls_f_write_matrix ("Fourth stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   return 0;
}

Output

 First stream output
 0.4347  0.3522  0.0139  0.2091  0.4956

 Second stream output
 0.2486  0.2226  0.1111  0.9563  0.9846

 Third stream output
 0.2486  0.2226  0.1111  0.9563  0.9846

 Fourth stream output
 0.4347  0.3522  0.0139  0.2091  0.4956
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random_MT32_table_set
Sets the current table used in the 32-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT32_table_set (unsigned int table[])

Required Arguments
unsigned int table [] (Input)

Array of length 625 used in the 32-bit Mersenne Twister generator.

Description
The values in table are the state of the 32-bit Mersenne Twister random number generator obtained by a call 
to imsls_random_MT32_table_get. The values in the table can be used to restore the state of the 
generator.

Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized, state.

Example
See function imsls_random_MT32_table_get.
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random_MT64_init
Initializes the 64-bit Mersenne Twister generator using an array.

Synopsis
#include <imsls.h>
void imsls_random_MT64_init (int key_length, unsigned long long key[])

Required Arguments
int key_length (Input)

Length of the array key.

unsigned long long key[]  (Input)
Array of length key_length used to initialize the 64-bit Mersenne Twister generator.

Description
By default, the Mersenne Twister random number generator is initialized using the current seed value (see 
imsls_random_seed_get). The seed is limited to one integer for initialization. This function allows an arbitrary 
length array to be used for initialization. 

This function completely replaces the use of the seed for initialization of the 64-bit Mersenne Twister generator. 

Example
See function imsls_random_MT64_table_get.
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random_MT64_table_get
Retrieves the current table used in the 64-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT64_table_get (unsigned long long **table, ..., 0)

Required Arguments
unsigned long long **table  (Output)

Address of a pointer to an array of length 625 containing the table used in the 64-bit Mersenne 
Twister generator. Typically, unsigned long long *table is declared and &table is used as an 
argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_MT64_table_get (unsigned long long **table,

IMSLS_RETURN_USER, unsigned long long r[],
0)

Optional Arguments
IMSLS_RETURN_USER, unsigned long long r[]  (Output)

User-supplied array of length 625 containing the table used in the 64-bit Mersenne Twister 
generator.

Description
The values in the table contain the state of the 64-bit Mersenne Twister random number generator. The table 
can be used by imsls_random_MT64_table_set to set the generator back to this state.
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Example
In this example, four simulation streams are generated. The first series is generated with the seed used for initial-
ization. The second series is generated using an array for initialization. The third series is obtained by resetting 
the generator back to the state it had at the beginning of the second stream. Therefore the second and third 
streams are identical. The fourth stream is obtained by resetting the generator back to its original, uninitialized 
state, and having it reinitialize using the seed. The fourth and first streams are therefore the same.

#include <imsls.h>
int main()
{
   unsigned long long init[] = {0x123, 0x234, 0x345, 0x456};
   float  *r;
   int    iseed = 123457; 
   unsigned long long *itable;
   int    nr = 5;
   /* Initialize 64-bit Mersenne Twister series with a seed */
   imsls_random_option (9);
   imsls_random_seed_set (iseed);
   r = imsls_f_random_uniform (nr, 0);
   imsls_f_write_matrix ("First stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   /* Reinitialize Mersenne Twister series with an array */
   imsls_random_option (9);
   imsls_random_MT64_init(4, init);
   /* Save the state of the series */
   imsls_random_MT64_table_get(&itable, 0);
   r = imsls_f_random_uniform (nr, 0);
   imsls_f_write_matrix ("Second stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   /* Restore the state of the series */
   imsls_random_MT64_table_set(itable);
   r = imsls_f_random_uniform (nr, 0);
   imsls_f_write_matrix ("Third stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   /* Reset the series - it will reinitialize from the seed */
   itable[0] = 1000;
   imsls_random_MT64_table_set(itable);
   r = imsls_f_random_uniform (nr, 0);
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   imsls_f_write_matrix ("Fourth stream output", 1, 5, r,
       IMSLS_NO_COL_LABELS,
       IMSLS_NO_ROW_LABELS,
       0);
   imsls_free(r);
   return 0;
}

Output

                     First stream output
    0.5799      0.9401      0.7102      0.1640      0.5457
                    Second stream output
    0.4894      0.7397      0.5725      0.0863      0.7588
                     Third stream output
    0.4894      0.7397      0.5725      0.0863      0.7588
                    Fourth stream output
    0.5799      0.9401      0.7102      0.1640      0.5457
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random_MT64_table_set
Sets the current table used in the 64-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT64_table_set (unsigned long long table[])

Required Arguments
unsigned long long table [] (Input)

Array of length 625 used in the 64-bit Mersenne Twister generator.

Description
The values in table are the state of the 64-bit Mersenne Twister random number generator obtained by a call 
to imsls_random_MT64_table_get. The values in the table can be used to restore the state of the 
generator.

Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized, state.

Example
See function imsls_random_MT64_table_get.
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faure_next_point

more...

Computes a shuffled Faure sequence.

Synopsis
#include <imsls.h>
Imsls_faure *imsls_faure_sequence_init(int ndim, …, 0)

float *imsls_f_faure_next_point (Imsls_faure *state, …, 0)

void imsls_faure_sequence_free (Imsls_faure *state)

The type double function is imsls_d_faure_next_point. The functions 
imsls_faure_sequence_init and imsls_faure_sequence_free are precision independent.

Required Arguments for imsls_faure_sequence_init
int ndim  (Input)

The dimension of the hyper-rectangle.

Return Value for imsls_faure_sequence_init
Returns a structure that contains information about the sequence. The structure should be freed using 
imsls_faure_sequence_free after it is no longer needed.

Required Arguments for imsls_faure_next_point
Imsls_faure *state  (Input/Output)

Structure created by a call to imsls_faure_sequence_init.
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Return Value for imsls_faure_next_point
Returns the next point in the shuffled Faure sequence. To release this space, use 
imsls_faure_sequence_free.

Required Arguments for imsls_faure_sequence_free
Imsls_faure *state  (Input/Output)

Structure created by a call to imsls_faure_sequence_init.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_faure *imsls_faure_sequence_init(int ndim,

IMSLS_BASE, int base,
IMSLS_SKIP, int skip,
0)

float *imsls_f_faure_next_point(Imsls_faure *state,
IMSLS_RETURN_USER, float *user,
IMSLS_RETURN_SKIP, int *skip,
0)

Optional Arguments
IMSLS_BASE, int base  (Input)

The base of the Faure sequence.

Default: The smallest prime greater than or equal to ndim.

IMSLS_SKIP, int *skip  (Input)
The number of points to be skipped at the beginning of the Faure sequence.

Default:   , where    and B is the largest representable integer. 

IMSLS_RETURN_USER, float *user  (Output)
User-supplied array of length ndim containing the current point in the sequence.

IMSLS_RETURN_SKIP, int *skip  (Output)
The current point in the sequence. The sequence can be restarted by initializing a new sequence 
using this value for IMSLS_SKIP, and using the same dimension for ndim.

⌊basem/2−1⌋ m = ⌊logB / logbase⌋
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Description
Discrepancy measures the deviation from uniformity of a point set. 

The discrepancy of the point set   , is 

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and   is the number of the xj contained in E. 

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a constant c(d), depending 

only on d, such that 

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest bound for the discrepancy is 
obtained for the smallest prime b≥d, so the optional argument IMSLS_BASE defaults to the smallest prime 
greater than or equal to the dimension.

The generalized Faure sequence x1, x2, …, is computed as follows: 

Write the positive integer n in its b-ary expansion, 

where ai(n) are integers,   .

The j-th coordinate of xn is

The generator matrix for the series,   , is defined to be

x1, ... xn ∈ 0,1
d
, d ≥ 1

Dn
d
= sup

E
| A E; n

n − λ E | ,

E = 0,t1 × ... × 0,td , 0 ≤ t j ≤ 1, 1 ≤ j ≤ d,

A E; n

Dn
d
≤ c d

log n d

n

n =∑
i=0

∞

ai n bi

0 ≤ ai n < b

xn
j
=∑
k=0

∞

∑
d=0

∞

ckd
j
ad n b−k−1, 1 ≤ j ≤ d

ckd
j
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and    is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can be shown 
that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into the integer given by 
its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence. 

Example
In this example, five points in the Faure sequence are computed. The points are in the three-dimensional unit 
cube.

Note that imsls_faure_sequence_init is used to create a structure that holds the state of the sequence. 
Each call to imsls_f_faure_next_point returns the next point in the sequence and updates the Imsls_-
faure structure. The final call to imsls_faure_sequence_free frees data items, stored in the structure, 
that were allocated by imsls_faure_sequence_init. 

#include "stdio.h"
#include "imsls.h"
int main()
{
   Imsls_faure  *state;
   float        *x;
   int          ndim = 3;
   int          k;
   state = imsls_faure_sequence_init(ndim, 0);
   for (k = 0; k < 5; k++) {
       x = imsls_f_faure_next_point(state, 0);
       printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
       imsls_free(x);
   }
   imsls_faure_sequence_free(state);
   return 0;
}

ckd
j
= jd−kckd

ckd

ckd =
d!

c! d − c !
k ≤ d

0 k > d
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Output

    0.334     0.493      0.064
    0.667     0.826      0.397
    0.778     0.270      0.175
    0.111     0.604      0.509
    0.445     0.937      0.842
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Data Mining

Functions
Apriori — Market Basket Analysis

Computes frequent itemsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . apriori     1386
Computes frequent itemsets using aggregation  . . . . . . . . . . . . . . . . . . . . . aggr_apriori     1392
Prints an Imsls_f_apriori_itemsets data structure . . . . . . . . . . . . write_apriori_itemsets     1402
Prints an Imsls_f_association_rule data structure . . . . . . . . . . .write_association_rules     1403
Frees memory allocated for an

Imsls_f_apriori_itemsets data structure  . . . . . . . . . . . . . . . . .free_apriori_itemsets     1404
Frees memory allocated for an 

Imsls_f_association_rules data structure . . . . . . . . . . . . . . free_association_rules     1405

Decision Trees
Decision Trees – An Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1406
Generates a decision tree for a single response variable 

and two or more predictor variables . . . . . . . . . . . . . . . . . . . . . . . . . .decision_tree     1409
Computes predicted values using a decision tree . . . . . . . . . . . . decision_tree_predict     1445
Prints a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . decision_tree_print     1452
Frees the memory associated with a decision tree . . . . . . . . . . . . . .decision_tree_free     1457
Frees the memory associated with an array of 

decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bagged_trees_free     1458
Performs stochastic gradient boosting of decision trees . . . . . . . . . . gradient_boosting     1459

Genetic Algorithms
Genetic Algorithms – An Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1482

Genetic Algorithm Data Structures
Creates a chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_chromosome     1491
Copies one chromosome to another . . . . . . . . . . . . . . . . . . . . . ga_copy_chromosome     1497
Clones an existing chromosome . . . . . . . . . . . . . . . . . . . . . . . . ga_clone_chromosome     1498
Creates an individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_individual     1500
Copies the contents of one individual into 

another individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_copy_individual     1505
Clones an existing individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ga_clone_individual     1506
Applies mutation to an individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_mutate     1508
Decodes an individual’s chromosome into its phenotype  . . . . . . . . . . . . . . .ga_decode     1510
Encodes an individual’s phenotype into its chromosome  . . . . . . . . . . . . . . .ga_encode     1511
Frees memory allocated to an individual . . . . . . . . . . . . . . . . . . . . . . ga_free_individual     1512
Creates a population from an array of individuals . . . . . . . . . . . . . . . . . . ga_population     1513
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Creates a population of randomly selected
individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_random_population     1520

Copies a population into an existing population  . . . . . . . . . . . . . . ga_copy_population     1529
Creates a copy of a population  . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_clone_population     1530
Add individuals to a population  . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_grow_population     1532
Creates a new population by merging two 

populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ga_merge_population     1534
Frees memory allocated to a population . . . . . . . . . . . . . . . . . . . . . ga_free_population     1536

Genetic Algorithm Search and Optimization
Applies a genetic algorithm to find individuals with 

maximum fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . genetic_algorithm     1537

Naive Bayes 
Naive Bayes – An Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1559
Trains a Naive Bayes classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . naive_bayes_trainer     1561
Classifies patterns using a previously trained 

Naive Bayes classifier. . . . . . . . . . . . . . . . . . . . . . . . . . naive_bayes_classification     1580
Frees memory allocated for a Naive Bayes 

classifier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nb_classifier_free     1589
Writes a Naive Bayes classifier to an ASCII file  . . . . . . . . . . . . . . . .nb_classifier_write     1590
Retrieves a Naive Bayes classifier  . . . . . . . . . . . . . . . . . . . . . . . . . . nb_classifier_read     1595

Neural Networks
Neural Networks – An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1601

Neural Network Data Structures
Multilayer Feedforward Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1612
Initializes a data structure for training 

a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mlff_network_init     1622
Multilayered feedforward neural network. . . . . . . . . . . . . . . . . . . . . . . . . . mlff_network     1624
Frees memory allocated for an 

Imsls_f_NN_Network data structure . . . . . . . . . . . . . . . . . . . . . . mlff_network_free     1636
Writes a trained neural network to an 

ASCII file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mlff_network_write     1637
Retrieves a neural network from a file 

previously saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mlff_network_read     1643
Initializes weights for neural network . . . . . . . . . . . . . . . . . . . . . . mlff_initialize_weights     1649

Forecasting Neural Networks
Trains a multilayered feedforward 

neural network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mlff_network_trainer     1664
Calculates forecasts for trained multilayered 

feedforward neural networks. . . . . . . . . . . . . . . . . . . . . . . . . mlff_network_forecast     1676
Classification Neural Networks

Trains a neural network for classification. . . . . . . . . . . . . . . . mlff_classification_trainer     1683
Calculates classifications from a 

trained neural network  . . . . . . . . . . . . . . . . . . . . . . . . . . mlff_pattern_classification     1710
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Preprocessing Data Filters
Encodes or decodes continuous input attributes . . . . . . . . . . . . . . . . . . . . . . scale_filter     1725
Encodes a time series into lagged values . . . . . . . . . . . . . . . . . . . . . . time_series_filter     1732
Encodes a time series into lagged values of 

a nominal classification attribute . . . . . . . . . . . . . . . . . . . . . time_series_class_filter     1735
Encodes or decodes a nominal input 

attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unsupervised_nominal_filter     1740
Encodes or decodes ordinal input 

attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unsupervised_ordinal_filter     1744

Self-Organizing Maps
Trains a Kohonen network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kohonenSOM_trainer     1749
Calculates forecasts using a trained Kohonen network. . . . . . .kohonenSOM_forecast      1759

Support Vector Machines 
Support Vector Machines – An Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1761
Trains a Support Vector Machines classifier . . . . . . . . . . . . . . . support_vector_trainer     1763
Classifies patterns using a previously trained 

Support Vector Machines classifier. . . . . . . . . . . . . . support_vector_classification     1780
Frees memory allocated for a Support Vector Machines 

classifier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . svm_classifier_free     1785
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Data Mining Usage Notes
Data mining is a collection of statistical and analytical methods for extracting useful information from large data-
bases. The problem of extracting information from large databases is common to government, industry, 
engineering and sciences. 

Apriori
The Apriori algorithm is used for association rule discovery. Association rules are statements of the form, "if X, 
then Y", given with some measure of confidence. The main application for association rule discovery is market 
basket analysis, in which X and Y are products or groups of products, and the occurrences are individual transac-
tions, or "market baskets." The results help sellers learn relationships between the products they sell, supporting 
better marketing decisions. Besides market basket analysis, association rule discovery has been used in the areas 
of text mining and bioinformatics. The function imsls_f_apriori implements the Apriori algorithm. The func-
tion imsls_f_aggr_apriori performs the Apriori algorithm on subsets of transactions and aggregates the 
results.

Decision Trees
Decision trees are data mining methods for predicting a single response variable based on multiple predictor 
variables. If the response variable is categorical or discrete, the data mining problem is a classification problem; 
whereas if the response is continuous, the problem is a type of regression problem. Decision trees are generally 
applicable in both situations. The function imsls_f_decision_tree includes four of the most widely used 
algorithms for decision trees — the C4.5 method, ALACART, CHAID, and QUEST. The function 
imsls_f_decision_tree_predict applies a decision tree to a new set of data.

Random Decision Trees
The ensemble method known as random forest (Breiman, 2001) fits a collection of decision trees on bootstrap 
samples. In addition, the set of predictor variables is randomized before each branching or splitting decision 
within the decision tree algorithms. This extra randomization reduces correlation among the different trees in the 
ensemble. The method is available in the decision tree function imsls_f_decision_tree.

For more details, see the Description section of imsls_f_apriori.

For a detailed overview, see Decision Trees – An Overview and the Description section of 
imsls_f_decision_tree.
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Gradient Boosting
The function imsls_f_gradient_boosting implements the stochastic gradient tree boosting algorithm of 
Friedman (1999). The algorithm combines the outputs of relatively weak classifiers or predictive models to 
achieve iteratively better and better accuracy in either regression problems (the response variable is continuous) 
or classification problems (the response variable has two or more discrete values). Gradient boosting is an 
ensemble method, but instead of using independent trees, gradient boosting forms a sequence of trees, itera-
tively and judiciously re-weighted to minimize prediction errors. In particular, the decision tree at iteration m+1 is 
estimated on pseudo-residuals generated using the decision tree at step m. Hence, successive trees are depen-
dent on previous trees. The algorithm in gradient boosting iterates for a fixed number of times and stops, rather 
than iterating until a convergence criteria is met. The number of iterations is therefore a parameter in the model. 
Using a randomly selected subset of the training data in each iteration has been shown to substantially improve 
efficiency and robustness. Thus, the method is called stochastic gradient boosting. For further discussion, see 
Hastie, et al. (2009).

Genetic Algorithms
The original genetic algorithm is generally attributed to John Holland and his students from the University of 
Michigan. During the 1970s they investigated the use of concepts in genetics and biology in optimizing a function. 
Since that original work, many variations of the original algorithm have been developed by pioneers working in 
the interface between genetics, computer science and statistics to solve complex problems. These include tradi-
tional optimization and search problems in engineering, decision making, game solutions, engineering and 
pattern recognition.

The genetic algorithm operates on a population of individuals designed to represent the problem being solved. 
Each individual is rated according to a fitness function designed to measure how close that individual is to solving 
the problem. For optimization problems, the fitness function is usually constructed from the function being opti-
mized. For other problems, the fitness function can be more complex defined only by the algorithm being 
investigated. A chess program, for example, might use a fitness function that scores the quality of a board posi-
tion represented by each individual.

The solution represented by each individual in a population is encoded into the individual chromosome. The fit-
ness function calculates a fitness value for each individual from the information in the individual chromosome. An 
investor might search for the best set of trading rules for optimizing the returns from the individual investment.

In this case, chromosomes would contain encoded representations of different variations of candidate trading 
rules. One binary bit might indicate whether a particular technical indicator was being used. Another part of the 
chromosome might be encoded to indicate how that indicator would be used to buy and sell investments. The 
fitness function would calculate a rate of return for each individual based upon actual historical data.
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Several functions are available for building, cloning and copying chromosomes and individuals:

Solving any problem using a genetic algorithm always begins by creating a chromosome used for representing 
the problem. Four data types can be represented in a chromosome: binary, nominal, integer and real, or continu-
ous attributes. Binary attributes are mapped directly into a chromosome as zeros and ones. A nominal attribute 
is represented as integers 0, 1, …, k-1, where k is the maximum number of classes for that attribute. Integer and 
real attributes are mapped into a binary representation by dividing the range of the attribute into a finite number 
of subintervals. The range and number of intervals is supplied by the user when the chromosome is constructed. 
Either base-2 or Gray encoding can be used to encode integer and real attributes.

By default, encoding and decoding of chromosomes is automatic. That is each individual not only carries the 
chromosome but it also carries the original phenotype values encoded in the chromosome. Before the fitness of 
an individual is evaluated by calling the user’s fitness function, the information in its chromosome is decoded into 
phenotype values. If this is too time consuming, automatic encoding and decoding can be disabled and done 
within the fitness functions. The functions imsls_f_ga_encode and imsls_f_ga_decode have been provided 
to encode and decode the chromosome of individuals, if needed.  The routine imsls_f_ga_mutate has been 
provided to allow users to create their own genetic algorithm instead of using imsls_f_genetic_algorithm.

The memory allocated to a chromosome data structure can be released using the imsls_free function. How-
ever, the function imsls_f_ga_free_individual has been provided to release memory allocated to an 
individual. 

The genetic algorithm implemented in imsls_f_genetic_algorithm evolves an initial population of individu-
als through several generations, searching for the optimum individuals. The initial population can be created 
using one of several functions. The easiest approach is to create a population of randomly selected individuals 
using imsls_f_ga_random_population. However, in some cases it might be better to initialize the population 
using an array of individuals selected based upon their fitness or diversity. The function 
imsls_f_ga_population can create a population data structure from an array of individuals.

In some cases it might be useful to restart a genetic algorithm search using a previous generation. The function 
imsls_f_ga_clone_population can be used to create an exact duplicate of a population. The function 
imsls_f_ga_copy_population replaces the individuals in one population with those from another. Two pop-

C Stat Library Function Description

imsls_f_ga_chromosome Creates the structure for a chromosome.

imsls_f_ga_clone_chromosome Creates an exact duplicate of an existing chromosome.

imsls_f_ga_copy_chromosome Copies the information contained in one chromosome into 
another.

imsls_f_ga_individual Creates an individual using an existing chromosome.

imsls_f_ga_clone_individual Creates an exact duplicate of an existing individual.

imsls_f_ga_copy_individual Copies the information from one individual into another.
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ulations can be merged using imsls_f_ga_merge_population and individuals can be added to an existing 
population using imsls_f_ga_grow_population. Memory allocated to a population can be released using 
imsls_f_ga_free_population.

The actual search or optimization using an initial population is conducted using 
imsls_f_genetic_algorithm. This function returns the fittest individual found during the search. Also avail-
able are convergence statistics, including generation statistics, and the final population. This information can be 
used to evaluate the quality of the solution and if an additional search is warranted, the final population might be 
used as an initial population for that search.

Naive Bayes
Naive Bayes is a classification algorithm. First a classifier is trained using imsls_f_naive_bayes_trainer. 
Once this is done imsls_f_naive_bayes_classification can be used to classify patterns with unknown 
classifications using the trained classifier represented in an Imsls_f_naive_bayes data structure.

In addition, imsls_f_nb_classifier_write can be used to store the data structure created by 
imsls_f_naive_bayes_trainer for future use. The function imsls_f_nb_classifier_read restores a 
Naive Bayes data structure from a file written using imsls_f_nb_classifier_write.

Classification problems can be solved using other algorithms such as discriminant analysis and neural networks. 
In general these alternatives have smaller classification error rates, but they are too slow for large classification 
problems. During training imsls_f_naive_bayes_trainer uses the non-missing training data to estimate 
two-way correlations among the attributes. Higher order correlations are assumed to be zero. This can increase 
the classification error rate, but it significantly reduces the time needed to train the classifier.

In addition, the Naive Bayes algorithm is the only classification algorithm that can handle data with missing values. 
Other algorithms such as discriminant analysis do not allow missing values in the data. This is a significant limita-
tion for applying other techniques to a larger database.

Memory allocated to the Naive Bayes data structure created by imsls_f_naive_bayes_trainer and 
imsls_f_nb_classifier_read, can be released using imsls_f_nb_classifier_free.

For a detailed overview, see Genetic Algorithms – An Overview.

For a detailed overview, see Naive Bayes – An Overview.
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Neural Networks
Neural networks can be used for forecasting and classification. A neural network data structure is first created 
using imsls_f_mlff_network_init and imsls_f_mlff_network. Although forecasting and classification 
neural networks are initialized and represented using the same data structure, separate functions are provided 
for forecasting and classification in order to make them easier to use and to reduce network training times.

Once the network architecture is created, the network can be trained using imsls_f_mlff_network_trainer 
for forecasting problems and imsls_f_mlff_classification_trainer for classification problems. By 
default these algorithms initialize the network weights, but weight initialization can be controlled using 
imsls_f_mlff_initialize_weights.

Once a network is trained either imsls_mlff_network_forecast or 
imsls_f_mlff_pattern_classification is used to produce forecasts or to classify unknown patterns.

In many cases, network training will be completed on one computer and forecasting or classification might be 
done on another. The function imsls_f_mlff_network_write stores a trained network to a file which can be 
restored using imsls_f_mlff_network_read. 

Memory allocated to a neural network data structure can be released using imsls_f_mlff_network_free.

Data Filtering
The first step in this process is to filter data from its raw form into formats required by sophisticated analytical 
algorithms.

Data fall into two major categories: continuous and categorical. Many algorithms, such as neural network fore-
casting, perform better if continuous data are mapped into a common scale. The function 
imsls_f_scale_filter implements several techniques for automatically scaling continuous data, including 
several variations of z-score scaling. If the continuous data represent a time series, 
imsls_f_time_series_filter and imsls_f_time_series_class_filter can be used to create a 
matrix of lagged values required as input to forecasting neural networks.

Categorical data must also be mapped into a corresponding numerical representation before they can be used in 
solving forecasting and classification problems. There are two types of categorical data: ordinal and nominal. Ordi-
nal data have a natural ordering among the categories, such as a school grade. Nominal data are categories 
without a natural ordering, such as eye color. The function imsls_f_unsupervised_ordinal_filter 
encodes and decodes ordinal data into the range [0, 1] using cumulative percentages. The function 
imsls_f_unsupervised_nominal_filter uses binary encoding to map nominal data into a matrix of zeros 
and ones.

For a detailed overview, see Neural Networks – An Overview.
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Kohonen Self-organizing Map
A self-organizing map (SOM), also known as a Kohonen map or Kohonen SOM, is a technique for gathering high-
dimensional data into clusters that are constrained to lie in low dimensional space, usually two dimensions. It is a 
widely used technique for the purpose of feature extraction and visualization for very high dimensional data. The 
Kohonen SOM is equivalent to an artificial neural network having inputs linked to every node in the network. The 
creation of a Kohonen map involves two steps: training and forecasting. Training builds the map using input 
examples, and forecasting classifies new input. The functions imsls_f_kohonenSOM_trainer and 
imsls_f_kohonenSOM_forecast achieve these two steps. 

Support Vector Machines
Support Vector Machines (SVM) is a class of learning algorithms that can be used for classification, regression, 
and distribution estimation. First, a classifier is trained using imsls_f_support_vector_trainer specifying 
either a classification, distribution, or regression type model. Then 
imsls_f_support_vector_classification can be used for classification, distribution estimation, or 
regression on patterns with unknown classifications using the trained classifier model represented in an 
Imsls_f_svm_classifier data structure. 

For more details, see the Description sections of imsls_f_kohonenSOM_trainer and 
imsls_f_kohonenSOM_forecast.

For a detailed overview, see Support Vector Machines – An Overview
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apriori
Computes the frequent itemsets in a transaction set.

Synopsis
#include <imsls.h>
Imsls_f_apriori_itemsets *imsls_f_apriori (int n, int x[], int max_num_products, …, 0)

The type double function is imsls_d_apriori.

Required Arguments
int n  (Input)

Number of (transaction, item) pairs in x.

int x[]  (Input)
Array of size n x 2, each row of which represents a transaction id and item id pair.

int max_num_products  (Input)
Maximum number of unique items or products that may be present in the transactions. 
max_num_products must be greater than or equal to the number of items in x.

Return Value
Pointer to an Imsls_f_apriori_itemsets data structure containing the frequent itemsets in the transac-
tion set x. If no value can be computed, then NULL is returned. To release this space, 
use imsls_free_apriori_itemsets. Please see Data Structures for a description of this data structure.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_apriori_itemsets *imsls_f_apriori (int n, int x[], int max_num_products,

IMSLS_MAX_SET_SIZE, int max_set_size,
IMSLS_MIN_SUPPORT, double min_pct_support, 
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IMSLS_ASSOCIATION_RULES, float confidence, float lift, 
Imsls_f_association_rules **assoc_rules,

0)

Optional Arguments
IMSLS_MAX_SET_SIZE, int max_set_size  (Input)

Maximum size of an itemset. Only frequent itemsets with max_set_size or fewer items are con-
sidered in the analysis.
Default: max_set_size = 5.

IMSLS_MIN_SUPPORT, double min_pct_support  (Input)
Minimum percentage of transactions in which an item or itemset must be present to be considered 
frequent. min_pct_support must be in the interval [0,1].
Default: min_pct_support= 0.1.

IMSLS_ASSOCIATION_RULES, float confidence, float lift, Imsls_f_association_rules 
**assoc_rules  (Input/Output)
Computes the strong association rules among itemsets.

float confidence  (Input)
The minimum confidence used to determine the strong association rules. confidence 
must be in the interval [0,1]. lift is the other criterion that determines whether an associa-
tion is "strong." If either criterion, confidence or lift, is exceeded, the association rule is 
considered "strong."

float lift  (Input)
The minimum lift used to determine the strong association rules. lift must be non-nega-
tive. confidence is the other criterion that determines whether an association is "strong." 
If either criterion, confidence or lift, is exceeded, the association rule is considered 
"strong."

Imsls_f_association_rules **assoc_rules  (Output)
Address of a pointer to an Imsls_f_association_rules data structure containing 
the strong association rules among the itemsets. If no value can be computed, then NULL is 
returned. To release this space, use imsls_f_free_association_rules.

Description
The function imsls_f_apriori performs the Apriori algorithm for association rule discovery. Association 
rules are statements of the form, "if X, then Y", given with some measure of confidence. The main application for 
association rule discovery is market basket analysis, where X and Y are products or groups of products, and the 
occurrences are individual transactions, or “market baskets." The results help sellers learn relationships between 
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the different products they sell, supporting better marketing decisions. There are other applications for associa-
tion rule discovery, such as the problem areas of text mining and bioinformatics. The Apriori algorithm (Agrawal 
and Srikant, 1994) is one of the most popular algorithms for association rule discovery in transactional datasets.

For distributed data or data larger than physical memory, see imsls_f_aggr_apriori. 

In the first and most critical stage, the Apriori algorithm mines the transactions for frequent itemsets. An itemset 
is frequent if it appears in more than a minimum number of transactions. The number of transactions containing 
an itemset is known as its “support”, and the minimum support (as a percentage of transactions) is a control 
parameter in the algorithm. The algorithm begins by finding the frequent single items. Then the algorithm gener-
ates all two-item sets from the frequent single items and determines which among them are frequent. From the 
collection of frequent pairs, Apriori forms candidate three-item subsets and determines which are frequent, and 
so on. The algorithm stops when either a maximum itemset size is reached, or when none of the candidate item-
sets are frequent. In this way, the Apriori algorithm exploits the apriori-property: for an itemset to be frequent, all 
of its proper subsets must also be frequent. At each step the problem is reduced to only the frequent subsets.

In the second stage, the algorithm generates association rules. These are of the form, X  Y (read, "if X, then Y"), 
where Y and X are disjoint frequent itemsets. The confidence measure associated with the rule is defined as the 
proportion of transactions containing X that also contain Y. Denote the support of X (the number of transactions 
containing X) as SX, and SZ is the support of Z = X ∪ Y. The confidence of the rule X  Y  is the ratio, SZ/SX. Note 

that the confidence ratio is the conditional probability 

where P[XY] denotes the probability of both X and Y. The probability of an itemset X is estimated by SX/N, where N 

is the total number of transactions. 

Another measure of the strength of the association is known as the lift, which is the ratio (SZN) / (SXSY). Lift values 

close to 1.0 suggest the sets are independent, and that they occur together by chance. Large lift values indicate a 
strong association. A minimum confidence threshold and a lift threshold can be specified.

Data Structures
The data structures output by imsls_f_apriori are described below. (For imsls_d_apriori, the struc-
ture names are Imsls_d_apriori_itemsets, Imsls_d_association_rules, and 
Imsls_d_rule_components where type float becomes double).

Structure definitions are provided for informational purposes and may be subject to change.

⇒

⇒

P X |Y =
P XY
P X
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Table 35 – Imsls_f_apriori_itemsets
Field Description

int n_itemsets Length of array itemsets containing the 
Imsls_apriori_items structures.

Imsls_apriori_items *itemsets Array of Imsls_apriori_items structures 
containing the set of frequent items and the 
support for that set.

int n_trans Number of transactions.

int max_num_products Maximum number of products. 

int max_set_size Maximum itemset size. 

double min_pct_support Minimum percentage of transactions.

Table 36 – Imsls_apriori_items
Field Description

int n_items Length of items.

int *items Array containing the set of frequent items. 

int support The number of transactions in which the 
item appears.

Table 37 – Imsls_f_association_rules
Field Description

int n_rules Length of array rules containing the 
Imsls_f_rule_components structures.

Imsls_f_rule_components *rules Array containing the association rules.              

Table 38 – Imsls_f_rule_components
Field Description

int n_x Length of x.

int *x Array containing the X components of the 
association rule.

int n_y Length of y.
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Example
This example applies Apriori to find the frequent itemsets and strong association rules. The data are 50 transac-
tions involving five different product IDs. The minimum support percentage is set to 0.30, giving a minimum 
required support of 15 transactions.

#include <imsls.h>
#define N 144
int main() {
    int max_num_products = 5, max_set_size = 10;
    float confidence = 0.8, lift = 2.0;
    double min_pct_support = 0.3;
    int x[N][2] = {
        {1,  3}, {1,  2}, {1,  1}, {2,  1}, {2,  2}, {2,  4}, {2,  5},
        {3,  3}, {4,  4}, {4,  3}, {4,  5}, {4,  1}, {5,  5}, {6,  1},
        {6,  2}, {6,  3}, {7,  5}, {7,  3}, {7,  2}, {8,  3}, {8,  4},
        {8,  1}, {8,  5}, {8,  2}, {9,  4}, {10, 5}, {10, 3}, {11, 2},
        {11, 3}, {12, 4}, {13, 4}, {14, 2}, {14, 3}, {14, 1}, {15, 3},
        {15, 5}, {15, 1}, {16, 2}, {17, 3}, {17, 5}, {17, 1}, {18, 5},
        {18, 1}, {18, 2}, {18, 3}, {19, 2}, {20, 4}, {21, 1}, {21, 4},
        {21, 2}, {21, 5}, {22, 5}, {22, 4}, {23, 2}, {23, 5}, {23, 3},
        {23, 1}, {23, 4}, {24, 3}, {24, 1}, {24, 5}, {25, 3}, {25, 5},
        {26, 1}, {26, 4}, {26, 2}, {26, 3}, {27, 2}, {27, 3}, {27, 1},
        {27, 5}, {28, 5}, {28, 3}, {28, 4}, {28, 1}, {28, 2}, {29, 4},
        {29, 5}, {29, 2}, {30, 2}, {30, 4}, {30, 3}, {31, 2}, {32, 5},
        {32, 1}, {32, 4}, {33, 4}, {33, 1}, {33, 5}, {33, 3}, {33, 2},
        {34, 3}, {35, 5}, {35, 3}, {36, 3}, {36, 5}, {36, 4}, {36, 1},
        {36, 2}, {37, 1}, {37, 3}, {37, 2}, {38, 4}, {38, 2}, {38, 3},
        {39, 3}, {39, 2}, {39, 1}, {40, 2}, {40, 1}, {41, 3}, {41, 5},
        {41, 1}, {41, 4}, {41, 2}, {42, 5}, {42, 1}, {42, 4}, {43, 3},
        {43, 2}, {43, 4}, {44, 4}, {44, 5}, {44, 2}, {44, 3}, {44, 1},
        {45, 4}, {45, 5}, {45, 3}, {45, 2}, {45, 1}, {46, 2}, {46, 4},
        {46, 5}, {46, 3}, {46, 1}, {47, 4}, {47, 5}, {48, 2}, {49, 1},
        {49, 4}, {49, 3}, {50, 3}, {50, 4}
    };
    Imsls_f_apriori_itemsets *itemsets = NULL;
    Imsls_f_association_rules *assoc_rules = NULL;
    /* Compute and print the strong association rules. */
    itemsets = imsls_f_apriori(N, &x[0][0], max_num_products,

int *y Array containing the Y components of the 
association rule.

int support[3] Support for Z, X and Y components of the 
association rule.

float confidence Confidence of the association rule.

float lift Lift of the association rule.

Table 38 – Imsls_f_rule_components
Field Description
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        IMSLS_MAX_SET_SIZE, max_set_size,
        IMSLS_MIN_SUPPORT, min_pct_support,
        IMSLS_ASSOCIATION_RULES, confidence, lift, &assoc_rules,
        0);
    imsls_f_write_apriori_itemsets(itemsets);
    imsls_f_write_association_rules(assoc_rules);
    imsls_f_free_apriori_itemsets(itemsets);
    imsls_f_free_association_rules(assoc_rules);
}

Output

Frequent Itemsets (Out of 50  Transactions):
Size   Support  Itemset
  1        27   { 1 }
  1        30   { 2 }
  1        33   { 3 }
  1        27   { 4 }
  1        27   { 5 }
  2        20   { 1  2 }
  2        22   { 1  3 }
  2        16   { 1  4 }
  2        19   { 1  5 }
  2        22   { 2  3 }
  2        16   { 2  4 }
  2        15   { 2  5 }
  2        16   { 3  4 }
  2        19   { 3  5 }
  2        17   { 4  5 }
  3        17   { 1  2  3 }
  3        15   { 1  3  5 }
Association Rules (itemset X implies itemset Y):
X = {1} ==> Y = {3}
  supp(X)=27, supp(Y)=33, supp(X U Y)=22
  conf= 0.81, lift=1.23
X = {1 2} ==> Y = {3}
  supp(X)=20, supp(Y)=33, supp(X U Y)=17
  conf= 0.85, lift=1.29

Warning Errors

Fatal Errors

IMSLS_MIN_SUPPORT_NOT_MET No items met minimum support of #.

IMSLS_NEED_IARG_GE "name" = #. “name“ must be greater than 
or equal to #.
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aggr_apriori
Computes the frequent itemsets in a transaction set using aggregation.

Synopsis
#include <imsls.h>
void imsls_f_aggr_apriori (Imsls_keyword step, …, 0)

The type double function is imsls_d_aggr_apriori.

Required Arguments
Imsls_keyword step  (Input)

One optional argument must be supplied to indicate which calculation step is to be performed. 
step is the name of the optional argument, defined as follows:

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_aggr_apriori (

IMSLS_FREQUENT_ITEMSETS, int n, int x[], int max_num_products, 
int max_set_size,

 double min_pct_support, Imsls_f_apriori_itemsets **itemsets, or
IMSLS_UNION, Imsls_f_apriori_itemsets *itemsets1,

 Imsls_f_apriori_itemsets *itemsets2, Imsls_f_apriori_itemsets  **cand_itemsets, or

step Description

IMSLS_FREQUENT_ITEMSETS Compute the frequent itemsets.

IMSLS_UNION Compute the union of two itemsets.

IMSLS_COUNT Count the occurrence of each itemset 
in the transaction data set.

IMSLS_SUM Add the counts of two itemsets.

IMSLS_UPDATE_FREQ_ITEMSETS Update the set of frequent itemsets.

IMSLS_ASSOCIATION_RULES Compute the strong association rules.
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IMSLS_COUNT, Imsls_f_apriori_itemsets *cand_itemsets, int n, int x[], int **freq, or
IMSLS_SUM, int n_itemsets,int prev_freq1[], int prev_freq2[], int freq[],or
IMSLS_UPDATE_FREQ_ITEMSETS, Imsls_f_apriori_itemsets *cand_itemsets, 

int n_itemsets, int freq[], Imsls_f_apriori_itemsets **itemsets, or
IMSLS_ASSOCIATION_RULES, Imsls_f_apriori_itemsets *itemsets,float confidence, 

float lift, Imsls_f_association_rules **assoc_rules,
0)

Optional Arguments
IMSLS_FREQUENT_ITEMSETS, int n, int x[], int max_num_products, int max_set_size, 

double min_pct_support, Imsls_f_apriori_itemsets **itemsets (Input/Output)

Computes the frequent itemsets in a transaction set.

int n  (Input)
Number of (transaction, item) pairs in x.

int x[]  (Input)
Array of size n x 2, each row of which represents a transaction id and item id pair. The algo-
rithm assumes that an individual transaction is complete within a single dataset. That is, 
there is no matching of transaction ids between different data sets.

int max_num_products  (Input)
Maximum number of items or products that may be present in the aggregation of all 
transactions. 

int max_set_size  (Input)
Maximum size of an itemset. Only frequent itemsets with max_set_size or fewer items 
are considered in the analysis.

double min_pct_support  (Input)
Minimum percentage of transactions in which an item or itemset must be present to be con-
sidered frequent. min_pct_support must be in the interval [0,1].

Imsls_f_apriori_itemsets **itemsets  (Output)
Address of a pointer to an Imsls_f_apriori_itemsets data structure containing the 
frequent itemsets in the transaction set x. If no value can be computed, then NULL is 
returned. To release this space, use imsls_free_apriori_itemsets.

or

IMSLS_UNION, Imsls_f_apriori_itemsets *itemsets1, Imsls_f_apriori_itemsets *itemsets2, 
Imsls_f_apriori_itemsets **cand_itemsets (Input/Output)

Computes the union of two itemsets.

Imsls_f_apriori_itemsets *itemsets1  (Input)
Pointer to an Imsls_f_apriori_itemsets data structure containing the frequent 
itemsets for the union. 
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Imsls_f_apriori_itemsets *itemsets2  (Input)
Pointer to an Imsls_f_apriori_itemsets data structure containing the frequent 
itemsets for the union.

Imsls_f_apriori_itemsets **cand_itemsets  (Output)
Address of a pointer to an Imsls_f_apriori_itemsets data structure containing the 
union of two itemsets. If no value can be computed, then NULL is returned. To release this 
space, use imsls_free_apriori_itemsets.

or

IMSLS_COUNT, Imsls_f_apriori_itemsets *cand_itemsets, int n, int x[], int **freq (Input/Output)

Counts the frequency of each itemset in a transaction data set.

Imsls_f_apriori_itemsets cand_itemsets  (Input)
Candidate itemsets and the corresponding number of transactions.

int n  (Input)
Number of transaction/item pairs in x.

int x[]  (Input)
Array of size n x 2, each row of which represents a transaction id and item id pair. The algo-
rithm assumes that an individual transaction is complete within a single dataset. That is, 
there are no matching of transaction ids between different data sets.

int **freq (Output)
Address of an internally allocated array of length cand_itemsets->n_itemsets con-
taining the number of occurrences of each itemset in x. To release this space, use 
imsls_free.

or

IMSLS_SUM, int n_itemsets, int prev_freq1[],int prev_freq2[], int **freq   (Input/Output)

Sum up the itemset frequencies in prev_freq1 and prev_freq2 and return in freq.

int n_itemsets (Input)
Length of prev_freq1 and prev_freq2 which corresponds to the number of itemsets.

int prev_freq1[] (Input)
Array of length n_itemsets containing the itemset frequencies counted over one or more 
blocks of transaction data.

int prev_freq2[] (Input)
 Array of length n_itemsets containing the itemset frequencies counted over a second set 
of blocks of transaction data.

int **freq (Output)
Array of length n_itemsets containing the sum of the frequencies.

or

IMSLS_UPDATE_FREQ_ITEMSETS, Imsls_f_apriori_itemsets *cand_itemsets, int n_itemsets, 
int freq[], Imsls_f_apriori_itemsets **itemsets (Input/Output)

Updates the set of frequent items.
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Imsls_f_apriori_itemsets *cand_itemsets  (Input)
Candidate itemsets and the corresponding number of transactions.

int n_itemsets  (Input)
Length of freq.

int freq[]  (Input)
Array of length n_itemsets containing the frequencies for each itemset in 
cand_itemsets.

Imsls_f_apriori_itemsets **itemsets  (Output)
Address of a pointer to an Imsls_f_apriori_itemsets data structure containing the 
frequent itemsets. If no value can be computed, then NULL is returned. To release this 
space, use imsls_free_apriori_itemsets.

or

IMSLS_ASSOCIATION_RULES, Imsls_f_apriori_itemsets *itemsets, float confidence, float lift, 
Imsls_f_association_rules **assoc_rules (Input/Output)

Computes the strong association rules among itemsets.

Imsls_f_apriori_itemsets *itemsets  (Input)
A pointer to an Imsls_f_itemsets data structure containing the itemsets.

float confidence  (Input)
The minimum confidence used to determine the strong association rules. confidence 
must be in the interval [0,1]. lift is the other criterion that determines whether an associa-
tion is “strong.” If either criterion, confidence or lift is exceeded, the association rule is 
considered “strong.”

float lift  (Input)
The minimum lift used to determine the strong association rules. lift must be non-nega-
tive. confidence is the other criterion which determines whether an association is 
“strong.” If either criterion, confidence or lift is exceeded, the association rule will be 
considered “strong.”

Imsls_f_association_rules **assoc_rules  (Output)
Address of a pointer to an Imsls_f_association_rules data structure containing 
the strong association rules among the itemsets. If no value can be computed, then NULL is 
returned. To release this space, use imsls_free_association_rules.

Description
The function imsls_f_aggr_apriori performs the Apriori algorithm for association rule discovery. Associa-
tion rules are statements of the form, "if X, then Y", given with some measure of confidence. The main application 
for association rule discovery is market basket analysis, where X and Y are products or groups of products, and 
the occurrences are individual transactions, or "market baskets." The results help sellers learn relationships 
between the different products they sell, supporting better marketing decisions. There are other applications for 
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association rule discovery, such as the problem areas of text mining and bioinformatics. The Apriori algorithm 
(Agrawal and Srikant, 1994) is one of the most popular algorithms for association rule discovery in transactional 
datasets. For a full description of the Apriori algorithm, see imsls_f_apriori.

The interface to the function imsls_f_aggr_apriori is designed to complete the analysis over a series of 
steps, with each step requiring a call to the function. With this design, Apriori can be applied to separate blocks of 
transactions. For each dataset or block, call imsls_f_aggr_apriori with IMSLS_FREQUENT_ITEMSETS 
to obtain the frequent itemsets from each block. The same parameter settings, such as minimum support per-
centage, must be used in each separate call.   Then, call imsls_f_aggr_apriori with the keyword 
IMSLS_UNION sequentially to obtain the union of all the frequent itemsets. The resulting set serves as the "can-
didate" itemsets for the global set of transactions. 

An itemset which is frequent in one transaction set may or may not be frequent in the larger collection. To find 
the itemsets that are frequent over the entire set of transactions, imsls_f_aggr_apriori performs 
another pass through the individual blocks, this time counting the occurrences of each of the itemsets in each of 
the transaction sets. This step can be done in parallel, using keyword IMSLS_COUNT. The next step is then to 
sum up the individual counts before filtering for the frequent itemsets. This is achieved with the keyword 
IMSLS_SUM, applied successively to pairs of previous counts. After this step, the frequencies of each itemset 
over all of the transactions are known and it remains to be seen if any meet the threshold to be considered "fre-
quent". The final step in determining the frequent itemsets is IMSLS_UPDATE_FREQ_ITEMSETS. Once the 
frequent itemsets are known, the strong association rules can be found using the step, 
IMSLS_ASSOCIATION_RULES , although this is not a special step in the aggregation. The method is due to 
Savasere, Omiecinski, and Navathe (1995) and is also summarized and compared with other approaches in Raja-
raman and Ullman (2011).

Since imsls_f_aggr_apriori can operate on subsets of data, it can be used when physical memory can-
not hold the entire data set. Additionally, this design may be useful in parallel computing environments where 
nodes can be programmed to calculate intermediate results in parallel.

Data Structures
The data structures used by imsls_f_aggr_apriori are described below. (For 
imsls_d_aggr_apriori, the structure names are Imsls_d_apriori_itemsets, 
Imsls_d_association_rules, and Imsls_d_rule_components where type float becomes double).

Structure definitions are provided for informational purposes and may be subject to change.
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Table 39 – Imsls_f_apriori_itemsets
Field Description

int n_itemsets Length of array itemsets containing the 
Imsls_apriori_items structures.

Imsls_apriori_items *itemsets Array of Imsls_apriori_items structures 
containing the set of frequent items and the 
support for that set.                            

int n_trans Number of transactions.

int max_num_products Maximum number of products.     

int max_set_size Maximum itemset size. 

double min_pct_support Minimum percentage of transactions.

Table 40 – Imsls_apriori_items
Field Description

int n_items Length of items.

int *items Array containing the set of frequent items.              

int support Number of transactions in which the item 
appears.

Table 41 – Imsls_f_association_rules
Field Description

int n_rules Length of array rules containing the 
Imsls_f_rule_components structures.

Imsls_f_rule_components *rules Array containing the association rules.              

Table 42 – Imsls_f_rule_components
Field Description

int n_x Length of x.

int *x Array containing the X components of the 
association rule.              

int n_y Length of y.
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Example
This example shows how to apply Apriori to separate blocks of data and combine results. The data are two sepa-
rate blocks of 50 transactions involving five different product IDs. The minimum support percentage is set to 0.30, 
providing a minimum required support of 30 transactions overall.

#include <imsls.h>
#define N1 144
#define N2 147
int main() {
    int i;
    int max_num_products = 5, max_set_size = 4;
    float confidence = 0.8, lift = 2.0;
    double min_pct_support = 0.30;
    int x1[N1][2] = {
        {1,  3}, {1,  2}, {1,  1}, {2,  1}, {2,  2}, {2,  4}, {2,  5},
        {3,  3}, {4,  4}, {4,  3}, {4,  5}, {4,  1}, {5,  5}, {6,  1},
        {6,  2}, {6,  3}, {7,  5}, {7,  3}, {7,  2}, {8,  3}, {8,  4},
        {8,  1}, {8,  5}, {8,  2}, {9,  4}, {10, 5}, {10, 3}, {11, 2},
        {11, 3}, {12, 4}, {13, 4}, {14, 2}, {14, 3}, {14, 1}, {15, 3},
        {15, 5}, {15, 1}, {16, 2}, {17, 3}, {17, 5}, {17, 1}, {18, 5},
        {18, 1}, {18, 2}, {18, 3}, {19, 2}, {20, 4}, {21, 1}, {21, 4},
        {21, 2}, {21, 5}, {22, 5}, {22, 4}, {23, 2}, {23, 5}, {23, 3},
        {23, 1}, {23, 4}, {24, 3}, {24, 1}, {24, 5}, {25, 3}, {25, 5},
        {26, 1}, {26, 4}, {26, 2}, {26, 3}, {27, 2}, {27, 3}, {27, 1},
        {27, 5}, {28, 5}, {28, 3}, {28, 4}, {28, 1}, {28, 2}, {29, 4},
        {29, 5}, {29, 2}, {30, 2}, {30, 4}, {30, 3}, {31, 2}, {32, 5},
        {32, 1}, {32, 4}, {33, 4}, {33, 1}, {33, 5}, {33, 3}, {33, 2},
        {34, 3}, {35, 5}, {35, 3}, {36, 3}, {36, 5}, {36, 4}, {36, 1},
        {36, 2}, {37, 1}, {37, 3}, {37, 2}, {38, 4}, {38, 2}, {38, 3},
        {39, 3}, {39, 2}, {39, 1}, {40, 2}, {40, 1}, {41, 3}, {41, 5},
        {41, 1}, {41, 4}, {41, 2}, {42, 5}, {42, 1}, {42, 4}, {43, 3},
        {43, 2}, {43, 4}, {44, 4}, {44, 5}, {44, 2}, {44, 3}, {44, 1},
        {45, 4}, {45, 5}, {45, 3}, {45, 2}, {45, 1}, {46, 2}, {46, 4},
        {46, 5}, {46, 3}, {46, 1}, {47, 4}, {47, 5}, {48, 2}, {49, 1},
        {49, 4}, {49, 3}, {50, 3}, {50, 4}
    };
    int x2[N2][2] = {
        {1,  2}, {1,  1}, {1,  4}, {1,  3}, {2,  2}, {2,  5}, {2,  3},
        {2,  1}, {2,  4}, {3,  5}, {3,  4}, {4,  2}, {5,  4}, {5,  2},

int *y Array containing the Y components of the 
association rule.              

int support[3] Support for Z, X and Y components of the 
association rule.     

float confidence Confidence of the association rule.     

float lift Lift of the association rule.                 

Table 42 – Imsls_f_rule_components
Field Description
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        {5,  3}, {5,  5}, {6,  3}, {6,  5}, {7,  2}, {7,  5}, {7,  4},
        {7,  1}, {7,  3}, {8,  2}, {9,  2}, {9,  4}, {10, 4}, {10, 2},
        {11, 4}, {11, 1}, {12, 3}, {12, 1}, {12, 5}, {12, 2}, {13, 2},
        {14, 3}, {14, 4}, {14, 2}, {15, 2}, {16, 5}, {16, 2}, {16, 4},
        {17, 1}, {18, 2}, {18, 3}, {18, 4}, {19, 3}, {19, 1}, {19, 2},
        {19, 4}, {20, 5}, {20, 1}, {21, 5}, {21, 4}, {21, 1}, {21, 3},
        {22, 4}, {22, 1}, {22, 5}, {23, 1}, {23, 2}, {24, 4}, {25, 4},
        {25, 3}, {26, 5}, {26, 2}, {26, 3}, {26, 4}, {26, 1}, {27, 2},
        {27, 1}, {27, 5}, {27, 3}, {28, 1}, {28, 2}, {28, 3}, {28, 4},
        {29, 5}, {29, 2}, {29, 1}, {30, 5}, {30, 3}, {30, 2}, {30, 4},
        {31, 4}, {31, 1}, {32, 1}, {32, 2}, {32, 3}, {32, 4}, {32, 5},
        {33, 3}, {33, 2}, {33, 4}, {33, 5}, {33, 1}, {34, 3}, {34, 4},
        {34, 5}, {34, 2}, {35, 2}, {35, 3}, {36, 3}, {36, 5}, {36, 4},
        {37, 1}, {37, 4}, {37, 2}, {37, 3}, {37, 5}, {38, 5}, {38, 3},
        {38, 1}, {38, 2}, {39, 2}, {39, 5}, {40, 4}, {40, 2}, {41, 4},
        {42, 4}, {43, 5}, {43, 4}, {44, 5}, {44, 4}, {44, 3}, {44, 2},
        {44, 1}, {45, 1}, {45, 2}, {45, 3}, {45, 5}, {45, 4}, {46, 3},
        {46, 4}, {47, 4}, {47, 5}, {47, 2}, {47, 3}, {48, 5}, {48, 3},
        {48, 2}, {48, 1}, {48, 4}, {49, 4}, {49, 5}, {50, 4}, {50, 1}
    };
    Imsls_f_apriori_itemsets *itemsets1 = NULL, *itemsets2 = NULL,
        *cand_itemsets = NULL, *itemsets = NULL;
    int *prev_freq1 = NULL, *prev_freq2 = NULL, *freq = NULL;
    Imsls_f_association_rules *assoc_rules = NULL;
    /* Find frequent itemsets in x1 and x2. */
    imsls_f_aggr_apriori(IMSLS_FREQUENT_ITEMSETS,
        N1, &x1[0][0], max_num_products,
        max_set_size, min_pct_support, &itemsets1,
        0);
    imsls_f_aggr_apriori(IMSLS_FREQUENT_ITEMSETS,
        N2, &x2[0][0], max_num_products,
        max_set_size, min_pct_support, &itemsets2,
        0);
    /* Take the union of itemsets1 and itemsets2. */
    imsls_f_aggr_apriori(IMSLS_UNION,
        itemsets1, itemsets2, &cand_itemsets,
        0);
    /* Count the frequencies of each candidate itemset in
       each of the data sets */
    imsls_f_aggr_apriori(IMSLS_COUNT, cand_itemsets,
        N1, &x1[0][0], &prev_freq1,
        0);
    imsls_f_aggr_apriori(IMSLS_COUNT, cand_itemsets,
        N2, &x2[0][0], &prev_freq2,
        0);
    
    /* Sum the frequencies. */
    imsls_f_aggr_apriori(IMSLS_SUM, cand_itemsets->n_itemsets,
        prev_freq1, prev_freq2, &freq,
        0);
    /* Determine which of the candidate itemsets are frequent. */
    imsls_f_aggr_apriori(IMSLS_UPDATE_FREQ_ITEMSETS,
        cand_itemsets, cand_itemsets->n_itemsets, freq, &itemsets,
        0);
    /* Generate the strong association rules. */
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    imsls_f_aggr_apriori(IMSLS_ASSOCIATION_RULES,
        itemsets, confidence, lift, &assoc_rules,
        0);
    imsls_f_write_apriori_itemsets(itemsets);
    imsls_f_write_association_rules(assoc_rules);
    imsls_f_free_apriori_itemsets(itemsets1);
    imsls_f_free_apriori_itemsets(itemsets2);
    imsls_f_free_apriori_itemsets(cand_itemsets);
    imsls_f_free_apriori_itemsets(itemsets);
    imsls_f_free_association_rules(assoc_rules);
    imsls_free(prev_freq1);
    imsls_free(prev_freq2);
    imsls_free(freq);
}

Output

Frequent Itemsets (Out of 100  Transactions):
Size   Support  Itemset
  1        51   { 1 }
  1        63   { 2 }
  1        60   { 3 }
  1        63   { 4 }
  1        54   { 5 }
  2        37   { 1  2 }
  2        38   { 1  3 }
  2        33   { 1  4 }
  2        35   { 1  5 }
  2        44   { 2  3 }
  2        38   { 2  4 }
  2        34   { 2  5 }
  2        38   { 3  4 }
  2        38   { 3  5 }
  2        37   { 4  5 }
  3        32   { 1  2  3 }
  3        31   { 2  3  4 }
Association Rules (itemset X implies itemset Y):
X = {1 2} ==> Y = {3}
  supp(X)=37, supp(Y)=60, supp(X U Y)=32
  conf= 0.86, lift=1.44
X = {1 3} ==> Y = {2}
  supp(X)=38, supp(Y)=63, supp(X U Y)=32
  conf= 0.84, lift=1.34
X = {2 4} ==> Y = {3}
  supp(X)=38, supp(Y)=60, supp(X U Y)=31
  conf= 0.82, lift=1.36
X = {3 4} ==> Y = {2}
  supp(X)=38, supp(Y)=63, supp(X U Y)=31
  conf= 0.82, lift=1.29
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Warning Errors

Fatal Errors

IMSLS_MIN_SUPPORT_NOT_MET No items met minimum support of #.

IMSLS_NEED_IARG_GE "name" = #.  "name" must be greater than or 
equal to #.

IMSLS_NEED_IARG_GT "name" = #.  "name" must be greater than #.

IMSLS_INEQUALITY_VIOLATION_12 "name1" = # must equal "name2" = #.
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write_apriori_itemsets
Prints frequent itemsets.

Synopsis
#include <imsls.h>
void imsls_f_write_apriori_itemsets (Imsls_f_apriori_itemsets *itemsets)

The type double function is imsls_d_write_apriori_itemsets.

Required Arguments
Imsls_f_apriori_itemsets *itemsets   (Input) 

A pointer to an Imsls_f_apriori_itemsets data structure containing the itemsets.

Description
The function imsls_f_write_apriori_itemsets prints frequent itemsets stored in an 
Imsls_f_apriori_itemsets structure.

Output is written to the file specified by the function imsls_output_file (Chapter 15, Utilities. The default out-
put file is standard output (corresponding to the file pointer stdout).

Example
See imsls_f_apriori or imsls_f_aggr_apriori.
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write_association_rules
Prints association rules.

Synopsis
#include <imsls.h>
void imsls_f_write_association_rules (Imsls_f_association_rules *assoc_rules)

The type double function is imsls_d_write_association_rules.

Required Arguments
Imsls_f_association_rules *assoc_rules   (Input)

A pointer to an Imsls_f_association_rules data structure containing the association rules.

Description
The function imsls_f_write_association_rules prints the strong association rules stored in an 
Imsls_f_association_rules structure.

Output is written to the file specified by the function imsls_output_file. The default output file is standard 
output (corresponding to the file pointer stdout).

Example
See imsls_f_apriori or imsls_f_aggr_apriori.
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free_apriori_itemsets
Frees the memory allocated within a frequent itemsets structure.

Synopsis
#include <imsls.h>
void imsls_f_free_apriori_itemsets (Imsls_f_apriori_itemsets *itemsets)

The type double function is imsls_d_free_apriori_itemsets.

Required Arguments
Imsls_f_apriori_itemsets *itemsets   (Input)

A pointer to an Imsls_f_apriori_itemsets data structure containing the itemsets. See 
imsls_f_apriori.

Description
Frees the memory allocated within a frequent itemsets structure.

Example
See imsls_f_apriori or imsls_f_aggr_apriori.
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free_association_rules
Frees the memory allocated within an association rules structure.

Synopsis
#include <imsls.h>
void imsls_f_free_association_rules (Imsls_f_association_rules *assoc_rules)

The type double function is imsls_d_free_association_rules.

Required Arguments
Imsls_f_association_rules *assoc_rules   (Input)

A pointer to an Imsls_f_association_rules data structure containing the association rules. 
See imsls_f_association_rules.

Description
Frees the memory allocated within an association rules structure.

Example
See the examples in imsls_f_apriori or imsls_f_aggr_apriori.
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Decision Trees – An Overview
Decision trees are data mining methods for predicting a single response variable based on multiple predictor 
variables. If the response variable is categorical or discrete, the data mining problem is a classification problem, 
whereas if the response is continuous, the problem is a type of regression problem. Decision trees are generally 
applicable in both situations. 

A trivial but illustrative example regards the decision to play golf or not, depending on the weather. The training 
data, from Quinlan (1993), is given in Table 43 and a decision tree fit to the data is shown in Figure 22. Other 
examples include predicting the chance of survival for heart attack patients based on age, blood pressure and 
other vital signs; scoring loan applications based on credit history, income, and education; classifying an email as 
spam based on its characteristics, and so on. 

Tree-growing algorithms have similar steps: starting with all observations in a root node, a predictor variable is 
selected to split the dataset into two or more child nodes or branches. The form of the split depends on the type 
of predictor and on specifics of the algorithm. If the predictor is categorical, taking discrete values {A, B, C, D} for 
example, the split may consist of two or more proper subsets, such as {A}, {B, C}, and {D}. If the predictor is con-
tinuous, a split will consist of two or more intervals, such as X <= 2, X > 2. The splitting procedure is then repeated 
for each child node and continued in such manner until one of several possible stopping conditions is met. The 
result of the decision tree algorithm is a tree structure with a root and a certain number of branches (or nodes). 
Each branch defines a subset or partition of the data and, conditional on that subset of data, a predicted value 
for the response variable. A traversal of a branch of the tree thus leads to a prediction, or decision about the 
response variable. To predict a new out of sample observation, we find the terminal node to which the observa-
tion belongs by traversing the tree and finding the data subset (branch) that contains the observation. 

For example, the decision tree in Figure 22 can be expressed as a set of rules: If the weather is sunny, don’t play 
golf. If the weather is overcast, play golf. If the weather is rainy and there is no wind, play golf. On the other hand, 
if it is rainy and windy, don’t play golf. 

Decision trees are intuitive and can be very effective predictive tools. As with any predictive model, a decision tree 
should be tested on hold-out datasets or refined using K-fold cross-validation to prevent over-fitting.
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Figure 22, Play Golf? This tree has a size of 6, 4 terminal nodes, and a height or depth of 2.

Table 43 – Golf training data

Outlook
Tempera-
ture Humidity Wind Play

sunny 85 85 FALSE don't play

sunny 80 90 TRUE don't play

overcast 83 78 FALSE play

rainy 70 96 FALSE play

rainy 68 80 FALSE play

rainy 65 70 TRUE don't play

overcast 64 65 TRUE play

sunny 72 95 FALSE don't play

sunny 69 70 FALSE play

rainy 75 80 FALSE play

sunny 75 70 TRUE play

overcast 72 90 TRUE play
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overcast 81 75 FALSE play

rainy 71 80 TRUE don't play

overcast 81 75 FALSE play

rainy 71 80 TRUE don't play

Table 43 – Golf training data

Outlook
Tempera-
ture Humidity Wind Play
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decision_tree
Generates a decision tree for a single response variable and two or more predictor variables.

Synopsis
#include <imsls.h> 

Imsls_f_decision_tree* imsls_f_decision_tree (int n, int n_cols, float xy[], 
int response_col_idx, int var_type[], ..., 0)

The type double function is imsls_d_decision_tree.

Required Arguments
int n  (Input)

The number of rows in xy.

int n_cols  (Input)
The number of columns in xy.

float xy[]  (Input)
Array of size n × n_cols containing the data.

int response_col_idx  (Input)
Column index of the response variable.

int var_type[]  (Input)
Array of length ncols indicating the type of each variable. 

var_type[i] Type

0 Categorical

1 Ordered Discrete (Low, Med., High)

2 Quantitative or Continuous

3 Ignore this variable
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Return Value
A pointer to a structure of type Imsls_f_decision_tree. If an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_decision_tree *imsls_f_decision_tree (int n, int n_cols, float xy[], 
int response_col_idx, int var_type[],
IMSLS_METHOD, int method, 
IMSLS_CRITERIA, int criteria,
IMSLS_RATIO, 
IMSLS_WEIGHTS, float weights[],
IMSLS_COST_MATRIX, int n_classes, float cost_matrix[],
IMSLS_CONTROL, int params[],
IMSLS_COMPLEXITY, float complexity,
IMSLS_N_SURROGATES, int n_surrogates,
IMSLS_ALPHAS, float alphas[],
IMSLS_PRIORS, int n_classes, float priors[],
IMSLS_N_FOLDS, int n_folds,
IMSLS_N_SAMPLE, int n_samples,
IMSLS_RANDOM_FEATURES,
IMSLS_N_RANDOM_FEATURES, int n_features,
IMSLS_TOLERANCE, float tol,
IMSLS_RANDOM_SEED, int seed,
IMSLS_PRINT, int print_level,
IMSLS_TEST_DATA, int n_test, float xy_test[],
IMSLS_TEST_DATA_WEIGHTS, float weights_test[],
IMSLS_ERROR_SS, float *pred_err_ss,
IMSLS_PREDICTED, float **predictions,
IMSLS_PREDICTED_USER, float predictions[],

NOTE: When the variable type (var_type) is specified as Categorical (0), the numbering of the 
categories must begin at 0. For example, if there are three categories, they must be represented 
as 0, 1 and 2 in the xy array. 

The number of classes for a categorical response variable is determined by the largest value 
discovered in the data. To set this value in another way, see optional arguments IMSLS_PRIORS or 
IMSLS_COST_MATRIX. Also note that a warning message is displayed if a class level in 
0, 1, …, n_classes-1 has a 0 count in the data.
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IMSLS_CLASS_ERROR, float **class_errors,
IMSLS_CLASS_ERROR_USER, float class_errors[],
IMSLS_MEAN_ERROR, float *mean_error,
IMSLS_OUT_OF_BAG_PREDICTED, float **oob_predicted,
IMSLS_OUT_OF_BAG_PREDICTED_USER, float oob_predicted[],
IMSLS_OUT_OF_BAG_MEAN_ERROR, float *out_of_bag_mean_error,
IMSLS_OUT_OF_BAG_CLASS_ERROR, float **out_of_bag_class_errors,
IMSLS_OUT_OF_BAG_CLASS_ERROR_USER, float out_of_bag_class_errors[],
IMSLS_OUT_OF_BAG_VAR_IMPORTANCE, float **out_of_bag_var_importance,
IMSLS_OUT_OF_BAG_VAR_IMPORTANCE_USER, float out_of_bag_var_importance[],
IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees,
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

Specifies the tree generation method. The key for the variable type index is provided above.

Default: method = 0.

IMSLS_CRITERIA, int criteria (Input)
Specifies which criteria the ALACART method and the C4.5 method should use in the gain calcula-
tions to determine the best split at each node.

Default: criteria = 0.

method Method
Response 
var_type

Predictor 
var_type

0 C4.5 0 0, 1, 2

1 ALACART (Breiman, et. al.) 0, 1, 2 0, 1, 2

2 CHAID 0, 1, 2 0

3 QUEST 0 0, 1, 2

criteria Measure

0 Shannon Entropy

1 Gini Index 

2 Deviance
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Shannon Entropy – A measure of randomness or uncertainty.
For a categorical variable having C distinct values over the data set S, the Shannon Entropy is 
defined as

where

pi = Pr(Y = i)

and where

pi log(pi) := 0

if pi = 0

Gini Index – A measure of statistical dispersion.
For a categorical variable having C distinct values over the data set S, the Gini Index is defined 
as

where p(i|S) denotes the probability that the variable is equal to the state i on the data set, S.
Deviance – A measure of the quality of fit.

For a categorical variable having C distinct values over a data set S, the Deviance measure is

where

pi = Pr(Y = i)

and where

ni

is the number of cases with Y = i on the node.

IMSLS_RATIO, (Input)
If present, the ALACART method and C4.5 method each uses a gain ratio instead of just the gain to 
determine the best split.
Default: Uses gain.

IMSLS_WEIGHTS, float weights[] (Input)
An array of length n containing case weights.
Default: weights[i] = 1.0. 

∑
i=1

C
pi log(pi)

I(S) = ∑
i, j=1
i≠ j

C
p(i∣S) = 1 − ∑

i=1

C
p2(i∣S)

∑
i=1

C
ni log(pi)
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IMSLS_COST_MATRIX, int n_classes, float cost_matrix[] (Input)
An array of length n_classes x n_classes containing the cost matrix for a categorical 
response variable, where n_classes is the number of classes the response variable may assume. 
The cost matrix has elements C(i, j) = cost of misclassifying a response in class j as in class i. The diag-
onal elements of the cost matrix must be 0. 
Default: cost_matrix[i] = 1.0, for i on the off-diagonal, cost_matrix[i] = 0.0, for i 
on the diagonal. 

IMSLS_CONTROL,int params[] (Input)
Array of length 5 containing parameters to control the maximum size of the tree and other stopping 
rules.

Default: params[] = {7, 21, 10, 100, 10} 

IMSLS_COMPLEXITY, float complexity (Input)
The minimum complexity parameter to use in cross-validation. Complexity must be ≥ 0.
Default: complexity = 0.0.

IMSLS_N_SURROGATES, int n_surrogates (Input)
Indicates the number of surrogate splits. Only used if method = 1. 
Default: n_surrogates = 0.

IMSLS_ALPHAS, float alphas[] (Input)
An array of length 3 containing the significance levels. alphas[0] = significance level for split vari-
able selection (CHAID and QUEST); alphas[1]= significance level for merging categories of a 
variable (CHAID), and alphas[2] = significance level for splitting previously merged categories 
(CHAID). Valid values are in the range 0 < alphas[i] < 1.0, and alphas[2] <= alphas[1]. 
Setting alphas[2] = -1.0 disables splitting of merged categories.
Default: alphas[] = {0.05, 0.05, -1.0}

params[i] name Action

0 min_n_node Do not split a node if one of its child nodes will have 
fewer than min_n_node observations.

1 min_split Do not split a node if the node has fewer than 
min_split observations

2 max_x_cats Allow for up to max_x_cats for categorical predic-
tor variables.

3 max_size Stop growing the tree once it has reached max_size 
number of nodes.

4 max_depth Stop growing the tree once it has reached 
max_depth number of levels.
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IMSLS_PRIORS, int n_classes, float priors[] (Input)
An array of length n_classes, where n_classes is the number of classes the response variable 
may assume, containing prior probabilities for class membership. The argument is ignored for contin-
uous response variables (var_type[response_col_idx]=2). By default, the prior 
probabilities are estimated from the data. 

IMSLS_N_FOLDS, int n_folds (Input)
The number of folds to use in cross validation tree selection. n_folds must be between 1 and n, 
inclusive. If n_folds = 1 the full data set is used once to generate the decision tree. In other words, 
no cross-validation is performed. If 1 < n/n_folds ≤ 3, then leave-one-out cross validation is 
performed.
Default: n_folds = 10.

IMSLS_N_SAMPLE, int n_samples (Input)
The number of bootstrap samples to use in bootstrap aggregation (bagging) when predicted values 
are requested. To obtain predictions produced by bagging, set n_samples  > 0 and use one of 
IMSLS_PREDICTED or IMSLS_PREDICTED_USER.
Default: n_samples = 0 unless random features or out-of-bag calculations are requested; then, 
n_samples = 50.

IMSLS_RANDOM_FEATURES, (Input)
If present, the decision tree splitting rules at each node are decided from a random subset of 
predictors. Use this argument to generate a random forest for predictions. Use the argument 
IMSLS_N_SAMPLE to control the number of trees and IMSLS_N_RANDOM_FEATURES to control 
the number of random features.
Default: No random feature selection. The algorithms use all predictors in every selection.

IMSLS_N_RANDOM_FEATURES, int n_random_features (Input)
The number of predictors in each random subset from which to select during random feature selec-
tion, when it is activated.
Default: For categorical variables,  n_random_features = the nearest integer ≤    or 1; for 
regression variables, n_random_features = the nearest integer ≤   or 1, whichever is 
larger, where p = the number of variables.

IMSLS_TOLERANCE, float tol (Input)
Error tolerance to use in the algorithm.
Default: tol = 100.0 * imsls_f_machine(4).

IMSLS_RANDOM_SEED, int seed (Input)
The seed of the random number generator used in sampling or cross-validation. By changing the 
value of seed on different calls to imsls_f_decision_tree, with the same data set, calls may 

p / 3
p / 3
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produce slightly different results. Setting seed to zero forces random number seed determination 
by the system clock. 
Default: seed = 0

IMSLS_PRINT, int print_level (Input)

Default: print_level = 0.
IMSLS_TEST_DATA, int n_test, float xy_test[] (Input)

xy_test is an array of size n_test x ncols containing hold-out or test data for which predictions 
are requested. When this optional argument is present, the number of observations in xy_test, 
n_test, must be greater than 0. The response variable may have missing values in xy_test, but it 
must be in the same column and the predictors must be in the same columns as they are in xy. If the 
test data is not provided but predictions are requested, then xy is used and the predictions are the 
fitted values. 

Default: xy_test = xy
IMSLS_TEST_DATA_WEIGHTS, float weights_test[] (Input)

An array of size n_test containing frequencies or weights for each observation in xy_test. This 
argument is ignored if IMSLS_TEST_DATA is not present. 
Default: weights_test = weights.

IMSLS_ERROR_SS, float *pred_err_ss (Output)
The fitted data error mean sum of squares in the absence of test data (xy_test). When test data is 
provided, the prediction error mean sum of squares is returned.

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to an array of length n containing the fitted or predicted value of the response 
variable for each case in the input data or test data, if provided. 

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for the array of the fitted or predicted value for each case is provided by the user.

IMSLS_CLASS_ERROR, float **class_errors (Output)
Address of a pointer to an array of length 2 × (n_classes + 1) containing classification errors 
for each level of the categorical response variable, along with the total occurrence in the input data 

print_level Action

0 No printing

1 Prints final results only.

2 Prints intermediate and final results.
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or test data, and overall totals. 
To illustrate, if class_errors[2*j] = 20, and class_errors[2*j+1] = 105, then we 
know there were 20 misclassifications of class level j out of a total of 105 in the data.

IMSLS_CLASS_ERROR_USER, float class_errors[] (Output)
Storage for the array of the class errors is provided by the user.

IMSLS_MEAN_ERROR, float *mean_error (Output)
The fitted data error mean sum of squares (continuous response) or misclassification percentage 
(categorical response) in the absence of test data (xy_test). When test data is provided, the 
prediction mean error is returned.

IMSLS_OUT_OF_BAG_PREDICTED, float **oob_predicted (Output)
Address of a pointer to an array of length n containing the out-of-bag predicted value of the 
response variable for every case in the input data when bagging is performed.

IMSLS_OUT_OF_BAG_PREDICTED_USER, float oob_predicted[] (Output)
Storage for the array of the out-of-bag predicted values is provided by the user.

IMSLS_OUT_OF_BAG_MEAN_ERROR, float *out_of_bag_mean_error (Output)
The out-of-bag predictive error mean sum of squares (continuous response) or misclassification 
percentage (categorical response) on the input data, when bagging is performed.

IMSLS_OUT_OF_BAG_CLASS_ERROR, float ***out_of_bag_class_errors (Output)
Address of a pointer to an array of length 2 × (n_classes + 1) containing out-of-bag 
classification errors for each level of the categorical response variable, along with the total occur-
rence in the input data, and overall totals. This output is populated only when bagging 
(n_samples > 1)  is requested.

IMSLS_OUT_OF_BAG_CLASS_ERROR_USER, float out_of_bag_class_errors[] (Output)
Storage for the array of the out-of-bag class errors is provided by the user.

IMSLS_OUT_OF_BAG_VAR_IMPORTANCE, float **out_of_bag_var_importance (Output)
Address of a pointer to an array of length n_preds containing the out-of-bag variable importance 
measure for each predictor. This output is populated only when bagging (n_samples > 1) is 
requested.

IMSLS_OUT_OF_BAG_VAR_IMPORTANCE_USER, float out_of_bag_var_importance[] (Out-
put)
Storage for the array of the out-of-bag variable importance is provided by the user.

IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees (Output)
Address of a pointer to an array of length n_samples containing the collection of trees generated 
during the algorithm. To release this space, use imsls_bagged_trees_free.
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Description
This implementation includes four of the most widely used algorithms for decision trees. Below is a brief sum-
mary of each approach. 

C4.5

The method C4.5 (Quinlan, 1995) is a tree partitioning algorithm for a categorical response variable and categori-
cal or quantitative predictor variables. The procedure follows the general steps outlined above, using as splitting 
criterion the information gain or gain ratio. Specifically, the entropy or uncertainty in the response variable with C 
categories over the full training sample S is defined as

  

Where pi = Pr[Y = i|S] is the probability that the response takes on category i on the dataset S. This measure is 

widely known as the Shannon Entropy. Splitting the dataset further may either increase or decrease the entropy 
in the response variable. For example, the entropy of Y over a partitioning of S by X, a variable with K categories, is 
given by

  

If any split defined by the values of a categorical predictor decreases the entropy in Y, then it is said to yield infor-
mation gain:

g (S,X) = E(S) - E(S,X)

 The best splitting variable according to the information gain criterion is the variable yielding the largest informa-
tion gain, calculated in this manner. A modified criterion is the gain ratio: 

  

where

   

with

E S = −∑
i=1

C

pilog pi

E S,X = −∑
k=1

K

∑
i=1

Ck

p Sk E Sk

gR S,X =
E S − E S,X

EX S

Ex S = −∑
k=1

K

vklog vk
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νk = Pr[X= k|S]

Note that EX(S) is just the entropy of the variable X over S. The gain ratio is thought to be less biased toward pre-

dictors with many categories. C4.5 treats the continuous variable similarly, except that only binary splits of the 
form X ≤ d and X > d are considered, where d is a value in the range of X on S. The best split is determined by the 
split variable and split point that gives the largest criterion value. It is possible that no variable meets the thresh-
old for further splitting at the current node, in which case growing stops and the node becomes a terminal node. 
Otherwise, the node is split creating two or more child nodes. Then, using the dataset partition defined by the 
splitting variable and split value, the very same procedure is repeated for each child node. Thus a collection of 
nodes and child-nodes are generated, or, in other words, the tree is grown. The growth stops after one or more 
different conditions are met.

ALACART

ALACART implements the method of Breiman, Friedman, Olshen and Stone (1984), the original authors and 
developers of CART™. CART™ is the trademarked name for Classification and Regression Trees. In ALACART, only 
binary splits are considered for categorical variables. That is, if X has values {A, B, C, D}, splits into only two subsets 
are considered, e.g., {A} and {B, C, D}, or {A, B} and {C, D}, are allowed, but a three-way split defined by {A}, {B} and 
{C,D} is not. 

For classification problems, ALACART uses a similar criterion to information gain called impurity. The method 
searches for a split that reduces the node impurity the most. For a given set of data S at a node, the node impu-
rity for a C-class categorical response is a function of the class probabilities 

I(S)=φ(p(1|S), p(2|S),…, p(C|S))

The measure function φ(⋅) should be 0 for “pure” nodes, where all Y are in the same class, and maximum when Y 
is uniformly distributed across the classes. 

As only binary splits of a subset S are considered (S1, S2 such that S = S1 ∪ S2 and S = S1 ∩ S2 =∅), the reduction 

in impurity when splitting S into S1, S2 is

ΔI = I(S) -q

1

I(S

1

) -q

2

I(S

2

)

where qj =Pr[Sj], j =1,2 — the node probability.
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The gain criteria and the reduction in impurity ΔI are similar concepts and equivalent when I is entropy and when 
only binary splits are considered. Another popular measure for the impurity at a node is the Gini index, given by 

ve

If Y is an ordered response or continuous, the problem is a regression problem. ALACART generates the tree 
using the same steps, except that node-level measures or loss-functions are the mean squared error (MSE) or 
mean absolute error (MAD) rather than node impurity measures.

CHAID

The third method is appropriate only for categorical or discrete ordered predictor variables. Due to Kass (1980), 
CHAID is an acronym for chi-square automatic interaction detection. At each node, as above, CHAID looks for the 
best splitting variable. The approach is as follows: given a predictor variable X, perform a 2-way chi-squared test 
of association between each possible pair of categories of X with the categories of Y. The least significant result is 
noted and, if a threshold is met, the two categories of X are merged. Treating this merged category as a single cat-
egory, repeat the series of tests and determine if there is further merging possible. If a merged category consists 
of three or more of the original categories of X, CHAID calls for a step to test whether the merged categories 
should be split. This is done by forming all binary partitions of the merged category and testing each one against 
Y in a 2-way test of association. If the most significant result meets a threshold, then the merged category is split 
accordingly. As long as the threshold in this step is smaller than the threshold in the merge step, the splitting step 
and the merge step will not cycle back and forth. Once each predictor is processed in this manner, the predictor 
with the most significant qualifying 2-way test with Y is selected as the splitting variable, and its last state of 
merged categories define the split at the given node. If none of the tests qualify (by having an adjusted p-value 
smaller than a threshold), then the node is not split. This growing procedure continues until one or more stop-
ping conditions are met.

QUEST

The fourth method, the QUEST algorithm ( Loh and Shih, 1997), is appropriate for a categorical response variable 
and predictors of either categorical or quantitative type. For each categorical predictor, QUEST performs a multi-
way chi-square test of association between the predictor and Y. For every continuous predictor, QUEST performs 
an ANOVA test to see if the means of the predictor vary among the groups of Y. Among these tests, the variable 
with the most significant result is selected as a potential splitting variable, say, Xj. If the p-value (adjusted for mul-

tiple tests) is less than the specified splitting threshold, then Xj is the splitting variable for the current node. If not, 

QUEST performs for each continuous variable X a Levene’s test of homogeneity to see if the variance of X varies 

I S = ∑
i, j=1
i≠ j

C

p i | S p j | S = 1 −∑
i=1

C

p2 i | S
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within the different groups of Y. Among these tests, we again find the predictor with the most significant result, 
say Xi If its p-value (adjusted for multiple tests) is less than the splitting threshold, Xi is the splitting variable. Other-

wise, the node is not split.

Assuming a splitting variable is found, the next step is to determine how the variable should be split. If the 
selected variable Xj is continuous, a split point d is determined by quadratic discriminant analysis (QDA) of Xj into 

two populations determined by a binary partition of the response Y. The goal of this step is to group the classes 
of Y into two subsets or super classes, A and B. If there are only two classes in the response Y, the super classes 
are obvious. Otherwise, calculate the means and variances of Xj in each of the classes of Y. If the means are all 

equal, put the largest-sized class into group A and combine the rest to form group B. If they are not all equal, use 
a k-means clustering method (k = 2) on the class means to determine A and B.

 Xj in A and in B is assumed to be normally distributed with estimated means ,  , and variances S2
j|A, S2 

j|B, respectively. The quadratic discriminant is the partition Xj ≤ d and Xj > d such that Pr(Xj, A) = Pr(Xj, B). The dis-

criminant rule assigns an observation to A if xij ≤ d and to B if xij > d. For d to maximally discriminate, the 

probabilities must be equal.

If the selected variable Xj is categorical, it is first transformed using the method outlined in Loh and Shih (1997) 

and then QDA is performed as above. The transformation is related to the discriminant coordinate (CRIMCOORD) 
approach due to Gnanadesikan (1977). 

Minimal-Cost Complexity Pruning

One way to address overfitting is to grow the tree as large as possible, and then use some logic to prune it back. 
Let T represent a decision tree generated by any of the methods above. The idea (from Breiman, et. al.) is to find 
the smallest sub-tree of T that minimizes the cost complexity measure:

Rδ(T) =R(T)+δ∣ ∣,

  denotes the set of terminal nodes, ∣ ∣ represents the number of terminal nodes, and δ ≥ 0 is a cost-com-
plexity parameter. For a categorical target variable

  

  ,

p(t) = Pr[x ∈ t],

and p(j∣t) = Pr[y = j ∣ x ∈ t],

x─ j|A x̄ j∣B

T
~

T
~

T
~

R(T) =∑
t∈T~
R(t) =∑

t∈T~
r(t)p(t)

r(t) = min
i ∑

j

C(i∣ j)p( j∣t)
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and C(i∣j) is the cost for misclassifying the actual class j as i. Note that C(j∣j)  = 0 and   C(i∣j) > 0, for i ≠ j.

When the target is continuous (and the problem is a regression problem), the metric is instead the mean squared 
error 

  

This software implements the optimal pruning algorithm10.1, page 294 in Breiman, et. al (1984). The result of the 
algorithm is a sequence of sub-trees Tmax ≻ T1 ≻ T2 ≻ ⋯ TM-1 ≻ {t0} obtained by pruning the fully generated tree, 

Tmax , until the sub-tree consists of the single root node, {t0}. Corresponding to the sequence of sub-trees is the 

sequence of complexity values, 0  ≤ δmin  = δ1 < δ2 < ⋯ <δM-1 < δM where M is the number of steps it takes in 

the algorithm to reach the root node. The sub-trees represent the optimally pruned sub-trees for the sequence 
of complexity values. The minimum complexity δmin can be set via an optional argument.

V-Fold Cross-Validation

In V-fold cross validation, the training data is partitioned randomly into V approximately equally sized sub-sam-
ples. The model is then trained V different times with each of the sub-samples removed in turn. The cross-
validated estimate of the risk of a decision function R(dk) is

  

where L(y, d(x)) is the loss incurred when the decision is d(x) for the actual, y. The symbol η denotes the full train-

ing data set, and  denotes the set of decisions corresponding to Tk
v, the kth optimally pruned tree using the 

training sample η-ηv and  , where δk, δk+1 come from the pruning on the full data set, η.

For example, if the problem is classification, priors are estimated from the data Nj/N and T represents any tree, 

where

R(T) =∑
t∈T̃

R(t) = 1N∑
t∈T̃
∑
yn∈t
(yn − ŷ(t))

2

RCV dk = 1N∑
v=1

V

∑
xn,yn ∈ηv

L yn, dk
v xn

dk
v

δk
′ = δkδk+1

RCV(T) = ∑
j
RCV( j)π̂ j = ∑

j
(∑
i
C(i| j)QCV(i| j))

N j
N = ∑

j
(∑
i
C(i| j)N

i j

N j
)
N j
N

= 1
N∑
j
(∑
i
C(i| j)Ni j)
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and

  

is the overall number of j cases misclassified as i. The standard error of RCV(dk) is approximated with

  ,

where

  ,

the “sample variance” of the cross-validated estimates.

Final selection rules include:

1. Select  such that  

2. Select  such that k2 is the largest k satisfying  .

3. For a specified complexity parameter  , select  such that  

.

Bagging

Bagging is a resampling approach for generating predictions. In particular, bagging stands for bootstrap aggregat-
ing. In the procedure, m bootstrap samples of size n are drawn from the training set of size n. Bootstrap sampling 
is sampling with replacement so that almost every sample has repeated observations, and some observations will 

Q*(i∣ j) = P(d(X ) = i∣Y = j)

R*( j) =∑
i

C(i∣ j)Q*(i∣ j)

R*(d) =∑
j

R* j π j

Ni j =∑
v=1

V

Nv
i j

SE RCV dk = s2 /N

s2 = 1N∑
η

[L(Yn,dk
(vn)(xn)) − R

CV(dk)]
2

Tk1 RCV(Tk1) = mink RCV(Tk)

Tk2 RCV(Tk2) ≤ R
CV(Tk1) + SE(R

CV(Tk1))

δ f in Tk3 RCV(Tk3) ≤ mink R
CV(Tk) + δ fin∣T̃ k∣
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be left out. A decision tree is grown treating each sample as a separate training set. The tree is then used to gen-
erate predictions for the test data. For each test case, the m predictions are combined by averaging the output 
(regression) or voting (classification) to obtain a final prediction.

The bagged predictions are generated for the test data if test data is provided. Otherwise, the bagged predictions 
are generated for the input data (training data). The out-of-bag predictions are available outputs as well, but 
these are always for the input data. An out-of-bag prediction of a particular observation is combined using only 
those bootstrap samples that do not include that observation.

Bagging leads to "improvements for unstable procedures," such as neural nets, classification and regression 
trees, and subset selection in linear regression. On the other hand, it can mildly degrade the performance of 
stable methods such as K-nearest neighbors (Breiman, 1996).

Random Trees

A random forest is an ensemble of decision trees. Like bootstrap aggregation, a tree is fit to each of m bootstrap 
samples from the training data. Each tree is then used to generate predictions. For a regression problem (contin-
uous response variable), the m predictions are combined into a single predicted value by averaging. For 
classification (categorical response variable), majority vote is used. 

A random forest also randomizes the predictors. That is, in every tree, the splitting variable at every node is 
selected from a random subset of the predictors. Randomization of the predictors reduces correlation among 

individual trees. The random forest was invented by Leo Breiman in 2001 (Breiman, 2001). Random ForestsTM is 
the trademark term for this approach. Also see Hastie, Tibshirani, and Friedman, 2009, for further discussion.

To generate predictions or fitted values using a random forest, use the optional argument, 
IMSLS_RANDOM_FEATURES. The number of trees is equivalent to the number of bootstrap samples and can 
be set using IMSLS_N_SAMPLE. The number of random features can also be set using an optional argument.

Missing Values

Any observation or case with a missing response variable is eliminated from the analysis. If a predictor has a miss-
ing value, each algorithm will skip that case when evaluating the given predictor. When making a prediction for a 
new case, if the split variable is missing, the prediction function applies surrogate split-variables and splitting rules 
in turn, if they are estimated with the decision tree. Otherwise, the prediction function returns the prediction from 
the most recent non-terminal node. In this implementation, only ALACART estimates surrogate split variables 
when requested.
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Structure Definitions

Table 44 – Structure Imsls_f_decision_tree

Name Type Description

n_classes int Number of classes assumed by the response 
variable, if the response variable is categorical

n_levels int Number of levels or depth of tree

n_nodes int Number of nodes or size of tree

nodes Imsls_f tree_node* Pointer to an array of tree_node structures of 
size n_nodes 

n_preds int Number of predictors used in the model

n_surrogates int Number of surrogate splits searched for at 
each node. Available for method=1

pred_type int* Pointer to an array of length n_preds contain-
ing the type of each predictor variable

pred_n_values int* Pointer to an array of length n_preds contain-
ing the number of values of each predictor 
variable

response_type int Type of the response variable

terminal_nodes int* Pointer to an array of length n_nodes indicat-
ing which nodes are terminal nodes

Table 45 – Structure tree_node
Name Type Description

children_ids int* Pointer to an array of length n_children con-
taining the IDs of the children nodes

cost float Misclassification cost (in-sample cost measure 
at the current node)

n_cases int Number of cases of the training data that fall 
into the current node

n_children int Number of children of the current node

node_id int Node ID, where the root node corresponds to 
node_id= 0

node_prob float* Estimate of the probability of a new case 
belonging to the node

node_split_value float Value around which the node will be split, if the 
node variable is of continuous type
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Examples

Example 1

In this example, we use a small data set with response variable, Play, which indicates whether a golfer plays (1) or 
does not play (0) golf under weather conditions measured by Temperature, Humidity, Outlook (Sunny (0), Over-
cast (1), Rainy (2)), and Wind (True (0), False (1)). A decision tree is generated by C4.5 and the ALACART methods. 
The control parameters are adjusted because of the small data size and no cross-validation or pruning is per-
formed. The maximal trees are printed out using Imsls_f_decision_tree_print. Notice that C4.5 splits on Outlook, 
then Humidity and Wind, while ALACART splits on Outlook, then Temperature. 

#include <imsls.h>
#include <stdio.h>
int main(){
    float xy[] =
    {
        0, 85, 85, 0, 0,
        0, 80, 90, 1, 0,
        1, 83, 78, 0, 1,
        2, 70, 96, 0, 1,
        2, 68, 80, 0, 1,
        2, 65, 70, 1, 0,
        1, 64, 65, 1, 1,
        0, 72, 95, 0, 0,
        0, 69, 70, 0, 1,
        2, 75, 80, 0, 1,
        0, 75, 70, 1, 1,
        1, 72, 90, 1, 1,
        1, 81, 75, 0, 1,
        2, 71, 80, 1, 0

node_values_ind int* Values of the split variable for the current node, 
if node_var_id has type 0 or 1

node_var_id int ID of the variable that defined the split in the 
parent node

parent_id int ID of the parent of the node with ID node_id
predicted_class int Predicted class at the current node, for 

response variables of categorical type

predicted_val float Predicted value of the response variable if the 
response variable is of continuous type

surrogate_info float* Array containing the surrogate split information

y_probs float* Pointer to the array of class probabilities at the 
current node, if the response variable is of cate-
gorical type

Table 45 – Structure tree_node
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    };
    int n = 14;
    int ncols = 5;
    int response_col_idx = 4;
    int method = 1;
    int var_type[] = {0, 2, 2, 0, 0};
    int control[] = {2, 3, 10, 50, 10};
    const char* names[] = {"Outlook", "Temperature", "Humidity", "Wind",
        "Play"};
    const char* class_names[] = {"Don't Play", "Play"};
    const char* var_levels[] = {"Sunny", "Overcast", "Rainy", "False", "True"};
    Imsls_f_decision_tree *tree = NULL;
    tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
        IMSLS_N_FOLDS, 1,
        IMSLS_CONTROL, control,
        0);
    printf("Decision Tree using Method C4.5:\n\n");
    imsls_f_decision_tree_print(tree, 
        IMSLS_VAR_NAMES, names,
        IMSLS_CLASS_NAMES, class_names,
        IMSLS_CATEG_NAMES, var_levels,
        0);
    imsls_f_decision_tree_free(tree);
    tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
        IMSLS_N_FOLDS, 1,
        IMSLS_METHOD, method,
        IMSLS_CONTROL, control,
        0);
    printf("Decision Tree using Method ALACART:\n\n");
    imsls_f_decision_tree_print(tree, 
        IMSLS_VAR_NAMES, names,
        IMSLS_CLASS_NAMES, class_names,
        IMSLS_CATEG_NAMES, var_levels,
        0);
    imsls_f_decision_tree_free(tree);
}

Output
Decision Tree using Method C4.5:

Decision Tree:
Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes:  1  4  5 
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y:  Play 
   Node 1: Cost = 0.143, N= 5, Level = 1, Child nodes:  2  3 
   Rule:  Outlook  in: { Sunny }
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    P(Y=0)= 0.600
    P(Y=1)= 0.400
    Predicted Y:  Don't Play 
      Node 2: Cost = 0.000, N= 2, Level = 2
      Rule:  Humidity     <= 77.500
        P(Y=0)= 0.000
        P(Y=1)= 1.000
        Predicted Y:  Play 
      Node 3: Cost = 0.000, N= 3, Level = 2
      Rule:  Humidity     > 77.500
        P(Y=0)= 1.000
        P(Y=1)= 0.000
        Predicted Y:  Don't Play 
   Node 4: Cost = 0.000, N= 4, Level = 1
   Rule:  Outlook  in: { Overcast }
    P(Y=0)= 0.000
    P(Y=1)= 1.000
    Predicted Y:  Play 
   Node 5: Cost = 0.143, N= 5, Level = 1, Child nodes:  6  7 
   Rule:  Outlook  in: { Rainy }
    P(Y=0)= 0.400
    P(Y=1)= 0.600
    Predicted Y:  Play 
      Node 6: Cost = 0.000, N= 3, Level = 2
      Rule:  Wind  in: { False }
        P(Y=0)= 0.000
        P(Y=1)= 1.000
        Predicted Y:  Play 
      Node 7: Cost = 0.000, N= 2, Level = 2
      Rule:  Wind  in: { True }
        P(Y=0)= 1.000
        P(Y=1)= 0.000
        Predicted Y:  Don't Play 
Decision Tree using Method ALACART:

Decision Tree:
Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes:  1  8 
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y:  Play 
   Node 1: Cost = 0.357, N= 10, Level = 1, Child nodes:  2  7 
   Rule:  Outlook  in: { Sunny  Rainy }
    P(Y=0)= 0.500
    P(Y=1)= 0.500
    Predicted Y:  Don't Play 
      Node 2: Cost = 0.214, N= 8, Level = 2, Child nodes:  3  6 
      Rule:  Temperature     <= 77.500
        P(Y=0)= 0.375
        P(Y=1)= 0.625
        Predicted Y:  Play 
         Node 3: Cost = 0.214, N= 6, Level = 3, Child nodes:  4  5 
         Rule:  Temperature       <= 73.500
            P(Y=0)= 0.500
            P(Y=1)= 0.500
            Predicted Y:  Don't Play 
            Node 4: Cost = 0.071, N= 4, Level = 4
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            Rule:  Temperature         <= 70.500
                P(Y=0)= 0.250
                P(Y=1)= 0.750
                Predicted Y:  Play 
            Node 5: Cost = 0.000, N= 2, Level = 4
            Rule:  Temperature         > 70.500
                P(Y=0)= 1.000
                P(Y=1)= 0.000
                Predicted Y:  Don't Play 
         Node 6: Cost = 0.000, N= 2, Level = 3
         Rule:  Temperature       > 73.500
            P(Y=0)= 0.000
            P(Y=1)= 1.000
            Predicted Y:  Play 
      Node 7: Cost = 0.000, N= 2, Level = 2
      Rule:  Temperature     > 77.500
        P(Y=0)= 1.000
        P(Y=1)= 0.000
        Predicted Y:  Don't Play 
   Node 8: Cost = 0.000, N= 4, Level = 1
   Rule:  Outlook  in: { Overcast }
    P(Y=0)= 0.000
    P(Y=1)= 1.000
    Predicted Y:  Play

Example 2

This example applies the QUEST method to a simulated data set with 50 cases and three predictors of mixed-
type. A maximally grown tree under the default controls and the optimally pruned sub-tree obtained from cross-
validation and minimal cost complexity pruning are produced. Notice that the optimally pruned tree consists of 
just the root node, whereas the maximal tree has five nodes and three levels.

#include <imsls.h>
#include <stdio.h>
int main(){
    float xy[50*4] =
    {
        2, 25.928690, 0, 0, 
        1, 51.632450, 1, 1, 
        1, 25.784321, 0, 2, 
        0, 39.379478, 0, 3, 
        2, 24.650579, 0, 2, 
        2, 45.200840, 0, 2, 
        2, 52.679600, 1, 3, 
        1, 44.283421, 1, 3, 
        2, 40.635231, 1, 3, 
        2, 51.760941, 0, 3, 
        2, 26.303680, 0, 1, 
        2, 20.702299, 1, 0, 
        2, 38.742729, 1, 3, 
        2, 19.473330, 0, 0, 
        1, 26.422110, 0, 0, 
        2, 37.059860, 1, 0, 
        1, 51.670429, 1, 3, 
        0, 42.401562, 0, 3, 
        2, 33.900269, 1, 2, 
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        1, 35.432819, 0, 0, 
        1, 44.303692, 0, 1, 
        0, 46.723869, 0, 2, 
        1, 46.992619, 0, 2, 
        0, 36.059231, 0, 3, 
        2, 36.831970, 1, 1, 
        1, 61.662571, 1, 2, 
        0, 25.677139, 0, 3, 
        1, 39.085670, 1, 0, 
        0, 48.843410, 1, 1, 
        1, 39.343910, 0, 3, 
        2, 24.735220, 0, 2, 
        1, 50.552509, 1, 3, 
        0, 31.342630, 1, 3, 
        1, 27.157949, 1, 0, 
        0, 31.726851, 0, 2, 
        0, 25.004080, 0, 3, 
        1, 26.354570, 1, 3, 
        2, 38.123428, 0, 1, 
        0, 49.940300, 0, 2, 
        1, 42.457790, 1, 3, 
        0, 38.809479, 1, 1, 
        0, 43.227989, 1, 1, 
        0, 41.876240, 0, 3, 
        2, 48.078201, 0, 2, 
        0, 43.236729, 1, 0, 
        2, 39.412941, 0, 3, 
        1, 23.933460, 0, 2, 
        2, 42.841301, 1, 3, 
        2, 30.406691, 0, 1, 
        0, 37.773891, 0, 2
    };
    int n = 50;
    int ncols = 4;
    int method = 3;
    int var_type[] = {0, 2, 0, 0};
    int response_col_idx = 3;
    Imsls_f_decision_tree *tree = NULL;
    tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
        IMSLS_METHOD, method,
        IMSLS_RANDOM_SEED, 123457,
        IMSLS_PRINT, 1,
        0);
    printf("\nMaximal tree: \n\n");
    imsls_f_decision_tree_print(tree,
        IMSLS_PRINT_MAX,
        0);
    printf("\nOptimally pruned subtree: \n\n");
    imsls_f_decision_tree_print(tree, 0);
    imsls_f_decision_tree_free(tree);
}
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Output
Growing the maximal tree using method QUEST:
Cross-Validation:
Tree  complexity   CV-err  CV-Std.Error
   0     0.00000  0.70406       0.08044
   1     0.02000  0.72641       0.08562
   2     0.04000  0.72814       0.08598
Select tree number 2, cost complexity parameter = 0.04000:
Maximal tree: 

Decision Tree:
Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes:  1  2 
P(Y=0)= 0.180
P(Y=1)= 0.180
P(Y=2)= 0.260
P(Y=3)= 0.380
Predicted Y:   3 
   Node 1: Cost = 0.220, N= 17, Level = 1
   Rule: X1   <= 35.031
    P(Y=0)= 0.294
    P(Y=1)= 0.118
    P(Y=2)= 0.353
    P(Y=3)= 0.235
    Predicted Y:   2 
   Node 2: Cost = 0.360, N= 33, Level = 1, Child nodes:  3  4 
   Rule: X1   > 35.031
    P(Y=0)= 0.121
    P(Y=1)= 0.212
    P(Y=2)= 0.212
    P(Y=3)= 0.455
    Predicted Y:   3 
      Node 3: Cost = 0.180, N= 19, Level = 2
      Rule: X1     <= 43.265
        P(Y=0)= 0.211
        P(Y=1)= 0.211
        P(Y=2)= 0.053
        P(Y=3)= 0.526
        Predicted Y:   3 
      Node 4: Cost = 0.160, N= 14, Level = 2
      Rule: X1     > 43.265
        P(Y=0)= 0.000
        P(Y=1)= 0.214
        P(Y=2)= 0.429
        P(Y=3)= 0.357
        Predicted Y:   2 
Optimally pruned subtree: 

Decision Tree:
Node 0: Cost = 0.620, N= 50, Level = 0
P(Y=0)= 0.180
P(Y=1)= 0.180
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P(Y=2)= 0.260
P(Y=3)= 0.380
Predicted Y:   3 
Pruned at Node id 0.

Example 3

This example uses the dataset Kyphosis. The 81 cases represent 81 children who have undergone surgery to cor-
rect a type of spinal deformity known as Kyphosis. The response variable is the presence or absence of Kyphosis 
after the surgery. Three predictors are Age of the patient in months, Start, the number of the vertebra where the 
surgery started, and Number, the number of vertebra involved in the surgery. This example uses the method 
QUEST to produce a maximal tree. It also requests predictions for a test-data set consisting of 10 “new” cases.

#include <imsls.h>
#include <stdio.h>
int main()
{
    float xy[81*4] =
    {
        0, 71, 3, 5,
        0, 158, 3, 14,
        1, 128, 4, 5,
        0, 2, 5, 1,
        0, 1, 4, 15,
        0, 1, 2, 16,
        0, 61, 2, 17,
        0, 37, 3, 16,
        0, 113, 2, 16,
        1, 59, 6, 12,
        1, 82, 5, 14,
        0, 148, 3, 16,
        0, 18, 5, 2,
        0, 1, 4, 12,
        0, 168, 3, 18,
        0, 1, 3, 16,
        0, 78, 6, 15,
        0, 175, 5, 13,
        0, 80, 5, 16,
        0, 27, 4, 9,
        0, 22, 2, 16,
        1, 105, 6, 5,
        1, 96, 3, 12,
        0, 131, 2, 3,
        1, 15, 7, 2,
        0, 9, 5, 13,
        0, 8, 3, 6,
        0, 100, 3, 14,
        0, 4, 3, 16,
        0, 151, 2, 16,
        0, 31, 3, 16,
        0, 125, 2, 11,
        0, 130, 5, 13,
        0, 112, 3, 16,
        0, 140, 5, 11,
        0, 93, 3, 16,
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        0, 1, 3, 9,
        1, 52, 5, 6,
        0, 20, 6, 9,
        1, 91, 5, 12,
        1, 73, 5, 1,
        0, 35, 3, 13,
        0, 143, 9, 3,
        0, 61, 4, 1,
        0, 97, 3, 16,
        1, 139, 3, 10,
        0, 136, 4, 15,
        0, 131, 5, 13,
        1, 121, 3, 3,
        0, 177, 2, 14,
        0, 68, 5, 10,
        0, 9, 2, 17,
        1, 139, 10, 6,
        0, 2, 2, 17,
        0, 140, 4, 15,
        0, 72, 5, 15,
        0, 2, 3, 13,
        1, 120, 5, 8,
        0, 51, 7, 9,
        0, 102, 3, 13,
        1, 130, 4, 1,
        1, 114, 7, 8,
        0, 81, 4, 1,
        0, 118, 3, 16,
        0, 118, 4, 16,
        0, 17, 4, 10,
        0, 195, 2, 17,
        0, 159, 4, 13,
        0, 18, 4, 11,
        0, 15, 5, 16,
        0, 158, 5, 14,
        0, 127, 4, 12,
        0, 87, 4, 16,
        0, 206, 4, 10,
        0, 11, 3, 15,
        0, 178, 4, 15,
        1, 157, 3, 13,
        0, 26, 7, 13,
        0, 120, 2, 13,
        1, 42, 7, 6,
        0, 36, 4, 13
    };
    float xy_test[10*4] =
    {
        0, 71, 3, 5,
        1, 128, 4, 5,
        0, 1, 4, 15,
        0, 61, 6, 10,
        0, 113, 2, 16,
        1, 82, 5, 14,
        0, 148, 3, 16,
        0, 1, 4, 12,
        0, 1, 3, 16,
        0, 175, 5, 13
    };
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    int n = 81;
    int ncols = 4;
    int response_col_idx = 0;
    int method = 3;
    int control[] = {5, 10, 10, 50, 10};
    int var_type[] = {0, 2, 2, 2};
    int n_test = 10;
    int i, idx;
    float *predictions;
    float pred_err_ss;
    const char* names[] = {"Age", "Number", "Start"};
    const char* class_names[] = {"Absent", "Present"};
    const char* response_name[] = {"Kyphosis"};
    Imsls_f_decision_tree *tree = NULL;
    tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
        IMSLS_METHOD, method,
        IMSLS_N_FOLDS, 1,
        IMSLS_CONTROL, control,
        IMSLS_TEST_DATA, n_test, xy_test,
        IMSLS_PRINT, 2,
        IMSLS_PREDICTED, &predictions,
        IMSLS_ERROR_SS, &pred_err_ss,
        0);
    imsls_f_decision_tree_print(tree,
        IMSLS_RESP_NAME, response_name,
        IMSLS_VAR_NAMES, names,
        IMSLS_CLASS_NAMES, class_names,
        0);
    printf("\nPredictions for test data:\n");
    printf("%5s%8s%7s%10s\n", names[0], names[1], names[2],
        response_name[0]);
    for(i=0;i<n_test;i++){
        printf("%5.0f%8.0f%7.0f",
            xy_test[i*ncols+1],
            xy_test[i*ncols+2],
            xy_test[i*ncols+3]);
        idx = (int)predictions[i];
        printf("%10s\n", class_names[idx]);
    }
    printf("\nMean squared prediction error: %f\n", pred_err_ss);
    imsls_f_decision_tree_free(tree);
    imsls_free(predictions);
}

Output
The response variable has 0 missing values.
Growing the maximal tree using method QUEST:
Node 2 is a terminal node. It has   7 cases--too few cases to split.
Node 3 is a terminal node. It has   6 cases--too few cases to split.
Node 5 is a terminal node. It has   6 cases--too few cases to split.
Node 8 is an terminal node. The split is too thin having count   2.
Node 10 is a terminal node. It has   6 cases--too few cases to split.
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Node 11 is a terminal node, because it is pure.
Node 11 is a terminal node. It has   7 cases--too few cases to split.
Node 13 is a terminal node. It has   5 cases--too few cases to split.
Node 14 is a terminal node, because it is pure.
Decision Tree:
Node 0: Cost = 0.210, N= 81, Level = 0, Child nodes:  1  4 
P(Y=0)= 0.790
P(Y=1)= 0.210
Predicted Kyphosis Absent 
Node 1: Cost = 0.074, N= 13, Level = 1, Child nodes:  2  3 
Rule:  Start <= 5.155
P(Y=0)= 0.538
P(Y=1)= 0.462
Predicted Kyphosis Absent 
Node 2: Cost = 0.025, N= 7, Level = 2
Rule:  Age <= 84.030
P(Y=0)= 0.714
P(Y=1)= 0.286
Predicted Kyphosis Absent 
Node 3: Cost = 0.025, N= 6, Level = 2
Rule:  Age > 84.030
P(Y=0)= 0.333
P(Y=1)= 0.667
Predicted Kyphosis Present 
Node 4: Cost = 0.136, N= 68, Level = 1, Child nodes:  5  6 
Rule:  Start > 5.155
P(Y=0)= 0.838
P(Y=1)= 0.162
Predicted Kyphosis Absent 
Node 5: Cost = 0.012, N= 6, Level = 2
Rule:  Start <= 8.862
P(Y=0)= 0.167
P(Y=1)= 0.833
Predicted Kyphosis Present 
Node 6: Cost = 0.074, N= 62, Level = 2, Child nodes:  7  12 
Rule:  Start > 8.862
P(Y=0)= 0.903
P(Y=1)= 0.097
Predicted Kyphosis Absent 
Node 7: Cost = 0.062, N= 28, Level = 3, Child nodes:  8  9 
Rule:  Start <= 13.092
P(Y=0)= 0.821
P(Y=1)= 0.179
Predicted Kyphosis Absent 
Node 8: Cost = 0.025, N= 15, Level = 4
Rule:  Age <= 91.722
P(Y=0)= 0.867
P(Y=1)= 0.133
Predicted Kyphosis Absent 
Node 9: Cost = 0.037, N= 13, Level = 4, Child nodes:  10  11 
Rule:  Age > 91.722
P(Y=0)= 0.769
P(Y=1)= 0.231
Predicted Kyphosis Absent 
Node 10: Cost = 0.037, N= 6, Level = 5
Rule:  Number <= 3.450
P(Y=0)= 0.500
P(Y=1)= 0.500
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Predicted Kyphosis Absent 
Node 11: Cost = 0.000, N= 7, Level = 5
Rule:  Number > 3.450
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Kyphosis Absent 
Node 12: Cost = 0.012, N= 34, Level = 3, Child nodes:  13  14 
Rule:  Start > 13.092
P(Y=0)= 0.971
P(Y=1)= 0.029
Predicted Kyphosis Absent 
Node 13: Cost = 0.012, N= 5, Level = 4
Rule:  Start <= 14.864
P(Y=0)= 0.800
P(Y=1)= 0.200
Predicted Kyphosis Absent 
Node 14: Cost = 0.000, N= 29, Level = 4
Rule:  Start > 14.864
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Kyphosis Absent 
Predictions for test data:
  Age  Number  Start  Kyphosis
   71       3      5    Absent
  128       4      5   Present
    1       4     15    Absent
   61       6     10    Absent
  113       2     16    Absent
   82       5     14    Absent
  148       3     16    Absent
    1       4     12    Absent
    1       3     16    Absent
  175       5     13    Absent
Mean squared prediction error: 0.010000

Example 4

For the Kyphosis dataset of Example 3, this example produces random forest predictions using the optional 
arguments for random feature selection.

#include <imsls.h>
#include <stdio.h>
#define NOBS 81
#define NCLASSES 2
#define NPREDS 3
#define NTEST 10
int main(){
    float xy[81 * 4] = {
        0, 71, 3, 5,
        0, 158, 3, 14,
        1, 128, 4, 5,
        0, 2, 5, 1,
        0, 1, 4, 15,
        0, 1, 2, 16,
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        0, 61, 2, 17,
        0, 37, 3, 16,
        0, 113, 2, 16,
        1, 59, 6, 12,
        1, 82, 5, 14,
        0, 148, 3, 16,
        0, 18, 5, 2,
        0, 1, 4, 12,
        0, 168, 3, 18,
        0, 1, 3, 16,
        0, 78, 6, 15,
        0, 175, 5, 13,
        0, 80, 5, 16,
        0, 27, 4, 9,
        0, 22, 2, 16,
        1, 105, 6, 5,
        1, 96, 3, 12,
        0, 131, 2, 3,
        1, 15, 7, 2,
        0, 9, 5, 13,
        0, 8, 3, 6,
        0, 100, 3, 14,
        0, 4, 3, 16,
        0, 151, 2, 16,
        0, 31, 3, 16,
        0, 125, 2, 11,
        0, 130, 5, 13,
        0, 112, 3, 16,
        0, 140, 5, 11,
        0, 93, 3, 16,
        0, 1, 3, 9,
        1, 52, 5, 6,
        0, 20, 6, 9,
        1, 91, 5, 12,
        1, 73, 5, 1,
        0, 35, 3, 13,
        0, 143, 9, 3,
        0, 61, 4, 1,
        0, 97, 3, 16,
        1, 139, 3, 10,
        0, 136, 4, 15,
        0, 131, 5, 13,
        1, 121, 3, 3,
        0, 177, 2, 14,
        0, 68, 5, 10,
        0, 9, 2, 17,
        1, 139, 10, 6,
        0, 2, 2, 17,
        0, 140, 4, 15,
        0, 72, 5, 15,
        0, 2, 3, 13,
        1, 120, 5, 8,
        0, 51, 7, 9,
        0, 102, 3, 13,
        1, 130, 4, 1,
        1, 114, 7, 8,
        0, 81, 4, 1,
        0, 118, 3, 16,
        0, 118, 4, 16,
        0, 17, 4, 10,
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        0, 195, 2, 17,
        0, 159, 4, 13,
        0, 18, 4, 11,
        0, 15, 5, 16,
        0, 158, 5, 14,
        0, 127, 4, 12,
        0, 87, 4, 16,
        0, 206, 4, 10,
        0, 11, 3, 15,
        0, 178, 4, 15,
        1, 157, 3, 13,
        0, 26, 7, 13,
        0, 120, 2, 13,
        1, 42, 7, 6,
        0, 36, 4, 13 };
    float xytest[10 * 4] = { 0, 71, 3, 5,
        1, 128, 4, 5,
        0, 1, 4, 15,
        0, 61, 6, 10,
        0, 113, 2, 16,
        1, 82, 5, 14,
        0, 148, 3, 16,
        0, 1, 4, 12,
        0, 1, 3, 16,
        0, 175, 5, 13 };
    int N = NOBS;
    int nclasses = NCLASSES;
    int npreds = NPREDS;
    int ncols = NPREDS + 1;
    int response_idx = 0;
    int var_type[] = { 0, 2, 2, 2 };
    int ntest = NTEST;
    int i;
    long seed = 123457;
    float *predictions = NULL;
    Imsls_f_decision_tree *tree = NULL;
    tree = imsls_f_decision_tree(N, ncols,
        xy,
        response_idx,
        var_type,
        IMSLS_METHOD, 1,
        IMSLS_N_FOLDS, 1,
        IMSLS_PREDICTED, &predictions,
        IMSLS_TEST_DATA, ntest, xytest,
        0);
    printf("Single tree predictions vs. actuals:\n\n");
    for (i = 0; i < ntest; i++){
        printf("%d\t%f \t %f\n", i + 1, predictions[i],
            xytest[i*ncols + response_idx]);
    }
    imsls_f_decision_tree_free(tree);
    imsls_free(predictions);
    tree = imsls_f_decision_tree(N, ncols,
        xy,
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        response_idx,
        var_type,
        IMSLS_METHOD, 1,
        IMSLS_N_FOLDS, 1,
        IMSLS_PREDICTED, &predictions,
        IMSLS_TEST_DATA, ntest, xytest,
        IMSLS_RANDOM_FEATURES,
        IMSLS_N_RANDOM_FEATURES, 2,
        IMSLS_RANDOM_SEED, seed,
        IMSLS_N_SAMPLE, 100,
        0);
    printf("\n\nRandom forest predictions vs. actuals:\n\n");
    for (i = 0; i < ntest; i++){
        printf("%d\t%f\t %f\n", i + 1, predictions[i],
            xytest[i*ncols + response_idx]);
    }
    imsls_f_decision_tree_free(tree);
    imsls_free(predictions);
}

Output
Single tree predictions vs. actuals:
1       0.000000         0.000000
2       0.000000         1.000000
3       0.000000         0.000000
4       1.000000         0.000000
5       0.000000         0.000000
6       0.000000         1.000000
7       0.000000         0.000000
8       0.000000         0.000000
9       0.000000         0.000000
10      0.000000         0.000000

Random forest predictions vs. actuals:
1       0.000000         0.000000
2       1.000000         1.000000
3       0.000000         0.000000
4       0.000000         0.000000
5       0.000000         0.000000
6       0.000000         1.000000
7       0.000000         0.000000
8       0.000000         0.000000
9       0.000000         0.000000
10      0.000000         0.000000

Example 5

In example 5, the random forest is used to produce predictions for Fisher's Iris data. 

#include <imsls.h>
#include <stdio.h>
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#define NOBS 150
#define NCLASSES 3
#define NPREDS 4
int main(){
    int i = 0;
    int n = NOBS;
    int ncols = NPREDS + 1;
    int nclasses = NCLASSES;
    int response_idx = 0;
    int var_type[] = { 0, 2, 2, 2, 2 };
    float iris_xy[150 * 5];
    float *iris_data = NULL;
    char *classLabel[] = { "Setosa", "Versicolour", "Virginica",
        "Total" };
    char *colLabel[] = { "Species", "Number of Errors",
        "Total N" };
    float out_of_bag_mean_error = 0.0;
    float *out_of_bag_class_errors = NULL;
    Imsls_f_decision_tree *tree = NULL;
    
    iris_data = imsls_f_data_sets(3, 0);
    for (i = 0; i < n*ncols; i++){
        iris_xy[i] = iris_data[i];
    }
    for (i = 0; i < n; i++){
        iris_xy[i*ncols + response_idx] -= 1;
    }
    tree = imsls_f_decision_tree(n, ncols,
        iris_xy,
        response_idx,
        var_type,
        IMSLS_METHOD, 1,
        IMSLS_N_FOLDS, 1,
        IMSLS_OUT_OF_BAG_MEAN_ERROR, &out_of_bag_mean_error,
        IMSLS_OUT_OF_BAG_CLASS_ERROR, &out_of_bag_class_errors,
        IMSLS_RANDOM_FEATURES,
        IMSLS_RANDOM_SEED, 123457,
        0);
    imsls_f_write_matrix("Out of bag errors by class", nclasses + 1, 2,
        out_of_bag_class_errors,
        IMSLS_ROW_LABELS, classLabel,
        IMSLS_COL_LABELS, colLabel, 0);
    printf("\nOut-of-bag mean error = %3.2f\n", out_of_bag_mean_error);
    imsls_f_decision_tree_free(tree);
    imsls_free(out_of_bag_class_errors);
    imsls_free(iris_data);
}

Output
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         Out of bag errors by class
Species        Number of Errors      Total N
                                            
Setosa                        0           50
Versicolour                   3           50
Virginica                     6           50
Total                         9          150
Out-of-bag mean error = 0.06

Example 6

In this example, a random forest is used to predict the categorical response on simulated data. The data is 
random with no real relationship among the predictors and the response variable, reflected by the high number 
of errors. Furthermore, the variable importance measure is slightly negative for the predictors, another symptom 
of noisy data. 

#include <imsls.h>
#include <stdio.h>
#define NOBS 50
#define NCLASSES 3
#define NPREDS 3
int main(){
    int n = NOBS;
    int nclasses = NCLASSES;
    int ncols = NPREDS + 1;
    int var_type[] = { 0, 2, 0, 0 };
    int response_idx = 0;
    float xy[50 * 4] =
    {
        2, 25.92869, 0, 0,
        1, 51.63245, 1, 1,
        1, 25.78432, 0, 2,
        0, 39.37948, 0, 3,
        2, 24.65058, 0, 2,
        2, 45.20084, 0, 2,
        2, 52.67960, 1, 3,
        1, 44.28342, 1, 3,
        2, 40.63523, 1, 3,
        2, 51.76094, 0, 3,
        2, 26.30368, 0, 1,
        2, 20.70230, 1, 0,
        2, 38.74273, 1, 3,
        2, 19.47333, 0, 0,
        1, 26.42211, 0, 0,
        2, 37.05986, 1, 0,
        1, 51.67043, 1, 3,
        0, 42.40156, 0, 3,
        2, 33.90027, 1, 2,
        1, 35.43282, 0, 0,
        1, 44.30369, 0, 1,
        0, 46.72387, 0, 2,
        1, 46.99262, 0, 2,
        0, 36.05923, 0, 3,
        2, 36.83197, 1, 1,
1440



 Data Mining         decision_tree
        1, 61.66257, 1, 2,
        0, 25.67714, 0, 3,
        1, 39.08567, 1, 0,
        0, 48.84341, 1, 1,
        1, 39.34391, 0, 3,
        2, 24.73522, 0, 2,
        1, 50.55251, 1, 3,
        0, 31.34263, 1, 3,
        1, 27.15795, 1, 0,
        0, 31.72685, 0, 2,
        0, 25.00408, 0, 3,
        1, 26.35457, 1, 3,
        2, 38.12343, 0, 1,
        0, 49.94030, 0, 2,
        1, 42.45779, 1, 3,
        0, 38.80948, 1, 1,
        0, 43.22799, 1, 1,
        0, 41.87624, 0, 3,
        2, 48.07820, 0, 2,
        0, 43.23673, 1, 0,
        2, 39.41294, 0, 3,
        1, 23.93346, 0, 2,
        2, 42.84130, 1, 3,
        2, 30.40669, 0, 1,
        0, 37.77389, 0, 2
    };
    float out_of_bag_mean_error = 0.0;
    float *out_of_bag_class_errors = NULL;
    float *variable_importance = NULL;
    Imsls_f_decision_tree *tree = NULL;
    tree = imsls_f_decision_tree(n, ncols,
        xy,
        response_idx,
        var_type,
        IMSLS_METHOD, 0,
        IMSLS_N_FOLDS, 1,
        IMSLS_OUT_OF_BAG_MEAN_ERROR, &out_of_bag_mean_error,
        IMSLS_OUT_OF_BAG_CLASS_ERROR, &out_of_bag_class_errors,
        IMSLS_OUT_OF_BAG_VAR_IMPORTANCE, &variable_importance,
        IMSLS_RANDOM_FEATURES,
        IMSLS_RANDOM_SEED, 123457,
        0);
    imsls_f_write_matrix("Errors by class", nclasses + 1, 2,
        out_of_bag_class_errors, 0);
    printf("\nout-of-bag mean error = %f\n", out_of_bag_mean_error);
    imsls_f_write_matrix("Variable importance", ncols - 1, 1,
        variable_importance, 0);
    imsls_f_decision_tree_free(tree);
    imsls_free(out_of_bag_class_errors);
    imsls_free(variable_importance);
}

Output
      Errors by class
             1            2
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1           11           15
2           14           16
3           15           19
4           40           50
out-of-bag mean error = 0.800000
 
Variable importance
  1     -0.01758
  2      0.00133
  3     -0.00881

Example 7

In this example, the bagged trees generated in a random forest are returned.

#include <imsls.h>
#include <stdio.h>
#define NOBS 150
#define NPREDS 4
int main(){
    int i = 0;
    int n = NOBS;
    int ncols = NPREDS + 1;
    int response_idx = 0;
    int control[] = { 7, 21, 10, 4, 3 };
    int var_type[] = { 0, 2, 2, 2, 2 };
    float iris_xy[150 * 5];
    float *iris_data = NULL;
    Imsls_f_decision_tree *tree = NULL;
    Imsls_f_decision_tree **bagged_trees = NULL;
    iris_data = imsls_f_data_sets(3, 0);
    for (i = 0; i < n*ncols; i++){
        iris_xy[i] = iris_data[i];
    }
    for (i = 0; i < n; i++){
        iris_xy[i*ncols + response_idx] -= 1;
    }
    tree = imsls_f_decision_tree(n, ncols,
        iris_xy,
        response_idx,
        var_type,
        IMSLS_METHOD, 1,
        IMSLS_N_FOLDS, 1,
        IMSLS_CONTROL, control,
        IMSLS_RETURN_TREES, &bagged_trees,
        IMSLS_RANDOM_FEATURES,
        IMSLS_RANDOM_SEED, 123457,
        0);
    /* Print the first and the last bagged tree:*/
    imsls_f_decision_tree_print(bagged_trees[0], 0);
    imsls_f_decision_tree_print(bagged_trees[49], 0);
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    imsls_f_decision_tree_free(tree);
    imsls_f_bagged_trees_free(50, bagged_trees);
    imsls_free(iris_data);
}

Output
Decision Tree:
Node 0: Cost = 0.633, N= 150, Level = 0, Child nodes:  1  2 
P(Y=0)= 0.347
P(Y=1)= 0.287
P(Y=2)= 0.367
Predicted Y:   2 
   Node 1: Cost = 0.113, N= 67, Level = 1
   Rule: X0   <= 5.550
    P(Y=0)= 0.746
    P(Y=1)= 0.224
    P(Y=2)= 0.030
    Predicted Y:   0 
   Node 2: Cost = 0.200, N= 83, Level = 1
   Rule: X0   > 5.550
    P(Y=0)= 0.024
    P(Y=1)= 0.337
    P(Y=2)= 0.639
    Predicted Y:   2 
Decision Tree:
Node 0: Cost = 0.660, N= 150, Level = 0, Child nodes:  1  2 
P(Y=0)= 0.333
P(Y=1)= 0.340
P(Y=2)= 0.327
Predicted Y:   1 
   Node 1: Cost = 0.000, N= 50, Level = 1
   Rule: X2   <= 2.600
    P(Y=0)= 1.000
    P(Y=1)= 0.000
    P(Y=2)= 0.000
    Predicted Y:   0 
   Node 2: Cost = 0.327, N= 100, Level = 1
   Rule: X2   > 2.600
    P(Y=0)= 0.000
    P(Y=1)= 0.510
    P(Y=2)= 0.490
    Predicted Y:   1 
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Warning Errors

Fatal Errors

IMSLS_NO_SURROGATES Use of surrogates is limited to method 1 (ALACART).

IMSLS_NO_CONVERGENCE Convergence was not achieved.

IMSLS_EMPTY_CLASS_LEVEL The count of class level # in the training data is zero.

IMSLS_INVALID_METHOD2 Choose a valid tree generation method; 0 (C4.5), 1 
(ALACART), 2 (CHAID) or 3 (QUEST).

IMSLS_VALUE_GT_ZERO The value of # must be strictly positive.
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decision_tree_predict
Computes predicted values using a decision tree.

Synopsis
#include <imsls.h> 

float* imsls_f_decision_tree_predict (int n, int n_cols, float x[], int var_type[], 
Imsls_f_decision_tree *tree, ..., 0)

The type double function is imsls_d_decision_tree_predict.

Required Arguments
int n  (Input)

The the number of rows in x.

int n_cols  (Input)
The number of columns in x.

float x[]  (Input)
Array of size n × ncols containing the data.

int var_type[]  (Input)
Array of length ncols indicating the type of each variable. 

imsls_f_decision_tree *tree (Input) 
An estimated decision tree.

Value Type

0 Categorical

1 Ordered Discrete (Low, Med., High)

2 Quantitative or Continuous

3 Ignore this variable
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Return Value
An array of length n containing the predicted values. If an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h> 

float* imsls_f_decision_tree_predict (int n, int n_cols, float x[], int var_type[], 
Imsls_f_decision_tree *tree,
IMSLS_N_SURROGATES, int n_surrogates,
IMSLS_X_RESPONSE_COL, int response_col_idx,
IMSLS_WEIGHTS, float weights[],
IMSLS_X_NODE_IDS, int **node_ids,
IMSLS_X_NODE_IDS_USER, int node_ids[],
IMSLS_ERROR_SS, float *pred_err_ss,
IMSLS_RETURN_USER, float predictions[],
0)

Optional Arguments
IMSLS_N_SURROGATES, int n_surrogates (Input)

Indicates the number of surrogate splits for use in methods that find surrogate splits in order to han-
dle missing values. 
Default: n_surrogates = 0.

IMSLS_WEIGHTS, float weights[] (Input)
An array of length n containing case weights. 
Default:  weights[i]=1.0. 

IMSLS_X_RESPONSE_COL, int response_col_idx (Input)
The column index of the response variable, if present in the data. A negative value indicates there is 
no response column.
Default: response_col_idx = -1.

IMSLS_X_NODE_IDS, int **node_ids (Output)
Address of a pointer to the internally allocated array of length n containing for each row in x, the ter-
minal node of the tree to which the observation belongs. 

IMSLS_X_NODE_IDS_USER, int node_ids[] (Output)
Storage for node_ids is provided by the user.
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IMSLS_ERROR_SS, float* pred_err_ss (Output)
The prediction error mean sum of squares, available when values for the response are present in the 
data. 

IMSLS_RETURN_USER, float predictions[] (Input)
Storage for the return value is provided by the user. 

Description
To predict a new set of cases using a fitted or estimated decision tree, imsls_f_decision_tree_predict 
finds the terminal node of the tree to which each new case belongs. The predicted value is then the predicted 
value of that node. This is a matter of “putting the data through the tree.” For example, suppose the following 
weather conditions:

According to the C4.5 decision tree in Example 1 for imsls_f_decision_tree, will the golfer play golf or not, 
under these conditions? The tree splits the root node on Outlook into three nodes: {Sunny, Rainy, and Overcast}. 
Rainy defines node 5. Node 5 is split into child nodes 6 and 7, according to the presence of wind. If there is wind, 
Node 7, the prediction is “Don’t Play.” If there is no wind, Node 6, the prediction is “Play.” Therefore, the new obser-
vation belongs to Node 6, and the tree predicts that the golfer will play under the given weather conditions. In the 
ALACART decision tree, Node 4 is the terminal node, and the associated prediction is “Play.”

Comments
1. Users can request predictions and error sum of squares directly from imsls_f_decision_tree 

or use this separate prediction function when it is not necessary to re-estimate a decision tree.

2. If requested, the prediction mean sum of squared error (mean squared prediction error) is com-
puted when actual response values are available in the data. 

3. For cases with missing values in predictors that are involved in the splitting rules of the tree, 
imsls_f_decision_tree_predict uses surrogate rules if available and when requested. 
Otherwise, predicted values are missing, and the error sum of squares does include that case.

Temperature = 70

Humidity = 82

Outlook = Rainy

Wind = FALSE
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Example
Using the kyphosis data of Example 2 for imsls_f_decision_tree, this example illustrates using a separate 
call to imsls_f_decision_tree_predict to obtain the predicted values for a new set of observations 
(xy_test).

#include <imsls.h>
#include <stdio.h>
int main()
{
   float xy[81*4] =
   {
       0, 71, 3, 5,
       0, 158, 3, 14,
       1, 128, 4, 5,
       0, 2, 5, 1,
       0, 1, 4, 15,
       0, 1, 2, 16,
       0, 61, 2, 17,
       0, 37, 3, 16,
       0, 113, 2, 16,
       1, 59, 6, 12,
       1, 82, 5, 14,
       0, 148, 3, 16,
       0, 18, 5, 2,
       0, 1, 4, 12,
       0, 168, 3, 18,
       0, 1, 3, 16,
       0, 78, 6, 15,
       0, 175, 5, 13,
       0, 80, 5, 16,
       0, 27, 4, 9,
       0, 22, 2, 16,
       1, 105, 6, 5,
       1, 96, 3, 12,
       0, 131, 2, 3,
       1, 15, 7, 2,
       0, 9, 5, 13,
       0, 8, 3, 6,
       0, 100, 3, 14,
       0, 4, 3, 16,
       0, 151, 2, 16,
       0, 31, 3, 16,
       0, 125, 2, 11,
       0, 130, 5, 13,
       0, 112, 3, 16,
       0, 140, 5, 11,
       0, 93, 3, 16,
       0, 1, 3, 9,
       1, 52, 5, 6,
       0, 20, 6, 9,
       1, 91, 5, 12,
       1, 73, 5, 1,
       0, 35, 3, 13,
       0, 143, 9, 3,
       0, 61, 4, 1,
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       0, 97, 3, 16,
       1, 139, 3, 10,
       0, 136, 4, 15,
       0, 131, 5, 13,
       1, 121, 3, 3,
       0, 177, 2, 14,
       0, 68, 5, 10,
       0, 9, 2, 17,
       1, 139, 10, 6,
       0, 2, 2, 17,
       0, 140, 4, 15,
       0, 72, 5, 15,
       0, 2, 3, 13,
       1, 120, 5, 8,
       0, 51, 7, 9,
       0, 102, 3, 13,
       1, 130, 4, 1,
       1, 114, 7, 8,
       0, 81, 4, 1,
       0, 118, 3, 16,
       0, 118, 4, 16,
       0, 17, 4, 10,
       0, 195, 2, 17,
       0, 159, 4, 13,
       0, 18, 4, 11,
       0, 15, 5, 16,
       0, 158, 5, 14,
       0, 127, 4, 12,
       0, 87, 4, 16,
       0, 206, 4, 10,
       0, 11, 3, 15,
       0, 178, 4, 15,
       1, 157, 3, 13,
       0, 26, 7, 13,
       0, 120, 2, 13,
       1, 42, 7, 6,
       0, 36, 4, 13
   };
   float xy_test[10*4] =
   {
       0, 71, 3, 5,
       1, 128, 4, 5,
       0, 1, 4, 15,
       0, 61, 6, 10,
       0, 113, 2, 16,
       1, 82, 5, 14,
       0, 148, 3, 16,
       0, 1, 4, 12,
       0, 1, 3, 16,
       0, 175, 5, 13
   };
   int n = 81;
   int ncols = 4;
   int response_col_idx = 0;
   int method = 3;
   int control[] = {5, 10, 10, 50, 10};
   int var_type[] = {0, 2, 2, 2};
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   int n_test = 10;
   int i, idx;
   float *predictions;
   float pred_err_ss;
   const char* names[] = {"Age", "Number", "Start"};
   const char* classNames[] = {"Absent", "Present"};
   const char* responseName[] = {"Kyphosis"};
   Imsls_f_decision_tree *tree = NULL;
   tree = imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
       IMSLS_METHOD, method,
       IMSLS_N_FOLDS, 1,
       IMSLS_CONTROL, control,
       IMSLS_TEST_DATA, n_test, xy_test,
       0);
   predictions = imsls_f_decision_tree_predict(n_test, ncols, xy_test,
       var_type, tree,
       IMSLS_X_RESPONSE_COL, response_col_idx,
       IMSLS_ERROR_SS, &pred_err_ss,
       0);
   printf("\nPredictions for test data:\n");
   printf("%5s%8s%7s%10s\n", names[0], names[1], names[2],
       responseName[0]);
   for(i=0; i<n_test; i++){
       printf("%5.0f%8.0f%7.0f",
           xy_test[i*ncols+1],
           xy_test[i*ncols+2],
           xy_test[i*ncols+3]);
       idx = (int)predictions[i];
       printf("%10s\n", classNames[idx]);
   }
   printf("\nMean squared prediction error: %f\n", pred_err_ss);
   imsls_f_decision_tree_free(tree);
   imsls_free(predictions);
}

Output

Predictions for test data:
 Age Number Start Kyphosis
  71      3     5   Absent
 128      4     5  Present
   1      4    15   Absent
  61      6    10   Absent
 113      2    16   Absent
  82      5    14   Absent
 148      3    16   Absent
   1      4    12   Absent
   1      3    16   Absent
 175      5    13   Absent
Mean squared prediction error: 0.100000
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Warning Errors
IMSLS_NO_SURROGATES Use of surrogates is limited to method 1 

(ALACART).

IMSLS_INVALID_PARAM The value of # is out of range.
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decision_tree_print
Prints a decision tree.

Synopsis
#include <imsls.h> 

void imsls_f_decision_tree_print (Imsls_f_decision_tree *tree, ..., 0)

The type double function is imsls_d_decision_tree_print.

Required Arguments
imsls_f_decision_tree *tree (Input) 

An estimated decision tree.

Synopsis with Optional Arguments
#include <imsls.h> 

void imsls_f_decision_tree_print (Imsls_f_decision_tree *tree, 
IMSLS_RESP_NAME,  char *response_name,
IMSLS_VAR_NAMES, char *names[],
IMSLS_CLASS_NAMES, char *class_names[],
IMSLS_CATEG_NAMES, char *categ_names[],
IMSLS_PRINT_MAX, 
0)

Optional Arguments
IMSLS_RESP_NAME, char *response_name (Input)

An array of length 1 containing a pointer to a character string representing the name of the response 
variable. 
Default: response_name[0] = “Y”.
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IMSLS_VAR_NAMES, char *var_names[] (Input)
An array of length tree->npreds containing pointers to character strings representing the names 
of the predictors. 
Default: var_names[0]=”X0”, var_names[1]=”X1”, etc. 

IMSLS_CLASS_NAMES, char *class_names[] (Input)
An array of length tree->nclasses containing pointers to character strings representing the 
names of the different classes in Y, assuming Y is of categorical type. 
Default: class_names[0]=”0”, class_names[1]=”1”, etc. 

IMSLS_CATEG_NAMES, char *categ_names[] (Input)
An array of length tree->pred_nvalues[0] + tree->pred_nvalues[1] + … + 
tree->pred_nvalues[tree->npreds-1] containing pointers to character strings repre-
senting the names of the different category levels for each predictor of categorical type. 
Default: categ_names[0]=”0”, categ_names[1]=”1”, etc. 

IMSLS_PRINT_MAX, (Input)
If present, the maximal tree is printed despite any pruning information.
Default: Accounts for pruning.

Description
Function imsls_f_decision_tree_print provides a convenient way to quickly see the structure of the 
tree. More elaborate visualization methods or summaries can be written for the decision tree structure described 
in Structure Definitions for function decision_tree, and Figure 22 in the Overview section].

Comments
1. The nodes are labeled as the tree was grown. In other words, the first child of the root node is 

labeled Node 1, the first child node of Node 1 is labeled Node 2, and so on, until the branch stops 
growing. The numbering continues with the most recent split one level up.

2. If the tree has fewer than five levels, each new level is indented. Otherwise, there is no indentation. 

Example
This example operates on simulated categorical data.

#include <imsls.h>
#include <stdio.h>
int main()
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{
   float xy[30*3] = 
   {
       2, 0, 2,
       1, 0, 0,
       2, 1, 3,
       0, 1, 0,
       1, 2, 0,
       2, 2, 3,
       2, 2, 3,
       0, 1, 0,
       0, 0, 0,
       0, 1, 0,
       1, 2, 0,
       2, 0, 2,
       0, 2, 0,
       2, 0, 1,
       0, 0, 0,
       2, 0, 1,
       1, 0, 0,
       0, 2, 0,
       2, 0, 1,
       1, 2, 0,
       0, 2, 2,
       2, 1, 3,
       1, 1, 0,
       2, 2, 3,
       1, 2, 0,
       2, 2, 3,
       2, 0, 1,
       2, 1, 3,
       1, 2, 0,
       1, 1, 0
   };
   int n = 30;
   int ncols = 3;
   int response_col_idx= 2;
   int var_type[] = {0, 0, 0};
   int control[] = {5, 10, 10, 50, 10};
   const char* names[] = {"Var1", "Var2"};
   const char* class_names[] = {"c1", "c2", "c3", "c4"};
   const char* response_name = "Response";
   const char* var_levels[] = {"L1", "L2", "L3", "A", "B", "C"};
   Imsls_f_decision_tree *tree = NULL;
   tree = imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
       IMSLS_CONTROL, control,
       0);
   printf("\nGenerated labels:\n");
   imsls_f_decision_tree_print(tree,
       IMSLS_PRINT_MAX,
       0);
   printf("\nCustom labels:\n");
   imsls_f_decision_tree_print(tree,
       IMSLS_RESP_NAME, &response_name,
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       IMSLS_VAR_NAMES, names,
       IMSLS_CATEG_NAMES, var_levels,
       IMSLS_CLASS_NAMES, class_names,
       IMSLS_PRINT_MAX,
       0);
   imsls_f_decision_tree_free(tree);
}

Output

Generated labels:
Decision Tree:
Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2 3 
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
Predicted Y:  0 
  Node 1: Cost = 0.033, N= 8, Level = 1
  Rule: X0 in: { 0 }
   P(Y=0)= 0.875
   P(Y=1)= 0.000
   P(Y=2)= 0.125
   P(Y=3)= 0.000
   Predicted Y:  0 
  Node 2: Cost = 0.000, N= 9, Level = 1
  Rule: X0 in: { 1 }
   P(Y=0)= 1.000
   P(Y=1)= 0.000
   P(Y=2)= 0.000
   P(Y=3)= 0.000
   Predicted Y:  0 
  Node 3: Cost = 0.200, N= 13, Level = 1
  Rule: X0 in: { 2 }
   P(Y=0)= 0.000
   P(Y=1)= 0.308
   P(Y=2)= 0.154
   P(Y=3)= 0.538
   Predicted Y:  3 
Custom labels:
Decision Tree:
Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2 3 
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
Predicted Response c1 
  Node 1: Cost = 0.033, N= 8, Level = 1
  Rule: Var1 in: { L1 }
   P(Y=0)= 0.875
   P(Y=1)= 0.000
   P(Y=2)= 0.125
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   P(Y=3)= 0.000
   Predicted Response c1 
  Node 2: Cost = 0.000, N= 9, Level = 1
  Rule: Var1 in: { L2 }
   P(Y=0)= 1.000
   P(Y=1)= 0.000
   P(Y=2)= 0.000
   P(Y=3)= 0.000
   Predicted Response c1 
  Node 3: Cost = 0.200, N= 13, Level = 1
  Rule: Var1 in: { L3 }
   P(Y=0)= 0.000
   P(Y=1)= 0.308
   P(Y=2)= 0.154
   P(Y=3)= 0.538
   Predicted Response c4
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decision_tree_free
Frees the memory associated with a decision tree.

Synopsis
#include <imsls.h> 

void imsls_f_decision_tree_free (Imsls_f_decision_tree *tree)

The type double function is imsls_d_decision_tree_free.

Required Arguments
imsls_f_decision_tree *tree (Input) 

A decision tree structure.

Description
imsls_f_decision_tree_free frees the memory associated with a decision tree structure.

Example
See imsls_f_decision_tree, Example 1.
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bagged_trees_free
Frees the memory associated with an array of decision trees generated in the bagging procedure.

Synopsis
#include <imsls.h> 

void imsls_f_bagged_trees_free(int ntrees, Imsls_f_decision_tree **tree)

The type double function is imsls_d_bagged_trees_free.

Required Arguments
int ntrees (Input) 

The number of decision tree structures.

imsls_f_decision_tree **trees (Input) 
An array of size ntrees containing the decision tree structures.

Description
imsls_f_bagged_trees_free frees the memory associated with an array of decision tree structures.

Example
See imsls_f_decision_tree, Example 7.
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gradient_boosting
Performs stochastic gradient boosting of decision trees.

Synopsis
#include <imsls.h>
float imsls_f_gradient_boosting (int n, int n_cols, float xy[], int response_col_idx, 

int var_type[], …, 0)

The type double function is imsls_d_gradient_boosting.

Required Arguments
int n  (Input)

The number of rows in xy. 

int n_cols  (Input)
The number of columns in xy. 

float xy[]  (Input)
Array of size n × n_cols containing the data. 

int response_col_idx  (Input)
The column index of xy containing the response variable.

int var_type[] (Input)
Array of length n_cols indicating the type of each variable.

var_type[i] Description

0 Categorical

1 Ordered Discrete (e.g., Low, Med, High)

2 Quantitative or Continuous

3 Ignore this variable
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Return Value
A pointer to an array of predicted values on the test data if test data is provided (see optional argument, 
IMSLS_TEST_DATA). If test data is not provided, the predicted values are the fitted values on the training data. If 
an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_gradient_boosting (int n, int n_cols, float xy[], int response_col_idx, 

int var_type[],

IMSLS_TEST_DATA, int n_test, float xy_test[],
IMSLS_TEST_DATA_WEIGHTS, float weights_test[],
IMSLS_WEIGHTS, float weights[],
IMSLS_N_SAMPLE, int sample_size,
IMSLS_SAMPLE_PROPORTION, float sample_p,
IMSLS_SHRINKAGE, float shrinkage,
IMSLS_MAX_ITER, int max_iter,
IMSLS_LOSS_FCN, int loss_fcn_type,
IMSLS_ALPHA, float huber_alpha,
IMSLS_CONTROL, int params[],
IMSLS_RANDOM_SEED, int seed,
IMSLS_PRINT, int print_level,
IMSLS_LOSS_VALUE, float *loss_value,
IMSLS_TEST_LOSS_VALUE, float *test_loss_value,
IMSLS_FITTED_VALUES, float **fitted_values,
IMSLS_FITTED_VALUES_USER, float fitted_values[],
IMSLS_PROBABILITIES, float **probs,
IMSLS_PROBABILITIES_USER, float probs[],
IMSLS_FITTED_PROBABILITIES, float **fitted_probs,

Note: When the variable type is specified as Categorical (var_type[i] = 0), the number-
ing of the categories must begin at 0. For example, if there are three categories, they must 
be represented as 0, 1, and 2 in the xy array.

The number of classes for a categorical response variable is determined by the largest 
value discovered in the data. Note that a warning message is displayed if a class level in 0, 
1, …, n_classes - 1 has a 0 count in the data.
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IMSLS_FITTED_PROBABILITIES_USER, float fitted_probs[],
IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees,
IMSLS_RETURN_USER, float predictions[],
0)

Optional Arguments
IMSLS_TEST_DATA, int n_test, float xy_test[]  (Input)

xy_test is an array of size n_test × n_cols containing test data for which predictions are 
requested. When this optional argument is present, the number of observations n_test must be 
greater than 0. The response variable may have missing values in xy_test, but it must be in the 
same column as it is in xy and the predictors must be in the same columns as they are in xy. If the 
test data is not provided but predictions are requested, then xy is used, and the predictions are the 
fitted values. 
Default: n_test = n, xy_test = xy.

IMSLS_TEST_DATA_WEIGHTS, float weights_test[]  (Input)
An array of size n_test containing the frequencies or weights for each observation in xy_test. 
This argument is ignored if IMSLS_TEST_DATA is not present. 
Default: weights_test[i] = 1.0.

IMSLS_WEIGHTS, float weights[]  (Input)
An array of length n containing frequencies or weights for each observation in xy.
Default: weights[i] = 1.0.

IMSLS_N_SAMPLE, int sample_size  (Input)
The number of examples to be drawn randomly from the training data in each iteration.
Default: sample_size = sample_p*n.

IMSLS_SAMPLE_PROPORTION, float sample_p  (Input)
The proportion of the training examples to be drawn randomly from the training data in each 
iteration.
Default: sample_p = 0.5.

IMSLS_SHRINKAGE, float shrinkage  (Input)
The shrinkage parameter to be used in the boosting algorithm. The parameter must be in the interval 
[0,1] inclusive.
Default: shrinkage = 1.0 (no shrinkage).

IMSLS_MAX_ITER, int max_iter  (Input)
The number of iterations. This value is equivalent to M in the boosting algorithm described below.
Default: max_iter = 50.
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IMSLS_LOSS_FCN, int loss_fcn_type  (Input)
An integer specifying the loss function to use in the algorithm for regression problems 
(loss_fcn_type = 0, 1, 2) or binary classification problems (loss_fcn_type = 3, 4). 
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See the Description section for the loss function in the multinomial case (categorical response vari-
ables with more than two outcomes).
Default: loss_fcn_type = 0.

IMSLS_ALPHA, float huber_alpha  (Input)
The quantile value for the Huber-M loss function.
Default: huber_alpha = 0.05.

Name loss_fcn_type Definition

Least Squares 0 The loss function is the sum of squared error:

Least Absolute Deviation 1 The loss function is the sum of absolute errors:

Huber M 2 The loss function is the weighted mixture of squared 
error and absolute error: 

where

and where δ is the α empirical quantile of the errors, 

.

Adaboost 3 The loss function is the AdaBoost.M1 criterion:

Bernoulli or binomial 
deviance

4 The loss function is the binomial or Bernoulli negative 
log-likelihood:

L = ∑
i=1

n
(yi − f (xi))

2

L = ∑
i=1

n
|yi − f (xi)|

L = ∑
i=1

n
Ψ(yi , f (xi))

Ψ(y,z) = 0.5(y − z)2 |y − z| ≤ δ
δ(|y − z| − 0.5δ) |y − z| > δ

( yi − f ( xi)),i = 1,...n

L = ∑
i=1

n
exp( − (2yi − 1) f (xi))

L = − 2∑
i=1

n
(yi f (xi) − log(1 + exp( f (xi)))
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IMSLS_CONTROL, int params[]  (Input)
Array of length 5 containing parameters to control the size and other characteristics of the decision 
trees.

Default: params[] = {10, 21, 10, 4, 10}.

IMSLS_RANDOM_SEED, int seed  (Input)
Sets the seed of the random number generator used in sampling. Using the same seed in repeated 
calls will result in the same output. If seed = 0, the random seed is set by the system clock and 
repeated calls result in slightly different results. 
Default: seed = 0.

IMSLS_PRINT, int print_level  (Input)

Default: print_level = 0.

IMSLS_LOSS_VALUE, float *loss_value  (Output)
The final value of the loss function after M iterations of the algorithm.

IMSLS_TEST_LOSS_VALUE, float *test_loss_value  (Output)
The final value of the loss function after M iterations of the algorithm on the test data.

IMSLS_FITTED_VALUES, float **fitted_values  (Output)
Address of a pointer to an array of length n containing the fitted values on the training data xy after 
M iterations of the algorithm.

params[i] Name Action

0 min_n_node Do not split a node if one of its child nodes will 
have fewer than min_n_node observations.

1 min_split Do not split a node if the node has fewer than 
min_split observations.

2 max_x_cats Allow for up to max_x_cats number of catego-
ries or levels for categorical variables.

3 max_size Stop growing the tree once it has reached 
max_size number of nodes.

4 max_depth Stop growing the tree once it has reached 
max_depth number of levels.

print_level Action

0 No printing

1 Print final results only

2 Print intermediate and final results
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IMSLS_FITTED_VALUES_USER, float fitted_values[]  (Output)
Storage for the array of the fitted values for the training data is provided by the user.

IMSLS_PROBABILITIES, float **probs  (Output)
Address of a pointer to an array of length n*n_classes containing the predicted class 
probabilities for each observation in the test data.

IMSLS_PROBABILITIES_USER, float probs[]  (Output)
Storage for the array of the predicted class probabilities is provided by the user.

IMSLS_FITTED_PROBABILITIES, float **fitted_probabilities  (Output)
Address of a pointer to an array of length n*n_classes containing the fitted class probabilities on 
the training data for classification problems.

IMSLS_FITTED_PROBABILITIES_USER, float fitted_probabilities[]  (Output)
Storage for the array of the fitted class probabilities is provided by the user.

IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees  (Output)
Address of a pointer to an array of length M containing the collection of trees generated during the 
algorithm. To release this space, use imsls_f_bagged_trees_free.

IMSLS_RETURN_USER, float probabilities[]  (Output)
Storage for the array of the return value is provided by the user.

Description
Stochastic gradient boosting is an optimization algorithm for minimizing residual errors to improve the accuracy 
of predictions. This function implements the algorithm by Friedman (1999). For further discussion, see Hastie, et 
al. (2009).

In the following, xi is the vector of predictor variable values, and yi is the response variable value in the observa-

tion at row i. The function fm(xi) evaluated at xi is the predicted value in a particular iteration, m. This value is 

iteratively reweighted to minimize a loss function. Specifically, the algorithm is:

Initialize the predictor function to the constant 

For each iteration , 

1. Calculate the pseudo-residuals

f 0(x) = arg minγ∑
i=1

n
L(yi,γ)

m = 1,2,...M
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2. Fit a regression tree to the pseudo-residuals rim and use the resulting models to predict the 

observations in the training data. The resulting terminal nodes define Jm terminal regions Rjm for the 

response. Compute

3. Update the prediction function for each observation, xi,

where λ∈[0,1] is a shrinkage parameter (λ = 1 means no shrinking, whereas λ = 0 gives just fM = f0 ).

After M iterations, the function fM(⋅) forms the basis of the predictions for the response variable.

Specifically

Response variable type Definition

QUANTITATIVE_CONTINU-
OUS

For the regression problem, the predicted value 
at a new observation vector xi is

rim = −
∂L(yi, f (xi))
∂ f (xi) | f = f m−1

γ jm = arg minγ ∑
xi∈R jm

L(yi, f m−1(xi) + γ)

fm (xi) = fm −1(xi) + λ∑
j=1

Jm
γjm I(xi∈R jm)

ŷi = fM (xi)
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For regression problems, the algorithm uses the squared error loss by default. For classification problems with 
two categories, the Bernoulli or binomial loss function is the default (see optional argument IMSLS_LOSS_FCN). 
For a categorical response with three or more categories, the multinomial deviance (described below) is used.

For a categorical response with K categories, the loss function is the multinomial negative log-likelihood, or multi-
nomial deviance:

where

CATEGORICAL with 2 out-
comes (binomial)

For a classification problem with 2 outcomes, the 
predicted probability is

Then the predicted value is

where I{⋅} is the indicator function.

CATEGORICAL with 3 or more 
outcomes (multinomial)

For a classification problem with K≥ 3 
outcomes, the predicted probabilities for 
k = 1,…,K are

Then the predicted value is

Response variable type Definition

pi = Pr[yi = 1] =
exp( fM (xi))
1 + exp( fM (xi))

ŷi = I{ pi > 0.5}

pik =
exp( f kM(xi))

∑
j=1

K
exp( f jM(xi))

ŷi = arg maxk{pik}

L = − 2∑
i=1

n
∑
k=1

K
yik log(pik)
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Examples

Example 1

This example uses stochastic gradient boosting to obtain fitted values for a regression variable on a small data set 
with six predictor variables.

#include <imsls.h>
#include <stdio.h>

#define ROW 61
#define COL 7

int main(){

    float XY[ROW][COL] = {
        { 4.45617685, 0.8587425048, 1.2705688183, 0.0, 0.0, 1.0, 0.836626959 },
        { 3.01895357, 0.8928761308, 1.3886538362, 2.0, 1.0, 2.0, 2.155131825 },
        { 5.16899757, 0.7385954093, 1.5773203815, 0.0, 4.0, 2.0, 0.075368922 },
        { -0.23062048, 0.6227398487, 0.0228797458, 3.0, 4.0, 2.0, 0.070793233 },
        { 2.43144968, 0.8519553537, 1.2141886768, 2.0, 4.0, 2.0, 0.762200702 },
        { 2.28255119, 0.5578103897, 0.9185446175, 2.0, 4.0, 2.0, 0.085492814 },
        { 4.51650903, 0.4178302658, 1.3686663737, 0.0, 0.0, 0.0, 2.573941051 },
        { 5.42996967, 0.9829705667, 0.7817731784, 0.0, 5.0, 1.0, 0.865016054 },
        { 0.99551212, 0.3859238869, 0.2746516233, 3.0, 4.0, 0.0, 1.908151819 },
        { 1.23525017, 0.4165328839, 1.3154437956, 3.0, 4.0, 2.0, 2.752358041 },
        { 1.51599306, 0.2008399745, 0.9003028921, 3.0, 0.0, 2.0, 1.437127559 },
        { 2.72854297, 0.2072261081, 1.2282209327, 2.0, 5.0, 2.0, 0.68596562 },
        { 3.06956138, 0.9067490781, 0.8283077031, 2.0, 0.0, 2.0, 2.862403627 },
        { 1.81659279, 0.4506153886, 1.2822537781, 3.0, 4.0, 2.0, 1.710525684 },
        { 3.75978142, 0.2638894715, 0.4995447062, 0.0, 1.0, 1.0, 1.077172402 },
        { 5.72383445, 0.7682430062, 1.4758595745, 0.0, 3.0, 1.0, 2.365233736 },
        { 3.78155015, 0.6888140934, 0.4809393724, 0.0, 0.0, 1.0, 1.061246069 },
        { 3.60023233, 0.8470419827, 1.6149122352, 1.0, 1.0, 0.0, 0.01120048 },
        { 4.30238917, 0.9484412405, 1.6122899544, 1.0, 4.0, 2.0, 0.782038861 },
        { -0.19206757, 0.7674867723, 0.01665624, 3.0, 5.0, 2.0, 2.924944949 },
        { 3.03246318, 0.8747456241, 1.6051767552, 2.0, 1.0, 0.0, 2.233971364 },
        { 1.56652306, 0.0947128241, 1.470864601, 3.0, 0.0, 1.0, 1.851705944 },
        { 2.77490671, 0.1347932827, 1.3693161067, 1.0, 2.0, 0.0, 0.795709459 },
        { 1.05042043, 0.258093959, 0.4679728113, 3.0, 5.0, 0.0, 2.897785557 },
        { 2.73366469, 0.152943752, 0.5244769375, 1.0, 4.0, 2.0, 2.712871963 },
        { 1.78996951, 0.7921472492, 0.4686144991, 2.0, 4.0, 1.0, 1.295327727 },
        { 1.10343272, 0.123231777, 0.563989053, 2.0, 4.0, 1.0, 0.510414582 },
        { 1.70883743, 0.1931027549, 1.8561577178, 3.0, 5.0, 1.0, 0.165721288 },
        { 2.17977731, 0.316932481, 1.3376214528, 2.0, 2.0, 0.0, 2.366607214 },
        { 2.46127675, 0.9601344266, 0.2090187217, 1.0, 3.0, 1.0, 0.846218965 },
        { 1.92249547, 0.1104206559, 1.739415036, 3.0, 0.0, 0.0, 0.652622544 },
        { 5.81907137, 0.7049566596, 1.6238740934, 0.0, 3.0, 0.0, 1.685337845 },
        { 2.04774497, 0.0480224835, 0.7510998738, 2.0, 5.0, 2.0, 1.400641323 },

pik =
exp( fk (xi))

∑
j=1

K
exp( f j (xi))
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        { 4.54023907, 0.0557708007, 1.0864350675, 0.0, 1.0, 1.0, 1.630408823 },
        { 3.66100874, 0.2939440177, 0.9709178614, 0.0, 1.0, 0.0, 0.06970193 },
        { 4.39253655, 0.0982369843, 1.2492676578, 0.0, 2.0, 2.0, 0.138188998 },
        { 3.23303353, 0.3775206071, 0.2937129182, 0.0, 0.0, 2.0, 1.070823081 },
        { 3.13800098, 0.7891691434, 1.90897633, 2.0, 3.0, 0.0, 1.240732062 },
        { 1.49034639, 0.2456938969, 0.9157859818, 3.0, 5.0, 0.0, 0.850803277 },
        { 0.09486277, 0.1240615626, 0.3891524528, 3.0, 5.0, 0.0, 2.532516038 },
        { 3.74460501, 0.0181218453, 1.4921644945, 1.0, 2.0, 1.0, 1.92839241 },
        { 3.24158796, 0.9203409508, 1.1644667462, 2.0, 3.0, 1.0, 1.956283022 },
        { 1.97796767, 0.5977597698, 0.5501609747, 2.0, 5.0, 2.0, 0.39384095 },
        { 4.15214037, 0.1433333508, 1.4292114358, 1.0, 0.0, 0.0, 1.114095218 },
        { 0.7799787, 0.8539819908, 0.7039108537, 3.0, 0.0, 1.0, 1.468978726 },
        { 2.01869009, 0.8919721926, 1.1436212659, 3.0, 4.0, 1.0, 2.09256257 },
        { 0.56311561, 0.0899261576, 0.7989077698, 3.0, 5.0, 0.0, 0.195650739 },
        { 4.74296429, 0.9625684835, 1.5732420743, 0.0, 3.0, 2.0, 2.685061853 },
        { 2.97981809, 0.5511086562, 1.6053283028, 2.0, 5.0, 2.0, 0.906810926 },
        { 2.82187135, 0.3869563073, 0.9321342241, 1.0, 5.0, 1.0, 0.756223386 },
        { 5.24390592, 0.3500950718, 1.7769328682, 0.0, 3.0, 2.0, 1.328165314 },
        { 3.17307157, 0.8798056154, 1.4647966106, 2.0, 5.0, 1.0, 0.561835038 },
        { 0.78246075, 0.1472158518, 0.4658273738, 2.0, 0.0, 0.0, 1.317240539 },
        { 1.57827027, 0.3415432149, 0.7513634153, 2.0, 2.0, 0.0, 1.502675544 },
        { 0.84104905, 0.1501226462, 0.9332020828, 3.0, 1.0, 2.0, 1.083374695 },
        { 2.63627352, 0.1707233109, 1.1676406977, 2.0, 3.0, 0.0, 2.236639737 },
        { 1.30863625, 0.2616807753, 0.8342161868, 3.0, 2.0, 2.0, 1.778402721 },
        { 2.7313073, 0.9616109401, 1.596915911, 3.0, 3.0, 1.0, 0.303127344 },
        { 3.56848173, 0.4072918599, 1.5345127448, 1.0, 2.0, 2.0, 1.47452504 },
        { 5.40152982, 0.7796053565, 1.3659530994, 0.0, 4.0, 1.0, 0.484531098 },
        { 3.94901823, 0.5052344366, 1.9319026601, 1.0, 2.0, 0.0, 2.504392843 },
    };
    int i;
    int response_col_idx = 0;
    int var_type[] = { 2, 2, 2, 0, 0, 0, 2 };
    float *fitted_values = NULL;
    float loss_value;

   fitted_values = imsls_f_gradient_boosting(ROW, COL, &XY[0][0], response_col_idx,
        var_type,
        IMSLS_RANDOM_SEED, 123457,
        IMSLS_LOSS_VALUE, &loss_value,
        0);

    printf("Fitted values vs actuals:\n");
    for (i = 0; i < ROW; i++){
        printf("\t%5.3f    %5.3f\n", fitted_values[i], XY[i][response_col_idx]);
    }

    printf("\nLoss value: %5.5f\n", loss_value);
    imsls_free(fitted_values);

}

Output

Fitted values vs actuals:
    4.956    4.456
    2.908    3.019
    5.105    5.169
    0.229    -0.231
    2.124    2.431
1469



 Data Mining         gradient_boosting
    2.338    2.283
    4.333    4.517
    5.273    5.430
    0.734    0.996
    1.491    1.235
    1.359    1.516
    2.611    2.729
    2.275    3.070
    1.875    1.817
    3.233    3.760
    6.246    5.724
    3.676    3.782
    3.981    3.600
    3.742    4.302
    0.716    -0.192
    3.367    3.032
    1.975    1.567
    3.105    2.775
    0.471    1.050
    2.386    2.734
    1.307    1.790
    1.370    1.103
    1.709    1.709
    2.371    2.180
    3.386    2.461
    1.404    1.922
    5.822    5.819
    2.207    2.048
    4.028    4.540
    3.831    3.661
    4.824    4.393
    3.451    3.233
    3.451    3.138
    2.285    1.490
    0.471    0.095
    3.728    3.745
    3.204    3.242
    1.474    1.978
    4.291    4.152
    0.937    0.780
    1.709    2.019
    0.534    0.563
    5.608    4.743
    3.376    2.980
    2.749    2.822
    5.656    5.244
    3.192    3.173
    1.659    0.782
    1.851    1.578
    0.435    0.841
    2.880    2.636
    1.869    1.309
    2.201    2.731
    3.517    3.568
    5.263    5.402
    3.584    3.949
Loss value: 0.08452
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Example 2

This example uses stochastic gradient boosting to obtain probability estimates for a binary response variable and 
four predictor variables. An estimate of P[Y = 0] is obtained for each example in the training data as well as a 
small test data set. 

Probabilities ≤ 0.5 lead to a prediction of Y = 0, while probabilities > 0.5 lead to a prediction of Y = 1.0.

#include <imsls.h>
#include <stdio.h>

#define TROW 100
#define TCOL 5
#define TSTROW 10

int main(){
    float training_data[TROW][TCOL] = {
        { 0.0, 0.4223019897, 1.7540411302, 3.0, 0.763836258 },
        { 0.0, 0.0907259332, 0.8722643796, 2.0, 1.859006285 },
        { 0.0, 0.1384744535, 0.838324877, 1.0, 0.249729405 },
        { 1.0, 0.5435024537, 1.2359190206, 4.0, 0.831992314 },
        { 0.0, 0.8359154933, 1.8527500411, 1.0, 1.089201049 },
        { 1.0, 0.3577950741, 0.3652825342, 3.0, 2.204364955 },
        { 1.0, 0.6799094002, 0.6610595905, 3.0, 1.44730419 },
        { 0.0, 0.5821297709, 1.6180879478, 1.0, 2.957565282 },
        { 1.0, 0.8229457375, 1.0201675948, 3.0, 2.872570117 },
        { 0.0, 0.0633462721, 0.4140600134, 1.0, 0.63906323 },
        { 1.0, 0.1019134156, 0.0677204356, 3.0, 1.493447564 },
        { 0.0, 0.1551713238, 1.541201456, 3.0, 1.90219884 },
        { 1.0, 0.8273822817, 0.2114979578, 3.0, 2.855730173 },
        { 0.0, 0.7955570114, 1.8757067556, 2.0, 2.930132627 },
        { 0.0, 0.6537275917, 1.2139678737, 2.0, 1.535853243 },
        { 1.0, 0.1243124125, 1.5130919744, 4.0, 2.733670775 },
        { 0.0, 0.2163864174, 0.7051185896, 2.0, 2.755841087 },
        { 0.0, 0.2522670308, 1.2821007571, 2.0, 0.342119491 },
        { 0.0, 0.8677104027, 1.9003869346, 2.0, 2.454376481 },
        { 1.0, 0.8670932774, 0.7993045617, 4.0, 2.732812615 },
        { 0.0, 0.5384287981, 0.1856947718, 1.0, 1.838702635 },
        { 0.0, 0.7236269342, 0.4993310347, 1.0, 1.030699128 },
        { 0.0, 0.0789361731, 1.011216166, 1.0, 2.539607478 },
        { 1.0, 0.7631686032, 0.0536725423, 2.0, 1.401761686 },
        { 0.0, 0.1157020777, 0.0123261618, 1.0, 2.098372295 },
        { 1.0, 0.1451248352, 1.9153951635, 3.0, 0.492650534 },
        { 1.0, 0.8497178114, 1.80941298, 4.0, 2.653985489 },
        { 0.0, 0.8027864883, 1.2631045617, 3.0, 2.716214291 },
        { 0.0, 0.798560373, 0.6872106791, 2.0, 2.763023936 },
        { 1.0, 0.1816879204, 0.4323868025, 4.0, 0.098090197 },
        { 1.0, 0.6301239238, 0.3670980479, 3.0, 0.02313788 },
        { 1.0, 0.0411311248, 0.0173408454, 3.0, 1.994786958 },
        { 1.0, 0.0427366099, 0.8114635572, 3.0, 2.966069741 },
        { 1.0, 0.4107826762, 0.1929467283, 4.0, 0.573832348 },
        { 0.0, 0.9441903098, 0.0729898885, 1.0, 1.710992303 },
        { 1.0, 0.3597549822, 0.2799857073, 2.0, 0.969428934 },
        { 0.0, 0.3741368004, 1.6052779425, 2.0, 1.866030486 },
        { 0.0, 0.3515911719, 0.3383029872, 1.0, 2.639469598 },
        { 0.0, 0.9184092905, 1.7116801264, 1.0, 1.380178652 },
        { 1.0, 0.77803064, 1.9830028405, 3.0, 1.834021992 },
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        { 0.0, 0.573786814, 0.0258851023, 1.0, 1.52130144 },
        { 1.0, 0.3279244492, 0.6977945678, 4.0, 1.322451157 },
        { 0.0, 0.7924819048, 0.3694838509, 1.0, 2.369654865 },
        { 0.0, 0.9787846403, 1.1470323382, 2.0, 0.037156113 },
        { 1.0, 0.6910662795, 0.1019420708, 2.0, 2.58588334 },
        { 0.0, 0.1367050812, 0.6635301332, 2.0, 0.368273583 },
        { 0.0, 0.2826360366, 1.4468787988, 1.0, 2.705811968 },
        { 0.0, 0.4524727969, 0.7885378413, 2.0, 0.851228449 },
        { 0.0, 0.5118664701, 1.061143666, 1.0, 0.249325278 },
        { 0.0, 0.9965170731, 0.2068265025, 2.0, 0.9210639 },
        { 1.0, 0.7801500652, 1.565742691, 4.0, 1.827419217 },
        { 0.0, 0.2906187973, 1.7036567871, 2.0, 2.842997725 },
        { 0.0, 0.1753704017, 0.7124397112, 2.0, 1.262811961 },
        { 1.0, 0.7796778064, 0.3478030777, 3.0, 0.90719801 },
        { 1.0, 0.3889356288, 1.1771452101, 4.0, 1.298438454 },
        { 0.0, 0.9374473374, 1.1879778663, 1.0, 1.854424331 },
        { 1.0, 0.1939157653, 0.093336341, 4.0, 0.166025681 },
        { 1.0, 0.2023756928, 0.0623724433, 3.0, 0.536441906 },
        { 0.0, 0.1691352043, 1.1587338657, 2.0, 2.15494096 },
        { 1.0, 0.0921523357, 0.2247394961, 3.0, 2.006995301 },
        { 0.0, 0.819186907, 0.0392292971, 1.0, 1.282159743 },
        { 0.0, 0.9458126165, 1.5268264762, 1.0, 1.960050194 },
        { 0.0, 0.1373939656, 1.8025095677, 2.0, 0.633624267 },
        { 0.0, 0.0555424779, 0.5022063241, 2.0, 0.639495004 },
        { 1.0, 0.3581428374, 1.4436954968, 3.0, 1.408938169 },
        { 1.0, 0.1189418568, 0.8011626904, 4.0, 0.210266769 },
        { 1.0, 0.5782070206, 1.58215921, 3.0, 2.648622607 },
        { 0.0, 0.460689794, 0.0704823257, 1.0, 1.45671379 },
        { 0.0, 0.6959878858, 0.2245675903, 2.0, 1.849515461 },
        { 0.0, 0.1930288749, 0.6296302159, 2.0, 2.597390946 },
        { 0.0, 0.4912149447, 0.0713489084, 1.0, 0.426487798 },
        { 0.0, 0.3496920248, 1.0135462089, 1.0, 2.962295362 },
        { 1.0, 0.7716284667, 0.5387295927, 4.0, 0.736709363 },
        { 1.0, 0.3463061263, 0.7819578522, 4.0, 1.597238498 },
        { 1.0, 0.6897138762, 1.2793166582, 4.0, 2.376281484 },
        { 0.0, 0.2818824656, 1.4379718141, 3.0, 2.627468417 },
        { 0.0, 0.5659798421, 1.6243568249, 1.0, 1.624809581 },
        { 0.0, 0.7965560518, 0.3933029529, 2.0, 0.415849269 },
        { 0.0, 0.9156922165, 1.0465683565, 1.0, 2.802914008 },
        { 0.0, 0.8299879942, 1.2237155279, 1.0, 2.611676934 },
        { 0.0, 0.0241912066, 1.9213823564, 1.0, 0.659596571 },
        { 0.0, 0.0948590154, 0.3609640412, 1.0, 1.287687748 },
        { 0.0, 0.230467916, 1.9421709292, 3.0, 2.290064565 },
        { 0.0, 0.2209760561, 0.4812708795, 1.0, 1.862393057 },
        { 0.0, 0.4704530933, 0.2644400774, 1.0, 1.960189529 },
        { 1.0, 0.1986645423, 0.48924731, 2.0, 0.333790415 },
        { 0.0, 0.9201823308, 1.4247304946, 1.0, 0.367654009 },
        { 1.0, 0.8118424334, 0.1017034058, 2.0, 2.001390385 },
        { 1.0, 0.1347265388, 0.1362061207, 3.0, 1.151431168 },
        { 0.0, 0.9884603191, 1.5700038988, 2.0, 0.717332943 },
        { 0.0, 0.1964012324, 0.4306495111, 1.0, 1.689056823 },
        { 1.0, 0.4031848807, 1.1251849262, 4.0, 1.977734922 },
        { 1.0, 0.0341882701, 0.3717348906, 4.0, 1.830587439 },
        { 0.0, 0.5073120815, 1.7860476542, 3.0, 0.142862822 },
        { 0.0, 0.6363195451, 0.6631249222, 2.0, 1.211148724 },
        { 1.0, 0.1642774614, 1.1963615627, 3.0, 0.843113448 },
        { 0.0, 0.0945515088, 1.8669327218, 1.0, 2.417198514 },
        { 0.0, 0.2364508687, 1.4035215094, 2.0, 2.964026097 },
        { 1.0, 0.7490112646, 0.1778408242, 4.0, 2.343119453 },
        { 1.0, 0.5193473259, 0.3090019161, 3.0, 1.300277323 }
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    };

    float test_data[TSTROW][TCOL] = {
        { 0.0, 0.0093314846, 0.0315045565, 1.0, 2.043737003 },
        { 0.0, 0.0663379349, 0.0822378928, 2.0, 1.202557951 },
        { 1.0, 0.9728333529, 0.8778284262, 4.0, 0.205940753 },
        { 1.0, 0.7655418115, 0.3292853828, 4.0, 2.940793653 },
        { 1.0, 0.1610695978, 0.3832762009, 4.0, 1.96753633 },
        { 0.0, 0.0849463812, 1.4988451041, 2.0, 2.307902221 },
        { 0.0, 0.7932621511, 1.2098399368, 1.0, 0.886761862 },
        { 0.0, 0.1336030525, 0.2794256401, 2.0, 2.672175208 },
        { 0.0, 0.4758480834, 0.0441179522, 1.0, 0.399722717 },
        { 1.0, 0.1137434335, 0.922533263, 3.0, 1.927635631 }
    };

    int i;
    int n_classes = 2;
    int var_type[] = { 0, 2, 2, 0, 2 };
    /* min_n_node, min_split, max_x_cats, max_size, max_depth*/
    int tree_control_params[] = { 10, 21, 10, 4, 10 };
    int response_col_idx = 0;
    float *predicted_values = NULL;
    float *fitted_values = NULL;
    float *probabilities = NULL;
    float *fitted_probabilities = NULL;
    float loss_value;
    float test_loss_value;

    predicted_values = imsls_f_gradient_boosting(TROW, TCOL, &training_data[0][0], 
        response_col_idx,
        var_type,
        IMSLS_SHRINKAGE, 0.05,
        IMSLS_RANDOM_SEED, 123457,
        IMSLS_LOSS_VALUE, &loss_value,
        IMSLS_TEST_LOSS_VALUE, &test_loss_value,
        IMSLS_CONTROL, tree_control_params,
        IMSLS_TEST_DATA, TSTROW, &test_data[0][0],
        IMSLS_FITTED_VALUES, &fitted_values,
        IMSLS_PROBABILITIES, &probabilities,
        IMSLS_FITTED_PROBABILITIES, &fitted_probabilities,
        0);

    printf("Training data fitted prob[Y=0] and actuals:\n");
    for (i = 0; i < TROW; i++){
        printf("\t%3.2f %3.0f\n ", fitted_probabilities[i*n_classes], 
            training_data[i][response_col_idx]);
    }
    printf("\nTraining data loss_value=%f\n\n", loss_value);

    printf("Test data predicted prob[Y=0] and actuals:\n");
    for (i = 0; i < TSTROW; i++){
        printf("\t%3.2f %3.0f\n", probabilities[i*n_classes], 
            test_data[i][response_col_idx]);
    }
    printf("\nTest data loss value=%f\n", test_loss_value);

    imsls_free(predicted_values);
    imsls_free(fitted_values);
    imsls_free(probabilities);
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    imsls_free(fitted_probabilities);
}

Output

Training data fitted prob[Y=0] and actuals:
        0.35   0
        0.82   0
        0.87   0
        0.25   1
        0.90   0
        0.24   1
        0.26   1
        0.90   0
        0.30   1
        0.84   0
        0.23   1
        0.35   0
        0.24   1
        0.85   0
        0.84   0
        0.26   1
        0.82   0
        0.85   0
        0.85   0
        0.22   1
        0.83   0
        0.85   0
        0.87   0
        0.75   1
        0.83   0
        0.35   1
        0.26   1
        0.35   0
        0.81   0
        0.18   1
        0.24   1
        0.23   1
        0.30   1
        0.17   1
        0.83   0
        0.76   1
        0.85   0
        0.83   0
        0.90   0
        0.35   1
        0.83   0
        0.21   1
        0.84   0
        0.83   0
        0.75   1
        0.81   0
        0.90   0
        0.82   0
        0.87   0
        0.76   0
        0.26   1
        0.85   0
        0.82   0
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        0.24   1
        0.24   1
        0.89   0
        0.16   1
        0.23   1
        0.83   0
        0.24   1
        0.83   0
        0.90   0
        0.85   0
        0.78   0
        0.35   1
        0.22   1
        0.35   1
        0.83   0
        0.76   0
        0.78   0
        0.83   0
        0.87   0
        0.18   1
        0.22   1
        0.26   1
        0.35   0
        0.90   0
        0.77   0
        0.87   0
        0.89   0
        0.90   0
        0.83   0
        0.35   0
        0.84   0
        0.83   0
        0.77   1
        0.90   0
        0.75   1
        0.23   1
        0.85   0
        0.84   0
        0.22   1
        0.18   1
        0.35   0
        0.81   0
        0.32   1
        0.90   0
        0.85   0
        0.16   1
        0.24   1

Training data loss_value=0.650631

Test data predicted prob[Y=0] and actuals:
        0.83   0
        0.75   0
        0.22   1
        0.17   1
        0.18   1
        0.85   0
        0.89   0
        0.76   0
        0.83   0
1475



 Data Mining         gradient_boosting
        0.30   1

Test data loss value=0.440048

Example 3

This example uses the same data as in Example 2, but switches the response variable to the 4th column of the 
training data. Because the response is categorical with more than two categories, the multinomial loss function is 
used. 

#include <imsls.h>
#include <stdio.h>

#define TROW 100
#define TCOL 5
#define TSTROW 10

int main(){

    float training_data[TROW][TCOL] = {
        { 0.0, 0.4223019897, 1.7540411302, 3.0, 0.763836258 },
        { 0.0, 0.0907259332, 0.8722643796, 2.0, 1.859006285 },
        { 0.0, 0.1384744535, 0.838324877, 1.0, 0.249729405 },
        { 1.0, 0.5435024537, 1.2359190206, 4.0, 0.831992314 },
        { 0.0, 0.8359154933, 1.8527500411, 1.0, 1.089201049 },
        { 1.0, 0.3577950741, 0.3652825342, 3.0, 2.204364955 },
        { 1.0, 0.6799094002, 0.6610595905, 3.0, 1.44730419 },
        { 0.0, 0.5821297709, 1.6180879478, 1.0, 2.957565282 },
        { 1.0, 0.8229457375, 1.0201675948, 3.0, 2.872570117 },
        { 0.0, 0.0633462721, 0.4140600134, 1.0, 0.63906323 },
        { 1.0, 0.1019134156, 0.0677204356, 3.0, 1.493447564 },
        { 0.0, 0.1551713238, 1.541201456, 3.0, 1.90219884 },
        { 1.0, 0.8273822817, 0.2114979578, 3.0, 2.855730173 },
        { 0.0, 0.7955570114, 1.8757067556, 2.0, 2.930132627 },
        { 0.0, 0.6537275917, 1.2139678737, 2.0, 1.535853243 },
        { 1.0, 0.1243124125, 1.5130919744, 4.0, 2.733670775 },
        { 0.0, 0.2163864174, 0.7051185896, 2.0, 2.755841087 },
        { 0.0, 0.2522670308, 1.2821007571, 2.0, 0.342119491 },
        { 0.0, 0.8677104027, 1.9003869346, 2.0, 2.454376481 },
        { 1.0, 0.8670932774, 0.7993045617, 4.0, 2.732812615 },
        { 0.0, 0.5384287981, 0.1856947718, 1.0, 1.838702635 },
        { 0.0, 0.7236269342, 0.4993310347, 1.0, 1.030699128 },
        { 0.0, 0.0789361731, 1.011216166, 1.0, 2.539607478 },
        { 1.0, 0.7631686032, 0.0536725423, 2.0, 1.401761686 },
        { 0.0, 0.1157020777, 0.0123261618, 1.0, 2.098372295 },
        { 1.0, 0.1451248352, 1.9153951635, 3.0, 0.492650534 },
        { 1.0, 0.8497178114, 1.80941298, 4.0, 2.653985489 },
        { 0.0, 0.8027864883, 1.2631045617, 3.0, 2.716214291 },
        { 0.0, 0.798560373, 0.6872106791, 2.0, 2.763023936 },
        { 1.0, 0.1816879204, 0.4323868025, 4.0, 0.098090197 },
        { 1.0, 0.6301239238, 0.3670980479, 3.0, 0.02313788 },

Note: The response variable is considered to have five categorical levels because its largest value is 4, but the 
code assumes categorical variables start in '0'. Since '0' is not present in the data, a warning message is 
printed.
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        { 1.0, 0.0411311248, 0.0173408454, 3.0, 1.994786958 },
        { 1.0, 0.0427366099, 0.8114635572, 3.0, 2.966069741 },
        { 1.0, 0.4107826762, 0.1929467283, 4.0, 0.573832348 },
        { 0.0, 0.9441903098, 0.0729898885, 1.0, 1.710992303 },
        { 1.0, 0.3597549822, 0.2799857073, 2.0, 0.969428934 },
        { 0.0, 0.3741368004, 1.6052779425, 2.0, 1.866030486 },
        { 0.0, 0.3515911719, 0.3383029872, 1.0, 2.639469598 },
        { 0.0, 0.9184092905, 1.7116801264, 1.0, 1.380178652 },
        { 1.0, 0.77803064, 1.9830028405, 3.0, 1.834021992 },
        { 0.0, 0.573786814, 0.0258851023, 1.0, 1.52130144 },
        { 1.0, 0.3279244492, 0.6977945678, 4.0, 1.322451157 },
        { 0.0, 0.7924819048, 0.3694838509, 1.0, 2.369654865 },
        { 0.0, 0.9787846403, 1.1470323382, 2.0, 0.037156113 },
        { 1.0, 0.6910662795, 0.1019420708, 2.0, 2.58588334 },
        { 0.0, 0.1367050812, 0.6635301332, 2.0, 0.368273583 },
        { 0.0, 0.2826360366, 1.4468787988, 1.0, 2.705811968 },
        { 0.0, 0.4524727969, 0.7885378413, 2.0, 0.851228449 },
        { 0.0, 0.5118664701, 1.061143666, 1.0, 0.249325278 },
        { 0.0, 0.9965170731, 0.2068265025, 2.0, 0.9210639 },
        { 1.0, 0.7801500652, 1.565742691, 4.0, 1.827419217 },
        { 0.0, 0.2906187973, 1.7036567871, 2.0, 2.842997725 },
        { 0.0, 0.1753704017, 0.7124397112, 2.0, 1.262811961 },
        { 1.0, 0.7796778064, 0.3478030777, 3.0, 0.90719801 },
        { 1.0, 0.3889356288, 1.1771452101, 4.0, 1.298438454 },
        { 0.0, 0.9374473374, 1.1879778663, 1.0, 1.854424331 },
        { 1.0, 0.1939157653, 0.093336341, 4.0, 0.166025681 },
        { 1.0, 0.2023756928, 0.0623724433, 3.0, 0.536441906 },
        { 0.0, 0.1691352043, 1.1587338657, 2.0, 2.15494096 },
        { 1.0, 0.0921523357, 0.2247394961, 3.0, 2.006995301 },
        { 0.0, 0.819186907, 0.0392292971, 1.0, 1.282159743 },
        { 0.0, 0.9458126165, 1.5268264762, 1.0, 1.960050194 },
        { 0.0, 0.1373939656, 1.8025095677, 2.0, 0.633624267 },
        { 0.0, 0.0555424779, 0.5022063241, 2.0, 0.639495004 },
        { 1.0, 0.3581428374, 1.4436954968, 3.0, 1.408938169 },
        { 1.0, 0.1189418568, 0.8011626904, 4.0, 0.210266769 },
        { 1.0, 0.5782070206, 1.58215921, 3.0, 2.648622607 },
        { 0.0, 0.460689794, 0.0704823257, 1.0, 1.45671379 },
        { 0.0, 0.6959878858, 0.2245675903, 2.0, 1.849515461 },
        { 0.0, 0.1930288749, 0.6296302159, 2.0, 2.597390946 },
        { 0.0, 0.4912149447, 0.0713489084, 1.0, 0.426487798 },
        { 0.0, 0.3496920248, 1.0135462089, 1.0, 2.962295362 },
        { 1.0, 0.7716284667, 0.5387295927, 4.0, 0.736709363 },
        { 1.0, 0.3463061263, 0.7819578522, 4.0, 1.597238498 },
        { 1.0, 0.6897138762, 1.2793166582, 4.0, 2.376281484 },
        { 0.0, 0.2818824656, 1.4379718141, 3.0, 2.627468417 },
        { 0.0, 0.5659798421, 1.6243568249, 1.0, 1.624809581 },
        { 0.0, 0.7965560518, 0.3933029529, 2.0, 0.415849269 },
        { 0.0, 0.9156922165, 1.0465683565, 1.0, 2.802914008 },
        { 0.0, 0.8299879942, 1.2237155279, 1.0, 2.611676934 },
        { 0.0, 0.0241912066, 1.9213823564, 1.0, 0.659596571 },
        { 0.0, 0.0948590154, 0.3609640412, 1.0, 1.287687748 },
        { 0.0, 0.230467916, 1.9421709292, 3.0, 2.290064565 },
        { 0.0, 0.2209760561, 0.4812708795, 1.0, 1.862393057 },
        { 0.0, 0.4704530933, 0.2644400774, 1.0, 1.960189529 },
        { 1.0, 0.1986645423, 0.48924731, 2.0, 0.333790415 },
        { 0.0, 0.9201823308, 1.4247304946, 1.0, 0.367654009 },
        { 1.0, 0.8118424334, 0.1017034058, 2.0, 2.001390385 },
        { 1.0, 0.1347265388, 0.1362061207, 3.0, 1.151431168 },
        { 0.0, 0.9884603191, 1.5700038988, 2.0, 0.717332943 },
        { 0.0, 0.1964012324, 0.4306495111, 1.0, 1.689056823 },
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        { 1.0, 0.4031848807, 1.1251849262, 4.0, 1.977734922 },
        { 1.0, 0.0341882701, 0.3717348906, 4.0, 1.830587439 },
        { 0.0, 0.5073120815, 1.7860476542, 3.0, 0.142862822 },
        { 0.0, 0.6363195451, 0.6631249222, 2.0, 1.211148724 },
        { 1.0, 0.1642774614, 1.1963615627, 3.0, 0.843113448 },
        { 0.0, 0.0945515088, 1.8669327218, 1.0, 2.417198514 },
        { 0.0, 0.2364508687, 1.4035215094, 2.0, 2.964026097 },
        { 1.0, 0.7490112646, 0.1778408242, 4.0, 2.343119453 },
        { 1.0, 0.5193473259, 0.3090019161, 3.0, 1.300277323 }
    };

    float test_data[TSTROW][TCOL] = {
        { 0.0, 0.0093314846, 0.0315045565, 1.0, 2.043737003 },
        { 0.0, 0.0663379349, 0.0822378928, 2.0, 1.202557951 },
        { 1.0, 0.9728333529, 0.8778284262, 4.0, 0.205940753 },
        { 1.0, 0.7655418115, 0.3292853828, 4.0, 2.940793653 },
        { 1.0, 0.1610695978, 0.3832762009, 4.0, 1.96753633 },
        { 0.0, 0.0849463812, 1.4988451041, 2.0, 2.307902221 },
        { 0.0, 0.7932621511, 1.2098399368, 1.0, 0.886761862 },
        { 0.0, 0.1336030525, 0.2794256401, 2.0, 2.672175208 },
        { 0.0, 0.4758480834, 0.0441179522, 1.0, 0.399722717 },
        { 1.0, 0.1137434335, 0.922533263, 3.0, 1.927635631 }
    };

    int i, j;
    int n_classes = 5;
    int response_col_idx = 3;
    int var_type[] = { 0, 2, 2, 0, 2 };
    float *predicted_values = NULL;
    float *fitted_values = NULL;
    float *probabilities = NULL;
    float *fitted_probabilities = NULL;
    float loss_value;
    float test_loss_value;
    /* min_n_node, min_split, max_x_cats, max_size, max_depth*/
    int tree_control_params[] = { 10, 21, 10, 4, 10 };

    predicted_values = imsls_f_gradient_boosting(TROW, TCOL, &training_data[0][0],
        response_col_idx,
        var_type,
        IMSLS_SHRINKAGE, 0.05,
        IMSLS_RANDOM_SEED, 123457,
        IMSLS_LOSS_VALUE, &loss_value,
        IMSLS_CONTROL, tree_control_params,
        IMSLS_TEST_LOSS_VALUE, &test_loss_value,
        IMSLS_TEST_DATA, TSTROW, &test_data[0][0],
        IMSLS_FITTED_VALUES, &fitted_values,
        IMSLS_PROBABILITIES, &probabilities,
        IMSLS_FITTED_PROBABILITIES, &fitted_probabilities,
        0);

    printf("Training data fitted probabilities and actuals:\n\n");
    printf("Class: ");
    for (j = 0; j < n_classes; j++){
        printf("\t %d  ", j);
    }
    printf("\tActual\n");
    for (i = 0; i < TROW; i++){
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        for (j = 0; j < n_classes; j++){
            printf("\t%3.2f  ", fitted_probabilities[i*n_classes + j]);
        }
        printf(" %3.0f\n", training_data[i][response_col_idx]);
    }
    printf("\nTraining data loss value=%f\n\n", loss_value);

    printf("Test data predicted probabilities and actuals:\n\n");
    printf("Class: ");
    for (j = 0; j < n_classes; j++){
        printf("\t %d  ", j);
    }
    printf("\tActual\n");
    for (i = 0; i < TSTROW; i++){
        for (j = 0; j < n_classes; j++){
            printf("\t%3.2f  ", probabilities[i*n_classes + j]);
        }
        printf(" %3.0f\n", test_data[i][response_col_idx]);
    }
    printf("\nTest data loss value=%f\n\n", test_loss_value);

    imsls_free(predicted_values);
    imsls_free(fitted_values);
    imsls_free(probabilities);
    imsls_free(fitted_probabilities);
    
}

Output

*** WARNING  Error IMSLS_EMPTY_CLASS_LEVEL from imsls_f_gradient_boosting.
***          The count of class level 0 in the training data is zero.

Training data fitted probabilities and actuals:

Class:   0       1       2       3       4      Actual
        0.02    0.39    0.35    0.17    0.06     3
        0.02    0.45    0.33    0.14    0.06     2
        0.02    0.39    0.40    0.13    0.06     1
        0.02    0.06    0.16    0.36    0.40     4
        0.02    0.44    0.34    0.15    0.05     1
        0.02    0.10    0.17    0.40    0.32     3
        0.02    0.07    0.19    0.32    0.39     3
        0.02    0.45    0.29    0.17    0.06     1
        0.02    0.08    0.19    0.32    0.39     3
        0.02    0.46    0.34    0.12    0.05     1
        0.02    0.09    0.16    0.43    0.29     3
        0.02    0.42    0.30    0.20    0.06     3
        0.02    0.11    0.19    0.37    0.31     3
        0.02    0.43    0.33    0.16    0.05     2
        0.02    0.43    0.36    0.13    0.05     2
        0.02    0.06    0.13    0.46    0.34     4
        0.02    0.44    0.35    0.13    0.06     2
        0.02    0.37    0.39    0.15    0.07     2
        0.02    0.46    0.32    0.15    0.05     2
        0.02    0.08    0.19    0.31    0.39     4
        0.02    0.55    0.28    0.12    0.04     1
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        0.02    0.46    0.38    0.10    0.05     1
        0.02    0.45    0.33    0.14    0.06     1
        0.02    0.10    0.20    0.37    0.31     2
        0.02    0.52    0.28    0.14    0.04     1
        0.02    0.05    0.15    0.43    0.36     3
        0.02    0.07    0.16    0.40    0.35     4
        0.02    0.44    0.35    0.14    0.05     3
        0.02    0.45    0.37    0.11    0.05     2
        0.02    0.08    0.18    0.32    0.40     4
        0.02    0.09    0.20    0.35    0.34     3
        0.02    0.09    0.16    0.43    0.30     3
        0.02    0.07    0.16    0.37    0.38     3
        0.02    0.08    0.19    0.37    0.34     4
        0.02    0.55    0.30    0.10    0.03     1
        0.02    0.09    0.19    0.39    0.31     2
        0.02    0.44    0.31    0.18    0.06     2
        0.02    0.52    0.29    0.13    0.04     1
        0.02    0.47    0.32    0.15    0.05     1
        0.02    0.07    0.16    0.41    0.35     3
        0.02    0.55    0.28    0.12    0.04     1
        0.02    0.07    0.17    0.34    0.40     4
        0.02    0.53    0.31    0.10    0.04     1
        0.02    0.41    0.41    0.10    0.06     2
        0.02    0.10    0.19    0.37    0.31     2
        0.02    0.39    0.40    0.13    0.06     2
        0.02    0.43    0.31    0.18    0.06     1
        0.02    0.41    0.39    0.12    0.06     2
        0.02    0.41    0.38    0.12    0.06     1
        0.02    0.50    0.35    0.10    0.03     2
        0.02    0.07    0.16    0.41    0.35     4
        0.02    0.43    0.31    0.18    0.06     2
        0.02    0.44    0.35    0.13    0.06     2
        0.02    0.09    0.22    0.36    0.31     3
        0.02    0.07    0.16    0.34    0.40     4
        0.02    0.48    0.35    0.11    0.05     1
        0.02    0.08    0.19    0.37    0.34     4
        0.02    0.08    0.19    0.37    0.34     3
        0.02    0.44    0.34    0.14    0.06     2
        0.02    0.09    0.16    0.43    0.30     3
        0.02    0.54    0.30    0.10    0.03     1
        0.02    0.47    0.32    0.14    0.05     1
        0.02    0.37    0.36    0.19    0.06     2
        0.02    0.41    0.38    0.13    0.05     2
        0.02    0.06    0.14    0.43    0.36     3
        0.02    0.06    0.18    0.34    0.40     4
        0.02    0.06    0.13    0.43    0.36     3
        0.02    0.55    0.28    0.12    0.04     1
        0.02    0.52    0.32    0.11    0.04     2
        0.02    0.44    0.34    0.13    0.06     2
        0.02    0.48    0.33    0.12    0.04     1
        0.02    0.45    0.34    0.13    0.06     1
        0.02    0.07    0.21    0.29    0.41     4
        0.02    0.07    0.17    0.34    0.40     4
        0.02    0.07    0.17    0.37    0.37     4
        0.02    0.42    0.31    0.18    0.06     3
        0.02    0.46    0.29    0.17    0.06     1
        0.02    0.46    0.38    0.09    0.05     2
        0.02    0.48    0.34    0.11    0.05     1
        0.02    0.47    0.34    0.12    0.05     1
        0.02    0.38    0.35    0.19    0.06     1
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        0.02    0.52    0.29    0.14    0.04     1
        0.02    0.43    0.31    0.18    0.06     3
        0.02    0.51    0.30    0.12    0.05     1
        0.02    0.55    0.27    0.12    0.04     1
        0.02    0.07    0.19    0.32    0.40     2
        0.02    0.41    0.38    0.14    0.06     1
        0.02    0.11    0.19    0.37    0.31     2
        0.02    0.09    0.17    0.43    0.29     3
        0.02    0.41    0.37    0.14    0.06     2
        0.02    0.52    0.30    0.12    0.05     1
        0.02    0.07    0.16    0.35    0.40     4
        0.02    0.09    0.16    0.40    0.33     4
        0.02    0.40    0.35    0.17    0.06     3
        0.02    0.42    0.39    0.11    0.05     2
        0.02    0.05    0.17    0.40    0.36     3
        0.02    0.42    0.30    0.20    0.06     1
        0.02    0.43    0.33    0.16    0.06     2
        0.02    0.10    0.19    0.37    0.31     4
        0.02    0.10    0.16    0.39    0.32     3

Training data loss value=0.992967

Test data predicted probabilities and actuals:

Class:   0       1       2       3       4      Actual
        0.02    0.52    0.28    0.14    0.04     1
        0.02    0.50    0.31    0.14    0.04     2
        0.02    0.07    0.22    0.28    0.41     4
        0.02    0.10    0.19    0.37    0.32     4
        0.02    0.09    0.16    0.39    0.34     4
        0.02    0.43    0.30    0.19    0.06     2
        0.02    0.39    0.41    0.12    0.05     1
        0.02    0.51    0.29    0.14    0.04     2
        0.02    0.48    0.33    0.12    0.04     1
        0.02    0.07    0.16    0.37    0.38     3

Test data loss value=1.006980

Warning Errors
IMSLS_NO_PREDICTORS The model has no predictors.

IMSLS_INVALID_LOSS_FCN The loss function type # is invalid for a response 
variable of type #. Resetting to loss function type # 
= "#".

IMSLS_EMPTY_CLASS_LEVEL The count of class level # in the training data is zero.
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Genetic Algorithms – An Overview
Genetic algorithms are increasingly popular for solving optimization, search and machine learning problems. The 
analog between optimizing a fitness function and biological processes of natural selection and genetics is gener-
ally attributed to John H. Holland and his students at the University of Michigan. His landmark publication 
“Adaptation in Natural and Artificial Systems” (Holland, 1975) sparked wide ranging investigations into his 
approach in a variety of areas ranging from science and engineering to business.

This genetic algorithm implementation supports Holland’s basic algorithm with most popular variations. This is 
achieved by supporting:

1. User defined population size and selection method including roulette, remainder, tournament and 
stochastic universal sampling both with and without replacement,

2. Random or user defined initial populations,

3. Any combination of four different data types: nominal, binary, integer and real,

4. Base 2 and Gray encoding and decoding of integer and real data types,

5. Automatic encoding and decoding of chromosome information into phenotypes,

6. User specified number of crossover points and three different options for crossover: standard, inver-
sion and partially matched crossover,

7. Elitism to ensure fittest individuals are retained between generations,

8. User supplied fitness functions with or without additional function parameters,

9. User defined crossover and mutation probabilities,

10. Linear and sigma fitness scaling,

11. Customized and predetermined stopping criteria,

12. Measures of algorithm convergence and efficiency – velocity, on-line and off-line fitness.

Data Structures

Alleles

The genetic encoding of a real or artificial organism is contained within their chromosomes. Each chromosome 
consists of a large number of genes, each uniquely located on the chromosome. Each gene in turn is composed 
of several alleles. In artificial organisms, i.e. genetic algorithms, an allele is encoded with discrete values. 
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The original simple genetic algorithm encoded alleles as either zero or one, represented by a single computer bit. 
This algorithm uses the same encoding for binary, integer and real phenotype values. In addition, users can spec-
ify nominal phenotypes which can use any non-negative value. This expands the basic genetic algorithm to 
include search domains with any number of symbols encoded as nominal phenotypes. 

Each nominal phenotype is encoded into a single non-negative integer. Integer phenotypes, on the other hand, 
are encoded into a binary representation using either Base-2 or Gray encoding.

The crossover operation in imsls_f_genetic_algorithm handles a wide variety of allele encoding. Users 
define their allele encoding using single or multiple bits or a combination. In imsls_f_genetic_algorithm 
nominal, binary, integer and real phenotypes can be defined with any number of crossover points. The crossover 
and mutation probabilities can be specified. In addition, inversion can be specified for any phenotype and par-
tially matched crossover can be automatically invoked for nominal phenotypes.

This large variety of data types, encoding and crossover options allows users to solve a wide range of search and 
optimization problems using imsls_f_genetic_algorithm. 

Chromosomes

In natural systems, chromosomes consist of thousands of genes, each encoded using alleles. In artificial systems, 
chromosomes are strings of alleles. The relationship between phenotype values and the chromosome allele data 
structure is created using imsls_f_ga_chromosome. 

The chromosome data structure for an individual consists of an integer array representing the alleles, and addi-
tional information needed for encoding and decoding nominal, integer and real phenotype values into the allele. 
This information is used for implementing automatic Base-2 and Gray encoding and differentiating between 
nominal phenotypes requiring partially matched crossover and other classes of nominal phenotypes. 

A detailed description of the Imsls_f_chromosome data structure is given in Table 46. The data structure not only 
contains the chromosome information encoded as an integer array of alleles, it also contains phenotype values. 
By default, information in the allele array is automatically decoded into phenotypes. This behavior can be sup-
pressed using the IMSLS_NO_DECODE option in the imsls_f_genetic_algorithm function.

Table 46:  The Imsls_f_chromosome Data Structure

Parameter Data Type Description

total_length int Total number of bytes allocated to the data structure. 

c_length int The length of the allele array.

allele int[] An array of of length c_length containing the allele values (bits) for 
the chromosome.

n_binary int The number of binary phenotypes.

n_nominal int The number of nominal phenotypes.
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Individuals

An individual consists of an expressed chromosome for the individual. By default the data structure for individu-
als also contains decoded values for all phenotypes. This allows users to program their fitness function to use 
phenotype values instead of their encoded allele representation.

A phenotype is the expression of a collection of genes. In organisms, this expression includes physical character-
istics, such as eye color, and behavior. In artificial systems, a phenotype is generally thought of as an attribute. 
For function optimization problems phenotypes might be floating points or integer values. Phenotypes in a 
search problem might include nominal or binary encoded information about the search space.

n_integer int The number of integer phenotypes.

n_real int The number of real phenotypes.

n_intBits int The total number of bits in allele used to represent the integer 
phenotypes.

n_realBits int The total number of bits in allele used to represent the real 
phenotypes.

binaryIndex int The index of the first bit in allele used to represent the binary 
phenotypes.

nominalIndex int The index of the first bit in allele used to represent the nominal 
phenotypes.

integerIndex int The index of the first bit in allele used to represent the integer 
phenotypes.

realIndex int The index of the first bit in allele used to represent the real 
phenotypes.

n_categories int[] An array of length n_nominal containing the maximum number of 
categories for each nominal phenotype.

i_intervals int[] An array of length n_integer containing the number of discrete 
intervals used to represent each integer phenotype.

i_bits int[] An array of length n_integer containing the number of bits in the 
allele array assigned to each integer phenotype.

i_bounds int[] An array of size n_integer by 2 containing rows of lower and upper 
limits for each integer phenotype.

r_intervals int[] An array of length n_real containing the number of discrete inter-
vals used to represent each real phenotype.

r_bits int[] An array of length n_real containing the number of bits in the allele 
array assigned to each real phenotype.

r_bounds float[] An array of size n_real by 2 containing rows of lower and upper 
limits for each real phenotype.

Table 46:  The Imsls_f_chromosome Data Structure

Parameter Data Type Description
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Phenotypes are encoded into the chromosome allele as groups of bits. Later, when the fitness function is evalu-
ated, the algorithm decodes the bits in these groups into their phenotype values. By default this is Base-2 
encoding, but Gray encoding can be declared in the imsls_f_ga_individual, 
imsls_f_ga_random_population and imsls_f_genetic_algorithm functions. Support is provided for 
mapping integer and real values into allele encoding using discretization and either Base-2 or Gray encoding. 

Traditional Base-2 encoding of integer and floating point phenotypes can produce binary representations with 
widely different representations for phenotypes with similar values. Adjacent integral values encoded using Gray’s 
mapping differ by only one bit. For example, in binary, the numbers 15 and 16 have very different representa-
tions: 15=“01111” and 16=“10000”. The Gray encoded values for this number are closer, differing by only a single 
bit: 15=“01000” and 16=“11000”.

Although the majority of applications discretize integer and real phenotypes and then encode them using either 
Base-2 or Gray encoding, other encoding methods can be implemented by incorporating phenotype encoding 
and decoding into the fitness function.

Decoding of chromosome information into its associated phenotypes can be suppressed using the 
IMSLS_NO_DECODING argument inimsls_f_genetic_algorithm. In that case the phenotype values in the 
Imsls_f_individual data structure will not be updated with every crossover. They are only decoded for the final gen-
eration. Encoding can be either Base-2 or Gray. Base-2 is the default, but Gray encoding can be invoked using the 
IMSLS_GRAY argument in imsls_f_ga_individual, imsls_f_ga_random_population or 
imsls_f_genetic_algorithm.

Table 47 describes the contents of the Imsls_f_individual data structure.

Table 47: The Imsls_f_individual Data Structure

Parameter Data Type Description

encoding int Controls encoding of real and integer phenotypes. 
Encoding is either Base-2, the default, or Gray 
invoked using the optional IMSLS_GRAY argument 
with imsls_f_genetics_algorithm.

total_length int Total number of bytes allocated to the data 
structure. 

nominalPhenotype int[] An array of integers of length 
chromosome->n_nominal containing the values of 
the nominal phenotypes.

binaryPhenotype int[] An array of integers of length 
chromosome->n_binary containing the values of 
the binary phenotypes.

integerPhenotype int[] An array of integers of length 
chromosome->n_integer containing the values of 
the integer phenotypes.
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Population 

A population is a collection of individuals. A genetic algorithm operates on a population, transforming it from one 
generation to the next using rules including selection, reproduction, crossover and mutation. A population is 
described by the chromosome and individual data structures and the number of its members.

The initial population can be created randomly using imsls_f_ga_random_population, or it can be created 
from a user specified set of individuals using imsls_f_ga_population. Both of these functions return an 
Imsls_f_population data structure, which is required input to imsls_f_genetic_algorithm.

Table 48 describes the Imsls_f_population data structure. 

realPhenotype float[] An array of floating point values of length 
chromosome->n_real containing the values of the 
real phenotypes.

chromosome Imsls_f_chromosome* A pointer to the chromosome data structure for this 
individual.

Table 48: The Imsls_f_population data structure

Parameter Data Type Description

n int The number of individuals in the population.

indexFittest int The index in individual of the fittest individual 
within the population. 

indexWeakest int The index in individual of the weakest individ-
ual within the population. 

avgFitness float The average fitness for the population.

stdFitness float The standard deviation of the fitness for the 
population.

maxFitness float The maximum fitness of the population.

minFitness float The minimum fitness of the population.

fitness float* An array of the fitness values for each individual in 
the population. 

chromosome Imsls_f_chromosome* A pointer to the chromosome data structure for 
the individuals in the population.

individual Imsls_f_individual** A pointer to an array of size n containing the indi-
viduals of the population.

Table 47: The Imsls_f_individual Data Structure

Parameter Data Type Description
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Note that the fitness values in this data structure are only initialized if the fitness function is passed to the 
imsls_f_ga_population or imsls_f_ga_random_population. Upon completion, 
imsls_f_genetic_algorithm updates these parameters to the values associated with the last generation.

Fitness and Penalty Functions

The genetic algorithm is designed to find the phenotype that maximizes the fitness function. This is a user sup-
plied function that describes the fitness of a particular phenotype. With each succeeding generation, the genetic 
algorithm transforms a population into better performing individuals as defined by the fitness function.

The fitness function is a required argument to imsls_f_genetic_algorithm. Phenotype restrictions other 
than simple lower and upper value boundaries are handled by incorporating a penalty function into the fitness 
calculation.

The optional argument IMSLS_FITNESS_FCN_WITH_PARMS allows users to have the algorithm pass individ-
uals and parameters to the fitness function. This provides the flexibility to program a single fitness function that 
can be applied to a wider variety of applications.

The Genetic Algorithm
There are many variations of the original simple genetic algorithm described by Holland (1975). Many of these 
were developed for particular applications or data types. imsls_f_genetic_algorithm implements both the 
simple algorithm as well as more advanced variations. It has also been designed to provide advanced users the 
flexibility to provide their own initial populations, stopping criteria, and phenotype encoding and decoding. 

Once an initial population is constructed, the genetic algorithm finds a solution to the search or optimization 
problem using five basic operations to evolve the population from one generation to the next: selection, repro-
duction, crossover, mutation and fitness.

Selection

Selection is the process used to select individuals for reproduction to create the next generation. This is driven by 
a fitness function that makes higher fitness individuals more likely to be selected for creating the next generation.

Optimum selection of individuals for reproduction is important to the efficiency and convergence of a genetics 
algorithm. Many methods have been researched. imsls_f_genetic_algorithm implements the following 
variations: deterministic selection, roulette wheel selection with and without replacement, remainder selection 
with and without replacement, SUS selection, rank selection and two forms of tournament selection. Each of 
these can be employed with fitness scaling and elitism.

Fitness scaling is not required, but there are two options available: linear scaling and sigma scaling. See 
IMSLS_LINEAR_SCALING and IMSLS_SIGMA_SCALING.
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Reproduction and Crossover

After individuals are selected, reproduction involves crossing the individual’s chromosomes to produce their off-
spring’s chromosome. In the simple case, this involves exchanging genetic information by swapping bits within 
the parent’s chromosome.

Crossover is a random process. It is controlled by the optional arguments IMSLS_CROSSOVERS and 
IMSLS_CROSSOVER_PROB in imsls_f_genetic_algorithm. Not all parents selected for reproduction are 
mated. Most genetic algorithms use a crossover probability in the range of 0.6 to 0.9. The 
IMSLS_CROSSOVER_PROB argument allows users to select any crossover probability between 0 and 1. 

Traditionally chromosomes are crossed at a single point. However, some problems benefit from using more 
crossover points. The IMSLS_CROSSOVERS argument allows users to select any number of crossover points.

Once two parents are selected for crossover and their crossover points are defined, a genetic algorithm proceeds 
to develop a new offspring by alternately mapping alleles from the two chromosomes, swapping the source of 
the alleles at each crossover point.

For most applications, this creates a new offspring with a non-zero fitness value. However, for some applications, 
such as the traveling salesman problem, the offspring produced by this simple crossover operation will likely be 
infeasible. For these problems partially matched crossover and inversion crossover have been developed to 
ensure that the resulting offspring is a feasible solution.

Partially matched and inversion crossover are invoked using the IMSLS_PMX_CROSSOVER and 
IMSLS_INVERT_CROSSOVER optional arguments in imsls_f_genetic_algorithm.

Mutation

Mutation stochastically switches allele settings using the mutation probability set with 
IMSLS_MUTATION_PROB in imsls_f_genetic_algorithm. Most applications set the mutation probability 
to a value in the range 0.01 to 0.001. The IMSLS_MUTATION_PROB argument accepts any probability between 
0 and 1. However, high mutation rates cause the genetic algorithm to perform similar to a random search.

For users who prefer to replace imsls_f_genetic_algorithm with their own algorithm, the function 
imsls_f_ga_mutate can be used for mutation. Decoding of the resulting chromosome into phenotype values 
can be achieved using imsls_f_ga_decode. 

This traditional mutation operator can produce infeasible solutions for some problems. In those cases, swap 
mutation is used. That is, instead of inverting a single allele value, two alleles are randomly swapped within the 
nominal portion of the chromosome. This allows mutation to proceed with search problems such as the traveling 
salesman problem.
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Fitness and Phenotype Constraints

The fitness function is a required argument to imsls_f_genetic_algorithm. The genetic algorithm function 
applies the fitness function to each new individual. It must be scaled to return a non-negative value.

Higher fitness values represent higher performing individuals. Constraints on integer and real phenotypes can be 
handled by setting lower and upper bounds. Additional constraints for these phenotypes and others should be 
incorporated using a penalty calculation in the fitness function.

Artificial Populations
A critical step in applying genetic algorithms to a search or optimization problem is creating a population of artifi-
cial organisms and their fitness function.

Mapping Phenotypes into Chromosomes

Most applications of genetic algorithms for search and optimization involve binary, nominal, integer or real phe-
notypes. Most introductions to genetic algorithms describe applications involving the use of simple binary 
phenotypes, making it easier to focus on the algorithm operations. Binary phenotypes make it possible to imple-
ment basic applications and allow users to develop their own phenotype encoding when default encodings are 
insufficient.

In most applications, integer and real phenotypes are encoded into chromosome bits by mapping their values 
into a discrete representation. Users specify upper and lower bounds for these phenotypes as well as the num-
ber of discrete intervals used for their encoding.

Nominal phenotypes are treated differently from integer phenotypes. Integer phenotypes use chromosome bits 
as alleles. Nominal phenotypes use groups of bits as alleles. This allows symbolic chromosome representations 
other than binary. Search problems such as the traveling salesman problem are best represented using nominal 
phenotypes with partially mixed crossover rather than binary or integer phenotypes.

Information about the nature of the phenotypes and their chromosome encoding is encapsulated in the 
Imsls_f_chromosome data structure created by imsls_f_ga_chromosome.

Describing Individuals and the Population

An individual is described by their expressed chromosome, phenotypes and parentage information. Chromo-
some information is encapsulated into an Imsls_f_chromosome data structure. Individuals are represented by the 
Imsls_f_individual data structure, which can be automatically created using imsls_f_ga_random_population 
or systematically specified using imsls_f_ga_individual and imsls_f_ga_population.

Typically users create an initial population of 20 to 100 individuals, depending on the length of the chromosome.
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Selection

Genetic algorithms support a large variety of methods for selecting population individuals for reproduction. The 
initial population is either randomly selected or systematically specified using 
imsls_f_ga_random_population or imsls_f_ga_population with imsls_f_ga_individual, 
respectively.

Selection between generations can be done using a variety of approaches based upon individual fitness. The 
most common approach is stochastic selection with replacement based upon the individual’s fitness. Holland 
(1975) also referred to this as roulette wheel selection with replacement. Under this approach, individuals with 
higher fitness have a higher probability of selection. The roulette wheel selection works well when the distribution 
of fitness across the population is not dominated by the high fitness of a few individuals. 

If the population includes a few high fitness individuals, then stochastic selection without replacement can work 
better than selection with replacement. When selection without replacement is used, an individual cannot be 
selected more than once per generation for reproduction. Effectively, this ensures that the individuals in the next 
generation are not generated from just a few, high fitness parents.

In addition to stochastic selection with and without replacement, imsls_f_genetic_algorithm also supports 
deterministic, remainder, tournament and stochastic universal sampling.

Reproduction and Crossover

Reproduction involves selection and crossover using a selection and crossover model. Standard, partially 
matched and inversion crossover can be selected. 

Mutation

Mutation is the stochastic process applied to chromosome bits after crossover. Standard mutation examines 
each bit and determines whether it should be changed. The probability that a bit is changed is controlled by the 
mutation probability set using the optional argument IMSLS_MUTATION_PROB with 
imsls_f_genetic_algorithm.

When partially matched crossover (PMX) is used with nominal phenotypes, the standard mutation algorithm can 
result in infeasible offspring. When PMX is employed the mutation algorithm is automatically changed. Instead of 
switching individual bits, two are randomly selected and swapped. The probability they are swapped is controlled 
by the mutation probability. 

Since the mutation probability is generally in the range 0.001 to 0.01, mutation occurs infrequently. Still it plays a 
key role in halting premature convergence due to early domination by a few fit individuals resulting in a loss of 
diversity.
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ga_chromosome
Creates an Imsls_f_chromosome data structure containing unencoded and encoded phenotype information.

Synopsis
#include <imsls.h>
Imsls_f_chromosome *imsls_f_ga_chromosome (..., 0)

The type double function is imsls_d_ga_chromosome.

Return Value
The function imsls_f_ga_chromosome returns an Imsls_f_chromosome data structure, which is required 
input to imsls_f_ga_individual, imsls_f_ga_population, and 
imsls_f_ga_random_population. The memory allocated to this data structure can be released using 
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_chromosome *imsls_f_ga_chromosome (

IMSLS_PRINT,

IMSLS_BINARY, int n_binary,

IMSLS_NOMINAL, int n_nominal, int n_categories[],

IMSLS_INTEGER, int n_integer, int i_intervals[], int i_bounds[],

IMSLS_REAL, int n_real, int r_intervals[], float r_bounds[],

0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, summary results are not printed. This option causes the function to print summary results 
describing the chromosome structure.
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IMSLS_BINARY, int n_binary  (Input)
The number of binary phenotypes. 

Default: n_binary = 0. 

IMSLS_NOMINAL, int n_nominal, int n_categories[]  (Input)
The first parameter n_nominal is equal to the number of nominal phenotypes. n_categories 
is an array of length n_nominal containing the number of nominal categories for each nominal 
phenotype. Each value of this array must be at least 2 or greater. If partially matched crossover is 
used during the genetic algorithm search then the array n_categories is ignored since all of its 
values are assumed equal to n_nominal.

Default: n_nominal = 0.

IMSLS_INTEGER, int n_integer, int i_intervals[] , int i_bounds[]  (Input)
The first parameter n_integer is equal to the number of integer phenotypes. The second parame-
ter in this argument, i_intervals, is a one-dimensional array of length n_integer containing 
the number of discrete intervals used to map each integer into the chromosome loci. For efficiency, 
each value in this array should be a power of 2 such as 2, 4, 8, 16, etc. The third parameter, 
i_bounds is an array of size n_integer by 2 containing the lower and upper bounds for each 
integer phenotype. The lower and upper bounds for the i-th integer phenotype are equal to 
i_bounds[2*i] and i_bounds[2 * i+1] respectively. Each integer value submitted to 
imsls_f_genetic_algorithm for the i-th integer phenotype,  must conform to the inequality:

Default: n_integer = 0.

IMSLS_REAL, int n_real , int r_intervals[] , float r_bounds[]  (Input)
The first parameter n_real is equal to the number of real phenotypes. Point values are mapped 
into chromosome loci using discretization. The second parameter in this argument, r_intervals, 
is a one-dimensional array of length n_real containing the number of discrete intervals used to 
map each real value into the chromosome loci. For efficiency, each value in this array should be a 
power of 2 such as 2, 4, 8, 16, etc. The third parameter, r_bounds is an array of size n_real by 2 
containing the lower and upper bounds for each integer phenotype. The lower and upper bounds 
for the i-th real phenotype are equal to r_bounds[2*i] and r_bounds[2*i+1] respectively. 
Hence, r_bounds[2*i+1] must be greater than r_bounds[2*i]. Each real value submitted to 
imsls_f_genetic_algorithm for the i-th real phenotype,  i, must conform to the inequality:

Default: n_real = 0.

ω

i_bounds 2i ≤ wi ≤ i_bounds 2i + 1

ω

r_bounds 2i ≤ wi < r_bounds 2i + 1
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Description
The genetic algorithm requires a chromosome representation of phenotypes. Most textbook applications of 
genetic algorithms use phenotypes that have a natural binary encoding. Real world problems often have non-
binary phenotypes. Phenotypes are parameters used by the fitness function. Those can include any data type. 
This function allows for easy encoding of binary, nominal, integer and real phenotypes. 

Binary phenotypes are mapped directly into the chromosome as binary bits. Each binary phenotype is treated as 
a single allele. If the user specifies n_binary>0, then the first n_binary bits in the chromosome are allocated 
for encoding this information. When the fitness function is called during genetic optimization, these bits are 
translated into zeros and ones and then sent to the fitness function as an integer array of length n_binary.

Nominal phenotypes are mapped into the chromosome following the binary phenotypes. The number of bits 
assigned to each nominal phenotype is determined from the number of categories for each nominal phenotype. 
The value n_categories[i] is equal to the number of categories for the i-th nominal phenotype. The num-

ber of bits assigned to this category is the smallest value of k such that 2k ≥ n_categories[i], i.e.,  

 , where  is the ceiling of x (least integer of x). A binary nominal pheno-
type would be assigned one bit, and one bit would constitute a single allele. A trinary nominal phenotype would 

be assigned two bits since 22 = 4 ≥ 3, and these bits would be treated as a single allele. 

The mapping of multiple bits to a single allele is a key difference between nominal phenotypes and other pheno-
types. Alleles for binary, integer and real phenotypes are represented as single bits in the chromosome. The 
alleles for nominal phenotypes consist of multiple bits. Since crossover occurs between alleles, crossover for 
nominal phenotypes is treated differently. This ensures that only viable values for nominal phenotypes result 
from crossover. 

It also means that Gray encoding of individual bits has no effect on nominal phenotypes. For many problems 
Gray encoding is used instead of standard Base-2 encoding to reduce large changes of encoded phenotype val-
ues after crossover. As a result, Gray encoding is never applied to nominal phenotypes.

In addition, partially mixed crossover is only an option for nominal phenotypes. Nominal phenotypes combined 
with partially mixed crossover make it easy to implement search problems similar to the traveling salesman 
problem.

Both integer and real phenotypes are discretized. Although this is the most common approach to encoding these 
phenotypes, some problems may benefit from other forms of encoding. If so, users should provide their own 
encoding, translating the phenotype into a bit representation that can be mapped into binary phenotypes.

Discretization is controlled by two arrays. For integer phenotypes, the array i_intervals contains the number 
of discrete intervals used to represent each integer. The number of chromosome bits assigned to the i-th integer 

is determined by the values in this array. If i_intervals[i]= k = 2m then the i-th integer phenotype is 
assigned m bits. For example, if i_intervals[i]= 4, then this phenotype is assigned two bits.

k = ⌈log2 n_categories i ⌉ ⌈x⌉
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The array i_bounds contains the upper and lower bounds for each integer phenotype. The lower bound for 
the i-th integer phenotype is equal to lb = i_bounds[2i], and the upper bound is equal to 
ub = i_bounds[2i+1]. The values for the i-th phenotype, w, must satisfy the inequality lb ≤ w < ub. w is dis-
cretized to w’ using the formula: 

Where ⌊x⌋ is the floor of x (greatest integer of x). This results in mapping the i-th integer phenotype, w, into one of 
the integers 0,1,…, k-1.

Real phenotypes are handled in the same fashion as integer phenotypes using the values in r_intervals and 
r_bounds.

The number of chromosome bits assigned to each phenotype are described in the following table:

See Table 46 for a description of the allele values (bits) for the chromosome. Chromosome bits are ordered first 
by binary phenotypes in bits 0 through bbits -1, then nominals, integers and reals in that order.

The memory allocated to this data structure can be released using imsls_free.

Example
This example creates a chromosome with 1 binary, 2 nominal, 3 integer and 2 real phenotypes. The 
IMSLS_PRINT argument is used to print a description of the chromosome structure. 

#include <imsls.h>

PHENOTYPE NUMBER of BITS

Binary

Nominal

  

Integer

  

Real

  

w ′ = ⌊k w − lb
ub − lb ⌋

bbits = n_binary

nbits = ∑
i=0

n_nominal−1

⌈log2 n_categories i ⌉

ibits = ∑
i=0

n_integer−1
log2 i_intervals i

rbits = ∑
i=0

n_real−1
log2 r_intervals i
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int main(){
   int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
   /* number of categories for nominal phenotypes    */
   int n_categories[] = {2, 3};
   /* number of intervals and boundaries for integer */
   /* phenotypes                                    */
   int i_intervals[] = {16, 16, 16};
   int i_bounds[]    = {0, 1000, -10, 10, -20, 0};
   /* number of intervals and boundaries for real   */
   /* phenotypes                                    */
   int r_intervals[] = {512, 1024};
   float r_bounds[]  = {0.0, 20.0, -20.0, 20.0};
   /* Chromosome Data Types                         */
   Imsls_f_chromosome* chromosome;
   chromosome = imsls_f_ga_chromosome(
       IMSLS_BINARY, n_binary,
       IMSLS_NOMINAL, n_nominal, n_categories,
       IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
       IMSLS_REAL, n_real, r_intervals, r_bounds, 
       IMSLS_PRINT, 0);
   imsls_free(chromosome);
}

Output

The IMSLS_PRINT option produced the following description of the chromosome. The data structure uses 304 
bytes. The chromosome has 34 alleles. The first bit is used to represent the binary phenotype.

The next two alleles are assigned to the nominal phenotypes. The first phenotype will be encoded in allele 1 with 
the integers zero and one since it has only two categories. The second nominal phenotype has 3 categories. It will 
be encoded with the integers zero, one, and two.

The integer phenotypes are each assigned 4 binary bits. Since the number of intervals is the same for each inte-

ger, 16, 4 bits will be used to encode the integers 0-15. If Base-2 encoding is used, the 16th interval will be 
encoded as 15 = {1111}.

The first real phenotype uses 512 intervals to discretize its value. This is encoded using 9 alleles. The second real 
phenotype uses 1024 intervals to discretize its value. This requires 10 alleles to properly represent the values 0 to 
1023.

*******************************
**** CHROMOSOME STRUCTURE *****
Data Structure length: 304 Bytes
Chromosome length:      34 Bits
******ALLELE ASSIGNMENTS*******
Binary:   0 -  0 n_binary = 1
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Nominal:  1 -  2 n_nominal= 2
Integer:  3 - 14 n_integer= 3
Real:    15 - 33 n_real  = 2
*******************************
NOMINAL CATEGORIES*************
  Variable 0:   2 categories
  Variable 1:   3 categories
*******************************
INTEGER BOUNDS*****************
  Variable 0: [   0, 1000]
  Variable 1: [ -10,   10]
  Variable 2: [ -20,    0]
*******************************
INTEGER BITS*******************
  Variable 0:   4 bits
  Variable 1:   4 bits
  Variable 2:   4 bits
*******************************
INTEGER DISCRETE INTERVALS*****
  Variable 0:  16 intervals
  Variable 1:  16 intervals
  Variable 2:  16 intervals
*******************************
REAL BOUNDS********************
  Variable 0: [0,20]
  Variable 1: [-20,20]
*******************************
REAL BITS**********************
  Variable 0:   9 bits
  Variable 1:  10 bits
*******************************
REAL DISCRETE INTERVALS********
  Variable 0: 512 intervals
  Variable 1: 1024 intervals
*******************************
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ga_copy_chromosome
Copies the contents of one chromosome into another chromosome.

Synopsis
#include <imsls.h>
void imsls_f_ga_copy_chromosome (Imsls_f_chromosome *chromosomeIn, 

Imsls_f_chromosome *chromosomeOut)

The type double function is imsls_d_ga_copy_chromosome.

Required Arguments
Imsls_f_chromosome *chromosomeIn  (Input)

An existing chromosome to be copied into chromosomeOut. 

Imsls_f_chromosome *chromosomeOut  (Input/Output)
The contents of chromosomeOut are replaced with chromosomeIn. The memory for 
chromosomeOut must already be allocated. 

Description
This function copies the contents of chromosomeIn into chromosomeOut. Both chromosomes must have 
been previously created with identical structures. The memory for both data structures must have already been 
allocated. If memory is not allocated, use imsls_f_ga_clone_chromosome to create an entirely new copy of 
an existing chromosome. Although the structures can have different encoding boundaries, they must have the 
same number of binary, nominal, integer and real phenotypes.
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ga_clone_chromosome
Clones an existing chromosome.

Synopsis
#include <imsls.h>
Imsls_f_chromosome *imsls_f_ga_clone_chromosome (Imsls_f_chromosome *chromosomeIn, 

…, 0)

The type double function is imsls_d_ga_clone_chromosome.

Required Arguments
Imsls_f_chromosome *chromosomeIn  (Input)

An existing chromosome to be copied and returned as a new Imsls_f_chromosome data structure. 

Return Value
The function imsls_f_ga_clone_chromosome returns a copy of an Imsls_f_chromosome data structure. 
The memory is allocated for the new data structure and the contents of chromosomeIn are copied into that 
structure. The memory allocated for this data structure can be released using imsls_free.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_chromosome *imsls_f_ga_clone_chromosome (Imsls_f_chromosome *chromosomeIn,

IMSLS_PRINT,
0)

Optional Arguments
IMSLS_PRINT  (Input)

By default, results are not printed. This option turns on printing of summary information for the 
cloned chromosome.
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Description
Function ga_clone_chromosome returns an Imsls_f_chromosome data structure containing the contents of 
chromosomeIn.
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ga_individual
Creates an Imsls_f_individual data structure from user supplied phenotypes.

Synopsis
#include <imsls.h>
Imsls_f_individual *imsls_f_ga_individual (Imsls_f_chromosome *chromosome, ..., 0)

The type double function is imsls_d_ga_individual.

Required Arguments
Imsls_f_chromosome *chromosome (Input)

A chromosome data structure created by imsls_f_ga_chromosome. This structure is cloned 
and stored in the Imsls_f_individual data structure.

Return Value
The function imsls_f_ga_individual returns an Imsls_f_individual data structure, which is required input 
to imsls_f_ga_population. The memory allocated to this data structure can be freed using 
imsls_f_ga_free_individual.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_individual *imsls_f_ga_individual (Imsls_f_chromosome *chromosome,

IMSLS_PRINT,
IMSLS_GRAY_ENCODING,
IMSLS_BINARY, int  binaryPhenotype[],
IMSLS_NOMINAL, int nominalPhenotype[],
IMSLS_INTEGER, int intPhenotype[],
IMSLS_REAL, float realPhenotype[],
0)
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Optional Arguments
IMSLS_PRINT, (Input)

By default, intermediate results are not printed. This option turns on printing of intermediate results.

IMSLS_GRAY_ENCODING, (Input)
Specifies whether alleles are encoded using Base-2 or Gray encoding for integer and real 
phenotypes. 

Default: Base-2 encoding.

IMSLS_BINARY, int binaryPhenotype[]  (Input)
An array of length chromosome->n_binary containing the integer values for any binary pheno-
types. This is a required argument when chromosome->n_binary> 0.

IMSLS_NOMINAL, int nominalPhenotype[]  (Input)
An array of length chromosome->n_nominal containing the integer values for any nominal phe-
notypes. This is a required argument when chromosome->n_nominal is greater than zero. The 
value of nominalPhenotype[i] must be one of the integers 0, 1, …, 
chromosome > n_categories[i]-1.

IMSLS_INTEGER, int integerPhenotype[]  (Input)
An array of length chromosome->n_integer containing the integer values for any integer phe-
notypes. This is a required argument when chromosome->n_integer>0. The value of 
integerPhenotype[i] must conform to the inequality:

chromosome->i_bounds[2*i] ≤ integerPhenotype[i] ≤ chromosome->i_bounds
[2*i+1]

IMSLS_REAL, float realPhenotype[]  (Input)
An array of length chromosome->n_real containing the floating point values for any real pheno-
types. This is a required argument when chromosome->n_real is greater than zero. The value of 
realPhenotype[i] must conform to the inequality:

chromosome->r_bounds[2*i]≤ realPhenotype[i] <chromosome->r_bounds[2*i
+1]

Description
The imsls_f_genetic_algorithm operates on a population of individuals. Individuals can be created auto-
matically using ga_random_population or systematically using imsls_f_ga_population. If the initial 
population is created using randomly selected individuals, then this function is not needed. However, if the initial 
population is to be constructed systematically, then the individuals for that population must first be created using 
this function.
1501



 Data Mining         ga_individual
This function takes the phenotype values in the optional arguments and creates an Imsls_f_individual data struc-
ture. This structure contains a chromosome created by encoding the phenotypes into their respective allele 
representations using the chromosome map described in Imsls_f_chromosome.

It also allows for incorporating parentage information for the individual, although this is typically not done for the 
individuals in the initial population.

Memory allocated for this data structure is released using imsls_f_ga_free_individual. The chromosome 
data structure passed to this function is copied into the individual and left unaltered. Hence, releasing memory 
using imsls_f_ga_free_individual does not release memory allocated to the original chromosome. The 
original chromosome can be released using imsls_free.

Example
This example creates an individual using a chromosome with 1 binary, 2 nominals, 3 integers and 2 real pheno-
types. The IMSLS_PRINT argument is used to print a description of the data structure. By default, Base-2 
encoding is used for encoding integer and real phenotypes.

Note that imsls_f_ga_free_individual frees the Imsls_f_chromosome data structure within the individual. 

#include <imsls.h>
int main(){
  int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
  /* binary phenotype                              */
  int binaryPhenotype[] = {1};
  /* number of categories for nomial phenotypes    */
  int n_categories[]    = {2, 3};
  /* nominal phenotype values                      */
  int nominalPhenotype[] = {1, 2};
  /* number of intervals and boundaries for integer */
  /* phenotypes                                    */
  int i_intervals[]     = {16, 16, 16};
  int i_bounds[]        = {0, 1000, -10, 10, -20, 0};
  /* integer phenotype values                      */
  int integerPhenotype[] = {200, -5, -5};
  /* number of intervals and boundaries for real   */
  /* phenotypes                                    */
  int r_intervals[]     = {512, 1024};
  float r_bounds[]      = {0.0, 20.0, -20.0, 20.0};
  /* real phenotype values                         */
  float realPhenotype[] = {19.9, 19.9};
  /* Chromosome Data Structure                     */
  Imsls_f_chromosome* chromosome;
  /* Individual Data Structure                     */
  Imsls_f_individual* individual;
  chromosome = imsls_f_ga_chromosome(
    IMSLS_BINARY, n_binary,
    IMSLS_NOMINAL, n_nominal, n_categories,
    IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
    IMSLS_REAL,   n_real, r_intervals, r_bounds, 0);
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  /* Create individual data structure               */
  individual = imsls_f_ga_individual(chromosome,
    IMSLS_BINARY, binaryPhenotype,
    IMSLS_NOMINAL, nominalPhenotype,
    IMSLS_INTEGER, integerPhenotype,
    IMSLS_REAL,   realPhenotype, 
    IMSLS_PRINT, 0);
  imsls_free(chromosome);
  imsls_f_ga_free_individual(individual);
}

Output

The IMSLS_PRINT option produced the following description of the individual. Summary starts with a detailed 
description of the chromosome. It consists of 34 alleles split among the phenotypes. The actual encoding of the 
phenotypes into alleles is shown below.

Bits assigned to binary phenotypes are not encoded. They are mapped directly into the first n_binary bits of 
the chromosome. In this case there is only one binary phenotype. It gets mapped into bit zero.

Following the binary phenotype are the nominal phenotypes. Each of these is also mapped into a single allele. 
However, unlike binary phenotypes, the alleles can assume values other than zero and one.

The integer and real phenotypes are discretized into sixteen interval values. These are then encoded into 4 bit 
Base-2 representations of the integers 0-15.

*******************************
**** INDIVIDUAL STRUCTURE *****
   Number of Parents: 2
   Encoding: BASE-2
*******************************
**** CHROMOSOME STRUCTURE *****
Chromosome length:       34 Bits
*****BIT ASSIGNMENTS***********
Binary:    0 -   0 n_binary = 1
Nominal:   1 -   2 n_nominal= 2
Integer:   3 -  14 n_integer= 3
Real:     15 -  33 n_real   = 2
*******************************

********PHENOTYPES*************
BINARY*************************
   Variable  0: 1 
*******************************
NOMINAL************************
   Variable  0: 1
   Variable  1: 2
*******************************
INTEGER************************
   Variable  0: 200
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   Variable  1: -5
   Variable  2: -5
*******************************
REAL***************************
   Variable  0: 19.9
   Variable  1: 19.9
*******************************
**********CHROMOSOME**************************************
BINARY BITS:  1
 
NOMINAL ALLELES: 1 2
 
INTEGER BITS: 0 0 1 1 0 1 0 0 1 1 0 0
REAL BITS:    1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1
**********************************************************
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ga_copy_individual
Copies the contents of one individual into another individual.

Synopsis
#include <imsls.h>
void imsls_f_ga_copy_individual(Imsls_f_individual  *individualIn, 

Imsls_f_individual *individualOut)

The type double function is imsls_d_ga_copy_individual.

Required Arguments
Imsls_f_individual *individualIn  (Input)

An existing individual to be copied into individualOut. 

Imsls_f_individual *individualOut  (Input/Output)
The contents of individualOut are replaced with individualIn. individualOut must 
have been previously created with a structure which is identical to individualIn.

Description
Function imsls_f_ga_copy_individual copies the contents of individualIn into 
individualOut. Both individuals must have been created previously with identical structures. Although they 
can have different encoding boundaries, they must have the same number of binary, nominal, integer and real 
phenotypes.
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ga_clone_individual
Clones an existing individual.

Synopsis
#include <imsls.h>
Imsls_f_individual *imsls_f_ga_clone_individual (Imsls_f_individual *individualIn, …, 0)

The type double function is imsls_d_ga_clone_individual.

Required Arguments
Imsls_f_individual *individualIn  (Input)

An existing individual to be copied. 

Return Value
Returns a pointer to an Imsls_f_individual data structure containing a copy of individualIn. This data struc-
ture can be released using the imsls_f_ga_free_individual function.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_individual *imsls_f_ga_clone_individual (Imsls_f_individual *individualIn,

IMSLS_PRINT,
0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, results are not printed. This option turns on printing of summary information for the 
cloned individual.
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Description
Function imsls_f_ga_clone_individual returns an Imsls_f_individual data structure containing the con-
tents of individualIn. Memory is allocated for the returned data structure. It can be released using the 
imsls_f_ga_free_individual function.
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ga_mutate
Performs the mutation operation on an individual’s chromosome.

Synopsis
#include <imsls.h>
void imsls_f_ga_mutate (float p, Imsls_f_individual *individual, …, 0)

The type double function is imsls_d_ga_mutate.

Required Arguments
float p  (Input)

The mutation probability. p can be any value between 0 and 1. Most applications set the probability 
to a value in the range 0.01 to 0.001.

Imsls_f_individual *individual  (Input/Output)
An existing individual that will undergo mutation.

Synopsis with Optional Arguments
#include <imsls.h> 

void imsls_f_ga_mutate (float p, Imsls_f_individual *individual, 

IMSLS_PRINT,
IMSLS_SWAP_MUTATION,
0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, results are not printed. This option turns on printing of summary information for the indi-
vidual showing the chromosome before and after mutation.
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IMSLS_SWAP_MUTATION,  (Input)
By default, swap encoding of nominal phenotype values is not used. This option turns on swap muta-
tion for nominal phenotypes which ensures that after mutation the new individual contains the same 
nominal phenotype values with at most two of them having swapped positions. Swap mutation has 
no effect on the mutation of binary, integer or real phenotypes.

Description
Function imsls_f_ga_mutate performs the genetic algorithm mutation operation on the chromosome of an 
Imsls_f_individual data structure. Each bit assigned to binary, integer and real phenotypes undergoes the muta-
tion operation using probability p. If the bit is zero it is switched to one and vice versa. 

Mutation for nominal phenotypes is handled differently since these are not encoded as binary bits. Each bit 
assigned to a nominal phenotype can take on a range of values from 0, 1, … n_categories[i]-1. Any muta-
tion must preserve this encoding. If the nominal phenotypes are further encoded using PMX crossover, then 
mutation must preserve that encoding as well.

For non-PMX encoded nominal phenotypes, each nominal phenotype value is mutated with probability p. If it is 
selected for mutation, its new value is randomly selected from the uniform discrete distribution of values from 0, 
1,… n_categories[i]-1.

If PMX encoding is being used, the optional argument IMSLS_SWAP_MUTATION should be employed. This 
argument invokes swap mutation for the nominal phenotypes. Two nominal phenotypes are randomly selected 
and then their values are swapped with probability p. This ensures that the resulting new individual has the same 
nominal values, with at most two of them having switched positions.
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ga_decode
Decodes an individual’s chromosome into its binary, nominal, integer and real phenotypes.

Synopsis
#include <imsls.h>
void imsls_f_ga_decode(Imsls_f_individual *individual)

The type double function is imsls_d_ga_decode.

Required Arguments
Imsls_f_individual *individual  (Input/Output)

An existing individual that will have its chromosome information decoded.

Description
Normally decoding is required after crossover or mutation. By default, if imsls_f_genetic_algorithm is 
used, mutation, crossover and decoding is done automatically. If a custom genetic algorithm is being written to 
replace imsls_f_genetic_algorithm, then imsls_f_ga_decode can be used within the fitness func-
tion prior to fitness calculations.

Binary and nominal phenotypes are copied directly from their chromosome values. Integer and real phenotypes 
are encoded as binary bits using either Gray or Base-2 encoding. This function decodes those bits into their inte-
ger or real representations using the Gray or Base-2 encoding specification contained in the individual’s 
chromosome.
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ga_encode
Encodes an individual’s binary, nominal, integer and real phenotypes into its chromosome.

Synopsis
#include <imsls.h>
void imsls_f_ga_encode(Imsls_f_individual *individual)

The type double function is imsls_d_ga_encode.

Required Arguments
Imsls_f_individual *individual  (Input/Output)

An existing individual whose phenotypes get encoded into its chromosome.

Description
Normally encoding is required after changing phenotype values. By default, if either imsls_f_ga_population 
or imsls_f_ga_random_population are used to build an initial population, phenotype values are automati-
cally encoded into the chromosome. Normally this makes it unnecessary to decode the chromosome within the 
fitness function. However, if individual phenotype values are changed imsls_f_ga_encode can be used to 
encode these values into the individual’s chromosome.

Binary and nominal phenotypes are copied directly from their phenotype values into the individual’s chromo-
some. Integer and real phenotypes are encoded as binary bits using either Gray or Base-2 encoding. This 
function encodes those bits into their integer or real representations using the Gray or Base-2 encoding specifi-
cation in the individual’s chromosome.
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ga_free_individual
Frees memory allocated to an existing individual.

Synopsis
#include <imsls.h>
void imsls_f_ga_free_individual(Imsls_f_individual *individual)

The type double function is imsls_d_ga_free_individual.

Required Arguments
Imsls_f_individual *individual  (Input)

The individual whose memory is released. 

Description
Function imsls_f_ga_free_individual frees memory allocated to an Imsls_f_individual data structure.

Example
See the Example section of function imsls_f_ga_individual. 
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ga_population
Creates an Imsls_f_population data structure from user supplied individuals. 

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_population, (int n, Imsls_f_chromosome *chromosome, 

Imsls_f_individual *individual[],  ..., 0)

The type double function is imsls_d_ga_population.

Required Arguments
int n (Input)

The number of individuals in the population.

Imsls_f_chromosome *chromosome (Input)
A chromosome data structure created by imsls_f_ga_chromosome describing the chromo-
some encoding for individuals.

Imsls_f_individual *individual[] (Input)
An array of pointers to n individuals.

Return Value
Function imsls_f_ga_population returns an Imsls_f_population data structure, which is required input to 
imsls_f_genetic_algorithm. The memory allocated to this data structure can be released using 
imsls_f_ga_free_population.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_population *imsls_f_ga_population (int n, Imsls_f_chromosome *chromosome, 
Imsls_f_individual *individual[],

IMSLS_PRINT,
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IMSLS_GRAY_ENCODING, 
IMSLS_FITNESS, float fitness[],
IMSLS_FITNESS_FCN, float fitness(), 
IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms, 
0)

Optional Arguments
IMSLS_PRINT,  (Input)

By default, intermediate results are not printed. This option turns on printing of intermediate results. 

IMSLS_GRAY_ENCODING, (Input)
Specifies whether alleles are encoded using Base-2 or Gray encoding for integer and real 
phenotypes. 

Default: Base-2 encoding.

IMSLS_FITNESS, float fitness[]  (Input)
An array of length n containing the fitness values for the individuals in the population. fitness[i] 
is the fitness for the i-th individual. 

IMSLS_FITNESS_FCN, float fitness  (Imsls_f_individual *individual)  (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included within the expanded population data structure. Otherwise 
they are set to zero. 

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness  (Imsls_f_individual *individual, void 
*parms), void *parms  (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included in the expanded population data structure. The parameters 
in parms are passed to the function. 

Description
The imsls_f_genetic_algorithm operates on a population of individuals. ga_population allows users 
to systematically create an initial population by adding individuals to that population. It takes the individuals cre-
ated using imsls_f_ga_individual and encapsulates them into an Imsls_f_population data structure. 
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Example
This example creates a population of 40 individuals each with one binary, two nominal, three integer and two real 
phenotypes. The IMSLS_PRINT argument is used to print a description of the population. A simple fitness 
function calculation is used to illustrate how fitness values can be used to initialize a population with the 
IMSLS_FITNESS argument. If fitness is not initialized, the fitness array in the data structure is set to NULL. It 
can be initialized using an optional argument with imsls_f_genetic_algorithm.

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
int main(){
  int i; 
                  /* number of phenotypes by category              */
  int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
  int n = 40;                     /* population size              */
  int  irandom[1];               /* temporary working storage    */
  float rrandom[1];               /* temporary working storage    */
  int binaryPhenotype[] = {1};   /* binary phenotype             */
                  /* number of categories for nomial phenotypes    */
  int n_categories[]    = {2, 3};
                  /* nominal phenotype values                      */
  int nominalPhenotype[] = {1, 2};
                  /* number of intervals and boundaries for integer */
                  /* phenotypes                                    */
  int i_intervals[]     = {16, 16, 16};
  int i_bounds[]        = {0, 1000, -10, 10, -20, 0};
                  /* integer phenotype values                      */
  int integerPhenotype[] = {200, -5, -5};
                  /* number of intervals and boundaries for real   */
                  /* phenotypes                                    */
  int r_intervals[]     = {512, 1024};
  float r_bounds[]      = {0.0, 20.0, -20.0, 20.0};
                  /* real phenotype values                         */
  float realPhenotype[] = {19.9, 19.9};
                  /* fitness array for individuals                 */
  float fitness[40];
                  /* Chromosome Data Structure                     */
  Imsls_f_chromosome* chromosome=NULL;
                  /* Individual Data Structure                     */
  Imsls_f_individual* individuals[40];
                  /* Population Data Structure                     */
  Imsls_f_population* population=NULL;
  chromosome = imsls_f_ga_chromosome(
     IMSLS_BINARY, n_binary,
     IMSLS_NOMINAL, n_nominal, n_categories,
     IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
     IMSLS_REAL,   n_real, r_intervals, r_bounds, 0);
  imsls_random_seed_set(12345); 
                  /* Create individuals                            */
  printf("Creating %d Individuals\n", n);
  for(i=0; i<n; i++){
                  /* generate random values for phenotypes         */
     imsls_f_random_binomial(1, 1, 0.5, 
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        IMSLS_RETURN_USER, binaryPhenotype, 0);
     imsls_f_random_uniform_discrete(1, n_categories[0], 
        IMSLS_RETURN_USER, irandom, 0);
     nominalPhenotype[0] = irandom[0]-1;
     imsls_f_random_uniform_discrete(1, n_categories[1], 
        IMSLS_RETURN_USER, irandom, 0);
     nominalPhenotype[1] = irandom[0]-1;
     imsls_f_random_uniform_discrete(1, i_bounds[1]-i_bounds[0], 
        IMSLS_RETURN_USER, irandom, 0);
     integerPhenotype[0] = irandom[0]-1;
     imsls_f_random_uniform_discrete(1, i_bounds[3]-i_bounds[2],
        IMSLS_RETURN_USER, irandom, 0);
     integerPhenotype[1] = irandom[0]-1+i_bounds[2];
     imsls_f_random_uniform_discrete(1, i_bounds[5]-i_bounds[4], 
        IMSLS_RETURN_USER, irandom, 0);
     integerPhenotype[2] = irandom[0]-1+i_bounds[4];
     imsls_f_random_uniform(1, IMSLS_RETURN_USER, rrandom, 0);
     realPhenotype[0] = 
        rrandom[0] * (r_bounds[1]-r_bounds[0]) + r_bounds[0];
     imsls_f_random_uniform(1, IMSLS_RETURN_USER, rrandom, 0);
     realPhenotype[1] = 
        rrandom[0]*(r_bounds[3]-r_bounds[2]) + r_bounds[2];
                  /* create individual from these phenotypes       */
     individuals[i] = imsls_f_ga_individual(chromosome,
        IMSLS_BINARY, binaryPhenotype,
        IMSLS_NOMINAL, nominalPhenotype,
        IMSLS_INTEGER, integerPhenotype,
        IMSLS_REAL,   realPhenotype, 0);
                  /* calculate fitness for this individual         */
     fitness[i] = 100.0 + 10*binaryPhenotype[0];
     fitness[i] += 2*nominalPhenotype[1] - 4*nominalPhenotype[0];
     fitness[i] += 0.0001*integerPhenotype[0] +  
        abs(integerPhenotype[1]+integerPhenotype[2])*0.1;
     fitness[i] += 0.1*realPhenotype[0];
     if (realPhenotype[1]>0) fitness[i] += 0.2*realPhenotype[1];
     else fitness[i] -= 0.2*realPhenotype[1];
  }
  printf("Creating Population from %d Individuals\n", n);
  population = imsls_f_ga_population(n, chromosome, individuals,
     IMSLS_FITNESS, fitness, IMSLS_PRINT, 0);
  imsls_free(chromosome);
  for(i=0; i<n; i++) imsls_f_ga_free_individual(individuals[i]);
  imsls_f_ga_free_population(population);
}

Output

The IMSLS_PRINT option produced the following description of the population. A summary of the population 
chromosome structure and fitness are printed followed by detailed information for the first 5 individuals in the 
population. 

This example also illustrates the bit ordering within chromosomes. Nominal phenotypes are placed in the first 
bits followed by binary and encoded integers and real phenotypes.
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Creating 40 Individuals
Creating Population from 40 Individuals
Population Size: 40
Average  Fitness: 109.472527
Std. Dev. Fitness: 5.927261
Maximum Fitness: 120.244392
Minimum Fitness: 98.221916
Chromosome:
*******************************
**** CHROMOSOME STRUCTURE *****
Chromosome length:      34 Bits
*****BIT ASSIGNMENTS***********
Binary:   2 -  2 n_binary = 1
Nominal:  1 -  2 n_nominal= 2
Integer:  3 - 14 n_integer= 3
Real:    15 - 33 n_real  = 2
*******************************
NOMINAL CATEGORIES*************
  Variable 0:   2 categories
  Variable 1:   3 categories
*******************************
INTEGER BOUNDS*****************
  Variable 0: [   0, 1000]
  Variable 1: [ -10,   10]
  Variable 2: [ -20,    0]
*******************************
INTEGER BITS*******************
  Variable 0:   4 bits
  Variable 1:   4 bits
  Variable 2:   4 bits
*******************************
INTEGER DISCRETE INTERVALS*****
  Variable 0:  16 intervals
  Variable 1:  16 intervals
  Variable 2:  16 intervals
*******************************
REAL BOUNDS********************
  Variable 0: [0,20]
  Variable 1: [-20,20]
*******************************
REAL BITS**********************
  Variable 0:   9 bits
  Variable 1:  10 bits
*******************************
REAL DISCRETE INTERVALS********
  Variable 0: 512 intervals
  Variable 1: 1024 intervals
*******************************
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First 5 Individuals
****** INDIVIDUAL 0 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 105.114510
          PHENOTYPES
*************BINARY************
  Variable 0: 0
************NOMINAL************
  Variable 0: 1
  Variable 1: 2
************INTEGER************
  Variable 0: 35
  Variable 1: -10
  Variable 2: -19
**************REAL*************
  Variable 0: 15.3157
  Variable 1: 3.39719
**********CHROMOSOME************************************************
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0
********************************************************************
****** INDIVIDUAL 1 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 111.796173
          PHENOTYPES
*************BINARY************
  Variable 0: 1
************NOMINAL************
  Variable 0: 1
  Variable 1: 0
************INTEGER************
  Variable 0: 195
  Variable 1: -5
  Variable 2: -5
**************REAL*************
  Variable 0: 19.6777
  Variable 1: -14.0445
**********CHROMOSOME************************************************
1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0
********************************************************************
****** INDIVIDUAL 2 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 104.841797
          PHENOTYPES
*************BINARY************
  Variable 0: 0
************NOMINAL************
  Variable 0: 0
  Variable 1: 0
************INTEGER************
  Variable 0: 167
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  Variable 1: 7
  Variable 2: -16
**************REAL*************
  Variable 0: 18.3331
  Variable 1: -10.4589
**********CHROMOSOME************************************************
0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0
********************************************************************
****** INDIVIDUAL 3 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 110.905807
          PHENOTYPES
*************BINARY************
  Variable 0: 1
************NOMINAL************
  Variable 0: 1
  Variable 1: 0
************INTEGER************
  Variable 0: 629
  Variable 1: 0
  Variable 2: -17
**************REAL*************
  Variable 0: 18.213
  Variable 1: -6.608
**********CHROMOSOME************************************************
1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0
********************************************************************
****** INDIVIDUAL 4 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 114.371025
          PHENOTYPES
*************BINARY************
  Variable 0: 1
************NOMINAL************
  Variable 0: 1
  Variable 1: 2
************INTEGER************
  Variable 0: 51
  Variable 1: 8
  Variable 2: -3
**************REAL*************
  Variable 0: 7.13049
  Variable 1: -15.7644
**********CHROMOSOME************************************************
1 2 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0
******************************************************************** 
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ga_random_population
Creates an Imsls_f_population data structure from randomly generated individuals. 

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_random_population (int n, Imsls_f_chromosome *chromosome, 

…, 0)

The type double function is imsls_d_ga_random_population.

Required Arguments
int n (Input)

The number of individuals to be randomly generated for the population.

Imsls_f_chromosome *chromosome (Input)
A chromosome data structure created by imsls_f_ga_chromosome describing the chromosome 
encoding for individuals.

Return Value
Function imsls_f_ga_random_population returns a pointer to an Imsls_f_population data structure, 
which is required input to imsls_f_genetic_algorithm. The memory allocated to this data structure can be 
released using imsls_f_ga_free_population.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_population *imsls_f_ga_random_population (int n, Imsls_f_chromosome *chromosome, 

IMSLS_PRINT,
IMSLS_GRAY_ENCODING,
IMSLS_PMX_CROSSOVER,
IMSLS_FITNESS_FCN, float fitness(), 
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IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms, 
IMSLS_BINARY_SELECTION_PROB, float binary_prob[],
IMSLS_NOMINAL_SELECTION_PROB, float nominal_prob[], 
IMSLS_INTEGER_SELECTION_MODEL, int  int_s_model[], float i_parms[],
IMSLS_REAL_SELECTION_MODEL, int real_s_model[], float r_parms[],
0)

Optional Arguments
IMSLS_PRINT,  (Input)

By default, intermediate results are not printed. This option turns on printing of intermediate results. 

IMSLS_GRAY_ENCODING, (Input)
Specifies whether alleles are encoded using Base-2 or Gray encoding for integer and real 
phenotypes. 

Default: Base-2 encoding. 

IMSLS_PMX_CROSSOVER, (Input)
This optional argument applies partially matched crossover to the nominal portion of the chromo-
some. Although imsls_f_ga_random_population does not perform crossover in the 
population, this option signals that the nominal phenotypes are sequential with values consisting of 
an arrangement of the integers 0, 1, …, n_nominal-1. 

Default: Standard crossover. Each nominal phenotype can independently have values from 0 to 
n_nominal-1.

IMSLS_FITNESS_FCN, float fitness(Imsls_f_individual *individual)  (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included within the expanded population data structure. Otherwise 
they are set to zero. 

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(Imsls_f_individual *individual, void 
*parms), void *parms  (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included in the expanded population data structure. The parameters 
in parms are passed to the function.

IMSLS_BINARY_SELECTION_PROB, float binary_prob[], (Input)
The random selection model for randomly generating values for the binary phenotypes. By default 
binary phenotype values are selected with equal probability, i.e. p(0) = p (1) = 0.5. 
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However, binary_prob can be used to specify any Bernoulli distribution as the random selection 
model for individual binary phenotypes. binary_prob is a one-dimensional array of length 
n_binary. binary_prob[i] is equal to the probability that the i-th binary phenotype equals 
zero. Hence the probability it equals one is 1-binary_prob[i].

IMSLS_NOMINAL_SELECTION_PROB, float nominal_prob[]  (Input)
The random selection model for randomly generating values for the nominal phenotypes are 
described by an array of length n_cats, where

By default all integer values between zero and n_categories[i]-1 are selected with equal prob-
ability. However, nominal_prob can be used to specify any multinomial distribution as the 
random selection model for individual nominal phenotypes. nominal_prob is a jagged two dimen-
sional array. The values in the i-th row of this array contain the probability of selecting 0, 1, …, 
n_categories[i]-1 for the i-th nominal attribute. These must be valid probabilities scaled 
between 0 and 1, and they must sum to 1.0. The number of values in the i-th row is equal to 
n_categories[i]. See imsls_f_ga_chromosome for a description of 
n_categories.

IMSLS_INTEGER_SELECTION_MODEL, int int_s_model[], float i_parms[]  (Input/Output)
The random selection model for randomly generating values for the integer phenotypes. 
int_s_model[i] declares the random selection model for the i-th integer phenotype. If 
int_s_model[i]= 0, all integer values between the upper and lower limits specified in 
chromosome, i_bounds[2i] and i_bounds[2i+1], are selected with equal probability for 
integer i, i = 0, …, n_integer- 1. This is the default selection method for integer phenotypes. If 
int_s_model[i]= 0, the contents of i_parms[2i] and i_parms[2i+1] are replaced with 
the lower limit of the interval and its width, respectively. 

If int_s_model[i]=1, the Poisson random selection model is used. The Poisson distribution 
models a population of non-negative integers. If this model is selected, then all values for the i-th 
integer phenotype must be non-negative. The user supplied value of i_parms[2i] is used as the 
mean for the Poisson distribution and the value of i_parms[2i+1] is ignored.

IMSLS_REAL_SELECTION_MODEL, int real_s_model[], float r_parms[]  (Input/Output)
The random selection model for randomly generating values for the real phenotypes. 
real_s_model[i] can be used to specify the random selection model for the i-th real pheno-
type. If real_s_model[i]= 0, all real values between i_bounds[2i] and i_bounds[2i+1] 
are selected with equal probability using the uniform distribution. This is the default selection 
method for real phenotypes.

n_cats = ∑
i=0

n_nominal−1
n_categories i
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If real_s_model[i]=1, then the Gaussian distribution is used. In this case, the value of 
r_parms[2i] should be set to the mean of this distribution and r_parms[2i+1] should equal 
its variance.

Description
The imsls_f_genetic_algorithm operates on a population of individuals. 
imsls_f_ga_random_population creates an initial population of n randomly selected individuals. 
imsls_f_ga_random_population takes the chromosome structure described by the chromosome argu-
ment and randomly generates values for each phenotype. These are then encoded into Imsls_f_individual data 
structures and placed into the population. 

Binary phenotypes are randomly generated Bernoulli random variables with p(0) = p(1)=0.5.

Values for nominal phenotypes are generated with equal probability. That is the probability of sampling each of 
the n_categories[i] values for the i-th nominal phenotype is 
1/(chromosome->n_categories[i]).

By default, random values for the integer phenotypes are generated using the discrete uniform distribution. All 
values between i_bounds[2i] and i_bounds[2i+1] are sampled with equal probability. This default can 
be changed using the optional argument IMSLS_INTEGER_SELECTION_MODEL.

Likewise, random values for real phenotypes are generated using the continuous uniform random distribution. 
All values between r_bounds[2i] and r_bounds[2i+1] are sampled with equal probability. This default 
can be changed using the optional IMSLS_REAL_SELECTION_MODEL argument.

Example
This example creates a population of 40 individuals each with 1 binary, 2 nominals, 3 integers and 2 real pheno-
types. The IMSLS_PRINT argument is used to print a description of the population. A simple fitness function 
calculation is used to illustrate how fitness values can be used to initialize a population with the 
IMSLS_FITNESS argument. If fitness is not initialized, the fitness array in the data structure is set to NULL. It 
can be initialized using an optional argument with imsls_f_genetic_algorithm.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
int main(){
   /* number of phenotypes by category              */
   int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
   int n = 40;      /* population size             */
   /* number of categories for nomial phenotypes    */
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   int n_categories[]    = {2, 3};
   /* number of intervals and boundaries for integer */
   /* phenotypes                                    */
   int i_intervals[]     = {16, 16, 16};
   int i_bounds[]        = {0, 1000, -10, 10, -20, 0};
   /* number of intervals and boundaries for real   */
   /* phenotypes                                    */
   int r_intervals[]     = {512, 1024};
   float r_bounds[]      = {0.0, 20.0, -20.0, 20.0};
   /* Fittness Function                             */
   static float fitness(Imsls_f_individual* individual);
   /* Chromosome Data Structure                     */
   Imsls_f_chromosome* chromosome;
   /* Population Data Structure                     */
   Imsls_f_population* population;
   /**************************************************/
   /* In this example the user function is thread   */
   /* safe. Let CNL know it is safe, which allows  *
   /* genetic algorithm to run in parallel, if that */
   /* capability exists on the user computer.       */
   imsls_omp_options(
       IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
       0);
   chromosome = imsls_f_ga_chromosome(
       IMSLS_BINARY, n_binary,
       IMSLS_NOMINAL, n_nominal, n_categories,
       IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
       IMSLS_REAL,   n_real, r_intervals, r_bounds,
       0);
   /* Create individuals              */
   imsls_random_seed_set(12345); 
   printf("Creating Population with %d Individuals\n", n);
   population = imsls_f_ga_random_population(n, chromosome,
       IMSLS_FITNESS_FCN, fitness, 
       IMSLS_PRINT,
       0);
   printf("Releasing Allocated Memory\n");
   imsls_free(chromosome);
   imsls_f_ga_free_population(population);
   return 0;
}
static float fitness(Imsls_f_individual* individual){
   float f;
   /* calculate fitness for this individual */
   f = 100.0 + 10*individual->binaryPhenotype[0];
   f += 2*individual->nominalPhenotype[1] -
       4*individual->nominalPhenotype[0];
   f += 0.0001*individual->integerPhenotype[0] + 
       abs(individual->integerPhenotype[1]+
       individual->integerPhenotype[2])*0.1;
   f += 0.1*individual->realPhenotype[0];
   if(individual->realPhenotype[1]>0)
       f += 0.2*individual->realPhenotype[1];
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   else
       f += -0.2*individual->realPhenotype[1];
   return f;
}

Output

The IMSLS_PRINT option produced the following description of the population. A summary of the population 
chromosome structure and fitness are printed followed by detailed information for the first 5 individuals in the 
population. 

This example also illustrates the bit ordering within chromosomes. Nominal phenotypes are placed in the first 
bits followed by binary and encoded integer and real phenotypes. Note that this output is identical to the exam-
ple for imsls_f_ga_population because the fitness function is identical and the random phenotype 
generation uses the same random seed.

Creating Population with 40 Individuals
Population Size: 40
Average  Fitness: 109.400070
Std. Dev. Fitness: 5.923696
Maximum Fitness: 120.044495
Minimum Fitness: 98.022011
Chromosome:
*******************************
**** CHROMOSOME STRUCTURE *****
Chromosome length:      34 Bits
*****BIT ASSIGNMENTS***********
Binary:   2 -  2 n_binary = 1
Nominal:  1 -  2 n_nominal= 2
Integer:  3 - 14 n_integer= 3
Real:    15 - 33 n_real  = 2
*******************************
NOMINAL CATEGORIES*************
  Variable 0:   2 categories
  Variable 1:   3 categories
*******************************
INTEGER BOUNDS*****************
  Variable 0: [   0, 1000]
  Variable 1: [ -10,   10]
  Variable 2: [ -20,    0]
*******************************
INTEGER BITS*******************
  Variable 0:   4 bits
  Variable 1:   4 bits
  Variable 2:   4 bits
*******************************
INTEGER DISCRETE INTERVALS*****
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  Variable 0:  16 intervals
  Variable 1:  16 intervals
  Variable 2:  16 intervals
*******************************
REAL BOUNDS********************
  Variable 0: [0,20]
  Variable 1: [-20,20]
*******************************
REAL BITS**********************
  Variable 0:   9 bits
  Variable 1:  10 bits
*******************************
REAL DISCRETE INTERVALS********
  Variable 0: 512 intervals
  Variable 1: 1024 intervals
*******************************
First 5 Individuals
****** INDIVIDUAL 0 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 105.114510
          PHENOTYPES
*************BINARY************
  Variable 0: 0
************NOMINAL************
  Variable 0: 1
  Variable 1: 2
************INTEGER************
  Variable 0: 35
  Variable 1: -10
  Variable 2: -19
**************REAL*************
  Variable 0: 15.3157
  Variable 1: 3.39719
**********CHROMOSOME************************************************
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0
********************************************************************
****** INDIVIDUAL 1 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 111.696175
          PHENOTYPES
*************BINARY************
  Variable 0: 1
************NOMINAL************
  Variable 0: 1
  Variable 1: 0
************INTEGER************
  Variable 0: 195
  Variable 1: -5
  Variable 2: -4
**************REAL*************
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  Variable 0: 19.6777
  Variable 1: -14.0445
**********CHROMOSOME************************************************
1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0
********************************************************************
****** INDIVIDUAL 2 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 104.741791
          PHENOTYPES
*************BINARY************
  Variable 0: 0
************NOMINAL************
  Variable 0: 0
  Variable 1: 0
************INTEGER************
  Variable 0: 167
  Variable 1: 8
  Variable 2: -16
**************REAL*************
  Variable 0: 18.3331
  Variable 1: -10.4589
**********CHROMOSOME************************************************
0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0
********************************************************************
****** INDIVIDUAL 3 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 110.805908
          PHENOTYPES
*************BINARY************
  Variable 0: 1
************NOMINAL************
  Variable 0: 1
  Variable 1: 0
************INTEGER************
  Variable 0: 630
  Variable 1: 0
  Variable 2: -16
**************REAL*************
  Variable 0: 18.213
  Variable 1: -6.608
**********CHROMOSOME************************************************
1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0
********************************************************************
****** INDIVIDUAL 4 ************************************************
  Number of Parents: 2
  Encoding: BASE-2
  Fitness: 114.571030
          PHENOTYPES
*************BINARY************
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  Variable 0: 1
************NOMINAL************
  Variable 0: 1
  Variable 1: 2
************INTEGER************
  Variable 0: 51
  Variable 1: 9
  Variable 2: -2
**************REAL*************
  Variable 0: 7.13049
  Variable 1: -15.7644
**********CHROMOSOME************************************************
1 2 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0
********************************************************************
Releasing Allocated Memory
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ga_copy_population
Copies the contents of one population into another population.

Synopsis
#include <imsls.h>
void imsls_f_ga_copy_population(Imsls_f_population *populationIn, 

Imsls_f_population *populationOut)

The type double function is imsls_d_ga_copy_population.

Required Arguments
Imsls_f_population *populationIn  (Input)

An existing population to be copied into populationOut. 

Imsls_f_population *populationOut  (Input/Output)
The contents of populationOut are replaced with populationIn. 

Description
Function imsls_f_ga_copy_population copies the contents of populationIn into 
populationOut. Both populations must have been previously created with identical structures. Although they 
can have different encoding boundaries, they must have the same number of binary, nominal, integer and real 
phenotypes and the same number of individuals.
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ga_clone_population
Clones an existing population.

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_clone_population (Imsls_f_population *populationIn, …, 0)

The type double function is imsls_d_ga_clone_population.

Required Arguments
Imsls_f_population *populationIn  (Input)

A pointer to an existing population that gets cloned and returned as a pointer to a copy of 
populationIn. 

Return Value
Function imsls_f_ga_clone_population creates a copy of an Imsls_f_population data structure. The 
memory is allocated for the new data structure and the contents of populationIn are copied into that struc-
ture. Memory allocated for this data structure can be released using the imsls_f_ga_free_population 
function.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_population *imsls_f_ga_clone_population (Imsls_f_population *populationIn,

IMSLS_PRINT,
0)
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Optional Arguments
IMSLS_PRINT, (Input)

By default, summary information is not printed. This option turns on printing of summary informa-
tion for the cloned population.

Description
Function imsls_f_ga_clone_population returns a pointer to an Imsls_f_population data structure con-
taining the contents of populationIn. 
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ga_grow_population
Adds individuals to an existing population.

Synopsis
#include <imsls.h>
void imsls_f_ga_grow_population (int n, Imsls_f_individual *individual[], 

Imsls_f_population *population, …, 0)

The type double function is imsls_d_ga_grow_population.

Required Arguments
int n  (Input)

The number of individuals to add to the population.

Imsls_f_individual *individual[]  (Input)
An array of pointers to n individuals.

Imsls_f_population *population  (Input/Output)
An existing population.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_population *imsls_f_ga_grow_population(int n, Imsls_f_individual *individual[],
Imsls_f_population *population,

IMSLS_PRINT,
IMSLS_FITNESS, float fitness[],
IMSLS_FITNESS_FCN, float fitness(),
IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms,
0)
1532



 Data Mining         ga_grow_population
Optional Arguments
IMSLS_PRINT,  (Input)

By default, summary statistics are not printed. This option turns on printing of the summary statistics 
for the new population. 

IMSLS_FITNESS, float fitness[]  (Input)
An array of length n containing the fitness values for the individuals added to the population. 
fitness[i] is the fitness for the i-th individual. 

IMSLS_FITNESS_FCN, float fitness(Imsls_f_individual *individual)  (Input)
The fitness function calculated for individual. If this is supplied, fitness values are calculated for 
each individual and included within the expanded population data structure. Otherwise they are set 
to zero. 

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(Imsls_f_individual *individual, void 
*parms), void *parms  (Input)
The fitness function calculated for individual. If this is supplied, fitness values are calculated for 
each individual and included in the expanded population data structure. The parameters in parms 
are passed to the function. 

Description
Function imsls_f_ga_grow_population grows an existing population by adding new individuals. The 
chromosome data structure of the individuals and the population must be identical. Fitness values for the new 
population are set to zero unless the fitness function is supplied using the optional arguments 
IMSLS_FITNESS_FCN or IMSLS_FITNESS_FCN_WITH_PARMS.

Fitness values for the new individuals can also be supplied using optional argument IMSLS_FITNESS.
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ga_merge_population
Creates a new population by merging two populations with identical chromosome structures.

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_merge_population (Imsls_f_population *population1, 

Imsls_f_population *population2, …, 0)

The type double function is imsls_d_ga_merge_population.

Required Arguments
Imsls_f_population *population1 (Input)

An existing population with chromosome data structure and encoding identical to population2.

Imsls_f_population *population2 (Input)
An existing population with chromosome data structure and encoding identical to population1.

Return Value
Function imsls_f_ga_merge_population returns a pointer to a new population consisting of the individ-
uals in population1 and population2. population1 and population2 must have the same 
chromosome data structure and encoding, although they can have different population sizes. Memory allocated 
to this data structure can be released using imsls_f_ga_free_population.

Synopsis with Optional Arguments
#include <imsls.h> 

Imsls_f_population *imsls_f_ga_merge_population (Imsls_f_population *population1, 
Imsls_f_population *population2,

IMSLS_PRINT,
0)
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Optional Arguments
IMSLS_PRINT,  (Input)

By default, statistics are not printed. This option turns on printing of the summary statistics for the 
new population. 

Description
Function imsls_f_ga_merge_population creates a new population by combining the individuals and 
chromosome information from two populations. The chromosome data structure of the populations must be 
identical.
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ga_free_population
Frees memory allocated to an existing population.

Synopsis
#include <imsls.h>
void imsls_f_ga_free_population(Imsls_f_population *population)

The type double function is imsls_d_ga_free_population.

Required Arguments
Imsls_f_population *population  (Input)

The population for which allocated memory is to be released. 

Description
Function imsls_f_ga_free_population frees memory allocated to an Imsls_f_population data structure.

Example
See the Example section of function imsls_f_ga_population. 
1536



 Data Mining         genetic_algorithm
genetic_algorithm

more...

Optimizes a user defined fitness function using a tailored genetic algorithm. 

Synopsis
#include <imsls.h>
Imsls_f_individual *imsls_f_genetic_algorithm (float fitness(), 

Imsls_f_population *initial_population, ..., 0)

The type double function is imsls_d_genetic_algorithm.

Required Arguments
float fitness(Imsls_f_individual *individual)  (Input)

The fitness function. Given the data structure for an individual within the population, fitness 
returns the fitness of that individual. The fitness function must return non-negative values.

Imsls_f_population *initial_population (Input)
A pointer to the initial population.

Return Value
Function imsls_f_genetic_algorithm optimizes a user defined fitness function by evolving an initial pop-
ulation using a tailored genetic algorithm that searches for the fittest individual. It returns a pointer to a clone of 
the fittest individual in the last generation. Memory allocated to this data structure can be released using 
imsls_f_ga_free_individual.

Synopsis with Optional Arguments
#include <imsls.h> 
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Imsls_f_individual *imsls_f_genetic_algorithm (float fitness(), 
Imsls_f_population *initial_population,

IMSLS_GRAY_ENCODING,
IMSLS_NO_ELITISM, 
IMSLS_NO_DECODE,
IMSLS_PRINT_LEVEL, int level,
IMSLS_MAX_GENERATIONS, int max_generations,
IMSLS_MAX_FITNESS, float max_fitness, 
IMSLS_LINEAR_SCALING, float c, 
IMSLS_SIGMA_SCALING,
IMSLS_GENERATION_GAP, float p_gap,
IMSLS_MUTATION_PROB, float p_mutation,
IMSLS_CROSSOVER_PROB, float p_xover,
IMSLS_CROSSOVERS, int n_xover, 
IMSLS_PMX_CROSSOVER,
IMSLS_INVERT_CROSSOVER,
IMSLS_SELECTION_MODEL, int selection_model,
IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms,
IMSLS_N_GENERATIONS, int *n_generations,
IMSLS_ON_LINE_PERFORMANCE, float **on_line_performance,
IMSLS_OFF_LINE_PERFORMANCE, float **off_line_performance,
IMSLS_VELOCITY, float **velocity,
IMSLS_GENERATION_STATS, float **gen_statistics,
IMSLS_LAST_GENERATION, Imsls_f_population **last_generation,
0)

Optional Arguments
IMSLS_GRAY_ENCODING, (Input)

By default, alleles for integer and real phenotypes are encoded using Base-2 encoding. This argu-
ment changes that default to Gray encoding for integer and real phenotypes. 

IMSLS_NO_ELITISM, (Input)
By default, elitism is used to preserve the fittest individual from one generation to the next. This argu-
ment disables elitism. 
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IMSLS_NO_DECODE ,(Input)
By default, chromosome information is decoded into the individual’s phenotypes before every call to 
the user’s fitness function. This argument disables automatic decoding between generations. Decod-
ing is only applied to the last generation, including the fittest individual.

IMSLS_PRINT_LEVEL, int level  (Input)
By default, no printing of intermediate and final results occur from this function. The 
IMSLS_PRINT_LEVEL argument accepts the following values for level:

IMSLS_MAX_GENERATIONS, int max_generations  (Input)
The maximum number of generations. Optimization is halted when the number of generations 
exceeds max_generations. 

Default: max_generations=100. 

IMSLS_MAX_FITNESS, float max_fitness  (Input)
The optimization is halted if the maximum fitness is greater than this value. 

Default: max_fitness=imsls_f_machine(7), i.e., optimization is not halted by large fitness 
values. Optimization only stops when the number of generations exceeds max_generations.

IMSLS_LINEAR_SCALING, float c  (Input)
Specifies an upper limit for the linear fitness scaling constant. Set c = 1 for no scaling. A check is 
made to ensure that the minimum scaled fitness is non-negative. If it falls below zero, then the scal-
ing constant is automatically reduced to make the minimum scaled fitness equal to zero. For linear 
scaling the scaling constant is typically between one and two. 

Default: c =1, no linear fitness scaling.

IMSLS_SIGMA_SCALING, (Input)
By default, sigma scaling is not used for fitness scaling. This argument enables sigma scaling.

IMSLS_GENERATION_GAP, float p_gap  (Input)
The proportion of weakest individuals replaced between generations. If p_gap=1, all of the individu-
als are replaced. 

Default: p_gap=1.

level Enumeration Description

0 IMSLS_NONE Suppresses printing of any results.

1 IMSLS_FINAL Prints summary of final results.

2 IMSLS_TRACE_GEN Prints summary of final results plus 
generation statistics.

3 IMSLS_TRACE_ALL Prints summary of final results, genera-
tion statistics and individual crossovers.
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IMSLS_MUTATION_PROB, float p_mutation  (Input)
The probability of mutation. Although most applications set this to a value between 0.005 and 0.1, 
any value between 0 and 1 is allowed. 

Default: p_mutation=0.005. 

IMSLS_CROSSOVER_PROB, float p_xover  (Input)
The probability of crossover. p_xover can be any value between 0 and 1. Most genetic algorithms 
use a probability between 0.6 and 0.9.

Default: p_xover= 0.6.

IMSLS_CROSSOVERS, int n_xover  (Input)
The number of crossover points. De Jong’s (1975) generalized crossover model R6 is implemented. If 
n_xover is odd, then the chromosome is treated as a string with a default crossover at the begin-
ning of the chromosome. If n_xover is even, then the chromosome is treated as a ring with no 
beginning or end, and crossovers are selected using the uniform distribution on a circle. Crossing 
points occur at the odd crossover points. If the IMSLS_PMX_CROSSOVER optional argument is 
used, there are always two crossover points within the nominal portion of the chromosome. For par-
tially matched crossovers, this argument is only used to define the number of crossovers within the 
binary, integer and real portion of the chromosome. 

Default: n_xover=1. 

IMSLS_PMX_CROSSOVER, (Input)
By default this optional argument applies partially matched crossover to the nominal portion of the 
chromosome. Crossovers for other phenotypes are still applied using standard crossover and inver-
sion crossover if requested. With partially matched crossover, the number of crossovers for nominal 
phenotypes is set to 2, and partially matched crossover is applied only to the nominal phenotype. 
The number of crossovers for non-nominal phenotypes is still controlled by the value of n_xover. 
However, if this optional argument is used, crossover points are randomly selected separately for 
nominal and non-nominal alleles.

IMSLS_INVERT_CROSSOVER, (Input)
This option augments standard or partially matched crossover with inversion. Inversion crossover 
inverts the values of the alleles in every other crossover segment. If this is applied with partially 
matched crossover, inversion is applied within the matched segment of the alleles for the nominal 
phenotypes and then within every other segment of any non-nominal phenotype.
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IMSLS_SELECTION_MODEL, int selection_model  (Input)
The model used for selecting individuals for reproduction. Selection models are described in the fol-
lowing table:

Default: The original selection method described by Holland (1975), 
selection_model=IMSLS_ROULETTE_WITH.

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(Imsls_f_individual *individual, void 
*parms), void *parms  (Input)
The fitness function calculated for individual. If this is supplied, fitness values are calculated for 
each individual and included in the expanded population data structure. The parameters in parms 
are passed to the function. 

IMSLS_N_GENERATIONS, int *n_generations  (Output)
The number of generations used to find the fittest individual. 

selection_model Description

IMSLS_DETERMINISTIC Individuals with highest fitness are selected 
for reproduction using their expected sam-
pling frequency. See Goldberg (1989)

IMSLS_ROULETTE_WITH Original fitness-proportional selected 
described by Holland(1975). Sampling is 
done with replacement.

IMSLS_ROULETTE_WITHOUT The original fitness-proportional selected 
except that sampling is done without 
replacement. This is also referred to as De 
Jong’s (1975) R3 model.

IMSLS_REMAINDER_WITH Remainder selection with replacement.

IMSLS_REMAINDER_WITH Remainder selection with replacement.

IMSLS_REMAINDER_WITHOUT Remainder selection without replacement

IMSLS_SUS_SELECTION Stochastic Universal Sampling as described 
by Baker (1987).

IMSLS_RANK_SELECTION Rank selection. The individuals with the high-
est fitness are selected once for 
reproduction. 

IMSLS_TOURNAMENT_1 Tournament selection as described by Wetzel 
(1983). Only the fittest individual in a pair is 
selected.

IMSLS_TOURNAMENT_2 Tournament selection as described by Gold-
berg and Deb (1991). The fittest individual in 
a pair is selected with probability 0.75. Other-
wise the weaker individual is selected.
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IMSLS_ON_LINE_PERFORMANCE, float **on_line_performance  (Output)
An array of length max_generations containing on-line performance statistics for each 
generation. 

IMSLS_OFF_LINE_PERFORMANCE, float **off_line_performance (Output)
An array of length max_generations containing off-line performance statistics for each 
generation. 

IMSLS_VELOCITY, float **velocity (Output)
An array of length max_generations containing velocity statistics for each generation. The veloc-
ity for the i-th generation is equal to  where    is the maximum fitness for the i-th 
generation.

IMSLS_GENERATION_STATS, float **gen_statistics (Output)
An array of size max_generations × 4 containing the maximum fitness, minimum fitness, aver-
age fitness and standard deviation of the fitness for each generation. The i-th row of 
gen_statistics contains the statistics for the i-th generation. When 
n_generations<max_generations, rows greater than n_generations - 1 are filled with 
NaN values. The four columns contain the following statistics calculated for each generation:

IMSLS_LAST_GENERATION, Imsls_f_population **last_generation (Output)
The last generation produced by the genetic algorithm. Memory allocated to this data structure can 
be released using imsls_f_ga_free_population.

Description
Genetic algorithms search for the optimum individual in a population. This is defined as the individual with the 
highest fitness. Function imsls_f_genetic_algorithm returns the fittest individual in the last generation. 
Mathematically, this is equivalent to finding the values of the phenotypes that maximize a user provided fitness 
function. Although there are no requirements that the fitness function be non-negative, in general, convergence 
to optimum fitness is faster when values of the fitness function are non-negative. Constraints can be applied by 
incorporating a penalty function within the fitness calculation. Phenotypes can consist of any combination of 

Column Description

1 Maximum Fitness

2 Minimum Fitness

3 Fitness Average

4 Fitness Standard Deviation

1
2 ln( f i × f 0) f i
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nominal, binary, integer and real values. Integer and real values must be encoded into a binary representation. 
This procedure provides for either Base-2 or Gray encoding. However, users can supply other encodings within 
the fitness function.

The function imsls_f_genetic_algorithm uses the population data structure and fitness with sim-
ulated genetic processes of reproduction to search for the optimum individual, i.e. settings of phenotype values. 
Genetic algorithms have been successfully applied to a wide variety of optimization and search problems, see 
Holland (1975) and Goldberg (1985).

There are many refinements to the basic genetic algorithm originally described by Holland (1975). His basic algo-
rithm begins with an initial population of n individuals, a fitness function, and probabilities for crossover and 
mutation of p_xover and p_mutation respectively. The initial population is transformed from one generation 
to the next using the following steps:

1. Select n individuals from the current population to generate a mating pool.

2. Apply crossover with probability p_xover to pairs of the selected individuals within the mating pool 
to produce two offspring.

3. Apply mutation with probability p_mutation to the offspring to generate the next generation.

4. Check stopping criteria. If they are met, stop and report the fittest individual within the last 
generation.

By default Holland’s approach to these steps are used. However, many variations of these can be selected using 
optional arguments.

The initial population can be generated automatically using imsls_f_ga_random population or it can be 
created by first creating individuals using imsls_f_ga_individual and then a population for those individ-
uals using imsls_f_ga_population.

By default Holland’s roulette wheel with replacement is used for selecting the mating pool. The optional argu-
ment IMSLS_SELECTION_MODEL allows users to select alternate selection methods including remainder, 
tournament and stochastic universal selection. Default crossover and mutation probabilities are p_xover= 0.8 
and p_mutation= 0.005. These defaults can be changed using the optional arguments 
IMSLS_CROSSOVER_PROB and IMSLS_MUTATION_PROB.

In the original algorithm only a single crossover point was randomly selected. The optional argument 
IMSLS_CROSSOVERS allows users to designate any number of crossover points.

Standard crossover proceeds by combining the genes from both parents in the order found in those parents. 
Inversion crossover inverts this order for one of the parents. Inversion crossover is selected using the optional 
argument IMSLS_INVERT_CROSSOVER.
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For certain problems, such as the traveling salesman problem, standard crossover can produce infeasible individ-
uals. One approach is to assign zero fitness to those solutions, but this can be very inefficient. Partially matched 
crossover is an approach that ensures individuals are feasible for a certain class of problems. If the problem is 
best represented using nominal phenotypes with values 
0, 1, …, n_nominal-1 where all values must appear once and only once in the chromosome, then partially 
matched crossover preserves that condition. Partially matched crossover is selected using the optional argument 
IMSLS_PMX_CROSSOVER. 

One issue with some applications of genetic algorithms is premature convergence or convergence to false local 
solutions. This can occur when dominant individuals within early generations take over the population prema-
turely reducing population diversity. One approach to this problem is fitness scaling. This implementation allows 
users to use either linear or sigma fitness scaling. By default, no scaling is used. However, the optional arguments 
IMSLS_LINEAR_SCALING and IMSLS_SIGMA_SCALING allow users to have fitness values automatically 
scaled before selection.

The genetic algorithm is stopped when any one of the stopping criteria is met. The algorithm is stopped when the 
number of generations exceeds max_generations or when the maximum fitness exceeds max_fitness. 
By default max_generations= 100; this can be changed using IMSLS_MAX_GENERATIONS. By default 
max_fitness is imsls_f_machine(7); this can be changed using IMSLS_MAX_FITNESS. 

On some platforms, imsls_f_genetic_algorithm can evaluate the user-supplied function fitness in 
parallel. This is done only if the function imsls_omp_options is called to flag user-defined functions as thread-
safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the 
result of writing to global or static variables.

Examples

Example 1

De Jong (1975) examined the performance of a genetic algorithm for finding the maximum of a multivariate func-
tion. This is an example of optimizing a variation of De Jong’s R2 function:

where 

-2.048 ≤ x

1

 ≤ 2.048 and  -2.048 ≤ x

2

 ≤ 2.048

f (x1,x2) = 4000 − 100(x1
2 − x2)

2 − (1 − x1)
2
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Since there were only two real phenotypes and the function is easily calculated, the phenotypes were encoded 
using discretization with 65,536 values over the interval [-2.048, 2.048]. By default, encoding and decoding is 
done within imsls_f_genetic_algorithm. This allows the fitness function to calculate individual fitness 
using the real phenotypes instead of the chromosome. Both the chromosome and its phenotype representation 
are available within the Imsls_f_individual data structure argument.

The default selection algorithm IMSLS_ROULETTE_WITH was used, but the number of crossover probability 
was set to 0.6. The genetic algorithm was more efficient using a lower crossover probability and Gray encoding 
instead of the defaults 0.7 and Base-2 encoding. Each generation consisted of 40 individuals.

#include <imsls.h>
#include <stdio.h>
static float deJongR2(Imsls_f_individual* individual);
int main(){
  int i, j;                           /* index variables           */
  int n = 40;                         /* population size           */
  int n_generations = 0;              /* final number of generations*/
  int n_real = 2;                     /* number of real phenotypes */
  int  r_intervals[2] = {65536, 65536};
  float r_bounds[4]   = {-2.048, 2.048, -2.048, 2.048};
  float* genStats;                    /* generation statistics     */
  Imsls_f_chromosome* chromosome;     /* chromosome data structure */
  Imsls_f_individual* best_individual; /* optimum                   */
  Imsls_f_population* population;     /* population data structure */
  Imsls_f_population* last_generation; /* last generation           */
  /*******************************************************************/
  /* In this example the user function is thread safe. Let CNL     */
  /* know it is safe, which allows genetic algorithm to run in      */
  /* parallel, if that capability exists on the user computer.      */
  imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
  imsls_random_seed_set(12345);
  chromosome = imsls_f_ga_chromosome( 
           IMSLS_REAL, n_real, r_intervals, r_bounds, 0);
  population = imsls_f_ga_random_population(n, chromosome, 
                             IMSLS_GRAY_ENCODING,
                             IMSLS_FITNESS_FCN, deJongR2, 0);
  best_individual = imsls_f_genetic_algorithm(deJongR2, population, 
                             IMSLS_PRINT_LEVEL, IMSLS_FINAL,
                             IMSLS_MAX_FITNESS, 3999.999,
                             IMSLS_CROSSOVER_PROB, 0.6,
                             IMSLS_GRAY_ENCODING, 
                             IMSLS_MAX_GENERATIONS, 1000,
                             IMSLS_N_GENERATIONS, &n_generations,
                             IMSLS_GENERATION_STATS, &genStats,
                             IMSLS_LAST_GENERATION,&last_generation, 0);
  printf("\n*****************GENERATION STATISTICS*****************\n");
  printf("Generation Max. Fit.  Avg. Fit. Min. Fit.    CV\n");
  printf("*******************************************************\n");
  for(i=0; i<=n_generations; i++){
     printf("Gen. %3d: %11.5f %10.2f %10.2f %9.2f \n",
        i, genStats[4*i], genStats[4*i+2], genStats[4*i+1],
        100*genStats[4*i+3]/genStats[4*i+2]);
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  }
  printf("\nLAST GENERATION\n");
printf("***************************************************************\n");
printf("\nIndv Fitness             Chromosome             X1    X2\n");
  for(i=0; i<last_generation->n; i++){
     printf(" %2d  %6.2f ", i, last_generation->fitness[i]);
     for(j=0; j<last_generation->chromosome->c_length; j++) 
        printf("%d", 
                 last_generation->individual[i]->chromosome->allele[j]);
        printf("%7.3f %6.3f\n", 
                 last_generation->individual[i]->realPhenotype[0],
        last_generation->individual[i]->realPhenotype[1]);
  }
  printf("\nMaximum:   %6.2f for Individual %d\n", 
               last_generation->maxFitness,
          last_generation->indexFittest);
  printf("Minimum:   %6.2f for Individual %d\n", 
               last_generation->minFitness,
          last_generation->indexWeakest);
  printf("Average:   %6.2f\n", last_generation->avgFitness);
  printf("Std. Dev:   %6.2f\n\n", last_generation->stdFitness);
printf("***************************************************************\n");
}
/**********************************************************************/
/* De Jong's R2 Function                                             */
/**********************************************************************/
static float deJongR2(Imsls_f_individual* individual)
{
  float f, x1, x2;
  x1 = individual->realPhenotype[0];
  x2 = individual->realPhenotype[1];
  f = 100*(x1*x1-x2)*(x1*x1-x2) + (1.0-x1)*(1.0-x1);
  f = 4000 - f;
  return f;
}

Output

In this example, the print level is set to IMSLS_FINAL in order to print the optimum solution. The generation 
statistics are requested using the IMSLS_GENERATIONS_STATS option, and the last population is requested 
using the IMSLS_LAST_GENERATION option.

Although the maximum number of generations is set to 100 using the IMSLS_GENERATIONS option, the 
genetic algorithm halted after 26 generations when the maximum population fitness exceeded 3999.999. 

OPTIMUM SOLUTION
  Fitness: 3999.999512
  Phenotypes:
     Real:    2
  Function Calculations: 1080
  Population Size:      40
  Number of Generations: 26
  Real Phenotype(s):
     1.023594 1.047844
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  Chromosome (Gray Encoded):
     11100000000001011010000111000011

*****************GENERATION STATISTICS*****************
Generation Max. Fit.  Avg. Fit. Min. Fit.    CV
*******************************************************
Gen.  0: 3996.12915   3244.16    578.91    28.62
Gen.  1: 3996.25269   3725.90   2770.41     8.24
Gen.  2: 3999.22974   3699.14   1917.26    10.28
Gen.  3: 3999.22974   3683.41   2551.70     9.87
Gen.  4: 3999.73779   3778.83   2551.70     8.35
Gen.  5: 3999.73779   3823.50   3187.72     5.22
Gen.  6: 3999.73779   3796.59   3187.72     5.76
Gen.  7: 3999.73779   3850.94   3302.26     4.28
Gen.  8: 3999.73779   3860.17   3358.92     3.93
Gen.  9: 3999.73779   3886.33   3138.96     4.23
Gen. 10: 3999.74683   3896.13   3292.64     3.85
Gen. 11: 3999.74683   3900.24   3638.17     2.93
Gen. 12: 3999.74683   3899.95   3376.35     3.17
Gen. 13: 3999.74683   3900.57   3476.12     3.19
Gen. 14: 3999.74683   3897.88   3408.28     3.36
Gen. 15: 3999.74683   3908.28   2331.26     3.36
Gen. 16: 3999.99585   3897.28   3301.18     3.94
Gen. 17: 3999.99585   3910.99   3236.92     3.31
Gen. 18: 3999.99585   3953.46   3429.17     1.31
Gen. 19: 3999.99585   3944.98   3764.08     1.41
Gen. 20: 3999.99585   3945.62   3751.01     1.41
Gen. 21: 3999.99585   3934.07   3751.10     1.81
Gen. 22: 3999.99585   3947.08   3739.52     1.62
Gen. 23: 3999.99609   3943.99   3652.86     1.95
Gen. 24: 3999.99609   3942.42   3652.86     1.99
Gen. 25: 3999.99927   3970.69   3845.42     0.92
Gen. 26: 3999.99951   3970.61   3845.42     0.90
LAST GENERATION
***************************************************************
Indv Fitness             Chromosome                X1      X2
 0  3916.58 11100000000011001100110001010011    1.023   0.134
 1  3996.09 01010000000001011100110001010011   -0.512   0.134
 2  3965.22 11010000000011101110111110011011    0.511   0.849
 3  3993.47 01100101000001011010000001100011   -0.928   1.028
 4  3941.02 11010000000001011010000001100011    0.512   1.028
 5  3998.11 11110000000001011100110001110011    0.512   0.134
 6  3951.04 01100100000101011100110001100011   -0.898   0.132
 7  3919.76 01000000000001011110110001110011   -0.000   0.890
 8  3965.35 11110000000001011110111110011011    0.512   0.849
 9  3913.56 11010000000011101010111101110011    0.511   1.190
10  3948.39 11010000000011101110001110110011    0.511   0.978
11  3996.04 01010000000001011100110001100011   -0.512   0.132
12  3997.44 11100000100111001110111101101001    1.009   0.859
13  3992.45 11110000000001110100000001000011    0.512  -0.008
14  3958.07 01010000000101011110110001110011   -0.510   0.890
15  3951.33 01100100000001011100110001100011   -0.896   0.132
16  3948.39 11010000000011101110001110110011    0.511   0.978
17  4000.00 11100000000001011010000111010001    1.024   1.046
18  3999.96 11100000000001011010000001100011    1.024   1.028
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19  3925.31 01010110010001011010000111010001   -0.440   1.046
20  3999.37 11010000000001011101111001101111    0.512   0.325
21  3845.42 01100101010110110101110001100011   -0.921  -0.380
22  3999.64 11010101000011101100111001000011    0.415   0.184
23  3992.37 01100000000011101110111101101001   -1.023   0.859
24  3990.55 01010000000001110100000001110011   -0.512  -0.006
25  3993.26 11110000000011101100000001000011    0.513   0.008
26  3964.15 11010000000011101110111101110011    0.511   0.858
27  3998.36 11010000000011101100110010011011    0.511   0.143
28  3950.63 01100101000011101100111001000011   -0.927   0.184
29  3996.08 01010000000001011100110001110011   -0.512   0.134
30  3997.89 01010110000011101100111001100111   -0.447   0.188
31  3998.11 11110000000001011100110001110011    0.512   0.134
32  3993.47 01100101000001011010000001100011   -0.928   1.028
33  3992.45 11110000000001110100000001000011    0.512  -0.008
34  3916.61 11100000000011011100110001010011    1.023   0.134
35  3929.38 01010110000001011010000001100011   -0.448   1.028
36  3997.89 01010110000011101100111001100011   -0.447   0.188
37  4000.00 11100000000001011010000111010001    1.024   1.046
38  4000.00 11100000000001011010000111000011    1.024   1.048
39  3991.28 01100100000001011010000001110001   -0.896   1.030
Maximum:   4000.00 for Individual 38
Minimum:   3845.42 for Individual 21
Average:   3970.61
Std. Dev:    35.71

Example 2

The traveling salesman problem creates a problem for traditional crossover. In this problem, the objective is to 
find the shortest route while traveling to each city once. In this example, there are eight cities, labeled using the 
letters a-h, with distances ranging from 17 to 113 miles. 

Traditional crossover would create unfeasible routes; that is some routes after crossover would not visit every city 
once. Some would not be visited and others would be visited more than once.

Partially matched crossover (PMX) preserves the feasibility of a route. In the general sense, PMX assumes that the 
nominal phenotypes consists of a string of numbers from zero to n_nominal-1, with each number appearing 
once and only once in that string. Partially matched crossover uses two crossover points within the nominal por-
tion of the chromosome and swaps the middle segment between the parents. The first and third segments are 
manipulated to ensure the resulting offspring is feasible.

#include <imsls.h>
#include <stdio.h>
int main(){
   int i, j, k;                       /* index variables            */
   int n = 50;                        /* population size            */
   int n_generations;                 /* number of generations      */
   int n_nominal = 8;                 /* number of nominal phenotypes*/
   int n_categories[8] = {
       8, 8, 8, 8,
       8, 8, 8, 8                     /* nominal category limits    */
   };
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   float x1;                          /* temporary storage          */
   float avg;                         /* average fitness            */
   float* genStats;                   /* generation statistics      */
   static float pmxFitness(Imsls_f_individual* individual);
   Imsls_f_chromosome* chromosome;    /* chromosome data structure  */
   Imsls_f_individual* best_individual;/* optimum                    */
   Imsls_f_population* population;    /* population data structure  */
   Imsls_f_population* last_generation;/* last generation            */
   char *cities[8] = {"a", "b", "c", "d", /* Cities Label a-h       */
       "e", "f", "g", "h"}; 
   /*******************************************************************/
   /* In this example the user function is thread safe. Let CNL     */
   /* know it is safe, which allows genetic algorithm to run in      */
   /* parallel, if that capability exists on the user computer.      */
   imsls_omp_options(
       IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
       0);
   imsls_random_seed_set(12345);
   chromosome     = imsls_f_ga_chromosome(
       IMSLS_NOMINAL, n_nominal, n_categories,
       0);
   population     = imsls_f_ga_random_population(n, chromosome,
       IMSLS_PMX_CROSSOVER,
       IMSLS_FITNESS_FCN, pmxFitness,
       0);
   best_individual = imsls_f_genetic_algorithm(pmxFitness, population,
       IMSLS_PRINT_LEVEL, IMSLS_FINAL,
       IMSLS_PMX_CROSSOVER,
       IMSLS_INVERT_CROSSOVER,
       IMSLS_CROSSOVER_PROB, 0.8,
       IMSLS_MAX_GENERATIONS, 10,
       IMSLS_GENERATION_STATS, &genStats,
       IMSLS_N_GENERATIONS, &n_generations,
       IMSLS_LAST_GENERATION, &last_generation,
       0);
   printf("GENERATION STATISTICS\n");
   printf("Total Number of Generations: %d\n\n", n_generations);
   printf("Generation Max. Fit. Min. Fit. Avg. Fit.   CV\n");
   for(i=0; i<=n_generations; i++){
       printf("Gen. %3d: %8.0f %8.0f %12.2f %8.2f\n", i,
           genStats[4 * i], genStats[4 * i + 1], genStats[4 * i + 2],
           100 * genStats[4 * i + 3] / genStats[4 * i + 2]
       );
   }
   printf("\n\n           LAST GENERATION\n");
   printf("*************************************\n");
   printf("Individual Fitness Phenotype Values \n");
   avg = last_generation->avgFitness;
   for(i=0; i<last_generation->n; i++){
       x1 = last_generation->fitness[i];
       printf("   %2d    %6.0f   ", i, x1);
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       for(j=0; j<last_generation->chromosome->c_length; j++) {
           k = last_generation->individual[i]->nominalPhenotype[j];
           printf("%s ", cities[k]);
       }
       if(x1 == last_generation->maxFitness){
           printf("***\n");
       }else{
           printf("\n");
       }
   }
   printf("Average Fitness: %6.1f\n\n", avg);
   printf("*************************************\n");
   printf("OPTIMUM SOLUTION:\n\nFitness:%4.0f\n\nChromosome:       ",
       pmxFitness(best_individual));
   for(i=0; i<best_individual->chromosome->c_length; i++)
       printf("%3d", best_individual->chromosome->allele[i]);
   printf("\n\nPhenotype Values: ");
   for(i=0; i<n_nominal; i++) {
       k = best_individual->nominalPhenotype[i];
       printf("->%s", cities[k]);
   }
   printf("\n\n");
   printf("freeing best individual\n");
   imsls_f_ga_free_individual(best_individual);
   printf("freeing last generation\n");
   imsls_f_ga_free_population(last_generation);
   printf("freeing chromosome\n");
   imsls_free(chromosome);
   printf("freeing population\n");
   imsls_f_ga_free_population(population);
}
/***********************************************************************/
/* FITNESS FUNCTION                                                   */
/********************************************************************* */ 
static float pmxFitness(Imsls_f_individual* individual)
{
   int i=0, k=0, i1, i2; /* Index variables                          */
   int n_nominal = 8;   /* number of nominal phenotypes             */
   float f = 0.0;       /* fitness value                            */
   float distances[64] = {
       /* cities:
       a   b   c   d   e   f   g  h      */
       0, 17, 27, 73, 61, 57, 51, 23, /* a */
       17,  0, 37, 73, 72, 74, 66, 40, /* b */
       27, 37,  0, 48, 35, 49, 65, 50, /* c */
       73, 73, 48,  0, 47, 82, 113, 95, /* d */
       61, 72, 35, 47,  0, 38, 80, 78, /* e */
       57, 74, 49, 82, 38,  0, 48, 65, /* f */
       51, 66, 65, 113, 80, 48,  0, 40, /* g */
       23, 40, 50, 95, 78, 65, 40, 0 /* h */
   };
   n_nominal = individual->chromosome->n_nominal;
   k = individual->chromosome->nominalIndex+1;
   f = 0.0;
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   for(i=k; i<k+n_nominal-1; i++){
       i1 = individual->nominalPhenotype[i-1];
       i2 = individual->nominalPhenotype[i ];
       f += distances[i1*n_nominal + i2];
   }
   return 516-f;
}

Output

This program produced the following output. Since the print level was set to IMSLS_FINAL, the optimum solu-
tion was printed. The generation statistics were requested using the IMSLS_GENERATIONS_STATS option, 
and the last population was requested using the IMSLS_LAST_GENERATION option.

The maximum number of generations was set to 10. The genetic algorithm found the optimum route after evalu-
ating the fitness of 550 routes in 10 generations. Generation zero is the initial generation provided to the 
algorithm and is not counted towards the maximum generation count.

OPTIMUM SOLUTION
  Fitness: 269.000000
  Phenotypes:
     Nominal: 8
  Function Calculations: 550
  Population Size:      50
  Number of Generations: 10
  Nominal Phenotype(s):
       3  4  2  1  0  7  6  5
  Chromosome (Base-2 Encoded):
     3 4 2 1 0 7 6 5
GENERATION STATISTICS
Total Number of Generations: 10
Generation Max. Fit. Min. Fit. Avg. Fit.   CV
Gen.  0:     194      29      113.64   33.55
Gen.  1:     251      24      119.10   35.08
Gen.  2:     251      37      131.16   35.99
Gen.  3:     251      38      128.96   33.68
Gen.  4:     251      29      135.08   33.25
Gen.  5:     255      38      136.18   33.44
Gen.  6:     255      28      142.38   33.23
Gen.  7:     255      56      150.56   29.31
Gen.  8:     269      55      155.06   28.88
Gen.  9:     269      56      148.62   26.68
Gen. 10:     269      48      146.32   29.59

           LAST GENERATION
*************************************
Individual Fitness Phenotype Values
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    0       106   a c d g b h e f
    1       269   d e c b a h g f ***
    2       222   d e c h g f a b
    3       154   e a g h b d c f
    4       215   e d c a b f g h
    5       215   e d c a b f g h
    6       158   a h b c d f g e
    7       113   c a d b f e h g
    8        78   f a d b h c g e
    9       125   e d h g b c f a
   10       118   c b e g f h a d
   11       209   d e c b h g a f
   12       161   h b a d c f g e
   13       167   g d b a h c e f
   14       169   a f h g b c e d
   15       137   f g a e d h b c
   16       127   h d a b c f e g
   17        90   b d h g c e a f
   18       216   d h b a c e f g
   19       167   g d e c f h a b
   20       120   e h f c d a b g
   21        86   f a h d b c g e
   22       171   a b d f g h c e
   23       156   d h g a c e f b
   24       146   c e a d b h g f
   25       116   f d g e c h a b
   26       118   b c a h e f d g
   27        95   d g a b f e h c
   28       143   d h b a f c e g
   29       157   b f c g h a e d
   30       175   b e a h g f c d
   31       146   c e a d b h g f
   32       111   c b e h g f a d
   33       140   b e a f g h c d
   34       164   b c e d g h a f
   35       166   f e b c a h g d
   36       199   b a g h f c d e
   37       171   e d f a b c g h
   38        97   f a c d h b e g
   39       222   d e c h g f a b
   40       128   d h c g a b e f
   41        99   e g d c b a f h
   42       112   d h f c b a e g
   43       107   h d a b e f c g
   44       143   c h a b f d e g
   45       144   g a c e d b f h
   46        64   a e c g h d f b
   47       103   b d f h g c a e
   48       129   d a g b f e c h
   49       172   f h b g a c d e
Average Fitness: 146.3
*************************************
OPTIMUM SOLUTION:
Fitness: 269
Chromosome:         3 4 2 1 0 7 6 5
Phenotype Values: ->d->e->c->b->a->h->g->f
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freeing best individual
freeing last generation
freeing chromosome
freeing population

Example 3

This example uses the N-Queens problem to illustrate the use of a fitness function with parameters in imple-
menting a genetic algorithm. The N-Queens problem is derived from chess. The genetic algorithm provides an 
efficient search for a valid solution. For this problem the chess board consists of N rows and N columns. The 
objective is to place N queens on this board with no conflicts. A conflict occurs when one queen can move and 
capture another. Since queens can move diagonally, vertically and horizontally this problem is challenging when 
N becomes large.

One solution for N = 4 is displayed in the following table. A valid solution must place every queen in a different 
row and column. The problem is to ensure the queens are not in conflict because of lying on the same diagonal.

Similar to the traveling salesman problem, the N-Queens problem can be expressed using N nominal phenotypes 
with values 0, 1, …, N-1. The value of the i-th phenotype represents the row number for the queen in the i-th col-
umn. This ensures that any arrangement of the phenotype values represents a board with N queens, each placed 
in a different row and column.

The solution for N queens displayed above can be represented by the phenotype values {1, 3, 0, 2}. The search 
looks for arrangements that also do not place queens on the same diagonal. Two queens fall on the same diago-
nal if the absolute value of the difference between their row numbers equals the absolute value of the difference 
between their column numbers.

This example uses this representation with a fitness function equal to (N – C) where C equals the number of con-
flict among the queens. With this fitness, a solution to the N-Queens has a fitness of N.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
typedef struct
{
   int n_queens;

Row/Col 0 1 2 3

0 Q

1 Q

2 Q

3 Q
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} inputArgs;
int main(){
   int i, j, k;       /* index variables            */
   int n = 500;       /* population size            */
   int n_generations; /* number of generations      */
   int n_queens = 25; /* number of nominal phenotypes*/
   int n_categories[25];
   float maxFit;      /* maximum fitness hurdle     */
   float* genStats;   /* generation statistics      */
   static float queensFitness(
       Imsls_f_individual* individual, inputArgs* input);
   inputArgs* parameters;
   Imsls_f_chromosome* chromosome;    /* chromosome */
   Imsls_f_individual* best_individual;/* optimum   */
   Imsls_f_population* population;    /* population */
   /**************************************************/
   /* In this example the user function is thread   */
   /* safe. Let CNL know it is safe, which allows  *
   /* genetic algorithm to run in parallel, if that */
   /* capability exists on the user computer.       */
   imsls_omp_options(
       IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
       0);
   imsls_random_seed_set(12345);
   maxFit = n_queens - 0.5;
   for(i=0; i<n_queens; i++)
       n_categories[i] = n_queens;
   chromosome     = imsls_f_ga_chromosome(
       IMSLS_NOMINAL, n_queens, n_categories,
       0);
   parameters = (inputArgs*) malloc(sizeof(inputArgs));
   parameters->n_queens = n_queens;
   population = imsls_f_ga_random_population(n, chromosome,
       IMSLS_PMX_CROSSOVER,
       IMSLS_FITNESS_FCN_WITH_PARMS,
       queensFitness, parameters,
       0);
   best_individual = imsls_f_genetic_algorithm(NULL, population,
       IMSLS_FITNESS_FCN_WITH_PARMS, queensFitness, parameters,
       IMSLS_PRINT_LEVEL, IMSLS_FINAL,
       IMSLS_PMX_CROSSOVER,
       IMSLS_LINEAR_SCALING, 2.0,
       IMSLS_CROSSOVER_PROB, 0.7,
       IMSLS_MUTATION_PROB, 0.01,
       IMSLS_MAX_GENERATIONS, 10000,
       IMSLS_MAX_FITNESS, maxFit,
       IMSLS_GENERATION_STATS, &genStats,
       IMSLS_N_GENERATIONS, &n_generations,
       0);
   printf("GENERATION STATISTICS\n");
   printf("Total Number of Generations: %d\n\n", n_generations);
   printf("Generation Max. Fit. Min. Fit. Avg. Fit.   CV\n");
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   printf("*************************************************\n");
   for(i = 0; i <= n_generations; i += 25){
       printf("Gen. %3d: %8.0f %8.0f %12.2f %8.2f\n",
           i, genStats[4 * i], genStats[4 * i + 1], genStats[4 * i + 2],
           100 * genStats[4 * i + 3] / genStats[4 * i + 2]);
   }
   i = n_generations;
   printf("Gen. %3d: %8.0f %8.0f %12.2f %8.2f\n",
       i, genStats[4 * i], genStats[4 * i + 1], genStats[4 * i + 2],
       100 * genStats[4 * i + 3] / genStats[4 * i + 2]);
   printf("*************************************************\n");
   printf("OPTIMUM SOLUTION:\n\nFitness:%4.0f\n\nChromosome:       ",
       queensFitness(best_individual, parameters));
   for(i = 0; i < best_individual->chromosome->c_length; i++)
       printf("%3d", best_individual->chromosome->allele[i]);
   if(n_queens<100){
       printf("\n\nBoard Positions: \n\n");
       for(i=0; i<n_queens; i++)
           printf("--");
       printf("-\n");
       for(i=0; i<n_queens; i++) {
           for(j=0; j<n_queens; j++){
               k = best_individual->nominalPhenotype[j];
               if(i==k)
                   printf("|Q");
               else
                   printf("| ");
           }
           printf("|\n");
           for(k=0; k<n_queens; k++)
               printf("--");
           printf("-\n");
       }
       printf("\n\n");
   }
}
static float queensFitness(Imsls_f_individual* individual, inputArgs* input)
{
   int i=0, j=0, k=0; /* Index variables */
   int n_queens;
   float f = 0.0;    /* Fitness value  */
   n_queens = input->n_queens;
   f = 0;
   for(i=0; i<n_queens-1; i++){
       for(j=i+1; j<n_queens; j++){
           k = individual->chromosome->allele[i] -
               individual->chromosome->allele[j];
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           k = abs(k);
           if (abs(i - j) == k) f++;
       }
   }
   f = n_queens - f;
   return f;
}

Output

This program produced the following solution to the N-Queens problem with N=50 queens. Notice that some of 
the minimum fitness values are negative. This alters the random selection of the fittest parents, but if these val-
ues are few and small, then the effect is not enough to halt the genetic algorithm.

For 50 queens there are over 1064 ways of placing queens ensuring each is in its own row and column. An 
exhaustive search of these possible solutions to find a arrangement without diagonal conflicts would be time 
consuming. The genetic algorithm search found a solution in only 568 generations, requiring 284,500 function 
evaluations.

OPTIMUM SOLUTION
  Fitness: 25.000000
  Phenotypes:
     Nominal: 25
  Function Calculations: 284500
  Population Size:      500
  Number of Generations: 568
  Nominal Phenotype(s):
  23 12 16  9 13  2 18  1 21 10  6 19
   3 20  0  7 15  4  8 17 22 14  5 11
  24
  Chromosome (Base-2 Encoded):
  23 12 16 9 13 2 18 1 21 10 6 19 3 20 0 7 15 4 
   8 17 22 14 5 11 24
GENERATION STATISTICS
Total Number of Generations: 568
Generation Max. Fit. Min. Fit. Avg. Fit.   CV
*************************************************
Gen.  0:      19     -10         8.11   52.98
Gen. 25:      21      -2        11.02   30.33
Gen. 50:      21      -4        11.49   29.48
Gen. 75:      21      -1        11.15   29.51
Gen. 100:     21      -3        11.42   33.10
Gen. 125:     21      -3        11.17   31.50
Gen. 150:     21      -4        10.64   34.01
Gen. 175:     21      -8        10.60   34.64
Gen. 200:     21      -4        11.16   32.47
Gen. 225:     21      -2        10.76   34.18
Gen. 250:     22      -1        11.08   32.50
Gen. 275:     22      -4        10.98   34.14
Gen. 300:     23      -3        10.97   33.84
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Gen. 325:     23      -1        11.75   29.37
Gen. 350:     23     -10        11.08   33.76
Gen. 375:     23      -4        11.54   31.17
Gen. 400:     23       1        11.55   30.43
Gen. 425:     23      -8        12.76   26.36
Gen. 450:     23      -2        12.01   27.39
Gen. 475:     23       0        12.94   27.34
Gen. 500:     23       3        13.78   22.91
Gen. 525:     23       4        15.05   17.90
Gen. 550:     24       4        16.47   18.41
Gen. 568:     25      12        19.48   11.63
*************************************************
OPTIMUM SOLUTION:
Fitness: 25
Chromosome: 23 12 16 9 13 2 18 1 21 10 6 19 3 20
            0 7 15 4 8 17 22 14 5 11 24
Board Positions:
---------------------------------------------------
| | | | | | | | | | | | | | |Q| | | | | | | | | | |
---------------------------------------------------
| | | | | | | |Q| | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | |Q| | | | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | |Q| | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | |Q| | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | | | | | | |Q| | |
---------------------------------------------------
| | | | | | | | | | |Q| | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | |Q| | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | | |Q| | | | | | |
---------------------------------------------------
| | | |Q| | | | | | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | |Q| | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | | | | | | | |Q| |
---------------------------------------------------
| |Q| | | | | | | | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | |Q| | | | | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | | | | | |Q| | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | |Q| | | | | | | | |
---------------------------------------------------
| | |Q| | | | | | | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | | | |Q| | | | | |
---------------------------------------------------
| | | | | | |Q| | | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | |Q| | | | | | | | | | | | | |
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---------------------------------------------------
| | | | | | | | | | | | | |Q| | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | |Q| | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | | | | |Q| | | | |
---------------------------------------------------
|Q| | | | | | | | | | | | | | | | | | | | | | | | |
---------------------------------------------------
| | | | | | | | | | | | | | | | | | | | | | | | |Q|
----------------------------------------------------

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm. 
User flag = "#".
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Naive Bayes – An Overview
Classification problems are characterized by a need to classify unknown patterns or data into one of m categories 
based upon the values of k attributes x1, x2, …, xk. There are many algorithms for solving classification problems 

including discriminant analysis, neural networks and Naive Bayes. Each algorithm has its strengths and weak-
nesses. Discriminant analysis is robust but it requires x1, x2, …, xk. to be continuous, and since it uses a simple 

linear equation for the discriminant function, its error rate can be higher than the other algorithms. See 
imsls_f_discriminant_analysis.

Neural Networks provides a linear or non-linear classification algorithm that accepts both nominal and continu-
ous input attributes. However, network training can be unacceptably slow for problems with a larger number of 
attributes, typically when k >1000. Naive Bayes, on the other hand, is a simple algorithm that is very fast. A Naive 
Bayes classifier can be trained to classify patterns involving thousands of attributes and applied to thousands of 
patterns. As a result, Naive Bayes is a preferred algorithm for text mining and other large classification problems. 
However, its computational efficiency comes at a price. The error rate for a Naive Bayes classifier is typically 
higher than the equivalent Neural Network classifier, although it is usually low enough for many applications such 
as text mining.

If C is the classification attribute and XT={x1, x2, …, xk} is the vector valued array of input attributes, the classifica-

tion problem simplifies to estimating the conditional probability P(c|X) from a set of training patterns. The Bayes 
rule states that this probability can be expressed as the ratio:

where c is equal to one of the target classes 0, 1, …, n_classes-1. In practice, the denominator of this expres-
sion is constant across all target classes since it is only a function of the given values of X. As a result, the Naive 

Bayes algorithm does not expend computational time estimating   for every pattern. 

Instead, a Naive Bayes classifier calculates the numerator    for each 
target class and then classifies X to the target class with the largest value, i.e., 

The classifier simplifies this calculation by assuming conditional independence:

P C = c∣X = x1, x2, ... xk =
P C = c P X = x1, x2, ... xk ∣C = c

P X = x1, x2, ... xk

P X = x1,x2,...xk

P C = c P X = x1,x2,...xk ∣C = c

max
X P(C = c)P(X |C = c)n_classes -1c=0,1,
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This is equivalent to assuming that the values of the input attributes, given C, are independent of one another, i.e.

In real world data this assumption rarely holds, yet in many cases this approach results in surprisingly low classifi-

cation error rates. Thus, the estimate of   from a Naive Bayes classifier is 
generally an approximation, classifying patterns based upon the Naive Bayes algorithm can have acceptably low 
classification error rates.

Function imsls_f_naive_bayes_trainer is used to train a classifier from a set of training patterns that con-
tains patterns with values for both the input and target attributes. This routine stores the trained classifier into an 
Imsls_f_nb_classifier data structure. The trained classifier can in turn be stored to a file using 
imsls_f_nb_classifier_write, and later retrieved using imsls_f_nb_classifier_read. 

Classifications of new patterns with unknown classifications can be predicted by passing the trained classifier 
data structure, Imsls_f_nb_classifier, to imsls_f_naive_bayes_classification. If necessary, memory allo-
cated to the trained classifier can be released using imsls_f_nb_classifier_free.

P X = x1, x2, ... xk ∣C = c =∏
j=1

k

P x j∣C = c

P xi∣x j,C = c = P xi∣C = c for all i ≠ j.

P C = c∣X = x1, x2, … xk
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naive_bayes_trainer

more...

Trains a Naive Bayes classifier.

Synopsis
#include <imsls.h>
int *imsls_f_naive_bayes_trainer (int n_patterns, int n_classes, 

int classification[], ..., 0)

The type double function is imsls_d_naive_bayes_trainer.

Required Arguments
int n_patterns (Input)

Number of training patterns. 

int n_classes (Input)
Number of target classifications. 

int classification[] (Input)
Array of size n_patterns containing the target classifications for the training patterns. These must 
be encoded from zero to n_classes-1. Any value outside this range is considered a missing value. 
In this case, the data in that pattern are not used to train the Naive Bayes classifier. However, any pat-
tern with missing values is still classified after the classifier is trained.

Return Value
An array of size (n_classes+1) by 2 containing the number of classification errors and the number of non-
missing classifications for each target classification plus the overall totals for these errors. For i < n_classes, 
the i-th row contains the number of classification errors for the i-th class and the number of patterns with 
non-missing classifications for that class. The last row contains the number of classification errors totaled over all 
target classifications and the total number of patterns with non-missing target classifications. The memory allo-
cated for this array can be released using imsls_free. 
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If training is unsuccessful, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h> 

int *imsls_f_naive_bayes_trainer (int n_patterns, int n_classes, 
int classification[], 

IMSLS_CONTINUOUS, int n_continuous, float continuous[],

IMSLS_NOMINAL, int n_nominal, int n_categories[], int nominal[],

IMSLS_PRINT_LEVEL, int print_level,

IMSLS_IGNORE_MISSING_VALUE_PATTERNS,

IMSLS_DISCRETE_SMOOTHING_PARM, float d_lambda,

IMSLS_CONTINUOUS_SMOOTHING_PARM, float c_lambda,

IMSLS_ZERO_CORRECTION, float zero_correction,

IMSLS_SELECTED_PDF, int selected_pdf[],

IMSLS_GAUSSIAN_PDF, float means[], float stdev[],

IMSLS_LOG_NORMAL_PDF, float logMean[], float logStdev[],

IMSLS_GAMMA_PDF, float a[], float b[],

IMSLS_POISSON_PDF, float theta[],

IMSLS_USER_PDF, float pdf(), 

IMSLS_USER_PDF_WITH_PARMS, float pdf(), void *parms,

IMSLS_STATISTICS, float **means, float **stdev,

IMSLS_STATISTICS_USER, float means[], float stdev[],

IMSLS_PREDICTED_CLASS, int **predicted_class,

IMSLS_PREDICTED_CLASS_USER, int predicted_class[],

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob,

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[],

IMSLS_CLASS_ERROR, float **class_error,

IMSLS_CLASS_ERROR_USER, float class_error[],

IMSLS_COUNT_TABLE, int **count_table, 

IMSLS_COUNT_TABLE_USER, int count_table[],

IMSLS_NB_CLASSIFIER, Imsls_f_nb_classifier **nb_classifier,
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IMSLS_RETURN_USER, int classErrors[],

0)

Optional Arguments 
IMSLS_CONTINUOUS, int n_continuous, float continuous[]  (Input)

n_continuous is the number of continuous attributes and continuous is an array of size 
n_patterns by n_continuous containing the training values for the continuous attributes. The 
i-th row contains the input attributes for the i-th training pattern. The j-th column of continuous 
contains the values for the j-th continuous attribute. Missing values should be set equal to 
imsls_f_machine(6) =NaN. Patterns with both non-missing and missing values are used to 
train the classifier unless the IMSLS_IGNORE_MISSING_VALUE_PATTERNS argument is sup-
plied. If the IMSLS_CONTINUOUS argument is not supplied, n_continuous is assumed equal to 
zero.

IMSLS_NOMINAL, int n_nominal, int n_categories[], int nominal[] (Input)
n_nominal is the number of nominal attributes. n_categories is an array of length 
n_nominal containing the number of categories associated with each nominal attribute. These 
must all be greater than zero. nominal is an array of size n_patterns by n_nominal containing 
the training values for the nominal attributes. The i-th row contains the nominal input attributes for 
the i-th pattern. The j-th column of this matrix contains the classifications for the j-th nominal attri-
bute. The values for the j-th nominal attribute are expected to be encoded with integers starting 
from 0 to n_categories[i]-1. Any value outside this range is treated as a missing value. Pat-
terns with both non-missing and missing values are used to train the classifier unless the 
IMSLS_IGNORE_MISSING_VALUE_PATTERNS option is supplied. If the IMSLS_NOMINAL 
argument is not supplied, n_nominal is assumed equal to zero.

IMSLS_PRINT_LEVEL, int print_level (Input)
Print levels for printing data warnings and final results. print_level should be set to one of the 
following values:

print_level Description

IMSLS_NONE Printing of data warnings and final results is 
suppressed.

IMSLS_FINAL Prints final summary of Naive Bayes classifier training.

IMSLS_DATA_WARNINGS Prints information about missing values and PDF cal-
culations equal to zero.

IMSLS_TRACE_ALL Prints final summary plus all data warnings associated 
with missing values and PDF calculations equal to 
zero.
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Default:  IMSLS_NONE.

IMSLS_IGNORE_MISSING_VALUE_PATTERNS, (Input)
By default, patterns with both missing and non-missing values are used to train the classifier. This 
option causes the algorithm to ignore patterns with one or more missing input attributes during 
training. However, classification predictions are still returned for all patterns. 

IMSLS_DISCRETE_SMOOTHING_PARM, float d_lambda (Input)
Parameter for calculating smoothed estimates of conditional probabilities for discrete attributes. This 
parameter must be non-negative.

Default: Laplace smoothing of conditional probabilities, i.e. d_lambda=1. 

IMSLS_CONTINUOUS_SMOOTHING_PARM, float c_lambda (Input)
Parameter for calculating smoothed estimates of conditional probabilities for continuous attributes. 
This parameter must be non-negative.

Default: No smoothing of conditional probabilities for continuous attributes, i.e. c_lambda=0. 

IMSLS_ZERO_CORRECTION, float zero_correction (Input)
Parameter used to replace conditional probabilities equal to zero numerically. This parameter must 
be non-negative. 

Default: No correction, i.e. zero_correction = 0.

IMSLS_SELECTED_PDF, int selected_pdf[] (Input)
An array of length n_continuous specifying the distribution for each continuous input attribute. If 
this argument is not supplied, conditional probabilities for all continuous attributes are calculated 
using the Gaussian probability density function with its parameters estimated from the training pat-
terns, i.e. selected_pdf[i] = IMSLS_GAUSSIAN. This argument allows users to select other 
distributions using the following encoding:

selected_pdf[i], specifies the probability density function for the i-th continuous input 
attribute.

selected_pdf[i] Probability Density Function

IMSLS_GAUSSIAN Gaussian (See IMSLS_GAUSSIAN_PDF).

IMSLS_LOG_NORMAL Log-normal (See IMSLS_LOG_NORMAL_PDF).

IMSLS_GAMMA Gamma (See IMSLS_GAMMA_PDF).

IMSLS_POISSON Poisson (See IMSLS_POISSON_PDF).

IMSLS_USER User Defined (See IMSLS_USER_PDF).
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IMSLS_GAUSSIAN_PDF, float means[], float stdev[] (Input)
The means and stdev are two arrays each of size n_gauss by n_classes where n_gauss 
represents the number of Gaussian attributes as specified by optional argument 
IMSLS_SELECTED_PDF (i.e., the number of elements in selected_pdf equal to 
IMSLS_GAUSSIAN). The i-th row of means and stdev contains the means and standard devia-
tions respectively for the i-th Gaussian attribute in continuous for each value of the target 
classification. means[i*n_classes+j] is used as the mean for the i-th Gaussian attribute when 
the target classification equals j, and stdev[i*n_classes+j] is used as the standard deviation 
for the i-th Gaussian attribute when the target classification equals j. This argument is ignored if 
n_continuous = 0.

Default: The means and standard deviations for all Gaussian attributes are estimated from the 
means and standard deviations of the training patterns. These estimates are the traditional BLUE 
(Best Linear Unbiased Estimates) for the parameters of a Gaussian distribution. 

IMSLS_LOG_NORMAL_PDF, float logMean[], float logStdev[] (Input)
Two arrays each of size n_logNormal by n_classes where n_logNormal represents the 
number of log-normal attributes as specified by optional argument IMSLS_SELECTED_PDF (i.e., 
the number of elements in selected_pdf equal to IMSLS_LOG_NORMAL). The i-th row of 
logMean and logStdev contains the means and standard deviations respectively for the i-th log-
normal attribute for each value of the target classification.

logMean[i*n_classes+j] is used as the mean for the i-th log-normal attribute when the tar-
get classification equals j, and logStdev[i*n_classes+j] is used as the standard deviation 
for the i-th log-normal attribute when the target classification equals j. This argument is ignored if 
n_continuous = 0. 

Default: The means and standard deviations for all log-normal attributes are estimated from the 
means and standard deviations of the training patterns. These estimates are the traditional MLE 
(Maximum Likelihood Estimates) for the parameters of a log-normal distribution.

IMSLS_GAMMA_PDF, float a[], float b[] (Input)
Two arrays each of size n_gamma by n_classes containing the means and standard deviations for 
the Gamma continuous attributes, where n_gamma represents the number of gamma distributed 
continuous variables as specified by the optional argument IMSLS_SELECTED_PDF (i.e. the num-
ber of elements in selected_pdf equal to IMSLS_GAMMA). The i-th row of a and b contains the 
shape and scale parameters for the i-th Gamma attribute for each value of the target classification. 
a[i*n_classes+j] is used as the shape parameter for the i-th Gamma attribute when the target 
classification equals j, and  b[i*n_classes+j] is used as the scale parameter for the i-th 
Gamma attribute when the target classification equals j. This argument is ignored if 
n_continuous = 0. 
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Default: The shape and scale parameters for all Gamma attributes are estimated from the training 
patterns. These estimates are the traditional MLE (Maximum Likelihood Estimates) for the parame-
ters of a Gamma distribution. 

IMSLS_POISSON_PDF, float theta[] (Input)
An array of size n_poisson by n_classes containing the means for the Poisson attributes, 
where n_poisson represents the number of Poisson distributed continuous variables as specified 
by the optional argument IMSLS_SELECTED_PDF (i.e. the number of elements in 
selected_pdf equal to IMSLS_POISSON).The i-th row of theta contains the means for the i-th 
Poisson attribute for each value of the target classification. theta[i*n_classes+j] is used as 
the mean for the i-th Poisson attribute when the target classification equals j. This argument is 
ignored if n_continuous= 0. 

Default: The means (theta) for all Poisson attributes are estimated from the means of the training 
patterns. These estimates are the traditional MLE (Maximum Likelihood Estimates) for the parame-
ters of a Poisson distribution. 

IMSLS_USER_PDF, float pdf(int index[], float x) (Input)
The user-supplied probability density function and parameters used to calculate the conditional 
probability density for continuous input attributes is required when selected_pdf[i]= 
IMSLS_USER. 

When pdf is called, x will equal continuous[i*n_continuous+j], and index is an array of 
length 3 which will contain the following values for i, j, and k:

The pattern index ranges from 0 to n_patterns-1 and identifies the pattern index for x. The attri-
butes index ranges from 0 to n_categories[i]-1, and k=classification[i].
This argument is ignored if n_continuous = 0. By default the Gaussian PDF is used for calculat-
ing the conditional probability densities using either the means and variances calculated from the 
training patterns or those supplied in IMSLS_GAUSSIAN_PDF.

On some platforms, imsls_f_naive_bayes_trainer can evaluate the user-supplied function 
pdf in parallel. This is done only if the function imsls_omp_options is called to flag user-defined 
functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such 
dependencies are usually the result of writing to global or static variables.

index Value
index[0] i = pattern index

index[1] j = attribute index

index[2] k = target classification
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IMSLS_USER_PDF_WITH_PARMS, float pdf(int index[], float x, void *parms), void *parms 
(Input)
The user-supplied probability density function and parameters used to calculate the conditional 
probability density for continuous input attributes is required when selected_pdf[i]= 
IMSLS_USER. pdf also accepts a pointer to parms supplied by the user. The parameters pointed 
to by parms are passed to pdf each time it is called. For an explanation of the other arguments, see 
IMSLS_USER_PDF.

IMSLS_STATISTICS, float **means, float **stdev (Output)
The address of pointers to two arrays of size n_continuous by n_classes containing the 
means and standard deviations for the continuous attributes segmented by the target classes. The 
structure of these matrices is identical to the structure described for the IMSLS_GAUSSIAN_PDF 
argument. The i-th row of means and stdev contains the means and standard deviations respec-
tively of the i-th continuous attribute for each value of the target classification. That is, 
means[i*n_classes+j] is the mean for the i-th continuous attribute when the target classifica-
tion equals j, and stdev[i*n_classes+j] is the standard deviation for the i-th continuous 
attribute when the target classification equals j, unless there are no training patterns for this condi-
tion. If there are no training patterns in the i, j-th cell then the mean and standard deviation for that 
cell is computed using the mean and standard deviation for the i-th continuous attribute calculated 
using all of its non-missing values. Standard deviations are estimated using the minimum variance 
unbiased estimator.

IMSLS_STATISTICS_USER, float means[], float stdev[] (Output)
Storage for matrices means and stdev provided by the user. See IMSLS_STATISTICS.

IMSLS_PREDICTED_CLASS, int **pred_class (Output)
The address of a pointer to an array of size n_patterns containing the predicted classification for 
each training pattern.

IMSLS_PREDICTED_CLASS_USER, int pred_class[] (Output)
Storage for array pred_class provided by the user. See IMSLS_PREDICTED_CLASS.

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob (Output)
The address of a pointer to an array of size n_patterns by n_classes. The values in the i-th 
row are the predicted classification probabilities associated with the target classes. 
pred_class_prob[i*n_classes+j] is the estimated probability that the i-th pattern belongs 
to the j-th target class.

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[] (Output)
Storage for array pred_class_prob is provided by the user. See 
IMSLS_PREDICTED_CLASS_PROB for a description. 
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IMSLS_CLASS_ERROR, float **class_error (Output)
The address of a pointer to an array with n_patterns containing the classification probability 
errors for each pattern in the training data. The classification error for the i-th training pattern is 
equal to 1- pred_class_prob[i*n_classes+k] where k=classification[i]. 

IMSLS_CLASS_ERROR_USER, float class_error[] (Output)
Storage for array class_error is provided by the user. See IMSLS_CLASS_ERROR for a 
description.

IMSLS_COUNT_TABLE int **count_table (Output)
The address of a pointer to an array of size 

where m = n_nominal -1.

count_table[i*n_nominal*n_classes+j*n_classes+k] is equal to the number of train-
ing patterns for the i-th nominal attribute, when the classification[i]=j and 
nominal[i*n_classes+j]=k. 

IMSLS_COUNT_TABLE_USER, int count_table[] (Output)
Storage for matrix count_table provided by the user. See IMSLS_COUNT_TABLE.

IMSLS_NB_CLASSIFIER, Imsls_f_nb_classifier **nb_classifier (Output)
The address of a pointer to an Imsls_f_nb_classifier structure. Upon return, the structure is populated 
with the trained Naive Bayes classifier. This is required input to 
imsls_f_naive_bayes_classification. Memory allocated to this structure is released 
using imsls_f_nb_classifier_free.

IMSLS_RETURN_USER, int classErrors[] (Output)
An array of size (n_classes +1) by 2 containing the number of classification errors and the number 
of non-missing classifications for each target classification and the overall totals. For 
0 ≤ i < n_classes, the i-th row contains the number of classification errors for the i-th class and 
the number of patterns with non-missing classifications for that class. The last row contains the num-
ber of classification errors totaled over all target classifications and the total number of patterns with 
non-missing target classifications.

m + 1 n_classes + n_classes∑
i=0

m

n_categories i
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Description
Function imsls_f_naive_bayes_trainer trains a Naive Bayes classifier for classifying data into one of 
n_classes target classes. Input attributes can be a combination of both nominal and continuous data. Ordinal 
data can be treated as either nominal attributes or continuous. If the distribution of the ordinal data is known or 
can be approximated using one of the continuous distributions, then associating them with continuous attri-
butes allows a user to specify that distribution. Missing values are allowed.

Let C be the classification attribute with target categories 0, 1, …, n_classes-1, and let 

XT={x1, x2, …, xk} be a vector valued array of k = n_nominal+n_continuous input attributes. The 

classification problem simplifies to estimate the conditional probability P(C|X) from a set of training patterns. The 
Bayes rule states that this probability can be expressed as the ratio:

where c is equal to one of the target classes 0, 1, …, n_classes-1. In practice, the denominator of this expres-
sion is constant across all target classes since it is only a function of the given values of X. As a result, the Naive 

Bayes algorithm does not expend computational time estimating    for every pattern. 

Instead, a Naive Bayes classifier calculates the numerator    for each 
target class and then classifies X to the target class with the largest value, i.e., 

The classifier simplifies this calculation by assuming conditional independence. That is it assumes that:

This is equivalent to assuming that the values of the input attributes, given C, are independent of one another, 
i.e.,

In real world data this assumption rarely holds, yet in many cases this approach results in surprisingly low classifi-

cation error rates. Thus, the estimate of   from a Naive Bayes classifier is generally 
an approximation. Classifying patterns based upon the Naive Bayes algorithm can have acceptably low classifica-
tion error rates.

P C = c∣X = x1, x2, ... xk =
P C = c P X = x1, x2, ... xk ∣C = c

P X = x1, x2, ... xk

P X = x1, x2, … xk

P C = c P X = x1, x2, … xk ∣C = c

max
X P(C = c)P(X |C = c)n_classes -1c=0,1,

P X = x1, x2, ... xk ∣C = c =∏
j=1

k

P x j∣C = c

P xi∣x j,C = c = P xi∣C = c for all i ≠ j

P C = c∣X = x1,x2,...xk
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For nominal attributes, this implementation of the Naive Bayes classifier estimates conditional probabilities using 
a smoothed estimate:

where #N{Z}is the number of training patterns with attribute Z and j is equal to the number of categories associ-
ated with the j-th nominal attribute. 

The probability    is also estimated using a smoothed estimate:

These estimates correspond to the maximum a priori (MAP) estimates for a Dirichelet prior assuming equal pri-
ors. The smoothing parameter can be any non-negative value. Setting λ = 0 corresponds to no smoothing. The 
default smoothing used in this algorithm, λ = 1, is commonly referred to as Laplace smoothing. This can be 
changed using the optional argument IMSLS_DISCRETE_SMOOTHING_PARM.

For continuous attributes, the same conditional probability   in the Naive Bayes formula is replaced 

with the conditional probability density function   . By default, the density function for continuous 
attributes is the Gaussian density function:

where μ and σ are the conditional mean and variance, i.e. the mean and variance of xj when   . By default 

the conditional mean and standard deviations are estimated using the sample mean and standard deviation of 
the training patterns. These are returned in the optional argument IMSLS_STATISTICS.

In addition to the default IMSLS_GAUSSIAN, users can select three other continuous distributions to model 
the continuous attributes using the argument IMSLS_SELECTED_PDF. These are the Log Normal, Gamma, 
and Poisson distributions selected by setting the entries in selected_pdf to IMSLS_LOG_NORMAL, 
IMSLS_GAMMA or IMSLS_POISSON. Their probability density functions are equal to:

P x j∣C = c =
#N x j ∩ C = c + λ

#N C = c + λJ

P C = c

P C = c =
#N C = c + λ

n_patterns + λ × n_classes

P xj∣C = c
f x j∣C = c

f (x j|C = c) =
1
2πσ e

−
(x j−μ)

2

2σ2

C = c
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and

By default parameters for these distributions are estimated from the training patterns using the maximum likeli-
hood method. However, they can also be supplied using the optional input arguments 
IMSLS_GAUSSIAN_PDF, IMSLS_LOG_NORMAL_PDF, IMSLS_GAMMA_PDF and IMSLS_POISSON_PDF. 

The default Gaussian PDF can be changed and each continuous attribute can be assigned a different density 
function using the argument IMSLS_SELECTED_PDF. If any entry in selected_pdf is equal to 
IMSLS_USER, the user must supply their own PDF calculation using the IMSLS_USER_PDF argument. Each 
continuous attribute can be modeled using a different distribution if appropriate.

Smoothing conditional probability calculations for continuous attributes is controlled by the 
IMSLS_CONTINOUS_SMOOTHING_PARM and IMSLS_ZERO_CORRECTION optional arguments. By default 
conditional probability calculations for continuous attributes are unadjusted for calculations near zero. If the 
value of c_lambda is set using the IMSLS_CONTINOUS_SMOOTHING_PARM argument, the algorithm adds 
c_lambda to each continuous probability calculation. This is similar to the effect of d_lambda for the corre-
sponding discrete calculations. By default c_lambda=0.

The value of zero_correction from the IMSLS_ZERO_CORRECTION argument is used when  

 . If this condition occurs, the conditional probability is replaced with the 
value of zero_correction. By default zero_correction = 0.

Examples

Example 1

Fisher’s (1936) Iris data is often used for benchmarking classification algorithms. It is one of the IMSL data sets 
and consists of the following continuous input attributes and classification target:

Continuous Attributes: X0(sepal length), X1(sepal width), X2(petal length), and X3(petal width)

f (x j|C = c) =
1
2πσ e

−
(ln(x j)−μ)

2

2σ2

f x j∣C = c =
x j
a−1e

−x j/b

baΓ a , x j > 0, a > 0 and b > 0,

f x j∣C = c = θ
x je−θ
x j!

, x j > 0 and θ > 0.

f x∣C = c + c_lambda = 0
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Classification (Iris Type): Setosa, Versicolour, or Virginica.

This example trains a Naive Bayes classifier using 150 training patterns with these data. 

#include <imsls.h>
#include <stdio.h>
int main(){                              
  int i, j;
  int n_patterns   =150; /* 150 training patterns           */
  int n_continuous =4;  /* four continuous input attributes */
  int n_classes    =3;  /* three classification categories */
  int classification[150], *classErrors, *predictedClass;
  float *pred_class_prob, continuous[4*150] ;
  float *irisData;      /* Fishers Iris Data */
  char *classLabel[3] = {"Setosa    ", "Versicolour", "Virginica "};
  Imsls_f_nb_classifier *nb_classifier;
  imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
      /* irisData[]: The raw data matrix. This is a 2-D matrix 
          with 150 rows and 5 columns. The last 4 columns are the
          continuous input attributes and the 1st column is the
          classification category (1-3). These data contain no */
  /* nominal input attributes.                          */
  irisData = imsls_f_data_sets(3,0);
  /* Data corrections described in the KDD data mining archive */
  irisData[5*34+4] = 0.1;
  irisData[5*37+2] = 3.1;
  irisData[5*37+3] = 1.5;
  /* setup the required input arrays from the data matrix */
  for(i=0; i<n_patterns; i++){
    classification[i] = (int) irisData[i*5]-1;
    for(j=1; j<=n_continuous; j++) 
              continuous[i*n_continuous+j-1] = irisData[i*5+j];
  }
  
  classErrors = imsls_f_naive_bayes_trainer(n_patterns, 
        n_classes, classification, 
        IMSLS_CONTINUOUS, n_continuous, continuous,
        IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
  
  printf("    Iris Classification Error Rates\n");
  printf("----------------------------------------------\n");
  printf("  Setosa Versicolour Virginica  |  TOTAL\n");
  printf("   %d/%d     %d/%d        %d/%d    |  %d/%d\n",   
      classErrors[0], classErrors[1],
      classErrors[2], classErrors[3],
      classErrors[4], classErrors[5],
      classErrors[6], classErrors[7]);
  printf("----------------------------------------------\n\n");
};

Output

For Fisher’s data, the Naive Bayes classifier incorrectly classified 6 of the 150 training patterns. 

    Iris Classification Error Rates
----------------------------------------------
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  Setosa Versicolour Virginica  |  TOTAL
   0/50     3/50        3/50    |  6/150
----------------------------------------------

Example 2

This example trains a Naive Bayes classifier using 24 training patterns with four nominal input attributes. It illus-
trates the output available from the optional argument IMSLS_PRINT_LEVEL.

The first nominal attribute has three classifications and the others have three. The target classifications are con-
tact lenses prescription: hard, soft or neither recommended. These data are benchmark data from the 
Knowledge Discovery Databases archive maintained at the University of California, Irvine: 
http://archive.ics.uci.edu/ml/datasets/Lenses.

#include <imsls.h>
int main(){
   int inputData[5 * 24] = { /* DATA MATRIX */
       1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1,
       2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1,
       1, 1, 3, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 2, 1, 2, 2, 1, 2, 2, 1,
       1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 1, 1, 1,
       3, 3, 1, 1, 2, 3, 3, 1, 2, 1, 3, 3, 1, 2, 2, 1, 3, 2, 1, 1, 3,
       3, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 2, 2, 2, 3
   };
   int i, j;
   int n_patterns   = 24; /* 24 training patterns      */
   int n_nominal    = 4; /* 2 nominal input attributes */
   int n_classes    = 3; /* three classification categories */
   int n_categories[4] = {3, 2, 2, 2};
   int nominal[4 * 24], classification[24], *classErrors;
   char *classLabel[3] = {"Hard  ", "Soft  ", "Neither"};
   imsls_omp_options(
       IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
       0);
   /* setup the required input arrays from the data matrix    */
   /* subtract 1 from the data to ensure classes start at zero */
   for(i = 0; i < n_patterns; i++){
       classification[i] = inputData[i * 5 + 4] - 1;
       for(j = 0; j < n_nominal; j++)
           nominal[i * n_nominal + j]= inputData[i * 5 + j] - 1;
   }
   classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
       classification,
       IMSLS_NOMINAL, n_nominal, n_categories, nominal,
       IMSLS_PRINT_LEVEL,
       IMSLS_FINAL,
       0);
}
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Output

For these data, only one of the 24 training patterns is misclassified, pattern 17. The target classification for that 
pattern is 2 = “Neither”. However, since P(class = 2) = 0.3491 < P(class = 1) = 0.5085, pattern 17 is 
classified as class = 1, “Soft Contacts” recommended. The classification error for this probability is calculated as 
1.0 - 0.3491 = 0.6509.

--------UNCONDITIONAL TARGET CLASS PROBABILITIES---------
P(Class=0) = 0.1852 P(Class=1) = 0.2222 P(Class=2) = 0.5926
---------------------------------------------------------
----------------CONDITIONAL PROBABILITIES----------------
----------NOMINAL ATTRIBUTE 0 WITH 3 CATEGORIES----------
P(X(0)=0|Class=0)=0.4286 P(X(0)=1|Class=0)=0.2857 P(X(0)=2|Class=0)=0.2857
P(X(0)=0|Class=1)=0.3750 P(X(0)=1|Class=1)=0.3750 P(X(0)=2|Class=1)=0.2500
P(X(0)=0|Class=2)=0.2778 P(X(0)=1|Class=2)=0.3333 P(X(0)=2|Class=2)=0.3889
---------------------------------------------------------
----------NOMINAL ATTRIBUTE 1 WITH 2 CATEGORIES----------
P(X(1)=0|Class=0) = 0.6667 P(X(1)=1|Class=0) = 0.3333
P(X(1)=0|Class=1) = 0.4286 P(X(1)=1|Class=1) = 0.5714
P(X(1)=0|Class=2) = 0.4706 P(X(1)=1|Class=2) = 0.5294
---------------------------------------------------------
----------NOMINAL ATTRIBUTE 2 WITH 2 CATEGORIES----------
P(X(2)=0|Class=0) = 0.1667 P(X(2)=1|Class=0) = 0.8333
P(X(2)=0|Class=1) = 0.8571 P(X(2)=1|Class=1) = 0.1429
P(X(2)=0|Class=2) = 0.4706 P(X(2)=1|Class=2) = 0.5294
---------------------------------------------------------
----------NOMINAL ATTRIBUTE 3 WITH 2 CATEGORIES----------
P(X(3)=0|Class=0) = 0.1667 P(X(3)=1|Class=0) = 0.8333
P(X(3)=0|Class=1) = 0.1429 P(X(3)=1|Class=1) = 0.8571
P(X(3)=0|Class=2) = 0.7647 P(X(3)=1|Class=2) = 0.2353
---------------------------------------------------------
                                             TRAINING PREDICTED CLASS
PATTERN P(class=0)  P(class=1)  P(class=2)   CLASS   CLASS   ERROR
-----------------------------------------------------------------------
   0    0.0436      0.1297      0.8267       2       2    0.1733
   1    0.1743      0.6223      0.2034       1       1    0.3777
   2    0.1863      0.0185      0.7952       2       2    0.2048
   3    0.7238      0.0861      0.1901       0       0    0.2762
   4    0.0194      0.1537      0.8269       2       2    0.1731
   5    0.0761      0.7242      0.1997       1       1    0.2758
   6    0.0920      0.0243      0.8836       2       2    0.1164
   7    0.5240      0.1663      0.3096       0       0    0.4760
   8    0.0253      0.1127      0.8621       2       2    0.1379
   9    0.1182      0.6333      0.2484       1       1    0.3667
  10    0.1132      0.0168      0.8699       2       2    0.1301
  11    0.6056      0.1081      0.2863       0       0    0.3944
  12    0.0111      0.1327      0.8562       2       2    0.1438
  13    0.0500      0.7138      0.2362       1       1    0.2862
  14    0.0535      0.0212      0.9252       2       2    0.0748
  15    0.3937      0.1875      0.4188       2       2    0.5812
  16    0.0228      0.0679      0.9092       2       2    0.0908
  17    0.1424      0.5085      0.3491       2       1    0.6509
  18    0.0994      0.0099      0.8907       2       2    0.1093
  19    0.5986      0.0712      0.3301       0       0    0.4014
  20    0.0101      0.0805      0.9093       2       2    0.0907
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  21    0.0624      0.5937      0.3439       1       1    0.4063
  22    0.0467      0.0123      0.9410       2       2    0.0590
  23    0.3909      0.1241      0.4850       2       2    0.5150
-----------------------------------------------------------------------
CLASSIFICATION ERRORS
Classification 0: 0/4
Classification 1: 0/5
Classification 2: 1/15
Total Errors:   1/24

Example 3

This example illustrates the power of Naive Bayes classification for text mining applications. This example uses 
the spam benchmark data available from the Knowledge Discovery Databases archive maintained at the Univer-
sity of California, Irvine: http://archive.ics.uci.edu/ml/datasets/Spambase and is one of the IMSL data sets. 

These data consist of 4601 patterns consisting of 57 continuous attributes and one classification binary classifi-
cation attribute. 41% of these patterns are classified as spam and the remaining as non-spam. The first 54 
continuous attributes are word or symbol percentages. That is, they are percents scaled from 0 to 100% repre-
senting the percentage of words or characters in the email that contain a particular word or character. The last 
three continuous attributes are word lengths. For a detailed description of these data visit the KDD archive at the 
above link.

In this example, the program was written to evaluate alternatives for modeling the continuous attributes. Since 
some are percentages and others are lengths with widely different ranges, the classification error rate can be 

influenced by scaling. Percentages are transformed using the arcsin/square root transformation   
. This transformation often produces a continuous attribute that is more closely approximated by a Gaussian dis-
tribution. There are a variety of possible transformations for the word length attributes. In this example, the 
square root transformation is compared to a classifier with no transformation.

In addition, since this Naive Bayes algorithm allows users to select individual statistical distributions for modeling 
continuous attributes, the Gaussian and Log Normal distributions are investigated for modeling the continuous 
attributes.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
void print_error_rates(int classErrors[]);
int main(){                               
  int i, j;
  /* Inputs assuming all attributes, except family history, 
  are continuous */
  int n_patterns;      /* 4601 */
  int n_variables;     /* 57 + 1 classification */
  int n_classes      = 2; /* (spam or no spam) */
  int n_continuous   = 57;
  int *classErrors   = NULL;
  int *classification = NULL;
  int selected_pdf[57];

y = sin−1 p
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  /* additional double variables */
  float *continuous, *unscaledContinuous;
  float *spamData;
  int n_spam = 0;
  static char *fmt = "%10.2f";
  imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
  spamData = imsls_f_data_sets(11, IMSLS_N_OBSERVATIONS, &n_patterns, 
     IMSLS_N_VARIABLES, &n_variables, 0);
  continuous = (float*) malloc( n_patterns * (n_variables-1) 
     * sizeof(float));
  unscaledContinuous = (float*) malloc( n_patterns * (n_variables-1) 
     * sizeof(float));
  classification = (int*) malloc( n_patterns*sizeof(int) );

  for(i=0; i<n_patterns; i++){
     for(j=0; j<(n_variables-1); j++) {
        if (j<54) {
           continuous[i*(n_variables-1)+j] = (float)
              asin(sqrt( spamData[i*n_variables+j]/100));
        } else {
           continuous[i*(n_variables-1)+j] = 
              spamData[i*n_variables+j];
        }
        unscaledContinuous[i*(n_variables-1)+j] = 
           spamData[i*n_variables+j];
     }
     classification[i] = (int)spamData[(i*n_variables)+n_variables-1];
     if(classification[i] == 1) n_spam++;
  }
  printf("Number of Patterns = %d \n", n_patterns);
  printf(" Number Classified as Spam = %d \n\n", n_spam);
  classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes, 
     classification, 
     IMSLS_CONTINUOUS, n_continuous, unscaledContinuous, 0);
  printf("   Unscaled Gaussian Classification Error Rates \n");
  printf("          No Attribute Transformations         \n");
  printf("    All Attributes Modeled as Gaussian Variates.\n");
  print_error_rates(classErrors);
  imsls_free(classErrors);
  classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
     classification, IMSLS_CONTINUOUS, n_continuous, continuous, 0);
  printf("   Scaled Gaussian Classification Error Rates \n");
  printf("  Arsin(sqrt) transformation of first 54 Vars. \n");
  printf("  All Attributes Modeled as Gaussian Variates. \n");
  print_error_rates(classErrors);
  imsls_free(classErrors);
  for(i=0; i<54; i++){
     selected_pdf[i] = IMSLS_GAUSSIAN;
  }
  for(i=54; i<57; i++){
     selected_pdf[i] = IMSLS_LOG_NORMAL;
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  }
  classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes, 
     classification, 
     IMSLS_CONTINUOUS, n_continuous, continuous,
     IMSLS_SELECTED_PDF, selected_pdf, 0);
  printf(" Gaussian/Log Normal Classification Error Rates  \n");
  printf(" Arsin(sqrt) transformation of 1st 54 Attributes. \n");
  printf(" Gaussian - 1st 54 & Log Normal - last 3 Attributes\n");
  print_error_rates(classErrors);
  imsls_free(classErrors);
  /* scale continuous attributes using z-score scaling */
  for(i=0; i<n_patterns; i++){
     for(j=54; j<57; j++) continuous[i*n_continuous+j] = (float)
        sqrt(unscaledContinuous[i*n_continuous+j]);
  }
  for(i=0; i<57; i++){
     selected_pdf[i] = IMSLS_GAUSSIAN;
  }
  classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes, 
     classification, 
     IMSLS_CONTINUOUS, n_continuous, continuous,
     IMSLS_SELECTED_PDF, selected_pdf, 0);
  printf("      Scaled Classification Error Rates        \n");
  printf(" Arsin(sqrt) transformation of 1st 54 Attributes\n");
  printf("   sqrt() transformation for last 3 Attributes \n");
  printf("  All Attributes Modeled as Gaussian Variates. \n");
  print_error_rates(classErrors);
  imsls_free(classErrors);
  for(i=54; i<57; i++){
     selected_pdf[i] = IMSLS_LOG_NORMAL;
  }
  classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes, 
     classification, IMSLS_CONTINUOUS, n_continuous, continuous,
     IMSLS_SELECTED_PDF, selected_pdf, 0);
  printf("     Scaled Classification Error Rates\n");
  printf(" Arsin(sqrt) transformation of 1st 54 Attributes \n");
  printf(" and sqrt() transformation for last 3 Attributes \n");
  printf(" Gaussian - 1st 54 & Log Normal - last 3 Attributes\n");
  print_error_rates(classErrors);
  imsls_free(classErrors);
}
void print_error_rates(int classErrors[]){
  float p0, p1, p2;
  p0 = (float)100.0*classErrors[0]/classErrors[1];
  p1 = (float)100.0*classErrors[2]/classErrors[3];
  p2 = (float)100.0*classErrors[4]/classErrors[5];
  printf("----------------------------------------------------\n");
  printf("   Not Spam         Spam       |   TOTAL\n");
  printf(" %d/%d=%4.1f%%  %d/%d=%4.1f%%  | %d/%d=%4.1f%%\n", 
     classErrors[0], classErrors[1],
     p0, classErrors[2], classErrors[3],
     p1, classErrors[4], classErrors[5], p2);
  printf("----------------------------------------------------\n\n");
}
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Output

If the continuous attributes are left untransformed and modeled using the Gaussian distribution, the overall clas-
sification error rate is 18.4% with most of these occurring when spam is classified as “not spam.” The error rate 
for correctly classifying non-spam is 26.6%.

The lowest overall classification error rate occurs when the percentages are transformed using the arc-sin/square 
root transformation and the length attributes are untransformed using logs. Representing the transformed per-
centages as Gaussian attributes and the transformed lengths as log-normal attributes reduces the overall error 
rate to 14.2%. However, although the error rate for correctly classifying non-spam email is low for this case, the 
error rate for correctly classifying spam is high, about 28%.

In the end, the best model to identify spam may depend upon which type of error is more important, incorrectly 
classifying non-spam email or incorrectly classifying spam.

   Data File Opened Successfully
Number of Patterns = 4601
Number Classified as Spam = 1813
   Unscaled Gaussian Classification Error Rates
          No Attribute Transformations
    All Attributes Modeled as Gaussian Variates.
----------------------------------------------------
   Not Spam         Spam       |   TOTAL
743/2788=26.6%  102/1813= 5.6% | 845/4601=18.4%
----------------------------------------------------
   Scaled Gaussian Classification Error Rates
  Arsin(sqrt) transformation of first 54 Vars.
  All Attributes Modeled as Gaussian Variates.
----------------------------------------------------
   Not Spam         Spam       |   TOTAL
84/2788= 3.0%  508/1813=28.0%  | 592/4601=12.9%
----------------------------------------------------
 Gaussian/Log Normal Classification Error Rates
 Arsin(sqrt) transformation of 1st 54 Attributes.
Gaussian - 1st 54 & Log Normal - last 3 Attributes
----------------------------------------------------
   Not Spam         Spam       |   TOTAL
81/2788= 2.9%  519/1813=28.6%  | 600/4601=13.0%
----------------------------------------------------
      Scaled Classification Error Rates
 Arsin(sqrt) transformation of 1st 54 Attributes
   sqrt() transformation for last 3 Attributes
  All Attributes Modeled as Gaussian Variates.
----------------------------------------------------
   Not Spam         Spam       |   TOTAL
74/2788= 2.7%  595/1813=32.8%  | 669/4601=14.5%
----------------------------------------------------
     Scaled Classification Error Rates
 Arsin(sqrt) transformation of 1st 54 Attributes
 and sqrt() transformation for last 3 Attributes
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Gaussian - 1st 54 & Log Normal - last 3 Attributes
----------------------------------------------------
   Not Spam         Spam       |   TOTAL
73/2788= 2.6%  602/1813=33.2%  | 675/4601=14.7%
----------------------------------------------------

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm. 
User flag = "#".

IMSLS_N_OBS_PER_CLASS Class # has # observation(s). All classes must have at 
least 2 observations.
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naive_bayes_classification
Classifies unknown patterns using a previously trained Naive Bayes classifier. The classifier is contained in an 
Imsls_f_nb_classifier data structure, which is optional output from imsls_f_naive_bayes_trainer.

Synopsis
#include <imsls.h>
int *imsls_f_naive_bayes_classification (Imsls_f_nb_classifier *nb_classifier, 

int n_patterns, …, 0)

The type double function is imsls_d_naive_bayes_classification.

Required Arguments
Imsls_f_nb_classifier *nb_classifier (Input)

Pointer to a structure of the type Imsls_f_nb_classifier from imsls_f_naive_bayes_trainer. 

int n_patterns (Input)
Number of patterns to classify. 

Return Value
Pointer to an array of size n_patterns containing the predicted classification associated with each input 
pattern.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_naive_bayes_classification (Imsls_f_nb_classifier nb_classifier, 

int n_patterns,

IMSLS_NOMINAL, int nominal[],

IMSLS_CONTINUOUS, float continuous[],

IMSLS_PRINT_LEVEL, int print_level,

IMSLS_USER_PDF, float pdf(),
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IMSLS_USER_PDF_WITH_PARMS, float pdf(), void *parms,

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob,

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[],

IMSLS_RETURN_USER, int classification[],

0)

Optional Arguments
IMSLS_NOMINAL, int nominal[]  (Input)

nominal is an array of size n_patterns by nb_classifier->n_nominal containing values 
for the nominal input attributes. The i-th row contains the nominal input attributes for the i-th pat-
tern. The j-th column of this matrix contains the classifications for the j-th nominal attribute. They 
must be encoded with integers starting from 0 to nb_classifier->n_categories[i]-1. 
Any value outside this range is treated as a missing value. If nb_classifier->n_nominal=0, 
this array is ignored.

IMSLS_CONTINUOUS, float continuous[]  (Input)
continuous is an array of size n_patterns by nb_classifier->n_continuous contain-
ing values for the continuous input attributes. The i-th row contains the input attributes for the i-th 
training pattern. The j-th column of this matrix contains the values for the j-th continuous attribute. 
Missing values should be set equal to imsls_f_machine(6)=NaN. Patterns with missing values 
are still used to train the classifier unless the IMSLS_IGNORE_MISSING_VALUES option is sup-
plied. If nb_classifier->n_continuous=0, this matrix is ignored.

IMSLS_PRINT_LEVEL, int print_level (Input)
Print levels for printing data warnings and final results. print_level should be set to one of the 
following values:

Default: IMSLS_NONE.

print_level Description

IMSLS_NONE Printing of data warnings and final results 
is suppressed.

IMSLS_FINAL Prints final summary of Naive Bayes classi-
fier training.

IMSLS_DATA_WARNINGS Prints information about missing values 
and PDF calculations equal to zero.

IMSLS_TRACE_ALL Prints final summary plus all data warn-
ings associated with missing values and 
PDF calculations equal to zero.
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IMSLS_USER_PDF, float pdf(int index[], float x) (Input)
The user-supplied probability density function and parameters used to calculate the conditional 
probability density for continuous input attributes is required when the classifier was trained with 
selected_pdf[i]= IMSLS_USER.

When pdf is called, x will equal continuous[i*n_continuous+j], and index will contain 
the following values for i, j, and k:

The pattern index ranges from 0 to n_patterns-1 and identifies the pattern index for x. The attri-
butes index ranges from 0 to n_categories[i]-1, and k=classification[i]. 

This argument is ignored if n_continuous = 0. By default the Gaussian PDF is used for calculat-
ing the conditional probability densities using either the means and variances calculated from the 
training patterns or those supplied in IMSLS_GAUSSIAN_PDF.

IMSLS_USER_PDF_WITH_PARMS, float pdf(int index[], float x, void *parms), void *parms 
(Input)
The user-supplied probability density function and parameters used to calculate the conditional 
probability density for continuous input attributes is required when selected_pdf[i]= 
IMSLS_USER. pdf also accepts a pointer to parms supplied by the user. The parameters pointed 
to by parms are passed to pdf each time it is called. For an explanation of the other arguments, see 
IMSLS_USER_PDF.

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob,  (Output)
The address of a pointer to an array of size n_patterns by n_classes, where n_classes is 
the number of target classifications. The values in the i-th row are the predicted classification proba-
bilities associated with the target classes. pred_class_prob[i*n_classes+j] is the 
estimated probability that the i-th pattern belongs to the j-th target classes.

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[]  (Output)
Storage for array pred_class_prob is provided by the user. See 
IMSLS_PREDICTED_CLASS_PROB for a description. 

IMSLS_RETURN_USER, int classification[] (Output)
An array of length n_patterns containing the predicted classifications for each pattern described 
by the input attributes in nominal and continuous. 

Index Value
index[0] i = pattern index

index[1] j = attribute index

index[2] k = target classification
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Description
Function imsls_f_naive_bayes_classification estimates classification probabilities from a previ-
ously trained Naive Bayes classifier. Two arrays are used to describe the values of the nominal and continuous 
attributes used for calculating these probabilities. The predicted classification returned by this function is the 
class with the largest estimated classification probability. The classification probability estimates for each pattern 
can be obtained using the optional argument IMSLS_PREDICTED_CLASS_PROB.

Examples

Example 1

Fisher’s (1936) Iris data is often used for benchmarking classification algorithms. It is one of the IMSL data sets 
and consists of the following continuous input attributes and classification target:

Continuous Attributes: X0(sepal length), X1(sepal width), X2(petal length), and X3(petal width)

Classification (Iris Type): Setosa, Versicolour or Virginica.

This example trains a Naive Bayes classifier using 150 training patterns from Fisher’s data then classifies ten 
unknown plants using their sepal and petal measurements.

#include <imsls.h>
#include <stdio.h>
int main(){
  int i, j;
  int n_patterns   =150; /* 150 training patterns           */
  int n_continuous =4;  /* four continuous input attributes */
  int n_classes    =3;  /* three classification categories */
  int classification[150], *classErrors, *predictedClass;
  float *pred_class_prob, continuous[150*4] ;
  float *irisData;      /* Fishers Iris Data */
  char *classLabel[] = {"Setosa    ", "Versicolour", "Virginica "};
  char dashes[] = {
    "--------------------------------------------------------------"};
  Imsls_f_nb_classifier *nb_classifier;
  /* irisData[]: The raw data matrix. This is a 2-D matrix with 150 
  /*             rows and 5 columns. The last 4 columns are the 
  /*             continuous input attributes and the 1st column is 
  /*             the classification category (1-3). These data 
  /*             contain no categorical input attributes.        */
  irisData = imsls_f_data_sets(3,0);
  /* Data corrections described in the KDD data mining archive    */
  irisData[5*34+4] = 0.1;
  irisData[5*37+2] = 3.1;
  irisData[5*37+3] = 1.5;
  /* setup the required input arrays from the data matrix */
  for(i=0; i<n_patterns; i++){
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     classification[i] = (int) irisData[i*5]-1;
     for(j=1; j<=n_continuous; j++) {
        continuous[i*n_continuous+j-1] = irisData[i*5+j];
     }
  }
  classErrors = imsls_f_naive_bayes_trainer(
     n_patterns, n_classes, classification, 
     IMSLS_CONTINUOUS, n_continuous, continuous,
     IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
  printf("    Iris Classification Error Rates\n");
  printf("%s\n",dashes);
  printf("  Setosa Versicolour Virginica  |  TOTAL\n");
  printf("   %d/%d     %d/%d        %d/%d    |  %d/%d\n", 
     classErrors[0], classErrors[1], 
     classErrors[2], classErrors[3], classErrors[4], 
     classErrors[5], classErrors[6], classErrors[7]);
  printf("%s\n\n", dashes);
  /* CALL NAIVE_BAYES_CLASSIFICATION *************************** */
  predictedClass = imsls_f_naive_bayes_classification(
     nb_classifier, n_patterns, 
     IMSLS_CONTINUOUS, continuous,
     IMSLS_PREDICTED_CLASS_PROB, 
     &pred_class_prob, 0);
  printf("   PROBABILITIES FOR INCORRECT CLASSIFICATIONS\n",dashes);
  printf("\nTRAINING PATTERNS| PREDICTED\t|\n");
  printf(" X1 X2 X3 X4 | CLASS\t| CLASS\tP(0) P(1) P(2)|\n");
  printf("%s|\n", dashes);
  for(i=0; i<n_patterns; i++){
     if(classification[i] == predictedClass[i]) continue;
     printf(" %4.1f%4.1f%4.1f%4.1f| %s\t| %s\t%4.2f %4.2f %4.2f|\n", 
        continuous[i*n_continuous],  continuous[i*n_continuous+1], 
        continuous[i*n_continuous+2], continuous[i*n_continuous+3], 
        classLabel[classification[i]], classLabel[predictedClass[i]], 
        pred_class_prob[i*n_classes], pred_class_prob[i*n_classes+1], 
        pred_class_prob[i*n_classes+2]);
  }
  printf("%s|\n", dashes);
  imsls_f_nb_classifier_free(nb_classifier);
}                         

Output

For Fisher’s data, the Naive Bayes classifier incorrectly classified 6 of the 150 training patterns.

    Iris Classification Error Rates
------------------------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   0/50     3/50        3/50    |  6/150
------------------------------------------------------------
   PROBABILITIES FOR INCORRECT CLASSIFICATIONS
TRAINING PATTERNS| PREDICTED   |
 X1   X2  X3  X4 | CLASS       | CLASS        P(0) P(1) P(2)|
------------------------------------------------------------|
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 6.9 3.1 4.9 1.5 | Versicolour | Virginica    0.00 0.46 0.54|
 5.9 3.2 4.8 1.8 | Versicolour | Virginica    0.00 0.16 0.84|
 6.7 3.0 5.0 1.7 | Versicolour | Virginica    0.00 0.08 0.92|
 4.9 2.5 4.5 1.7 | Virginica   | Versicolour  0.00 0.97 0.03|
 6.0 2.2 5.0 1.5 | Virginica   | Versicolour  0.00 0.96 0.04|
 6.3 2.8 5.1 1.5 | Virginica   | Versicolour  0.00 0.71 0.29|
------------------------------------------------------------|

Example 2

This example uses the spam benchmark data available from the Knowledge Discovery Databases archive main-
tained at the University of California, Irvine: http://archive.ics.uci.edu/ml/datasets/Spambase.

These data contain of 4601 patterns consisting of 57 continuous attributes and one classification. 41% of these 
patterns are classified as spam and the remaining as non-spam. The first 54 continuous attributes are word or 
symbol percentages. That is, they are percents scaled from 0 to 100% representing the percentage of words or 
characters in the email that contain a particular word or character. The last three continuous attributes are word 
lengths. For a detailed description of these data visit the KDD archive at the above link.

In this example, percentages are transformed using the arcsin/square root transformation   . The 
last three attributes, word lengths, are transformed using square roots. Transformed percentages and the first 
word length attribute are modeled using the Gaussian distribution. The last two word lengths are modeled using 
the log normal distribution.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>
static void printErrorRates(int classification_errors[6], 
                           int n, char *label);
int main(){ 
  int i, j, k;
  int condPdfTableLength = 0;
  int n_patterns; 
  int n_variables;
  int n_sample       = 2000;
  int n_classes      = 2;     /* spam or no spam */
  int n_continuous   = 57;
  int *classErrors   = NULL;
  int *classification = NULL;
  int classSample[2000];
  int *predictedClass = NULL;
  int *rndSampleIndex = NULL;
  int classification_errors[6];
  float *continuous, *continuousSample;
  char* label1 = 
     " Trainer from Training Dataset of %d Observations \n";
  char* label2 = 
     " Classifier for Entire Dataset of %d Observations \n";  
  Imsls_f_nb_classifier *nb_classifier=NULL;
  float *spamData;
  int n_spam = 0;
  spamData = imsls_f_data_sets(11, IMSLS_N_OBSERVATIONS, &n_patterns, 

y = sin−1 p
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     IMSLS_N_VARIABLES, &n_variables, 0);
  continuous      = 
     (float*)malloc((n_patterns*n_continuous)*sizeof(float));
  continuousSample = 
     (float*)malloc((n_sample*n_continuous)*sizeof(float));
  classification  = (int*)malloc(n_patterns*sizeof(int));
  /* map continuous attributes into transformed representation */
  for(i=0; i<n_patterns; i++){
     for(j=0; j<n_continuous; j++) {
        if (j < 54 ) {
           continuous[i*(n_variables-1)+j] = (float)
              asin(sqrt( spamData[i*n_variables+j]/100));
        } else {
           continuous[i*(n_variables-1)+j] = 
              spamData[i*n_variables+j];
        }
     }
     classification[i] = (int)spamData[(i*n_variables)+n_variables-1];
     if(classification[i] == 1) n_spam++;
  }
  printf("Number of Patterns = %d Number Classified as Spam = %d \n\n", 
     n_patterns, n_spam);
  /* select random sample for training Naive Bayes Classifier */
  imsls_random_seed_set(1234567);
  rndSampleIndex=imsls_random_sample_indices(n_sample, n_patterns, 0);
  for(k=0; k<n_sample; k++){
     i = rndSampleIndex[k]-1;
     classSample[k] = classification[i];
     for(j=0; j<n_continuous; j++) {
        continuousSample[k*n_continuous+j] = 
           continuous[i*n_continuous+j];
     }
  }
  /* Train Naive Bayes Classifier */
  classErrors = imsls_f_naive_bayes_trainer(n_sample, n_classes, 
     classSample, 
     IMSLS_CONTINUOUS, n_continuous, continuousSample,
     IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
  /* print error rates for training sample */
  printErrorRates(classErrors, n_sample, label1);
  /* CALL NAIVE_BAYES_CLASSIFICATION TO CLASSIFIY ENTIRE DATASET */
  predictedClass = imsls_f_naive_bayes_classification(nb_classifier, 
     n_patterns, 
     IMSLS_CONTINUOUS, continuous, 0);  
  /* calculate classification error rates for entire dataset */
  for(i=0; i<6; i++) classification_errors[i] = 0;
  for(i=0; i<n_patterns; i++){
     switch (classification[i])
     {
     case 0: 
        classification_errors[1]++;
        if(classification[i] != predictedClass[i]) 
           classification_errors[0]++;
        break;
     case 1:
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        classification_errors[3]++;
        if(classification[i] != predictedClass[i]) 
           classification_errors[2]++;
        break;
     }
     classification_errors[5] =
        classification_errors[1]+classification_errors[3];
     classification_errors[4] = 
        classification_errors[0]+classification_errors[2];
  }
  /* print error rates for entire dataset */
  printErrorRates(classification_errors, n_patterns, label2);
}
static void printErrorRates(int classification_errors[6], 
                           int n, char *label)
{
  double p, p1, p0;
  p0 = 100.0*classification_errors[0]/classification_errors[1];
  p1 = 100.0*classification_errors[2]/classification_errors[3];
  p = 100.0*classification_errors[4]/classification_errors[5];
  printf("    Classification Error Rates Reported by\n");
  printf(label, n);
  printf("----------------------------------------------------\n");
  printf("   Not Spam         Spam       |   TOTAL\n");
  printf(" %d/%d=%4.1f%%  %d/%d=%4.1f%%  | %d/%d=%4.1f%%\n", 
 classification_errors[0], classification_errors[1],
     p0, classification_errors[2], classification_errors[3], 
     p1, classification_errors[4], classification_errors[5], p);
  printf("----------------------------------------------------\n\n");
  return;
}                           

Output

It is interesting to note that the classification error rates obtained by training a classifier from a random sample is 
slightly lower than those obtained from training a classifier with all 4601 patterns. When the classifier is trained 
using all 4601 patterns, the overall classification error rate was 12.9% (see Example 3 for 
imsls_f_naive_bayes_trainer). It is 12.4% for a random sample of 2000 patterns.

Number of Patterns = 4601 Number Classified as Spam = 1813
    Classification Error Rates Reported by
 Trainer from Training Dataset of 2000 Observations
----------------------------------------------------
   Not Spam         Spam       |   TOTAL
31/1202= 2.6%  218/798=27.3%  | 249/2000=12.4%
----------------------------------------------------
    Classification Error Rates Reported by
 Classifier for Entire Dataset of 4601 Observations
----------------------------------------------------
   Not Spam         Spam       |   TOTAL
81/2788= 2.9%  549/1813=30.3%  | 630/4601=13.7%
----------------------------------------------------
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Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm. 
User flag = "#".
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nb_classifier_free
Frees memory allocated to an Imsls_f_nb_classifier data structure. 

Synopsis
#include <imsls.h>
void imsls_f_nb_classifier_free ( Imsls_f_nb_classifier *nb_classifier)

The type double function is imsls_d_nb_classifier_free.

Required Arguments
Imsls_f_nb_classifier *nb_classifier (Input)

Pointer to a structure of the type Imsls_f_nb_classifier from imsls_f_naive_bayes_trainer.

Description
An Imsls_f_nb_classifier data structure is created by imsls_f_naive_bayes_trainer or 
imsls_f_nb_classifier_read. This function frees the memory allocated to this structure when it is no lon-
ger needed.
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nb_classifier_write
Writes a Naive Bayes Classifier to an ASCII file for later retrieval using imsls_f_nb_classifier_read.

Synopsis
#include <imsls.h>
void imsls_f_nb_classifier_write (Imsls_f_nb_classifier *nb_classifier, 

char *filename, …, 0)

The type double function is imsls_d_nb_classifier_write.

Required Arguments
Imsls_f_nb_classifier *nb_classifier (Input)

A trained Naive Bayes Classifier. 

char *filename (Input)
The name of an ASCII file to be created. A full or relative path can be given. If this file exists, it is 
replaced with the Naive Bayes Classifier. If it does not exist, it is created. If the optional argument 
IMSLS_FILE is used, filename is ignored.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_nb_classifier_write (Imsls_f_nb_classifier *nb_classifier, 

char *filename,
IMSLS_PRINT,
IMSLS_FILE, FILE *file, 
0)

Optional Arguments
IMSLS_PRINT,  (Input)

Prints status of file opening, writing and closing. 

Default: No printing. 
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IMSLS_FILE, FILE *file  (Input/Output)
A FILE pointer to a file opened for writing. This file is written but not closed. If this option is pro-
vided, filename is ignored. This option allows users to write additional data and multiple classifiers 
to the same file (see Example 2). To ensure the file is opened and closed with the same C run-time 
library used by the product, open and close this file using imsls_fopen and imsls_fclose.

Description
This function stores an Imsls_f_nb_classifier data structure containing a trained Naive Bayes Classifier into an ASCII 
file. If the optional argument IMSLS_FILE is provided, imsls_f_nb_classifier_write writes the file 
and returns without closing the file. If this argument is not provided, imsls_f_nb_classifier_write cre-
ates a file using the path and name provided in filename, writes the data structure to that file and then closes 
the file before returning. 

Examples

Example 1

This example trains a classifier using Fisher’s Iris data. These data consist of 150 patterns. The input attributes 
consist of four continuous attributes and one classification attribute with three classes. The classifier is stored 
into four lines of an ASCII file named NB_Classifier_Ex1.txt.

#include <imsls.h>
#include <stdio.h>
int main()
{
  char *filename = "NB_Classifier_Ex1.txt";
  int i, j;
  int n_patterns   =150; /* 150 training patterns           */
  int n_continuous =4;  /* four continuous input attributes */
  int n_classes    =3;  /* three classification categories */
  int classification[150], *classErrors, *predictedClass;
  float *pred_class_prob, continuous[4*150] ;
  float *irisData;      /* Fishers Iris Data */
  char *classLabel[3] = {"Setosa    ", "Versicolour", "Virginica "};
  Imsls_f_nb_classifier *nb_classifier;
  irisData = imsls_f_data_sets(3,0);
  /* setup the required input arrays from the data matrix */
  for(i=0; i<n_patterns; i++){
     classification[i] = (int) irisData[i*5]-1;
     for(j=1; j<=n_continuous; j++) 
        continuous[i*n_continuous+j-1] = irisData[i*5+j];
  }
  classErrors = imsls_f_naive_bayes_trainer(n_patterns, 
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     n_classes, classification, 
     IMSLS_CONTINUOUS, n_continuous, continuous,
     IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
  printf("    Iris Classification Error Rates\n");
  printf("----------------------------------------------\n");
  printf("  Setosa Versicolour Virginica  |  TOTAL\n");
  printf("   %d/%d     %d/%d        %d/%d    |  %d/%d\n", 
     classErrors[0], classErrors[1],
     classErrors[2], classErrors[3], 
     classErrors[4], classErrors[5],
     classErrors[6], classErrors[7]);
  printf("----------------------------------------------\n\n");
  imsls_f_nb_classifier_write(nb_classifier, filename, 
     IMSLS_PRINT, 0);

}

Output

===============
    Iris Classification Error Rates
----------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   0/50     3/50        3/50    |  6/150
----------------------------------------------
Opening NB_Classifier_Ex1.txt for writing Naive Bayes data structure
Writing Naive Bayes data structure... 5 Lines written.
File NB_Classifier_Ex1.txt closed

Example 2

This example illustrates the use of the optional argument IMSLS_FILE to store multiple classifiers into one file. 
Two Naive Bayes classifiers are trained using Fisher’s Iris data. These data consist of 150 patterns. The input attri-
butes consist of four continuous attributes and one classification attribute. The first classifier is trained using all 
four inputs and the second using only the first two. The networks are stored into 10 lines of an ASCII file named 
NB_Classifier_Ex2.txt.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main()
{
   FILE *file;
   char *filename = "NB_Classifier_Ex2.txt";
   int i, j;
   int n_patterns    =150; /* 150 training patterns            */
   int n_cont4       =4;   /* four continuous input attributes */
   int n_cont2       =2;   /* two continuous input attributes  */
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   int n_classes     =3;   /* three classification categories  */
   int n_classifiers =2;   /* two classifiers in this example  */
   int classification[150], *classErrors;
   float cont4[4*150], cont2[2*150] ;
   float *irisData;       /* Fishers Iris Data */
   char *classLabel[3] = {"Setosa     ", "Versicolour", "Virginica  "};
   Imsls_f_nb_classifier *nb_classifier;
   irisData = imsls_f_data_sets(3,0);
   /* setup the required input arrays from the data matrix */
   for(i=0; i<n_patterns; i++){
      classification[i] = (int) irisData[i*5]-1;
      for(j=1; j<=n_cont4; j++) {
         cont4[i*n_cont4+j-1] = irisData[i*5+j];
         if(j<3) cont2[i*n_cont2+j-1] = irisData[i*5+j];
      }
   }
   printf("Opening file %s\n\n", filename);
   file = imsls_fopen(filename, "w");
   fprintf(file, "%d\n", 2);
   classErrors = imsls_f_naive_bayes_trainer(n_patterns, 
      n_classes, classification, 
      IMSLS_CONTINUOUS, n_cont4, cont4,
      IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
   printf("Iris Classification Error Rates - Classifier 1\n");
   printf("----------------------------------------------\n");
   printf("   Setosa  Versicolour  Virginica   |   TOTAL\n");
   printf("    %d/%d      %d/%d         %d/%d     |   %d/%d\n", 
      classErrors[0], classErrors[1],
      classErrors[2], classErrors[3],
      classErrors[4], classErrors[5],
      classErrors[6], classErrors[7]);
   printf("----------------------------------------------\n\n");
   imsls_free(classErrors);
   /* write first classifier */
   imsls_f_nb_classifier_write(nb_classifier, NULL, IMSLS_PRINT, 
      IMSLS_FILE, file, 0);
   imsls_f_nb_classifier_free(nb_classifier);
   classErrors = imsls_f_naive_bayes_trainer(n_patterns, 
      n_classes, classification, 
      IMSLS_CONTINUOUS, n_cont2, cont2, 
      IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
   printf("Iris Classification Error Rates - Classifier 2\n");
   printf("----------------------------------------------\n");
   printf("   Setosa  Versicolour  Virginica   |   TOTAL\n");
   printf("    %d/%d      %d/%d       %d/%d     |   %d/%d\n", 
      classErrors[0], classErrors[1],
      classErrors[2], classErrors[3],
      classErrors[4], classErrors[5],
      classErrors[6], classErrors[7]);
   printf("----------------------------------------------\n\n");
   imsls_f_nb_classifier_write(nb_classifier, NULL, IMSLS_PRINT, 
      IMSLS_FILE, file, 0);
   imsls_free(classErrors);
   printf("Closing Classifier File\n");
   imsls_fclose(file);
   return;
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}

Output

Opening file NB_Classifier_Ex2.txt
Iris Classification Error Rates - Classifier 1
----------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   0/50     3/50        3/50    |  6/150
----------------------------------------------
Writing Naive Bayes data structure to file stream.
Writing Naive Bayes data structure... 5 Lines written to file.
File not closed.
Iris Classification Error Rates - Classifier 2
----------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   1/50     13/50      19/50    |  33/150
----------------------------------------------
Writing Naive Bayes data structure to file stream.
Writing Naive Bayes data structure... 5 Lines written to file.
File not closed.
Closing Classifier File

Fatal Errors
IMSLS_FILE_OPEN_FAILURE Unable to open file for writing network.
1594



 Data Mining         nb_classifier_read
nb_classifier_read
Retrieves a Naive Bayes Classifier previously filed using imsls_f_nb_classifier_write. 

Synopsis
#include <imsls.h>
Imsls_f_nb_classifier *imsls_f_nb_classifier_read (char *filename, …, 0)

The type double function is imsls_d_nb_classifier_read.

Required Arguments 
char *filename (Input)

The name of an ASCII file containing a Naive Bayes Classifier previously saved using 
imsls_f_nb_classifier_write. A full or relative path can be given. If the optional argument 
IMSLS_FILE is used, filename is ignored.

Return Value
A pointer to an Imsls_f_nb_classifier data structure containing a Naive Bayes Classifier previously stored using 
imsls_f_nb_classifier_write.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_nb_classifier *imsls_f_nb_classifier_read (char *filename,

IMSLS_PRINT,
IMSLS_FILE, FILE *file,
0)

Optional Arguments
IMSLS_PRINT,  (Input)

Prints status of file opening, reading and closing.
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Default: No printing. 

IMSLS_FILE, FILE *file  (Input)
A FILE pointer to a file opened for reading. This file is read but not closed. If this option is provided, 
filename is ignored. This argument allows users to read additional user-defined data and multiple 
classifiers from the same file (see Example 2 below). To ensure the file is opened and closed with the 
same C run-time library used by the product, open and close this file using imsls_fopen and 
imsls_fclose.

Description
Function nb_classifier_read reads a classifier from an ASCII file previously stored using  
imsls_f_nb_classifier_write and returns a Naive Bayes Classifier in the form of an Imsls_f_nb_classifier 
data structure. If the optional argument IMSLS_FILE is provided, a classifier is read from the file and returned 
without closing the file. If this argument is not provided, imsls_f_nb_classifier_read opens the file 
using the path and name provided in filename, reads the classifier then closes the file and returns the data 
structure. 

Examples

Example 1

This example reads a classifier previously trained using Fisher’s Iris data (see Example 2 of 
imsls_f_nb_classifier_write). These data consist of 150 patterns, each with four continuous attri-
butes and one dependent variable. The classifier is read from an ASCII file named NB_Classifier_Ex1.txt.

#include <imsls.h>
#include <stdio.h>
int main()
{
   char *filename = "NB_Classifier_Ex1.txt";
   int i, j;
   int n_patterns    =150; /* 150 training patterns            */
   int n_continuous  =4;   /* four continuous input attributes */
   int n_classes     =3;   /* three classification categories  */
   int classification[150], *predictedClass;
   int classErrors[8];
   float continuous[4*150] ;
   float *irisData;       /* Fishers Iris Data */
   char *classLabel[3] = {"Setosa     ", "Versicolour", "Virginica  "};
   Imsls_f_nb_classifier *nb_classifier;
   irisData = imsls_f_data_sets(3,0);
   /* setup the required input arrays from the data matrix */
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   for(i=0; i<n_patterns; i++){
      classification[i] = (int) irisData[i*5]-1;
      for(j=1; j<=n_continuous; j++) 
         continuous[i*n_continuous+j-1] = irisData[i*5+j];
   }
   nb_classifier = imsls_f_nb_classifier_read(filename, IMSLS_PRINT,0);
   predictedClass = imsls_f_naive_bayes_classification(nb_classifier, 
      n_patterns, IMSLS_CONTINUOUS, continuous, 0);
   for(i=0; i<6; i++) classErrors[i] = 0;
   for(i=0; i<n_patterns; i++){
      switch (classification[i])
      {
      case 0: 
         classErrors[1]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[0]++;
         break;
      case 1:
         classErrors[3]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[2]++;
         break;
      case 2:
         classErrors[5]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[4]++;          
         break;
      }
   }
   classErrors[6] = classErrors[0]+classErrors[2]+classErrors[4];
   classErrors[7] = classErrors[1]+classErrors[3]+classErrors[5];
   printf("     Iris Classification Error Rates\n");
   printf("----------------------------------------------\n");
   printf("   Setosa  Versicolour  Virginica   |   TOTAL\n");
   printf("    %d/%d      %d/%d         %d/%d     |   %d/%d\n", 
      classErrors[0], classErrors[1],
      classErrors[2], classErrors[3], 
      classErrors[4], classErrors[5],
      classErrors[6], classErrors[7]);
   printf("----------------------------------------------\n\n");
   return;
}

Output`

Attempting to open NB_Classifier_Ex1.txt
for reading Naive Bayes data structure
File NB_Classifier_Ex1.txt Successfully Opened
File NB_Classifier_Ex1.txt closed
    Iris Classification Error Rates
----------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   0/50     3/50        3/50    |  6/150
----------------------------------------------
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Example 2

This example illustrates the use of the optional argument IMSLS_FILE to read multiple classifiers stored previ-
ously into a single file using imsls_f_nb_classifier_write (see Example 2 of 
imsls_f_nb_classifier_write). Two Naive Bayes classifiers were trained using Fisher’s Iris data. These 
data consist of 150 patterns. The input attributes consist of four continuous attributes and one classification 
attribute with three classes. The first classifier was trained using all four inputs and the second using only the first 
two. The classifiers are read from an ASCII file named NB_Classifier_Ex2.txt.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main()
{
   FILE *file;
   char *filename = "NB_Classifier_Ex2.txt";
   int i, j;
   int n_patterns    =150; /* 150 training patterns            */
   int n_cont4       =4;   /* four continuous input attributes */
   int n_cont2       =2;   /* two continuous input attributes  */
   int n_classes     =3;   /* three classification categories  */
   int n_classifiers =0;   /* number of classifiers            */
   int classification[150], *predictedClass;
   int classErrors[8];
   float cont4[4*150], cont2[2*150] ;
   float *irisData;       /* Fishers Iris Data */
   char *classLabel[3] = {"Setosa     ", "Versicolour", "Virginica  "};
   Imsls_f_nb_classifier *nb_classifier4, *nb_classifier2;
   irisData = imsls_f_data_sets(3,0);
   /* setup the required input arrays from the data matrix */
   for(i=0; i<n_patterns; i++){
      classification[i] = (int) irisData[i*5]-1;
      for(j=1; j<=n_cont4; j++) {
         cont4[i*n_cont4+j-1] = irisData[i*5+j];
         if(j<3) cont2[i*n_cont2+j-1] = irisData[i*5+j];
      }
   }
   printf("Opening file %s\n\n", filename);
   file = imsls_fopen(filename, "r");
   fscanf(file, "%d", &n_classifiers);
   nb_classifier4 = imsls_f_nb_classifier_read(" ", IMSLS_PRINT, 
      IMSLS_FILE, file, 0);
   predictedClass = imsls_f_naive_bayes_classification(nb_classifier4, 
      n_patterns, IMSLS_CONTINUOUS, cont4, 0);
   for(i=0; i<6; i++) classErrors[i] = 0;
   for(i=0; i<n_patterns; i++){
      switch (classification[i])
      {
      case 0: 
         classErrors[1]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[0]++; 
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         break;
      case 1:
         classErrors[3]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[2]++;
         break;
      case 2:
         classErrors[5]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[4]++;
         break;
      }
   }
   classErrors[6] = classErrors[0]+classErrors[2]+classErrors[4];
   classErrors[7] = classErrors[1]+classErrors[3]+classErrors[5];
   printf("     Iris Classification Error Rates\n");
   printf("----------------------------------------------\n");
   printf("   Setosa  Versicolour  Virginica   |   TOTAL\n");
   printf("    %d/%d      %d/%d         %d/%d     |   %d/%d\n", 
      classErrors[0], classErrors[1],
      classErrors[2], classErrors[3], classErrors[4], classErrors[5],
      classErrors[6], classErrors[7]);
   printf("----------------------------------------------\n\n");
   imsls_free(predictedClass);
   nb_classifier2 = imsls_f_nb_classifier_read(" ", IMSLS_PRINT,
      IMSLS_FILE, file, 0);
   predictedClass = imsls_f_naive_bayes_classification(nb_classifier2, 
      n_patterns, 
      IMSLS_CONTINUOUS, cont2, 0);
   for(i=0; i<6; i++) classErrors[i] = 0;
   for(i=0; i<n_patterns; i++){
      switch (classification[i])
      {
      case 0: 
         classErrors[1]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[0]++;
         break;
      case 1:
         classErrors[3]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[2]++;
         break;
      case 2:
         classErrors[5]++;
         if(classification[i] != predictedClass[i]) 
            classErrors[4]++;
         break;
      }
   }
   classErrors[6] = classErrors[0]+classErrors[2]+classErrors[4];
   classErrors[7] = classErrors[1]+classErrors[3]+classErrors[5];
   printf("     Iris Classification Error Rates\n");
   printf("----------------------------------------------\n");
   printf("   Setosa  Versicolour  Virginica   |   TOTAL\n");
   printf("    %d/%d      %d/%d         %d/%d     |   %d/%d\n", 
      classErrors[0], classErrors[1],
      classErrors[2], classErrors[3], classErrors[4], classErrors[5],
      classErrors[6], classErrors[7]);
   printf("----------------------------------------------\n\n");
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   imsls_free(predictedClass);
   printf("Closing Classifier File.\n");
   imsls_fclose(file);
}

Output

Opening file NB_Classifier_Ex2.txt
Naive Bayes Classifier restored from file. File not closed.
    Iris Classification Error Rates
----------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   0/50     3/50        3/50    |  6/150
----------------------------------------------
Naive Bayes Classifier restored from file. File not closed.
    Iris Classification Error Rates
----------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   1/50     13/50        19/50    |  33/150
----------------------------------------------

Fatal Errors

IMSLS_FILE_OPEN_FAILURE Unable to open file for reading neural network.
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Neural Networks – An Overview
Today, neural networks are used to solve a wide variety of problems, some of which have been solved by existing 
statistical methods, and some of which have not. These applications fall into one of the following three 
categories:

 Forecasting: predicting one or more quantitative outcomes from both quantitative and nominal 
input data, 

 Classification: classifying input data into one of two or more categories, or

 Statistical pattern recognition: uncovering patterns, typically spatial or temporal, among a set of 
variables.

Forecasting, pattern recognition and classification problems are not new. They existed years before the discovery 
of neural network solutions in the 1980’s. What is new is that neural networks provide a single framework for solv-
ing so many traditional problems and, in some cases, extend the range of problems that can be solved.

Traditionally, these problems were solved using a variety of widely known statistical methods:

 linear regression and general least squares, 

 logistic regression and discrimination, 

 principal component analysis,

 discriminant analysis,

 k-nearest neighbor classification, and 

 ARMA and NARMA time series forecasts. 

In many cases, simple neural network configurations yield the same solution as many traditional statistical appli-
cations. For example, a single-layer, feedforward neural network with linear activation for its output perceptron is 
equivalent to a general linear regression fit. Neural networks can provide more accurate and robust solutions for 
problems where traditional methods do not completely apply. 

Mandic and Chambers (2001) identify the traditional methods for time series forecasting that are unsuitable 
when a time series:

 is non-stationary,

 has large amounts of noise, such as a biomedical series, or

 is too short.
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ARIMA and other traditional time series approaches can produce poor forecasts when one or more of the above 
conditions exist. The forecasts of ARMA and non-linear ARMA (NARMA) depend heavily upon key assumptions 
about the model or underlying relationship between the output of the series and its patterns. 

Neural networks, on the other hand, adapt to changes in a non-stationary series and can produce reliable fore-
casts even when the series contains a good deal of noise or when only a short series is available for training. 
Neural networks provide a single tool for solving many problems traditionally solved using a wide variety of statis-
tical tools and for solving problems when traditional methods fail to provide an acceptable solution. 

Although neural network solutions to forecasting, pattern recognition and classification problems can vary vastly, 
they are always the result of computations that proceed from the network inputs to the network outputs. The 
network inputs are referred to as patterns, and outputs are referred to as classes. Frequently the flow of these 
computations is in one direction, from the network input patterns to its outputs. Networks with forward-only flow 
are referred to as feedforward networks. 

Figure 23, A 2-layer, Feedforward Network with 4 inputs and 2 outputs

Other networks, such as recurrent neural networks, allow data and information to flow in both directions, see 
Mandic and Chambers (2001).
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Figure 24, A recurrent neural network with 4 inputs and 2 outputs

A neural network is defined not only by its architecture and flow, or interconnections, but also by computations 
used to transmit information from one node or input to another node. These computations are determined by 
network weights. The process of fitting a network to existing data to determine these weights is referred to as 
training the network, and the data used in this process are referred to as patterns. Individual network inputs are 
referred to as attributes and outputs are referred to as classes. The table below lists terms used to describe neural 
networks that are synonymous to common statistical terminology.

Table 49 – Synonyms between Neural Network and Common Statistical Terminology

Neural Network 
Terminology

Traditional Statistical 
Terminology Description

Training Model Fitting Estimating unknown parameters or 
coefficients in the analysis

Patterns Cases or Observations A single observation of all input and 
output variables

Attributes Independent Variables Inputs to the network or model

Classes Dependent Variables Outputs from the network or model 
calculations
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Neural Networks – History and Terminology

The Threshold Neuron

McCulloch and Pitts’ (1943) wrote one of the first published works on neural networks. This paper describes the 
threshold neuron as a model for which the human brain stores and processes information.

Figure 25, The McCulloch and Pitts’ Threshold Neuron

All inputs to a threshold neuron are combined into a single number, Z, using the following weighted sum:

Where m is the number of inputs and   is the weight associated with the i-th input (attribute)   . The term μ in 

this calculation is referred to as the bias term. In traditional statistical terminology it might be referred to as the 
intercept. The weights and bias terms in this calculation are estimated during network training. 

In McCulloch and Pitts’ (1943) description of the threshold neuron, the neuron does not respond to its inputs 
unless Z is greater than zero. If Z is greater than zero then the output from this neuron is set to 1. If Z is less than 
or equal to zero the output is zero:

where Y is the neuron’s output.

Years following McCulloch and Pitts’ (1943) article, interest in McCulloch and Pitts’ neural network was limited to 
theoretical discussions, such as Hebb (1949), which describe learning, memory and the brain’s structure.

Z =∑
i=1

m

wixi + μ

wi xi

Y = 1 if Z > 0
0 if Z ≤ 0
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The Perceptron

The McCulloch and Pitts’ neuron is also referred to as a threshold neuron since it abruptly changes its output 
from 0 to 1 when its potential, Z, crosses a threshold. Mathematically, this behavior can be viewed as a step func-
tion that maps the neuron’s potential, Z, to the neuron’s output, Y.

Rosenblatt (1958) extended the McCulloch and Pitts’ threshold neuron by replacing this step function with a con-
tinuous function that maps Z to Y. The Rosenblatt neuron is referred to as the perceptron, and the continuous 
function mapping Z to Y makes it easier to train a network of perceptrons than a network of threshold neurons. 

Unlike the threshold neuron, the perceptron produces analog output rather than the threshold neuron’s purely 
binary output. Carefully selecting the analog function, makes Rosenblatt’s perceptron differentiable, whereas the 
threshold neuron is not. This simplifies the training algorithm. 

Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted sum of its inputs, 

This is referred to as the perceptron’s potential. 

Rosenblatt’s perceptron calculates its analog output from its potential. There are many choices for this calcula-
tion. The function used for this calculation is referred to as the activation function as shown in Figure 26 below.

Figure 26, A Neural Net Perceptron

As shown in Figure 26, perceptrons consist of the following five components:

1. Inputs – x1, x2, and x3,

2. Input Weights – W1, W2, and W3,

Z =∑
i=1

m

wixi + μ
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3. Potential –   , where μ is a bias correction,

4. Activation Function – g(Z), and

5. Output – Y = g(Z) .

Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the output from another 
perceptron. The primary purpose of network training is to estimate the weights associated with each perceptron’s 
potential. The activation function maps this potential to the perceptron’s output. 

The Activation Function

Although theoretically any differentiable function can be used as an activation function, the identity and sigmoid 
functions are the two most commonly used.

The identity activation function, also referred to as a linear activation function, is a flow-through mapping of the 
perceptron’s potential to its output: 

Output perceptrons in a forecasting network often use the identity activation function. 

Figure 27, An Identity (Linear) Activation Function

Z = ∑
i=1

3

Wixi + μ

g Z = Z
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If the identity activation function is used throughout the network, then it is easily shown that the network is equiv-

alent to fitting a linear regression model of the form   , where   are the k 

network inputs,   is the i-th network output and   are the coefficients in the regression equation. 
As a result, it is uncommon to find a neural network with identity activation used in all its perceptrons.

Sigmoid activation functions are differentiable functions that map the perceptron’s potential to a range of values, 

such as 0 to 1, i.e., ℝk→ℝ where K is the number of perceptron inputs. 

Figure 28, A Sigmoid Activation Function

In practice, the most common sigmoid activation function is the logistic function that maps the potential into the 
range 0 to 1:

Since 0 < g(Z) < 1, the logistic function is very popular for use in networks that output probabilities.

Other popular sigmoid activation functions include: 

 the hyperbolic-tangent   ,

 the arc-tangent , and

 the squash activation function, see Elliott (1993),   .

Y i = β0 + β1x1 + ⋯ + βkxk x1, x2, ⋯ , xk
Y i β0, β1, ⋯ , βk

g Z = 1
1 + e−Z

g Z = tanh Z = eαZ − e−αZ

eαZ + e−αZ

g(Z) = 2
πarctan

πZ
2

g Z = Z
1 + ∣Z∣
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It is easy to show that the hyperbolic-tangent and logistic activation functions are linearly related. Consequently, 
forecasts produced using logistic activation should be close to those produced using hyperbolic-tangent activa-
tion. However, one function may be preferred over the other when training performance is a concern. 
Researchers report that the training time using the hyperbolic-tangent activation function is shorter than using 
the logistic activation function.

Network Applications

Forecasting using Neural Networks

There are numerous good statistical forecasting tools. Most require assumptions about the relationship between 
the variables being forecasted and the variables used to produce the forecast, as well as the distribution of fore-
cast errors. Such statistical tools are referred to as parametric methods. ARIMA time series models, for example, 
assume that the time series is stationary, that the errors in the forecasts follow a particular ARIMA model, and 
that the probability distribution for the residual errors is Gaussian, see Box and Jenkins (1970). If these assump-
tions are invalid, then ARIMA time series forecasts can be substandard.

Neural networks, on the other hand, require few assumptions. Since neural networks can approximate highly 
non-linear functions, they can be applied without an extensive analysis of underlying assumptions. 

Another advantage of neural networks over ARIMA modeling is the number of observations needed to produce a 
reliable forecast. ARIMA models generally require 50 or more equally spaced, sequential observations in time. In 
many cases, neural networks can also provide adequate forecasts with fewer observations by incorporating exog-
enous, or external, variables in the network’s input. 

For example, a company applying ARIMA time series analysis to forecast business expenses would normally 
require each of its departments, and each sub-group within each department, to prepare its own forecast. For 
large corporations this can require fitting hundreds or even thousands of ARIMA models. With a neural network 
approach, the department and sub-group information could be incorporated into the network as exogenous vari-
ables. Although this can significantly increase the network’s training time, the result would be a single model for 
predicting expenses within all departments.

Linear least squares models are also popular statistical forecasting tools. These methods range from simple lin-
ear regression for predicting a single quantitative outcome to logistic regression for estimating probabilities 
associated with categorical outcomes. It is easy to show that simple linear least squares forecasts and logistic 
regression forecasts are equivalent to a feedforward network with a single layer. For this reason, single-layer feed-
forward networks are rarely used for forecasting. Instead multilayer networks are used.
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Hutchinson (1994) and Masters (1995) describe using multilayer feedforward neural networks for forecasting. 
Multilayer feedforward networks are characterized by the forward-only flow of information in the network. The 
flow of information and computations in a feedforward network is always in one direction, mapping an M-dimen-

sional vector of inputs to a C-dimensional vector of outputs, i.e.,   where   . 

There are many other types of networks without this feed forward requirement. Information and computations in 
a recurrent neural network, for example, flows in both directions. Output from one level of a recurrent neural 
network can be fed back, with some delay, as input into the same network (see Figure 24). Recurrent networks 
are very useful for time series prediction, see Mandic and Chambers (2001).

Pattern Recognition using Neural Networks

Neural networks are also extensively used in statistical pattern recognition. Pattern recognition applications that 
make wide use of neural networks include:

 natural language processing: Manning and Schütze (1999)

 speech and text recognition: Lippmann (1989)

 face recognition: Lawrence, et al. (1997)

 playing backgammon, Tesauro (1990)

 classifying financial news, Calvo (2001). 

The interest in pattern recognition using neural networks has stimulated the development of important variations 
of feedforward networks. Two of the most popular are:

 Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995),

 and Radial Basis Function Networks, Bishop (1995).

Useful mathematical descriptions of the neural network methods underlying these applications are given by 
Bishop (1995), Ripley (1996), Mandic and Chambers (2001), and Abe (2001). From a statistical viewpoint, Warner 
and Misra (1996) describes an excellent overview of neural networks.

Neural Networks for Classification

Classifying observations using prior concomitant information is possibly the most popular application of neural 
networks. Data classification problems abound in business and research. When decisions based upon data are 
needed, they can often be treated as a neural network data classification problem. Decisions to buy, sell, or hold 
a stock are decisions involving three choices. Classifying loan applicants as good or bad credit risks, based upon 
their application, is a classification problem involving two choices. Neural networks are powerful tools for making 
decisions or choices based upon data.

ℜM→ ℜC C < M
1609



 Data Mining         Neural Networks – An Overview
These same tools are ideally suited for automatic selection or decision-making. Incoming email, for example, can 
be examined to separate spam from important email using a neural network trained for this task. A good over-
view of solving classification problems using multilayer feedforward neural networks is found in Abe (2001) and 
Bishop (1995).

There are two popular methods for solving data classification problems using multilayer feedforward neural net-
works, depending upon the number of choices (classes) in the classification problem. If the classification problem 
involves only two choices, then it can be solved using a neural network with a single logistic output. This output 
estimates the probability that the input data belong to one of the two choices.

For example, a multilayer feedforward network with a single logistic output can be used to determine whether a 
new customer is credit-worthy. The network’s input would consist of information on the applicants credit applica-
tion, such as age, income, etc. If the network output probability is above some threshold value (such as 0.5 or 
higher) then the applicant’s credit application is approved. This is referred to as binary classification using a multi-
layer feedforward neural network.

If more than two classes are involved then a different approach is needed. A popular approach is to assign logistic 
output perceptrons to each class in the classification problem. The network assigns each input pattern to the 
class associated with the output perceptron that has the highest probability for that input pattern. However, this 
approach produces invalid probabilities since the sum of the individual class probabilities for each input is not 
equal to one, which is a requirement for any valid multivariate probability distribution. 

To avoid this problem, the softmax activation function, see Bridle (1990), applied to the network outputs ensures 
that the outputs conform to the mathematical requirements of multivariate classification probabilities. If the clas-
sification problem has C categories, or classes, then each category is modeled by one of the network outputs. If Zi 

is the weighted sum of products between its weights and inputs for the i-th output, i.e., 

then 

The softmax activation function ensures that all outputs conform to the requirements for multivariate probabili-
ties. That is, 0 < softmaxi < 1, for all i = 1, 2, …, C and

Zi =∑
j

w jiy ji

softmaxi =
e
Zi

∑
j=1

C
e
Z j
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A pattern is assigned to the i-th classification when softmaxi is the largest among all C classes.

However, multilayer feedforward neural networks are only one of several popular methods for solving classifica-
tion problems. Others include:

 Support Vector Machines (SVM Neural Networks), Abe (2001),

 Classification and Regression Trees (CART), Breiman, et al. (1984),

 Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and

 Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997).

Support Vector Machines are simple modifications of traditional multilayer feedforward neural networks (MLFF) 
configured for pattern classification.

∑
i=1

C

softmaxi = 1
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Multilayer Feedforward Neural Networks
A multilayer feedforward neural network is an interconnection of perceptrons in which data and calculations flow 
in a single direction, from the input data to the outputs. The number of layers in a neural network is the number 
of layers of perceptrons. The simplest neural network is one with a single input layer and an output layer of per-
ceptrons. The network in Figure 13-7 illustrates this type of network. Technically, this is referred to as a one-layer 
feedforward network with two outputs because the output layer is the only layer with an activation calculation.

Figure 29, A Single-Layer Feedforward Neural Net

In this single-layer feedforward neural network, the network’s inputs are directly connected to the output layer 
perceptrons, Z1 and Z2. 

The output perceptrons use activation functions, g1 and g2, to produce the outputs Y1 and Y2.

Since 
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and 

When the activation functions g1 and g2 are identity activation functions, the single-layer neural network is equiv-

alent to a linear regression model. Similarly, if g1 and g2 are logistic activation functions, then the single-layer 

neural network is equivalent to logistic regression. Because of this correspondence between single-layer neural 
networks and linear and logistic regression, single-layer neural networks are rarely used in place of linear and 
logistic regression.

The next most complicated neural network is one with two layers. This extra layer is referred to as a hidden layer. 
In general there is no restriction on the number of hidden layers. However, it has been shown mathematically 
that a two-layer neural network can accurately reproduce any differentiable function, provided the number of 
perceptrons in the hidden layer is unlimited.

However, increasing the number of perceptrons increases the number of weights that must be estimated in the 
network, which in turn increases the execution time for the network. Instead of increasing the number of percep-
trons in the hidden layers to improve accuracy, it is sometimes better to add additional hidden layers, which 
typically reduce both the total number of network weights and the computational time. However, in practice, it is 
uncommon to see neural networks with more than two or three hidden layers.

Neural Network Error Calculations

Error Calculations for Forecasting

The error calculations used to train a neural network are very important. Researchers have investigated many 
error calculations in an effort to find a calculation with a short training time appropriate for the network’s applica-
tion. Typically, error calculations are very different depending primarily on the network’s application. 

Z1 =∑
i=1

3

W1,ixi + μ1 and Z2 =∑
i=1

3

W2, ixi + μ2

Y1 = g1 Z1 = g1 ∑
i=1

3

W1, ixi + μ1

Y2 = g2 Z2 = g2 ∑
i=1

3

W2, ixi + μ2
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For forecasting, the most popular error function is the sum-of-squared errors, or one of its scaled versions. This is 
analogous to using the minimum least squares optimization criterion in linear regression. Like least squares, the 
sum-of-squared errors is calculated by looking at the squared difference between what the network predicts for 
each training pattern and the target value, or observed value, for that pattern. Formally, the equation is the same 
as one-half the traditional least squares error: 

where N is the total number of training cases, C is equal to the number of network outputs,    is the observed 

output for the i-th training case and the j-th network output, and    is the network’s forecast for that case.

Common practice recommends fitting a different network for each forecast variable. That is, the recommended 
practice is to use C=1 when using a multilayer feedforward neural network for forecasting. For classification prob-
lems with more than two classes, it is common to associate one output with each classification category, i.e., 
C=number of classes.

Notice that in ordinary least squares, the sum-of-squared errors are not multiplied by one-half. Although this has 
no impact on the final solution, it significantly reduces the number of computations required during training.

Also note that as the number of training patterns increases, the sum-of-squared errors increases. As a result, it is 
often useful to use the root-mean-square (RMS) error instead of the unscaled sum-of-squared errors:

where   is the average output:

Unlike the unscaled sum-of-squared errors, ERMS does not increase as N increases. The smaller values for ERMS, 

indicate that the network predicts its training targets closer. The smallest value, ERMS =0, indicates that the net-

work predicts every training target exactly. The largest value, ERMS =1, indicates that the network predicts the 
training targets only as well as setting each forecast equal to the mean of the training targets.

Notice that the root-mean-squared error is related to the sum-of-squared error by a simple scale factor:

E = 12∑
i=1

N

∑
j=1

C

ti j − t
^
i j

2

ti j
t^i j

ERMS =
∑
i=1

N
∑
j=1

C
ti j − t

^
i j
2

∑
i=1

N
∑
j=1

C
ti j − t

─ 2

t─

t─ =
∑
i=1

N
∑
j=1

C
ti j
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Another popular error calculation for forecasting from a neural network is the Minkowski-R error. The sum-of-

squared error, E, and the root-mean-squared error, ERMS, are both theoretically motivated by assuming the noise 
in the target data is Gaussian. In many cases, this assumption is invalid. A generalization of the Gaussian distribu-
tion to other distributions gives the following error function, referred to as the Minkowski-R error:

Notice that ER=2E when R =2. 

A good motivation for using ER instead of E is to reduce the impact of outliers in the training data. The usual error 

measures, E and ERMS, emphasize larger differences between the training data and network forecasts since they 
square those differences. If outliers are expected, then it is better to de-emphasize larger differences. This can be 
done by using the Minkowski-R error with R =1. When R =1, the Minkowski-R error simplifies to the sum of abso-
lute differences:

L is also referred to as the Laplacian error. This name is derived from the fact that it can be theoretically justified 
by assuming the noise in the training data follows a Laplacian, rather than Gaussian, distribution.

Of course, similar to E, L generally increases when the number of training cases increases. Similar to ERMS, a 
scaled version of the Laplacian error can be calculated using the following formula:

Cross-Entropy Error for Binary Classification

As previously mentioned, multilayer feedforward neural networks can be used for both forecasting and classifica-
tion applications. Training a forecasting network involves finding the network weights that minimize either the 

Gaussian or Laplacian distributions, E or L, respectively, or equivalently their scaled versions, ERMSor LRMS. 
Although these error calculations can be adapted for use in classification by setting the target classification vari-

ERMS = 2t─E

ER =∑
i=1

N

∑
j=1

C
∣ti j − t^i j∣R

L = E1 =∑
i=1

N

∑
j=1

C
∣ti j − t^i j∣

LRMS =
∑
i=1

N
∑
j=1

C
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∑
i=1

N
∑
j=1

C
∣ti j − t─∣
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able to zeros and ones, this is not recommended. Use of the sum-of-squared and Laplacian error calculations is 
based on the assumption that the target variable is continuous. In classification applications, the target variable is 
a discrete random variable with C possible values, where C = number of classes.

A multilayer feedforward neural network for classifying patterns into one of only two categories is referred to as a 
binary classification network. It has a single output: the estimated probability that the input pattern belongs to 
one of the two categories. The probability that it belongs to the other category is equal to one minus this proba-
bility, i.e., P(C2) = P(not C1) = 1-P(C1). 

Binary classification applications are very common. Any problem requiring yes/no classification is a binary classifi-
cation application. For example, deciding to sell or buy a stock is a binary classification problem. Deciding to 
approve a loan application is also a binary classification problem. Deciding whether to approve a new drug or to 
provide one of two medical treatments are binary classification problems.

For binary classification problems, only a single output is used, C =1. This output represents the probability that 
the training case should be classified as “yes.” A common choice for the activation function of the output of a 
binary classification network is the logistic activation function, which always results in an output in the range 0 to 
1, regardless of the perceptron’s potential.

One choice for training binary classification networks is to use sum-of-squared errors with the class value of yes 
patterns coded as a 1 and the no classes coded as a 0, i.e.:

However, using either the sum-of-squared or Laplacian errors for training a network with these target values 
assumes that the noise in the training data are Gaussian. In binary classification, the zeros and ones are not 
Gaussian. They follow the Bernoulli distribution:

where p is equal to the probability that a randomly selected case belongs to the “yes” class.

Modeling the binary classes as Bernoulli observations leads to the use of the cross-entropy error function 
described by Hopfield (1987) and Bishop (1995):

where N is the number of training patterns,    is the target value for the i-th case (either 1 or 0), and    is the net-
work output for the i-th training pattern. This is equal to the neural network’s estimate of the probability that the 
i-th training pattern should be classified as “yes.”

ti =
1 if training pattern i = "yes"
0 if training pattern i = "no"

P ti = t = pt 1 − p)1−t

EC = −∑
i=1

N

tiln t^i + 1 − ti ln 1 − t
^
i

ti t^i
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For situations in which the target variable is a probability in the range   , the value of the cross-entropy 
at the network’s optimum is equal to:

Subtracting    from    gives an error term bounded below by zero, i.e.,

where

This adjusted cross-entropy,   , is normally reported when training a binary classification network where  

 . Otherwise   , the unadjusted cross-entropy error, is used. For   , small values, i.e. values near 
zero, indicate that the training resulted in a network able to classify the training cases with a low error rate.

Cross-Entropy Error for Multiple Classes

Using a multilayer feedforward neural network for binary classification is relatively straightforward. A network for 
binary classification only has a single output that estimates the probability that an input pattern belongs to the 

“yes” class, i.e.,   . In classification problems with more than two mutually exclusive classes, the calculations 
and network configurations are not as simple.

One approach is to use multiple network outputs, one for each of the C classes. Using this approach, the j-th out-

put for the i-th training pattern,   , is the estimated probability that the i-th pattern belongs to the j-th class, 

denoted by   . An easy way to estimate these probabilities is to use logistic activation for each output. This 

ensures that each output satisfies the univariate probability requirements, i.e.,   . 

However, since the classification categories are mutually exclusive, each pattern can only be assigned to one of 
the C classes, which means that the sum of these individual probabilities should always equal 1. Yet, if each out-
put is the estimated probability for that class, it is very unlikely that 

In fact, the sum of the individual probability estimates can easily exceed 1 if logistic activation is applied to every 
output.

0 < ti j < 1

Emin
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N
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Emin
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ECE ≥ 0

ECE = EC − Emin
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∑
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1617



 Data Mining         Multilayer Feedforward Neural Networks
Support Vector Machine (SVM) neural networks use this approach with one modification. An SVM network classi-
fies a pattern as belonging to the i-th category if the activation calculation for that category exceeds a threshold 
and the other calculations do not exceed this value. That is, the i-th pattern is assigned to the j-th category if and 

only if    and   for all   , where δ is the threshold. If this does not occur, then the pattern is 
marked as unclassified. 

Another approach to multiclass classification problems is to use the softmax activation function developed by Bri-
dle (1990) on the network outputs. This approach produces outputs that conform to the requirements of a 
multinomial distribution. That is

and

The softmax activation function estimates classification probabilities using the following softmax activation 
function:

where   is the potential for the j-th output perceptron, or category, using the i-th pattern.

For this activation function, it is clear that:

Modeling the C network outputs as multinomial observations leads to the cross-entropy error function described 
by Hopfield (1987) and Bishop (1995):

t^i j > δ t^ik ≤ δ k ≠ j

∑
j=1

C

t^i j = 1 for all i = 1,2, ⋯ ,N and 0 ≤ t^i j ≤ 1 for all i = 1,2, ⋯ ,N

j = 1, 2, ⋯ , C

t^i j =
e
Zi j

∑
j=1

C
e
Zi j

Zi j

0 ≤ t^i j ≤ 1 for all i = 1,2, ⋯ ,N , j = 1,2, ⋯ ,C and

∑
j=1

C

t^i j = 1 for all i = 1,2, ⋯ ,N
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where N is the number of training patterns,    is the target value for the j-th class of i-th pattern (either 1 or 0), 

and    is the network’s j-th output for the i-th pattern.    is equal to the neural network’s estimate of the prob-
ability that the i-th pattern should be classified into the j-th category.

For situations in which the target variable is a probability in the range   , the value of the cross-entropy 
at the networks optimum is equal to:

Subtracting this from EC gives an error term bounded below by zero, i.e., ECE ≥ 0 where:

This adjusted cross-entropy is normally reported when training a binary classification network where 0 < tij < 1. 

Otherwise EC, the non-adjusted cross-entropy error, is used. That is, when 1-in-C encoding of the target variable 
is used, 

Small values, values near zero, indicate that the training resulted in a network with a low error rate and that pat-
terns are being classified correctly most of the time.

Back-Propagation in Multilayer Feedforward Neural Networks

Sometimes a multilayer feedforward neural network is referred to incorrectly as a back-propagation network. The 
term back-propagation does not refer to the structure or architecture of a network. Back-propagation refers to 
the method used during network training. More specifically, back-propagation refers to a simple method for cal-
culating the gradient of the network, that is the first derivative of the weights in the network.

The primary objective of network training is to estimate an appropriate set of network weights based upon a 
training dataset. Many ways have been researched for estimating these weights, but they all involve minimizing 
some error function. In forecasting the most commonly used error function is the sum-of-squared errors:

EC = −∑
i=1

N

∑
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ti jln t^i j
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ti j =
1 if the i − th pattern belongs to the j − th category
0 if the i − th pattern does not belong to the j − th category
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Training uses one of several possible optimization methods to minimize this error term. Some of the more com-
mon are: steepest descent, quasi-Newton, conjugant gradient and many various modifications of these 
optimization routines.

Back-propagation is a method for calculating the first derivative, or gradient, of the error function required by 
some optimization methods. It is certainly not the only method for estimating the gradient. However, it is the 
most efficient. In fact, some will argue that the development of this method by Werbos (1974), Parker (1985) and 
Rumelhart, Hinton and Williams (1986) contributed to the popularity of neural network methods by significantly 
reducing the network training time and making it possible to train networks consisting of a large number of 
inputs and perceptrons. Function imsls_f_mlff_network_trainer Stage I training is implemented using 
Quasi-Newton optimization and steepest ascent with gradients estimated using the back-propagation method. 
Stage II training is implemented using Quasi-Newton optimization.

Simply stated, back-propagation is a method for calculating the first derivative of the error function with respect 
to each network weight. Bishop (1995) derives and describes these calculations for the two most common fore-
casting error functions – the sum-of-squared errors and Laplacian error functions. Abe (2001) gives the 
description for the classification error function - the cross-entropy error function. For all of these error functions, 
the basic formula for the first derivative of the network weight wji at the i-th perceptron applied to the output 

from the j-th perceptron is:

where   is the output from the i-th perceptron after activation, and 

is the derivative for a single output and a single training pattern. The overall estimate of the first derivative of wji 

is obtained by summing this calculation over all N training patterns and C network outputs.

The term back-propagation gets its name from the way the term δj in the back-propagation formula is calculated:

where the summation is over all perceptrons that use the activation from the j-th perceptron, g(aj). 
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The derivative of the activation functions, g' (aj), varies among these functions. See the following table:

Table 50: Activation Functions and Their Derivatives

Activation Function g(a) g’(a) 

Linear     

Logistic
  

  

Hyperbolic-tangent     

Squash
  

  

g a = a g ′ a = 1

g a = 1
1 + e−a g ′ a = g a 1 − g a

g a = tanh a g ′ a = sech2 a = 1 − tanh2 a

g a = a
1 + ∣a∣ g ′ a = 1

1 + ∣a∣ 2 = 1 − ∣g a ∣ 2
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mlff_network_init
Initializes an Imsls_f_NN_Network data structure for use in training a neural network.

Synopsis
#include <imsls.h>
Imsls_f_NN_Network *imsls_f_mlff_network_init (int n_inputs, int n_outputs)

The type double function is imsls_d_mlff_network_init.

Required Arguments
int n_inputs (Input)

The number of network inputs. If the network uses nominal input attributes, the number of inputs 
equals the number of encoded columns used to represent these attributes plus the number of con-
tinuous and ordinal input attributes, if any.

int n_outputs (Input)
The number of network outputs. For neural networks used for forecasting continuous responses, 
n_outputs is equal to the number of variables being forecasted. Networks used for binary classifi-
cation have only one output. Other classification networks have one output for every possible target 
category.

Return Value
An Imsls_f_NN_Network data structure initialized with the number of inputs and outputs specified by n_inputs 
and n_outputs. To release this space use  imsls_f_mlff_network_free.

Description
The function imsls_f_mlff_network_init is used to initialize the network, the function 
imsls_f_mlff_network is used to build up the network in preparation for training, and the function 
imsls_f_mlff_network_free is used to free the internally allocated structure.
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Function imsls_f_mlff_network_init initializes and returns an Imsls_f_NN_Network data structure.  This 
structure is required input to imsls_f_mlff_network and the network trainers. This function initializes the 
structure to accommodate a network with the number of inputs and outputs specified by n_inputs and 
n_outputs respectively. This function must be called prior to building the complete network architecture using 
imsls_f_mlff_network.

Function imsls_f_mlff_network modifies the structure initialized by this function and builds the network 
architecture consisting of hidden layers, perceptrons and links among these objects. This architecture is indepen-
dent of the training data. Once the architecture is complete, the Imsls_f_NN_Network data structure can be used 
with imsls_f_mlff_network_trainer or imsls_f_classification_trainer to train the network.

After the network is trained, not only does the Imsls_f_NN_Network data structure contains a description of the 
network architecture, it also contains the network weights needed for neural network forecasting or classification.

Example
For details, see the Examples section of mlff_network.
1623



 Data Mining         mlff_network
mlff_network
Creates a multilayered feedforward neural network. 

Synopsis
#include <imsls.h>
void imsls_f_mlff_network (Imsls_f_NN_Network *network, ..., 0)

The type double functions is imsls_d_mlff_network. 

Required Arguments
Imsls_f_NN_Network *network (Input/Output) 

A pointer to the structure containing the neural network that was initialized by 
imsls_f_mlff_network_init. On output, the data structure will be updated depending on the optional 
arguments used. 

Synopsis with Optional Arguments
#include <imsls.h> 

void imsls_f_mlff_network (Imsls_f_NN_Network *network,

IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons,
IMSLS_ACTIVATION_FCN, int layer_id, int activation_fcn[],
IMSLS_BIAS, int layer_id, float bias[],
IMSLS_LINK_ALL, or
IMSLS_LINK_LAYER, int to, int from, or
IMSLS_LINK_NODE, int to, int from, or
IMSLS_REMOVE_LINK, int to, int from,
IMSLS_N_LINKS, int *n_links,
IMSLS_DISPLAY_NETWORK,
0)
1624



 Data Mining         mlff_network
Optional Arguments for imsls_f_mlff_network
IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons  (Input)

Creates a hidden layer with n_perceptrons. To create one or more hidden layers 
imsls_f_mlff_network must be called multiple times with optional argument 
IMSLS_CREATE_HIDDEN_LAYER.

Default: No hidden layer is created.

IMSLS_ACTIVATION_FCN, int layer_id, int activation_fcn[] (Input)
Specifies the activation function for each perceptron in a hidden layer or the output layer, indicated 
by layer_id. layer_id must be between 1 and the number of layers. If a hidden layer has been 
created, layer_id set to 1 will indicate the first hidden layer. If there are zero hidden layers, 
layer_id set to 1 indicates the output layer. Argument activation_fcn is an array of length 
n_perceptrons in layer_id, where n_perceptrons is the number of perceptrons in 
layer_id. activation_fcn contains the activation function for the i-th perceptron. Valid val-
ues for activation_fcn are:

Default: Output Layer activation_fcn[i] = IMSLS_LINEAR. All hidden layers 
activation_fcn[i] = IMSLS_LOGISTIC.

IMSLS_BIAS, int layer_id, float bias[],  (Input)
Specifies the bias values for each perceptron in a hidden layer or the output layer, indicated by 
layer_id.  layer_id must be between 1 and the number of layers. If a hidden layer has been 
created, layer_id set to 1 indicates the first hidden layer. If there are zero hidden layers, 
layer_id set to 1 indicates the output layer. Argument bias is an array of length 
n_perceptrons in layer_id, where n_perceptrons is the number of perceptrons in 
layer_id. bias contains the initial bias values for the i-th perceptron. 

Default: bias[i] = 0.0 

IMSLS_LINK_ALL,  (Input)
Connects all nodes in a layer to each node in the next layer, for all layers in the network. To create a 
valid network, use IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or IMSLS_LINK_NODE.

or

Activation Function Description

IMSLS_LINEAR Linear

IMSLS_LOGISTIC Logistic

IMSLS_TANH Hyperbolic-tangent

IMSLS_SQUASH Squash
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IMSLS_LINK_LAYER, int to, int from  (Input)
Creates a link between all nodes in layer from to all nodes in layer to. Layers are numbered starting 
at zero with the input layer, then the hidden layers in the order they are created, and finally the out-
put layer. To create a valid network, use IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or 
IMSLS_LINK_NODE.

or

IMSLS_LINK_NODE, int to, int from  (Input)
Links node from to node to. Nodes are numbered starting at zero with the input nodes, then the 
hidden layer perceptrons, and finally the output perceptrons. To create a valid network, use 
IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or IMSLS_LINK_NODE.

or

IMSLS_REMOVE_LINK, int to, int from  (Input)
Removes the link between node from and node to. Nodes are numbered starting at zero with the 
input nodes, then the hidden layer perceptrons, and finally output perceptrons. 

IMSLS_N_LINKS, int *n_links  (Output)
Returns the number of links in the network.

IMSLS_DISPLAY_NETWORK  (Input)
Displays the contents of the network structure.

Default: No printing is done.

Description
A multilayered feedforward network contains an input layer, an output layer and zero or more hidden layers. The 
input and output layers are created by the function imsls_f_mlff_network_init. The hidden layers are 
created by one or more calls to imsls_f_mlff_network with the keyword 
IMSLS_CREATE_HIDDEN_LAYER, where n_perceptrons specifies the number of perceptrons in the hid-
den layer. 

The network also contains links or connections between nodes. Links are created by using one of the three 
optional arguments in the imsls_f_mlff_network function, IMSLS_LINK_ALL, IMSLS_LINK_LAYER, 
IMSLS_LINK_NODE. The most useful is the IMSLS_LINK_ALL, which connects every node in each layer to 
every node in the next layer. A feedforward network is a network in which links are only allowed from one layer to 
a following layer.
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Each link has a weight and gradient value. Each perceptron node has a bias value. When the network is trained, the 
weight and bias values are used as initial guesses. After the network is trained using 
imsls_f_mlff_network_trainer, the weight, gradient and bias values are updated in the 
Imsls_f_NN_Network structure.

Each perceptron has an activation function g, and a bias, μ. The value of the percepton is given by g(Z), where g is 
the activation function and Z is the potential calculated using 

where xi are the values of nodes input to this perceptron with weights wi.

All information for the network is stored in the structure called Imsls_f_NN_Network. (If the type is double, then the 
structure name is Imsls_d_NN_Network.) This structure describes the network that is trained by 
imsls_f_mlff_network_trainer.

The following code gives a detailed description of Imsls_f_NN_Network:
typedef struct
{
  int               n_inputs;
  int               n_outputs;
  int               n_layers;
  Imsls_NN_Layer    *layers;
  int               n_links;
  int               next_link;
  Imsls_f_NN_Link   *links;
  int               n_nodes;
  Imsls_f_NN_Node   *nodes;
} Imsls_f_NN_Network;

       where Imsls_NN_Layer is: 

typedef struct
{
  int         n_nodes;
  int         *nodes;        /* An array containing the indices into the
                                 Node array that belong to this layer */
} Imsls_NN_Layer;

       Imsls_NN_Link is: 

typedef struct
{
  float       weight;
  float       gradient;
  int         to_node;  /* index of to node */
  int         from_node; /* index of from node */
} Imsls_f_NN_Link;

Z =∑
i=1

m

wixi + μ
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       and, Imsls_NN_Node is:

typedef struct
{
  int         layer_id;
  int         n_inLinks;
  int         n_outLinks;
  int         *inLinks;  /* index to Links array */
  int         *outLinks; /* index to Links array */
  float       gradient;
  float       bias;
  int         ActivationFcn; 
} Imsls_f_NN_Node;

In particular, if network is a pointer to the structure of type Imsls_f_NN_Network , then:

Nodes are numbered starting at zero with the input nodes, followed by the hidden layer perceptrons and finally 
the output perceptrons.

Table 51: Structure Members and Their Descriptions

Structure member Description

network->n_layers Number of layers in network. Layers are num-
bered starting at 0 for the input layer.

network->n_nodes Total number of nodes in network, including 
the input attributes.

network->n_links Total number of links or connections between 
input attributes and perceptrons and between 
perceptrons from layer to layer.

network->layers[0] Input layer with n_inputs attributes.

network->layers[network->n_layers-1] Output layer with n_outputs perceptrons.

network->n_inputs which is equal to 
network->layers[0].n_nodes

n_inputs (number of input attributes).

network->n_outputs which is equal to 
network->layers[network->n_layers-1].n_nodes

n_outputs (number of output perceptrons).

network->layers[1].n_nodes Number of perceptrons in first hidden layer, or 
number of output perceptrons if no hidden 
layer.

network->links[i].weight Initial weight for the i-th link in network. After 
the training has completed the structure mem-
ber contains the weight used for forecasting.

network->nodes[i].bias Initial bias value for the i-th node. After the 
training has completed the bias value is 
updated.
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Layers are numbered starting at zero with the input layer, followed by the hidden layers and finally the output 
layer. If there are no hidden layers, the output layer is numbered one.

Links are numbered starting at zero in the order the links were created. If the IMSLS_LINK_ALL option was 
used, the first link is the input link from the first input node to the first node in the next layer. The second link is 
the input link from the first input node to the second node in the next layer, continuing to the link from the last 
node in the next to last layer to the last node in the output layer. However, due to the possible variations in the 
order the links may be created, it is advised to initialize the weights using the imsls_f_initialize_weights 
routine or use the optional argument IMSLS_WEIGHT_INITIALIZATION_METHOD in functions 
imsls_f_mlff_network_trainer and imsls_f_mlff_classification_trainer. Alternatively, the 
weights can be initialized in the Imsls_f_NN_Network data structure. The following code is an example of how to ini-
tialize the network weights in an Imsls_f_NN_Network variable created with the name network:

   for (j=network->n_inputs; j < network->n_nodes; j++)
   {
       for (k=0; k < network->nodes[j].n_inLinks; k++)
       {
          wIdx = network->nodes[j].inLinks[k];
          /*  set specific layer weights */ 
          if (network->nodes[j].layer_id == 1) {
              network->links[wIdx].weight = 0.5;
          } else if (network->nodes[j].layer_id == 2) {
              network->links[wIdx].weight = 0.33;
          } else {
              network->links[wIdx].weight = 0.25;
          }
       }
   }

The first for loop, j iterates through each perceptron in the network. Since input nodes are not perceptrons, they 
are excluded. The second for loop, k iterates through each of the perceptron’s input links, network-
>nodes[j].inLinks[k].   network->nodes[j].n_inLinks is the number of input links for 
network->nodes[j].   network->nodes[j].inLinks[k] contains the index of each input link to 
network->nodes[j] in the network->links array. 

This example also illustrates how to set the weights based on the layer_id number. 
network->nodes[j].layer_id contains the layer identification number. This is used to set the weights for 
the first hidden layer to 0.5, the second hidden layer weights to 0.33 and all others to 0.25.
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Examples

Example 1

This example creates a single-layer feedforward network. The network inputs are directly connected to the out-
put perceptrons using the IMSLS_LINK_ALL argument. The output perceptrons use the default linear 
activation function and default bias values of 0.0. The IMSLS_DISPLAY_NETWORK argument is used to show 
the default settings of the network.

Figure 30, A Single-Layer Feedforward Neural Net

#include <imsls.h>
int main()
{
    Imsls_f_NN_Network *network;
 
    network = imsls_f_mlff_network_init(3,2);
    imsls_f_mlff_network(network, 
       IMSLS_LINK_ALL, 
       IMSLS_DISPLAY_NETWORK, 
       0);
    imsls_f_mlff_network_free(network);
}
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Output

+++++++++++
Input Layer
-----------------
    NODE_0
Activation Fcn = 0
Bias = 0.000000
 Output Links :  0 1
    NODE_1
Activation Fcn = 0
Bias = 0.000000
 Output Links :  2 3
    NODE_2
Activation Fcn = 0
Bias = 0.000000
 Output Links :  4 5

Output Layer
-----------------
    NODE_3
Activation Fcn = 0
Bias = 0.000000
 Input Links :  0 2 4
    NODE_4
Activation Fcn = 0
Bias = 0.000000
 Input Links :  1 3 5

******* Links ********
network->links[0].weight =    0.00000000000000000000
network->links[0].gradient =    1.00000000000000000000
network->links[0].to_node = 3
network->links[0].from_node = 0
network->links[1].weight =    0.00000000000000000000
network->links[1].gradient =    1.00000000000000000000
network->links[1].to_node = 4
network->links[1].from_node = 0
network->links[2].weight =    0.00000000000000000000
network->links[2].gradient =    1.00000000000000000000
network->links[2].to_node = 3
network->links[2].from_node = 1
network->links[3].weight =    0.00000000000000000000
network->links[3].gradient =    1.00000000000000000000
network->links[3].to_node = 4
network->links[3].from_node = 1
network->links[4].weight =    0.00000000000000000000
network->links[4].gradient =    1.00000000000000000000
network->links[4].to_node = 3
network->links[4].from_node = 2
network->links[5].weight =    0.00000000000000000000
network->links[5].gradient =    1.00000000000000000000
network->links[5].to_node = 4
network->links[5].from_node = 2
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Example 2

This example creates a two-layer feedforward network with four inputs, one hidden layer with three perceptrons 
and two outputs.

Since the default activation function is linear for output and logistic for the hidden layers, to create a network that 
uses only linear activation you must specify the linear activation for each hidden layer in the network. This exam-
ple demonstrates how to change the activation function and bias values for hidden and output layer perceptrons 
as shown in Figure 31 below.

Figure 31, A 2-layer Feedforward Network with 4 Inputs and 2 Outputs

#include <imsls.h>
int main()
{
   Imsls_f_NN_Network *network;
   int hidActFcn[3] ={IMSLS_LINEAR, IMSLS_LINEAR, IMSLS_LINEAR};
   float outbias[2] = {1.0, 1.0};
   float hidbias[3] = {1.0, 1.0, 1.0};
   network = imsls_f_mlff_network_init(4,2);
   imsls_f_mlff_network(network,
       IMSLS_CREATE_HIDDEN_LAYER, 3,
       IMSLS_ACTIVATION_FCN, 1, &hidActFcn,
       IMSLS_BIAS, 2, outbias,
       IMSLS_LINK_ALL,
       0);
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   imsls_f_mlff_network(network,
       IMSLS_BIAS, 1, hidbias,
       0);
   imsls_f_mlff_network_free(network);
}

Example 3

This example creates a three-layer feedforward network with six input nodes and they are not all connected to 
every node in the first hidden layer.

Note also that the four perceptrons in the first hidden layer are not connected to every node in the second hid-
den layer, and the perceptrons in the second hidden layer are not all connected to the two outputs:

Figure 32, A network that uses a total of nine perceptrons to produce two forecasts from six input 
attributes

This network uses a total of nine perceptrons to produce two forecasts from six input attributes.

Links among the input nodes and perceptrons can be created using one of several approaches. If all inputs are 
connected to every perceptron in the first hidden layer, and if all perceptrons are connected to every perceptron 
in the following layer, which is a standard architecture for feed forward networks, then a call to the 
IMSLS_LINK_ALL method can be used to create these links.
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However, this example does not use that standard configuration. Some links are missing. The keyword 
IMSLS_LINK_NODE can be used to construct individual links, or, an alternative approach is to first create all 
links and then remove those that are not needed. This example illustrates the latter approach.

#include <imsls.h>
int main()
{
    Imsls_f_NN_Network *network;
    network = imsls_f_mlff_network_init(6,2);
    /* Create 2 hidden layers and link all nodes  */
    imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 4, 0);
    imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3,
        IMSLS_LINK_ALL,  0);
    /* Remove unwanted links from Input 1 */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,0, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,9,0, 0);
    /* Remove unwanted links from Input 2 */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,9,1, 0);
    /* Remove unwanted links from Input 3 */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,2, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,9,2, 0);
    /* Remove unwanted links from Input 4 */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,3, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,7,3, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,3, 0);
    /* Remove unwanted links from Input 5 */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,4, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,7,4, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,4, 0);
    /* Remove unwanted links from Input 6 */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,5, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,7,5, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,5, 0);
    /* Add link from Input 1 to Output Perceptron 1 */
    imsls_f_mlff_network(network, IMSLS_LINK_NODE,13,0, 0);
  
    /* Remove unwanted links between hidden Layer 1 and hidden layer 2 */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,11,8, 0);
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,12,9, 0);
    /* Remove unwanted links between hidden Layer 2 and output layer */
    imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,14,10, 0);
    imsls_f_mlff_network_free(network);
}

Another approach is to use keywords IMSLS_LINK_NODE and IMSLS_LINK_LAYER to combine links 
between the two hidden layers, create individual links, and remove the links that are not needed. This example 
illustrates this approach:

#include <imsls.h>
int main()
{
   Imsls_f_NN_Network *network;
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   network = imsls_f_mlff_network_init(6,2);
   imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 4, 0);
   imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3, 0);
   /* Link input attributes to first hidden layer */
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,6,0, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,7,0, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,6,1, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,7,1, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,8,1, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,7,2, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,8,2, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,9,3, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,9,4, 0);
   imsls_f_mlff_network(network, IMSLS_LINK_NODE,9,5, 0);
   /* Link hidden layer 1 to hidden layer 2 then remove unwanted links */
   imsls_f_mlff_network(network, IMSLS_LINK_LAYER,2,1, 0);
   imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,11,8, 0);
   imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,12,9, 0);
   /* Link hidden layer 2 to output layer then remove unwanted link */
   imsls_f_mlff_network(network, IMSLS_LINK_LAYER,3,2, 0);
   imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,14,10, 0);
   imsls_f_mlff_network_free(network);
}
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mlff_network_free
Frees memory allocated to an Imsls_f_NN_Network data structure.

Synopsis
#include <imsls.h>
void imsls_f_mlff_network_free (Imsls_f_NN_Network *network)

The type double function is imsls_d_mlff_network_free.

Required Arguments
Imsls_f_NN_Network *network (Input)

Pointer to a structure of the type Imsls_f_NN_Network.

Description
Function mlff_network_free frees memory allocated for an Imsls_f_NN_Network data structure created by 
imsls_f_mlff_network_init and  imsls_f_mlff_network.  If it is necessary to maintain the network 
information contained in this structure for developing forecasts or classifications in the future, the structure can 
be stored to a file and retrieved later using imsls_f_mlff_network_write and 
imsls_f_mlff_network_read, respectively.

Example
For details, see the Examples section of mlff_network.
1636



 Data Mining         mlff_network_write
mlff_network_write
Writes a trained neural network to an ASCII file for later retrieval using imsls_f_mlff_network_read.

Synopsis
#include <imsls.h>
void imsls_f_mlff_network_write(Imsls_f_NN_Network *network, char *filename, ..., 0)

The type double function is imsls_d_mlff_network_write.

Required Arguments
Imsls_f_NN_Network *network  (Input)

A trained neural network.

char *filename  (Input)
The name of an ASCII file to be created. A complete or relative path can be used. If this file exists, it is 
replaced with a description of the neural network. If it does not exist, it is created. If the optional 
argument IMSLS_FILE is used, filename is ignored.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_mlff_network_write (Imsls_f_NN_Network *network, 

charImsls_f_NN_Network*filename,

IMSLS_PRINT, 
IMSLS_FILE, FILE *file,
0)

Optional Arguments
IMSLS_PRINT,  (Input)

Prints status of file open, writing and closing. 

Default: no printing. 
1637



 Data Mining         mlff_network_write
IMSLS_FILE, FILE *file  (Input/Output) 
A FILE pointer to a file opened for writing. This file is written but not closed. If this option is pro-
vided, filename is ignored. This option allows users to read additional user-defined data and 
multiple networks from the same file (see Example 2). To ensure this file is opened and closed with 
the same C run-time library used by the product, open and close this file using imsls_fopen and 
imsls_fclose instead of fopen and fclose.

Description
This function stores an Imsls_f_NN_Network data structure containing a trained neural network into an ASCII file. If 
the optional argument IMSLS_FILE is provided, imsls_f_mlff_network_write writes the data struc-
ture and returns without closing the file. If this argument is not provided, imsls_f_mlff_network_write 
creates a file using the path and name provided in filename, writes the data structure to that file, and then 
closes the file before returning. 

Examples

Example 1

This example trains a network using the Draper-Smith data. These data consist of 13 patterns. The input attri-
butes consist of four continuous attributes and one dependent variable. The network is stored into 73 lines of an 
ASCII file named NeuralNetworkEx1.txt.

#include <imsls.h>
#include <stdio.h>
int main(){
  char *filename = "NeuralNetworkEx1.txt";
  float *trainStats;
  int i, j;
  int n_patterns      =13;
  int n_inputs        =4; 
  int n_nominal       =0; 
  int n_continuous    =4; 
  int n_outputs       =1;
  int *nominalAtt=NULL;
  float ss;
  float continuous[4*13], y[13];
  float *draperSmithData;
  float forecasts[13];
  Imsls_f_NN_Network *networkStructure;
  draperSmithData = imsls_f_data_sets(5,0);
  
  for(i=0; i < n_patterns; i++){
     y[i] = draperSmithData[5*i+4];
     for(j=0; j<4; j++)
        continuous[i*4+j] = draperSmithData[5*i+j];
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  }
  networkStructure = imsls_f_mlff_network_init(n_inputs, n_outputs);
  imsls_f_mlff_network(networkStructure, 
                   IMSLS_CREATE_HIDDEN_LAYER, 4, IMSLS_LINK_ALL, 0);
  imsls_random_seed_set(5555);
  trainStats = imsls_f_mlff_network_trainer(networkStructure, 
              n_patterns, 0, n_continuous, nominalAtt, 
              continuous, y, IMSLS_STAGE_I, 100, 13,
              IMSLS_FORECASTS_USER, forecasts, 0);
  printf("OBS   X1     X2     X3     X4     Y   ");
  printf("FORECAST\n");
  ss = 0;
  for(i=0; i<n_patterns; i++) {
     ss += (y[i]-forecasts[i])*(y[i]-forecasts[i]);
     printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", 
     i, continuous[i*4], continuous[i*4+1], continuous[i*4+2],
     continuous[i*4+3], y[i], forecasts[i]);
  }
  printf("Sum of Squared Residuals: %7.2f\n\n", ss);
  imsls_f_mlff_network_write(networkStructure, filename, 
                             IMSLS_PRINT, 0);
  

}

Output

OBS   X1     X2     X3     X4     Y   FORECAST
 0   7.00  26.00   6.00  60.00  78.50  78.50
 1   1.00  29.00  15.00  52.00  74.30  74.30
 2  11.00  56.00   8.00  20.00 104.30 104.22
 3  11.00  31.00   8.00  47.00  87.60  87.60
 4   7.00  52.00   6.00  33.00  95.90  95.78
 5  11.00  55.00   9.00  22.00 109.20 109.34
 6   3.00  71.00  17.00   6.00 102.70 102.55
 7   1.00  31.00  22.00  44.00  72.50  72.50
 8   2.00  54.00  18.00  22.00  93.10  93.24
 9  21.00  47.00   4.00  26.00 115.90 116.05
10   1.00  40.00  23.00  34.00  83.80  83.80
11  11.00  66.00   9.00  12.00 113.30 112.30
12  10.00  68.00   8.00  12.00 109.40 110.33
Sum of Squared Residuals:   1.97
Opening NeuralNetworkEx1.txt for writing network data structure
Writing Neural Network... 73 Lines written to network file.
File NeuralNetworkEx1.txt closed.

Example 2

This example illustrates the use of the optional argument IMSLS_FILE to store multiple neural networks into 
one file. Two networks are trained using the Draper-Smith data. These data consist of 13 patterns each with four 
continuous attributes and one dependent variable. The first network is trained for forecasting the dependent 
variable using all four attributes, and the second is trained using only the first three. The networks are stored into 
133 lines of an ASCII file named NeuralNetworkEx2.txt.
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#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main(){
   FILE *file;
   char *filename = "NeuralNetworkEx2.txt";
   float *trainStats;
   int i, j;
   int n_patterns       =13;
   int n_inputs4        =4; 
   int n_inputs3        =3; 
   int n_cont4          =4; 
   int n_cont3          =3;
   int n_outputs        =1;
   int *categoricalAtt=NULL;
   float ss3, ss4;
   float cont4[4*13], cont3[3*13], y[13];
   float *draperSmithData;
   float forecasts3[13], forecasts4[13];
   Imsls_f_NN_Network *networkStructure;
   draperSmithData = imsls_f_data_sets(5,0);
   for(i=0; i < n_patterns; i++){
      y[i] = draperSmithData[5*i+4];
      for(j=0; j<4; j++){
         cont4[i*4+j] = draperSmithData[5*i+j];
         if(j<3) cont3[i*3+j] = draperSmithData[5*i+j];
      }
   }
   networkStructure = imsls_f_mlff_network_init(n_inputs4, 
                                                n_outputs);
   imsls_f_mlff_network(networkStructure, 
                        IMSLS_CREATE_HIDDEN_LAYER, 4, 
                        IMSLS_LINK_ALL, 0);
   imsls_random_seed_set(5555);
   trainStats = imsls_f_mlff_network_trainer(networkStructure, 
      n_patterns, 0, n_cont4,
      categoricalAtt, cont4, y, 
      IMSLS_MAX_STEP, 100.0,
      IMSLS_STAGE_I, 50, n_patterns,
      IMSLS_FORECASTS_USER, &forecasts4, 0);
   /* open filestream */
   file = imsls_fopen(filename, "w");
   /* Write the number of network being placed into this file */
   fprintf(file, "%d\n", 2);
   printf("Writing network for model with 4 continuous attributes\n");
   imsls_f_mlff_network_write(networkStructure, NULL, 
                               IMSLS_PRINT, IMSLS_FILE, file, 0);
   /* Create second neural network */
   imsls_f_mlff_network_free(networkStructure);
   imsls_free(trainStats);
   networkStructure = imsls_f_mlff_network_init(n_inputs3, 
                                                n_outputs);
   imsls_f_mlff_network(networkStructure, 
                         IMSLS_CREATE_HIDDEN_LAYER, 4, 
                         IMSLS_LINK_ALL, 0);
   imsls_random_seed_set(5555);
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   trainStats = imsls_f_mlff_network_trainer(networkStructure, 
      n_patterns, 0, n_cont3,
      categoricalAtt, cont3, y,
      IMSLS_MAX_STEP, 100.0,
      IMSLS_STAGE_I, 50, n_patterns, 
      IMSLS_FORECASTS_USER, &forecasts3, 0);
   printf("Writing network for model with 3 continuous attributes\n");
   imsls_f_mlff_network_write(networkStructure, NULL, IMSLS_PRINT, 
                                                 IMSLS_FILE, file, 0);
   imsls_fclose(file);
   printf("File %s Closed.\n", filename);
   printf("\nPrinting Forecasts for models with 3 and 4");
   printf(" continuous attributes:\n");
   printf("\n                                           ");
   printf("FORECAST  FORECAST\n");
   printf("OBS    X1      X2      X3      X4      Y   ");
   printf("n_cont=3  n_cont=4\n");
   ss4 = 0;
   ss3 = 0;
   for(i=0; i<n_patterns; i++) {
      ss4 += (y[i]-forecasts4[i])*(y[i]-forecasts4[i]);
      ss3 += (y[i]-forecasts3[i])*(y[i]-forecasts3[i]);
      printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %9.2f\n", 
      i, cont4[i*4], cont4[i*4+1], cont4[i*4+2],
      cont4[i*4+3], y[i], forecasts3[i], forecasts4[i]);
   }
   printf("Sum of Squared Residuals for X1-X3: %7.2f\n", ss3);
   printf("Sum of Squared Residuals for X1-X4: %7.2f\n", ss4);
}

Output

Writing network for model with 4 continuous attributes
Writing Neural Network... 73 Lines written to network file.
File not closed.
Writing network for model with 3 continuous attributes
Writing Neural Network... 60 Lines written to network file.
File not closed.
File NeuralNetworkEx2.txt Closed.
Printing Forecasts for models with 3 and 4 continuous attributes:
                                     FORECAST FORECAST
OBS   X1     X2     X3     X4     Y  n_cont=3 n_cont=4
 0   7.00  26.00   6.00  60.00  78.50  78.97    78.50
 1   1.00  29.00  15.00  52.00  74.30  73.62    74.30
 2  11.00  56.00   8.00  20.00 104.30 104.61   104.30
 3  11.00  31.00   8.00  47.00  87.60  87.32    87.60
 4   7.00  52.00   6.00  33.00  95.90  94.88    95.90
 5  11.00  55.00   9.00  22.00 109.20 108.82   109.20
 6   3.00  71.00  17.00   6.00 102.70 102.69   102.70
 7   1.00  31.00  22.00  44.00  72.50  72.97    72.50
 8   2.00  54.00  18.00  22.00  93.10  94.28    93.10
 9  21.00  47.00   4.00  26.00 115.90 115.04   115.90
10   1.00  40.00  23.00  34.00  83.80  83.64    83.80
11  11.00  66.00   9.00  12.00 113.30 114.45   113.30
12  10.00  68.00   8.00  12.00 109.40 109.20   109.40
Sum of Squared Residuals for X1-X3:   5.76
Sum of Squared Residuals for X1-X4:   0.00
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Fatal Errors
IMSLS_FILE_OPEN_FAILURE Unable to open file for writing network.
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mlff_network_read
Retrieves a neural network from a file previously saved using imsls_f_mlff_network_write.

Synopsis
#include <imsls.h>
Imsls_f_NN_Network *imsls_f_mlff_network_read (char *filename, …, 0)

The type double function is imsls_d_mlff_network_read.

Required Arguments
char *filename  (Input)

The name of an ASCII file containing a description of a trained neural network previously saved using 
imsls_f_mlff_network_write. A complete or relative path can be used. If the optional argu-
ment IMSLS_FILE is used, filename is ignored and the file is not closed before returning.

Return Value
A pointer to an Imsls_f_NN_Network data structure containing the neural network stored using 
imsls_f_mlff_network_write. This space can be released by using the imsls_free function.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_NN_Network *imsls_f_mlff_network_read (char *filename,

IMSLS_PRINT,
IMSLS_FILE, FILE *file, 
0)

Optional Arguments
IMSLS_PRINT , (Input)

Prints status of file open, reading and closing.
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Default: No printing. 

IMSLS_FILE, FILE *file  (Input)
A FILE pointer to a file opened for reading. This file is read but not closed. If this option is provided, 
filename is ignored. This option allows users to read additional user-defined data and multiple 
networks from the same file (see Example 2). To ensure this file is opened and closed with the same C 
run-time library used by the product, open and close this file using imsls_fopen and 
imsls_fclose instead of fopen and fclose.

Description
This function reads an Imsls_f_NN_Network data structure, a neural network previously stored as an ASCII file using 
imsls_f_mlff_network_write. If the optional argument IMSLS_FILE is provided, the data structure is 
read from that file stream and the file stream is not closed. If this argument is not provided, 
imsls_f_mlff_network_read opens a file using the path and name provided in filename, reads the 
data structure from that file, and then closes the file before returning. 

Examples

Example 1

This example reads a network previously trained using the Draper-Smith data. These data consist of 13 patterns, 
each with four continuous attributes and one dependent variable. The network was stored into 73 lines of an 
ASCII file named NeuralNetworkEx1.txt using imsls_f_mlff_network_write (see Example 1 of 
imsls_f_mlff_network_write).

#include <imsls.h>
#include <stdio.h>
int main(){
   char *filename = "NeuralNetworkEx1.txt";
   int i, j;
   int n_patterns       =13;
   int n_inputs         =4; 
   int n_categorical    =0; 
   int n_continuous     =4; 
   int n_outputs        =1;
   int *categoricalAtt=NULL;
   float ss;
   float continuous[4*13], y[13], contAtt[4];
   float *draperSmithData;
   float forecast[1], forecasts[13];
   Imsls_f_NN_Network *network;
   draperSmithData = imsls_f_data_sets(5,0);
   
   for(i=0; i < n_patterns; i++){
      y[i] = draperSmithData[5*i+4];
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      for(j=0; j<n_continuous; j++)
         continuous[i*n_continuous+j] = draperSmithData[5*i+j];
   }
   network = imsls_f_mlff_network_read(filename, 
                                              IMSLS_PRINT, 0);
   for(i=0; i<n_patterns; i++){
      for(j=0; j<n_inputs; j++) 
         contAtt[j] = continuous[i*n_continuous+j];
      imsls_f_mlff_network_forecast(network,
         n_categorical, n_continuous, categoricalAtt, contAtt, 
         IMSLS_RETURN_USER, forecast, 0);
      forecasts[i] = forecast[0];
   }
   printf("\nOBS    X1      X2      X3      X4      Y");
   printf("    FORECAST\n");
   ss = 0;
   for(i=0; i<n_patterns; i++) {
      ss += (y[i]-forecasts[i])*(y[i]-forecasts[i]);
      printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n", 
      i, continuous[i*n_continuous], continuous[i*n_continuous+1], 
      continuous[i*n_continuous+2], continuous[i*n_continuous+3], 
      y[i], forecasts[i]);
   }
   printf("Sum of Squared Residuals: %7.2f\n", ss);
}

Output

Notice that the forecasts produced using imsls_f_mlff_network_forecast are identical to the original 
forecasts in Example 1 of imsls_f_mlff_network_write.

Attempting to open NeuralNetworkEx1.txt for
reading network data structure
File NeuralNetworkEx1.txt Successfully Opened
File NeuralNetworkEx1.txt closed
OBS   X1     X2     X3     X4     Y   FORECAST
 0   7.00  26.00   6.00  60.00  78.50  78.50
 1   1.00  29.00  15.00  52.00  74.30  74.30
 2  11.00  56.00   8.00  20.00 104.30 104.22
 3  11.00  31.00   8.00  47.00  87.60  87.60
 4   7.00  52.00   6.00  33.00  95.90  95.78
 5  11.00  55.00   9.00  22.00 109.20 109.34
 6   3.00  71.00  17.00   6.00 102.70 102.55
 7   1.00  31.00  22.00  44.00  72.50  72.50
 8   2.00  54.00  18.00  22.00  93.10  93.24
 9  21.00  47.00   4.00  26.00 115.90 116.05
10   1.00  40.00  23.00  34.00  83.80  83.80
11  11.00  66.00   9.00  12.00 113.30 112.30
12  10.00  68.00   8.00  12.00 109.40 110.33
Sum of Squared Residuals:   1.97
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Example 2

This example illustrates the use of the optional argument IMSLS_FILE to read multiple neural networks previ-
ously stored into a single file using imsls_f_mlff_network_write. Two networks were trained using the 
Draper-Smith data. These data consist of 13 patterns, each with four continuous attributes and one dependent 
variable. The first network is trained to forecast the dependent variable using all 4 inputs and the second using 
only the first 3. The networks are read from an ASCII file previously created using 
imsls_f_mlff_network_write named NeuralNetworkEx2.txt (see Example 2 of 
imsls_f_mlff_network_write).

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern int imsls_fclose(FILE* file);
int main(){
   FILE *file;
   char *filename = "NeuralNetworkEx2.txt";
   int i, j, n;
   int n_patterns       =13;
   int n_inputs         =4; 
   int n_categorical    =0; 
   int n_continuous     =4; 
   int n_outputs        =1;
   int n_networks       =0;
   int *categoricalAtt=NULL;
   float ss3, ss4;
   float cont4[4*13], y[13], contAtt4[4];
   float cont3[3*13];
   float *draperSmithData;
   float forecast[1], forecasts[2*13];
   Imsls_f_NN_Network **neural_network;
   draperSmithData = imsls_f_data_sets(5,0);
   
   for(i=0; i < n_patterns; i++){
      y[i] = draperSmithData[5*i+4];
      for(j=0; j<n_continuous; j++){
         cont4[i*n_continuous+j] = draperSmithData[5*i+j];
         if(j<3) cont3[i*3+j] = draperSmithData[5*i+j];
      }
   }
   
   /* open filestream */
   file = imsls_fopen(filename, "r");
   printf("File %s Opened\n", filename);
   /* Read the number of network being placed into this file */
   fscanf(file, "%d", &n_networks);
   printf("File contains %d neural networks\n", n_networks);
   neural_network = (Imsls_f_NN_Network **) malloc(n_networks*
      sizeof(Imsls_f_NN_Network *));
   printf("Reading Networks and Preparing Forecasts...\n");
   for(n=0; n<n_networks; n++){
      neural_network[n] = imsls_f_mlff_network_read(NULL, 
                              IMSLS_PRINT, IMSLS_FILE, file, 0);
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      n_continuous = neural_network[n]->layers[0].n_nodes;
      printf("Preparing forecasts for network with");
      printf(" %d continuous attributes\n", n_continuous);
      for(i=0; i<n_patterns; i++){
         for(j=0; j<4; j++) contAtt4[j] = cont4[i*4+j];
         imsls_f_mlff_network_forecast(neural_network[n],
                              n_categorical, n_continuous, 
                              categoricalAtt, contAtt4, 
                              IMSLS_RETURN_USER, forecast, 0);
         forecasts[n*n_patterns + i] = forecast[0];
      }
   }
   
   imsls_fclose(file);
   printf("File %s Closed.\n\n", filename);
   printf("                                           ");
   printf("FORECAST  FORECAST\n");
   printf("OBS    X1      X2      X3      X4      Y   ");
   printf("n_cont=3  n_cont=4\n");
   ss4 = 0;
   ss3 = 0;
   for(i=0; i<n_patterns; i++) {
      ss4 += (y[i]-forecasts[i])*(y[i]-forecasts[i]);
      ss3 += (y[i]-forecasts[n_patterns+i])*
             (y[i]-forecasts[n_patterns+i]);
      printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %9.2f\n", 
             i, cont4[i*4], cont4[i*4+1], cont4[i*4+2], cont4[i*4+3], 
             y[i], forecasts[n_patterns+i], forecasts[i]);
   }
   printf("Sum of Squared Residuals for X1-X3: %7.2f\n", ss3);
   printf("Sum of Squared Residuals for X1-X4: %7.2f\n", ss4);
}

Output

Notice that the forecasts produced using imsls_f_mlff_network_forecast are identical to the original 
forecasts in Example 2 of imsls_f_mlff_network_write.

File NeuralNetworkEx2.txt Opened
File contains 2 neural networks
Reading Networks and Preparing Forecasts...
Network restored from file. File not closed.
Preparing forecasts for network with 4 continuous attributes
Network restored from file. File not closed.
Preparing forecasts for network with 3 continuous attributes
File NeuralNetworkEx2.txt Closed.
                                     FORECAST FORECAST
OBS   X1     X2     X3     X4     Y  n_cont=3 n_cont=4
 0   7.00  26.00   6.00  60.00  78.50  78.97    78.50
 1   1.00  29.00  15.00  52.00  74.30  73.62    74.30
 2  11.00  56.00   8.00  20.00 104.30 104.61   104.30
 3  11.00  31.00   8.00  47.00  87.60  87.32    87.60
 4   7.00  52.00   6.00  33.00  95.90  94.88    95.90
 5  11.00  55.00   9.00  22.00 109.20 108.82   109.20
 6   3.00  71.00  17.00   6.00 102.70 102.69   102.70
 7   1.00  31.00  22.00  44.00  72.50  72.97    72.50
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 8   2.00  54.00  18.00  22.00  93.10  94.28    93.10
 9  21.00  47.00   4.00  26.00 115.90 115.04   115.90
10   1.00  40.00  23.00  34.00  83.80  83.64    83.80
11  11.00  66.00   9.00  12.00 113.30 114.45   113.30
12  10.00  68.00   8.00  12.00 109.40 109.20   109.40
Sum of Squared Residuals for X1-X3:   5.76
Sum of Squared Residuals for X1-X4:   0.00

Fatal Errors
IMSLS_FILE_OPEN_FAILURE Unable to open file for reading neural network.
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mlff_initialize_weights
Initializes weights for multilayered feedforward neural networks prior to network training using one of four user 
selected methods.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_initialize_weights (Imsls_f_NN_Network *network, int n_patterns, 

int n_nominal, int n_continuous, int nominal[], float continuous[],  ..., 0)

The type double function is imsls_d_mlff_initialize_weights.

Required Arguments
Imsls_f_NN_Network *network  (Input/Output)

Pointer to a structure of type Imsls_f_NN_Network containing the parameters that define the feedfor-
ward network’s architecture, including network weights and bias values. For more details, see 
imsls_f_mlff_network. When network training is successful, the weights and bias values in 
network are replaced with the values calculated for the optimum trained network.

int n_patterns  (Input)
Number of training patterns. 

int n_nominal  (Input)
Number of unencoded nominal attributes. 

int nominal[]  (Input)
Array of size n_patterns by n_nominal containing the nominal input variables. 

int n_continuous  (Input)
Number of continuous attributes, including ordinal attributes encoded using cumulative percentage.

float continuous[]  (Input)
Array of size n_patterns by n_continuous containing the continuous and scaled ordinal input 
variables. 
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Return Value
Pointer to an array of length network->n_links + (network->n_nodes-network->n_inputs) con-
taining the initialized weights. See the Description section for details on weight ordering. This space can be 
released by using the imsls_free function.
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Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_mlff_initialize_weights (Imsls_f_NN_Network *network, int n_patterns, 
int n_nominal, int n_continuous, int nominal[], float continuous[],

IMSLS_METHOD, int method, 
IMSLS_PRINT,
IMSLS_CLASSIFICATION, int classification[],
IMSLS_RETURN_USER, float weights[],
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

Specifies the algorithm to use for initializing weights. method contains the weight initialization 
method to be used. Valid values for method are:

The discriminant weights method can only be used to initialize weights for classification networks 
without binary encoded nominal attributes. See the Description section for details.

Default: method = IMSLS_RANDOM. 

IMSLS_PRINT, (Input)
Initial weights are printed. 

Default: No printing is performed. 

IMSLS_CLASSIFICATION, int classification[]  (Input)
An array of length n_patterns containing the encoded training target classifications which must be 
integers from 0 to n_classes-1. Here n_classes =network- >n_outputs except when 
n_outputs=1 then n_classes =2. classification[i] is the target classification for the i-
th training pattern described by nominal[i] and continuous[i]. This option is used by the 
discriminant analysis weight initialization. This option is ignored for all other methods. 

method Algorithm

IMSLS_EQUAL Equal weights

IMSLS_RANDOM Random Weights

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights

IMSLS_DISCRIMINANT Discriminant Analysis Weights
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IMSLS_RETURN_USER, float weights[] (Output)
If specified, the initialized weights are returned in a user provided array of length 
 -network--->n_links---(network->n_nodes–network->n_inputs)

Description
Function imsls_f_mlff_initialize_weights calculates initial values for the weights of a feedforward 
neural network using one of the following algorithms:

The keyword IMSLS_METHOD can be used to select the algorithm for weight initialization. By default, the ran-
dom weights algorithm will be used.

The 3-layer feed forward network with 3 input attributes and 6 perceptrons in Figure 33 is used to describe the 
initialization algorithms. In this example, one of the input attributes is continuous (X3) and the others are nominal 

(X1 and X2).

method Algorithm

IMSLS_EQUAL Equal weights

IMSLS_RANDOM Random Weights

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights

IMSLS_DISCRIMINANT Discriminant Analysis Weights
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Figure 33, A 3-layer, Feed Forward Network with 3 Input Attributes and 6 Perceptrons

This network has a total of 23 weights. The first nine weights, labeled W1, W2, …, W9, are the weights assigned to 

the links connecting the network inputs to the perceptrons in the first hidden layer. Note that W1, W2, W4, W5, W7, 

and W8 are assigned to the two nominal attributes and W3, W6 and W9 are assigned to the continuous attribute. 

All neural network functions in the C Stat Library use this weight ordering. Weights for all nominal attributes are 
placed before the weights for any continuous attributes. 

PERCEPTRON POTENTIAL

H1,1   

H1,2   

H1,3   

H2,1   

H2,2   

Z1   

g1 = W 18 +W 1X 1 +W 2X 2 +W 3X 3
g2 = W 19 +W 4X 1 +W 5X 2 +W 6X 3
g3 = W 20 +W 7X 1 +W 8X 2 +W 9X 3
g4 = W 21 +W 10g1 +W 11g2 +W 12g3
g5 = W 22 +W 13g1 +W 14g2 +W 15g3
g6 = W 23 +W 16g4 +W 17g5
1653



 Data Mining         mlff_initialize_weights
The next six weights are the weights between the first and second hidden layers, and W16 and W17 are the 

weights for the links connecting the second hidden layer to the output layer. The last six elements in the 
weights array are the perceptron bias weights. These weights, W18, W19, …, W23 are the weights for percep-

trons H1,1, …,H1,3, H2,1…, H2,3, and Z1, respectively. 

The perceptron potential calculations for this network are described in the table above. Following the notation 

presented in the introduction to this chapter,    are the perceptron activations from perceptrons 
H1,1, …,H1,3, H2,1…, H2,3, respectively.

All initialization algorithms in mlff_initialize_weights set the weights for perceptrons not linked directly 
to the input perceptrons in the same manner. Bias weights for perceptrons not directly linked to input attributes 
are set to zero. All non-bias weights for these same perceptrons are assigned a value of 1/k where k=the number 
of links into that perceptron (network->nodes[i].n_inlinks).

For example, in this network, the last three bias weights W21, W22 and W23 are initialized to zero since percep-

trons H2,1, H2,1 and Z1 and not directly connected to the input attributes. The other weights to perceptrons H2,1 

and H2,2 are assigned a value of one half since these perceptrons each have only two input links. The weights to 

the output perceptron, Z1, are also one half since Z1 has two inputs links.

The calculation of the weights for the links between the input attributes and their perceptrons are initialized dif-
ferently by the four algorithms. All algorithms, however, scale these weights so that the average potential for the 
first layer perceptrons is zero. This reduces the possibility of saturation or numerical overflow during the initial 
stages of optimization.

Equal Weights (method=IMSLS_EQUAL)

In this algorithm, the non-bias weights for each link between the input attributes and the perceptrons in the first 
layer are initialized to:

where Wi is the weight for all links between the i-th input attributes, n is equal to the total number of input attri-

butes and Si is equal to the standard deviation of the potential for the i-th input attribute. In the above example, 

the values for weights W1, W2, …, W9, each would be set to:

since this network has three input attributes.

Next the average potential for each of the perceptrons connected to the input layer is calculated by:

g1, g2, ⋯ , g5

Wi =
1
nSi

1
3Si
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where   is equal to the average potential for the i-th input attribute. All other bias weights are set to zero.

Random Weights (method=IMSLS_RANDOM)

This algorithm first generates random values for the input layer weights using the Uniform [-0.5, +0.5] distribu-
tion. These are then scaled using the standard deviation of the input layer potentials.

where U is a random number uniformly distributed on the interval [-0.5,+0.5] and Si is equal to the standard devi-

ation of the potential for the i-th input attribute. 

Next the average potential for each of the perceptrons connected to the input layer is calculated by:

where   is equal to the average potential for the i-th input attribute. All other bias weights are set to zero.

Principal Component Weights (method=IMSLS_PRINCIPAL_COMPONENTS)

This uses principal component analysis to generate weights. The arrays nominal and continuous are combined 
into a single matrix. The correlation matrix of this matrix is decomposed using principal component analysis. The 
elements of the principal components from this analysis are used to initialize weights associated with the net-
work inputs. As with the other methods the principal component weights are scaled by using the standard 
deviation of the potential for the perceptrons connected to the input layer:

where Wi is the weight for the link between the i-th input attribute and the j-th perceptron, ξij is the i-th value of 

the j-th principal component, and Si is equal to the standard deviation of the potential for the i-th input attribute. 

If the number of principal components is less than the number of perceptrons in the first layer, i.e., 
(n_continuous+n_nominal) < n_layer1, where n_layer1 is the number of perceptrons in the first layer, then it 
is not possible to initialize all weights with principal components. In this case, the first (n_continuous + 
n_nominal) perceptrons are initialized using the principal components and then the remainder are initialized 
using random weights (method=IMSLS_RANDOM).

As with the other methods, the bias weights for each of the first layer perceptrons is set to ensure that the aver-
age potential in this layer is equal to zero:

Wi =
−X─i
Si

X
─
i

W i =
U
Si

Wi =
−X─i
Si

X
─
i

W i =
ξi j
S j
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where   is equal to the average potential for the link between i-th input attribute and the j-th first layer percep-

tron, and   is the standard deviation for this same potential.

Discriminant Weights (method=IMSLS_DISCRIMINANT)

This method is very similar to principal component weights. Instead the discriminant analysis elements replace 
the principal component elements. The weights between the i-th input attribute and the j-th perceptron in the 
first layer are calculated by: 

Where Wi is the weight for the link between the i-th input attribute and the j-th perceptron, θij is the i-th value of 

the j-th discriminant component, and Si is equal to the standard deviation of the potential for the i-th input 

attribute. 

If the number of discriminant components is less than the number of perceptrons in the first layer, i.e., 
(n_continuous + n_nominal) < n_layer1, where n_layer1 is the number of perceptrons in the first layer, then 
it is not possible to initialize all weights with components from the discriminant analysis. In this case, the first 
(n_continuous + n_nominal) perceptrons are initialized using the discriminant components and then the 
remainder are initialized using random weights (method=IMSLS_RANDOM).

As with the other methods, the bias weights for each of the first layer perceptrons is set to ensure that the aver-
age potential in this layer is equal to zero:

where   is equal to the average potential for the link between i-th input attribute and the j-th first layer percep-
tron, and Sij is the standard deviation for this same potential.

Examples

Example 1

This example illustrates random initialization algorithms for a three layer network with one output. The first and 
second hidden layers contain three and two perceptrons for a total of five network perceptrons, respectively.

Wi =
−X─i j
Si j

X
─
i j

Si j

W i =
θi j
Si

Wi =
−X─i j
Si j

X
─
i j
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The nine input attributes consist of two continuous attributes plus seven binary attributes encoded from two 
nominal attributes using binary encoding.

The weights are initialized using the random weights algorithm. This results in different weights for every percep-
tron in the first hidden layer. The weights in other layers are initialized using equal weights. It should be noted 
that the bias weights in the first layer are not random. Except for the discriminant weights algorithm, the bias 
weights are always calculated to ensure that the average potential for each perceptron in the first layer is zero.

#include <stdio.h>
#include <imsls.h>
int main(){    
   Imsls_f_NN_Network *network;
   int i, j, k, m;
   int n_patterns    =24;    /* no. of training patterns */
   int n_nvars       =2;     /* 2 nominal unencoded variables */
   int n_nominal     =7;     /* 7 inputs for the binary encoded 
                                nominal vars */
   int n_continuous  =2;     /* 2 continuous input attributes */
   int nominalIn[24];        /* work arrays used to encode    */
   int *nominalOut;          /* nominal data                  */
   int n_classes;  
   int classification[24] = {
      0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
         0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
   };
   /* raw nominal input data */
   int nominal_unencododed[2*24] =
   {
      0, 0, 0, 1, 0, 2,
         1, 0, 1, 1, 1, 2,
         2, 0, 2, 1, 2, 2,
         3, 0, 3, 1, 3, 2,
         0, 0, 0, 1, 0, 2,
         1, 0, 1, 1, 1, 2,
         2, 0, 2, 1, 2, 2,
         3, 0, 3, 1, 3, 2
   };
   /* input array for binary encoded version of 
      nominal_unencododed[] array above */
   int nominal[7*24];
   float *weights;
   float continuous[2*24] =
   {
      0.00,0.00,0.02,0.02,0.04,0.04,0.06,0.06,0.08,0.08,0.10,0.10,
         0.12,0.12,0.14,0.14,0.16,0.16,0.18,0.18,0.20,0.20,0.22,0.22,
         0.24,0.28,0.26,0.30,0.28,0.32,0.30,0.34,0.32,0.36,0.34,0.38,
         0.36,0.40,0.38,0.42,0.40,0.44,0.42,0.46,0.44,0.48,0.46,0.50
   };
   /* Setup Nominal Input Attributes Using Binary Encoding */
   m=0;
   for (i=0; i<n_nvars; i++){
      for (j=0; j<n_patterns; j++) {
         nominalIn[j] = nominal_unencododed[2*j+i] + 1;
      }
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      nominalOut = imsls_unsupervised_nominal_filter(n_patterns, 
         &n_classes, nominalIn, 0);
      for(k=0; k<n_classes; k++){
         for(j=0; j<n_patterns; j++){
            nominal[j*n_nominal+m] = nominalOut[j*n_classes+k];
         }
         m++;
      }
   }
   printf("\tINPUT TRAINING PATTERNS\n");
   printf("\tY   Nom1 Nom2    X0     X1 \n");
   for(i=0; i<n_patterns; i++){
      printf("\t%d   %d \t %d    %f   %f \n", classification[i],
         nominal_unencododed[i*2], nominal_unencododed[i*2+1], 
         continuous[i*2], continuous[i*2+1]);
   }
   /* Binary classification network 9 inputs 1 output = 2 classes */
   network = imsls_f_mlff_network_init(9, 1);
   imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3, 0);
   imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 2, 
      IMSLS_LINK_ALL, 0);
   /* Note the following statement is for repeatable output */
   imsls_random_seed_set(5555);
   /* Random Weights */
   weights = imsls_f_mlff_initialize_weights(network, n_patterns,
      n_nominal, n_continuous, nominal, continuous, 
      IMSLS_PRINT, 0);
}

Output

INPUT TRAINING PATTERNS
Y   Nom1 Nom2    X0     X1 
0   0  0     0.000000   0.000000 
0   0  1     0.020000   0.020000 
0   0  2     0.040000   0.040000 
0   1  0     0.060000   0.060000 
0   1  1     0.080000   0.080000 
0   1  2     0.100000   0.100000 
1   2  0     0.120000   0.120000 
1   2  1     0.140000   0.140000 
1   2  2     0.160000   0.160000 
1   3  0     0.180000   0.180000 
1   3  1     0.200000   0.200000 
1   3  2     0.220000   0.220000 
0   0  0     0.240000   0.280000 
0   0  1     0.260000   0.300000 
0   0  2     0.280000   0.320000 
0   1  0     0.300000   0.340000 
0   1  1     0.320000   0.360000 
0   1  2     0.340000   0.380000 
1   2  0     0.360000   0.400000 
1   2  1     0.380000   0.420000 
1   2  2     0.400000   0.440000 
1   3  0     0.420000   0.460000 
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1   3  1     0.440000   0.480000 
1   3  2     0.460000   0.500000 
-------------------------------------------
- NETWORK WEIGHTS INITIALIZED USING 
- RANDOM WEIGHTS
-  Input Attributes:    9
-     Nominal:          2
-     Nominal(encoded): 7
-     Continuous:       2
-  Output Attributes:   1
-  Layers:              3
-  Perceptrons:         6
-  Weights:             41
-  Patterns:            24
-------------------------------------------
------------- HIDDEN  LAYER 1 -------------
--- Perceptron 0 ---
Link from Input Node Weight 
N0  0.937069 
N1  -0.547569 
N2  1.468248 
N3  0.107160 
N4  -0.884992 
N5  -0.814069 
N6  -1.979680 
X7  -0.041228 
X8  -1.368315 
Bias 3.3099 
--- Perceptron 1 ---
Link from Input Node Weight 
N0  -0.308421 
N1  -1.058450 
N2  -0.981207 
N3  1.040820 
N4  -0.033493 
N5  -0.575732 
N6  0.571939 
X7  0.811886 
X8  -0.415498 
Bias 0.573286 
--- Perceptron 2 ---
Link from Input Node Weight 
N0  -1.117744 
N1  0.620799 
N2  0.174895 
N3  -0.100458 
N4  -0.961071 
N5  0.854179 
N6  0.046423 
X7  0.880998 
X8  -0.903982 
Bias 1.00437 
-------------------------------------------
------------- HIDDEN  LAYER 2 -------------
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--- Perceptron 0 ---
Link from Input Node Weight 
P0  0.333333 
P1  0.333333 
P2  0.333333 
Bias 0 
--- Perceptron 1 ---
Link from Input Node Weight 
P0  0.333333 
P1  0.333333 
P2  0.333333 
Bias 0 
-------------------------------------------
------------- OUTPUT   LAYER  -------------
--- Perceptron 0 ---
Link from Input Node Weight 
P3  0.500000 
P4  0.500000 
Bias 0 
-------------------------------------------

Example 2

This example illustrates the discriminant weights initialization algorithm for a three layer network with one 
output.  The first and second hidden layers contain three and two perceptrons for a total of five network percep-
trons, respectively.

The data are the same as Example 1, and the network structure is the same except that all nominal input attri-
butes are removed. This was necessary since the discriminant weights algorithm only works when all input 
attributes are continuous. 

The discriminant weights algorithm initializes the weights in the first hidden layer to the coefficients of the dis-
criminant functions. Since this example is a binary classification example, the number of discriminant functions is 
equal to the number of classes, two, but there are three perceptrons in the first layer.  The weights for the first 
two perceptrons in this layer are the discriminant function coefficients, including the bias weight. The weights for 
the last perceptron in this layer were determined randomly.

#include <stdio.h>
#include <imsls.h>
int main(){   
  Imsls_f_NN_Network *network;
  int i, j, k, m;
  int n_patterns   =24;   /* no. of training patterns */
  int n_continuous =2;    /* 2 continuous input attributes */
  int classification[24] = {
     0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
        0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
  };
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  float *weights;
  float continuous[2*24] =
  {
     0.00,0.00,0.02,0.02,0.04,0.04,0.06,0.06,0.08,0.08,0.10,0.10,
        0.12,0.12,0.14,0.14,0.16,0.16,0.18,0.18,0.20,0.20,0.22,0.22,
        0.24,0.28,0.26,0.30,0.28,0.32,0.30,0.34,0.32,0.36,0.34,0.38,
        0.36,0.40,0.38,0.42,0.40,0.44,0.42,0.46,0.44,0.48,0.46,0.50
  };

  printf("\tINPUT TRAINING PATTERNS\n");
  printf("\tY     X0    X1 \n");
  for(i=0; i<n_patterns; i++){
     printf("\t%d  %f  %f \n", classification[i], 
        continuous[i*2], continuous[i*2+1]);
  }
  /* Binary classification network 2 inputs 1 output = 2 classes */
  network = imsls_f_mlff_network_init(2, 1);
  imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3, 0);
  imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 2, 
     IMSLS_LINK_ALL, 0);

  /* Discriminant weights */
  /* Set seed for consistent results */
  imsls_random_seed_set(12357);
  weights = imsls_f_mlff_initialize_weights(network, n_patterns, 
     0, n_continuous, NULL, continuous, 
     IMSLS_METHOD, IMSLS_DISCRIMINANT, 
     IMSLS_CLASSIFICATION, classification,
     IMSLS_PRINT, 0);
}

Output

       INPUT TRAINING PATTERNS
       Y     X0    X1
       0  0.000000  0.000000
       0  0.020000  0.020000
       0  0.040000  0.040000
       0  0.060000  0.060000
       0  0.080000  0.080000
       0  0.100000  0.100000
       1  0.120000  0.120000
       1  0.140000  0.140000
       1  0.160000  0.160000
       1  0.180000  0.180000
       1  0.200000  0.200000
       1  0.220000  0.220000
       0  0.240000  0.280000
       0  0.260000  0.300000
       0  0.280000  0.320000
       0  0.300000  0.340000
       0  0.320000  0.360000
       0  0.340000  0.380000
       1  0.360000  0.400000
       1  0.380000  0.420000
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       1  0.400000  0.440000
       1  0.420000  0.460000
       1  0.440000  0.480000
       1  0.460000  0.500000
Discriminant Analysis Classification Error Rate = 0.000000
-------------------------------------------
-       NETWORK WEIGHTS INITIALIZED USING
-       DISCRIMINANT WEIGHTS
-        Input Attributes:   2
-           Nominal:         0
-           Nominal(encoded): 0
-           Continuous:      2
-        Output Attributes:  1
-           n_classes:       2
-        Layers:             3
-        Perceptrons:        6
-        Weights:            20
-        Patterns:           24
-------------------------------------------
------------- HIDDEN LAYER 1 -------------
       --- Perceptron 0 ---
       Link from Input Node    Weight
       X0                      229.165253
       X1                      -189.879715
       Bias -2.13362
       --- Perceptron 1 ---
       Link from Input Node    Weight
       X0                      889.167236
       X1                      -755.595703
       Bias -12.5051
       --- Perceptron 2 ---
       Link from Input Node    Weight
       X0                      -4.495886
       X1                      -0.976032
       Bias 6.07217
-------------------------------------------
------------- HIDDEN LAYER 2 -------------
       --- Perceptron 0 ---
       Link from Input Node    Weight
       P0                      0.333333
       P1                      0.333333
       P2                      0.333333
       Bias 0
       --- Perceptron 1 ---
       Link from Input Node    Weight
       P0                      0.333333
       P1                      0.333333
       P2                      0.333333
       Bias 0
-------------------------------------------
------------- OUTPUT  LAYER -------------
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       --- Perceptron 0 ---
       Link from Input Node    Weight
       P3                      0.500000
       P4                      0.500000
       Bias 0
-------------------------------------------
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mlff_network_trainer

more...

Trains a multilayered feedforward neural network. 

Synopsis
#include <imsls.h>
float *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *network, int n_patterns, 

int n_nominal, int n_continuous, int nominal[], float continuous[], float output[], ..., 
0)

The type double function is imsls_d_mlff_network_trainer.

Required Arguments
Imsls_f_NN_Network *network  (Input/Output)

Pointer to a structure of type Imsls_f_NN_Network containing the feedforward network. See 
imsls_f_mlff_network. On return, the weights and bias values are updated. 

int n_patterns (Input)
Number of network training patterns. 

int n_nominal (Input)
Number of nominal attributes. n_nominal + n_continuous must equal n_inputs, where 
n_inputs is the number of input attributes in the network. n_inputs = network->n_in-
puts. For more details, see imsls_f_mlff_network.

int n_continuous (Input)
Number of continuous attributes. n_nominal + n_continuous must equal n_inputs, where 
n_inputs is the number of input attributes in the network. n_inputs = network->n_in-
puts. For more details, see imsls_f_mlff_network.

int nominal[] (Input)
Array of size n_patterns by n_nominal containing values for the nominal input attributes. The i-
th row contains the nominal input attributes for the i-th training pattern.
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float continuous[] (Input)
Array of size n_patterns by n_continuous containing values for the continuous input attri-
butes. The i-th row contains the continuous input attributes for the i-th training pattern. 

float output[] (Input)
Array of size n_patterns by n_outputs containing the output training patterns, where 
n_outputs is the number of output perceptrons in the network. 
n_outputs = network->n_outputs. For more details, see imsls_f_mlff_network. 

Return Value
An array of length 5 containing the summary statistics from the network training, organized as follows:

This space can be released by using the imsls_free function. 

If training is unsuccessful, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h> 

float  *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *network, int n_patterns, 
int n_nominal, int n_continuous, float nominal[], int continuous[], float output[],

IMSLS_STAGE_I, int n_epochs, int epoch_size,

IMSLS_NO_STAGE_II,

IMSLS_MAX_STEP, float max_step, 

IMSLS_MAX_ITN, int max_itn, 

IMSLS_MAX_FCN, int max_fcn, 

IMSLS_REL_FCN_TOL, float rfcn_tol, 

IMSLS_GRAD_TOL, float grad_tol, 

IMSLS_TOLERANCE, float tolerance, 

Element Training Statistics

0 Error sum of squares at the optimum.

1 Total number of Stage I iterations.

2 Smallest error sum of squares after Stage I training.

3 Total number of Stage II iterations.

4 Smallest error sum of squares after Stage II training.
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IMSLS_WEIGHT_INITIALIZATION_METHOD, int method, 

IMSLS_PRINT, 

IMSLS_RESIDUAL, float **residuals, 

IMSLS_RESIDUAL_USER, float residuals[], 

IMSLS_GRADIENT, float **gradients, 

IMSLS_GRADIENT_USER, float gradients[], 

IMSLS_FORECASTS, float **forecasts, 

IMSLS_FORECASTS_USER, float forecasts[], 

IMSLS_RETURN_USER, float z[],

0)

Optional Arguments
IMSLS_STAGE_I, int  n_epochs, int epoch_size (Input)

Argument n_epochs is the number epochs used for Stage I training and argument epoch_size 
is the number of patterns used during each epoch. If epoch training is not needed, set 
epoch_size = n_patterns and n_epochs = 1. Stage I is implemented using Quasi-Newton 
optimization and steepest ascent with gradients estimated using the backward propagation method.

Default: n_epochs=15, epoch_size = n_patterns.

IMSLS_NO_STAGE_II, (Input)
Specifies no Stage II training is performed. Stage II is implemented using Quasi-Newton optimization 
with numerical gradients. 

Default: Stage II training is performed.

IMSLS_MAX_STEP, float max_step  (Input)
Maximum allowable step size in the optimizer. 

Default: max_step = 1000.

IMSLS_MAX_ITN, int max_itn (Input)
Maximum number of iterations in the optimizer, per epoch. 

Default: max_itn = 1000. 

IMSLS_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations in the optimizer, per epoch. 

Default: max_fcn = 400. 
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IMSLS_REL_FCN_TOL, float rfcn_tol  (Input)
Relative function tolerance in the optimizer.

Default: rfcn_tol = max (10-10, ɛ2/3), where ɛ is the machine precision, max (10-20, ɛ2/3) is used in 
double precision.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance in the optimizer. 

Default: grad_tol = ɛ1/2, where ɛ is the machine precision, ɛ1/3 is used in double precision.

IMSLS_TOLERANCE, float tolerance (Input)
Absolute accuracy tolerance for the sum of squared errors in the optimizer. 

Default: tolerance = 0.1.

IMSLS_WEIGHT_INITIALIZATION_METHOD, int method[] (Input)
The method to use for initializing network weights prior to network training. One of the following four 
values is accepted:

See imsls_f_mlff_initialize_weights for a detailed description of the initialization methods.

Default: method = IMSLS_RANDOM.

IMSLS_PRINT, (Input)
Intermediate results are printed during network training. 

Default: No printing is performed.

IMSLS_RESIDUAL, float **residuals  (Output)
The address of a pointer to the internally allocated array of size n_patterns by n_outputs con-
taining the residuals for each observation in the training data, where n_outputs is the number of 
output perceptrons in the network. 

n_outputs = network->n_outputs.
IMSLS_RESIDUAL_USER, float residuals[]  (Output)

Storage for array residuals provided by user. See IMSLS_RESIDUAL. 

method Algorithm

IMSLS_EQUAL Equal weights.

IMSLS_RANDOM Random weights.

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights.

IMSLS_NN_NETWORK No initialization method will be 
performed.
Weights in imsls_f_NN_Network 
structure network will be used instead.
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IMSLS_GRADIENT, float **gradients  (Output)
The address of a pointer to the internally allocated array of size n_links + n_nodes-n_inputs 
to store the gradients for each weight found at the optimum training stage, where 
n_links = network->n_links, n_nodes = network->n_nodes, and 
n_inputs = network->n_inputs.

IMSLS_GRADIENT_USER, float gradients[]  (Output)
Storage for array gradients provided by user. See IMSLS_GRADIENT. 

IMSLS_FORECASTS, float **forecasts  (Output)
The address of a pointer to the internally allocated array of size n_patterns by n_outputs, 
where n_outputs is the number of output perceptrons in the network. 
n_outputs = network->n_outputs. The values of the i-th row are the forecasts for the out-
puts for the i-th training pattern.

IMSLS_FORECASTS_USER, float forecasts[]  (Output)
Storage for array forecasts is provided by user. See IMSLS_FORECASTS. 

IMSLS_RETURN_USER, float z[] (Output)
User-supplied array of length 5. Upon completion, z contains the return array of training statistics. 
See Return Value for details.

Description
Function imsls_f_mlff_network_trainer trains a multilayered feedforward neural network returning 
the forecasts for the training data, their residuals, the optimum weights and the gradients associated with those 
weights. Linkages among perceptrons allow for skipped layers, including linkages between inputs and percep-
trons. The linkages and activation function for each perceptron, including output perceptrons, can be individually 
configured. For more details, see optional arguments IMSLS_LINK_ALL, IMSLS_LINK_LAYER, and 
IMSLS_LINK_NODE in imsls_f_mlff_network.

Training Data
Neural network training patterns consist of the following three types of data:

1. nominal input attributes

2. continuous input attributes

3. continuous output
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The first data type contains the encoding of any nominal input attributes. If binary encoding is used, this encod-
ing consists of creating columns of zeros and ones for each class value associated with every nominal attribute. If 
only one attribute is used for input, then the number of columns is equal to the number of classes for that attri-
bute. If more columns appear in the data, then each nominal attribute is associated with several columns, one for 
each of its classes.

Each column consists of zeros, if that classification is not associated with this case, otherwise, one if that classifi-
cation is associated. Consider an example with one nominal variable and two classes: male and female (male, 
male, female, male, female). With binary encoding, the following matrix is sent to the training engine to represent 
this data:

Continuous input and output data are passed to the training engine using two double precision arrays: 
continuous and output. The number of rows in each of these matrices is n_patterns. The number of 
columns in continuous and output, corresponds to the number of input and output variables, respectively.

Network Configuration
The network configuration consists of the following: 

 the number of inputs and outputs, 

 the number of hidden layers,

 a description of the number of perceptrons in each layer, 

 and a description of the linkages among the perceptrons. 

This description is passed into imsls_f_mlff_network_trainer using the structure Imsls_f_NN_Network. 
See imsls_f_mlff_network.

Training Efficiency
The training efficiency determines the time it takes to train the network. This is controlled by several factors. One 
of the most important factors is the initial weights used by the optimization algorithm. These are taken from the 
initial values provided in the structure Imsls_f_NN_Network, network->links[i].weight. Equally important 
are the scaling and filtering applied to the training data.

nominalAtt =

1 0
1 0
0 1
1 0
0 1
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In most cases, all variables, particularly output variables, should be scaled to fall within a narrow range, such as 
[0, 1]. If variables are unscaled and have widely varied ranges, then numerical overflow conditions can terminate 
network training before an optimum solution is calculated. 

Output
Output from imsls_f_mlff_network_trainer consists of scaled values for the network outputs, a corre-
sponding forecast array for these outputs, a weights array for the trained network, and the training statistics. The 
Imsls_f_NN_Network structure is updated with the weights and bias values and can be used as input to 
imsls_f_mlff_network_forecast. 

The trained network can be saved and retrieved using imsls_f_mlff_network_write and 
imsls_f_mlff_network_read.

Example
This example trains a two-layer network using 100 training patterns from one nominal and one continuous input 
attribute. The nominal attribute has three classifications which are encoded using binary encoding. This results in 
three binary network input columns. The continuous input attribute is scaled to fall in the interval [0,1].

The network training targets were generated using the relationship:

Y = 10*X

1

 + 20*X

2

 + 30*X

3

 + 20*X

4

, 

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of the nominal attribute, and 

X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons in the hidden 
layer and one in the output layer. The following figure illustrates this structure:
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Figure 34, A 2-layer, Feedforward Network with 4 Inputs and 1 Output

There are a total of 15 weights and 4 bias weights in this network. The activation functions are all linear. 

Since the target output is a linear function of the input attributes, linear activation functions guarantee that the 
network forecasts will exactly match their targets. Of course, the same result could have been obtained using 
multiple regression. Printing is turned on to show progress during the training session. 

#include <imsls.h>
#include <stdio.h>
int main()
{
   /* A 2D matrix of values for the nominal training attribute. In this  
    * example,  the single nominal attribute has 3 categories that are 
    * encoded using binary encoding for input into the network.  
    *
    *   {1,0,0} = category 1
    *   {0,1,0} = category 2
    *   {0,0,1} = category 3
    */
   int nominal[300] = 
   {
      1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
      1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
      1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
      1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
      0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
      0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
      0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
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      0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
      0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
      0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
      0,0,1,0,0,1,0,0,1,0,0,1,0,0,1
   };
   /* A matrix of values for the continuous training attribute */
   float continuous[100] = {
      4.007054658,7.10028447,4.740350984,5.714553211,6.205437459,
      2.598930065,8.65089967,5.705787357,2.513348184,2.723795955,
      4.1829356,1.93280416,0.332941608,6.745567628,5.593588463,
      7.273544478,3.162117939,4.205381208,0.16414745,2.883418275,
      0.629342241,1.082223406,8.180324708,8.004894314,7.856215418,
      7.797143157,8.350033996,3.778254431,6.964837082,6.13938006,
      0.48610387,5.686627923,8.146173848,5.879852653,4.587492779,
      0.714028533,7.56324211,8.406012623,4.225261454,6.369220241,
      4.432772218,9.52166984,7.935791508,4.557155333,7.976015058,
      4.913538616,1.473658514,2.592338905,1.386872932,7.046051685,
      1.432128376,1.153580985,5.6561491,3.31163251,4.648324851,
      5.042514515,0.657054195,7.958308093,7.557870384,7.901990083,
      5.2363088,6.95582150,8.362167045,4.875903563,1.729229471,
      4.380370223,8.527875685,2.489198107,3.711472959,4.17692681,
      5.844828801,4.825754155,5.642267843,5.339937786,4.440813223,
      1.615143829,7.542969339,8.100542684,0.98625265,4.744819569,
      8.926039258,8.813441887,7.749383991,6.551841576,8.637046998,
      4.560281415,1.386055087,0.778869034,3.883379045,2.364501589,
      9.648737525,1.21754765,3.908879368,4.253313879,9.31189696,
      3.811953836,5.78471629,3.414486452,9.345413015,1.024053777
   };
   /* A 2D matrix containing the training outputs for this network.
   In this case there is an exact linear relationship between these 
   outputs and the inputs: output = 10*X1 +20*X2 + 30*X3 +2*X4, 
   where X1-X3 are the categorical variables and X4 is the continuous
   attribute variable.   Output is unscaled.
   */
   float output[100];  
   Imsls_f_NN_Network *network;
   float *stats;
   int n_patterns= 100, n_nominal=3, n_continuous=1;
   int i,j,k, wIdx;
   float *residuals, *forecasts;
   float bias, coef1, coef2, coef3, coef4;
   int hidActFcn[3] = {IMSLS_LINEAR,IMSLS_LINEAR,IMSLS_LINEAR};
   /* Scale continuous attribute into the interval [0, 1] 
   and generate outputs */
   for(i=0; i < 100; i++) 
   {
      continuous[i] = continuous[i]/10.0;
      output[i] = (10 * nominal[i*3]) + (20 * nominal[i*3+1]) +
         (30 * nominal[i*3+2]) + (20 * continuous[i]);
   }
   /* Create network */
   network = imsls_f_mlff_network_init(4,1);
   imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3,
      IMSLS_ACTIVATION_FCN, 1, &hidActFcn,
      IMSLS_LINK_ALL,  0);
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   /*  Set initial weights */
   for (j=network->n_inputs; j < network->n_nodes ; j++)
   {
      for (k=0; k < network->nodes[j].n_inLinks; k++)
      {
         wIdx = network->nodes[j].inLinks[k];
         /*   set specific layer weights */ 
         if (network->nodes[j].layer_id == 1) {
            network->links[wIdx].weight = 0.25;
         } else if (network->nodes[j].layer_id == 2) {
            network->links[wIdx].weight = 0.33;
         } 
      }
   }

   /* Initialize seed for consisten results */
   imsls_random_seed_set(12345);
   stats = imsls_f_mlff_network_trainer(network, n_patterns, 
      n_nominal, n_continuous, nominal, continuous, output,
      IMSLS_STAGE_I, 10, 100,
      IMSLS_MAX_FCN, 1000,
      IMSLS_REL_FCN_TOL, 1.0e-20,
      IMSLS_GRAD_TOL, 1.0e-20,
      IMSLS_MAX_STEP, 5.0,
      IMSLS_TOLERANCE, 1.0e-5,
      IMSLS_PRINT,
      IMSLS_RESIDUAL, &residuals,
      IMSLS_FORECASTS, &forecasts,
      0);
   printf("Predictions for Last Ten Observations: \n");
   for(i=90; i < 100; i++){
      printf("observation[%d] %f Prediction %f Residual %f \n", i, 
         output[i], forecasts[i], residuals[i]);
   }
   /* hidden layer nodes bias value * link weight */
   bias   = network->nodes[network->n_nodes-4].bias * 
            network->links[12].weight + 
            network->nodes[network->n_nodes-3].bias * 
            network->links[13].weight + 
            network->nodes[network->n_nodes-2].bias * 
            network->links[14].weight;
   /* the bias of the output node */
   bias  += network->nodes[network->n_nodes-1].bias;  
   coef1  = network->links[0].weight * network->links[12].weight;
   coef1 += network->links[1].weight * network->links[13].weight;
   coef1 += network->links[2].weight * network->links[14].weight;
   coef2  = network->links[3].weight * network->links[12].weight;
   coef2 += network->links[4].weight * network->links[13].weight;
   coef2 += network->links[5].weight * network->links[14].weight;
   coef3  = network->links[6].weight * network->links[12].weight;
   coef3 += network->links[7].weight * network->links[13].weight;
   coef3 += network->links[8].weight * network->links[14].weight;
   coef4  = network->links[9].weight * network->links[12].weight;
   coef4 += network->links[10].weight * network->links[13].weight;
   coef4 += network->links[11].weight * network->links[14].weight;
   coef1 += bias;
   coef2 += bias;
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   coef3 += bias;
   printf("Bias: %f \n", bias);    
   printf("X1: %f \n", coef1);  
   printf("X2: %f \n", coef2);  
   printf("X3: %f \n", coef3);  
   printf("X4: %f \n", coef4);
   imsls_f_mlff_network_free(network);
}

Output

TRAINING PARAMETERS:
 Stage II Opt.  = 1
 n_epochs       = 10
 epoch_size     = 100
 max_itn        = 1000
 max_fcn        = 1000
 max_step       = 5.000000
 rfcn_tol       = 1e-020
 grad_tol       = 1e-020
 tolerance      = 0.000010
STAGE I TRAINING STARTING
Stage I: Epoch 1 - Epoch Error SS = 3870.44 (Iterations=7)
Stage I: Epoch 2 - Epoch Error SS = 7.41238e-011 (Iterations=74)
Stage I Training Converged at Epoch = 2

STAGE I FINAL ERROR SS = 0.000000
OPTIMUM WEIGHTS AFTER STAGE I TRAINING:
weight[0] = 2.29881    weight[1] = 4.67622    weight[2] = 5.82167
weight[3] = 2.01955    weight[4] = 3.02815    weight[5] = 5.61873
weight[6] = 9.46591    weight[7] = 7.44722    weight[8] = 1.82561
weight[9] = 6.08981    weight[10] = 11.1714   weight[11] = 5.30152
weight[12] = 2.15733   weight[13] = 2.26835   weight[14] = -0.23573
weight[15] = -3.4723   weight[16] = 0.100865  weight[17] = 2.71152
weight[18] = 6.50345
STAGE I TRAINING CONVERGED
STAGE I ERROR SS = 0.000000

GRADIENT AT THE OPTIMUM WEIGHTS
g[0] = 0.000014        weight[0] =   2.298808
g[1] = 0.000045        weight[1] =   4.676218
g[2] = -0.000012       weight[2] =   5.821669
g[3] = 0.000026        weight[3] =   2.019547
g[4] = 0.000015        weight[4] =   3.028149
g[5] = 0.000048        weight[5] =   5.618728
g[6] = -0.000013       weight[6] =   9.465913
g[7] = 0.000027        weight[7] =   7.447217
g[8] = -0.000002       weight[8] =   1.825613
g[9] = -0.000005       weight[9] =   6.089811
g[10] =        0.000001        weight[10] =  11.171391
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g[11] =        -0.000003       weight[11] =  5.301523
g[12] =        0.000028        weight[12] =  2.157330
g[13] =        0.000176        weight[13] =  2.268351
g[14] =        0.000199        weight[14] =  -0.235730
g[15] =        0.000047        weight[15] =  -3.472301
g[16] =        0.000050        weight[16] =  0.100865
g[17] =        -0.000005       weight[17] =  2.711518
g[18] =        0.000022        weight[18] =  6.503448
Training Completed
Predictions for Last Ten Observations:
observation[90] 49.297478 Prediction 49.297474 Residual -0.000004
observation[91] 32.435097 Prediction 32.435093 Residual -0.000004
observation[92] 37.817757 Prediction 37.817760 Residual 0.000004
observation[93] 38.506630 Prediction 38.506630 Residual 0.000000
observation[94] 48.623795 Prediction 48.623795 Residual 0.000000
observation[95] 37.623909 Prediction 37.623909 Residual 0.000000
observation[96] 41.569431 Prediction 41.569431 Residual 0.000000
observation[97] 36.828972 Prediction 36.828972 Residual 0.000000
observation[98] 48.690826 Prediction 48.690830 Residual 0.000004
observation[99] 32.048107 Prediction 32.048107 Residual 0.000000
Bias: -1.397840
X1: 10.000000
X2: 20.000000
X3: 30.000000
X4: 20.000000
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mlff_network_forecast
Calculates forecasts for trained multilayered feedforward neural network.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *network, int n_nominal, 

int n_continuous, int nominal[], float continuous[], ..., 0)

The type double function is imsls_d_mlff_network_forecast.

Required Arguments
Imsls_f_NN_Network *network  (Input)

Pointer to a structure of type Imsls_f_NN_Network containing the trained feedforward network. See 
imsls_f_mlff_network. 

int n_nominal  (Input)
Number of nominal attributes. 

int n_continuous  (Input)
Number of continous attributes. 

int nominal[]  (Input)
Array of size n_nominal containing the nominal input variables. 

float continuous[]  (Input)
Array of size n_continuous containing the continuous input variables. 

Return Value
Pointer to an array of size n_outputs containing the forecasts, where n_outputs is the number of output 
perceptrons in the network. n_outputs = network->n_outputs. This space can be released by using the 
imsls_free function.
1676



 Data Mining         mlff_network_forecast
Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *network, int n_nominal, 
int n_continuous, int nominal[], float continuous[],

IMSLS_RETURN_USER, float forecasts[],
0)

Optional Arguments
IMSLS_RETURN_USER, float forecasts[] (Output)

If specified, the forecasts for the trained network is stored in a user-supplied array forecasts of 
size n_outputs, where n_outputs is the number of perceptrons in the network, 
n_outputs = network->n_outputs. 

Description
Function imsls_f_mlff_network_forecast calculates a forecast for a previously trained multilayered 
feedforward neural network using the same network structure and scaling applied during the training. The struc-
ture Imsls_f_NN_Network describes the network structure used to originally train the network. The weights, which 
are the key output from training, are used as input to this routine. The weights are stored in the Imsls_f_NN_Net-
work structure. 

In addition, two one-dimensional arrays are used to describe the values of the nominal and continuous attributes 
that are to be used as network inputs for calculating the forecast.

Training Data
Neural network training data consists of the following three types of data:

1. nominal input attribute data

2. continuous input attribute data

3. continuous output data
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The first data type contains the encoding of any nominal input attributes. If binary encoding is used, this encod-
ing consists of creating columns of zeros and ones for each class value associated with every nominal attribute. If 
only one attribute is used for input, then the number of columns is equal to the number of classes for that attri-
bute. If more columns appear in the data, then each nominal attribute is associated with several columns, one for 
each of its classes.

Each column consists of zeros, if that classification is not associated with this case, otherwise, one if that classifi-
cation is associated. Consider an example with one nominal variable and two classes: male and female (male, 
male, female, male, female). With binary encoding, the following matrix is sent to the training engine to represent 
this data:

Continuous input and output data are passed to the training engine using two double precision arrays: 
continuous and output. The number of rows in each of these matrices is n_patterns. The number of 
columns in continuous and output, corresponds to the number of input and output variables, respectively.

Network Configuration
The configuration of the network consists of a description of the number of perceptrons for each layer, the num-
ber of hidden layers, the number of inputs and outputs, and a description of the linkages among the 
perceptrons. This description is passed into this forecast routine through the structure Imsls_f_NN_Network. See 
imsls_f_mlff_network.

Forecast Calculation
The forecast is calculated from the input attributes, network structure and weights provided in the structure 
Imsls_f_NN_Network.

Example
This example trains a two-layer network using 90 training patterns from one nominal and one continuous input 
attribute. The nominal attribute has three classifications which are encoded using binary encoding. This results in 
three binary network input columns. The continuous input attribute is scaled to fall in the interval [0,1].

The network training targets were generated using the relationship:

nominal =

1 0
1 0
0 1
1 0
0 1
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Y = 10*X

1

 + 20*X

2

 + 30*X

3

 + 20*X

4

, 

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of the nominal attribute, and 

X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes ands two layers, with three perceptrons in the hidden 
layer and one in the output layer. The following figure illustrates this structure:

Figure 35, A 2-layer, Feedforward Network with 4 Inputs and 1 Output

There are a total of 100 outputs. The first 90 outputs use imsls_f_mlff_network_trainer to train the net-
work and the last 10 outputs use imsls_mlff_network_forecast to forecast and compare the actual 
outputs.
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#include <imsls.h>
#include <stdio.h>
int main ()
{
     int nominal[300] = {
     1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
     0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
     0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
     1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
     0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
     0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
     0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
     0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
     1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
     0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
     1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
     0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
     0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
     1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
     0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
 };
     float continuous[100] = {
     4.007054658, 7.10028447, 4.740350984, 5.714553211, 6.205437459,
     2.598930065, 8.65089967, 5.705787357, 2.513348184, 2.723795955,
     4.1829356, 1.93280416, 0.332941608, 6.745567628, 5.593588463,
     7.273544478, 3.162117939, 4.205381208, 0.16414745, 2.883418275,
     0.629342241, 1.082223406, 8.180324708, 8.004894314, 7.856215418,
     7.797143157, 8.350033996, 3.778254431, 6.964837082, 6.13938006,
     0.48610387, 5.686627923, 8.146173848, 5.879852653, 4.587492779,
     0.714028533, 7.56324211, 8.406012623, 4.225261454, 6.369220241,
     4.432772218, 9.52166984, 7.935791508, 4.557155333, 7.976015058,
     4.913538616, 1.473658514, 2.592338905, 1.386872932, 7.046051685,
     1.432128376, 1.153580985, 5.6561491, 3.31163251, 4.648324851,
     5.042514515, 0.657054195, 7.958308093, 7.557870384, 7.901990083,
     5.2363088, 6.95582150, 8.362167045, 4.875903563, 1.729229471,
     4.380370223, 8.527875685, 2.489198107, 3.711472959, 4.17692681,
     5.844828801, 4.825754155, 5.642267843, 5.339937786, 4.440813223,
     1.615143829, 7.542969339, 8.100542684, 0.98625265, 4.744819569,
     8.926039258, 8.813441887, 7.749383991, 6.551841576, 8.637046998,
     4.560281415, 1.386055087, 0.778869034, 3.883379045, 2.364501589,
     9.648737525, 1.21754765, 3.908879368, 4.253313879, 9.31189696,
     3.811953836, 5.78471629, 3.414486452, 9.345413015, 1.024053777
 };
     float output[100] = {
     18.01410932, 24.20056894, 19.48070197, 21.42910642, 22.41087492,
     15.19786013, 27.30179934, 21.41157471, 15.02669637, 15.44759191,
     18.3658712, 13.86560832, 10.66588322, 23.49113526, 21.18717693,
     24.54708896, 16.32423588, 18.41076242, 10.3282949, 15.76683655,
     11.25868448, 12.16444681, 26.36064942, 26.00978863, 25.71243084,
     25.59428631, 26.70006799, 17.55650886, 23.92967416, 22.27876012,
     10.97220774, 21.37325585, 26.2923477, 21.75970531, 19.17498556,
     21.42805707, 35.12648422, 36.81202525, 28.45052291, 32.73844048,
     28.86554444, 39.04333968, 35.87158302, 29.11431067, 35.95203012,
     29.82707723, 22.94731703, 25.18467781, 22.77374586, 34.09210337,
     22.86425675, 22.30716197, 31.3122982, 26.62326502, 29.2966497,
     30.08502903, 21.31410839, 35.91661619, 35.11574077, 35.80398017,
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     30.4726176, 33.91164302, 36.72433409, 29.75180713, 23.45845894,
     38.76074045, 47.05575137, 34.97839621, 37.42294592, 38.35385362,
     41.6896576, 39.65150831, 41.28453569, 40.67987557, 38.88162645,
     33.23028766, 45.08593868, 46.20108537, 31.9725053, 39.48963914,
     47.85207852, 47.62688377, 45.49876798, 43.10368315, 47.274094,
     39.1205628, 32.77211017, 31.55773807, 37.76675809, 34.72900318,
     49.29747505, 32.4350953, 37.81775874, 38.50662776, 48.62379392,
     37.62390767, 41.56943258, 36.8289729, 48.69082603, 32.04810755
 };
 /* 2D Array Definitions */
#define NOMINAL(i,j) nominal[i*n_nominal+j]
#define NOMINALOBS(i,j) nominalObs[i*n_nominal+j]
   Imsls_f_NN_Network *network;
   float *stats;
   int n_patterns = 100, n_nominal = 3, n_continuous = 1;
   int i, j, k, wIdx;
   float *forecasts;
   /* for forecasting */
   int nominalObs[3] = { 0, 0, 0 };
   float continuousObs[1] = { 0 };
   float x, y;
   float *cont;
   /* Scale continuous attribute to the interval [0, 1] */
   cont = imsls_f_scale_filter (n_patterns, continuous, 1,
      IMSLS_SCALE_LIMITS, 0.0, 10.0, 0.0, 1.0, 0);
   network = imsls_f_mlff_network_init (4, 1);
   imsls_f_mlff_network (network,
      IMSLS_CREATE_HIDDEN_LAYER, 3, IMSLS_LINK_ALL, 0);
   for (j=network->n_inputs; j < network->n_nodes ; j++)
   {
      for (k=0; k < network->nodes[j].n_inLinks; k++)
      {
         wIdx = network->nodes[j].inLinks[k];
         /*  set specific layer weights */ 
         if (network->nodes[j].layer_id == 1) {
            network->links[wIdx].weight = 0.25;
         } else if (network->nodes[j].layer_id == 2) {
            network->links[wIdx].weight = 0.33;
         } 
      }
   }
   imsls_random_seed_set (12345);
   stats = imsls_f_mlff_network_trainer (network, n_patterns - 10, 
      n_nominal, n_continuous, nominal, continuous, output,
      0);
   printf ("Predictions for Observations 90 to 100: \n");
   for (i = 90; i < 100; i++)
   {
      continuousObs[0] = continuous[i];
      for (j = 0; j < n_nominal; j++)
      {
         NOMINALOBS (0, j) = NOMINAL (i, j);
      }
      forecasts = imsls_f_mlff_network_forecast (network, n_nominal,
         n_continuous, nominalObs, continuousObs, 0);
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      x = output[i];
      y = forecasts[0];
      printf("observation[%d] %8.4f  Prediction %8.4f  ", i, x, y);
      printf("Residual %8.4f \n", x - y);
   }
   imsls_f_mlff_network_free (network);
#undef NOMINAL
#undef NOMINALOBS
}

Output

Predictions for Observations 90 to 100:
observation[90] 49.2975   Prediction 49.1823   Residual  0.1152
observation[91] 32.4351   Prediction 32.4410   Residual -0.0059
observation[92] 37.8178   Prediction 37.7998   Residual  0.0179
observation[93] 38.5066   Prediction 38.4955   Residual  0.0111
observation[94] 48.6238   Prediction 48.5475   Residual  0.0763
observation[95] 37.6239   Prediction 37.6043   Residual  0.0196
observation[96] 41.5694   Prediction 41.5935   Residual -0.0241
observation[97] 36.8290   Prediction 36.8038   Residual  0.0251
observation[98] 48.6908   Prediction 48.6110   Residual  0.0798
observation[99] 32.0481   Prediction 32.0631   Residual -0.0150

NOTE: Because multiple optima are possible during training, the output of this example may vary by 
platform. 
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mlff_classification_trainer

more...

Trains a multilayered feedforward neural network for classification. 

Synopsis
#include <imsls.h>
float *imsls_f_mlff_classification_trainer (Imsls_f_NN_Network *network, 

int n_patterns, int n_nominal, int n_continuous, int classification[], 
int nominal[], float continuous[], ..., 0)

The type double function is imsls_d_mlff_classification_trainer.

Required Arguments
Imsls_f_NN_Network *network  (Input/Output)

Pointer to a structure of type Imsls_f_NN_Network containing the feedforward network’s architecture, 
including network weights and bias values. For more details, see imsls_f_mlff_network. When 
network training is successful, the weights and bias values in network are replaced with the values 
calculated for the optimum trained network.

int n_patterns (Input)
Number of network training patterns. 

int n_nominal (Input)
Number of nominal input attributes. Note that n_nominal + n_continuous must be equal to 
the total number of input attributes in the network, network->n_inputs. For more details, see 
imsls_f_mlff_network.

int n_continuous (Input)
Number of continuous input attributes, including ordinal attributes encoded to percentages. Note 
that n_nominal + n_continuous must equal the total number of input attributes in the net-
work, network->n_inputs. For more details, see imsls_f_mlff_network.
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int classification[] (Input)
Array of size n_patterns containing the target classifications for the training patterns. These must 
be numbered sequentially from 0 to n_classes-1, where n_classes is the number of target categories. 
For binary classification problems, n_classes = 2. For other problems, n_classes = n_outputs = 
network->n_outputs. For more details, see imsls_f_mlff_network.

int nominal[] (Input)
Array of size n_patterns by n_nominal containing values for the nominal input attributes. The i-
th row contains the nominal input attributes for the i-th training pattern. If n_nominal = 0, this 
argument is ignored.

float continuous[] (Input)
Array of size n_patterns by n_continuous containing values for the continuous input attri-
butes. The i-th row contains the continuous input attributes for the i-th training pattern. If 
n_continuous = 0, this argument is ignored. 

Return Value
An array of training statistics, containing six summary statistics from the classification neural network, organized 
as follows:

The classification error rate is calculated using the ratio n_errors/n_patterns, where n_errors is the number of 
patterns that are incorrectly classified using the trained neural network. For each training pattern, the probability 
that it belongs to each of the target classes is calculated from the trained network. A pattern is considered incor-
rectly classified if the classification probability for its target classification is not the largest among that pattern’s 
classification probabilities. 

A classification error of zero indicates that all training patterns are correctly classified into their target classifica-
tions. A value near one indicates that most patterns are not classified into their target classification.

If training is unsuccessful, NULL is returned.

Element Training Statistics

0 Minimum Cross-Entropy at the optimum.

1 Total number of Stage I iterations.

2 Minimum Cross-Entropy after Stage I training.

3 Total number of Stage II iterations.

4 Minimum Cross-Entropy after Stage II 
training.

5 Classification error rate from optimum 
network.
1684



 Data Mining         mlff_classification_trainer
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_mlff_classification_trainer (Imsls_f_NN_Network *network, 

int n_patterns, int n_nominal, int n_continuous, int classification[], 
int nominal[], float continuous[],

IMSLS_STAGE_I, int n_epochs, int epoch_size,

IMSLS_NO_STAGE_II,

IMSLS_MAX_STEP, float max_step, 

IMSLS_MAX_ITN, int max_itn, 

IMSLS_MAX_FCN, int max_fcn, 

IMSLS_REL_FCN_TOL, float rfcn_tol,

IMSLS_GRAD_TOL, float grad_tol,

IMSLS_TOLERANCE, float tolerance,

IMSLS_PRINT,

IMSLS_WEIGHT_INITIALIZATION_METHOD, int method, 

IMSLS_LOGISTIC_TABLE, 

IMSLS_PREDICTED_CLASS, int **predicted_class, 

IMSLS_PREDICTED_CLASS_USER, int predicted_class[],

IMSLS_GRADIENT, float **gradients, 

IMSLS_GRADIENT_USER, float gradients[],

IMSLS_PREDICTED_CLASS_PROB, float **predicted_class_prob,

IMSLS_PREDICTED_CLASS_PROB_USER, float predicted_class_prob[],

IMSLS_CLASS_ERROR, float **class_error, 

IMSLS_CLASS_ERROR_USER, float class_error[],

IMSLS_RETURN_USER, float trainStat[],

0)
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Optional Arguments
IMSLS_STAGE_I, int n_epochs, int epoch_size (Input)

Argument n_epochs is the number epochs used for Stage I training and argument epoch_size 
is the number of observations used during each epoch. If epoch training is not needed, set 
epoch_size = n_patterns and n_epochs=1. Stage I training is implemented using steepest 
ascent optimization and backward propagation for gradient calculations.

Default: n_epochs=15, epoch_size = n_patterns.

IMSLS_NO_STAGE_II, (Input)
Specifies no Stage II training is needed. Stage II training is implemented using Quasi-Newton optimi-
zation with numerical gradients.

Default: Stage II training is performed.

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size in the optimizer. 

Default: max_step = 10.

IMSLS_MAX_ITN, int max_itn (Input)
Maximum number of iterations in the optimizer, per epoch. 

Default: max_itn=1000. 

IMSLS_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations in the optimizer, per epoch. 

Default: max_fcn=1000.

IMSLS_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance in the optimizer.

Default: rfcn_tol = max (10-10, ɛ2/3), where ɛ is the machine precision. 

rfcn_tol = max (10-20, ɛ2/3) in double.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance in the optimizer. 

Default: grad_tol = ɛ1/2, where ɛ is the machine precision. 

grad_tol = ɛ1/3 in double.

IMSLS_TOLERANCE, float tolerance (Input)
Absolute accuracy tolerance for the entropy. If the network entropy for an epoch during Stage I train-
ing falls below tolerance, the network is considered optimized, training is halted and the network 
with the minimum entropy is returned.
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Default: tolerance = ɛ1/3, where ɛ is the machine precision tolerance = ɛ2/3 in double.

IMSLS_PRINT, (Input)
Intermediate results are printed during network training. 

Default: No printing is performed.

IMSLS_WEIGHT_INITIALIZATION_METHOD, int method (Input)
The method to use for initializing network weights prior to network training. One of the following five 
values is accepted: 

Default: method = IMSLS_RANDOM.

IMSLS_LOGISTIC_TABLE,  (Input)
If this option is selected, during Stage I optimization all logistic activation functions in the hidden lay-
ers are calculated using a table lookup approximation to the logistic function. This reduces the time 
for Stage I training with logistic activation. However, during Stage II optimization this setting is 
ignored. 

Default: All logistic activations are calculated without table lookup. 

IMSLS_PREDICTED_CLASS, int **predicted_class  (Output)
The address of a pointer to an array of size n_patterns containing the predicted classification for 
each training pattern. 

IMSLS_PREDICTED_CLASS_USER, int predicted_class[]  (Output)
Storage for array predicted_class provided by user. See IMSLS_PREDICTED_CLASS.

IMSLS_GRADIENT, float **gradients  (Output)
The address of a pointer to an array of size 
network->n_links + network->n_nodes - network->n_inputs containing the gra-
dients for each weight in the optimum network.

IMSLS_GRADIENT_USER, float gradients[]  (Output)
Storage for array gradients provided by user. See IMSLS_GRADIENT. 

method Algorithm

IMSLS_EQUAL Equal weights.

IMSLS_RANDOM Random weights.

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights.

IMSLS_DISCRIMINANT Discriminant Analysis Weights.

IMSLS_NN_NETWORK No initialization method will be per-
formed. Weights in Imsls_f_NN_Network 
structure network will be used instead.
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IMSLS_PREDICTED_CLASS_PROB, float **predicted_class_prob  (Output)
The address of a pointer to an array of size n_patterns by n_classes, where n_classes is the number 
of target classes in the network. For binary classification problems, n_classes = 2, but for all other 
problems n_classes = n_outputs, where n_outputs is the number of outputs in the network, 
network->n_outputs. The values of the i-th row are the predicted probabilities associated with 
the target classes. For binary classification, predicted_class_prob[i] is the predicted proba-
bility that the i-th pattern is associated with class = 0. For other classification problems values in 
the i-th row of predicted_class_prob are the predicted probabilities that this pattern belongs 
to each of the target classes. 

IMSLS_PREDICTED_CLASS_PROB_USER, float predicted_class_prob[]  (Output)
Storage for array predicted_class_prob provided by user. See 
IMSLS_PREDICTED_CLASS_PROB for a description. 

IMSLS_CLASS_ERROR float, **class_error  (Output)
The address of a pointer to an array with n_patterns containing the classification probability 
errors for each pattern in the training data. The classification error for the i-th training pattern is 
equal to 1-predicted_class[k] where k=classification[i]. 

IMSLS_CLASS_ERROR_USER, float class_error[]  (Output)
Storage for array class_error provided by user. See IMSLS_CLASS_ERROR for a description.

IMSLS_RETURN_USER, float trainStat[] (Output)
User-supplied array of length 6. Upon completion, trainStat contains the return array of training 
statistics.

Description
Function imsls_f_mlff_classification_trainer trains a multilayered feedforward neural network 
for classifying patterns. It returns training summaries, the classification probabilities associated with training pat-
terns, their classification errors, the optimum network weights and gradients. Linkages among perceptrons allow 
for skipped layers, including linkages between inputs and output perceptrons. Except for output perceptrons, the 
linkages and activation function for each perceptron can be individually configured. For more details, see optional 
arguments IMSLS_LINK_ALL, IMSLS_LINK_LAYER, and IMSLS_LINK_NODE in 
imsls_f_mlff_network.

Binary classification is handled differently from classification problems involving more than two classes. Binary 
classification problems only have two target classes, which must be coded as either zero or one. This is repre-
sented using a single network output with logistic activation. The output is an estimate of the probability that the 
pattern belongs to class = 0. The probability associated with class = 1 can be calculated from the relationship 
P(class = 1) = 1- P(class = 0).
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Networks designed to classify patterns into more than two categories use one output for each target class, i.e. 
n_classes = n_outputs. The first output predicts P(class = 0), the second P(class = 1), etc. All output per-
ceptrons are normalized using softmax activation. This ensures that the estimated class probabilities are 
between zero and one, and that they always sum to one. 

Training Patterns
Neural network training patterns consist of the following three types of data:

1. nominal input attributes

2. continuous input attributes, including encoded ordinal attributes,

3. pattern classifications numbered 0, 1, …, n_classes -1

The first data type, nominal data, contains the encoding of nominal input attributes, if any. Nominal input attri-
butes must be encoded into multiple columns for network input. Although not required, binary encoding is 
typically used to create these input columns. Binary encoding consists of creating columns of zeros and ones for 
each class value associated with every nominal attribute. If only one attribute is used for input, then the number 
of columns is equal to the number of classes for that attribute. If several nominal attributes appear in the data, 
then each attribute is associated with several columns, one for each of its classes.

The imsls_f_unsupervised_nominal_filter can be used to generate these columns. For a nominal 
attribute with m classes, imsls_f_unsupervised_nominal_filter returns an n_patterns by m 
matrix. Each column of this matrix consists of zeros and ones. The column value is set to zero if the pattern is not 
associated with this classification; otherwise, the value is set to one indicating that this pattern is associated with 
this classification. 

Consider an example with one nominal variable that has two classes: male and female and five training patterns: 
male, male, female, male, female. With binary encoding, the following matrix is used as nominal network input to 
represent these patterns:

Continuous input attribute data, including ordinal data encoded to cumulative percentages, are passed to this 
routine in a separate floating point array, continuous. The number of rows in this array is n_patterns. The 
number of columns is n_continuous. If the continuous input attributes have widely different ranges, then typ-

nominal =

1 0
1 0
0 1
1 0
0 1
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ically it is advantageous to scale these attributes before using them in network training. The routine 
imsls_f_scale_filter can be used for scaling continuous input attributes before using it in network training. 
Ordinal attributes can be encoded using imsls_f_unsupervised_ordinal_filter.
It is important to note that if input attributes are encoded or scaled for network training, then the network 
weights are calculated for that encoding and scaling. Subsequent pattern classifications using these weights must 
also use the identical encoding and scaling used during training.

Training pattern classification targets are stored in the one-dimensional integer array classification. The i-
th value in this array is the class assignment for the i-th training pattern. Class assignments must be represented 
using the integers 0, 1, …, n_classes - 1. This encoding is arbitrary, but it should be consistent. For example, if the 
class assignments correspond to the colors red, white and blue, then they must be encoded as zero, one, and 
two. However, it is arbitrary whether red gets assigned to class = 0, 1 or 2 provided that assignment is used for 
every pattern.

Network Configuration
The network configuration consists of the following: 

 number of inputs and outputs,

 number of hidden layers,

 description of the number of perceptrons in each layer,

 description of the linkages among the perceptrons, and

 initial values for network weights, including bias weights. 

This description is passed into imsls_f_mlff_classification_trainer using the structure Imsls_f_N-
N_Network. See imsls_f_mlff_network.

Training Efficiency
INITIAL NETWORK WEIGHTS: The training efficiency determines the speed of network training. This is controlled 
by several factors. One of the most important factors is the initial weights used by the optimization algorithm. By 
default, these are set randomly. Other options can be specified through the optional argument 
IMSLS_INITIALIZE_WEIGHTS_METHOD. See imsls_f_mlff_initialize_weights for a detailed 
description of the available initialization methods. 
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Initial weights are scaled to reduce the possibility of perceptron saturation during the initial phases of network 
training. Saturation occurs when initial perceptron potential calculations are so large, or so small, that the activa-
tion calculation for a potential is driven to the largest or smallest possible values that can be represented on the 
computer in the stated precision (single or double). If saturation occurs, warning messages may appear indicating 
that network training did not converge to an optimum solution. 

The scaled initial weights are modified prior to every epoch by adding noise to these base values. The noise com-
ponent is uniformly distributed over the interval [-0.5,+0.5]. 

SCALING INPUTS: Although automatic scaling of network weights protects against saturation during initial training 
iterations, the training algorithm can push the weights into regions that may cause saturation. Typically this 
occurs when input attributes have widely different scaling. For that reason, it is recommended to also scale all 
continuous input attributes to z-scores or a common interval, such as 
[-1, +1]. The routine imsls_f_scale_filter can be used to scale continuous input attributes to z-scores or a 
common interval.

LOGISTIC CALCULATIONS: If Stage I training is slow, the optional argument IMSLS_LOGISTIC_TABLE can 
reduce this time by using a table lookup for calculating the logistic activation function in hidden layer perceptrons. 
This option is ignored during Stage II training. If Stage II training is used, then weights for the optimum network 
will be calculated using exact calculations for any logistic activation functions. If Stage II training is not used and 
the IMSLS_LOGISTIC_TABLE option is invoked, care must be taken to ensure that this option is also used for 
any network classification predictions using imsls_f_mlff_pattern_classification.

NUMBER OF EPOCHS AND EPOCH SIZE: To ensure that a globally optimum network results from the training, sev-
eral training sessions are conducted and compared. Each session is referred to as an epoch. The training for each 
epoch is conducted using all of the training patterns or a random sample of all available patterns.

Both the number of epochs and epoch size can be set using the IMSLS_STAGE_I option. By default the num-
ber of epochs during Stage I training is 15 and the epoch size is equal to the total number of training patterns. 
Increasing the number of epochs increases the training time, but it can result in a more accurate classification 
network.

During Stage I training, the network entropy is calculated after each epoch. If that value is smaller than 
tolerance Stage I training will stop since it is assumed that a network with entropy that low is acceptably accu-
rate, and it is not necessary to continue training. The value for tolerance can be set using the 
IMSLS_TOLERANCE option. Setting this to a larger value, such as 0.001, is useful for initially evaluating alternate 
network architectures.

NETWORK SIZE AND VALIDATION: The network architecture, the number of perceptrons and network layers, also 
play a key role in network training. Larger networks with many inputs and perceptrons have a larger number of 
weights. Large networks can provide very accurate classifications, driving the misclassification error rate for the 
training patterns to zero. However networks with too many weights can take too long to train, and can be inaccu-
rate for classifying patterns not adequately represented among the training patterns.
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A starting point is to ensure the total number of network weights is approximately equal to the number of train-
ing patterns. A trained network of this size typically has a low misclassification error rate when calculated for the 
training patterns. That is, it is able to accurately reproduce the training data. However, it might be inaccurate for 
classifying other patterns.

One approach to this validation is to split the total number of training patterns into two or more subsets then 
train the network using only one of the subsets and classify the remaining data using the trained network. The 
misclassification error rate for the data not used in training will be a better estimate of the true classification error 
rate for this network.

However, this approach to validation is only possible when the number of training patterns is large.

Output
Output from imsls_f_mlff_classification_trainer consists of classification probabilities calcu-
lated for each training pattern, a classification error array for these patterns, predicted classifications, weights and 
their associated gradients for the trained network, and the training statistics. The Imsls_f_NN_Network structure is 
automatically updated with the weights, gradients and bias values for use as input to 
imsls_f_mlff_pattern_classification.

The trained network can be saved and retrieved using imsls_f_mlff_network_write and 
imsls_f_mlff_network_read. For more details about the weights and bias values, see Table 50. These func-
tions allow the functions of network training and classification to be implemented in different languages. 
Networks trained in CNL can be transferred into other IMSL libraries, such as JMSL and C# Numerical Library, for 
pattern classification.

Examples

Example 1

This example trains a three-layer network using 48 training patterns with two nominal and two continuous input 
attributes. The first nominal attribute has three classifications and the second has four. Classifications for the 
nominal attributes are encoded using imsls_f_unsupervised_nominal_filter. This function uses binary 
encoding, generating a total of 7 input attributes to represent the two nominal attributes. The two additional con-
tinuous attributes increase the total number of network inputs to 9. 

In this example, the target classification is binary, either zero or one. The continuous input attribute was scaled to 
the interval [0,1].
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The structure of the network consists of nine input attributes in the input layer and three other layers. There are 

three perceptrons in the 1st hidden layer, and two in the 2nd. Since the classification target in this example is 
binary, there is only one perceptron in the output layer.

All perceptrons use the logistic function for activation, including the output perceptron. Since logistic activation 
values are always between 0 and 1, the output from this network can be interpreted directly as the estimated 
probability, P(0), that a pattern belongs to target classification 0.

The following figure illustrates this structure:

Figure 36, A Binary 3-layer, Classification Network with 7 Inputs and 6 Perceptrons

There are a total of 41 weights in this network. Six are bias weights and the remaining 35 are the weights for the 
input links to every perceptron, e.g. 35 = 9*3+3*2+2.
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Printing is turned on to show progress during the training session. 

#include <stdio.h>
#include <imsls.h>
int main(){  
   float *trainStats;
   int i, j, k, m;
   int n_patterns =48; /* # of training patterns */
   int n_inputs  =9;  /* 2 nominal (7 classes) and 2 continuous */
   int n_nominal =7;  /* 2 attributes with 3 and 4 classes each */
   int n_continuous =2; /* 2 continuous input attributes */
   int n_outputs  =1;  /* binary classification */
   int classification[48];
   int nominalAtt[48*7];
   int n_cat = 2;
   int nomTempIn[48], *nomTempOut, nClass;
   float inputData[5*48] =
   {
      0.00, 0.00, 0, 0, 0, 0.02, 0.02, 0, 1, 0, 0.04, 0.04, 0, 2, 0,
      0.06, 0.06, 0, 3, 0, 0.08, 0.08, 1, 0, 0, 0.10, 0.10, 1, 1, 0,
      0.12, 0.12, 1, 2, 0, 0.14, 0.14, 1, 3, 0, 0.16, 0.16, 2, 0, 0,
      0.18, 0.18, 2, 1, 0, 0.20, 0.20, 2, 2, 0, 0.22, 0.22, 2, 3, 0,
      0.24, 0.28, 0, 0, 0, 0.26, 0.30, 0, 1, 0, 0.28, 0.32, 0, 2, 0,
      0.30, 0.34, 0, 3, 0, 0.32, 0.36, 1, 0, 0, 0.34, 0.38, 1, 1, 0,
      0.36, 0.40, 1, 2, 0, 0.38, 0.42, 1, 3, 0, 0.40, 0.44, 2, 0, 0,
      0.42, 0.46, 2, 1, 0, 0.44, 0.48, 2, 2, 0, 0.46, 0.50, 2, 3, 0,
      0.52, 0.48, 0, 0, 0, 0.54, 0.50, 0, 1, 1, 0.56, 0.52, 0, 2, 1,
      0.58, 0.54, 0, 3, 1, 0.60, 0.56, 1, 0, 1, 0.62, 0.58, 1, 1, 1,
      0.64, 0.60, 1, 2, 1, 0.66, 0.62, 1, 3, 1, 0.68, 0.64, 2, 0, 0,
      0.70, 0.66, 2, 1, 0, 0.72, 0.68, 2, 2, 0, 0.74, 0.70, 2, 3, 0,
      0.76, 0.76, 0, 0, 1, 0.78, 0.78, 0, 1, 1, 0.80, 0.80, 0, 2, 1,
      0.82, 0.82, 0, 3, 1, 0.84, 0.84, 1, 0, 1, 0.86, 0.86, 1, 1, 1,
      0.88, 0.88, 1, 2, 1, 0.90, 0.90, 1, 3, 1, 0.92, 0.92, 2, 0, 0,
      0.94, 0.94, 2, 1, 0, 0.96, 0.96, 2, 2, 0, 0.98, 0.98, 2, 3, 0
   };
   float contAtt[2*48];
   float *classProb;
   char *colLabels[] = {"Pattern", "Class=0", "Class=1"};
   Imsls_f_NN_Network *network;
   printf("\n***********************************\n");
   printf("* BINARY CLASSIFICATION EXAMPLE *\n");
   printf("***********************************\n\n");
   imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
   /* Setup Continuous Input Attributes and 
    * Classification Target Arrays
    */
   for(i=0; i<n_patterns; i++){
      /* Assign input to array for continuous input attributes */
      contAtt[2*i]  = inputData[i*5];
      contAtt[2*i+1] = inputData[i*5+1];
      /* Assign input to classification target array*/
      classification[i] = (int) inputData[i*5+4];
   } 
   /* Setup Nominal Input Attributes Using Binary Encoding */
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   m=0;
   for(i=0; i<n_cat; i++){
      for(j=0; j<n_patterns; j++){
         nomTempIn[j] = (int) inputData[j*5+n_continuous+i]+1; 
      }
      nomTempOut = imsls_unsupervised_nominal_filter(n_patterns, 
         &nClass, nomTempIn, 0);
      for(k=0; k<nClass; k++){
         for(j=0; j<n_patterns; j++){
            nominalAtt[j*n_nominal+m] = nomTempOut[j*nClass+k]; 
         }
         m++;
      }
      imsls_free(nomTempOut);
   }
   printf("\t TRAINING PATTERNS\n");
   printf("\tY  N1 N2  Z1  Z2 \n");
   for(i=0; i<n_patterns; i++){
      j = (int) inputData[i*5+2];
      k = (int) inputData[i*5+3];
      printf("\t%d  %d %d  %g  %g \n", classification[i], j, k,
         contAtt[i*2], contAtt[i*2+1]);
   }
   printf("\n");
   network = imsls_f_mlff_network_init(n_inputs, n_outputs);
   imsls_f_mlff_network(network, 
      IMSLS_CREATE_HIDDEN_LAYER, 3, 
      0);
   imsls_f_mlff_network(network, 
      IMSLS_CREATE_HIDDEN_LAYER, 2,
      IMSLS_LINK_ALL, 
      0);
   /* Note the following statement is for repeatable output */
   imsls_random_seed_set(5555);
   /* Train Classification Network */
   printf("STARTING NETWORK TRAINING\n");
   trainStats = imsls_f_mlff_classification_trainer (network,
      n_patterns, n_nominal, n_continuous, classification,
      nominalAtt, contAtt, 
      IMSLS_PRINT, 
      IMSLS_PREDICTED_CLASS_PROB, &classProb,
      0);
   /* Print class predictions*/
   imsls_f_write_matrix("Predicted Classification Probabilities", 
      n_patterns, n_outputs , classProb,
      IMSLS_ROW_NUMBER, 
      IMSLS_COL_LABELS, colLabels, 
      0);
}
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Output

Notice that although by default the maximum number of epoch iterations in Stage I training is 15, in this case 
Stage I optimization is halted after the first epoch. This occurs because the minimum entropy for that epoch is 
less than the default tolerance.

***********************************
* BINARY CLASSIFICATION EXAMPLE *
***********************************
         TRAINING PATTERNS
       Y  N1 N2   Z1    Z2
       0  0  0   0   0
       0  0  1   0.02  0.02
       0  0  2   0.04  0.04
       0  0  3   0.06  0.06
       0  1  0   0.08  0.08
       0  1  1   0.1  0.1
       0  1  2   0.12  0.12
       0  1  3   0.14  0.14
       0  2  0   0.16  0.16
       0  2  1   0.18  0.18
       0  2  2   0.2  0.2
       0  2  3   0.22  0.22
       0  0  0   0.24  0.28
       0  0  1   0.26  0.3
       0  0  2   0.28  0.32
       0  0  3   0.3  0.34
       0  1  0   0.32  0.36
       0  1  1   0.34  0.38
       0  1  2   0.36  0.4
       0  1  3   0.38  0.42
       0  2  0   0.4  0.44
       0  2  1   0.42  0.46
       0  2  2   0.44  0.48
       0  2  3   0.46  0.5
       0  0  0   0.52  0.48
       1  0  1   0.54  0.5
       1  0  2   0.56  0.52
       1  0  3   0.58  0.54
       1  1  0   0.6  0.56
       1  1  1   0.62  0.58
       1  1  2   0.64  0.6
       1  1  3   0.66  0.62
       0  2  0   0.68  0.64
       0  2  1   0.7  0.66
       0  2  2   0.72  0.68
       0  2  3   0.74  0.7
       1  0  0   0.76  0.76
       1  0  1   0.78  0.78
       1  0  2   0.8  0.8
       1  0  3   0.82  0.82
       1  1  0   0.84  0.84
       1  1  1   0.86  0.86
       1  1  2   0.88  0.88
       1  1  3   0.9  0.9
       0  2  0   0.92  0.92
       0  2  1   0.94  0.94
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       0  2  2   0.96  0.96
       0  2  3   0.98  0.98
STARTING NETWORK TRAINING
TRAINING PARAMETERS:
 Stage II Opt.  = 1
 n_epochs       = 15
 epoch_size     = 48
 maxIterations  = 1000
 maxFunctionEval = 1000
 maxStep        = 10.000000
 functionTol    = 2.42218e-005
 gradientTol    = 0.000345267
 accuracy       = 0.000345267
 n_inputs       = 9
 n_continuous   = 2
 n_nominal      = 7
 n_classes      = 2
 n_outputs      = 1
 n_patterns     = 48
 n_layers       = 3
 n_perceptrons  = 6
 n_weights      = 41
STAGE I TRAINING STARTING
Stage I: Epoch 1 - Cross-Entropy Error = 1.03973e-005 (Iterations=58)
(CPU Min.=0.000260)
Stage I Training Converged at Epoch = 1

STAGE I FINAL CROSS-ENTROPY ERROR = 0.000010 (CPU Min.=0.000260)
OPTIMUM WEIGHTS AFTER STAGE I TRAINING:
weight[0] =    -0.634574      weight[1] =    3.10432
weight[2] =    0.753153       weight[3] =    3.26621
weight[4] =    0.873874       weight[5] =    0.564623
weight[6] =    0.574684       weight[7] =    2.03545
weight[8] =    2.11041        weight[9] =    4.53693
weight[10] =   3.17946        weight[11] =   -10.908
weight[12] =   -1.12353       weight[13] =   0.915452
weight[14] =   -0.737025      weight[15] =   -0.44498
weight[16] =   11.1242        weight[17] =   8.99682
weight[18] =   2.17726        weight[19] =   1.82712
weight[20] =   -8.49784       weight[21] =   -3.14366
weight[22] =   -0.0180527     weight[23] =   0.618158
weight[24] =   -0.243258      weight[25] =   13.5949
weight[26] =   11.9534        weight[27] =   -4.83385
weight[28] =   -18.9217       weight[29] =   -9.0807
weight[30] =   -7.01863       weight[31] =   -15.0597
weight[32] =   -17.7305       weight[33] =   23.6268
weight[34] =   11.2716        weight[35] =   -6.76151
weight[36] =   -13.0134       weight[37] =   -14.1513
weight[38] =   17.8283        weight[39] =   21.7138
weight[40] =   -19.8484
STAGE I TRAINING CONVERGED
STAGE I CROSS-ENTROPY ERROR = 0.000010
0 PATTERNS OUT OF 48 INCORRECTLY CLASSIFIED
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GRADIENT AT THE OPTIMUM WEIGHTS
-->g[0] =      0.000000        weight[0] =   -0.634574
-->g[1] =      -0.000001       weight[1] =   3.104319
-->g[2] =      0.000000        weight[2] =   0.753153
-->g[3] =      -0.000001       weight[3] =   3.266206
-->g[4] =      0.000000        weight[4] =   0.873874
-->g[5] =      0.000000        weight[5] =   0.564623
-->g[6] =      0.000000        weight[6] =   0.574684
-->g[7] =      -0.000000       weight[7] =   2.035449
-->g[8] =      -0.000000       weight[8] =   2.110413
-->g[9] =      0.000000        weight[9] =   4.536931
-->g[10] =     -0.000005       weight[10] =  3.179461
-->g[11] =     0.000000        weight[11] =  -10.908046
-->g[12] =     -0.000005       weight[12] =  -1.123529
-->g[13] =     0.000000        weight[13] =  0.915452
-->g[14] =     0.000000        weight[14] =  -0.737025
-->g[15] =     0.000000        weight[15] =  -0.444980
-->g[16] =     -0.000003       weight[16] =  11.124193
-->g[17] =     -0.000003       weight[17] =  8.996821
-->g[18] =     0.000000        weight[18] =  2.177265
-->g[19] =     -0.000004       weight[19] =  1.827117
-->g[20] =     0.000000        weight[20] =  -8.497839
-->g[21] =     -0.000004       weight[21] =  -3.143664
-->g[22] =     0.000000        weight[22] =  -0.018053
-->g[23] =     0.000000        weight[23] =  0.618158
-->g[24] =     0.000000        weight[24] =  -0.243258
-->g[25] =     -0.000002       weight[25] =  13.594892
-->g[26] =     -0.000002       weight[26] =  11.953360
-->g[27] =     0.000001        weight[27] =  -4.833848
-->g[28] =     0.000000        weight[28] =  -18.921690
-->g[29] =     0.000000        weight[29] =  -9.080699
-->g[30] =     0.000001        weight[30] =  -7.018632
-->g[31] =     0.000001        weight[31] =  -15.059658
-->g[32] =     0.000000        weight[32] =  -17.730463
-->g[33] =     -0.000010       weight[33] =  23.626806
-->g[34] =     -0.000010       weight[34] =  11.271611
-->g[35] =     -0.000001       weight[35] =  -6.761511
-->g[36] =     -0.000005       weight[36] =  -13.013445
-->g[37] =     -0.000004       weight[37] =  -14.151301
-->g[38] =     0.000001        weight[38] =  17.828314
-->g[39] =     0.000001        weight[39] =  21.713770
-->g[40] =     -0.000010       weight[40] =  -19.848421
Training Completed - leaving training engine (CPU Min.=0.000260)

Predicted Classification Probabilities
        Pattern     Class=0
              1           1
              2           1
              3           1
              4           1
              5           1
              6           1
              7           1
              8           1
              9           1
             10           1
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             11           1
             12           1
             13           1
             14           1
             15           1
             16           1
             17           1
             18           1
             19           1
             20           1
             21           1
             22           1
             23           1
             24           1
             25           1
             26           0
             27           0
             28           0
             29           0
             30           0
             31           0
             32           0
             33           1
             34           1
             35           1
             36           1
             37           0
             38           0
             39           0
             40           0
             41           0
             42           0
             43           0
             44           0
             45           1
             46           1
             47           1
             48           1

Example 2

Fisher’s (1936) Iris data is often used for benchmarking discriminant analysis and classification solutions. It is part 
of the IMSL data sets and consists of the following continuous input attributes and classification target:

Continuous Attributes – X1(sepal length), X2(sepal width), X3(petal length), and X4(petal width)

Classification Target (Iris Type) – Setosa, Versicolour or Virginica.

These data consist of 150 patterns. Since all pattern input attributes are continuous, linear discriminant analysis 
can be used for classifying these patterns, see Example 1 of imsls_f_discriminant_analysis. Linear 
discriminant analysis is able to correctly classify 98% of the training patterns. In this example, the simple neural 
network illustrated in the following figure is able to achieve 100% accuracy.
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Figure 37, A 2-layer, Classification Network with 4 Inputs 5 Perceptrons and a Target Classification 
with 3 Classes

The hidden layer in this example consists of only two perceptrons with logistic activation. Since the target attri-
bute in this example has three classes, the network output layer consists of three perceptrons, one for each 
class. 

There are a total of 19 weights in this network. Fourteen of the weights are assigned to the input links, i.e., 4 × 2 
+ 2 × 3 = 14. The last five weights are the bias weights for each of the five network perceptrons. All weights were 
initialized using principal components, i.e. method = IMSLS_PRINCIPAL_COMPONENTS.

Although in these data the continuous attributes have similar ranges, they were scaled using z-score scaling to 
make network training more efficient. For more details, see imsls_f_scale_filter.

For non-binary classification problems, imsls_f_mlff_classification_trainer uses softmax activa-
tion for output perceptrons. This ensures that the estimates of the classification probabilities sum to one, i.e.

Note that the default setting for IMSLS_MAX_STEP was changed from 10 to 1000. The default setting con-
verged to a network with 100% classification accuracy. However, the following warning message appeared:

∑
i=0

2

P class = i = 1
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*** WARNING Error IMSLS_UNBOUNDED from imsls_d_mlff_classification_trainer.
*** Five consecutive steps of length "max_step" have been taken;
*** either the function is unbounded below, or has a finite
*** asymptote in some direction or the maximum allowable step size
*** "max_step" is too small.

In addition, the number of iterations used for each epoch were well below the default maximum (1000), and the 
gradients at the optimum solution for this network were not zero.

STAGE I TRAINING STARTING
Stage I: Epoch 1 - Cross-Entropy Error = 5.50552 (Iterations=40) (CPU 
Min.=0.000260)
Stage I: Epoch 2 - Cross-Entropy Error = 5.65875 (Iterations=69) (CPU 
Min.=0.000260)
Stage I: Epoch 3 - Cross-Entropy Error = 4.83886 (Iterations=81) (CPU 
Min.=0.000260)
Stage I: Epoch 4 - Cross-Entropy Error = 5.94979 (Iterations=108) (CPU 
Min.=0.000521)
Stage I: Epoch 5 - Cross-Entropy Error = 5.54461 (Iterations=47) (CPU 
Min.=0.000260)
Stage I: Epoch 6 - Cross-Entropy Error = 6.04163 (Iterations=51) (CPU 
Min.=0.000260)
Stage I: Epoch 7 - Cross-Entropy Error = 5.95148 (Iterations=151) (CPU 
Min.=0.000521)
Stage I: Epoch 8 - Cross-Entropy Error = 5.5646 (Iterations=55) (CPU Min.=0.000260)
Stage I: Epoch 9 - Cross-Entropy Error = 5.94914 (Iterations=442) (CPU 
Min.=0.001563)
Stage I: Epoch 10 - Cross-Entropy Error = 5.94381 (Iterations=271) (CPU 
Min.=0.001302)
Stage I: Epoch 11 - Cross-Entropy Error = 5.41955 (Iterations=35) (CPU 
Min.=0.000000)
Stage I: Epoch 12 - Cross-Entropy Error = 6.01766 (Iterations=48) (CPU 
Min.=0.000260)
Stage I: Epoch 13 - Cross-Entropy Error = 4.20551 (Iterations=112) (CPU 
Min.=0.000521)
Stage I: Epoch 14 - Cross-Entropy Error = 5.95085 (Iterations=103) (CPU 
Min.=0.000260)
Stage I: Epoch 15 - Cross-Entropy Error = 5.9596 (Iterations=55) (CPU 
Min.=0.000260)
Stage I: Epoch 16 - Cross-Entropy Error = 5.96131 (Iterations=59) (CPU 
Min.=0.000260)
Stage I: Epoch 17 - Cross-Entropy Error = 4.83231 (Iterations=74) (CPU 
Min.=0.000260)
Stage I: Epoch 18 - Cross-Entropy Error = 17.1345 (Iterations=30) (CPU 
Min.=0.000260)
Stage I: Epoch 19 - Cross-Entropy Error = 5.95569 (Iterations=92) (CPU 
Min.=0.000260)
Stage I: Epoch 20 - Cross-Entropy Error = 3.15336 (Iterations=46) (CPU 
Min.=0.000260)
GRADIENT AT THE OPTIMUM WEIGHTS
-->g[0] = 0.675632 weight[0] = 0.075861
-->g[1] = -0.953480 weight[1] = -0.078585
-->g[2] = 1.065184 weight[2] = 2.841074
-->g[3] = 0.535531 weight[3] = -0.941049
-->g[4] = -0.019011 weight[4] = -10.638772
-->g[5] = 0.001459 weight[5] = -14.573394
-->g[6] = -0.031098 weight[6] = 6.037813
-->g[7] = -0.035305 weight[7] = 72.382073
-->g[8] = 0.011015 weight[8] = -73.564433
-->g[9] = 0.000000 weight[9] = -14.853988
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-->g[10] = -0.074332 weight[10] = 2.057743
-->g[11] = 0.000522 weight[11] = -39.952435
-->g[12] = 0.063316 weight[12] = 73.164141
-->g[13] = -0.000522 weight[13] = 57.065975
-->g[14] = 1.279914 weight[14] = -0.661036
-->g[15] = -0.043097 weight[15] = -61.171894
-->g[16] = 0.003227 weight[16] = 24.236722
-->g[17] = -0.108146 weight[17] = 14.968424
-->g[18] = 0.104919 weight[18] = -39.079343

Combined, this information suggests that either the default tolerances were too high or the maximum step size 
was too small. As shown in the output below, when the maximum step size was changed to 1000, the number of 
iterations increased, the gradients went to zero and the warning message for step size disappeared.
#include <stdio.h>
#include <imsls.h>
/* ********************************************************************
 * Two Layer Feed-Forward Network with 4 inputs, all 
 * continuous, and 3 classification categories.
 *     
 * This is a well known database to be found in the pattern
 *     recognition literature.  Fisher's paper is often cited.
 *     The data set contains 3 classes of 50 instances each,
 *     where each class refers to a type of iris plant.  One class is
 *     linearly separable from the other 2; the latter are NOT linearly
 *     separable from each other.
 *
 *  Predicted attribute: class of iris plant.
 *     1=Iris Setosa, 2=Iris Versicolour, and 3=Iris Virginica
 *
 *  Input Attributes (4 Continuous Attributes)
 *     X1: Sepal length, 
 *     X2: Sepal width, 
 *     X3: Petal length, 
 * and X4: Petal width
 * 
 *********************************************************************/
int main(){  
   float *predicted_class_prob, *class_error, *trainStats;
   int i, j;
   int n_patterns    = 150;
   int n_inputs      = 4;   /* all continuous inputs*/
   int n_nominal = 0;       /* no nominal   */
   int n_continuous  = 4;   
   int n_outputs     = 3; 
   int *nominalAtt=NULL;
   int *predicted_class;
   int act_fcn[3] = {1, 1, 1};
   int classification[150];
   float unscaledX[150], scaledX[150];
   float contAtt[4*150];
   float *irisData;
   float mean[4], s[4], center, spread;
   double startTime, endTime;
   char *colLabels[] = {"Pattern", "Class=0", "Class=1", "Class=2"};
   char prtLabel[] = 
       "Predicted_Class  |   P(0)     P(1)     P(2)   | Class_Error";
   char dashes[]  =
       "-------------------------------------------------------------";
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   char *filename = "iris_classification.txt";
   /* Declare mlff network structure */
   Imsls_f_NN_Network *network;
   printf("*******************************************************\n");
   printf("* IRIS CLASSIFICATION EXAMPLE                         *\n");
   printf("*******************************************************\n");
  imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
   /*
    * irisData[]:  The raw data matrix.  This is a 2-D matrix with 150 
    *              rows and 5 columns. The last 4 columns are the 
    *              continuous input attributes and the 1st column is 
    *              the classification category (1-3).  These data 
    *              contain no nominal input attributes.                                
    */
   irisData = imsls_f_data_sets(3,0);
   /* 
    * Setup the continuous attribute input array, contAtt[], and the 
    * network target classification array, classification[], using the 
    * above raw data matrix.
    */
   for(i=0; i < n_patterns; i++){
      classification[i] = (int)irisData[i*5]-1;
      for(j=1; j<5; j++){
         contAtt[i*4+j-1] = irisData[i*5+j];
      }
   }
   /* Scale continuous input attributes using z-score method */
   for(j=0; j<n_continuous; j++){
      for(i=0; i<n_patterns; i++) 
          unscaledX[i] = contAtt[i*n_continuous+j];
      imsls_f_scale_filter(n_patterns, unscaledX, 2, 
         IMSLS_RETURN_USER, scaledX, 
         IMSLS_RETURN_CENTER_SPREAD, &center, &spread, 0);
      for(i=0; i<n_patterns; i++) 
          contAtt[i*n_continuous+j] = scaledX[i];
      mean[j] = center;
      s[j]    = spread;
   }
   printf("Scale Parameters: \n");
   for(j=0; j<n_continuous; j++){
      printf("Var %d Mean = %f S = %f \n",j+1, mean[j], s[j]);
   } 
   network = imsls_f_mlff_network_init(n_inputs, n_outputs);
   imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 2, 
      IMSLS_LINK_ALL, 0);
   /* Note the following statement is for repeatable output */
   imsls_random_seed_set(5555);
   /* Train Classification Network */
   startTime = imsls_ctime();
   trainStats = imsls_f_mlff_classification_trainer (network,
      n_patterns,
      n_nominal,
      n_continuous,
      classification,
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      nominalAtt,
      contAtt, 
      IMSLS_PRINT,
      IMSLS_STAGE_I, 20, 150,
      IMSLS_WEIGHT_INITIALIZATION_METHOD, IMSLS_PRINCIPAL_COMPONENTS, 
      IMSLS_MAX_STEP, 1000.0,
      IMSLS_PREDICTED_CLASS, &predicted_class,
      IMSLS_PREDICTED_CLASS_PROB, &predicted_class_prob,
      IMSLS_CLASS_ERROR, &class_error, 
      0);
   endTime = imsls_ctime();
   printf("%s\n", dashes);
   printf("Minimum Cross-Entropy Error: %g\n", trainStats[0]);
   printf("Classification Error Rate:   %f\n", trainStats[5]);
   printf("Execution Time (Sec.):       %f\n\n", (endTime-startTime));
   printf("%s\n",prtLabel);
   printf("%s\n",dashes);
   for(i=0; i<n_patterns; i++){
      printf("       %d   ", predicted_class[i]);
      printf("      | %f %f %f |  %f\n", predicted_class_prob[i*3], 
         predicted_class_prob[i*3+1], predicted_class_prob[i*3+2], 
         class_error[i]);
      if(i==49 || i==99){
          printf("%s\n",prtLabel);
          printf("%s\n",dashes);
      }
   }
      imsls_f_mlff_network_write(network, filename, IMSLS_PRINT, 0);
}

Output

Note that the misclassification error rate is zero and Stage I training halts automatically at the 16th epoch 

because the cross-entropy error after the 16th epoch is below the default tolerance. 

*******************************************************
* IRIS CLASSIFICATION EXAMPLE                        *
*******************************************************
Scale Parameters:
Var 1 Mean = 5.843334 S = 0.828065
Var 2 Mean = 3.057333 S = 0.435866
Var 3 Mean = 3.758000 S = 1.765298
Var 4 Mean = 1.199333 S = 0.762238
TRAINING PARAMETERS:
 Stage II Opt.  = 1
 n_epochs       = 20
 epoch_size     = 150
 maxIterations  = 1000
 maxFunctionEval = 1000
 maxStep        = 1000.000000
 functionTol    = 2.42218e-005
 gradientTol    = 0.000345267
 accuracy       = 0.000345267
 n_inputs       = 4
 n_continuous   = 4
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 n_nominal      = 0
 n_classes      = 3
 n_outputs      = 3
 n_patterns     = 150
 n_layers       = 2
 n_perceptrons  = 5
 n_weights      = 19
STAGE I TRAINING STARTING
Stage I: Epoch 1 - Cross-Entropy Error = 4.92197 (Iterations=77)
(CPU Min.=0.000260)
Stage I: Epoch 2 - Cross-Entropy Error = 5.95334 (Iterations=234)
(CPU Min.=0.001042)
Stage I: Epoch 3 - Cross-Entropy Error = 5.95312 (Iterations=237)
(CPU Min.=0.000781)
Stage I: Epoch 4 - Cross-Entropy Error = 74.9249 (Iterations=30)
(CPU Min.=0.000260)
Stage I: Epoch 5 - Cross-Entropy Error = 4.92196 (Iterations=130)
(CPU Min.=0.000260)
Stage I: Epoch 6 - Cross-Entropy Error = 5.9565 (Iterations=208)
(CPU Min.=0.000781)
Stage I: Epoch 7 - Cross-Entropy Error = 4.92199 (Iterations=99)
(CPU Min.=0.000521)
Stage I: Epoch 8 - Cross-Entropy Error = 4.92197 (Iterations=117)
(CPU Min.=0.000260)
Stage I: Epoch 9 - Cross-Entropy Error = 5.06757 (Iterations=500)
(CPU Min.=0.001302)
Stage I: Epoch 10 - Cross-Entropy Error = 5.94276 (Iterations=136)
(CPU Min.=0.000260)
Stage I: Epoch 11 - Cross-Entropy Error = 4.92198 (Iterations=80)
(CPU Min.=0.000260)
Stage I: Epoch 12 - Cross-Entropy Error = 4.92199 (Iterations=100)
(CPU Min.=0.000260)
Stage I: Epoch 13 - Cross-Entropy Error = 4.92199 (Iterations=87)
(CPU Min.=0.000260)
Stage I: Epoch 14 - Cross-Entropy Error = 5.95085 (Iterations=245)
(CPU Min.=0.000781)
Stage I: Epoch 15 - Cross-Entropy Error = 5.95099 (Iterations=165)
(CPU Min.=0.001042)
Stage I: Epoch 16 - Cross-Entropy Error = 2.5034e-005 (Iterations=134)
(CPU Min.=0.000521)
Stage I Training Converged at Epoch = 16

STAGE I FINAL CROSS-ENTROPY ERROR = 0.000025 (CPU Min.=0.008854)
OPTIMUM WEIGHTS AFTER STAGE I TRAINING:
weight[0] = 0.3079     weight[1] = -0.12877
weight[2] = 4.51303    weight[3] = -1.90144
weight[4] = -14.3699   weight[5] = -519.855
weight[6] = 1317.12    weight[7] = 2756.14
weight[8] = -3454.11   weight[9] = -193.738
weight[10] = 116.785   weight[11] = -1310.03
weight[12] = 3339.35   weight[13] = 1505.56
weight[14] = 1.01363   weight[15] = -3010.6
weight[16] = 1785.05   weight[17] = 682.292
weight[18] = -2467.38
STAGE I TRAINING CONVERGED
STAGE I CROSS-ENTROPY ERROR = 0.000025
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0 PATTERNS OUT OF 150 INCORRECTLY CLASSIFIED
GRADIENT AT THE OPTIMUM WEIGHTS
-->g[0] =      0.001389        weight[0] =   0.307900
-->g[1] =      0.001205        weight[1] =   -0.128770
-->g[2] =      0.000713        weight[2] =   4.513030
-->g[3] =      0.000269        weight[3] =   -1.901438
-->g[4] =      0.000000        weight[4] =   -14.369907
-->g[5] =      0.000000        weight[5] =   -519.854919
-->g[6] =      0.000000        weight[6] =   1317.116821
-->g[7] =      0.000000        weight[7] =   2756.140625
-->g[8] =      0.000000        weight[8] =   -3454.105713
-->g[9] =      0.000000        weight[9] =   -193.738205
-->g[10] =     -0.000002       weight[10] =  116.785263
-->g[11] =     0.000000        weight[11] =  -1310.028076
-->g[12] =     0.000002        weight[12] =  3339.346680
-->g[13] =     0.000000        weight[13] =  1505.561646
-->g[14] =     -0.000807       weight[14] =  1.013626
-->g[15] =     0.000000        weight[15] =  -3010.596680
-->g[16] =     0.000002        weight[16] =  1785.052979
-->g[17] =     -0.000003       weight[17] =  682.292419
-->g[18] =     0.000002        weight[18] =  -2467.379395
Training Completed - leaving training engine (CPU Min.=0.008854)
-------------------------------------------------------------
Minimum Cross-Entropy Error: 2.5034e-005
Classification Error Rate:  0.000000
Execution Time (Sec.):      0.531250
Predicted_Class |   P(0)      P(1)     P(2)  | Class_Error
-------------------------------------------------------------
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
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       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
       0        | 1.000000 0.000000 0.000000 | 0.000000
Predicted_Class | P(0)       P(1)      P(2)  | Class_Error
-------------------------------------------------------------
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 0.999999 0.000001 | 0.000001
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 0.999994 0.000006 | 0.000006
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 0.999994 0.000006 | 0.000006
       1        | 0.000000 1.000000 0.000000 | 0.000000
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       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000000 1.000000 0.000000 | 0.000000
       1        | 0.000002 0.999998 0.000000 | 0.000002
       1        | 0.000000 1.000000 0.000000 | 0.000000
Predicted_Class |   P(0)     P(1)     P(2)   | Class_Error
-------------------------------------------------------------
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000011 0.999989 | 0.000011
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
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       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
       2        | 0.000000 0.000000 1.000000 | 0.000000
Opening iris_classification.txt for writing network data structure
Writing Neural Network... 55 Lines written to network file.
File iris_classification.txt closed.
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mlff_pattern_classification
Calculates classifications for trained multilayered feedforward neural networks.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_pattern_classification (Imsls_f_NN_Network *network, 

int n_patterns,int n_nominal, int n_continuous, int nominal[], float continuous[], ..., 
0)

The type double function is imsls_d_mlff_pattern_classification.

Required Arguments
Imsls_f_NN_Network *network  (Input)

Pointer to a structure of type Imsls_f_NN_Network containing the trained feedforward network. See 
imsls_f_mlff_network. 

int n_patterns  (Input)
Number of patterns to classify. 

int n_nominal  (Input)
Number of nominal input attributes. 

int n_continuous  (Input)
Number of continuous attributes, including ordinal attributes encoded using cumulative percentage. 

int nominal[]  (Input)
Array of size n_patterns by n_nominal containing the nominal input variables. 

float continuous[]  (Input)
Array of size n_patterns by n_continuous containing the continuous and scaled ordinal input 
variables. 
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Return Value
Pointer to an array of size n_patterns by n_classes containing the predicted class probabilities associated with 
each input pattern, where n_classes is the number of possible target classifications. 
n_classes = network->n_outputs for non-binary classification categories. For binary classification, 
n_classes = 2. This space can be released by using the imsls_free function.

Synopsis with Optional Arguments
#include <imsls.h> 

float *imsls_f_mlff_pattern_classification (Imsls_f_NN_Network *network, 
int n_patterns, int n_nominal, int n_continuous, int nominal[], float continuous[],

IMSLS_LOGISTIC_TABLE, 
IMSLS_PREDICTED_CLASS, int **pred_class, 
IMSLS_PREDICTED_CLASS_USER, int pred_class[],
IMSLS_RETURN_USER, float class_prob[],
0)

Optional Arguments
IMSLS_LOGISTIC_TABLE, (Input)

This option specifies that all logistic activation functions are calculated using the table lookup approx-
imation. This is only needed when a network is trained with this option and Stage II training is 
bypassed. If Stage II training was not bypassed during network training, weights were based upon the 
optimum network from Stage II which never uses a table lookup approximation to calculate logistic 
activations.

IMSLS_PREDICTED_CLASS, int **pred_class  (Output)
The address of a pointer to an array of size n_patterns containing the predicted classification for 
each pattern. 

IMSLS_PREDICTED_CLASS_USER, int pred_class[]  (Output)
Storage for array pred_class provided by user. See IMSLS_PREDICTED_CLASS.

IMSLS_RETURN_USER, float class_prob[] (Output)
If specified, the classification probabilities for the input patterns are stored in the two-dimensional 
matrix class_prob of size n_patterns by n_classes, where n_classes is the number of target 
classes used to train the network. For binary classification problems, n_classes = 2. For all others, 
n_classes = n_outputs = network->n_outputs. 
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Description
Function imsls_f_mlff_pattern_classification calculates classification probabilities from a previ-
ously trained multilayered feedforward neural network using the same network structure and scaling applied 
during the training. The structure Imsls_f_NN_Network describes the network structure used to originally train the 
network. The weights, which are the key output from training, are used as input to this function. The weights are 
stored in the Imsls_f_NN_Network structure. 

In addition, two two-dimensional arrays are used to describe the values of the nominal and continuous attributes 
that are to be used as network inputs for calculating classification probabilities. Optionally, it can also return the 
predicted classifications in pred_class. The predicted classification is the target class with the highest proba-
bility, class_prob.

Function imsls_f_mlff_pattern_classification returns classification probabilities for the network 
input patterns. 

Pattern Classification Attributes
Neural network classification inputs consist of the following types of attributes:

1. nominal input attributes, and 

2. continuous attributes, including ordinal attributes encoded to cumulative percentages.

The first data type contains the encoding of any nominal input attributes. If binary encoding is used, this encod-
ing consists of creating columns of zeros and ones for each class value associated with every nominal attribute. 
The function imsls_f_unsupervised_nominal_filter can be used for this encoding.

When only one nominal attribute is used for input, then the number of binary encoded columns is equal to the 
number of classes for that attribute. If more nominal attributes appear in the data, then each nominal attribute is 
associated with several columns, one for each of its classes. Each column consists of zeros and ones. The column 
value is zero if that classification is not associated with this pattern; otherwise, it is equal to one if it is assigned to 
this pattern. 

Consider an example with one nominal variable and two classes: male and female and the following five patterns: 
male, male, female, male, female. With binary encoding, the following 5 by 2 matrix is sent to the pattern classifi-
cation to request classification probabilities for these patterns:
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The second category of input attributes corresponds to continuous attributes. They are passed to this classifica-
tion function via the floating point array continuous. The number of rows in this matrix is n_patterns, and 
the number of columns is n_continuous, corresponding to the number of continuous input attributes. 

Ordinal input attributes, if used, are typically encoded to cumulative percentages. Since these are floating point 
values, they are placed into a column of the continuous array and n_continuous is set equal to the num-
ber of columns in this array. 

In some cases, one of these types of input attributes may not exist. In that case, either n_nominal = 0 or 
n_continuous = 0 and their corresponding input matrix is ignored.

Network Configuration
The configuration of the network consists of a description of the number of perceptrons for each layer, the num-
ber of hidden layers, the number of inputs and outputs, and a description of the linkages among the 
perceptrons. This description is passed into this training routine through the structure Imsls_f_NN_Network. See 
imsls_f_mlff_network. For binary problems there is only a single output since the probability P(class = 0) 
is equal to 1-P(class  = 1). For other classification problems, however, n_outputs = n_classes and 
P(class = j) is equal to the classification probabilities in the j + 1 column of class_prob[].

Classification Probabilities
Classification probabilities are calculated from the input attributes, network structure and weights provided in 
network.

Classification probabilities are returned in a two-dimensional array, class_prob, with n_patterns rows 
and n_classes columns. The values in the i-th column are estimated probabilities for the 
class = (i-1).

nominal =

1 0
1 0
0 1
1 0
0 1
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Examples 

Example 1

Fisher’s (1936) Iris data is often used for benchmarking discriminant analysis and classification solutions. It is part 
of the IMSL data sets and consists of the following continuous input attributes and classification target:

Continuous Attributes – X1(sepal length), X2(sepal width), X3(petal length), and X4(petal width)

Classification Target (Iris Type) – Setosa, Versicolour or Virginica.

The input attributes were scaled to z-scores using imsls_f_scale_filter. The hidden layer contained only 2 
perceptrons and the output layer consisted of three perceptrons, one for each classification target. 

Example 2 for imsls_f_mlff_classification_trainer used the following network structure for the 
150 patterns in these data:

Figure 38, A 2-layer, Classification Network with 4 Inputs 5 Perceptrons and a Target Classification 
with 3 Classes

imsls_f_mlff_classification_trainer found the following 19 weights for this network:

W1 = -0.109866  W2 = -0.0534655 W3 = 4.92944  W4 = -2.04734W5 = 10.2339    W6 = -1495.09   W7 = 3336.49  W8 = 7372.98W9 = -9143.53   W10 = 48.8937   W11 = 240.958  W12 = -3386.21W13 = 8904.6     W14 = 3339.1     W15 = 0.874638  W16 = -7978.42
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W17 = 4586.22    W18 = 1931.89    W19 = -6518.14
The association of these weights with the calculation of the potentials for each perceptron is described in the fol-
lowing table:

The potential calculations for each perceptron are activated using the assigned activation function. In this exam-
ple, default activations were used, e.g. logistic for H1,1 and H1,2 and softmax for the output perceptrons H2,1, H2,2 

and H2,3.

Note that in this case the network weights were retrieved from a file named iris_classfication.txt 
using imsls_f_mlff_network_read. This retrieves the trained network from 
mlff_classification_trainer described in Example 2. These were passed directly to 
imsls_f_mlff_pattern_classification in the Imsls_f_NN_Network structure.

#include <stdio.h>
#include <imsls.h>
/* ********************************************************************
* Three Layer Feed-Forward Network with 4 inputs, all 
* continuous, and 3 classification categories.
*     
* This is perhaps the best known database to be found in the pattern
*     recognition literature.  Fisher's paper is a classic in the 
*     field. The data set contains 3 classes of 50 instances each,
*     where each class refers to a type of iris plant.  One class is
*     linearly separable from the other 2; the latter are NOT linearly
*     separable from each other.
*
*  Predicted attribute: class of iris plant.
*     1=Iris Setosa, 2=Iris Versicolour, and 3=Iris Virginica
*
*  Input Attributes (4 Continuous Attributes)
*     X1: Sepal length, 
*     X2: Sepal width, 
*     X3: Petal length, 
* and X4: Petal width
**********************************************************************/
int main(){  
    float *classProb;
    int i, j;
    int n_patterns    =150;

Table 52 – Association of Network Weights with Perceptron Calculations

PERCEPTRON POTENTIAL ACTIVATION

H1,1 W15 + X1W1 + X2W2 + X3W3 + X4W4 LOGISTIC

H1,2 W16 + X1W5 + X2W6 + X3W7 + X4W8 LOGISTIC

H2,1 W17 + H1,1W9 + H1,2W10 SOFTMAX

H2,2 W18 + H1,1W11 + H1,2W12 SOFTMAX

H2,3 W19 + H1,1W13 + H1,2W14 SOFTMAX
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    int n_inputs      =4;  /* four inputs, all continuous */
    int n_nominal     =0;  /* no nominal input attributes */
    int n_continuous  =4;  /* one continuous input attribute */
    int n_outputs     =3;  /* total number of output perceptrons */
    int *predicted_class;
    int act_fcn[3] = {1, 1, 1};
    int classification[150];
    float unscaledX[150], scaledX[150];
    float contAtt[4*150];
    float *irisData;
    float mean[4], s[4], center, spread;
    char *colLabels[] = {"Pattern", "Class=0", "Class=1", "Class=2"};
    char filename[] = "iris_classification.txt";
    char prtLabel[] ="\nPredicted_Class  |   P(0)     P(1)     P(2)";
    char dashes[] = "-----------------------------------------------";
    /* Declare mlff network structure */
    Imsls_f_NN_Network *network;
    printf("******************************************************\n");
    printf(" IRIS CLASSIFICATION EXAMPLE - PATTERN CLASSIFICATION \n"); 
    printf("******************************************************\n");
    irisData = imsls_f_data_sets(3,0);
    /*
    * Setup the continuous attribute input array, contAtt[], and the 
    * network target classification array, classification[], using 
    * the above raw data matrix.
    */
    for(i=0; i < n_patterns; i++){
        classification[i] = (int)irisData[i*5]-1;
        for(j=1; j<5; j++){
            contAtt[i*4+j-1] = irisData[i*5+j];
        }
    }
    /* Scale continuous input attributes using z-score method */
    for(j=0; j<n_continuous; j++){
        for(i=0; i<n_patterns; i++) 
            unscaledX[i] = contAtt[i*n_continuous+j];
        imsls_f_scale_filter(n_patterns, unscaledX, 2, 
            IMSLS_RETURN_USER, scaledX,
            IMSLS_RETURN_CENTER_SPREAD, &center, &spread, 0);
        for(i=0; i<n_patterns; i++) 
            contAtt[i*n_continuous+j] = scaledX[i];
        mean[j] = center;
        s[j]    = spread;
    }
    printf("Scale Parameters: \n");
    for(j=0; j<n_continuous; j++){
        printf("Var %d Mean = %f S = %f \n",j+1, mean[j], s[j]);
    } 
    network = imsls_f_mlff_network_read(filename, IMSLS_PRINT,0);
    /* Use pattern classification routine to classify training 
     * patterns using trained network. 
     */
    classProb = imsls_f_mlff_pattern_classification (network,
        n_patterns, n_nominal, n_continuous, NULL, contAtt, 
        IMSLS_PREDICTED_CLASS, &predicted_class, 0);
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    /* Print class predictions */
    printf("\n%s\n",prtLabel);
    printf("%s\n",dashes);
    for(i=0; i<n_patterns; i++){
        printf("       %d   ", predicted_class[i]);
        printf("      | %f %f %f \n", classProb[i*3], classProb[i*3+1], 
            classProb[i*3+2]);
        if(i==49 || i==99){
            printf("\n%s\n",prtLabel);
            printf("%s\n",dashes);
        }
    }
}

Output

The output for this example reproduces the 100% classification accuracy found during network training. For 
details, see Example 2 of imsls_f_mlff_classification_trainer.

******************************************************
IRIS CLASSIFICATION EXAMPLE - PATTERN CLASSIFICATION
******************************************************
Scale Parameters:
Var 1 Mean = 5.843334 S = 0.828065
Var 2 Mean = 3.057333 S = 0.435866
Var 3 Mean = 3.758000 S = 1.765298
Var 4 Mean = 1.199333 S = 0.762238
Attempting to open iris_classification.txt for
reading network data structure
File iris_classification.txt Successfully Opened
File iris_classification.txt closed

Predicted_Class |   P(0)     P(1)     P(2)
-----------------------------------------------
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
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       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000
       0        | 1.000000 0.000000 0.000000

Predicted_Class |   P(0)     P(1)     P(2)
-----------------------------------------------
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 0.999999 0.000001
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 0.999994 0.000006
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
1718



 Data Mining         mlff_pattern_classification
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 0.999994 0.000006
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000000 1.000000 0.000000
       1        | 0.000002 0.999998 0.000000
       1        | 0.000000 1.000000 0.000000

Predicted_Class |   P(0)     P(1)     P(2)
-----------------------------------------------
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000011 0.999989
       2        | 0.000000 0.000000 1.000000
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       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000
       2        | 0.000000 0.000000 1.000000 

Example 2

Pattern classification is often used for pattern recognition, including playing simple games such as tic-tac-toe. The 
University of California at Irvine maintains a repository of data mining data, http://kdd.ics.uci.edu/. One consists of 
958 patterns for board positions in tic-tac-toe donated by David Aha. See 
http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame for access to the actual data.

Each of the 958 patterns is described by nine nominal input attributes and one classification target. The nine 
nominal input attributes are the nine board positions in the game. Each has three classifications: X occupies the 
position, O occupies the position and vacant.

The target class is binary. A value of one indicates that the X player has one of eight possible wins in the next 
move. A value of zero indicates that this player does not have a winning position. 65.3% of the 958 patterns have 
a class = 1.

The nine nominal input attributes are mapped into 27 binary encoded columns, three for each of the nominal 
attributes. This makes a total of 27 input columns for the network. In this example, a neural network with one hid-
den layer containing ten perceptrons was found to provide 100% classification accuracy. This configuration is 
illustrated in the following figure.
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Figure 39, A 2-layer, Binary Classification Network for Playing Tic-Tac-Toe

All hidden layer perceptrons used the default activation, logistic, and since the classification target is binary only 
one perceptron with logistic activation is used to calculate the probability of a loss for X, i.e. P(class = 0). All logistic 
activations are calculated using the IMSLS_LOGISTIC_TABLE option, which can reduce Stage I training time. 
Since Stage II training is bypassed, this option must also be used with the 
imsls_f_mlff_pattern_classification routine. This is the only time this option is used. If Stage II 
training was part of the network training, the final network weights would have been calculated without using the 
logistic table to approximate the calculations.

This structure results in a network with 27× 8 + 8 + 9 = 233 weights. It is surprising that with this small a number 
of weights relative to the number of training patterns, the trained network achieves 100% classification accuracy.
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Unlike Example 1 in which the network was trained previously and retrieved using 
imsls_f_mlff_network_read, this example first trains the network and then passes the network structure 
network into imsls_f_mlff_pattern_classification. 

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
int main (){
   int i, j, k, m, n_patterns, n_var;
   int n_cat        =9;   /* 9 nominal input attributes */
   int n_categorical =27; /* 9 Encoded = 27 categorical inputs */
   int n_classes    =2;  /* positive or negative */
   float *classProb;
   float *trainStats;
   int *predictedClass;
   int classification[958];
   float *inputData;
   int *categoricalAtt, *nomTempIn, *nomTempOut, nClass;
   Imsls_f_NN_Network *network;
   /* get tic tac toe data */ 
   inputData = imsls_f_data_sets (10,
       IMSLS_N_OBSERVATIONS, &n_patterns,
       IMSLS_N_VARIABLES, &n_var,
       0);
   printf("\n\n");
   printf("*******************************************************\n");
   printf("* TIC-TAC-TOE BINARY CLASSIFICATION EXAMPLE          *\n");
   printf("*******************************************************\n");
   /* allocate memory for categoricalATT array */
   categoricalAtt = (int*) malloc(958 * n_categorical * sizeof(int));
   /* populate categorical Att from catAtt using binary encoding */
   nomTempIn = (int*) malloc(n_patterns * sizeof(int));
   m=0;
   for(i=0; i<n_cat; i++)
   {
       for(j = 0; j < n_patterns; j++)
           nomTempIn[j] = (int) inputData[j * n_var + i] + 1;
       nomTempOut = imsls_unsupervised_nominal_filter(n_patterns,
           &nClass, nomTempIn,
           0);
       for(k = 0; k < nClass; k++)
       {
           for(j = 0; j < n_patterns; j++)
               categoricalAtt[j * n_categorical + m] =
                   nomTempOut[j * nClass + k];
           m++;
       }
       imsls_free(nomTempOut);
   }
   free(nomTempIn);
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   /* Setup the classification array, classification[] */
   for(i = 0; i < n_patterns; i++)
       classification[i] = (int)inputData[(i * n_var) + n_var - 1];
   network = imsls_f_mlff_network_init(27, 1);
   imsls_f_mlff_network(network,
       IMSLS_CREATE_HIDDEN_LAYER, 8,
       IMSLS_LINK_ALL,
       0);
   imsls_random_seed_set(5555);
   /* Train Classification Network */
   trainStats = imsls_f_mlff_classification_trainer (network,
       n_patterns, n_categorical, 0, classification, categoricalAtt,
       NULL,
       IMSLS_STAGE_I, 30, n_patterns,
       IMSLS_NO_STAGE_II,
       IMSLS_LOGISTIC_TABLE,
       IMSLS_WEIGHT_INITIALIZATION_METHOD,
       IMSLS_EQUAL,
       0);
   /* Use pattern classification routine to classify training patterns
    * using trained network. This will reproduce the results returned
    * in predicted_class[] */
   classProb = imsls_f_mlff_pattern_classification (network,
       n_patterns, n_categorical, 0, categoricalAtt, NULL,
       IMSLS_LOGISTIC_TABLE,
       IMSLS_PREDICTED_CLASS, &predictedClass,
       0);
   /* Printing Classification Predictions */
   printf("*******************************************************\n");
   printf("Classification Minimum Cross-Entropy Error: %f\n",
       trainStats[0]);
   printf("Classification Error Rate: %f \n", trainStats[5]);
   printf("*******************************************************\n");
   printf("\nPRINTING FIRST TEN PREDICTIONS FOR EACH TARGET CLASS\n");
   printf("*******************************************************\n");
   printf("       |TARGET|PREDICTED|            |             *\n");
   printf("PATTERN |CLASS | CLASS | P(class=0) | P(class=1) *\n");
   printf("*******************************************************\n");
   for(k = 0; k < 2; k++){
       for(i = k * 627; i < k * 627 + 10; i++){
           printf(" %d\t| %d  |   %d   | ", i+1,
               classification[i], predictedClass[i]);
           printf("%f  |  %f \n", classProb[i * n_classes],
               classProb[i * n_classes + 1]);
       }
       printf("\n");
   }
   k=0;
   for(i = 0; i < n_patterns; i++)
       if(classification[i] != predictedClass[i])
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           k++;
   if(k==0) {
       printf("All %d predicted classifications agree ", n_patterns);
       printf("with target classifications\n");
   }
}

Output

The output for this example demonstrates how imsls_f_mlff_pattern_classification reproduces 
the 100% classification accuracy found during network training. 

*******************************************************
* TIC-TAC-TOE BINARY CLASSIFICATION EXAMPLE          *
*******************************************************
*******************************************************
Classification Minimum Cross-Entropy Error: 0.000022
Classification Error Rate: 0.000000
*******************************************************
PRINTING FIRST TEN PREDICTIONS FOR EACH TARGET CLASS
*******************************************************
        |TARGET|PREDICTED|            |               *
PATTERN |CLASS | CLASS   | P(class=0) |  P(class=1)   *
*******************************************************
 1      |  1   |    1    |  0.000000  |  1.000000
 2      |  1   |    1    |  0.000000  |  1.000000
 3      |  1   |    1    |  0.000000  |  1.000000
 4      |  1   |    1    |  0.000000  |  1.000000
 5      |  1   |    1    |  0.000000  |  1.000000
 6      |  1   |    1    |  0.000000  |  1.000000
 7      |  1   |    1    |  0.000000  |  1.000000
 8      |  1   |    1    |  0.000000  |  1.000000
 9      |  1   |    1    |  0.000000  |  1.000000
 10     |  1   |    1    |  0.000000  |  1.000000  
 628    |  0   |    0    |  1.000000  |  0.000000
 629    |  0   |    0    |  1.000000  |  0.000000
 630    |  0   |    0    |  1.000000  |  0.000000
 631    |  0   |    0    |  1.000000  |  0.000000
 632    |  0   |    0    |  1.000000  |  0.000000
 633    |  0   |    0    |  1.000000  |  0.000000
 634    |  0   |    0    |  1.000000  |  0.000000
 635    |  0   |    0    |  1.000000  |  0.000000
 636    |  0   |    0    |  1.000000  |  0.000000
 637    |  0   |    0    |  1.000000  |  0.000000
All 958 predicted classifications agree with target classifications.
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scale_filter
Scales or unscales continuous data prior to its use in neural network training, testing, or forecasting. 

Synopsis
#include <imsls.h>
float *imsls_f_scale_filter (int n_patterns, float x[], int method, …, 0)

The type double function is imsls_d_scale_filter.

Required Arguments
int n_patterns  (Input)

Number of observations.

float x[]  (Input)
An array of length n_patterns. The values in x are either the scaled or unscaled values of a con-
tinuous variable. Missing values are allowed, and are indicated by placing a NaN (not a number) in x. 
See imsls_f_machine(6).

int method  (Input)
The scaling method to apply to each variable. The association of the value in method and the scaling 
algorithm is summarized in the table below. The sign of method determines whether the values in x 
are scaled or unscaled. If method is positive then values in x are scaled. If method is negative then 
values in x are unscaled. 

method Algorithm

0 No scaling.

±1 Bounded scaling and unscaling.

±2 Unbounded z-score scaling using the mean and stan-
dard deviation.

±3 Unbounded z-score scaling using the median and 
mean absolute difference.

±4 Bounded z-score scaling using the mean and standard 
deviation.

±5 Bounded z-score scaling using the median mean 
absolute difference.
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Return Value
A pointer to an internally allocated array of length n_patterns containing either the scaled or unscaled value 
of x, depending upon whether method is positive or negative, respectively. If errors are encountered, NULL is 
returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_scale_filter (int n_patterns, float x[], int method,

IMSLS_RETURN_USER, float z[], 
IMSLS_SCALE_LIMITS, float real_min, float real_max, float target_min, 

float target_max,
IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread, 
IMSLS_RETURN_CENTER_SPREAD, float *center, float *spread, 
0)

Optional Arguments
IMSLS_RETURN_USER, float z[]  (Output)

A user-supplied array of length n_patterns containing either the scaled or unscaled values of x, 
depending upon whether method is positive or negative, respectively.

IMSLS_SCALE_LIMITS, float real_min, float real_max, float target_min, float target_max  
(Input)
The real and target limits for x. This optional argument is required when bounded scaling is per-
formed, i.e., method=±1, ±4, or ±5. real_min is the lowest value expected for each input variable 
in x. real_max is the largest value expected. target_min is lowest value allowed for the output 
variable, z. target_max is the largest value allowed for the output variable. 

IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread  (Input)
The values center and spread are only used for z-score scaling or unscaling of x, that is, when 
method is one of ±2, ±3, ±4, and ±5. The value of center is either the mean or median, and the 
value of spread is either the standard deviation or mean absolute difference. When method is 
positive, this optional argument can be used to supply a user-defined center and spread rather than 
allowing imsls_f_scale_filter to compute the center and spread from the data in x. When 
method is one of -2, -3, -4, or -5, this optional argument must be used to supply the center and 
spread used during scaling.  
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IMSLS_RETURN_CENTER_SPREAD, float *center, float *spread  (Output)
Pointers to scalars containing the computed center and spread of x. The values center and 
spread are only used for z-score scaling or unscaling of x. These methods, ±2, ±3, ±4, and ±5, 
require two numbers, either the mean or median, and either the standard deviation, or mean abso-
lute difference. The value of center is either the mean or median for x. The value of spread is 
either the standard deviation or mean absolute difference. 

Description
The function imsls_f_scale_filter is designed to either scale or unscale a continuous variable using one 
of four methods prior to their use as neural network input or output. 

The specific encoding computations employed are specified by argument method. Scaling limits are supplied 
with the optional argument IMSLS_SCALE_LIMITS, and are required for the bounded scaling methods, i.e., 
method=±1, ±4, or ±5. Bounded scaling ensures that the scaled values in the returned array fall between a lower 
and upper bound.

If method=1 then the bounded method of scaling and unscaling is applied to x using the scaling limits in 
scale_limit.

If method=±2, ±3, ±4, or ±5, then the z-score method of scaling is used. These calculations are based upon the 
following scaling calculation:

where a is a measure of center for x, and b is a measure of the spread of x. 

If method=±2 or ±4, then by default a and b are the arithmetic average and sample standard deviation of the 
training data. These values can be overridden using the optional argument 
IMSLS_SUPPLY_CENTER_SPREAD.

If method=±3 or ±5, then by default a and b are the median and   , where    is a robust estimate of the popula-
tion standard deviation:

, where MAD is the Mean Absolute Deviation

Again, the values of a and b can be overridden using the optional argument 
IMSLS_SUPPLY_CENTER_SPREAD.

z i =
x i − a

b

s~ s~

s~ = MAD
0.6745

MAD = median ∣x j − median x ∣
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Method ±1: Bounded Scaling and Unscaling
If method=1, then the optional argument IMSLS_SCALE_LIMITS is required and a scaling operation is con-
ducted using the scale limits for x using the following calculation:

where

If method=-1, then optional argument IMSLS_SCALE_LIMITS is required and an unscaling operation is con-
ducted by inverting the following calculation:

Method +2 or +3: Unbounded z-score Scaling
If method=2 or method=3, then a scaling operation is conducted using the scale limits of x using a z-score 
calculation:

If either center or spread are missing, (a NaN), then appropriate values are calculated from the non-missing 
values of x. If method=2, then center is set equal to the arithmetic average   , and spread is set equal to the 
sample standard deviation,   .

If method=3, then center is set equal to the median   , and spread is set equal to the Mean Absolute Differ-
ence (MAD).

Method -2 or -3: Unbounded z-score Unscaling
If method=-2 or method=-3, then an unscaling operation is conducted using the inverse calculation for the 
equation shown in the above section, “Method +2 or +3: Unbounded z-score Scaling.”

z i = r x i − real_min + target_min

r =
target_max − target_min

real_max − real_min

x i =
z i − target_min

r + real_min

z i =
x i − center

spread

x─

s

m~
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For these values of method, missing values for center and spread are not allowed. If method=-2, then 
center and spread are assumed to be equal to the arithmetic average and standard deviation, respectively. 
These values would normally be the same used in scaling the variable with method=+2. If method= -3, then 
center and spread are assumed to be equal to the median and mean absolute difference, respectively. These 
values would normally be the same used in scaling the variable with method=+3.

Method +4 or +5: Bounded z-score Scaling
This method is essentially the same as the z-score calculation described for method=+2 and method=+3 with 
additional scaling or unscaling using the scale limits. If method=4, then the optional argument 
IMSLS_SCALE_LIMITS is required and a scaling operation is conducted using the scale limits for x using the 
widely known z-score calculation:

If either center or spread are missing, (a NaN), then appropriate values are calculated from the non-missing 
values in x. If center is missing and method=+4, then center is set equal to the arithmetic average   , and 
spread is set equal to the Sample Standard Deviation,   . If center is missing and method=+5, then center 
is set equal to the median   , and spread is set equal to the MAD.

In bounded scaling, if z[i] exceeds its bounds, it is set to the boundary it exceeded.

Method -4 or -5: Bounded z-score unscaling
If method=-4 or method=-5, then the optional argument IMSLS_SCALE_LIMITS is required and an unscal-
ing operation is conducted using the inverse calculation for the equation below.

For these values of method, missing values for center and spread are not allowed. If method=-4, then 
center and spread are assumed to be equal to the arithmetic average and standard deviation, respectively. 
These values would normally be the same used in scaling x with method=+4. If method=-5, then center and 
spread are assumed to be equal to the median and mean absolute difference, respectively. These values would 
normally be the same used in scaling the x with method=+5.

x i = spread • z i + center

z i =
r • x i − center

spread − r • real_min + target_min

x─

s
m~

x i =
spread • z i − target_min

r + spread • real_min + center
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Example
In this example two data sets are filtered using bounded z-score scaling. 

#include <imsls.h>
#include <stdio.h>
int main()
{
   int n_patterns=5;
   float x1[] = {3.5, 2.4, 4.4, 5.6, 1.1};
   float x2[] = {3.1, 1.5, - 1.5, 2.4, 4.2};
   float *z1, *z2;
   float *y1, *y2;
   float center1, spread1;
   float center2, spread2;
   z1 = imsls_f_scale_filter(n_patterns, x1, 4, 
           IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0,
           IMSLS_RETURN_CENTER_SPREAD, &center1, &spread1, 
           0);
   z2 = imsls_f_scale_filter(n_patterns, x2, 5, 
           IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0,
           IMSLS_RETURN_CENTER_SPREAD, &center2, &spread2, 
           0);
   imsls_f_write_matrix("z1", n_patterns, 1, z1, 0);
   printf("Center = %f\nSpread = %f\n", center1, spread1);
   imsls_f_write_matrix("z2", n_patterns, 1, z2, 0);
   printf("Center = %f\nSpread = %f\n", center2, spread2);
   
   /* Un-scale z1 and z2. */
   y1 = imsls_f_scale_filter(n_patterns, z1, -4, 
           IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0,
           IMSLS_SUPPLY_CENTER_SPREAD, center1, spread1, 
           0);
   y2 = imsls_f_scale_filter(n_patterns, z2, -5, 
           IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0,
           IMSLS_SUPPLY_CENTER_SPREAD, center2, spread2, 
           0);
   imsls_f_write_matrix("y1", n_patterns, 1, y1, 0);
   imsls_f_write_matrix("y2", n_patterns, 1, y2, 0);
} 

Output

    z1
1     0.0287
2    -0.2870
3     0.2870
4     0.6314
5    -0.6601
Center = 3.400000
Spread = 1.742125
    z2
1      0.525
2     -0.674
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3     -2.923
4      0.000
5      1.349
Center = 2.400000
Spread = 1.334342
    y1
1        3.5
2        2.4
3        4.4
4        5.6
5        1.1
    y2
1        3.1
2        1.5
3       -1.5
4        2.4
5        4.2
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time_series_filter
Converts time series data to the format required for processing by a neural network. 

Synopsis
#include <imsls.h>
float *imsls_f_time_series_filter (int n_patterns, int n_var, int max_lag, float x[], …,0)

The type double function is imsls_d_time_series_filter.

Required Arguments
int n_patterns  (Input)

Number of observations. The number of observations must be greater than n_lags.

int n_var  (Input)
Number of variables (columns) in x. The number of variables must be one or greater, n_var ≥ 1.

int max_lag  (Input)
The number of lags. The number of lags must be one or greater, max_lag ≥ 1 and less than or 
equal to n_patterns.

float x[]  (Input)
An array of size n_patterns by n_var. All data must be sorted in chronological order from most 
recent to oldest observation.

Return Value
A pointer to an internally allocated array of size (n_patterns-max_lag) by n_var×(max_lag+1)) If errors 
are encountered, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_time_series_filter (int n_patterns, int n_var, int max_lag, float x[],

IMSLS_RETURN_USER, float z[],
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0)

Optional Arguments
IMSLS_RETURN_USER, float z[]  (Output)

User supplied array of size (n_patterns-max_lag) by n_var×(max_lag+1) containing the fil-
tered data.

Description
Function imsls_f_time_series_filter accepts a data matrix and lags every column to form a new data 
matrix. The input matrix, x, contains n_var columns. Each column is transformed into (max_lag+1) columns 
by lagging its values. 

Since a lag of zero is always included in the output matrix z, the total number of lags is n_lags = max_lag+1.

The output data array, z, can be represented symbolically as:

z = |x(0) : x(1) : x(2) : … : x(max_lag)|, 

where x(i) is the i-th lag of the incoming data matrix, x. For example, if x={1, 2, 3, 4, 5} and n_var=1, then 
n_patterns=5, and x(0)=x, x(1)={2, 3, 4, 5}, x(2)={3, 4, 5}, etc.

Consider, an example in which n_patterns = 2 and n_var = 2 with all variables having continuous input attri-
butes. It is assumed that the most recent observations are in the first row and the oldest are in the last row.

If max_lag=1, then the number of columns will be n_var*(max_lag+1)=2*2=4, and the number of rows will 
be n_patterns–max_lag=5-1=4: 

If max_lag=2, then the number of columns will be n_var*(max_lag+1)=2*3=6. , and the number of rows will 
be n_patterns–max_lag=5-2=3: 

x =

1 6
2 7
3 8
4 9
5 10

z =

1 6 2 7
2 7 3 8
3 8 4 9
4 9 5 10
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Example
In this example, the matrix x with 5 rows and 2 columns is lagged twice, i.e. max_lag=2. This produces an out-
put two-dimensional matrix with (n_patterns-max_lag)=5-2=3 rows, but 2*3=6 columns. The first two 
columns correspond to lag=0, which simply places the original data into these columns. The 3rd and 4th columns 
contain the first lags of the original 2 columns and the 5th and 6th columns contain the second lags. Note that 
the number of rows for the output matrix z is less than the number for the input matrix x. 

#include <imsls.h>
int main()
{
#define N_PATTERNS 5
#define N_VAR 2
#define MAX_LAG 2
 float x[N_PATTERNS*N_VAR] = {1, 6,
           2, 7,
           3, 8,
           4, 9,
           5, 10};

 float *z;
 z = imsls_f_time_series_filter(N_PATTERNS, N_VAR, MAX_LAG, (float*)x, 0);
 imsls_f_write_matrix("X", N_PATTERNS, N_VAR, (float*)x, 0);
 imsls_f_write_matrix("Z", N_PATTERNS-MAX_LAG, N_VAR*(MAX_LAG+1), z, 0);
}

Output

           X
           1          2
1          1          6
2          2          7
3          3          8
4          4          9
5          5         10
                                 Z
           1          2          3          4          5          6
1          1          6          2          7          3          8
2          2          7          3          8          4          9
3          3          8          4          9          5         10

z =
1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10
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time_series_class_filter
Converts time series data sorted within nominal classes in decreasing chronological order to a useful format for 
processing by a neural network. 

Synopsis
#include <imsls.h>
float *imsls_f_time_series_class_filter (int n_patterns, int n_lags, int n_classes, 

intinti_class[], floatintx[], …, 0)

The type double function is imsls_d_time_series_class_filter.

Required Arguments
int n_patterns  (Input)

Number of observations. The number of observations must be greater than max_lags.

int n_lags  (Input)
The number of lags. The number of lags must be one or greater.

int n_classes  (Input)
The number of classes associated with these data. The number of classes must be one or greater.

int i_class[]  (Input)
An array of length n_patterns. The i-th element in i_class is equal to the class associated with 
the i-th element of x. The classes must be numbered from 1 to n_classes.

float x[]  (Input)
A sorted array of length n_patterns. This array is assumed to be sorted first by class designations 
and then descending by chronological order, i.e., most recent observations appear first within a class.

Return Value
A pointer to an internally allocated array of size n_patterns by n_lags columns. If errors are encountered, 
then NULL is returned.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_time_series_class_filter (int n_patterns, int n_lags, int n_classes, 

int i_class[], float x[],

IMSLS_LAGS, int lag[],
IMSLS_RETURN_USER, float z[],
0)

The type double function is imsls_d_time_series_class_filter.

Optional Arguments
IMSLS_LAGS, int lag[]  (Input)

An array of length n_lags. The i-th element in lag is equal to the lag requested for the i-th column 
of z. Every lag must be non-negative.

Default: lag[i]=i
IMSLS_RETURN_USER, float z[]  (Output)

A user-supplied array of size n_patterns by n_lags. The i-th column contains the lagged values 
of x for a lag equal to the number of lags in lag[i].

Description
The function imsls_f_time_series_class_filter accepts a data array, x[], and returns a new data 
array, z[], containing n_lags columns, each containing a lagged version of x. 

The output data array, z, can be represented symbolically as:

z = |x(0) : x(1) : x(2) : … : x(n_lags-1)|, 

where x(i) is the i-th lagged column of the incoming data array, x. Notice that n_lags is the number of lags and 
not the maximum lag. The maximum number of lags is max_lag= n_lags-1, unless the optional input lag[] 
is given, the highest lag is max_lags. If n_lags =2 and the optional input lag[] is not given, then the output 
array contains the lags 0, 1.

Consider, an example in which n_patterns=10, n_lags =2 and 

If   and 

xT = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

lagT = 0, 2
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then, n_classes=1 and z would contain 2 columns and 10 rows:

Note that since lagT = [0,1], the first column of z is formed using a lag of zero and the second is formed using a 
lag of two. A zero lag corresponds to no lag, which is why the first column of z in this example is equal to the orig-
inal data in x. 

On the other hand, if the data were organized into two classes with

then z is still a 2 by 10 matrix, but with the following values:

The first 5 rows of z are the lagged columns for the first class, and the last five are the lagged columns for the 
second class.

Example
Suppose that the training data to the neural network is represented by the following data matrix consisting of a 
single nominal variable coded into two binary columns and a single time series variable:

i_classT = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

z =

1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 NaN
10 NaN

i_classT = 1, 1, 1, 1, 1, 2, 2, 2, 2, 2

z =

1 3
2 4
3 5
4 NaN
5 NaN
6 8
7 9
8 10
9 NaN
10 NaN
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In this case, n_patterns=8 and n_classes=2. If we wanted to lag the 3rd column by 2 time lags, i.e., 
n_lags=2, 

The resulting data matrix would have 8 rows and 2 columns:

#include <imsls.h>
#define N_PATTERNS 8
#define N_LAGS 2
int main()
{
   float x[N_PATTERNS] = {2.1, 2.3, 2.4, 2.5, 1.1, 1.2, 1.3, 1.4};
   float *z;
   int n_classes = 2;
   int i_class[] = {1,1,1,1,2,2,2,2};
   z = imsls_f_time_series_class_filter(N_PATTERNS, N_LAGS, n_classes,
       i_class, x, 
       0);
   imsls_f_write_matrix("z", N_PATTERNS, N_LAGS, (float*)z,

0 1 2.1
0 1 2.3
0 1 2.4
0 1 2.5
1 0 1.1
1 0 1.2
1 0 1.3
1 0 1.4

lagT = 0, 1

i_classT = 1, 1, 1, 1, 2, 2, 2, 2

xT = 2.1, 2.3, 2.4, 2.5, 1.1, 1.2, 1.3, 1.4

z = x 0 x 1 =

2.1 2.3
2.3 2.4
2.4 2.5
2.5 NaN
1.1 1.2
1.2 1.3
1.3 1.4
1.4 NaN
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       0);
   return 0;
}

Output

              z
            1           2
1         2.1         2.3
2         2.3         2.4
3         2.4         2.5
4         2.5 ...........
5         1.1         1.2
6         1.2         1.3
7         1.3         1.4
8         1.4 ...........
1739



 Data Mining         unsupervised_nominal_filter
unsupervised_nominal_filter
Converts nominal data into a series of binary encoded columns for input to a neural network. Optionally, it can 
also reverse the binary encoding, accepting a series of binary encoded columns and returning a single column of 
nominal classes.

Synopsis
#include <imsls.h>
int *imsls_unsupervised_nominal_filter (int n_patterns, int n_classes, int x[], …, 0)

Required Arguments
int n_patterns  (Input)

Number of observations.

int *n_classes  (Input/Output)
A pointer to the number of classes in x[]. n_classes is output for IMSLS_ENCODE and input 
for IMSLS_DECODE. 

int x[]  (Input)
A one or two-dimensional array depending upon whether encoding or decoding is requested. If 
encoding is requested, x is an array of length n_patterns containing the categories for a nominal 
variable numbered from 1 to n_classes. If decoding is requested, then x is an array of size 
n_patterns by n_classes. In this case, the columns contain only zeros and ones that are inter-
preted as binary encoded representations for a single nominal variable. 

Return Value
A pointer to an internally allocated array, z[]. The values in z are either the encoded or decoded values for x, 
depending upon whether IMSLS_ENCODE or IMSLS_DECODE is requested. If errors are encountered, NULL is 
returned.

Synopsis with Optional Arguments
#include <imsls.h>
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int *imsls_f_unsupervised_nominal_filter (int n_patterns, int n_classes, int x[],

IMSLS_ENCODE, or 
IMSLS_DECODE,
IMSLS_RETURN_USER, int z[],

0)

Optional Arguments
IMSLS_ENCODE, (Input)

Specifies binary encoding. Classes must be numbered sequentially from 1 to n_classes. Optional 
Arguments IMSLS_ENCODE and IMSLS_DECODE are mutually exclusive.

Default: IMSLS_ENCODE.

or

IMSLS_DECODE, (Input)
Specifies that x will be decoded. The values in each column should be zeros and ones. The values in 
the i-th column of x are associated with the i-th class of the nominal variable. Optional Arguments 
IMSLS_ENCODE and IMSLS_DECODE are mutually exclusive.

Default:  IMSLS_ENCODE.

IMSLS_RETURN_USER, int z[]  (Output)
A user-supplied array of size n_patterns by n_classes. If IMSLS_DECODE is specified, then z 
should be length n_patterns. The value in z[i] is either the encoded or decoded value for x[i], 
depending upon whether IMSLS_ENCODE or IMSLS_DECODE is specified.

Description
The function imsls_unsupervised_nominal_filter is designed to either encode or decode nominal 
variables using a simple binary mapping. 

Binary Encoding: IMSLS_ENCODE
In this case, x[] is an input array to which a binary filter is applied. Binary encoding takes each category in x[], 
and creates a column in z[], the output matrix, containing all zeros and ones. A value of zero indicates that this 
category is not present and a value of one indicates that it is present.

For example, if x[]={2,1,3,4,2,4} then n_classes=4, and 
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Notice that the number of columns in z is equal to the number of distinct classes in x. The number of rows in z 
is equal to the length of x.

Binary Decoding: IMSLS_DECODE
Binary decoding takes each column in x[], and returns the appropriate class in z[].

For example, if x[] is the same as described above:

then z[] would be returned as z[]={2, 1, 3, 4, 2, 4}. Notice this is the same as the original array because classes 
are numbered sequentially from 1 to n_classes. This ensures that the i-th column of x[] is associated with 
the i-th class in the output array.

Example
This example illustrates nominal binary encoding and decoding for x = {3, 3, 1, 2, 2, 1, 2}.

#include <imsls.h>
#include <stdio.h>
int main ()
{
#define N_PATTERNS 7
   int x[N_PATTERNS] = {3, 3, 1, 2, 2, 1, 2};
   int *x2;
   int *z, n_classes;
   /* Binary Filtering. */
   z = imsls_unsupervised_nominal_filter(N_PATTERNS, &n_classes, x,
       0);
   printf("n_classes = %d\n",n_classes);

z =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

x =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1
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   imsls_i_write_matrix("X", N_PATTERNS, 1, (int*)x,
       0);
   imsls_i_write_matrix("Z", N_PATTERNS, n_classes, z,
       0);
   /* Binary Unfiltering. */
   x2 = imsls_unsupervised_nominal_filter(N_PATTERNS, &n_classes, z,
       IMSLS_DECODE,
       0);
   imsls_i_write_matrix("Unfiltering result", N_PATTERNS, 1, x2,
       0);
}

Output
7   n_classes = 3
8
9     X
10  1   3
11  2   3
12  3   1
13  4   2
14  5   2
15  6   1
16  7   2
17
18        Z
19      1   2   3
20  1   0   0   1
21  2   0   0   1
22  3   1   0   0
23  4   0   1   0
24  5   0   1   0
25  6   1   0   0
26  7   0   1   0
27
28  Unfiltering result
29        1   3
30        2   3
31        3   1
32        4   2
33        5   2
34        6   1
35        7   2
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unsupervised_ordinal_filter
Converts ordinal data into proportions. Optionally, it can also reverse encoding, accepting proportions and con-
verting them into ordinal values.

Synopsis
#include <imsls.h>
void imsls_f_unsupervised_ordinal_filter (int n_patterns, int x[], float z[], …, 0)

The type double function is imsls_d_unsupervised_ordinal_filter.

Required Arguments
int n_patterns  (Input)

Number of observations.

int x[]  (Input/Output)
An array of length n_patterns containing the classes for the ordinal data. Classes must be num-
bered 1 to IMSLS_N_CLASSES. This is an output argument if IMSLS_DECODE is specified, 
otherwise it is input. 

float z[]  (Input/Output)
An array of length n_patterns containing the encoded values for x represented as cumulative 
proportions associated with each ordinal class (values between 0.0 and 1.0 inclusive). This is an input 
argument if IMSLS_DECODE is specified, otherwise it is output.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_unsupervised_ordinal_filter (int n_patterns, int x[], float z[],

IMSLS_ENCODE or 

IMSLS_DECODE,

IMSLS_NO_TRANSFORM, or 

IMSLS_SQUARE_ROOT, or 

IMSLS_ARC_SIN,
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IMSLS_N_CLASSES, int *n_classes,

0)

The type double function is imsls_d_unsupervised_ordinal_filter.

Optional Arguments
IMSLS_ENCODE, (Input) 

Specifies z as an output array and x an input array that is filtered by converting each ordinal class 
value into a cumulative proportion (a value between 0.0 and 1.0 inclusive). Optional Arguments 
IMSLS_ENCODE and IMSLS_DECODE are mutually exclusive.

Default: IMSLS_ENCODE.

or

IMSLS_DECODE,  (Input)
Specifies x as an output array and z an input array that contains transformed cumulative propor-
tions. In this case, the transformed cumulative proportions are converted into ordinal class values 
using the coding class=1, 2, … etc. Optional Arguments IMSLS_ENCODE and IMSLS_DECODE are 
mutually exclusive.

Default: IMSLS_ENCODE.

IMSLS_NO_TRANSFORM, (Input) 
Indicates that the cumulative proportions used to encode the ordinal variable are not transformed. 
Optional Arguments IMSLS_NO_TRANSFORM, IMSLS_SQUARE_ROOT, and IMSLS_ARC_SIN 
are mutually exclusive.

Default: IMSLS_NO_TRANSFORM.

 or 

IMSLS_SQUARE_ROOT, (Input)
Indicates cumulative proportions are transformed using the square root transformation.  Optional 
Arguments IMSLS_NO_TRANSFORM, IMSLS_SQUARE_ROOT, and IMSLS_ARC_SIN are mutu-
ally exclusive.

Default: IMSLS_NO_TRANSFORM.

or 

IMSLS_ARC_SIN,  (Input)
Indicates cumulative proportions are transformed using the arcsin of the square root of the cumula-
tive proportions. Optional Arguments IMSLS_NO_TRANSFORM, IMSLS_SQUARE_ROOT, and 
IMSLS_ARC_SIN are mutually exclusive.
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Default: IMSLS_NO_TRANSFORM.

IMSLS_N_CLASSES, int *n_classes  (Output)
The number of ordinal classes in x and the number of unique proportions in z.

Description
The function imsls_f_unsupervised_ordinal_filter is designed to either encode or decode ordinal 
variables. Filtering consists of transforming the ordinal classes into proportions, with each proportion being equal 
to the proportion of the data at or below this class.

Ordinal Filtering: IMSLS_ENCODE
In this case, x is an input array that is filtered by converting each ordinal class value into a cumulative proportion.

For example, if x[]={2,1,3,4,2,4,1,1,3,3} then n_patterns=10 and IMSLS_N_CLASSES=4. This 
function then fills z with cumulative proportions represented as proportions displayed in the table below. Cumu-
lative proportions are equal to the proportion of the data in this class or a lower class.

If IMSLS_NO_TRANSFORM is specified, then the equivalent proportions in z are

z[]={0.50, 0.30, 0.80, 1.00, 0.50, 1.00, 0.30, 0.30, 0.80, 0.80}. 

If IMSLS_SQUARE_ROOT is specified, then the square root of these values is returned, i.e., 

z[]={0.71, 0.55 , 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89};

Ordinal Class Frequency Cumulative Proportion

1 3 30%

2 2 50%

3 3 80%

4 2 100%

z i =
z i
100
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If IMSLS_ARC_SIN is specified, then the arcsin square root of these values is returned using the following 
calculation:

Ordinal UnFiltering: IMSLS_DECODE
Ordinal Unfiltering takes the transformed cumulative proportions in z and converts them into ordinal class values 
using the coding class=1, 2, … etc.

For example, if IMSLS_NO_TRANSFORM is specified and 
z[]={0.20, 1.00, 0.20, 0.40, 1.00, 1.00, 0.40, 0.10, 1.00, 1.00} then upon return, the output array would consist of 
the ordinal classes x[]={2, 4, 2, 3, 4, 4, 3, 1, 4, 4}. 

If one of the transforms is specified, the same operation is performed since the transformations of the propor-
tions are monotonically increasing. For example, if the original observations consisted of {2.8, 5.6, 5.6, 1.2, 4.5, 
7.1}, then input x for encoding would be x[]={2, 4, 4, 1, 3, 5} and output IMSLS_N_CLASSES=5. The output 
array x after decoding would consist of the ordinal classes x[]={2, 4, 4, 1, 3, 5}.

Example
A taste test was conducted yielding the following data:

The data in the table above would have the coded values shown below. This assumes that the rating scale is: very 
poor, poor, good, and very good.

x={2, 3, 4, 1, 4}

The returned values are:

z={0.40, 0.60, 1.00, 0.20, 1.00}.

#include <imsls.h>
#include <stdio.h>

Individual Rating

1 Poor

2 Good

3 Very Good

4 Very Poor

5 Very Good

z i = arcsin
z i
100
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int main () {
#define N_PATTERNS 5
  int x[N_PATTERNS] = {2,3,4,1,4};
  int x2[N_PATTERNS], n_classes;
  float z[N_PATTERNS];
  /* Filtering. */
  imsls_f_unsupervised_ordinal_filter(N_PATTERNS, x, z, 
    IMSLS_N_CLASSES, &n_classes, 
    0);
  printf("n_classes = %d\n", n_classes);
  imsls_i_write_matrix("x", N_PATTERNS, 1, x, 0);
  imsls_f_write_matrix("z", N_PATTERNS, 1, z, 0);
  /* Unfiltering. */
  imsls_f_unsupervised_ordinal_filter(N_PATTERNS, x2, z,
         IMSLS_DECODE, 
         IMSLS_N_CLASSES, &n_classes,
         0);
  printf("\nn_classes = %d\n", n_classes);
    imsls_i_write_matrix("x-unfiltered", N_PATTERNS, 1, x2, 0); 
}

Output

n_classes = 4
  x
1   2
2   3
3   4
4   1
5   4
      z
1         0.4
2         0.6
3         1.0
4         0.2
5         1.0
n_classes = 4
x-unfiltered
   1   2
   2   3
   3   4
   4   1
   5   4
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kohonenSOM_trainer

more...

Trains a Kohonen network.

Synopsis
#include <imsls.h> 

Imsls_f_kohonenSOM *imsls_f_kohonenSOM_trainer (float fcn(), float lcn(), int dim, 
int nrow, int ncol, int nobs, float data[], …, 0)

The type double function is imsls_d_kohonenSOM_trainer.

Required Arguments
float fcn (int nrow, int ncol, int total_iter, int t, float d)  (Input/Output)

User-supplied neighborhood function. In the simplest form, the neighborhood function h(d, t) is 1 for 
all nodes closest to the BMU and 0 for others, but a Gaussian function is also commonly used. For 
example:

where r represents the neighborhood radius at index t

Arguments

int nrow  (Input)
The number of rows in the node grid.

int ncol  (Input)
The number of columns in the node grid.

int total_iter  (Input)
The number of iterations for training.

int t  (Input)
The current iteration of the training.

float d  (Input)
The lattice distance between the best matching node and the current node.

Return Value
The computed neighborhood function value.

h(d,t) = e
−d2

2r2
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float lcn (int nrow, int ncol, int total_iter, int t)  (Input/Output)
User supplied learning coefficient function. The monotonically decreasing learning coefficient func-
tion α(t) is a scalar factor that defines the size of the update correction. The value of α(t) decreases 
with the step index t. Typical forms are linear, power, and inverse time/step. For example:

power:

 

where t=t, T=total_iter, α
0
 = initial learning coefficient, αT = final learning coefficient

inverse time:

where A and B are user determined constants
Arguments

int nrow  (Input)
The number of rows in the node grid.

int ncol  (Input)
The number of columns in the node grid.

int total_iter  (Input)
The number of iterations for training.

int t  (Input)
The current iteration of the training.

Return Value
The computed learning coefficient.

int dim  (Input)
The number of weights for each node in the node grid. dim must be greater than zero.

int nrow  (Input)
The number of rows in the node grid. nrow must be greater than zero.

int ncol  (Input)
The number of columns in the node grid. ncol must be greater than zero.

int nobs  (Input)
The number of observations in data. nobs must be greater than zero.

float data[]  (Input)
An nobs × dim array containing the data to be used for training the Kohonen network.

α(t) = α0
αT
α0

t T

α(t) = A
t + B
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Return Value
A pointer to a Imsls_f_kohonenSOM data structure containing the trained Kohonen network. This space can 
be released by using the imsls_free function. Please see Data Structures for a description of this data 
structure.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_kohonenSOM imsls_f_kohonenSOM_trainer (float fcn(), float lcn(), int dim, int nrow, 

int ncol, int nobs, float data[],

IMSLS_RECTANGULAR, or
IMSLS_HEXAGONAL,
IMSLS_VON_NEUMANN, or
IMSLS_MOORE,
IMSLS_WRAP_AROUND,
IMSLS_RANDOM_SEED, int seed,
IMSLS_ITERATIONS, int total_iter,
IMSLS_INITIAL_WEIGHTS, float weights[],
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_LCN_W_DATA, float lcn(), void *data,
IMSL_RECONSTRUCTION_ERROR, float *error,
0)

Optional Arguments
IMSLS_RECTANGULAR, (Input)

Specifies a rectangular grid should be used. Optional Arguments IMSLS_RECTANGULAR and 
IMSLS_HEXAGONAL are mutually exclusive.

Default: A rectangular grid is used.

or

Argument Action

IMSLS_RECTANGULAR Use a rectangular grid.

IMSLS_HEXAGONAL Use a hexagonal grid.
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IMSLS_HEXAGONAL
Specifies a hexagonal grid should be used. Optional Arguments IMSLS_RECTANGULAR and 
IMSLS_HEXAGONAL are mutually exclusive.

Default: A rectangular grid is used.

IMSLS_VON_NEUMANN, (Input)
Use the Von Neumann neighborhood type. Optional Arguments IMSLS_VON_NEUMAN and 
IMSLS_MOORE are mutually exclusive.

Default: The Von Neumann neighborhood type is used.

or

IMSLS_MOORE
Use the Moore neighborhood type. Optional Arguments IMSLS_VON_NEUMAN and 
IMSLS_MOORE are mutually exclusive.

Default: The Von Neumann neighborhood type is used.

IMSLS_WRAP_AROUND, (Input)
Wrap around the opposite edges. A hexagonal grid must have an even number of rows to wrap 
around.
Default: Do not wrap around the opposite edges.

IMSLS_RANDOM_SEED, int seed  (Input)
The seed of the random number generator used in generating the initial weights. If seed is 0, a value 
is computed using the system clock; hence, the results may be different between different calls with 
the same input.
Default: seed = 0.

Argument Action

IMSLS_RECTANGULAR Use a rectangular grid.

IMSLS_HEXAGONAL Use a hexagonal grid.

Argument Action

IMSLS_VON_NEUMANN Use the Von Neumann neighborhood type.

IMSLS_MOORE Use the Moore neighborhood type.

Argument Action

IMSLS_VON_NEUMANN Use the Von Neumann neighborhood type.

IMSLS_MOORE Use the Moore neighborhood type.
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IMSLS_ITERATIONS, int total_iter  (Input)
The number of iterations to be used for training.
Default: total_iter = 100.

IMSLS_INITIAL_WEIGHTS, float weights[]  (Input)
The initial weights of the nodes.
Default: Initial weights are generated internally using random uniform number generator.

IMSL_FCN_W_DATA, float fcn (int nrow, int ncol, int total_iter, int t, float d, void *data), 
void *data  (Input)

float fcn (int nrow, int ncol, int total_iter, int t, float d, void *data)  (Input)
User supplied neighborhood function, which also accepts a pointer to data that is supplied 
by the user. data is a pointer to the data to be passed to the user-supplied function. 

Arguments
int nrow  (Input)

The number of rows in the node grid.
int ncol  (Input)

The number of columns in the node grid.
int total_iter  (Input)

The number of iterations for training.
int t  (Input)

The current iteration of the training.
float d  (Input)

The lattice distance between the best matching node and the current node.
void *data  (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed neighborhood function value.
void *data  (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_LCN_W_DATA, float lcn (int nrow, int ncol, int total_iter, int t, void *data), void *data  
(Input)

float lcn (int nrow, int ncol, int total_iter, int t, void *data)  (Input)
User supplied learning coefficient function, which also accepts a pointer to data that is sup-
plied by the user. data is a pointer to the data to be passed to the user-supplied function. 

Arguments
int nrow  (Input)

The number of rows in the node grid.
int ncol  (Input)

The number of columns in the node grid.
int total_iter  (Input)

The number of iterations for training.
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int t  (Input)
The current iteration of the training.

void *data  (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value
The computed learning coefficient.

void *data  (Input)
A pointer to the data to be passed to the user-supplied function.

IMSLS_RECONSTRUCTION_ERROR, float *error  (Output)
The sum of the Euclidean distance between the input, data, and the nodes in the trained Kohonen 
network.

Description
A self-organizing map (SOM), also known as a Kohonen map or Kohonen SOM, is a technique for gathering high-
dimensional data into clusters that are constrained to lie in low dimensional space, usually two dimensions. A 
Kohonen map is a widely used technique for the purpose of feature extraction and visualization for very high 
dimensional data in situations where classifications are not known beforehand. The Kohonen SOM is equivalent 
to an artificial neural network having inputs linked to every node in the network. Self-organizing maps use a 
neighborhood function to preserve the topological properties of the input space. 

In a Kohonen map, nodes are arranged in a rectangular or hexagonal grid or lattice. The input is connected to 
each node, and the output of the Kohonen map is the zero-based (i, j) index of the node that is closest to the 
input. A Kohonen map involves two steps: training and forecasting. Training builds the map using input examples 
(vectors), and forecasting classifies a new input. 

During training, an input vector is fed to the network. The input's Euclidean distance from all the nodes is calcu-
lated. The node with the shortest distance is identified and is called the Best Matching Unit, or BMU. After 
identifying the BMU, the weights of the BMU and the nodes closest to it in the SOM lattice are updated towards 
the input vector. The magnitude of the update decreases with time and with distance (within the lattice) from the 
BMU. The weights of the nodes surrounding the BMU are updated according to:

Wt

+1

=Wt+α(t) ∗ h(d,t) ∗ (Dt-Wt)

where Wt represents the node weights, α(t) is the monotonically decreasing learning coefficient function, h(d,t) is 

the neighborhood function, d is the lattice distance between the node and the BMU, and Dt is the input vector.

The monotonically decreasing learning coefficient function α(t) is a scalar factor that defines the size of the 
update correction. The value of α(t) decreases with the step index t. 
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The neighborhood function h(d,t) depends on the lattice distance d between the node and the BMU, and rep-
resents the strength of the coupling between the node and BMU. In the simplest form, the value of h(d,t) is 1 for 
all nodes closest to the BMU and 0 for others, but a Gaussian function is also commonly used. Regardless of the 
functional form, the neighborhood function shrinks with time (Hollmén, 15.2.1996). Early on, when the neighbor-
hood is broad, the self-organizing takes place on the global scale. When the neighborhood has shrunk to just a 
couple of nodes, the weights converge to local estimates. 

Note that in a rectangular grid, the BMU has four closest nodes for the Von Neumann neighborhood type, or 
eight closest nodes for the Moore neighborhood type. In a hexagonal grid, the BMU has six closest nodes.

During training, this process is repeated for a number of iterations on all input vectors. 

During forecasting, the node with the shortest Euclidean distance is the winning node, and its (i, j) index is the 
output.

Data Structures

Example
This example creates a Kohonen network with 40 × 40 nodes. Each node has three weights, representing the RGB 
values of a color. This network is trained with eight colors using 500 iterations. Then, the example prints out a 
forecast result. Initially, the image of the nodes is:

Table 53 – The data structure Imsls_f_kohonenSOM

Field Description

int grid 0 = rectangular grid. Otherwise, hexagonal 
grid.

int type 0 = Von Neumann neighborhood type. Other-
wise, Moore neighborhood type.

int wrap 0 = do not wrap-around node edges. 
Otherwise, wrap-around node edges.

int dim Number of weights in each node. 

int nrow Number of rows in the node grid. 

int ncol Number of columns in the node grid.

float *weights Array of length nrow x ncol x dim contain-
ing the weights of the nodes.
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After the training, the image is:
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#include <stdio.h>
#include <math.h>
#include <imsls.h>
float fcn(int nrow, int ncol, int total_iter, int t, float d);
float lcn(int nrow, int ncol, int total_iter, int t);
int main() {
    Imsls_f_kohonenSOM *kohonen=NULL;
    int dim=3, nrow=40, ncol=40, nobs=8;
    float data[8][3] = {
        {1.0, 0.0, 0.0},
        {0.0, 1.0, 0.0},
        {0.0, 0.0, 1.0},
        {1.0, 1.0, 0.0},
        {1.0, 0.0, 1.0},
        {0.0, 1.0, 1.0},
        {0.0, 0.0, 0.0},
        {1.0, 1.0, 1.0}
    };
    int *forecasts = NULL;
    float fdata[1][3] = {
        {0.25, 0.5, 0.75}
    };
    float error;
    kohonen = imsls_f_kohonenSOM_trainer(fcn, lcn, dim, nrow, ncol,
        nobs, &data[0][0],
        IMSLS_RANDOM_SEED, 123457,
        IMSLS_ITERATIONS, 500,
        IMSLS_RECONSTRUCTION_ERROR, &error,
        0);
    forecasts =
        imsls_f_kohonenSOM_forecast(kohonen, 1, &fdata[0][0], 0);
    printf("The output node is at (%d, %d).\n",
        forecasts[0], forecasts[1]);
    printf("Reconstruction error is %f.\n", error);
    /* Free up memory. */
    imsls_free(kohonen->weights);
    imsls_free(kohonen);
    imsls_free(forecasts);
}

float fcn(int nrow, int ncol, int total_iter, int t, float d) {
    float factor, c;
    int max;
    max = nrow > ncol ? nrow : ncol;
        /* A Gaussian function. */
        factor = max / 4.0;
        c = (float) (total_iter - t) / ((float) total_iter / factor);
        return exp(-(d * d) / (2.0 * c * c));
   }
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float lcn(int nrow, int ncol, int total_iter, int t) {
    float initialLearning = 0.07;
    return initialLearning * exp(-(float) t / (float) total_iter);
}

Output
The output node is at (25, 11).
Reconstruction error is 13589.462891.
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kohonenSOM_forecast
Calculates forecasts using a trained Kohonen network.

Synopsis
#include <imsls.h> 

int *imsls_f_kohonenSOM_forecast (Imsls_f_kohonenSOM *kohonen, int nobs, float data[], 
..., 0)

The type double function is imsls_d_kohonenSOM_forecast.

Required Arguments
Imsls_f_kohonenSOM *kohonen  (Input)

Pointer to a structure of type Imsls_f_kohonenSOM containing the trained Kohonen network. See the 
Remarks section of imsls_f_kohonenSOM_trainer for a description of this structure.

int nobs  (Input)
The number of observations in data. nobs must be greater than zero.

float data[]  (Input)
An nobs × dim array containing the input data for forecasts, where dim is the number of weights 
for each node in the node grid specified during training.

Return Value
An nobs × 2 array containing the (i, j) index of the winning nodes for the input data. This space can be released 
by using the imsls_free function.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_kohonenSOM_forecast (Imsls_f_kohonenSOM *kohonen, int nobs, float data[],

IMSLS_RETURN_USER, int forecasts[],
0)
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Optional Arguments
IMSLS_RETURN_USER, int forecasts[]  (Output)

If specified, the forecasts are returned in the user-supplied array forecasts.

Description
Function imsls_f_kohonenSOM_forecast calculates forecasts for a previously trained Kohonen network 
from imsls_f_kohonenSOM_trainer. The structure Imsls_f_kohonenSOM describes the network structure 
used to originally train the network. The weights, which are the key output from training, are used as input to this 
function. The weights are stored in the Imsls_f_kohonenSOM structure.

Example
See imsls_f_kohonenSOM_trainer.

Output
See imsls_f_kohonenSOM_trainer.
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Support Vector Machines – An Overview
Support Vector Machines (SVM) are a class of learning algorithms for classification, regression, and distribution 
estimation motivated by results of statistical learning theory (Vapnik, 1995). Classification problems are character-
ized by separating data into training and testing sets. Each pattern, or instance in the training set, contains one 
“target classification value” (i.e. one of the class values) and several “attributes” (i.e. the features or observed vari-
ables). The goal of SVM is to produce a model based on the training data that predicts the target values of the 
test data.

If (xi,yi) are the instance-label pairs for a given training set, and i = 1, …, l, where l is the number of training pat-

terns, xi ∈ ℝn and yi ∈ {1,-1}, the support vector machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995) 

solves the following primal optimization problem:

The quantities w and b are the weight vector and bias. C > 0 is the penalty parameter of the error term ξi. The 

training vectors xi are mapped into a higher (maybe infinite) dimensional space by the function φ(xi), called the 

input features. SVM finds a linear separating hyperplane of maximal margin in this higher dimensional space. 
Rather than applying SVM using the original input attributes xi, the new features φ(xi) are passed to the learning 

algorithm. K(x,y), an inner product defined as K(xi,xj) ≡ φ(xi)
Tφ(xj), is the kernel function. Often, even though φ(x) 

itself may be very expensive to calculate (perhaps because it is an extremely high-dimensional vector), K(xi,xj) may 

be very inexpensive to calculate. Without ever having to explicitly find or represent vectors φ(x), using K(xi,xj) is an 

efficient way for SVMs to learn in the high-dimensional feature space. Four popular kernels for classification and 
regression are:

 linear: K(xi , xj) = xi
Txj

 polynomial: K(xi , xj) = ( xi
Txj + r)d,  > 0

 radial basis function (RBF): K(xi , xj) = exp (-  ∥xi - xj∥2), > 0

 sigmoid: K(xi , xj) = tanh(  xi
Txj + r)

where , r, and d are kernel parameters.

min
w,b,ξ

1
2w
Tw + C∑

i=1

l
ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, … , l

γ γ

γ γ

γ

γ
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SVM classification algorithms determine an optimal large-margin linear decision boundary for the given training 
data. The SVM formulation for classification could be for either two-class or multi-class classifications. Multiple 
binary classifiers are combined for multi-class classification. If the class information is not provided for the train-
ing data then the distribution estimation algorithm one-class SVM is used to estimate the support vectors of a 
high-dimensional distribution. The support vector methodology can also be applied to the regression problem by 
seeking to optimize the generalization bounds for regression which rely on defining a loss function that ignores 
errors within a certain distance of the true value. The following classification algorithms are supported.

 SVC (Support Vector Classification): Two-class and multi-class. This is the standard SVM algorithm 
used to classify two-class or multi-class data.

 One-class SVM: This algorithm assumes that the data is available from only one class. For example, 
the data comes from some unknown underlying probability distribution, P.

 SVR (Support Vector Regression): This algorithm applies the features of the SVM algorithm to the 
regression problem.

A typical use involves these steps:

 Scale the data. Typically, the data is linearly scaled to the range [-1, 1] or [0, 1]. The same scaling 
parameters must be used on both the training data and the test data. You may find 
imsls_f_scale_filter useful for this step.

 Apply the trainer to the scaled training data set using one of the available kernel types to obtain a 
model. The RBF kernel is a good kernel type to start with.

 Use cross-validation to find the best model parameters.

 Use the resulting model with the best model parameters to predict information about the scaled 
testing data set. 

For SVC and SVR, the classifier can calculate probability estimates. Function 
imsls_f_support_vector_trainer is used to train a classifier from a set of training patterns with values of 
both the input attributes and target classes. This function stores the trained classifier model into an Imsls_f_svm_-
model data structure. 

Unknown classifications of new patterns can be predicted by passing the trained classifier model data structure, 
Imsls_f_svm_model, to imsls_f_support_vector_classification. If necessary, memory allocated to the 
trained classifier model can be released using imsls_f_svm_classifier_free.
1762



 Data Mining         support_vector_trainer
support_vector_trainer
Trains a Support Vector Machines (SVM) classifier.

Synopsis
#include <imsls.h>
Imsls_f_svm_model *imsls_f_support_vector_trainer (int  n_patterns, int n_classes, 

int n_attributes, float classification[], float x[],  ..., 0)

The type double function is imsls_d_support_vector_trainer.

Required Arguments
int n_patterns (Input)

Number of training patterns. 

int n_classes (Input)
Number of unique target classification values. 

int n_attributes (Input)
Number of attributes. 

float classification[] (Input)
Array of length n_patterns containing the target classification values for each of the training 
patterns.

float x[] (Input)
Array of length n_patterns by n_attributes containing the training data matrix.

Return Value
A pointer to a structure of type Imsls_f_svm_model containing the trained support vector classifier model. If train-
ing is unsuccessful, NULL is returned. To release this space, use imsls_f_svm_classifier_free.

Synopsis with Optional Arguments
#include <imsls.h> 
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Imsls_f_svm_model *imsls_f_support_vector_trainer (int n_patterns, int n_classes, 
int n_attributes, float classification[], float x[],

IMSLS_SVM_C_SVC_TYPE, float C, int nr_weight, float weight_class[], 
float weight[], or 

IMSLS_SVM_NU_SVC_TYPE, float nu, or
IMSLS_SVM_ONE_CLASS_TYPE, float nu, or
IMSLS_SVM_EPSILON_SVR_TYPE, float C, float p, or
IMSLS_SVM_NU_SVR_TYPE, float C, float nu,
IMSLS_SVM_WORK_ARRAY_SIZE, float work_size,
IMSLS_SVM_EPSILON, float epsilon,
IMSLS_SVM_NO_SHRINKING,
IMSLS_SVM_TRAIN_ESTIMATE_PROB,
IMSLS_SVM_KERNEL_LINEAR, or
IMSLS_SVM_KERNEL_POLYNOMIAL, int degree, float gamma, float coef0,  or
IMSLS_SVM_KERNEL_RADIAL_BASIS, float gamma, or
IMSLS_SVM_KERNEL_SIGMOID, float gamma, float coef0,  or
IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[],
IMSLS_SVM_CROSS_VALIDATION, int n_folds, float **target,  float *result
IMSLS_SVM_CROSS_VALIDATION_USER, int n_folds, float target[],  float *result,
0)

Optional Arguments
IMSLS_SVM_C_SVC_TYPE,  float C, int nr_weight, float weight_class[], float weight[] 

(Input)
Specifies that the C-support vector classification (C-SVC) algorithm is to be used to create the classifi-
cation model. This is the default type of SVM used. 

float C (Input)
The regularization parameter. C must be greater than 0. By default, the penalty parameters 
are set to the regularization parameter C. The penalty parameters can be changed by scaling 
C by the values specified in weight below.

int nr_weight (Input)
The number of elements in weight and weight_class used to change the penalty 
parameters.

float weight_class[] (Input)
An array of length nr_weight containing the target classification values that are to be 
weighted.

float weight[] (Input)
An array of length nr_weight containing the weights corresponding to the target classifica-
tion values in weight_class to be used to change the penalty parameters.
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Default: C-SVC is the default SVM type used with C = 5.0, nr_weight = 0, 
weight_class = NULL, and weight = NULL.

or

IMSLS_SVM_NU_SVC_TYPE, float nu (Input)
Specifies that the ν-support vector classification (ν-SVC) algorithm is to be used to create the classifi-
cation model.

float nu (Input)
The parameter nu controls the number of support vectors and nu ∈ (0,1].

or

IMSLS_SVM_ONE_CLASS_TYPE, float nu (Input)
Specifies that the distribution estimation (one-class SVM) algorithm is to be used to create the classi-
fication model.

float nu (Input)
The parameter nu controls the number of support vectors and nu ∈ (0,1].

or

IMSLS_SVM_EPSILON_SVR_TYPE, float C, float p (Input)
Specifies that the ɛ-support vector regression (ɛ-SVM) algorithm is to be used to create the classifica-
tion model.

float C (Input)
The regularization  parameter. C must be greater than 0.

float p (Input)
The insensitivity band parameter p must be positive.

or

IMSLS_SVM_NU_SVR_TYPE, float C, float nu (Input)
Specifies that the ν-support vector regression (ν-SVR) algorithm is to be used to create the classifica-
tion model.

float C (Input)
The regularization  parameter. C must be greater than 0.

float nu (Input)
The parameter nu controls the number of support vectors and nu ∈ (0,1].

IMSLS_SVM_WORK_ARRAY_SIZE, float work_size  (Input)
This work array size argument sets the number of megabytes allocated for the work array used 
during the decomposition method. A larger work array size can reduce the computational time of the 
decomposition method. 
Default: work_size = 1.0.
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IMSLS_SVM_EPSILON, float epsilon  (Input)
The absolute accuracy tolerance for termination criterion. The algorithm uses the SMO algorithm in 
solving the optimization problem. When the Lagrange multipliers used in the SMO algorithm satisfy 
the Karush-Kuhn-Tucker (KKT) conditions within epsilon, convergence is assumed.
Default: epsilon = 0.001.

IMSLS_SVM_NO_SHRINKING, (Input)
Use of this argument specifies that the shrinking technique is not to be used in the SMO algorithm. 
The shrinking technique tries to identify and remove some bounded elements during the application 
of the SMO algorithm, so a smaller optimization problem is solved. 
Default: Shrinking is performed.

IMSLS_SVM_TRAIN_ESTIMATE_PROB, (Input)
Instructs the trainer to include information in the resultant classifier model to enable you to obtain 
probability estimates when invoking imsls_f_support_vector_classification.
Default: Information necessary to obtain probability estimates is not included in the model.

IMSLS_SVM_KERNEL_LINEAR, (Input)
This argument specifies that the inner-product kernel type

K(xi , xj) = xi
Txj

is to be used. This kernel type is best used when the relation between the target classification values 
and attributes is linear or when the number of attributes is large (for example, 1000 attributes).

or

IMSLS_SVM_KERNEL_POLYNOMIAL, int degree, float gamma, float coef0 (Input)
This argument specifies that the polynomial kernel type

K(xi , xj) = (  xi
Txj + r)d

is to be used. Use this argument when the data are not linearly separable.

int degree (Input)
Parameter degree specifies the order of the polynomial kernel. degree = d in the equa-
tion above.

float gamma (Input)
Parameter gamma must be greater than 0. gamma =  in the equation above.

float coef0 (Input)
Parameter coef0 corresponds to r in the equation above.

or

IMSLS_SVM_KERNEL_RADIAL_BASIS, float gamma (Input)
This argument specifies that the radial basis function kernel type

K(xi , xj) = exp (-  ∥xi - xj∥2)

γ

γ

γ
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is to be used. Use this kernel type when the relation between the class labels and attributes is nonlin-
ear, although it can also be used when the relation between the target classification values and 
attributes is linear. This kernel type exhibits fewer numerical difficulties. If no kernel type is specified, 
this is the kernel type used.

float gamma (Input)
Parameter gamma must be greater than 0. gamma =  in the equation above.

or

IMSLS_SVM_KERNEL_SIGMOID, float gamma, float coef0 (Input)
This argument specifies that the sigmoid kernel type

K(xi , xj) = tanh(  xi
Txj + r)

is to be used.

float gamma (Input)
Parameter gamma =  in the equation above.

float coef0 (Input)
Parameter coef0 corresponds to r in the equation above.

or

IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[] (Input)
Use of this argument indicates that the kernel function values have been precomputed for the train-
ing and testing data sets. If IMSLS_SVM_KERNEL_PRECOMPUTED is used, the required argument 
x is ignored.

float kernel_values[] (Input)
An array of length n_patterns by n_patterns containing the precomputed kernel 
function values. Assume there are L training instances x1, x2, …, xL and let K(x,y) be the kernel 
function value of two instances x and y. Row i of the testing or training data set would be rep-
resented by K(xi,x1) K(xi,x2)…K(xi,xL). All kernel function values, including zeros, must be 
provided.

Default: IMSLS_SVM_KERNEL_RADIAL_BASIS, gamma = 1.0/n_attributes
IMSLS_SVM_CROSS_VALIDATION, int n_folds, float **target, float *result (Input/Output)

Conducts cross validation on n_folds folds of the data. 
imsls_f_random_uniform_discrete is used during the cross validation step. See the 
Description section for more information on cross validation. See the Usage Notes in Chapter 12, 
“Random Number Generation” for instructions on setting the seed to the random number generator if 
different seeds are desired.

 int n_folds (Input)
The number of folds of the data to be used in cross validation. n_folds must be greater 
than 1 and less than n_patterns.

γ

γ

γ
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float **target (Output)
The address of a pointer to an array of length n_patterns containing the predicted labels

float *result (Output)
If the SVM type used is SVR, result contains the mean squared error. For all other SVM 
types result  contains the accuracy percentage.
Default: Cross validation is not performed.

IMSLS_SVM_CROSS_VALIDATION_USER, int n_folds,  float target[], float *result 
(Input/Output)
Storage for array target is provided by the user. See IMSLS_SVM_CROSS_VALIDATION for a 
description.

Description
Function imsls_f_support_vector_trainer trains an SVM classifier for classifying data into one of 
n_classes target classes. There are several SVM formulations that are supported through the optional argu-
ments for classification, regression, and distribution estimation. The C-support vector classification (C-SVC) is the 
fundamental algorithm for the SVM optimization problem and its primal form is given as

Where (xi, yi) are the instance-label pairs for a given training set, where l is the number of training examples, and 

xi ∈ Rn and yi ∈ {1,-1}.  ξi are the slack variables in optimization and is an upper bound on the number of errors. 

The regularization parameter  C > 0 acts as a tradeoff parameter between error and margin. This is the default 
algorithm used and can be controlled through the use of the IMSLS_SVM_C_SVC_TYPE optional argument.

The ν-support vector classification (ν-SVC) algorithm presents a new parameter ν ∈ (0,1] which acts as an upper 
bound on the fraction of training errors and a lower bound on the fraction of support vectors.  The use of this 
algorithm is triggered through the use of the IMSLS_SVM_NU_SVC_TYPE optional arguement. The primal 
optimization problem for the binary variable y ∈ {1,-1} is

min
w,b,ξ

1
2w
Tw + C∑

i=1

l
ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, … , l

min
w,b,ξ,ρ

1
2w
Tw − υρ + 1l ∑

i=1

l
ξi

subject to yi(w
Tϕ (xi) + b) ≥ ρ − ξi,

ξi ≥ 0, i = 1, … , l, ρ ≥ 0
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The one-class SVM algorithm estimates the support of a high-dimensional distribution without any class informa-
tion. Control of this algorithm is through the use of the IMSLS_SVM_ONE_CLASS_TYPE optional argument. 
The primal problem of one-class SVM is

If zi is the target output and given the parameters C > 0, ɛ > 0, the standard form of ɛ-support vector regression 

(ɛ-SVR) is

where the two slack variables ξi and ξi
* are introduced, one for exceeding the target value by more than ɛ and 

the other for being more than ɛ below the target. The use of this algorithm is triggered through the use of the 
IMSLS_SVM_EPSILON_SVR_TYPE optional argument.

Similar to ν-SVC, in ν-support vector regression (ν-SVR) the parameter ν ∈ (0,1] controls the number of support 
vectors. Use IMSLS_SVM_NU_SVR_TYPE to trigger this algorithm. The ν-SVR primal problem is

The decomposition method used to solve the dual formulation of these primal problems is an SMO-type 
(sequential minimal optimization) decomposition method proposed by Fan et. al. (2005).

min
w,ξ,ρ

1
2w
Tw − ρ + 1

υl ∑
i=1

l
ξi

subject to wTϕ (xi) ≥ ρ − ξi,
ξi ≥ 0, i = 1, … , l

min
w,b,ξ,ξ*

1
2w
Tw + C∑

i=1

l
ξi + C∑

i=1

l
ξi
*

subject to wTϕ(xi) + b − zi ≤ ɛ + ξi,

zi − w
Tϕ(xi) − b ≤ ɛ + ξi

*,

ξi,ξi
* ≥ 0, i = 1, … , l

min
w,b,ξ,ξ*,ɛ

1
2w
Tw + C(νɛ + 1l ∑

i=1

l
(ξi + ξi

*))

subject to (wTϕ(xi) + b) − zi ≤ ɛ + ξi,

zi − (w
Tϕ(xi) + b) ≤ ɛ + ξi

*,

ξi,ξi
* ≥ 0, i = 1, … , l, ɛ ≥ 0
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The IMSLS_SVM_CROSS_VALIDATION optional argument allows one to estimate how accurately the result-
ing training model will perform in practice. The cross validation technique partitions the training data into 
n_folds complementary subsets. Each of the subsets is subsequently used in training and validated against 
the remaining subsets. The validation results of the rounds are then averaged. The result is usually a good indica-
tor of how the trained model will perform on unclassified data.

Function imsls_f_support_vector_trainer is based on LIBSVM, Copyright (c) 2000-2013, with permis-
sion from the authors, Chih-Chung Chang and Chih-Jen Lin, with the following disclaimer:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS 
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

In this example, we use a subset of the Fisher Iris data to train the classifier. The default values of 
imsls_f_support_vector_trainer are used in the training. The resultant classifier model, stored in 
svm_classifier, is then used as input to imsls_f_support_vector_classification to classify all of 
the patterns in the Fisher Iris data set. Results of the classification are then printed. In the Fisher Iris data set, the 
first column is the target classification value, 1=Setosa, 2=Versicolour, and 3=Virginica. Columns 2 through 5 con-
tain the attributes sepal length, sepal width, petal length, and petal width.

#include <imsls.h>
#include <stdio.h>
int main()
{
    int i, ii, j, jj, k, kk, method=1;
    int n_patterns       =150;   /* 150 total patterns               */
    int n_patterns_train  =30;   /* 30 training patterns             */
    int n_attributes       =4;   /* four attributes                  */
    int n_classes          =3;   /* three classification categories  */
    int *class_errors=NULL;
    float classification[150], *predictedClass=NULL, *xx=NULL;
    float x[150*4], training_data[30*4], training_classification[150];
    float *irisData=NULL;       /* Fishers Iris Data */
    float real_min=0.0, real_max=10.0, target_min=0.0, target_max=1.0;
    char *classLabel[] = {"Setosa     ", "Versicolour", "Virginica  "};
    char dashes[] = {
1770



 Data Mining         support_vector_trainer
        "--------------------------------------------------------------"
    };
    char wspace[] = {" "};
    Imsls_f_svm_model *svm_classifier=NULL;
    /* irisData[]:  The raw data matrix.  This is a 2-D matrix with 150   */
    /*              rows and 5 columns. The first column is the target    */
    /*              classification value (1-3), and the last 4 columns    */
    /*              are the continuous input attributes. These data       */
    /*              contain no categorical input attributes.              */
    irisData = imsls_f_data_sets(3,0);
    /* Data corrections described in the KDD data mining archive     */
    irisData[5*34+4] = 0.1;
    irisData[5*37+2] = 3.1;
    irisData[5*37+3] = 1.5;
    /* Set up the required input arrays from the data matrix */
    for(i=0; i<n_patterns; i++){
        classification[i] =  irisData[i*5];
        for(j=1; j<=n_attributes; j++) {
            x[i*n_attributes+j-1] = irisData[i*5+j];
        }
    }
    /* Scale the data */
    xx = imsls_f_scale_filter(n_attributes*n_patterns, x, method,
        IMSLS_SCALE_LIMITS, real_min, real_max, target_min, target_max,
        0);
    /*  Use a subset of the data for training */
    ii = 0;
    jj = 0;
    printf("     The Input Classification and Training Data \n\n\n");
    printf("Classification      Sepal     Sepal     Petal     Petal\n");
    printf("    Value           Length    Width     Length    Width\n\n");
    for(i=0;i<3;i++){
        kk = 0;
        for(j=0;j<10;j++){
            training_classification[ii] = classification[(i*50)+j];
            printf("  %8.4f        ", training_classification[ii]);
            ii++;
            for(k=0; k<4; k++){
                training_data[jj] = xx[(i*200)+kk++];
                printf("%8.4f  ", training_data[jj]);
                jj++;
            }
            printf("\n");
        }
    }
    /* Train with the training data */
    svm_classifier = imsls_f_support_vector_trainer(
        n_patterns_train, n_classes, n_attributes, 
        training_classification, training_data, 0);
    /* Classify the entire test set */
    predictedClass = imsls_f_support_vector_classification(
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        svm_classifier, n_patterns, xx,
        IMSLS_CLASS_ERROR, classification, &class_errors,
        0);
    printf("\n\n\n     Some Output Classifications\n\n");
    printf("Pattern       Predicted           Actual\n");
    printf("Number      Classification     Classification\n\n");
    for (i = 0; i < 10; i++) {
        printf("%2s%d%10s%8.4f%11s%8.4f\n\n",wspace,i,wspace,
            predictedClass[i],wspace,classification[i]);
    }
    printf("\n\n     Iris Classification Error Rates\n");
    printf("%s\n",dashes);
    printf("   Setosa  Versicolour  Virginica   |   TOTAL\n");
    printf("    %d/%d      %d/%d         %d/%d     |   %d/%d\n", 
        class_errors[0], class_errors[1], 
        class_errors[2], class_errors[3], class_errors[4], 
        class_errors[5], class_errors[6], class_errors[7]);
    printf("%s\n\n", dashes);
    if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
    if (predictedClass) imsls_free(predictedClass);
    if (class_errors) imsls_free(class_errors);
    if (irisData) imsls_free(irisData);
    if (xx) imsls_free(xx);
}

Output

   The Input Classification and Training Data
Classification       Sepal     Sepal     Petal     Petal
       Value           Length    Width     Length    Width
       1.0000          0.5100    0.3500    0.1400    0.0200
       1.0000          0.4900    0.3000    0.1400    0.0200
       1.0000          0.4700    0.3200    0.1300    0.0200
       1.0000          0.4600    0.3100    0.1500    0.0200
       1.0000          0.5000    0.3600    0.1400    0.0200
       1.0000          0.5400    0.3900    0.1700    0.0400
       1.0000          0.4600    0.3400    0.1400    0.0300
       1.0000          0.5000    0.3400    0.1500    0.0200
       1.0000          0.4400    0.2900    0.1400    0.0200
       1.0000          0.4900    0.3100    0.1500    0.0100
       2.0000          0.7000    0.3200    0.4700    0.1400
       2.0000          0.6400    0.3200    0.4500    0.1500
       2.0000          0.6900    0.3100    0.4900    0.1500
       2.0000          0.5500    0.2300    0.4000    0.1300
       2.0000          0.6500    0.2800    0.4600    0.1500
       2.0000          0.5700    0.2800    0.4500    0.1300
       2.0000          0.6300    0.3300    0.4700    0.1600
       2.0000          0.4900    0.2400    0.3300    0.1000
       2.0000          0.6600    0.2900    0.4600    0.1300
       2.0000          0.5200    0.2700    0.3900    0.1400
       3.0000          0.6300    0.3300    0.6000    0.2500
       3.0000          0.5800    0.2700    0.5100    0.1900
       3.0000          0.7100    0.3000    0.5900    0.2100
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       3.0000          0.6300    0.2900    0.5600    0.1800
       3.0000          0.6500    0.3000    0.5800    0.2200
       3.0000          0.7600    0.3000    0.6600    0.2100
       3.0000          0.4900    0.2500    0.4500    0.1700
       3.0000          0.7300    0.2900    0.6300    0.1800
       3.0000          0.6700    0.2500    0.5800    0.1800
       3.0000          0.7200    0.3600    0.6100    0.2500

   Some Output Classifications
Pattern          Predicted           Actual
Number         Classification      Classification
  0              1.0000             1.0000
  1              1.0000             1.0000
  2              1.0000             1.0000
  3              1.0000             1.0000
  4              1.0000             1.0000
  5              1.0000             1.0000
  6              1.0000             1.0000
  7              1.0000             1.0000
  8              1.0000             1.0000
  9              1.0000             1.0000
     Iris Classification Error Rates
--------------------------------------------------------------
   Setosa  Versicolour  Virginica   |   TOTAL
    0/50      4/50         5/50     |   9/150
-------------------------------------------------------------- 

Example 2

In this example we use a subset of the Fisher Iris data to train the classifier and use the cross-validation option 
with various combinations of C and gamma to find a combination which yields the best results on the training 
data. The best combination of C and gamma are then used to get the classification model, stored in 
svm_classifier. This model is then used as input to imsls_f_support_vector_classification to 
classify all of the patterns in the Fisher Iris data set. Results of the classification are then printed.

#include <imsls.h>
#include <stdio.h>
int main()
{
    int i, ii, j, jj, k, kk, method=1;
    int n_patterns_train    =30; /* 30 training patterns             */
    int n_patterns         =150; /* 150 total patterns               */
    int n_attributes       =4;   /* four attributes                  */
    int n_classes          =3;   /* three classification categories  */
    int nr_weight          =0;
    int n_folds            =3;
    int degree=0;
    int *class_errors=NULL;
    float C, gamma, coef0=0.0, best_accuracy, best_C, best_gamma, result;
    float *weight_class=NULL;
1773



 Data Mining         support_vector_trainer
    float *weight=NULL;
    float classification[150], *predictedClass=NULL, *xx=NULL;
    float x[150*4], training_data[150*4];
    float training_classification[30];
    float *irisData=NULL;       /* Fishers Iris Data */
    float *target=NULL;
    float real_min=0.0, real_max=10.0, target_min=0.0, target_max=1.0;
    char *classLabel[] = {"Setosa     ", "Versicolour", "Virginica  "};
    char dashes[] = {
        "--------------------------------------------------------------"
    };
    Imsls_f_svm_model *svm_classifier=NULL;
    /* irisData[]:  The raw data matrix.  This is a 2-D matrix with 150   */
    /*              rows and 5 columns. The first column is the target    */
    /*              classification value (1-3), and the last 4 columns    */
    /*              are the continuous input attributes. These data       */
    /*              contain no categorical input attributes.              */
    irisData = imsls_f_data_sets(3,0);
    /* Data corrections described in the KDD data mining archive     */
    irisData[5*34+4] = 0.1;
    irisData[5*37+2] = 3.1;
    irisData[5*37+3] = 1.5;
    /* Set up the required input arrays from the data matrix */
    for(i=0; i<n_patterns; i++){
        classification[i] =  irisData[i*5];
        for(j=1; j<=n_attributes; j++) {
            x[i*n_attributes+j-1] = irisData[i*5+j];
        }
    }
    /* Scale the data */
    xx = imsls_f_scale_filter(n_attributes*n_patterns, x, method,
        IMSLS_SCALE_LIMITS, real_min, real_max, target_min, target_max,
        0);
    /*  Use a subset of the data for training */
    ii = 0;
    jj = 0;
    for(i=0;i<3;i++){
        kk = 0;
        for(j=0;j<10;j++){
            training_classification[ii++] = classification[(i*50)+j];
            for(k=0; k<4; k++){
                training_data[jj] = xx[(i*200)+kk];
                kk++;
                jj++;
            }
        }
    }
    C = 2.0;
    /*  Try different combinations of C and gamma to settle on model parameters */
    best_accuracy = 0.0;
    best_C = 0.0;
    best_gamma = 0.0;
    for(i=0;i<10;i++){
        gamma = .1;
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        for(j=0;j<5;j++){
            svm_classifier = imsls_f_support_vector_trainer(
                n_patterns_train, n_classes, n_attributes, training_classification,   
                training_data,
                IMSLS_SVM_C_SVC_TYPE, C, nr_weight, weight_class, weight,
                IMSLS_SVM_KERNEL_RADIAL_BASIS, gamma,
                IMSLS_SVM_CROSS_VALIDATION, n_folds, &target, &result,
                0);
            if(result > best_accuracy){
                best_accuracy = result;
                best_C = C;
                best_gamma = gamma;
            }
            gamma = gamma*2.0;
            imsls_f_svm_classifier_free(svm_classifier);
            if(target) imsls_free(target);
        }
        C = C*2.0;
    }
    /* Train with the best resultant parameters */
    svm_classifier = imsls_f_support_vector_trainer(
        n_patterns_train, n_classes, n_attributes, training_classification, 
        training_data, 
        IMSLS_SVM_C_SVC_TYPE, best_C, nr_weight, weight_class, weight,
        IMSLS_SVM_KERNEL_RADIAL_BASIS, best_gamma,
        0);
    /* Call SUPPORT_VECTOR_CLASSIFICATION on the entire test set */
    predictedClass = imsls_f_support_vector_classification(
        svm_classifier, n_patterns, xx,
        IMSLS_CLASS_ERROR, classification, &class_errors,
        0);
    printf("     Iris Classification Error Rates\n");
    printf("%s\n",dashes);
    printf("   Setosa  Versicolour  Virginica   |   TOTAL\n");
    printf("    %d/%d      %d/%d         %d/%d     |   %d/%d\n", 
        class_errors[0], class_errors[1], 
        class_errors[2], class_errors[3], class_errors[4], 
        class_errors[5], class_errors[6], class_errors[7]);
    printf("%s\n\n", dashes);
    if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
    if (predictedClass) imsls_free(predictedClass);
    if (class_errors) imsls_free(class_errors);
    if (irisData) imsls_free(irisData);
    if (xx) imsls_free(xx);
}

Output

     Iris Classification Error Rates
--------------------------------------------------------------
  Setosa Versicolour Virginica  |  TOTAL
   0/50     1/50        3/50    |  4/150
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Example 3

One thousand uniform deviates from a uniform distribution are used in the training data set of this example. 
IMSLS_SVM_ONE_CLASS_TYPE is used to produce the model during training. A test data set of one hundred 
uniform deviates is produced and contaminated with ten normal deviates. 
imsls_f_support_vector_classification is then called in an attempt to pick out the contaminated data 
in the test data set. The suspect observations are printed.

#include <stdio.h>
#include <imsls.h>
#define N_PATTERNS_TRAIN   1000
#define N_PATTERNS_TEST    100
#define N_PATTERNS_TEN     10
#define N_CLASSES   1
#define N_ATTRIBUTES  1
int main()
{
    int i;
    float *target=NULL;
    float classification_train[N_PATTERNS_TRAIN];
    float classification_test[N_PATTERNS_TEST];
    float *x_train;
    float *x_test;
    float *x_test_contaminant;
    Imsls_f_svm_model *svm_classifier=NULL;
    /* Create the training set from a uniform distribution */
    imsls_random_seed_set(123457);
    x_train = imsls_f_random_uniform(N_PATTERNS_TRAIN, 0);
    for(i=0;i<N_PATTERNS_TRAIN;i++)
        classification_train[i] = 1.0;
    svm_classifier = imsls_f_support_vector_trainer(N_PATTERNS_TRAIN, N_CLASSES, 
        N_ATTRIBUTES, classification_train, x_train,
        IMSLS_SVM_ONE_CLASS_TYPE, .001,
        0);
    /* Create a testing set from a uniform distribution */
    x_test = imsls_f_random_uniform(N_PATTERNS_TEST, 0);
    for(i=0;i<N_PATTERNS_TEST;i++)
        classification_test[i] = 1.0;
    /* Contaminate the testing set with deviates from a normal distribution */
    x_test_contaminant = imsls_f_random_normal(N_PATTERNS_TEN,
        IMSLS_MEAN, .1,
        IMSLS_VARIANCE, .2,
        0);
    for(i=0;i<N_PATTERNS_TEN;i++)
        x_test[i*10] = x_test_contaminant[i];
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    target = imsls_f_support_vector_classification(svm_classifier, 
        N_PATTERNS_TEST, x_test, 0);
    printf("\n\n\n                       Classification Results \n\n");
    for(i=0; i<N_PATTERNS_TEST; i++){
        if (target[i]!=1.0){
            printf("The %d-th observation may not to belong to the",i);
            printf(" target distribution.\n");
        }
    }
    if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
    if (target) imsls_free(target);
    if (x_train) imsls_free(x_train);
    if (x_test) imsls_free(x_test);
    if (x_test_contaminant) imsls_free(x_test_contaminant);
}

Output

                  Classification Results
The 0-th observation may not belong to the target distribution.
The 20-th observation may not belong to the target distribution.
The 30-th observation may not belong to the target distribution.
The 40-th observation may not belong to the target distribution.
The 60-th observation may not belong to the target distribution.
The 70-th observation may not belong to the target distribution.

Example 4

This example uses IMSLS_SVM_NU_SVR_TYPE to create a regression model which is used by 
imsls_f_support_vector_classification in an attempt to predict values in the test data set. The pre-
dicted values are printed.

#include <stdio.h>
#include <imsls.h>
#define N_PATTERNS_TRAIN   10
#define N_PATTERNS_TEST    4
#define N_CLASSES   2
#define N_ATTRIBUTES  2
int main()
{
    int    i;
    float  C=50., nu=.01, diff, mse=0.0, *target=NULL;
    float classification_train[] = {1.0,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0,2.0};
    float classification_test[]  = {1.0,1.0,2.0,2.0};
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    float x_train[] = {  0.19, 0.61,
        0.156, 0.564,
        0.224, 0.528,
        0.178, 0.51,
        0.234, 0.578,
        0.394, 0.296,
        0.478, 0.254,
        0.454, 0.294,
        0.48, 0.358,
        0.398, 0.336};
    float x_test[] = { 
        0.316, 0.556,
        0.278, 0.622,
        0.562, 0.336,
        0.522, 0.412};
        Imsls_f_svm_model *svm_classifier=NULL;
        svm_classifier = imsls_f_support_vector_trainer(N_PATTERNS_TRAIN, 
            N_CLASSES, N_ATTRIBUTES, classification_train, x_train,
            IMSLS_SVM_NU_SVR_TYPE, C, nu,
            0);
        target = imsls_f_support_vector_classification(svm_classifier, 
            N_PATTERNS_TEST, x_test, 0);
        mse = 0.0;
        printf("Predicted     Actual   Difference \n");
        for(i=0;i<N_PATTERNS_TEST;i++){
            diff = (target[i] - classification_test[i]);
            printf("%f    %f    %f \n",target[i], classification_test[i], diff);
            mse = mse + (diff*diff);
        }
        mse = mse/N_PATTERNS_TEST;
        printf("\n The Mean squared error for the predicted values is %f \n",
            mse);
        if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
        if (target) imsls_free(target);
}

Output

Predicted    Actual  Difference
1.443569   1.000000   0.443569
1.397248   1.000000   0.397248
1.648531   2.000000   -0.351469
1.598311   2.000000   -0.401689
The Mean squared error for the predicted values is 0.159861
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Warning Errors
IMSLS_OPTION_NOT_SUPPORTED The optional argument # is not supported for #.

IMSLS_LABEL_NOT_FOUND The class label # specified in “weight” not found.

IMSLS_INADEQUATE_MODEL The model used contains inadequate information to 
compute the requested probability.

IMSLS_TWO_CLASS_LINE_SEARCH The line search failed in a two-class probability esti-
mation while performing cross validation.

IMSLS_VALIDATION_MAX_ITERATIONS The maximum number of iterations was reached in 
a
#-class probability estimation while performing 
cross validation.
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support_vector_classification
Classifies unknown patterns using a previously trained Support Vector Machines (SVM) model computed by 
imsls_f_support_vector_trainer.

Synopsis
#include <imsls.h>
float *imsls_f_support_vector_classification ( Imsls_f_svm_model *svm_classifier, 

int n_patterns, float x[], …, 0)

The type double function is imsls_d_support_vector_classification.

Required Arguments
Imsls_f_ svm_model *svm_classifier (Input)

Pointer to a structure of type Imsls_f_svm_model from imsls_f_support_vector_trainer.

int n_patterns (Input)
Number of patterns to classify.

float x[] (Input)
An array of length n_patterns by n_attributes containing the data matrix where 
n_attributes is the number of attributes as specified in 
imsls_f_support_vector_trainer.

Return Value
Pointer to an array of length n_patterns containing the predicted classification associated with each input 
pattern for a classification model, or the calculated function value for a regression model. If classification is unsuc-
cessful, NULL is returned. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h> 
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float *imsls_f_support_vector_classification (Imsls_f_svm_model *svm_classifier, 
int n_patterns, float x[],

IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[],
IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob, 
IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[],
IMSLS_SVR_PROBABILITY, float *svr_probability,
IMSLS_CLASS_ERROR, float classification[], int **class_errors,
IMSLS_CLASS_ERROR_USER, float *classification, int class_errors[],
IMSLS_DECISION_VALUES, int i, float **dec_values,
IMSLS_DECISION_VALUES_USER, int i, float dec_values[],
IMSLS_RETURN_USER, float predicted_labels[],
0)

Optional Arguments
IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[] (Input)

Use of this argument indicates that the kernel function values have been precomputed for the train-
ing and testing data sets. If IMSLS_SVM_KERNEL_PRECOMPUTED is used, the required argument 
x is ignored.

float kernel_values[] (Input)
An array of length n_patterns by n_patterns containing the precomputed kernel 
function values. Assume there are L testing instances x1, x2, …, xL and let K(x,y) be the kernel 
function value of two instances x and y. Row i of the testing or training data set would be rep-
resented by K(xi,x1) K(xi,x2) … K(xi,xL). All kernel function values, including zeros, must be 
provided.

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob (Output)
The address of a pointer to an array of length n_patterns by n_classes, where n_classes is 
the number of target classifications. The values in the i-th row are the predicted classification proba-
bilities associated with the target classes. pred_class_prob[i*n_classes+j] is the 
estimated probability that the i-th pattern belongs to the j-th target class.

For regression and one-class SVMs, the array pred_class_prob is NULL. 

To release this space, use imsls_free.

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[] (Output)
Storage for array pred_class_prob is provided by the user. See 
IMSLS_PREDICTED_CLASS_PROB for a description.
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IMSLS_SVR_PROBABILITY, float *svr_probability (Output)
For a regression model with probability information, this option outputs a value σ > 0. For the test 
data, we consider the probability model as

target value = predicted value + z

where z is distributed according to Laplace with zero-mean density function p(x) = e-|x|/σ/2σ . 
svr_probability  contains σ  on output. If the model is not for SVR or does not contain the 
required probability information, 0 is returned.

IMSLS_CLASS_ERROR, float classification[], int **class_errors (Output)
Returns classification error counts.

float classification[] (Input)
An array of length n_patterns  containing the known classifications for each of the 
patterns.

int **class_errors (Output)
The address of a pointer to an array of length (n_classes+1) by 2 containing the num-
ber of classification errors and the number of non-missing classifications for each target 
classification, plus the overall totals for these errors. For i < n_classes, the i-th row con-
tains the number of classification errors for the i-th class and the number of patterns with 
non-missing classifications for that class. The last row contains the number of classification 
errors totaled over all target classifications, and the total number of patterns with non-miss-
ing target classifications. To release this space, use imsls_free.

IMSLS_CLASS_ERROR_USER, float classification[], int class_errors[] (Output)
Storage for class_errors is provided by the user. See IMSLS_CLASS_ERROR for a description.

IMSLS_DECISION_VALUES, int i, float **dec_values  (Output)
Gives decision values on row i of data matrix x. The decision values are used to predict the target 
classification value. For binary class problems, decision values are signed values used to determine 
which side of the decision boundary the observation in question lays. Recall that SVM combines mul-
tiple binary classifiers for multi-class classification. The magnitudes of the decision values are 
essentially meaningless as only the sign is used to determine whether the point is more likely to 
belong to class[i] versus class[j] (a positive value) or less likely to belong to class[i] versus class[j] (a 
negative value). See the Description section for more on how the decision values are used to predict 
the target classification value.

For a classification model with n_classes classes, this function gives n_classes*(n_classes-1)/2 decision 
values in the array dec_values. The order is class[0] vs. class[1], …, class[0] vs. class[n_classes-1], 
class[1]  vs. class[2], …, class[1] vs. class[n_classes-1], …, class[n_classes-2] vs. class[n_classes-1], where 
class contains the target classification values.

For a regression model, only 1 value is returned. dec_values[0] is the function value of row i of x 
calculated using the model.  For a one-class model, dec_values[0] is the decision value of row i 
of x. To release this space, use imsls_free
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IMSLS_DECISION_VALUES_USER, int i, float dec_values[] (Output)
Storage for array dec_values is provided by the user. See IMSLS_DECISION_VALUES for a 
description.

IMSLS_RETURN_USER, float predicted_labels[] (Output)
Storage for the return values is provided by the user in array predicted_labels. 
predicted_labels must be at least of length n_patterns.

Description
Function imsls_f_support_vector_classification  estimates classification probabilities from a pre-
viously trained SVM model.  This function does classification or regression on a test vector x using the SVM model 
output from imsls_f_support_vector_trainer. For a classification model, the predicted class for x is 
returned.  For a regression model, the function value of x calculated using the model is returned. For a one-class 
model, +1 or -1 is returned signifying that the observation belongs to (+1) or does not belong to (-1) the expected 
class. The predicted classification returned by this function is the class with the largest estimated classification 
probability. The classification probability estimates for each pattern can be obtained using the optional argument 
IMSLS_PREDICTED_CLASS_PROB.

The decision values which are returned through the use of optional argument IMSLS_DECISION_VALUES are 
used to cast votes for the target classification value. Only the sign of the decision value is used in casting votes. 
For a decision value for class[i] versus class[j], a positive value is interpreted as class[i] being more likely than 
class[j], so class[i] would get a vote. A negative value is interpreted as class[i] being less likely than class[j], so 
class[j] would get a vote. The votes along a row of decision values are tallied to elect the class with the most votes 
as the target classification value. In case of a tie, the first class encountered with the highest number of votes in a 
row of decision  values is the predicted class for that row.

Function imsls_f_support_vector_classification is based on LIBSVM, Copyright (c) 2000-2013, 
with permission from the authors, Chih-Chung Chang and Chih-Jen Lin with the following disclaimer:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS 
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Examples
See Examples in imsls_f_support_vector_trainer.

Warning Errors
IMSLS_INADEQUATE_MODEL The model used contains inadequate information to 

compute the requested probability.
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svm_classifier_free
Frees memory allocated to an Imsls_f_svm_model data structure.

Synopsis
#include <imsls.h>
void imsls_f_svm_classifier_free ( Imsls_f_svm_model *svm_classifier)

The type double function is imsls_d_svm_classifier_free.

Required Arguments
Imsls_f_svm_model *svm_classifier (Input)

Pointer to a structure of the type Imsls_f_svm_model from imsls_f_support_vector_trainer.

Description
An Imsls_f_svm_model data structure is created by imsls_f_support_vector_trainer. Function 
imsls_f_svm_classifier_free is used to free the memory allocated to this structure when the struc-
ture is no longer needed.
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Printing Functions

Functions

Print a matrix or vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . write_matrix     1787
Set the page width and length  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page     1794
Set the printing options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . write_options     1796
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write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis
#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[], …, 0)

For int a[], use imsls_i_write_matrix. 

For double a[], use imsls_d_write_matrix.

Required Arguments
char *title  (Input)

Matrix title. Use \n within a title to create a new line. Long titles are automatically wrapped.

int nra  (Input)
Number of rows in the matrix.

int nca  (Input)
Number of columns in the matrix.

float a[]  (Input)
Array of size nra × nca containing the matrix to be printed.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[],

IMSLS_TRANSPOSE,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
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IMSLS_PRINT_UPPER_NO_DIAG,
IMSLS_WRITE_FORMAT, char *fmt,
IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or
IMSLS_ROW_NUMBER_ZERO, or
IMSLS_ROW_LABELS, char *rlabel[],
IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[],
0)

Optional Arguments
IMSLS_TRANSPOSE,  (Input)

Print aT.

IMSLS_A_COL_DIM, int a_col_dim  (Input)
Column dimension of a.

Default: a_col_dim = nca
IMSLS_PRINT_ALL, 

or

IMSLS_PRINT_LOWER, 

or

IMSLS_PRINT_UPPER, 

or

IMSLS_PRINT_LOWER_NO_DIAG, 

or
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IMSLS_PRINT_UPPER_NO_DIAG
Exactly one of these optional arguments can be specified to indicate that either a triangular part of 
the matrix or the entire matrix is to be printed. If omitted, the entire matrix is printed.

Default: IMSLS_PRINT_ALL.

IMSLS_WRITE_FORMAT, char *fmt  (Input)
Character string containing a list of C conversion specifications (formats) to be used when printing 
the matrix. Any list of C conversion specifications suitable for the data type can be given. For exam-
ple, fmt = "%10.3f" specifies the conversion character f for the entire matrix. For the conversion 
character f, the matrix must be of type float or double. 
Alternatively,fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the conversion charac-
ter e for columns 1 and 2 and the conversion character f for columns 3, 4, and 5. If the end of fmt is 
encountered and if some columns of the matrix remain, format control continues with the first con-
version specification in fmt.

Aside from restarting the format from the beginning, other exceptions to the usual C formatting rules 
are as follows:

Characters not associated with a conversion specification are not allowed. For example, in the format 
fmt = "1%d2%d", the characters 1 and 2 are not allowed and result in an error.

A conversion character d can be used for floating-point values (matrices of type float or double). The 
integer part of the floating-point value is printed.

For printing numbers whose magnitudes are unknown, the conversion character g is useful; how-
ever, the decimal points will generally not be aligned when printing a column of numbers. The w (or 
W) conversion character is a special conversion character used by this function to select a conversion 
specification so that the decimal points will be aligned. The conversion specification ending with w is 
specified as "%n.dw". Here, n is the field width and d is the number of significant digits generally 
printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2, …, n − 2. If fmt specifies one con-
version specification ending with w, all elements of a are examined to determine one conversion 
specification for printing. If fmt specifies more than one conversion specification, separate conver-

Keyword Action

IMSLS_PRINT_ALL Entire matrix is printed (the default).

IMSLS_PRINT_LOWER Lower triangle of the matrix is printed, 
including the diagonal.

IMSLS_PRINT_UPPER Upper triangle of the matrix is printed, 
including the diagonal.

IMSLS_PRINT_LOWER_NO_DIAG Lower triangle of the matrix is printed, 
without the diagonal.

IMSLS_PRINT_UPPER_NO_DIAG Upper triangle of the matrix is printed, 
without the diagonal.
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sion specifications are generated for each conversion specification ending with w. Set 
fmt = "10.4w" for a single conversion specification selected automatically with field width 10 and 
with four significant digits.

IMSLS_NO_ROW_LABELS,  (Input)
Indicates that no row labels are used.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the 
row labels whenever nra > 1. If nra = 1, the default is no row labels.

or

IMSLS_ROW_NUMBER,  (Input)
Indicates the numbers 1, 2, 3, …, nra are used for the row labels. 

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the 
row labels whenever nra > 1. If nra = 1, the default is no row labels.

or

IMSLS_ROW_NUMBER_ZERO,  (Input)
Indicates the numbers 1, 2, 3, …, nra-1 are used for the row labels. 

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the 
row labels whenever nra > 1. If nra = 1, the default is no row labels.

or

IMSLS_ROW_LABELS, char *rlabel[]  (Input)
Indicates rlabel is a vector of length nra containing pointers to the character strings comprising 
the row labels. Here, nra is the number of rows in the printed matrix. Use \n within a label to create 
a new line. Long labels are automatically wrapped.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the 
row labels whenever nra > 1. If nra = 1, the default is no row labels.

IMSLS_NO_COL_LABELS,   (Input)
Indicates that no column labels are used.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the 
column labels whenever nca > 1. If nca = 1, the default is no column labels.

or

IMSLS_COL_NUMBER,   (Input)
Indicates the numbers 1, 2, 3, …, nca are used for the column labels. 
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Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the 
column labels whenever nca > 1. If nca = 1, the default is no column labels.

or

IMSLS_COL_NUMBER_ZERO,   (Input)
Indicates the numbers 1, 2, 3, …, nca-1 are used for the column labels. 

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the 
column labels whenever nca > 1. If nca = 1, the default is no column labels.

or

IMSLS_COL_LABELS, char *clabel[]  (Input)
Indicates clabel is a vector of length nca + 1 containing pointers to the character strings compris-
ing the column headings. The heading for the column labels is clabel [0]; clabel [i], 
i = 1, …, nca, is the heading for the i-th column. Use \n within a label to create a new line. Long 
labels are automatically wrapped.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the 
column labels whenever nca > 1. If nca = 1, the default is no column labels.

Description
Function imsls_write_matrix prints a real rectangular matrix (stored in a) with optional row and column 

labels (specified by rlabel and clabel, respectively, regardless of whether a or aT is printed). An optional for-
mat, fmt, can be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the upper or lower triangles of a 
matrix by using the IMSLS_PRINT_UPPER, IMSLS_PRINT_LOWER, IMSLS_PRINT_UPPER_NO_DIAG, 
and IMSLS_PRINT_LOWER_NO_DIAG options. Generally, these options are used with symmetric matrices, 
but this is not required. Vectors can be printed by specifying a row or column dimension of 1.

Output is written to the file specified by the function imsls_output_file (Chapter 15, Utilities). The default 
output file is standard output (corresponding to the file pointer stdout). A page width of 78 characters is used. 
Page width and page length can be reset by invoking function imsls_page.

Horizontal centering, the method for printing large matrices, paging, the method for printing NaN (Not a Num-
ber), and whether or not a title is printed on each page can be selected by invoking function 
imsls_write_options.
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Examples 

Example 1

This example is representative of the most common situation in which no optional arguments are given.

#include <imsls.h>
#define NRA 3
#define NCA 4
int main()
{
   int    i, j;
   float  a[NRA][NCA];
   for (i = 0; i < NRA; i++) {
       for (j = 0; j < NCA; j++) {
           a[i][j] = (i+1+(j+1)*0.1);
       }
   }
                               /* Write matrix */
   imsls_f_write_matrix ("matrix\na", NRA, NCA, (float*) a, 0);
}

Output

                    Matrix
                       A
           1          2          3          4
1        1.1        1.2        1.3        1.4
2        2.1        2.2        2.3        2.4
3        3.1        3.2        3.3        3.4

Example 2

In this example, some of the optional arguments available in the imsls_write_matrix functions are 
demonstrated.

#include <imsls.h>
#define NRA    3
#define NCA    4
int main()
{
   int        i, j;
   float      a[NRA][NCA];
   char       *fmt = "%10.6W";
   char       *rlabel[] = {"row 1", "row 2", "row 3"};
   char       *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};
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   for (i = 0; i < NRA; i++) {
       for (j = 0; j < NCA; j++) {
           a[i][j] = (i+1+(j+1)*0.1);
       }
   }
                               /* Write matrix */
   imsls_f_write_matrix ("matrix\na", NRA, NCA, (float *)a, 
       IMSLS_WRITE_FORMAT, fmt, 
       IMSLS_ROW_LABELS, rlabel, 
       IMSLS_COL_LABELS, clabel, 
       IMSLS_PRINT_UPPER_NO_DIAG,
       0);
}

Output

                      Matrix
                         a
           col 2      col 3      col 4
row 1        1.2        1.3        1.4
row 2                   2.3        2.4
row 3                              3.4

Example 3

In this example, a row vector of length four is printed.

#include <imsls.h>
#define NRA 1
#define NCA 4
int main()
{
   int        i;
   float      a[NCA];
   char       *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};
   for (i = 0; i < NCA; i++) {  
   a[i] = i + 1;
  }
                               /* Write matrix */
   imsls_f_write_matrix ("matrix\na", NRA, NCA, a, 
       IMSLS_COL_LABELS, clabel,
       0);
}

Output
                   Matrix
                      a
    col 1      col 2      col 3      col 4
        1          2          3          4
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page
Sets or retrieves the page width or length.

Synopsis
#include <imsls.h>
void imsls_page (Imsls_page_options option, int *page_attribute)

Required Arguments
Imsls_page_options option  (Input)

Option giving which page attribute is to be set or retrieved. Possible values are shown below.

int *page_attribute  (Input, if the attribute is set; Output, otherwise.)
The value of the page attribute to be set or retrieved. The page width is the number of characters per 
line of output (default 78), and the page length is the number of lines of output per page (default 60). 
Ten or more characters per line and 10 or more lines per page are required.

Example
The following example illustrates the use of imsls_page to set the page width to 40 characters. Function 
imsls_f_write_matrix is then used to print a 3 × 4 matrix A, where aij = i + j/10.

#include <imsls.h>
#define NRA 3
#define NCA 4
int main()
{
   int        i, j, page_attribute;
   float      a[NRA][NCA];

Keyword Description

IMSLS_SET_PAGE_WIDTH Sets the page width.

IMSLS_GET_PAGE_WIDTH Retrieves the page width.

IMSLS_SET_PAGE_LENGTH Sets the page length.

IMSLS_GET_PAGE_LENGTH Retrieves the page length.
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   for (i = 0; i < NRA; i++) {
       for (j = 0; j < NCA; j++) {
           a[i][j] = (i+1) + (j+1)/10.0;
       }
   }
   page_attribute = 40;
   imsls_page(IMSLS_SET_PAGE_WIDTH, &page_attribute);
   imsls_f_write_matrix("a", NRA, NCA, (float *)a, 
   0);
}

Output

                 a
           1          2          3
1        1.1        1.2        1.3
2        2.1        2.2        2.3
3        3.1        3.2        3.3
           4
1        1.4
2        2.4
3        3.4
1795



 Printing Functions         write_options
write_options
Sets or retrieves an option for printing a matrix.

Synopsis
#include <imsls.h>
void imsls_write_options (Imsls_write_options option, int *option_value)

Required Arguments
Imsls_write_options option  (Input)

Option giving the type of the printing attribute to set or retrieve.

int *option_value  (Input, if option is to be set; Output, otherwise)
Value of the option attribute selected by option. The values to be used when setting attributes are 
described in a table in the description section.

Description
Function imsls_write_options allows the user to set or retrieve an option for printing a matrix. Options 
controlled by imsls_write_options are horizontal centering, method for printing large matrices, paging, 
method for printing NaN, method for printing titles, and the default format for real and complex numbers. (NaN 
can be retrieved by functions imsls_f_machine and imsls_d_machine (Chapter 15, Utilities). 

Keyword for Setting Keyword for Retrieving Attribute Description

IMSLS_SET_DEFAULTS uses the default settings 
for all parameters

IMSLS_SET_CENTERING IMSLS_GET_CENTERING horizontal centering

IMSLS_SET_ROW_WRAP IMSLS_GET_ROW_WRAP row wrapping

IMSLS_SET_PAGING IMSLS_GET_PAGING paging

IMSLS_SET_NAN_CHAR IMSLS_GET_NAN_CHAR method for printing NaN

IMSLS_SET_TITLE_PAGE IMSLS_GET_TITLE_PAGE whether or not titles 
appear on each page

IMSLS_SET_FORMAT IMSLS_GET_FORMAT default format for real and 
complex numbers
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The following values can be used for the attributes:

The w conversion character used by the FORMAT option is a special conversion character that can be used to 
automatically select a pretty C conversion specification ending in either e, f, or d. The conversion specification 
ending with w is specified as "%n.dw". Here, n is the field width, and d is the number of significant digits gener-
ally printed.

Keyword Value Meaning

CENTERING 0

1

Matrix is left justified.
Matrix is centered.

ROW_WRAP 0

m

Complete row is printed before the next row is printed. Wrapping is used 
if necessary.

Here, m is a positive integer. Let n1 be the maximum number of columns 
that fit across the page, as determined by the widths in the conversion 
specifications starting with column 1. First, columns 1 through n1 are 
printed for rows 1 through m. Let n2 be the maximum number of columns 
that fit across the page, starting with column n1+1. Second, columns n1+1 
through n1+n2 are printed for rows 1 through m. This continues until the 
last columns are printed for rows 1 through m. Printing continues in this 
fashion for the next m rows, etc.

PAGING -2

-1

0

k

No paging occurs.

Paging is on. Every invocation of an function imsls_write_matrix 
begins on a new page, and paging occurs within each invocation as is 
needed.

Paging is on. The first invocation of an imsls_f_write_f_matrix func-
tion begins on a new page, and subsequent paging occurs as is needed. 
Paging occurs in the second and all subsequent calls to an 
imsls_f_write_matrix function only as needed.

Turn paging on and set the number of lines printed on the current page to 
k lines. If k is greater than or equal to the page length, then the first invo-
cation of an imsls_write_matrix function begins on a new page. In any 
case, subsequent paging occurs as is needed.

NAN_CHAR 0

1

. . . . . . . . . . is printed for NaN.
A blank field is printed for NaN.

TITLE_PAGE 0

1

Title appears only on first page.
Title appears on the first page and all continuation pages.

FORMAT 0

1

2

Format is "%10.4x".
Format is "%12.6w".
Format is "%22.5e".
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Function imsls_write_options can be invoked repeatedly before using a function 
imsls_f_write_matrix to print a matrix. The matrix printing functions retrieve the values set by 
imsls_write_options to determine the printing options. It is not necessary to call 
imsls_write_options if a default value of a printing option is desired. The defaults are as follows:

Example
The following example illustrates the effect of imsls_write_options when printing a 3 × 4 real matrix A 
with function imsls_f_write_matrix, where aij = i + j/10. The first call to imsls_write_options sets 

horizontal centering so that the matrix is printed centered horizontally on the page. In the next invocation of 
imsls_f_write_matrix, the left-justification option has been set by function imsls_write_options so 
the matrix is left justified when printed.

#include <imsls.h>
#define NRA 4
#define NCA 3
int main()
{
   int        i, j, option_value;
   float      a[NRA][NCA];
   for (i = 0; i < NRA; i++) {
       for (j = 0; j < NCA; j++) {
           a[i][j] = (i+1) + (j+1)/10.0;
       }
   }
                               /* Activate centering option */
   option_value = 1;
   imsls_write_options (IMSLS_SET_CENTERING, &option_value);
                               /* Write a matrix */
   imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 
   0);
                               /* Activate left justification */
   option_value = 0;
   imsls_write_options (IMSLS_SET_CENTERING, &option_value);
   imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 

Keyword Default Value Meaning

CENTERING 0 left justified

ROW_WRAP 1000 lines before wrapping

PAGING −2 no paging

NAN_CHAR 0 . . . . . . . . . . . . . .

TITLE_PAGE 0 title appears only on the first page

FORMAT 0 %10.4w
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   0);
}

Output

                                      a
                               1          2          3
                    1        1.1        1.2        1.3
                    2        2.1        2.2        2.3
                    3        3.1        3.2        3.3
                    4        4.1        4.2        4.3
                 a
           1          2          3
1        1.1        1.2        1.3
2        2.1        2.2        2.3
3        3.1        3.2        3.3
4        4.1        4.2        4.3
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Utilities

Functions
Set Output Files

Sets output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output_file     1802
Gets library version and license number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .version     1806

Error Handling
Error message options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . error_options     1808
Gets error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .error_code     1815
Gets error type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . error_type     1817
Gets error message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . error_message     1818
Initializes error handling system  . . . . . . . . . . . . . . . . . . . . . . . . initialize_error_handler     1820
Stops the current algorithm and returns to the 

calling program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .set_user_fcn_return_flag     1823

C Runtime Library
Frees memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . free     1828
Opens a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fopen     1830
Closes a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fclose     1832
Reads ASCII files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ascii_read     1833

OpenMP
OpenMP options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . omp_options     1852

Constants
Integer machine constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . machine (integer)     1854
Float machine constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .machine (float)     1857
Common data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .data_sets     1860

Mathematical Support
Matrix-vector, matrix-matrix, 

vector-vector products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mat_mul_rect     1864
Rearrange elements of vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . permute_vector     1868
Interchange rows and columns of matrices . . . . . . . . . . . . . . . . . . . . . . permute_matrix     1870
Locate and optionally replace dependent variable missing 

values with nearest neighbor estimates . . . . . . . . . . . . . . . . . . . . . impute_missing     1873
Evaluate the binomial coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . .binomial_coefficient     1883
Evaluate the complete beta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . beta     1885
Evaluate the real incomplete beta function . . . . . . . . . . . . . . . . . . . . . beta_incomplete     1888
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Evaluate the log of the real beta function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .log_beta     1890
Evaluate the real gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gamma     1892
Evaluate the incomplete gamma function . . . . . . . . . . . . . . . . . . . . gamma_incomplete     1895
Evaluate the logarithm of the absolute value

of the gamma function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . log_gamma     1898
Return the number of CPU seconds used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ctime     1901
1801



 Utilities         output_file
output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_output_file (

IMSLS_SET_OUTPUT_FILE, FILE *ofile,
IMSLS_GET_OUTPUT_FILE, FILE **pofile,
IMSLS_SET_ERROR_FILE, FILE *efile,
IMSLS_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments
IMSLS_SET_OUTPUT_FILE, FILE *ofile  (Input)

Sets the output file to ofile.

Default: ofile = stdout
IMSLS_GET_OUTPUT_FILE, FILE **pofile  (Output)

Sets the FILE pointed to by pofile to the current output file.

IMSLS_SET_ERROR_FILE, FILE *efile  (Input)
Sets the error message output file to efile.

Default: efile = stderr
IMSLS_GET_ERROR_FILE, FILE **pefile  (Output)

Sets the FILE pointed to by pefile to the error message output file.

Description
This function allows the file used for printing by IMSL functions to be changed. 

If multiple threads are used then default settings are valid for each thread. When using threads it is possible to 
set different output files for each thread by calling imsls_output_file from within each thread. See 
Example 2 for more details.
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Examples

Example 1

This example opens the file myfile and sets the output file to this new file. Function imsls_f_write_matrix 
then writes to this file.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern int imsls_fclose(FILE* file);
int main()
{
   FILE *ofile;
   float x[] = {3.0, 2.0, 1.0};
   imsls_f_write_matrix ("x (default file)", 1, 3, x,
       0);
   ofile = imsls_fopen("myfile", "w");
   imsls_output_file(IMSLS_SET_OUTPUT_FILE, ofile,
       0);
   imsls_f_write_matrix ("x (myfile)", 1, 3, x,
       0);
   imsls_fclose(ofile);
}

Output

        x (default file)
        1          2          3
        3          2          1

File myfile

x (myfile)
1          2          3
3          2          1

Example 2

This example illustrates how to direct output from IMSL routines that run in separate threads to different files. 
First, two threads are created, each calling a different IMSL function, then the results are printed by calling 
imsls_f_write_matrix from within each thread. Note that imsls_output_file is called from within 
each thread to change the default output file. 

#include <pthread.h>
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#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>
void *ex1(void* arg);
void *ex2(void* arg);
extern FILE* imsls_fopen(char* filename, char* mode); 
extern int imsls_fclose(FILE* file); 
int main()
{
   pthread_t      thread1;
   pthread_t      thread2;
   /* Create two threads. */
   if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
       perror("pthread_create"), exit(1);
   if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
       perror("pthread_create"), exit(1);
   /* Wait for threads to finish. */
   if (pthread_join(thread1, NULL) != 0)
       perror("pthread_join"),exit(1);
   if (pthread_join(thread2, NULL) != 0)
       perror("pthread_join"),exit(1);
}
void *ex1(void *arg)
{
   float *rand_nums = NULL;
   FILE *file_ptr;
   /* Open a file to write the result in. */
   file_ptr = imsls_fopen("ex1.out", "w");
   /* Set the output file for this thread. */
   imsls_output_file(
       IMSLS_SET_OUTPUT_FILE, file_ptr,
       0);
   /* Compute 5 random numbers. */
   imsls_random_seed_set(12345);
   rand_nums = imsls_f_random_uniform(5,
       0);
   /* Output random numbers. */
   imsls_f_write_matrix("Random Numbers", 5, 1, rand_nums,
       0);
   if (rand_nums)
       imsls_free(rand_nums);
   imsls_fclose(file_ptr);
}
void *ex2(void *arg)
{ 
   int n_intervals=10;
   int n_observations=30;
   float *table;
   float x[] = {
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       0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
       2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
       0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
       1.89, 0.90, 2.05
   };
   FILE *file_ptr;
   /* Open a file to write the result in. */
   file_ptr = imsls_fopen("ex2.out", "w");
   /* Set the output file for this thread. */
   imsls_output_file(
       IMSLS_SET_OUTPUT_FILE, file_ptr,
       0);
   table = imsls_f_table_oneway (n_observations, x, n_intervals,
       0);
   imsls_f_write_matrix("counts", 1, n_intervals, table,
       0);
   if (table)
       imsls_free(table);
   imsls_fclose(file_ptr);
}

Output

The content of the file ex1.out is shown below.

Random Numbers
1     0.4919
2     0.3909
3     0.2645
4     0.1814
5     0.7546

The content of the file ex2.out is shown below.

                               counts
        1          2          3          4          5          6
        4          8          5          5          3          1
        7          8          9         10
        3          0          0          1
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version
Returns information describing the version of the library, serial number, operating system, and compiler.

Synopsis
#include <imsls.h>
char *imsls_version (Imsls_keyword code)

Required Arguments
Imsls_keyword code  (Input)

Index indicating which value is to be returned. It must be IMSLS_LIBRARY_VERSION, 
IMSLS_OS_VERSION, IMSLS_COMPILER_VERSION, or IMSLS_LICENSE_NUMBER.

Return Value
The requested value is returned. If code is out of range, then NULL is returned. Use imsls_free to release the 
returned string.

Description
Function imsls_version returns information describing the version of the library, the version of the operat-
ing system under which it was compiled, the compiler used, and the IMSL serial number. 

Example
This example prints all the values returned by imsls_version on a particular machine. The output is omitted 
because the results are system dependent.

#include <imsls.h>
#include <stdio.h>
int main()
{
   char   *library_version, *os_version;
   char   *compiler_version, *license_number;
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   library_version = imsls_version(IMSLS_LIBRARY_VERSION);
   os_version      = imsls_version(IMSLS_OS_VERSION);
   compiler_version = imsls_version(IMSLS_COMPILER_VERSION);
   license_number  = imsls_version(IMSLS_LICENSE_NUMBER);
   printf("Library version = %s\n", library_version);
   printf("OS version = %s\n", os_version);
   printf("Compiler version = %s\n", compiler_version);
   printf("Serial number = %s\n", license_number);
   return 0;
}
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error_options
Sets various error handling options.

Synopsis with Optional Arguments
#include <imsls.h> 

void imsls_error_options (

IMSLS_SET_PRINT, Imsls_error type, int setting,
IMSLS_SET_STOP, Imsls_error type, int setting,
IMSLS_SET_TRACEBACK, Imsls_error type, int setting,
IMSLS_FULL_TRACEBACK, int setting,
IMSLS_GET_PRINT, Imsls_error type, int *psetting,
IMSLS_GET_STOP, Imsls_error type, int *psetting,
IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting,
IMSLS_SET_ERROR_FILE, FILE *file,
IMSLS_GET_ERROR_FILE, FILE **pfile,
IMSLS_ERROR_MSG_PATH, char *path,
IMSLS_ERROR_MSG_NAME, char *name,
IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc,
0)

Optional Arguments
IMSLS_SET_PRINT, Imsls_error type, int setting  (Input)

Printing of type type error messages is turned off if setting is 0; otherwise, printing is turned on.

Default: Printing turned on for IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL, 
IMSLS_FATAL_IMMEDIATE, and IMSLS_WARNING_IMMEDIATE messages

IMSLS_SET_STOP, Imsls_error type, int setting  (Input)
Stopping on type type error messages is turned off if setting is 0; otherwise, stopping is turned 
on. 

Default: Stopping turned on for IMSLS_FATAL and IMSLS_TERMINAL and 
IMSLS_FATAL_IMMEDIATE messages
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IMSLS_SET_TRACEBACK, Imsls_error type, int setting  (Input)
Printing of a traceback on type type error messages is turned off if setting is 0; otherwise, print-
ing of the traceback turned on. 

Default: Traceback turned off for all message types

IMSLS_FULL_TRACEBACK, int setting  (Input)
Only documented functions are listed in the traceback if setting is 0; otherwise, internal function 
names also are listed.

Default: Full traceback turned off

IMSLS_GET_PRINT, Imsls_error type, int *psetting  (Output)
Sets the integer pointed to by psetting to the current setting for printing of type type error 
messages.

IMSLS_GET_STOP, Imsls_error type, int *psetting  (Output)
Sets the integer pointed to by psetting to the current setting for stopping on type type error 
messages.

IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting  (Output)
Sets the integer pointed to by psetting to the current setting for printing of a traceback for type 
type error messages.

IMSLS_SET_ERROR_FILE, FILE *file  (Input)
Sets the error output file.

Default: file = stderr
IMSLS_GET_ERROR_FILE, FILE **pfile  (Output)

Sets the FILE * pointed to by pfile to the error output file.

IMSLS_ERROR_MSG_PATH, char *path  (Input)
Sets the error message file path. On UNIX systems, this is a colon-separated list of directories to be 
searched for the file containing the error messages.

Default: system dependent

IMSLS_ERROR_MSG_NAME, char *name  (Input)
Sets the name of the file containing the error messages.

Default: file = "imsls_e.bin"

IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc  (Input)
Sets the error printing function. The procedure print_proc has the form void print_proc 
(Imsls_error type, long code, char *function_name, char *message).
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In this case, type is the error message type number (IMSLS_FATAL, etc.), code is the error mes-
sage code number (IMSLS_MAJOR_VIOLATION, etc.), function_name is the name of the 
function setting the error, and message is the error message to be printed. If print_proc is NULL, 
then the default error printing function is used.

Return Value
The return value is void.

Description
This function allows the error handling system to be customized. 

If multiple threads are used then default settings are valid for each thread but can be altered for each individual 
thread. See Example 3 and Example 4 for multithreaded examples.

Examples

Example 1

In this example, the IMSLS_TERMINAL print setting is retrieved. Next, stopping on IMSLS_TERMINAL errors 
is turned off, output to standard output is redirected, and an error is deliberately caused by calling 
imsls_error_options with an illegal value.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int        setting;
                             /* Turn off stopping on IMSLS_TERMINAL */
                             /* error messages and write error */
                             /* messages to standard output */
   imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
                      IMSLS_SET_ERROR_FILE, stdout,
                      0);
                             /* Call imsls_error_options() with */
                             /* an illegal value */
   imsls_error_options(-1);
                             /* Get setting for IMSLS_TERMINAL */
   imsls_error_options(IMSLS_GET_PRINT, IMSLS_TERMINAL, &setting,
                      0);
   printf("IMSLS_TERMINAL error print setting = %d\n", setting);
}
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Output

*** TERMINAL Error from imsls_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.
IMSLS_TERMINAL error print setting = 1

Example 2

In this example, IMSL’s error printing function has been substituted for the standard function. Only the first four 
lines are printed below.

#include <imsls.h>
#include <stdio.h>
void        print_proc(Imsls_error, long, char*, char*);
int main()
{
                          /* Turn off tracebacks on IMSLS_TERMINAL */
                          /* error messages and use a custom */
                          /* print function */
   imsls_error_options(IMSLS_ERROR_PRINT_PROC, print_proc,
                      0);
                          /* Call imsls_error_options() with an */
                          /* illegal value */
   imsls_error_options(-1);
}
void print_proc(Imsls_error type, long code, char *function_name,
               char *message)
{
   printf("Error message type %d\n", type);
   printf("Error code %d\n", code);
   printf("From function %s\n", function_name);
   printf("%s\n", message);
}

Output 

Error message type 5
Error code 103
From function imsls_error_options
There is an error with argument number 1. This may be caused by an incorrect number 
of values following a previous optional argument name.

Example 3

In this example, two threads are created and error options is called within each thread to set the error handling 
options slightly different for each thread. Since we expect to generate terminal errors in each thread, we must 
turn off stopping on terminal errors for each thread. See Example 4 for a similar example, using WIN32 threads. 
Note since multiple threads are executing, the order of the errors output may differ on some systems.
1811



 Utilities         error_options
#include <pthread.h>
#include <stdio.h>
#include <imsls.h>
void *ex1(void* arg);
void *ex2(void* arg);
int main()
{
    pthread_t      thread1;
    pthread_t      thread2;
   /* Create two threads. */
    if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
      perror("pthread_create"), exit(1); 
    if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
      perror("pthread_create"), exit(1); 
 
    /* Wait for threads to finish. */
    if (pthread_join(thread1, NULL) != 0)
      perror("pthread_join"),exit(1);
    if (pthread_join(thread2, NULL) != 0)
      perror("pthread_join"),exit(1);
 
}
void *ex1(void* arg)
{
    float res;
    /* 
     * Call imsls_error_options to set the error handling
     * options for this thread.
     */
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0);
    res = imsls_f_beta(-1.0, .5);
}
void *ex2(void* arg)
{  
    float res;
    /* 
     * Call imsls_error_options to set the error handling
     * options for this thread. Notice that tracebacks are
     * turned on for IMSLS_TERMINAL errors.
     */
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
            IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 0);
    res = imsls_f_gamma(-1.0);
}

Output 

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+00 and "y" =
***         5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
***         not be a negative integer. Argument "x" = -1.000000e+00.
Here is a traceback of the calls in reverse order.
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 Error Type       Error Code              Routine
 ----------       ----------              -------
IMSLS_TERMINAL   IMSLS_NEGATIVE_INTEGER   imsls_f_gamma

Example 4

In this example the WIN32 API is used to demonstrate the same functionality as shown in Example 3 above. Note 
since multiple threads are executing, the order of the errors output may differ on some systems.

#include <windows.h>
#include <stdio.h>
#include <imsls.h>
DWORD WINAPI ex1(void *arg); 
DWORD WINAPI ex2(void *arg);
 
int main(int argc, char* argv[]) 
{
    HANDLE  thread[2];
    thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
    thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);
    WaitForMultipleObjects(2, thread, TRUE, INFINITE);
  
}
DWORD WINAPI ex1(void *arg) 
{
    float res;
    /* 
     * Call imsls_error_options to set the error handling
     * options for this thread.
     */
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
         0);
    res = imsls_f_beta(-1.0, .5);
    return(0);
} 
DWORD WINAPI ex2(void *arg) 
{
    float res;
    /* 
     * Call imsls_error_options to set the error handling
     * options for this thread. Notice that tracebacks are
     * turned on for IMSLS_TERMINAL errors.
     */
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
         IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1,
         0);
    res = imsls_f_gamma(-1.0);
    return(0);
} 

Output 

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+000 and "y" =
***         5.000000e-001 must be greater than zero.
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*** TERMINAL Error from imsls_f_gamma. The argument for the function can
***         not be a negative integer. Argument "x" = -1.000000e+000.
Here is a traceback of the calls in reverse order.
 Error Type       Error Code              Routine
 ----------       ----------              -------
IMSLS_TERMINAL   IMSLS_NEGATIVE_INTEGER   imsls_f_gamma USER
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error_code
Gets the code corresponding to the error message from the last function called.

Synopsis
#include <imsls.h>
long imsls_error_code ( )

Return Value
This function returns the error message code from the last function called. The include file imsls.h defines a name 
for each error code.

Example
In this example, stopping on IMSLS_TERMINAL error messages is turned off and an error is then generated by 
calling function imsls_error_options with an illegal value for IMSLS_SET_PRINT. The error message code 
number is then retrieved and printed. In imsls.h, IMSLS_INTEGER_OUT_OF_RANGE is defined to be 132.

#include <imsls.h>
#include <stdio.h>
int main()
{
   long       code;
                               /* Turn off stopping IMSLS_TERMINAL */
                               /* messages and print error messages */
                               /* on standard output */
   imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
                      IMSLS_SET_ERROR_FILE, stdout,
                      0);
                               /* Call imsls_error_options() with */
                               /* an illegal value */
   imsls_error_options(IMSLS_SET_PRINT, 100, 0,
                      0);
                               /* Get the error message code */
   code = imsls_error_code();
   printf("error code = %d\n", code);
}
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Output

*** TERMINAL error from imsls_error_options. "type" must be between 1 and
***         5, but "type" = 100.
error code = 132
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error_type
Gets the type corresponding to the error message from the last function called.

Synopsis
#include <imsls.h> 

Imsls_error imsls_error_type ()

Return Value
An Imsls_error enum value is returned.

Description
The Imsls_error enum type has seven values: IMSLS_NOTE, IMSLS_ALERT, IMSLS_WARNING, 
IMSLS_FATAL, IMSLS_TERMINAL, IMSLS_WARNING_IMMEDIATE and IMSLS_FATAL_IMMEDIATE. 
See Kinds of Errors and Default Actions for more details.

Example
See error_message for an example.
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error_message
Gets the text of the error message from the last function called.

Synopsis
#include <imsls.h>
char *imsls_error_message ()

Return Value
Returns the current error message. 

Description
If the current error type is positive then the last error message set is returned. It does not matter if the error mes-
sage was printed or not. The current error type is the number returned by imsls_error_type. If the current 
error type is zero then NULL is returned.

The returned string can be freed using imsls_free.

Example
This example retrieves the error message from a call to imsls_f_wilcoxon_rank_sum with an illegal 
argument.

#include <imsls.h>
#include <stdio.h>
int main(void)
{
   char  *msg;
   float x[] = {0, 1, 2};
   float y[] = {0, 1, 2};
   float p;
   p = imsls_f_wilcoxon_rank_sum (3, x, 3, y, 0);
   msg = imsls_error_message();
   printf("type = %d\ncode = %d\nmsg = %s\n",
       imsls_error_type(), imsls_error_code(), msg);
   imsls_free(msg); 
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} 

Output

*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
***         At least one tie is detected between the samples.
type = 3
code = 11123
msg = At least one tie is detected between the samples.
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initialize_error_handler
Initializes the IMSL C Stat Library error handling system.

Synopsis
#include <imsls.h>
int imsls_initialize_error_handler ()

Return Value
If the initialization succeeds, zero is returned. If there is an error, a nonzero value is returned.

Description
This function is used to initialize the IMSL C Stat Library error handling system for the current thread. It is not 
required, but is always allowed. 

Use of this function is advised if the possibility of low heap memory exists when calling IMSL C Stat Library for the 
first time in the current thread. A successful return from imsls_initialize_error_handler confirms 
that the IMSL C Stat Library error handling system has been initialized and is operational. The effects of calling 
imsls_initialize_error_handler are limited to the calling thread only.

If imsls_initialize_error_handler is not called and initialization of the error handling system fails, an 
error message is printed to stderr, and execution is stopped.

Example 
In this example, the IMSL C Stat Library error handler is initialized prior to calling multiple other IMSL C Stat 
Library functions. Often this is not required, but is advised if the possibility of low heap memory exists. Even if not 
required, the initialization call is always allowed.

The computations performed in this example are based on Example 1 for 
imsls_f_regression_prediction.

#include <imsls.h>
#include <stdio.h>
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int main()
{
#define INTERCEPT      1
#define N_INDEPENDENT  4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT    1
   int                status;    
   float      *y_hat, *coefficients;
   Imsls_f_regression  *regression_info;
   float      x[][N_INDEPENDENT] = {
       7.0, 26.0, 6.0, 60.0,
       1.0, 29.0, 15.0, 52.0,
       11.0, 56.0, 8.0, 20.0,
       11.0, 31.0, 8.0, 47.0,
       7.0, 52.0, 6.0, 33.0,
       11.0, 55.0, 9.0, 22.0,
       3.0, 71.0, 17.0, 6.0,
       1.0, 31.0, 22.0, 44.0,
       2.0, 54.0, 18.0, 22.0,
       21.0, 47.0, 4.0, 26.0,
       1.0, 40.0, 23.0, 34.0, 
       11.0, 66.0, 9.0, 12.0,
       10.0, 68.0, 8.0, 12.0};
       float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 
           102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
       /* Initialize the IMSL C Math Library error handler. */
       status = imsls_initialize_error_handler();
       /* 
       * Verify successful error handler initialization before 
       * continuing. 
       */
       if (status == 0) {
           /* Fit the regression model */
           coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT, 
               (float *)x, y,
               IMSLS_REGRESSION_INFO, &regression_info,
               0);
           /* Generate case statistics */
           y_hat = imsls_f_regression_prediction(regression_info, 
               N_OBSERVATIONS, (float*)x, 0);
           /* Print results */
           imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS, 
               y_hat, 0);
       } else {
           printf("Unable to initialize IMSL C Math Library error handler.\n");
       }
}
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Output

                         Predicted Responses
        1          2          3          4          5          6
     78.5       72.8      106.0       89.3       95.6      105.3
        7          8          9         10         11         12
    104.1       75.7       91.7      115.6       81.8      112.3
       13
    111.7
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set_user_fcn_return_flag
Indicates a condition has occurred in a user-supplied function necessitating a return to the calling function.

Synopsis
#include <imsls.h> 

void imsls_set_user_fcn_return_flag (int code)

Required Arguments
int code  (Input)

A user-defined number that indicates the reason for the return from the user-supplied function. 

Description
Given a certain condition in a user-supplied function, imsls_set_user_fcn_return_flag stops execut-
ing any IMSL algorithm that has called the function, and returns to the calling function or main program. On 
invocation of imsls_set_user_fcn_return_flag, a flag is set in the IMSL error handler. On returning 
from the user-supplied function, the error IMSLS_STOP_USER_FCN is issued with severity IMSLS_FATAL. 
Typically, if you use this function, you would disable stopping on IMSL C STAT errors, thus gaining greater con-
trol in situations where you need to prematurely return from an algorithm. (See Programming Notes.)

Programming Notes
1. Since the default behavior of IMSL error handling is to stop execution on IMSLS_TERMINAL and 

IMSLS_FATAL errors, execution of the main program stops when the IMSLS_STOP_USER_FCN 
error message is issued unless you alter this behavior by turning stopping off using 
imsls_error_options.

2. In a user-supplied function, the user is responsible for checking error conditions such as memory 
allocation, return status for any function calls, valid return values, etc.

3. Use of this function is valid only if called from within a user-supplied function.
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Examples

Example 1

This example is based on imsls_f_kolmogorov_one. In this example, the user, for any hypothetical reason, 
wants to stop the evaluation of the user-supplied function, cdf when x is greater 0.5.

#include <imsls.h>
#include <stdio.h>
float cdf(float);
int main()
{
   float *statistics = NULL, *diffs = NULL, *x = NULL;
   int nobs = 100, nmiss;
   imsls_random_seed_set(123457);
   x = imsls_f_random_uniform(nobs, 0);
   /* Turn off stopping on IMSLS_FATAL errors. */
   imsls_error_options(IMSLS_SET_STOP, IMSLS_FATAL, 0, 0);
   statistics = imsls_f_kolmogorov_one(cdf, nobs, x, 
       IMSLS_N_MISSING, &nmiss,
       IMSLS_DIFFERENCES, &diffs,
       0);
   /* The following lines will be executed because
      stopping is turned off. */
   if (statistics) {
       printf("D = %8.4f\n", diffs[0]);
       printf("D+ = %8.4f\n", diffs[1]);
       printf("D- = %8.4f\n", diffs[2]);
       printf("Z = %8.4f\n", statistics[0]);
       printf("Prob greater D one sided = %8.4f\n", statistics[1]);
       printf("Prob greater D two sided = %8.4f\n", statistics[2]);
       printf("N missing = %d\n", nmiss);
   } else {
       printf("\"statistics\" is NULL.\n");
   }
}
float cdf(float x)
{
   float mean = .5, std = .2886751, z, result;
   /* For a hypothetical reason, stop execution when x > 0.5. */
   if (x > 0.5) {
       imsls_set_user_fcn_return_flag(1);
       return 0;
   }
   z = (x-mean)/std;
   result = imsls_f_normal_cdf(z);
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   return result;
}

Output

*** FATAL   Error IMSLS_STOP_USER_FCN from imsls_f_kolmogorov_one. Request
***         from user supplied function to stop algorithm. User flag = "1".
"statistics" is NULL.

Example 2

This example is based on imsls_f_chi_squared_test, Example 3. This example demonstrates how to handle 
the error condition if the user-supplied function calls a C Stat Library function. In this example, THETA is set to 0 
to force an error condition in calling the imsls_f_poisson_cdf function in the user-supplied function.

#include <imsls.h>
#include <stdio.h>
#define SEED                   123457
#define N_CATEGORIES           10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS              1000
#define THETA                  0.0
float          user_proc_cdf(float);
int main()
{
   int        i, *poisson;
   float      cell_statistics[3][N_CATEGORIES];
   float      chi_squared_statistics[3], x[N_NUMBERS];
   float      cutpoints[]      = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 
       7.5, 8.5, 9.5};
   char       *cell_row_labels[] = {"count", "expected count", 
       "cell chi-squared"};
   char       *cell_col_labels[] = {"Poisson value", "0", "1", "2",
       "3", "4", "5", "6", "7", 
       "8", "9"};
   char       *stat_row_labels[] = {"chi-squared",
       "degrees of freedom","p-value"};
   /* Turn off stopping on IMSLS_FATAL errors. */
   imsls_error_options(IMSLS_SET_STOP, IMSLS_FATAL, 0, 0);
   imsls_random_seed_set(SEED);
   /* Generate the data */
   poisson = imsls_random_poisson(N_NUMBERS, 5.0, 0);
   /* Copy data to a floating point vector*/
   for (i = 0; i < N_NUMBERS; i++) 
       x[i] = poisson[i];
   chi_squared_statistics[2] = 
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       imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS, 
       N_CATEGORIES, x,
       IMSLS_CUTPOINTS_USER,       cutpoints,
       IMSLS_CELL_COUNTS_USER,     &cell_statistics[0][0], 
       IMSLS_CELL_EXPECTED_USER,   &cell_statistics[1][0], 
       IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
       IMSLS_CHI_SQUARED,          &chi_squared_statistics[0],
       IMSLS_DEGREES_OF_FREEDOM,   &chi_squared_statistics[1],
       0);
   /* The following lines will be executed because
      stopping is turned off. */
   if (chi_squared_statistics[2] != chi_squared_statistics[2]) {
       printf("p-value = NaN\n");
   } else {
       imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1, 
           &chi_squared_statistics[0],
           IMSLS_ROW_LABELS,    stat_row_labels,
           0);
       imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES, 
           &cell_statistics[0][0],
           IMSLS_ROW_LABELS,    cell_row_labels,
           IMSLS_COL_LABELS,    cell_col_labels,
           IMSLS_WRITE_FORMAT,  "%9.1f",
           0);
   }
}

float user_proc_cdf(float k)
{
   float          cdf_v;
   int            setting;
   /* The user is responsible for checking error conditions in the 
      user-supplied function, even if the user-supplied function
      is calling an IMSL function.
      For theta = 0.0 (an invalid input), imsls_f_poisson_cdf issues
      an IMSLS_TERMINAL error. Thus, stopping is turned off on
      IMSLS_TERMINAL eorror. */
   /* Get the current terminal error stopping setting which will be
      used for restoring the setting later. */
   imsls_error_options(IMSLS_GET_STOP, IMSLS_TERMINAL, &setting, 0);
   /* Disable stopping on terminal error. */
   imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0);
   cdf_v = imsls_f_poisson_cdf ((int) k, THETA);
   /* If there is terminal error, stop and return to main. */
   if (imsls_error_type() == IMSLS_TERMINAL) {
       imsls_set_user_fcn_return_flag(1);
       return 0;
   }
   /* Restore stopping setting */
   imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, setting, 0);
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   return cdf_v;
}

Output

*** TERMINAL Error from imsls_f_poisson_cdf. The mean of the Poisson
***         distribution, "theta" = 0.000000e+000, must be positive.

*** FATAL   Error IMSLS_STOP_USER_FCN from imsls_f_chi_squared_test.
***         Request from user supplied function to stop algorithm. User 
***         flag = "1".
p-value = NaN
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free
Frees memory returned from an IMSL C Stat Library function.

Synopsis
#include <imsls.h>
void imsls_free (void *data)

Required Arguments
void *data (Input)

A pointer to data returned from an IMSL C Stat Library function.

Description
The function imsls_free frees memory using the C runtime library used by the IMSL C Stat Library for alloca-
tion. It is a wrapper around the standard C runtime function free. 

Function imsls_free can always be used to free memory allocated by the IMSL C Stat Library, but is required if 
an application has linked to multiple copies of the C runtime library, with each copy having its own set of heap 
allocation structures. In this situation, using the C runtime function free can result in memory being allocated 
with one copy of the C runtime library and freed with a different copy, which may cause abnormal termination. 
Using imsls_free ensures that the same C runtime library is used for both allocation and freeing. 

Example
This example computes a set of random numbers, prints them, and then frees the array returned from the ran-
dom number generation function.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int seed = 123457;

Note that imsls_free should be used only to free memory that was allocated by IMSL C Stat Library. 
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   int n_random = 5;
   float *r;
   
   imsls_random_seed_set (seed);
   r = imsls_f_random_normal(n_random, 0);
   printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
       "Standard normal random deviates",
        r[0], r[1], r[2], r[3], r[4]);
   imsls_free(r);
}

Output

Standard normal random deviates:  1.8279 -0.6412 0.7266 0.1747 1.0145
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fopen
Opens a file using the C runtime library used by the IMSL C Stat Library.

Synopsis
#include <imsls.h>
#include <stdio.h>
FILE *imsls_fopen (char *filename, char *mode)

Required Arguments
char *filename (Input)

The name of the file to be opened.

char *mode (Input)
The type of access to be permitted to the file. This string is passed to the C runtime function fopen, 
which determines the valid mode values.

Return Value
A pointer to the file structure, FILE, defined in stdio.h. To close the file, use imsls_fclose.

Description
The function imsls_fopen opens a file using the C runtime library used by the IMSL C Stat Library. It is a wrap-
per around the standard C runtime function fopen. 

Function imsls_fopen can always be used to open a file which will be used by the IMSL C Stat Library, but is 
required if an application has linked to multiple copies of the C runtime library, with each copy having its own set 
of file instructions. In this situation, using the C runtime function fopen can result in a file being opened with one 
copy of the C runtime library and reading or writing to it with a different copy, which may cause abnormal behav-
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ior or termination. Using imsls_fopen ensures that the same C runtime library is used for both the open 
operation and reading and writing within an IMSL C Stat Library function to which the file pointer has been 
passed as an input argument.

Example
This example writes a matrix to the file matrix.txt. The function imsls_fopen is used to open a file. This 
function returns a file pointer, which is passed to imsls_output_file. The matrix is written by 
imsls_f_write_matrix, which uses the file pointer from imsls_output_file. The function 
imsls_fclose is then used to close the file.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main()
{
   FILE *file;
   float a[] = {
       1.1, 2.4, 3.6,
       4.3, 5.1, 6.7,
       7.2, 8.9, 9.3
   };
   file = imsls_fopen("matrix.txt", "w");
   
   imsls_output_file(IMSLS_SET_OUTPUT_FILE, file, 
                     0);
   imsls_f_write_matrix("Matrix written matrix.txt",
                       3, 3, a, 0);
   imsls_fclose(file);
}

Output

The content below is stored in the matrix.txt file. 
     Matrix written to matrix.txt
            1           2           3
1         1.1         2.4         3.6
2         4.3         5.1         6.7
3         7.2         8.9         9.3

Note: The function imsls_fopen should only be used to open a file whose file pointer will be input to an 
IMSL C Stat Library function. Use imsls_fclose to close files opened with imsls_fopen. 

Note: This function is not prototyped in imsls.h. This is to avoid including stdio.h within imsls.h. An 
extern declaration should be explicitly used to assure compatibility with linkers.
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fclose
Closes a file opened by imsls_fopen.

Synopsis
#include <imsls.h>
#include <stdio.h>
int  imsls_fclose (FILE *file)

Required Arguments
FILE *file (Input/Output)

A file pointer returned from imsls_fopen.

Return Value
The return value is zero if the file is successfully closed. If there is an error, EOF is returned. EOF is defined in 
stdio.h.

Description
The function imsls_fclose is a wrapper around the standard C runtime function fclose. It is used to close 
files opened with imsls_fopen.

Example
See imsls_fopen for an example of its use.

Note: The function imsls_fopen should only be used to open a file whose file pointer will be input to an 
IMSL C Stat Library function. Use imsls_fclose to close files opened with imsls_fopen. 

Note: This function is not prototyped in imsls.h. This is to avoid including stdio.h within imsls.h. An 
extern declaration should be explicitly used to assure compatibility with linkers.
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ascii_read
Reads freely-formatted ASCII files.

Synopsis
#include <imsls.h>
int imsls_ascii_read (char *filename, …, 0)

Required Arguments
char *filename (Input)

A string containing the pathname and filename of the file containing the data.

Return Value
The return value is the status of the read operation. The return value is set to 0 for success and 1 for failure.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_ascii_read (char *filename,

IMSLS_SHORT, long *n_vals, short **var,
IMSLS_SHORT_USER, long *n_vals, short var[], 
IMSLS_INT, long *n_vals, int **var, 
IMSLS_INT_USER, long *n_vals, int var[],
IMSLS_LONG, long *n_vals, long **var,
IMSLS_LONG_USER, long *n_vals, long var[], 
IMSLS_FLOAT, long *n_vals, float **var,
IMSLS_FLOAT_USER, long *n_vals, float var[], 
IMSLS_DOUBLE, long *n_vals, double **var,

NOTE: In addition to filename, at least one data type, array length, and array name triplet optional argu-
ment is required. A Terminal error will be issued when the triplet is missing. See Optional Arguments for 
more information.
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IMSLS_DOUBLE_USER, long *n_vals, double var[],
IMSLS_CHAR, long *n_vals, char **var,
IMSLS_CHAR_USER, long *n_vals, char var[][],
IMSLS_DATETIME, long *n_vals, struct tm**var,
IMSLS_DATETIME_USER, long *n_vals, struct tmvar[],
IMSLS_TIME_VAL, long *n_vals, Imsls_time_val **var,
IMSLS_TIME_VAL_USER, long *n_vals, Imsls_time_val var[],
IMSLS_COLUMNS, or 
IMSLS_ROWS,
IMSLS_DELIM, int n_delimiters, char delimiters[],
IMSLS_DATETIME_FORMAT, int n_formats, int datetime_format[],
IMSLS_FILTERS, int n_filters, char filters[],
IMSLS_COLUMN_INDEX, int n_columns, int columns[],
IMSLS_IGNORE, int n_ignore, char *ignore[],
IMSLS_IGNORE_BAD_DATETIME, 
IMSLS_REPLACEMENT_NUMBERS, int n_repl_nums, char *miss_vals[], 

float repl_nums[],
IMSLS_REPLACEMENT_STRINGS, int n_repl_strs, 

char *miss_vals[],char *repl_strs[],
IMSLS_NRECS, int n_recs,
IMSLS_NSKIP, int n_skip,
IMSLS_VALS_PER_REC, int vals_per_rec,
IMSLS_NO_BINARY_CHECK,
IMSLS_ALLOW_CHARS, int n_allow, char allow_chars[],

0)

Optional Arguments
IMSLS_SHORT, long *n_vals, short **var  (Output)

IMSLS_INT, long *n_vals, int **var  (Output)

IMSLS_LONG, long *n_vals, long **var  (Output)

IMSLS_FLOAT, long *n_vals, float **var  (Output)

IMSLS_DOUBLE, long *n_vals, double **var  (Output)

IMSLS_CHAR, long *n_vals, char **var  (Output)

IMSLS_DATETIME, long *n_vals, struct tm **var  (Output)
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IMSLS_TIME_VAL, long *n_vals, Imsls_time_val **var (Output)

The above optional argument triplets are used to read data from an ASCII file. Each optional argu-
ment is a comma-separated list of data type, array length, and array name describing the output 
variable to read from filename. At least one triplet is required. In each of the above cases, 
n_vals is output only and is the number of elements read.

IMSLS_SHORT_USER, long *n_vals, short var[] (Output)

IMSLS_INT_USER, long *n_val, int var[]  (Output)

IMSLS_LONG_USER, long *n_vals, long var[]  (Output)

IMSLS_FLOAT_USER, long *n_vals, float var[]  (Output)

IMSLS_DOUBLE_USER, long *n_vals, double var[]  (Output)

IMSLS_CHAR_USER, long *n_vals, char var[][]  (Output)

IMSLS_DATETIME_USER, long *n_vals, struct tm var[]  (Output)

IMSLS_TIME_VAL_USER, long *n_vals, Imsls_time_val var[]  (Output)
The above optional argument triplets allow users to provide storage for variables to be read from an 
ASCII file. In each of the above cases, n_vals is the length of var on input and is the number of ele-
ments read on output. 

IMSLS_COLUMNS, (Input)

or 

IMSLS_ROWS,  (Input)
Specifies the file format organization. IMSLS_COLUMNS indicates that the data is column-oriented 
(processing of the file is done reading down columns in the file). IMSLS_ROWS indicates that the 
data is row-oriented (processing of the file is done reading left to right).

Default: It is assumed that the data is column-oriented.

IMSLS_DELIM, int n_delimiters, char delimiters[]  (Input)
An array of length n_delimiters containing single-character field delimiters used to delineate col-
umns or rows in the data file. If character fields contain delimiter characters, the string will be 
interpreted as more than one string, and the data in the file will not match the variable list. Use the 
decimal value 9 or “\t” to identify the TAB character. 

Default: A comma - or space- delimited file is assumed.

NOTE: As many as 1024 variables can be read from an input data file. Optional arguments may be 
repeated to read the same type of data from multiple columns.
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IMSLS_DATETIME_FORMAT, int n_formats, int datetime_format[] (Input)
An array of length n_formats containing the date and time formats to be used for interpreting 
date or time data within the file. A single value is used for each datetime_format variable. Based 
on the data within the file, positive datetime_format numbers refer to date formats; negative 
datetime_format numbers refer to time formats. For a table of valid date and time formats see 
the discussion in the Description and Example 5.

Default: It is assumed that the data is in neither date nor time format.

IMSLS_FILTERS, int n_filters, char filters[] (Input)
An array of length n_filters containing the one-character strings that imsls_ascii_read 
should check and filter out as it reads the data. Any character found on the keyboard can be used. 
For example, to filter characters “,” and “;” specify

  int n_filters = 2; 

  char filters[] = {',', ';'};  

A special character not found on the keyboard is specified by ASCII code.

Default: Nothing is filtered out.

IMSLS_COLUMN_INDEX, int n_columns, int columns[] (Input)
An array of length n_columns containing integers indicating column numbers to read from the file. 
IMSLS_COLUMN_INDEX defines an array of column numbers (starting with the first column as col-
umn 1) that corresponds with data type variable name pairs supplied in the optional argument. For 
example, if an array, columns=[5, 1, 3], is supplied with the list of variables a1, a2, a3, then the 
values in the IMSLS_COLUMN_INDEX array are automatically sorted before reading the columns, 
resulting in a1 = column #1, a2 = column #3, a3 = column #5.

Default: All columns are read.

IMSLS_IGNORE, int n_ignore, char *ignore[]  (Input)
An array of length n_ignore containing strings to be ignored. If any of these strings are encoun-
tered, imsls_ascii_read skips the entire line and starts reading data from the next line. Any 
character is allowed. For example, to skip lines containing either of the character strings “abc” or 
“def” specify 

int n_ignore = 2;
char *ignore[] = {“abc”, “def”}; 

Adding the special string $BAD_DATE_TIME in the ignore array has the effect of skipping lines 
where invalid date/time data is found.

Default: Nothing is ignored.
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IMSLS_IGNORE_BAD_DATETIME,  (Input) 
Skip lines where invalid date/time data is found.

Default: Do not ignore invalid date/time data. 

IMSLS_REPLACEMENT_NUMBERS, int n_repl_nums, char *miss_vals[], float repl_nums[]  
(Input)
n_repl_nums is the length of arrays miss_vals and repl_nums. miss_vals contains 
strings representing missing data in the file. Each value in the repl_nums array corresponds to a 
string in the miss_vals array. As the input data file is read, occurrences of values that match those 
in miss_vals are replaced by the corresponding element of repl_nums for numerical output. If 
the output variable is of type IMSLS_CHAR, repl_nums is ignored. See Example 3.

Default: Nothing is replaced.

IMSLS_REPLACEMENT_STRINGS, int n_repl_strs, char *miss_vals[], char *repl_strs[]  
(Input)
n_repl_strs is the length of arrays miss_vals and repl_strs. miss_vals contains 
strings representing missing data in the file. Each of the strings in repl_strs corresponds to a 
string in the miss_vals array. As the input data file is read, occurrences of strings that match those 
in miss_vals are replaced by the corresponding string in repl_strs for IMSLS_CHAR output. 
If the output variable is not of type IMSLS_CHAR, repl_strs is ignored. See Example 8.

Default: Nothing is replaced.

IMSLS_NRECS, int n_recs  (Input)
Number of records to read for row or column oriented data. If n_recs is not provided or is set to 
zero (0), the entire file is read. For more information about records, see the Physical Records versus 
Logical Records topic in Description.

Default: n_recs = 0.

IMSLS_NSKIP, int n_skip  (Input)
Number of physical records in the file to skip before data is read. If n_skip is not provided or is set 
to zero (0), no records are skipped.

Default: n_skip = 0.

IMSLS_VALS_PER_REC, int vals_per_rec  (Input)
An integer that specifies how many values comprise a single record in the input data file. If not pro-
vided, each line of data in the file is treated as a new record. See Example 4.

Default: vals_per_rec = 0.

NOTE: IMSLS_REPLACEMENT_NUMBERS and IMSLS_REPLACEMENT_STRINGS may be used simultaneously 
when reading data written into output variables of mixed types such as IMSLS_CHAR and IMSLS_INT.
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IMSLS_NO_BINARY_CHECK  (Input)
ASCII decimal or hex values 0 to 127 are allowed. If binary characters above the 127 decimal value 
are found, the file is considered binary and reading is terminated. If IMSLS_NO_BINARY_CHECK is 
specified, the check for binary characters is omitted.

Default: A check for binary characters is performed.

IMSLS_ALLOW_CHARS, int n_allow, char allow_chars[]  (Input)
allow_chars is an array of length n_allow, containing the octal representation of ASCII values 
outside of the 0 to 127 decimal range preceded with a backwards slash. Characters specified in 
allow_chars are treated as ASCII characters instead of binary characters. For example, to allow 
imsls_ascii_read to accept characters 130 and 150 (octal values 202 and 226), set the 
allow_chars array as follows: 

char allow_chars[2] = {"\202\226"};

Default: Binary characters are not allowed.

Description
Function imsls_ascii_read is adept at reading both row-oriented and column-oriented data files. The 
steps that imsls_ascii_read performs when reading a file include:

1. Open the file.

2. Assign the file a file descriptor.

3. Compose a format string that describes the organization of the data.

4. Close the file when reading of the data has been completed.

imsls_ascii_read needs to know which delimiters to expect in the file; comma and space are the default 
delimiters. imsls_ascii_read easily reads data values separated by any combination of commas and spaces 
or any other delimiters one explicitly defines using IMSLS_DELIM.

If neither IMSLS_ROWS nor IMSLS_COLUMNS is provided, the file is assumed to be organized by columns. 

Physical Records versus Logical Records

In an ASCII text file, the end-of-line is signified by the presence of either a CTRL-J (linefeed) or a CTRL-M (return) 
character, and a record extends from one end-of-line character to the next. However, there are actually two kinds 
of records; physical records and logical records.
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For column-oriented files, the amount of data in a physical record is often sufficient to provide exactly one value 
for each element in the data array, and then it is a logical record, as well. For row-oriented files, the concept of 
logical records is not relevant, since data is read as contiguous values separated by delimiters, and the 
end-of-line is interpreted as another delimiter. 

Changing the Logical Record Size

IMSLS_VALS_PER_REC can be used to explicitly define a different logical record size; In most cases, this 
optional argument does not need to be provided. For an example of how to use IMSLS_VALS_PER_REC, see 
Example 4.

Filtering and Substitution While Reading Data

IMSLS_FILTERS can be used to filter certain characters from the data as it is read. Each character (or 
sequence of digits that represents the ASCII code for a character) must be enclosed with single quotes. For exam-
ple, either of the following is a valid specification:

‘,’ or ‘44’

Furthermore, the two specifications shown above are equivalent to one another. For an example of using filters, 
see Example 4.

Characters that match one of the values in filters are treated as if they are not present; in other words, these 
characters are not treated as data and do not contribute to the size of the logical record, if one has been defined 
using IMSLS_VALS_PER_REC.

NOTE: IMSLS_NRECS counts by logical records, if IMSLS_VALS_PER_REC has been defined. 
IMSLS_NSKIP, on the other hand, counts by physical records, regardless of any logical record size that 
has been defined.

NOTE: By default, imsls_ascii_read considers the physical record to be one line in the file, and the 
concept of a logical record is not needed. When using logical records, the physical records in the file must 
all contain the same number of values. IMSLS_VALS_PER_REC can be specified only with column-ori-
ented data files.

NOTE: Do not filter characters that are used as delimiters. The delimiters enable imsls_ascii_read to 
discern where one data value ends and another one begins.

NOTE: IMSLS_IGNORE can be used to supply multi-character strings instead of individual characters. 
However, a character that matches filters is simply discarded, and filtering resumes from that point, while 
a string that matches ignore causes that entire line to be skipped.
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When reading a data file that contains a value such as #$*10.00**, and it is preferred that the entire line be 
skipped, filter the characters individually with filters = [‘#’,’$’,’*’] instead of collectively with 
ignore = [‘#$*’,’**’].

Delimiters in the Input File

Values in the file can be separated by commas, spaces, and any other delimiter characters specified with 
IMSLS_DELIM. Characters not specified with IMSLS_DELIM are treated as data and type conversion is 
attempted. If type conversion is not possible, imsls_ascii_read results in a terminal error.

Reading Row-Oriented Files

When reading row-oriented data (IMSLS_ROWS) provide only a single data triplet. The file is read using the 
delimiter (or the default delimiters if IMSLS_DELIM is omitted) to return an array of length n, where n is the 
number of values in the file. Providing IMSLS_NRECS allows the control of how many rows (lines) in the file are 
transferred into the returned array.

Using IMSLS_ROWS and a single data triplet is an easy way to read the entire content of the file and the result is 
a single array of data that contains all valid data found within the file.

Reading Column-Oriented Files

When IMSLS_COLUMNS is used, imsls_ascii_read views the data file as a series of columns with a one-to-
one correspondence between columns in the file and variables. For example, for a file containing three columns 
of data values and with three output arrays defined as var1, var2, and var3; the values from the first record 
of the file will be transferred to var1[0], var2[0], and var3[0]. The three values from the second record of 
the file will be transferred to var1[1], var2[1], and var3[1], and so forth, until all of the data in the file has 
been read. The exception is if IMSLS_NRECS is provided in which case transfer of data stops when 
imsls_ascii_read reaches the number of records to be read.

The length of the individual output arrays is specified by n_vals.

NOTE: Date and time data, such as months, days, hours, and minutes, may only contain the separation 
characters slash ( / ), colon (:), hyphen (-), and comma (,). These four characters may not be used as delim-
iters for data containing dates and times.
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Date and Time Formats

IMSLS_DATETIME_FORMAT is used to describe the format of the input string data by specifying a format to 
use as the data is read. These formats are:

The abbreviations used in the format descriptions in Table 54 are:

Table 54 – Date/Time Formats

datetime_format[i] Date Format Time Format

–1 NA HH*MnMn*SS[.SSSS]
–2 NA HHMnMn
1 MM*DD*YY[YY] NA
2 DD*MM*YY[YY] NA
3 ddd*YY[YY] NA
4 DD*mmm[mmmmmm]*YY[YY] NA
5 [YY]YY*MM*DD NA
6 MM*DD*YY[YY] HH*MnMn*SS[.SSSS]
7 MM*DD*YY[YY] HHMnMn
8 DD*MM*YY[YY] HH*MnMn*SS[.SSSS]
9 DD*MM*YY[YY] HHMnMn
10 ddd*YY[YY] HH*MnMn*SS[.SSSS]
11 ddd*YY[YY] HHMnMn
12 DD*mmm[mmmmmm]*YY[YY] HH*MnMn*SS[.SSSS]
13 DD*mmm[mmmmmm]*YY[YY] HHMnMn
14 [YY]YY*MM*DD HH*MnMn*SS[.SSSS]
15 [YY]YY*MM*DD HHMnMn

Abbreviations Description

MM The numerical month. The month does 
not need to occupy two spaces. For 
example, you can enter a 1 for the 
month of January.

DD The numerical day of the month. The 
day does not need to occupy two 
spaces. For example, for May 5, the 
numerical day can be 5.

[YY]YY The numerical year. For example, 1992 
can be entered as 92 or 1992.
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imsls_ascii_read supports two time value structures. The standard struct tm C type is obtained with 
optional argument IMSLS_DATETIME. A time structure that includes a Julian value is accessible with optional 
argument IMSLS_TIME_VAL. A description of IMSLS_TIME_VAL follows.

Imsls_time_val

imsls_ascii_read uses the structure Imsls_time_val, provided in the standard header <imsls.h>, to rep-
resent an Imsls_time_val variable and is declared as follows:

struct Imsls_time_val {
  short   year;
  unsigned char   month;
  unsigned char   day;
  unsigned char   hour;
  unsigned char   minute;
  float   second ;
  double  julian_dt;
  unsigned char   recalc; 
};

Ddd The numerical day of the year. The day 
does not need to occupy three spaces. 
For example, February 1 is 32.

mmm[mmmmmm] The full name of the month or its three 
character abbreviation.

* Represents a delimiter that separates 
the different fields of 
datetime_format data. The valid 
datetime_format delimiters can be a 
slash (/), a colon (:), a hyphen (–), period 
(.), or a comma (,).

HH The numerical hour based on a 24-hour 
clock. For example, 14 is 2 o’clock in the 
afternoon. For the –1 format, both 
spaces do not need to be occupied. 
However, the −2 format requires that 
both spaces be occupied. For example, 
1:00 in the morning must be entered as 
01.

Mn The number of minutes in the hour. For 
the –1 format, both spaces do not need 
to be occupied. However, the –2 format 
requires that both spaces be occupied. 
For example, 6 minutes must be 
entered as 06.

SS[.SSS] The number of seconds in the minute. A 
decimal part of a second is optional.

Abbreviations Description
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Examples

Example 1

The data file shown below is a freely-formatted ASCII file named monotonic.dat: 

     1 2 3 4 5
      6 7 8 9 10
      11 12 13 14 15
      16 17 18 19 20

To read the entire contents of the file into a single array, the simplest approach is:

#include <imsls.h>
int main()
{ 
   int status;
   float *var;
   long n_vals;
   status = imsls_ascii_read("monotonic.dat",
       IMSLS_FLOAT, &n_vals, &var, 
       IMSLS_ROWS, 
       0);
   imsls_f_write_matrix("var", 1, (int) n_vals, var, 0);
}

Output

                                    var
         1           2           3           4           5           6
         1           2           3           4           5           6
         7           8           9          10          11          12
         7           8           9          10          11          12
        13          14          15          16          17          18
        13          14          15          16          17          18
        19          20
        19          20

Example 2

Using the same data file (monotonic.dat), our goal in this example is to read only the second and fourth col-
umn of data from the file. This time we use the default column-organized format. The code is:

#include <imsls.h>
int main()
{

 int i, status, getcols[2] = {2, 4};
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 int *var1, *var2;
 long n_vals1, n_vals2;
 status = imsls_ascii_read("monotonic.dat",

 IMSLS_INT, &n_vals1, &var1,
 IMSLS_INT, &n_vals2, &var2,
 IMSLS_COLUMN_INDEX, 2, getcols, 
0);

 imsls_i_write_matrix("var1", 1, (int) n_vals1, var1, 0);
 imsls_i_write_matrix("var2", 1, (int) n_vals2, var2, 0);

}

Output

 var1
 1  2  3  4
 2  7  12  17

 var2
 1  2  3  4
 4  9  14  19

Example 3

The data file shown below is a freely-formatted ASCII file named intake.dat:

  151-182-BADX-214-515
  316-197-BADY-199-206

This example replaces “BADX” and “BADY” with float type numbers -9999.0 and 9999.0, respectively.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int status, i;
   long n_vals, *var;
   char *miss_vals[] = {"BADX", "BADY"}, delimiters[] = "-";
   float repl_nums[] = {-9999.0, 9999.0};
   status = imsls_ascii_read("intake.dat",
       IMSLS_LONG, &n_vals, &var,
       IMSLS_REPLACEMENT_NUMBERS, 2, miss_vals, repl_nums,
       IMSLS_ROWS, 
       IMSLS_DELIM, 1, delimiters, 
       0);
   for (i = 0; i < n_vals; i++) 
       printf("var[%d] = %ld\n", i, var[i]);
}
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Output

var[0] = 151
var[1] = 182
var[2] = -9999
var[3] = 214
var[4] = 515
var[5] = 316
var[6] = 197
var[7] = 9999
var[8] = 199
var[9] = 206

Example 4

The data file shown below is a freely-formatted ASCII file named level.dat. This data file uses the semicolon (;) 
and the slash (/) as delimiters, and the comma (,) to separate the thousands digit from the hundreds digit. This file 
has three logical records on every line; at the end of each logical record is a slash:

  5,992;17,121/8,348;17,562/5,672;19,451/
  5,459;18,659/7,088;17,052/8,541;13,437/
  6,362;15,894/8,992;17,509/7,785;14,796/

Optional argument IMSLS_FILTERS is provided to filter the commas out of the data.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int status, i;
   long n_vals1, n_vals2, *gap, *bar;
   char delimiters[] = ";/", filter[] = {','};
   status = imsls_ascii_read("level.dat",
       IMSLS_LONG, &n_vals1, &gap,
       IMSLS_LONG, &n_vals2, &bar,
       IMSLS_COLUMNS,
       IMSLS_DELIM, 2, delimiters,
       IMSLS_FILTERS, 1, filter,
       IMSLS_VALS_PER_REC, 2, 
       0);
   for (i = 0; i < n_vals1; i++) 
       printf("gap[%d] = %ld\n", i, gap[i]);
   printf("\n");
   for (i = 0; i < n_vals2; i++) 
       printf("bar[%d] = %ld\n", i, bar[i]);
}
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Output

gap[0] = 5992
gap[1] = 8348
gap[2] = 5672
gap[3] = 5459
gap[4] = 7088
gap[5] = 8541
gap[6] = 6362
gap[7] = 8992
gap[8] = 7785
bar[0] = 17121
bar[1] = 17562
bar[2] = 19451
bar[3] = 18659
bar[4] = 17052
bar[5] = 13437
bar[6] = 15894
bar[7] = 17509
bar[8] = 14796

Example 5 

Assume that you have a file, events.dat, that contains some data values and also some chronological infor-
mation about when those data values were recorded:

  01/01/92 5:45:12 10 01-01-92 3276
  02/01/92 10:10:10 15.89 06-15-91 99
  05/15/91 2:02:02 14.2 12-25-92 876

The date/time formats used to transfer this data have the following definitions: 

 Format Number = 6— MM*DD*YY (* = any delimiter) HH*MM*SS (* = any delimiter)

 Format Number = 1— MM*DD*YY (* = any delimiter) 

To read the date and time from the first and third column into Imsls_ time_val variable and read the fourth column 
of floating point data into another variable:

#include <imsls.h>
#include <stdio.h>
int main()
{

 int status, j, datetimeformat[1] = {6};
 long n_vals1, n_vals2;
 float *var;
 char delimiters[] = " ";
 Imsls_time_val *date;
 status = imsls_ascii_read("events.dat", 

IMSLS_TIME_VAL, &n_vals1, &date,
 IMSLS_FLOAT, &n_vals2, &var,
 IMSLS_DATETIME_FORMAT, 1, datetimeformat,
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 IMSLS_DELIM, 1, delimiters, 
0);

 imsls_f_write_matrix("var", 1, (int) n_vals2, var, 0);
 printf("\n");
 for (j=0; j<n_vals1; j++){

 printf("var[%d] year: %d\n", j, date[j].year);
 printf("date[%d].month: %d\n", j, date[j].month);
 printf("date[%d].day: %d\n", j, date[j].day);
 printf("date[%d]a.hour: %d\n", j, date[j].hour);
 printf("date[%d].minute: %d\n", j, date[j].minute);
 printf("date[%d].second: %f\n\n", j, date[j].second);

 }
}

Output

var
 1  2  3

 10.00  15.89  14.20
var[0] year: 1992
date[0].month: 1
date[0].day: 1
date[0]a.hour: 5
date[0].minute: 45
date[0].second: 12.000000
var[1] year: 1992
date[1].month: 2
date[1].day: 1
date[1]a.hour: 10
date[1].minute: 10
date[1].second: 10.000000
var[2] year: 1991
date[2].month: 5
date[2].day: 15
date[2]a.hour: 2
date[2].minute: 2
date[2].second: 2.000000

Example 6

To read the first, third, and fourth columns of events.dat, define an integer array and a second 
Imsls_time_val variable, and change the call to imsls_ascii_read as shown below.

Notice there are two different date/time formats for column 1 and column 3 in the events.dat file. For column 
1, format 6 is used to read the date data into date1. For column 3, format 1 is used to read date data into 
date2. In the case where the date/time format is the same for all columns, provide only one date/time format to 
be reused by all columns.
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#include <imsls.h>
#include <stdio.h>
int main()
{
   int status, j, *calib, datetimeformat[2] = {6, 1}, 
       getcolumns[4] = {1, 3, 4};
   long n_vals1, n_vals2, n_vals3;
   char delimiters[] = " ";
   char* ignore[] = {"$BAD_DATE_TIME"};
   Imsls_time_val *date1, *date2;
   status = imsls_ascii_read("events.dat",
       IMSLS_TIME_VAL, &n_vals1, &date1,
       IMSLS_TIME_VAL, &n_vals2, &date2,
       IMSLS_INT, &n_vals3, &calib,
       IMSLS_DELIM, 1, delimiters,
       IMSLS_COLUMN_INDEX, 3, getcolumns, 
       IMSLS_DATETIME_FORMAT, 2, datetimeformat,
       0);
   for (j=0; j<n_vals1; j++){
       printf("date1[%d] year: %d\n", j, date1[j].year);
       printf("date1[%d].month: %d\n", j, date1[j].month);
       printf("date1[%d].day: %d\n", j, date1[j].day);
       printf("date1[%d].hour: %d\n", j, date1[j].hour);
       printf("date1[%d].minute: %d\n", j, date1[j].minute);
       printf("date1[%d].second: %f\n\n", j, date1[j].second);
   }
   for (j=0; j<n_vals2; j++){
       printf("date2[%d] year: %d\n", j, date2[j].year);
       printf("date2[%d].month: %d\n", j, date2[j].month);
       printf("date2[%d].day: %d\n", j, date2[j].day);
       printf("date2[%d].hour: %d\n", j, date2[j].hour);
       printf("date2[%d].minute: %d\n", j, date2[j].minute);
       printf("date2[%d].second: %f\n\n", j, date2[j].second);
   }
   imsls_i_write_matrix("calib", 1, (int) n_vals3, calib, 0);
}
                                 

Output

date1[0] year: 1992
date1[0].month: 1
date1[0].day: 1
date1[0].hour: 5
date1[0].minute: 45
date1[0].second: 12.000000
date1[1] year: 1992
date1[1].month: 2
date1[1].day: 1
date1[1].hour: 10
date1[1].minute: 10
date1[1].second: 10.000000
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date1[2] year: 1991
date1[2].month: 5
date1[2].day: 15
date1[2].hour: 2
date1[2].minute: 2
date1[2].second: 2.000000
date2[0] year: 1992
date2[0].month: 1
date2[0].day: 1
date2[0].hour: 0
date2[0].minute: 0
date2[0].second: 0.000000
date2[1] year: 1991
date2[1].month: 6
date2[1].day: 15
date2[1].hour: 0
date2[1].minute: 0
date2[1].second: 0.000000
date2[2] year: 1992
date2[2].month: 12
date2[2].day: 25
date2[2].hour: 0
date2[2].minute: 0
date2[2].second: 0.000000

      calib
   1     2     3
3276    99   876

Example 7

The following data file is a freely-formatted ASCII file named num.dat in which a value is missing:

  0,1,,3,4
  5,6,7,8,9

The missing value is replaced with 99.0.

#include <imsls.h>
int main()
{
   int status, *var, getcol[1] = {3};
   long n_vals;
   char *miss_str[] = {""};
   float repl_nums[] = {99.0};
   status = imsls_ascii_read("num.dat",
       IMSLS_INT, &n_vals, &var,
       IMSLS_COLUMN_INDEX, 1, getcol,
       IMSLS_REPLACEMENT_NUMBERS, 1, miss_str, repl_nums, 
       0);
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   imsls_i_write_matrix("var", 1, (int) n_vals, var, 0);
}

Output

  var
 1   2
99   7

Example 8

The data file shown below is a freely-formatted ASCII file named char.dat:

  a,b,c,d
  e,BAD,g,h

The string GOOD is substituted for the missing value represented as BAD.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int status, i, getcol[1] = {2};
   long n_vals;
   char *miss_val[] = {"BAD"}, *rep_str[] = {"GOOD"}, **var;
   status = imsls_ascii_read("char.dat",
       IMSLS_CHAR, &n_vals, &var,
       IMSLS_COLUMN_INDEX, 1, getcol,
       IMSLS_REPLACEMENT_STRINGS, 1, miss_val, rep_str,
       0);
   for(i=0; i<n_vals; i++)
       printf("var[%d] = %s\n", i, var[i]);
}

Output

var[0] = b
var[1] = GOOD

Example 9

The data file shown below is a freely-formatted ASCII file named chemicals.dat:

  Elemental Carbon
  Sulfate
  Benzo[e]pyrene
  Indeno[1,2,3-cd]pyrene
  n-Heptadecanoic acid
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Note that the first and fourth lines contain a space and commas respectively. Since the default delimiters are 
comma and space, in order to read the first and fourth lines of the data as single entities, a delimiter which does 
not occur as a character in the data file must be specified using IMSLS_DELIM. For this example, we know that 
there are no TAB characters, so TAB is specified as the delimiter (ASCII byte value 9 specified as a hex value). How-
ever, another single character could be specified, such as ‘$’ or ‘Q’.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int status,i;
   long n_vals;
   char **var, delimiters[] = {"\x9"};
   status = imsls_ascii_read("chemicals.dat",
       IMSLS_CHAR, &n_vals, &var,
       IMSLS_ROWS,
       IMSLS_DELIM, 1, delimiters,
       0);
   for (i=0; i<n_vals; i++)
       printf("var[%d] = %s\n", i, var[i]);
}

Output

var[0] = Elemental Carbon
var[1] = Sulfate
var[2] = Benzo[e]pyrene
var[3] = Indeno[1,2,3-cd]pyrene
var[4] = n-Heptadecanoic acid

Warning Errors
IMSLS_M_INVALID_BINARY_CHAR A binary character may have been detected.
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omp_options
Sets various OpenMP options.

Synopsis
#include <imsls.h>
void imsls_omp_options(…, 0)

Return Value
The return value for this function is void.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_omp_options 

(IMSLS_SET_FUNCTIONS_THREAD_SAFE, int setting,  (Input)
IMSLS_GET_FUNCTIONS_THREAD_SAFE, int *psetting,  (Output)
0)

Optional Arguments
IMSLS_SET_FUNCTIONS_THREAD_SAFE, int setting  (Input)

If nonzero, user supplied functions are assumed to be thread-safe. This allows user functions to be 
evaluated in parallel with different arguments.

Default: User supplied functions are not assumed to be thread-safe and will not be evaluated in par-
allel by IMSL C Stat Library functions.

IMSLS_GET_FUNCTIONS_THREAD_SAFE, int *psetting  (Output)
Sets the integer pointed to by psetting to zero if user functions are not assumed to be thread-
safe and to one if they are assumed to be thread-safe.
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Description
The performance of some IMSL C Stat Library functions can be improved if they evaluate user supplied functions 
in parallel. Unfortunately, incorrect results can occur if the user supplied functions are not thread-safe. By default, 
the IMSL C Stat Library assumes user supplied functions are not thread-safe and thus will not evaluate them in 
parallel. To change this assumption, use the optional argument IMSLS_SET_FUNCTIONS_THREAD_SAFE 
with its argument equal to one.

This function can be used multiple times in an application to change the thread-safe assumption.

Example
This example performs a chi-squared test on a randomly generated sample. A call to the function 
imsls_omp_options is used to indicate that function cdf is thread-safe and so can be safely evaluated by 
multiple, simultaneous threads.

#include <imsls.h>
static float cdf(float x);
#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000
int main()
{
   float *x, p_value;
   imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
   imsls_random_seed_set(SEED);
   x = imsls_f_random_normal (N_OBSERVATIONS, 0);
   p_value = imsls_f_chi_squared_test (cdf, N_OBSERVATIONS,
       N_CATEGORIES, x, 0);
   printf ("p-value = %7.4f\n", p_value);
}
static float cdf(float x)
{
   return imsls_f_normal_cdf(x);
}

Output

p-value = 0.1546
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machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis
#include <imsls.h>
long imsls_i_machine (int n)

Required Arguments
int n  (Input)

Index indicating which value is to be returned. It must be between 0 and 12.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_i_machine returns information describing the computer’s arithmetic. This can be used to 
make programs machine independent.

imsls_i_machine(0) = Number of bits per byte

Assume that integers are represented in M-digit, base-A form as 

where σ is the sign and 0 ≤ xk < A for k = 0, …, M. Then,

n Definition

0 C, bits per character

1 A, the base

2 Ms, the number of base-A digits in a short int

σ∑
k=0

M

xkA
k
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Assume that floating-point numbers are represented in N-digit, base B form as

where σ is the sign and 0 ≤ xk < B for k = 1, …, N and Emin ≤ E ≤ Emax. Then 

Example
In this example, all the values returned by imsls_i_machine on a 32-bit machine with IEEE (Institute for Elec-
trical and Electronics Engineer) arithmetic are printed.

#include <imsls.h>
#include <stdio.h>
int main() {
   int n;
   long ans;
   for (n = 0; n <= 12; n++) {
       ans = imsls_i_machine(n);
       printf("imsls_i_machine(%d) = %ld\n", n, ans);
   }
}

3   the largest short int

4 M1 the number of base-A digits in a long int

5   the largest long int

n Definition

6 B, the base

7 Nf, the number of base-B digits in float

8    the smallest float exponent

9    the largest float exponent

10 Nd, the number of base-B digits in double

11    the largest long int

12    the number of base-B digits in double

n Definition

AMs − 1,

AMl − 1,

σBE∑
k−1

N

xkB
−k

Emin f ,

Emax f ,

Emax f ,

Emaxd,
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Output

imsls_i_machine(0) = 8
imsls_i_machine(1) = 2
imsls_i_machine(2) = 15
imsls_i_machine(3) = 32767
imsls_i_machine(4) = 31
imsls_i_machine(5) = 2147483647
imsls_i_machine(6) = 2
imsls_i_machine(7) = 24
imsls_i_machine(8) = -125
imsls_i_machine(9) = 128
imsls_i_machine(10) = 53
imsls_i_machine(11) = -1021
imsls_i_machine(12) = 1024
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machine (float)
Returns information describing the computer’s floating-point arithmetic.

Synopsis
#include <imsls.h> 

float imsls_f_machine (int n)

The type double function is imsls_d_machine.

Required Arguments
int n  (Input)

Index indicating which value is to be returned. The index must be between 1 and 8.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_f_machine returns information describing the computer’s floating-point arithmetic. This can 
be used to make programs machine independent. In addition, some of the functions are also important in setting 
missing values.

Assume that float numbers are represented in Nf-digit, base B form as

where σ is the sign; 0 ≤ xk < B for k = 1, 2, …, Nf; and

Note that B = imsls_i_machine(6); Nf = imsls_i_machine(7); 

σBE∑
k=1

N f

xkB
−k

Emin f ≤ E ≤ Emax f
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and

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result of various otherwise illegal opera-
tions, such as computing 0/0. On computers that do not support NaN, a value larger than 
imsls_d_machine(2) is returned for imsls_f_machine(6). On computers that do not have a special rep-
resentation for infinity, imsls_f_machine(2) returns the same value as imsls_f_machine(7).

Function imsls_f_machine is defined by the following table:

Function imsls_d_machine retrieves machine constants that define the computer’s double arithmetic. Note 
that for double B = imsls_i_machine(6), Nd = imsls_i_machine(10), 

and

Missing values in functions are always indicated by NaN. This is imsls_f_machine(6) in single precision and 
imsls_d_machine(6) in double precision. There is no missing-value indicator for integers. Users will almost 
always have to convert from their missing value indicators to NaN.

n Definition

1
  

2
  

3
  the smallest relative spacing

4
  the largest relative spacing

5 log10(B)

6 NaN

7 Positive machine infinity

8 negative machine infinity

Emin f = imsls_i_machine 8

Emax f = imsls_i_machine 9

B
Emin f

−1

, the smallest positive number

B
Emax f 1 − B

−N f , the largest number

B
−N f ,

B
1−N f ,

Emind = imsls_i_machine 11

Emaxd = imsls_i_machine 12
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Example
In this example, all eight values returned by imsls_f_machine and by imsls_d_machine on a machine 
with IEEE arithmetic are printed.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int            n;
   float          fans;
   double         dans;
   for (n = 1; n <= 8; n++) {
       fans = imsls_f_machine(n);
       printf("imsls_f_machine(%d) = %g\n", n, fans);
   }
   for (n = 1; n <= 8; n++) {
       dans = imsls_d_machine(n);
       printf("imsls_d_machine(%d) = %g\n", n, dans);
   }
   return 0;
}

Output

imsls_f_machine(1) = 1.17549e-38
imsls_f_machine(2) = 3.40282e+38
imsls_f_machine(3) = 5.96046e-08
imsls_f_machine(4) = 1.19209e-07
imsls_f_machine(5) = 0.30103
imsls_f_machine(6) = NaN
imsls_f_machine(7) = Inf
imsls_f_machine(8) = -Inf
imsls_d_machine(1) = 2.22507e-308
imsls_d_machine(2) = 1.79769e+308
imsls_d_machine(3) = 1.11022e-16
imsls_d_machine(4) = 2.22045e-16
imsls_d_machine(5) = 0.30103
imsls_d_machine(6) = NaN
imsls_d_machine(7) = Inf
imsls_d_machine(8) = -Inf
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data_sets
Retrieves a commonly analyzed data set.

Synopsis
#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice, ..., 0)

The type double function is imsls_d_data_sets.

Required Arguments
int data_set_choice  (Input)

Data set indicator. Set data_set_choice = 0 to print a description of all fourteen data sets. In 
this case, any optional arguments are ignored.

data_set_choic
e n_observations n_variables Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins Series G

5 13 5 Draper and Smith Appendix B

6 197 1 Box and Jenkins Series A

7 296 2 Box and Jenkins Series J

8 100 4 Robinson Multichannel Time 
Series

9 113 34 Afifi and Azen Data Set A

10 958 10 Tic-Tac-Toe Endgame

11 4601 58 Spambase Data Set

12 690 16 Credit Approval 

13 20000 17 Letter Recognition Data

14 366 35 Dermatology Database
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Return Value 
If data_set_choice ≠ 0, the requested data set is returned. If data_set_choice = 0 or an error occurs, 
NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_N_VARIABLES, int *n_variables,
IMSLS_PRINT_NONE,
IMSLS_PRINT_BRIEF,
IMSLS_PRINT_ALL,
IMSLS_RETURN_USER, float x[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim  (Input)

Column dimension of user allocated space.

IMSLS_N_OBSERVATIONS, int *n_observations  (Output)
Number of observations or rows in the output matrix.

IMSLS_N_VARIABLES, int *n_variables  (Output)
Number of variables or columns in the output matrix.

IMSLS_PRINT_NONE
No printing is performed. This option is the default.

IMSLS_PRINT_BRIEF
Rows 1 through 10 of the data set are printed.

IMSLS_PRINT_ALL
All rows of the data set are printed.

IMSLS_RETURN_USER, float x[]  (Output)
User-supplied array containing the data set.
1861



 Utilities         data_sets
Description
Function imsls_f_data_sets retrieves a standard data set frequently cited in statistics text books or in this 
manual. The following table gives the references for each data set:

Example
In this example, imsls_f_data_sets is used to copy the Draper and Smith (1981, Appendix B) data set into 
x.

#include <imsls.h>
int main()
{
   float *x;
   x = imsls_f_data_sets (5, 0);
   imsls_f_write_matrix("Draper and Smith, Appendix B", 13, 5, x, 0);
}

data_set_choice Reference

1 Longley (1967)

2 Anderson (1971, p.660)

3 Fisher (1936); Mardia et al. (1979, Table 1.2.2)

4 Box and Jenkins (1976, p. 531)

5 Draper and Smith (1981, pp. 629-630)

6 Box and Jenkins (1976, p. 525)

7 Box and Jenkins (1976, pp. 532-533)

8 Robinson (1976, p. 204)

9 Afifi and Azen (1979, pp. 16-22)

10 Aha, D. W. (1991, pp. 117-121), and Asuncion, A. 
& Newman, D.J. (2007)

11 Asuncion, A. & Newman, D.J. (2007)

12 Quinlan (1987, pp. 221-234, 1997), and Asun-
cion, A. & Newman, D.J. (2007)

13 P. W. Frey and D. J. Slate, (Machine Learning Vol 
6 #2 March 91), and Asuncion, A. & Newman, 
D.J. (2007)

14 G. Demiroz, H. A. Govenir, and N. Ilter, (Artificial 
Intelligence in Medicine ), and Asuncion, A. & 
Newman, D.J. (2007)
1862



 Utilities         data_sets
Output

                Draper and Smith, Appendix B
            1          2          3          4          5
 1        7.0       26.0        6.0       60.0       78.5
 2        1.0       29.0       15.0       52.0       74.3
 3       11.0       56.0        8.0       20.0      104.3
 4       11.0       31.0        8.0       47.0       87.6
 5        7.0       52.0        6.0       33.0       95.9
 6       11.0       55.0        9.0       22.0      109.2
 7        3.0       71.0       17.0        6.0      102.7
 8        1.0       31.0       22.0       44.0       72.5
 9        2.0       54.0       18.0       22.0       93.1
10       21.0       47.0        4.0       26.0      115.9
11        1.0       40.0       23.0       34.0       83.8
12       11.0       66.0        9.0       12.0      113.3
13       10.0       68.0        8.0       12.0      109.4
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mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, a bilinear form, or any tri-
ple product.

Synopsis
#include <imsls.h>
float *imsls_f_mat_mul_rect (char *string, ..., 0)

The type double function is imsls_d_mat_mul_rect.

Required Arguments
char *string (Input)

String indicating operation to be performed. See the Description section below for more details.

Return Value
The result of the operation. This is always a pointer to a float, even if the result is a single number. If no answer 
was computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_mat_mul_rect (char *string,

IMSLS_A_MATRIX, int nrowa, int ncola, float a[],
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[],
IMSLS_B_COL_DIM, int b_col_dim,
IMSLS_X_VECTOR, int nx, float *x,
IMSLS_Y_VECTOR, int ny, float *y,
IMSLS_RETURN_USER, float ans[],
IMSLS_RETURN_COL_DIM, int return_col_dim,
0)
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Optional Arguments
IMSLS_A_MATRIX, int nrowa, int ncola, float a[]  (Input)

The nrowa × ncola matrix A.

IMSLS_A_COL_DIM, int a_col_dim  (Input)
Column dimension of A. 

Default: a_col_dim = ncola
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[]  (Input)

The nrowb × ncolb matrix A. 

IMSLS_B_COL_DIM, int b_col_dim  (Input)
Column dimension of B.

Default: b_col_dim = ncolb
IMSLS_X_VECTOR, int nx, float *x  (Input)

Vector x of size nx.

IMSLS_Y_VECTOR, int ny, float *y  (Input)
Vector y of size ny.

IMSLS_RETURN_USER, float ans[]  (Output)
User-allocated array containing the result.

IMSLS_RETURN_COL_DIM, int return_col_dim  (Input)
Column dimension of the answer.

Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple 
product according to the specification given by string. For example, if “A*x” is given, Ax is computed. In 
string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with 
trans, indicating transpose. The vectors x and y are treated as n × 1 matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose, is 
returned. If string contains one multiplication, such as “A*x” or “B*A”, then the indicated product is returned. 
Some other legal values for string are “trans(y)*A”, “A*trans(B)”, “x*trans(y)”, or “trans(x)*y”.

The matrices and/or vectors referred to in string must be given as optional arguments. If string is “B*x”, 
then IMSLS_B_MATRIX and IMSLS_X_VECTOR must be given.
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Example
Let A, B, x, and y equal the following matrices:

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT and xTAy are computed and printed.

#include <imsls.h>
int main()
{
   float      A[] = {1, 2, 9,
                      5, 4, 7};
   float      B[] = {3, 2,
                      7, 4,
                      9, 1};
   float      x[] = {7, 2, 1};
   float      y[] = {3, 4, 2};
   float      *ans;
   ans = imsls_f_mat_mul_rect("trans(A)",
       IMSLS_A_MATRIX, 2, 3, A,
       0);
   imsls_f_write_matrix("trans(A)", 3, 2, ans, 0);
   ans = imsls_f_mat_mul_rect("A*x",
       IMSLS_A_MATRIX, 2, 3, A,
       IMSLS_X_VECTOR, 3, x,
       0);
   imsls_f_write_matrix("A*x", 1, 2, ans, 0);
   ans = imsls_f_mat_mul_rect("trans(x)*trans(A)",
       IMSLS_A_MATRIX, 2, 3, A,
       IMSLS_X_VECTOR, 3, x,
       0);
   imsls_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);
   ans = imsls_f_mat_mul_rect("A*B",
       IMSLS_A_MATRIX, 2, 3, A,
       IMSLS_B_MATRIX, 3, 2, B,
       0);
   imsls_f_write_matrix("A*B", 2, 2, ans, 0);
   ans = imsls_f_mat_mul_rect("trans(B)*trans(A)",
       IMSLS_A_MATRIX, 2, 3, A,
       IMSLS_B_MATRIX, 3, 2, B,
       0);
   imsls_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);
   ans = imsls_f_mat_mul_rect("trans(x)*y",
       IMSLS_X_VECTOR, 3, x,
       IMSLS_Y_VECTOR, 3, y,
       0);

A = 1 2 9
5 4 7

B =
3 2
7 4
9 1

x =
7
2
1

y =
3
4
2
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   imsls_f_write_matrix("trans(x)*y", 1, 1, ans, 0);
   ans = imsls_f_mat_mul_rect("x*trans(y)",
       IMSLS_X_VECTOR, 3, x,
       IMSLS_Y_VECTOR, 3, y,
       0);
   imsls_f_write_matrix("x*trans(y)", 3, 3, ans, 0);
   ans = imsls_f_mat_mul_rect("trans(x)*A*y",
       IMSLS_A_MATRIX, 2, 3, A,
                               /* use only the first 2 components of x */
       IMSLS_X_VECTOR, 2, x,
       IMSLS_Y_VECTOR, 3, y,
       0);
   imsls_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Output

       trans(A)
           1          2
1          1          5
2          2          4
3          9          7
         A*x
        1          2
       20         50
  trans(x)*trans(A)
        1          2
       20         50
          A*B
           1          2
1         98         19
2        106         33
   trans(B)*trans(A)
           1          2
1         98        106
2         19         33
trans(x)*y
       31
            x*trans(y)
           1          2          3
1         21         28         14
2          6          8          4
3          3          4          2
trans(x)*A*y
       293
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permute_vector
Rearranges the elements of a vector as specified by a permutation.

Synopsis
#include <imsls.h>
float *imsls_f_permute_vector (int n_elements, float x[], int permutation[], 

Imsls_permute permute, .…, 0)

The type double function is imsls_d_permute_vector.

Required Arguments
int n_elements  (Input)

Number of elements in the input vector x.

float x[]  (Input)
Array of length n_elements to be permuted.

int permutation[]  (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either 
IMSLS_FORWARD_PERMUTATION or IMSLS_BACKWARD_PERMUTATION. If 
IMSLS_FORWARD_PERMUTATION is specified, then a forward permutation is performed, i.e., 
x[permutation[i]] is moved to location i in the return vector. If 
IMSLS_BACKWARD_PERMUTATION is specified, then a backward permutation is performed, i.e., 
x[i] is moved to location permutation[i] in the return vector.

Return Value
An array of length n_elements containing the input vector x permuted.

Synopsis with Optional Arguments
#include <imsls.h>
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float *imsls_f_permute_vector (int n_elements, float x[], int permutation[], 
Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[](Output)

User-allocated array containing the result of the permutation.

Description
Function imsls_f_permute_vector rearranges the elements of a vector according to a permutation vec-
tor. The function can perform both forward and backward permutation.

Example
This example rearranges the vector x using permutation. A forward permutation is performed.

#include <imsls.h>
int main()
{
   float x[] = {5.0, 6.0, 1.0, 4.0};
   int permutation[] = {2, 0, 3, 1};
   float    *output;
   int       n_elements = 4;
   output = imsls_f_permute_vector (n_elements, x, permutation,
       IMSLS_FORWARD_PERMUTATION, 0);
   imsls_f_write_matrix ("permuted result", 1, n_elements, output,
                          IMSLS_COL_NUMBER_ZERO, 0);
}

Output

               permuted result
        0          1          2          3
        1          5          4          6
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permute_matrix
Permutes the rows or columns of a matrix.

Synopsis
#include <imsls.h>
float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[], int permutation[], 

Imsls_permute permute, …, 0)

The type double function is imsls_d_permute_matrix.

Required Arguments
int n_rows  (Input)

Number of rows in the input matrix a.

int n_columns  (Input)
Number of columns in the input matrix a.

float a[]  (Input)
Matrix of size n_rows × n_columns to be permuted.

int permutation[]  (Input)
Array of length n containing the permutation permutation[0], …, permutation[n-1] of the 
integers 0, …, n, where n = n_rows if the rows of a are to be permuted and n = n_columns if the 
columns of a are to be permuted.

Imsls_permute permute  (Input)
Keyword of type Imsls_permute. Argument permute must be either IMSLS_PERMUTE_ROWS, if the 
rows of a are to be interchanged, or IMSLS_PERMUTE_COLUMNS, if the columns of a are to be 
interchanged. 

Return Value
Array of size n_rows × n_columns containing the permuted input matrix a.
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Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[], int permutation[], 

Imsls_permute permute,

IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[]  (Output)

User-allocated array of size n_rows × n_columns containing the result of the permutation.

Description
Function imsls_f_permute_matrix interchanges the rows or columns of a matrix using a permutation 
vector. The function permutes a column (row) at a time using function imsls_f_permute_vector. This pro-
cess is continued until all the columns (rows) are permuted. On completion, let B = result and 
pi = permutation [i], then Bij = Apij for all i, j.

Example
This example permutes the columns of a matrix a.

#include <imsls.h>
int main()
{
   float a[] = {3.0, 5.0, 1.0, 2.0, 4.0,
                3.0, 5.0, 1.0, 2.0, 4.0,
                3.0, 5.0, 1.0, 2.0, 4.0};
   int permutation[] = {2, 3, 0, 4, 1};
   float    *output;
   int       n_rows = 3;
   int       n_columns = 5;
   output = imsls_f_permute_matrix (n_rows, n_columns, a, permutation,
       IMSLS_PERMUTE_COLUMNS,
       0);
   imsls_f_write_matrix ("permuted matrix", n_rows, n_columns, output,
       IMSLS_ROW_NUMBER_ZERO, 
       IMSLS_COL_NUMBER_ZERO,
       0);
}
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Output

                      permuted matrix
           0          1          2          3          4
0          1          2          3          4          5
1          1          2          3          4          5
2          1          2          3          4          5
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impute_missing
Locate and optionally replace dependent variable missing values with nearest neighbor estimates.

Synopsis
#include <imsls.h> 

int imsls_f_impute_missing (int n_observations, int n_variables, int n_independent, 
int indind[], float x[], …, 0)

The type double function is imsls_d_impute_missing.

Required Arguments
int n_observations  (Input)

Number of observations.

int n_variables  (Input)
Number of variables.

int n_independent  (Input)
Number of independent variables.

int indind[]  (Input)
Array of size n_independent designating the indices of the columns of x containing the indepen-
dent variables.

float x[]  (Input)
Array of size n_observations × n_variables containing the observations. Missing values of 
the dependent variables may be imputed as functions of the independent variables, but if any of the 
independent variables have missing values, then imputation will not be performed and a warning will 
be issued. If one of the optional arguments, IMSLS_REPLACEMENT_VALUE, 
IMSLS_IMPUTE_METHOD, or IMSLS_PURGE is supplied, x_imputed (see optional argument 
IMSLS_X_IMPUTED) contains the imputed data on output.

Return Value
The number of missing values (n_miss) in the data array x.
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Synopsis with Optional Arguments
#include <imsls.h> 

int imsls_f_impute_missing (int n_observations, int n_variables, int n_independent, 
int indind[], float x[],

IMSLS_MISSING_VALUE, float mval,
IMSLS_METRIC_DIAG, float g[],
IMSLS_REPLACEMENT_VALUE, float replacement_value, or
IMSLS_IMPUTE_METHOD, int method, int k, or
IMSLS_PURGE, int *n_missing_rows, int **missing_row_indices,
IMSLS_MISSING_INDEX, int **indices,
IMSLS_X_IMPUTED, float **x_imputed,
IMSLS_X_IMPUTED_USER, float x_imputed[],
0)

Optional Arguments
IMSLS_MISSING_VALUE, float mval,  (Input)

Scalar value (other than NaN) representing a missing value. NaN always represents a missing value, 
so if mval is not NaN it will be treated as a second type of missing value.

IMSLS_METRIC_DIAG, float g[]  (Input)
Array of length n_independent defining a diagonal metric for independent variable space. This 
scales the independent variables in the distance calculations used to determine nearest neighbors. 
The default measure of distance is Euclidean (g[i] = 1 for all i).

IMSLS_REPLACEMENT_VALUE, float replacement_value  (Input)
Replace missing values in x with replacement_value. Output data array is returned in 
x_imputed. Requires optional argument IMSLS_X_IMPUTED or IMSLS_X_IMPUTED_USER.

or

IMSLS_IMPUTE_METHOD, int method, int k  (Input)
The method to be used for imputing missing values using k nearest neighbors. Replace missing value 
of dependent variable y at point x in the space of independent variables with the mode, mean, 
median, geometric mean, or linear regression (method) of y on those k nearest neighbors of x 
which have no missing values. To use all of the data and eliminate the need to compute neighbor-
hoods, set k ≥ n_observations. If there are no independent variables, set 
k ≥ n_observations. Imputed data is returned in x_imputed. Requires optional argument 
IMSLS_X_IMPUTED or IMSLS_X_IMPUTED_USER.
1874



 Utilities         impute_missing
Valid values for method are:

or

IMSLS_PURGE, int *n_missing_rows, int **missing_row_indices (Output)
All rows with missing values are removed from x and the resulting data array is returned in 
x_imputed.   n_missing_rows is the number of rows that were removed.   
missing_row_indices are the indices of the rows that were removed. Requires optional argu-
ment IMSLS_X_IMPUTED or IMSLS_X_IMPUTED_USER.

IMSLS_MISSING_INDEX, int **indices  (Output)
Address of a pointer to the internally allocated array of size n_miss, containing the indices of x 
where missing values occur.   n_miss is the function return value. If the data has no missing values, 
the pointer is returned as NULL. 

IMSLS_X_IMPUTED, float ** x_imputed  (Output)
Array containing imputed data. This argument is required when IMSLS_REPLACEMENT_VALUE, 
IMSLS_IMPUTE_METHOD, or IMSLS_PURGE is supplied. For options 
IMSLS_REPLACEMENT_VALUE and IMSLS_IMPUTE_METHOD, x_imputed contains all data 
from x with missing values replaced in the dependent variable columns. For option IMSLS_PURGE, 
x_imputed is an array of size n_observations - n_missing_rows × n_variables, con-
taining the data from x with the rows of missing data removed.

IMSLS_X_IMPUTED_USER, float x_imputed[]  (Output)
Storage for array x_imputed is provided by the user. See IMSLS_X_IMPUTED. The size of this 
array must be the same as x, n_observations × n_variables. For the IMSLS_PURGE 
option, use only the first n_observations - n_missing_rows × n_variables values on 
output.

method Description

IMSLS_MODE_METH Mode

IMSLS_MEAN_METH Mean

IMSLS_MEDIAN_METH Median

IMSLS_GEOMEAN_METH Geometric mean

IMSLS_LINEAR_METH Linear regression
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Description
Function imsls_f_impute_missing locates missing values, and optionally, replaces them with estimated 
values. This replacement process, called imputation, applies only to dependent variables. If x denotes an arbitrary 
point in independent variable space and y denotes a dependent variable with a missing value at x = xi, then y at xi 

is estimated as y(xi) = f(xi) where f(x) is some function of x in some neighborhood of xi. 

imsls_f_impute_missing provides five options (see IMSLS_IMPUTE_METHOD) for the form of f(x), and 
each option allows neighborhood size to be specified in terms of some given number of nearest neighbors. The 
neighbors exclude observations with missing values and are determined by distance, the norm relative to metric 
G,

By default, G = I, but the IMSLS_METRIC_DIAG option can be used to specify any other diagonal metric G. A 
sixth option, IMSLS_REPLACEMENT_VALUE, allows the user to specify one value to be used as a replacement 
for all missing values.

Instead of being used for imputation, imsls_f_impute_missing can be used to simply remove all observa-
tions which contain missing values. This is accomplished with the option IMSLS_PURGE. With this option, all 
rows with missing values are removed from the input data matrix. Unlike imputation, this option is not limited to 
dependent variables and can be used to handle missing values in the independent variables.

Usually either imputation or deletion will be performed, but imsls_f_impute_missing can be used for the 
more basic task of returning the indices of missing values. The indices could then be used to implement other 
imputation methods.

Following the standard practice, missing data values are always represented by NaN. Option 
IMSLS_MISSING_VALUE allows the user to also specify a second value to represent missing values.

Examples

Example 1

Count the missing values in a data set, where the only valid missing value is NaN.

#include <imsls.h>
#include <stdio.h>
#define N_OBSERVATIONS 20
#define N_VARIABLES   4 
int main()
{
  float x[N_OBSERVATIONS][N_VARIABLES];
  int count, i, j;

∥x∥ = xTGx .
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                         /* create the test data */
  for(i=0;i<N_OBSERVATIONS;i++) {
     for(j=0;j<N_VARIABLES;j++) {
        x[i][j]= (float)((i*N_VARIABLES)+j);
     }
  } 
                         /* replace some of the data values */
 
  x[3][1] = imsls_f_machine(6);  /* NaN */
  x[5][2] = imsls_f_machine(6);  /* NaN */
  x[7][2] = imsls_f_machine(7);  /* positive infinity */
  x[9][3] = imsls_f_machine(8);  /* negative infinity */ 
 
                         /* declare no independent variables */
                         /* note +/-inf are not considered 'missing' */
  count = imsls_f_impute_missing (N_OBSERVATIONS, N_VARIABLES, 0, 
                                  NULL, (float*)x, 
                                  0);
  printf("number of missing values = %d\n", count);
}

Output

number of missing values = 2

Example 2

Set the value 20 to represent a missing value and find the indices in x which contain the missing value.

#include <imsls.h>
#include <stdio.h>
#define N_OBSERVATIONS 20
#define N_VARIABLES   4 

int main()
{
  float x[N_OBSERVATIONS][N_VARIABLES];
  float mval;
  int n_independent, count, i, j;
  int indind[2];
  int *indices;
                             /* declare 2 independent variables */
  n_independent = 2; 
  indind[0] = 2; /* declare that column 2 is independent */
  indind[1] = 3; /* declare that column 3 is independent */
                             /* missing value is represented by 20 */
                             /* and will be located at x[5][0] */
  mval = 20.0;  
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                             /* create the test data */
  for(i=0;i<N_OBSERVATIONS;i++) {
     for(j=0;j<N_VARIABLES;j++) {
        x[i][j] = (float)((i*N_VARIABLES)+j);
     }
  } 
 
  count = imsls_f_impute_missing (N_OBSERVATIONS, N_VARIABLES,
                                 n_independent, indind, (float*)x, 
                                 IMSLS_MISSING_VALUE, mval, 
                                 IMSLS_MISSING_INDEX, &indices, 
                                 0);
  printf("number of missing values = %d\n", count);
  for (i=0; i<count;i++) {
     printf("indices[%d] = %d\n", i, indices[i]);
  }
}

Output

number of missing values = 1
indices[0] = 20

Example 3

In this example both NaN and infinity represent missing values in the original data. In the first call to 
imsls_f_impute_missing, missing values are replaced by negative infinity. In the second call to 
imsls_f_impute_missing, negative infinity is set to represent missing values and the rows containing the 
missing values are purged for the final output.

#include <imsls.h>
#include <stdio.h>
#define N_ROWS 6
#define N_COLS 4
int main()
{
  float *x_imputed, *x_purged;
  float mval, replacement_value;
  float data[N_ROWS][N_COLS];
  int n_independent, count, npurge, i, j;
  int indind[1];
  int *bad_obs;
  char *fmt="%6.2f";
                             /* create the test data */
  for(i=0;i<N_ROWS;i++) {
     for(j=0;j<N_COLS;j++) {
        data[i][j] = (float)((i*N_COLS)+j);
     }
1878



 Utilities         impute_missing
  }
                             /* insert bad values into data */
  data[1][1] = imsls_f_machine(6);    /* NaN */
  data[2][2] = imsls_f_machine(7);    /* positive infinity */
  data[3][3] = imsls_f_machine(8);    /* negative infinity */
 
  imsls_f_write_matrix ("Original data with missing values", 
                       N_ROWS, N_COLS, (float*)data, 
                       IMSLS_WRITE_FORMAT, fmt, 
                       0);
 
                            /* set the missing value to be +inf */
  mval = imsls_f_machine(7);
                            /* replace missing values with neg inf */
  replacement_value = imsls_f_machine(8); 
                            /* declare one independent variable */
  n_independent = 1;
  indind[0] = 0;
 
                            /* replace Nan and +inf values with -inf */
  count = imsls_f_impute_missing (N_ROWS, N_COLS, n_independent, 
                           indind, (float*)data, 
                           IMSLS_MISSING_VALUE, mval,
                           IMSLS_REPLACEMENT_VALUE, replacement_value, 
                           IMSLS_X_IMPUTED, &x_imputed, 
                           0);
  imsls_f_write_matrix ("Data with values replaced", 
                        N_ROWS, N_COLS, x_imputed, 
                        IMSLS_WRITE_FORMAT, fmt, 
                        0); 
                           /* now purge all rows containing -inf */
  mval = imsls_f_machine(8);
  count = imsls_f_impute_missing (N_ROWS, N_COLS, n_independent, 
                           indind, x_imputed, 
                           IMSLS_MISSING_VALUE, mval,
                           IMSLS_PURGE, &npurge, &bad_obs,
                           IMSLS_X_IMPUTED, &x_purged, 
                           0); 
  printf("\n number missing = %d, number of rows purged = %d\n", 
         count, npurge);
  printf("\n Purged row numbers:\n");
  for(i=0;i<npurge;i++) {
     printf(" %d ",bad_obs[i]);
  }
  printf ("\n");
  imsls_f_write_matrix ("New data with bad rows purged", 
                        N_ROWS-npurge, N_COLS, x_purged, 
                        IMSLS_WRITE_FORMAT, fmt, 
                        0); 
}
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Output

Original data with missing values
       1      2      3      4
1   0.00   1.00   2.00   3.00
2   4.00 ......   6.00   7.00
3   8.00   9.00 ++++++  11.00
4  12.00  13.00  14.00 ------
5  16.00  17.00  18.00  19.00
6  20.00  21.00  22.00  23.00
   Data with values replaced
       1      2      3      4
1   0.00   1.00   2.00   3.00
2   4.00 ------   6.00   7.00
3   8.00   9.00 ------  11.00
4  12.00  13.00  14.00 ------
5  16.00  17.00  18.00  19.00
6  20.00  21.00  22.00  23.00
number missing = 3, number of rows purged = 3
Purged row numbers:
 1   2   3 
 New data with bad rows purged
       1      2      3      4
1   0.00   1.00   2.00   3.00
2  16.00  17.00  18.00  19.00
3  20.00  21.00  22.00  23.00

Example 4

Replace missing values computed using the mean of the 3 nearest neighbors.

#include <imsls.h>
#define N_ROWS 10
#define N_COLS 4
int main()
{
   float *x_imputed;
   float data[N_ROWS][N_COLS];
   int n_independent, count, i, j;
   int indind[2];
   char *fmt="%6.2f";
   /* create the test data */
   for(i=0;i<N_ROWS;i++) {
       for(j=0;j<N_COLS;j++) {
           data[i][j] = (float)((i*N_COLS)+j);
       }
   }
   data[1][3] = imsls_f_machine(6); /* insert NaN at row 1 col 3 */
   data[4][2] = imsls_f_machine(6); /* insert NaN at row 4 col 2 */
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   imsls_f_write_matrix ("Original data with missing values", N_ROWS,
       N_COLS, (float*) data,
       IMSLS_WRITE_FORMAT, fmt,
       0);
   /* declare two independent variables */
   n_independent = 2;
   indind[0] = 0;
   indind[1] = 1;
   /* replace missing values using mean method */
   count = imsls_f_impute_missing (N_ROWS, N_COLS, n_independent,
       indind, (float*)data,
       IMSLS_IMPUTE_METHOD,
       IMSLS_MEAN_METH, 3,
       IMSLS_X_IMPUTED, &x_imputed,
       0);
   imsls_f_write_matrix ("Imputed data (using mean method)", N_ROWS,
       N_COLS, x_imputed,
       IMSLS_WRITE_FORMAT, fmt,
       0);
}

Output
 Original data with missing values
         1       2       3       4
 1    0.00    1.00    2.00    3.00
 2    4.00    5.00    6.00  ......
 3    8.00    9.00   10.00   11.00
 4   12.00   13.00   14.00   15.00
 5   16.00   17.00  ......   19.00
 6   20.00   21.00   22.00   23.00
 7   24.00   25.00   26.00   27.00
 8   28.00   29.00   30.00   31.00
 9   32.00   33.00   34.00   35.00
10   36.00   37.00   38.00   39.00
 
 Imputed data (using mean method)
         1       2       3       4
 1    0.00    1.00    2.00    3.00
 2    4.00    5.00    6.00    9.67
 3    8.00    9.00   10.00   11.00
 4   12.00   13.00   14.00   15.00
 5   16.00   17.00   20.67   19.00
 6   20.00   21.00   22.00   23.00
 7   24.00   25.00   26.00   27.00
 8   28.00   29.00   30.00   31.00
 9   32.00   33.00   34.00   35.00
10   36.00   37.00   38.00   39.00
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Warning Errors
IMSLS_NO_GOOD_ROW Each row contains missing values. No imputation is 

performed.

IMSLS_INDEP_HAS_MISSING At least one of the independent variables contains a 
missing value. No imputation is performed.
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binomial_coefficient
Evaluates the binomial coefficient.

Synopsis
#include <imsls.h>
float imsls_f_binomial_coefficient (int n, int m)

The type double procedure is imsls_d_binomial_coefficient.

Required Arguments
int n  (Input)

First parameter of the binomial coefficient. Argument n must be nonnegative.

int m  (Input)
Second parameter of the binomial coefficient. Argument m must be nonnegative.

Return Value

The binomial coefficient  is returned.

Description
The binomial function is defined to be 

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example,    is computed and printed.

n
m

n
m = n!

m! n − m !

9
5
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#include <stdio.h>
#include <imsls.h>
int main()
{
   int      n = 9;
   int      m = 5;
   float    ans;
   
   ans = imsls_f_binomial_coefficient(n, m);
   printf("binomial coefficient = %.1f\n", ans);
}

Output

binomial coefficient = 126.0
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beta
Evaluates the complete beta function.

Synopsis
#include <imsls.h>
float imsls_f_beta (float a, float b)

The type double procedure is imsls_d_beta.

Required Arguments
float a  (Input)

First beta parameter. It must be positive.

float b  (Input)
Second beta parameter. It must be positive.

Return Value
The value of the beta function β(a, b). If no result can be computed, then NaN is returned.

Description
The beta function, β(a, b), is defined to be

Example
Evaluate the beta function β(0.5, 0.2).

#include <imsls.h>
#include <stdio.h>
int main()

β a,b =
Γ a Γ b
Γ a + b = ∫0

1

t a−1 1 − t b−1dt
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{
   float x = 0.5;
   float y = 0.2;
   float ans;
   ans = imsls_f_beta(x, y);
   printf("beta(%f,%f) = %f\n", x, y, ans);
   return 0;
}

Output

beta(0.500000,0.200000) = 6.268653

Figure 40, Plot of β (x, b)

The beta function requires that a > 0 and b > 0. It underflows for large arguments.
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Alert Errors

Fatal Errors

IMSLS_BETA_UNDERFLOW The arguments must not be so large that the result 
underflows.

IMSLS_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the 
result overflows.
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beta_incomplete
Evaluates the real regularized incomplete beta function.

Synopsis
#include <imsls.h>
float imsls_f_beta_incomplete (float x, float a, float b)

The type double function is imsls_d_beta_incomplete.

Required Arguments
float x  (Input)

Argument at which the regularized incomplete beta function is to be evaluated.

float a  (Input)
First shape parameter.

float b  (Input)
Second shape parameter.

Return Value
The value of the regularized incomplete beta function.

Description
The regularized incomplete beta function Ix (a, b) is defined

where 

is the incomplete beta function,

I x a, b = Bx a, b / B a, b

Bx a,b = ∫
0

x

t a−1 1 − t)b−1dt
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is the (complete) beta function, and    is the gamma function.

The regularized incomplete beta function imsls_f_beta_incomplete (x, a, b) is identical to the beta prob-
ability distribution function imsls_f_beta_cdf (x, a, b) which represents the probability that a beta random 
variable X with shape parameters a and b takes on a value less than or equal to x. The regularized incomplete 
beta function requires that 0 ≤ x ≤ 1, a > 0, and b > 0 and it underflows for sufficiently small x and large a. This 
underflow is not reported as an error. Instead, the value zero is returned.

Example
Suppose X is a beta random variable with shape parameters a = b =12 (X has a symmetric distribution). This 
example finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a 
symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsls.h>
#include <stdio.h>
int main()
{

 float  a = 12, b = 12, x = 0.6, p;
 p = imsls_f_beta_incomplete(x, a, b);
 printf("The probability that X is less than %3.1f is "

 "%6.4f\n", x, p);
 x = 0.5;
 p -= imsls_f_beta_incomplete(x, a, b);
 printf("The probability that X is between %3.1f and"

 " 0.6 is %6.4f\n", x, p);
}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

B a, b = B1 a, b =
Γ a Γ b
Γ a + b

Γ a
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log_beta
Evaluates the logarithm of the real beta function ln β(x, y).

Synopsis
#include <imsls.h>
float imsls_f_log_beta (float x, float y)

The type double procedure is imsls_d_log_beta.

Required Arguments
float x  (Input)

Point at which the logarithm of the beta function is to be evaluated. It must be positive.

float y  (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be positive.

Return Value
The value of the logarithm of the beta function β(x, y).

Description 
The beta function, β(x, y), is defined to be

and imsls_f_log_beta returns ln β(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for very large arguments.

Example
Evaluate the log of the beta function ln β(0.5, 0.2).

β x,y =
Γ x Γ y
Γ x + y = ∫0

1

t x−1 1 − t y−1dt
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#include <imsls.h>
#include <stdio.h>
int main()
{
   float      x = 0.5;
   float      y = 0.2;
   float      ans;
   ans = imsls_f_log_beta(x, y);
   printf("log beta(%f,%f) = %f\n", x, y, ans);
}

Output

log beta(0.500000,0.200000) = 1.835562

Warning Errors
IMSLS_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one precision 

because the expression−x/(x + y) is too close to 
−1.
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gamma
Evaluates the real gamma function.

Synopsis
#include <imsls.h>
float imsls_f_gamma (float x)

The type double procedure is imsls_d_gamma.

Required Arguments
float x  (Input)

Point at which the gamma function is to be evaluated.

Return Value
The value of the gamma function Γ(x).

Description
The gamma function, Γ(x), is defined to be

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows for x << 0 and overflows 
for large x. It also overflows for values near negative integers.

Γ x = ∫0
∞

t x−1e−tdt
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Figure 41, Plot of Γ(x) and 1/Γ(x)

Example
In this example, Γ(1.5) is computed and printed.

#include <stdio.h>
#include <imsls.h>
int main()
{
   float      x = 1.5;
   float      ans;
   
   ans = imsls_f_gamma(x);
   printf("Gamma(%f) = %f\n", x, ans);
}

Output

Gamma(1.500000) = 0.886227
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Alert Errors

Warning Errors

Fatal Errors

IMSLS_SMALL_ARG_UNDERFLOW The argument x must be large enough that Γ(x) does not 
underflow. The underflow limit occurs first for arguments 
close to large negative half integers. Even though other 
arguments away from these half integers may yield 
machine-representable values of Γ(x), such arguments are 
considered illegal.

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision 
because x is too close to a negative integer.

IMSLS_ZERO_ARG_OVERFLOW The argument for the gamma function is too close to zero.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to a negative 
integer.

IMSLS_LARGE_ARG_OVERFLOW The function overflows because x is too large.

IMSLS_CANNOT_FIND_XMIN The algorithm used to find x
min
 failed. This error should never occur.

IMSLS_CANNOT_FIND_XMAX The algorithm used to find x
max
 failed. This error should never occur.
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gamma_incomplete
Evaluates the incomplete gamma function γ(a, x).

Synopsis
#include <imsls.h>
float imsls_f_gamma_incomplete (float a, float x)

The type double procedure is imsls_d_gamma_incomplete.

Required Arguments
float a  (Input)

Parameter of the incomplete gamma function is to be evaluated. It must be positive.

float x  (Input)
Point at which the incomplete gamma function is to be evaluated. It must be nonnegative.

Return Value 
The value of the incomplete gamma function γ(a, x).

Description
The incomplete gamma function, γ(a, x), is defined to be

for x > 0. The incomplete gamma function is defined only for a > 0. Although γ(a, x) is well defined for x > −∞, 
this algorithm does not calculate γ(a, x) for negative x. For large a and sufficiently large x, γ(a, x) may overflow. 
γ(a, x) is bounded by Γ(a), and users may find this bound a useful guide in determining legal values for a.

γ a,x = ∫0
x

t a−1e−tdt
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Figure 42, Contour Plot of γ(a, x)

Example 
Evaluates the incomplete gamma function at a = 1 and x = 3.

#include <stdio.h>
#include <imsls.h>
int main()
{
   float      x = 3.0;
   float      a = 1.0;
   float      ans;
   ans = imsls_f_gamma_incomplete(a, x);
   printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}

Output 

incomplete gamma(1.000000,3.000000) = 0.950213
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Fatal Errors
IMSLS_NO_CONV_200_TS_TERMS The function did not converge in 200 terms of Taylor 

series.

IMSLS_NO_CONV_200_CF_TERMS The function did not converge in 200 terms of the 
continued fraction.
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log_gamma
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|.

Synopsis
#include <imsls.h>
float imsls_f_log_gamma (float x)

The type double procedure is imsls_d_log_gamma.

Required Arguments
float x  (Input)

Point at which the logarithm of the absolute value of the gamma function is to be evaluated.

Return Value 
The value of the logarithm of gamma function log |Γ(x)|.

Description
The logarithm of the absolute value of the gamma function log |Γ(x)| is computed.
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Figure 43, Plot of log|Γ(x)|

Example
In this example, log |Γ(3.5)| is computed and printed.

#include <stdio.h>
#include <imsls.h>
int main()
{
   float      x = 3.5;
   float      ans;
   ans = imsls_f_log_gamma(x);
   printf("log gamma(%f) = %f\n", x, ans);
}

Output

log gamma(3.500000) = 1.200974
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Warning Errors

Fatal Errors

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision 
because x is too close to a negative integer.

IMSLS_NEGATIVE_INTEGER The argument for the function cannot be a negative 
integer.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to a nega-
tive integer.

IMSLS_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the result overflows.
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ctime
Returns the number of CPU seconds used.

Synopsis
#include <imsls.h>
double imsls_ctime( )

Return Value
The number of CPU seconds used by the program.

Example
The CPU time needed to compute

is obtained and printed. The time needed is machine dependent. The CPU time needed varies slightly from run to 
run on the same machine.

#include <imsls.h>
#include <stdio.h>
int main()
{
   int    k;
   double sum, time;
   /* Sum 1 million values */
   for (sum=0, k=1; k<=1000000; k++)
       sum += k;
   /* Get amount of CPU time used */
   time = imsls_ctime();
   printf("sum = %f\n", sum);
   printf("time = %f\n", time);
   return 0;
}

∑
k=0

1, 000, 000

k

1901



 Utilities         ctime
Output

sum = 500000500000.000000
time = 0.820000
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User Errors
IMSL functions attempt to detect user errors and handle them in a way that provides as much information to the 
user as possible. To do this, various levels of severity of errors are recognized, and the extent of the error in the 
context of the purpose of the function also is considered; a trivial error in one situation can be serious in another. 
IMSL attempts to report as many errors as can reasonably be detected. Multiple errors present a difficult prob-
lem in error detection because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of limitations of the computer arith-
metic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the assessed 
degree of accuracy determines the severity of the error. In cases where the function computes several output 
quantities, some are not computable but most are, an error condition exists. The severity of the error depends 
on an assessment of the overall impact of the error.
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Kinds of Errors and Default Actions
Five levels of severity of errors are defined in IMSL C Stat Library. Each level has an associated PRINT attribute and 
a STOP attribute. These attributes have default settings (YES or NO), but they may also be set by the user. The 
purpose of having multiple error types is to provide independent control of actions to be taken for errors of dif-
ferent levels of severity. Upon return from an IMSL function, exactly one error state exists. (A code 0 “error” is no 
error.) Even if more than one informational error occurs, only one message is printed (if the PRINT attribute is 
YES). Multiple errors for which no corrective action within the calling program is reasonable or necessary result in 
the printing of multiple messages (if the PRINT attribute for their severity level is YES). Errors of any of the severity 
levels except IMSLS_TERMINAL may be informational errors. The include file, imsls.h, defines each of 
IMSLS_NOTE, IMSLS_ALERT, IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL, 
IMSLS_WARNING_IMMEDIATE, and IMSLS_FATAL_IMMEDIATE as enumerated data type Imsls_error.

IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or simply to provide information about 
the computations. 
Default attributes: PRINT=NO, STOP=NO

IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to underflow. 
Default attributes: PRINT=NO, STOP=NO

IMSLS_WARNING. A warning indicates the existence of a condition that may require corrective action by the 
user or calling function. A warning error may be issued because the results are accurate to only a few decimal 
places; because some of the output may be erroneous, but most of the output is correct; or because some 
assumptions underlying the analysis technique are violated. Usually no corrective action is necessary, and the 
condition can be ignored.
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL. A fatal error indicates the existence of a condition that may be serious. In most cases, the user 
or calling function must take corrective action to recover. 
Default attributes: PRINT=YES, STOP=YES

IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an incorrect specification, such as spec-
ifying a negative number as the number of equations. These errors can also be caused by various programming 
errors impossible to diagnose correctly in C. The resulting error message may be perplexing to the user. In such 
cases, the user is advised to compare carefully the actual arguments passed to the function with the dummy 
argument descriptions given in the documentation. Special attention should be given to checking argument order 
and data types.

A terminal error is not an informational error, because corrective action within the program is generally not rea-
sonable. In normal use, execution is terminated immediately when a terminal error occurs. Messages relating to 
more than one terminal error are printed if they occur. 
Default attributes: PRINT=YES, STOP=YES
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IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a warning error, except it is printed 
immediately. 
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, except it is printed immedi-
ately. 
Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling function imsls_error_options as described in Chapter 
15, Utilities.

Errors in Lower-level Functions
It is possible that a user’s program may call an IMSL function that in turn calls a nested sequence of lower-level 
IMSL functions. If an error occurs at a lower level in such a nest of functions and if the lower-level function cannot 
pass the information up to the original user-called function, then a traceback of the functions is produced. The 
only common situation in which this can occur is when an IMSL function calls a user-supplied routine that in turn 
calls another IMSL function.

Functions for Error Handling
The user may interact in three ways with the IMSL error-handling system: 

1. Change the default actions.

2. Determine the code of an informational error so as to take corrective action.

3. Initialize the error handling systems.

The functions that support these actions are: 

 imsls_error_options
Sets the actions to be taken when errors occur.

 imsls_error_type
Retrieves the Imsl_error enum error type value.

 imsls_error_code
Retrieves the integer code for an informational error. 

 imsls_error_message
Retrieves the error message string.
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 imsls_initialize_error_handler
Initializes the IMSL C Stat Library error handling system for the current thread. This function is not required 
but is always allowed. Use of this function is advised if the possibility of low heap memory exists when calling 
the IMSL C Stat Library for the first time in the current thread.

These functions are documented in Chapter 15, Utilities.

Threads and Error Handling
If multiple threads are used then default settings are valid for each thread but can be altered for each individual 
thread. When using threads it is necessary to set options using imsls_error_options for each thread by call-
ing imsls_error_options from within each thread. 

See Example 3 and Example 4 of imsls_error_options for multithreaded examples.

Use of Informational Error to Determine Program Action
In the program segment below, a factor analysis is to be performed on the matrix covariances. If it is determined 
that the matrix is singular (and often this is not immediately obvious), the program is to take a different branch.

x = imsls_f_factor_analysis (nobs, covariances, 
            n_factors, 0);

if (imsls_error_code() == IMSLS_COV_IS_SINGULAR) {
/* Handle a singular matrix */

}

Additional Examples
See functions imsls_error_options and imsls_error_code in Chapter 15, Utilities for additional examples.
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Appendix  BAlphabetical Summary of 
Functions
[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] 
1942



          
A

Function Purpose Statement

ad_normality_test Performs an Anderson-Darling test for 
normality.

ancovar Analyzes a one-way classification model 
with covariates.

anova_balanced Analyzes a balanced complete experi-
mental design for a fixed, random, or 
mixed model.

anova_factorial Analyzes a balanced factorial design 
with fixed effects.

anova_nested Analyzes a completely nested random 
model with possibly unequal numbers 
in the subgroups.

anova_oneway Analyzes a one-way classification model.

apriori Computes the frequent itemsets in a 
transaction set.

aggr_apriori Computes the frequent itemsets in a 
transaction set using aggregation.

arma Computes least-square estimates of 
parameters for an ARMA model.

arma_forecast Computes forecasts and their associ-
ated probability limits for an ARMA 
model.

ascii_read Reads freely-formatted ASCII files.

autocorrelation Computes the sample autocorrelation 
function of a stationary time series.

auto_arima Automatically identifies time series out-
liers, determines parameters of a 
multiplicative seasonal ARIMA 

 model and produces 
forecasts that incorporate the effects of 
outliers whose effects persist beyond 
the end of the series.

(p,0,q) × (0,d,0)s
1943



          
auto_parm Estimates structural breaks in non-sta-
tionary univariate time series. 

auto_uni_ar Automatic selection and fitting of a uni-
variate autoregressive time series 
model.
1944



          
B

Function Purpose Statement

bayesian_seasonal_adj Decomposes a time series into trend, 
seasonal, and an error component.

beta Evaluates the complete beta function.

beta_cdf Evaluates the beta probability distribu-
tion function.

beta_incomplete Evaluates the real incomplete beta 
function.

beta_inverse_cdf Evaluates the inverse of the beta distri-
bution function.

binomial_cdf Evaluates the binomial distribution 
function.

binomial_coefficient Evaluates the binomial coefficient.

binomial_pdf Evaluates the binomial probability 
function.

bivariate_normal_cdf Evaluates the bivariate normal distribu-
tion function.

box_cox_transform Performs a Box-Cox transformation.
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Function Purpose Statement

canonical_correlation Given an input array of deviate values, 
generates a canonical correlation array.

categorical_glm Analyzes categorical data using logistic, 
Probit, Poisson, and other generalized 
linear models.

chi_squared_cdf Evaluates the chi-squared distribution 
function.

chi_squared_inverse_cdf Evaluates the inverse of the chi-squared 
distribution function.

chi_squared_normality_test Performs a chi-squared test for 
normality.

chi_squared_test Performs a chi-squared goodness-of-fit 
test.

cluster_hierarchical Performs a hierarchical cluster analysis 
given a distance matrix.

cluster_k_means Performs a K-means (centroid) cluster 
analysis.

cluster_number Computes cluster membership for a 
hierarchical cluster tree.

cochran_q_test Performs a Cochran Q test for related 
observations.

complementary_chi_squared_cdf Calculates the complement of the chi-
squared distribution.

complementary_F_cdf Calculates the complement of the F dis-
tribution function.

complementary_non_central_F_cdf Evaluates the complementary noncen-
tral F cumulative distribution function 
(CDF).

complementary_t_cdf Calculates the complement of the Stu-
dent's t distribution function.

contingency_table Performs a chi-squared analysis of a 
two-way contingency table.

continuous_table_setup Sets up a table to generate pseudoran-
dom numbers from a general 
continuous distribution.
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covariances Computes the sample variance-covari-
ance or correlation matrix.

cox_stuart_trends_test Performs the Cox and Stuart’ sign test 
for trends in location and dispersion.

crd_factorial Analyzes data from balanced and unbal-
anced completely randomized 
experiments.

crosscorrelation Computes the sample cross-correlation 
function of two stationary time series.

cvm_normality_test Performs a Cramer-von-Mises test for 
normality.
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Function Purpose Statement

data_sets Retrieves a commonly analyzed data 
set.

decision_tree   Generates a decision tree for a single 
response variable and two or more pre-
dictor variables.

decision_tree_predict Computes predicted values using a deci-
sion tree.

decision_tree_print  Prints a decision tree.

decision_tree_free Frees the memory associated with a 
decision tree.

difference Differences a seasonal or nonseasonal 
time series.

discrete_table_setup Sets up a table to generate pseudoran-
dom numbers from a general discrete 
distribution.

discrete_uniform_cdf Evaluates the discrete uniform cumula-
tive distribution function (CDF).

discrete_uniform_inverse_cdf Evaluates the inverse of the discrete 
uniform cumulative distribution func-
tion (CDF).

discrete_uniform_pdf Evaluates the discrete uniform probabil-
ity density function (PDF).

discriminant_analysis Performs discriminant function analysis.

dissimilarities Computes a matrix of dissimilarities (or 
similarities) between the columns (or 
rows) of a matrix.
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Function Purpose Statement

empirical_quantiles Computes empirical quantiles.

error_code Returns the code corresponding to the 
error message from the last function 
called.

error_message Gets the text of the error message from 
the last function called.

error_options Sets various error handling options.

error_type Gets the type corresponding to the error 
message from the last function called.

estimate_missing Estimates missing values in a time 
series.

exact_enumeration Computes exact probabilities in a two-
way contingency table, using the total 
enumeration method.

exact_network Computes exact probabilities in a two-
way contingency table using the net-
work algorithm.

exponential_cdf Evaluates the exponential cumulative 
distribution function (CDF).

exponential_inverse_cdf Evaluates the inverse of the exponential 
cumulative distribution function (CDF).

exponential_pdf Evaluates the exponential probability 
density function (PDF).
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Function Purpose Statement

factor_analysis Extracts initial factor-loading estimates 
in factor analysis.

false_discovery_rates Calculate the False Discovery Rate (FDR) 
q-values corresponding to a set of p- 
values from multiple simultaneous 
hypothesis tests.

faure_next_point Computes a shuffled Faure sequence.

fclose Closes a file opened by imsls_fopen.

fopen Opens a file using the C runtime library 
used by the IMSL C Stat Library.

free Frees memory returned from an IMSL C 
Stat Library function.

free_apriori_itemsets Frees the memory allocated within a fre-
quent itemsets structure.

free_association_rules Frees the memory allocated within an 
association rules structure.

friedmans_test Performs Friedman’s test for a random-
ized complete block design.
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Function Purpose Statement

ga_chromosome Codes and decodes binary information 
from phenotypes to a chromosome.

ga_clone_chromosome Returns a new copy of an existing 
chromosome.

ga_clone_individual Returns a new copy of an existing 
individual.

ga_clone_population Returns a new copy of an existing 
population.

ga_copy_chromosome Copies the contents of one chromo-
some into another chromosome.

ga_copy_individual Copies the contents of one individual 
into another individual.

ga_copy_population Copies the contents of one population 
into another population.

ga_decode Decodes an individual’s chromosome 
into its binary, nominal, integer and real 
phenotypes.

ga_encode Encodes an individual’s binary, nominal, 
integer and real phenotypes into its 
chromosome.

ga_free_individual Frees memory allocated to an existing 
individual.

ga_free_population Frees memory allocated to an existing 
population.

ga_grow_population Adds individuals to an existing 
population.

ga_individual Creates an Imsls_f_individual data struc-
ture from user supplied phenotypes.

ga_merge_population Creates a new population by merging 
two populations with identical chromo-
some structures.

ga_mutate Performs the mutation operation on an 
individual’s chromosome.

ga_population Creates an Imsls_f_population data struc-
ture from user supplied individuals.
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ga_random_population Creates an Imsls_f_population data struc-
ture from randomly generated 
individuals.

gamma Evaluates the real gamma functions.

gamma_cdf Evaluates the gamma distribution 
function.

gamma_incomplete Evaluates the incomplete gamma 
function.

gamma_inverse_cdf Evaluates the inverse of the gamma dis-
tribution function.

garch Computes estimates of the parameters 
of a GARCH (p, q) model.

genetic_algorithm Optimizes a user defined fitness func-
tion using a tailored genetic algorithm.

geometric_cdf Evaluates the discrete geometric cumu-
lative distribution function (CDF).

geometric_inverse_cdf Evaluates the inverse of the discrete 
geometric cumulative distribution func-
tion (CDF).

geometric_pdf Evaluates the discrete geometric proba-
bility density function (PDF).
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Function Purpose Statement

homogeneity Conducts Bartlett’s and Levene’s tests of 
the homogeneity of variance assump-
tion in analysis of variance.

hw_time_series Calculates parameters and forecasts 
using the Holt-Winters Multiplicative or 
Additive forecasting method for sea-
sonal data.

hypergeometric_cdf Evaluates the hypergeometric distribu-
tion function.

hypergeometric_pdf Evaluates the hypergeometric probabil-
ity function.

hypothesis_partial Constructs a completely testable 
hypothesis.

hypothesis_scph Sums of cross products for a multivari-
ate hypothesis.

hypothesis_test Tests for the multivariate linear 
hypothesis.
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Function Purpose Statement

impute_missing Locates and optionally replaces depen-
dent variable missing values with 
nearest neighbor estimates.

initialize_error_handler Initializes the IMSL C Stat Library error 
handling system.
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Function Purpose Statement

kalman Performs Kalman filtering and evaluates 
the likelihood function for the state-
space model.

kaplan_meier_estimates Computes Kaplan-Meier estimates of 
survival probabilities in stratified 
samples.

kohonenSOM_forecast Calculates forecasts using a trained 
Kohonen network.

kohonenSOM_trainer Trains a Kohonen network.

kolmogorov_one Performs a Kolmogorov-Smirnov’s one-
sample test for continuous 
distributions.

kolmogorov_two Performs a Kolmogorov-Smirnov’s two-
sample test.

kruskal_wallis_test Performs a Kruskal-Wallis’s test for iden-
tical population medians. 

k_trends_test Performs k-sample trends test against 
ordered alternatives.
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Function Purpose Statement

lack_of_fit Performs lack-of-fit test for an univari-
ate time series or transfer function 
given the appropriate correlation 
function.

latin_square Analyzes data from latin-square 
experiments.

lattice Analyzes balanced and partially-bal-
anced lattice experiments.

life_tables Produces population and cohort life 
tables.

lilliefors_normality_test Performs a Lilliefors test for normality.

Lnorm_regression Fits a multiple linear regression model 
using criteria other than least squares.

log_beta Evaluates the log of the real beta 
function.

log_gamma Evaluates the logarithm of the absolute 
value of the gamma function.

logistic_regression Fits a binomial or multinomial logistic 
regression model using iteratively 
reweighted least squares.

logistic_reg_predict Predicts a binomial or multinomial out-
come given an estimated model and 
new values of the independent 
variables.

lognormal_cdf Evaluates the lognormal cumulative dis-
tribution function (CDF).

lognormal_inverse_cdf Evaluates the inverse of the lognormal 
cumulative distribution function (CDF).

lognormal_pdf Evaluates the lognormal probability 
density function (PDF).
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Function Purpose Statement

machine (float) Returns information describing the 
computer's floating-point arithmetic.

machine (integer) Returns integer information describing 
the computer's arithmetic.

mat_mul_rect Computes the transpose of a matrix, a 
matrix-vector product, a matrix-matrix 
product, a bilinear form, or any triple 
product.

max_arma Exact maximum likelihood estimation of 
the parameters in a univariate ARMA 
(autoregressive, moving average) time 
series model.

max_likelihood_estimates Calculates maximum likelihood esti-
mates for the parameters of one of 
several univariate probability 
distributions.

mlff_classification_trainer Trains a multilayered feedforward neu-
ral network for classification.

mlff_initialize_weights Initializes weights for multilayered feed-
forward neural networks prior to 
network training using one of four user 
selected methods.

mlff_network Creates a multilayered feedforward 
neural network.

mlff_network_forecast Calculates forecasts for trained multilay-
ered feedforward neural networks.

mlff_network_free Frees memory allocated for an 
Imsls_f_NN_Network data structure.

mlff_network_init Initializes a data structure for training a 
neural network.

mlff_network_read Retrieves a neural network from a file 
previously saved.

mlff_network_trainer Trains a multilayered feedforward neu-
ral network.

mlff_network_write Writes a trained neural network to an 
ASCII file.
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mlff_pattern_classification Calculates classifications for trained 
multilayered feedforward neural 
networks.

multi_crosscorrelation Computes the multichannel cross-cor-
relation function of two mutually 
stationary multichannel time series.

multiple_comparisons Performs Student-Newman-Keuls multi-
ple comparisons test.

multivar_normality_test Computes Mardia’s multivariate mea-
sures of skewness and kurtosis and 
tests for multivariate normality.

multivariate_normal_cdf Computes the cumulative distribution 
function for the multivariate normal 
distribution.
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Function Purpose Statement

naive_bayes_classification Classifies unknown patterns using a 
previously trained Naïve Bayes classifier.

naive_bayes_trainer Trains a Naïve Bayes classifier.

nb_classifier_free Frees memory allocated to an 
Imsls_f_nb_classifier data structure.

nb_classifier_read Retrieves a Naive Bayes Classifier previ-
ously filed using 
imsls_f_nb_clssifier_write.

nb_classifier_write Writes a Naive Bayes Classifier to an 
ASCII file for later retrieval using 
imsls_f_nb_classifier_read.

noether_cyclical_trend Performs a Noether’s test for cyclical 
trend.

non_central_beta_cdf Evaluates the noncentral beta cumula-
tive distribution function (CDF).

non_central_beta_inverse_cdf Evaluates the inverse of the noncentral 
beta cumulative distribution function 
(CDF).

non_central_beta_pdf Evaluates the noncentral beta probabil-
ity density function (PDF).

non_central_chi_sq Evaluates the noncentral chi-squared 
distribution function.

non_central_chi_sq_inv Evaluates the inverse of the noncentral 
chi-squared function.

non_central_chi_sq_pdf Evaluates the noncentral chi-squared 
probability density function.

non_central_F_cdf Evaluates the noncentral F cumulative 
distribution function.

non_central_F_inverse_cdf Evaluates the inverse of the noncentral 
F cumulative distribution function.

non_central_F_pdf Evaluates the noncentral F probability 
density function.

non_central_t_cdf Evaluates the noncentral Student’s t dis-
tribution function.
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non_central_t_inv_cdf Evaluates the inverse of the noncentral 
Student’s t distribution function.

non_central_t_pdf Evaluates the noncentral Student's t 
probability density function.

nonlinear_optimization Fits a nonlinear regression model using 
Powell's algorithm.

nonlinear_regression Fits a nonlinear regression model.

nonparam_hazard_rate Performs nonparametric hazard rate 
estimation using kernel functions and 
quasi-likelihoods.

normal_cdf Evaluates the standard normal (Gauss-
ian) distribution function.

normal_inverse_cdf Evaluates the inverse of the standard 
normal (Gaussian) distribution function.

normal_one_sample Computes statistics for mean and vari-
ance inferences using a sample from a 
normal population.

normal_two_sample Computes statistics for mean and vari-
ance inferences using samples from two 
normal populations.
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Function Purpose Statement

omp_options Sets various OpenMP options.

output_file Sets the output file or the error mes-
sage output file.
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Function Purpose Statement

page Sets or retrieves the page width or 
length.

pareto_cdf Evaluates the Pareto cumulative proba-
bility distribution function.

pareto_pdf Evaluates the Pareto probability density 
function.

partial_autocorrelation Computes the sample partial autocor-
relation function of a stationary time 
series.

partial_covariances Computes partial covariances or partial 
correlations from the covariance or cor-
relation matrix.

permute_matrix Permutes the rows or columns of a 
matrix.

permute_vector Rearranges the elements of a vector as 
specified by a permutation.

pls_regression Performs partial least squares regres-
sion for one or more response variables 
and one or more predictor variables.

poisson_cdf Evaluates the Poisson distribution 
function.

poisson_pdf Evaluates the Poisson probability 
function.

poly_prediction Computes predicted values, confidence 
intervals, and diagnostics after fitting a 
polynomial regression model.

poly_regression Performs a polynomial least-squares 
regression.

pooled_covariances Computes a pooled variance-covariance 
from the observations.

principal_components Computes principal components.

prop_hazards_gen_lin Analyzes time event data via the propor-
tional hazards model.
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Function Purpose Statement

random_arma Generates pseudorandom ARMA pro-
cess numbers.

random_beta Generates pseudorandom numbers 
from a beta distribution.

random_binomial Generates pseudorandom binomial 
numbers.

random_cauchy Generates pseudorandom numbers 
from a Cauchy distribution.

random_chi_squared Generates pseudorandom numbers 
from a chi-squared distribution.

random_exponential Generates pseudorandom numbers 
from a standard exponential 
distribution.

random_exponential_mix Generates pseudorandom mixed num-
bers from a standard exponential 
distribution.

random_gamma Generates pseudorandom numbers 
from a standard gamma distribution.

random_general_continuous Generates pseudorandom numbers 
from a general continuous distribution.

random_general_discrete Generates pseudorandom numbers 
from a general discrete distribution 
using an alias method or optionally a 
table lookup method.

random_geometric Generates pseudorandom numbers 
from a geometric distribution.

random_GFSR_table_get Retrieves the current table used in the 
GFSR generator.

random_GFSR_table_set Sets the current table used in the GFSR 
generator.

random_hypergeometric Generates pseudorandom numbers 
from a hypergeometric distribution.

random_logarithmic Generates pseudorandom numbers 
from a logarithmic distribution.

random_lognormal Generates pseudorandom numbers 
from a lognormal distribution.
1963



          
random_MT32_init Initializes the 32-bit Mersenne Twister 
generator using an array.

random_MT32_table_get Retrieves the current table used in the 
32-bit Mersenne Twister generator.

random_MT32_table_set Sets the current table used in the 32-bit 
Mersenne Twister generator.

random_MT64_init Initializes the 64-bit Mersenne Twister 
generator using an array.

random_MT64_table_get Retrieves the current table used in the 
64-bit Mersenne Twister generator.

random_MT64_table_set Sets the current table used in the 64-bit 
Mersenne Twister generator.

random_multinomial Generates pseudorandom numbers 
from a multinomial distribution.

random_mvar_from_data Generates pseudorandom numbers 
from a multivariate distribution deter-
mined from a given sample.

random_mvar_gaussian_copula Given a Cholesky factorization of a cor-
relation matrix, generates 
pseudorandom numbers from a Gauss-
ian Copula distribution.

random_mvar_t_copula Given a Cholesky factorization of a cor-
relation matrix, generates 
pseudorandom numbers from a Stu-
dent’s t Copula distribution.

random_neg_binomial Generates pseudorandom numbers 
from a negative binomial distribution.

random_normal Generates pseudorandom numbers 
from a normal, N (μ, σ2), distribution.

random_normal_multivariate Generates pseudorandom numbers 
from a multivariate normal distribution.

random_npp Generates pseudorandom numbers 
from a nonhomogeneous Poisson 
process.

random_option Selects the uniform (0, 1) multiplicative 
congruential pseudorandom number 
generator.

random_option_get Retrieves the uniform (0, 1) multiplica-
tive congruential pseudorandom 
number generator.
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random_order_normal Generates pseudorandom order statis-
tics from a standard normal 
distribution.

random_order_uniform Generates pseudorandom order statis-
tics from a uniform (0, 1) distribution.

random_orthogonal_matrix Generates a pseudorandom orthogonal 
matrix or a correlation matrix.

random_permutation Generates a pseudorandom 
permutation.

random_poisson Generates pseudorandom numbers 
from a Poisson distribution.

random_sample Generates a simple pseudorandom 
sample from a finite population.

random_sample_indices Generates a simple pseudorandom 
sample of indices.

random_seed_get Retrieves the current value of the seed 
used in the IMSL random number 
generators.

random_seed_set Initializes a random seed for use in the 
IMSL random number generators.

random_sphere Generates pseudorandom points on a 
unit circle or K-dimensional sphere.

random_stable Generates pseudorandom numbers 
from a stable distribution.

random_student_t Generates pseudorandom Student's t.

random_substream_seed_get Retrieves a seed for the congruential 
generators that do not do shuffling that 
will generate random numbers begin-
ning 100,000 numbers farther along.

random_table_get Retrieves the current table used in the 
shuffled generator.

random_table_set Sets the current table used in the shuf-
fled generator.

random_table_twoway Generates a pseudorandom two-way 
table.

random_triangular Generates pseudorandom numbers 
from a triangular distribution.

random_uniform Generates pseudorandom numbers 
from a uniform (0, 1) distribution.
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random_uniform_discrete Generates pseudorandom numbers 
from a discrete uniform distribution.

random_von_mises Generates pseudorandom numbers 
from a von Mises distribution.

random_weibull Generates pseudorandom numbers 
from a Weibull distribution.

randomness_test Performs a test for randomness.

ranks Computes the ranks, normal scores, or 
exponential scores for a vector of 
observations.

rcbd_factorial Analyzes data from balanced and unbal-
anced randomized complete-block 
experiments.

regression Fits a multiple linear regression model 
using least squares.

regression_arima Fits a univariate, non-seasonal ARIMA 
time series model with the inclusion of 
one or more regression variables.

regression_prediction Computes predicted values, confidence 
intervals, and diagnostics after fitting a 
regression model.

regression_selection Selects the best multiple linear regres-
sion models.

regression_stepwise Builds multiple linear regression models 
using forward selection, backward selec-
tion or stepwise selection.

regression_summary Produces summary statistics for a 
regression model given the information 
from the fit.

regressors_for_glm Generates regressors for a general lin-
ear model.

robust_covariances Computes a robust estimate of a covari-
ance matrix and mean vector.
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Function Purpose Statement

scale_filter Scales or unscales continuous data prior 
to its use in neural network training, 
testing, or forecasting.

seasonal_fit Estimates the optimum seasonality 
parameters for a time series using an 
autoregressive model, AR(p), to repre-
sent the time series.

set_user_fcn_return_flag Indicates a condition has occurred in a 
user-supplied function necessitating a 
return to the calling function.

shapiro_wilk_normality_test Performs the Shapiro-Wilk test for 
normality.

sign_test Performs a sign test.

simple_statistics Computes basic univariate statistics.

sort_data Sorts observations by specified keys, 
with option to tally cases into a multi-
way frequency table.

split_plot Analyzes a wide variety of split-plot 
experiments with fixed, mixed or ran-
dom factors.

split_split_plot Analyzes data from split-split-plot 
experiments.

strip_plot Analyzes data from strip-plot 
experiments.

strip_split_plot Analyzes data from strip-split-plot 
experiments.

support_vector_trainer Trains a Support Vector Machines 
classifier

support_vector_classification Classifies patterns using a previously 
trained Support Vector Machines 
classifier

survival_estimates Estimates using various parametric 
models.
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survival_glm Analyzes survival data using a general-
ized linear model.

svm_classifier_free Frees memory allocated for a Support 
Vector Machines classifier
1968
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Function Purpose Statement

t_cdf Evaluates the Student's t distribution 
function.

t_inverse_cdf Evaluates the inverse of the Student's t 
distribution function.

table_oneway Tallies observations into one-way fre-
quency table.

table_twoway Tallies observations into a two-way fre-
quency table.

tie_statistics Computes tie statistics for a sample of 
observations.

time_series_class_filter Converts time series data sorted with 
nominal classes in decreasing chrono-
logical order to useful format for 
processing by a neural network.

time_series_filter Converts time series data to the format 
required for processing by a neural 
network.

ts_outlier_forecast Computes forecasts, their associated 
probability limits and   -weights for an 
outlier contaminated time series whose 
underlying outlier free series follows a 
general seasonal or nonseasonal ARMA 
model.

ts_outlier_identification Detects and determines outliers and 
simultaneously estimates the model 
parameters in a time series whose 
underlying outlier free series follows a 
general seasonal or nonseasonal ARMA 
model.

ψ
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Function Purpose Statement

unsupervised_nominal_filter Converts nominal data into a series of 
binary encoded columns for input to a 
neural network.

unsupervised_ordinal_filter Converts ordinal data into percentages.
1970



          
V

Function Purpose Statement

version Returns integer information describing 
the version of the library, license num-
ber, operating system, and compiler.

vector_autoregression Estimates a vector auto-regressive time 
series model with optional moving aver-
age components.
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Function Purpose Statement

wilcoxon_rank_sum Performs a Wilcoxon rank sum test.

wilcoxon_sign_rank Performs a Wilcoxon sign rank test.

write_apriori_itemsets Prints frequent itemsets.

write_association_rules Prints association rules.

write_matrix Prints a rectangular matrix (or vector) 
stored in contiguous memory locations.

write_options Sets or retrieves an option for printing 
a matrix.
1972
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 Product Support         Contacting IMSL Support

Product Support

Contacting IMSL Support
Users within support warranty may contact Rogue Wave Software regarding the use of the 
IMSL C Numerical Library. IMSL Support can consult on the following topics:

 Clarity of documentation

 Possible IMSL-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of your program.

See https://www.imsl.com/support for IMSL product support.

The following describes the procedure for consultation with IMSL Support:

1. Include your IMSL license number.

2. Include the product name and version number.

3. Include compiler and operating system version numbers.

4. Include the name of the routine for which assistance is needed and a description of the problem.

https://www.imsl.com/support
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