
IMSL® C Stat Library
Version 2021.0

Copyright 1970-2021 Rogue Wave Software, Inc., a Perforce company.

Visual Numerics, IMSL, and PV-WAVE are registered trademarks of Rogue Wave Software, Inc., a Perforce company.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this docu-
ment is subject to the terms and conditions of a Rogue Wave Software License Agreement, including, without limitation,
the Limited Warranty and Limitation of Liability.
IMSL by Perforce
https://www.imsl.com

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft-
ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse
of the Documentation

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

Contents

Introduction

IMSL C Stat Library . 2

Organization of the Documentation . 3

Finding the Right Function . 5

Naming Conventions . 6

Getting Started and the imsls.h file . 7

Error Handling, Underflow, Overflow, and Document Examples. 8

Memory Allocation for Output Arrays . 9

Printing Results . 10

Missing Values . 11

Passing Data to User-Supplied Functions . 12

Return Values from User-Supplied Functions . 14

Thread Safe Usage . 15

OpenMP Usage . 16

Vendor Supplied Libraries Usage . 18

C++ Usage . 19

Matrix Storage Modes . 22

Basic Statistics
Functions . 23

Usage Notes. 24

simple_statistics. 25

empirical_quantiles . 35

normal_one_sample . 38

normal_two_sample . 43

table_oneway . 55

table_twoway . 60

sort_data . 66

ranks . 75

Regression
Functions . 83

Usage Notes . 84

regressors_for_glm . 97

regression . 107

regression_summary. 124

regression_prediction . 133

hypothesis_partial . 145

hypothesis_scph. 152

hypothesis_test . 157

regression_selection . 165

regression_stepwise . 176

poly_regression . 186

poly_prediction . 195

nonlinear_regression . 205

nonlinear_optimization . 218

Lnorm_regression . 229

pls_regression. 248

Correlation and Covariance
Functions . 262

Usage Notes . 263

covariances . 264

partial_covariances . 273

pooled_covariances. 279

robust_covariances . 286

Analysis of Variance
and Designed Experiments

Functions . 296

Usage Notes . 297

anova_oneway . 311

ancovar . 322

anova_factorial . 336

anova_nested . 345
iv

anova_balanced . 359

crd_factorial . 371

rcbd_factorial . 382

latin_square. 392

lattice . 401

split_plot . 417

split_split_plot . 431

strip_plot . 447

strip_split_plot. 458

homogeneity. 479

multiple_comparisons. 486

false_discovery_rates. 492

yates . 500

Categorical and Discrete Data Analysis
Functions . 512

Usage Notes . 513

contingency_table . 514

exact_enumeration . 528

exact_network . 531

categorical_glm. 538

logistic_regression . 555

logistic_reg_predict . 571

Nonparametric Statistics
Functions . 580

Usage Notes . 581

sign_test. 582

wilcoxon_sign_rank . 586

noether_cyclical_trend . 590

cox_stuart_trends_test . 594

tie_statistics. 600

wilcoxon_rank_sum . 603

kruskal_wallis_test . 609

friedmans_test . 612
v

cochran_q_test . 617

k_trends_test. 621

Tests of Goodness of Fit
Functions . 626

Usage Notes . 627

chi_squared_test . 628

shapiro_wilk_normality_test . 640

lilliefors_normality_test . 643

chi_squared_normality_test . 646

kolmogorov_one . 649

kolmogorov_two. 653

multivar_normality_test. 657

ad_normality_test. 662

cvm_normality_test . 665

randomness_test . 668

Time Series and Forecasting
Functions . 680

Usage Notes . 682

arma . 688

max_arma . 701

arma_forecast. 708

arima . 716

regression_arima . 729

auto_uni_ar . 739

seasonal_fit . 745

ts_outlier_identification. 754

ts_outlier_forecast . 764

auto_arima . 773

auto_parm . 791

bayesian_seasonal_adj . 803

box_cox_transform . 812

difference . 817

autocorrelation. 823
vi

crosscorrelation . 829

multi_crosscorrelation . 836

partial_autocorrelation . 847

lack_of_fit . 851

estimate_missing . 855

hw_time_series . 863

garch . 873

kalman . 879

vector_autoregression . 891

Multivariate Analysis
Functions . 912

Usage Notes . 913

dissimilarities . 916

cluster_hierarchical . 921

cluster_number . 927

cluster_k_means. 932

principal_components . 938

factor_analysis . 945

discriminant_analysis . 965

Survival and Reliability Analysis
Functions . 990

Usage Notes . 991

kaplan_meier_estimates . 992

prop_hazards_gen_lin . 999

survival_glm. .1014

survival_estimates . 1038

nonparam_hazard_rate . 1045

life_tables. 1055

Probability Distribution Functions and Inverses
Functions .1061

Usage Notes . 1063

binomial_cdf . 1066
vii

binomial_pdf . 1068

geometric_cdf . 1070

geometric_inverse_cdf . 1072

geometric_pdf. 1074

hypergeometric_cdf. 1076

hypergeometric_pdf . 1079

poisson_cdf .1081

poisson_pdf. 1084

discrete_uniform_cdf. 1086

discrete_uniform_inverse_cdf . 1088

discrete_uniform_pdf . 1090

beta_cdf . 1092

beta_inverse_cdf . 1094

non_central_beta_cdf . 1096

non_central_beta_inverse_cdf . 1099

non_central_beta_pdf .1102

bivariate_normal_cdf .1105

chi_squared_cdf .1107

chi_squared_inverse_cdf. 1110

complementary_chi_squared_cdf . 1112

non_central_chi_sq . 1115

non_central_chi_sq_inv . 1119

non_central_chi_sq_pdf. 1121

exponential_cdf .1124

exponential_inverse_cdf .1126

exponential_pdf .1128

F_cdf .1130

F_inverse_cdf. .1133

complementary_F_cdf .1135

non_central_F_pdf .1138

non_central_F_cdf .1142

complementary_non_central_F_cdf .1145

non_central_F_inverse_cdf .1149
viii

gamma_cdf .1152

gamma_inverse_cdf .1155

lognormal_cdf .1157

lognormal_inverse_cdf .1159

lognormal_pdf. 1161

normal_cdf .1163

multivariate_normal_cdf .1166

normal_inverse_cdf .1174

t_cdf .1176

t_inverse_cdf .1179

complementary_t_cdf . 1181

non_central_t_cdf .1185

non_central_t_inv_cdf .1188

non_central_t_pdf. .1190

pareto_cdf .1193

pareto_pdf. .1195

max_likelihood_estimates. .1197

Random Number Generation
Functions . 1207

Usage Notes .1210

random_binomial. .1215

random_geometric .1218

random_hypergeometric . 1220

random_logarithmic . 1223

random_neg_binomial . 1225

random_poisson . 1228

random_uniform_discrete . 1230

random_general_discrete. 1232

discrete_table_setup . 1237

random_beta . 1243

random_cauchy . 1246

random_chi_squared . 1248

random_exponential . 1250
ix

random_exponential_mix . 1252

random_gamma . 1255

random_lognormal . 1258

random_normal .1261

random_stable . 1264

random_student_t . 1267

random_triangular . 1269

random_uniform .1271

random_von_mises . 1274

random_weibull . 1276

random_general_continuous. 1279

continuous_table_setup . 1282

random_normal_multivariate . 1286

random_orthogonal_matrix . 1290

random_mvar_from_data . 1293

random_multinomial . 1297

random_sphere . 1300

random_table_twoway . 1303

random_mvar_gaussian_copula . 1306

random_mvar_t_copula . 1311

canonical_correlation .1317

random_order_normal . 1323

random_order_uniform . 1326

random_arma . 1329

random_npp . 1334

random_permutation . 1338

random_sample_indices . 1340

random_sample . 1342

random_option. 1346

random_option_get . 1348

random_seed_get . 1349

random_substream_seed_get .1351

random_seed_set. 1353
x

random_table_set . 1354

random_table_get . 1355

random_GFSR_table_set . 1357

random_GFSR_table_get. 1358

random_MT32_init . 1362

random_MT32_table_get . 1363

random_MT32_table_set . 1366

random_MT64_init . 1367

random_MT64_table_get . 1368

random_MT64_table_set .1371

faure_next_point . 1372

Data Mining
Functions . 1377

Data Mining Usage Notes. 1380

apriori. 1386

aggr_apriori . 1392

write_apriori_itemsets . 1402

write_association_rules . 1403

free_apriori_itemsets. 1404

free_association_rules. 1405

Decision Trees – An Overview . 1406

decision_tree. 1409

decision_tree_predict . 1445

decision_tree_print . 1452

decision_tree_free . 1457

bagged_trees_free . 1458

gradient_boosting . 1459

Genetic Algorithms – An Overview . 1482

ga_chromosome .1491

ga_copy_chromosome . 1497

ga_clone_chromosome . 1498

ga_individual . 1500

ga_copy_individual . 1505
xi

ga_clone_individual . 1506

ga_mutate . 1508

ga_decode .1510

ga_encode . 1511

ga_free_individual .1512

ga_population .1513

ga_random_population. 1520

ga_copy_population. 1529

ga_clone_population . 1530

ga_grow_population . 1532

ga_merge_population . 1534

ga_free_population . 1536

genetic_algorithm . 1537

Naive Bayes – An Overview . 1559

naive_bayes_trainer .1561

naive_bayes_classification . 1580

nb_classifier_free . 1589

nb_classifier_write . 1590

nb_classifier_read . 1595

Neural Networks – An Overview .1601

Multilayer Feedforward Neural Networks .1612

mlff_network_init . 1622

mlff_network . 1624

mlff_network_free . 1636

mlff_network_write. 1637

mlff_network_read . 1643

mlff_initialize_weights . 1649

mlff_network_trainer . 1664

mlff_network_forecast. 1676

mlff_classification_trainer . 1683

mlff_pattern_classification .1710

scale_filter . 1725

time_series_filter . 1732
xii

time_series_class_filter . 1735

unsupervised_nominal_filter . 1740

unsupervised_ordinal_filter . 1744

kohonenSOM_trainer . 1749

kohonenSOM_forecast . 1759

Support Vector Machines – An Overview .1761

support_vector_trainer . 1763

support_vector_classification. 1780

svm_classifier_free . 1785

Printing Functions
Functions . 1786

write_matrix . 1787

page . 1794

write_options . 1796

Utilities
Functions . 1800

output_file . 1802

version . 1806

error_options . 1808

error_code. .1815

error_type .1817

error_message .1818

initialize_error_handler . 1820

set_user_fcn_return_flag . 1823

free . 1828

fopen . 1830

fclose . 1832

ascii_read. 1833

omp_options . 1852

machine (integer) . 1854

machine (float) . 1857

data_sets . 1860

mat_mul_rect . 1864
xiii

permute_vector . 1868

permute_matrix . 1870

impute_missing . 1873

binomial_coefficient. 1883

beta . 1885

beta_incomplete . 1888

log_beta . 1890

gamma . 1892

gamma_incomplete . 1895

log_gamma . 1898

ctime. .1901

Reference Material
Contents . 1903

User Errors . 1903

Appendix A References . 1907

Appendix B Alphabetical Summary of Functions 1942

Product Support
Contacting IMSL Support . 1973

Index
xiv

 Introduction Table of Contents
Introduction

Table of Contents

IMSL C Stat Library . 2
Organization of the Documentation . 3
Finding the Right Function. 5
Naming Conventions . 6
Getting Started and the imsls.h file . 7
Error Handling, Underflow, Overflow, and Document Examples 8
Memory Allocation for Output Arrays . 9
Printing Results . 10
Missing Values . 11
Passing Data to User-Supplied Functions . 12
Return Values from User-Supplied Functions . 14
Thread Safe Usage . 15
OpenMP Usage . 16
Vendor Supplied Libraries Usage . 18
C++ Usage. 19
Matrix Storage Modes . 22
1

 Introduction IMSL C Stat Library
IMSL C Stat Library
The IMSL C Stat Library, a component of the IMSL C Numerical Library, is a library of C functions useful in scientific
programming. Each function is designed and documented to be used in research activities as well as by technical
specialists. A number of the example programs also show graphs of resulting output.
2

 Introduction Organization of the Documentation
Organization of the Documentation
This manual contains a concise description of each function with at least one example demonstrating the use of
each function, including sample input and results. All information pertaining to a particular function is in one
place within a chapter.

Each chapter begins with a table of contents listing the functions included in the chapter followed by an introduc-
tion. Documentation of the functions consists of the following information:

 Section Name: Usually, the common root for the type float and type double versions of the
function.

 Purpose: A statement of the purpose of the function.

 Synopsis: The form for referencing the function with required arguments listed.

Required Arguments: A description of the required arguments in the order of their occurrence.

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output through this argument. The argu-
ment cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant or an expression; the function
returns output through this argument.

 Return Value: The value returned by the function.

 Synopsis with Optional Arguments: The form for referencing the function with both required
and optional arguments listed.

 Optional Arguments: A description of the optional arguments in the order of their occurrence.

 Description: A description of the algorithm and references to detailed information. In many cases,
other IMSL functions with similar or complementary functions are noted.

 Examples: At least one application of this function showing input and optional arguments.

 Errors: Listing of any errors that may occur with a particular function. A discussion on error types is
given in the User Errors section of the Reference Material. The errors are listed by their type as
follows:

Informational Errors: List of informational errors that may occur with the function.

Alert Errors: List of alert errors that may occur with the function.

Warning Errors: List of warning errors that may occur with the function.
3

 Introduction Organization of the Documentation
Fatal Errors: List of fatal errors that may occur with the function.

 References: References are listed alphabetically by author.
4

 Introduction Finding the Right Function
Finding the Right Function
The C Stat Library documentation is organized into chapters; each chapter contains functions with similar compu-
tational or analytical capabilities. To locate the right function for a given problem, use either the table of contents
located in each chapter introduction or the Alphabetical Summary at the end of this manual.

Often, the quickest way to use the C Stat Library is to find an example similar to your problem, then mimic the
example. Each function documented has at least one example demonstrating its application.
5

 Introduction Naming Conventions
Naming Conventions
Most functions are available in both a type float and a type double version, with names of the two versions sharing
a common root. Some functions are also available in type int. The following list is of each type and the corre-
sponding prefix of the function name in which multiple type versions exist:

The section names for the functions contain only the common root to make finding the functions easier. For
example, the functions imsls_f_simple_statistics and imsls_d_simple_statistics can be
found in Chapter 1, Basic Statistics, in the “simple_statistics” section.

Where appropriate, the same variable name is used consistently throughout the C Stat Library. For example,
anova_table denotes the array containing the analysis of variance statistics and y denotes a vector of
responses for a dependent variable.

When writing programs accessing the C Stat Library, choose C names that do not conflict with IMSL external
names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the following rule is
observed:

IMPORTANT: Do not choose a name beginning with “imsls_” in any combination of uppercase or lowercase
characters.

Type Prefix

float imsls_f_
double imsls_d_
int imsls_i_
6

 Introduction Getting Started and the imsls.h file
Getting Started and the imsls.h file

Getting Started
To use any of the C Stat Library functions, you must first write a program in C to call the function. Each function
conforms to established conventions in programming and documentation. First priority in development is given
to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions makes it
easy to use more than one function in a given application. Also, you will find that the design consistency enables
you to apply your experience with one C Stat Library function to all other C functions that you use.

The imsls.h File
The include file <imsls.h> is used in all the examples in this manual. This file contains prototypes for all IMSL-
defined functions; the structures, Imsls_f_regression, Imsls_d_regression, Imsls_f_poly_regression, Imsls_d_poly_regres-
sion, Imsls_f_arma, and Imsls_d_arma; and the enumerated data types,
Imsls_arma_method, Imsls_permute, Imsls_dummy_method, Imsls_write_options, Imsls_page_options, and Imsls_error.
7

 Introduction Error Handling, Underflow, Overflow, and Document Examples
Error Handling, Underflow, Overflow, and
Document Examples
The functions in the C Stat Library attempt to detect and report errors and invalid input. This error-handling capa-
bility provides automatic protection for the user without requiring the user to make any specific provisions for the
treatment of error conditions. Errors are classified according to severity and are assigned a code number. By
default, errors of moderate or higher severity result in messages being automatically printed by the function.
Moreover, errors of highest severity cause program execution to stop. The severity level, as well as the general
nature of the error, is designated by an “error type” with symbolic names IMSLS_FATAL, IMSLS_WARNING,
etc. See the section User Errors in the Reference Material for further details.

In general, the C Stat Library codes are written so that computations are not affected by underflow, provided the
system (hardware or software) replaces an underflow with the value 0. Normally, system error messages indicat-
ing underflow can be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages indicating over-
flow should be examined for programming errors such as incorrect input data, mismatch of argument types, or
improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the
algorithm.

Output from document examples can be system dependent and the user’s results may vary depending upon the
system used.
8

 Introduction Memory Allocation for Output Arrays
Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. By default, an array returned as
the value of a C Numerical Library function is stored in memory allocated by that function. To release this space,
use imsls_free. To return the array in memory allocated by the calling program, use the optional argument

IMSLS_RETURN_USER, float a[]
In this way, the allocation of space for the computed answers can be made either by the user or internally by the
function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user
or are to be allocated internally by the function. For example, the optional arguments

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
IMSLS_ANOVA_TABLE, float **p_anova_table (Output)

specify two mutually exclusive optional arguments. If the first option is chosen, the ANOVA table is stored in the
user-provided array anova_table.

In the second option, float **p_anova_table refers to the address of a pointer to the ANOVA table. The
called function allocates memory for the array and sets *p_anova_table to point to this memory. Typically,
float *p_anova_table is declared, &p_anova_table is used as an argument to this function. Use
imsls_free(p_anova_table) to release the space.
9

 Introduction Printing Results
Printing Results
Most functions in the C Stat Library do not print any of the results; the output is returned in C variables. The C
Stat Library does contain some special functions just for printing arrays. For example, IMSL function
imsls_f_write_matrix is convenient for printing matrices of type float. See Chapter 14, Printing Functions,
for detailed descriptions of these functions.
10

 Introduction Missing Values
Missing Values
Some of the functions in the C Stat Library allow the data to contain missing values. These functions recognize as
a missing value the special value referred to as “Not a Number” or NaN. The actual value is different on different
computers, but it can be obtained by reference to the function imsls_f_machine, described in Chapter 15,
Utilities.

The way that missing values are treated depends on the individual function and is described in the documenta-
tion for the function.
11

 Introduction Passing Data to User-Supplied Functions
Passing Data to User-Supplied Functions
In some cases it may be advantageous to pass problem-specific data to a user-supplied function through the
IMSL C Stat Library interface. This ability can be useful if a user-supplied function requires data that is local to the
user's calling function, and the user wants to avoid using global data to allow the user-supplied function to access
the data. Functions in IMSL C Stat Library that accept user-supplied functions have an optional argument(s) that
will accept an alternative user-supplied function, along with a pointer to the data, that allows user-specified data
to be passed to the function. The example below demonstrates this feature using the IMSL C Stat Library function
imsls_f_kolmogorov_one and optional argument IMSLS_FCN_W_DATA.

#include <imsls.h>
#include <stdio.h>
float cdf_w_data(float, void *data);
int main()
{
 float *statistics=NULL, *diffs = NULL, *x=NULL;
 int nobs = 100, nmiss;
 float usr_data[] = {0.5, .2886751};
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nobs, 0);
 statistics = imsls_f_kolmogorov_one(NULL, nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_DIFFERENCES, &diffs,
 IMSLS_FCN_W_DATA, cdf_w_data, usr_data,
 0);
 printf("D = %8.4f\n", diffs[0]);
 printf("D+ = %8.4f\n", diffs[1]);
 printf("D- = %8.4f\n", diffs[2]);
 printf("Z = %8.4f\n", statistics[0]);
 printf("Prob greater D one sided = %8.4f\n", statistics[1]);
 printf("Prob greater D two sided = %8.4f\n", statistics[2]);
 printf("N missing = %d\n", nmiss);
}
/*
* User function that accepts additional data in a (void*) pointer.
* This (void*) pointer can be cast to any type and dereferenced to
* get at any sort of data-type or structure that is needed.
* For example, to get at the data in this example
* *((float*)data) contains the value 0.5
* *((float*)data+1) contains the value 0.2886751.
*/
float cdf_w_data(float x, void *data)
{
 float mean, std, z;
 mean = *((float*)data);
 std = *((float*)data+1);
 z = (x-mean)/std;
12

 Introduction Passing Data to User-Supplied Functions
 return(imsls_f_normal_cdf(z));
}

13

 Introduction Return Values from User-Supplied Functions
Return Values from User-Supplied Functions
All values returned by user-supplied functions must be valid real numbers. It is the user’s responsibility to check
that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

In addition to the techniques described below, it is also possible to instruct the IMSL C Stat Library to return con-
trol to the calling program in case an unrecoverable error occurs within a user-supplied function. See function
imsls_set_user_fcn_return_flag for a description of this feature.

Example
#include <imsls.h>
#include <math.h>
#include <stdio.h>
float fcn(int, float[], int, float[]);
int main ()
{
#define N_OBSERVATIONS 4
 int n_independent = 1;
 int n_parameters = 2;
 float *theta_hat;
 float x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0};
 float y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39};
 /* Nonlinear regression */
 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
 N_OBSERVATIONS, n_independent, (float *)x, y, 0);
 /* Print estimates */
 imsls_f_write_matrix("estimated coefficients", 1, n_parameters,
 theta_hat, 0);
} /* End of main */
float fcn(int n_independent, float x[], int n_parameters,
 float theta[])
{
 float result, exparg;
 exparg = theta[1]*(x[0] - 8);
 /* check that argument to exp does not get too large */
 if (exparg > 10.) {
 result = 22000.;
 } else {
 result = theta[0] + (0.49 - theta[0])*exp(exparg);
 }
}

14

 Introduction Thread Safe Usage
Thread Safe Usage
The IMSL C Stat Library is thread safe based on OpenMP. That means it can be safely called from a multithreaded
application if the calling program adheres to a few important guidelines. In particular, IMSL C Stat Library’s imple-
mentation of signal handling, error handling, and I/O must be understood.

Error Handling
C Stat Library’s error handling in a multithreaded application behaves similarly to how it behaves in a single-
threaded application. The major difference is that an error stack exists for each thread calling C Stat Library func-
tions. The result of separate error stacks for each thread is greater control of the error handler options for each
thread. Each thread can set its own options for the C Stat Library error handler using imsls_error_options.
For an example of setting error handler options for separate threads, see Chapter 15, Utilities, Example 3 of
imsls_error_options.

Routines that Produce Output
A number of routines in C Stat Library can be used to produce output. The function imsls_output_file can
be used to control the file to which the output is directed. In an application with a single thread of execution, a
single call to imsls_output_file can be used to set the file to which the output will be directed. In a multi-
threaded application each thread must call imsls_output_file to change the default setting of where
output will be directed. See Chapter 15, Utilities, Example 2 of imsls_output_file for more details.
15

 Introduction OpenMP Usage
OpenMP Usage
Thread safety of the IMSL C Stat Library is based on OpenMP. Users of the IMSL C Stat Library are also able to
leverage shared-memory parallelism by means of native support for the OpenMP API specification within parts of
the Library. Those parts are flagged by the OpenMP icon shown below.

Parallelism in OpenMP is implemented by means of threads. In the OpenMP programming model, it is assumed
that memory is shared among threads, such as in multi-core machines. These threads are spawned by OpenMP
in response to directives embedded in source code.

The Library’s use of OpenMP is largely transparent to the user. Codes that have been enhanced with OpenMP
directives will still work properly in serial execution environments. Error handling routines have been extended so
that the most severe error during a parallel run will be returned to the user.

OpenMP is used by the Library in these main ways:

1. To implement thread safety within the C Stat Library.

2. To speed up computationally intensive functions by exploiting data parallelism in their processing.

3. To give users more control of scheduling by using the "schedule(runtime)" clause for the parallelized
for-loops. The scheduling option chosen, set by using the OMP_SCHEDULE environment variable, can
significantly affect the performance of user's program depending on the workload of the system
during execution. If OMP_SCHEDULE is not set, the default behavior depends on implementation.
Please refer to OpenMP specifications on schedule type and chunk.

4. To set and control the number of threads to use for parallel region and nested parallel region by
using the OMP_NUM_THREADS and OMP_NESTED environment variables. If OMP_NUM_THREADS
and OMP_NESTED are not set, the default behavior depends on the implementation. Thus, all com-
puting resources may be used, affecting other applications' performance on the system. Please refer
to OpenMP specifications for more information.

5. To parallelize the evaluation of user-supplied functions in routines that use them, e.g. in the genetic
algorithm routines.

In this last case, the user must explicitly signal to the Library that the user-supplied functions themselves are
thread-safe, or by default the user’s function(s) will not evaluate in parallel. The utility imsls_omp_options
allows the user to assert that all routines passed to the library are thread-safe.
16

 Introduction OpenMP Usage
Thread safety implies that function(s) may be executed simultaneously by multiple threads and still function cor-
rectly. Requiring that user-supplied functions be thread-safe is crucial, because the different threads spawned by
OpenMP may call user-supplied functions simultaneously, and/or in an arbitrary order, and/or with differing
inputs. Care must therefore be taken to ensure that the parallelized algorithm acts in the same way as its serial
“ancestor”. Functions whose results depend on the order in which they are executed are not thread-safe and are
thus not good candidates for parallelization; neither are functions which access and modify global data.

Specifications of the OpenMP standards are provided at (http://www.openmp.org/specifications/).
17

http://www.openmp.org/specifications/

 Introduction Vendor Supplied Libraries Usage
Vendor Supplied Libraries Usage
The IMSL C Numerical Library contains functions which may take advantage of functions in vendor supplied
libraries such as Intel’s® Math Kernel Library (MKL) or Sun’s™ High Performance Library. Functions in the vendor
supplied libraries are finely tuned for performance to take full advantage of the environment for which they are
supplied. For these functions, the user of the IMSL C Numerical Library has the option of linking to code which is
based on either the IMSL legacy functions or the functions in the vendor supplied library. The following icon in the
function documentation alerts the reader when this is the case:

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in the
online README file of the product distribution.
18

 Introduction C++ Usage
C++ Usage
IMSL C Numerical Library functions can be used in both C and C++ applications. It is also possible to wrap library
functions into C++ classes.

The function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit test, using a user defined
cumulative distribution (CDF) function. For C++ usage the user defined function is defined as a member function
of the abstract class CdfFunction defined as follows:

#include <imsls.h>
#include <math.h>
#include <stdio.h>
class CdfFunction
{
public:
 virtual float cdf(float x) = 0;
};

The function imsls_f_chi_squared_test is wrapped as the C++ class ChiSquaredTest. This implementa-
tion uses the optional argument, IMSLS_FCN_W_DATA, to call local_function which in turn calls the
method cdf to evaluate the user defined CDF function. For simplicity, this implementation only wraps a single
optional argument, IMSLS_CHI_SQUARED, the chi-squared test statistic. More could be included in a similar
manner.

#include <imsl.h>
class ChiSquaredTest
{
private:
 int m_nObservations, m_nCategories;
public:
 float m_chi_squared;
 ChiSquaredTest(int nObservations, int nCategories);
 float test(CdfFunction *Cdf, float *x);
};
static float local_function(float x, void *data)
{
 CdfFunction *Cdf = (CdfFunction*)data;
 return Cdf->cdf(x);
}
ChiSquaredTest:: ChiSquaredTest (int nObservations, int nCategories)
{
 m_nObservations = nObservations;
 m_nCategories = nCategories;
}
float ChiSquaredTest::test(CdfFunction *Cdf, float *x)
{
 float result;
19

 Introduction C++ Usage
 result = imsls_f_chi_squared_test(
 NULL, m_nObservations, m_nCategories, x,
 IMSLS_FCN_W_DATA, local_function, Cdf,
 IMSLS_CHI_SQUARED, &m_chi_squared,
 0);
 if (imsls_error_type() >= 3)
 {
 throw imsls_error_message();
 }
 return result;
}

To use ChiSquaredTest the user defined CDF function must be defined as the method cdf in a class that
extends FcnCdfFunction. The following class, NormalCdf, defines this as the normal cdf:

class NormalCdf : public CdfFunction
{
public:
 NormalCdf();
 float cdf(float x);
};
NormalCdf::NormalCdf()
{
}
float NormalCdf::cdf(float x)
{
 return imsls_f_normal_cdf(x);
}

The following is an example of the use of these classes. Since ChiSquaredTest throws an exception on fatal
or terminal IMSL errors, printing and stopping on these errors is turned off by a call to imsls_error_options.
Also, since the user defined function is thread-safe, a call is made to imsls_omp_options to declare this. With
this setting, the chi-squared test code will use OpenMP to evaluate the cdf function in parallel. Both of these calls
need be made once per run.

int main()
{
 imsls_error_options(
 IMSLS_SET_PRINT, IMSLS_FATAL, 0,
 IMSLS_SET_PRINT, IMSLS_TERMINAL, 0,
 IMSLS_SET_STOP, IMSLS_FATAL, 0,
 IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 0);
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 int nCategories = 10;
 int nObservations = 1000;
 imsls_random_seed_set(123457);
 float *x = imsls_f_random_normal(nObservations, 0);
 NormalCdf *normalCdf = new NormalCdf();
 ChiSquaredTest *chiSquaredTest =
 new ChiSquaredTest(nObservations, nCategories);
 float p_value = chiSquaredTest->test(normalCdf, x);
20

 Introduction C++ Usage
 printf("p-value = %g\n", p_value);
 printf("chi-squared = %g\n", chiSquaredTest->m_chi_squared);
}

Output

p-value =0.154603
chi-squared =13.1806
21

 Introduction Matrix Storage Modes
Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the word array is used to refer to its
representation as a C data structure. In the following list of array types, the C Stat Library functions require input
consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-major
order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For example, in solving linear
regression, the pointer points to the estimated coefficients. Normally, the input array values are not changed by
the functions.

In the C Stat Library, an array is a pointer to a contiguous block of data. An array is not a pointer to a pointer to the
rows of the matrix. Typical declarations are as follows:

float *a ={1, 2, 3, 4};
float b[2][2] ={1, 2, 3, 4};
float c[] ={1, 2, 3, 4};

General Mode
A general matrix is a square n × n matrix. The data type of a general array can be int, float, or double.

Rectangular Mode
A rectangular matrix is an m × n matrix. The data type of a rectangular array can be int, float, or double.

Symmetric Mode
A symmetric matrix is a square n × n matrix A, such that AT =A. (The matrix AT is the transpose of A.) The data type
of a symmetric array can be int, float, or double.
22

 Basic Statistics Functions
Basic Statistics

Functions
Simple Summary Statistics

Univariate summary statistics . simple_statistics 25
Computes empirical quantiles . empirical_quantiles 35
Mean and variance inference

for a single normal population. normal_one_sample 38
Inferences for two normal populations. normal_two_sample 43

Tabulate, Sort, and Rank
Tally observations into a one-way frequency table table_oneway 55
Tally observations into a two-way frequency table .table_twoway 60
Sort data with options to tally cases

into a multi-way frequency table . sort_data 66
Ranks, normal scores, or exponential scores . ranks 75
23

 Basic Statistics Usage Notes
Usage Notes
The functions for computations of basic statistics generally have relatively simple arguments. In most cases, the
first required argument is the number of observations. The data are input in either a one- or two-dimensional
array. As usual, when a two-dimensional array is used, the rows contain observations and the columns represent
variables. Most of the functions in this chapter allow for missing values. Missing value codes can be set by using
function imsls_f_machine, described in Chapter 15, Utilities.

Several functions in this chapter perform statistical tests. These functions generally return a “p-value” for the test,
often as the return value for the C function. The p-value is between 0 and 1 and is the probability of observing
data that would yield a test statistic as extreme or more extreme under the assumption of the null hypothesis.
Hence, a small p-value is evidence for the rejection of the null hypothesis.
24

 Basic Statistics simple_statistics
simple_statistics
Computes basic univariate statistics.

Synopsis
#include <imsls.h>
float *imsls_f_simple_statistics (int n_observations, int n_variables, float x[], ..., 0)

The type double function is imsls_d_simple_statistics.

Required Arguments
int n_observations (Input)

Number of observations.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the data matrix.

Return Value
A pointer to an array containing some simple statistics for each of the columns in x. If IMSLS_MEDIAN and
IMSLS_MEDIAN_AND_SCALE are not used as optional arguments, the size of the matrix is
14 × n_variables. The columns of this matrix correspond to the columns of x, and the rows contain the fol-
lowing statistics:

Row Statistic

0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)
25

 Basic Statistics simple_statistics
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_simple_statistics (int n_observations, int n_variables, float x[],

IMSLS_CONFIDENCE_MEANS, float confidence_means,
IMSLS_CONFIDENCE_VARIANCES, float confidence_variances,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_STAT_COL_DIM, int stat_col_dim,
IMSLS_IDO, int ido,
IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE,
IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_RETURN_USER, float simple_statistics[],
0)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined) If the coefficient of variation is
not defined, 0 is returned.

9 number of observations (the counts)

10 lower confidence limit for the mean (assuming normality) The default is
a 95−percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality) The default
is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality)

Row Statistic
26

 Basic Statistics simple_statistics
Optional Arguments
IMSLS_CONFIDENCE_MEANS, float confidence_means (Input)

Confidence level for a two-sided interval estimate of the means (assuming normality) in percent.
Argument confidence_means must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0.
For a one-sided confidence interval with confidence level c, set
confidence_means = 100.0 − 2(100 − c). If IMSLS_CONFIDENCE_MEANS is not specified, a
95-percent confidence interval is computed.

IMSLS_CONFIDENCE_VARIANCES, float confidence_variances (Input)
The confidence level for a two-sided interval estimate of the variances (assuming normality) in per-
cent. The confidence intervals are symmetric in probability (rather than in length). For a one-sided
confidence interval with confidence level c, set confidence_means = 100.0 − 2(100 − c). If
IMSLS_CONFIDENCE_VARIANCES is not specified, a 95-percent confidence interval is
computed.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_STAT_COL_DIM, int stat_col_dim (Input)
Column dimension of the returned value array, or if IMSLS_RETURN_USER is specified, the column
dimension of array simple_statistics.
Default: stat_col_dim = n_variables

IMSLS_IDO, int ido (Input)
Processing option.
The argument ido must be one of 0, 1, 2, or 3. If ido = 0 (the default), all of the observations are
input during one invocation. If ido = 1, 2, or 3, blocks of rows of the data can be processed sequen-
tially in separate invocations of imsls_f_simple_statistics; with this option, it is not a
requirement that all observations be memory resident, thus enabling one to handle large data sets.

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be made.
Initialization and updating for the n_observations observations of x
will be performed.
27

 Basic Statistics simple_statistics
Default: ido = 0

IMSLS_MEDIAN, or

IMSLS_MEDIAN_AND_SCALE
Exactly one of these optional arguments can be specified in order to indicate the additional simple
robust statistics to be computed. If IMSLS_MEDIAN is specified, the medians are computed and
stored in one additional row (row number 14) in the returned matrix of simple statistics. If
IMSLS_MEDIAN_AND_SCALE is specified, the medians, the medians of the absolute deviations
from the medians, and a simple robust estimate of scale are computed, then stored in three addi-
tional rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

IMSLS_MEDIAN or IMSLS_MEDIAN_AND_SCALE can be specified only when ido is equal to 0.

IMSLS_MISSING_LISTWISE, or

IMSLS_MISSING_ELEMENTWISE
If IMSLS_MISSING_ELEMENTWISE is specified, all non missing data for any variable is used in
computing the statistics for that variable. If IMSLS_MISSING_LISTWISE is specified and if an
observation (row of x) contains a missing value, the observation is excluded from computations for
all variables. The default is IMSLS_MISSING_LISTWISE. In either case, if weights and/or frequen-
cies are specified and the value of the weight and/or frequency is missing, the observation is
excluded from computations for all variables.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each observation.
Default: Each observation has a frequency of 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each observation.
Default: Each observation has a weight of 1

2 This is an intermediate invocation; updating for the n_observations
observations of x will be performed.

3 This is the final invocation of this function. Updating for the data in x
and wrap-up computations are performed. Workspace is released. No
further invocations of imsls_f_simple_statistics with ido greater
than 1 should be made without first invoking
imsls_f_simple_statistics with ido = 1.

ido Action
28

 Basic Statistics simple_statistics
IMSLS_RETURN_USER, float simple_statistics[] (Output)
User-supplied array containing the matrix of statistics. If neither IMSLS_MEDIAN nor
IMSLS_MEDIAN_AND_SCALE is specified, the matrix is 14 × n_variables. If IMSLS_MEDIAN
is specified, the matrix is 15 × n_variables. If IMSLS_MEDIAN_AND_SCALE is specified, the
matrix is 17 × n_variables.

Description
For the data in each column of x, imsls_f_simple_statistics computes the sample mean, variance,
minimum, maximum, and other basic statistics. This function also computes confidence intervals for the mean
and variance (under the hypothesis that the sample is from a normal population).

Frequencies are interpreted as multiple occurrences of the other values in the observations. In other words, a
row of x with a frequency variable having a value of 2 has the same effect as two rows with frequencies of 1. The
total of the frequencies is used in computing all the statistics based on moments (mean, variance, skewness, and
kurtosis). Weights are not viewed as replication factors. The sum of the weights is used only in computing the
mean (the weighted mean is used in computing the central moments). Both weights and frequencies can be 0,
but neither can be negative. In general, a 0 frequency means that the row is to be eliminated from the analysis;
no further processing or error checking is done on the row. A weight of 0 results in the row being counted, and
updates are made of the statistics.

The definitions of some of the statistics are given below in terms of a single variable x of which the i-th datum is
xi.

Mean

Variance

Skewness

x─w =
∑ f iwixi
∑ f iwi

sw
2 =

∑ f iwi∑ f iwi xi − x
─
w
2

∑ f iwi
2 − ∑ f i

2wi
2

∑ f iwi xi − x
─
w
3 / n

∑ f iwi xi − x
─
w
2 / n

3/2
29

 Basic Statistics simple_statistics
Excess or Kurtosis

Minimum

Maximum

Range

Coefficient of Variation

Median

Median Absolute Deviation
MAD = median {|xi − median {xj}|}

Simple Robust Estimate of Scale

where Φ−1(3/4) ≈ 0.6745 is the inverse of the standard norm

istribution function evaluated at 3/4. This standardizes MAD in order to make the scale estimate consistent at the
normal distribution for estimating the standard deviation (Huber 1981, pp. 107−108).

∑ f iwi xi − x
─
w
4 / n

∑ f iwi xi − x
─
w
2 / n

2 − 3

xmin = min xi

xmax = max xi

xmax − xmin

sw
x─w

for x─w ≠ 0

median xi =
middle xi after sorting if n is odd
average of middle two xi's if n is even

MAD
ϕ−1 3 / 4
30

 Basic Statistics simple_statistics
Examples

Example 1

Data from Draper and Smith (1981) are used in this example, which includes 5 variables and 13 observations.

#include <imsls.h>
#define N_VARIABLES 5
#define N_OBSERVATIONS 13
int main()
{
 float *simple_statistics;
 float x[] = {
 7., 26., 6., 60., 78.5,
 1., 29., 15., 52., 74.3,
 11., 56., 8., 20., 104.3,
 11., 31., 8., 47., 87.6,
 7., 52., 6., 33., 95.9,
 11., 55., 9., 22., 109.2,
 3., 71., 17., 6., 102.7,
 1., 31., 22., 44., 72.5,
 2., 54., 18., 22., 93.1,
 21., 47., 4., 26., 115.9,
 1., 40., 23., 34., 83.8,
 11., 66., 9., 12., 113.3,
 10., 68., 8., 12., 109.4};
 char *row_labels[] = {
 "means", "variances", "std. dev", "skewness", "kurtosis",
 "minima", "maxima", "ranges", "C.V.", "counts", "lower mean",
 "upper mean", "lower var", "upper var"};
 simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS,
 N_VARIABLES, x, 0);
 imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
 simple_statistics,
 IMSLS_ROW_LABELS, row_labels,
 IMSLS_WRITE_FORMAT, "%7.3f", 0);
}

Output

 * * * Statistics * * *
 1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
31

 Basic Statistics simple_statistics
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

Example 2

Continuing with Example 1 data, the example below invokes the imsls_f_simple_statistics function
using values of IDO greater than 0.

#include <imsls.h>
#define N_VARIABLES 5
#define N_OBSERVATIONS_BLOCK_1 2
#define N_OBSERVATIONS_BLOCK_2 8
#define N_OBSERVATIONS_BLOCK_3 3
int main()
{
 float *simple_statistics;
 float x1[] = { 7., 26., 6., 60., 78.5,
 1., 29., 15., 52., 74.3};
 float x2[] = {11., 56., 8., 20., 104.3,
 11., 31., 8., 47., 87.6,
 7., 52., 6., 33., 95.9,
 11., 55., 9., 22., 109.2,
 3., 71., 17., 6., 102.7,
 1., 31., 22., 44., 72.5,
 2., 54., 18., 22., 93.1,
 21., 47., 4., 26., 115.9};
 float x3[] = { 1., 40., 23., 34., 83.8,
 11., 66., 9., 12., 113.3,
 10., 68., 8., 12., 109.4};
 char *row_labels[] = {
 "means", "variances", "std. dev", "skewness","kurtosis",
 "minima", "maxima", "ranges", "C.V.", "counts", "lower mean",
 "upper mean", "lower var", "upper var"};
 simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS_BLOCK_1,
 N_VARIABLES, x1,
 IMSLS_IDO, 1, 0);
 simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS_BLOCK_2,
 N_VARIABLES, x2,
 IMSLS_IDO, 2, 0);
 simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS_BLOCK_3,
 N_VARIABLES, x3,
 IMSLS_IDO, 3, 0);
 imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
 simple_statistics,
 IMSLS_ROW_LABELS, row_labels,
 IMSLS_WRITE_FORMAT, "%7.3f", 0);
32

 Basic Statistics simple_statistics
}

Output

 * * * Statistics * * *
 1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.816 111.792 763.434 616.688

Warning Errors

IMSLS_ROW_OF_X_CONTAINED_NAN At least one row of “x” contained NaN (a missing
value).

IMSLS_VAR_IN_X_CONTAINED_NAN At least one observation for a variable in “x” con-
tained NaN (a missing value). Missing observations
were excluded from calculations for those variables.

IMSLS_CONSTANT_OBSERVATIONS The observations on variable(s) are constant.

IMSLS_LESS_THAN_TWO_VALID_OBS Fewer than two valid observations are present. The
corresponding statistics are set to NaN (not a num-
ber), (except for the mean, which is not correct if no
valid observations).

IMSLS_VARIANCE_UNDERFLOW The variance for this variable underflows. Therefore,
the variance and standard deviation are set to 0,
and the skewness and kurtosis are set to NaN (not a
number)

IMSLS_NEGATIVE_VARIANCE The variance is negative for the variable. The corre-
sponding confidence limits for the variance are set
to NaN (not a number).

IMSLS_NOT_ENOUGH_OBSERVATIONS Fewer than two valid observations are present for
the variable. The corresponding statistics are set to
NaN (not a number), (except for the mean, which is
not correct if no valid observations are present, or is
correct if one observation is present)
33

 Basic Statistics simple_statistics
Fatal Errors

IMSLS_MIN_GREATER_THAN_MAX The maximum value is less than the minimum
value. The corresponding statistics are set to NaN
(not a number).

IMSLS_MAX_LESS_THAN_MIN The maximum value is less than the minimum
value. The corresponding statistics are set to NaN
(not a number).

IMSLS_SUM_OF_WEIGHTS_ZERO The sum of the weights for variable is zero. The sta-
tistics, except for the minima, maxima, ranges and
counts, are set to NaN (not a number).

IMSLS_ZERO_SUM_OF_WEIGHTS The sum of the weights is zero. The statistics, except
for the minima, maxima, ranges and counts, are set
to NaN (not a number).

IMSLS_LESS_THAN_TWO_VALID_OBS Fewer than two valid observations are present. The
corresponding statistics are set to NaN (not a num-
ber), (except for the mean, which is not correct if no
valid observations).

IMSLS_FOURTH_ORDER_UNDERFLOW Since the range of variable is very small, the fourth
order moment for this variable underflows. There-
fore, the kurtosis is set to NaN (not a number).

IMSLS_HIGH_ORDER_UNDERFLOW Since the range of variable %(I1) is very small, the
higher order moments for this variable underflow.
Therefore, the skewness and kurtosis are set to NaN
(not a number).

IMSLS_CHI_SQUARED_STAT_ERROR An error occurred in determining the chi-squared
statistic. The lower confidence limit for the variance
is set to NaN (not a number).

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by
invoking the function with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the
previous analysis is terminated by invoking the func-
tion with “ido” = 3.

IMSLS_BAD_N_VARIABLES “n_variables” = #. The number of variables must
be the same in separate function invocations.
34

 Basic Statistics empirical_quantiles
empirical_quantiles
Computes empirical quantiles.

Synopsis
#include <imsls.h>
float *imsls_f_empirical_quantiles (int n_observations, float x[],int n_qprop,

float qprop[], ..., 0)

The type double function is imsls_d_empirical_quantiles.

Required Arguments
int n_observations (Input)

Number of observations.

float x[](Input)
An array of length n_observations containing the data.

int n_qprop (Input)
Number of empirical quantiles requested.

float qprop[] (Input)
An array of length n_qprop containing the desired quantile proportions. Each value must lie in the
interval (0,1).

Return Value
The function imsls_f_empirical_quantiles returns an array of length n_qprop containing the empiri-
cal quantiles corresponding to the input proportions in qprop.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_empirical_quantiles(int n_observations, float x[], int n_qprop,
float qprop[],
35

 Basic Statistics empirical_quantiles
IMSLS_N_MISSING, int *n_miss,
IMSLS_XLO, float **xlo,
IMSLS_XLO_USER, float xlo[],
IMSLS_XHI, float **xhi,
IMSLS_XHI_USER, float xhi[],
IMSLS_RETURN_USER, float p_q[],
0)

Optional Arguments
IMSLS_N_MISSING, int *n_miss (Output)

The number of missing values, if any, in x.

IMSLS_XLO, float **xlo (Output)
An array of length n_qprop containing the largest element of x less than or equal to the desired
quantile.

IMSLS_XLO_USER, float xlo[] (Output)
Storage for xlo provided by the user. See IMSLS_XLO above.

IMSLS_XHI, float **xhi (Output)
An array of length n_qprop containing the smallest element of x greater than or equal to the
desired quantile.

IMSLS_XHI_USER, float xhi[] (Output)
Storage for xhi provided by the user. See IMSLS_XHI above.

IMSLS_RETURN_USER, float p_q[] (Output)
A user-allocated array of length n_qprop. Upon completion p_q contains the empirical quantiles
corresponding to the input proportions in qprop.

Description
The function imsls_f_empirical_quantiles determines the empirical quantiles, as indicated in the vec-
tor qprop, from the data in x. imsls_f_empirical_quantiles first checks to see if x is sorted; if x is not
sorted, the routine does either a complete or partial sort, depending on how many order statistics are required
to compute the quantiles requested.

This function returns the empirical quantiles and, for each quantile, the two order statistics from the sample that
are at least as large and at least as small as the quantile. For a sample of size n, the quantile corresponding to the
proportion p is defined as
36

 Basic Statistics empirical_quantiles
where j = ⌊p(n + 1)⌋, f = p(n + 1) − j, and x(j) is the j-th order statistic, if 1 ≤ j < n; otherwise, the empirical quantile

is the smallest or largest order statistic.

Example
In this example, five empirical quantiles from a sample of size 30 are obtained. Notice that the 0.5 quantile corre-
sponds to the sample median. The data are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the
measurements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive
years.

#include <imsls.h>
#include <stdio.h>
int main(){
 float x[30] = {
 0.77, 1.74, 0.81, 1.20, 1.95,
 1.20, 0.47, 1.43, 3.37, 2.20,
 3.00, 3.09, 1.51, 2.10, 0.52,
 1.62, 1.31, 0.32, 0.59, 0.81,
 2.81, 1.87, 1.18, 1.35, 4.75,
 2.48, 0.96, 1.89, 0.90, 2.05};
 float qprop[5] = {
 0.01, 0.5, 0.9, 0.95, 0.99};
 float *p_xlo, *p_xhi, *p_q;
 int i;
 p_q = imsls_f_empirical_quantiles(30, x, 5, qprop,
 IMSLS_XLO, &p_xlo,
 IMSLS_XHI, &p_xhi,
 0);
 printf(" Smaller Empirical Larger\n");
 printf("Quantile Datum Quantile Datum\n");
 for(i=0; i<5; i++){
 printf(" %4.2f %7.2f %7.2f %7.2f\n",
 qprop[i], p_xlo[i], p_q[i], p_xhi[i]);
 }
}

Output

 Smaller Empirical Larger
Quantile Datum Quantile Datum
 0.01 0.32 0.32 0.32
 0.50 1.43 1.47 1.51
 0.90 3.00 3.08 3.09
 0.95 3.37 3.99 4.75
 0.99 4.75 4.75 4.75

Q p = 1 − f x j + fx j+1
37

 Basic Statistics normal_one_sample
normal_one_sample
Computes statistics for mean and variance inferences using a sample from a normal population.

Synopsis
#include <imsls.h>
float imsls_f_normal_one_sample (int n_observations, float x[], ..., 0)

The type double function is imsls_d_normal_one_sample.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations.

Return Value
The mean of the sample.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normal_one_sample (int n_observations, float x[],

IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_MEAN, float *lower_limit, float *upper_limit,
IMSLS_STD_DEV, float *std_dev,
IMSLS_T_TEST, int *df, float *t, float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,float *p_value,
38

 Basic Statistics normal_one_sample
IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value,
0)

Optional Arguments
IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)

Confidence level (in percent) for two-sided interval estimate of the mean. Argument
confidence_mean must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent), set
confidence_mean = 100.0 − 2.0 × (100.0 − c). If IMSLS_CONFIDENCE_MEAN is not specified,
a 95-percent confidence interval is computed.

IMSLS_CI_MEAN, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit for the mean, and argument
upper_limit contains the upper confidence limit for the mean.

IMSLS_STD_DEV, float *std_dev (Output)
Standard deviation of the sample.

IMSLS_T_TEST, int *df, float *t, float *p_value (Output)
Argument df is the degrees of freedom associated with the t test for the mean, t is the test statistic,
and p_value is the probability of a larger t in absolute value. The t test is a test, against a two-sided
alternative, of the hypothesis μ = μ0, where μ0 is the null hypothesis value as described in
IMSLS_T_TEST_NULL.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for t test for the mean.
Default: mean_hypothesis_value = 0.0

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level (in percent) for two-sided interval estimate of the variances. Argument
confidence_variance must be between 0.0 and 100.0 and is often 90.0, 95.0, 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent), set
confidence_variance = 100.0 − 2.0 × (100.0 − c). If this option is not used, a 95-percent con-
fidence interval is computed.

IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit (Output)
Contains the lower and upper confidence limits for the variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value (Output)
Argument df is the degrees of freedom associated with the chi-squared test for variances,
chi_squared is the test statistic, and p_value is the probability of a larger chi-squared. The chi-
squared test is a test of the hypothesis
39

 Basic Statistics normal_one_sample
where

is the null hypothesis value as described in IMSLS_CHI_SQUARED_TEST_NULL.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value (Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

Description
Statistics for mean and variance inferences using a sample from a normal population are computed, including
confidence intervals and tests for both mean and variance. The definitions of mean and variance are given below.
The summation in each case is over the set of valid observations, based on the presence of missing values in the
data.

Mean, return value

Standard deviation, std_dev

The t statistic for the two-sided test concerning the population mean is given by

where s and are given above. This quantity has a T distribution with n − 1 degrees of freedom.

The chi-squared statistic for the two-sided test concerning the population variance is given by

where s is given above. This quantity has a Χ2 distribution with n − 1 degrees of freedom.

σ2 = σ0
2

σ0
2

x─ =
∑ xi
n

s =
∑ xi − x

─ 2

n − 1

t =
x─ − μ0
s / n

x─

χ2 =
n − 1 s2

σ0
2

40

 Basic Statistics normal_one_sample
Examples

Example 1

This example uses data from Devore (1982, p. 335), which is based on data published in the Journal of Materials.
There are 15 observations; the mean is the only output.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N_OBSERVATIONS 15
 float mean;
 float x[N_OBSERVATIONS] = {
 26.7, 25.8, 24.0, 24.9, 26.4,
 25.9, 24.4, 21.7, 24.1, 25.9,
 27.3, 26.9, 27.3, 24.8, 23.6
 };
 /* Perform analysis */
 mean = imsls_f_normal_one_sample(
 N_OBSERVATIONS, x,
 0);
 /* Print results */
 printf("Sample Mean = %5.2f\n", mean);
}

Output

Sample Mean = 25.3

Example 2

This example uses the same data as the initial example. The hypothesis H0: μ = 20.0 is tested. The extremely large

t value and the correspondingly small p-value provide strong evidence to reject the null hypothesis.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N_OBSERVATIONS 15
 int df;
 float mean, s, lower_limit, upper_limit, t, p_value;
 static float x[N_OBSERVATIONS] = {
 26.7, 25.8, 24.0, 24.9, 26.4,
 25.9, 24.4, 21.7, 24.1, 25.9,
 27.3, 26.9, 27.3, 24.8, 23.6
 };
41

 Basic Statistics normal_one_sample
 /* Perform analysis +*/
 mean = imsls_f_normal_one_sample(
 N_OBSERVATIONS, x,
 IMSLS_STD_DEV, &s,
 IMSLS_CI_MEAN, &lower_limit, &upper_limit,
 IMSLS_T_TEST_NULL, 20.0,
 IMSLS_T_TEST, &df, &t, &p_value,
 0);
 /* Print results */
 printf("Sample Mean = %5.2f\n", mean);
 printf("Sample Standard Deviation = %5.2f\n", s);
 printf("95%% CI for the mean is (%5.2f,%5.2f)\n", lower_limit,
 upper_limit);
 printf("df = %3d\n", df);
 printf("t = %5.2f\n", t);
 printf("p-value = %8.5f\n", p_value);
}

Output

Sample Mean = 25.31
Sample Standard Deviation = 1.58
95% CI for the mean is (24.44,26.19)
df = 14
t = 13.03
p-value = 0.00000
42

 Basic Statistics normal_two_sample
normal_two_sample
Computes statistics for mean and variance inferences using samples from two normal populations.

Synopsis
#include <imsls.h>
float imsls_f_normal_two_sample (int n1_observations, float x1[],

int n2_observations, float x2[], ..., 0)

The type double function is imsls_d_normal_two_sample.

Required Arguments
int n1_observations (Input)

Number of observations in the first sample, x1.

float x1[] (Input)
Array of length n1_observations containing the first sample.

int n2_observations (Input)
Number of observations in the second sample, x2.

float x2[] (Input)
Array of length n2_observations containing the second sample.

Return Value
Difference in means, x1_mean − x2_mean.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normal_two_sample (int n1_observations, float x1[],

int n2_observations, float x2[],

IMSLS_MEANS, float *x1_mean, float *x2_mean,
IMSLS_CONFIDENCE_MEAN, float confidence_mean,
43

 Basic Statistics normal_two_sample
IMSLS_INTERMEDIATE_RESULTS, float stats[],
IMSLS_UNION, float stats1[], float stats2[],
IMSLS_FINAL_RESULTS, float final_stats[],
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, float *upper_limit,
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, float *upper_limit
IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value,
IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_POOLED_VARIANCE, float *pooled_variance,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value,
IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev,
IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit,
IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F, float *p_value,
0)

Optional Arguments
IMSLS_MEANS, float *x1_mean, float *x2_mean (Output)

Means of the first and second samples.

IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)
Confidence level for two-sided interval estimate of the mean of x1 minus the mean of x2, in percent.
Argument confidence_mean must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For
a one-sided confidence interval with confidence level c (at least 50 percent), set
confidence_mean = 100.0 − 2.0 × (100.0 − c).

Default: confidence_mean = 95.0

IMSLS_INTERMEDIATE_RESULTS, float stats[] (Input/Output)
Array of length 25 containing intermediate results. On input, stats contains intermediate statistics
about a previous function invocation. When invoking the function the first time, set all stats ele-
ments to 0.0. On output, imsls_f_normal_two_sample combines the results on the current
data sets and the intermediate statistics in stats.

NOTE: The following three optional arguments allow the analysis to be applied to subsets of
the original data sets and then later combined for final results. These optional arguments may
be useful when analyzing data sets too large to fit into memory, and also allow subsets of the
data to be analyzed in separate threads and later combined for final results.
44

 Basic Statistics normal_two_sample
This optional argument can be applied to separate blocks of data when physical memory cannot hold
the entire data sets.

Note that when IMSLS_INTERMEDIATE_RESULTS optional argument is used,
imsls_f_normal_two_sample function outputs are valid only if IMSLS_FINAL_RESULTS
optional argument is specified to calculate the final statistics. See Example 3.

Default: stats = NULL.

IMSLS_UNION, float stats1[], float stats2[] (Input)
stats1 and stats2 are arrays of length 25 containing the intermediate results about previous
computations. stats1 and stats2 are the variables provided to the
IMSLS_INTERMEDIATE_RESULTS optional argument in previous function invocations.

imsls_f_normal_two_sample combines the results on the current data sets and the interme-
diate statistics in stats1 and stats2. stats1 and stats2 can be NULL. See Example 3.

This option would typically be used in conjunction with the IMSLS_INTERMEDIATE_RESULTS
option to process a large data set using separate threads or compute nodes. For example, a data set
could be split into two subsets, where each subset of data is passed into a separate thread or com-
pute node and processed through imsls_f_normal_two_sample with the
IMSLS_INTERMEDIATE_RESULTS option. The output from each thread is then saved and input
to a final call of imsls_f_normal_two_sample using option IMSLS_UNON and
IMSLS_FINAL_RESULTS.

Default: stats1 = NULL and stats2 = NULL.

IMSLS_FINAL_RESULTS, float final_stats[] (Output)
Array of length 25 containing the final statistics. See Example 3.

Elements of final_stats are:

index final_stats[i]
0 Mean of the first sample.

1 Mean of the second sample.

2 Variance of the first sample.

3 Variance of the second sample.

4 Number of observations in the first sample.

5 Number of observations in the second sample.

Note: final_stats[6] through final_stats[13] depend on the
assumption of equal variances.

6 Pooled variance.

7 t value, assuming equal variances.
45

 Basic Statistics normal_two_sample
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit, and upper_limit contains the
upper limit for the mean of the first population minus the mean of the second, assuming equal
variances.

8 Probability of a larger t in absolute value, assuming nor-
mality, equal means, and equal variances.

9 Degrees of freedom assuming equal variances.

10 Lower confidence limit for the mean of the first popula-
tion minus the mean of the second, assuming equal
variances.

11 Upper confidence limit for the mean of the first popula-
tion minus the mean of the second, assuming equal
variances.

12 Lower confidence limit for the common variance.

13 Upper confidence limit for the common variance.

Note: final_stats[14] through final_stats[18] use approxima-
tions that do not depend on an assumption of equal variances.

14 t value, assuming unequal variances.

15 Approximate probability of a larger t in absolute value,
assuming normality, equal means, and unequal
variances.

16 Degrees of freedom assuming unequal variances, for
Satterthwaite's approximation.

17 Approximate lower confidence limit for the mean of the
first population minus the mean of the second, assum-
ing equal variances.

18 Approximate upper confidence limit for the mean of the
first population minus the mean of the second, assum-
ing equal variances.

19 F value (greater than or equal to 1.0).

20 Probability of a larger F in absolute value, assuming nor-
mality and equal variances.

21 Lower confidence limit for the ratio of the variance of
the first population to the second.

22 Upper confidence limit for the ratio of the variance of
the first population to the second.

23 Number of missing values of first sample.

24 Number of missing values of second sample.

index final_stats[i]
46

 Basic Statistics normal_two_sample
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the approximate lower confidence limit, and upper_limit
contains the approximate upper limit for the mean of the first population minus the mean of the sec-
ond, assuming unequal variances.

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value (Output)
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the description of
IMSLS_T_TEST_NULL.) Argument df contains the degrees of freedom, argument t contains the t
value, and argument p_value contains the probability of a larger t in absolute value, assuming
equal means. This test assumes equal variances.

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value (Output)
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the description of
IMSLS_T_TEST_NULL.) Argument df contains the degrees of freedom for Satterthwaite’s approx-
imation, argument t contains the t value, and argument p_value contains the approximate
probability of a larger t in absolute value, assuming equal means. This test does not assume equal
variances.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for the t test.

Default: mean_hypothesis_value = 0.0

IMSLS_POOLED_VARIANCE, float *pooled_variance (Output)
Pooled variance for the two samples.

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level for inference on variances. Under the assumption of equal variances, the pooled
variance is used to obtain a two-sided confidence_variance percent confidence interval for
the common variance if IMSLS_CI_COMMON_VARIANCE is specified. Without making the
assumption of equal variances, the ratio of the variances is of interest. A two-sided
confidence_variance percent confidence interval for the ratio of the variance of the first sam-
ple to that of the second sample is computed and is returned if IMSLS_CI_RATIO_VARIANCES
is specified. The confidence intervals are symmetric in probability.

Default: confidence_variance = 95.0

IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit, and upper_limit contains the
upper limit for the common, or pooled, variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value (Output)
The chi-squared test for
47

 Basic Statistics normal_two_sample
is the common, or pooled, variance, and

is the null hypothesis value. (See description of IMSLS_CHI_SQUARED_TEST_NULL.) Argument
df contains the degrees of freedom, argument chi_squared contains the chi-squared value, and
argument p_value contains the probability of a larger chi-squared in absolute value, assuming
equal means.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value (Input)
Null hypothesis value for the chi-squared test.

Default: variance_hypothesis_value = 1.0

IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev (Output)
Standard deviations of the first and second samples.

IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the approximate lower confidence limit, and upper_limit
contains the approximate upper limit for the ratio of the variance of the first population to the
second.

IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F, float *p_value (Output)
The F test for equality of variances. Argument df_numerator and df_denominator contain the
numerator and denominator degrees of freedom, argument F contains the F test value, and argu-
ment p_value contains the probability of a larger F in absolute value, assuming equal variances.

Description
Function imsls_f_normal_two_sample computes statistics for making inferences about the means and
variances of two normal populations, using independent samples in x1 and x2. For inferences concerning
parameters of a single normal population, see function imsls_f_normal_one_sample.

Let μ1 and be the mean and variance of the first population, and let μ2 and be the corresponding quanti-

ties of the second population. The function contains test confidence intervals for difference in means, equality of
variances, and the pooled variance.

The means and variances for the two samples are as follows:

σ2 = σ0
2 where σ2

σ0
2

σ1
2 σ2

2

48

 Basic Statistics normal_two_sample
and

Inferences about the Means

The test that the difference in means equals a certain value, for example, μ0, depends on whether or not the vari-

ances of the two populations can be considered equal. If the variances are equal and
mean_hypothesis_value equals 0, the test is the two-sample t test, which is equivalent to an analysis-of-
variance test. The pooled variance for the difference-in-means test is as follows:

The t statistic is as follows:

Also, the confidence interval for the difference in means can be obtained by specifying
IMSLS_CI_DIFF_FOR_EQUAL_VARS.

If the population variances are not equal, the ordinary t statistic does not have a t distribution and several
approximate tests for the equality of means have been proposed. (See, for example, Anderson and Bancroft
1952, and Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the Fisher-Behrens test,
based on Fisher’s concept of fiducial probability. A procedure used if IMSLS_T_TEST_FOR_UNEQUAL_VARS
and/or IMSLS_CI_DIFF_FOR_UNEQUAL_VARS are specified is the Satterthwaite’s procedure, as suggested
by H.F. Smith and modified by F.E. Satterthwaite (Anderson and Bancroft 1952, p. 83).

The test statistic is

where

Under the null hypothesis of μ1 − μ2 = c, this quantity has an approximate t distribution with degrees of freedom

df (in IMSLS_T_TEST_FOR_UNEQUAL_VARS), given by the following equation:

x─1 = ∑ x1i / n1 ,x
─
2 = ∑ x2ix2i / n2

s1
2 = ∑(x1i − x

─
1)
2 / (n1 − 1), s2

2 = ∑(x2i − x
─
2)
2 / (n2 − 1)

s2 =
n1 − 1 s1 + n2 − 1 s2

n1 + n2 − 2

t =
x─1 − x

─
2 − μ0

s 1 / n1 + 1 / n2

t ′ = x─1 − x
─
2 − μ0 / sd

sd = s1
2 / n1 + s2

2 / n2
49

 Basic Statistics normal_two_sample
Inferences about Variances

The F statistic for testing the equality of variances is given by , where is the larger of and

 . If the variances are equal, this quantity has an F distribution with n1 − 1 and n2 − 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide whether to use the regular t test
or the modified tʹ on a single set of data. The modified tʹ (Satterthwaite’s procedure) is the more conservative
approach to use if there is doubt about the equality of the variances.

Examples

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on arithmetic tests of two grade-
school classes. The question is whether a group taught by an experimental method has a higher mean score.
Only the difference in means is output. The data are shown below.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N1_OBSERVATIONS 7

Scores for Standard Group Scores for Experimental Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

164

169

df =
sd
4

s1
2 / n1

2

n1 − 1
+

s2
2 / n2

2

n2 − 1

F = smax
2 / smin

2 smax
2 s1

2

s2
2

50

 Basic Statistics normal_two_sample
#define N2_OBSERVATIONS 9
 float diff_means;
 float x1[N1_OBSERVATIONS] = {
 72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0
 };
 float x2[N2_OBSERVATIONS] = {
 111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0, 164.0, 169.0
 };
 /* Perform analysis */
 diff_means = imsls_f_normal_two_sample(
 N1_OBSERVATIONS, x1,
 N2_OBSERVATIONS, x2,
 0);
 /* Print results */
 printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
}

Output

x1_mean - x2_mean = -50.48

Example 2

The same data is used for this example as for the initial example. Here, the results of the t test are output. The
variances of the two populations are assumed to be equal. It is seen from the output that there is strong reason
to believe that the two means are different (t value of −4.804). Since the lower 97.5-percent confidence limit does
not include 0, the null hypothesis is that μ1 ≤ μ 2 would be rejected at the 0.05 significance level. (The closeness

of the values of the sample variances provides some qualitative substantiation of the assumption of equal
variances.)

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9
 int df;
 float diff_means, lower_limit, upper_limit, t, p_value, sp2;
 float x1[N1_OBSERVATIONS] = {
 72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0
 };
 float x2[N2_OBSERVATIONS] = {
 111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0, 164.0, 169.0
 };
 /* Perform analysis */
 diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,
 N2_OBSERVATIONS, x2,
 IMSLS_POOLED_VARIANCE, &sp2,
 IMSLS_CI_DIFF_FOR_EQUAL_VARS, &lower_limit, &upper_limit,
51

 Basic Statistics normal_two_sample
 IMSLS_T_TEST_FOR_EQUAL_VARS, &df, &t, &p_value,
 0);
 /* Print results */
 printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
 printf("Pooled variance = %5.2f\n", sp2);
 printf("95%% CI for x1_mean - x2_mean is (%5.2f,%5.2f)\n",
 lower_limit, upper_limit);
 printf("df = %3d\n", df);
 printf("t = %5.2f\n", t);
 printf("p-value = %8.5f\n", p_value);
}

Output

x1_mean - x2_mean = -50.48
Pooled variance = 434.63
95% CI for x1_mean - x2_mean is (-73.01,-27.94)
df = 14
t = -4.80
p-value = 0.00028

Example 3

The same data is used for this example as for the initial example. This example illustrates the use of the
IMSLS_INTERMEDIATE_RESULTS, IMSLS_UNION, and IMSLS_FINAL_RESULTS optional arguments
with "x1" and "x2" divided into three sub-groups. Since there are more "x2" values than "x1" values,
n1_observations is set to zero on later calls to the function.

This example demonstrates how the analysis can be applied to subsets of the original data sets and then later
combined for final results. These techniques may be useful when analyzing data sets too large to fit into memory,
and also allow subsets of the data to be analyzed in separate threads (though this example does not show the
use of separate threads) and later combined for final results.

#include <imsls.h>
#include <stdio.h>
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9
int main()
{
 int n1, n2, i;
 float diff_means, pooled_variance;
 float x1[N1_OBSERVATIONS] = {
 72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0
 };
 float x2[N2_OBSERVATIONS] = {
 111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
 164.0, 169.0
 };
 float stats1[25], stats2[25], final_stats[25];
 /* Initialize variables. */
52

 Basic Statistics normal_two_sample
 for (i = 0; i < 25; i++) {
 stats1[i] = 0.0;
 stats2[i] = 0.0;
 final_stats[i] = 0.0;
 }
 /*
 ** Bring in first group of observations on x1 and x2.
 ** Save intermediate results into variable, stat1.
 **
 ** Total second group:
 ** n1_observations = 3, n2_observations = 3
 */
 /* First call using: n1_observations = 2, n2_observations = 2 */
 n1 = 2;
 n2 = 2;
 imsls_f_normal_two_sample(n1, x1, n2, x2,
 IMSLS_INTERMEDIATE_RESULTS, stats1,
 0);

 /* Second call using: n1_observations = 1, n2_observations = 1 */
 n1 = 1;
 n2 = 1;
 imsls_f_normal_two_sample(n1, &x1[2], n2, &x2[2],
 IMSLS_INTERMEDIATE_RESULTS, stats1,
 0);
 /*
 ** Bring in second group of observations on x1 and x2.
 ** Save intermediate results into variable, stat2.
 **
 ** Total second group:
 ** n1_observations = 4, n2_observations = 4.
 */
 n1 = 4;
 n2 = 4;
 imsls_f_normal_two_sample(n1, &x1[3], n2, &x2[3],
 IMSLS_INTERMEDIATE_RESULTS, stats2,
 0);
 /*
 ** Bring in third group of observations on x1 and x2
 ** and combine the results in variables, stats1 and stats2,
 ** from the first and second groups.
 **
 ** Total third group:
 ** n1_observations = 0, n2_observations = 2.
 */
 n1 = 0;
 n2 = 2;
 diff_means = imsls_f_normal_two_sample(n1, x1, n2, &x2[7],
 IMSLS_UNION, stats1, stats2,
 IMSLS_FINAL_RESULTS, final_stats,
 IMSLS_POOLED_VARIANCE, &pooled_variance,
 0);
 /* Print results */
 printf("x1_mean - x2_mean = %5.2f\n", diff_means);
53

 Basic Statistics normal_two_sample
 printf("pooled variance = %5.2f\n", pooled_variance);
}

Output

x1_mean - x2_mean = -50.48
pooled variance = 434.63
54

 Basic Statistics table_oneway
table_oneway
Tallies observations into a one-way frequency table.

Synopsis
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[],int n_intervals, ..., 0)

The type double function is imsls_d_table_oneway.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the observations.

int n_intervals (Input)
Number of intervals (bins).

Return Value
Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[], int n_intervals,

IMSLS_DATA_BOUNDS, float *minimum, float *maximum, or
IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound, or
IMSLS_CUTPOINTS, float cutpoints[], or
IMSLS_CLASS_MARKS, float class_marks[],
IMSLS_RETURN_USER, float table[],
0)
55

 Basic Statistics table_oneway
Optional Arguments
IMSLS_DATA_BOUNDS, float *minimum, float *maximum (Output)

If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals intervals of equal
length are used with the initial interval starting with the minimum value in x and the last interval end-
ing with the maximum value in x. The initial interval is closed on the left and right. The remaining
intervals are open on the left and closed on the right. When IMSLS_DATA_BOUNDS is explicitly
specified, the minimum and maximum values in x are output in minimum and maximum. With this
option, each interval is of length (maximum − minimum)/n_intervals.

or

IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are used as the initial and last
intervals. The initial interval is closed on the right and includes lower_bound as its right endpoint.
The last interval is open on the left and includes all values greater than upper_bound. The remain-
ing n_intervals − 2 intervals are each of length

and are open on the left and closed on the right. Argument n_intervals must be greater than or
equal to 3 for this option.

or

IMSLS_CUTPOINTS, float cutpoints[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in the array
cutpoints of length n_intervals − 1. This option allows unequal interval lengths. The initial
interval is closed on the right and includes the initial cutpoint as its right endpoint. The last interval is
open on the left and includes all values greater than the last cutpoint. The remaining
n_intervals − 2 intervals are open on the left and closed on the right. Argument n_interval
must be greater than or equal to 3 for this option.

or

IMSLS_CLASS_MARKS, float class_marks[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in ascending order must be pro-
vided in the array class_marks of length n_intervals. The class marks are the midpoints of
each of the n_intervals. Each interval is assumed to have length
class_marks [1] − class_marks [0]. Argument n_intervals must be greater than or equal
to 2 for this option.

None or exactly one of the four optional arguments described above can be specified in order to
define the intervals or bins for the one-way table.

upper_bound − lower_bound
n_intervals − 2
56

 Basic Statistics table_oneway
IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of length n_intervals, which is provided by the user.

Examples

Example 1

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981). The measurements (in inches)
are for precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years.

#include <imsls.h>
int main()
{
 int n_intervals=10;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);
 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

 Counts
1 2 3 4 5 6
4 8 5 5 3 1
7 8 9 10
3 0 0 1

Example 2

In this example, IMSLS_KNOWN_BOUNDS is used, and lower_bound = 0.5 and upper_bound = 4.5 are set
so that the eight interior intervals each have width (4.5 − 0.5)/(10 − 2) = 0.5. The 10 intervals are (−∞, 0.5], (0.5,
1.0], …, (4.0, 4.5], and (4.5, ∞].

#include <imsls.h>
int main()
{
 int n_observations=30;
 int n_intervals=10;
 float *table;
 float lower_bound=0.5, upper_bound=4.5;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
57

 Basic Statistics table_oneway
 1.89, 0.90, 2.05};
 table = imsls_f_table_oneway (n_observations, x, n_intervals,
 IMSLS_KNOWN_BOUNDS, lower_bound,
 upper_bound,
 0);
 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

 Counts
 1 2 3 4 5 6
 2 7 6 6 4 2
 7 8 9 10
 2 0 0 1

Example 3

In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines the class intervals (0.0, 0.5], (0.5,
1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike the previous example, the initial and last intervals are the same length
as the remaining intervals.

#include <imsls.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,1.89,
 0.90, 2.05};
 double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25,
 2.75, 3.25,3.75, 4.25, 4.75};
 table = imsls_d_table_oneway (n_observations, x, n_intervals,
 IMSLS_CLASS_MARKS, class_marks,
 0);
 imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

 Counts
 1 2 3 4 5 6
 2 7 6 6 4 2
 7 8 9 10
 2 0 0 1
58

 Basic Statistics table_oneway
Example 4

In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same 10 intervals as in Example 2. Here
again, the initial and last intervals are semi-infinite intervals.

#include <imsls.h>
int main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,
 0.90, 2.05};
 double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5,
 3.0, 3.5, 4.0, 4.5};
 table = imsls_d_table_oneway (n_observations, x, n_intervals,
 IMSLS_CUTPOINTS, cutpoints,
 0);
 imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output

 Counts
1 2 3 4 5 6
2 7 6 6 4 2
7 8 9 10
2 0 0 1
59

 Basic Statistics table_twoway
table_twoway
Tallies observations into two-way frequency table.

Synopsis
#include <imsls.h>
float *imsls_f_table_twoway (int n_observations, float x[], float y[], int nx, int ny, ..., 0)

The type double function is imsls_d_table_twoway.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the data for the first variable.

float y[] (Input)
Array of length n_observations containing the data for the second variable.

int nx (Input)
Number of intervals (bins) for variable x.

int ny (Input)
Number of intervals (bins) for variable y.

Return Value
Pointer to an array of size nx by ny containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_table_twoway (int n_observations, float x[], float y[], int nx, int ny,

IMSLS_DATA_BOUNDS, float *xmin, float *xmax, float *ymin, float *ymax, or
60

 Basic Statistics table_twoway
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi, or
IMSLS_CUTPOINTS, float cx[], float cy[], or
IMSLS_CLASS_MARKS, float cx[], float cy[],
IMSLS_RETURN_USER, float table[],
0)

Optional Arguments
IMSLS_DATA_BOUNDS, float *xlo, float *xhi, float *ylo, float *yhi (Output)

If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals intervals of equal
length are used. Let xmin and xmax be the minimum and maximum values in x, respectively, with
similar meanings for ymin and ymax. Then, table[0] is the tally of observations with the x value
less than or equal to xmin + (xmax − xmin)/nx, and the y value less than or equal to
ymin + (ymax − ymin)/ny. When IMSLS_DATA_BOUNDS is explicitly specified, the minimum and
maximum values in x and y are output in xmin, xmax, ymin, and ymax.

or

IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi (Input)
Intervals of equal lengths are used just as in the case of IMSLS_DATA_BOUNDS, except the upper
and lower bounds are taken as the user supplied variables xlo, xhi, ylo, and yhi, instead of the
actual minima and maxima in the data. Therefore, the first and last intervals for both variables are
semi-infinite in length. Arguments nx and ny must be greater than or equal to 3.

or

IMSLS_CUTPOINTS, float cx[], float cy[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in the arrays cx and
cy, of length (nx-1) and (ny-1) respectively. The tally in table[0] is the number of observa-
tions for which the x value is less than or equal to cx[0], and the y value is less than or equal to
cy[0]. This option allows unequal interval lengths. Arguments nx and ny must be greater than or
equal to 2.

or

IMSLS_CLASS_MARKS, float cx[], float cy[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in ascending order must be pro-
vided in the arrays cx and cy. The class marks are the midpoints of each interval. Each interval is
taken to have length cx[1] − cx[0] in the x direction and cy[1] − cy[0] in the y direction.
The total number of elements in table may be less than n_observations. Arguments nx and
ny must be greater than or equal to 2.
61

 Basic Statistics table_twoway
None or exactly one of the four optional arguments described above can be specified in order to
define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of size nx by ny, which is provided by the user.

Examples

Example 1

The data for x in this example are the same as those used in the examples for imsls_f_table_oneway. The
data for y were created by adding small integers to the data in x. This example uses the default tally method,
IMSLS_DATA_BOUNDS, which may be appropriate when the range of the data is unknown.

#include <imsls.h>
int main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
}

Output

 counts
 0 1 2 3 4 5
0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1

Example 2

In this example, xlo, xhi, ylo, and yhi are chosen so that the intervals will be 0 to 1, 1 to 2, and so on for x,
and 1 to 2, 2 to 3, and so on for y.
62

 Basic Statistics table_twoway
#include <imsls.h>
int main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float xlo = 1.0;
 float xhi = 4.0;
 float ylo = 2.0;
 float yhi = 6.0;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_KNOWN_BOUNDS, xlo, xhi, ylo, yhi, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
}

Output

 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 3

In this example, the class boundaries are input in cx and cy. The same intervals are chosen as in Example 2,
where the first element of cx and cy specify the first cutpoint between classes.

#include <imsls.h>
int main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5};
 float cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
63

 Basic Statistics table_twoway
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_CLASS_MARKS, cmx, cmy, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
}

Output

 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 4

This example, uses the IMSLS_CUTPOINTS tally option with cutpoints such that the intervals are specified as in
the previous examples.

#include <imsls.h>
int main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float cpx[] = {1, 2, 3, 4};
 float cpy[] = {2, 3, 4, 5, 6};
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_CUTPOINTS, cpx, cpy, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output

 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
64

 Basic Statistics table_twoway
3 0 0 0 0 0 2
4 0 0 0 0 1 0
65

 Basic Statistics sort_data
sort_data
Sorts observations by specified keys, with option to tally cases into a multi-way frequency table.

Synopsis
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables, float x[], int n_keys, ..., 0)

The type double function is imsls_d_sort_data.

Required Arguments
int n_observations (Input)

Number of observations (rows) in x.

int n_variables (Input)
Number of variables (columns) in x.

float x[] (Input/Output)
An n_observations × n_variables matrix containing the observations to be sorted. The
sorted matrix is returned in x (exception: see optional argument IMSLS_PASSIVE).

int n_keys (Input)
Number of columns of x on which to sort. The first n_keys columns of x are used as the sorting
keys (exception: see optional argument IMSLS_INDICES_KEYS).

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables, float x[], int n_keys,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_INDICES_KEYS, int indices_keys[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_ASCENDING, or
IMSLS_DESCENDING,
IMSLS_ACTIVE, or
66

 Basic Statistics sort_data
IMSLS_PASSIVE,
IMSLS_PERMUTATION, int **permutation,
IMSLS_PERMUTATION_USER, int permutation[],
IMSLS_TABLE, int **n_values, float **values, float **table,
IMSLS_TABLE_USER, int n_values[], float values[], float table[],
IMSLS_LIST_CELLS, int *n_cells, float **list_cells, float **table_unbalanced,
IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],

float table_unbalanced[],
IMSLS_N, int *n_cells, int **n,
IMSLS_N_USER, int *n_cells, int n[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.

Default: x_col_dim = n_variables
IMSLS_INDICES_KEYS, int indices_keys[] (Input)

Array of length n_keys giving the column numbers of x which are to be used in the sort.

Default: indices_keys [] = 0, 1, …, n_keys − 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each observation in x.

Default: frequencies [] = 1

IMSLS_ASCENDING, or

IMSLS_DESCENDING
By default, or if IMSLS_ASCENDING is specified, the sort is in ascending order. If
IMSLS_DESCENDING is specified, the sort is in descending order.

IMSLS_ACTIVE, or

IMSLS_PASSIVE
By default, or if IMSLS_ACTIVE is specified, the sorted matrix is returned in x. If
IMSLS_PASSIVE is specified, x is unchanged by imsls_f_sort_data (i.e., x becomes input
only).

IMSLS_PERMUTATION, int **permutation (Output)
Address of a pointer to an internally allocated array of length n_observations specifying the
rearrangement (permutation) of the observations (rows).
67

 Basic Statistics sort_data
IMSLS_PERMUTATION_USER, int permutation[] (Output)
Storage for array permutation is provided by the user. See IMSLS_PERMUTATION.

IMSLS_TABLE, int **n_values, float **values, float **table (Output)
Argument n_values is the address of a pointer to an internally allocated array of length n_keys
containing in its i-th element (i = 0, 1, …, n_keys − 1), the number of levels or categories of the i-th
classification variable (column).

Argument values is the address of a pointer to an internally allocated array of length
n_values [0] + n_values [1] + … + n_values [n_keys − 1] containing the values of the clas-
sification variables. The first n_values [0] elements of values contain the values for the first
classification variable. The next n_values [1] contain the values for the second variable. The last
n_values [n_keys − 1] positions contain the values for the last classification variable.

Argument table is the address of a pointer to an internally allocated array of length
n_values [0] × n_values [1] × … × n_values [n_keys − 1] containing the frequencies in
the cells of the table to be fit.

Empty cells are included in table, and each element of table is nonnegative. The cells of table
are sequenced so that the first variable cycles through its n_values [0] categories one time, the
second variable cycles through its n_values [1] categories n_values [0] times, the third variable
cycles through its n_values [2] categories n_values [0] × n_values [1] times, etc., up to the
n_keys-th variable, which cycles through its n_values [n_keys − 1] categories
n_values [0] × n_values [1] × … × n_values [n_keys − 2] times.

IMSLS_TABLE_USER, int n_values[], float values[], float table[] (Output)
Storage for arrays n_values, values, and table is provided by the user. If the length of table
is not known in advance, the upper bound for this length can be taken to be the product of the num-
ber of distinct values taken by all of the classification variables (since table includes the empty
cells).

IMSLS_LIST_CELLS, int *n_cells, float **list_cells, float **table_unbalanced (Out-
put)
Number of nonempty cells is returned by n_cells. Argument list_cells is an internally allo-
cated array of size n_cells × n_keys containing, for each row, a list of the levels of n_keys
corresponding classification variables that describe a cell.

Argument table_unbalanced is the address of a pointer to an array of length n_cells con-
taining the frequency for each cell.

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[], float table_unbalanced[]
(Output)
Storage for arrays list_cells and table_unbalanced is provided by the user. See
IMSLS_LIST_CELLS.
68

 Basic Statistics sort_data
IMSLS_N, int *n_cells, int **n (Output)
The integer n_cells returns the number of groups of different observations. A group contains
observations (rows) in x that are equal with respect to the method of comparison.

Argument n is the address of the pointer to an internally allocated array of length n_cells contain-
ing the number of observations (rows) in each group.

The first n [0] rows of the sorted x are group number 1. The next n [1]rows of the sorted x are group
number 2, etc. The last n [n_cells − 1] rows of the sorted x are group number n_cells.

IMSLS_N_USER, int *n_cells, int n[] (Output)
Storage for array n_cells is provided by the user. If the value of n_cells is not known,
n_observations can be used as an upper bound for the length of n. See IMSLS_N.

Description
Function imsls_f_sort_data can perform both a key sort and/or tabulation of frequencies into a multi-way
frequency table.

Sorting

Function imsls_f_sort_data sorts the rows of real matrix x using a particular row in x as the keys. The sort
is algebraic with the first key as the most significant, the second key as the next most significant, etc. When x is
sorted in ascending order, the resulting sorted array is such that the following is true:

 For i = 0, 1, …, n_observations − 2,
x [i] [indices_keys [0]] ≤ x [i + 1] [indices_keys [0]]

 For k = 1, …, n_keys − 1, if x [i] [indices_keys [j]] = x [i + 1] [indices_keys [j]] for
j = 0, 1, …, k − 1, then x [i] [indices_keys [k]] = x [i + 1] [indices_keys [k]]

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the specified columns are considered as
an additional group. These rows are moved to the end of the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969) with modifications by
Griffen and Redish (1970) and Petro (1970).

Frequency Tabulation

Function imsls_f_sort_data determines the distinct values in multivariate data and computes frequencies
for the data. This function accepts the data in the matrix x, but performs computations only for the variables (col-
umns) in the first n_keys columns of x (Exception: see optional argument IMSLS_INDICES_KEYS). In
69

 Basic Statistics sort_data
general, the variables for which frequencies should be computed are discrete; they should take on a relatively
small number of different values. Variables that are continuous can be grouped first. The
imsls_f_table_oneway function can be used to group variables and determine the frequencies of groups.

When IMSLS_TABLE is specified, imsls_f_sort_data fills the vector values with the unique values of
the variables and tallies the number of unique values of each variable in the vector table. Each combination of
one value from each variable forms a cell in a multi-way table. The frequencies of these cells are entered in
table so that the first variable cycles through its values exactly once, and the last variable cycles through its val-
ues most rapidly. Some cells cannot correspond to any observations in the data; in other words, “missing cells”
are included in table and have a value of 0.

When IMSLS_LIST_CELLS is specified, the frequency of each cell is entered in table_unbalanced so that
the first variable cycles through its values exactly once and the last variable cycles through its values most rapidly.
All cells have a frequency of at least 1, i.e., there is no “missing cell.” The list_cells array can be considered
“parallel” to table_unbalanced because row i of list_cells is the set of n_keys values that describes
the cell for which row i of table_unbalanced contains the corresponding frequency.

Examples

Example 1

The rows of a 10 × 3 matrix x are sorted in ascending order using Columns 0 and 1 as the keys. There are two
missing values (NaNs) in the keys. The observations containing these values are moved to the end of the sorted
array.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
int main()
{
 int n_keys=2;
 float x[N_OBSERVATIONS][N_VARIABLES] = {
 1.0, 1.0, 1.0,
 2.0, 1.0, 2.0,
 1.0, 1.0, 3.0,
 1.0, 1.0, 4.0,
 2.0, 2.0, 5.0,
 1.0, 2.0, 6.0,
 1.0, 2.0, 7.0,
 1.0, 1.0, 8.0,
 2.0, 2.0, 9.0,
 1.0, 1.0, 9.0
 };
 x[4][1]=imsls_f_machine(6);
70

 Basic Statistics sort_data
 x[6][0]=imsls_f_machine(6);
 imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES,
 &x[0][0], n_keys, 0);
 imsls_f_write_matrix("sorted x", N_OBSERVATIONS, N_VARIABLES,
 (float *)x, 0);
}

Output

 sorted x
 1 2 3
1 1 1 1
2 1 1 9
3 1 1 3
4 1 1 4
5 1 1 8
6 1 2 6
7 2 1 2
8 2 2 9
9 2 7
10 2 5

Example 2

This example uses the same data as the previous example. The permutation of the rows is output in the array
permutation.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
int main()
{
 int n_keys=2;
 int n_cells;
 int *n;
 int *permutation;
 float x[N_OBSERVATIONS][N_VARIABLES]={1.0, 1.0, 1.0,
 2.0, 1.0, 2.0,
 1.0, 1.0, 3.0,
 1.0, 1.0, 4.0,
 2.0, 2.0, 5.0,
 1.0, 2.0, 6.0,
 1.0, 2.0, 7.0,
 1.0, 1.0, 8.0,
 2.0, 2.0, 9.0,
 1.0, 1.0, 9.0};
 x[4][1]=imsls_f_machine(6);
 x[6][0]=imsls_f_machine(6);
 imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES,
 (float *)x, n_keys,
 IMSLS_PASSIVE,
 IMSLS_PERMUTATION, &permutation,
 IMSLS_N, &n_cells, &n, 0);
 imsls_f_write_matrix("unchanged x ", N_OBSERVATIONS, N_VARIABLES,
 (float *)x, 0);
71

 Basic Statistics sort_data
 imsls_i_write_matrix("permutation", 1, N_OBSERVATIONS, permutation,
 0);
 imsls_i_write_matrix("n", 1, n_cells, n, 0);
}

Output

 unchanged x
 1 2 3
1 1 1 1
2 2 1 2
3 1 1 3
4 1 1 4
5 2 5
6 1 2 6
7 2 7
8 1 1 8
9 2 2 9
10 1 1 9
 permutation
1 2 3 4 5 6 7 8 9 10
0 9 2 3 7 5 1 8 6 4
 n
1 2 3 4
5 1 1 1

Example 3

The table of frequencies for a data matrix of size 30 × 2 is output in the array table.

#include <imsls.h>
int main()
{
 int n_observations=30;
 int n_variables=2;
 int n_keys=2;
 int *n_values;
 int n_rows, n_columns;
 float *values;
 float *table;
 float x[] = {0.5, 1.5,
 1.5, 3.5,
 0.5, 3.5,
 1.5, 2.5,
 1.5, 3.5,
 1.5, 4.5,
 0.5, 1.5,
 1.5, 3.5,
 3.5, 6.5,
 2.5, 3.5,
 2.5, 4.5,
 3.5, 6.5,
 1.5, 2.5,
 2.5, 4.5,
72

 Basic Statistics sort_data
 0.5, 3.5,
 1.5, 2.5,
 1.5, 3.5,
 0.5, 3.5,
 0.5, 1.5,
 0.5, 2.5,
 2.5, 5.5,
 1.5, 2.5,
 1.5, 3.5,
 1.5, 4.5,
 4.5, 5.5,
 2.5, 4.5,
 0.5, 3.5,
 1.5, 2.5,
 0.5, 2.5,
 2.5, 5.5};

 imsls_f_sort_data (n_observations, n_variables, x, n_keys,
 IMSLS_PASSIVE,
 IMSLS_TABLE, &n_values, &values, &table,
 0);
 imsls_f_write_matrix("unchanged x", n_observations, n_variables,
 x, 0);
 n_rows = n_values[0];
 n_columns = n_values[1];s
 imsls_f_write_matrix("row values", 1, n_rows, values, 0);

imsls_f_write_matrix("column values", 1, n_columns, &values[n_rows],
0);

 imsls_f_write_matrix("table", n_rows, n_columns, table, 0);
}

Output

 unchanged x
 1 2
 1 0.5 1.5
 2 1.5 3.5
 3 0.5 3.5
 4 1.5 2.5
 5 1.5 3.5
 6 1.5 4.5
 7 0.5 1.5
 8 1.5 3.5
 9 3.5 6.5
10 2.5 3.5
11 2.5 4.5
12 3.5 6.5
13 1.5 2.5
14 2.5 4.5
15 0.5 3.5
16 1.5 2.5
17 1.5 3.5
18 0.5 3.5
19 0.5 1.5
20 0.5 2.5
21 2.5 5.5
22 1.5 2.5
23 1.5 3.5
24 1.5 4.5
73

 Basic Statistics sort_data
25 4.5 5.5
26 2.5 4.5
27 0.5 3.5
28 1.5 2.5
29 0.5 2.5
30 2.5 5.5
 row values
 1 2 3 4 5
 0.5 1.5 2.5 3.5 4.5
 column values
 1 2 3 4 5 6
 1.5 2.5 3.5 4.5 5.5 6.5
 Table
 1 2 3 4 5 6
1 3 2 4 0 0 0
2 0 5 5 2 0 0
3 0 0 1 3 2 0
4 0 0 0 0 0 2
5 0 0 0 0 1 0
74

 Basic Statistics ranks
ranks
Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis
#include <imsls.h>

float *imsls_f_ranks (int n_observations, float x[], ..., 0)

The type double function is imsls_d_ranks.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the observations to be ranked.

Return Value
A pointer to a vector of length n_observations containing the rank (or optionally, a transformation of the
rank) of each observation.

Synopsis with Optional Arguments
#include <imsl.h>
float* imsls_f_ranks (int n_observations, float x[],

IMSLS_AVERAGE_TIE, or
IMSLS_HIGHEST, or
IMSLS_LOWEST, or
IMSLS_RANDOM_SPLIT,
IMSLS_FUZZ, float fuzz_value,
IMSLS_RANKS, or
IMSLS_BLOM_SCORES, or
75

 Basic Statistics ranks
IMSLS_TUKEY_SCORES, or
IMSLS_VAN_DER_WAERDEN_SCORES, or
IMSLS_EXPECTED_NORMAL_SCORES, or
IMSLS_SAVAGE_SCORES,
IMSLS_RETURN_USER, float ranks[],
0)

Optional Arguments
IMSLS_AVERAGE_TIE, or

IMSLS_HIGHEST, or

IMSLS_LOWEST, or

IMSLS_RANDOM_SPLIT
Exactly one of these optional arguments can be used to change the method used to assign a score to
tied observations.

IMSLS_FUZZ, float fuzz_value (Input)
Value used to determine when two items are tied. If abs(x [i] − x [j]) is less than or equal to
fuzz_value, then x[i] and x[j] are said to be tied.

Default: fuzz_value = 0.0

IMSLS_RANKS, or

IMSLS_BLOM_SCORES, or

IMSLS_TUKEY_SCORES, or

IMSLS_VAN_DER_WAERDEN_SCORES, or

IMSLS_EXPECTED_NORMAL_SCORES, or

Argument Method

IMSLS_AVERAGE_TIE average of the scores of the tied
observations (default)

IMSLS_HIGHEST highest score in the group of ties

IMSLS_LOWEST lowest score in the group of ties

IMSLS_RANDOM_SPLIT tied observations are randomly split
using a random number generator
76

 Basic Statistics ranks
IMSLS_SAVAGE_SCORES
Exactly one of these optional arguments can be used to specify the type of values returned.

IMSLS_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation of the ranks) of the data in x. If
x[i] has the smallest value among the values in x and there is no other element in x with this value, then
ranks [i] = 1. If both x[i] and x[j] have the same smallest value, the output value depends on the option used
to break ties.

When the ties are resolved randomly, function imsls_f_random_uniform (Chapter 12) is used to generate
random numbers. Different results may occur from different executions of the program unless the “seed” of the
random number generator is set explicitly by use of the function imsls_f_random_seed_set (Chapter 12).

Argument Result

IMSLS_RANKS ranks (default)

IMSLS_BLOM_SCORES Blom version of normal scores

IMSLS_TUKEY_SCORES Tukey version of normal scores

IMSLS_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal
scores

IMSLS_EXPECTED_NORMAL_SCORES expected value of normal order sta-
tistics (for tied observations, the
average of the expected normal
scores)

IMSLS_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)

Argument Result

IMSLS_AVERAGE_TIE ranks[i] = ranks[j] = 1.5

IMSLS_HIGHEST ranks[i] = ranks[j] = 2.0

IMSLS_LOWEST ranks[i] = ranks[j] = 1.0

IMSLS_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0
or, randomly,
ranks[i] = 2.0 and ranks[j] = 1.0
77

 Basic Statistics ranks
Scores

As an option, normal and other functions of the ranks can be returned. Normal scores can be defined as the
expected values, or approximations to the expected values, of order statistics from a normal distribution. The
simplest approximations are obtained by evaluating the inverse cumulative normal distribution function, function
imsls_f_normal_inverse_cdf (Chapter 11), at the ranks scaled into the open interval (0, 1). In the Blom ver-
sion (see Blom 1958), the scaling transformation for the rank ri (1 ≤ ri ≤ n, where n is the sample size,

n_observations) is (ri − 3/8)/(n + 1/4). The Blom normal score corresponding to the observation with rank ri

is

where Φ(·) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if x [i] equals x [j] (within
fuzz_value) and their value is the k-th smallest in the data set, the Blom normal scores are determined for
ranks of k and k + 1. Then, these normal scores are averaged or selected in the manner specified. (Whether the
transformations are made first or ties are resolved first makes no difference except when
IMSLS_AVERAGE_TIE is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank ri is (ri − 1/3)/(n + 1/3). The Tukey

normal score corresponding to the observation with rank ri is as follows:

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation for the rank ri is ri/(n + 1).

The Van der Waerden normal score corresponding to the observation with rank ri is as follows:

Ties are handled in the same way as for the Blom normal scores.

When option IMSLS_EXPECTED_NORMAL_SCORES is used, the output values are the expected values of the
normal order statistics from a sample of size n_observations. If the value in x[i] is the k-th smallest, the
value output in ranks [i] is E(zk), where E(·) is the expectation operator and zk is the k-th order statistic in a sam-

ple of size n_observations from a standard normal distribution. Ties are handled in the same way as for the
Blom normal scores.

ϕ−1
ri − 3 / 8
n + 1 / 4

ϕ−1
ri − 1 / 3
n + 1 / 3

ϕ−1
ri
n + 1
78

 Basic Statistics ranks
Savage scores are the expected values of the exponential order statistics from a sample of size
n_observations. These values are called Savage scores because of their use in a test discussed by Savage
1956 (see also Lehmann 1975). If the value in x[i] is the k-th smallest, the value output in ranks [i] is E(yk),

where yk is the k-th order statistic in a sample of size n_observations from a standard exponential distribu-

tion. The expected value of the k-th order statistic from an exponential sample of size n (n_observations) is
as follows:

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1

The data for this example, from Hinkley (1977), contains 30 observations. Note that the fourth and sixth observa-
tions are tied and that the third and twentieth observations are tied.

#include <imsls.h>
#define N_OBSERVATIONS 30
int main()
{
 float *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 ranks = imsls_f_ranks(N_OBSERVATIONS, x, 0);
 imsls_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0);
}

Output

 Ranks
 1 2 3 4 5 6
 5.0 18.0 6.5 11.5 21.0 11.5
 7 8 9 10 11 12
 2.0 15.0 29.0 24.0 27.0 28.0
 13 14 15 16 17 18
 16.0 23.0 3.0 17.0 13.0 1.0
 19 20 21 22 23 24
 4.0 6.5 26.0 19.0 10.0 14.0

1
n +

1
n − 1 + … + 1

n − k + 1
79

 Basic Statistics ranks
 25 26 27 28 29 30
 30.0 25.0 9.0 20.0 8.0 22.0

Example 2

This example uses all the score options with the same data set, which contains some ties. Ties are handled in sev-
eral different ways in this example.

#include <imsls.h>
#define N_OBSERVATIONS 30
int main()
{
 float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
 float x[] = {
 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05
 };
 char *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
 "Expected Value"};
 /* Blom scores using largest ranks */
 /* for ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_HIGHEST,
 IMSLS_BLOM_SCORES,
 IMSLS_RETURN_USER, &score[0][0],
 0);
 /* Tukey normal scores using smallest */
 /* ranks for ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_LOWEST,
 IMSLS_TUKEY_SCORES,
 IMSLS_RETURN_USER, &score[1][0],
 0);
 /* Van der Waerden scores using */
 /* randomly resolved ties */
 imsls_random_seed_set(123457);
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_RANDOM_SPLIT,
 IMSLS_VAN_DER_WAERDEN_SCORES,
 IMSLS_RETURN_USER, &score[2][0],
 0);
 /* Expected value of normal order */
 /* statistics using averaging to */
 /* break ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_EXPECTED_NORMAL_SCORES,
 IMSLS_RETURN_USER, &score[3][0],
80

 Basic Statistics ranks
 0);
 imsls_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
 (float *)score,
 IMSLS_ROW_LABELS, row_labels,
 IMSLS_WRITE_FORMAT, "%9.3f",
 0);
 /* Savage scores using averaging */
 /* to break ties */
 ranks = imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_SAVAGE_SCORES,
 0);
 imsls_f_write_matrix("Expected values of exponential order "
 "statistics", 1,
 N_OBSERVATIONS, ranks,
 0);
}

Output

 Normal Order Statistics
 1 2 3 4 5
Blom -1.024 0.209 -0.776 -0.294 0.473
Tukey -1.020 0.208 -0.890 -0.381 0.471
Van der Waerden -0.989 0.204 -0.753 -0.287 0.460
Expected Value -1.026 0.209 -0.836 -0.338 0.473
 6 7 8 9 10
Blom -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0.753
Expected Value -0.338 -1.616 -0.041 1.616 0.777
 11 12 13 14 15
Blom 1.176 1.361 0.041 0.668 -1.361
Tukey 1.171 1.354 0.041 0.666 -1.354
Van der Waerden 1.131 1.300 0.040 0.649 -1.300
Expected Value 1.179 1.365 0.041 0.669 -1.365
 16 17 18 19 20
Blom 0.125 -0.209 -2.040 -1.176 -0.776
Tukey 0.124 -0.208 -2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 -1.849 -1.131 -0.865
Expected Value 0.125 -0.209 -2.043 -1.179 -0.836
 21 22 23 24 25
Blom 1.024 0.294 -0.473 -0.125 2.040
Tukey 1.020 0.293 -0.471 -0.124 2.015
Van der Waerden 0.989 0.287 -0.460 -0.122 1.849
Expected Value 1.026 0.294 -0.473 -0.125 2.043
 26 27 28 29 30
Blom 0.893 -0.568 0.382 -0.668 0.568
Tukey 0.890 -0.566 0.381 -0.666 0.566
Van der Waerden 0.865 -0.552 0.372 -0.649 0.552
Expected Value 0.894 -0.568 0.382 -0.669 0.568
 Expected values of exponential order statistics
81

 Basic Statistics ranks
 1 2 3 4 5 6
 0.179 0.892 0.240 0.474 1.166 0.474
 7 8 9 10 11 12
 0.068 0.677 2.995 1.545 2.162 2.495
 13 14 15 16 17 18
 0.743 1.402 0.104 0.815 0.555 0.033
 19 20 21 22 23 24
 0.141 0.240 1.912 0.975 0.397 0.614
 25 26 27 28 29 30
 3.995 1.712 0.350 1.066 0.304 1.277
82

 Regression Functions
Regression

Functions
Multivariate Linear Regression—Model Fitting

Generates regressors for a general linear model regressors_for_glm 97
Fits a multivariate linear regression model . regression 107

Multivariate Linear Regression—Statistical Inference and Diagnostics
Produces summary statistics for a regression model regression_summary 124
Computes predicted values,

confidence intervals, and diagnostics regression_prediction 133
Construction of a completely testable hypothesis hypothesis_partial 145
Sums of cross products for a multivariate hypothesis hypothesis_scph 152
Tests for the multivariate linear hypothesis . hypothesis_test 157

Variable Selection
All best regressions . regression_selection 165
Stepwise regression . regression_stepwise 176

Polynomial and Nonlinear Regression
Fits a polynomial regression model .poly_regression 186
Computes predicted values, confidence intervals, and diagnostics poly_prediction 195
Fits a nonlinear regression model .nonlinear_regression 205
Fits a nonlinear regression model using Powell's algorithm nonlinear_optimization 218

Alternatives to Least Squares Regression
LAV, Lpnorm, and LMV criteria regression . Lnorm_regression 229
Performs partial least squares (PLS) regression .pls_regression 248
83

 Regression Usage Notes
Usage Notes
The regression models in this chapter include the simple and multiple linear regression models, the multivariate
general linear model, the polynomial model, and the nonlinear regression model. Functions for fitting regression
models, computing summary statistics from a fitted regression, computing diagnostics, and computing confi-
dence intervals for individual cases are provided. This chapter also provides methods for building a model from a
set of candidate variables.

Simple and Multiple Linear Regression
The simple linear regression model is

yi = β
0

+ β
1

xi + ɛi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the dependent variable, the xi’s are

the settings of the independent (explanatory) variable, β0 and β1 are the intercept and slope parameters (respec-

tively) and the ɛi’s are independently distributed normal errors, each with mean 0 and variance σ2.

The multiple linear regression model is

yi = β
0

+ β
1

xi

1

+ β
2

xi

2

 + ... + βkxik + ɛi i = 1, 2, ..., n
84

 Regression Usage Notes
where the observed values of the yi’s constitute the responses or values of the dependent variable; the

xi1’s, xi2’s, ..., xik’s are the settings of the k independent (explanatory) variables; β0, β1, ..., βk are the regression

coefficients; and the ɛi’s are independently distributed normal errors, each with mean 0 and variance σ2.

Function imsls_f_regression fits both the simple and multiple linear regression models using a fast Given’s
transformation and includes an option for excluding the intercept β0. The responses are input in array y, and the

independent variables are input in array x, where the individual cases correspond to the rows and the variables
correspond to the columns.

After the model has been fitted using imsls_f_regression, function imsls_f_regression_summary
computes summary statistics and imsls_f_regression_prediction computes predicted values, confidence
intervals, and case statistics for the fitted model. The information about the fit is communicated from
imsls_f_regression to imsls_f_regression_summary and
imsls_f_regression_prediction by passing an argument of structure type Imsls_f_regression.

No Intercept Model
Several functions provide the option for excluding the intercept from a model. In most practical applications, the
intercept should be included in the model. For functions that use the sums of squares and crossproducts matrix
as input, the no-intercept case can be handled by using the raw sums of squares and crossproducts matrix as
input in place of the corrected sums of squares and crossproducts. The raw sums of squares and crossproducts

matrix can be computed as (x1, x2, ..., xk, y)T (x1, x2, ..., xk, y).

Variable Selection
Variable selection can be performed by imsls_f_regression_selection, which computes all best-subset
regressions, or by imsls_f_regression_stepwise, which computes stepwise regression. The method used
by imsls_f_regression_selection is generally preferred over that used by
imsls_f_regression_stepwise because imsls_f_regression_selection implicitly examines all
possible models in the search for a model that optimizes some criterion while stepwise does not examine all pos-
sible models. However, the computer time and memory requirements for
imsls_f_regression_selection can be much greater than that for
imsls_f_regression_stepwise when the number of candidate variables is large.

Polynomial Model
The polynomial model is
85

 Regression Usage Notes
where the observed values of the yi’s constitute the responses or values of the dependent variable; the xi’s are

the settings of the independent (explanatory) variable; β0, β1, ..., βk are the regression coefficients; and the ɛi’s are

independently distributed normal errors each with mean 0 and variance σ2.

Function imsls_f_poly_regression fits a polynomial regression model with the option of determining the
degree of the model and also produces summary information. Function imsls_f_poly_prediction com-
putes predicted values, confidence intervals, and case statistics for the model fit by
imsls_f_poly_regression.

The information about the fit is communicated from imsls_f_poly_regression to
imsls_f_poly_prediction by passing an argument of structure type Imsls_f_poly_regression.

Specification of X for the General Linear Model
Variables used in the general linear model are either continuous or classification variables. Typically, multiple
regression models use continuous variables, whereas analysis of variance models use classification variables.
Although the notation used to specify analysis of variance models and multiple regression models may look quite
different, the models are essentially the same. The term “general linear model” emphasizes that a common nota-
tional scheme is used for specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect is referred to in this text as a sin-
gle variable or a product of variables. (The term “effect” is often used in a narrower sense, referring only to a
single regression coefficient.) In particular, an “effect” is composed of one of the following:

1. A single continuous variable.

2. A single classification variable.

3. Several different classification variables.

4. Several continuous variables, some of which may be the same.

5. Continuous variables, some of which may be the same, and classification variables, which must be
distinct.

Effects of the first type are common in multiple regression models. Effects of the second type appear as main
effects in analysis of variance models. Effects of the third type appear as interactions in analysis of variance mod-
els. Effects of the fourth type appear in polynomial models and response surface models as powers and
crossproducts of some basic variables. Effects of the fifth type appear in one-way analysis of covariance models
as regression coefficients that indicate lack of parallelism of a regression function across the groups.

yi = β0 + β1xi + β2xi
2 + ... + βkxi

k + ɛi i = 1,2, … n
86

 Regression Usage Notes
The analysis of a general linear model occurs in two stages. The first stage calls function
imsls_f_regressors_for_glm to specify all regressors except the intercept. The second stage calls
imsls_f_regression, at which point the model will be specified as either having (default) or not having an
intercept.

For this discussion, define a variable INTCEP as follows:

The remaining variables (n_continuous, n_class, x_class_columns, n_effects, n_var_effects,
and indices_effects) are defined for function imsls_f_regressors_for_glm. All these variables
have defaults except for n_continuous and n_class, both of which must be specified. (See the documenta-
tion for imsls_f_regressors_for_glm for a discussion of the defaults.) The meaning of each of these
arguments is as follows:

n_continuous (Input)
Number of continuous variables.

n_class (Input)
Number of classification variables.

x_class_columns (Input)
Index vector of length n_class containing the column numbers of x that are the classification
variables.

n_effects (Input)
Number of effects (sources of variation) in the model, excluding error.

n_var_effects (Input)
Vector of length n_effects containing the number of variables associated with each effect in the
model.

indices_effects (Input)
Index vector of length
n_var_effects[0] + n_var_effects[1] + ... + n_var_effects[n_effects - 1]. The first
n_var_effects[0] elements give the column numbers of x for each variable in the first effect; the
next n_var_effects[1] elements give the column numbers for each variable in the second effect;
and finally, the last n_var_effects [n_effects - 1] elements give the column numbers for
each variable in the last effect.

Option INTCEP Action
IMSLS_NO_INTERCEPT 0 An intercept is not in the model.

IMSLS_INTERCEPT (default) 1 An intercept is in the model.
87

 Regression Usage Notes
Suppose the data matrix has as its first four columns two continuous variables in Columns 0 and 1 and two clas-
sification variables in Columns 2 and 3. The data might appear as follows:

Each distinct value of a classification variable determines a level. The classification variable in Column 2 has two
levels. The classification variable in Column 3 has three levels. (Integer values are recommended, but not
required, for values of the classification variables. The values of the classification variables corresponding to the
same level must be identical.) Some examples of regression functions and their specifications are as follows:

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

INTCEP n_class x_class_columns
β0 + β1x1 1 0

β0+β1x1+β2x1
2 1 0

μ+αi 1 1 2

μ+αi+βj+γij 1 2 2, 3

μij 0 2 2, 3

β0+β1x1+β2x2+β3x1x2 1 0

μ+αi+βx1i+βix1i 1 1 2

n_effects n_var_effects Indices_effects
β0+β1x1 1 1 0

β0+β1x1+β2x1
2 2 1, 2 0, 0, 0

μ+αi 1 1 2

μ+αi+βj+γij 3 1, 1, 2 2, 3, 2, 3
88

 Regression Usage Notes
Functions for Fitting the Model
Function imsls_f_regression fits a multivariate general linear model, where regressors for the general linear
model have been generated using function imsls_f_regressors_for_glm.

Linear Dependence and the R Matrix
Linear dependence of the regressors frequently arises in regression models—sometimes by design and some-
times by accident. The functions in this chapter are designed to handle linear dependence of the regressors; i.e.,
the n × p matrix X (the matrix of regressors) in the general linear model can have rank less than p. Often, the
models are referred to as non-full rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of the fitted non-full rank regres-
sion model for estimation and hypothesis testing. In the non-full rank case, not all linear combinations of the
regression coefficients can be estimated. Those linear combinations that can be estimated are called “estimable
functions.” If the functions are used to attempt to estimate linear combinations that cannot be estimated, error
messages are issued. A good general discussion of estimable functions is given by Searle (1971, pp. 180–188).

The check used by functions in this chapter for linear dependence is sequential. The j-th regressor is declared lin-
early dependent on the preceding j - 1 regressors if

is less than or equal to tolerance. Here,

is the multiple correlation coefficient of the j-th regressor with the first j − 1 regressors. When a function
declares the j-th regressor to be linearly dependent on the first j − 1, the j-th regression coefficient is set to 0.
Essentially, this removes the j-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the preferred variables to remain in
the model first. Also, the sequential check is based on many of the computations already performed as this does
not degrade the overall efficiency of the functions. There is no perfect test for linear dependence when finite pre-
cision arithmetic is used. The optional argument IMSLS_TOLERANCE allows the user some control over the

μij 1 2 2, 3

β0+β1x1+β2x2+β3x1x2 3 1, 1, 2 0, 1, 0, 1

μ+αi+βx1i+βix1i 3 1, 1, 2 2, 0, 0, 2

n_effects n_var_effects Indices_effects

1 − R j 1, 2, ... j−1
2

R j 1, 2, ... j−1
89

 Regression Usage Notes
check for linear dependence. If a model is full rank, input tolerance = 0.0. However, tolerance should be
input as approximately 100 times the machine epsilon. The machine epsilon is imsls_f_machine(4) in single
precision and imsls_d_machine(4) in double precision. (See functions imsls_f_machine and
imsls_d_machine in Chapter 15,Utilities.)

Functions performing least squares are based on QR decomposition of X or on a Cholesky factorization RTR of

XTX. Maindonald (1984, Chapters 1−5) discusses these methods extensively. The R matrix used by the regression
function is a p × p upper-triangular matrix, i.e., all elements below the diagonal are 0. The signs of the diagonal
elements of R are used as indicators of linearly dependent regressors and as indicators of parameter restrictions
imposed by fitting a restricted model. The rows of R can be partitioned into three classes by the sign of the corre-
sponding diagonal element:

1. A negative diagonal element means the row corresponds to a linearly independent restriction
imposed on the regression parameters by AB = Z in a restricted model.

2. A zero diagonal element means a linear dependence of the regressors was declared. The regression

coefficients in the corresponding row of are set to 0. This represents an arbitrary restriction that is
imposed to obtain a solution for the regression coefficients. The elements of the corresponding row
of R also are set to 0.

Nonlinear Regression Model
The nonlinear regression model is

where the observed values of the yi’s constitute the responses or values of the dependent variable, the xi’s are

the known vectors of values of the independent (explanatory) variables, f is a known function of an unknown
regression parameter vector θ, and the ɛi’s are independently distributed normal errors each with mean 0 and

variance σ2.

Function imsls_f_nonlinear_regression performs the least-squares fit to the data for this model.

Weighted Least Squares
Functions throughout the chapter generally allow weights to be assigned to the observations. The vector
weights is used throughout to specify the weighting for each row of X.

B
^

yi = f xi; θ + εi i = 1,2, … ,n
90

 Regression Usage Notes
Computations that relate to statistical inference—e.g., t tests, F tests, and confidence intervals—are based on the

multiple regression model except that the variance of ɛiis assumed to equal σ2 times the reciprocal of the corre-

sponding weight.

If a single row of the data matrix corresponds to ni observations, the vector frequencies can be used to spec-

ify the frequency for each row of X. Degrees of freedom for error are affected by frequencies but are unaffected
by weights.

Summary Statistics
Function imsls_f_regression_summary can be used to compute and print statistics related to a regression
for each of the q dependent variables fitted by imsls_f_regression. The summary statistics include the
model analysis of variance table, sequential sums of squares and F-statistics, coefficient estimates, estimated
standard errors, t-statistics, variance inflation factors, and estimated variance-covariance matrix of the estimated
regression coefficients. Function imsls_f_poly_regression includes most of the same functionality for poly-
nomial regressions.

The summary statistics are computed under the model y = Xβ + ɛ, where y is the n × 1 vector of responses, X is
the n × p matrix of regressors with rank (X) = r, β is the p × 1 vector of regression coefficients, and ɛ is the n × 1

vector of errors whose elements are independently normally distributed with mean 0 and variance σ2∕wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), most of the computed

summary statistics are output in the following variables:

anova_table
One-dimensional array usually of length 15. In imsls_f_regression_stepwise, anova_table
is of length 13 because the last two elements of the array cannot be computed from the input. The
array contains statistics related to the analysis of variance. The sources of variation examined are the
regression, error, and total. The first 10 elements of anova_table and the notation frequently
used for these is described in the following table (here, AOV replaces anova_table):

Model Analysis of Variance Table

Source of
Variation

Degrees of
Freedom

Sum of
Squares Mean Square F p-value

Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9]

Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]

Total DFT = AOV[2] SST = AOV[5]
91

 Regression Usage Notes
If the model has an intercept (default), the total sum of squares is the sum of squares of the devia-
tions of yi from its (weighted) mean —the so-called corrected total sum of squares, denoted by the

following:

If the model does not have an intercept (IMSLS_NO_INTERCEPT), the total sum of squares is the
sum of squares of yi—the so-called uncorrected total sum of squares, denoted by the following:

The error sum of squares is given as follows:

The error degrees of freedom is defined by DFE = n – r.

The estimate of σ2 is given by s2 = SSE∕DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0: β1 = β2 = ... = βk = 0, versus the alternative that

at least one coefficient is nonzero is given by F = MSR∕s2. The p-value associated with the test is the
probability of an F larger than that computed under the assumption of the model and the null
hypothesis. A small p-value (less than 0.05) is customarily used to indicate there is sufficient evidence
from the data to reject the null hypothesis. Note that the p-value is returned as 0.0 when the value is
so small that all significant digits have been lost.

The remaining five elements in anova_table frequently are displayed together with the actual

analysis of variance table. The quantities R-squared (R2 = anova_table[10]) and adjusted R-
squared

are expressed as a percentage and are defined as follows:

R2 = 100(SSR∕SST) = 100(1 – SSE∕SST)

y─

SST =∑
i=1

n

wi yi − y
─ 2

SST =∑
i=1

n

wiyi
2

SSE =∑
i=1

n

wi yi − ŷi
2

Ra
2 = anova_table 11
92

 Regression Usage Notes
The square root of s2(s = anova_table[12]) is frequently referred to as the estimated standard
deviation of the model error.

The overall mean of the responses is output in anova_table[13].

The coefficient of variation (CV = anova_table[14]) is expressed as a percentage and defined by
CV = 100s/ .

coef_t_tests
Two-dimensional matrix containing the regression coefficient vector β as one column and associated
statistics (estimated standard error, t statistic and p-value) in the remaining columns.

coef_covariances
Estimated variance-covariance matrix of the estimated regression coefficients.

Tests for Lack-of-Fit
Tests for lack-of-fit are computed for the polynomial regression by the function imsls_f_poly_regression.
The output array ssq_lof contains the lack-of-fit F tests for each degree polynomial 1, 2, ..., k, that is fit to the
data. These tests are used to indicate the degree of the polynomial required to fit the data well.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functions:
imsls_f_regression_prediction for linear and nonlinear regressions and imsls_f_poly_prediction
for polynomial regressions.

Statistics computed include predicted values, confidence intervals, and diagnostics for detecting outliers and
cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ɛ, where y is the n × 1 vector of responses, X is the n × p
matrix of regressors with rank (X) = r, β is the p × 1 vector of regression coefficients, and ɛ is the n × 1 vector of

errors whose elements are independently normally distributed with mean 0 and variance σ2∕wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), the following five diag-

nostics are computed:

1. Leverage

2. Standardized residual

3. Jackknife residual

Ra
2 = 100max 0,1 − s2

SST /DFT

y─

y─
93

 Regression Usage Notes
4. Cook’s distance

5. DFFITS

The definition of these terms is given in the discussion that follows:

Let xi be a column vector containing the elements of the i-th row of X. A case can be unusual either because of xi

or because of the response yi. The leverage hi is a measure of uniqueness of the xi. The leverage is defined by

where W = diag(w1, w2, …, wn) and (XTWX)- denotes a generalized inverse of XTWX. The average value of the hi’s is

r∕n. Regression functions declare xi unusual if hi > 2r∕n. Hoaglin and Welsch (1978) call a data point highly influ-

ential (i.e., a leverage point) when this occurs.

Let ei denote the residual

for the i-th case. The estimated variance of ei is (1 – hi)s
2∕wi, where s2 is the residual mean square from the fitted

regression. The i-th standardized residual (also called the internally studentized residual) is by definition

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi and its predicted value, based on

the data set in which the i-th case is deleted. This difference equals ei∕(1 − hi). The jackknife residual is obtained

by standardizing this difference. The residual mean square for the regression in which the i-th case is deleted is
as follows:

The jackknife residual is defined as

and ti follows a t distribution with n – r − 1 degrees of freedom.

hi = xi
T XTWX

−
xi wi

yi − ŷi

ri = ei
wi

s2 1 − hi

1/2

si
2 =

n − r s2 − wiei
2 / 1 − hi

n − r − 1

ti = ei
wi

si
2 1 − hi
94

 Regression Usage Notes
Cook’s distance for the i-th case is a measure of how much an individual case affects the estimated regression
coefficients. It is given as follows:

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n − r) distribution, it should be consid-

ered large. (This value is about 1. This statistic does not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, DFFITS is computed by the formula
below.

Hoaglin and Welsch (1978) suggest that DFFITS greater than

is large.

Transformations
Transformations of the independent variables are sometimes useful in order to satisfy the regression model. The
inclusion of squares and crossproducts of the variables

is often needed. Logarithms of the independent variables are used also. (See Draper and Smith 1981,
pp. 218−222; Box and Tidwell 1962; Atkinson 1985, pp. 177−180; Cook and Weisberg 1982, pp. 78−86.)

When the responses are described by a nonlinear function of the parameters, a transformation of the model
equation often can be selected so that the transformed model is linear in the regression parameters. For exam-
ple, by taking natural logarithms on both sides of the equation, the exponential model

can be transformed to a model that satisfies the linear regression model provided the ɛi’s have a log-normal dis-

tribution (Draper and Smith, pp. 222−225).

Di =
wihiei

2

rs2 1 − hi
2

DFFITSi = ei
wi

si
2 1 − hi

2

2 r / n

x1, x2, x1
2, x2

2, x1x2

y = e
β0+β1x1ɛ
95

 Regression Usage Notes
When the responses are nonnormal and their distribution is known, a transformation of the responses can often
be selected so that the transformed responses closely satisfy the regression model, assumptions. The square-
root transformation for counts with a Poisson distribution and the arc-sine transformation for binomial propor-
tions are common examples (Snedecor and Cochran 1967, pp. 325−330; Draper and Smith, pp. 237−239).

Alternatives to Least Squares
The method of least squares has desirable characteristics when the errors are normally distributed, e.g., a least-
squares solution produces maximum likelihood estimates of the regression parameters. However, when errors
are not normally distributed, least squares may yield poor estimators. Function imsls_f_Lnorm_regression
offers three alternatives to least squares methodology, Least Absolute Value, LpNorm, and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood estimate when the errors follow a
Laplace distribution. Option IMSLS_METHOD_LAV is often used when the errors have a heavy tailed distribution
or when a fit is needed that is resistant to outliers.

A more general approach, minimizing the Lp norm (p ≤ 1), is given by option IMSLS_METHOD_LLP. Although the
routine requires about 30 times the CPU time for the case p = 1 than would the use of IMSLS_METHOD_LAV,
the generality of IMSLS_METHOD_LLP allows the user to try several choices for p ≥1 by simply changing the
input value of p in the calling program. The CPU time decreases as p gets larger. Generally, choices of p between
1 and 2 are of interest. However, the Lp norm solution for values of p larger than 2 can also be computed.

The minimax (LMV, L∞, Chebyshev) criterion is used by IMSLS_METHOD_LMV. Its estimates are very sensitive to
outliers, however, the minimax estimators are quite efficient if the errors are uniformly distributed.

Function imsls_f_pls_regression provides an alternative method which is useful when there are many
inter-related regression variables and relatively few observations. imsls_f_pls_regression finds linear
combinations of the predictor variables that have highest covariance with Y.

Missing Values
NaN (Not a Number) is the missing value code used by the regression functions. Use function
imsls_f_machine(6), Chapter 15,Utilities (or functionimsls_d_machine(6) with double-precision regression
functions) to retrieve NaN. Any element of the data matrix that is missing must be set to imsls_f_machine(6)
(or imsls_d_machine(6) for double precision). In fitting regression models, any observation containing NaN
for the independent, dependent, weight, or frequency variables is omitted from the computation of the regres-
sion parameters.
96

 Regression regressors_for_glm
regressors_for_glm
Generates regressors for a general linear model.

Synopsis
#include <imsls.h>
int imsls_f_regressors_for_glm (int n_observations, float x[], int n_class, int

n_continuous, ..., 0)

The type double function is imsls_d_regressors_for_glm.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
An n_observations × (n_class + n_continuous) array containing the data. The columns
must be ordered such that the first n_class columns contain the class variables and the next
n_continuous columns contain the continuous variables. (Exception: see optional argument
IMSLS_X_CLASS_COLUMNS.)

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

Return Value
An integer (n_regressors) indicating the number of regressors generated.

Synopsis with Optional Arguments
#include <imsls.h>
97

 Regression regressors_for_glm
int imsls_f_regressors_for_glm (int n_observations, float x[], int n_class,
int n_continuous,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_CLASS_COLUMNS, int x_class_columns[],
IMSLS_MODEL_ORDER, int model_order, or
IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[],

int indices_effects[],
IMSLS_DUMMY, Imsls_dummy_method dummy_method,
IMSLS_REGRESSORS, float **regressors,
IMSLS_REGRESSORS_USER, float regressors[],
IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_class + n_continuous

IMSLS_X_CLASS_COLUMNS, int x_class_columns[] (Input)
Index array of length n_class containing the column numbers of x that are the classification vari-
ables. The remaining variables are assumed to be continuous.
Default: x_class_columns = 0, 1, ..., n_class − 1

IMSLS_MODEL_ORDER, int model_order (Input)
Order of the model. Model order can be specified as 1 or 2. Use optional argument
IMSLS_INDICES_EFFECTS to specify more complicated models.
Default: model_order = 1

or

IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[], int indices_effects[]
(Input)
Variable n_effects is the number of effects (sources of variation) in the model. Variable
n_var_effects is an array of length n_effects containing the number of variables associated
with each effect in the model. Argument indices_effects is an index array of length
n_var_effects[0] + n_var_effects[1]+…+n_var_effects[n_effects − 1]. The
first n_var_effects[0] elements give the column numbers of x for each variable in the first
effect. The next n_var_effects[1] elements give the column numbers for each variable in the
second effect. The last n_var_effects [n_effects − 1] elements give the column numbers for
each variable in the last effect.
98

 Regression regressors_for_glm
IMSLS_DUMMY, Imsls_dummy_method dummy_method (Input)
Dummy variable option. Indicator variables are defined for each class variable as described in the
Description section.

Dummy variables are then generated from the n indicator variables in one of the following three
ways:

IMSLS_REGRESSORS, float **regressors (Output)
Address of a pointer to the internally allocated array of size n_observations × n_regressors
containing the regressor variables generated from x.

IMSLS_REGRESSORS_USER, float regressors[] (Output)
Storage for array regressors is provided by the user. See IMSLS_REGRESSORS.

IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim (Input)
Column dimension of regressors.
Default: regressors_col_dim = n_regressors

Description
Function imsls_f_regressors_for_glm generates regressors for a general linear model from a data
matrix. The data matrix can contain classification variables as well as continuous variables. Regressors for effects
composed solely of continuous variables are generated as powers and crossproducts. Consider a data matrix
containing continuous variables as Columns 3 and 4. The effect indices (3, 3) generate a regressor whose i-th
value is the square of the i-th value in Column 3. The effect indices (3, 4) generates a regressor whose i-th value
is the product of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification variable are generated using indi-
cator variables. Let the classification variable A take on values a1, a2, ..., an. From this classification variable,

imsls_f_regressors_for_glm creates n indicator variables. For k = 1, 2, ..., n, we have

dummy_method Method

IMSLS_ALL The n indicator variables are the dummy vari-
ables (default).

IMSLS_LEAVE_OUT_LAST The dummies are the first n − 1 indicator
variables.

IMSLS_SUM_TO_ZERO The n − 1 dummies are defined in terms of
the indicator variables so that for balanced
data, the usual summation restrictions are
imposed on the regression coefficients.
99

 Regression regressors_for_glm
For each classification variable, another set of variables is created from the indicator variables. These new vari-
ables are called dummy variables. Dummy variables are generated from the indicator variables in one of three
manners:

1. The dummies are the n indicator variables.

2. The dummies are the first n – 1 indicator variables.

3. The n – 1 dummies are defined in terms of the indicator variables so that for balanced data, the usual
summation restrictions are imposed on the regression coefficients.

In particular, for dummy_method = IMSLS_ALL, the dummy variables are Ak = Ik(k = 1, 2, ..., n). For

dummy_method = IMSLS_LEAVE_OUT_LAST, the dummy variables are Ak = Ik(k = 1, 2, ..., n − 1). For

dummy_method = IMSLS_SUM_TO_ZERO, the dummy variables are Ak = Ik − In(k = 1, 2, ..., n − 1). The regres-

sors generated for an effect composed of a single-classification variable are the associated dummy variables.

Let mj be the number of dummies generated for the j-th classification variable. Suppose there are two classifica-

tion variables A and B with dummies

and

The regressors generated for an effect composed of two classification variables A and B are

More generally, the regressors generated for an effect composed of several classification variables and several
continuous variables are given by the Kronecker products of variables, where the order of the variables is speci-
fied in indices_effects. Consider a data matrix containing classification variables in Columns 0 and 1 and
continuous variables in Columns 2 and 3. Label these four columns A, B, X1, and X2. The regressors generated by

the effect indices (0, 1, 2, 2, 3) are A ⊗ B ⊗ X1X1X2.

Ik =
1 A = ak
0 otherwise

A1,A2, … Am1

B1,B2, … Bm2

A⊗ B = A1,A2, … Am1 ⊗ B1,B2, … Bm2
= (A1B1,A1B2, … A1Bm2,A2B1,A2B2, …

A2Bm2, … Am1B1,Am1B2, … Am1Bm2)
100

 Regression regressors_for_glm
Remarks
Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is a continuous variable. The

model containing the effects A, B, AB, X1, AX1, BX1, and ABX1 is specified as follows (use optional keyword

IMSLS_INDICES_EFFECTS):

n_class = 2

n_continuous = 1

n_effects = 7

n_var_effects = (1, 1, 2, 1, 2, 2, 3)

indices_effects = (0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2)

For this model, suppose that variable A has two levels, A1 and A2, and that variable B has three levels, B1, B2, and

B3. For each dummy_method option, the regressors in their order of appearance in regressors are given

below.

Within a group of regressors corresponding to an interaction effect, the indicator variables composing the regres-
sors vary most rapidly for the last classification variable, next most rapidly for the next to last classification
variable, etc.

By default, imsls_f_regressors_for_glm internally generates values for n_effects,
n_var_effects, and indices_effects, which correspond to a first order model with
NEF = n_continuous + n_class. The variables then are used to create the regressor variables. The effects
are ordered such that the first effect corresponds to the first column of x, the second effect corresponds to the
second column of x, etc. A second order model corresponding to the columns (variables) of x is generated if
IMSLS_MODEL_ORDER with model_order = 2 is specified.

dummy_method regressors
IMSLS_ALL A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2,

A2B3, X1, A1X1, A2X1, B1X1, B2X1, B3X1, A1B1X1,
A1B2X1, A1B3X1, A2B1X1, A2B2X1, A2B3X1

IMSLS_LEAVE_OUT_LAST A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1,
A1B1X1, A1B2X1

IMSLS_SUM_TO_ZERO A1 − A2, B1 − B3, B2 − B3, (A1 − A2) (B1 − B2),
(A1 − A2) (B2 − B3), X1, (A1 − A2) X1,
(B1− B3)X1, (B2− B3)X1, (A1− A2) (B1− B2)X1,
(A1 − A2) (B2− B3)X1
101

 Regression regressors_for_glm
There are

effects, where NVAR = n_continuous + n_class. The first NVAR effects correspond to the columns of x,
such that the first effect corresponds to the first column of x, the second effect corresponds to the second col-
umn of x, ..., the NVAR-th effect corresponds to the NVAR-th column of x (i.e. x[NVAR − 1]). The next
n_continuous effects correspond to squares of the continuous variables. The last

effects correspond to the two-variable interactions.

 Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is a continuous
variable. The effects generated and order of appearance is

 Let the data matrix x = (A, X1, X2), where A is a classification variable and X1 and X2 are continuous
variables. The effects generated and order of appearance is

 Let the data matrix x = (X1, A, X2) (see IMSLS_CLASS_COLUMNS), where A is a classification
variable and X1 and X2 are continuous variables. The effects generated and order of appearance is

Higher-order and more complicated models can be specified using IMSLS_INDICES_EFFECTS.

Examples

Example 1

In the following example, there are two classification variables, A and B, with two and three values, respectively.
Regressors for a one-way model (the default model order) are generated using the IMSLS_ALL dummy method
(the default dummy method). The five regressors generated are A1, A2, B1, B2, and B3.

#include <imsls.h>
#include <stdio.h>
int main() {

NEF = n_class + 2 * n_continuous + NVAR
2

NVAR
2

A, B, X 1, X 1
2, AB, AX 1, BX 1

A, X 1, X 2, X 1
2, X 2

2,AX 1,AX 2, X 1X 2

X 1, A, X 2, X 1
2, X 2

2, X 1A, X 1X 2, AX 2
102

 Regression regressors_for_glm
 int n_observations = 6;
 int n_class = 2;
 int n_cont = 0;
 int n_regressors;
 float x[12] = {
 10.0, 5.0,
 20.0, 15.0,
 20.0, 10.0,
 10.0, 10.0,
 10.0, 15.0,
 20.0, 5.0
 };
 n_regressors = imsls_f_regressors_for_glm (n_observations, x,
 n_class, n_cont,
 0);
 printf("Number of regressors = %3d\n", n_regressors);
}

Output

Number of regressors = 5

Example 2

In this example, a two-way analysis of covariance model containing all the interaction terms is fit. First,
imsls_f_regressors_for_glm is called to produce a matrix of regressors, regressors, from the data
x. Then, regressors is used as the input matrix into imsls_f_regression to produce the final fit. The
regressors, generated using dummy_method = IMSLS_LEAVE_OUT_LAST, are the model whose mean func-
tion is

μ + αi + βj + Υij + δxij + ζixij + ηjxij + θijxij i = 1, 2; j = 1, 2, 3

where

α
2

= β
3

= Υ
21

= Υ
22

= Υ
23

= ζ
103

 Regression regressors_for_glm
2

= η
3

= θ
21

= θ
22

= θ
23

= 0.

#include <imsls.h>
#include <stdio.h>
int main() {
#define N_OBSERVATIONS 18
 int n_class = 2;
 int n_cont = 1;
 float anova[15], *regressors;
 int n_regressors;
 float x[54] = {
 1.0, 1.0, 1.11,
 1.0, 1.0, 2.22,
 1.0, 1.0, 3.33,
 1.0, 2.0, 1.11,
 1.0, 2.0, 2.22,
 1.0, 2.0, 3.33,
 1.0, 3.0, 1.11,
 1.0, 3.0, 2.22,
 1.0, 3.0, 3.33,
 2.0, 1.0, 1.11,
 2.0, 1.0, 2.22,
 2.0, 1.0, 3.33,
 2.0, 2.0, 1.11,
 2.0, 2.0, 2.22,
 2.0, 2.0, 3.33,
 2.0, 3.0, 1.11,
 2.0, 3.0, 2.22,
 2.0, 3.0, 3.33
 };
 float y[N_OBSERVATIONS] = {
 1.0, 2.0, 2.0, 4.0, 4.0, 6.0,
 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
 2.0, 3.0, 4.0, 5.0, 6.0, 7.0
 };
 int class_col[2] = {0,1};
 int n_effects = 7;
 int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3};
 int indices_effects[12] = {0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2};
104

 Regression regressors_for_glm
 float *coef;
 char *reg_labels[] = {
 " ", "Alpha1", "Beta1", "Beta2", "Gamma11", "Gamma12",
 "Delta", "Zeta1", "Eta1", "Eta2", "Theta11", "Theta12"
 };
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"
 };
 n_regressors = imsls_f_regressors_for_glm (N_OBSERVATIONS, x,
 n_class, n_cont,
 IMSLS_X_CLASS_COLUMNS, class_col,
 IMSLS_DUMMY,
 IMSLS_LEAVE_OUT_LAST,
 IMSLS_INDICES_EFFECTS, n_effects, n_var_effects,
 indices_effects,
 IMSLS_REGRESSORS, ®ressors,
 0);
 printf("Number of regressors = %3d", n_regressors);
 imsls_f_write_matrix ("regressors", N_OBSERVATIONS, n_regressors,
 regressors,
 IMSLS_COL_LABELS, reg_labels,
 0);
 coef = imsls_f_regression (N_OBSERVATIONS, n_regressors, regressors,
 y,
 IMSLS_ANOVA_TABLE_USER, anova,
 0);
 imsls_f_write_matrix ("* * * Analysis of Variance * * *\n", 15, 1,
 anova,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Output

Number of regressors = 11
 Regressors
 Alpha1 Beta1 Beta2 Gamma11 Gamma12 Delta
1 1.00 1.00 0.00 1.00 0.00 1.11
2 1.00 1.00 0.00 1.00 0.00 2.22
3 1.00 1.00 0.00 1.00 0.00 3.33
105

 Regression regressors_for_glm
4 1.00 0.00 1.00 0.00 1.00 1.11
5 1.00 0.00 1.00 0.00 1.00 2.22
6 1.00 0.00 1.00 0.00 1.00 3.33
7 1.00 0.00 0.00 0.00 0.00 1.11
8 1.00 0.00 0.00 0.00 0.00 2.22
9 1.00 0.00 0.00 0.00 0.00 3.33
10 0.00 1.00 0.00 0.00 0.00 1.11
11 0.00 1.00 0.00 0.00 0.00 2.22
12 0.00 1.00 0.00 0.00 0.00 3.33
13 0.00 0.00 1.00 0.00 0.00 1.11
14 0.00 0.00 1.00 0.00 0.00 2.22
15 0.00 0.00 1.00 0.00 0.00 3.33
16 0.00 0.00 0.00 0.00 0.00 1.11
17 0.00 0.00 0.00 0.00 0.00 2.22
18 0.00 0.00 0.00 0.00 0.00 3.33
 Zeta1 Eta1 Eta2 Theta11 Theta12
1 1.11 1.11 0.00 1.11 0.00
2 2.22 2.22 0.00 2.22 0.00
3 3.33 3.33 0.00 3.33 0.00
4 1.11 0.00 1.11 0.00 1.11
5 2.22 0.00 2.22 0.00 2.22
6 3.33 0.00 3.33 0.00 3.33
7 1.11 0.00 0.00 0.00 0.00
8 2.22 0.00 0.00 0.00 0.00
9 3.33 0.00 0.00 0.00 0.00
10 0.00 1.11 0.00 0.00 0.00
11 0.00 2.22 0.00 0.00 0.00
12 0.00 3.33 0.00 0.00 0.00
13 0.00 0.00 1.11 0.00 0.00
14 0.00 0.00 2.22 0.00 0.00
15 0.00 0.00 3.33 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00

 * * * Analysis of Variance * * *
degrees of freedom for the model 11.0000
degrees of freedom for error 6.0000
total (corrected) degrees of freedom 17.0000
sum of squares for the model 43.9028
sum of squares for error 0.8333
total (corrected) sum of squares 44.7361
model mean square 3.9912
error mean square 0.1389
F-statistic 28.7364
p-value 0.0003
R-squared (in percent) 98.1372
adjusted R-squared (in percent) 94.7221
est. standard deviation of the model error 0.3727
overall mean of y 3.9722
coefficient of variation (in percent) 9.3821
106

 Regression regression
regression
Fits a multivariate linear regression model using least squares.

Synopsis
#include <imsls.h>
float *imsls_f_regression (int n_rows, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_regression.

Required Arguments
int n_rows (Input)

Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows × n_independent containing the independent (explanatory) variables(s).
The i-th column of x contains the i-th independent variable.

float y[] (Input)
Array of size n_rows × n_dependent containing the dependent (response) variables(s). The i-th
column of y contains the i-th dependent variable. See optional argument IMSLS_N_DEPENDENT
to set the value of n_dependent.

Return Value
If the optional argument IMSLS_NO_INTERCEPT is not used, regression returns a pointer to an array of
length n_dependent × (n_independent + 1) containing a least-squares solution for the regression coeffi-
cients. The estimated intercept is the initial component of each row, where the i-th row contains the regression
coefficients for the i-th dependent variable.
107

 Regression regression
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regresssion (int n_rows, int n_independent, float x[], float y[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
IMSLS_N_DEPENDENT, int n_dependent,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_TOLERANCE, float tolerance,
IMSLS_RANK, int *rank,
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_X_MEAN, float **x_mean,
IMSLS_X_MEAN_USER, float x_mean[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_SCPE, float **scpe[],
IMSLS_SCPE_USER, float scpe_user[],
IMSLS_WEIGHTS, float weights[],
IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_independent
108

 Regression regression
IMSLS_Y_COL_DIM, int y_col_dim (Input)
Column dimension of y.
Default: y_col_dim = n_dependent

IMSLS_N_DEPENDENT, int n_dependent (Input)
Number of dependent variables. Input matrix y must be declared of size n_rows by
n_dependent, where column i of y contains the i-th dependent variable.
Default: n_dependent = 1

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data (independent, dependent,
frequencies, and weights) is all stored in the data matrix x. Argument y, and keywords
IMSLS_FREQUENCIES and IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers of x in which particular
types of data are stored. Columns are numbered 0 … x_col_dim − 1.

Parameter indind contains the indices of the independent variables.

Parameter inddep contains the indices of the dependent variables.

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights,
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are
not allowed.

Note that required input argument y is not referenced, and can be declared a vector of length 1.

IMSLS_IDO, int ido (Input)
Processing option.
The argument ido must be one of 0, 1, 2, or 3. If ido = 0 (the default), all of the observations are
input during one invocation. If ido = 1, 2, or 3, blocks of rows of the data can be processed sequen-
tially in separate invocations of imsls_f_regression; with this option, it is not a requirement
that all observations be memory resident, thus enabling one to handle large data sets.

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be
made. Initialization and updating for the n_rows observations of x
will be performed.
109

 Regression regression
Default: ido = 0

IMSLS_ROWS_ADD, or

IMSLS_ROWS_DELETE
By default (or if IMSLS_ROWS_ADD is specified), the observations in x are added to the discriminant
statistics. If IMSLS_ROWS_DELETE is specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if there is only one
invocation).

IMSLS_INTERCEPT, or

IMSLS_NO_INTERCEPT
IMSLS_INTERCEPT is the default where the fitted value for observation i is

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the intercept term

is omitted from the model and the return value from regression is a pointer to an array of length
n_dependent × n_independent.

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. For regression,
tolerance = 100 × imsls_f_machine(4) is the default choice. For imsls_d_regression,
tolerance = 100 × imsls_d_machine(4) is the default. (See imsls_f_machine Chapter
15,Utilities.)

IMSLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *rank.

2 This is an intermediate invocation; updating for the n_rows obser-
vations of x will be performed.

3 This is the final invocation of this function. Updating for the data in
x and wrap-up computations are performed. Workspace is
released No further invocations of imsls_f_regression with ido
greater than 1 should be made without first invoking
imsls_f_regression with ido = 1.

ido Action

β^ 0 + β
^
1x1 + ... + β

^
kxk

β^ 0
110

 Regression regression
IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
Address of a pointer to the n_dependent × m × m internally allocated array containing the esti-
mated variances and covariances of the estimated regression coefficients. Here, m is the number of
regression coefficients in the model. If IMSLS_NO_INTERCEPT is specified,
n = n_independent; otherwise, m = n_independent + 1.

The first m × m elements contain the matrix for the first dependent variable, the next m × m ele-
ments contain the matrix for the next dependent variable, ... and so on.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for arrays coef_covariances is provided by the user. See
IMSLS_COEF_COVARIANCES.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of array coef_covariances.
Default: cov_col_dim = m, where m is the number of regression coefficients in the model

IMSLS_X_MEAN, float **x_mean (Output)
Address of a pointer to the internally allocated array containing the estimated means of the indepen-
dent variables.

IMSLS_X_MEAN_USER, float x_mean[] (Output)
Storage for array x_mean is provided by the user.
See IMSLS_X_MEAN.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the internally allocated array of size n_rows by n_dependent containing
the residuals. Residuals may not be requested if ido > 0.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user.
See IMSLS_RESIDUAL.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array of size
15 × n_dependent containing the analysis of variance table for each dependent variable. The i-th
column corresponds to the analysis for the i-th dependent variable.

The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom
111

 Regression regression
The anova statistics may not be requested if ido > 0. Note that the p-value is returned as 0.0 when
the value is so small that all significant digits have been lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_SCPE, float **scpe (Output)
The address of a pointer to an internally allocated array of size n_dependent × n_dependent
containing the error (residual) sums of squares and crossproducts. scpe [m][n] contains the sum of
crossproducts for the m-th and n-th dependent variables.

IMSLS_SCPE_USER, float scpe[] (Output)
Storage for array scpe is provided by the user. See IMSLS_SCPE.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each observation.
Default: weights[] = 1

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Element Analysis of Variance Statistics
112

 Regression regression
IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info (Output)
Address of the pointer to an internally allocated structure of type Imsls_f_regression containing infor-
mation about the regression fit. This structure is required as input for functions
imsls_f_regression_prediction and imsls_f_regression_summary. To release
this space, use imsls_free.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array coefficients
provided by the user. If IMSLS_NO_INTERCEPT is specified, the array requires
n_dependent × nunits of memory, where n = n_independent; otherwise,
n = n_independent + 1.

Description
Function imsls_f_regression fits a multivariate multiple linear regression model with or without an inter-
cept. The multiple linear regression model is

yi = β
0

+ β
1

xi

1

+ β
2

xi

2

+ … + βkxik + ɛi i = 1, 2, …, n

where the observed values of the yi’s are the responses or values of the dependent variable; the xi1’s, xi2’s, …, xik’s

are the settings of the k (input in n_independent) independent variables; β0, β1, …, βk are the regression

coefficients whose estimated values are to be output by imsls_f_regression; and the ɛi’s are inde-

pendently distributed normal errors each with mean 0 and variance s2. Here, n is the sum of the frequencies for
all nonmissing observations, i.e.,
113

 Regression regression
where fi is equal to frequencies[i] if optional argument IMSLS_FREQUENCIES is specified and equal to 1.0

otherwise. Note that by default, β0 is included in the model.

More generally, imsls_f_regression fits a multivariate regression model. See the chapter introduction for a
description of the multivariate model.

Function imsls_f_regression computes estimates of the regression coefficients by minimizing the sum of
squares of the deviations of the observed response yi from the fitted response

for the n observations. This minimum sum of squares (the error sum of squares) is output as one of the analysis
of variance statistics if IMSLS_ANOVA_TABLE (or IMSLS_ANOVA_TABLE_USER) is specified and is com-
puted as follows:

Another analysis of variance statistic is the total sum of squares. By default, the total sum of squares is the sum
of squares of the deviations of yi from its mean

the so-called corrected total sum of squares. This statistic is computed as follows:

When IMSLS_NO_INTERCEPT is specified, the total sum of squares is the sum of squares of yi, the so-called

uncorrected total sum of squares. This is computed as follows:

See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analysis,
and many examples.

n = ∑
i=0

n_rows−1
f i

ŷi

SSE =∑
i=1

n

wi yi − ŷi
2

y─

SST =∑
i=1

n

wi yi − y
─ 2

SST =∑
i=1

n

wiyi
2

114

 Regression regression
In order to compute a least-squares solution, imsls_f_regression performs an orthogonal reduction of
the matrix of regressors to upper-triangular form. The reduction is based on one pass through the rows of the
augmented matrix (x, y) using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156–162; Gentle-
man 1974.) This method has the advantage that the loss of accuracy resulting from forming the crossproduct
matrix used in the normal equations is avoided.

By default, the current means of the dependent and independent variables are used to internally center the data
for improved accuracy. Let xi be a column vector containing the j-th row of data for the independent variables. Let

xi represent the mean vector for the independent variables given the data for rows 1, 2, …, i.

The current mean vector is defined as follows:

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data has

subtracted from it and is multiplied by

where

Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the fol-
lowing formula for the sum of squares and crossproducts matrix:

An orthogonal reduction on the centered matrix is computed. When the final computations are performed, the
intercept estimate and the first row and column of the estimated covariance matrix of the estimated coefficients
are updated (if IMSLS_COEF_COVARIANCES or IMSLS_COEF_COVARIANCES_USER is specified) to reflect
the statistics for the original (uncentered) data. This means that the estimate of the intercept is for the uncen-
tered data.

x─i =
∑
j=1

i
w j f jx j

∑
j=1

i
w j f j

x─i

wi f i
ai
ai−1

ai =∑
j=1

i

w j f j

∑
i=1

n

wi f i xi − x
─
n xi − x

─
n
T =∑

i=2

n ai
ai−1wi f i xi − x

─
i xi − x

─
i
T

115

 Regression regression
As part of the final computations, imsls_f_regression checks for linearly dependent regressors. In particu-
lar, linear dependence of the regressors is declared if any of the following three conditions are satisfied:

 A regressor equals 0.

 Two or more regressors are constant.

is less than or equal to tolerance. Here,

is the multiple correlation coefficient of the i-th independent variable with the first i – 1 independent
variables. If no intercept is in the model, the multiple correlation coefficient is computed without
adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be linearly dependent upon the pre-
vious i − 1 regressors, the i-th coefficient estimate and all elements in the i-th row and i-th column of the
estimated variance-covariance matrix of the estimated coefficients (if IMSLS_COEF_COVARIANCES or
IMSLS_COEF_COVARIANCES_USER is specified) are set to 0. Finally, if a linear dependence is declared, an
informational (error) message, code IMSLS_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1

A regression model

yi = β
0

+ β
1

xi

1

+ β
2

xi

2

+ β

1 − Ri · 1, 2, ... i−1
2

Ri · 1, 2, ... i−1
116

 Regression regression
3

xi

3

+ ɛi i = 1, 2, …, 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

#include <imsls.h>
#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9
int main()
{
 float *coefficients;
 float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0};
 float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y, 0);
 imsls_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
 coefficients,
 IMSLS_COL_NUMBER_ZERO,
 0);
}

Output

 Least-Squares Coefficients
 0 1 2 3
 7.733 -0.200 2.333 -1.667

Example 2

A weighted least-squares fit is computed using the model

yi = β
0

+ β
1

xi
117

 Regression regression
1

+ β
2

xi

2

+ ɛi i = 1, 2, …, 4

and weights 1∕i2 discussed by Maindonald (1984, pp. 67−68).

In the example, IMSLS_WEIGHTS is specified. The minimum sum of squares for error in terms of the original
untransformed regressors and responses for this weighted regression is

where wi = 1/i2, represented in the C code as array w.

#include <imsls.h>
#define N_INDEPENDENT 2
#define N_COEFFICIENTS N_INDEPENDENT + 1
#define N_OBSERVATIONS 4
int main()
{
 int i;
 float *coefficients, w[N_OBSERVATIONS], anova_table[15], power;
 float x[][N_INDEPENDENT] = {
 -2.0, 0.0,
 -1.0, 2.0,
 2.0, 5.0,
 7.0, 3.0
 };
 float y[] = {-3.0, 1.0, 2.0, 6.0};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"
 };

SSE =∑
i=1

4

wi yi − ŷi
2

118

 Regression regression
 /* Calculate weights */
 power = 0.0;
 for (i = 0; i < N_OBSERVATIONS; i++) {
 power += 1.0;
 w[i] = 1.0 / (power * power);
 }
 /*Perform analysis */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *) x, y,
 IMSLS_WEIGHTS, w,
 IMSLS_ANOVA_TABLE_USER, anova_table,
 0);
 /* Print results */
 imsls_f_write_matrix("Least Squares Coefficients", 1,
 N_COEFFICIENTS, coefficients,
 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f",
 0);
}

Output

 Least Squares Coefficients
 1 2 3
 -1.431 0.658 0.748

 * * * Analysis of Variance * * *
degrees of freedom for regression 2.00
degrees of freedom for error 1.00
total (uncorrected) degrees of freedom 3.00
sum of squares for regression 7.68
sum of squares for error 1.01
total (uncorrected) sum of squares 8.69
regression mean square 3.84
error mean square 1.01
F-statistic 3.79
p-value 0.34
R-squared (in percent) 88.34
adjusted R-squared (in percent) 65.03
est. standard deviation of model error 1.01
overall mean of y -1.51
coefficient of variation (in percent) -66.55

Example 3

A multivariate regression is performed for a data set with two dependent variables. Also, usage of the keyword
IMSLS_X_INDICES is demonstrated. Note that the required input variable y is not referenced and is declared
as a pointer to a float.
119

 Regression regression
#include <imsls.h>
#include <stdio.h>
#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_DEPENDENT 2
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9
int main()
{
 float coefficients[N_DEPENDENT*N_COEFFICIENTS];
 float scpe[N_DEPENDENT*N_DEPENDENT];
 float anova_table[15*N_DEPENDENT];
 float x[] = {
 7.0, 5.0, 6.0, 7.0, 1.0,
 2.0,-1.0, 6.0, -5.0, 4.0,
 7.0, 3.0, 5.0, 6.0, 10.0,
 -3.0, 1.0, 4.0, 5.0, 5.0,
 2.0,-1.0, 0.0, 5.0, -2.0,
 2.0, 1.0, 7.0, -2.0, 4.0,
 -3.0,-1.0, 3.0, 0.0, -6.0,
 2.0, 1.0, 1.0, 8.0, 2.0,
 2.0, 1.0, 4.0, 3.0, 0.0
 };
 int ifrq = -1, iwt=-1;
 int indind[N_INDEPENDENT] = {0, 1, 2};
 int inddep[N_DEPENDENT] = {3, 4};
 char *fmt = "%10.4f";
 char *anova_row_labels[] = {
 "d.f. regression",
 "d.f. error",
 "d.f. total (uncorrected)",
 "ssr",
 "sse",
 "sst (uncorrected)",
 "msr",
 "mse", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adj. R-squared (in percent)",
 "est. s.t.d. of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"
 };
 imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *) x, NULL,
 IMSLS_X_COL_DIM, N_INDEPENDENT+N_DEPENDENT,
 IMSLS_N_DEPENDENT, N_DEPENDENT,
 IMSLS_X_INDICES, indind, inddep, ifrq, iwt,
 IMSLS_SCPE_USER, scpe,
 IMSLS_ANOVA_TABLE_USER, anova_table,
 IMSLS_RETURN_USER, coefficients,
 0);
 imsls_f_write_matrix("Least Squares Coefficients", N_DEPENDENT,
 N_COEFFICIENTS, coefficients,
120

 Regression regression
 IMSLS_COL_NUMBER_ZERO, 0);
 imsls_f_write_matrix("SCPE", N_DEPENDENT, N_DEPENDENT, scpe,
 IMSLS_WRITE_FORMAT, "%10.4f", 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
 15, N_DEPENDENT,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f",
 0);
}

Output

 Least Squares Coefficients
 0 1 2 3
1 7.733 -0.200 2.333 -1.667
2 -1.633 0.400 0.167 0.667
 SCPE
 1 2
1 4.0000 20.0000
2 20.0000 110.0000
 * * * Analysis of Variance * * *
 1 2
d.f. regression 3.00 3.00
d.f. error 5.00 5.00
d.f. total (uncorre 8.00 8.00
 cted)
ssr 152.00 56.00
sse 4.00 110.00
sst (uncorrected) 156.00 166.00
msr 50.67 18.67
mse 0.80 22.00
F-statistic 63.33 0.85
p-value 0.00 0.52
R-squared (in 97.44 33.73
 percent)
adj. R-squared 95.90 0.00
 (in percent)
est. s.t.d. of 0.89 4.69
 model error
overall mean of y 3.00 2.00
coefficient of 29.81 234.52
 variation (in
 percent)

Example 4

Continuing with Example 1data, the example below invokes the regression function using values of IDO greater
than 0. Also, usage of the keywords IMSLS_COEF_COVARIANCES and IMSLS_X_MEAN is demonstrated.

#include <imsls.h>
#include <stdio.h>
121

 Regression regression
#define N_INDEPENDENT 3
#define N_OBSERVATIONS_BLOCK_1 3
#define N_OBSERVATIONS_BLOCK_2 3
#define N_OBSERVATIONS_BLOCK_3 3
#define N_COEFFICIENTS 4
int main()
{
 float coefficients[N_COEFFICIENTS], *coef_covariance=NULL;
 float *anova_table=NULL;
 float *residual=NULL, *x_mean=NULL;
 float x1[][N_INDEPENDENT] = {
 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0
 };
 float x2[][N_INDEPENDENT] = {
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0
 };
 float x3[][N_INDEPENDENT] = {
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0
 };
 float y1[] = {7.0,-5.0, 6.0};
 float y2[] = {5.0, 5.0,-2.0};
 float y3[] = {0.0, 8.0, 3.0};
 imsls_f_regression(N_OBSERVATIONS_BLOCK_1, N_INDEPENDENT, &x1[0][0], y1,
 IMSLS_RETURN_USER, coefficients,
 IMSLS_IDO, 1,
 0);
 imsls_f_regression(N_OBSERVATIONS_BLOCK_2, N_INDEPENDENT, &x2[0][0], y2,
 IMSLS_RETURN_USER, coefficients,
 IMSLS_IDO, 2,
 0);
 imsls_f_regression(N_OBSERVATIONS_BLOCK_3, N_INDEPENDENT, &x3[0][0], y3,
 IMSLS_RETURN_USER, coefficients,
 IMSLS_COEF_COVARIANCES, &coef_covariance,
 IMSLS_X_MEAN, &x_mean,
 IMSLS_IDO, 3,
 0);
 imsls_f_write_matrix("\nLeast Squares Coefficients", 1,
 N_COEFFICIENTS, coefficients, 0);

 if (coef_covariance){
 imsls_f_write_matrix("\nCoefficient Covariance",
 N_COEFFICIENTS, N_COEFFICIENTS, coef_covariance,
122

 Regression regression
 IMSLS_PRINT_UPPER,
 0);
 imsls_free(coef_covariance);
 }
 if (x_mean){
 imsls_f_write_matrix("\nx means", 1, N_INDEPENDENT, x_mean, 0);
 imsls_free(x_mean);
 }
}

Output

 Least Squares Coefficients
1 2 3 4
7.733 -0.200 2.333 -1.667
 Coefficient Covariance
 1 2 3 4
1 0.3951 -0.0120 0.0289 -0.0778
2 0.0160 -0.0200 -0.0000
3 0.0556 -0.0111
4 0.0222
 x means
1 2 3
2 1 4

Warning Errors

Fatal Errors

IMSLS_RANK_DEFICIENT The model is not full rank. There is not a unique
least-squares solution.

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by
invoking the function with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the
previous analysis is terminated by invoking the func-
tion with “ido” = 3.
123

 Regression regression_summary
regression_summary
Produces summary statistics for a regression model given the information from the fit.

Synopsis
#include <imsls.h>
void imsls_f_regression_summary (Imsls_f_regression *regression_info, ..., 0)

The type double function is imsls_d_regression_summary.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See
imsls_f_regression.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_summary (Imsls_f_regression *regression_info,

IMSLS_INDEX_REGRESSION, int idep,
IMSLS_COEF_T_TESTS, float **coef_t_tests
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_COL_DIM, int coef_col_dim,
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
0)
124

 Regression regression_summary
Optional Arguments
IMSLS_INDEX_REGRESSION, int idep (Input)

Given a multivariate regression fit, this option allows the user to specify for which regression sum-
mary statistics will be computed.
Default: idep = 0

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address of a pointer to the npar × 4 array containing statistics relating to the regression coeffi-
cients, where npar is equal to the number of parameters in the model.

Each row (for each dependent variable) corresponds to a coefficient in the model, where npar is the
number of parameters in the model. Row i + intcep corresponds to the i-th independent variable,
where intcep is equal to 1 if an intercept is in the model and 0 otherwise, for i = 0, 1, 2, …, npar – 1.

The statistics in the columns are as follows:

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_T_TESTS.

IMSLS_COEF_COL_DIM, int coef_col_dim (Input)
Column dimension of coef_t_tests.
Default: coef_col_dim = 4

IMSLS_COEF_VIF, float **coef_vif (Output)
Address of a pointer to an internally allocated array of length npar containing the variance inflation
factor, where npar is the number of parameters. The i + intcep-th column corresponds to the i-th
independent variable, where i = 0, 1, 2, …, npar - 1, and intcep is equal to 1 if an intercept is in the
model and 0 otherwise.

The square of the multiple correlation coefficient for the i-th regressor after all others can be
obtained from coef_vif by

If there is no intercept, or there is an intercept and j = 0, the multiple correlation coefficient is not
adjusted for the mean.

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient
estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

1.0 − 1.0
coef_vif i
125

 Regression regression_summary
IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_VIF.

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
An npar by npar (where npar is equal to the number of parameters in the model) array that is the esti-
mated variance-covariance matrix of the estimated regression coefficients when R is nonsingular and
is from an unrestricted regression fit. SeeRemarks for an explanation of coef_covariances
when R is singular and is from a restricted regression fit.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for coef_covariances is provided by the user. See IMSLS_COEF_COVARIANCES.

IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim (Input)
Column dimension of coef_covariances.

Default: coef_cov_col_dim = the number of parameters in the model
126

 Regression regression_summary
IMSLS_ANOVA_TABLE, float **anova_table (Output)

Address of a pointer to the array of size 15 containing the analysis of variance table.

If the model has an intercept, the regression and total are corrected for the mean; otherwise, the
regression and total are not corrected for the mean, and anova_table[13] and
anova_table[14] are set to NaN. Note that the p-value is returned as 0.0 when the value is so
small that all significant digits have been lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

Description
Function imsls_f_regression_summary computes summary statistics from a fitted general linear model.
The model is y = Xβ + ɛ, where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1
vector of regression coefficients, and ɛ is the n × 1 vector of errors whose elements are each independently dis-

tributed with mean 0 and variance σ2. Function regression can be used to compute the fit of the model.
Next, imsls_f_regression_summary uses the results of this fit to compute summary statistics, including
analysis of variance, sequential sum of squares, t tests, and an estimated variance-covariance matrix of the esti-
mated regression coefficients.

Row Analysis of Variance Statistic
0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2(in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)
127

 Regression regression_summary
Some generalizations of the general linear model are allowed. If the i-th element of ɛ has variance of

and the weights wi are used in the fit of the model, imsls_f_regression_summary produces summary

statistics from the weighted least-squares fit. More generally, if the variance-covariance matrix of ɛ is σ2V,
imsls_f_regression_summary can be used to produce summary statistics from the generalized least-

squares fit. Function regression can be used to perform a generalized least-squares fit, by regressing y* on X*

where y* = (T -1)Ty, X* = (T-1)TX and T satisfies TTT = V.

The sequential sum of squares for the i-th regression parameter is given by

The regression sum of squares is given by the sum of the sequential sums of squares. If an intercept is in the
model, the regression sum of squares is adjusted for the mean, i.e.,

is not included in the sum.

The estimate of σ2 is s2 (stored in anova_table[7]) that is computed as SSE/DFE.

If R is nonsingular, the estimated variance-covariance matrix of

(stored in coef_covariances) is computed by s2R-1(R-1)T.

If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a matrix G to be a gi (i = 1, 2, 3, or 4)

inverse of a matrix A, G must satisfy conditions j (for j ≤ i) for the Moore-Penrose inverse but generally must fail
conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse of A are as follows:

1. AGA = A.

2. GAG = G.

3. AG is symmetric.

4. GA is symmetric.

In the case where R is singular, the method for obtaining coef_covariances follows the discussion of Main-
donald (1984, pp. 101–103). Let Z be the diagonal matrix with diagonal elements defined by the following:

σ2
wi

Rβ^ i

2

Rβ^
0

2

β^
128

 Regression regression_summary
Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G to 0. Argument

coef_covariances is set to s2GGT. (G is a g3 inverse of R, represented by,

the result

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that argument coef_covariances can be used only to get variances and covariances of estimable func-
tions of the regression coefficients, i.e., nonestimable functions (linear combinations of the regression
coefficients not in the space spanned by the nonzero rows of R) must not be used. See, for example, Maindonald
(1984, pp. 166–168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in Column 1 of coef_t_tests)
are computed as square roots of the corresponding diagonal entries in coef_covariances.

For the case where an intercept is in the model, put equal to the matrix R with the first row and column
deleted. Generally, the variance inflation factor (VIF) for the i-th regression coefficient is computed as the product

of the i-th diagonal element of RTR and the i-th diagonal element of its computed inverse. If an intercept is in the

model, the VIF for those coefficients not corresponding to the intercept uses the diagonal elements of (see
Maindonald 1984, p. 40).

Remarks
When R is nonsingular and comes from an unrestricted regression fit, coef_covariances is the estimated
variance-covariance matrix of the estimated regression coefficients, and coef_covariances = (SSE/DFE)

(RTR). Otherwise, variances and covariances of estimable functions of the regression coefficients can be obtained

using coef_covariances, and coef_covariances = (SSE/DFE) (GDGT). Here, D is the diagonal matrix
with diagonal elements equal to 0 if the corresponding rows of R are restrictions and with diagonal elements
equal to 1 otherwise. Also, G is a particular generalized inverse of R.

zii =
1 if rii ≠ 0
0 if rii = 0

R
g3

R
g3R

g3
T

R
─

R
─TR
─

129

 Regression regression_summary
Example
#include <imsls.h>
int main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1
 Imsls_f_regression *regression_info;
 float *anova_table, *coef_t_tests, *coef_vif,
 *coefficients, *coef_covariances;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);
 /* Generate summary statistics */
 imsls_f_regression_summary (regression_info,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_COEF_T_TESTS, &coef_t_tests,
 IMSLS_COEF_VIF, &coef_vif,
 IMSLS_COEF_COVARIANCES, &coef_covariances,
 0);
130

 Regression regression_summary
 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);
 imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
 N_COEFFICIENTS, 4, coef_t_tests,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);
 imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n",
 N_COEFFICIENTS, 1, coef_vif,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);
 imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n",
 N_COEFFICIENTS, N_COEFFICIENTS,
 coef_covariances,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);
}

Output

 * * * Analysis of Variance * * *
degrees of freedom for regression 4.00
degrees of freedom for error 8.00
total (uncorrected) degrees of freedom 12.00
sum of squares for regression 2667.90
sum of squares for error 47.86
total (uncorrected) sum of squares 2715.76
regression mean square 666.97
error mean square 5.98
F-statistic 111.48
p-value 0.00
R-squared (in percent) 98.24
adjusted R-squared (in percent) 97.36
est. standard deviation of model error 2.45
overall mean of y 95.42
coefficient of variation (in percent) 2.56
 * * * Inference on Coefficients * * *
 1 2 3 4
1 62.41 70.07 0.89 0.40
2 1.55 0.74 2.08 0.07
3 0.51 0.72 0.70 0.50
4 0.10 0.75 0.14 0.90
5 -0.14 0.71 -0.20 0.84
* * * Variance Inflation Factors * * *
 1 10668.53
 2 38.50
 3 254.42
 4 46.87
 5 282.51
131

 Regression regression_summary
 * * * Variance-Covariance Matrix * * *
 1 2 3 4 5
1 4909.95 -50.51 -50.60 -51.66 -49.60
2 -50.51 0.55 0.51 0.55 0.51
3 -50.60 0.51 0.52 0.53 0.51
4 -51.66 0.55 0.53 0.57 0.52
5 -49.60 0.51 0.51 0.52 0.50
132

 Regression regression_prediction
regression_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a regression model.

Synopsis
#include <imsls.h>
float *imsls_f_regression_prediction (Imsls_f_regression *regression_info,

int n_predict, float x[], ..., 0)

The type double function is imsls_d_regression_prediction.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See
imsls_f_regression.

int n_predict (Input)
Number of rows in x.

float x[] (Input)
Array of size n_predict by the number of independent variables containing the combinations of
independent variables in each row for which calculations are to be performed.

Return Value
Pointer to an internally allocated array of length n_predict containing the predicted values.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regression_prediction (Imsls_f_regression *regression_info, int

n_predict, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
133

 Regression regression_prediction
IMSLS_INDEX_REGRESSION, int idep,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, int iwt,
IMSLS_WEIGHTS, float weights[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],

float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],

float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Number of columns in x.
Default: x_col_dim is equal to the number of independent variables, which is input from the struc-
ture regression_info

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Number of columns in y.
Default: y_col_dim = 1
134

 Regression regression_prediction
IMSLS_INDEX_REGRESSION, int idep (Input)
Given a multivariate regression fit, this option allows the user to specify for which regression statistics
will be computed.
Default: idep = 0

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data (independent, dependent,
frequencies, and weights) is all stored in the data matrix x. Argument y, and keyword
IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers of x in which particular
types of data are stored. Columns are numbered 0, …, x_col_dim − 1.

Parameter indind contains the indices of the independent variables.

Parameter inddep contains the indices of the dependent variables. If there is to be no dependent
variable, this must be indicated by setting the first element of the vector to −1.

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights,
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are
not allowed.

Note that frequencies are not referenced by function regression_prediction, and is included
here only for the sake of keyword consistency.

Finally, note that IMSLS_X_INDICES and IMSLS_Y are mutually exclusive keywords, and may not
be specified in the same call to regression_prediction.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x. The computed prediction inter-
val uses SSE/(DFE*weights[i]) for the estimated variance of a future response, where SSE is sum of
squares error and DFE is degrees of freedom error.
Default: weights[] = 1

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for both two-sided interval estimates on the mean and for two-sided prediction
intervals, in percent. Argument confidence must be in the range [0.0, 100.0). For one-sided inter-
vals with confidence level onecl, where 50.0 ≤ onecl < 100.0, set
confidence = 100.0 − 2.0* (100.0 − onecl).
Default: confidence = 95.0

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length
n_predict containing the lower confidence limits of Scheffé confidence intervals corresponding to
135

 Regression regression_prediction
the rows of x. Array upper_limit is the address of a pointer to an internally allocated array of
length n_predict containing the upper confidence limits of Scheffé confidence intervals corre-
sponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See
IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length
n_predict containing the lower-confidence limits of the confidence intervals for two-sided interval
estimates of the means, corresponding to the rows of x. Array upper_limit is the address of a
pointer to an internally allocated array of length n_predict containing the upper-confidence limits
of the confidence intervals for two-sided interval estimates of the means, corresponding to the rows
of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], float upper_limit[] (Out-
put)
Storage for arrays lower_limit and upper_limit is provided by the user. See
IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length
n_predict containing the lower-confidence limits of the confidence intervals for two-sided predic-
tion intervals, corresponding to the rows of x. Array upper_limit is the address of a pointer to an
internally allocated array of length n_predict containing the upper-confidence limits of the confi-
dence intervals for two-sided prediction intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], float upper_limit[]
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See
IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict array contains the pre-
dicted values.
136

 Regression regression_prediction
IMSLS_Y, float y[] (Input)
Array of length n_predict containing the observed responses.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the standard-
ized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[] (Output)
Storage for array standardized_residual is provided by the user. See
IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the deleted
residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length n_predict containing the Cook’s D
statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length n_predict containing the DFFITS
statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

IMSLS_Y (or IMSLS_X_INDICES) must be specified if any of the following optional arguments are
specified.
137

 Regression regression_prediction
Description
The general linear model used by function imsls_f_regression_prediction is

y = Xβ + ɛ
where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector of regression
coefficients, and ɛ is the n × 1 vector of errors whose elements are independently normally distributed with
mean 0 and the variance below.

From a general linear model fit using the wi’s as the weights, function imsls_f_regression_prediction

computes confidence intervals and statistics for the individual cases that constitute the data set. Let xi be a col-

umn vector containing elements of the i-th row of X. The leverage is defined by

where W = diag(w1, w2, …, wn) and (XTWX)− denotes a generalized inverse of XTWX.

Put D = diag (d1, d2, …, dn) with dj = 1 if the j-th diagonal element of R is positive and 0 otherwise. The leverage is

computed as hi = (aTDa) wi where a is a solution to RTa = xi. The estimated variance of

is given by the following:

where

The computation of the remainder of the case statistics follow easily from their definitions. See Diagnostics for
Individual Cases for the definition of the case diagnostics.

Informational errors can occur if the input matrix x is not consistent with the information from the fit (contained
in regression_info), or if excess rounding has occurred. The warning error IMSLS_NONESTIMABLE
arises when x contains a row not in the space spanned by the rows of R. An examination of the model that was
fitted and the x for which diagnostics are to be computed is required in order to ensure that only linear combina-

σ2
wi

hi = xi
T XTWX

−
xi wi

ŷ = xi
TB^

his
2

wi

s2 = SSEDFE
138

 Regression regression_prediction
tions of the regression coefficients that can be estimated from the fitted model are specified in x. For further
details, see the discussion of estimable functions given in Maindonald (1984, pp. 166−168) and Searle (1971, pp.
180−188).

Often predicted values and confidence intervals are desired for combinations of settings of the independent vari-
ables not used in computing the regression fit. This can be accomplished by defining a new data matrix. Since the
information about the model fit is input in regression_info, it is not necessary to send in the data set used
for the original calculation of the fit, i.e., only variable combinations for which predictions are desired need be
entered in x.

Examples

Example 1

#include <imsls.h>
int main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1
 float *y_hat, *coefficients;
 Imsls_f_regression *regression_info;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);
 /* Generate case statistics */
 y_hat = imsls_f_regression_prediction(regression_info,
 N_OBSERVATIONS, (float*)x, 0);
139

 Regression regression_prediction
 /* Print results */
 imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,
 y_hat, 0);
}

Output

 Predicted Responses
 1 2 3 4 5 6
 78.5 72.8 106.0 89.3 95.6 105.3
 7 8 9 10 11 12
 104.1 75.7 91.7 115.6 81.8 112.3
 13
 111.7

Example 2

#include <imsls.h>
int main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1
 float *y_hat, *leverage, *residual, *standardized_residual,
 *deleted_residual, *dffits, *cooksd, *mean_lower_limit,
 *mean_upper_limit, *new_sample_lower_limit,
 *new_sample_upper_limit, *scheffe_lower_limit,
 *scheffe_upper_limit, *coefficients;
 Imsls_f_regression *regression_info;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);
140

 Regression regression_prediction
 /* Generate the case statistics */
 y_hat = imsls_f_regression_prediction(regression_info,
 N_OBSERVATIONS, (float*)x,
 IMSLS_Y, y,
 IMSLS_LEVERAGE, &leverage,
 IMSLS_RESIDUAL, &residual,
 IMSLS_STANDARDIZED_RESIDUAL, &standardized_residual,
 IMSLS_DELETED_RESIDUAL, &deleted_residual,
 IMSLS_COOKSD, &cooksd,
 IMSLS_DFFITS, &dffits,
 IMSLS_POINTWISE_CI_POP_MEAN, &mean_lower_limit,
 &mean_upper_limit,
 IMSLS_POINTWISE_CI_NEW_SAMPLE, &new_sample_lower_limit,
 &new_sample_upper_limit,
 IMSLS_SCHEFFE_CI, &scheffe_lower_limit,
 &scheffe_upper_limit,
 0);
 /* Print results */
 imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,
 y_hat, 0);
 imsls_f_write_matrix("Residuals", 1, N_OBSERVATIONS, residual, 0);
 imsls_f_write_matrix("Standardized Residuals", 1, N_OBSERVATIONS,
 standardized_residual, 0);
 imsls_f_write_matrix("Leverages", 1, N_OBSERVATIONS, leverage, 0);
 imsls_f_write_matrix("Deleted Residuals", 1, N_OBSERVATIONS,
 deleted_residual, 0);
 imsls_f_write_matrix("Cooks D", 1, N_OBSERVATIONS, cooksd, 0);
 imsls_f_write_matrix("DFFITS", 1, N_OBSERVATIONS, dffits, 0);
 imsls_f_write_matrix("Scheffe Lower Limit", 1, N_OBSERVATIONS,
 scheffe_lower_limit, 0);
 imsls_f_write_matrix("Scheffe Upper Limit", 1, N_OBSERVATIONS,
 scheffe_upper_limit, 0);
 imsls_f_write_matrix("Population Mean Lower Limit", 1,
 N_OBSERVATIONS, mean_lower_limit, 0);
 imsls_f_write_matrix("Population Mean Upper Limit", 1,
 N_OBSERVATIONS, mean_upper_limit, 0);
 imsls_f_write_matrix("New Sample Lower Limit", 1, N_OBSERVATIONS,
 new_sample_lower_limit, 0);
 imsls_f_write_matrix("New Sample Upper Limit", 1, N_OBSERVATIONS,
 new_sample_upper_limit, 0);
}

Output

 Predicted Responses
 1 2 3 4 5 6
 78.5 72.8 106.0 89.3 95.6 105.3
 7 8 9 10 11 12
 104.1 75.7 91.7 115.6 81.8 112.3
 13
 111.7
 Residuals
 1 2 3 4 5 6
 0.005 1.511 -1.671 -1.727 0.251 3.925
141

 Regression regression_prediction
 7 8 9 10 11 12
 -1.449 -3.175 1.378 0.282 1.991 0.973
 13
 -2.294
 Standardized Residuals
 1 2 3 4 5 6
 0.003 0.757 -1.050 -0.841 0.128 1.715
 7 8 9 10 11 12
 -0.744 -1.688 0.671 0.210 1.074 0.463
 13
 -1.124
 Leverages
 1 2 3 4 5 6
 0.5503 0.3332 0.5769 0.2952 0.3576 0.1242
 7 8 9 10 11 12
 0.3671 0.4085 0.2943 0.7004 0.4255 0.2630
 13
 0.3037
 Deleted Residuals
 1 2 3 4 5 6
 0.003 0.735 -1.058 -0.824 0.120 2.017
 7 8 9 10 11 12
 -0.722 -1.967 0.646 0.197 1.086 0.439
 13
 -1.146
 Cooks D
 1 2 3 4 5 6
 0.0000 0.0572 0.3009 0.0593 0.0018 0.0834
 7 8 9 10 11 12
 0.0643 0.3935 0.0375 0.0207 0.1708 0.0153
 13
 0.1102
 DFFITS
 1 2 3 4 5 6
 0.003 0.519 -1.236 -0.533 0.089 0.759
 7 8 9 10 11 12
 -0.550 -1.635 0.417 0.302 0.935 0.262
 13
 -0.757
 Scheffe Lower Limit
 1 2 3 4 5 6
 70.7 66.7 98.0 83.6 89.4 101.6
142

 Regression regression_prediction
 7 8 9 10 11 12
 97.8 69.0 86.0 106.8 75.0 106.9
 13
 105.9
 Scheffe Upper Limit
 1 2 3 4 5 6
 86.3 78.9 113.9 95.0 101.9 109.0
 7 8 9 10 11 12
 110.5 82.4 97.4 124.4 88.7 117.7
 13
 117.5
 Population Mean Lower Limit
 1 2 3 4 5 6
 74.3 69.5 101.7 86.3 92.3 103.3
 7 8 9 10 11 12
 100.7 72.1 88.7 110.9 78.1 109.4
 13
 108.6
 Population Mean Upper Limit
 1 2 3 4 5 6
 82.7 76.0 110.3 92.4 99.0 107.3
 7 8 9 10 11 12
 107.6 79.3 94.8 120.3 85.5 115.2
 13
 114.8
 New Sample Lower Limit
 1 2 3 4 5 6
 71.5 66.3 98.9 82.9 89.1 99.3
 7 8 9 10 11 12
 97.6 69.0 85.3 108.3 75.1 106.0
 13
 105.3
 New Sample Upper Limit
 1 2 3 4 5 6
 85.5 79.3 113.1 95.7 102.2 111.3
 7 8 9 10 11 12
 110.7 82.4 98.1 123.0 88.5 118.7
 13
 118.1
143

 Regression regression_prediction
Warning Errors

Fatal Errors

IMSLS_NONESTIMABLE Within the preset tolerance, the linear combination
of regression coefficients is nonestimable.

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than 1.0 is computed.
It is set to 1.0.

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much less than
0 is computed. It is set to 0.

IMSLS_NONNEG_WEIGHT_REQUEST_2 The weight for row # was #. Weights must be
nonnegative.
144

 Regression hypothesis_partial
hypothesis_partial
Constructs an equivalent completely testable multivariate general linear hypothesis HβU = G from a partially test-
able hypothesis HpβU = Gp.

Synopsis
#include <imsls.h>
int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int nhp, float hp[],

..., 0)

The type double function is imsls_d_hypothesis_partial.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See
function imsls_f_regression.

int nhp (Input)
Number of rows in the hypothesis matrix, hp.

float hp[] (Input)
The Hp array of size nhp by n_parameters with each row corresponding to a row in the hypothesis
and containing the constants that specify a linear combination of the regression coefficients. Here,
n_parameters is the number of coefficients in the fitted regression model.

Return Value
Number of rows in the completely testable hypothesis, nh. This value is also the degrees of freedom for the
hypothesis. The value nh classifies the hypothesis HpβU = Gp as nontestable (nh = 0), partially testable (0 < nh

< rank_hp) or completely testable (0 < nh = rank_hp), where rank_hp is the rank of Hp (see keyword

IMSLS_RANK_HP).
145

 Regression hypothesis_partial
Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int nhp, float hp[],

IMSLS_GP, float gp[],
IMSLS_U, int nu, float u[],
IMSLS_RANK_HP, int rank_hp
IMSLS_H_MATRIX, float **h,
IMSLS_H_MATRIX_USER, float h[],
IMSLS_G, float **g,
IMSLS_G_USER, float g[],
0)

Optional Arguments
IMSLS_GP, float gp[] (Input)

Array of size nhp by nu containing the Gp matrix, the null hypothesis values. By default, each value of
Gp is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent variables to be considered. The
value nu must be greater than 0 and less than or equal to n_dependent, the number of dependent
variables in the fitted regression model.

Argument u contains the n_dependent by nu U matrix for the test HpBU = Gp. This argument is not ref-

erenced by imsls_f_hypothesis_partial and is included only for consistency with functions
imsls_f_hypothesis_scph and imsls_f_hypothesis_test. A dummy array of length 1
may be substituted for this argument.

Default: nu = n_dependent and u is the identity matrix.

IMSLS_RANK_HP, int*rank_hp (Output)
Rank of Hp.

IMSLS_H_MATRIX, float **h (Output)
Address of a pointer to the internally allocated array of size nhp by n_parameters containing the H
matrix. Each row of h corresponds to a row in the completely testable hypothesis and contains the
constants that specify an estimable linear combination of the regression coefficients. The actual size
of H is nh by n_parameters, where nh is the number of rows in the completely testable hypothesis
returned by imsls_f_hypothesis_partial. Note that nh may be less than or equal to nhp.
146

 Regression hypothesis_partial
IMSLS_H_MATRIX_USER, float h[] (Output)
Storage for array h is provided by the user. See IMSLS_H.

IMSLS_G, float **g (Output)
Address of a pointer to the internally allocated array of size nhp by nu containing the G matrix. The
elements of g contain the null hypothesis values for the completely testable hypothesis. The actual
size of G is nh by nu, where nh is the number of rows in the completely testable hypothesis returned
by imsls_f_hypothesis_partial. Note that nh may be less than or equal to nhp.

IMSLS_G_USER, float g[] (Output)
Storage for array g is provided by the user. See IMSLS_G.

Description
Once a general linear model y = Xβ + ɛ is fitted, particular hypothesis tests are frequently of interest. If the matrix
of regressors X is not full rank (as evidenced by the fact that some diagonal elements of the R matrix output from
the fit are equal to zero), methods that use the results of the fitted model to compute the hypothesis sum of
squares (see function hypothesis_scph) require specification in the hypothesis of only linear combinations of

the regression parameters that are estimable. A linear combination of regression parameters cTβ is estimable if

there exists some vector a such that cT = aTX, i.e., cT is in the space spanned by the rows of X. For a further discus-
sion of estimable functions, see Maindonald (1984, pp. 166−168) and Searle (1971, pp. 180−188). Function
imsls_f_hypothesis_partial is only useful in the case of non-full rank regression models, i.e., when the
problem of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the context of a general linear
hypothesis test Hβ = g is overly restrictive. He extended the notion of a testable hypothesis (a hypothesis com-
posed of estimable functions of the regression parameters) to include partially testable and completely testable
hypothesis. A hypothesis Hβ = g is partially testable if the intersection of the row space H (denoted by ℜ(H)) and
the row space of X (ℜ(X)) is not essentially empty and is a proper subset of ℜ(H), i.e., {0} ⊂ ℜ(H) ∩ ℜ(X) ⊂ ℜ(H). A
hypothesis Hβ = g is completely testable if {0} ⊂ ℜ(H) ∩ ℜ(X) ⊂ ℜ(X). Peixoto also demonstrated a method for
converting a partially testable hypothesis to one that is completely testable so that the usual method for obtain-
ing sums of squares for the hypothesis from the results of the fitted model can be used. The method replaces Hp

in the partially testable hypothesis Hpβ = gp by a matrix H whose rows are a basis for the intersection of the row

space of Hp and the row space of X. A corresponding conversion of the null hypothesis values from gp to g is also

made. A sum of squares for the completely testable hypothesis can then be computed (see function
hypothesis_scph). The sum of squares that is computed for the hypothesis Hβ = g equals the difference in the
error sums of squares from two fitted models—the restricted model with the partially testable hypothesis
Hpβ = gp and the unrestricted model.
147

 Regression hypothesis_partial
For the general case of the multivariate model Y = Xβ + ɛ with possible linear equality restrictions on the regres-
sion parameters, imsls_f_hypothesis_partial converts the partially testable hypothesis Hpβ = gp to a

completely testable hypothesis HβU = G. For the case of the linear model with linear equality restrictions, the defi-
nitions of the estimable functions, nontestable hypothesis, partially testable hypothesis, and completely testable
hypothesis are similar to those previously given for the unrestricted model with the exception that ℜ(X) is
replaced by ℜ(R) where R is the upper triangular matrix based on the linear equality restrictions. The nonzero

rows of R form a basis for the rowspace of the matrix (XT, AT)T. The rows of H form an orthonormal basis for the
intersection of two subspaces—the subspace spanned by the rows of Hp and the subspace spanned by the rows

of R. The algorithm used for computing the intersection of these two subspaces is based on an algorithm for
computing angles between linear subspaces due to Björk and Golub (1973). (See also Golub and Van Loan 1983,
pp. 429−430). The method is closely related to a canonical correlation analysis discussed by Kennedy and Gentle
(1980, pp. 561−565). The algorithm is as follows:

1. Compute a QR factorization of

with column permutations so that

Here, P1 is the associated permutation matrix that is also an orthogonal matrix. Determine the rank of Hp as
the number of nonzero diagonal elements of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the
first n1 columns of Q1. Set rank_hp = n1.

2. Compute a QR factorization of the transpose of the R matrix (input through regression_info)
with column permutations so that

Determine the rank of R from the number of nonzero diagonal elements of R, for example n2. Partition
Q2 = (Q21, Q22) so that Q21 is the first n2 columns of Q2.

3. Form

HP
T

HP
T = Q1R1P1

T

RT = Q2R2P2
T

A = Q11
T Q21
148

 Regression hypothesis_partial
4. Compute the singular values of A

and the left singular vectors W of the singular value decomposition of A so that

If σ1 < 1, then the dimension of the intersection of the two subspaces is s = 0. Otherwise, assume the dimen-
sion of the intersection to be s if σs = 1 > σs+1. Set nh = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If nhp < n_parameters, R11 equals the

first nhp rows of R1. Otherwise, R11 contains R1 in its first n_parameters rows and zeros in the remain-

ing rows. Compute a solution Z to the linear system

If this linear system is declared inconsistent, an error message with error code equal to 2 is issued.

7. Partition

so that Z1 is the first n1 rows of Z. Set

The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontestable (nh = 0), partially testable (0 < nh <

rank_hp), or completely testable (0 < nh = rank_hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example
A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to data. The model is

yij = μ + αi + ɛij (i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using function imsls_f_regression. The partially testable hypothesis

σ1 ≥ σ2 ≥ ... ≥ σmin n1, n2

WTAV = diag σ1, … σ
min n1,n2

R11
T Z = P1

TGp

ZT = Z1
T, Z2

T

G = W1
TZ1
149

 Regression hypothesis_partial
is converted to a completely testable hypothesis.

#include <imsls.h>
#include <stdio.h>
#define N_ROWS 3
#define N_INDEPENDENT 1
#define N_DEPENDENT 1
#define N_PARAMETERS 3
#define NHP 2
int main() {

Imsls_f_regression *info;
int n_class = 1;
int n_continuous = 0;
int nh, nreg, rank_hp;
float *coefficients, *x, *g, *h;
float z[N_ROWS*N_INDEPENDENT] = { 1, 2, 2 };
float y[] = {17.3, 24.1, 26.3};
float gp[] = {5, 3};
float hp[NHP*N_PARAMETERS] = {0, 1, 0, 0, 0, 1};
nreg = imsls_f_regressors_for_glm(N_ROWS, z, n_class, n_continuous,

IMSLS_REGRESSORS, &x,
0);

coefficients = imsls_f_regression(N_ROWS, nreg, x, y,
IMSLS_N_DEPENDENT, N_DEPENDENT,
IMSLS_REGRESSION_INFO, &info,
0);

nh = imsls_f_hypothesis_partial(info, NHP, hp,
IMSLS_GP, gp,
IMSLS_H_MATRIX, &h,
IMSLS_G, &g,
IMSLS_RANK_HP, &rank_hp,
0);

if (nh == 0) {
printf("Nontestable Hypothesis\n");

}
else if (nh < rank_hp) {

printf("Partially Testable Hypothesis\n");
}
else {

printf("Completely Testable Hypothesis\n");
}
imsls_f_write_matrix("H Matrix", nh, N_PARAMETERS, h,

0);
imsls_f_write_matrix("G", nh, N_DEPENDENT, g,

0);
imsls_free(coefficients);
imsls_free(info);

H0 : α2=3
α1=5
150

 Regression hypothesis_partial
imsls_free(x);
imsls_free(h);
imsls_free(g);

}

Output

*** WARNING Error IMSLS_RANK_DEFICIENT from imsls_f_regression. The model *** is
not full rank. There is not a unique least squares solution. *** The rank of the
matrix of regressors is 2.
Partially Testable Hypothesis

H Matrix
1 2 3

0.0000 0.7071 -0.7071
G
1.414

Warning Errors
IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed

tolerance.
151

 Regression hypothesis_scph
hypothesis_scph
Computes the matrix of sums of squares and crossproducts for the multivariate general linear hypothesis
HβU = G given the regression fit.

Synopsis
#include <imsls.h>
float *imsls_f_hypothesis_scph (Imsls_f_regression *regression_info, int nh, float h[],

float *dfh, ..., 0)

The type double function is imsls_d_hypothesis_scph.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See
function imsls_f_regression.

int nh (Input)
Number of rows in the hypothesis matrix, h.

float h[] (Input)
The H array of size nh by n_coefficients with each row corresponding to a row in the hypothesis and
containing the constants that specify a linear combination of the regression coefficients. Here, n_coef-
ficients is the number of coefficients in the fitted regression model.

float *dfh (Output)
Degrees of freedom for the sums of squares and crossproducts matrix. This is equal to the rank of
input matrix h.

Return Value
Array of size nu by nu containing the sums of squares and crossproducts attributable to the hypothesis.

Synopsis with Optional Arguments
#include <imsls.h>
152

 Regression hypothesis_scph
float *imsls_f_regression_scph (Imsls_f_regression *regression_info, int nh, float h[],
float *dfh,

IMSLS_G, float g[],
IMSLS_U, int nu, float u[],
IMSLS_RETURN_USER, scph[],
0)

Optional Arguments
IMSLS_G, float g[] (Input)

Array of size nh by nu containing the G matrix, the null hypothesis values. By default, each value of G
is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent variables to be considered. The
value nu must be greater than 0 and less than or equal to n_dependent.

Argument u contains the n_dependent by nu Umatrix for the test HpβU = Gp.

Default: nu = n_dependent and u is the identity matrix

IMSLS_RETURN_USER, float scph[] (Output)
If specified, the sums of squares and crossproducts matrix is stored in array scph provided by the
user, where scph is of size nu by nu.

Description
Function imsls_f_hypothesis_scph computes the matrix of sums of squares and crossproducts for the
general linear hypothesis HβU = G for the multivariate general linear model Y = Xβ + ɛ.

The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must be completely testable. If the
hypothesis is not completely testable, function imsls_f_hypothesis_partial can be used to construct an
equivalent completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980, p. 317) that is extended by Sal-
las and Lionti (1988) for mulitvariate non-full rank models with possible linear equality restrictions. The algorithm
is as follows:

1. Form .

2. Find C as the solution of RTC = HT. If the equations are declared inconsistent within a computed toler-
ance, a warning error message is issued that the hypothesis is not completely testable.

W = Hβ
^
U − G
153

 Regression hypothesis_scph
3. For all rows of R corresponding to restrictions, i.e., containing negative diagonal elements from a
restricted least-squares fit, zero out the corresponding rows of C, i.e., from DC.

4. Decompose DC using Householder transformations and column pivoting to yield a square, upper tri-
angular matrix T with diagonal elements of nonincreasing magnitude and permutation matrix P such
that

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of T is r if

| trr | > | t

11

 | ɛ ≥ | tr +

1,

 r +

1

 |
where ɛ = 10.0 × imsls_f_machine(4) (10.0 × imsls_d_machine(4) for the double-precision ver-
sion).

Then, zero out all rows of T below r. Set the degrees of freedom for the hypothesis, dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a warning error message is issued
that the hypothesis is inconsistent within a computed tolerance, i.e., the linear system

HβU = G

Aβ = Z
does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and crossproducts, scph.

In general, the two warning errors described above are serious user errors that require the user to correct
the hypothesis before any meaningful sums of squares from this function can be computed. However, in
some cases, the user may know the hypothesis is consistent and completely testable, but the checks in
imsls_f_hypothesis_scph are too tight. For this reason, imsls_f_hypothesis_scph contin-
ues with the calculations.

Function imsls_f_hypothesis_scph gives a matrix of sums of squares and crossproducts that could
also be obtained from separate fittings of the two models:

Y¹ = Xβ¹ + ɛ¹ (1)

DCP = Q T
0

154

 Regression hypothesis_scph
Aβ¹ = Z¹

Hβ¹ = G
and

Y¹ = Xβ¹ + ɛ¹ (2)

Aβ¹ = Z¹

where Y¹ = YU, β¹ = βU, ɛ¹ = ɛU, and Z¹ = ZU. The error sum of squares and crossproducts matrix for (1) minus
that for (2) is the matrix sum of squares and crossproducts output in scph. Note that this approach avoids
the question of testability.

Example
The data for this example are from Maindonald (1984, pp. 203−204). A multivariate regression model containing
two dependent variables and three independent variables is fit using function imsls_f_regression and the
results stored in the structure info. The sum of squares and crossproducts matrix, scph, is then computed by
calling imsls_f_hypothesis_scph for the test that the third independent variable is in the model (deter-
mined by the specification of h). The degrees of freedom for scph also is computed.

#include <imsls.h>
#include <stdio.h>
int main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh;
 float x[] =
 {7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0 };
 float y[] =
 {7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0 };
 int n_observations = 9;
155

 Regression hypothesis_scph
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };
 coefficients = imsls_f_regression(n_observations, n_independent, x,
 y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);
 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh,
 0);
 printf("Degrees of Freedom Hypothesis = %4.0f\n", dfh);
 imsls_f_write_matrix("Sum of Squares and Crossproducts",
 n_dependent, n_dependent, scph,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
}

Output

Degrees of Freedom Hypothesis = 1
Sum of Squares and Crossproducts
 100 -40
 -40 16

Warning Errors
IMSLS_HYP_NOT_TESTABLE The hypothesis is not completely testable within the

computed tolerance. Each row of “h” must be a lin-
ear combination of the rows of “r”.

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed
tolerance.
156

 Regression hypothesis_test
hypothesis_test
Performs tests for a multivariate general linear hypothesis HβU = G given the hypothesis sums of squares and
crossproducts matrix SH.

Synopsis
#include <imsls.h>
float imsls_f_c (Imsls_f_regression *regression_info, float dfh, float *scph, ..., 0)

The type double function is imsls_d_hypothesis_test.

Required Argument
Imsls_f_regression *regression_info (Input)

Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See
function imsls_f_regression.

float dfh (Input)
Degrees of freedom for the sums of squares and crossproducts matrix.

float *scph (Input)
Array of size nu by nu containing SH, the sums of squares and crossproducts attributable to the
hypothesis.

Return Value
The p-value corresponding to Wilks’ lambda test.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, float dfh,

float *scph,

IMSLS_U, int nu, float u[],
IMSLS_WILK_LAMBDA, float *value, float *p_value,
157

 Regression hypothesis_test
IMSLS_ROY_MAX_ROOT, float *value, float *p_value,
IMSLS_HOTELLING_TRACE, float *value, float *p_value,
IMSLS_PILLAI_TRACE, float *value, float *p_value,
0)

Optional Arguments
IMSLS_U, int nu, float u[] (Input)

Argument nu is the number of linear combinations of the dependent variables to be considered. The
value nu must be greater than 0 and less than or equal to n_dependent. Argument u contains the
n_dependent by nu U matrix for the test HpβU = Gp.
Default: nu = n_dependent and u is the identity matrix

IMSLS_WILK_LAMBDA, float *value, float *p_value (Output)
Wilk’s lamda and p-value.

IMSLS_ROY_MAX_ROOT, float *value, float *p_value (Output)
Roy’s maximum root criterion and p-value.

IMSLS_HOTELLING_TRACE, float *value, float *p_value (Output)
Hotelling’s trace and p-value.

IMSLS_PILLAI_TRACE, float *value, float *p_value (Output)
Pillai’s trace and p-value.

Description
Function imsls_f_hypothesis_test computes test statistics and p-values for the general linear hypothe-
sis HβU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is

where C is a solution to RTC = H,(CTDC)- denotes the generalized inverse of CTDC, and D is a diagonal matrix with
diagonal elements

For a detailed discussion, see Linear Dependence and the R Matrix in the Usage Notes.

SH = Hβ^U − G
T
CTDC

−
Hβ^U − G

dii =
1 if rii > 0
0 otherwise
158

 Regression hypothesis_test
The error sum of squares and crossproducts matrix for the model Y = Xβ + ɛ is

which is input in regression_info. The error sum of squares and crossproducts matrix for the hypothesis
HβU = G computed by imsls_f_hypothesis_test is

Let p equal the order of the matrices SE and SH, i.e.,

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in regression_info) be the
degrees of freedom for error. Function imsls_f_hypothesis_test computed three test statistics based
on eigenvalues λi (i = 1, 2, …, p) of the generalized eigenvalue problem SHx = λSEx. These test statistics are as

follows:

Wilk’s lambda

The associated p-value is based on an approximation discussed by Rao (1973, p. 556). The statistic

has an approximate F distribution with pq and ms − pq ∕ 2 + 1 numerator and denominator degrees of freedom,
respectively, where

and

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 299−300).

Y − X β^
T
Y − X β^

SE = U
T Y − X β^

T
Y − X β^ U

p =
nu if nu > 0
n
─
dependent otherwise

Λ =
det SE

det SH + SE
=∏

i=1

p
1

1 + λi

F =
ms − pq / 2 + 1

pq
1 − Λ1/s

Λ1/s

s =
1 if p = 1 or q = 1
p2q2 − 4

p2 + q2 − 5
otherwise

m = υ −
p + q − 1
2

159

 Regression hypothesis_test
Roy’s maximum root

c = max λi over all i

where c is output as value. The p-value is based on the approximation

where s = max (p, q) has an approximate F distribution with s and ν + q − s numerator and denominator degrees
of freedom, respectively. The F test is exact if s = 1; the p-value is also exact. In general, the value output in
p_value is lower bound on the actual p-value.

Hotelling’s trace

U is output as value. The p-value is based on the approximation of McKeon (1974) that supersedes the approx-
imation of Hughes and Saw (1972). McKeon’s approximation is also discussed by Seber (1984, p. 39). For

the p-value is based on the result that

has an approximate F distribution with pq and b degrees of freedom. The test is exact if min (p, q) = 1. For
ν ≤ p + 1, the approximation is not valid, and p_value is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary condition for SE to be positive definite

is ν ≥ p. If SE is not positive definite, a warning error message is issued, and both value and p_value are set

to NaN.

Because the requirement ν ≥ p can be a serious drawback, imsls_f_hypothesis_test computes a fourth
test statistic based on eigenvalues θi (i = 1, 2, …, p) of the generalized eigenvalue problem SHw = θ(SH + SE) w.

This test statistic requires a less restrictive assumption—SH + SE is positive definite. A necessary condition for

SH + SE to be positive definite is ν + q ≥ p. If SE is positive definite, imsls_f_hypothesis_test avoids the

computation of the generalized eigenvalue problem from scratch. In this case, the eigenvalues θi are obtained

from λi by

F =
υ + q − s
s c

U = tr HE−1 =∑
i=1

p

λi

b = 4 +
pq + 2

υ + q − p − 1 υ − 1

υ − p − 3 υ − p

F =
b υ − p − 1
b − 2 pq U
160

 Regression hypothesis_test
The fourth test statistic is as follows:

Pillai’s trace

V is output as value. The p-value is based on an approximation discussed by Pillai (1985). The statistic

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and denominator degrees of
freedom, respectively, where

s = min (p, q)

m = ½(|p − q| −1)

n = ½(ν − p − 1)

The F test is exact if min (p, q) = 1.

Examples

Example 1

The data for this example are from Maindonald (1984, p. 203−204). A multivariate regression model containing
two dependent variables and three independent variables is fit using function imsls_f_regression and the
results stored in the structure regression_info. The sum of squares and crossproducts matrix, scph, is
then computed with a call to imsls_f_hypothesis_scph for the test that the third independent variable is in
the model (determined by specification of h). Finally, function imsls_f_hypothesis_test is called to com-
pute the p-value for the test statistic (Wilk’s lambda).

#include <imsls.h>
#include <stdio.h>
int main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh, p_value;
 float x[] = {

θi =
λi

1 + λi

V = tr SH SH + SE
−1 =∑

i=1

p

θi

F = 2n + s + 12m + s + 1
V
s − V
161

 Regression hypothesis_test
 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0
 };
 float y[] = {
 7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0
 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = {0, 0, 0, 1};
 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);
 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh,
 0);
 p_value = imsls_f_hypothesis_test(info, dfh, scph,
 0);
 printf("P-value = %10.6f\n", p_value);
}

Output

P-value = 0.000010

Example 2

This example is the same as the first example, but more statistics are computed. Also, the U matrix, u, is explicitly
specified as the identity matrix (which is the same default configuration of U).

#include <imsls.h>
#include <stdio.h>
int main()
{

162

 Regression hypothesis_test
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh, p_value;
 float x[] = {
 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0
 };
 float y[] ={
 7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0
 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };
 int nu = 2;
 float u[4]={1, 0, 0, 1};
 float v1, v2, v3, v4, p1, p2, p3, p4;
 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);
 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh,
 0);
 p_value = imsls_f_hypothesis_test(info, dfh, scph,
 IMSLS_U, nu, u,
 IMSLS_WILK_LAMBDA, &v1, &p1,
 IMSLS_ROY_MAX_ROOT, &v2, &p2,
 IMSLS_HOTELLING_TRACE, &v3, &p3,
 IMSLS_PILLAI_TRACE, &v4, &p4,
 0);
 printf("Wilk value = %10.6f p-value = %10.6f\n", v1, p1);
 printf("Roy value = %10.6f p-value = %10.6f\n", v2, p2);
 printf("Hotelling value = %10.6f p-value = %10.6f\n", v3, p3);
 printf("Pillai value = %10.6f p-value = %10.6f\n", v4, p4);
}

163

 Regression hypothesis_test
Output

Wilk value = 0.003149 p-value = 0.000010
Roy value = 316.600861 p-value = 0.000010
Hotelling value = 316.600861 p-value = 0.000010
Pillai value = 0.996851 p-value = 0.000010

Warning Errors

Fatal Errors

IMSLS_SINGULAR_1 “u”*“scpe”*“u” is singular. Only Pillai’s trace can be
computed. Other statistics are set to NaN.

IMSLS_NO_STAT_1 “scpe” + “scph” is singular. No tests can be
computed.

IMSLS_NO_STAT_2 No statistics can be computed. Iterations for eigen-
values for the generalized eigenvalue problem
“scph”*x = (lambda)*(“scph”+“scpe”)*x failed to
converge.

IMSLS_NO_STAT_3 No statistics can be computed. Iterations for eigen-
values for the generalized eigenvalue problem
“scph” *x = (lambda)*(“scph”+“u”*“scpe”*“u”)*x
failed to converge.

IMSLS_SINGULAR_2 “u”*“scpe”*“u” + “scph” is singular. No tests can be
computed.

IMSLS_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of
the first zero diagonal element is equal to #.
164

 Regression regression_selection
regression_selection
Selects the best multiple linear regression models.

Synopsis
#include <imsls.h>
void imsls_f_regression_selection (int n_rows, int n_candidate, float x[],

float y[], ..., 0)

The type double function is imsls_d_regression_selection.

Required Arguments
int n_rows (Input)

Number of observations or rows in x and y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x. n_candidate must be
greater than 2.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_selection (int n_rows, int n_candidate, float x[], float y[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_PRINT, or
IMSLS_NO_PRINT,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_R_SQUARED, int max_subset_size, or
165

 Regression regression_selection
IMSLS_ADJ_R_SQUARED, or
IMSLS_MALLOWS_CP,
IMSLS_MAX_N_BEST, int max_n_best,
IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved,
IMSLS_CRITERIONS, int **index_criterions, float **criterions,
IMSLS_CRITERIONS_USER, int index_criterions[], float criterions[],
IMSLS_INDEPENDENT_VARIABLES, int **index_variables,

int **independent_variables,
IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[],

int independent_variables[],
IMSLS_COEF_STATISTICS, int **index_coefficients,
IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
IMSLS_INPUT_COV, int n_observations, float cov[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

The column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_PRINT
Printing is performed. This is the default.

or

IMSLS_NO_PRINT
Printing is not performed.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_R_SQUARED, int max_subset_size (Input)
The R2 criterion is used, where subset sizes 1, 2, ..., max_subset_size are examined. This option
is the default with max_subset_size = n_candidate.

or
166

 Regression regression_selection
IMSLS_ADJ_R_SQUARED
The adjusted R2 criterion is used, where subset sizes 1, 2, ..., n_candidate are examined.

or

IMSLS_MALLOWS_CP
Mallows Cp criterion is used, where subset sizes 1, 2, ..., n_candidate are examined.

IMSLS_MAX_N_BEST, int max_n_best (Input)
Number of best regressions to be found. If the R2 criterions are selected, the max_n_best best
regressions for each subset size examined are found. If the adjusted R2 or Mallows Cp criterion is
selected, the max_n_best overall regressions are found.
Default: max_n_best = 1

IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved (Input)
Maximum number of good regressions of each subset size to be saved in finding the best regres-
sions. Argument max_n_good_saved must be greater than or equal to max_n_best. Normally,
max_n_good_saved should be less than or equal to 10. It doesn't ever need to be larger than the
maximum number of subsets for any subset size. Computing time required is inversely related to
max_n_good_saved.
Default: max_n_good_saved = 10

IMSLS_CRITERIONS, int **index_criterions, float **criterions (Output)
Argument index_criterions is the address of a pointer to the internally allocated array of
length nsize + 1(where nsize is equal to max_subset_size if optional argument
IMSLS_R_SQUARED is specified; otherwise, nsize is equal to n_candidate) containing the loca-
tions in criterions of the first element for each subset size. For I = 0, 1, ..., nsize −1, element
numbers index_criterions[I],
index_criterions[I] + 1, ..., index_criterions[I + 1] − 1 of criterions correspond
to the (I + 1)-st subset size. Argument criterions is the address of a pointer to the internally
allocated array of length max (index_criterions [nsize] − 1 , n_candidate) containing in its
first index_criterions [nsize] − 1 elements the criterion values for each subset considered, in
increasing subset size order.

IMSLS_CRITERIONS_USER, int index_criterions[], float criterions[] (Output)
Storage for arrays index_criterions and criterions is provided by the user. An upper
bound on the length of criterions is max(max_n_good_saved × nsize, n_candidate). See
IMSLS_CRITERIONS.

IMSLS_INDEPENDENT_VARIABLES, int **index_variables,
int **independent_variables (Output)
Argument index_variables is the address of a pointer to the internally allocated array of length
nsize + 1 (where nsize is equal to max_subset_size if optional argument IMSLS_R_SQUARED is
167

 Regression regression_selection
specified; otherwise, nsize is equal to n_candidate) containing the locations in
independent_variables of the first element for each subset size. For I = 0, 1, ..., nsize − 1, ele-
ment numbers index_variables[I], index_variables[I] + 1, ...,
index_variables[I + 1] − 1 of independent_variables correspond to the (I+1)-st sub-
set size. Argument independent_variables is the address of a pointer to the internally
allocated array of length index_variables [nsize] − 1 containing the variable numbers for each
subset considered and in the same order as in criterions.

IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[],
int independent_variables[] (Output)
Storage for arrays index_variables and independent_variables is provided by the user.
An upper bound for the length of independent_variables is as follows:

where nsize is equal to max_subset_size.

See IMSLS_INDEPENDENT_VARIABLES.

IMSLS_COEF_STATISTICS, int **index_coefficients, float **coefficients (Output)
Argument index_coefficients is the address of a pointer to the internally allocated array of
length ntbest + 1 containing the locations in coefficients or the first row for each of the best
regressions. Here, ntbest is the total number of best regression found and is equal to
max_subset_size × max_n_best if IMSLS_R_SQUARED is specified, equal to max_n_best
if either IMSLS_MALLOWS_CP or IMSLS_ADJ_R_SQUARED is specified, and equal to
max_n_best × n_candidate, otherwise. For I = 0, 1, ..., ntbest − 1, rows
index_coefficients[I], index_coefficients[I] + 1, ..., index_coefficients[I +
1] – 1 of coefficients correspond to the (I + 1)-st regression. Argument coefficients is the
address of a pointer to the internally allocated array of size (index_coefficients
[ntbest] − 1) × 5 containing statistics relating to the regression coefficients of the best models. Each
row corresponds to a coefficient for a particular regression. The regressions are in order of increas-
ing subset size. Within each subset size, the regressions are ordered so that the better regressions
appear first. The statistic in the columns are as follows (inferences are conditional on the selected
model):

Column Description

0 variable number

1 coefficient estimate.

2 estimated standard error of the estimate

max_n_good_saved × nsize × nsize + 1
2

168

 Regression regression_selection
IMSLS_COEF_STATISTICS_USER, int index_coefficients[], float coefficients[] (Out-
put)
Storage for arrays index_coefficients and coefficients is provided by the user. See
IMSLS_COEF_STATISTICS.

IMSLS_INPUT_COV, int n_observations, float cov[] (Input)
Argument n_observations is the number of observations associated with array cov. Argument
cov is an (n_candidate + 1) by (n_candidate + 1) array containing a variance-covariance or
sum of squares and crossproducts matrix, in which the last column must correspond to the depen-
dent variable. Array cov can be computed using imsls_f_covariances. Arguments x and y,
and optional arguments frequencies and weights are not accessed when this option is speci-
fied. Normally, imsls_f_regression_selection computes cov from the input data
matrices x and y. However, there may be cases when the user will wish to calculate the covariance
matrix and manipulate it before calling imsls_f_regression_selection. See the description
section below for a discussion of such cases.

Description
Function imsls_f_regression_selection finds the best subset regressions for a regression problem
with n_candidate independent variables. Typically, the intercept is forced into all models and is not a candi-
date variable. In this case, a sum of squares and crossproducts matrix for the independent and dependent
variables corrected for the mean is computed internally. There may be cases when it is convenient for the user to
calculate the matrix; see the description of optional argument IMSLS_INPUT_COV.

“Best” is defined, on option, by one of the following three criteria:

 R2 (in percent)

 (adjusted R2 in percent)

3 t-statistic for the test that the coefficient is
0

4 p-value for the two-sided t test

R2 = 100 1 −
SSEp
SST

Ra
2

169

 Regression regression_selection
Note that maximizing the criterion is equivalent to minimizing the residual mean square:

 Mallows’ Cp statistic

Here, n is equal to the sum of the frequencies (or n_rows if IMSLS_FREQUENCIES is not specified) and SST is
the total sum of squares.

SSEp is the error sum of squares in a model containing p regression parameters including β0 (or p − 1 of the

n_candidate candidate variables). Variable

is the error mean square from the model with all n_candidate variables in the model. Hocking (1972) and
Draper and Smith (1981, pp. 296−302) discuss these criteria.

Function imsls_f_regression_selection is based on the algorithm of Furnival and Wilson (1974). This
algorithm finds max_n_good_saved candidate regressions for each possible subset size. These regressions
are used to identify a set of best regressions. In large problems, many regressions are not computed. They may
be rejected without computation based on results for other subsets; this yields an efficient technique for consid-
ering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix rather than allow the function
imsls_f_regression_selection to calculate it. This can be accomplished using optional argument
IMSLS_INPUT_COV. Three situations in which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares and crossproducts matrix for
the independent and dependent variables is required. Argument n_observations must be set to

1 greater than the number of observations. Form ATA, where A = [A, Y], to compute the raw sum of
squares and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares and crossproducts matrix
for the constant regressor (= 1.0), independent, and dependent variables is required for cov. In this
case, cov contains one additional row and column corresponding to the constant regressor. This

Ra
2 = 100 1 − n − 1

n − p
SSEp
SST

SSEp
n − p

Cp =
SSEp

sn_candidate
2 + 2p − n

sn_candidate
2

170

 Regression regression_selection
row/column contains the sum of squares and crossproducts of the constant regressor with the inde-
pendent and dependent variables. The remaining elements in cov are the same as in the previous
case. Argument n_observations must be set to 1 greater than the number of observations.

3. There are m variables to be forced into the models. A sum of squares and crossproducts matrix
adjusted for the m variables is required (calculated by regressing the candidate variables on the vari-
ables to be forced into the model). Argument n_observations must be set to m less than the
number of observations.

Programming Notes
Function imsls_f_regression_selection can save considerable CPU time over explicitly computing all
possible regressions. However, the function has some limitations that can cause unexpected results for users
who are unaware of the limitations of the software.

1. For n_candidate + 1 > −log2 (ɛ), where ɛ is imsls_f_machine(4) and (imsls_d_machine(4) for

double precision; see Chapter 15,Utilities), some results can be incorrect. This limitation arises

because the possible models indicated (the model numbers 1, 2, ..., 2n_candidate) are stored as float-
ing-point values; for sufficiently large n_candidate, the model numbers cannot be stored exactly.
On many computers, this means imsls_f_regression_selection (for n_candidate > 24)
and imsls_d_regression_selection (for n_candidate > 49) can produce incorrect
results.

2. Function imsls_f_regression_selection eliminates some subsets of candidate variables
by obtaining lower bounds on the error sum of squares from fitting larger models. First, the full
model containing all n_candidate is fit sequentially using a forward stepwise procedure in which
one variable enters the model at a time, and criterion values and model numbers for all the candi-
date variables that can enter at each step are stored. If linearly dependent variables are removed
from the full model, error IMSLS_VARIABLES_DELETED is issued. If this error is issued, some
submodels that contain variables removed from the full model because of linear dependency can be
overlooked if they have not already been identified during the initial forward stepwise procedure. If
error IMSLS_VARIABLES_DELETED is issued and you want the variables that were removed from
the full model to be considered in smaller models, you can rerun the program with a set of linearly
independent variables.
171

 Regression regression_selection
Examples

Example 1

This example uses a data set from Draper and Smith (1981, pp. 629−630). Function

imsls_f_regression_selection is invoked to find the best regression for each subset size using the R2
criterion. By default, the function prints the results.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
int main()
{
 float x[N_OBSERVATIONS][N_CANDIDATE] = {
 7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.
 };
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE,
 &x[0][0], y, 0);
}

Output

Regressions with 1 variable(s) (R-squared)
 Criterion Variables
 67.5 4
 66.6 2
 53.4 1
 28.6 3

Regressions with 2 variable(s) (R-squared)
 Criterion Variables
 97.9 1 2
 97.2 1 4
 93.5 3 4
172

 Regression regression_selection
 68 2 4
 54.8 1 3

Regressions with 3 variable(s) (R-squared)
 Criterion Variables
 98.2 1 2 4
 98.2 1 2 3
 98.1 1 3 4
 97.3 2 3 4

Regressions with 4 variable(s) (R-squared)
 Criterion Variables
 98.2 1 2 3 4

 Best Regression with 1 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 4 -0.7382 0.1546 -4.775 0.0006

 Best Regression with 2 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.468 0.1213 12.10 0.0000
 2 0.662 0.0459 14.44 0.0000

 Best Regression with 3 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.452 0.1170 12.41 0.0000
 2 0.416 0.1856 2.24 0.0517
 4 -0.237 0.1733 -1.36 0.2054

 Best Regression with 4 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.551 0.7448 2.083 0.0708
 2 0.510 0.7238 0.705 0.5009
 3 0.102 0.7547 0.135 0.8959
 4 -0.144 0.7091 -0.203 0.8441

Example 2

This example uses the same data set as the first example, but Mallow’s Cp statistic is used as the criterion rather

than R2. Note that when Mallow’s Cp statistic (or adjusted R2) is specified, the variable max_n_best indicates the

total number of “best” regressions (rather than indicating the number of best regressions per subset size, as in the

case of the R2 criterion). In this example, the three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).

#include <imsls.h>
#define N_OBSERVATIONS 13
173

 Regression regression_selection
#define N_CANDIDATE 4
int main()
{
 float x[N_OBSERVATIONS][N_CANDIDATE] =
 {7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.};
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 int max_n_best = 3;
 imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE,
 (float *) x, y,
 IMSLS_MALLOWS_CP,
 IMSLS_MAX_N_BEST, max_n_best,
 0);
}

Output

Regressions with 1 variable(s) (Mallows CP)
 Criterion Variables
 139 4
 142 2
 203 1
 315 3

Regressions with 2 variable(s) (Mallows CP)
 Criterion Variables
 2.68 1 2
 5.5 1 4
 22.4 3 4
 138 2 4
 198 1 3

Regressions with 3 variable(s) (Mallows CP)
 Criterion Variables
 3.02 1 2 4
 3.04 1 2 3
 3.5 1 3 4
 7.34 2 3 4

Regressions with 4 variable(s) (Mallows CP)
174

 Regression regression_selection
 Criterion Variables
 5 1 2 3 4
1
 Best Regression with 2 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.468 0.1213 12.10 0.0000
 2 0.662 0.0459 14.44 0.0000

 Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.452 0.1170 12.41 0.0000
 2 0.416 0.1856 2.24 0.0517
 4 -0.237 0.1733 -1.36 0.2054

 2nd Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.696 0.2046 8.29 0.0000
 2 0.657 0.0442 14.85 0.0000
 3 0.250 0.1847 1.35 0.2089

Warning Errors

Fatal Errors

IMSLS_VARIABLES_DELETED At least one variable is deleted from the full model
because the variance-covariance matrix “cov” is
singular.

IMSLS_NO_VARIABLES No variables can enter any model.
175

 Regression regression_stepwise
regression_stepwise
Builds multiple linear regression models using forward selection, backward selection, or stepwise selection.

Synopsis
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float x[], float y[], ..., 0)

The type double function is imsls_d_regression_stepwise.

Required Arguments
int n_rows (Input)

Number of rows in x and the number of elements in y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float x[], float y[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS,
IMSLS_N_STEPS, int n_steps,
176

 Regression regression_stepwise
IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE,
IMSLS_P_VALUE_IN, float p_value_in,
IMSLS_P_VALUE_OUT, float p_value_out,
IMSLS_TOLERANCE, float tolerance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_COEF_T_TESTS, float **coef_t_tests,
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_LEVEL, int level[],
IMSLS_FORCE, int n_force,
IMSLS_IEND, int *iend,
IMSLS_SWEPT_USER, int swept[],
IMSLS_HISTORY_USER, float history[],
IMSLS_COV_SWEPT_USER, float *covs
IMSLS_INPUT_COV, int n_observations, float *cov,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_FIRST_STEP, or

IMSLS_INTERMEDIATE_STEP, or

IMSLS_LAST_STEP, or
177

 Regression regression_stepwise
IMSLS_ALL_STEPS
One or none of these options can be specified. If none of these is specified, the action defaults to
IMSLS_ALL_STEPS.

IMSLS_N_STEPS, int n_steps (Input)
For nonnegative n_steps, n_steps steps are taken. If n_steps = −1, stepping continues until
completion.

IMSLS_FORWARD, or

IMSLS_BACKWARD, or

IMSLS_STEPWISE
One or none of these options can be specified. If none is specified, the action defaults to
IMSLS_BACKWARD.

Argument Action

IMSLS_FIRST_STEP This is the first invocation; additional
calls will be made. Initialization and
stepping is performed.

IMSLS_INTERMEDIATE_STEP This is an intermediate invocation.
Stepping is performed.

IMSLS_LAST_STEP This is the final invocation. Stepping and
wrap-up computations are performed.

IMSLS_ALL_STEPS This is the only invocation. Initialization,
stepping, and wrap-up computations
are performed.

Keyword Action

IMSLS_FORWARD An attempt is made to add a variable to
the model. A variable is added if its p-
value is less than p_value_in. During
initialization, only the forced variables
enter the model.

IMSLS_BACKWARD An attempt is made to remove a vari-
able from the model. A variable is
removed if its p-value exceeds
p_value_out. During initialization, all
candidate independent variables enter
the model.

IMSLS_STEPWISE A backward step is attempted. If a vari-
able is not removed, a forward step is
attempted. This is a stepwise step. Only
the forced variables enter the model
during initialization.
178

 Regression regression_stepwise
IMSLS_P_VALUE_IN, float p_value_in (Input)
Largest p-value for variables entering the model. Variables with p-values less than p_value_in
may enter the model.
Default: p_value_in = 0.05

IMSLS_P_VALUE_OUT, float p_value_out (Input)
Smallest p-value for removing variables. Variables with p_values greater than p_value_out may
leave the model. Argument p_value_out must be greater than or equal to p_value_in. A com-
mon choice for p_value_out is 2*p_value_in.
Default: p_value_out = 0.10

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence.
Default: tolerance = 100*eps, where eps = imsls_f_machine(4) for single precision and
eps = imsls_d_machine(4) for double precision

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array containing the analysis of variance table. The
analysis of variance statistics are as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

Element Analysis of Variance Statistic

0 degrees of freedom for regression

1 degrees of freedom for error

2 total degrees of freedom

3 sum of squares for regression

4 sum of squares for error

5 total sum of squares

6 regression mean square

7 error mean square

8 F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation
179

 Regression regression_stepwise
IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address to a pointer to the internally allocated array containing statistics relating to the regression
coefficient for the final model in this invocation. The rows correspond to the n_candidate inde-
pendent variables. The rows are in the same order as the variables in x (or, if IMSLS_INPUT_COV
is specified, the rows are in the same order as the variables in cov). Each row corresponding to a
variable not in the model contains statistics for a model which includes the variables of the final
model and the variable corresponding to the row in question.

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_T_TESTS.

IMSLS_COEF_VIF, float **coef_vif (Output)
Address to a pointer to the internally allocated array containing variance inflation factors for the final
model in this invocation. The elements correspond to the n_candidate dependent variables. The
elements are in the same order as the variables in x (or, if IMSLS_INPUT_COV is specified, the ele-
ments are in the same order as the variables in cov). Each element corresponding to a variable not
in the model contains statistics for a model which includes the variables of the final model and the
variables corresponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all others can be
obtained from coef_vif[i] by the following formula:

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_vif is provided by the user. See IMSLS_COEF_VIF.

IMSLS_LEVEL, int level[] (Input)
Array of length n_candidate + 1 containing levels of priority for variables entering and leaving the
regression. Each variable is assigned a positive value which indicates its level of entry into the model.
A variable can enter the model only after all variables with smaller nonzero levels of entry have

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient
estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

1.0 − 1.0
coef

─
vif[i]
180

 Regression regression_stepwise
entered. Similarly, a variable can only leave the model after all variables with higher levels of entry
have left. Variables with the same level of entry compete for entry (deletion) at each step. Argument
level[I] = 0 means the I-th variable is never to enter the model. Argument level[I] = −1
means the I-th variable is the dependent variable. Argument level[n_candidate] must corre-
spond to the dependent variable, except when IMSLS_INPUT_COV is specified.

Default: 1, 1, ..., 1, −1 where −1 corresponds to level[n_candidate]

IMSLS_FORCE, int n_force (Input)
Variable with levels 1, 2, ..., n_force are forced into the model as independent variables. See
IMSLS_LEVEL.

IMSLS_IEND, int *iend (Output)
Variable which indicates whether additional steps are possible.

IMSLS_SWEPT_USER, int swept[] (Output)
A user-allocated array of length n_candidate + 1 with information to indicate the independent
variables in the model. Argument swept[n_candidate] usually corresponds to the dependent
variable. See IMSLS_LEVEL.

IMSLS_HISTORY_USER, float history[] (Output)
User-allocated array of length n_candidate + 1 containing the recent history of the independent
variables. Element history[n_candidate] usually corresponds to the dependent variable. See
IMSLS_LEVEL.

iend Meaning

0 Additional steps may be possible.

1 No additional steps are possible.

swept[i] Status of i-th Variable

−1 Variable i is not in model.

1 Variable i is in model.

history[i] Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during
initialization.

k> 0.0 Variable was added to the model during
the k-th step.

k < 0.0 Variable was deleted from model during
the k-th step.
181

 Regression regression_stepwise
IMSLS_COV_SWEPT_USER, float *covs (Output)
User-allocated array of length (n_candidate + 1) × (n_candidate + 1) that results after cov
has been swept on the columns corresponding to the variables in the model. The estimated vari-
ance-covariance matrix of the estimated regression coefficients in the final model can be obtained by
extracting the rows and columns of covs corresponding to the independent variables in the final
model and multiplying the elements of this matrix by anova_table[7].

IMSLS_INPUT_COV, int n_observations float *cov (Input)
An (n_candidate + 1) by (n_candidate + 1) array containing a variance-covariance or sum of
squares and crossproducts matrix, in which the last column must correspond to the dependent vari-
able. Argument n_observations is an integer specifying the number of observations associated
with cov. Argument cov can be computed using imsls_f_covariances. Arguments x, y,
weights, and frequencies are not accessed when this option is specified.

By default, imsls_regression_stepwise computes cov from the input data matrices x and
y.

Description
Function imsls_f_regression_stepwise builds a multiple linear regression model using forward selec-
tion, backward selection, or forward stepwise (with a backward glance) selection. Function
imsls_f_regression_stepwise is designed so the user can monitor, and perhaps change, the variables
added (deleted) to (from) the model after each step. In this case, multiple calls to
imsls_f_regression_stepwise (using optional arguments IMSLS_FIRST_STEP,
IMSLS_INTERMEDIATE_STEP, ..., IMSLS_LAST_STEP) are made. Alternatively,
imsls_f_regression_stepwise can be invoked once (default, or specify optional argument
IMSLS_ALL_STEPS) in order to perform the stepping until a final model is selected.

Levels of priority can be assigned to the candidate independent variables (use optional argument
IMSLS_LEVEL). All variables with a priority level of 1 must enter the model before variables with a priority level
of 2. Similarly, variables with a level of 2 must enter before variables with a level of 3, etc. Variables also can be
forced into the model (see optional argument IMSLS_FORCE). Note that specifying optional argument
IMSLS_FORCE without also specifying optional argument IMSLS_LEVEL will result in all variables being
forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In this case, a sum-of-squares and
crossproducts matrix for the independent and dependent variables corrected for the mean is required. Other
possibilities are as follows:
182

 Regression regression_stepwise
1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and crossproducts matrix for
the independent and dependent variables is required as input in cov (see optional argument
IMSLS_INPUT_COV). Argument n_observations must be set to one greater than the number
of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and crossproducts matrix
for the constant regressor (=1), independent and dependent variables are required for cov. In this
case, cov contains one additional row and column corresponding to the constant regressor. This
row/column contains the sum-of-squares and crossproducts of the constant regressor with the inde-
pendent and dependent variables. The remaining elements in cov are the same as in the previous
case. Argument n_observations must be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). Function imsls_f_regression_stepwise
uses sweeps of the covariance matrix (input in cov, if optional argument IMSLS_INPUT_COV is specified, or
generated internally by default) to move variables in and out of the model (Hemmerle 1967, Chapter 3). The
SWEEP operator discussed in Goodnight (1979) is used. A description of the stepwise algorithm is also given by
Kennedy and Gentle (1980, pp. 335−340). The advantage of stepwise model building over all possible regression
(see function imsls_f_regression_selection) is that it is less demanding computationally when the num-
ber of candidate independent variables is very large. However, there is no guarantee that the model selected will

be the best model (highest R2) for any subset size of independent variables.

Example
This example uses a data set from Draper and Smith (1981, pp. 629−630). Backwards stepping is performed by
default.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
int main()
{
 char *labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total sum of squares",
 "regression mean square",
 "error mean square",
 "F-statistic",
 "p-value",
 "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error"
183

 Regression regression_stepwise
 };
 char *c_labels[] = {
 "variable",
 "estimate",
 "s.e.",
 "t",
 "prob > t"
 };
 float *aov, *tt;
 float x[N_OBSERVATIONS*N_CANDIDATE] = {
 7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.
 };
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 imsls_f_regression_stepwise(N_OBSERVATIONS, N_CANDIDATE,
 &x[0][0], y,
 IMSLS_ANOVA_TABLE, &aov,
 IMSLS_COEF_T_TESTS, &tt,
 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
 13, 1, aov,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
 imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
 4, 4, tt,
 IMSLS_COL_LABELS, c_labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
}

Output

 * * * Analysis of Variance * * *
degrees of freedom for regression 2.00
degrees of freedom for error 10.00
total degrees of freedom 12.00
sum of squares for regression 2657.86
184

 Regression regression_stepwise
sum of squares for error 57.90
total sum of squares 2715.76
regression mean square 1328.93
error mean square 5.79
F-statistic 229.50
p-value 0.00
R-squared (in percent) 97.87
adjusted R-squared (in percent) 97.44
est. standard deviation of within error 2.41
 * * * Inference on Coefficients * * *
variable estimate s.e. t prob > t
 1 1.47 0.12 12.10 0.00
 2 0.66 0.05 14.44 0.00
 3 0.25 0.18 1.35 0.21
 4 -0.24 0.17 -1.36 0.21

Warning Errors

Fatal Errors

IMSLS_LINEAR_DEPENDENCE_1 Based on “tolerance” = #, there are linear dependen-
cies among the variables to be forced.

IMSLS_NO_VARIABLES_ENTERED No variables entered the model. All elements of
“anova_table” are set to NaN.
185

 Regression poly_regression
poly_regression
Performs a polynomial least-squares regression.

Synopsis
#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[], float y[], int degree, ..., 0)

The type double function is imsls_d_poly_regression.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
Degree of the polynomial.

Return Value
A pointer to the array of size degree + 1 containing the coefficients of the fitted polynomial. If a fit cannot be
computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[], float y[], int degree,

IMSLS_WEIGHTS, float weights[],
IMSLS_SSQ_POLY, float **ssq_poly,
IMSLS_SSQ_POLY_USER, float ssq_poly[],
186

 Regression poly_regression
IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,
IMSLS_SSQ_LOF, float **ssq_lof,
IMSLS_SSQ_LOF_USER, float ssq_lof[],
IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSLS_X_MEAN, float *x_mean,
IMSLS_X_VARIANCE, float *x_variance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[]
IMSLS_DF_PURE_ERROR, int *df_pure_error,
IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[] (Input)

Array with n_observations components containing the array of weights for the observation.
Default: weights[] = 1

IMSLS_SSQ_POLY, float **ssq_poly (Output)
Address of a pointer to the internally allocated array containing the sequential sums of squares and
other statistics. Row i corresponds to xi, i = 0, ..., degree − 1, and the columns are described as
follows:

IMSLS_SSQ_POLY_USER, float ssq_poly[] (Output)
Storage for array ssq_poly is provided by the user. See IMSLS_SSQ_POLY.

IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
Column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

Column Description

0 degrees of freedom

1 Sums of squares

2 F-statistic

3 p-value
187

 Regression poly_regression
IMSLS_SSQ_LOF, float **ssq_lof (Output)
Address of a pointer to the internally allocated array containing the lack-of-fit statistics. Row icorre-
sponds to xi, i = 0, ..., degree − 1, and the columns are described in the following table:

IMSLS_SSQ_LOF_USER, float ssq_lof[] (Output)
Storage for array ssq_lof is provided by the user. See IMSLS_SSQ_LOF.

IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
Column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSLS_X_MEAN, float *x_mean (Output)
Mean of x.

IMSLS_X_VARIANCE, float *x_variance (Output)
Variance of x.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array containing the analysis of variance table.

Column Description

0 degrees of freedom

1 lack-of-fit sums of squares

2 F-statistic for testing lack-of-fit for a
polynomial model of degree i

3 p-value for the test

Column Description

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)
188

 Regression poly_regression
Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in df_pure_error.

IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in ssq_pure_error.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the array containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info (Output)
Address of a pointer to an internally allocated structure containing the information about the polyno-
mial fit required as input for IMSL function imsls_f_poly_prediction.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored in array
coefficients of size degree + 1 provided by the user.

Description
Function imsls_f_poly_regression computes estimates of the regression coefficients in a polynomial
(curvilinear) regression model. In addition to the computation of the fit, imsls_f_poly_regression com-
putes some summary statistics. Sequential sums of squares attributable to each power of the independent
variable (stored in ssq_poly) are computed. These are useful in assessing the importance of the higher order
powers in the fit. Draper and Smith (1981, pp. 101−102) and Neter and Wasserman (1974, pp. 278−287) discuss

the interpretation of the sequential sums of squares. The statistic R2 is the percentage of the sum of squares of y
about its mean explained by the polynomial curve. Specifically,

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Column Description
189

 Regression poly_regression
where

is the fitted yvalue at xi and is the mean of y. This statistic is useful in assessing the overall fit of the curve to the

data. R2 must be between 0 and 100 percent, inclusive. R2 = 100 percent indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed using orthogonal polynomials as
the regressor variables. This reparameterization of the polynomial model in terms of orthogonal polynomials has
the advantage that the loss of accuracy resulting from forming powers of the x-values is avoided. All results are
returned to the user for the original model (power form).

Function imsls_f_poly_regression is based on the algorithm of Forsythe (1957). A modification to For-
sythe’s algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A discussion
of Forsythe’s algorithm and Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342−347).

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp. 279−285). The data set con-
tains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service coffee
dispensers. Responses for 14 similar cafeterias are in the data set. A graph of the results is also given.

#include <imsls.h>
#define DEGREE 2
#define NOBS 14
int main()
{
 float *coefficients;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 coefficients = imsls_f_poly_regression (NOBS, x, y, DEGREE, 0);
 imsls_f_write_matrix("Least-Squares Polynomial Coefficients",
 DEGREE + 1, 1, coefficients,
 IMSLS_ROW_NUMBER_ZERO,
 0);

R2 =
∑wi ŷi − y

─ 2

∑wi yi − y
─ 2100%

ŷi

y─
190

 Regression poly_regression
}

Output

Least-Squares Polynomial Coefficients
 0 503.3
 1 78.9
 2 -4.0

Figure 1, A Polynomial Fit

Example 2

This example is a continuation of the initial example. Here, many optional arguments are used.

#include <imsls.h>
#define DEGREE 2
#define NOBS 14
int main()
{
 int iset = 1, dfpe;
 float *coefficients, *anova_table, sspe, *ssqpoly, *ssqlof;
 float x[] = {
 0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 4.0, 5.0, 5.0, 6.0, 6.0,
 7.0, 7.0
 };
 float y[] = {
 508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 758.9, 787.6,
191

 Regression poly_regression
 792.1, 841.4, 831.8, 854.7, 871.4
 };
 char *coef_rlab[2];
 char *coef_clab[] = {" ", "intercept", "linear", "quadratic"};
 char *stat_clab[] = {" ", "Degrees of\nFreedom", "Sum of\nSquares",
 "\nF-Statistic", "\np-value"};
 char *anova_rlab[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"
 };
 coefficients = imsls_f_poly_regression(NOBS, x, y, DEGREE,
 IMSLS_SSQ_POLY, &ssqpoly,
 IMSLS_SSQ_LOF, &ssqlof,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_DF_PURE_ERROR, &dfpe,
 IMSLS_SSQ_PURE_ERROR, &sspe,
 0);
 imsls_write_options(-1, &iset);
 imsls_f_write_matrix("Least Squares Polynomial Coefficients",
 1, DEGREE + 1, coefficients,
 IMSLS_COL_LABELS, coef_clab,
 0);
 coef_rlab[0] = coef_clab[2];
 coef_rlab[1] = coef_clab[3];
 imsls_f_write_matrix("Sequential Statistics", DEGREE, 4,
 ssqpoly,
 IMSLS_COL_LABELS, stat_clab,
 IMSLS_ROW_LABELS, coef_rlab,
 IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsls_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4,
 ssqlof,
 IMSLS_COL_LABELS, stat_clab,
 IMSLS_ROW_LABELS, coef_rlab,
 IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,
 1, anova_table,
 IMSLS_ROW_LABELS, anova_rlab,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
192

 Regression poly_regression
}

Output

 Least Squares Polynomial Coefficients
 intercept linear quadratic
 503.3 78.9 -4.0
 Sequential Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 1.0 220644.2 3415.8 0.0000
 quadratic 1.0 4387.7 67.9 0.0000
 Lack-of-Fit Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 5.0 4793.7 22.0 0.0004
 quadratic 4.0 405.9 2.3 0.1548
 * * * Analysis of Variance * * *
 degrees of freedom for regression 2.00
 degrees of freedom for error 11.00
 total (corrected) degrees of freedom 13.00
 sum of squares for regression 225031.94
 sum of squares for error 710.55
 total (corrected) sum of squares 225742.48
 regression mean square 112515.97
 error mean square 64.60
 F-statistic 1741.86
 p-value 0.00
 R-squared (in percent) 99.69
 adjusted R-squared (in percent) 99.63
 est. standard deviation of model error 8.04
 overall mean of y 710.99
 coefficient of variation (in percent) 1.13
193

 Regression poly_regression
Warning Errors

Fatal Errors

IMSLS_CONSTANT_YVALUES The y values are constant. A zero-order polynomial
is fit. High order coefficients are set to zero.

IMSLS_FEW_DISTINCT_XVALUES There are too few distinct x values to fit the desired
degree polynomial. High order coefficients are set to
zero.

IMSLS_PERFECT_FIT A perfect fit was obtained with a polynomial of
degree less than degree. High order coefficients are
set to zero.

IMSLS_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSLS_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN. There are no valid
data.

IMSLS_CONSTANT_XVALUES The x values are constant.
194

 Regression poly_prediction
poly_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a polynomial regression model.

Synopsis
#include <imsls.h>
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, int n_predict, float

x[], ..., 0)

The type double function is imsls_d_poly_prediction.

Required Arguments
Imsls_f_poly_regression *poly_info (Input)

Pointer to a structure of type Imsls_f_poly_regression. See function imsls_f_poly_regression.

int n_predict (Input)
Length of array x.

float x[] (Input)
Array of length n_predict containing the values of the independent variable for which calculations
are to be performed.

Return Value
A pointer to an internally allocated array of length n_predict containing the predicted values.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, int n_predict,

float x[],

IMSLS_CONFIDENCE, float confidence,
IMSLS_WEIGHTS, float weights[],
IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit,
195

 Regression poly_prediction
IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],

float upper_limit[],
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_CONFIDENCE, float confidence (Input)

Confidence level for both two-sided interval estimates on the mean and for two-sided prediction
intervals in percent. Argument confidence must be in the range [0.0, 100.0). For one-sided inter-
vals with confidence level onecl, where 50.0 ≤ onecl < 100.0, set confidence = 100.0 – 2.0 *
(100.0 − onecl).
Default: confidence = 95.0.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x. The computed prediction inter-
val uses SSE/(DFE*weights[i]) for the estimated variance of a future response, where SSE is sum
of squares error and DFE is degrees of freedom error.
Default: weights[] = 1.

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length
n_predict containing the lower confidence limits of Scheffé confidence intervals corresponding to
196

 Regression poly_prediction
the rows of x. Array upper_limit is the address of a pointer to an internally allocated array of
length n_predict containing the upper confidence limits of Scheffé confidence intervals corre-
sponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length
n_predict containing the lower confidence limits of the confidence intervals for two-sided interval
estimates of the means, corresponding to the rows of x. Array upper_limit is the address of a
pointer to an internally allocated array of length n_predict containing the upper confidence limits
of the confidence intervals for two-sided interval estimates of the means, corresponding to the rows
of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], float upper_limit[] (Out-
put)
Storage for arrays lower_limit and upper_limit is provided by the user. See
IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array of length
n_predict containing the lower confidence limits of the confidence intervals for two-sided predic-
tion intervals, corresponding to the rows of x. Array upper_limit is the address of a pointer to an
internally allocated array of length n_predict containing the upper confidence limits of the confi-
dence intervals for two-sided prediction intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], float upper_limit[]
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See
IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict array contains the pre-
dicted values.
197

 Regression poly_prediction
IMSLS_Y float y[] (Input)
Array of length n_predict containing the observed responses.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the standard-
ized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[] (Output)
Storage for array standardized_residual is provided by the user. See
IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length n_predict containing the deleted
residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length n_predict containing the Cook’s D
statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length n_predict containing the DFFITS sta-
tistics, where DFFITS is the change in the predicted value of a point in the absence of the empirical
value.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

IMSLS_Y must be specified if any of the following optional arguments are specified.
198

 Regression poly_prediction
Description
Function imsls_f_poly_prediction assumes a polynomial model

where the observed values of the yi’s constitute the response, the xi’s are the settings of the independent vari-

able, the βj’s are the regression coefficients and the ɛi’s are the errors that are independently distributed normal

with mean 0 and the following variance:

Given the results of a polynomial regression, fitted using orthogonal polynomials and weights wi, function

imsls_f_poly_prediction produces predicted values, residuals, confidence intervals, prediction intervals,
and diagnostics for outliers and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the independent variable not used in
computing the regression fit. This is accomplished by simply using a different x matrix when calling
imsls_f_poly_prediction than was used for the fit (function imsls_f_poly_regression). See
Example 1.

Results from function imsls_f_poly_regression, which produces the fit using orthogonal polynomials,
are used for input by the structure poly_info. The fitted model from imsls_f_poly_regression is

where the zi’s are settings of the independent variable x scaled to the interval [−2, 2] and the pj (z)’s are the

orthogonal polynomials. The XTX matrix for this model is a diagonal matrix with elements dj. The case statistics

are easily computed from this model and are equal to those from the original polynomial model with βj’s as the

regression coefficients.

The leverage is computed as follows:

The estimated variance of

is given by the following:

yi = β0 + β1xi + … , βkxi
k + ɛi i = 1,2, … n

σ2
wi

ŷi = α̂0p0 zi + α̂1p1 zi + ... + α̂k pk zi

hi = wi∑
j=0

k

d j
−1p j

2 zi

ŷi
199

 Regression poly_prediction
The computation of the remainder of the case statistics follows easily from the definitions. See Diagnostics for
Individual Cases for the definition of the case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of settings of the independent
variables not used in computing the regression fit. This can be accomplished by defining a new data matrix. Since
the information about the model fit is input in poly_info, it is not necessary to send in the data set used for
the original calculation of the fit, i.e., only variable combinations for which predictions are desired need be
entered in x.

Examples

Example 1

A polynomial model is fit to the data discussed by Neter and Wasserman (1974, pp. 279–285). The data set con-
tains the response variable y measuring coffee sales (in hundred gallons) and the number of self-service
dispensers. Responses for 14 similar cafeterias are in the data set.

#include <imsls.h>
int main()
{
 Imsls_f_poly_regression *poly_info;
 float *y_hat, *coefficients;
 int n_observations = 14;
 int degree = 2;
 int n_predict = 8;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 float x2[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
 /* Generate the polynomial regression fit*/
 coefficients = imsls_f_poly_regression (n_observations, x, y,
 degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);
 /* Compute predicted values */
 y_hat = imsls_f_poly_prediction(poly_info, n_predict, x2, 0);
 /* Print predicted values */
 imsls_f_write_matrix("Predicted Values", 1, n_predict, y_hat, 0);
 imsls_free(coefficients);
 imsls_free(y_hat);
 return;
}

his
2

wi
200

 Regression poly_prediction
Output

 Predicted Values
 1 2 3 4 5 6
 503.3 578.3 645.4 704.4 755.6 798.8
 7 8
 834.1 861.4

Example 2

Predicted values, confidence intervals, and diagnostics are computed for the data set described in the first
example.

#include <imsls.h>
int main()
{
#define N_PREDICT 14
 Imsls_f_poly_regression *poly_info;
 float *coefficients, y_hat[N_PREDICT],
 lower_ci[N_PREDICT], upper_ci[N_PREDICT],
 lower_pi[N_PREDICT], upper_pi[N_PREDICT],
 s_residual[N_PREDICT], d_residual[N_PREDICT],
 leverage[N_PREDICT], cooksd[N_PREDICT],
 dffits[N_PREDICT], lower_scheffe[N_PREDICT],
 upper_scheffe[N_PREDICT];
 int n_observations = N_PREDICT;
 int degree = 2;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 /* Generate the polynomial regression fit*/
 coefficients = imsls_f_poly_regression (n_observations, x, y,
 degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);
 /* Compute predicted values and case statistics */
 imsls_f_poly_prediction(poly_info, N_PREDICT, x,
 IMSLS_RETURN_USER, y_hat,
 IMSLS_POINTWISE_CI_POP_MEAN_USER, lower_ci, upper_ci,
 IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, lower_pi, upper_pi,
 IMSLS_Y, y,
 IMSLS_STANDARDIZED_RESIDUAL_USER, s_residual,
 IMSLS_DELETED_RESIDUAL_USER, d_residual,
 IMSLS_LEVERAGE_USER, leverage,
 IMSLS_COOKSD_USER, cooksd,
 IMSLS_DFFITS_USER, dffits,
 IMSLS_SCHEFFE_CI_USER, lower_scheffe, upper_scheffe,
 0);
 /* Print results */
 imsls_f_write_matrix("Predicted Values", 1, N_PREDICT, y_hat, 0);
 imsls_f_write_matrix("Lower Scheffe CI", 1, N_PREDICT,
 lower_scheffe, 0);
 imsls_f_write_matrix("Upper Scheffe CI", 1, N_PREDICT,
201

 Regression poly_prediction
 upper_scheffe, 0);
 imsls_f_write_matrix("Lower CI", 1, N_PREDICT, lower_ci, 0);
 imsls_f_write_matrix("Upper CI", 1, N_PREDICT, upper_ci, 0);
 imsls_f_write_matrix("Lower PI", 1, N_PREDICT, lower_pi, 0);
 imsls_f_write_matrix("Upper PI", 1, N_PREDICT, upper_pi, 0);
 imsls_f_write_matrix("Standardized Residual", 1, N_PREDICT,
 s_residual, 0);
 imsls_f_write_matrix("Deleted Residual", 1, N_PREDICT,
 d_residual, 0);
 imsls_f_write_matrix("Leverage", 1, N_PREDICT, leverage, 0);
 imsls_f_write_matrix("Cooks Distance", 1, N_PREDICT, cooksd, 0);
 imsls_f_write_matrix("DFFITS", 1, N_PREDICT, dffits, 0);

 imsls_free(coefficients);
 return;
}

Output

 Predicted Values
 1 2 3 4 5 6
 503.3 503.3 578.3 578.3 645.4 645.4
 7 8 9 10 11 12
 755.6 755.6 798.8 798.8 834.1 834.1
 13 14
 861.4 861.4
 Lower Scheffe CI
 1 2 3 4 5 6
 489.8 489.8 569.5 569.5 636.5 636.5
 7 8 9 10 11 12
 745.7 745.7 790.2 790.2 825.5 825.5
 13 14
 847.7 847.7
 Upper Scheffe CI
 1 2 3 4 5 6
 516.9 516.9 587.1 587.1 654.2 654.2
 7 8 9 10 11 12
 765.5 765.5 807.4 807.4 842.7 842.7
 13 14
 875.1 875.1
 Lower CI
 1 2 3 4 5 6
 492.8 492.8 571.5 571.5 638.4 638.4
 7 8 9 10 11 12
 747.9 747.9 792.1 792.1 827.4 827.4
 13 14
202

 Regression poly_prediction
 850.7 850.7
 Upper CI
 1 2 3 4 5 6
 513.9 513.9 585.2 585.2 652.3 652.3
 7 8 9 10 11 12
 763.3 763.3 805.5 805.5 840.8 840.8
 13 14
 872.1 872.1
 Lower PI
 1 2 3 4 5 6
 482.8 482.8 559.3 559.3 626.4 626.4
 7 8 9 10 11 12
 736.3 736.3 779.9 779.9 815.2 815.2
 13 14
 840.8 840.8
 Upper PI
 1 2 3 4 5 6
 523.9 523.9 597.3 597.3 664.3 664.3
 7 8 9 10 11 12
 774.9 774.9 817.7 817.7 853.0 853.0
 13 14
 882.1 882.1
 Standardized Residual
 1 2 3 4 5 6
 0.737 -0.766 -1.366 -0.137 0.859 1.575
 7 8 9 10 11 12
 -0.041 0.456 -1.507 -0.902 0.982 -0.308
 13 14
 -1.051 1.557
 Deleted Residual
 1 2 3 4 5 6
 0.720 -0.751 -1.429 -0.131 0.848 1.707
 7 8 9 10 11 12
 -0.039 0.439 -1.613 -0.894 0.980 -0.295
 13 14
 -1.056 1.681
 Leverage
 1 2 3 4 5 6
 0.3554 0.3554 0.1507 0.1507 0.1535 0.1535
 7 8 9 10 11 12
 0.1897 0.1897 0.1429 0.1429 0.1429 0.1429
 13 14
 0.3650 0.3650
 Cooks Distance
203

 Regression poly_prediction
 1 2 3 4 5 6
 0.0997 0.1080 0.1104 0.0011 0.0446 0.1500
 7 8 9 10 11 12
 0.0001 0.0162 0.1262 0.0452 0.0536 0.0053
 13 14
 0.2116 0.4644
 DFFITS
 1 2 3 4 5 6
 0.535 -0.558 -0.602 -0.055 0.361 0.727
 7 8 9 10 11 12
 -0.019 0.212 -0.659 -0.365 0.400 -0.120
 13 14
 -0.801 1.274

Warning Errors

Fatal Errors

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than one is computed.
It is set to 1.0.

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much less than
zero is computed. It is set to zero.

IMSLS_NEG_WEIGHT “weights[#]” = #. Weights must be nonnegative.
204

 Regression nonlinear_regression
nonlinear_regression

more...

Fits a multivariate nonlinear regression model.

Synopsis
#include <imsls.h>
float *imsls_f_nonlinear_regression (float fcn(), int n_parameters,

int n_observations, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_regression.

Required Arguments
float fcn (int n_independent, float xi[], int n_parameters, float theta[])

User-supplied function to evaluate the function that defines the nonlinear regression problem where
xi is an array of length n_independent at which point the function is evaluated and theta is an
array of length n_parameters containing the current values of the regression coefficients. Func-
tion fcn returns a predicted value at the point xi. In the following, f(xi;θ), or just fi, denotes the value
of this function at the point xi, for a given value of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input)
Array of size n_observations by n_independent containing the matrix of independent
(explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response) variable.
205

 Regression nonlinear_regression
Return Value

A pointer to an array of length n_parameters containing a solution, for the nonlinear regression coefficients.

To release this space, use imsls_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonlinear_regression (float fcn(), int n_parameters,

int n_observations, int n_independent, float x[], float y[],

IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_THETA_SCALE, float theta_scale[],
IMSLS_GRADIENT_EPS, float gradient_eps,
IMSLS_STEP_EPS, float step_eps,
IMSLS_SSE_REL_EPS, float sse_rel_eps,
IMSLS_SSE_ABS_EPS, float sse_abs_eps,
IMSLS_MAX_STEP, float max_step,
IMSLS_INITIAL_TRUST_REGION, float trust_region,
IMSLS_GOOD_DIGIT, int ndigit,
IMSLS_MAX_ITERATIONS, int max_itn,
IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval,
IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian,
IMSLS_TOLERANCE, float tolerance,
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_R, float **r,
IMSLS_R_USER, float r[],
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_R_RANK, int *rank,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_DF, int *df,
IMSLS_SSE, float *sse,
IMSLS_VARIANCE_COVARIANCE_MATRIX, float **var_covar,
IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float var_covar[],

θ
^

206

 Regression nonlinear_regression
IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, void fcn(),void *data,
IMSLS_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0.

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], int n_parameters,
float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where the n_independent data
values corresponding to the i-th row are input in xi. Argument theta is an array of length
n_parameters containing the regression coefficients for which the Jacobian is evaluated, fjac is
the computed n_parameters row of the Jacobian for observation i at theta. Note that each
derivative ∂f(xi)/∂θj should be returned in fjac [j − 1] for j = 1, 2, ..., n_parameters.

IMSLS_THETA_SCALE, float theta_scale[] (Input)
Array with n_parameters components containing the scaling array for θ. Array theta_scale is
used mainly in scaling the gradient and the distance between two points. See keywords
IMSLS_GRADIENT_EPS and IMSLS_STEP_EPS for more details.
Default: theta_scale[] = 1.

IMSLS_GRADIENT_EPS, float gradient_eps (Input)
Scaled gradient tolerance. The j-th component of the scaled gradient at θ is calculated as

where g = ∇F(θ), t = theta_scale, and

The value F(θ) is the sum of the squared residuals, SSE, at the point θ.

Convergence is declared if |gi| * max{|θi|, 1.0/ti}/SSE is less than gradient_eps for i= 0, 1, 2, …,

n_parameters, where gi is the i-th component of an internal intermediate gradient vector.

Default:

∣g j∣ *max ∣θ j∣, 1 / t j
1
2∥F θ ∥

2
2

∥F θ ∥
2
2 =∑

i=1

n
yi − f xi;θ

2

207

 Regression nonlinear_regression
(in double, where ɛ is the machine precision)

IMSLS_STEP_EPS, float step_eps (Input)
Scaled step tolerance. The j-th component of the scaled step from points θ and θʹ is computed as

where t = theta_scale
Convergence is declared if |gn+ i|/ max{|θi|, 1.0/ti} is less than step_eps for i = 0, 1, 2, …, n, where

gn+ i is the i-th component of the last step and n = n_parameters.

Default: step_eps = ɛ2/3,where ɛ is the machine precision

IMSLS_SSE_REL_EPS, float sse_rel_eps (Input)
Relative SSE function tolerance.

Convergence is declared if the change in SSE is less than or equal to sse_rel_eps * SSE in abso-
lute value.

Default: sse_rel_eps = max(10-10, ɛ2/3), max(10-20, ɛ2/3) in double, where ɛ is the machine
precision

IMSLS_SSE_ABS_EPS, float sse_abs_eps (Input)
Absolute SSE function tolerance.

Convergence is declared if SSE is less than sse_abs_eps.

Default: sse_abs_eps = max(10-20,ɛ2), max(10-40, ɛ2) in double, where ɛ is the machine precision

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size.

Default: max_step = 1000 max (ɛ1, ɛ2), where ɛ1 = (tTθ0)1/2, ɛ2 = ∥t∥2, t = theta_scale, and

θ0 = theta_guess

IMSLS_INITIAL_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSLS_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

gradient_eps = ɛ

ɛ3

∣θ j − θ ′ j∣
max ∣θ j∣, 1 / t j
208

 Regression nonlinear_regression
IMSLS_MAX_ITERATIONS, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval (Input)
Maximum number of SSE function evaluations.
Default: max_sse_eval = 400

IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSLS_TOLERANCE, float tolerance (Input)
False convergence tolerance.
Default: tolerance = 100* eps, where eps = imsls_f_machine(4) if single precision and
eps = imsls_d_machine(4) if double precision

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the
predicted values at the approximate solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the
residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_R, float **r (Output)
Address of a pointer to an internally allocated array of size n_parameters × n_parameters
containing the R matrix from a QR decomposition of the Jacobian.

IMSLS_R_USER, float r[] (Output)
Storage for array r is provided by the user. See IMSLS_R.

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of array r.
Default: r_col_dim = n_parameters

IMSLS_R_RANK, int *rank (Output)
Rank of r. Argument rank less than n_parameters may indicate the model is
overparameterized.
209

 Regression nonlinear_regression
IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_DF, int *df (Output)
Degrees of freedom.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated regression coefficients.

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **var_covar (Output)
Address of a pointer to an internally allocated array of size n_parameters × n_parameters
containing the variance/covariance matrix of the coefficients.

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float var_covar[] (Output)
Storage for array var_covar is provided by the user. See
IMSLS_VARIANCE_COVARIANCE_MATRIX.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int n_parameters,
float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear regression problem, which
also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed
to the user-supplied function. See the Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]), void *data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See the Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description
Function imsls_f_nonlinear_regression fits a nonlinear regression model using least squares. The
nonlinear regression model is
210

 Regression nonlinear_regression
where the observed values of the yi’s constitute the responses or values of the dependent variable, the known

xi’s are the vectors of the values of the independent (explanatory) variables, θ is the vector of p regression param-

eters, and the ɛi’s are independently distributed normal errors with mean 0 and variance σ2. For this model, a

least-squares estimate of θ is also a maximum likelihood estimate of θ.

The residuals for the model are as follows:

A value of θ that minimizes

is a least-squares estimate of θ. Function imsls_f_nonlinear_regression is designed so that the values
of the function f(xi; θ) are computed one at a time by a user-supplied function.

Function imsls_f_nonlinear_regression is based on MINPACK routines LMDIF and LMDER by Moré et
al. (1980) that use a modified Levenberg-Marquardt method to generate a sequence of approximations to a min-
imum point. Let

be the current estimate of θ. A new estimate is given by

where sc is a solution to the following:

Here

is the Jacobian evaluated at

yi = f xi; θ + εi i = 1,2, … ,n

ei θ = yi − f xi;θ i = 1,2, … ,n

∑
i=1

n
ei θ

2

θ^c

θ^c + sc

J θ^c
T
J θ^c + μcI sc = J θ^c

T
e θ^c

J θ^c
211

 Regression nonlinear_regression
The algorithm uses a “trust region” approach with a step bound of δc. A solution of the equations is first obtained

for

μc = 0. If ∥sc∥
2

< δc

this update is accepted; otherwise, μc is set to a positive value and another solution is obtained. The method is

discussed by Levenberg (1944), Marquardt (1963), and Dennis and Schnabel (1983, pp. 129−147, 218−338).

If a user-supplied function is specified in IMSLS_JACOBIAN, the Jacobian is computed analytically; otherwise,
forward finite differences are used to estimate the Jacobian numerically. In the latter case, especially if type float is
used, the estimate of the Jacobian may be so poor that the algorithm terminates at a noncritical point. In such
instances, the user should either supply a Jacobian function, use type double, or do both.

The first stopping criterion for imsls_f_nonlinear_regression occurs when SSE is less than the abso-
lute function tolerance. The second stopping criterion occurs when the norm of the scaled gradient is less than
the given gradient tolerance. The third stopping criterion occurs when the scaled distance between the last two
steps is less than the step tolerance. The third stopping criterion also generates error
IMSLS_LITTLE_FCN_CHANGE. The fourth stopping criterion occurs when the relative change in SSE is less
than sse_rel_eps. The fourth stopping criterion also generates error code IMSLS_FALSE_CONVERGENCE.
See Dennis and Schnabel (1983, pages 159−161, 278−280, and 347−348) for a discussion of stopping criteria and
choice of tolerances.

On some platforms, imsls_f_nonlinear_regression can evaluate the user-supplied functions fcn and
jacobian in parallel. This is done only if the function imsls_omp_options is called to flag user-defined func-
tions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are
usually the result of writing to global or static variables.

Programming Notes
Nonlinear regression allows substantial flexibility over linear regression because the user can specify the func-
tional form of the model. This added flexibility can cause unexpected convergence problems for users that are
unaware of the limitations of the software. Also, in many cases, there are possible remedies that may not be
immediately obvious. The following is a list of possible convergence problems and some remedies. There is not a
one-to-one correspondence between the problems and the remedies. Remedies for some problems also may be
relevant for the other problems.

θ^c
212

 Regression nonlinear_regression
1. A local minimum is found. Try a different starting value. Good starting values often can be obtained
by fitting simpler models. For example, for a nonlinear function.

good starting values can be obtained from the estimated linear regression coefficients

and

from a simple linear regression of ln y on ln x. The starting values for the nonlinear regression in this case
would be

If an approximate linear model is not clear, then simplify the model by reducing the number of nonlinear
regression parameters. For example, some nonlinear parameters for which good starting values are known
could be set to these values in order to simplify the model for computing starting values for the remaining
parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the initial estimate. This occurs
often because of poor scaling of the problem, which might result in the residual sum of squares
being either very large or very small relative to the precision of the computer. The optional argu-
ments allow control of the scaling.

3. The model is discontinuous as a function of θ. (The functionf(x;θ) can be a discontinuous function of
x.)

4. Overflow occurs during the computations. Make sure the user-supplied functions do not overflow at
some value ofθ.

5. The estimate of θ is going to infinity. A parameterization of the problem in terms of reciprocals may
help.

6. Some components ofθ are outside known bounds. This can sometimes be handled by making a
function that produces artificially large residuals outside of the bounds (even though this introduces
a discontinuity in the model function).

f x;θ = θ1e
θ2x

β^ 0

β^ 1

θ1 = e
β^0 and θ2 = β

^
1

213

 Regression nonlinear_regression
Examples

Example 1

In this example (Draper and Smith 1981, p. 518), the following nonlinear model is fit:

#include <math.h>
#include <imsls.h>
float fcn(int, float[], int, float[]);
int main ()
{
#define N_OBSERVATIONS 4
 int n_independent = 1;
 int n_parameters = 2;
 float *theta_hat;
 float x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0};
 float y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39};
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Nonlinear regression */
 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
 N_OBSERVATIONS, n_independent, (float *)x, y, 0);
 /* Print estimates */
 imsls_f_write_matrix("estimated coefficients", 1, n_parameters,
 theta_hat, 0);
}
float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8)));
}

Output

estimated coefficients
 1 2
 0.3807 -0.0794

Example 2

Consider the nonlinear regression model and data set discussed by Neter et al. (1983, pp. 475−478):

Y = α + 0.49 − α e
−β X−8

+ ɛ
214

 Regression nonlinear_regression
There are two parameters and one independent variable. The data set considered consists of 15 observations.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
static float fcn(int, float[], int, float[]);
static void jacobian(int, float[], int, float[], float[]);
int main()
{
 int df;
 int n_independent = 1;
 int n_parameters = 2;
 int n_obs = 15;
 float *theta_hat, *r, *y_hat, *var_covar;
 float grad_eps = 1.0e-9;
 float theta_guess[2] = {60.0, -0.03};
 float a, dfe, normalValue;
 float y[15] = {
 54.0, 50.0, 45.0, 37.0, 35.0,
 25.0, 20.0, 16.0, 18.0, 13.0,
 8.0, 11.0, 8.0, 4.0, 6.0
 };
 float x[15] = {
 2.0, 5.0, 7.0, 10.0, 14.0,
 19.0, 26.0, 31.0, 34.0, 38.0,
 45.0, 52.0, 53.0, 60.0, 65.0
 };
 char *fmt="%15.3f";
 char *dashes=
 "---";
 /* Nonlinear regression */
 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters, n_obs,
 n_independent, x, y,
 IMSLS_THETA_GUESS, theta_guess,
 IMSLS_GRADIENT_EPS, grad_eps,
 IMSLS_DF, &df,
 IMSLS_R, &r,
 IMSLS_PREDICTED, &y_hat,
 IMSLS_VARIANCE_COVARIANCE_MATRIX, &var_covar,
 IMSLS_JACOBIAN, jacobian,
 0);
 /* Print results */
 /* Calculate and Print Coefficients & their 95% Confidence Limits */
 printf(" \n ESTIMATED COEFFICIENTS \n");
 printf("%s\n", dashes);
 printf(" Coefficient | Lower 95%% Limit |");
 printf(" Estimate | Upper 95%% Limit \n");
 dfe = (float) df;

yi = θ1e
θ2xi + ɛi
215

 Regression nonlinear_regression
 normalValue = imsls_f_t_inverse_cdf(0.975, dfe);
 a = normalValue * sqrt(var_covar[0]);
 printf(" Theta_1 | %10.3f | %7.3f | %12.3f\n",
 theta_hat[0] - a, theta_hat[0], theta_hat[0] + a);
 a = normalValue * sqrt(var_covar[3]);
 printf(" Theta_2 | %10.3f | %7.3f | %12.3f\n",
 theta_hat[1] - a, theta_hat[1], theta_hat[1] + a);
 printf("%s\n", dashes);
 imsls_f_write_matrix("Var/Covar matrix", n_parameters, n_parameters,
 var_covar,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 imsls_f_write_matrix("Predicted values", 1, n_obs, y_hat,
 IMSLS_WRITE_FORMAT, "%7.2f",
 0);
}
static float fcn(int n_independent, float x[], int n_parameters,
 float theta[])
{
 return (theta[0] * exp(x[0] * theta[1]));
} /* End of fcn */
static void jacobian(int n_independent, float x[], int n_parameters,
 float theta[], float fjac[])
{
 fjac[0] = exp(theta[1] * x[0]);
 fjac[1] = theta[0] * x[0] * exp(theta[1] * x[0]);
} /* End of jacobian */

Output

 ESTIMATED COEFFICIENTS

Coefficient | Lower 95% Limit | Estimate | Upper 95% Limit
 Theta_1 | 55.426 | 58.607 | 61.787
 Theta_2 | -0.043 | -0.040 | -0.036

 Var/Covar matrix
 1 2
1 2.167 -0.002
2 -0.002 0.000
 Predicted values
 1 2 3 4 5 6 7 8
 54.15 48.08 44.42 39.45 33.67 27.62 20.94 17.18
 9 10 11 12 13 14 15
 15.26 13.02 9.87 7.48 7.19 5.45 4.40
216

 Regression nonlinear_regression
Informational Errors

Warning Errors

Fatal Errors

IMSLS_STEP_TOLERANCE Scaled step tolerance satisfied. The current point
may be an approximate local solution, but it is also
possible that the algorithm is making very slow
progress and is not near a solution or that
“step_eps” is too big.

IMSLS_LITTLE_FCN_CHANGE Both the actual and predicted relative reductions in
the function are less than or equal to the relative
function tolerance.

IMSLS_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSLS_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian evaluations
exceeded.

IMSLS_UNBOUNDED Five consecutive steps have been taken with the
maximum step length.

IMSLS_FALSE_CONVERGENCE The iterates appear to be converging to a noncritical
point.

IMSLS_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
217

 Regression nonlinear_optimization
nonlinear_optimization

more...

Fits data to a nonlinear model (possibly with linear constraints) using the successive quadratic programming algo-

rithm (applied to the sum of squared errors, sse = Σ(yi − f(xi; θ))2) and either a finite difference gradient or a user-

supplied gradient.

Synopsis
#include <imsls.h>
float *imsls_f_nonlinear_optimization (float fcn(), int n_parameters,

int n_observations, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_optimization.

Required Arguments
float fcn (int n_independent, float xi[], int n_parameters, float theta[])

User-supplied function to evaluate the function that defines the nonlinear regression problem where
xi is an array of length n_independent at which point the function is evaluated and theta is an
array of length n_parameters containing the current values of the regression coefficients. Func-
tion fcn returns a predicted value at the point xi. In the following, f(xi; θ), or just fi, denotes the
value of this function at the point xi, for a given value of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float *x (Input)
Array of size n_observations by n_independent containing the matrix of independent
(explanatory) variables.
218

 Regression nonlinear_optimization
float y[] (Input)
Array of length n_observations containing the dependent (response) variable.

Return Value

A pointer to an array of length n_parameters containing a solution, for the nonlinear regression coefficients.
To release this space, use imsls_free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonlinear_optimization (float fcn(), int n_parameters,

int n_observations, int n_independent, float x[], float y[],

IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[],
IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[],
IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality, float a[],

float b[],
IMSLS_FREQUENCIES, float frequencies,
IMSLS_WEIGHTS, float weights,
IMSLS_ACC, float acc,
IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval,
IMSLS_PRINT_LEVEL, int print_level,
IMSLS_STOP_INFO, int *stop_info,
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active, int **indices_active,

float **multiplier,
IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active, int indices_active[],

float multiplier[],
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
IMSLS_JACOBIAN_W_DATA, float jacobian(), void *data,

θ
^

219

 Regression nonlinear_optimization
0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], int n_parameters,
float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where the n_independent data
values corresponding to the i-th row are input in xi. Argument theta is an array of length
n_parameters containing the regression coefficients for which the Jacobian is evaluated, fjac is
the computed n_parameters row of the Jacobian for observation i at theta. Note that each
derivative ∂f(xi)/∂θj should be returned in fjac[j-1] for j= 1, 2, ..., n_parameters. Further note
that in order to maintain consistency with the other nonlinear solver, nonlinear_regression,
the Jacobian values must be specified as the negative of the calculated derivatives.

IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[] (Input)
Vector of length n_parameters containing the lower bounds on the parameters; choose a very
large negative value if a component should be unbounded below or set theta_lb[i] =
theta_ub[i] to freeze the i-th variable.

Default: All parameters are bounded below by -106.

IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[] (Input)
Vector of length n_parameters containing the upper bounds on the parameters; choose a very
large value if a component should be unbounded above or set theta_lb[i] = theta_ub[i] to
freeze the i-th variable.

Default: All parameters are bounded above by 106.

IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality, float a[], float b[]
(Input)
Argument n_constraints is the total number of linear constraints (excluding simple bounds).
Argument n_equality is the number of these constraints which are equality constraints; the
remaining n_constraints − n_equality constraints are inequality constraints. Argument a is
a n_constraints by n_parameters array containing the equality constraint gradients in the
first n_equality rows, followed by the inequality constraint gradients. Argument b is a vector of
length n_constraints containing the right-hand sides of the linear constraints.

Specifically, the constraints on θ are:

ai1 θ1 + ... + aij θj = bi for i= 1, n_equality and j = 1, n_parameter, and
220

 Regression nonlinear_optimization
ak1 θ1 + ... + akj θj ≤ bk for k = n_equality + 1, n_constraints and j = 1, n_parameter.

Default: There are no default linear constraints.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each observation.

Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each observation.

Default: weights[] = 1

IMSLS_ACC, float acc (Input)
The nonnegative tolerance on the first order conditions at the calculated solution.

IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval (Input/Output)
On input max_sse_eval is the maximum number of sse evaluations allowed. On output,
max_sse_eval contains the actual number of sse evaluations needed.

Default: max_sse_eval = 400

IMSLS_PRINT_LEVEL, int print_level (Input)
Argument print_level specifies the frequency of printing during execution. If
print_level = 0, there is no printing. Otherwise, after ensuring feasibility, information is printed
every print_level iterations and whenever an internal tolerance (called tol) is reduced. The print-
ing provides the values of theta and the sse and gradient at the value of theta. If
print_level is negative, this information is augmented by the current values of
indices_active, multiplier, and reskt, where reskt is the Kuhn-Tucker residual vector at
theta.

IMSLS_STOP_INFO, int *stop_info (Output)
Argument stop_info will have one of the following integer values to indicate the reason for leav-
ing the routine:

stop_info Reason for leaving routine

1 θ is feasible, and the condition that depends on acc is satisfied.

2 θ is feasible, and rounding errors are preventing further
progress.

3 θ is feasible, but sse fails to decrease although a decrease is pre-
dicted by the current gradient vector.

4 The calculation cannot begin because a contains fewer than
n_constraints constraints or because the lower bound on a
variable is greater than the upper bound.
221

 Regression nonlinear_optimization
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active, int **indices_active,
float **multiplier (Output)
Argument n_active returns the final number of active constraints. Argument indices_active
is the address of a pointer to an internally allocated integer array of length n_active containing
the indices of the final active constraints. Argument multiplier is the address of a pointer to an
internally allocated real array of length n_active containing the Lagrange multiplier estimates of
the final active constraints.

IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active, int indices_active[],
float multiplier[] (Output)
Storage for arrays indices_active and multiplier are provided by the user. The maximum
length needed for these arrays is n_constraints. See
IMSLS_ACTIVE_CONSTRAINTS_INFO.

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the
predicted values at the approximate solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length n_observations containing the
residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

5 The equality constraints are inconsistent. These constraints

include any components of that are frozen by setting
theta_lb[i] equal to theta_ub[i].

6 The equality constraints and the bound on the variables are
found to be inconsistent.

7 There is no possible θ that satisfies all of the constraints.

8 Maximum number of sse evaluations (max_sse_eval) is
exceeded.

9 θ is determined by the equality constraints.

stop_info Reason for leaving routine

θ
^

222

 Regression nonlinear_optimization
IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated regression coefficients.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[],int n_parameters,
float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear regression problem, which
also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed
to the user-supplied function. See the Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]), void *data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the user-supplied function.
See the Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description
Function imsls_f_nonlinear_optimization is based on M.J.D. Powell’s TOLMIN, which solves linearly
constrained optimization problems, i.e., problems of the form min f(θ), θ ∈ ℜ, subject to

A

1

θ = b

1

A

2

θ ≤ b

2

θI ≤ θ ≤ θu

given the vectors b1, b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality con-

straints are consistent, the method will revise θ0, the initial guess provided by the user, to satisfy

A

1

θ = b

1

223

 Regression nonlinear_optimization
Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of
quadratic programming subproblems to minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequality constraints that have small resid-

uals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set of indices of active

constraints. The following quadratic programming problem

subject to

ajd = 0 j ∈ Ik

ajd ≤ 0 j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 or A2 or a bound constraint

on θ. In the latter case, the aj = ei for the bound constraint θi ≤ (θu)i and aj = −ei for the constraint θi ≤ (θl)i.

Here, ei is a vector with a 1 as the i-th component, and zeroes elsewhere. λk are the Lagrange multipliers, and Bk

is a positive definite approximation to the second derivative ∇2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a better point. The new point

θk+1 = θk + αkdk has to satisfy the conditions

f (θk + αkdk) ≤ f (θk) + 0.1αk (dk)T∇ f (θk)

and

(dk)T∇ f (θk + αkdk) ≥ 0.7 (dk)T∇ f (θk)

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-length αk, then its

index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if the condition

(dk)T∇ f (θk + αkdk) − ∇ f (θk) > 0

holds. Let θk ← θk+1, and start another iteration.

The iteration repeats until the stopping criterion

∥∇ f (θk) − Akλk∥
2

≤ τ
is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 1989).

min f θk + dT∇ f θk + 12d
TBkd
224

 Regression nonlinear_optimization
Since a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccu-
rate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high
precision arithmetic is recommended. Also, whenever the exact gradient can be easily provided, the gradient
should be passed to imsls_f_nonlinear_optimization using the optional argument
IMSLS_JACOBIAN.

Examples

Example 1

In this example, a data set is fitted to the nonlinear model function

#include <imsls.h>
#include <math.h>
float fcn(int n_independent, float x[], int n_parameters, float theta[]);
int main()
{
 int n_parameters = 1;
 int n_observations = 11;
 int n_independent = 1;
 float *theta_hat;
 float x[11] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
 0.7, 0.8, 0.9, 1.0};
 float y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94,
 1.00, 0.73, 0.44, 0.36, 0.02};
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 theta_hat = imsls_f_nonlinear_optimization(fcn, n_parameters,
 n_observations, n_independent, x, y,
 0);
 imsls_f_write_matrix("Theta Hat", 1, n_parameters, theta_hat, 0);
 imsls_free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return sin(theta[0]*x[0]);
}

Output

Theta Hat

yi = sin θ0xi + ɛi
225

 Regression nonlinear_optimization
 3.161

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. Smith and S. D. Dubey (1964),
"Some reliability problems in the chemical industry", Industrial Quality Control, 21 (2), 1964, pp. 64−70] A certain
product must have 50% available chlorine at the time of manufacture. When it reaches the customer 8 weeks
later, the level of available chlorine has dropped to 49%. It was known that the level should stabilize at about
30%. To predict how long the chemical would last at the customer site, samples were analyzed at different times.
It was postulated that the following nonlinear model should fit the data.

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is 0.30. Using the last data point (x =
42, y = 0.39) and θ0 = 0.30 and the above nonlinear equation, an estimate for θ1of 0.02 is obtained.

The constraints that θ0 ≥ = 0 and θ1 ≥ = 0 are also imposed. These are equivalent to requiring that the level of

available chlorine always be positive and never increase with time.

The Jacobian of the nonlinear model equation is also used.

#include <imsls.h>
#include <math.h>
float fcn(int n_independent, float x[], int n_parameters, float theta[]);
void jacobian(int n_independent, float x[], int n_parameters,
 float theta[], float fjac[]);
int main()
{
 int n_parameters = 2;
 int n_observations = 44;
 int n_independent = 1;
 float *theta_hat;
 float x[44] = {
 8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0,
 12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0,
 20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0,
 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0,
 36.0, 38.0, 38.0, 40.0, 42.0
 };
 float y[44] = {
 .49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45,
 .43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41,
 .4, .42, .4, .4, .41, .4, .41, .41, .4, .4, .4, .38, .41,
 .4, .4, .41, .38, .4, .4, .39, .39
 };

yi = θ0 + 0.49 − θ0 e
−θ1 xi−8

+ ɛi
226

 Regression nonlinear_optimization
 float guess[2] = {0.30, 0.02};
 float xlb[2] = {0.0, 0.0};
 float sse;
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 theta_hat =
 imsls_f_nonlinear_optimization(fcn, n_parameters, n_observations,
 n_independent, x, y,
 IMSLS_THETA_GUESS, guess,
 IMSLS_SIMPLE_LOWER_BOUNDS, xlb,
 IMSLS_JACOBIAN, jacobian,
 IMSLS_SSE, &sse,
 0);
 imsls_f_write_matrix("Theta Hat", 1, 2, theta_hat, 0);
 imsls_free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return theta[0] + (0.49-theta[0])*exp(-theta[1]*(x[0]-8.0));
}

void jacobian(int n_independent, float x[], int n_parameters,
 float theta[], float fjac[])
{
 fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0));
 fjac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0));
}

Output

 Theta Hat
 1 2
 0.3901 0.1016

Fatal Errors
IMSLS_BAD_CONSTRAINTS_1 The equality constraints are inconsistent.

IMSLS_BAD_CONSTRAINTS_2 The equality constraints and the bounds on the vari-
ables are found to be inconsistent.

IMSLS_BAD_CONSTRAINTS_3 No vector “theta” satisfies all of the constraints. Spe-
cifically, the current active constraints prevent any
change in “theta” that reduces the sum of constraint
violations.
227

 Regression nonlinear_optimization
IMSLS_BAD_CONSTRAINTS_4 The variables are determined by the equality
constraints.

IMSLS_TOO_MANY_ITERATIONS_1 Number of function evaluations exceeded “maxfcn”
= #.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
228

 Regression Lnorm_regression
Lnorm_regression
Fits a multiple linear regression model using either the Least Absolute Value (L1), Least Lp norm (Lp), or Least

Maximum Value (Minimax or L∞) method of multiple linear regression.

Synopsis
#include <imsls.h>
float *imsls_f_Lnorm_regression (int n_rows, int n_independent, float x[], float y[], ..., 0)

The type double function is imsls_d_Lnorm_regression.

Required Arguments
int n_rows (Input)

Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows × n_independent containing the independent (explanatory) variables(s).
The i-th column of x contains the i-th independent variable.

float y[] (Input)
Array of size n_rows containing the dependent (response) variable.

Return Value
imsls_f_Lnorm_regression returns a pointer to an array of length n_independent + 1 containing a
least absolute value solution for the regression coefficients. The estimated intercept is the initial component of
the array, where the i-th component contains the regression coefficients for the i-th dependent variable. If the
optional argument IMSLS_NO_INTERCEPT is used then the (i-1)-stcomponent contains the regression coeffi-
cients for the i-th dependent variable. imsls_f_Lnorm_regression returns the Lpnorm or least maximum

value solution for the regression coefficients when appropriately specified in the optional argument list.
229

 Regression Lnorm_regression
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_Lnorm_regression (int n_rows, int n_independent, float x[], float y[],

IMSLS_METHOD_LAV, or
IMSLS_METHOD_LLP, float p, or
IMSLS_METHOD_LMV,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_TOLERANCE, float tolerence,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_MAX_INTERATIONS
IMSLS_RANK, int *rank,
IMSLS_ITERATIONS, int *iterations,
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
IMSLS_SEA, float *sum_lav_error,
IMSLS_MAX_RESIDUAL, float *max_residual,
IMSLS_R, float **R_matrix,
IMSLS_R_USER, floatR_matrix[],
IMSLS_DEGREES_OF_FREEDOM, float df_error,
IMSLS_SCALE, float *square_of_scale,
IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual,
IMSLS_EPS, float epsilon,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_METHOD_LAV (Input)

or

IMSLS_METHOD_LLP, float p (Input)

or
230

 Regression Lnorm_regression
IMSLS_METHOD_LMV, (Input)
By default (or if IMSLS_METHOD_LAV is specified) the function fits a multiple linear regression
model using the least absolute values criterion.

IMSLS_METHOD_LLP requires the argument p, for , and fits a multiple linear regression
model using the Lpnorm criterion.

IMSLS_METHOD_LMV fits a multiple linear regression model using the minimax criterion.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Leading dimension of x exactly as specified in the dimension statement in the calling program.

IMSLS_INTERCEPT (Input)

or

IMSLS_NO_INTERCEPT, (Input)
IMSLS_INTERCEPT is the default where the fitted value for observation i is

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the intercept term

is omitted from the model and the return value from regression is a pointer to an array of length
n_independent.

IMSLS_TOLERANCE, float tolerence (Input)
Tolerance used in determining linear dependence.
Tolerance = 100 × imsls_f_machine(4) is the default.

For more details see Chapter 15,Utilities function imsls_f_machine.

IMSLS_WEIGHTS, floatweights[] (Input)
Array of size n_rows containing the weights for the independent (explanatory) variable.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of size n_rows containing the frequencies for the independent (explanatory) variable.

IMSLS_MAX_ITERATIONS, int *iterations (Input)
Maximum number of iterations allowed when using the multiple linear regression method.
IMSLS_MAX_ITERATIONS is only applicable if IMSLS_METHOD_LLP is specified.

Default = 100

p ≥ 1

β^ 0 + β
^
1x1 + ... + β

^
kxk

β^ 0
231

 Regression Lnorm_regression
IMSLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *rank.

IMSLS_ITERATIONS, int *iterations (Output)
Number of iterations performed.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data containing NaN (not a number) for the dependent or independent variables.
If a row of data contains NaN for any of these variables, that row is excluded from the computations.

IMSLS_SEA, float sum_lav_error (Output)
Sum of the absolute value of the errors. IMSLS_SEA is only applicable if IMSLS_METHOD_LAV is
also specified.

IMSLS_MAX_RESIDUAL, float max_residual (Output)
Magnitude of the largest residual. IMSLS_MAX_RESIDUAL is only applicable if
IMSLS_METHOD_LMV is specified.

IMSLS_R, float **R_matrix (Output)
Upper triangular matrix of dimension (number of coefficients by number of coefficients) containing
the R matrix from a QR decomposition of the matrix of regressors. IMSLS_R is only applicable if
IMSLS_METHOD_LLP is specified.

IMSLS_R_USER, float R_matrix[] (Output)
Storage for array R_matrix is provided by the user. See IMSLS_R.

IMSLS_DEGREES_OF_FREEDOM, float df_error (Output)
Sum of the frequencies minus *rank. In least squares fit (p=2) df_error is called the degrees of
freedom of error. IMSLS_DEGREES_OF_FREEDOM is only applicable if IMSLS_METHOD_LLP is
specified.

IMSLS_RESIDUALS, float **residual (Output)
Address of a pointer to an array of length n_rows (equal to the number of observations) containing
the residuals. IMSLS_RESIDUALS is only applicable if IMSLS_METHOD_LLP is specified.

IMSLS_RESIDUALS_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUALS.

IMSLS_SCALE, float *square_of_scale (Output)
Square of the scale constant used in an Lp analysis. An estimated asymptotic variance-covariance
matrix of the regression coefficients is square_of_scale × (RTR)-1. IMSLS_SCALE is only appli-
cable if IMSLS_METHOD_LLP is specified.
232

 Regression Lnorm_regression
IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual (Output)
Lpnorm of the residuals. IMSLS_RESIDUALS_LP_NORM is only applicable if
IMSLS_METHOD_LLP is specified.

IMSLS_EPS, float epsilon (Input)
Convergence criterion. If the maximum relative difference in residuals from the k-th to (k+1)-st iter-
ations is less than epsilon, convergence is declared.

Default: Epsilon = 100 × machine(4). IMSLS_EPS is only applicable if IMSLS_METHOD_LLP
is specified.

IMSLS_RETURN_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user. See Return Value.

Description

Least Absolute Value Criterion

Function imsls_f_Lnorm_regression computes estimates of the regression coefficients in a multiple lin-
ear regression model. For optional argument IMSLS_LAV (default), the criterion satisfied is the minimization of
the sum of the absolute values of the deviations of the observed response yi from the fitted response

for a set on n observations. Under this criterion, known as the L1 or LAV (least absolute value) criterion, the

regression coefficient estimates minimize

The estimation problem can be posed as a linear programming problem. The special nature of the problem, how-
ever, allows for considerable gains in efficiency by the modification of the usual simplex algorithm for linear
programming. These modifications are described in detail by Barrodale and Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares solution prior to the invocation of
IMSLS_LAV. This is particularly useful when a least-squares solution has already been computed. The proce-
dure is as follows:

1. Fit the model using least squares and compute the residuals from this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model using IMSLS_LAV.

3. Add the two estimated regression coefficient vectors from Steps 1 and 2. The result is an L1 solution.

ŷi

∑
i=0

n−1

| yi − ŷi |
233

 Regression Lnorm_regression
When multiple solutions exist for a given problem, option IMSLS_LAV may yield different estimates of the
regression coefficients on different computers, however, the sum of the absolute values of the residuals should
be the same (within rounding differences). The informational error indicating nonunique solutions may result
from rounding accumulation. Conversely, because of rounding the error may fail to result even when the problem
does have multiple solutions.

Lp Norm Criterion

Optional argument IMSLS_LLP computes estimates of the regression coefficients in a multiple linear regres-
sion model y = Xβ + ɛ under the criterion of minimizing the Lp norm of the deviations for i = 0, ..., n-1 of the

observed response yi from the fitted response

for a set on n observations and for p ≥ 1. For the case when IMSLS_WEIGHTS and IMSLS_FREQUENCIES
are not supplied, the estimated regression coefficient vector,

(output in coefficients[]) minimizes the Lp norm

The choice p = 1 yields the maximum likelihood estimate for β when the errors have a Laplace distribution. The
choice p = 2 is best for errors that are normally distributed. Sposito (1989, pages 36−40) discusses other reason-
able alternatives for p based on the sample kurtosis of the errors.

Weights are useful if the errors in the model have known unequal variances

In this case, the weights should be taken as

Frequencies are useful if there are repetitions of some observations in the data set. If a single row of data corre-
sponds to ni observations, set the frequency fi = ni. In general, IMSLS_LLP minimizes the Lp norm

ŷi

β^

∑
i=0

n−1
∣yi − ŷi∣

P
1/p

σi
2

wi = 1 / σi
2

234

 Regression Lnorm_regression
The asymptotic variance-covariance matrix of the estimated regression coefficients is given by

where R is from the QR decomposition of the matrix of regressors (output in R-Matrix). An estimate of λ2 is
output in square_of_scale.

In the discussion that follows, we will first present the algorithm with frequencies and weights all taken to be one.
Later, we will present the modifications to handle frequencies and weights different from one.

Option call IMSLS_LLP uses Newton’s method with a line search for p > 1.25 and, for p ≤ 1.25, uses a modifica-
tion due to Ekblom (1973, 1987) in which a series of perturbed problems are solved in order to guarantee
convergence and increase the convergence rate. The cutoff value of 1.25 as well as some of the other implemen-
tation details given in the remaining discussion were investigated by Sallas (1990) for their effect on CPU times.

In each case, for the first iteration a least-squares solution for the regression coefficients is computed using rou-
tine imsls_f_regression. If p = 2, the computations are finished. Otherwise, the residuals from the k-th
iteration,

are used to compute the gradient and Hessian for the Newton step for the (k + 1)-st iteration for minimizing the
p-th power of the Lp norm. (The exponent 1/p in the Lp norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the gradient and Hessian at the (k + 1)-
st iteration depend upon

and

In the case 1.25 < p < 2 and

∑
i=0

n−1

f i | wi yi − ŷi |
p
1/p

asy.var β^ = λ2 RTR
−1

ei
k
= yi − ŷi

k

zi
k+1

= ∣ei
k ∣

p−1
sign ei

k

vi
k+1

= ∣ei
k ∣

p−2
235

 Regression Lnorm_regression
and the Hessian are undefined; and we follow the recommendation of Merle and Spath (1974). Specifically, we
modify the definition of

to the following:

where equals 100 × imsls_f_machine(4) (or 100.0 × imsls_d_machine(4) for the double precision
version) times the square root of the residual mean square from the least-squares fit. (See routines
imsls_f_machine and imsls_d_machine which are documented in the section “Machine-Dependent
Constants” in Reference Material.)

Let be a diagonal matrix with diagonal entries

and let be a vector with elements

In order to compute the step on the (k + 1)-st iteration, the R from the QR decomposition of

is computed using fast Givens transformations. Let

denote the upper triangular matrix from the QR decomposition. The linear system

is solved for

ei
k
= 0, vi

k+1

vi
k+1

vi
k+1

=
τ p−2 if p < 2 and | ei k | < τ
| ei k |

p−2
otherwise

τ

ν
k+1

vi
k+1

z
k+1

zi
k+1

V
k+1 1/2

X

R
k+1

R
k+1 T

R
k+1
d
k+1

= XTz
k+1
236

 Regression Lnorm_regression
where is from the QR decomposition of . The step taken on the (k + 1)-st iteration is

The first attempted step on the (k + 1)-st iteration is with . If all of the

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, pages 528−529) for further
discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the predicted decrease in the p-th
power of the Lp norm of the residuals, a backtracking linesearch procedure is used. The backtracking procedure

uses a one-dimensional quadratic model to estimate the backtrack constant p. The value of p is constrained to be
no less that 0.1.

An approximate upper bound for p is 0.5. If after 10 successive backtrack attempts, α(k) = p1p2...p10 does not pro-

duce a step with a sufficient decrease, then imsls_f_Lnorm_regression issues a message with error code
5. For further details on the backtrack line-search procedure, see Dennis and Schnabel (1983, pages 126−127).

Convergence is declared when the maximum relative change in the residuals from one iteration to the next is less
than or equal to epsilon. The relative change

in the i-th residual from iteration k to iteration k + 1 is computed as follows:

where s is the square root of the residual mean square from the least-squares fit on the first iteration.

d
k+1

R
k+1 V

k+1
1/2

X

β^
(k+1)

= β^
(k)
+ α(k+1) 1

p − 1d
(k+1)

α
k+1

ei
k

δi
k+1

δi
k+1

=
0 if ei

k+1
= ei

k
= 0

∣ei
k+1

− ei
k ∣ / max ∣ei

k ∣,∣ei
k+1 ∣,s otherwise
237

 Regression Lnorm_regression
For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous procedure that incorporate Ekblom’s
(1973) results. A sequence of perturbed problems are solved with a successively smaller perturbation constant c.
On the first iteration, the least-squares problem is solved. This corresponds to an infinite c. For the second prob-
lem, c is taken equal to s, the square root of the residual mean square from the least-squares fit. Then, for the
(j + 1)-st problem, the value of c is computed from the previous value of c according to

Each problem is stated as

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend upon

and

where

The linear system [R(k+1)]TR(k+1)d(k+1)= XTz(k+1) is solved for d(k+1) where R(k+1) is from the QR decomposition of

[V (k+1)]1?2X. The step taken on the (k + 1)-st iteration is

where the first attempted step is with α(k+1) = 1. If necessary, the backtracking line-search procedure discussed
earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence epsilon equal to

max(epsilon, 10−j) where j = 1, 2, 3, ... indexes the problems (j = 0 corresponds to the least-squares problem).

After the convergence of a problem for a particular c, Ekblom’s (1987) extrapolation technique is used to com-

pute the initial estimate of β for the new problem. Let R(k),

c j+1 = c j / 10
5p−4

Minimize∑
i=0

n−1

ei
2 + c2

p/2

zi
k+1

= ei
k
ri
k

vi
k+1

= 1 +
p − 2 ei

k 2

ei
k 2

+ c2
ri
k

ri
k
= ei

k 2

+ c2
p−2 /2

β^
k+1

= β^
k
+ α

k+1
d
k+1
238

 Regression Lnorm_regression
and c be from the last iteration of the last problem. Let

and let t be the vector with elements ti. The initial estimate of β for the new problem with perturbation constant

0.01c is

where Δc = (0.01c − c) = −0.99c, and where d is the solution of the linear system

Convergence of the sequence of problems is declared when the maximum relative difference in residuals from
the solution of successive problems is less than epsilon.

The preceding discussion was limited to the case for which weights[i] = 1 and frequencies[i] = 1, i.e.,
the weights and frequencies are all taken equal to one. The necessary modifications to the preceding algorithm to
handle weights and frequencies not all equal to one are as follows:

1. Replace

in the definitions of

and ti.

2. Replace

These replacements have the same effect as multiplying the i-th row of X and y by

vi
k
, ei

k

ti =
p − 2 vi

k

ei
k 2

+ c2

β^
0
= β^

k
+ Δcd

R
k T

R
k
d = XTt

ei
k
by wi ei

k

zi
k+1
, vi

k+1
, δi

k+1

zi
k+1

by f i wi
1/2zi

k+1
,vi
k+1

by f iwivi
k+1
, and ti

k+1
by f i wi

1/2ti
k+1
239

 Regression Lnorm_regression
and repeating the row fi times except for the fact that the residuals returned by

imsls_f_Lnorm_regression are in terms of the original y and X.

Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because on output it corresponds to the

R from the initial QR decomposition for least squares. The formula for the estimate of λ2 depends on p.

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)

with

where z0.975 is the 97.5 percentile of the standard normal distribution, and where

are the ordered residuals where rank zero residuals are excluded. Note that

For p = 2, the estimator of λ2 is the customary least-squares estimator given by

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 1989)

wi

λ^
2
=

DFE e~
DFE−k+1 − e

~
k

2z0.975

2

k = DFE + k2 − z0.975
DFE
4

ɛ~ m m = 1,2, … DFE

DFE =∑
i=0

n−1 f i − rank

s2 = SSEDFE =
∑i=0
n−1 f iwi(yi − ŷi)

2

∑i=0
n−1 f i − rank
240

 Regression Lnorm_regression
with

Least Minimum Value Criterion (minimax)

Optional call IMSLS_LMV computes estimates of the regression coefficients in a multiple linear regression
model. The criterion satisfied is the minimization of the maximum deviation of the observed response yi from the

fitted response for a set on n observations. Under this criterion, known as the minimax or LMV (least maximum
value) criterion, the regression coefficient estimates minimize

The estimation problem can be posed as a linear programming problem. A dual simplex algorithm is appropriate,
however, the special nature of the problem allows for considerable gains in efficiency by modification of the dual
simplex iterations so as to move more rapidly toward the optimal solution. The modifications are described in
detail by Barrodale and Phillips (1975).

When multiple solutions exist for a given problem, IMSLS_LMV may yield different estimates of the regression
coefficients on different computers, however, the largest residual in absolute value should have the same abso-
lute value (within rounding differences). The informational error indicating nonunique solutions may result from
rounding accumulation. Conversely, because of rounding, the error may fail to result even when the problem
does have multiple solutions.

Examples

Example 1

A straight line fit to a data set is computed under the LAV criterion.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};

ω̂p
2 =

m2p−2
p − 1 mp−2

2

mr =
∑
i=0

n−1
f i| wi(yi − ŷi)|

∑
i=0

n−1
f i

r

y^ i

max
0 ≤ i ≤ n−1

∣yi − ŷi∣
241

 Regression Lnorm_regression
 float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
 float sea;
 int irank, iter, nrmiss;
 float *coefficients = NULL;

 coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
 IMSLS_SEA, &sea,
 IMSLS_RANK, &irank,
 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,0);
 printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
 printf("Rank of Regressors Matrix = %3d\n", irank);
 printf("Sum Absolute Value of Error = %8.4f\n", sea);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Rows Missing = %3d\n", nrmiss);
}

Output

B = 0.50 0.50
Rank of Regressors Matrix = 2
Sum Absolute Value of Error = 6.00000
Number of Iterations = 2
Number of Rows Missing = 0

Figure 2, Least Squares and Least Absolute Value Fitted Lines
242

 Regression Lnorm_regression
Example 2

Different straight line fits to a data set are computed under the criterion of minimizing the Lp norm by using p

equal to 1, 1.5, 2.0 and 2.5.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
 float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
 float p, tolerance, convergence_eps, square_of_scale, df_error;
 float Lp_norm_residual;
 float R_matrix[4], residuals[8];
 float *coefficients = NULL;
 int i, irank, iter, nrmiss;
 int n_row=2;
 int n_col=2;
 char *dashes=

 "---";
 tolerance = 100*imsls_f_machine(4);
 convergence_eps = 0.001;
 p = 1.0;
 for(i=0; i<4; i++)
 {

 coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
 IMSLS_METHOD_LLP, p,
 IMSLS_EPS, convergence_eps,
 IMSLS_RANK, &irank,
 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 IMSLS_R_USER, R_matrix,
 IMSLS_DEGREES_OF_FREEDOM, &df_error,
 IMSLS_RESIDUALS_USER, residuals,
 IMSLS_SCALE, &square_of_scale,
 IMSLS_RESIDUALS_LP_NORM, &Lp_norm_residual,
 0);

 printf("Coefficients = %6.2f\t%6.2f\n\n", coefficients[0],
 coefficients[1]);

 printf("Residuals = %6.2f\t%6.2f\t%6.2f\t%6.2f\n",
 residuals[0], residuals[1], residuals[2], residuals[3]);

 printf("\t%6.2f\t%6.2f\t%6.2f\t%6.2f\n\n",
 residuals[4], residuals[5], residuals[6], residuals[7]);

 printf("P = %5.3f\n", p);
 printf("Lp norm of the residuals = %5.3f\n", Lp_norm_residual);
 printf("Rank of Regressors Matrix = %3d\n", irank);
 printf("Degrees of Freedom Error = %5.3f\n", df_error);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Missing Values = %3d\n", nrmiss);
 printf("Square of Scale Constant = %5.3f\n", square_of_scale);
 imsls_f_write_matrix("R Matrix\n", n_row, n_col, R_matrix, 0);
 printf("%s\n\n", dashes);
 p += 0.5;

 }
}

243

 Regression Lnorm_regression
Output

Coefficients = 0.50 0.50
Residuals = -0.00 2.50 -1.50 0.50

 -0.50 0.50 -0.50 -0.00
P = 1.000
Lp norm of the residuals = 6.002
Rank of Regressors Matrix = 2
Degrees of Freedom Error = 6.000
Number of Iterations = 8
Number of Missing Values = 0
Square of Scale Constant = 6.248

 R Matrix
 1 2

1 2.828 8.485
2 0.000 3.464

Coefficients = 0.39 0.56
Residuals = 0.06 2.39 -1.50 0.50

 -0.55 0.45 -0.61 -0.16
P = 1.500
Lp norm of the residuals = 3.712
Rank of Regressors Matrix = 2
Degrees of Freedom Error = 6.000
Number of Iterations = 6
Number of Missing Values = 0
Square of Scale Constant = 1.059

 R Matrix
 1 2

1 2.828 8.485
2 0.000 3.464

Coefficients = -0.13 0.75
Residuals = 0.38 2.13 -1.38 0.63

 -0.63 0.38 -0.88 -0.63
P = 2.000
Lp norm of the residuals = 2.937
Rank of Regressors Matrix = 2
Degrees of Freedom Error = 6.000
Number of Iterations = 1
Number of Missing Values = 0
Square of Scale Constant = 1.438

 R Matrix
244

 Regression Lnorm_regression
 1 2
1 2.828 8.485
2 0.000 3.464

Coefficients = -0.44 0.87
Residuals = 0.57 1.96 -1.30 0.70

 -0.67 0.33 -1.04 -0.91
P = 2.500
Lp norm of the residuals = 2.540
Rank of Regressors Matrix = 2
Degrees of Freedom Error = 6.000
Number of Iterations = 4
Number of Missing Values = 0
Square of Scale Constant = 0.789

 R Matrix
 1 2

1 2.828 8.485
2 0.000 3.464

Figure 3, Various LP Fitted Lines
245

 Regression Lnorm_regression
Example 3

A straight line fit to a data set is computed under the LMV criterion.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float xx[] = {0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0};
 float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0};
 float max_residual;
 int irank, iter, nrmiss;
 float *coefficients = NULL;

 coefficients = imsls_f_Lnorm_regression(7, 1, xx, yy,
 IMSLS_METHOD_LMV,
 IMSLS_MAX_RESIDUAL, &max_residual,
 IMSLS_RANK, &irank,
 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 0);
 printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
 printf("Rank of Regressors Matrix = %3d\n", irank);
 printf("Magnitude of Largest Residual = %8.4f\n", max_residual);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Rows Missing = %3d\n", nrmiss);
}

Output

 B = 1.00 1.00
 Rank of Regressors Matrix = 2
 Magnitude of Largest Residual = 1.00000
 Number of Iterations = 3
 Number of Rows Missing = 0
246

 Regression Lnorm_regression
Figure 4, Least Squares and Least Maximum Value
247

 Regression pls_regression
pls_regression
Performs partial least squares (PLS) regression for one or more response variables and one or more predictor
variables.

Synopsis
#include <imsls.h>
float *imsls_f_pls_regression (int ny, int h, float y[], int nx, int p, float x[], ..., 0)

The type double function is imsls_d_pls_regression.

Required Arguments
int ny (Input)

The number of rows of y.

int h (Input)
The number of response variables.

float y[] (Input)
Array of length ny × h containing the values of the responses.

int nx (Input)
The number of rows of x.

int p (Input)
The number of predictor variables.

float x[] (Input)
Array of length nx × p containing the values of the predictor variables.

Return Value
A pointer to the array of length ix × iy containing the final PLS regression coefficient estimates for the mean-
centered variables, where ix ≤ p is the number of predictor variables in the model, and iy ≤ h is the number of
response variables. To release this space, use imsls_free. If the estimates cannot be computed, NULL is
returned.
248

 Regression pls_regression
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_pls_regression (int ny, int h, float y[], int nx, int p, float x[],

IMSLS_N_OBSERVATIONS, int nobs,
IMSLS_Y_INDICES, int iy, int iyind[],
IMSLS_X_INDICES, int ix, int ixind[],
IMSLS_N_COMPONENTS, int ncomps,
IMSLS_CROSS_VALIDATATION, int cv,
IMSLS_N_FOLD, int k,
IMSLS_SCALE, int scale,
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_OPT_N_COMPONENTS, int *optcomps,
IMSLS_PREDICTED, float **yhat,
IMSLS_PREDICTED_USER, float yhat[],
IMSLS_RESIDUALS, float **resids,
IMSLS_RESIDUALS_USER, float resids[],
IMSLS_STD_ERRORS, float **se,
IMSLS_STD_ERRORS_USER, float se[],
IMSLS_PRESS, float **press,
IMSLS_PRESS_USER, float press[],
IMSLS_X_SCORES, float **xscrs,
IMSLS_X_SCORES_USER, float xscrs[],
IMSLS_Y_SCORES, float **yscrs,
IMSLS_Y_SCORES_USER, float yscrs[],
IMSLS_X_LOADINGS, float **xldgs,
IMSLS_X_LOADINGS_USER, float xldgs[],
IMSLS_Y_LOADINGS, float **yldgs,
IMSLS_Y_LOADINGS_USER, float yldgs[],
IMSLS_WEIGHTS, float **wts,
IMSLS_WEIGHTS_USER, float wts[],
IMSLS_STANDARD_COEF, float **standard_coef,
IMSLS_STANDARD_COEF_USER, float standard_coef[],
IMSLS_INTERCEPT_TERMS, float **intercepts,
IMSLS_INTERCEPT_TERMS_USER, float intercepts[],
IMSLS_PCT_VAR, float **pctvar,
IMSLS_PCT_VAR_USER, float pctvar[],
249

 Regression pls_regression
IMSLS_RETURN_USER, float coef[],
0)

Optional Arguments
IMSLS_N_OBSERVATIONS, int nobs (Input)

Positive integer specifying the number of observations to be used in the analysis.

Default: nobs = min(ny, nx).

IMSLS_Y_INDICES, int iy, int iyind[] (Input)
Argument iyind is an array of length iy containing column indices of y specifying which response
variables to use in the analysis. Each element in iyind must be less than or equal to h-1.

Default: iy = h, iyind = 0, 1, …, h-1.

IMSLS_X_INDICES, int ix, int ixind[] (Input)
Argument ixind is an array of length ix containing column indices of x specifying which predictor
variables to use in the analysis. Each element in ixind must be less than or equal to p-1.

Default: ix = p, ixind = 0, 1, …, p-1.

IMSLS_N_COMPONENTS, int ncomps (Input)
The number of PLS components to fit. ncomps ≤ ix.

Default: ncomps = ix.

IMSLS_CROSS_VALIDATION, int cv (Input)
If cv = 0, the function fits only the model specified by ncomps. If cv = 1, the function performs K-fold
cross validation to select the number of components.

Default: cv = 1.

IMSLS_N_FOLD, int k (Input)
The number of folds to use in K-fold cross validation. k must be between 2 and nobs, inclusive. k is
ignored if cv = 0 is used.

Default: k = 5.

IMSLS_SCALE, int scale (Input)
If scale = 1, y and x are centered and scaled to have mean 0 and standard deviation of 1. If
scale = 0, y and x are centered to have mean 0 but are not scaled.

Default: scale = 0.

If cv = 1 is used, models with 1 up to ncomps components are tested using cross-validation. The
model with the lowest predicted residual sum of squares is reported.
250

 Regression pls_regression
IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0.

IMSLS_OPT_N_COMPONENTS, int *optcomps (Output)
The number of components of the optimal model. The value is identical with ncomps, if cv = 0 is
used.

IMSLS_PREDICTED, float **yhat (Output)
Argument yhat is the address of an array of length nobs × iy, containing the predicted values for
the response variables using the final values of the coefficients.

IMSLS_PREDICTED_USER, float yhat[] (Output)
Storage for array yhat is provided by the user. See IMSLS_PREDICTED.

IMSLS_RESIDUALS, float **resids (Output)
Argument resids is the address of an array of length nobs × iy, containing residuals of the final
fit for each response variable.

IMSLS_RESIDUALS_USER, float resids[] (Output)
Storage for array resids is provided by the user. See IMSLS_RESIDUALS.

IMSLS_STD_ERRORS, float **se (Output)
Argument se is the address of an array of length ix × iy, containing the standard errors of the PLS
coefficients.

IMSLS_STD_ERRORS_USER, float se[] (Output)
Storage for array se is provided by the user. See IMSLS_STD_ERRORS.

IMSLS_PRESS, float **press (Output)
Argument press is the address of an array of length ncomps × iy, containing the predicted resid-
ual error sum of squares obtained by cross-validation for each model of size j= 1, … , ncomps
components. The argument press is ignored if cv = 0 is used for IMSLS_CROSS_VALIDATION.

IMSLS_PRESS_USER, float press[] (Output)
Storage for array press is provided by the user. See IMSLS_PRESS.

iprint Action

0 No Printing.

1 Prints final results only.

2 Prints intermediate and final results.
251

 Regression pls_regression
IMSLS_X_SCORES, float **xscrs (Output)
Argument xscrs is the address of an array of length nobs × ncomps containing X-scores.

IMSLS_X_SCORES_USER, float xscrs[] (Output)
Storage for array xscrs is provided by the user. See IMSLS_X_SCORES.

IMSLS_Y_SCORES, float **yscrs (Output)
Argument yscrs is the address of an array of length nobs × ncomps containing Y-scores.

IMSLS_Y_SCORES_USER, float yscrs[] (Output)
Storage for array yscrs is provided by the user. See IMSLS_Y_SCORES.

IMSLS_X_LOADINGS, float **xldgs (Output)
Argument xldgs is the address of an array of length ix × ncomps, containing X-loadings.

IMSLS_X_LOADINGS_USER, float xldgs[] (Output)
Storage for array xldgs is provided by the user. See IMSLS_X_LOADINGS.

IMSLS_Y_LOADINGS, float **yldgs (Output)
Argument yldgs is the address of an array of length iy × ncomps, containing Y-loadings.

IMSLS_Y_LOADINGS_USER, float yldgs[] (Output)
Storage for array yldgs is provided by the user. See IMSLS_Y_LOADINGS.

IMSLS_WEIGHTS, float **wts (Output)
Argument wts is the address of an array of length ix × ncomps, containing the weight vectors.

IMSLS_WEIGHTS_USER, float wts[] (Output)
Storage for array wts is provided by the user. See IMSLS_WEIGHTS.

IMSLS_STANDARD_COEF, float **standard_coef (Output)
Argument standard_coef is the address of an array of length ix × iy, containing the final PLS
regression coefficient estimates for the centered (if scale = 0) or standardized variables (if
scale = 1). The contents of standard_coef and coef are identical if scale = 0 is used.

IMSLS_STANDARD_COEF_USER, float standard_coef[] (Output)
Storage for array standard_coef is provided by the user. See IMSLS_STANDARD_COEF.

IMSLS_INTERCEPT_TERMS, float **intercepts (Output)
Argument intercepts is the address of an array of length iy, containing the intercept terms of
the PLS regression.

IMSLS_INTERCEPT_TERMS_USER, float intercepts[] (Output)
Storage for array intercepts is provided by the user. See IMSLS_INTERCEPT_TERMS.
252

 Regression pls_regression
IMSLS_PCT_VAR, float **pctvar (Output)
Argument pctvar is the address of an array of length 2 × ncomps, containing the percentage of
variance explained by the model in its first optcomps columns. The first row contains the percent-
age of variance of x explained by each component, the second row the percentage of variance of y
explained by each component.

IMSLS_PCT_VAR_USER, float pctvar[] (Output)
Storage for array pctvar is provided by the user. See IMSLS_PCT_VAR.

IMSLS_RETURN_USER, float coef[] (Output)
If specified, the final PLS regression coefficient estimates are stored in array coef provided by the
user.

Description
Function imsls_f_pls_regression performs partial least squares regression for a response matrix
Y(ny × h) and a set of p explanatory variables, X(nx × p). imsls_f_pls_regression finds linear combina-

tions of the predictor variables that have highest covariance with Y. In so doing, imsls_f_pls_regression
produces a predictive model for Y using components (linear combinations) of the individual predictors. Other
names for these linear combinations are scores, factors, or latent variables. Partial least squares regression is an
alternative method to ordinary least squares for problems with many, highly collinear predictor variables. For fur-
ther discussion see, for example, Abdi (2010), and Frank and Friedman (1993).

In Partial Least Squares (PLS), a score, or component matrix, T, is selected to represent both X and Y as in,

and

The matrices P and Q are the least squares solutions of X and Y regressed on T.

That is,

and

X = TPT + Ex

Y = TQT + Ey

PT = TTT
−1
TTX
253

 Regression pls_regression
The columns of T in the above relations are often called X-scores, while the columns of P are the X-loadings. The

columns of the matrix U in Y = UQT + G are the corresponding Y scores, where G is a residual matrix and Q, as
defined above, contains the Y-loadings.

Restricting T to be linear in X, the problem is to find a set of weight vectors (columns of W) such that T = XW pre-
dicts both X and Y reasonably well.

Formally, W = [w1, ..., wm-1, wm, ...wM] where each wj is a column vector of length p, M ≤ p is the number of com-

ponents, and where the m-th partial least squares (PLS) component wm solves:

where and is the Euclidean norm. For further details see Hastie, et. al., pages 80-82
(2001).

That is, wm is the vector which maximizes the product of the squared correlation between Y and Xα and the vari-

ance of Xα, subject to being orthogonal to each previous weight vector left multiplied by S. The PLS regression

coefficients arise from

Algorithms to solve the above optimization problem include NIPALS (nonlinear iterative partial least squares)
developed by Herman Wold (1966, 1985) and numerous variations, including the SIMPLS algorithm of de Jong
(1993). imsls_f_pls_regression implements the SIMPLS method. SIMPLS is appealing because it finds a
solution in terms of the original predictor variables, whereas NIPALS reduces the matrices at each step. For uni-
variate Y it has been shown that SIMPLS and NIPALS are equivalent (the score, loading, and weights matrices will
be proportional between the two methods).

By default, imsls_f_pls_regression searches for the best number of PLS components using K-fold cross-
validation. That is, for each M = 1, 2,…, p, imsls_f_pls_regression estimates a PLS model with M compo-
nents using all of the data except a hold-out set of size roughly equal to nobs/k. Using the resulting model
estimates, imsls_f_pls_regression predicts the outcomes in the hold-out set and calculates the pre-
dicted residual sum of squares (PRESS). The procedure then selects the next hold-out sample and repeats for a
total of K times (i.e., folds). For further details see Hastie, et. al., pages 241-245 (2001).

QT = TTT
−1
TTY

maxα Corr
2(Y ,Xα)Var(Xα)
s.t.

∥α∥ = 1
αTSwl = 0, l = 1, ..., m − 1

S = XTX ∣∣α∣∣ = αTα

β
^

PLS

Y = X β^PLS + Ey = TQ
T + Ey = XWQ

T + Ey , or β
^
PLS = WQ

T

254

 Regression pls_regression
For each response variable, imsls_f_pls_regression returns results for the model with lowest PRESS.
The best model (the number of components giving lowest PRESS), generally will be different for different
response variables.

When requested via the optional argument IMSLS_STD_ERRORS, imsls_f_pls_regression calculates
modified jackknife estimates of the standard errors as described in Martens and Martens (2000).

Comments
1. imsls_f_pls_regression defaults to leave-one-out cross-validation when there are too few

observations to form K folds in the data. The user is cautioned that there may be too few observa-
tions to make strong inferences from the results.

2. This implementation of imsls_f_pls_regression does not handle missing values. The user
should remove missing values or NaN’s from the input data.

Examples

Example 1

The following artificial data set is provided in de Jong (1993).

The first call to imsls_f_pls_regression fixes the number of components to 3 for both response vari-
ables, and the second call performs K-fold cross validation. Note that because the number of folds is equal to n,
imsls_f_pls_regression performs leave-one-out (LOO) cross-validation.

#include <imsls.h>
#include <stdio.h>
#define H 2
#define N 4
#define P 3

X =

−4 2 1
−4 −2 −1
4 2 −1
4 −2 1

Y =

430 −94
−436 12
−361 −22
367 104
255

 Regression pls_regression
int main() {
 int iprint=1, ncomps=3;
 float x[N][P] = {
 -4.0, 2.0, 1.0,
 -4.0, -2.0, -1.0,
 4.0, 2.0, -1.0,
 4.0, -2.0, 1.0
 };
 float y[N][H] = {
 430.0, -94.0,
 -436.0, 12.0,
 -361.0, -22.0,
 367.0, 104.0
 };
 float *coef=NULL, *yhat=NULL, *se=NULL;
 float *coef2=NULL, *yhat2=NULL, *se2=NULL;
 /* Print out informational error. */
 imsls_error_options(IMSLS_SET_PRINT, IMSLS_ALERT, 1, 0);
 printf("Example 1a: no cross-validation, request %d components.\n",
 ncomps);
 coef = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
 IMSLS_N_COMPONENTS, ncomps,
 IMSLS_CROSS_VALIDATION, 0,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_PREDICTED, &yhat,
 IMSLS_STD_ERRORS, &se,
 0);
 printf("\nExample 1b: cross-validation\n");
 coef2 = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
 IMSLS_N_FOLD, N,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_PREDICTED, &yhat2,
 IMSLS_STD_ERRORS, &se2,
 0);
}

Output
Example 1a: no cross-validation, request 3 components.
 PLS Coeff
 1 2
1 0.8 10.3
2 17.3 -29.0
3 398.5 5.0
 Predicted Y
 1 2
1 430 -94
2 -436 12
3 -361 -22
4 367 104
 Std. Errors
 1 2
1 131.5 5.1
2 263.0 10.3
256

 Regression pls_regression
3 526.0 20.5
*** WARNING Error IMSLS_PLS_REGRESSION_CONVERGED from imsls_f_pls_regression.
*** The PLS regression algorithm converged in 2 iterations, but the
*** number of requested PLS components is 3. The number of computed
*** PLS components is reduced to 2.

Example 1b: cross-validation
Cross-validated results for response 1:
Comp PRESS
1 3860649
2 5902575
3 5902575
The best model has 1 component(s).
Cross-validated results for response 2:
Comp PRESS
1 36121
2 8984
3 8984
The best model has 2 component(s).
 PLS Coeff
 1 2
1 6.0 -0.2
2 66.1 -2.2
3 361.4 -11.8
 Predicted Y
 1 2
1 469.5 -15.4
2 -517.6 17.0
3 -205.3 6.7
4 253.4 -8.3
 Std. Errors
 1 2
1 131.2 18.5
2 114.8 10.1
3 561.5 22.5
*** WARNING Error IMSLS_PLS_REGRESSION_CONVERGED from imsls_f_pls_regression.
*** The PLS regression algorithm converged in 2 iterations, but the
*** number of requested PLS components is 3. The number of computed
*** PLS components is reduced to 2.

Example 2

The data, as appears in S. Wold et al. (2001), is a single response variable, the “free energy of the unfolding of a
protein”, while the predictor variables are 7 different, highly correlated measurements taken on 19 amino acids.
257

 Regression pls_regression
#include <imsls.h>
#include <stdio.h>
#define H 1
#define N 19
#define P 7
int main() {
 int iprint=2, ncomps=7;
 float x[N][P] = {
 0.23, 0.31, -0.55, 254.2, 2.126, -0.02, 82.2,
 -0.48, -0.6, 0.51, 303.6, 2.994, -1.24, 112.3,
 -0.61, -0.77, 1.2, 287.9, 2.994, -1.08, 103.7,
 0.45, 1.54, -1.4, 282.9, 2.933, -0.11, 99.1,
 -0.11, -0.22, 0.29, 335.0, 3.458, -1.19, 127.5,
 -0.51, -0.64, 0.76, 311.6, 3.243, -1.43, 120.5,
 0.0, 0.0, 0.0, 224.9, 1.662, 0.03, 65.0,
 0.15, 0.13, -0.25, 337.2, 3.856, -1.06, 140.6,
 1.2, 1.8, -2.1, 322.6, 3.35, 0.04, 131.7,
 1.28, 1.7, -2.0, 324.0, 3.518, 0.12, 131.5,
 -0.77, -0.99, 0.78, 336.6, 2.933, -2.26, 144.3,
 0.9, 1.23, -1.6, 336.3, 3.86, -0.33, 132.3,
 1.56, 1.79, -2.6, 366.1, 4.638, -0.05, 155.8,
 0.38, 0.49, -1.5, 288.5, 2.876, -0.31, 106.7,
 0.0, -0.04, 0.09, 266.7, 2.279, -0.4, 88.5,
 0.17, 0.26, -0.58, 283.9, 2.743, -0.53, 105.3,
 1.85, 2.25, -2.7, 401.8, 5.755, -0.31, 185.9,
 0.89, 0.96, -1.7, 377.8, 4.791, -0.84, 162.7,
 0.71, 1.22, -1.6, 295.1, 3.054, -0.13, 115.6
 };
 float y[N][H] = {8.5, 8.2, 8.5, 11.0, 6.3, 8.8, 7.1, 10.1,
 16.8, 15.0, 7.9, 13.3, 11.2, 8.2, 7.4, 8.8, 9.9, 8.8, 12.0};
 float *coef=NULL, *yhat=NULL, *se=NULL;
 float *coef2=NULL, *yhat2=NULL, *se2=NULL;
 printf("Example 2a: no cross-validation, request %d components.\n",
 ncomps);
 coef = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
 IMSLS_N_COMPONENTS, ncomps,
 IMSLS_CROSS_VALIDATION, 0,
 IMSLS_SCALE, 1,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_PREDICTED, &yhat,
 IMSLS_STD_ERRORS, &se,
 0);
 printf("\nExample 2b: cross-validation\n");
 coef2 = imsls_f_pls_regression(N, H, &y[0][0], N, P, &x[0][0],
 IMSLS_SCALE, 1,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_PREDICTED, &yhat2,
 IMSLS_STD_ERRORS, &se2,
 0);
}

Output

Example 2a: no cross-validation, request 7 components.
258

 Regression pls_regression

Standard PLS Coefficients
 1
 -5.468
 1.668
 0.624
 1.424
 -2.550
 4.870
 4.871

 PLS Coeff
 1
 -20.07
 4.63
 1.42
 0.09
 -7.27
 20.93
 0.46

Predicted Y
 1
 9.37
 7.30
 8.10
 12.02
 8.79
 6.76
 7.24
 10.45
 15.79
 14.36
 8.41
 9.94
 11.52
 8.64
 8.22
 8.40
 11.13
 8.97
 12.39
Variance Analysis
===
Pctge of Y variance explained
Component Cum. Pctge
1 42.3
2 45.5
3 61.2
4 68.5
5 71.6
6 78.7
7 78.8
===
Pctge of X variance explained
Component Cum. Pctge
1 64.2
2 97.7
3 99.0
259

 Regression pls_regression
4 99.5
5 99.8
6 99.9
7 100.0
Std. Errors
 1
 13.13
 6.72
 1.84
 0.20
 4.68
 14.30
 0.33
Example 2b: cross-validation
Cross-validated results for response 1:
Comp PRESS
1 167.5
2 162.9
3 166.5
4 168.8
5 264.6
6 221.1
7 184.7
The best model has 2 component(s).

Standard PLS Coefficients
 1
 0.1598
 0.2163
 -0.1673
 0.0095
 -0.0136
 0.1649
 0.0294

 PLS Coeff
 1
 0.5867
 0.6000
 -0.3797
 0.0006
 -0.0388
 0.7089
 0.0028

Predicted Y
 1
 9.86
 7.71
 7.35
 11.02
 8.32
 7.46
 9.32
 9.00
260

 Regression pls_regression
 12.09
 12.09
 6.59
 11.11
 12.46
 10.27
 9.02
 9.51
 12.82
 10.69
 11.09
Variance Analysis
===
Pctge of Y variance explained
Component Cum. Pctge
1 42.3
2 45.5
===
Pctge of X variance explained
Component Cum. Pctge
1 64.2
2 97.7
Std. Errors
 1
 0.2615
 0.2029
 0.1302
 0.0041
 0.2078
 0.4279
 0.0064

Warning Errors
IMSLS_PLS_REGRESSION_CONVERGED The PLS regression algorithm converged in # itera-

tions, but the number of requested PLS components
is #. The number of computed PLS components is
reduced to #.
261

 Correlation and Covariance Functions
Correlation and Covariance

Functions
Variances, Covariances, and Correlations

Variance-covariance or correlation matrix . covariances 264
Partial correlations and covariances . partial_covariances 273
Pooled covariance matrix . pooled_covariances 279
Robust estimate of covariance matrix . robust_covariances 286
262

 Correlation and Covariance Usage Notes
Usage Notes
This chapter is concerned with measures of correlation for bivariate data as follows:

 The usual multivariate measures of correlation and covariance for continuous random variables
are produced by function imsls_f_covariances.

 For data grouped by some auxiliary variable, function imsls_f_pooled_covariances can be
used to compute the pooled covariance matrix along with the means for each group.

 Partial correlations or covariances are computed by imsls_f_partial_covariances.

 Function imsls_f_robust_covariances computes robust M-estimates of the mean and
covariance matrix from a matrix of observations.
263

 Correlation and Covariance covariances
covariances

more...

Computes the sample variance-covariance or correlation matrix.

Synopsis
#include <imsls.h>

float *imsls_f_covariances (int n_rows, int n_variables, float x[], ..., 0)

The type double function is imsls_d_covariances.

Required Arguments
int n_rows (Input)

Number of rows in x.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_rows × n_variables containing the data.

Return Value
If no optional arguments are used, imsls_f_covariances returns a pointer to an
n_variables × n_variables array containing the sample variance-covariance matrix of the observations.
The rows and columns of this array correspond to the columns of x.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_covariances (int n_rows, int n_variables, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
264

 Correlation and Covariance covariances
IMSLS_MISSING_VALUE_METHOD, int missing_value_method,
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix,
IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[],
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or

IMSLS_CORRELATION_MATRIX, or

IMSLS_STDEV_CORRELATION_MATRIX,

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim,

IMSLS_FREQUENCIES, float frequencies[],

IMSLS_WEIGHTS, float weights[],

IMSLS_SUM_WEIGHTS, float *sumwt,

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float covariance[],

0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of array x.

Default: x_col_dim = n_variables
IMSLS_MISSING_VALUE_METHOD, int missing_value_method (Input)

Method used to exclude missing values in x from the computations, where NaN is interpreted as the
missing value code. See function imsls_f_machine/imsls_d_machine (Chapter 15, Utilities). The
methods are as follows:

missing_value_method Action

0 The exclusion is listwise. (The entire row of x is
excluded if any of the values of the row is equal
to the missing value code.)

1 Raw crossproducts are computed from all valid
pairs and means, and variances are computed
from all valid data on the individual variables.
Corrected crossproducts, covariances, and cor-
relations are computed using these quantities.
265

 Correlation and Covariance covariances
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix (Output)
Address of a pointer to an internally allocated array containing the incidence matrix. If
missing_value_method is 0, incidence_matrix is 1 × 1 and contains the number of valid
observations; otherwise, incidence_matrix is n_variables × n_variables and contains
the number of pairs of valid observations used in calculating the crossproducts for covariance.

IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[] (Output)
Storage for array incidence_matrix is provided by the user. See
IMSLS_INCIDENCE_MATRIX.

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Sum of the frequencies. If missing_value_method is 0, observations with missing values are
not included in n_observations; otherwise, all observations are included except for observa-
tions with missing values for the weight or the frequency.

IMSLS_VARIANCE_COVARIANCE_MATRIX
or

IMSLS_CORRECTED_SSCP_MATRIX
or

IMSLS_CORRELATION_MATRIX
or

2 Raw crossproducts, means, and variances are
computed as in the case of
missing_value_method = 1. However, cor-
rected crossproducts and covariances are
computed only from the valid pairs of data.
Correlations are computed using these covari-
ances and the variances from all valid data.

3 Raw crossproducts, means, variances, and
covariances are computed as in the case of
missing_value_method = 2. Correlations are
computed using these covariances, but the
variances used are computed from the valid
pairs of data.

missing_value_method Action
266

 Correlation and Covariance covariances
IMSLS_STDEV_CORRELATION_MATRIX
Exactly one of these options can be used to specify the type of matrix to be computed.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the means of the variables in x. The
components of the array correspond to the columns of x.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
Column dimension of array covariance if IMSLS_RETURN_USER is specified; otherwise, the column
dimension of the return value.

Default: covariance_col_dim = n_variables
IMSLS_FREQUENCIES, float frequencies[] (Input)

Array of length n_observations containing the frequency for each observation.

Default: frequencies [] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each observation.

Default: weights [] = 1

IMSLS_SUM_WEIGHTS, float *sum_wt (Output)
Sum of the weights of all observations. If missing_value_method is equal to 0, observations
with missing values are not included in sum_wt. Otherwise, all observations are included except for
observations with missing values for the weight or the frequency.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Total number of observations that contain any missing values (NaN).

IMSLS_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size n_variables × n_variables
provided by the user.

Keyword Type of Matrix

IMSLS_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default)

IMSLS_CORRECTED_SSCP_MATRIX corrected sums of squares and
crossproducts matrix

IMSLS_CORRELATION_MATRIX correlation matrix

IMSLS_STDEV_CORRELATION_MATRIX correlation matrix except for the diago-
nal elements which are the standard
deviations
267

 Correlation and Covariance covariances
Description
Function imsls_f_covariances computes estimates of correlations, covariances, or sums of squares and
crossproducts for a data matrix x. Weights and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed using the method
of provisional means. Let xki denote the mean based on i observations for the k-th variable, fi denote the fre-

quency of the i-th observation, wi denote the weight of the i-th observations, and cjki denote the sum of

crossproducts (or sum of squares if j = k) based on i observations. Then the method of provisional means finds
new means and sums of crossproducts as shown in the example below.

The means and crossproducts are initialized as follows:

xk

0

= 0.0 for k = 1, …, p

cjk

0

= 0.0 for j, k = 1, …, p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of observation i + 1, each new

observation leads to the following updates for xki and cjki using the update constant ri+1:

The default value for weights and frequencies is 1. Means and variances are computed based on the valid data
for each variable or, if required, based on all the valid data for each pair of variables.

Usage Notes
Function imsls_f_covariances defines a sample mean by

ri+1 =
f i+1wi+1

∑
l=1

i+1
f lwl

x─k, i+1 = x
─
ki + xk, i+1 − x

─
ki ri+1

c jk, i+1 = c jki + f i+1wi+1 x j, i+1 − x
─
ji xk, i+1 − x

─
ki 1 − ri+1
268

 Correlation and Covariance covariances
where n is the number of observations.

The following formula defines the sample covariance, sjk, between variables j and k:

The sample correlation between variables j and k, rjk, is defined as follows:

Examples

Example 1

This example illustrates the use of imsls_f_covariances for the first 50 observations in the Fisher iris data
(Fisher 1936). Note that the first variable is constant over the first 50 observations.

#include <imsls.h>
#define N_VARIABLES 5
#define N_OBSERVATIONS 50
int main()
{
 float *covariances, *means;
 float x[] = {
 1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,

x─k =
∑
i=1

n
f iwixki

∑
i=1

nr
f iwi

s jk =
∑
i=1

n
f iwi x ji − x

─
j xki − x

─
k

∑
i=1

n
f i − 1

r jk =
s jk
s jjskk
269

 Correlation and Covariance covariances
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
 /* Perform analysis */
 covariances = imsls_f_covariances (N_OBSERVATIONS,
 N_VARIABLES, x, 0);
 /* Print results */
 imsls_f_write_matrix ("The default case: variances/covariances",
 N_VARIABLES, N_VARIABLES, covariances,
 IMSLS_PRINT_UPPER, 0);
}

Output

 The default case: variances/covariances
 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111

Example 2

This example, which uses the first 50 observations in the Fisher iris data, illustrates the use of optional
arguments.

#include <imsls.h>
#define N_VARIABLES 5
#define N_OBSERVATIONS 50
int main()
{
 char *title;
 float *means, *correlations;
 float x[] = {
 1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
270

 Correlation and Covariance covariances
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
 /* Perform analysis */
 correlations = imsls_f_covariances (N_OBSERVATIONS,
 N_VARIABLES-1, x+1,
 IMSLS_STDEV_CORRELATION_MATRIX,
 IMSLS_X_COL_DIM, N_VARIABLES,
 IMSLS_MEANS, &means,
 0);
 /* Print results */
 imsls_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
 title = "Correlations with Standard Deviations on the Diagonal\n";
 imsls_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
 correlations, IMSLS_PRINT_UPPER, 0);
}

Output

 Means
 1 2 3 4
 5.006 3.428 1.462 0.246
Correlations with Standard Deviations on the Diagonal
 1 2 3 4
 1 0.3525 0.7425 0.2672 0.2781
 2 0.3791 0.1777 0.2328
 3 0.1737 0.3316
 4 0.1054
271

 Correlation and Covariance covariances
Warning Errors
IMSLS_CONSTANT_VARIABLE Correlations are requested, but the observations on

one or more variables are constant. The corre-
sponding correlations are set to NaN.

IMSLS_INSUFFICIENT_DATA Variances and covariances are requested, but fewer
than two valid observations are present for a vari-
able. The pertinent statistics are set to NaN

IMSLS_ZERO_SUM_OF_WEIGHTS_2 The sum of the weights is zero. The means, vari-
ances, and covariances are set to NaN

IMSLS_ZERO_SUM_OF_WEIGHTS_3 The sum of the weights is zero. The means and cor-
relations are set to NaN

IMSLS_TOO_FEW_VALID_OBS_CORREL Correlations are requested, but fewer than two valid
observations are present for a variable. The perti-
nent correlation coefficients are set to NaN
272

 Correlation and Covariance partial_covariances
partial_covariances

more...

Computes partial covariances or partial correlations from the covariance or correlation matrix.

Synopsis
#include <imsls.h>
float *imsls_f_partial_covariances (int n_independent, int n_dependent, float x, ..., 0)

The type double function is imsls_d_partial_covariances.

Required Argument
int n_independent (Input)

Number of “independent” variables to be used in the partial covariances/correlations. The partial
covariances/correlations are the covariances/correlations between the dependent variables after
removing the linear effect of the independent variables.

int n_dependent (Input)
Number of variables for which partial covariances/correlations are desired (the number of “depen-
dent” variables).

float x (Input)
The n × n covariance or correlation matrix, where n = n_independent + n_dependent. The
rows/columns must be ordered such that the first n_independent rows/columns contain the
independent variables, and the last n_dependent row/columns contain the dependent variables.
Matrix x must always be square symmetric.

Return Value
Matrix of size n_dependent by n_dependent containing the partial covariances (the default) or partial cor-
relations (use keyword IMSLS_PARTIAL_CORR).
273

 Correlation and Covariance partial_covariances
Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_partial_covariances (int n_independent, int n_dependent, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int indices[],
IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,
IMSLS_TEST, int df, int *df_out, float **p_values,
IMSLS_TEST_USER, int df, int *df_out, float p_values[],
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Row/Column dimension of x.

Default: x_col_dim = n_independent + n_dependent.

IMSLS_X_INDICES, int indices[] (Input)
An array of length x_col_dim containing values indicating the status of the variable as in the fol-
lowing table:

By default, the first n_independent elements of indices are equal to 1, and the last
n_dependent elements are equal to 0.

IMSLS_PARTIAL_COV (Input)

or

IMSLS_PARTIAL_CORR (Input)
By default, and if IMSLS_PARTIAL_COV is specified, partial covariances are calculated. Partial cor-
relations are calculated if IMSLS_PARTIAL_CORR is specified.

indices[i] Variable is...

−1 not used in analysis

0 dependent variable

1 independent variable
274

 Correlation and Covariance partial_covariances
IMSLS_TEST, int df, int *df_out, float **p_values
(Input, Output, Output)
Argument df is an input integer indicating the number of degrees of freedom associated with the
input matrix x. If the number of degrees of freedom in x varies from element to element, then a con-
servative choice for df is the minimum degrees of freedom for all elements in x.

Argument df_out contains the number of degrees of freedom in the test that the partial covari-
ances/correlations are zero. This value will usually be df − n_independent, but will be greater
than this value if the independent variables are computationally linearly related.

Argument p_values is the address of a pointer to an internally allocated array of size
n_dependent by n_dependent containing the p-values for testing the null hypothesis that the
associated partial covariance/correlation is zero. It is assumed that the observations from which x
was computed follows a multivariate normal distribution and that each element in x has df degrees
of freedom.

IMSLS_TEST_USER, int df, int *df_out, float p_values[] (Input, Output, Output)
Storage for array p_values is provided by the user. See IMSLS_TEST above.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the partial covariances/correlations. Storage for array c is provided by the user.

Description
Function imsls_f_partial_covariances computed partial covariances or partial correlations from an
input covariance or correlation matrix. If the “independent” variables (the linear “effect” of the independent vari-
ables is removed in computing the partial covariances/correlations) are linearly related to one another,
imsls_f_partial_covariances detects the linearity and eliminates one or more of the independent
variables from the list of independent variables. The number of variables eliminated, if any, can be determined
from argument df_out.

Given a covariance or correlation matrix Σ partitioned as

function imsls_f_partial_covariances computed the partial covariances (of the standardized variables
if Σ is a correlation matrix) as

Σ11 Σ12
Σ21 Σ22
275

 Correlation and Covariance partial_covariances
If partial correlations are desired, these are computed as

where diag denotes the matrix containing the diagonal of its argument along its diagonal with zeros off the diag-
onal. If Σ11 is singular, then as many variables as required are deleted from Σ11 (and Σ12) in order to eliminate the

linear dependencies. The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: σ ij|1 = 0, where σij|1 is the (i, j) element in matrix

Σ22|1. The p-value for a partial correlation tests the null hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in

matrix P22|1. The p-values are returned in p_values. If the degrees of freedom for x, df, is not known, the

resulting p-values may be useful for comparison, but they should not by used as an approximation to the actual
probabilities.

Examples

Example 1

The following example computes partial covariances, scaled from a nine-variable correlation matrix originally
given by Emmett (1949). The first three rows and columns contain the independent variables and the final six
rows and columns contain the dependent variables.

#include <imsls.h>
int main()
{
 float *pcov;
 float x[9][9] = {
 6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363,
 3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077,
 1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673,
 3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910,
 1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687,
 2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754,
 2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309,
 1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458,
 4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400
 };
 pcov = imsls_f_partial_covariances(3, 6, &x[0][0], 0);
 imsls_f_write_matrix("Partial Covariances", 6, 6, pcov, 0);
 imsls_free(pcov);
}

Σ22∣1 = Σ22 − Σ21Σ11
−1Σ12

P22∣1 = diag Σ22∣1
−1/2Σ22∣1 diag Σ22∣1

−1/2
276

 Correlation and Covariance partial_covariances
Output

 Partial Covariances
 1 2 3 4 5 6
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 5.495 1.895 3.084
5 0.000 0.000 0.000 1.895 1.841 1.476
6 0.000 0.000 0.000 3.084 1.476 3.403

Example 2

The following example computes partial correlations from a 9 variable correlation matrix originally given by
Emmett (1949). The partial correlations between the remaining variables, after adjusting for variables 1, 3 and 9,
are computed. Note in the output that the row and column labels are numbers, not variable numbers. The corre-
sponding variable numbers would be 2, 4, 5, 6, 7 and 8, respectively.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float *pcorr, *pval;
 int df;
 float x[9][9] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
 };
 int indices[9] = {1, 0, 1, 0, 0, 0, 0, 0, 1};
 pcorr = imsls_f_partial_covariances(3, 6, &x[0][0],
 IMSLS_PARTIAL_CORR,
 IMSLS_X_INDICES, indices,
 IMSLS_TEST, 30, &df, &pval,
 0);
 printf ("The degrees of freedom are %d\n\n", df);
 imsls_f_write_matrix("Partial Correlations", 6, 6, pcorr,
 0);
 imsls_f_write_matrix("P-Values", 6, 6, pval,
 0);
 imsls_free(pcorr);
 imsls_free(pval);
}

277

 Correlation and Covariance partial_covariances
Output

The degrees of freedom are 27
 Partial Correlations
 1 2 3 4 5 6
1 1.000 0.224 0.194 0.211 0.125 -0.061
2 0.224 1.000 0.605 0.720 0.092 0.025
3 0.194 0.605 1.000 0.598 0.123 -0.077
4 0.211 0.720 0.598 1.000 0.035 0.086
5 0.125 0.092 0.123 0.035 1.000 0.062
6 -0.061 0.025 -0.077 0.086 0.062 1.000
 P-Values
 1 2 3 4 5 6
1 0.0000 0.2525 0.3232 0.2801 0.5249 0.7576
2 0.2525 0.0000 0.0006 0.0000 0.6417 0.9000
3 0.3232 0.0006 0.0000 0.0007 0.5328 0.6982
4 0.2801 0.0000 0.0007 0.0000 0.8602 0.6650
5 0.5249 0.6417 0.5328 0.8602 0.0000 0.7532
6 0.7576 0.9000 0.6982 0.6650 0.7532 0.0000

Warning Errors

Fatal Errors

IMSLS_NO_HYP_TESTS The input matrix “x” has # degrees of freedom, and
the rank of the dependent variables is #. There are
not enough degrees of freedom for hypothesis test-
ing. The elements of “p_values” are set to NaN (not
a number).

IMSLS_INVALID_MATRIX_1 The input matrix “x” is incorrectly specified. A com-
puted correlation is greater than 1 for variables #
and #.

IMSLS_INVALID_PARTIAL A computed partial correlation for variables # and #
is greater than 1. The input matrix “x” is not positive
semi-definite
278

 Correlation and Covariance pooled_covariances
pooled_covariances
Compute a pooled variance-covariance from the observations.

Synopsis
#include <imsls.h>
float *imsls_f_pooled_covariances (int n_rows, int n_variables, float *x,

int n_groups, ..., 0)

The type double function is imsls_d_pooled_covariances.

Required Argument
int n_rows (Input)

Number of rows (observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows × n_variables + 1 matrix containing the data. The first n_variables columns cor-
respond to the variables, and the last column (column n_variables) must contain the group
numbers.

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of covariances.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_pooled_covariances (int n_rows, int n_variables, float x[], int n_groups,

IMSLS_X_COL_DIM, int x_col_dim,
279

 Correlation and Covariance pooled_covariances
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,

IMSLS_IDO, int ido,

IMSLS_ROWS_ADD, or

IMSLS_ROWS_DELETE,

IMSLS_GROUP_COUNTS, int **gcounts,

IMSLS_GROUP_COUNTS_USER, int gcounts[],

IMSLS_SUM_WEIGHTS, float **sum_weights,

IMSLS_SUM_WEIGHTS_USER, float sum_weights[],

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_U, float **u,

IMSLS_U_USER, float u[],

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float c[],

0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers of x in which particular
types of data are stored. Columns are numbered 0 ... x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group numbers are stored.

Parameter ind contains the indices of the variables to be used in the analysis.

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights,
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are
not allowed.

Defaults: igrp = n_variables, ind[] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1
280

 Correlation and Covariance pooled_covariances
IMSLS_IDO, int ido (Input)
Processing option.

Default: ido = 0

IMSLS_ROWS_ADD (Input)

or

IMSLS_ROWS_DELETE (Input)
By default (or if IMSLS_ROWS_ADD is specified), the observations in x are added into the analysis. If
IMSLS_ROWS_DELETE is specified, the observations are deleted from the analysis. If ido = 0,
these optional arguments are ignored (data is always added if there is only one invocation).

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing the number of observations
in each group. Array gcounts is updated when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum of the weights times the
frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[] (Output)
Storage for array sum_weights is provided by the user. See IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups × n_variables. The i-th row of means con-
tains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

ido Action

0 This is the only invocation; all the data are input at
once. (Default)

1 This is the first invocation with this data; additional
calls will be made. Initialization and updating for the
n_rows observations of x will be performed.

2 This is an intermediate invocation; updating for the
n_rows observations of x will be performed.

3 All statistics are updated for the n_rows observations.
The covariance matrix computed.
281

 Correlation and Covariance pooled_covariances
IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables × n_variables containing the lower
matrix U, the lower triangular for the pooled sample cross-products matrix. U is computed from the
pooled sample covariance matrix, S (See the Description section below), as S = UTU.

IMSLS_U_USER, float u[] (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to imsls_f_pooled_covariances containing
missing values (NaN) for any of the variables used.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is provided by the user.

Description
Function imsls_f_pooled_covariances computes the pooled variance-covariance matrix from a matrix
of observations. The within-groups means are also computed. Listwise deletion of missing values is assumed so
that all observations used are complete; in any row of x, if any element of the observation is missing, the row is
not used. Function imsls_f_pooled_covariances should be used whenever the user suspects that the
data has been sampled from populations with different means but identical variance-covariance matrices. If
these assumptions cannot be made, a different variance-covariance matrix should be estimated within each
group.

By default, all observations are processed in one call to imsls_f_pooled_covariances. The computations
are the same as if imsls_f_pooled_covariances were consecutively called with ido equal to 1, 2, and 3.
For brevity, the following discusses the computations with ido > 0.

When ido = 1 variables are initialized, workspace is allocated and input variables are checked for errors.

If n_rows ≠ 0 (for any value of ido), the group observation totals, Ti, for i = 1, …, g, where g is the number of

groups, are updated for the n_rows observations in x. The group totals are computed as:

where wij is the observation weight, xij is the j-th observation in the i-th group, and fij is the observation

frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of the pooled sums of squares and
crossproducts matrix. (Golub and Van Loan 1983).

Ti =∑
j

wi j f i j xi j
282

 Correlation and Covariance pooled_covariances
The group means and the pooled sample covariance matrix S are computed from the intermediate results when
ido = 3. These quantities are defined by

Examples

Example 1

The following example computes a pooled variance-covariance matrix. The last column of the data set is the
group indicator.

#include <imsls.h>
int main() {
 int nobs = 6;
 int nvar = 2;
 int n_groups = 2;
 float *cov;
 static float x[6][3] = {
 2.2, 5.6, 1,
 3.4, 2.3, 1,
 1.2, 7.8, 1,
 3.2, 2.1, 2,
 4.1, 1.6, 2,
 3.7, 2.2, 2};
 cov = imsls_f_pooled_covariances(nobs, nvar, &x[0][0], n_groups, 0);
 imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
 imsls_free(cov);
}

Output

Pooled Covariance Matrix
 1 2
1 0.708 -1.575
2 -1.575 3.883

x─i· =
Ti

∑
j
wi f i

S = 1
∑
i j
f i j − g∑

i, j

wi j f i j xi j − x
─
i· xi j − x

─
i·
T

283

 Correlation and Covariance pooled_covariances
Example 2

The following example computes a pooled variance-covariance matrix for the Fisher iris data. To illustrate the use
of the ido argument, multiple calls to imsls_f_pooled_covariances are made.

The first column of data is the group indicator, requiring either a permutation of the matrix or the use of the
IMSLS_X_INDICES optional keyword. This example chooses the keyword method.

#include <imsls.h>
int main() {
 int nobs = 150;
 int nvar = 4;
 int n_groups = 3;
 int igrp = 0;
 static int ind[4] = {1, 2, 3, 4};
 int ifrq = -1;
 int iwt = -1;
 float *x, cov[16];
 float *means;
 int i;
 /* Retrieve the Fisher iris data set */
 x = imsls_f_data_sets(3, 0);
 /* Initialize */
 imsls_f_pooled_covariances(0, nvar, x, n_groups,
 IMSLS_IDO, 1,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 /* Add 10 rows at a time */
 for (i=0;i<15;i++) {
 imsls_f_pooled_covariances(10, nvar, (x+i*50), n_groups,
 IMSLS_IDO, 2,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 }
 /* Calculate cov and free internal workspace */
 imsls_f_pooled_covariances(0, nvar, x, n_groups,
 IMSLS_IDO, 3,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt,
 IMSLS_MEANS, &means, 0);
 imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
 imsls_free(means);
 imsls_free(x);
}

Output

 Pooled Covariance Matrix
284

 Correlation and Covariance pooled_covariances
 1 2 3 4
1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419

 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

Warning Errors

Fatal Errors

IMSLS_OBSERVATION_IGNORED In call #, row # of the matrix “x” has
group number = #. The group number must be
between 1 and #, the number of groups. This obser-
vation will be ignored.

IMSLS_BAD_IDO_4 “ido” = #. Initial allocations must be performed by
making a call to pooled_covariances with
“ido” = 1.

IMSLS_BAD_IDO_5 “ido” = #. A new analysis may not begin until the pre
vious analysis is terminated by a call to
imsls_f_pooled_covariances with “ido” equal
to 3.
285

 Correlation and Covariance robust_covariances
robust_covariances
Computes a robust estimate of a covariance matrix and mean vector.

Synopsis
#include <imsls.h>
float *imsls_f_robust_covariances (int n_rows, int n_variables, float *x, int n_groups,

..., 0)

The type double function is imsls_d_robust_covariances.

Required Argument
int n_rows (Input)

Number of rows (observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows by n_variables + 1 matrix containing the data. The first n_variables columns cor-
respond to the variables, and the last column (column n_variables) must contain the group
numbers.

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of covariances.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_robust_covariances (int n_rows, int n_variables, float x[], int n_groups,

IMSLS_X_COL_DIM, int x_col_dim,
286

 Correlation and Covariance robust_covariances
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,

IMSLS_INITIAL_EST_MEAN,

IMSLS_INITIAL_EST_MEDIAN,

IMSLS_INITIAL_EST_INPUT, float input_means[], float input_cov[],

IMSLS_ESTIMATION_METHOD, int method,

IMSLS_PERCENTAGE, float percentage,

IMSLS_MAX_ITERATIONS, int maxit,

IMSLS_TOLERANCE, float tolerance,

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c,

IMSLS_GROUP_COUNTS, int **gcounts,

IMSLS_GROUP_COUNTS_USER, int gcounts[],

IMSLS_SUM_WEIGHTS, float **sum_weights,

IMSLS_SUM_WEIGHTS_USER, float sum_weights[],

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_U, float **u,

IMSLS_U_USER, float u[],

IMSLS_BETA, float *beta,

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Row/Column dimension of x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers of x in which particular
types of data are stored. Columns are numbered 0 … x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group numbers are stored.

Parameter ind contains the indices of the variables to be used in the analysis.
287

 Correlation and Covariance robust_covariances
Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights,
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are
not allowed.

Defaults: igrp = n_variables, ind [] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1

IMSLS_INITIAL_EST_MEAN (Input)

or

IMSLS_INITIAL_EST_MEDIAN (Input)

or

IMSLS_INITIAL_EST_INPUT, float *input_mean, float *input_cov (Input)
If IMSLS_INITIAL_EST_MEAN is specified, initial estimates are obtained as the usual estimate of
a mean vector and of a covariance matrix.

If IMSLS_INITIAL_EST_MEDIAN is specified, initial estimates are based upon the median and
interquartile range are used.

If IMSLS_INITIAL_EST_INPUT is specified, the initial estimates are specified in arrays
input_mean and input_cov. Argument input_mean is an array of size n_groups by
n_variables, and input_cov is an array of size n_variables by n_variables.

Default: IMSLS_INITIAL_EST_MEAN
IMSLS_ESTIMATION_METHOD, int method (Input)

Option parameter giving the algorithm to be used in computing the estimates.

IMSLS_PERCENTAGE, float percentage (Input)
Percentage of gross errors expected in the data. Argument percentage must be in the range 0.0
to 100.0 and contains the percentage of outliers expected in the data. If the percentage of gross
errors expected in the data is not known, a reasonable strategy is to choose a value of percentage
that is such that larger values do not result in significant changes in the estimates.

Default: percentage = 5.0

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of iterations.
Default: maxit = 30

method Method Used

0 Huber’s conjugate-gradient algorithm is used.

1 Stahel’s algorithm is used.
288

 Correlation and Covariance robust_covariances
IMSLS_TOLERANCE, float tolerance (Input)
Convergence criterion. When the maximum absolute change in a location or covariance estimate is
less than tolerance, convergence is assumed.

Default: tolerance = 10−4

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c (Output)
Arguments a, b, and c contain the values for the parameters of the weighting function. See the
Description section.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing the number of observations
in each group.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum of the weights times the
frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[] (Output)
Storage for array sum_weights is provided by the user. See IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables. The i-th row of means con-
tains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables by n_variables containing the lower
matrix U, the lower triangular for the robust sample cross-products matrix. U is computed from the
robust sample covariance matrix, S (see the Description section), as S = UTU.

IMSLS_U_USER, float u[] (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_BETA, float *beta (Output)
Argument beta contains the constant used to ensure that the estimated covariance matrix has
unbiased expectation (for a given mean vector) for a multivariate normal density.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to robust_covariances containing missing values
(NaN) for any of the variables used.
289

 Correlation and Covariance robust_covariances
IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is provided by the user.

Description
Function imsls_f_robust_covariances computes robust M-estimates of the mean and covariance
matrix from a matrix of observations. A pooled estimate of the covariance matrix is computed when multiple
groups are present in the input data. M-estimate weights are obtained using the “minimax” weights of Huber
(1981, pp. 231-235), with percentage expected gross errors. Huber’s (1981) weighting equations are given by:

User specified observation weights and frequencies may be given for each row in x. Listwise deletion of missing
values is assumed so that all observations used are “complete”.

Let f (x;μi, Σ) denote the density of an observation p-vector x in population (group) i with mean vector μi, for i =

1, …, τ. Let the covariance matrix Σ be such that Σ = RTR. If

y = R−T (x − μi)

then

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

In imsls_f_robust_covariances, Σ and μi are estimated as the solutions

of the estimation equations

and

u r =

a2

r2
r < a

1 a ≤ r ≤ b
b2

r2
r > b

w r = min 1,cr

g y = ∣ Σ ∣1/2 f RT y + μi; μi, Σ

Σ
^
,μ̂i

1
n∑
j=1

ni

f igwi jw ri j yi j = 0
290

 Correlation and Covariance robust_covariances
where i indexes the τ groups, ni, is the number of observations in group i, fij is the frequency for the j-th observa-

tion in group i, wij is the observation weight specified in column iwt of x, Ip is a p × p identity matrix,

w(r) and u(r) are the weighting functions, and where β is a constant computed by the program to make the

expected weighted Mahalanobis distance (yTy) equal the expected Mahalanobis distance from a multivariate nor-
mal distribution (see Marazzi 1985). The constant β is described more fully below.

Function imsls_f_robust_covariances uses one of two algorithms for solving the estimation equations.
The first algorithm is discussed in detail in Huber (1981) and is a variant of the conjugate gradient method. The
second algorithm is due to Stahel (1981) and is discussed in detail by Marazzi (1985). In both algorithms, correc-
tion vectors Tki for the group i means and correction matrix Wk = Ip + Uk for the Cholesky factorization of Σ are

found such that the updated mean vectors are given by

and the updated matrix R is given as

where k is the iteration number and

When all elements of Uk and Tki are less than ɛ = tolerance, convergence is assumed.

Three methods for obtaining estimates are allowed. In the first method, the sample weighted estimate of Σ is
computed. In the second method, estimates based upon the median and the interquartile range are used. Finally,
in the last method, the user inputs initial estimates.

Function imsls_f_robust_covariances computes estimates based on the “minimax” weights discussed
above. The constant β is chosen such that E (u(r)r2) = ρβ where the expectation is with respect to a standard

p-variate multivariate normal distribution. This yields estimates with the correct expectation for the multivariate
normal distribution (for given mean vector). The expectation is computed via integration of estimated spline func-
tion. 200 knots are used on an equally spaced grid from 0.0 to the 99.999 percentile of

1
n∑
i=1

τ

∑
j=1

ni

f i jwi j u ri j yi jyi j
T − βI p = 0

ri j = yi j
T yi j

μ̂i, k+1 = μ̂i, k + Tki

R^ k+1 = WkR
^
k

Σ
^
k = Rk

TRk
291

 Correlation and Covariance robust_covariances
distribution. An error estimate is computed based upon 100 of these knots. If the estimated relative error is
greater than 0.0001, a warning message is issued. If β is not computed accurately (i.e., if the warning message is
issued), the computed estimates are still optimal, but the scale of the estimated covariance matrix may need to
be multiplied by a constant in order for

to have the correct multivariate normal covariance expectation.

Examples

Example 1

The following example computes a robust variance-covariance matrix. The last column of the data set is the
group indicator.

#include <imsls.h>
int main()
{
 int nobs = 6;
 int nvar = 2;
 int n_groups = 2;
 float *cov;
 float x[18] = {
 2.2, 5.6, 1,
 3.4, 2.3, 1,
 1.2, 7.8, 1,
 3.2, 2.1, 2,
 4.1, 1.6, 2,
 3.7, 2.2, 2};
 cov = imsls_f_robust_covariances(nobs, nvar, x, n_groups, 0);
 imsls_f_write_matrix("Robust Covariance Matrix", nvar, nvar, cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO, 0);
 imsls_free(cov);
}

Output

Robust Covariance Matrix
 0 1
0 0.522 -1.160
1 -1.160 2.862

χp
2

Σ
^

292

 Correlation and Covariance robust_covariances
Example 2

The following example computes estimates of the pooled covariance matrix for the Fisher’s iris data. For compar-
ison, the estimates are first computed via function imsls_f_pooled_covariances. Function
imsls_f_robust_covariances with percentage = 2.0 is then used to compute the robust estimates.
As can be seen from the output, the resulting estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are computed using functions
imsls_f_pooled_covariances and imsls_f_robust_covariances. When outliers are present,
the estimates of imsls_f_pooled_covariances are adversely affected, while the estimates produced by
imsls_f_robust_covariances are close the estimates produced when no outliers are present.

#include <imsls.h>
int main()
{
 int nobs = 150;
 int nvar = 4;
 int n_groups = 3;
 float percentage = 2.0;
 int igrp = 0;
 int ifrq = -1;
 int iwt = -1;
 int ind[4] = {1, 2, 3, 4};
 float *x, cov[16], rbcov[16];
 x = imsls_f_data_sets(3, 0);
 imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 imsls_f_write_matrix("Pooled Covariance with No Outliers", nvar, nvar,
 cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);
 imsls_f_robust_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, rbcov,
 IMSLS_PERCENTAGE, percentage,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 imsls_f_write_matrix("Robust Covariance with No Outliers", nvar, nvar,
 rbcov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);
 /* Add Outliers */
 x[1] = 100.0;
 x[19] = 100.0;
 x[497] = -100.0;
 imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
293

 Correlation and Covariance robust_covariances
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 imsls_f_write_matrix("Pooled Covariance with Outliers", nvar, nvar,
 cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);
 imsls_f_robust_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, rbcov,
 IMSLS_PERCENTAGE, percentage,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 imsls_f_write_matrix("Robust Covariance with Outliers", nvar, nvar,
 rbcov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 imsls_free(x);
}

Output

 Pooled Covariance with No Outliers
 0 1 2 3
0 0.2650 0.0927 0.1675 0.0384
1 0.1154 0.0552 0.0327
2 0.1852 0.0427
3 0.0419
 Robust Covariance with No Outliers
 0 1 2 3
0 0.2474 0.0872 0.1535 0.0360
1 0.1073 0.0538 0.0322
2 0.1705 0.0412
3 0.0401
 Pooled Covariance with Outliers
 0 1 2 3
0 60.43 0.30 0.13 -1.56
1 70.53 0.17 -0.17
2 0.19 0.07
3 66.38
 Robust Covariance with Outliers
 0 1 2 3
0 0.2555 0.0876 0.1553 0.0359
1 0.1127 0.0545 0.0322
2 0.1723 0.0412
3 0.0424
294

 Correlation and Covariance robust_covariances
Warning Errors

Fatal Errors

IMSLS_NO_CONVERGE_MAX_ITER Failure to converge within “maxit” = # iterations for
at least one of the “nroot” = # roots.

IMSLS_BAD_GROUP_2 The group number for observation # is equal to #. It
must be greater than or equal to one and less than
or equal to #, the number of groups.
295

 Analysis of Variance and Designed Experiments Functions
Analysis of Variance
and Designed Experiments

Functions
General Analysis of Variance

One-way analysis of variance . anova_oneway 311
Analyzes a one-way classification model with covariates ancovar 322
Analysis of variance for fixed effects balanced factorial designs. anova_factorial 336
Nested random effects analysis of variance . anova_nested 345
Analysis of variance for balanced fixed, random, or mixed models. . . . anova_balanced 359

Designed Experiments
Analysis of balanced and unbalanced completely

randomized factorial experiments .crd_factorial 371
Analysis of balanced and unbalanced randomized

complete block factorial experiments .rcbd_factorial 382
Analysis of latin-square experiments .latin_square 392
Analysis of balanced and partially-balanced data from

lattice experiments . lattice 401
Analysis of split-plot experiments . split_plot 417
Analysis of split-split-plot experiments. split_split_plot 431
Analysis of strip-plot experiments . strip_plot 447
Analysis of strip-split-plot experiments . strip_split_plot 458

Utilities
Bartlett’s and Levene’s tests of the homogeneity

of variance assumption in analysis of variance. homogeneity 479
Multiple comparisons of means . multiple_comparisons 486
False discovery rates. false_discovery_rates 492
Yates’ method for estimating missing observations in designed experiments. yates 500
296

 Analysis of Variance and Designed Experiments Usage Notes
Usage Notes
The functions in this chapter cover a wide variety of commonly used experimental designs. They can be catego-
rized, not only based upon the underlying experimental design that generated the user’s data, but also on
whether they provide support for missing values, factorial treatment structure, blocking and replication of the
entire experiment, or multiple locations.

Typically, responses are stored in the input vector y. For a few functions, such as imsls_f_anova_oneway and
imsls_f_anova_factorial the full set of model subscripts is not needed to identify each response. They
assume the usual pattern, which requires that the last model subscript change most rapidly, followed by the
model subscript next in line, and so forth, with the first subscript changing at the slowest rate. This pattern is
referred to as lexicographical ordering.

However, for most of the functions in this chapter, one or more arrays are used to describe the experimental
conditions associated with each value in the response input vector y. The function imsls_f_split_plot, for
example, requires three additional input arrays: split, whole and rep. They are used to identify the split-
plot, whole-plot and replicate number associated with each value in y.

Many of the functions described in this chapter permit users to enter missing data values using NaN (Not a Num-
ber) as the missing value code. Use function imsls_f_machine (or function imsls_d_machine with the
double-precision) to retrieve NaN. Any element of y that is missing must be set to imsls_f_machine(6) or
imsls_d_machine(6) (for double precision). See imsls_f_machine in Chapter 15, Utilities for a description.
Functions imsls_f_anova_factorial, imsls_f_anova_nested and imsls_f_anova_balanced
require complete, balanced data, and do not accept missing values.

As a diagnostic tool for validating model assumptions, some functions in this chapter perform a test for lack of fit
when replicates are available in each cell of the experimental design.

Completely Randomized Experiments
Completely randomized experiments are analyzed using some variation of the one-way analysis of variance
(Anova). A completely randomized design (CRD) is the simplest and most common example of a statistically
designed experiment. Researchers using a CRD are interested in comparing the average effect of two or more
treatments. In agriculture, treatments might be different plant varieties or fertilizers. In industry, treatments might
be different product designs, different manufacturing plants, different methods for delivering the product, etc. In
business, different business processes, such as different shipping methods or alternate approaches to a product
repair process, might be considered treatments. Regardless of the area, the one thing they have in common is
that random errors in the observations cause variations in differences between treatment observations, making it
difficult to confirm the effectiveness of one treatment to another.
297

 Analysis of Variance and Designed Experiments Usage Notes
If observations on these treatments are completely independent then the design is referred to as a completely
randomized design or CRD. The IMSL C Numerical Library has two functions for analysis of data from CRD:
imsls_f_anova_oneway and imsls_f_crd_factorial.

Both functions allow users to specify observations with missing values, have unequal group sizes, and output
treatment means and standard deviations. The primary difference between the functions is that:

1. imsls_f_anova_oneway conducts multiple comparisons of treatment functions; whereas
imsls_f_crd_factorial requires users to make a call to
imsls_f_multiple_comparisons to compare treatment means.

2. imsls_f_crd_factorial can analyze treatments with a factorial treatment structure; whereas
imsls_f_anova_oneway does not analyze factorial structures.

3. imsls_f_crd_factorial can analyze data from CRD experiments that are replicated across
several blocks or locations. This can happen when the same experiment is repeated at different times
or different locations.

Factorial Experiments
In some cases, treatments are identified by a combination of experimental factors. For example, in an octane
study comparing several different gasolines, each gasoline could be developed using a combination of two addi-
tives, denoted below in Table 1, as Additive A and Additive B.

This is referred to as a 2x2 or 22 factorial experiment. There are 4 treatments involved in this study. One contains
no additives, i.e. Treatment 1. Treatment 2 and 3 contain only one of the additives and treatment 4 contains both.
A one-way anova, such as found in anova_oneway can analyze these data as four different treatments. Three
functions, imsls_f_crd_factorial, imsls_f_rcbd_factorial and imsls_f_anova_factorial will
analyze these data exploiting the factorial treatment structure. These functions allow users to answer structural
questions about the treatments such as:

1. Are the average effects of the additives statistically significant? This is referred to as the factor main
effects.

Table 1 – 2x2 Factorial Experiment

Treatment Additive A Additive B

1 No No

2 Yes No

3 No Yes

4 Yes Yes
298

 Analysis of Variance and Designed Experiments Usage Notes
2. Is there an interaction effect between the additives? That is, is the effectiveness of an additive inde-
pendent of the other?

Both imsls_f_crd_factorial and imsls_f_rcbd_factorial support analysis of a factorial experi-
ment with missing values and multiple locations. The function imsls_f_anova_factorial does not
support analysis of experiments with missing values or experiments replicated over multiple locations. The main
difference, as the names imply, between imsls_f_crd_factorial and imsls_f_rcbd_factorial is
that imsls_f_crd_factorial assumes that treatments were completely randomized to experimental units.
Function imsls_f_rcbd_factorial assumes that treatments are blocked.

Blocking
Blocking is an important technique for reducing the impact of experimental error on the ability of the researcher
to evaluate treatment differences. Usually this experimental error is caused by differences in location (spatial dif-
ferences), differences in time (temporal differences) or differences in experimental units. Researchers refer to
these as blocking factors. They are identifiable causes known to cause variation in observations between experi-
mental units.

There are several functions that specifically support blocking in an experiment: imsls_f_rcbd_factorial,
imsls_f_lattice, and imsls_f_latin_square. The first two functions, imsls_f_rcbd_factorial
and imsls_f_lattice, support blocking on one factor.

A requirement of RCBD experiments is that every block must contain observations on every treatment. However,
when the number of treatments (t) is greater than the block size (b), it is impossible to have every block contain
observations on every treatment.

In this case, when t > b, an incomplete block design must be used instead of a RCBD. Lattice designs are a type of
incomplete block design in which the number of treatments is equal to the square of an integer such as t =
9, 16, 25, etc. Lattice designs were originally described by Yates (1936). The function imsls_f_lattice sup-
ports analysis of data from lattice experiments.

Besides the requirement that , another characteristic of lattice experiments is that blocks be grouped into
replicates, where each replicate contains one observation for every treatment. This forces the number of blocks
in each replicate to be equal to the number of observations per block. That is, the number of blocks per replicate

and the number of observations per block are both equal to .

In addition, the number of replicate groups in Lattice experiments is always less than or equal to k+1. If it is equal
to k+1 then the design is referred to as a Balanced Lattice. If it is less than k+1 then the design is referred to as a
Partially Balanced Lattice. Tables of these experiments and their analysis are tabulated in Cochran & Cox (1950).

t = k2

k = t
299

 Analysis of Variance and Designed Experiments Usage Notes
Consider, for example, a 3 × 3 balanced-lattice, i.e., k = 3 and t = 9. Notice that the number of replicates is
 . And the number of blocks per replicate and block size are both k = 3. The total number of blocks

is equal to . For a balanced-lattice,

 .

The Anova table for a balanced-lattice experiment, takes the form shared with other balanced incomplete block
experiments. In these experiments, the error term is divided into two components: the Inter-Block Error and the
Intra-Block Error. For single and multiple locations, the general format of the Anova tables for Lattice experiments
is illustrated in Table 3 and Table 4.

Table 2 – A 3x3 Balanced-Lattice for
Nine Treatments in Four Replicates

Replicate I Replicate II

Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Replicate III Replicate IV

Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Table 3 – The Anova Table for a Lattice Experiment at One Location

Source DF
Sum of
Squares Mean Squares

REPLICATES SSR MSR

TREATMENTS(unadj) SST MST

TREATMENTS(adj) SSTa MSTa

BLOCKS(adj) SSBa MSBa

INTRA-BLOCK ERROR

SSE MSE

TOTAL SSR

r = k + 1 = 4
b = n_locations · r · k − 1 + 1

b = r · k = k + 1 · k = t + 1 · t = 4 · 3 = 12

t − 1
t − 1
t − 1

r · k − 1

k − 1 r · k − k − 1

r · t − 1
300

 Analysis of Variance and Designed Experiments Usage Notes
Latin Square designs are very popular in cases where:

1. two blocking factors are involved

2. the two blocking factors do not interact with treatments, and

3. the number of blocks for each factor is equal to the number of treatments.

Consider an octane study involving 4 test vehicles tested in 4 bays with 4 test gasolines. This is a natural arrange-
ment for a Latin square experiment. In this case there are 4 treatments, and two blocking factors, test vehicle and
bay, each with 4 levels. The Latin Square for this example would look like the following arrangement.

As illustrated above in Table 5, the letters A-D are used to denote the four test gasolines, or treatments. The
assignment of each treatment to a particular test vehicle and test bay is described in Table 5. Gasoline A, for
example, is tested in the following four vehicle/bay combinations: (1/1), (2/3), (3/2), and (4/4).

Notice that each treatment appears exactly once in every row and column. This balance, together with the
assumed absence of interactions between treatments and the two blocking factors is characteristic of a Latin
Square.

Table 4 – The Anova Table for a Lattice Experiment at Multiple Locations

Source DF
Sum of
Squares Mean Squares

LOCATIONS SSL MSL

REPLICATES WITHIN
LOCATIONS SSR MSR

TREATMENTS(unadj) SST MST

TREATMENTS(adj) SSTa MSTa

BLOCKS(adj) SSB MSB

TOTAL SSTot

Table 5 – A Latin Square Design for t=4 Treatments

Test Vehicle

1 2 3 4

Test 1 A C B D

2 D B A C

Bay 3 C A D B

4 B D C A

p − 1

p r − 1

t − 1
t − 1

p · r k − 1

p k − 1 r · k − k − 1
301

 Analysis of Variance and Designed Experiments Usage Notes
The corresponding Anova table for these data contains information on the blocking factors as well as treatment
differences. Notice that the F-test for one of the two blocking factors, test vehicle, is statistically significant (p
= 0.048); whereas the other, test bay, is not statistically significant (p = 0.321).

Some researchers might use this as a basis to remove test bay as a blocking factor. In that case, the design can
then be analyzed as a RCBD experiment since every treatment is repeated once and only once in every block, i.e.,
test vehicle.

Multiple Locations
It is common for a researcher to repeat an experiment and then conduct an analysis of the data. In agricultural
experiments, for example, it is common to repeat an experiment at several different farms. In other cases, a
researcher may want to repeat an experiment at a specified frequency, such as week, month or year. If these
repeated experiments are independent of one another then we can treat them as multiple locations.

Several of the functions in this chapter allow for multiple locations: imsls_f_crd_factorial,
imsls_f_rcbd_factorial, imsls_f_lattice, imsls_f_latin_square, imsls_f_split_plot,
imsls_f_split_split_plot, imsls_f_strip_plot, imsls_f_strip_split_plot. All of these functions
allow for analysis of experiments replicated at multiple locations. By default they all treat locations as a random
factor. Function imsls_f_split_plot also allows users to declare locations as a fixed effect.

Split-Plot Designs – Nesting and Restricted Randomization
Originally, split-plot designs were developed for testing agricultural treatments, such as varieties of wheat, differ-
ent fertilizers or different insecticides. In these original experiments, growing areas were divided into plots. The
major treatment factor, such as wheat variety, was randomly assigned to these plots. However, in addition to test-

Table 6 – Latin Square Anova Table for Octane Experiment

Source
Degrees of
Freedom

Sum of
Squares

Mean
Squares F-Test p-Value

Test Vehicle 3 1.5825 0.5275 4.83 0.048

Test Bay 3 0.0472 0.157 1.44 0.321

Gasoline 3 4.247 1.416 12.97 0.005

Error 6 0.655 0.109

TOTAL 15 6.9575
302

 Analysis of Variance and Designed Experiments Usage Notes
ing wheat varieties, they wanted to test another treatment factor such as fertilizer. This could have been done
using a CRD or RCBD design. If a CRD design was used then treatment combinations would need to be randomly
assigned to plots, such as shown below in Table 7.

In the CRD illustration above, any plot could have any combination of wheat variety (W1, W2, W3 or W4) and fertil-
izer (F1, F2 or F3). There is no restriction on randomization in a CRD. Any of the treatments can
appear in any of the 24 plots.

If a RCBD were used, all t=12 treatment combinations would need to be arranged in blocks similar to what is
described in Table 8, which places one restriction on randomization.

The RCBD arrangement is basically a replicated CRD design with a randomization restriction that treatments are
divided into two groups of replicates which are assigned to a block of land. Randomization of treatments only
occurs within each block.

Table 7 – Completely Randomized Experiments –
Both Factors Randomized

CRD
W3F2 W1F3 W4F1 W2F1

W2F3 W1F1 W1F3 W1F2

W2F2 W3F1 W2F1 W4F2

W3F2 W1F1 W2F3 W1F2

W4F1 W3F2 W3F2 W4F3

W4F3 W3F1 W2F2 W4F2

Table 8 – Randomized Complete Block Experiments –
Both Factors Randomized Within a Block

RCBD

Block 1 W3F3 W1F3 W4F1 W4F3

W2F3 W1F1 W3F2 W1F2

W2F2 W3F1 W2F1 W4F2

Block 2 W3F2 W1F1 W2F3 W1F2

W4F1 W1F3 W3F2 W4F3

t = 4 × 3 = 12
303

 Analysis of Variance and Designed Experiments Usage Notes
At first glance, a split-plot experiment could be mistaken for a RCBD experiment since it is also blocked. The split-
plot arrangement with only one replicate for this experiment is illustrated below in Table 9. Notice that it appears
as if levels of the fertilizer factor (F1, F2, and F3) are nested within wheat variety (W1, W2, W3 and W4), however
that is not the case. Varieties were actually randomly assigned to one of four rows in the field. After randomizing
wheat varieties, fertilizer was randomized within wheat variety.

The essential distinction between split-plot experiments and completely randomized or randomized complete
block experiments is the presence of a second factor that is blocked, or nested, within each level of the first fac-
tor. This second factor is referred to as the split-plot factor, and the first is referred to as the whole-plot factor.

Both factors are randomized, but with a restriction on randomization of the second factor, the split-plot factor.
Whole plots (wheat variety) are randomly assigned, without restriction to plots, or rows in this example. However,
the randomization of split-plots (fertilizer) is restricted. It is restricted to random assignment within whole-plots.

Strip-Plot Designs
Strip-plot experiments look similar to split-plot experiments. In fact they are easily confused, resulting in incorrect
statistical analyses. The essential distinction between strip-plot and split-plot experiments is the application of
the second factor. In a split-plot experiment, levels of the second factor are nested within the whole-plot factor
(see Table 11). In strip-plot experiments, the whole-plot factor is completely crossed with the second factor (see
Table 10).

This occurs, for example, when an agricultural field is used as a block and the levels of the whole-plot factor are
applied in vertical strips across the entire field. Levels of the second factor are assigned to horizontal strips across
the same block.

Table 9 – A Split-Plot Experiment for Wheat (W) and Fertilizer (F)

Split-Plot Design

Block 1 W2 W2F1 W2F3 W2F2

W1 W1F3 W1F1 W1F2

W4 W4F1 W4F3 W4F2

W3 W3F2 W3F1 W3F3

Block 2 W3 W3F2 W3F1 W3F3

W1 W1F3 W1F1 W1F2

W4 W4F1 W4F3 W4F2

W2 W2F1 W2F3 W2F2
304

 Analysis of Variance and Designed Experiments Usage Notes
As described in the previous section, in a split-plot experiment the second experimental factor, referred to as the
split-plot factor, is nested within the first factor, referred to as the whole-plot factor.

Consider, for example, the semiconductor experiment described in Figure 5, “Split-Plot Randomization.” The
wafers from each plater, the whole-plot factor, are divided into equal size groups and then randomly assigned to
an etcher, the split-plot factor. Wafers from different platers are etched separately from those that went through
another plating machine. Randomization occurred within each level of the whole-plot factor, i.e., plater.

Graphically, as shown below, this arrangement appears similar to a tree or hierarchical structure.

Table 10 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Whole-Plot Factor

A2 A1 A4 A3

Strip Plot B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

B2 A2B2 A1B2 A4B2 A3B2

Table 11 – Split-Plot Experiments –
Split-Plots Nested within Strip-Plots

Whole-Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B3

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2
305

 Analysis of Variance and Designed Experiments Usage Notes
Figure 5, Split-Plot Randomization

Notice that although there are only three etchers, 12 different runs are made using these etchers. The wafers
randomly assigned to the first plater and first etcher are processed separately from the wafers assigned to other
plating machines.

In a strip-plot experiment, the second randomization of the wafers to etchers occurs differently, see Figure 6,
“Strip-Plot Semiconductor Experiment.” Instead of randomizing the wafers from each plater to the three etchers
and then running them separately from the wafers from another plater, the wafers from each plater are divided
into three groups and then each randomly assigned to one of the three etchers. However, the wafers from all
four plating machines assigned to the same etcher are run together.

Figure 6, Strip-Plot Semiconductor Experiment

Strip-plot experiments can be analyzed using imsls_f_strip_plot. Function imsls_f_strip_plot
returns a strip-plot Anova table with the following general structure:

Table 12 – Strip-Plot Anova Table for Semiconductor Experiment

Source DF SS MS F-Test p-Value

Blocks 1 0.0005 0.0005 0.955 0.431

Whole-Plots:
Plating
Machines

2 0.0139 0.0070 64.39 0.015

Whole-Plot
Error

2 0.0002 0.0001 0.194 0.838
306

 Analysis of Variance and Designed Experiments Usage Notes
Split-Split Plot and Strip-Split Plot Experiments
The essential distinction between split-plot and split-split-plot experiments is the presence of a third factor that is
blocked, or nested, within each level of the whole-plot and split-plot factors. This third factor is referred to as the
sub-plot factor. A split-plot experiment, see Table 13, has only two factors, denoted by A and B. The second factor
is nested within the first factor. Randomization of the second factor, the split-plot factor, occurs within each level
of the first factor.

On the other hand, a split-split plot experiment has three factors, illustrated in Table 14 by A, B and C. The second
factor is nested within the first factor, and the third factor is nested within the second.

Strip-Plots:
Etchers

1 0.0033 0.0033 100.0 0.060

Strip-Plot Error 1 <0.0001 <0.0001 0.060 0.830

Whole-Plot x
Strip-Plot

2 0.0033 0.0017 2.970 0.251

Whole-Plot x
Strip-Plot Error

2 0.0011 0.0006

TOTAL 11 0.0225

Table 13 – Split-Plot Experiment –
Split-Plot B Nested within Whole-Plot A

Whole-Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B3

Table 14 – Split-Split Plot Experiment

Whole-Plot Factor

A2 A1 A4 A3

A2B3C2

A2B3C1

A1B2C1

A1B2C2

A4B1C2

A4B1C1

A3B3C2

A3B3C1

Table 12 – Strip-Plot Anova Table for Semiconductor Experiment (Continued)

Source DF SS MS F-Test p-Value
307

 Analysis of Variance and Designed Experiments Usage Notes
Contrast the split-split plot experiment to the same experiment run using a strip-split plot design (see Table 15).
In a strip-split plot experiment factor B is applied in a strip across factor A; whereas, in a split-split plot experi-
ment, factor B is randomly assigned to each level of factor A. In a strip-split plot experiment, the level of factor B
is constant across a row; whereas in a split-split plot experiment, the levels of factor B change as you go across a
row, reflecting the fact that for split-plot experiments, factor B is randomized within each level of factor A.

In some studies, split-split-plot or strip-split-plot experiments are replicated at several locations. Functions
imsls_f_split_split_plot and imsls_f_strip_split_plot can analyze these, even when the number
of blocks or replicates at each location is different.

Validating Key Assumptions in Anova
The key output in the analysis of designed experiments is the F-tests in the Anova table for that experiment. The
validity of these tests relies upon several key assumptions:

1. observational errors are independent of one another,

2. observational errors are Normally distributed, and

3. the variance of observational errors is homogeneous across treatments.

A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B3C2

A4B3C1

A3B2C2

A3B2C1

A2B2C2

A2B2C1

A1B3C1

A1B3C2

A4B2C1

A4B2C2

A3B1C2

A3B1C1

Table 15 – Strip-Split Plot Experiment, Split-Plots Nested Within
Strip-Plot Factors A and B

Factor A Strip Plots
A2 A1 A4 A3

Factor B
Strip
Plot

B3 A2B3C2

A2B3C1

A1B3C1

A1B3C2

A4B3C2

A4B3C1

A3B3C2

A3B3C1

B1 A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B1C2

A4B1C1

A3B1C2

A3B1C1

B2 A2B2C2

A2B2C1

A1B2C1

A1B2C2

A4B2C1

A4B2C2

A3B2C2

A3B2C1

Table 14 – Split-Split Plot Experiment (Continued)
308

 Analysis of Variance and Designed Experiments Usage Notes
These are referred to as the independence, Normality and homogeneity of variance assumptions. All of these
assumptions are evaluated by examining the properties of the residuals, which are estimates of the observational
error for each observation. Residuals are calculated by taking the difference between each observed value in the
series and its corresponding estimate. In most cases, the residual is the difference between the observed value
and the mean for that treatment.

The independence assumption can be examined by evaluating the magnitude of the correlations among the
residuals sorted in the order they were collected. The IMSL function imsls_f_autocorrelation (see Chapter
8, Times Series and Forecasting) can be used to obtain these correlations. The autocorrelations, to a maximum
lag of about 20, can be examined to identify any that are statistically significant.

Residuals should be independent of one another, which implies that all autocorrelations with a lag of 1 or higher
should be statistically equivalent to zero. If a statistically significant autocorrelation is found, leading a researcher
to conclude that an autocorrelation is not equal to zero, then this would provide sufficient evidence to conclude
that the observational errors are not independent of one another.

The second major assumption for analysis of variance is the Normality assumption. In the IMSL C Numerical
Library, functions imsls_f_shapiro_wilk_normality_test, imsls_f_lilliefors_normality_test ,
and imsls_f_cgi_squared_normality_test (see Chapter 7, Tests of Goodness of Fit) can be used to
determine whether the residuals are not Normally distributed. A small p-value from this test provides sufficient
evidence to conclude that the observational errors are not Normally distributed.

The last assumption, homogeneity of variance, is evaluated by comparing treatment standard errors. This is equiv-

alent to testing whether , where is the standard deviation of the observational error for
the i-th treatment. This test can be conducted using imsls_f_homogeneity. To conduct this test, the residu-
als, and their corresponding treatment identifiers are passed into imsls_f_homogeneity. It calculates the
p-values for both Bartlett’s and Levene’s tests for equal variance. If a p-value is below the stated significance
level, a researcher would conclude that the within treatment variances are not homogeneous.

Multiple Testing
It is well known that the risk of committing a Type I error (i.e., a false positive or false discovery) increases with the
number of tests being performed, even if all the tests use the same cut-off value for significance. The purpose of
a multiple testing correction is to control the risk of false positives when performing multiple tests of significance.
Two functions are included in this chapter to correct for multiple tests: imsls_f_multiple_comparisons
performs multiple comparisons of treatment means using one of four methods to control the overall Type I error
rate, and imsls_f_false_discovery_rates calculates false discovery rates and associated q-values, given a
set of p-values resulting from multiple independent tests.

σ1 = σ2 = ⋯ = σt σi
309

 Analysis of Variance and Designed Experiments Usage Notes
Missing Observations
Missing observations create problems with the interpretation and calculation of F-tests for designed experi-
ments. The approach taken in the functions described in this chapter is to estimate missing values using the Yates
method and then to compute the Anova table using these estimates.

Essentially the Yates method, implemented in imsls_f_yates, replaces missing observations with the values
that minimize the error sum of squares in the Anova table. The Anova table is calculated using these estimates,
with one modification. The total degrees of freedom and the error degrees of freedom are both reduced by the
number of missing observations.

For simple cases, in which only one observation is missing, formulas have been developed for most designs. See
Steel and Torrie (1960) and Cochran and Cox (1957) for a description of these formulas. However for more than
one missing observation, a multivariate optimization is conducted to simultaneously estimate the missing values.
For the simple case with only one missing value, this approach produces estimates identical to the published for-
mulas for a single missing value.

A potential issue arises when the Anova table contains more than one form of error, such as split-plot and
strip-plot designs. In every case, missing values are estimated by minimizing the last error term in the table.
310

 Analysis of Variance and Designed Experiments anova_oneway
anova_oneway
Analyzes a one-way classification model.

Synopsis
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[], ..., 0)

The type double function is imsls_d_anova_oneway

Required Arguments
int n_groups (Input)

Number of groups.

int n[] (Input)
Array of length n_groups containing the number of responses for each group.

float y[] (Input)
Array of length n [0] + n [1] + … + n [n_groups − 1] containing the responses for each group.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_GROUP_MEANS, float **means,
IMSLS_GROUP_MEANS_USER, float means[],
IMSLS_GROUP_STD_DEVS, float **std_devs,
IMSLS_GROUP_STD_DEVS_USER, float std_devs[],
311

 Analysis of Variance and Designed Experiments anova_oneway
IMSLS_GROUP_COUNTS, int **counts,
IMSLS_GROUP_COUNTS_USER, int counts[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_TUKEY, float **ci_diff_means, or
IMSLS_DUNN_SIDAK, float **ci_diff_means, or
IMSLS_BONFERRONI, float **ci_diff_means, or
IMSLS_SCHEFFE, float **ci_diff_means, or
IMSLS_ONE_AT_A_TIME, float **ci_diff_means,
IMSLS_TUKEY_USER, float ci_diff_means[], or
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[], or
IMSLS_BONFERRONI_USER, float ci_diff_means[], or
IMSLS_SCHEFFE_USER, float ci_diff_means[], or
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[],
0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table (Output)

Address of a pointer to an internally allocated array of size 15 containing the analysis of variance
table. The analysis of variance statistics are as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.
312

 Analysis of Variance and Designed Experiments anova_oneway
Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_GROUP_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length n_groups containing the group
means.

IMSLS_GROUP_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_GROUP_MEANS.

IMSLS_GROUP_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length n_groups containing the group stan-
dard deviations.

IMSLS_GROUP_STD_DEVS_USER, float std_devs[] (Output)
Storage for array std_devs is provided by the user. See IMSLS_STD_DEVS.

IMSLS_GROUP_COUNTS, int **counts (Output)
Address of a pointer to an internally allocated array of length n_groups containing the number of
nonmissing observations for the groups.

IMSLS_GROUP_COUNTS_USER, int counts[] (Output)
Storage for array counts is provided by the user. See IMSLS_COUNTS.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for the simultaneous interval estimation.
If IMSLS_TUKEY is specified, confidence must be in the range [90.0, 99.0). Otherwise, confi-
dence is in the range [0.0, 100.0).

Default: confidence = 95.0

IMSLS_TUKEY, float **ci_diff_means (Output)

or

IMSLS_DUNN_SIDAK, float **ci_diff_means (Output)

or

13 Overall mean of y.

14 Coefficient of variation (in percent).

Element Analysis of Variance Statistics
313

 Analysis of Variance and Designed Experiments anova_oneway
IMSLS_BONFERRONI, float **ci_diff_means (Output)

or

IMSLS_SCHEFFE, float **ci_diff_means (Output)

or

IMSLS_ONE_AT_A_TIME, float **ci_diff_means (Output)
Function imsls_f_anova_oneway computes the confidence intervals on all pairwise differences
of means using any one of six methods: Tukey, Tukey-Kramer, Dunn-Šidák, Bonferroni, Scheffé, or
Fisher’s LSD (One-at-a-Time). If IMSLS_TUKEY is specified, the Tukey confidence intervals are calcu-
lated if the group sizes are equal; otherwise, the Tukey-Kramer confidence intervals are calculated.

On return, ci_diff_means contains the address of a pointer to a

internally allocated array containing the statistics relating to the difference of means.

IMSLS_TUKEY_USER, float ci_diff_means[] (Output)

or

IMSLS_DUNN_SIDAK_USER, float ci_diff_means[] (Output)

or

IMSLS_BONFERRONI_USER, float ci_diff_means[] (Output)

or

IMSLS_SCHEFFE_USER, float ci_diff_means[] (Output)

or

Column Description

0 Group number for the i-th mean.

1 Group number for the j-th mean.

2 Difference of means (i-th mean) − (j-th
mean).

3 Lower confidence limit for the difference.

4 Upper confidence limit for the difference.

ngroups
2 × 5
314

 Analysis of Variance and Designed Experiments anova_oneway
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[] (Output)
Storage for array ci_diff_means is provided by the user.

Description
Function imsls_f_anova_oneway performs an analysis of variance of responses from a oneway classifica-
tion design. The model is

yij = μi + ɛij i = 1, 2, …, k; j = 1, 2, …, ni

where the observed value yij constitutes the j-th response in the i-th group, μi denotes the population mean for

the i-th group, and the ɛij arguments are errors that are identically and independently distributed normal with

mean 0 and variance σ2. Function imsls_f_anova_oneway requires the yij observed responses as input

into a single vector y with responses in each group occupying contiguous locations. The analysis of variance table
is computed along with the group sample means and standard deviations. A discussion of formulas and interpre-
tations for the one-way analysis of variance problem appears in most elementary statistics texts, e.g.,
Snedecor and Cochran (1967, Chapter 10).

Function imsls_f_anova_oneway computes simultaneous confidence intervals on all

pairwise comparisons of k means μ1 μ2, …, μk in the one-way analysis of variance model. Any of several methods

can be chosen. A good review of these methods is given by Stoline (1981). The methods are also discussed in
many elementary statistics texts, e.g., Kirk (1982, pp. 114−127).

Let s2 be the estimated variance of a single observation. Let v be the degrees of freedom associated with s2. Let

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence intervals for all pairwise differ-
ences of means μi − μj in balanced (n1 = n2 = … = nk = n) one-way designs. The method is exact and uses the

Studentized range distribution. The formula for the difference μi − μj is given by

where q1−a;k,v is the (1 − α) 100 percentage point of the Studentized range distribution with parameters k and v.

k* =
k k − 1

2

α = 1 − confidence100.0

y─i − y
─
j ± q

1−α;k, v s
2
n

315

 Analysis of Variance and Designed Experiments anova_oneway
Tukey-Kramer method: The Tukey-Kramer method is an approximate extension of the Tukey method for the
unbalanced case. (The method simplifies to the Tukey method for the balanced case.) The method always pro-
duces confidence intervals narrower than the Dunn-Šidák and Bonferroni methods. Hayter (1984) proved that
the method is conservative, i.e., the method guarantees a confidence coverage of at least (1 − α) 100. Hayter’s
proof gave further support to earlier recommendations for its use (Stoline 1981). (Methods that are currently bet-
ter are restricted to special cases and only offer improvement in severely unbalanced cases; see, for example,
Spurrier and Isham 1985.) The formula for the difference μi − μj is given by the following:

Dunn-Šidák method: The Dunn-Šidák method is a conservative method. The method gives wider intervals than
the Tukey-Kramer method. (For large v and small α and k, the difference is only slight.) The method is slightly bet-
ter than the Bonferroni method and is based on an improved Bonferroni (multiplicative) inequality (Miller 1980,
pp. 101, 254−255). The method uses the t distribution (see function imsls_f_t_inverse_cdf, Chapter 11,
Probability Distribution Functions and Inverses). The formula for the difference μi − μj is given by

where tf ;v is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on the Bonferroni (additive)
inequality (Miller, p. 8). The method uses the t distribution. The formula for the difference μi − μj is given by the

following:

Scheffé method: The Scheffé method is an overly conservative method for simultaneous confidence intervals on
pairwise difference of means. The method is applicable for simultaneous confidence intervals on all contrasts, i.e.,
all linear combinations

where the following is true:

y─i − y
─
j ± q

1−α;v, k s2
2ni
+ s
2
2n j

y─i − y
─
j ± t

1
2+
1
2 1−α

1/k*;v s
2
ni+

s2n j

y─i − y
─
j ± t

1− α
2k*

;v s
2
ni+

s2n j

∑
i=1

k

ciμi
316

 Analysis of Variance and Designed Experiments anova_oneway
This method can be recommended here only if a large number of confidence intervals on contrasts in addition to
the pairwise differences of means are to be constructed. The method uses the F distribution (see function
imsls_f_F_inverse_cdf, Chapter 11, Probability Distribution Functions and Inverses). The formula for the
difference μi − μj is given by

where F1−a; (k−1),v is the (1 − α) 100 percentage point of the F distribution with k − 1 and ν degrees of freedom.

One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is appropriate for constructing a single
confidence interval. The confidence percentage input is appropriate for one interval at a time. The method has
been used widely in conjunction with the overall test of the null hypothesis μ1 = μ2 = … = μk by the use of the F

statistic. Fisher’s LSD (least significant difference) test is a two-stage test that proceeds to make pairwise compar-
isons of means only if the overall F test is significant. Milliken and Johnson (1984, p. 31) recommend LSD
comparisons after a significant F only if the number of comparisons is small and the comparisons were planned
prior to the analysis. If many unplanned comparisons are made, they recommend Scheffé’s method. If the F test is
insignificant, a few planned comparisons for differences in means can still be performed by using either Tukey,
Tukey-Kramer, Dunn-Šidák,or Bonferroni methods. Because the F test is insignificant, Scheffé’s method does not
yield any significant differences. The formula for the difference μi − μj is given by the following:

Examples

Example 1

This example computes a one-way analysis of variance for data discussed by Searle (1971, Table 5.1, pp.
165−179). The responses are plant weights for six plants of three different types—three normal, two off-types,
and one aberrant. The responses are given by type of plant in the following table:

Normal Off-Type Aberrant

101 84 32

105

94

88

∑
i=1

k

ci = 0

y─i − y
─
j ± k − 1 F1−α;k−1, v

s2
ni +

s2
n j

y─i − y
─
j ± t

1−α2;v
s2ni+

s2n j
317

 Analysis of Variance and Designed Experiments anova_oneway
#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_groups=3;
 int n[] = {3, 2, 1};
 float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
 float p_value;
 p_value = imsls_f_anova_oneway (n_groups, n, y,
 0);
 printf ("p-value = %6.4f\n", p_value);
}

Output

p-value = 0.002

Example 2

The data used in this example is the same as that used in the initial example. Here, the anova_table is
printed.

#include <imsls.h>
int main()
{
 int n_groups=3;
 int n[] = {3, 2, 1};
 float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
 float p_value;
 float *anova_table;
 char *labels[] = {
 "degrees of freedom for among groups",
 "degrees of freedom for within groups",
 "total (corrected) degrees of freedom",
 "sum of squares for among groups",
 "sum of squares for within groups",
 "total (corrected) sum of squares",
 "among mean square",
 "within mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 /* Perform analysis */
 p_value = imsls_f_anova_oneway (n_groups, n, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 0);
 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
318

 Analysis of Variance and Designed Experiments anova_oneway
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Output

 * * * Analysis of Variance * * *
degrees of freedom for among groups 2.0000
degrees of freedom for within groups 3.0000
total (corrected) degrees of freedom 5.0000
sum of squares for among groups 3480.0000
sum of squares for within groups 70.0000
total (corrected) sum of squares 3550.0000
among mean square 1740.0000
within mean square 23.3333
F-statistic 74.5714
p-value 0.0028
R-squared (in percent) 98.0282
adjusted R-squared (in percent) 96.7136
est. standard deviation of within error 4.8305
overall mean of y 84.0000
coefficient of variation (in percent) 5.7505

Example 3

Simultaneous confidence intervals are generated for the following measurements of cold-cranking power for five
models of automobile batteries. Nelson (1989, pp. 232−241) provided the data and approach.

The Tukey method is chosen for the analysis of pairwise comparisons, with a confidence level of 99 percent. The
means and their confidence limits are output.

#include <imsls.h>
int main()
{
 int n_groups = 5;
 int n[] = {4, 4, 4, 4, 4};
 int permute[] = {2, 3, 4, 0, 1};
 float y[] = {41.0, 43.0, 42.0, 46.0, 42.0,
 43.0, 46.0, 38.0, 27.0, 26.0,
 28.0, 27.0, 48.0, 45.0, 51.0,
 46.0, 28.0, 32.0, 37.0, 25.0};
 float *anova_table, *ci_diff_means, tmp_diff_means[50];
 float confidence = 99.0;

Model 1 Model 2 Model 3 Model 4 Model 5

41 42 27 48 28

43 43 26 45 32

42 46 28 51 37

46 38 27 46 25
319

 Analysis of Variance and Designed Experiments anova_oneway
 char *labels[] = {
 "degrees of freedom for among groups",
 "degrees of freedom for within groups",
 "total (corrected) degrees of freedom",
 "sum of squares for among groups",
 "sum of squares for within groups",
 "total (corrected) sum of squares",
 "among mean square",
 "within mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *mean_row_labels[] = {
 "first and second",
 "first and third",
 "first and fourth",
 "first and fifth",
 "second and third",
 "second and fourth",
 "second and fifth",
 "third and fourth",
 "third and fifth",
 "fourth and fifth"};
 char *mean_col_labels[] = {
 "Means",
 "Difference of means",
 "Lower limit",
 "Upper limit"};
 /* Perform analysis */

imsls_f_anova_oneway(n_groups, n, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_CONFIDENCE, confidence,
 IMSLS_TUKEY, &ci_diff_means,
 0);
 /* Print anova_table */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,
 1, anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
 /* Permute ci_diff_means for printing */
 imsls_f_permute_matrix(10, 5, ci_diff_means, permute,
 IMSLS_PERMUTE_COLUMNS,
 IMSLS_RETURN_USER, tmp_diff_means,
 0);
 /* Print ci_diff_means */
 imsls_f_write_matrix("* * * Differences in Means * * *\n", 10,
 3, tmp_diff_means,
 IMSLS_A_COL_DIM, 5,
 IMSLS_ROW_LABELS, mean_row_labels,
 IMSLS_COL_LABELS, mean_col_labels,
 IMSLS_WRITE_FORMAT, "%11.4g",
 0);
}

320

 Analysis of Variance and Designed Experiments anova_oneway
Output

 * * * Analysis of Variance * * *
degrees of freedom for among groups 4
degrees of freedom for within groups 15
total (corrected) degrees of freedom 19
sum of squares for among groups 1242
sum of squares for within groups 150.78
total (corrected) sum of squares 1393
among mean square 310.56
within mean square 10.05
F-statistic 30.90
p-value 4.398e-007
R-squared (in percent) 89.18
adjusted R-squared (in percent) 86.29
est. standard deviation of within error 3.17
overall mean of y 38.05
coefficient of variation (in percent) 8.332
 * * * Differences in Means * * *
Means Difference Lower limit Upper limit
 of means
first and second 0.75 -8.05 9.55
first and third 16.00 7.20 24.80
first and fourth -4.50 -13.30 4.30
first and fifth 12.50 3.70 21.30
second and third 15.25 6.45 24.05
second and fourth -5.25 -14.05 3.55
second and fifth 11.75 2.95 20.55
third and fourth -20.50 -29.30 -11.70
third and fifth -3.50 -12.30 5.30
fourth and fifth 17.00 8.20 25.80
321

 Analysis of Variance and Designed Experiments ancovar
ancovar
Analyzes a one-way classification model with covariates.

Synopsis
#include <imsls.h>
float *imsls_f_ancovar (int ngroup, int ncov, int ni[], float y[], float x[],…, 0)

The type double function is imsls_d_ancovar.

Required Arguments
int ngroup (Input)

The number of treatment groups.

int ncov (Input)
The number of covariates.

int ni[] (Input)
Array of length ngroup containing the number of responses for each group.

float y[] (Input)
Array of length n containing the data for the response variable where
n = ni[0] + ni[1] +…+ ni[ngroup-1].

float x[] (Input)
Array of size n by ncov containing the data for the covariates.

Return Value
Pointer to an array of length 15 containing the one-way analysis of covariance assuming parallelism, organized as
follows:

Element Anova Table Value

0 Degrees of freedom for model
(groups + covariates).

1 Degrees of freedom for error.
322

 Analysis of Variance and Designed Experiments ancovar
Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_ancovar (int ngroup, int ncov, int ni[], float y[], float x[],

IMSLS_N_MISSING, int *nmiss,
IMSLS_ADJ_ANOVA, float **adj_aov,
IMSLS_ADJ_ANOVA_USER, float adj_aov[],
IMSLS_PARALLEL_TESTS, float **testpl,
IMSLS_PARALLEL_TESTS_USER, float testpl[],
IMSLS_XYMEAN, float **xymean,
IMSLS_XYMEAN_USER, float xymean[],
IMSLS_COEF, float **coef,
IMSLS_COEF_USER, float coef[],
IMSLS_COEF_TABLES, float **coef_tables,

IMSLS_COEF_TABLES_USER, float coef_tables[],

2 Total (corrected) degrees of freedom.

3 Sum of squares for model (groups and
covariates combined).

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square (groups and
covariates combined).

7 Error mean square.

8 F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall response mean.

14 Coefficient of variation (in percent).

Element Anova Table Value
323

 Analysis of Variance and Designed Experiments ancovar
IMSLS_REG_ANOVA, float **aov_tables,
IMSLS_REG_ANOVA_USER, float aov_tables[],
IMSLS_R_MATRIX, float **r,
IMSLS_R_MATRIX_USER, float r[],
IMSLS_COV_MEANS, float **covm,
IMSLS_COV_MEANS_USER, float covm[],
IMSLS_COV_COEF, float **covb,
IMSLS_COV_COEF_USER, float covb[],
IMSLS_RETURN_USER, float aov[],
0)

Optional Arguments
IMSLS_N_MISSING, int *nmiss (Output)

The number of cases with missing values in x or y is returned in *nmiss. Cases with any missing
values are not used in the analysis.

IMSLS_ADJ_ANOVA, float **adj_aov (Output)
Address of a pointer to an internally allocated array of length 8 containing the partial sum of squares
for the one-way analysis of covariance organized as follows:

Note that the p-values are returned as 0.0 when the values are so small that all significant digits have
been lost.

IMSLS_ADJ_ANOVA_USER, float adj_aov[] (Output)
Storage for the array adj_aov provided by the user. See IMSLS_ADJ_ANOVA for a description.

i adj_aov[i]
0 Degrees of freedom for groups after

covariates.

1 Degrees of freedom for covariates after
groups.

2 Sum of squares for groups after
covariates.

3 Sum of squares for model (groups and
covariates combined).

4 F -statistic for groups.

5 F -statistic for covariates.

6 p-value for groups.

7 p-value for covariates.
324

 Analysis of Variance and Designed Experiments ancovar
IMSLS_PARALLEL_TESTS, float **testpl (Output)
Address of a pointer to an internally allocated array of length 10 containing the parallelism tests for
the one-way analysis of covariance organized as follows:

IMSLS_PARALLEL_TESTS_USER, float testpl[] (Output)
Storage for the array testpl provided by the user. See IMSLS_PARALLEL_TESTS for a
description.

IMSLS_XYMEAN, float **xymean (Output)
Address of a pointer to an internally allocated array of size ngroup+1 by ncov+3 containing the
unadjusted means for the covariates and the response variate and the means for the response vari-
ate adjusted for the covariates. Each row for i = 0, 1, …, ngroup-1 corresponds to a group. Row
ngroup contains overall statistics. The means are organized in xymean columns as follows:

i testpl[i]

0 Extra degrees of freedom for model
not assuming parallelism.

1 Degrees of freedom for error for
model not assuming parallelism.

2 Degrees of freedom for error for
model assuming parallelism.

3 Extra sum of squares for model not
assuming parallelism.

4 Sum of squares for error for model
not assuming parallelism.

5 Sum of squares for error for model
assuming parallelism.

6 Mean square for testpl[0].

7 Mean square for testpl[1].

8 F –statistic.

9 p-value.

Column Description
0 Number of non-missing cases

1 thru ncov Covariate means.

ncov + 1 Response mean.

ncov + 2 Response mean adjusted assuming
parallelism.
325

 Analysis of Variance and Designed Experiments ancovar
IMSLS_XYMEAN_USER, float xymean[] (Output)
Storage for the array xymean provided by the user. See IMSLS_XYMEAN for a description.

IMSLS_COEF, float **coef (Output)
Address of a pointer to an internally allocated array of size ngroup + ncov by 4 containing statis-
tics for the regression coefficients for the model assuming parallelism. Each row corresponds to a
coefficient in the model. For i = 0, 1, …, ngroup-1, row i is for the y intercept for the i-th group.
The remaining ncov rows are for the covariate coefficients. The statistics in the columns are orga-
nized as follows:

IMSLS_COEF_USER, float coef[] (Output)
Storage for the array coef provided by the user. See IMSLS_COEF for a description.

IMSLS_COEF_TABLES, float **coef_tables (Output)
Address of a pointer to an internally allocated array of size ngroup by ncov+1 by 4 containing sta-
tistics for a linear regression model fitted separately for each of the ngroup treatment groups. This
array can be viewed as a 3 dimensional array with ngroup rows, ncov+1 columns, and depth of 4.
Each row corresponds to one of the ngroup treatment groups. Each column corresponds to the
model coefficients.

For column = 0, the statistics relate to the intercept in the regression model. For column = 1, 2, …,
ncov, the statistics relate to the slopes for the covariates. The depth dimension corresponds to the
columns described for IMSLS_COEF as follows:

IMSLS_COEF_TABLES_USER, float coef_tables[] (Output)
Storage for the array coef_tables provided by the user. See IMSLS_COEF_TABLES for a
description.

Column Description

0 Coefficient estimate.

1 Estimated standard error of the estimate.

2 t-statistic.

3 p-value.

Column Description

0 Coefficient estimate.

1 Estimated standard error of the estimate.

2 t-statistic.

3 p-value.
326

 Analysis of Variance and Designed Experiments ancovar
IMSLS_REG_ANOVA, float **aov_tables (Output)
Address of a pointer to an internally allocated array of size ngroup by 15 containing the analysis of
variance tables for each linear regression model fitted separately to each treatment group. The 15
values in the i-th row are for treatment group i organized as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

IMSLS_REG_ANOVA_USER, float aov_tables[] (Output)
Storage for the array aov_tables provided by the user. See IMSLS_REG_ANOVA for a
description.

IMSLS_R_MATRIX, float **r (Output)
Address of a pointer to an internally allocated array of size ngroup+ncov by ngroup + ncov
containing the R matrix from the QR decomposition. The R matrix is from the regression assuming
parallelism.

IMSLS_R_MATRIX_USER, float r[] (Output)
Storage for the array r provided by the user. See IMSLS_R_MATRIX for a description.

j aov_tables[i*15+j]

0 Degrees of freedom for regression model
(covariates).

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for regression model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Error standard deviation.

13 Overall response mean.

14 Coefficient of variation (in percent).
327

 Analysis of Variance and Designed Experiments ancovar
IMSLS_COV_MEANS, float **covm (Output)
Address of a pointer to an internally allocated array of size ngroup by ngroup containing the esti-
mated matrix of variances and covariances for the adjusted means assuming parallelism.

IMSLS_COV_MEANS_USER, float covm[] (Output)
Storage for the array covm provided by the user. See IMSLS_COV_MEANS for a description.

IMSLS_COV_COEF, float **covb (Output)
Address of a pointer to an internally allocated array of size ngroup + ncov by ngroup+ncov
containing the estimated matrix of variances and covariances for the coefficients in coef returned
using IMSLS_COEF or IMSLS_COEF_USER.

IMSLS_COV_COEF_USER, float covb[] (Output)
Storage for the array covb provided by the user. See IMSLS_COV_COEF for a description.

IMSLS_RETURN_USER, float aov[] (Output)
An array of length 15 provided by the user for the return value. See Return Value above for a
description.

Description
Function imsls_f_ancovar performs analyses for models that combine the features of a one-way analysis of
variance model with that of a multiple linear regression model. The basic one-way analysis of covariance model is

where the observed value of yij constitutes the j-th response in the i-th group, denotes the y intercept for the

regression function for the i-th group, β1, β2, …, βm are the regression coefficients for the covariates, and the ɛ ij’s

are independently distributed normal errors with mean zero and variance σ2. This model allows the regression
function for each group to have different intercepts. However, the remaining m regression coefficients are the
same for each group, i.e., the regression functions are parallel.

In practice, sometimes the regression functions are not parallel. In addition to estimates for the model assuming
parallelism, imsls_f_ancovar computes estimates and summary statistics for the separate regressions for
each group. These estimates can be examined using the optional arguments IMSLS_COEF_TABLES and
IMSLS_REG_ANOVA.

Estimates for the β0i’s and β1, β2, …, βm in the model assuming parallelism are returned using the optional argu-

ment IMSLS_COEF. Summary statistics are also computed for this model.

yi j = β0i + β1xi j1 + β2xi j2 + … + βmxijm + ɛi j i = 1,2, … ,ngroup; j = 1,2, … ,ni

β0i
328

 Analysis of Variance and Designed Experiments ancovar
The adjusted group means, stored in the last column of xymean, are computed using the formula:

The estimated covariance between the i1-th and i2-th adjusted group mean is given by

where vpq is the entry in covb[(p - 1)(ngroup + ncov) + q -1] and is the estimated covariance between the

p-th and q-th estimated coefficients in the regression function.

A discussion of formulas and interpretations for the one-way analysis of covariance problem appears in most ele-
mentary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 14).

Examples

Example 1

This example fits a one-way analysis of covariance model assuming parallelism using data discussed by Snedecor
and Cochran (Table 14.6.1, pages 432−436). The responses are concentrations of cholesterol (in mg/100 ml) in
the blood of two groups of women: women from Iowa and women from Nebraska. Age of a woman is the single
covariate. The cholesterol concentrations and ages of the women according to state are shown in the following
table. (There are 11 Iowa women and 19 Nebraska women in the study. Only the first 5 women from each state
are shown here.)

Iowa Nebraska

Age Cholesterol Age Cholesterol

46 181 18 137

52 228 44 173

39 182 33 177

65 249 78 241

54 259 51 225

β^oi + β
^
1x
─
1 + β

^
2x
─
2 + … + β^ncovx

─
ncov

vi1i2 +∑
r=1

m

∑
s=1

m

x─rvk+r, k+sx
─
s +∑

r=1

m

x─rvi1, k+r +∑
r=1

m

x─rvi2, k+r
329

 Analysis of Variance and Designed Experiments ancovar
There is no evidence from the data to indicate that the regression lines for cholesterol concentration as a func-
tion of age are not parallel for Iowa and Nebraska women (p-value is 0.5425). The parallel line model suggests
that Nebraska women may have higher cholesterol concentrations than Iowa women. The cholesterol concentra-
tions (adjusted for age) are 195.5 for Iowa women versus 224.2 for Nebraska women. The difference is 28.7 with
an estimated standard error of

#include <imsls.h>
#include <stdio.h>
int main()
{
int ncov=1, ngroup=2;
int ni[2] = {11, 19};
float *testpl, *aov, *xymean, *covm;
float y[30] = {
 181.0, 228.0, 182.0, 249.0, 259.0,
 201.0, 121.0, 339.0, 224.0, 112.0,
 189.0, 137.0, 173.0, 177.0, 241.0,
 225.0, 223.0, 190.0, 257.0, 337.0,
 189.0, 214.0, 140.0, 196.0, 262.0,
 261.0, 356.0, 159.0, 191.0, 197.0
};
float x[30] = {
 46.0, 52.0, 39.0, 65.0, 54.0,
 33.0, 49.0, 76.0, 71.0, 41.0,
 58.0, 18.0, 44.0, 33.0, 78.0,
 51.0, 43.0, 44.0, 58.0, 63.0,
 19.0, 42.0, 30.0, 47.0, 58.0,
 70.0, 67.0, 31.0, 21.0, 56.0
};
aov = imsls_f_ancovar(ngroup, ncov, ni, y, x,
 IMSLS_PARALLEL_TESTS, &testpl,
 IMSLS_XYMEAN, &xymean,
 IMSLS_COV_MEANS, &covm, 0);
printf(" * * * ANALYSIS OF VARIANCE * * * \n");
printf(" Sum of Mean Prob of\n");
printf("Source DF Squares Square Overall F Larger F\n");
printf("Model %3.0f %10.2f %9.2f %2.2f %8.6f\n",
 aov[0], aov[3], aov[6], aov[8], aov[9]);
printf("Error %3.0f %10.2f %9.2f \n", aov[1], aov[4], aov[7]);
printf("Total %3.0f %10.2f \n", aov[2], aov[5]);
printf("\n");
printf(" * * * TEST FOR PARALLELISM * * * \n");
printf(" Sum of Mean F Prob of\n");
printf("SOURCE DF Squares Square TEST Larger F\n");
printf("Extra due to\n");
printf("Nonparallelism %3.0f %10.2f %7.2f %7.5f %5.4f\n",
 testpl[0], testpl[3], testpl[6], testpl[8], testpl[9]);
printf("Extra Assuming\n");
printf("Nonparallelism %3.0f %10.2f %7.2f \n", testpl[1], testpl[4],
 testpl[7]);
printf("Error Assuming\n");
printf("Parallelism %3.0f %10.2f \n", testpl[2], testpl[5]);

170.4 + 97.4 − 2 2.9 = 16.1
330

 Analysis of Variance and Designed Experiments ancovar
imsls_f_write_matrix("\nXY Mean Matrix\n", ngroup+1, 4, xymean, 0);
imsls_f_write_matrix("\nVar./Covar. Matrix of Adjusted Group Means\n",
 ngroup, ngroup, covm, 0);
}

Output

 * * * ANALYSIS OF VARIANCE * * *
 Sum of Mean Prob of
Source DF Squares Square Overall F Larger F
Model 2 54432.77 27216.39 14.97 0.000042
Error 27 49103.91 1818.66
Total 29 103536.69
 * * * TEST FOR PARALLELISM * * *
 Sum of Mean F Prob of
SOURCE DF Squares Square TEST Larger F
Extra due to
Nonparallelism 1 709.05 709.05 0.38094 0.5425
Extra Assuming
Nonparallelism 26 48394.86 1861.34
Error Assuming
Parallelism 27 49103.91

 XY Mean Matrix
 1 2 3 4
1 11.0 53.1 207.7 195.5
2 19.0 45.9 217.1 224.2
3 30.0 48.6 213.7 213.7

Var./Covar. Matrix of Adjusted Group Means
 1 2
 1 170.4 -2.9
 2 -2.9 97.4

Figure 7, Plot of Cholesterol Concentrations and Fitted Parallel Lines by State
331

 Analysis of Variance and Designed Experiments ancovar
Example 2

This example fits a one-way analysis of covariance model and performs a test for parallelism using data discussed
by Snedecor and Cochran (1967, Table 14.8.1, pages 438-443). The responses are weight gains (in pounds per
day) of 40 pigs for four groups of pigs under varying treatments. Two covariates-initial age (in days) and initial
weight (in pounds) are used. For each treatment, there are 10 pigs. Only the first five pigs from each treatment
are shown here.

For these data, the test for non-parallelism is not statistically significant (p = 0.901). The one-way analysis of cova-
riance test for the treatment means adjusted for the covariates, assuming parallel slopes, is statistically significant
at a stated significance level of α = 0.05, (p = 0.04931).

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Age Wt. Gain Age Wt. Gain Age Wt. Gain Age Wt. Gain

78 61 1.40 78 74 1.61 78 80 1.67 77 62 1.40

90 59 1.79 99 75 1.31 83 61 1.41 71 55 1.47

94 76 1.72 80 64 1.12 79 62 1.73 78 62 1.37

71 50 1.47 75 48 1.35 70 47 1.23 70 43 1.15

99 61 1.26 94 62 1.29 85 59 1.49 95 57 1.22
332

 Analysis of Variance and Designed Experiments ancovar
Multiple comparisons can be done using the least significant difference approach of comparing each pair of
treatment groups with the two-sample student-t test. Since the adjusted means in the one-way analysis of covari-
ance are correlated, the standard error for these comparisons must be computed using the variances and
covariances in covm. The standard errors for these comparisons are fairly similar ranging from 0.0630 to 0.0638.
The Student’s t comparisons identify differences between groups 1 and 2, and 1 and 4 as being statistically signif-
icant with p-values of 0.01225 and 0.03854 respectively.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
int main()
{

 int i, j;
 int ncov=2, ngroup=4, nobs=40;
 int ni[4] = {10, 10, 10, 10};
 float aov[15], testpl[10], adj_aov[8], xymean[5*5], covm[4*4];
 float x1[40] = {

 78.0, 90.0, 94.0, 71.0, 99.0, 80.0, 83.0, 75.0, 62.0, 67.0,
78.0, 99.0, 80.0, 75.0, 94.0, 91.0, 75.0, 63.0, 62.0, 67.0,
78.0, 83.0, 79.0, 70.0, 85.0, 83.0, 71.0, 66.0, 67.0, 67.0,
77.0, 71.0, 78.0, 70.0, 95.0, 96.0, 71.0, 63.0, 62.0, 67.0

 };
 float x2[40] = {

 61.0, 59.0, 76.0, 50.0, 61.0, 54.0, 57.0, 45.0, 41.0, 40.0,
74.0, 75.0, 64.0, 48.0, 62.0, 42.0, 52.0, 43.0, 50.0, 40.0,
80.0, 61.0, 62.0, 47.0, 59.0, 42.0, 47.0, 42.0, 40.0, 40.0,
62.0, 55.0, 62.0, 43.0, 57.0, 51.0, 41.0, 40.0, 45.0, 39.0,

};
 float y[40] = {

 1.40, 1.79, 1.72, 1.47, 1.26, 1.28, 1.34, 1.55, 1.57, 1.26,
1.61, 1.31, 1.12, 1.35, 1.29, 1.24, 1.29, 1.43, 1.29, 1.26,
1.67, 1.41, 1.73, 1.23, 1.49, 1.22, 1.39, 1.39, 1.56, 1.36,
1.40, 1.47, 1.37, 1.15, 1.22, 1.48, 1.31, 1.27, 1.22, 1.36

 };
 float x[40*2], stderror, delta, t, df, pvalue;
 /* setup covariate input matrix */
 for(i=0; i<nobs; i++){

 x[i*ncov] = x1[i];
 x[i*ncov+1] = x2[i];

 }
 imsls_f_ancovar(ngroup, ncov, ni, y, x,

IMSLS_PARALLEL_TESTS_USER, testpl,
 IMSLS_ADJ_ANOVA_USER, adj_aov,
 IMSLS_XYMEAN_USER, xymean,
 IMSLS_COV_MEANS_USER, covm,
 IMSLS_RETURN_USER, aov,
 0);

 printf("\n");
 printf(" * * * TEST FOR PARALLELISM * * * \n");
333

 Analysis of Variance and Designed Experiments ancovar
 printf(" Sum of Mean F Prob "
 "of\n");

 printf("SOURCE DF Squares Square TEST Larger "
 "F\n");

 printf("Extra due to\n");
 printf("Nonparallelism %3.0f %10.2f %7.2f %7.5f %5.3f\n",

 testpl[0], testpl[3], testpl[6], testpl[8], testpl[9]);
 printf("Extra Assuming\n");

 printf("Nonparallelism %3.0f %10.2f %7.2f \n",
testpl[1], testpl[4], testpl[7]);

 printf("Error Assuming\n");
 printf("Parallelism %3.0f %10.2f \n", testpl[2], testpl[5]);
 printf("\n");
 printf(" * * * ANALYSIS OF VARIANCE * * * \n");
 printf(" Sum of Mean Prob "

 "of\n");
 printf("Source DF Squares Square Overall F Larger"

 "F\n");
 printf("Model %3.0f %f %f %f %5.4f\n",

 aov[0], aov[3], aov[6], aov[8], aov[9]);
 printf("Error %3.0f %f %f \n", aov[1], aov[4],

 aov[7]);
 printf("Total %3.0f %f \n", aov[2], aov[5]);
 printf("\n");
 printf(" * * * ADJUSTED ANALYSIS OF VARIANCE * * * \n");
 printf(" Sum of F Prob "

 "of\n");
 printf("Source DF Squares TEST Larger "

 "F\n");
 printf("Groups after Covariates %3.0f %10.2f %5.2f %7.5f\n",

 adj_aov[0], adj_aov[2], adj_aov[4], adj_aov[6]);
 printf("Covariates after Groups %3.0f %10.2f %5.2f %7.5f\n",

 adj_aov[1], adj_aov[3], adj_aov[5], adj_aov[7]);
 printf("\n * * * GROUP MEANS * * * \n");
 printf("GROUP | Unadjusted | Adjusted | Std. Error\n");
 for(i=0; i<ngroup; i++) {

 stderror = sqrt(covm[i*ngroup + i]);
 printf(" %d | %5.4f | %5.4f | %7.4f\n", i+1,

 xymean[i*(ngroup+1)+ngroup-1], xymean[i*(ngroup+1)+ngroup],
 stderror);

 }
 printf("\n * * * STUDENT-T MULTIPLE COMPARISONS * * * \n");
 printf(" GROUPS | DIFF | Std. Error | Student-t | P-Value\n");
 for(i=0; i<ngroup-1; i++){

 for(j=i+1; j<ngroup; j++){
 delta = xymean[i*(ngroup+1)+ngroup] -

xymean[j*(ngroup+1)+ngroup];
 stderror = sqrt(covm[i*ngroup+i]+covm[j*ngroup+j]-

 2.0*covm[i*ngroup+j]);
 t = delta/stderror;
 df = xymean[i*(ngroup+1)]+xymean[j*(ngroup+1)]-2;
 pvalue = 1.0 - imsls_f_t_cdf(t, df);
 printf(" %d vs %d | %7.4f | %7.4f | %7.3f | "

 "%7.5f\n", i+1, j+1, delta, stderror, t, pvalue);
334

 Analysis of Variance and Designed Experiments ancovar
 }
 }

}

Output

 * * * TEST FOR PARALLELISM * * *
 Sum of Mean F Prob of
SOURCE DF Squares Square TEST Larger F
Extra due to
Nonparallelism 6 0.05 0.01 0.35534 0.901
Extra Assuming
Nonparallelism 28 0.62 0.02
Error Assuming
Parallelism 34 0.67
 * * * ANALYSIS OF VARIANCE * * *
 Sum of Mean Prob of
Source DF Squares Square Overall F Larger F
Model 5 0.352517 0.070503 3.576395 0.0105
Error 34 0.670261 0.019714
Total 39 1.022778
 * * * ADJUSTED ANALYSIS OF VARIANCE * * *
 Sum of F Prob of
Source DF Squares TEST Larger F
Groups after Covariates 3 0.17 2.90 0.04931
Covariates after Groups 2 0.17 4.44 0.01939
 * * * GROUP MEANS * * *
GROUP | Unadjusted | Adjusted | Std. Error
 1 | 1.4640 | 1.4614 | 0.0448
 2 | 1.3190 | 1.3068 | 0.0446
 3 | 1.4450 | 1.4429 | 0.0447
 4 | 1.3250 | 1.3418 | 0.0449
 * * * STUDENT-T MULTIPLE COMPARISONS * * *
GROUPS | DIFF | Std. Error | Student-t | P-Value
1 vs 2 | 0.1546 | 0.0630 | 2.455 | 0.01225
1 vs 3 | 0.0185 | 0.0637 | 0.290 | 0.38750
1 vs 4 | 0.1196 | 0.0638 | 1.875 | 0.03854
2 vs 3 | -0.1362 | 0.0632 | -2.153 | 0.97743
2 vs 4 | -0.0350 | 0.0638 | -0.549 | 0.70528
3 vs 4 | 0.1011 | 0.0631 | 1.602 | 0.06330
335

 Analysis of Variance and Designed Experiments anova_factorial
anova_factorial
Analyzes a balanced factorial design with fixed effects.

Synopsis
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float y[],…, 0)

The type double function is imsls_d_anova_factorial.

Required Arguments
int n_subscripts (Input)

Number of subscripts. Number of factors in the model + 1 (for the error term).

int n_levels (Input)
Array of length n_subscripts containing the number of levels for each of the factors for the first
n_subscripts − 1 elements. n_levels [n_subscripts − 1] is the number of observations
per cell.

float y[] (Input)
Array of length n_levels [0]*n_levels [1] × … *n_levels [n_subscripts − 1] contain-
ing the responses. Argument y must not contain NaN for any of its elements; i.e., missing values are
not allowed.

Return Value
The p-value for the overall F test.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float y[],

IMSLS_MODEL_ORDER, int model_order,
IMSLS_PURE_ERROR, or
336

 Analysis of Variance and Designed Experiments anova_factorial
IMSLS_POOL_INTERACTIONS,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_TEST_EFFECTS, float **test_effects,
IMSLS_TEST_EFFECTS_USER, float test_effects[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
0)

Optional Arguments
IMSLS_MODEL_ORDER, int model_order (Input)

Number of factors to be included in the highest-way interaction in the model. Argument
model_order must be in the interval [1, n_subscripts − 1]. For example, a model_order of
1 indicates that a main effect model will be analyzed, and a model_order of 2 indicates that two-
way interactions will be included in the model. Default: model_order = n_subscripts − 1.

IMSLS_PURE_ERROR (Input)

or

IMSLS_POOL_INTERACTIONS (Input)
IMSLS_PURE_ERROR, the default option, indicates factor n_subscripts is error. Its main effect
and all its interaction effects are pooled into the error with the other (model_order + 1)-way and
higher-way interactions. IMSLS_POOL_INTERACTIONS indicates factor n_subscripts is not
error. Only (model_order + 1)-way and higher-way interactions are included in the error.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to an internally allocated array of size 15 containing the analysis of variance
table. The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.
337

 Analysis of Variance and Designed Experiments anova_factorial
Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_TEST_EFFECTS, float **test_effects (Output)
Address of a pointer to an NEF × 4 internally allocated array containing a matrix containing statistics
relating to the sums of squares for the effects in the model. Here,

where n is given by n_subscripts if IMSLS_POOL_INTERACTIONS is specified; otherwise,
n_subscripts − 1.

Suppose the factors are A, B, C, and error. With model_order = 3, rows 0 through NEF − 1 would
correspond to A, B, C, AB, AC, BC, and ABC, respectively. The columns of test_effects are as
follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent).

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall mean of y.

14 Coefficient of variation (in percent).

Column Description

0 Degrees of freedom.

1 Sum of squares.

2 F-statistic.

3 p-value.

Element Analysis of Variance Statistics

NEF =
n
1 +

n
2 + … +

n
min (n,|model_order|)
338

 Analysis of Variance and Designed Experiments anova_factorial
IMSLS_TEST_EFFECTS_USER, float test_effects[] (Output)
Storage for array test_effects is provided by the user. See IMSLS_TEST_EFFECTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length
(n_levels [0] + 1) × (n_levels [1] + 1) × … × (n_levels[n − 1] + 1) containing the subgroup
means.

See argument IMSLS_TEST_EFFECTS for a definition of n. If the factors are A, B, C, and error, the
ordering of the means is grand mean, A means, B means, C means, AB means, AC means, BC means,
and ABC means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Description
Function imsls_f_anova_factorial performs an analysis for an n-way classification design with balanced
data. For balanced data, there must be an equal number of responses in each cell of the n-way layout. The effects
are assumed to be fixed effects. The model is an extension of the two-way model to include n factors. The interac-
tions (two-way, three-way, up to n-way) can be included in the model, or some of the higher-way interactions can
be pooled into error. The argument model_order specifies the number of factors to be included in the high-
est-way interaction. For example, if three-way and higher-way interactions are to be pooled into error, set
model_order = 2. (By default, model_order = n_subscripts − 1 with the last subscript being the error
subscript.) Argument IMSLS_PURE_ERROR indicates there are repeated responses within the n-way cell;
IMSLS_POOL_INTERACTIONS_INTO_ERROR indicates otherwise.

Function imsls_f_anova_factorial requires the responses as input into a single vector y in lexicographi-
cal order, so that the response subscript associated with the first factor varies least rapidly, followed by the
subscript associated with the second factor, and so forth. Hemmerle (1967, Chapter 5) discusses the computa-
tional method.

Examples

Example 1

A two-way analysis of variance is performed with balanced data discussed by Snedecor and Cochran (1967, Table
12.5.1, p. 347). The responses are the weight gains (in grams) of rats that were fed diets varying in the source (A)
and level (B) of protein. The model is
339

 Analysis of Variance and Designed Experiments anova_factorial
where

for i = 1, 2. The first responses in each cell in the two-way layout are given in the following table:

#include <imsls.h>
#include <stdio.h>
int main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,2,10};
 float p_value;
 float y[60] = {
 73.0, 102.0, 118.0, 104.0, 81.0,
 107.0, 100.0, 87.0, 117.0, 111.0,
 90.0, 76.0, 90.0, 64.0, 86.0,
 51.0, 72.0, 90.0, 95.0, 78.0,
 98.0, 74.0, 56.0, 111.0, 95.0,
 88.0, 82.0, 77.0, 86.0, 92.0,
 107.0, 95.0, 97.0, 80.0, 98.0,
 74.0, 74.0, 67.0, 89.0, 58.0,
 94.0, 79.0, 96.0, 98.0, 102.0,
 102.0, 108.0, 91.0, 120.0, 105.0,
 49.0, 82.0, 73.0, 86.0, 81.0,
 97.0, 106.0, 70.0, 61.0, 82.0};
 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
 0);
 printf("P-value = %10.6f\n",p_value);
}

Output

P-value = 0.00229

Protein Source (A)

Protein Level (B) Beef Cereal Pork

High 73, 102, 118, 104, 81,
107, 100, 87, 117, 111

98, 74, 56, 111,
95, 88, 82, 77,
86, 92

94, 79, 96, 98, 102,
102, 108, 91, 120, 105

Low 90, 76, 90, 64, 86, 51,
72, 90, 95, 78

107, 95, 97, 80,
98, 74, 74, 67,
89, 58

49, 82, 73, 86, 81, 97,
106, 70, 61, 82

yi j k = μ + αi + β j + γi j + ɛi j k i = 1,2; j = 1,2,3; k = 1,2, … ,10

∑
i=1

2

αi = 0;∑
j=1

3

β j = 0;∑
i=1

2

γi j = 0 for j = 1,2,3; and ∑
j=1

3

γi j = 0
340

 Analysis of Variance and Designed Experiments anova_factorial
Example 2

In this example, the same model and data is fit as in the initial example, but optional arguments are used for a
more complete analysis.

#include <imsls.h>
#include <stdio.h>
int main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,2,10};
 float p_value;
 float *test_effects, *means, *anova_table;
 float y[60] = {
 73.0, 102.0, 118.0, 104.0, 81.0,
 107.0, 100.0, 87.0, 117.0, 111.0,
 90.0, 76.0, 90.0, 64.0, 86.0,
 51.0, 72.0, 90.0, 95.0, 78.0,
 98.0, 74.0, 56.0, 111.0, 95.0,
 88.0, 82.0, 77.0, 86.0, 92.0,
 107.0, 95.0, 97.0, 80.0, 98.0,
 74.0, 74.0, 67.0, 89.0, 58.0,
 94.0, 79.0, 96.0, 98.0, 102.0,
 102.0, 108.0, 91.0, 120.0, 105.0,
 49.0, 82.0, 73.0, 86.0, 81.0,
 97.0, 106.0, 70.0, 61.0, 82.0};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","Adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *test_row_labels[] = {"A", "B", "A*B"};
 char *test_col_labels[] = {"Source", "DF", "Sum of\nSquares",
 "Mean\nSquare", "Prob. of\nLarger F"};
 char *mean_row_labels[] = {"grand mean", "A1", "A2", "A3",
 "B1", "B2", "A1*B1", "A1*B2", "A2*B1", "A2*B2", "A3*B1",
 "A3*B2"};
 /* Perform analysis */
 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_MEANS, &means,
 0);
341

 Analysis of Variance and Designed Experiments anova_factorial
 printf("P-value = %10.6f",p_value);
 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
 imsls_f_write_matrix("* * * Variation Due to the Model * * *", 3, 4,
 test_effects,
 IMSLS_ROW_LABELS, test_row_labels,
 IMSLS_COL_LABELS, test_col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
 imsls_f_write_matrix("* * * Subgroup Means * * *", 12, 1, means,
 IMSLS_ROW_LABELS, mean_row_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Output

P-value = 0.002299
 * * * Analysis of Variance * * *
degrees of freedom for the model 5.0000
degrees of freedom for error 54.0000
total (corrected) degrees of freedom 59.0000
sum of squares for the model 4612.9346
sum of squares for error 11585.9990
total (corrected) sum of squares 16198.9336
model mean square 922.5869
error mean square 214.5555
F-statistic 4.3000
p-value 0.0023
R-squared (in percent) 28.4768
Adjusted R-squared (in percent) 21.8543
est. standard deviation of the model error 14.6477
overall mean of y 87.8667
coefficient of variation (in percent) 16.6704

 * * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. Of
 Squares Square Larger F
A 2.0000 266.5330 0.6211 0.5411
B 1.0000 3168.2678 14.7667 0.0003
A*B 2.0000 1178.1337 2.7455 0.0732

* * * Subgroup Means * * *
grand mean 87.8667
 A1 89.6000
 A2 84.9000
 A3 89.1000
 B1 95.1333
342

 Analysis of Variance and Designed Experiments anova_factorial
 B2 80.6000
 A1*B1 100.0000
 A1*B2 79.2000
 A2*B1 85.9000
 A2*B2 83.9000
 A3*B1 99.5000
 A3*B2 78.7000

Example 3

This example performs a three-way analysis of variance using data discussed by Peter W.M. John (1971,
pp. 91−92). The responses are weights (in grams) of roots of carrots grown with varying amounts of applied
nitrogen (A), potassium (B), and phosphorus (C). Each cell of the three-way layout has one response. Note that the
ABC interactions sum of squares, which is 186, is given incorrectly by Peter W.M. John (1971, Table 5.2.) The three-
way layout is given in the following table:

#include <imsls.h>
#include <stdio.h>
int main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,3,3};
 float p_value;
 float *test_effects, *anova_table;
 float y[27] = {
 88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,
 90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75,
 112.3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,
 104.51, 110.94, 102.87};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","Adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *test_row_labels[] = {"A", "B", "C", "A*B", "A*C", "B*C"};

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87
343

 Analysis of Variance and Designed Experiments anova_factorial
 char *test_col_labels[] = {
 "Source", "DF", "Sum of\nSquares",
 "Mean\nSquare", "Prob. of\nLarger F"};
 /* Perform analysis */
 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_POOL_INTERACTIONS,
 0);
 /* Print results */
 printf("P-value = %10.6f",p_value);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
 imsls_f_write_matrix("* * * Variation Due to the Model * * *", 6, 4,
 test_effects,
 IMSLS_ROW_LABELS, test_row_labels,
 IMSLS_COL_LABELS, test_col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Output

P-value = 0.008299
 * * * Analysis of Variance * * *
degrees of freedom for the model 18.0000
degrees of freedom for error 8.0000
total (corrected) degrees of freedom 26.0000
sum of squares for the model 2395.7290
sum of squares for error 185.7763
total (corrected) sum of squares 2581.5054
model mean square 133.0961
error mean square 23.2220
F-statistic 5.7315
p-value 0.0083
R-squared (in percent) 92.8036
Adjusted R-squared (in percent) 76.6116
est. standard deviation of the model error 4.8189
overall mean of y 98.9619
coefficient of variation (in percent) 4.8695
 * * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. Of
 Squares Square Larger F
A 2.0000 488.3678 10.5152 0.0058
B 2.0000 1090.6559 23.4832 0.0004
C 2.0000 49.1484 1.0582 0.3911
A*B 4.0000 142.5856 1.5350 0.2804
A*C 4.0000 32.3474 0.3482 0.8383
B*C 4.0000 592.6240 6.3800 0.0131
344

 Analysis of Variance and Designed Experiments anova_nested
anova_nested
Analyzes a completely nested random model with possibly unequal numbers in the subgroups.

Synopsis
#include <imsls.h>
float *imsls_f_anova_nested (int n_factors, int equal_option, int n_levels[], float y[],

..., 0)

The type double function is imsls_d_anova_nested.

Required Arguments
int n_factors (Input)

Number of factors (number of subscripts) in the model, including error.

int equal_option (Input)
Equal numbers option.

int n_levels[] (Input)
Array with the number of levels for each factor.

If equal_option = 1, n_levels is of length n_factors and contains the number of levels for
each of the factors.

equal_option Description

0 Unequal numbers in the
subgroups.

1 Equal numbers in the
subgroups.
345

 Analysis of Variance and Designed Experiments anova_nested
Example: Suppose there are 3 factors, A, B, and C. A has two levels (A1, A2), B has 3 levels at each level
of A, and C has 2 levels at each level of B. n_levels = {2,3,2} and the number of observations is
nobs = 2 × 3 × 2 = 12.

If equal_option = 0, n_levels contains the number of levels of each factor at each level of the
factor in which it is nested.

Example: Suppose there are 3 factors, A, B, and C, with C nested in B and B nested in A. A has two lev-
els (A1, A2), B has up to 3 levels, and C has up to 2 levels. In the equal_option = 0 case, the
function needs to know explicitly how the number of levels varies throughout. As specified in the
table, A has two levels (n_levels[0] = 2), B has 3 levels in level 1 of A (n_levels[1] = 3) and 2
levels in level 2 of A (n_levels[2] = 2). Similarly, factor C has 2 levels in the A1-B1 and A1-B2
combinations (n_levels[3] = 2, n_levels[4] = 2), but only 1 level in the A1-B3 combination
(n_levels[5] = 1). n_levels = {2,3,2,2,2,1,1,2} and the number of observations is the sum of
the number of levels in the last factor, C, nobs = 2 + 2 + 1 + 1 + 2 = 8:

A levels B levels C levels y indices
1 1 1 0

2 1

2 1 2

2 3

3 1 4

2 5

2 1 1 6

2 7

2 1 8

2 9

3 1 10

2 11

n_levels 2 3 2

nobs 2× 3× 2 =12

equal_option = 1 example
346

 Analysis of Variance and Designed Experiments anova_nested
float y[] (Input)
Array of length nobs containing the responses.

Return Value
The p-value for the F-statistic, anova_table[9].

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_anova_nested (int n_factors, int equal_option, int n_levels[], float y[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[],
IMSLS_EMS, float **expect_mean_sq,
IMSLS_EMS_USER, float expect_mean_sq[],
IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
0)

A levels B levels C levels y indices
1 1 1 0

2 1

2 1 2

2 3

3 1 4

2 1 1 5

2 1 6

2 7

n_levels 2 3, 2 2 , 2, 1, 1, 2

nobs 2 + 2 + 1 + 1 + 2 = 8

equal_option = 0 example
347

 Analysis of Variance and Designed Experiments anova_nested
Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table, (Output)

Address of a pointer to an internally allocated array of size 15 containing the analysis of variance
table. The analysis of variance statistics are as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance components, in percent.
confidence percent confidence intervals are computed, hence, confidence must be in the
interval [0.0, 100.0). confidence often will be 90.0, 95.0, or 99.0. For one-sided intervals with con-
fidence level ONECL, ONECL in the interval [50.0, 100.0), set confidence = 100.0 - 2.0 × (100.0 -
ONECL).

Default: confidence = 95.0.

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent)

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall mean of y.

14 Coefficient of variation (in percent).
348

 Analysis of Variance and Designed Experiments anova_nested
IMSLS_VARIANCE_COMPONENTS, float **variance_components (Output)
Address to a pointer to an internally allocated array. variance_components is an n_factors
by 9 matrix containing statistics relating to the particular variance components in the model. Rows of
variance_components correspond to the n_factors factors. Columns of
variance_components are as follows:

A test for the error variance equal to zero cannot be performed. variance_components
[(n_factors-1)*9+3] and variance_components [(n_factors-1)*9+4] are set to
NaN (not a number). Note that the p-value for the F test is returned as 0.0 when the value is so small
that all significant digits have been lost.

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[] (Output)
Storage for array variance_components is provided by the user. See
IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **expect_mean_sq (Output)
Address to a pointer to an internally allocated array of length n_factors * (n_factors +1) / 2
with expected mean square coefficients.

IMSLS_EMS_USER, float expect_mean_sq[] (Output)
Storage for array expect_mean_sq is provided by the user. See IMSLS_EMS.

Column Description

0 Degrees of freedom.

1 Sum of squares.

2 Mean squares.

3 F–statistic.

4 p-value for F test.

5 Variance component estimate.

6 Percent of variance of variance
explained by variance component.

7 Lower endpoint for a confidence interval
on the variance component.

8 Upper endpoint for a confidence interval
on the variance component.
349

 Analysis of Variance and Designed Experiments anova_nested
IMSLS_Y_MEANS, float **y_means (Output)
Address to a pointer to an internally allocated array containing the subgroup means.

If the factors are labeled A, B, C, and error, the ordering of the means is grand mean, A means, AB
means, and then ABC means.

IMSLS_Y_MEANS_USER, float y_means[] (Output)
Storage for array y_means is provided by the user. See IMSLS_Y_MEANS

Description
Function imsls_f_anova_nested analyzes a nested random model with equal or unequal numbers in the
subgroups. The analysis includes an analysis of variance table and computation of subgroup means and variance
component estimates. Anderson and Bancroft (1952, pages 325-330) discuss the methodology. The analysis of
variance method is used for estimating the variance components. This method solves a linear system in which
the mean squares are set to the expected mean squares. A problem that Hocking (1985, pages 324-330) dis-
cusses is that this method can yield negative variance component estimates. Hocking suggests a diagnostic
procedure for locating the cause of a negative estimate. It may be necessary to reexamine the assumptions of
the model.

Examples

Example 1

An analysis of a three-factor nested random model with equal numbers in the subgroups is performed using data
discussed by Snedecor and Cochran (1967, Table 10.16.1, pages 285−288). The responses are calcium concen-
trations (in percent, dry basis) as measured in the leaves of turnip greens. Four plants are taken at random, then
three leaves are randomly selected from each plant.

Finally, from each selected leaf two samples are taken to determine calcium concentration. The model is

yijk = μ + αi + βij + eijk i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the i-th plant, the αi’s are the plant

effects and are taken to be independently distributed

Equal
options Length of y_means

0 1 + sum of values in n_levels for the first (n_factors-1) factors

1 1 + n_levels[0] + n_levels[0] *n_levels[1] + … + n_levels[0]*
n_levels[1] * … * n_levels[n_factors – 2].
350

 Analysis of Variance and Designed Experiments anova_nested
the βij’s are leaf effects each independently distributed

and the ɛijk’s are errors each independently distributed N(0, σ2). The effects are all assumed to be independently

distributed. The data are given in the following table:

#include <imsls.h>
#include <stdio.h>
int main()
{
 float pvalue, *aov, *varc, *ymeans, *ems;
 float y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87,
 1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,
 3.87, 4.07, 4.12, 3.31, 3.31
 };
 int n_levels[] = {4, 3, 2};
 char *aov_labels[] = {
 "degrees of freedom for model", "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for model", "sum of squares for error",
 "total (corrected) sum of squares", "model mean square",
 "error mean square", "F-statistic", "p-value",
 "R-squared (in percent)", "adjusted R-squared (in percent)",
 "est. standard deviation of within error", "overall mean of y",
 "coefficient of variation (in percent)"

Plant Leaf Samples

1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80

2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19

3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55

4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31

N 0, σ2

N 0, σβ
2

351

 Analysis of Variance and Designed Experiments anova_nested
 };
 char *ems_labels[] = {
 "Effect A and Error", "Effect A and Effect B",
 "Effect A and Effect A", "Effect B and Error",
 "Effect B and Effect B", "Error and Error"
 };
 char *means_labels[] = {
 "Grand mean", " A means 1", " A means 2",
 " A means 3", " A means 4", "AB means 1 1",
 "AB means 1 2", "AB means 1 3", "AB means 2 1",
 "AB means 2 2", "AB means 2 3", "AB means 3 1",
 "AB means 3 2", "AB means 3 3", "AB means 4 1",
 "AB means 4 2", "AB means 4 3"
 };
 char *components_labels[] = {
 "degrees of freedom for A", "sum of squares for A",
 "mean square of A", "F-statistic for A", "p-value for A",
 "Estimate of A", "Percent Variation Explained by A",
 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A",
 "degrees of freedom for B", "sum of squares for B",
 "mean square of B", "F-statistic for B", "p-value for B",
 "Estimate of B", "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",
 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for Error", "sum of squares for Error",
 "mean square of Error", "F-statistic for Error",
 "p-value for Error", "Estimate of Error",
 "Percent Explained by Error",
 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"
 };
 pvalue = imsls_f_anova_nested(3, 1, n_levels, y,
 IMSLS_ANOVA_TABLE, &aov,
 IMSLS_Y_MEANS, &ymeans,
 IMSLS_VARIANCE_COMPONENTS, &varc,
 IMSLS_EMS, &ems,
 0);
 printf("pvalue = %f\n", pvalue);
 imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,
 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%11.4g",
 0);
 imsls_f_write_matrix(
 "* * * Expected Mean Square Coefficients * * *",
 6, 1, ems,
 IMSLS_ROW_LABELS, ems_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);
 imsls_f_write_matrix("* * * Means * * *", 17, 1, ymeans,
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);
 imsls_f_write_matrix(
352

 Analysis of Variance and Designed Experiments anova_nested
 "* * Analysis of Variance / Variance Components * *",
 27, 1, varc,
 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%11.4g",
 0);
}

Output

pvalue = 0.000000
 * * * Analysis of Variance * * *

degrees of freedom for model 11
degrees of freedom for error 12
total (corrected) degrees of freedom 23
sum of squares for model 10.19
sum of squares for error 0.07985
total (corrected) sum of squares 10.27
model mean square 0.9264
error mean square 0.006655
F-statistic 139.2
p-value 6.769e-011
R-squared (in percent) 99.22
adjusted R-squared (in percent) 98.51
est. standard deviation of within error 0.08158
overall mean of y 3.012
coefficient of variation (in percent) 2.708
* * * Expected Mean Square Coefficients * * *

 Effect A and Error 1.00
 Effect A and Effect B 2.00
 Effect A and Effect A 6.00
 Effect B and Error 1.00
 Effect B and Effect B 2.00
 Error and Error 1.00

 * * * Means * * *
Grand mean 3.01
A means 1 3.17
A means 2 2.18
A means 3 2.95
A means 4 3.74

AB means 1 1 3.18
AB means 1 2 3.50
AB means 1 3 2.84
AB means 2 1 2.45
AB means 2 2 1.89
AB means 2 3 2.19
AB means 3 1 2.72
AB means 3 2 3.59
AB means 3 3 2.55
AB means 4 1 3.82
AB means 4 2 4.10
AB means 4 3 3.31

 * * Analysis of Variance / Variance Components * *
degrees of freedom for A 3
sum of squares for A 7.56
mean square of A 2.52
353

 Analysis of Variance and Designed Experiments anova_nested
F-statistic for A 7.665
p-value for A 0.009725
Estimate of A 0.3652
Percent Variation Explained by A 68.53
95% Confidence Interval Lower Limit for A 0.03955
95% Confidence Interval Upper Limit for A 5.787
degrees of freedom for B 8
sum of squares for B 2.63
mean square of B 0.3288
F-statistic for B 49.41
p-value for B 5.092e-008
Estimate of B 0.1611
Percent Variation Explained by B 30.22
95% Confidence Interval Lower Limit for B 0.06967
95% Confidence Interval Upper Limit for B 0.6004
degrees of freedom for Error 12
sum of squares for Error 0.07985
mean square of Error 0.006655
F-statistic for Error
p-value for Error
Estimate of Error 0.006655
Percent Explained by Error 1.249
95% Confidence Interval Lower Limit for Error 0.003422
95% Confidence Interval Upper Limit for Error 0.01813

Example 2

An analysis of a three-factor nested random model with unequal numbers in the subgroups is performed. The
data are given in the following table:

A B C

1 1

2

23.0

31.0

19.0

37.0

2 1

2

33.0

29.0

29.0

3 1 36.0 29.0 33.0

4 1

2

3

4

5

6

7

8

9

11.0

23.0

33.0

23.0

26.0

39.0

20.0

24.0

36.0

21.0

18.0
354

 Analysis of Variance and Designed Experiments anova_nested
#include <imsls.h>
int main()
{
 float *aov, *ems, *vc, *ymeans;
 float y[36] = {23.0, 19.0, 31.0, 37.0,
 33.0, 29.0, 29.0,
 36.0, 29.0, 33.0,
 11.0, 21.0,
 23.0, 18.0,
 33.0, 23.0, 26.0, 39.0, 20.0, 24.0, 36.0,
 25.0, 33.0,
 28.0, 31.0,
 25.0, 42.0,
 32.0, 36.0,
 41.0, 35.0, 16.0, 30.0, 40.0, 32.0, 44.0
 };
 int nl[32] = {
 6, /* Factor A */
 2, 2, 1, 9, 1, 10, /* Factor B */
 2, 2, /* Factor C */
 2, 1,
 3,
 2, 2, 1, 1, 1, 1, 1, 1, 1,
 2,
 2, 2, 2, 1, 1, 1, 1, 1, 1, 1
 };
 int i, ymeans_length;
 char *aov_labels[] = {
 "degrees of freedom for model", "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for model", "sum of squares for error",
 "total (corrected) sum of squares", "model mean square",
 "error mean square", "F-statistic", "p-value",
 "R-squared (in percent)", "adjusted R-squared (in percent)",

5 1 25.0 33.0

6 1

2

3

4

5

6

7

8

9

10

28.0

25.0

32.0

41.0

35.0

16.0

30.0

40.0

32.0

44.0

31.0

42.0

36.0

A B C
355

 Analysis of Variance and Designed Experiments anova_nested
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"
 };
 char *ems_labels[] = {
 "Effect A and Error", "Effect A and Effect B",
 "Effect A and Effect A", "Effect B and Error",
 "Effect B and Effect B", "Error and Error"
 };
 char *means_labels[] = {
 "Grand mean", " A means 1", " A means 2",
 " A means 3", " A means 4", " A means 5",
 " A means 6", "AB means 1 1", "AB means 1 2",
 "AB means 2 1", "AB means 2 2", "AB means 3 1",
 "AB means 4 1", "AB means 4 2", "AB means 4 3",
 "AB means 4 4", "AB means 4 5", "AB means 4 6",
 "AB means 4 7", "AB means 4 8", "AB means 4 9",
 "AB means 5 1", "AB means 6 1", "AB means 6 2",
 "AB means 6 3", "AB means 6 4", "AB means 6 5",
 "AB means 6 6", "AB means 6 7", "AB means 6 8",
 "AB means 6 9", "AB means 6 10"
 };
 char *components_labels[] = {
 "degrees of freedom for A", "sum of squares for A",
 "mean square of A", "F-statistic for A", "p-value for A",
 "Estimate of A", "Percent Variation Explained by A",
 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A",
 "degrees of freedom for B", "sum of squares for B",
 "mean square of B", "F-statistic for B", "p-value for B",
 "Estimate of B", "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",
 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for Error", "sum of squares for Error",
 "mean square of Error", "F-statistic for Error",
 "p-value for Error", "Estimate of Error",
 "Percent Explained by Error",
 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"};
 imsls_f_anova_nested (3, 0, nl, y,
 IMSLS_ANOVA_TABLE, &aov,
 IMSLS_EMS, &ems,
 IMSLS_VARIANCE_COMPONENTS, &vc,
 IMSLS_Y_MEANS, &ymeans,
 0);
 imsls_f_write_matrix("***AnalysisofVariance ***", 15, 1, aov,
 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
 imsls_f_write_matrix("***ExpectedMeanSquare Coefficients ***",
 6, 1, ems,
 IMSLS_ROW_LABELS, ems_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);
 /* sum level count for factors 1 and 2 */
 ymeans_length = 1;
 for (i=0; i<=6;i++) ymeans_length += nl[i];
356

 Analysis of Variance and Designed Experiments anova_nested
 imsls_f_write_matrix("* * * Means ***", ymeans_length, 1, ymeans,
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);
 imsls_f_write_matrix(
 "** Analysis of Variance / Variance Components **", 27, 1, vc,
 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
}

Output

 ***AnalysisofVariance ***
degrees of freedom for model 24.00000
degrees of freedom for error 11.00000
total (corrected) degrees of freedom 35.00000
sum of squares for model 1810.80591
sum of squares for error 310.16650
total (corrected) sum of squares 2120.97241
model mean square 75.45025
error mean square 28.19695
F-statistic 2.67583
p-value 0.04587
R-squared (in percent) 85.37621
adjusted R-squared (in percent) 53.46977
est. standard deviation of within error 5.31008
overall mean of y 29.52778
coefficient of variation (in percent) 17.98334
***ExpectedMeanSquare Coefficients ***
 Effect A and Error 1.00
 Effect A and Effect B 1.97
 Effect A and Effect A 5.38
 Effect B and Error 1.00
 Effect B and Effect B 1.29
 Error and Error 1.00
 * * * Means ***
Grand mean 29.53
A means 1 27.50
A means 2 30.33
A means 3 32.67
A means 4 24.91
A means 5 29.00
A means 6 33.23
AB means 1 1 21.00
AB means 1 2 34.00
AB means 2 1 31.00
AB means 2 2 29.00
AB means 3 1 32.67
AB means 4 1 16.00
AB means 4 2 20.50
AB means 4 3 33.00
AB means 4 4 23.00
AB means 4 5 26.00
AB means 4 6 39.00
AB means 4 7 20.00
357

 Analysis of Variance and Designed Experiments anova_nested
AB means 4 8 24.00
AB means 4 9 36.00
AB means 5 1 29.00
AB means 6 1 29.50
AB means 6 2 33.50
AB means 6 3 34.00
AB means 6 4 41.00
AB means 6 5 35.00
AB means 6 6 16.00
AB means 6 7 30.00
AB means 6 8 40.00
AB means 6 9 32.00
AB means 6 10 44.00
 * * Analysis of Variance / Variance Components * *
degrees of freedom for A 5.00000
sum of squares for A 461.42230
mean square of A 92.28446
F-statistic for A 0.98770
p-value for A 0.46007
Estimate of A -0.21371
Percent Variation Explained by A
95% Confidence Interval Lower Limit for A
95% Confidence Interval Upper Limit for A
degrees of freedom for B 19.00000
sum of squares for B 1349.38354
mean square of B 71.02019
F-statistic for B 2.51872
p-value for B 0.05965
Estimate of B 33.19880
Percent Variation Explained by B 54.07344
95% Confidence Interval Lower Limit for B 0.00000
95% Confidence Interval Upper Limit for B 100.58640
degrees of freedom for Error 11.00000
sum of squares for Error 310.16650
mean square of Error 28.19695
F-statistic for Error
p-value for Error
Estimate of Error 28.19695
Percent Explained by Error 45.92656
95% Confidence Interval Lower Limit for Error 14.14990
95% Confidence Interval Upper Limit for Error 81.28591
358

 Analysis of Variance and Designed Experiments anova_balanced
anova_balanced
Analyzes a balanced complete experimental design for a fixed, random, or mixed model.

Synopsis
#include <imsls.h>
float imsls_f_anova_balanced (int n_factors, int n_levels[], float y[], int n_random,

int index_random_factor[], int n_model_effects, int n_factors_per_effect[],
int index_factor_per_effect[], ..., 0)

The type double function is imsls_d_anova_balanced.

Required Arguments
int n_factors (Input)

Number of factors (number of subscripts) in the model, including error.

int n_levels[] (Input)
Array of length n_factors containing the number of levels for each of the factors.

float y[] (Input)
Array of length n_levels[0] × n_levels[1] × ... × n_levels[n_factors-1] containing
the responses. y[] must not contain NaN (not a number) for any of its elements, i.e., missing values
are not allowed.

int n_random (Input)
For positive n_random, |n_random| is the number of random factors. For negative n_random,
|n_random| is the number of random effects (sources of variation).

int index_random_factor[] (Input)
Index array of length |n_random| containing either the factor numbers to be considered random
(for n_random positive) or containing the effect numbers to be considered random (for n_random
negative). If n_random = 0, index_random_factor is not referenced.

int n_model_effects (Input)
Number of effects (sources of variation) due to the model excluding the overall mean and error.
359

 Analysis of Variance and Designed Experiments anova_balanced
int n_factors_per_effect[] (Input)
Array of length n_model_effects containing the number of factors associated with each effect in
the model.

int index_factor_per_effect[] (Input)
Index vector of length n_factors_per_effect[0] + n_factors_per_effect[1] + . . . +
n_factors_per_effect[n_model_effects-1]. The first
n_factors_per_effect[0] elements give the factor numbers in the first effect. The next
n_factors_per_effect[1] elements give the factor numbers in the second effect. The last
n_factors_per_effect [n_model_effects-1] elements give the factor numbers in the
last effect. Main effects must appear before their interactions. In general, an effect E cannot appear
after an effect F if all of the indices for E appear also in F.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_anova_balanced (int n_factors, int n_levels[], float y[],int n_random,
int index_random_factor[], int n_model_effects, int n_factors_per_effect[],
int index_factor_per_effect[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_MODEL, int model,
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[],
IMSLS_EMS, float **ems,
IMSLS_EMS_USER, float ems[],
IMSLS_Y_MEANS, float **y_means,
0)
360

 Analysis of Variance and Designed Experiments anova_balanced
Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table (Output)

Address of a pointer to an internally allocated array of size 15 containing the analysis of variance
table. The analysis of variance statistics are as follows:

Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been
lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

IMSLS_MODEL, int model (Input)
Model Option

Element Analysis of Variance Statistics

0 Degrees of freedom for the model.

1 Degrees of freedom for error.

2 Total (corrected) degrees of freedom.

3 Sum of squares for the model.

4 Sum of squares for error.

5 Total (corrected) sum of squares.

6 Model mean square.

7 Error mean square.

8 Overall F-statistic.

9 p-value.

10 R2 (in percent)

11 Adjusted R2 (in percent).

12 Estimate of the standard deviation.

13 Overall mean of Y.

14 Coefficient of variation (in percent).

model Meaning

0 Searle model.

1 Scheffe model .
361

 Analysis of Variance and Designed Experiments anova_balanced
For the Scheffe model, effects corresponding to interactions of fixed and random factors have their
sum over the subscripts corresponding to fixed factors equal to zero. Also, the variance of a random
interaction effect involving some fixed factors has a multiplier for the associated variance component
that involves the number of levels in the fixed factors. The Searle model has no summation restric-
tions on the random interaction effects and has a multiplier of one for each variance component. The
default is model = 0.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance components, in percent.
confidence percent confidence intervals are computed, hence, confidence must be in the
interval [0.0, 100.0). confidence often will be 90.0, 95.0, or 99.0.

For one-sided intervals with confidence level α, α in the interval [50.0, 100.0), set
confidence = 100.0 - 2.0 × 100.0 - α).

Default: confidence = 95.0.

IMSLS_VARIANCE_COMPONENTS, float **variance_components (Output)
Address of a pointer to an array, variance_components. variance_components is an
(n_model_effects + 1) by 9 array containing statistics relating to the particular variance compo-
nents or effects in the model and the error. Rows of variance_components correspond to the
n_model_effects effects plus error.

Elements 5 through 8 contain NaN (not a number) if the effect is fixed, i.e., if there is no variance com-
ponent to be estimated. If the variance component estimate is negative, columns 7 and 8 contain
NaN. Note that the p-value for the F test is returned as 0.0 when the value is so small that all signifi-
cant digits have been lost.

Column Description

0 Degrees of freedom.

1 Sum of squares.

2 Mean squares.

3 F –statistic.

4 p-value for F test.

5 Variance component estimate.

6 Percent of variance of variance
explained by variance component.

7 Lower endpoint for a confidence
interval on the variance component.

8 Upper endpoint for a confidence
interval on the variance component.
362

 Analysis of Variance and Designed Experiments anova_balanced
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[] (Output)
Storage for array variance_components is provided by the user.
See IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **ems (Output)
Address of a pointer to an internally allocated array of length
(n_model_effects + 1) × (n_model_effects + 2)/2 containing expected mean
square coefficients. Suppose the effects are A, B, and AB. The ordering of the coefficients in ems is as
follows:

IMSLS_EMS_USER-, float ems[] (Output)
Storage for ems is provided by the user. See IMSLS_EMS.

IMSLS_Y_MEANS, float **y_means (Output)
Address of a pointer to an internally allocated array of length
(n_levels[0] + 1) × (n_levels [1] + 1) × ... × (n_levels [n_factors-1] + 1) containing
the subgroup means. Suppose the factors are A, B, and C. The ordering of the means is grand mean,
A means, B means, C means, AB means, AC means, BC means, and ABC means.

IMSLS_Y_MEANS_USER, float y_means (Output)
Storage for y_means is provided by the user. See IMSLS_Y_MEANS.

Description
Function imsls_f_anova_balanced analyzes a balanced complete experimental design for a fixed, ran-
dom, or mixed model. The analysis includes an analysis of variance table, and computation of subgroup means
and variance component estimates. A choice of two parameterizations of the variance components for the model
can be made.

Scheffé (1959, pages 274-289) discusses the parameterization for model = 1. For example, consider the follow-
ing model equation with fixed factor A and random factor B:

yijk = μ + αi + bj + cij + eijk i = 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n

The fixed effects αi’s are subject to the restriction

Error AB B A

A ems[0] ems[1] ems[2] ems[3]

B ems[4] ems[5] ems[6]

AB ems[7] ems[8]

Error ems[9]
363

 Analysis of Variance and Designed Experiments anova_balanced
the bj’s are random effects identically and independently distributed

cij are interaction effects each distributed

and are subject to the restrictions

and the eijk’s are errors identically and independently distributed N(0, σ2). In general, interactions of fixed and

random factors have sums over subscripts corresponding to fixed factors equal to zero. Also in general, the vari-
ance of a random interaction effect is the associated variance component times a product of ratios for each fixed
factor in the random interaction term. Each ratio depends on the number of levels in the fixed factor. In the ear-
lier example, the random interaction AB has the ratio (a-1)/a as a multiplier of

and

In a three-way crossed classification model, an ABC interaction effect with A fixed, B random, and C fixed would
have variance

Searle (1971, pages 400−401) discusses the parameterization for model = 0. This parameterization does not
have the summation restrictions on the effects corresponding to interactions of fixed and random factors. Also,
the variance of each random interaction term is the associated variance component, i.e., without the multiplier.
This parameterization is also used with unbalanced data, which is one reason for its popularity with balanced
data also. In the earlier example,

∑
i=1

a

αi = 0

N 0, σB
2

N 0, a − 1a σAB
2

∑
i=1

a

ci j = 0 for j = 1,2, … b

σAB
2

var yijk = σB
2 + a − 1a σAB

2 + σ2

a − 1 c − 1
ac σABC

2

364

 Analysis of Variance and Designed Experiments anova_balanced
Searle (1971, pages 400−404) compares these two parameterizations. Hocking (1973) considers these different
parameterizations and concludes they are equivalent because they yield the same variance-covariance structure
for the responses. Differences in covariances for individual terms, differences in expected mean square coeffi-
cients and differences in F tests are just a consequence of the definition of the individual terms in the model and
are not caused by any fundamental differences in the models. For the earlier two-way model, Hocking states that
the relations between the two parameterizations of the variance components are

where

are the variance components in the parameterization with model = 0.

The computations for degrees of freedom and sums of squares are the same regardless of the option specified
by model. imsls_f_anova_balanced first computes degrees of freedom and sum of squares for a full fac-
torial design. Degrees of freedom for effects in the factorial design that are missing from the specified model are
pooled into the model effect containing the fewest subscripts but still containing the factorial effect. If no such
model effect exists, the factorial effect is pooled into error. If more than one such effect exists, a terminal error
message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance components. This method solves a linear sys-
tem in which the mean squares are set to the expected mean squares. A problem that Hocking (1985, pages
324−330) discusses is that this method can yield a negative variance component estimate. Hocking suggests a
diagnostic procedure for locating the cause of the negative estimate. It may be necessary to re-examine the
assumptions of the model.

The percentage of variation explained by each random effect is computed (output in variance_components
column 6) as the variance of the associated random effect divided by the variance of y. The two parameteriza-
tions can lead to different values because of the different definitions of the individual terms in the model. For
example, the percentage associated with the AB interaction term in the earlier two-way mixed model is computed
for model = 1 using the formula

while for the parameterization model = 0, the percentage is computed using the formula

var yijk = σ~B
2 + σ~AB

2 + σ2

σB
2 = σ~B

2 + 1aσ
~
AB
2

σAB
2 = σ~AB

2

σ~B
2 and σ~ AB

2

%variation AB∣Model = 1 =
a − 1
a σAB

2

σB
2 + a − 1a σAB

2 + σ2
365

 Analysis of Variance and Designed Experiments anova_balanced
In each case, the variance components are replaced by their estimates (stored in variance_components col-
umn 5).

Confidence intervals on the variance components are computed using the method discussed by Graybill (1976,
Theorem 15.3.5, page 624, and Note 4, page 620).

Example
An analysis of a generalized randomized block design is performed using data discussed by Kirk (1982, Table
6.10-1, pages 293−297). The model is

yijk = μ + αi + bj + cij + eijk i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for the k-th experimental unit in block j with treatment i; the αi’s are the treatment

effects and are subject to the restriction

the bj’s are block effects identically and independently distributed

cij are interaction effects each distributed

and are subject to the restrictions

and the eijk’s are errors, identically and independently distributed N(0, σ2). The interaction effects are assumed to

be distributed independently of the errors.

%variation AB∣Model = 0 =
σ~AB
2

σ~B
2 + σ~AB

2 + σ2

∑
i=1

2

αi = 0

N 0, σB
2

N 0,34σAB
2

∑
i=1

4

ci j = 0 for j = 1,2,3,4
366

 Analysis of Variance and Designed Experiments anova_balanced
The data are given in the following table:

#include <imsls.h>
#include <stdio.h>
int main()
{

 float pvalue = -99.;
 int n_levels[] = {4, 4, 2};
 int indrf[] = {2, 3};
 int nfef[] = {1, 1, 2};
 int indef[] = {1, 2, 1, 2};
 float y[] = {3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0,

 4.0, 2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0,
 6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0

 };
 float *aov, *y_means, *variance_components, *ems;
 char *aov_labels[] = {

 "degrees of freedom for model", "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for model", "sum of squares for error",
 "total (corrected) sum of squares", "model mean square",
 "error mean square", "F-statistic", "p-value",
 "R-squared (in percent)", "adjusted R-squared (in percent)",
 "est. standard deviation of within error", "overall mean of y",
 "coefficient of variation (in percent)"

 };
 char *ems_labels[] = {

 "Effect A and Error", "Effect A and Effect AB",
 "Effect A and Effect B", "Effect A and Effect A",
 "Effect B and Error", "Effect B and Effect AB",
 "Effect B and Effect B", "Effect AB and Error",
 "Effect AB and Effect AB", "Error and Error"

 };
 char *means_labels[] = {

 "Grand mean",
 " A means 1", " A means 2", " A means 3", " A means 4",
 " B means 1", " B means 2", " B means 3", " B means 4",
 "AB means 1 1", "AB means 1 2", "AB means 1 3", "AB means 1 4",
 "AB means 2 1", "AB means 2 2", "AB means 2 3", "AB means 2 4",
 "AB means 3 1", "AB means 3 2", "AB means 3 3", "AB means 3 4",
 "AB means 4 1", "AB means 4 2", "AB means 4 3", "AB means 4 4"

 };
 char *components_labels[] = {

Block

Treatment 1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11
367

 Analysis of Variance and Designed Experiments anova_balanced
 "degrees of freedom for A", "sum of squares for A",
 "mean square of A", "F-statistic for A", "p-value for A",
 "Estimate of A", "Percent Variation Explained by A",
 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A",
 "degrees of freedom for B", "sum of squares for B",
 "mean square of B", "F-statistic for B", "p-value for B",
 "Estimate of B", "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",
 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for AB", "sum of squares for AB",
 "mean square of AB", "F-statistic for AB", "p-value for AB",
 "Estimate of AB", "Percent Variation Explained by AB",
 "95% Confidence Interval Lower Limit for AB",
 "95% Confidence Interval Upper Limit for AB",
 "degrees of freedom for Error", "sum of squares for Error",
 "mean square of Error", "F-statistic for Error",
 "p-value for Error", "Estimate of Error",
 "Percent Explained by Error",
 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"

 };
 pvalue = imsls_f_anova_balanced(3, n_levels, y, 2, indrf, 3,

 nfef, indef,
 IMSLS_MODEL, 1,
 IMSLS_EMS, &ems,

 IMSLS_VARIANCE_COMPONENTS, &variance_components,
 IMSLS_Y_MEANS, &y_means,
 IMSLS_ANOVA_TABLE, &aov,
 0);

 printf("p value of F statistic = %f\n", pvalue);
 imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,

 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);

 imsls_f_write_matrix(
 "* * * Expected Mean Square Coefficients * * *",
 10, 1, ems,
 IMSLS_ROW_LABELS, ems_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

 imsls_f_write_matrix(
 "* * Analysis of Variance / Variance Components * *",
 36, 1,
 variance_components,
 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);

 imsls_f_write_matrix("means", 25, 1, y_means,
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

}

368

 Analysis of Variance and Designed Experiments anova_balanced
Output

p value of F statistic = 0.000005
 * * * Analysis of Variance * * *
degrees of freedom for model 15
degrees of freedom for error 16
total (corrected) degrees of freedom 31
 sum of squares for model 216.5
 sum of squares for error 19
 total (corrected) sum of squares 235.5
 model mean square 14.433
 error mean square 1.1875
 F-statistic 12.154
 p-value 4.9182e-006
 R-squared (in percent) 91.932
 adjusted R-squared (in percent) 84.368
 est. standard deviation of within error 1.0897
 overall mean of y 5.375
 coefficient of variation (in percent) 20.27345
 * * * Expected Mean Square Coefficients * * *
Effect A and Error 1.00
Effect A and Effect AB 2.00
Effect A and Effect B 0.00
Effect A and Effect A 8.00
Effect B and Error 1.00
Effect B and Effect AB 0.00
Effect B and Effect B 8.00
Effect AB and Error 1.00
Effect AB and Effect AB 2.00
Error and Error 1.00
 * * Analysis of Variance / Variance Components * *
 degrees of freedom for A 3.00000
 sum of squares for A 194.50000
 mean square of A 64.83334
 F-statistic for A 32.87324
 p-value for A 0.00004
 Estimate of A
 Percent Variation Explained by A
 95% Confidence Interval Lower Limit for A
 95% Confidence Interval Upper Limit for A
 degrees of freedom for B 3.00000
 sum of squares for B 4.25000
 mean square of B 1.41667
 F-statistic for B 1.19298
 p-value for B 0.34396
 Estimate of B 0.02865
 Percent Variation Explained by B 1.89655
 95% Confidence Interval Lower Limit for B 0.00000
 95% Confidence Interval Upper Limit for B 2.31682
 degrees of freedom for AB 9.00000
 sum of squares for AB 17.75000
 mean square of AB 1.97222
 F-statistic for AB 1.66082
 p-value for AB 0.18016
 Estimate of AB 0.39236
 Percent Variation Explained by AB 19.48276
369

 Analysis of Variance and Designed Experiments anova_balanced
 95% Confidence Interval Lower Limit for AB 0.00000
 95% Confidence Interval Upper Limit for AB 2.75803
 degrees of freedom for Error 16.00000
 sum of squares for Error 19.00000
 mean square of Error 1.18750
 F-statistic for Error
 p-value for Error
 Estimate of Error 1.18750
 Percent Explained by Error 78.62069
 95% Confidence Interval Lower Limit for Error 0.65868
 95% Confidence Interval Upper Limit for Error 2.75057

 means
 Grand mean 5.38
 A means 1 2.75
 A means 2 3.50
 A means 3 6.25
 A means 4 9.00
 B means 1 6.00
 B means 2 5.13
 B means 3 5.13
 B means 4 5.25
 AB means 1 1 4.50
 AB means 1 2 2.00
 AB means 1 3 2.00
 AB means 1 4 2.50
 AB means 2 1 4.50
 AB means 2 2 3.00
 AB means 2 3 3.50
 AB means 2 4 3.00
 AB means 3 1 7.50
 AB means 3 2 6.00
 AB means 3 3 5.50
 AB means 3 4 6.00
 AB means 4 1 7.50
 AB means 4 2 9.50
 AB means 4 3 9.50
 AB means 4 4 9.50
370

 Analysis of Variance and Designed Experiments crd_factorial
crd_factorial
Analyzes data from balanced and unbalanced completely randomized experiments. Funtion crd_factorial
does permit a factorial treatment structure. However, unlike anova_factorial, function crd_factorial
allows for missing data and one or more locations.

Synopsis
#include <imsls.h>
float *imsls_f_crd_factorial (int n_obs, int n_locations, int n_factors,

int n_levels[], int model[], float y[], …, 0)

The type double function is imsls_d_crd_factorial.

Required Arguments
int n_obs (Input)

Number of missing and non-missing experimental observations.

int n_locations (Input)
Number of locations n_locations must be one or greater.

int n_factors (Input)
Number of factors in the model.

int n_levels[] (Input)
Array of length n_factors+1. The n_levels[0] through n_levels[n_factors-1] contain
the number of levels for each factor. The last element, n_levels[n_factors], contains the num-
ber of replicates for each treatment combination within a location.

int model[] (Input)
A n_obs by (n_factors+1) array identifying the location and factor levels associated with each
observation in y. The first column must contain the location identifier and the remaining columns the
factor level identifiers in the same order used in n_levels. If n_locations = 1, the first column
is still required, but its contents are ignored.
371

 Analysis of Variance and Designed Experiments crd_factorial
float y[] (Input)
An array of length n_obs containing the experimental observations and any missing values. Missing
values are indicated by placing a NaN (not a number) in y. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine(6), depending upon whether single or
double precision is being used, respectively.

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array containing the ANOVA table, where:

where

and m = model_order.

Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], is the source identifier which identifies the type of effect associated

with values in that row. The remaining values in a row contain the ANOVA table values using the following
convention:

The values for the mean squares, F-statistic and p-value are set to NaN for the residual and corrected total
effects.

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits
have been lost.

n_anova = a +∑
i=1

m
n_factors

i

a =
2 if n_locations = 1
3 if n_locations > 1 and treatments are not replicated
4 if n_locations = 1 and treatments are not replicated at each location
372

 Analysis of Variance and Designed Experiments crd_factorial
The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table.

The absolute value of the source identifier is equal to the order of the effect in that row. Main effects, for exam-
ple, have a source identifier of –1. Two-way interactions use a source identifier of –2, and so on.

Notes: By default, model_order = n_factors when treatments are replicated, or n_locations >1.
However, if treatments are not replicated and n_locations =1, model_order = n_factors -1.

† The number of main effects is equal to n_factors+1 if n_locations >1, and n_factors if
n_locations =1. The first row of values, anova_table[0] through anova_table[5] contain the loca-
tion effect if n_locations >1. If n_locations=1, then these values are the effects for factor 1.

⇑The residual term is only provided when treatments are replicated, i.e., n_levels[n_factors]>1.

‡ The number of interaction effects for the nth-way interactions is equal to

The order of these terms is in ascending order by treatment subscript. The interactions for factor 1 appear first,
followed by factor 2, factor 3, and so on.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_crd_factorial (int n_obs, int n_locations, int n_factors,

int n_levels[], int model[], float y[],

Source Identifier ANOVA Source

-1 Main Effects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

. .

-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Effects Error Term

-n_factors-2 Residual ⇑
-n_factors-3 Corrected Total

-1 Main Effects †

n_factors
n_way
373

 Analysis of Variance and Designed Experiments crd_factorial
IMSLS_RETURN_USER, float anova_table[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[],
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[],
IMSLS_TWO_WAY_MEANS, float **two_way_means,
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[],
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined n_anova by 6 array for the anova_table.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float *cv (Output)
Coefficient of Variation computed by:

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 Mean of all the data across every location.

CV =
100 · MSresidual
grand_mean
374

 Analysis of Variance and Designed Experiments crd_factorial
IMSLS_FACTOR_MEANS, float **factor_means (Output)
 Address of a pointer to an internally allocated array of length
n_levels[0] + n_levels[1] + … + n_levels[n_factors-1] containing the factor
means.

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output)
Address of a pointer to an internally allocated n_factors by 2 array containing factor standard
errors and their associated degrees of freedom. The first column contains the standard errors for
comparing two factor means and the second its associated degrees of freedom.

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output)
Address of a pointer to an internally allocated one-dimensional array containing the two-way means
for all two by two combinations of the factors. The total length of this array when n_factors > 1 is
equal to:

If n_factors = 1, NULL is returned. If n_factors>1, the means would first be produced for all
combinations of the first two factors followed by all combinations of the remaining factors using the
subscript order suggested by the above formula. For example, if the experiment is a 2x2x2 factorial,
the 12 two-way means would appear in the following order: A1B1, A1B2, A2B1, A2B2, A1C1, A1C2, A2C1,

A2C2, B1C1, B1C2, B2C1, and B2C2.

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array containing factor standard
errors and their associated degrees of freedom, where

∑
i=0

f

∑
j=i+1

f +1

n_levels i × n_levels j , where f = n_factors − 2
375

 Analysis of Variance and Designed Experiments crd_factorial
The first column contains the standard errors for comparing two 2-way interaction means and the
second its associated degrees of freedom. The ordering of the rows in this array is similar to that
used in IMSLS_TWO_WAY_MEANS. For example, if n_factors = 4, then n_two_way = 6 with
the order AB, AC, AD, BC, BD, CD.

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size

containing the treatment means. The order of the means is organized in ascending order by the
value of the factor identifier. For example, if the experiment is a 2x2x2 factorial, the 8 means would
appear in the following order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err (Output)
The array of length 2 containing standard error for comparing treatments based upon the average
number of replicates per treatment and its associated degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the anova_row_labels, provided by the user. The amount of space required will vary
depending upon the number of factors and n_anova. An upperbound on the required memory is
char *anova_row_labels[n_anova × 60].

_two_way = n_factor
2

n_levels 0 × n_levels 1 × ⋯ × n_levels n_factors − 1
376

 Analysis of Variance and Designed Experiments crd_factorial
Description
The function imsls_f_crd_factorial analyzes factorial experiments replicated in different locations. Miss-
ing observations for each treatment are allowed. All factors are regarded as fixed effects in the analysis. However,
if multiple locations appear in the data, i.e., n_locations > 1, then all effects involving locations are treated as
random effects.

If n_locations = 1, then the residual mean square is used as the error mean square in calculating the F-tests
for all other effects. That is

when n_locations = 1.

If n_locations > 1 then the error mean squares for all factor F-tests is the pooled location interaction. For
example, if n_factors = 2 then the error sum of squares, degrees of freedom and mean squares are calcu-
lated by:

Example
The following example is based upon data from a 3x2x2 completely randomized design conducted at one loca-
tion. For demonstration purposes, observation 9 is set to missing.

#include <imsls.h>
#include <stdio.h>
int main(){
 int n_obs = 12;
 int n_locations = 1;
 int n_factors = 3;
 int n_levels[4] ={3, 2, 2, 1};
 int page_width = 132;
 /* model information */
 int model[]={
 1, 1, 1, 1,
 1, 1, 1, 2,
 1, 1, 2, 1,
 1, 1, 2, 2,
 1, 2, 1, 1,
 1, 2, 1, 2,
 1, 2, 2, 1,
 1, 2, 2, 2,

F =
MSeffect
MSresidual

SSerror = SSA×Locations + SSB×Locations + SSA×B×Locations
df error = df A×Locations + dfB×Locations + df A×B×Locations

MSerror =
SSerror
dferror
377

 Analysis of Variance and Designed Experiments crd_factorial
 1, 3, 1, 1,
 1, 3, 1, 2,
 1, 3, 2, 1,
 1, 3, 2, 2
 };
 /* response data */
 float y[] ={
 4.42725419998168950,
 2.12795543670654300,
 2.55254390835762020,
 1.21479606628417970,
 2.47588264942169190,
 5.01306104660034180,
 4.73502767086029050,
 4.58392113447189330,
 5.01421167794615030,
 4.11972457170486450,
 6.51671624183654790,
 4.73365202546119690
 };
 int model_order;
 int i, j, k, l, m, n_missing, i2, j2;
 int n_factor_levels=0, n_treatments=1;
 int n_two_way_means=0, n_two_way_std_err=0;
 int n_two_way_interactions=0;
 int n_subscripts, n_anova_table=2;
 float cv, grand_mean;
 float *anova_table;
 float *two_way_means, *two_way_std_err;
 float *treatment_means, *treatment_std_err;
 float *factor_means;
 float *factor_std_err;
 float aNaN = imsls_f_machine(6);
 char **anova_row_labels;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",
 "Mean \nsquares", "\nF-Test", "\np-Value"};
 /* Compute the length of some of the output arrays. */
 model_order = n_factors-1;
 for (i=0; i < n_factors; i++){
 n_factor_levels = n_factor_levels + n_levels[i];
 n_treatments = n_treatments*n_levels[i];
 for (j=i+1; j < n_factors; j++){
 n_two_way_interactions++;
 }
 }
 n_two_way_std_err = n_two_way_interactions;
 for (i=0; i < n_factors-1; i++){
 for (j=i+1; j < n_factors; j++){
 n_two_way_means = n_two_way_means + n_levels[i]*n_levels[j];
 }
 }
 n_subscripts = n_factors;
 n_anova_table = 2;
 for (i=1; i <= model_order; i++){
 n_anova_table +=
378

 Analysis of Variance and Designed Experiments crd_factorial
 (int)imsls_f_binomial_coefficient(n_subscripts, i);
 }
 /* Set observation 9 to missing. */
 y[8] = aNaN;
 anova_table = imsls_f_crd_factorial(n_obs, n_locations, n_factors,
 n_levels, model, y,
 IMSLS_N_MISSING, &n_missing,
 IMSLS_CV, &cv,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_FACTOR_MEANS, &factor_means,
 IMSLS_FACTOR_STD_ERRORS, &factor_std_err,
 IMSLS_TWO_WAY_MEANS, &two_way_means,
 IMSLS_TWO_WAY_STD_ERRORS, &two_way_std_err,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_TREATMENT_STD_ERROR, &treatment_std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0) ;
 /* Output results. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print ANOVA table. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",
 n_anova_table, 6, anova_table,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);
 printf("\n\nNumber of Missing Values Estimated: %d", n_missing);
 printf("\nGrand Mean: %7.3f", grand_mean);
 printf("\nCoefficient of Variation: %7.3f", cv);
 m=0;
 /* Print Factor Means. */
 printf("\n\nFactor Means\n");
 for(i=0; i < n_factors; i++){
 printf(" Factor %d: ", i+1);
 for(j=0; j < n_levels[i]; j++){
 printf(" %f ", factor_means[m]);
 m++;
 }
 k = (int)factor_std_err[2*i+1];
 printf("\n std. err.(df): %f(%d) \n",
 factor_std_err[2*i], k);
 }
 /* Print Two-Way Means. */
 printf("\n\nTwo-Way Means");
 m = 0;
 l=0;
 for(i=0; i < n_factors-1; i++){
 for(j=i+1; j < n_factors; j++){
 printf("\n Factor %d by Factor %d: \n", i+1, j+1);
 for(i2=0; i2 < n_levels[i]; i2++){
 for(j2=0; j2 < n_levels[j]; j2++){
 printf(" %f ",two_way_means[m]);
 m++;
379

 Analysis of Variance and Designed Experiments crd_factorial
 }
 printf("\n");
 }
 k = (int)two_way_std_err[l+1];
 printf(" std. err.(df): = %f(%d) \n", two_way_std_err[l], k);
 l+=2;
 }
 }
 /* Print Treatment Means. */
 printf("\n\nTreatment Means\n");
 m = 0;
 for(i=0; i < n_levels[0]; i++){
 for(j=0; j < n_levels[1]; j++){
 for(k=0; k < n_levels[2]; k++){
 printf(" Treatment[%d][%d][%d] Mean: %f \n",
 i+1, j+1, k+1, treatment_means[m]);
 m++;
 }
 }
 }
 k = (int)treatment_std_err[1];
 printf("\n Treatment Std. Err (df) %f(%d) \n",
 treatment_std_err[0], k);
}

Output

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F-Test p-Value
[1] -1 2 13.061 6.530 7.844 0.245
[2] -1 1 0.107 0.107 0.129 0.781
[3] -1 1 1.302 1.302 1.563 0.429
[1]x[2] -2 2 3.768 1.884 2.263 0.425
[1]x[3] -2 2 5.253 2.626 3.154 0.370
[2]x[3] -2 1 0.560 0.560 0.672 0.563
Error -4 1 1.665 1.665
Total -5 10 25.715

Number of Missing Values Estimated: 1
Grand Mean: 3.962
Coefficient of Variation: 32.574
Factor Means
 Factor 1: 2.580637 4.201973 5.101940
 std. err.(df): 0.912459(1)
 Factor 2: 3.866924 4.056109
 std. err.(df): 0.745020(1)
 Factor 3: 4.290849 3.632185
 std. err.(df): 0.745020(1)

Two-Way Means
 Factor 1 by Factor 2:
 3.277605 1.883670
 3.744472 4.659474
380

 Analysis of Variance and Designed Experiments crd_factorial
 4.578696 5.625184
 std. err.(df): = 1.290412(1)
 Factor 1 by Factor 3:
 3.489899 1.671376
 3.605455 4.798491
 5.777192 4.426688
 std. err.(df): = 1.290412(1)
 Factor 2 by Factor 3:
 3.980268 3.753580
 4.601429 3.510790
 std. err.(df): = 1.053617(1)

Treatment Means
 Treatment[1][1][1] Mean: 4.427254
 Treatment[1][1][2] Mean: 2.127955
 Treatment[1][2][1] Mean: 2.552544
 Treatment[1][2][2] Mean: 1.214796
 Treatment[2][1][1] Mean: 2.475883
 Treatment[2][1][2] Mean: 5.013061
 Treatment[2][2][1] Mean: 4.735028
 Treatment[2][2][2] Mean: 4.583921
 Treatment[3][1][1] Mean: 5.037668
 Treatment[3][1][2] Mean: 4.119725
 Treatment[3][2][1] Mean: 6.516716
 Treatment[3][2][2] Mean: 4.733652
 Treatment Std. Err (df) 1.824918(1)
381

 Analysis of Variance and Designed Experiments rcbd_factorial
rcbd_factorial
Analyzes data from balanced and unbalanced randomized complete-block experiments. Unlike
imsls_f_anova_factorial, function rcbd_factorial allows for missing data and one or more locations.

Synopsis
#include <imsls.h>
float *imsls_f_rcbd_factorial (int n_obs, int n_locations, int n_factors,

int n_levels[], int model[], float y[], …, 0)

The type double function is imsls_d_rcbd_factorial.

Required Arguments
int n_obs (Input)

Number of missing and non-missing experimental observations.

int n_locations (Input)
Number of locations. n_locations must be one or greater.

int n_factors (Input)
Number of factors in the model.

int n_levels[] (Input)
Array of length n_factors+1. The n_levels[0] through n_levels[n_factors-1] contain
the number of levels for each factor. The last element, n_levels[n_factors], contains the
number of blocks at a location. There must be at least two blocks and two levels for each factor, i.e.,
n_levels[i] ≥ 2 for i =0, 1, …, n_factors.

int model[] (Input)
A n_obs by (n_factors+2) array identifying the location, block and factor levels associated with
each observation in y. The first column must contain the location identifier and the second column
must contain the block identifier for the observation associated with that row. The remaining col-
umns, columns 3 through n_factors+2, should contain the factor level identifiers in the same
order used in n_levels. If n_locations =1, the first column is still required, but its contents
are ignored.
382

 Analysis of Variance and Designed Experiments rcbd_factorial
float y[] (Input)
An array of length n_obs containing the experimental observations and any missing values. Missing
values are indicated by placing a NaN (not a number) in y. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine(6), depending upon whether single or
double precision is being used, respectively.

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array containing the ANOVA table, where:

and m= n_factors.

Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], is the source identifier which identifies the type of effect associated

with values in that row. The remaining values in a row contain the ANOVA table values using the following
convention:

The values for the mean squares, F-statistic and p-value are set to NaN for the residual and corrected total
effects.

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant dig-
its have been lost.

n_anova = a +∑
i=1

m n_factors
i

a =
3 if n_locations = 1
5 if n_locations > 1
383

 Analysis of Variance and Designed Experiments rcbd_factorial
The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[].

The absolute value of the source identifier is equal to the order of the effect in that row. Main effects, for exam-
ple, have a source identifier of –1. Two-way interactions use a source identifier of
 –2, –3 and so on.

Note: The Effects Error Term is equal to the Residual effect if n_locations = 1.

† The number of main effects is equal to n_factors+2 if n_locations > 1, and n_factors +1 if
n_locations = 1. The first two rows, anova_table[0] through anova_table[10] are used to repre-
sent the location and block effects if n_locations > 1. If n_locations =1, then anova_table[0]
through anova_table[5]contain the block effects.

‡ The number of interaction effects for the nth-way interactions is equal to

The order of these terms is in ascending order by treatment subscript. The interactions for factor 1 appear first,
followed by factor 2, factor 3, and so on.

* The residual term is only produced when there is replication within blocks.

Synopsis with Optional Arguments
#include <imsls.h>

Source
Identifier ANOVA Source

-1 Main Effects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

. .

-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Error Term for Factors and
Interactions

-n_factors-2 Residual *

-n_factors-3 Corrected Total

n_factors
n_way
384

 Analysis of Variance and Designed Experiments rcbd_factorial
float *imsls_f_rcbd_factorial (int n_obs, int n_locations, int n_factors,
int n_levels[], int model[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[],
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[],
IMSLS_TWO_WAY_MEANS, float **two_way_means,
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[],
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined n_anova by 6 array for the anova_table.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float *cv (Output)
Coefficient of Variation computed by:

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

CV =
100 · MSresidual
grand_mean
385

 Analysis of Variance and Designed Experiments rcbd_factorial
IMSLS_FACTOR_MEANS, float **factor_means (Output)
Address of a pointer to an internally allocated array of length
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] containing the factor means.

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output)
Address of a pointer to an internally allocated n_factors by 2 array containing factor standard
errors and their associated degrees of freedom. The first column contains the standard errors for
comparing two factor means and the second its associated degrees of freedom

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output)
Address of a pointer to an internally allocated one-dimensional array containing the two-way means
for all two by two combinations of the factors. The total length of this array when n_factors >1 is
equal to

where

If n_factors = 1, NULL is returned. If n_factors>1, the means would first be produced for all
combinations of the first two factors followed by all combinations of the remaining factors using the
subscript order suggested by the above formula. For example, if the experiment is a 2x2x2 factorial,
the 12 two-way means would appear in the following order:
A1B1, A1B2, A2B1, A2B2, A1C1, A1C2, A2C1, A2C2, B1C1, B1C2, B2C1, and B2C2.

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array containing factor standard
errors and their associated degrees of freedom, where

∑
i=0

f

∑
j=i+1

f +1

n_levels i × n_levels j

f = n_factors − 2
386

 Analysis of Variance and Designed Experiments rcbd_factorial
The first column contains the standard errors for comparing two 2-way interaction means and the
second its associated degrees of freedom. The ordering of the rows in this array is similar to that
used in IMSLS_TWO_WAY_MEANS. For example if n_factors=4, then n_two_way = 6 with the
order AB, AC, AD, BC, BD, CD.

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size

containing the treatment means. The order of the means is organized in ascending order by the
value of the factor identifier. For example, if the experiment is a 2x2x2 factorial, the 8 means would
appear in the following order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err (Output)
The array of length 2 containing standard error for comparing treatments based upon the average
number of replicates per treatment and its associated degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]).

The memory associated with anova_row_labels can be freed with a single call to
free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required
will vary depending upon the number of factors and n_anova. An upperbound on the required
memory is char *anova_row_labels[100 × (n_anova+1)].

n_two_way = n_factors
2

n_levels 0 × n_levels 1 × ⋯ × n_levels n_factors − 1
387

 Analysis of Variance and Designed Experiments rcbd_factorial
Description
The function imsls_f_rcbd_factorial is capable of analyzing randomized complete block factorial exper-
iments replicated in different locations. Missing observations are estimated using the Yates method. Locations, if
used, and blocks are treated as random factors. All treatment factors are regarded as fixed effects in the analysis.
If n_locations > 1, then blocks are treated as nested within locations and the number of blocks used at each
location must be the same.

If n_locations = 1, then the residual mean square is used as the error mean square in calculating the F-tests
for all other effects. That is

when n_locations = 1.

In this case, the residual mean square is calculating by pooling all interactions between treatments and blocks.
For example, if treatments are formed from two factors, A and B, then

When n_locations = 1, then is also used to calculate the standard errors between means. For
example, in a two factor experiment:

where

are the number of observations for each level of the effects A, B and their interaction, respectively.

If n_locations > 1, then the error mean square is used as the denominator of the F-test for effects:

Feffect =
MSeffect
MSresidual

SSresidual = SSA×Blocks + SSB×Blocks + SSA×B×Blocks
df residual = df A×Blocks + df B×Blocks + df A×B×Blocks

MSresidual =
SSresidual
df residual

MSresidual

StdErr(A) =
2 ·MSresidual

NA

StdErr(B) =
2 ·MSresidual

NB

StdErr(A × B) =
2 ·MSresidual

NA×B

NA, NB and NA×B
388

 Analysis of Variance and Designed Experiments rcbd_factorial
The error mean square in this calculation is obtained by pooling all interactions between each factor and loca-
tions. For example n_locations > 1 and n_factors=2 then:

In this case, n_locations > 1, the standard errors for means are calculated using

The F-test for differences between locations is calculated using the mean squares for blocks within locations:

Example
This example is based upon data from an agricultural trial conducted by DOW Agrosciences. This is a three factor,
3x2x2, experiment replicated in two blocks at one location. For illustration, two observations are set to NaN to
simulate missing observations.

#include <imsls.h>
int main(){
 int n_obs = 24;
 int n_locations = 1;
 int n_factors = 3;
 int n_levels[4] ={3, 2, 2, 2};
 int model[]={
 1, 1, 1, 1, 1,
 1, 2, 1, 1, 1,
 1, 1, 1, 1, 2,
 1, 2, 1, 1, 2,
 1, 1, 1, 2, 1,
 1, 2, 1, 2, 1,
 1, 1, 1, 2, 2,
 1, 2, 1, 2, 2,
 1, 1, 2, 1, 1,
 1, 2, 2, 1, 1,
 1, 1, 2, 1, 2,
 1, 2, 2, 1, 2,
 1, 1, 2, 2, 1,
 1, 2, 2, 2, 1,
 1, 1, 2, 2, 2,

Feffect =
MSeffect
MSerror

SSerror = SSA×Locations + SSB×Locations + SSA×B×Locations
df error = df A×Locations + df B×Locations + df A×B×Locations
MSerror =

SSerror
df error

MSerror instead of MSresidual

Flocations =
MSlocations

MSblocks location
389

 Analysis of Variance and Designed Experiments rcbd_factorial
 1, 2, 2, 2, 2,
 1, 1, 3, 1, 1,
 1, 2, 3, 1, 1,
 1, 1, 3, 1, 2,
 1, 2, 3, 1, 2,
 1, 1, 3, 2, 1,
 1, 2, 3, 2, 1,
 1, 1, 3, 2, 2,
 1, 2, 3, 2, 2
 };
 float y[] ={
 4.42725419998168950, 2.98526261840015650,
 2.12795543670654300, 4.36357164382934570,
 2.55254390835762020, 2.78596709668636320,
 1.21479606628417970, 2.68143519759178160,
 2.47588264942169190, 4.69543695449829100,
 5.01306104660034180, 3.01919978857040410,
 4.73502767086029050, 0.00000000000000000,
 0.00000000000000000, 5.05780076980590820,
 5.01421167794615030, 3.61517095565795900,
 4.11972457170486450, 4.71947982907295230,
 6.51671624183654790, 4.22036057710647580,
 4.73365202546119690, 4.68545144796371460
 };
 int page_width = 132;
 int model_order;
 int i, n_subscripts, n_anova_table;
 char **aov_labels;
 char *col_labels[] = {" ", "ID", "df", "SS",
 "MS", "F-Test", "P-Value"};
 float *anova_table;
 /* Compute number of rows in the anova table. */
 model_order = n_subscripts = n_factors;
 n_anova_table = 3;
 for (i=1; i <= model_order; i++){
 n_anova_table += imsls_d_binomial_coefficient(n_subscripts, i);
 }
 /* Set missing observations. */
 y[13] = imsls_d_machine(6);
 y[14] = imsls_d_machine(6);
 anova_table = imsls_f_rcbd_factorial(n_obs, n_locations, n_factors,
 n_levels, model, y,
 IMSLS_ANOVA_ROW_LABELS, &aov_labels,
 0) ;
 imsls_page(
 IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print ANOVA table. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",
 n_anova_table, 6, anova_table,
 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_COL_LABELS, col_labels,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
390

 Analysis of Variance and Designed Experiments rcbd_factorial
 0);
}

Output

 *** ANALYSIS OF VARIANCE TABLE ***
 ID df SS MS F-Test P-Value
Blocks -1 1 0.01 0.01
[1] -1 2 14.73 7.37 5.15 0.032
[2] -1 1 0.24 0.24 0.17 0.692
[3] -1 1 0.15 0.15 0.10 0.756
[1]x[2] -2 2 5.79 2.89 2.02 0.188
[1]x[3] -2 2 1.02 0.51 0.36 0.709
[2]x[3] -2 1 0.20 0.20 0.14 0.719
[1]x[2]x[3] -3 2 0.13 0.07 0.05 0.956
Error -4 9 12.88 1.43
Total -6 21 35.15
391

 Analysis of Variance and Designed Experiments latin_square
latin_square
Analyzes data from latin-square experiments. Function latin_square also analyzes latin-square experiments
replicated at several locations.

Synopsis
#include <imsls.h>
float *imsls_f_latin_square (int n, int n_locations, int n_treatments, int row[],

int col[], int treatment[], float y[], …, 0)

The type double function is imsls_d_latin_square.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_latin_square veri-
fies that:

hint n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1 then the optional
array locations[] must be included as input to imsls_f_latin_square.

int n_treatments (Input)
Number of treatments. n_treatments must be greater than one. In addition the number of rows
and columns must be equal to n_treatments.

int row[] (Input)
An array of length n containing the row identifiers for each observation in y. Each row must be
assigned values from 1 to n_treatments. imsls_f_latin_square verifies that the number
of unique factor A identifiers is equal to n_treatments.

int col[] (Input)
An array of length n containing the column identifiers for each observation in y. Each column must
be assigned values from 1 to n_treatments. imsls_f_latin_square verifies that the num-
ber of unique column identifiers is equal to n_treatments.

n = n_locations *n_treatments2
392

 Analysis of Variance and Designed Experiments latin_square
int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation in y. Each treatment
must be assigned values from 1 to n_treatments. imsls_f_latin_square verifies that the
number of unique treatment identifiers is equal to n_treatments.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be
set using either the function imsls_f_machine(6) or imsls_d_machine((6), depending upon
whether single or double precision is being used, respectively. The location, row, column, and treat-
ment number for each observation in y are identified by the corresponding values in the arguments
locations, row, col, and treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array containing the ANOVA table. Each
row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that

row. The remaining values in a row contain the ANOVA table values using the following convention:

The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[].

Assignments of identifiers to ANOVA sources use the following coding:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant dig-
its have been lost.

Source
Identifier ANOVA Source

-1 LOCATIONS †

-2 ROWS
393

 Analysis of Variance and Designed Experiments latin_square
Note: † If n_locations=1 rows involving location are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_latin_square (int n, int n_locations, int n_treatments, int row[],

int col[], int treatment[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float l ocation_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 42 for storage of the 7 by 6 anova table described as the return argu-
ment for this function. For a detailed description of the format for this table, see the previous
description of the return arguments for imsls_f_latin_square.

-3 COLUMNS

-4 TREATMENTS
-5 LOCATIONS × TREATMENTS †

-6 ERROR WITHIN LOCATIONS
-7 CORRECTED TOTAL

Source
Identifier ANOVA Source
394

 Analysis of Variance and Designed Experiments latin_square
IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers
must be assigned to each location in the study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float *cv (Output)
The coefficient of variation computed by using the within location standard deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatments containing the treat-
ment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 2 containing the standard error and
associated degrees of freedom for comparing two treatment means. std_err[0] contains the
standard error and its degrees of freedom are returned in std_err[1].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 7 by 6
containing the anova tables associated with each location. For each location, the 7 by 6 dimensional
array corresponds to the anova table for that location. For example,
location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the value in the k-th column and
j-th row of the anova-table for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)Storage for the array
location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]).
395

 Analysis of Variance and Designed Experiments latin_square
The memory associated with anova_row_labels can be freed with a single call to
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required
will vary depending upon the number of factors and n_anova. An upperbound on the required
memory is char *anova_row_labels[600].

Description
The function imsls_f_latin_square analyzes latin-square experiments, possibly replicated at multiple
locations. Latin-square experiments block treatments using two factors: rows and columns. The number of levels
associated with rows and columns must equal the number of treatments. Treatments are blocked by rows and
columns in a balanced arrangement to ensure that every row contain one replicate of every treatment. The same
balance is required for every column, see Table 16. Notice that the four treatments, T1, T2, T3, and T4, appear
exactly once in every column and every row.

A necessary assumption in Latin-Square experiments is that there are no interactions between treatments and
the row and column blocking factors. For data collected at a single location, the Anova table for a Latin-Square
experiment is usually organized into five rows, see Table 17.

Table 16 – Latin-Square Experiment with Four Treatments

Columns

C1 C2 C3 C4

Rows

R1 T1 T2 T3 T4

R2 T2 T3 T4 T1

R3 T3 T4 T1 T2

R4 T4 T1 T2 T3

Table 17 – The ANOVA Table for a Latin-Square Experiment at one Location

Source DF Sum of Squares Mean Squares

ROWS

MSR

COLUMNS

MSC

t − 1
SSR = t∑

i=1

t

y─i. − y
─
..)
2

t − 1
SSC = t∑

j=1

t

y─. j − y
─
..)
2

396

 Analysis of Variance and Designed Experiments latin_square
The statistical model used to represent data is from a single location:

where is the observation for the k-th treatment in the i-th row and j-th column of the Latin Square, and,

 is the effect associated with the k-th treatment. and are the i-th row and j-th column effects, respec-

tively, and is the noise associated with this observation.

If multiple locations are involved, imsls_f_latin_square assumes that treatments are crossed with loca-
tions, but that row and column effects are nested within locations, see Table 18. The statistical model used to
represent these data is:

where

is the effect associated with the kth treatment, and

TREATMENTS

MST

ERROR SSE=SSTot-SSR-SSC-SST MSE

TOTAL

Table 17 – The ANOVA Table for a Latin-Square Experiment at one Location (Continued)

Source DF Sum of Squares Mean Squares

t − 1
SST = t∑

k=1

t

y─k − y
─)2

t − 1 t − 2

t2 − 1
SSTot =∑

i=1

t

∑
j=1

t

yi j − y
─
..

2

yi j k = μ + ρi + γ j + τk i j + ɛi j k

yi j k
τ
k i j ρi γ j

ɛi j k

yl i j k = μ + αl + ρi l + γ j l + τk i j + ατl k i j + ɛl i j k

τk i j
397

 Analysis of Variance and Designed Experiments latin_square
is the interaction effect between location l and treatment k.

Example
This example uses four treatments organized into a latin square. This example also uses the function
l_print_LSD(), which is defined in the first example for imsls_f_lattice().

#include <math.h>
#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
void l_print_LSD(int n1, int* equalMeans, float *means);
int main()
{

 char **anova_row_labels;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};
 int i, l, page_width=100;
 int n = 16; /* Total number of observations */
 int n_treatments = 4;
 int n_locations = 1;
 int df, *equal_means;

Table 18 – The ANOVA Table for a Latin-Square Experiment at Multiple Locations

SOURCE DF Sum of Squares
Mean
Squares

LOCATIONS

MSL

ROWS

MSR

COLUMNS

MSC

TREATMENTS

MST

LOCATIONS X
TREATMENTS SSLT by difference MSLT

ERROR

MSE

TOTAL

ατl k i j

r − 1 SSL = t2∑
l=1

r
y─l.. − y

─
...)
2

r t − 1 SSR = t∑
l=1

r
∑
i=1

t
y─li. − y

─
l..)
2

r t − 1 SSC = t∑
l=1

r
∑
j=1

t
y─l. j − y

─
l..)
2

t − 1 SST = r · t∑
k=1

t
y─k − y

─
...)
2

r − 1 t − 1

t − 1 r t − 1 − 1−1 SSE = ∑
l=1

r
SSEl

r · t2 − 1 SSTot = ∑
l=1

r
∑
i=1

t
∑
j=1

t
yl i j − y

─
..

2

398

 Analysis of Variance and Designed Experiments latin_square
 float grand_mean, cv;
 float *aov, *treatment_means, *std_err;
 int col[]={1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4};
 int row[]={3, 2, 4, 1, 1, 4, 2, 3, 2, 3, 1, 4, 4, 1, 3, 2};
 int treatment[]={1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
 float alpha = 0.05;
 float y[]={

 1.167, 1.185, 1.655, 1.345, 1.64, 1.29, 1.665, 1.29,
 1.475, 0.71, 1.425, 0.66, 1.565, 1.29, 1.4, 1.18

 };
 printf("\n\n*** Experimental Design ***");
 printf("\n===============================");
 printf("\n| COL | 1 | 2 | 3 | 4 |");
 printf("\n===============================");
 printf("\n|ROW 1 | 2 | 4 | 3 | 1 |");
 printf("\n===============================");
 printf("\n|ROW 2 | 3 | 1 | 2 | 4 |");
 printf("\n===============================");
 printf("\n|ROW 3 | 1 | 3 | 4 | 2 |");
 printf("\n===============================");
 printf("\n|ROW 4 | 4 | 2 | 1 | 3 |");
 printf("\n===============================");
 aov = imsls_f_latin_square(n, n_locations, n_treatments,

 row, col, treatment, y,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_STD_ERRORS, &std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);

 /* Print ANOVA table. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 imsls_f_write_matrix("\n *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);

 printf("\n\nGrand Mean: %7.3f", grand_mean);
 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);
 l = 0;
 printf("Treatment Means: \n");
 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
 treatment_means[l++]);

 }
 df = (int)std_err[1];
 printf("\n\n");
 printf("Standard Error for Comparing Two Treatment Means: %f \n",

 std_err[0]);
 printf("(df=%d)\n", df);
 equal_means = imsls_f_multiple_comparisons(n_treatments,

 treatment_means, df, std_err[0]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
399

 Analysis of Variance and Designed Experiments latin_square
 l_print_LSD(n_treatments, equal_means, treatment_means);
}

Output

*** Experimental Design ***
===============================
| COL | 1 | 2 | 3 | 4 |
===============================
|ROW 1 | 2 | 4 | 3 | 1 |
===============================
|ROW 2 | 3 | 1 | 2 | 4 |
===============================
|ROW 3 | 1 | 3 | 4 | 2 |
===============================
|ROW 4 | 4 | 2 | 1 | 3 |
===============================

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean

 ID DF SSQ squares F-Test p-Value
Locations -1
Rows -2 3 0.185 0.062 2.064 0.207
Columns -3 3 0.589 0.196 6.579 0.025
Treatments -4 3 0.352 0.117 3.927 0.073
Locations x Treatments -5
Error within Locations -6 6 0.179 0.030
Corrected Total -7 15 1.305

Grand Mean: 1.309
Coefficient of Variation: 13.204
Treatment Means:
treatment[1] 1.3380
treatment[2] 1.4712
treatment[3] 1.0675
treatment[4] 1.3587

Standard Error for Comparing Two Treatment Means: 0.122200
(df=6)
[group] Mean LSD Grouping
 [3] 1.067500 *
 [1] 1.338000 * *
 [4] 1.358750 * *
 [2] 1.471250 *
400

 Analysis of Variance and Designed Experiments lattice
lattice
Analyzes balanced and partially-balanced lattice experiments. In these experiments, a requirement is that the
number of treatments be equal to the square of an integer, such as 9, 16, or 25 treatments. Function lattice
also analyzes repetitions of lattice experiments.

Synopsis
#include <imsls.h>
float *imsls_f_lattice (int n, int n_locations, int n_reps, int n_blocks,

int n_treatments, int rep[], int block[], int treatment[], float y[], …, 0)

The type double function is imsls_d_lattice.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_lattice verifies that:

int n_locations (Input)
Number of locations or repetitions of the lattice experiments. n_locations must be one or
greater. If n_locations>1 then the optional arguments IMSLS_LOCATIONS must be included
as input to imsls_f_lattice.

int n_reps (Input)
Number of replicates per location. Each replicate should consist of t = n_treatments organized
into blocks.

int n_blocks (Input)
Number of blocks per location. For every location, n_blocks must be equal to n_blocks= r·k,
where r = n_reps and

int n_treatments (Input)
Number of treatments t = n_treatments must be equal to k2.

n = n_locations × t × r where
t = n_treatments and r = n_reps

k = t

k = t .
401

 Analysis of Variance and Designed Experiments lattice
int rep[] (Input)
An array of length n containing the replicate identifiers for each observation in y. For a balanced-lat-
tice, the number of replicate identifiers must be equal to n_reps= (k+1). For a partially-balanced
lattice, the number of replicate identifiers depends upon whether the design is a simple lattice, triple
lattice, etc. imsls_f_lattice verifies that the number of unique replicate identifiers is equal to
n_reps. If multiple locations or repetitions of the experiment is conducted, i.e., n_locations>1,
then the replicate and block numbers contained in rep and block must agree between repetitions.

int block[] (Input)
An array of length n containing the block identifiers for each observation in y. imsls_f_lattice
verifies that the number of unique block identifiers is equal to n_blocks. If multiple locations or
repetitions of the experiment is conducted, i.e., n_locations>1, then block numbers must agree
between repetitions. That is, the i-th block in every location or repetition must contain the same
treatments.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation in y. Each treatment
must be assigned values from 1 to n_treatments. imsls_f_lattice verifies that the number
of unique treatment identifiers is equal to n_treatments.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending
upon whether single or double precision is being used, respectively. The location, replicate, block,
and treatment number for each observation in y are identified by the corresponding values in the
arguments locations, rep, block, and treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array containing the ANOVA table. Each
row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that

row. The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares
402

 Analysis of Variance and Designed Experiments lattice
The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[].

Assignments of identifiers to ANOVA sources use the following coding:

Note: † If n_locations=1, all entries in this row are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_lattice(int n, int n_locations, int n_reps, int n_blocks,

int n_treatments, int rep[], int block[], int treatment[], float y[],

IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,

4 F-statistic

5 p-value for this F-statistic

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant dig-
its have been lost.

Source
Identifier ANOVA Source

-1 LOCATIONS †

-2 REPLICATES

-3 TREATMENTS(unadjusted)

-4 TREATMENTS(adjusted)

-5 BLOCKS(adjusted)

-6 INTRA-BLOCK ERROR

-7 CORRECTED TOTAL

j anova_tablei,j = anova_table[i*6+j]
403

 Analysis of Variance and Designed Experiments lattice
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
IMSLS_RETURN_USER, float anova_table[],
0)

Optional Arguments
IMSLS_LOCATIONS, int locations[] (Input)

An array of length n containing the location or repetition identifiers for each observation in y. Unique
integers must be assigned to each location in the study. This argument is required when
n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
 Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float *cv (Output)
 The coefficient of variation computed by using the location standard deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 The overall adjusted mean averaged over every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatments containing the adjusted
treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 4 containing the standard error and
associated degrees of freedom for comparing two treatment means. std_err[0] contains the
standard error for comparing two treatments that appear in the same block at least once.
std_err[1] contains the standard error for comparing two treatments that never appear in the
same block together. std_err[2] contains the standard error for comparing, on average, two
treatments from the experiment averaged over cases in which the treatments do or do not appear in
the same block. Finally, std_err[3] contains the degrees of freedom associated with each of
these standard errors, i.e., std_err[3]= degrees of freedom for intra-block error.

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.
404

 Analysis of Variance and Designed Experiments lattice
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 7 by 6
containing the anova tables associated with each location or repetition of the lattice experiment. For
each location, the 7 by 6 dimensional array corresponds to the anova table for that location.
For example, location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the value in the k-th col-
umn and j-th row of the anova-table for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]); The memory associated with
anova_row_labels can be freed with a single call to imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required
will vary depending upon the number of factors and n_anova. An upperbound on the required
memory is char *anova_row_labels[600];

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 42 for storage of the 7 by 6 anova table described as the return argu-
ment for imsls_f_lattice. For a detailed description of the format for this table, see the
previous description of the return arguments for imsls_d_lattice.

Description
The function imsls_f_lattice analyzes both balanced and partially-balanced lattice experiments, possibly
repeated at multiple locations. These designs were originally described by Yates (1936). A defining characteristic
of these classes of lattice experiments is that the number of treatments is always the square of an integer, such
as t = 9, 16, 25, etc. where t is equal to the number of treatments.

Another characteristic of lattice experiments is that blocks are organized into replicates, where each replicate
contains one observation for each treatment. This requires the number of blocks in each replicate to be equal to
the number of observations per block. That is, the number of blocks per replicate and the number of observa-

tions per block are both equal to .

For balanced lattice experiments the number of replicates is always . For partially-balanced lattice experi-
ments, the number of replicates is less than . Tables of balanced-lattice experiments are tabulated in
Cochran & Cox (1950) for t=9, 16, 25, 49, 64 and 81.

k = t

k + 1
k + 1
405

 Analysis of Variance and Designed Experiments lattice
The analysis of balanced and partially-balanced experiments is detailed in Cochran & Cox (1950) and Kuehl
(2000).

Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9. Notice that the number of replicates is 4 and the
number of blocks per replicate is equal to 3. The total number of blocks is equal to

For a balanced-lattice,

The analysis of variance for data from a balanced-lattice experiment, takes the form familiar to other balanced
incomplete block experiments. In these experiments, the error term is divided into two components: the Inter-
Block Error and the Intra-Block Error. For single and multiple locations, the general format of the anova tables is
illustrated in the Table 20 and Table 21.

Table 19 – A 3x3 Balanced-Lattice for
9 Treatments in Four Replicates

Replicate I Replicate II

Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Replicate III Replicate IV

Block 7 (T1, T5, T9) Block 10 (T1, T6, T8)

Block 8 (T2, T6, T7) Block 11 (T2, T4, T9)

Block 9 (T3, T4, T8) Block 12 (T3, T5, T7)

Table 20 – The ANOVA Table for a Lattice Experiment at one Location

SOURCE DF
Sum of
Squares

Mean
Squares

REPLICATES SSR MSR

TREATMENTS(unadj) SST MST

TREATMENTS(adj) SSTa MSTa

BLOCKS(adj) SSBa MSBa

INTRA-BLOCK ERROR SSI MSI

TOTAL SSTot

n_blocks = n_locations · r · k − 1 + 1

n_blocks = b = r · k = k + 1 · k = t + 1 · t = 4 · 3 = 12

r − 1
t − 1
t − 1

r · k − 1

k − 1 r · k − k − 1

r · t − 1
406

 Analysis of Variance and Designed Experiments lattice
Examples

Example 1

This example is a lattice design for 16 treatments conducted at one location. A lattice design with t=k2=16 treat-
ments is a balanced lattice design with r= k+1=5 replicates and r k=5(4)=20 blocks.

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void l_print_LSD(int n1, int* equalMeans, float *means);
int main()
{

 char **anova_row_labels = NULL;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};
 float alpha = 0.05;
 int i, l, page_width = 132;
 int n = 80; /* Total number of observations */
 int n_locations = 1; /* Number of locations */
 int n_treatments =16; /* Number of treatments */
 int n_reps = 5; /* Number of replicates */
 int n_blocks =20; /* Total number of blocks */
 int n_aov_rows = 7; /* Number of rows in the anova table */
 int rep[]={

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

 };
 int block[]={

Table 21 – The ANOVA Table for a Lattice Experiment at Multiple Locations

SOURCE DF
Sum of
Squares

Mean
Squares

LOCATIONS SSL MSL

REPLICATES WITHIN LOCATIONS SSR MSR

TREATMENTS(unadj) SST MST

TREATMENTS(adj) SSTa MSTa

BLOCKS(adj) SSB MSB

INTRA-BLOCK ERROR SSI MSI

TOTAL SSTot

p − 1

p r − 1

t − 1
t − 1

p · r k − 1

p · k − 1 r · k − k − 1

p · r · t − 1
407

 Analysis of Variance and Designed Experiments lattice
 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12,
 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,
 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20

 };
 int treatment[]={

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
 1, 5, 9, 13, 10, 2, 14, 6, 7, 15, 3, 11, 16, 8, 12, 4,
 1, 6, 11, 16, 5, 2, 15, 12, 9, 14, 3, 8, 13, 10, 7, 4,
 1, 14, 7, 12, 13, 2, 11, 8, 5, 10, 3, 16, 9, 6, 15, 4,
 1, 10, 15, 8, 9, 2, 7, 16, 13, 6, 3, 12, 5, 14, 11, 4

 };
 float y[] ={

 147, 152, 167, 150, 127, 155, 162, 172,
 147, 100, 192, 177, 155, 195, 192, 205,
 140, 165, 182, 152, 97, 155, 192, 142,
 155, 182, 192, 192, 182, 207, 232, 162,
 155, 132, 177, 152, 182, 130, 177, 165,
 137, 185, 152, 152, 185, 122, 182, 192,
 220, 202, 175, 205, 205, 152, 180, 187,
 165, 150, 200, 160, 155, 177, 185, 172,
 147, 112, 177, 147, 180, 205, 190, 167,
 172, 212, 197, 192, 177, 220, 205, 225

 };
 float grand_mean;
 float cv;
 float *aov;
 float *treatment_means;
 float *std_err;
 int *equal_means;
 int df;
 aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,

 n_treatments, rep, block, treatment, y,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_STD_ERRORS, &std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print the ANOVA table. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);

 printf("\n\nAdjusted Grand Mean: %7.3f", grand_mean);
 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);
 l = 0;
 printf("Adjusted Treatment Means: \n");
 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
 treatment_means[l++]);

 }
 df = (int)std_err[3];
 printf("\nStandard Error for Comparing Two Adjusted Treatment ");
 printf("Means: %f \n(df=%d)\n", std_err[2], df);
 equal_means = imsls_f_multiple_comparisons(n_treatments,
408

 Analysis of Variance and Designed Experiments lattice
 treatment_means, df, std_err[2]/(float)sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);
}
/*
* Function to display means comparison.
*/
void l_print_LSD(int n, int *equalMeans, float *means){

 float x=0.0;
 int i, j, k;
 int iSwitch;
 int *idx;
 idx = (int *) malloc(n * sizeof (int));
 for (k=0; k < n; k++) {

 idx[k] =k+1;
 }
 /* Sort means in ascending order*/
 iSwitch=1;
 while (iSwitch != 0){

 iSwitch = 0;
 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){
 iSwitch = 1;
 x = means[i];
 means[i] = means[i+1];
 means[i+1] = x;
 j = idx[i];
 idx[i] = idx[i+1];
 idx[i+1] = j;

 }
 }

 }
 printf("[group] \t Mean \t\tLSD Grouping \n");
 for (i=0; i < n; i++){

 printf(" [%d] \t\t%f", idx[i], means[i]);
 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){
 printf("\t *");

 }else{
 if(equalMeans[j-1]>0) printf("\t");

 }
 }
 if (i < n-1 && equalMeans[i]>0) printf("\t *");
 printf("\n");

 }
 free(idx);
 idx = NULL;
 return;

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F-Test p-Value
Locations -1
Replicates -2 4 6524.38 1631.10
409

 Analysis of Variance and Designed Experiments lattice
Treatments (unadjusted) ... -3 15 27297.13 1819.81 4.12 4.11e-005
Treatments (adjusted) -4 15 21271.29 1418.09 4.21 8.99e-005
Blocks (adjusted) -5 15 11339.28 755.95
Intra-Block Error -6 45 15173.09 337.18
Corrected Total -7 79 60333.88

Adjusted Grand Mean: 171.450
Coefficient of Variation: 10.710
Adjusted Treatment Means:
treatment[1] 166.4533
treatment[2] 160.7527
treatment[3] 183.6289
treatment[4] 175.6298
treatment[5] 162.6806
treatment[6] 167.6717
treatment[7] 168.3821
treatment[8] 176.5731
treatment[9] 162.6928
treatment[10] 118.5197
treatment[11] 189.0615
treatment[12] 190.4607
treatment[13] 169.4514
treatment[14] 197.0827
treatment[15] 185.3560
treatment[16] 168.8029
Standard Error for Comparing Two Adjusted Treatment Means: 13.221801
(df=45)
[group] Mean LSD Grouping
 [10] 118.519737
 [2] 160.752731 *
 [5] 162.680649 * *
 [9] 162.692841 * *
 [1] 166.453323 * * *
 [6] 167.671661 * * *
 [7] 168.382111 * * *
 [16] 168.802887 * * *
 [13] 169.451370 * * *
 [4] 175.629776 * * * *
 [8] 176.573090 * * * *
 [3] 183.628906 * * * *
 [15] 185.355988 * * * *
 [11] 189.061508 * * *
 [12] 190.460724 * *
 [14] 197.082703 *

Example 2

This example consists of a 5 × 5 partially-balanced lattice repeated twice. In this case, the number of replicates is
not k+1 = 6, it is only n_reps = 2. Each lattice consists of total of 50 observations which is repeated twice. The
first observation in this experiment is missing.

#include <math.h>
#include <imsls.h>
410

 Analysis of Variance and Designed Experiments lattice
#include <stdio.h>
#include <stdlib.h>
void l_print_LSD(int n1, int* equalMeans, float *means);
int main()
{
 char **anova_row_labels = NULL;
 char **loc_row_labels = NULL;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",
 "Mean \nsquares", "\nF-Test", "\np-Value"};
 float alpha = 0.05;
 int i, l, page_width = 132;
 int n = 100; /* Total number of observations */
 int n_locations = 2; /* Number of locations */
 int n_treatments =25; /* Number of treatments */
 int n_reps = 2; /* Number of replicates/location */
 int n_blocks =10; /* Total number of blocks/location */
 int n_aov_rows = 7; /* Number of rows in the anova table */
 int rep[]={
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2,
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2
 };
 int block[]={
 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3,
 4, 4, 4, 4, 4,
 5, 5, 5, 5, 5,
 6, 6, 6, 6, 6,
 7, 7, 7, 7, 7,
 8, 8, 8, 8, 8,
 9, 9, 9, 9, 9,
 10, 10, 10, 10, 10,
 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3,
 4, 4, 4, 4, 4,
 5, 5, 5, 5, 5,
411

 Analysis of Variance and Designed Experiments lattice
 6, 6, 6, 6, 6,
 7, 7, 7, 7, 7,
 8, 8, 8, 8, 8,
 9, 9, 9, 9, 9,
 10, 10, 10, 10, 10
 };
 int treatment[]={
 1, 2, 3, 4, 5,
 6, 7, 8, 9, 10,
 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20,
 21, 22, 23, 24, 25,
 1, 6, 11, 16, 21,
 2, 7, 12, 17, 22,
 3, 8, 13, 18, 23,
 4, 9, 14, 19, 24,
 5, 10, 15, 20, 25,
 1, 2, 3, 4, 5,
 6, 7, 8, 9, 10,
 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20,
 21, 22, 23, 24, 25,
 1, 6, 11, 16, 21,
 2, 7, 12, 17, 22,
 3, 8, 13, 18, 23,
 4, 9, 14, 19, 24,
 5, 10, 15, 20, 25
 };
 int location[]={
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
 };
 float y[] ={
 6, 7, 5, 8, 6,
 16, 12, 12, 13, 8,
 17, 7, 7, 9, 14,
 18, 16, 13, 13, 14,
 14, 15, 11, 14, 14,
 24, 13, 24, 11, 8,
 21, 11, 14, 11, 23,
 16, 4, 12, 12, 12,
 17, 10, 30, 9, 23,
 15, 15, 22, 16, 19,
 13, 26, 9, 13, 11,
 15, 18, 22, 11, 15,
 19, 10, 10, 10, 16,
 21, 16, 17, 4, 17,
 15, 12, 13, 20, 8,
 16, 7, 20, 13, 21,
 15, 10, 11, 7, 14,
412

 Analysis of Variance and Designed Experiments lattice
 7, 11, 15, 15, 16,
 19, 14, 20, 6, 16,
 17, 18, 20, 15, 14
 };
 float grand_mean;
 float cv;
 float *aov;
 float *location_anova_table;
 float *loc_anova_table;
 float *treatment_means;
 float *std_err;
 int df;
 int n_missing;
 int *equal_means;
 /* Set first observation to missing. */
 y[0] = imsls_f_machine(6);
 aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,
 n_treatments, rep, block, treatment, y,
 IMSLS_LOCATIONS, location,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_STD_ERRORS, &std_err,
 IMSLS_LOCATION_ANOVA_TABLE, &location_anova_table,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 IMSLS_N_MISSING, &n_missing,
 0);
 /* Output results. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print the ANOVA table. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",
 7, 6, aov,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%9.3g",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);
 /* Print the location ANOVA tables. */
 for (i=0; i < n_locations; i++){
 printf("\n\n\t\t\t\tLOCATION %d", i+1);
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",
 7, 6, &(location_anova_table[i*42]),
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%9.3g",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);
 }
 printf("\n\nAdjusted Grand Mean: %7.3f", grand_mean);
 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);
 l = 0;
 printf("Adjusted Treatment Means: \n");
 for (i=0; i < n_treatments; i++){
 printf("treatment[%2d] %7.4f \n", i+1,
 treatment_means[l++]);
413

 Analysis of Variance and Designed Experiments lattice
 }
 df = (int) std_err[3];
 printf("\nStandard Error for Comparing Two Adjusted Treatment ");
 printf("Means: %f \n(df=%d)\n", std_err[2], df);
 equal_means = imsls_f_multiple_comparisons(n_treatments,
 treatment_means, df, std_err[2]/sqrt(2), IMSLS_LSD,
 IMSLS_ALPHA, alpha,0);
 l_print_LSD(n_treatments, equal_means, treatment_means);
 printf("\n\nNumber of missing observations: %d\n", n_missing);
}
/*
* Function to display means comparison.
*/
void l_print_LSD(int n, int *equalMeans, float *means){
 float x=0.0;
 int i, j, k;
 int iSwitch;
 int *idx;
 idx = (int *) malloc(n * sizeof (int));
 for (k=0; k < n; k++) {
 idx[k] =k+1;
 }
 /* Sort means in ascending order*/
 iSwitch=1;
 while (iSwitch != 0){
 iSwitch = 0;
 for (i = 0; i < n-1; i++){
 if (means[i] > means[i+1]){
 iSwitch = 1;
 x = means[i];
 means[i] = means[i+1];
 means[i+1] = x;
 j = idx[i];
 idx[i] = idx[i+1];
 idx[i+1] = j;
 }
 }
 }
 printf("[group] \t Mean \t\tLSD Grouping \n");
 for (i=0; i < n; i++){
 printf(" [%d] \t\t%f", idx[i], means[i]);
 for (j=1; j < i+1; j++){
 if(equalMeans[j-1] >= i+2-j){
 printf("\t *");
 }else{
 if(equalMeans[j-1]>0) printf("\t");
 }
 }
 if (i < n-1 && equalMeans[i]>0) printf("\t *");
 printf("\n");
 }
 free(idx);
 idx = NULL;
 return;
414

 Analysis of Variance and Designed Experiments lattice
}

Output

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F-Test p-Value
Locations -1 1 12.19 12.19 0.25 0.622
Replicates within Locations -2 2 203.99 101.99 7.44 0.00138
Treatments (unadjusted) ... -3 24 795.46 33.14 0.02 1
Treatments (adjusted) -4 24 951.20 39.63 2.89 0.00591
Blocks (adjusted) -5 16 770.50 48.16 3.51 0.000256
Intra-Block Error -6 55 753.81 13.71
Corrected Total -7 98 2535.95

 LOCATION 1
 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F-Test p-Value
Locations -1
Replicates within Locations -2 1 203.67 203.67
Treatments (unadjusted) ... -3 24 567.13 23.63 0.78 0.721
Treatments (adjusted) -4 24 661.08 27.54 2.04 0.078
Blocks (adjusted) -5 8 490.51 61.31
Intra-Block Error -6 15 202.93 13.53
Corrected Total -7 48 1464.24

 LOCATION 2
 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F-Test p-Value
Locations -1
Replicates within Locations -2 1 0.32 0.32
Treatments (unadjusted) ... -3 24 622.52 25.94 1.43 0.196
Treatments (adjusted) -4 24 707.51 29.48 2.83 0.0178
Blocks (adjusted) -5 8 269.76 33.72
Intra-Block Error -6 16 166.92 10.43
Corrected Total -7 49 1059.52

Adjusted Grand Mean: 14.011
Coefficient of Variation: 26.423
Adjusted Treatment Means:
treatment[1] 17.1507
treatment[2] 19.2200
treatment[3] 11.1261
treatment[4] 14.6230
treatment[5] 12.6543
treatment[6] 11.8133
treatment[7] 11.9045
treatment[8] 11.3106
treatment[9] 9.5576
treatment[10] 11.5889
treatment[11] 22.1321
treatment[12] 12.7233
415

 Analysis of Variance and Designed Experiments lattice
treatment[13] 13.1293
treatment[14] 17.8763
treatment[15] 18.6576
treatment[16] 14.6568
treatment[17] 11.4980
treatment[18] 13.1540
treatment[19] 5.4010
treatment[20] 12.9323
treatment[21] 15.4108
treatment[22] 17.0020
treatment[23] 13.9081
treatment[24] 17.6550
treatment[25] 13.1864
Standard Error for Comparing Two Adjusted Treatment Means: 4.617277
(df=55)
[group] Mean LSD Grouping
 [19] 5.400988 *
 [9] 9.557555 * *
 [3] 11.126063 * * *
 [8] 11.310598 * * *
 [17] 11.497972 * * *
 [10] 11.588868 * * *
 [6] 11.813338 * * *
 [7] 11.904538 * * *
 [5] 12.654334 * * *
 [12] 12.723251 * * *
 [20] 12.932302 * * * *
 [13] 13.129311 * * * *
 [18] 13.154031 * * * *
 [25] 13.186358 * * * *
 [23] 13.908089 * * * *
 [4] 14.623020 * * * *
 [16] 14.656771 * * *
 [21] 15.410829 * * *
 [22] 17.002029 * * *
 [1] 17.150679 * * *
 [24] 17.655045 * * *
 [14] 17.876268 * * *
 [15] 18.657581 * * *
 [2] 19.220003 * *
 [11] 22.132051 *
Number of missing observations: 1
416

 Analysis of Variance and Designed Experiments split_plot
split_plot
Analyzes a wide variety of split-plot experiments with fixed, mixed or random factors. The whole-plots can be
assigned to experimental units using either a completely randomized or randomized complete block design.
Function split_plot also analyzes split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float *imsls_f_split_plot (int n, int n_locations, int n_whole, int n_split, int rep[],

int whole[], int split[], float y[] …, 0)

The type double function is imsls_d_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_split_plot verifies
that:

int n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1, then the
optional array locations[] must be included as input to imsls_f_split_plot.

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must be greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be greater than one.

int rep[] (Input)
An array of length n containing the block, or replicate, identifiers for each observation in y. Locations
can have different numbers of blocks or replicates. Each block or replicate at a single location must
be assigned a different identifier, but different locations can have the same assignments.

n = ∑
i=1

n_locations
n_whole *n_split *n_blocks[i − 1]
417

 Analysis of Variance and Designed Experiments split_plot
int whole[] (Input)
An array of length n containing the whole-plot identifiers for each observation in y. Each level of the
whole-plot factor must be assigned a different integer. imsls_f_split_plot verifies that the
number of unique whole-plot identifiers is equal to n_whole.

int split[] (Input)
An array of length n containing the split-plot identifiers for each observation in y. Each level of the
split-plot factor must be assigned a different integer. imsls_f_split_plot verifies that the
number of unique split-plot identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. At a single location, only one missing
value per whole-plot is allowed. The location, whole-plot and split-plot for each observation in y are
identified by the corresponding values in the arguments locations, whole and split.

Return Value
Address of a pointer to the memory location of a two dimensional, 11 by 6 array containing the ANOVA table.
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that row.

The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic
418

 Analysis of Variance and Designed Experiments split_plot
The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[].

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have
been lost. Assignments of identifiers to ANOVA sources use the following coding:

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_split_plot (int n, int n_locations, int n_whole, int n_split, int rep[],

int whole[], int split[], float y[],

IMSLS_LOCATIONS, int locations[],
IMSLS_LOC_RANDOM, or
IMSLS_LOC_FIXED,
IMSLS_RCBD, or
IMSLS_CRD,
IMSLS_WHOLE_FIXED, or
IMSLS_WHOLE_RANDOM,

Source
Identifier ANOVA Source

-1 LOCATION†

-2 BLOCK WITHIN LOCATION‡

-3 WHOLE-PLOT

-4 LOCATION × WHOLE-PLOT†

-5 WHOLE-PLOT ERROR

-6 SPLIT-PLOT

-7 LOCATION × SPLIT-PLOT†

-8 WHOLE-PLOT × SPLIT-PLOT

-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT †

-10 SPLIT-PLOT ERROR ⇑
-11 CORRECTED TOTAL

Notes on table:
† If n_locations=1 sources involving location are set to missing (NaN).
‡ If IMSLS_CRD is set, entries for block within location are set to missing, and its sum of squares and
degrees of freedom are pooled into the whole-plot error.
⇑ Split-plot error component calculation varies depending upon the settings for IMSLS_RCBD,
IMSLS_LOC_FIXED, IMSLS_WHOLE_FIXED, IMSLS_SPLIT_FIXED, and upon whether n_locations = 1.
See the Description section below for details.
419

 Analysis of Variance and Designed Experiments split_plot
IMSLS_SPLIT_FIXED, or
IMSLS_SPLIT_RANDOM,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_BLOCK_SS, float **block_ss,
IMSLS_BLOCK_SS_USER, float block_ss[],
IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss,
IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[],
IMSLS_SPLIT_PLOT_SS, float **split_plot_ss,
IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[],
IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss,
IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[],
IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss,
IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[],
IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss,
IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[],
IMSLS_TOTAL_SS, float **total_ss,
IMSLS_TOTAL_SS_USER, float total_ss[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
IMSLS_RETURN_USER, float anova_table[],
0)
420

 Analysis of Variance and Designed Experiments split_plot
Optional Arguments
IMSLS_LOCATIONS, int locations[] (Input)

An array of length n containing the location identifiers for each observation in y. Unique integers
must be assigned to each location in the study. This argument is required when n_locations>1.

IMSLS_LOC_FIXED (Input)

or

IMSLS_LOC_RANDOM (Input)
A characteristic controlling whether the location factor is treated as a fixed or random effect, when
n_locations>1. IMSLS_LOC_FIXED and IMSLS_LOC_RANDOM imply that the factor is a fixed
effect or random effect, respectively.

Default: IMSLS_LOC_RANDOM
IMSLS_RCBD, (Input)

or

IMSLS_CRD, (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that whole-plots are assigned to
whole-plot experimental units using a randomized complete block design. IMSLS_CRD implies that
whole-plots are completely randomized to whole-plot experimental units.

Default: IMSLS_RCBD
IMSLS_WHOLE_FIXED, (Input)

or

IMSLS_WHOLE_RANDOM, (Input)
Whole-plot characteristic. IMSLS_WHOLE_FIXED implies that the whole-plot factor is a fixed effect,
and IMSLS_WHOLE_RANDOM implies that it is a random effect.

Default: IMSLS_WHOLE_FIXED
IMSLS_SPLIT_FIXED, (Input)

or

IMSLS_SPLIT_RANDOM, (Input)
Split-plot characteristic. IMSLS_SPLIT_FIXED implies that the split-plot factor is a fixed effect,
and IMSLS_SPLIT_RANDOM implies that it is a random effect.

Default: IMSLS_SPLIT_FIXED.
421

 Analysis of Variance and Designed Experiments split_plot
IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 2 containing the whole-plot and split-
plot coefficients of variation. cv[0] contains the whole-plot C.V., and cv[1] contains the split-plot
C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
Address of a pointer to an internally allocated array of length n_whole containing the whole-plot
means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split containing the split-plot
means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size (n_whole × n_split) containing the
treatment means. For I > 0 and j > 0,
treatment_meansi,j = treatment_means[(i-1) × n_split+j-1] contains the mean of the
observations, averaged over all locations, blocks and replicates, for the j-th split-plot within the i-th
whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.
422

 Analysis of Variance and Designed Experiments split_plot
IMSLS_STD_ERRORS, float **std_err (Output)
Address of a pointer to an internally allocated array of length 10 containing five standard errors and
their associated degrees of freedom.

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length n_locations containing the num-
ber of blocks, or replicates, at each location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_BLOCK_SS, float **block_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for blocks and their associated degrees of freedom for each location.

IMSLS_BLOCK_SS_USER, float block_ss[] (Output)
Storage for the array block_ss, provided by the user.

IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the error sum of squares for whole-plots and their associated degrees of freedom for each
location.

IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[] (Output)
Storage for the array whole_plot_ss, provided by the user.

Element

Standard Error for
Comparisons
Between Two

Degrees of
Freedom

std_err[0] Whole-Plot Means std_err[5]
std_err[1] Split-Plot Means std_err[6]
std_err[2] Split-Plots within same

Whole-Plot
std_err[7]

std_err[3] Whole-Plots within same
Split-Plot

std_err[8]

std_err[4] Treatment Means
(same whole-plot, split-
plot and sub-plot)

std_err[9]
423

 Analysis of Variance and Designed Experiments split_plot
IMSLS_SPLIT_PLOT_SS, float **split_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for split-plots and their associated degrees of freedom for each location.

IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[] (Output)
Storage for the array split_plot_ss, provided by the user.

IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for whole-plot by split-plot interaction and their associated degrees of
freedom for each location.

IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[] (Output)
Storage for the array wholexsplit_plot_ss, provided by the user.

IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for error and their associated degrees of freedom for each location.

IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[] (Output)
Storage for the array whole_plot_error_ss, provided by the user.

IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the sum of squares for split-plots and their associated degrees of freedom for each location.

IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[] (Output)
Storage for the array split_plot_error_ss, provided by the user.

IMSLS_TOTAL_SS, float **total_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_locations by 2 con-
taining the corrected total sum of squares and their associated degrees of freedom for each location.

IMSLS_TOTAL_SS_USER, float total_ss[] (Output)
Storage for the array total_ss, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to
imsls_free(anova_row_labels).
424

 Analysis of Variance and Designed Experiments split_plot
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required
will vary depending upon the number of factors and n_anova. An upperbound on the required
memory is char *anova_row_labels[600].

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 66 for storage of the 11 by 6 Anova table described as the return argu-
ment for imsls_f_split_plot. For a detailed description of the format for this table, see the
previous description of the return arguments for imsls_f_split_plot.

Description
Function imsls_f_split_plot is capable of analyzing a wide variety of split-plot experiments. Whole-plot
and split-plot factors can each be designated as either fixed or random, allowing for experiments with fixed, ran-
dom or mixed treatment effects. By default, imsls_f_split_plot assumes that all treatment factors are
fixed effects, i.e. IMSLS_WHOLE_FIXED and IMSLS_SPLIT_FIXED are default settings. Whole-plot or split-
plot factors can each be declared as random effects by setting the optional input arguments
IMSLS_WHOLE_RANDOM and IMSLS_SPLIT_RANDOM, respectively.

Split-plot experimental designs can also vary in the assignment of the whole-plot factor to its experimental units.
In some cases, this assignment is completely random. For example, in a drug study the experimental unit might
be the subject receiving a treatment. The whole-plot factor, possibly different treatments, could be assigned in
one of two ways. Each subject could receive only one treatment or each could receive all treatments over an
appropriate period of time. If each subject received only a single randomly selected treatment, then this design
constitutes a completely randomized design for the whole-plot factor, and the optional input argument
IMSLS_CRD must be set.

On the other hand, if each subject receives every treatment in random order, then the subject is a blocking factor,
and this sampling scheme constitutes a randomized complete block design. In this case, it is necessary to assume
that there are no carry-over effects from one treatment to another. This sampling scheme is the default setting,
i.e. IMSLS_RCBD is the default setting.

A similar randomization choice occurs in agricultural field trials. A trial designed to test different fertilizers and dif-
ferent seed lots can be conducted in one of two ways. The whole-plot factor, fertilizer, can be applied to different
fields, or each can be applied to sub-divisions of these fields. In either case, a field is the whole-plot experimental
unit. In the first case in which only a single randomly selected fertilizer is applied to a single field, the whole-plot
factor is not blocked and this scheme is called as a completely randomized design, and the optional input argu-
ment IMSLS_CRD must be set. However, if fertilizers are applied to sub-plots within a field, then the whole-plot
factor is blocked within fields and this assignment is referred to as a randomized complete block design. By
default, this function assumes that levels of the whole-plot factor are randomly assigned within blocks, i.e.
IMSLS_RCBD is the default setting for randomizing whole-plots.
425

 Analysis of Variance and Designed Experiments split_plot
The essential distinction between split-plot experiments and completely randomized or randomized complete
block experiments is the presence of a second factor that is blocked, or nested, within each level of the whole-
plot factor. This second factor is referred to as the split-plot factor, see Table 22. If levels of this factor were com-
pletely randomized, then two or more treatments with the same split-plot level could be assigned to the same
whole-plot level, see Table 23.

In some studies, a split-plot experiment is replicated at several locations. Function imsls_f_split_plot can
also analyze split-plot experiments replicated at multiple locations, even when the number of blocks or replicates
at each location are different. If only a single replicate or block is used at each location, then location should be
treated as a blocking factor, with n_locations set equal to one. If n_locations=1, it is assumed that the
experiment was conducted at a single location with more than one block or replicate at that location. In this case,
the four entries associated with location in the Anova table will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with replication
or blocking occurring at each location. Although the number of blocks, or replicates, at each location can be dif-
ferent, the number of levels for whole-plot and split-plot factors, n_whole and n_split, must be the same at
each location. The location associated with y[i] is specified in location[i], which is a required input argu-
ment when n_locations>1.

By default, locations are assumed to be random effects. However, they can be specified as fixed effects by setting
the optional argument IMSLS_LOC_FIXED. This setting changes the calculations of the F-tests for whole-plot
and split-plot factors. If locations are assumed to be fixed effects, then the whole-plot and split-plot errors at

Table 22 – Split-Plot Experiments –
Split-Plot B Nested within Whole-Plot A

Whole Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 23 – Completely Randomized
Experiments – Both Factors Randomized

CRD

A3B2 A1B3 A4B1 A4B3

A2B3 A1B1 A3B2 A1B2

A2B2 A3B1 A2B1 A4B2
426

 Analysis of Variance and Designed Experiments split_plot
each location are pooled to form the whole-plot and split-plot errors. This can dramatically increase the degrees
of freedom associated with the F-test for the treatment factors, resulting in smaller p-values. However, pooling
the error terms from different locations requires experimenters to assume that the errors at each location are
approximately the same. This should be verified using a test for homogeneity of variance, such as Bartlett’s or
Levene’s test.

On the other hand, if locations are assumed to be random effects, then tests involving whole-plots use the inter-
action between whole-plots and locations as the error term for testing whether there are statistically significant
differences among whole-plot factor levels. However, this assumes that the interaction of whole-plots and loca-
tions is not statistically significant. A test of this assumption uses the pooled whole-plot error. If the interaction
between whole-plots and locations is statistically significant, then the nature of that interaction should be
explored since it impacts the interpretation of the significance of the whole-plot treatment factor.

Similarly, when locations are assumed to be random effects, tests involving split-plots do not use the split-plot
errors pooled across locations. Instead, the error term for split plots is the interaction between locations and
split-plots. The split-plot by whole-plot interaction is tested against the location by split-plot by whole-plot
interaction.

Suppose, for example, that a researcher wanted to conduct an agricultural experiment comparing the effective-
ness of 4 fertilizers with 4 seed lots. One replicate of the experiment is conducted at each of the 3 farms. That is,
only a single field at each location is assigned to this experiment.

The field at each farm is divided into 4 whole-plots and the fertilizers are randomly assigned to each of the 4
whole-plots. Each whole-plot is then further divided into 4 split-plots, and the seed lots are randomly assigned to
these split-plots.

In this case, each farm is a blocking factor, fertilizers are whole-plots and seed lots are split-plots. The input array
rep would contain integers from 1 to the number of farms.

However, if each farm allocated more than a single field for this study, then each farm would be treated as a dif-
ferent location with n_locations set equal to the number of farms, and fields would be treated as blocking
factor. The array rep would contain integers from 1 to the number fields used in a farm, and locations[]
would contain integers from 1 to the number of farms.

In summary this function can analyze 3x2x2x2=24 different experimental situations, depending upon the settings
of:

1. Locations (none, fixed or random): specified by setting n_locations, locations[] and
IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.

2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or IMSLS_RCBD.

3. Whole-plot effect (fixed or random): specified by setting either IMSLS_WHOLE_FIXED or
IMSLS_WHOLE_RANDOM.
427

 Analysis of Variance and Designed Experiments split_plot
4. Split-plot effect (fixed or random): specified by setting either IMSLS_SPLIT_FIXED or
IMSLS_SPLIT_RANDOM.

The default condition depends upon the value for n_locations. If n_locations>1, locations are assumed
to be a random effect. Assignment of experimental units to whole-plots is assumed to use a RCBD design and
both whole-plots and split-plots are assumed to be fixed effects.

Example
This example uses data from a split-plot design consisting of two whole-plots and four split-plots.

#include <imsls.h>
#include <stdio.h>
int main()
{
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ", "Mean\nsquares",
 "\nF", "\np-value"};
 int i, page_width = 132;
 int n = 24; /* Total number of observations */
 int n_locations = 1; /* Number of locations */
 int n_whole = 2; /* Number of Whole-plots within a location */
 int n_split = 4; /* Number of Split-plots within a location,
 Whole_plot */
 int rep[]={
 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3
 };
 int whole[]={
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2
 };
 int split[]={
 1, 2, 3, 4, 1, 2, 3, 4,
 1, 2, 3, 4, 1, 2, 3, 4,
 1, 2, 3, 4, 1, 2, 3, 4
 };
 float y[] ={
 30.0, 40.0, 38.9, 38.2,
 41.8, 52.2, 54.8, 58.2,
 20.5, 26.9, 21.4, 25.1,
 26.4, 36.7, 28.9, 35.9,
 21.0, 25.4, 24.0, 23.3,
 34.4, 41.0, 33.0, 34.9
 };
 float grand_mean;
 float *aov;
428

 Analysis of Variance and Designed Experiments split_plot
 float *treatment_means;
 float *whole_plot_means;
 float *split_plot_means;
 int *equal_means;
 char **aov_row_labels;
 aov = imsls_f_split_plot(n, n_locations, n_whole, n_split, rep,
 whole, split, y,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,
 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,
 IMSLS_ANOVA_ROW_LABELS, &aov_row_labels,
 0);
 /* Output results. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print ANOVA table, without first column. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***", 11, 6,
 aov,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
 IMSLS_ROW_LABELS, aov_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);
 /* Print the various means. */
 printf("\n\nGrand mean: %f\n", grand_mean);
 imsls_f_write_matrix("Treatment Means", n_whole, n_split,
 treatment_means,
 0);
 imsls_f_write_matrix("Whole-plot Means", n_whole, 1,
 whole_plot_means,
 0);
 imsls_f_write_matrix("Split-plot Means", n_split, 1,
 split_plot_means,
 0);
}

Output

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F p-value
Location -1
Block Within Location -2 2 1310.28 655.14 30.82 0.031
Whole-Plot -3 1 858.01 858.01 40.37 0.024
Location x Whole-Plot -4
Whole-Plot Error -5 2 42.51 21.26 2.03 0.173
Split-Plot -6 3 227.73 75.91 7.26 0.005
Location x Split-Plot -7
Whole-Plot x Split-Plot -8 3 13.40 4.47 0.43 0.737
Location x Whole-Plot x -9
 Split-Plot
Split-Plot Error -10 12 125.39 10.45
Corrected Total -11 23 2577.33
429

 Analysis of Variance and Designed Experiments split_plot
Grand mean: 33.870834
 Treatment Means
 1 2 3 4
1 23.83 30.77 28.10 28.87
2 34.20 43.30 38.90 43.00
Whole-plot Means
1 27.89
2 39.85
Split-plot Means
1 29.02
2 37.03
3 33.50
4 35.93
430

 Analysis of Variance and Designed Experiments split_split_plot
split_split_plot
Analyzes data from split-split-plot experiments. The whole-plots can be assigned to experimental units using
either a completely randomized or randomized complete block design. Function split_split_plot also
analyzes split-split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float *imsls_f_split_split_plot (int n, int n_locations, int n_whole, int n_split, int

n_sub, int rep[], int whole[], int split[], int sub[], float y[], …, 0)

The type double function is imsls_d_split_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_split_split_plot
verifies that:

int n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1 then the optional
array locations[] must be included as input. See optional argument IMSLS_LOCATIONS.

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must be greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be greater than one.

int n_sub (Input)
Number of levels associated with the sub-plot factor. n_sub must be greater than one.

n = ∑
i=1

n_locations

n_whole × n_split × n_sub × n_blocks[i − 1]
431

 Analysis of Variance and Designed Experiments split_split_plot
int rep[] (Input)
An array of length n containing the block, or replicate, identifiers for each observation in y. Different
locations can have different numbers of blocks or replicates. Each block or replicate at a single loca-
tion must be assigned a different identifier, but different locations can have the same assignments.

int whole[] (Input)
An array of length n containing the whole-plot identifiers for each observation in y. Each level of the
whole-plot factor must be assigned a different integer. imsls_f_split_split_plot verifies
that the number of unique whole-plot identifiers is equal to n_whole.

int split[] (Input)
An array of length n containing the split-plot identifiers for each observation in y. Each level of the
split-plot factor must be assigned a different integer. imsls_f_split_split_plot verifies that
the number of unique split-plot identifiers is equal to n_split.

int sub[] (Input)
An array of length n containing the sub-plot identifiers for each observation in y. Each level of the
sub-plot factor must be assigned a different integer. imsls_f_split_split_plot verifies that
the number of unique sub-plot identifiers is equal to n_sub.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values
cannot be omitted. They are included by placing a NaN (not a number) in y. The NaN value can be set
using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. At a single location, only one missing
value per whole-plot is allowed. The location, whole-plot, split-plot and sub-plot for each observation
in y are identified by the corresponding values in the arguments locations, whole, split and
sub.

Return Value
Address of a pointer to the memory location of a two dimensional, 20 by 6 array containing the ANOVA table.
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that row.

The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares
432

 Analysis of Variance and Designed Experiments split_split_plot
The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[].

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have
been lost. Assignments of identifiers to ANOVA sources use the following coding:

NOTES:

† If n_locations=1 sources involving location are set to missing (NaN).

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

Source
Identifier ANOVA Source

-1 LOCATION†
-2 BLOCK WITHIN LOCATION‡

-3 WHOLE-PLOT
-4 LOCATION × WHOLE-PLOT†
-5 WHOLE-PLOT ERROR

-6 SPLIT-PLOT
-7 LOCATION × SPLIT-PLOT†
-8 WHOLE-PLOT × SPLIT-PLOT
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT†
-10 SPLIT-PLOT ERROR*

-11 CORRECTED TOTAL
-12 LOCATION × SUB-PLOT†
-13 WHOLE-PLOT × SUB-PLOT
-14 LOCATION × WHOLE-PLOT × SUB-PLOT†
-15 SPLIT-PLOT × SUB-PLOT
-16 LOCATION × SPLIT-PLOT × SUB-PLOT†
-17 WHOLE-PLOT × SPLIT-PLOT × SUB-PLOT
-18 LOCATION × WHOLE-PLOT × SPLIT-PLOT × SUBPLOT†
-19 SUB-PLOT ERROR
-20 CORRECTED TOTAL

j anova_tablei,j = anova_table[i*6+j]
433

 Analysis of Variance and Designed Experiments split_split_plot
‡ If IMSLS_CRD is set, entries for blocks within location are set to missing, and its sum of squares and degrees
of freedom are pooled into the whole-plot error.

* Split-plot error component calculation varies depending upon n_locations. See Description below for
details.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_split_split_plot (int n, int n_locations, int n_whole, int n_split,

int n_sub, int rep[], int whole[], int split[], int sub[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_RCBD, or
IMSLS_CRD,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_SUB_PLOT_MEANS, float **sub_plot_means,
IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[],
IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means,
IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float whole_split_plot_means[],
IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means,
IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[],
IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means,
IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
434

 Analysis of Variance and Designed Experiments split_split_plot
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 120 for storage of the 20 by 6 anova table described as the return argu-
ment for imsls_f_split_split_plot. For a detailed description of the format for this table,
see the previous description of the return value for imsls_f_split_split_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers
must be assigned to each location in the study. This argument is required when n_locations>1.

IMSLS_RCBD (Input)

or

IMSLS_CRD (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that whole-plots are assigned to
whole-plot experimental units using a randomized complete block design. IMSLS_CRD implies that
whole-plots are completely randomized to whole-plot experimental units.
Default: IMSLS_RCBD.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 3 containing the whole-plot, split-plot
and sub-plot coefficients of variation. cv[0] contains the whole-plot C.V., cv[1] contains the split-plot
C.V., and cv[2] contains the sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.
435

 Analysis of Variance and Designed Experiments split_split_plot
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_whole containing the whole-plot
means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split containing the split-plot
means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_SUB_PLOT_MEANS, float **sub_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_sub containing the sub-plot means.

IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[] (Output)
Storage for the array sub_plot_means, provided by the user.

IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size n_whole by n_split
containing the whole-plot by split-plot means.

IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float whole_split_plot_means[] (Output)
Storage for the array whole_split_plot_means, provided by the user.

IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means (Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_whole by n_sub con-
taining the whole-plot by sub-plot means.

IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[] (Output)
Storage for the array whole_sub_plot_means, provided by the user.

IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size n_split by n_sub con-
taining the split-plot by sub-plot means.

IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[] (Output)
Storage for the array split_sub_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size (n_whole×n_split×n_sub) contain-
ing the treatment means. For i > 0, j > 0 and k > 0,
436

 Analysis of Variance and Designed Experiments split_split_plot
treatment_meansi,j,k = treatment_means[(i-1)*n_split*n_sub+(j-1)*n_sub + k-1] con-
tains the mean of the observations, averaged over all locations, blocks and replicates, for the k-th
sub-plot within the j-th split-plot within the i-th whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 8 containing five standard errors and
their associated degrees of freedom. The standard errors are in the first five elements and their asso-
ciated degrees of freedom are reported in std_err[4] through std_err[7].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length n_locations containing the number
of blocks, or replicates, at each location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
 Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 20 by 6
containing the anova tables associated with each location. For each location, the 20 by 6 dimensional
array corresponds to the anova table for that location. For example,
location_anova_table[(i-1)×120+(j-1)×6 + (k-1)] contains the value in the k-th column and
j-th row of the returned anova-table for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

Element

Standard Error for

Comparisons Between Two

Degrees of

Freedom
std_err[0] Whole-Plot Means std_err[4]
std_err[1] Split-Plot Means std_err[5]
std_err[2] Sub-Plot Means std_err[6]
std_err[3] Treatment Means (same whole-plot, split-plot

and sub-plot)
std_err[7]
437

 Analysis of Variance and Designed Experiments split_split_plot
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required
will vary depending upon the number of factors and n_anova. An upperbound on the required
memory is char *anova_row_labels[600].

Description
Function imsls_f_split_split_plot is capable of analyzing a wide variety of split-split-plot experiments.

Split-split-plot experimental designs can vary in the assignment of whole-plot factors to experimental units. In
some cases, this assignment is completely random. For example, in a drug study the experimental unit might be
the subject receiving a treatment. The whole-plot factor, possibly different treatments, could be assigned in one
of two ways. Each subject could receive only one treatment or each could receive all treatments over an appropri-
ate period of time. If each subject received only a single randomly selected treatment, then this design
constitutes a completely randomized design for the whole-plot factor, and the optional input argument
IMSLS_CRD must be set.

On the other hand, if each subject receives every treatment in random order, then the subject is a blocking factor,
and this sampling scheme constitutes a randomized complete block design. In this case, it is necessary to assume
that there are no carry-over effects from one treatment to another. This sampling scheme is the default setting,
i.e. IMSLS_RCBD is the default setting.

This randomization choice occurs often in agricultural field trials. A trial designed to test different fertilizers and
different seed lots can be conducted in one of two ways. The whole-plot factor, fertilizer, can be applied to differ-
ent fields, or each can be applied to sub-divisions of these fields. In either case, a field, or a sub-division of a field,
is the whole-plot experimental unit. In the first case, in which only one randomly selected fertilizer is applied to
each field, the whole-plot factor is not blocked and this scheme is called as a completely randomized design, and
the optional input argument IMSLS_CRD must be set. However, if fertilizers are applied to sub-divisions within a
field, then the whole-plot factor is blocked within fields and this assignment is referred to as a randomized com-
plete block design. By default, imsls_f_split_split_plot assumes that levels of the whole-plot factor
are randomly assigned within blocks, i.e.IMSLS_RCBD is the default setting for randomizing whole-plots.
438

 Analysis of Variance and Designed Experiments split_split_plot
The essential distinction between split-plot and split-split-plot experiments is the presence of a third factor that is
blocked, or nested, within each level of the whole-plot and split-plot factors. This third factor is referred to as the
sub-plot factor.

Table 24 – Split-Plot Experiment –
Split-Plot B Nested within Whole-Plot A

Whole Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 25 – Split-Split Plot Experiment – Sub-Plot Factor C
Nested Within Split-Plot Factor B, Nested Within Whole-Plot Factor A

Whole Plot Factor A

A2 A1 A4 A3

A2B3C2

A2B3C1

A1B2C1

A1B2C2

A4B1C2

A4B1C1

A3B3C2

A3B3C1

A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B3C2

A4B3C1

A3B2C2

A3B2C1

A2B2C2

A2B2C1

A1B3C1

A1B3C2

A4B2C1

A4B2C2

A3B1C2

A3B1C1
439

 Analysis of Variance and Designed Experiments split_split_plot
Contrast the split-split plot experiment to the same experiment run using a strip-split plot design, see Table 26. In
a strip-split plot experiment factor B is applied in strip across factor A; whereas, in a split-split plot experiment,
factor B is randomly assigned to each level of factor A. In a strip-split plot experiment, the level of factor B is con-
stant across a row; whereas in a split-split plot experiment, the levels of factor B change as you go across a row,
reflecting the fact that factor B is randomized within each level of factor A.

In some studies, a split-split-plot experiment is replicated at several locations. Function
imsls_f_split_split_plot can analyze these, even when the number of blocks or replicates at each
location is different. If only a single replicate or block is used at each location, then location should be treated as a
blocking factor, with n_locations set equal to one. If n_locations=1, it is assumed that the experiment
was conducted at a single location with more than one block or replicate at that location. In this case, all entries in
the anova table associated with location will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with replication
or blocking occurring at each location. Although the number of blocks, or replicates, at each location can be dif-
ferent, the number of levels for whole-plot and split-plot factors, n_whole and n_split, must be the same at
each location. The locations associated with each of the observations in y are specified in the argument
locations[], which is a required input argument when n_locations>1.

By default, locations are assumed to be random effects. Tests involving whole-plots use the interaction between
whole-plots and locations as the error term for testing whether there are statistically significant differences
among whole-plot factor levels. This assumes that the interaction of whole-plots and locations is not statistically
significant. A test of this assumption uses the pooled whole-plot error. If the interaction between location and
whole-plots, split-plots or sub-plot is statistically significant, then the nature of that interaction should be
explored since it impacts the interpretation of the significance of the treatment factors.

Table 26 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A
and B

Factor A Strip Plots

A2 A1 A4 A3
Factor B
Strip Plots

B3 A2B3C2

A2B3C1

A1B3C1

A1B3C2

A4B3C2

A4B3C1

A3B3C2

A3B3C1

B1 A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B1C2

A4B1C1

A3B1C2

A3B1C1

B2 A2B2C2

A2B2C1

A1B2C1

A1B2C2

A4B2C1

A4B2C2

A3B2C2

A3B2C1
440

 Analysis of Variance and Designed Experiments split_split_plot
When n_locations >1 are assumed to be random effects, tests involving split-plots do not use the split-plot
errors pooled across locations. Instead, the error term for split plots is the interaction between locations and
split-plots. The split-plot by whole-plot interaction is tested against the location by split-plot by whole-plot
interaction.

Suppose, for example, that a researcher wanted to conduct an agricultural experiment comparing the effective-
ness of 4 fertilizers with 3 rates of application and 2 seed lots. One replicate of the experiment is conducted at
each of the 3 farms. That is, only a single field at each location is assigned to this experiment.

Each field is divided into 4 whole-plots and the fertilizers are randomly assigned to each of the 4 whole-plots.
Each whole-plot is then further sub-divided into 3 split-plots which are each randomly assigned one of the three
fertilizer application rates. Finally, each of these sub-divisions assigned a particular fertilizer and application rate
is sub-divided into 2 plots and randomly assigned one of the two seed lots.

In this case, each farm is a blocking factor, fertilizers are whole-plots and fertilizer application rate are split plots,
and seed lots are sub-plots. The input array rep would contain integers from 1 to the number of farms, with
n_whole=4, n_split=3 and n_sub=2.

However, if each farm allocated more than a single field for this study, then each farm would be treated as a dif-
ferent location with n_locations set equal to the number of farms, and fields might be treated as blocking
factor. The array rep would contain integers from 1 to the number fields used in a farm, and locations[]
would contain integers from 1 to the number of farms.

In summary imsls_f_split_split_plot can analyze 3x2=6 different experimental situations, depending
upon the settings of:

1. Locations (none, fixed or random): specified by setting n_locations, locations[] and
IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.

2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or IMSLS_RCBD.

The default condition depends upon the value for n_locations. If n_locations>1, locations are assumed
to be a random effect. Assignment of experimental units to whole-plots is assumed to use a RCBD design and
whole-plots, split-plots and sub-plots are all assumed to be fixed effects.

Example
This example uses data from a split-split-plot design consisting of two whole-plots, two-split-plots and two
sub-plots.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
441

 Analysis of Variance and Designed Experiments split_split_plot
int main()
{
 char **anova_row_labels;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ", "Mean\nsquares",
 "\nF", "\np-value"};
 char dashes[] =
 "***";
 int i, j, k, l, page_width = 132;
 int n = 24;
 int n_locations = 1;
 int n_whole = 2;
 int n_split = 2;
 int n_sub = 2;
 int rep[]={
 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3
 };
 int whole[]={
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2
 };
 int split[]={
 1, 1, 2, 2, 1, 1, 2, 2,
 1, 1, 2, 2, 1, 1, 2, 2,
 1, 1, 2, 2, 1, 1, 2, 2
 };
 int sub[]={
 1, 2, 1, 2, 1, 2, 1, 2,
 1, 2, 1, 2, 1, 2, 1, 2,
 1, 2, 1, 2, 1, 2, 1, 2
 };
 float y[] ={
 30.0, 40.0, 38.9, 38.2,
 41.8, 52.2, 54.8, 58.2,
 20.5, 26.9, 21.4, 25.1,
 26.4, 36.7, 28.9, 35.9,
 21.0, 25.4, 24.0, 23.3,
 34.4, 41.0, 33.0, 34.9
 };
 float grand_mean, *cv, *aov, *treatment_means;
 float *whole_plot_means, *split_plot_means;
 float *sub_plot_means, *std_err;
 int *equal_means;
 aov = imsls_f_split_split_plot(n, n_locations, n_whole, n_split,
 n_sub, rep, whole, split, sub, y,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,
 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,
 IMSLS_SUB_PLOT_MEANS, &sub_plot_means,
 IMSLS_STD_ERRORS, &std_err,
442

 Analysis of Variance and Designed Experiments split_split_plot
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);
 /* Output results. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print ANOVA table. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***", 20, 6,
 aov,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);
 printf("\n\nGrand mean: %7.3f\n", grand_mean);
 printf("Coefficient of Variation ****\n");
 printf(" Whole-Plot: %7.3f\n", cv[0]);
 printf(" Split-Plot: %7.3f\n", cv[1]);
 printf(" Sub-Plot : %7.3f\n", cv[2]);
 l = 0;
 /* Treatment Means */
 printf("\n\n%s\n", dashes);
 printf("Treatment Means: \n");
 for (i=0; i < n_whole; i++){
 for(j=0; j < n_split; j++){
 for(k=0; k < n_sub; k++){
 printf(" treatment[%d][%d][%d] %f \n", i, j, k,
 treatment_means[l++]);
 }
 }
 }
 printf("\n Standard Error for Comparing Two Treatment Means: %f ",
 std_err[3]);
 printf("\n(df=%f)\n", std_err[7]);
 equal_means = imsls_f_multiple_comparisons(n_whole * n_split * n_sub,
 treatment_means, (int)std_err[7], std_err[3]/sqrt(2),
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
 0);
 printf("\n LSD for Treatment Means (alpha=0.05)");
 imsls_i_write_matrix(" Size of Groups of Means", 1,
 n_whole * n_split * n_sub - 1, equal_means,
 0);
 /* Whole-plot Means */
 printf("\n\n%s", dashes);
 imsls_f_write_matrix("Whole-plot Means", n_whole, 1,
 whole_plot_means,
 0);
 printf("\nStandard Error for Comparing Two Whole-Plot Means: %f ",
 std_err[0]);
443

 Analysis of Variance and Designed Experiments split_split_plot
 printf("\n(df=%f)\n", std_err[4]);
 equal_means = imsls_f_multiple_comparisons(n_whole,
 whole_plot_means, (int)std_err[4], std_err[0]/sqrt(2),
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
 0);
 printf("\nLSD for Whole-Plot Means (alpha=0.05) \n");
 imsls_i_write_matrix("Size of Groups of Means", 1, n_whole-1,
 equal_means,
 0);
 /* Split-plot Means */
 printf("\n\n%s",dashes);
 imsls_f_write_matrix("Split-plot Means", n_split, 1,
 split_plot_means,
 0);
 printf("\nStandard Error for Comparing Two Split-Plot Means: %f ",
 std_err[1]);
 printf("\n(df=%f)\n", std_err[5]);
 equal_means = imsls_f_multiple_comparisons(n_split,
 split_plot_means, (int)std_err[5], std_err[1]/sqrt(2),
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
 0);
 printf("\nLSD for Split-Plot Means (alpha=0.05) \n");
 imsls_i_write_matrix("Size of Groups of Means", 1, n_split-1,
 equal_means,
 0);
 /* Sub-plot Means */
 printf("\n\n%s", dashes);
 imsls_f_write_matrix("Sub-plot Means", n_sub, 1, sub_plot_means,
 0);
 printf("\nStandard Error for Comparing Two Sub-Plot Means: %f ",
 std_err[2]);
 printf("\n(df=%f)\n", std_err[6]);
 equal_means = imsls_f_multiple_comparisons(n_sub, sub_plot_means,
 (int)std_err[6], std_err[2]/sqrt(2),
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
 0);
 printf("\nLSD for Sub-Plot Means (alpha=0.05) \n");
 imsls_i_write_matrix(": Size of Groups of Means", 1, n_sub-1,
 equal_means,
 0);
}

444

 Analysis of Variance and Designed Experiments split_split_plot
Output
 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F p-value
Location -1
Blocks Within Location -2 2 1310.28 655.14 30.82 0.031
Whole-Plot -3 1 858.01 858.01 40.37 0.024
Location x Whole-Plot -4
Whole-Plot Error -5 2 42.51 21.26 0.86 0.490
Split-Plot -6 1 17.17 17.17 0.69 0.452
Location x Split-Plot -7
Whole-Plot x Split-Plot -8 1 1.55 1.55 0.06 0.815
Location x Whole-Plot x -9
 Split-Plot
Split-Plot Error -10 4 99.32 24.83 7.62 0.008
Sub-Plot -11 1 163.80 163.80 50.27 0.000
Location x Sub-Plot -12
Whole-Plot x Sub-Plot -13 1 11.34 11.34 3.48 0.099
Location x Whole-Plot x Sub-Plot -14
Split-plot x Sub-Plot -15 1 46.76 46.76 14.35 0.005
Location x Split-Plot x Sub-Plot -16
Whole_plot x Split-Plot -17 1 0.51 0.51 0.16 0.703
 x Sub-Plot
Location x Whole-Plot x -18
 Split-Plot x Sub-Plot
Sub-Plot Error -19 8 26.07 3.26
Corrected Total -20 23 2577.33

Grand mean: 33.871
Coefficient of Variation ****
 Whole-Plot: 13.612
 Split-Plot: 14.712
 Sub-Plot : 5.329

Treatment Means:
 treatment[0][0][0] 23.833334
 treatment[0][0][1] 30.766668
 treatment[0][1][0] 28.100000
 treatment[0][1][1] 28.866669
 treatment[1][0][0] 34.200001
 treatment[1][0][1] 43.299999
 treatment[1][1][0] 38.899998
 treatment[1][1][1] 43.000000
 Standard Error for Comparing Two Treatment Means: 1.473846
(df=8.000000)
 LSD for Treatment Means (alpha=0.05)
 Size of Groups of Means
1 2 3 4 5 6 7
0 3 0 0 0 0 2

Whole-plot Means
1 27.89
445

 Analysis of Variance and Designed Experiments split_split_plot
2 39.85
Standard Error for Comparing Two Whole-Plot Means: 2.661792
(df=2.000000)
LSD for Whole-Plot Means (alpha=0.05)
Size of Groups of Means
 0

Split-plot Means
1 33.03
2 34.72
Standard Error for Comparing Two Split-Plot Means: 2.876944
(df=4.000000)
LSD for Split-Plot Means (alpha=0.05)
Size of Groups of Means
 2

Sub-plot Means
1 31.26
2 36.48
Standard Error for Comparing Two Sub-Plot Means: 1.473846
(df=8.000000)
LSD for Sub-Plot Means (alpha=0.05)
: Size of Groups of Means
 0
446

 Analysis of Variance and Designed Experiments strip_plot
strip_plot
Analyzes data from strip-plot experiments. Function strip_plot also analyzes strip-plot experiments repli-
cated at several locations.

Synopsis
#include <imsls.h>
float *imsls_f_strip_plot(int n, int n_locations, int n_strip_a, int n_strip_b,

int block[], int strip_a[], int strip_b[], float y[], …, 0)

The type double function is imsls_d_strip_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_strip_plot verifies
that:

int n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1 then the
optional array locations[] must be included as input to imsls_f_strip_plot. See optional
argument IMSLS_LOCATIONS.

int n_strip_a (Input)
Number of levels associated with the strip factor A. n_strip_a must be greater than one.

int n_strip_b (Input)
Number of levels associated with the strip factor B. n_strip_b must be greater than one.

int block[] (Input)
An array of length n containing the block identifiers for each observation in y. Locations can have dif-
ferent numbers of blocks. Each block at a single location must be assigned a different identifier, but
different locations can have the same assignments.

n = ∑
i=1

n_locations

n_strip_a · n_strip_b · n_blocks[i − 1]
447

 Analysis of Variance and Designed Experiments strip_plot
int strip_a[] (Input)
An array of length n containing the factor A strip-plot identifiers for each observation in y. Each level
of this factor must be assigned a different integer. This function verifies that the number of unique
factor A strip-plot identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the factor B strip-plot identifiers for each observation in y. Each level
of this factor must be assigned a different integer. This function verifies that the number of unique
factor B strip-plot identifiers is equal to n_strip_b.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. The location, strip-plot A, and strip-
plot B for each observation in y are identified by the corresponding values in the arguments
locations, strip_a, and strip_b.

Return Value
Address of a pointer to the memory location of a two dimensional, 12 by 6 array containing the ANOVA table.
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i]×6, identifies the source for the effect associated with values in that

row. The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic
448

 Analysis of Variance and Designed Experiments strip_plot
The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table.

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have
been lost. Assignments of identifiers to ANOVA sources use the following coding:

Notes: † If n_locations=1 sources involving location are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_strip_plot (int n, int n_locations, int n_strip_a, int n_strip_b,

int block[], int strip_a[], int strip_b[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[],
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[],

Source Identifier ANOVA Source

-1 LOCATION†
-2 BLOCK WITHIN LOCATION
-3 STRIP-PLOT A
-4 LOCATION × STRIP-PLOT A†
-5 STRIP-PLOT A ERROR

-6 STRIP-PLOT B
-7 LOCATION × STRIP-PLOT B†
-8 STRIP-PLOT B ERROR
-9 STRIP-PLOT A × STRIP-PLOT B

-10 LOCATION × STRIP-PLOT A × STRIP-PLOT B †
-11 STRIP-PLOT A × STRIP-PLOT B ERROR
-12 CORRECTED TOTAL
449

 Analysis of Variance and Designed Experiments strip_plot
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 72 for storage of the 12 by 6 ANOVA table described as the return argu-
ment for imsls_f_strip_plot. For a detailed description of the format for this table, see the
previous description of the return arguments for imsls_f_strip_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers
must be assigned to each location in the study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 3 containing the whole-plot, split-plot
and sub-plot coefficients of variation. cv[0] contains the whole-plot C.V., cv[1] contains the split-
plot C.V., and cv[2] contains the sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length n_strip_a containing the factor A
strip-plot means.
450

 Analysis of Variance and Designed Experiments strip_plot
IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output)
Address of a pointer to an internally allocated array of length n_strip_b containing the factor B
strip-plot means.

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output)
Storage for the array strip_plot_b_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of length (n_strip_a×n_strip_b) contain-
ing the treatment means. For i > 0 and j > 0,
treatment_meansi,j = treatment_means [(i-1)×n_strip_a +(j-1)] contains the mean of the
observations, averaged over all locations, blocks and replicates, for the i-th level of the factor A strip-
plot and the j-th level of the factor B strip-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
Address of a pointer to an internally allocated array of length 10 containing five standard errors and
their associated degrees of freedom. The standard errors are in the first five elements and their asso-
ciated degrees of freedom are reported in std_err[5] through std_err[9].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length n_locations containing the number
of blocks, or replicates, at each location.

Element

Standard Error for
Comparisons Between

Two Degrees of Freedom
std_err[0] Factor A Strip-Plot Means std_err[5]
std_err[1] Factor B Strip-Plot Means std_err[6]
std_err[2] Factor A Strip-Plot Means at

the same level of Factor B
std_err[7]

std_err[3] Factor B Strip-Plot Means at
the same level of Factor A

std_err[8]

std_err[4] Treatment Means (same
strip-plot A and strip-plot B)

std_err[9]
451

 Analysis of Variance and Designed Experiments strip_plot
IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 12 by 6
containing the Anova tables associated with each location. For each location, the 12 by 6 dimensional
array corresponds to the Anova table for that location. For example, location_anova_table[(i-
1)×72+(j-1)×6 + (k-1)] contains the value in the k-th column and j-th row of the returned Anova table
for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single call to
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required
will vary depending upon the number of factors and n_anova. An upperbound on the required
memory is char *anova_row_labels[600].

Description
Function imsls_f_strip_plot is capable of analyzing a wide variety of strip-plot experiments.
452

 Analysis of Variance and Designed Experiments strip_plot
The essential distinction between strip-plot and split-plot experiments is the application of factor B. In a split-plot
experiment, levels of Factor B are nested within Factor A, see Table 28 below. In strip-plot experiments, Factors A
and B are completely crossed, see Table 27 below. This occurs, for example, when an agricultural field is used as a
block and the levels of factor A are applied in vertical strips across the entire field. Levels of factor B are assigned
to horizontal strips across the same block.

In some studies, a strip-plot experiment is replicated at several locations. imsls_f_strip_plot can analyze
strip-plot experiments replicated at multiple locations, even when the number of blocks or replicates at each
location are different. If only a single replicate or block is used at each location, then location should be treated as
a blocking factor, with n_locations set equal to one. If n_locations=1, it is assumed that the experiment
was conducted at a single location with more than one block or replicate at that location. In this case, the four
entries associated with location in the ANOVA table will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with blocking
occurring at each location. Although the number of blocks at each location can be different, the number of levels
for the factor A and B strip-plots must be the same at each location. The locations associated with each of the
observations in y are specified in the argument locations[], which is a required input argument when
n_locations>1.

Locations are assumed to be random effects, then tests involving factor A strip-plots use the interaction between
factor A strip-plots and locations as the error term for testing whether there are statistically significant differences
among the levels of factor A. However, this assumes that the interaction of factor A and locations is not statisti-

Table 27 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Strip Plot Factor A

A2 A1 A4 A3

Strip

Plot

Factor B

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

B2 A2B2 A1B2 A4B2 A3B2

Table 28 – Split-Plot Experiments – Split-Plot B
Nested within Strip-Plot A

Whole Factor Plot

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2
453

 Analysis of Variance and Designed Experiments strip_plot
cally significant. A test of this assumption is included in the ANOVA table. If the interaction between factor A strip-
plots and locations is statistically significant, then the nature of that interaction should be explored since it
impacts the interpretation of the significance of the factor A.

Similarly, when locations are assumed to be random effects, tests involving factor B do not use the strip-plot B
errors pooled across locations. Instead, the error term for factor B is the interaction between locations and factor
B.

Example
This example uses data from a strip-plot design with two levels for the first strip and four for the last strip.

#include <stdio.h>
#include <math.h>
#include <imsls.h>
int main()
{

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",
 "Mean\nsquares", "\nF", "\np-value"};

 char **anova_row_labels = NULL;
 int i, j, k, l, page_width = 132;
 int n = 24;
 int n_locations = 1;
 int n_strip_a = 2;
 int n_strip_b = 4;
 int block[]={

 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3};

 int strip_a[]={
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2};

 int strip_b[]={
 1, 2, 3, 4, 1, 2, 3, 4,
 1, 2, 3, 4, 1, 2, 3, 4,
 1, 2, 3, 4, 1, 2, 3, 4};

 float y[] ={
 30.0, 40.0, 38.9, 38.2,
 41.8, 52.2, 54.8, 58.2,
 20.5, 26.9, 21.4, 25.1,
 26.4, 36.7, 28.9, 35.9,
 21.0, 25.4, 24.0, 23.3,
 34.4, 41.0, 33.0, 34.9};

 float grand_mean=0;
 float *cv, *aov, *treatment_means;
 float *strip_plot_a_means, *strip_plot_b_means;
 float *std_err;
 int n_missing, *equal_means;
 aov = imsls_f_strip_plot(n, n_locations, n_strip_a, n_strip_b,
454

 Analysis of Variance and Designed Experiments strip_plot
 block, strip_a, strip_b, y,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_CV, &cv,
 IMSLS_N_MISSING, &n_missing,
 IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,
 IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_STD_ERRORS, &std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);

 /* Output results. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print ANOVA table. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 12, 6, aov,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);

 printf("\nGrand mean: %f\n", grand_mean);
 /* Print treatment means */
 imsls_f_write_matrix("Treatment Means", n_strip_a, n_strip_b,

 treatment_means, 0);
 printf("\n\nStandard Error for Comparing Two Treatment Means: \n");
 printf(" Same Level of Factor B %f (df=%f)\n",

 std_err[2], std_err[7]);
 printf(" Same Level of Factor A %f (df=%f)\n",

 std_err[3], std_err[8]);
 printf(" Different Factor A and B Levels %f (df=%f)\n\n\n\n",

 std_err[4], std_err[9]);

 /* Print factor A means */
 imsls_f_write_matrix("Factor A Means", n_strip_a, 1,

 strip_plot_a_means, 0);
 printf("\nStandard Error for Comparing Two Factor A Means: \n");
 printf("%f (df=%f)\n", std_err[0], std_err[5]);
 equal_means = imsls_f_multiple_comparisons(n_strip_a,

 strip_plot_a_means, (int) std_err[5], std_err[0]/sqrt(2),
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
 0);

 /* Print multiple comparison results */
 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means",

 1, n_strip_a-1, equal_means, 0);

 /* Print factor B means */
 imsls_f_write_matrix("\n\nFactor B Means", n_strip_b, 1,

 strip_plot_b_means, 0);
 printf("\nStandard Error for Comparing Two Factor B Means: \n");
 printf("%f (df=%f)\n", std_err[1], std_err[6]);
 equal_means = imsls_f_multiple_comparisons(n_strip_b,

 strip_plot_b_means, (int)std_err[6], std_err[1]/sqrt(2),
 IMSLS_LSD,
 IMSLS_ALPHA, .05,
455

 Analysis of Variance and Designed Experiments strip_plot
 0);
 /* Multiple comparison results */
 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means",

 1, n_strip_b-1, equal_means, 0);
}

Output

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F p-value
Location -1
Block Within Location -2 2 1310.28 655.14 19.89 0.009
Strip-Plot A -3 1 858.01 858.01 40.37 0.024
Location x Strip-Plot A -4
Strip-Plot A Error -5 2 42.51 21.26 4.62 0.061
Strip-Plot B -6 3 227.73 75.91 4.66 0.052
Location x Strip-Plot B -7
Strip-Plot B Error -8 6 97.76 16.29 3.54 0.075
Strip-Plot A x Strip-Plot B -9 3 13.40 4.47 0.97 0.466
Location x Strip-Plot A -10
 x Strip-Plot B
Strip-Plot A x Strip-Plot B Error -11 6 27.63 4.60
Corrected Total -12 23 2577.33

Grand mean: 33.870834

 Treatment Means
 1 2 3 4
1 23.83 30.77 28.10 28.87
2 34.20 43.30 38.90 43.00

Standard Error for Comparing Two Treatment Means:
 Same Level of Factor B 2.417643 (df=4.772558)
 Same Level of Factor A 2.639322 (df=9.140633)
 Different Factor A and B Levels 3.121075 (df=8.405353)

Factor A Means
1 27.89
2 39.85
Standard Error for Comparing Two Factor A Means:
 1.882171 (df=2.000000)
LSD Comparison : Size of Groups of Means
 0
Factor B Means
1 29.02
2 37.03
3 33.50
4 35.93
456

 Analysis of Variance and Designed Experiments strip_plot
Standard Error for Comparing Two Factor B Means:
 2.330465 (df=6.000000)
LSD Comparison : Size of Groups of Means
 1 2 3
 2 3 0
457

 Analysis of Variance and Designed Experiments strip_split_plot
strip_split_plot
Analyzes data from strip-split-plot experiments. Function strip_split_plot also analyzes strip-split-plot
experiments replicated at several locations.

Synopsis
#include <imsls.h>
float *imsls_f_strip_split_plot (int n, int n_locations, int n_strip_a, int n_strip_b,

int n_split, int block[], int strip_a[], int strip_b[], int split[], float y[], …, 0)

The type double function is imsls_d_strip_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations. imsls_f_strip_split_plot
verifies that:

int n_locations (Input)
Number of locations. n_locations must be one or greater. If n_locations>1 then the optional
array locations[] must be included as input to imsls_f_strip_split_plot.

int n_strip_a (Input)
Number of levels associated with the strip-plot A factor. n_strip_a must be greater than one.

int n_strip_b (Input)
Number of levels associated with the strip-plots B factor. n_strip_b must be greater than one.

int n_split (Input)
Number of levels associated with the split factor. n_split must be greater than one.

n = ∑
i=1

n_locations

n_strip_a × n_strip_b × n_split × n_blocks[i − 1]
458

 Analysis of Variance and Designed Experiments strip_split_plot
int block[] (Input)
An array of length n containing the block identifiers for each observation in y. Locations can have dif-
ferent numbers of blocks. Each block at a single location must be assigned a different identifier, but
different locations can have the same assignments.

int strip_a[] (Input)
An array of length n containing the strip-plot A level identifiers for each observation in y. Each level of
this factor must be assigned a different integer. imsls_f_strip_split_plot verifies that the
number of unique strip-plot identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the strip-plot B identifiers for each observation in y. Each level of this
factor must be assigned a different integer. imsls_f_strip_split_plot verifies that the num-
ber of unique strip-plot identifiers is equal to n_strip_b.

int split[] (Input)
An array of length n containing the split-plot level identifiers for each observation in y. Each level of
this factor must be assigned a different integer. imsls_f_strip_split_plot verifies that the
number of unique split-plot identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values
cannot be omitted. They are indicated by placing a NaN (not a number) in y. The NaN value can be
set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. The location, strip-plot A, strip-plot B
and split-plot for each observation in y are identified by the corresponding values in the argument’s
locations, strip_a, strip_b, and split.

Return Value
Address of a pointer to the memory location of a two dimensional, 22 by 6 array containing the ANOVA table.
Each row in this array contains values for one of the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i×6], identifies the source for the effect associated with values in that row.

The remaining values in a row contain the ANOVA table values using the following convention:

j anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares
459

 Analysis of Variance and Designed Experiments strip_split_plot
The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[].

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have
been lost. Assignments of identifiers to ANOVA sources use the following coding:

Notes: † If n_locations=1 sources involving location are set to missing (NaN).

4 F-statistic

5 p-value for this F-statistic

Source

Identifier ANOVA Source

-1 LOCATION†
-2 BLOCKs WITHIN LOCATION

-3 STRIP-PLOT A
-4 LOCATION × STRIP-PLOT A †
-5 STRIP-PLOT A ERROR

-6 SPLIT-PLOT
-7 SPLIT-PLOT × STRIP-PLOT A
-8 LOCATION × SPLIT-PLOT †
-9 SPLIT-PLOT ERROR
-10 LOCATION × SPLIT-PLOT × STRIP-PLOT A †
-11 STRIP-PLOT B
-12 LOCATION × STRIP-PLOT B †
-13 STRIP_PLOT B ERROR
-14 STRIP-PLOT A × STRIP-PLOT B
-15 LOCATION × STRIP-PLOT A × STRIP-PLOT B
-16 STRIP-PLOT A × STRIP-PLOT B ERROR
-17 SPLIT-PLOT × STRIP-PLOT B
-18 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT
-19 LOCATION × SPLIT-PLOT × STRIP-PLOT B †
-20 LOCATION × STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT †
-21 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT ERROR

-22 CORRECTED TOTAL

j anova_tablei,j = anova_table[i*6+j]
460

 Analysis of Variance and Designed Experiments strip_split_plot
Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_strip_split_plot (int n, int n_locations,int n_strip_a, int n_strip_b,

int n_split, int block[], int strip_a[], int strip_b[], int split[], float y[],

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[],
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means,
IMSLS_STRIP_PLOT_AB_MEANS_USER, float strip_plot_ab_means[],
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS,

float **strip_plot_a_split_plot_means,
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER,

float strip_plot_a_split_plot_means[],
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS,

float **strip_plot_b_split_plot_means,
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS_USER,

float strip_plot_b_split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS, int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)
461

 Analysis of Variance and Designed Experiments strip_split_plot
Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 132 for storage of the 22 by 6 anova table described as the return argu-
ment for imsls_f_strip_split_plot. For a detailed description of the format for this table,
see the previous description of the return arguments for imsls_f_strip_split_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in y. Unique integers
must be assigned to each location in the study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value.

IMSLS_CV, float **cv (Output)
 Address of a pointer to an internally allocated array of length 3 containing the strip-plots and split-
plot coefficients of variation. cv[0] contains the strip-plot A C.V., cv[1] contains the strip-plot B C.V.,
and cv[2] contains the split-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length n_strip_a containing the factor A
strip-plot means.

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output)
 Address of a pointer to an internally allocated array of length n_strip_b containing the strip-plot
B means.

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output)
Storage for the array strip_plot_b_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_split containing the strip-plot B
means.
462

 Analysis of Variance and Designed Experiments strip_split_plot
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, float **strip_plot_a_split_plot_means
(Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_strip_a by n_split
containing the means for all combinations of the factor A strip-plot and split-plots.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER,
float strip_plot_a_split_plot_means[] (Output)
Storage for the array strip_a_split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, float **strip_plot_b_split_plot_means
(Output)
Address of a pointer to an internally allocated 2-dimensional array of size n_strip_b by n_split
containing the means for all combinations of strip-plot B and split-plots.

IMSLS_STRIP_B_PLOT_SPLIT_PLOT_MEANS_USER,
float strip_plot_b_split_plot_means[] (Output)
Storage for the array strip_b_split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size n_strip_a by
n_strip_b containing the means for all combinations of strip-plots.

IMSLS_STRIP_PLOT_AB_MEANS_USER, float strip_plot_ab_means[] (Output)
Storage for the array strip_plot_ab_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size (n_strip_a*n_strip_b*n_split)
containing the treatment means. For i >0, j >0, and k >0,
treatment_meansi,j,k = treatment_means (i-1)*n_strip_b × n_split + (j-1) × n_spli
t + (k-1)] contains the mean of the observations, averaged over all locations, blocks and replicates,
for the i-th level of the factor A strip-plot, the j-th level of the factor B strip-plot, and the k-th level of
the split-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.
463

 Analysis of Variance and Designed Experiments strip_split_plot
IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 20 containing ten standard errors and
their associated degrees of freedom. The standard errors are in the first 10 elements and their asso-
ciated degrees of freedom are reported in std_err[10] through std_err[19].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length n_locations containing the num-
ber of blocks, or replicates, at each location. This value must be greater than one, n_blocks > 1.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
User provided storage for the array n_blocks.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations by 22 by 6
containing the anova tables associated with each location. For each location, the 22 by 6 dimensional
array corresponds to the anova table for that location. For example,
location_anova_table[(i-1)×132+(j-1)×6+(k-1)] contains the value in the k-th col-
umn and j-th row of the returned anova table for the i-th location.

Element

Standard Error for

Comparisons Between Two

Degrees of

Freedom
std_err[0] Strip-Plot A Means std_err[10]
std_err[1] Strip-Plot B Means std_err[11]
std_err[2] Split-Plot Means std_err[12]
std_err[3] Strip-Plot A Means at the same level of split-

plots
std_err[13]

std_err[4] Strip-Plot A Means at the same level of strip-
plot B

std_err[14]

std_err[5] Strip-Plot B Means at the same level of split-
plots

std_err[15]

std_err[6] Strip-Plot B Means at the same level of strip-
plot A

std_err[16]

std_err[7] Split-Plot Means at the same level of strip-plot
A

std_err[17]

std_err[8] Split-Plot Means at the same level of strip-plot
B

std_err[18]

std_err[9] Treatment Means (same strip-plot A, strip-plot
B and split-plot)

std_err[19]
464

 Analysis of Variance and Designed Experiments strip_split_plot
IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
User provided storage for the array location_anova_table.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the
n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);
The memory associated with anova_row_labels can be freed with a single call to
imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount of space required
will vary depending upon the number of factors and n_anova. An upperbound on the required
memory is char *anova_row_labels[800].

Description
Function imsls_f_strip_split_plot is capable of analyzing a wide variety of strip-split plot experiments,
also referred to as strip-strip plot experiments. By default, imsls_f_strip_split_plot assumes that both
strip-plot factors, and split-plots are fixed effects, and the location effects, if any, are random effects. The nature
of randomization used in an experiment determines analysis of the data. Two popular forms of randomization in
strip-plot and split-plot experiments are illustrated in the following two figures. In both experiments, the strip-
plot factor, factor A, has 4 levels that are randomly assigned to a block or field in four strips.

In the strip-plot experiment, factor B, has 3 levels that are randomly assigned as strips across each of the four lev-
els of factor A. In this case, factors A and B are completely crossed. The randomization applied to factor B is
independent of the application of the strip-plots, factor A.

Contrast this to the randomization depicted in Table 30. In this split-plot experiment, the levels of factor B are
nested within each level of factor A whole-plots. Factor B is randomized independently within each level of factor
A. Unlike the strip-plot experiment, in the split-plot experiment different levels of factor B appear in the same
row.

Table 29 – Strip-Plot Experiment - Strip-Plots Completely Crossed

Factor A Strip-Plots

A2 A1 A4 A3

Factor B

Strip Plots

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

B2 A2B2 A1B2 A4B2 A3B2
465

 Analysis of Variance and Designed Experiments strip_split_plot
A strip-split plot experiment is a strip-plot experiment with a third factor randomized within each level of strip-
plot factor A, see Table 31. The third factor, referred to as the split-plot factor, is randomly assigned to experimen-
tal units within each level of strip-plot factor A. imsls_f_strip_split_plot analyzes strip-split plot
experiments consisting of two strip-plot factors and one split-plot factor nested within strip-plot factors A and B.

Table 30 – Split-Plot Experiment – Factor B Split-Plots
Nested within Factor A Whole-Plots

Whole-Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 31 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors
A

Factor A Strip Plots

A2 A1 A4 A3

Factor B

Strip Plots

B3 A2B3C2
A2B3C1

A1B3C1

A1B3C2

A4B3C2

A4B3C1

A3B3C2

A3B3C1

B1 A2B1C1
A2B1C2

A1B1C1

A1B1C2

A4B1C2

A4B1C1

A3B1C2

A3B1C1

B2 A2B2C2
A2B2C1

A1B2C1

A1B2C2

A4B2C1

A4B2C2

A3B2C2

A3B2C1
466

 Analysis of Variance and Designed Experiments strip_split_plot
Strip-split plot experiments are closely related to split-split plot experiments, see Table 32. The main difference
between the two is that in strip-split plot experiments, the order of the levels for factor B are not applied ran-
domly across factor A. Each level of factor B is constant across any row. In this example, the entire first row is
assigned to the third level of factor B. In the equivalent split-split plot experiment, the levels of factor B are not
constant across any row. The levels are randomized within each level of factor A.

In some studies, a strip-split-plot experiment is replicated at several locations. Function
imsls_f_strip_split_plot can analyze strip-split plot experiments replicated at multiple locations, even
when the number of blocks or replicates at each location might be different. If only a single replicate or block is
used at each location, then location should be treated as a blocking factor, with n_locations=1. If
n_locations=1, it is assumed that either the experiment was conducted at multiple locations, each with a sin-
gle block, or at a single location with more than one block or replicate at that location. When n_locations=1,
all entries associated with location in the anova table will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at multiple locations, with blocking
occurring at each location. Although the number of blocks at each location can be different, the number of levels
for the strip-plot and split-plot factors strip-plots must be the same at each location. The locations associated
with each of the observations in y are specified in the argument locations[], which is a required input argu-
ment when n_locations>1.

By default, locations are assumed to be random effects. Tests involving strip-plots use the interaction between
strip-plots and locations as the error term for testing whether there are statistically significant differences among
strip-plots. However, this assumes that the interaction of strip-plots and locations is not statistically significant. A
test of this assumption is included in the anova table. If any interactions between locations and strip-plot or split-
plot factors are statistically significant, then the nature of these interactions should be explored since this
impacts the interpretation of the significance of the treatment factors.

Table 32 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within
Split-Plot Factor B

Whole Plot Factor A

A2 A1 A4 A3

A2B3C2

A2B3C1

A1B2C1

A1B2C2

A4B1C2

A4B1C1

A3B3C2

A3B3C1

A2B1C1

A2B1C2

A1B1C1

A1B1C2

A4B3C2

A4B3C1

A3B2C2

A3B2C1

A2B2C2

A2B2C1

A1B3C1

A1B3C2

A4B2C1

A4B2C2

A3B1C2

A3B1C1
467

 Analysis of Variance and Designed Experiments strip_split_plot
Similarly, when locations are assumed to be random effects, tests involving split-plots do not use the split-plot
errors pooled across locations. Instead, the error term for split-plots is the interaction between locations and
split-plots.

Suppose, for example, that a researcher wanted to conduct an agricultural experiment comparing the effective-
ness of 4 fertilizers with 3 seed lots and 3 rates of application. One replicate of the experiment is conducted at
each of the 3 farms. That is, only a single field at each location is assigned to this experiment.

Each field is divided into 4 vertical strips and 3 horizontal strips. The vertical strips are randomly assigned to fertil-
izers and the rows are randomly assigned to application rates. Fertilizers and application rates represent strip-
plot factors A and B respectively. Seed lots are randomly assigned to three sub-divisions within each combination
of strip-plots.

In this case, each farm is a blocking factor, fertilizers are factor A strip-plots, fertilizer application rates are factor B
strip-plots, and seed lots are split-plots. The input array rep would contain integers from 1 to the number of
farms.

Example
The experiment was conducted using a 2 x 2 strip_split plot arrangement with each of the four plots divided into
2 sub-divisions that were randomly assigned one of two split-plot levels. This was replicated 3 times producing an
experiment with n = 2x2x2x3 = 24 observations.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <imsls.h>

Table 33 – Strip-Split Plot Experiment – Fertilizer Strip-Plots, Application Rate Strip-
Plots

Fertilizer Strip Plots

F2 F1 F4 F3

Application Rate

Strip Plot

R3 F2R3S1
F2R3S2
F2R3S3

F1R3S3
F1R3S2
F1R3S1

F4R3S3
F4R3S2
F4R3S1

F3R3S2
F3R3S1
F3R3S3

R2 F2R1S3
F2R1S1
F2R1S2

F1R1S2
F1R1S3
F1R1S1

F4R1S3
F4R1S1
F4R1S2

F3R1S1
F3R1S2
F3R1S3

R1 F2R2S1
F2R2S2
F2R2S3

F1R2S1
F1R2S3
F1R2S2

F4R2S2
F4R2S3
F4R2S1

F3R2S3
F3R2S1
F3R2S2
468

 Analysis of Variance and Designed Experiments strip_split_plot
void l_printLSD(int n1, int *equalMeans, float *means);
void l_printLSD2Table(int n1, int n2, int* equalMeans, float *means);
void l_printLSD3Table(int n1, int n2, int n3, int* equalMeans,
 float *means);
int main()
{
 char **anova_row_labels;
 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",
 "Mean\nsquares", "\nF", "\np-value"};
 int i, j, k, l, page_width = 132;
 int n = 24; /* Total number of observations */
 int n_locations = 1; /* Number of locations */
 int n_strip_a = 2; /* Number of Factor A strip-plots within a
 location */
 int n_strip_b = 2; /* Number of Factor B strip-plots within a
 location */
 int n_split = 2; /* Number of split-plots within each Factor
 A strip-plot */
 int block[]={
 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3
 };
 int strip_a[]={
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2,
 1, 1, 1, 1, 2, 2, 2, 2
 };
 int strip_b[]={
 1, 1, 2, 2, 1, 1, 2, 2,
 1, 1, 2, 2, 1, 1, 2, 2,
 1, 1, 2, 2, 1, 1, 2, 2
 };
 int split[]={
 1, 2, 1, 2, 1, 2, 1, 2,
 1, 2, 1, 2, 1, 2, 1, 2,
 1, 2, 1, 2, 1, 2, 1, 2
 };
 float y[] ={
 30.0, 40.0, 38.9, 38.2,
 41.8, 52.2, 54.8, 58.2,
 20.5, 26.9, 21.4, 25.1,
 26.4, 36.7, 28.9, 35.9,
 21.0, 25.4, 24.0, 23.3,
 34.4, 41.0, 33.0, 34.9
 };
 float alpha = 0.05;
 float grand_mean = 0;
 float *cv;
 float *aov;
 float *treatment_means;
 float *strip_plot_a_means;
 float *strip_plot_b_means;
 float *split_plot_means;
 float *strip_a_split_plot_means;
 float *strip_b_split_plot_means;
 float *strip_plot_ab_means;
469

 Analysis of Variance and Designed Experiments strip_split_plot
 float *std_err;
 int *equal_means;
 aov = imsls_f_strip_split_plot(n, n_locations, n_strip_a,
 n_strip_b, n_split, block, strip_a, strip_b, split, y,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,
 IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,
 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,
 IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, &strip_a_split_plot_means,
 IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, &strip_b_split_plot_means,
 IMSLS_STRIP_PLOT_AB_MEANS, &strip_plot_ab_means,
 IMSLS_STD_ERRORS, &std_err,
 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,
 0);
 /* Output results. */
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);
 /* Print ANOVA table, without first column. */
 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",
 22, 6, aov,
 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_COL_LABELS, col_labels,
 0);
 /*
 * Print the various means.
 */
 printf("\nGrand mean: %f\n\n", grand_mean);
 printf("Coefficient of Variation\n");
 printf(" Strip-Plot A: %9.4f\n", cv[0]);
 printf(" Strip-Plot B: %9.4f\n", cv[1]);
 printf(" Split-Plot: %9.4f\n\n", cv[2]);
 l = 0;
 /*
 * Print the Treatment Means.
 */
 printf("\n\n**");
 printf("***************");
 printf("\nTreatment Means\n");
 for (i=0; i < n_strip_a; i++){
 for(j=0; j < n_strip_b; j++){
 for(k=0; k < n_split; k++){
 printf("treatment[%d][%d][%d] %9.4f \n",
 i+1, j+1, k+1, treatment_means[l++]);
 }
 }
 }
 printf("\nStandard Error for Comparing Two Treatment Means: ");
 printf("%f \n(df=%f)\n", std_err[9], std_err[19]);
 equal_means = imsls_f_multiple_comparisons(
 n_strip_a*n_strip_b*n_split,
 treatment_means, (int) std_err[19],
 std_err[9]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
470

 Analysis of Variance and Designed Experiments strip_split_plot
 0);
 l_printLSD3Table(n_strip_a, n_strip_b, n_split, equal_means,
 treatment_means);
 /*
 * Print the Strip-plot A Means.
 */
 printf("\n\n***");
 printf("********");
 imsls_f_write_matrix("Strip-plot A Means", n_strip_a, 1,
 strip_plot_a_means, 0);
 printf("\nStandard Error for Comparing Two Strip-Plot A Means: ");
 printf("%f \n(df=%f)\n",
 std_err[0], std_err[10]);
 equal_means = imsls_f_multiple_comparisons(n_strip_a,
 strip_plot_a_means, (int) std_err[10], std_err[0]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
 l_printLSD(n_strip_a, equal_means, strip_plot_a_means);
 /*
 * Print Strip-plot B Means.
 */
 printf("\n\n**");
 printf("*********");
 imsls_f_write_matrix("Strip-plot B Means", n_strip_b, 1,
 strip_plot_b_means, 0);
 printf("\nStandard Error for Comparing Two Strip-Plot B Means: ");
 printf("%f \n(df=%f)\n", std_err[1], std_err[11]);
 equal_means = imsls_f_multiple_comparisons(n_strip_b,
 strip_plot_b_means,
 (int) std_err[11], std_err[1]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
 l_printLSD(n_strip_b, equal_means, strip_plot_b_means);
 /*
 * Print the Split-plot Means.
 */
 printf("\n\n**");
 printf("*********");
 imsls_f_write_matrix("Split-plot Means", n_split, 1,
 split_plot_means, 0);
 printf("\nStandard Error for Comparing Two Split-Plot Means: ");
 printf("%f \n(df=%f)\n", std_err[2], std_err[12]);
 equal_means = imsls_f_multiple_comparisons(n_split,
 split_plot_means,
 (int) std_err[12], std_err[2]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
 l_printLSD(n_split, equal_means, split_plot_means);
 /*
 * Print the Strip-plot A by Split-plot Means.
 */
 printf("\n\n***");
 printf("**********");
471

 Analysis of Variance and Designed Experiments strip_split_plot
 imsls_f_write_matrix("Strip-plot A by Split-plot Means",
 n_strip_a, n_split, strip_a_split_plot_means, 0);
 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",
 std_err[3], std_err[13]);
 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_split,
 strip_a_split_plot_means,
 (int) std_err[13],
 std_err[3]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
 l_printLSD2Table(n_strip_a, n_split, equal_means,
 strip_a_split_plot_means);
 /*
 * Print the Strip-plot A by Strip-plot B Means.
 */
 printf("\n\n**");
 printf("*********");
 imsls_f_write_matrix("Strip-plot A by Strip-plot B Means",
 n_strip_a, n_strip_b, strip_plot_ab_means, 0);
 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",
 std_err[4], std_err[14]);
 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b,
 strip_plot_ab_means, (int) std_err[14],
 std_err[4]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
 l_printLSD2Table(n_strip_a, n_strip_b, equal_means,
 strip_plot_ab_means);
 /*
 * Print the Strip-Plot B by Split-Plot Means.
 */
 printf("\n\n**");
 printf("*********");
 imsls_f_write_matrix("Strip-Plot B by Split-Plot Means", n_strip_b,
 n_split, strip_b_split_plot_means, 0);
 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",
 std_err[5], std_err[15]);
 equal_means = imsls_f_multiple_comparisons(n_strip_b*n_split,
 strip_b_split_plot_means,
 (int) std_err[15], std_err[5]/sqrt(2.0),
 IMSLS_LSD,
 IMSLS_ALPHA, alpha,
 0);
 l_printLSD2Table(n_strip_b, n_split, equal_means,
 strip_b_split_plot_means);
}
/*
* Local functions to output results of means comparisons.
*/
void l_printLSD(int n, int *equalMeans, float *means){
 float x=0.0;
 int i, j, k;
 int iSwitch;
 int *idx;
472

 Analysis of Variance and Designed Experiments strip_split_plot
 idx = (int *) malloc(n * sizeof (int));
 for (k=0; k < n; k++) {
 idx[k] =k+1;
 }
 /* Sort means in ascending order*/
 iSwitch=1;
 while (iSwitch != 0){
 iSwitch = 0;
 for (i = 0; i < n-1; i++){
 if (means[i] > means[i+1]){
 iSwitch = 1;
 x = means[i];
 means[i] = means[i+1];
 means[i+1] = x;
 j = idx[i];
 idx[i] = idx[i+1];
 idx[i+1] = j;
 }
 }
 }
 printf("[group] \t Mean \t\tLSD Grouping \n");
 for (i=0; i < n; i++){
 printf(" [%d] \t\t%f", idx[i], means[i]);
 for (j=1; j < i+1; j++){
 if(equalMeans[j-1] >= i+2-j){
 printf("\t *");
 }else{
 if(equalMeans[j-1]>=0) printf("\t");
 }
 }
 if (i < n-1 && equalMeans[i]>0) printf("\t *");
 printf("\n");
 }
 free(idx);
 return;
}
void l_printLSD2Table(int n1, int n2, int *equalMeans, float *means){
 float x=0.0;
 int i, j, k, n;
 int iSwitch;
 int *idx;
 n = n1*n2;
 idx = (int *) malloc(2*n * sizeof (int));
 i = 1;
 j = 1;
 for (k=0; k < n; k++) {
 idx[2*k] = i;
 idx[2*k+1] = j++;
 if (j > n2){
 j = 1;
 i++;
 }
 }
 /* sort means in ascending order*/
473

 Analysis of Variance and Designed Experiments strip_split_plot
 iSwitch=1;
 while (iSwitch != 0){
 iSwitch = 0;
 for (i = 0; i < n-1; i++){
 if (means[i] > means[i+1]){
 iSwitch = 1;
 x = means[i];
 means[i] = means[i+1];
 means[i+1] = x;
 j = idx[2*i];
 idx[2*i] = idx[2*(i+1)];
 idx[2*(i+1)] = j;
 j = idx[2*i+1];
 idx[2*i+1] = idx[2*(i+1)+1];
 idx[2*(i+1)+1] = j;
 }
 }
 }
 printf("[A][B] \tMean \t\tLSD Grouping \n");
 for (i=0; i < n; i++){
 printf("[%d][%d] \t%f", idx[2*i], idx[2*i+1],means[i]);
 for (j=1; j < i+1; j++){
 if(equalMeans[j-1] >= i+2-j){
 printf("\t*");
 }else{
 if(equalMeans[j-1]>0) printf("\t");
 }
 }
 if (i < n-1 && equalMeans[i]>0) printf("\t*");
 printf("\n");
 }
 free(idx);
 idx = NULL;
 return;
}
void l_printLSD3Table(int n1, int n2, int n3, int *equalMeans,
 float *means)
{
 float x=0.0;
 int i, j, k, m, n;
 int iSwitch;
 int *idx;
 n = n1*n2*n3;
 idx = (int *) malloc(3*n * sizeof (int));
 i = 1;
 j = 1;
 k = 1;
 for (m=0; m < n; m++) {
 idx[3*m] = i;
 idx[3*m+1] = j;
 idx[3*m+2] = k++;
 if (k > n3){
 k = 1;
 j++;
 if (j > n2){
 j = 1;
 i++;
474

 Analysis of Variance and Designed Experiments strip_split_plot
 }
 }
 }
 /* sort means in ascending order*/
 iSwitch=1;
 while (iSwitch != 0){
 iSwitch = 0;
 for (i = 0; i < n-1; i++){
 if (means[i] > means[i+1]){
 iSwitch = 1;
 x = means[i];
 means[i] = means[i+1];
 means[i+1] = x;
 j = idx[3*i];
 idx[3*i] = idx[3*(i+1)];
 idx[3*(i+1)] = j;
 j = idx[3*i+1];
 idx[3*i+1] = idx[3*(i+1)+1];
 idx[3*(i+1)+1] = j;
 j = idx[3*i+2];
 idx[3*i+2] = idx[3*(i+1)+2];
 idx[3*(i+1)+2] = j;
 }
 }
 }
 printf("[A][B][Split] \t Mean \t\t LSD Grouping \n");
 for (i=0; i < n; i++){
 printf("[%d][%d] [%d] \t%f", idx[3*i], idx[3*i+1], idx[3*i+2],
 means[i]);
 for (j=1; j < i+1; j++){
 if(equalMeans[j-1] >= i+2-j){
 printf("\t*");
 }else{
 if(equalMeans[j-1]>0) printf("\t");
 }
 }
 if (i < n-1 && equalMeans[i]>0) printf("\t*");
 printf("\n");
 }
 free(idx);
 return;
}

Output

 *** ANALYSIS OF VARIANCE TABLE ***
 Mean
 ID DF SSQ squares F p-value
Location -1
Blocks -2 2 1310.28 655.14 14.53 0.061
Strip-Plot A -3 1 858.01 858.01 40.37 0.024
Location x A -4
Strip-Plot A Error -5 2 42.51 21.26 1.48 0.385
Split-Plot -6 1 163.80 163.80 41.22 0.003
Split-Plot x A -7 1 11.34 11.34 2.85 0.166
475

 Analysis of Variance and Designed Experiments strip_split_plot
Location x Split-Plot -8
Split-Plot Error -9 4 15.90 3.97 1.56 0.338
Location x Split-Plot x A ... -10
Strip-Plot B -11 1 17.17 17.17 0.47 0.565
Location x B -12
Strip-Plot B Error -13 2 73.51 36.75 2.85 0.260
A x B -14 1 1.55 1.55 0.12 0.762
Location x A x B -15
A x B Error -16 2 25.82 12.91 5.08 0.080
Split-Plot x B -17 1 46.76 46.76 18.39 0.013
Split-Plot x A x B -18 1 0.51 0.51 0.20 0.677
Location x Split-Plot x B ... -19
Location x Split-Plot x A x B -20
Split-Plot x A x B Error -21 4 10.17 2.54
Corrected Total -22 23 2577.33
Grand mean: 33.870834
Coefficient of Variation
 Strip-Plot A: 13.6116
 Strip-Plot B: 17.8986
 Split-Plot: 5.8854

Treatment Means
treatment[1][1][1] 23.8333
treatment[1][1][2] 30.7667
treatment[1][2][1] 28.1000
treatment[1][2][2] 28.8667
treatment[2][1][1] 34.2000
treatment[2][1][2] 43.3000
treatment[2][2][1] 38.9000
treatment[2][2][2] 43.0000
Standard Error for Comparing Two Treatment Means: 1.302029
(df=4.000000)
[A][B][Split] Mean LSD Grouping
[1][1] [1] 23.833334
[1][2] [1] 28.100000 *
[1][2] [2] 28.866669 *
[1][1] [2] 30.766668 * *
[2][1] [1] 34.200001 *
[2][2] [1] 38.899998
[2][2] [2] 43.000000 *
[2][1] [2] 43.299999 *

Strip-plot A Means
 1 27.89
 2 39.85
Standard Error for Comparing Two Strip-Plot A Means: 1.882171
(df=2.000000)
[group] Mean LSD Grouping
 [1] 27.891665
 [2] 39.849998
476

 Analysis of Variance and Designed Experiments strip_split_plot

Strip-plot B Means
 1 33.03
 2 34.72
Standard Error for Comparing Two Strip-Plot B Means: 2.474972
(df=2.000000)
[group] Mean LSD Grouping
 [1] 33.025002 *
 [2] 34.716667 *

Split-plot Means
1 31.26
2 36.48
Standard Error for Comparing Two Split-Plot Means: 0.813813
(df=4.000000)
[group] Mean LSD Grouping
 [1] 31.258331
 [2] 36.483334

Strip-plot A by Split-plot Means
 1 2
 1 25.97 29.82
 2 36.55 43.15
Standard Error for Comparing Two Means: 1.150906
(df=4.000000)
[A][B] Mean LSD Grouping
[1][1] 25.966667
[1][2] 29.816668
[2][1] 36.549999
[2][2] 43.149998

Strip-plot A by Strip-plot B Means
 1 2
 1 27.30 28.48
 2 38.75 40.95
Standard Error for Comparing Two Means: 2.074280
(df=2.000000)
[A][B] Mean LSD Grouping
[1][1] 27.299997 *
[1][2] 28.483335 *
[2][1] 38.750000 *
[2][2] 40.949997 *

Strip-Plot B by Split-Plot Means
 1 2
 1 29.02 37.03
 2 33.50 35.93
477

 Analysis of Variance and Designed Experiments strip_split_plot
Standard Error for Comparing Two Means: 0.920673
(df=4.000000)
[A][B] Mean LSD Grouping
[1][1] 29.016668
[2][1] 33.500000 *
[2][2] 35.933334 * *

[1][2] 37.033333 *
478

 Analysis of Variance and Designed Experiments homogeneity
homogeneity
Conducts Bartlett’s and Levene’s tests of the homogeneity of variance assumption in analysis of variance.

Synopsis
#include <imsls.h>
float *imsls_f_homogeneity (int n, int n_treatment, int treatment[], float y[], …, 0)

The type double is imsls_d_homogeneity.

Required Arguments
int n (Input)

Number of experimental observations.

int n_treatment (Input)
Number of treatments. n_treatment must be greater than one.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation in y. Each level of the
treatment must be assigned a different integer. imsls_f_homogeneity verifies that the number
of unique treatment identifiers is equal to n_treatment.

float y[] (Input)
An array of length n containing the experimental observations and any missing values. Missing values
can be included in this array, although they are ignored in the analysis. They are indicated by placing a
NaN (not a number) in y. The NaN value can be set using either the function imsls_f_machine(6)
or imsls_d_machine(6), depending upon whether single or double precision is being used,
respectively.

Return Value
Address of a pointer to the memory location of an array of length 2 containing the p-values for Bartletts and Lev-
ene’s tests.
479

 Analysis of Variance and Designed Experiments homogeneity
Synopsis with Optional Arguments
#include <imsl.h>
float *imsls_f_homogeneity (int n, int n_treatment, int n_treatment[], float y[],

IMSLS_RETURN_USER, float p_value[],
IMSLS_LEVENES_MEAN, or
IMSLS_LEVENES_MEDIAN,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_RESIDUALS, float **residuals,
IMSLS_RESIDUALS_USER, float residuals[],
IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals,
IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[],
IMSLS_STD_DEVS, float **std_devs,
IMSLS_STD_DEVS_USER, float std_devs[],
IMSLS_BARTLETTS, float *bartletts,
IMSLS_LEVENES, float *levenes,
0)

Optional Arguments
IMSLS_RETURN_USER, float p_value[] (Output)

User defined array of length 2 for storage of the p-values from Bartlett’s and Levene’s tests for homo-
geneity of variance. The first value returned contains the p-value for Bartlett’s test and the second
value contains the p-value for Levene’s test.

IMSLS_LEVENES_MEAN (Input)

or

IMSLS_LEVENES_MEDIAN (Input)
Calculates Levene’s test using either the treatment means or medians. IMSLS_LEVENES_MEAN
indicates that Levene’s test is calculated using the mean, and IMSLS_LEVENES_MEDIAN indicates
that it is calculated using the median.

Default: IMSLS_LEVENES_MEAN
480

 Analysis of Variance and Designed Experiments homogeneity
IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with a NaN (Not a Number)
value in y. In these analyses, any missing values are ignored.

IMSLS_CV, float *cv (Output)
The coefficient of variation computed using the grand mean and pooled within treatment standard
deviation.

IMSLS_GRAND_MEAN, float grand_mean (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatment containing the treatment
means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_RESIDUALS, float **residuals (Output)
Address of a pointer to an internally allocated array of length n containing the residuals for non-miss-
ing observations. The ordering of the values in this array corresponds to the ordering of values in y
and identified by the values in treatments.

IMSLS_RESIDUALS_USER, float residuals[] (Output)
Storage for the array residuals, provided by the user.

IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals (Output)
Address of a pointer to an internally allocated array of length n containing the studentized residuals
for non-missing observations. The ordering of the values in this array corresponds to the ordering of
values in y and identified by the values in treatments.

IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[] (Output)
Storage for the array studentized_residuals, provided by the user.

IMSLS_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length n_treatment containing the treat-
ment standard deviations.

IMSLS_STD_DEVS_USER, float std_devs[] (Output)
Storage for the array std_devs, provided by the user.

IMSLS_BARTLETTS, float *bartletts (Output)
Test statistic for Bartlett’s test.

IMSLS_LEVENES, float *levenes (Output)
Test statistic for Levene’s test.
481

 Analysis of Variance and Designed Experiments homogeneity
Description
Traditional analysis of variance assumes that variances within treatments are equal. This is referred to as homo-
geneity of variance. The function imsls_f_homogeneity conducts both the Bartlett’s and Levene’s tests for
this assumption:

versus

for at least one pair (i ≠ j), where t=n_treatments.

Bartlett’s test, Bartlett (1937), uses the test statistic:

where

and is the variance of the non-missing observations in the i-th treatment. is referred to as the pooled
variance, and it is also known as the error mean squares from a 1-way analysis of variance.

If the usual assumptions associated with the analysis of variance are valid, then Bartlett’s test statistic is a chi-
squared random variable with degrees of freedom equal to t-1.

The original Levene’s test, Levene (1960) and Snedecor & Cochran (1967), uses a different test statistic, F0, equal

to:

where

Ho : σ1 = σ2 = ⋯ = σt

Ha : σi ≠ σ j

χ2 = MC

M = N · ln(Sp
2) − ∑ niln(Si

2), N = ∑
i=1

t
ni, Sp

2 =
∑
i=1

t
ni − 1 Si

2

∑
i=1

t
ni − 1

C = 1 + 1
3 t − 1 ∑ 1

ni −
1
N

Si
2 ni S p

2

F0 =
∑
i=1

t
ni z─i. − z─..

2 / t − 1

∑
i=1

t
∑
j=1

ni
zi j − z─i.

2 / N − t
482

 Analysis of Variance and Designed Experiments homogeneity
 is the j-th observation from the i-th treatment and is the mean for the i-th treatment. Conover, Johnson,
and Johnson (1981) compared over 50 similar tests for homogeneity and concluded that one of the best tests

was Levene’s test when the treatment mean, is replaced with the treatment median, . This version of Lev-
ene’s test can be requested by setting IMSLS_LEVENES_MEDIAN. In either case, Levene’s test statistic is
treated as a F random variable with numerator degrees of freedom equal to (t-1) and denominator degrees of
freedom (N-t).

The residual for the j-th observation within the i-th treatment, , returned from IMSLS_RESIDUALS is

unstandardized, i.e. . For investigating problems of homogeneity of variance, the studentized resid-
uals returned by IMSLS_STUDENTIZED_RESIDUALS are recommended since they are standardized by the
standard deviation of the residual. The formula for calculating the studentized residual is:

where the coefficient of variation, returned from IMSLS_CV, is also calculated using the pooled variance and the
grand mean:

Example
This example applies Bartlett’s and Levene’s test to verify the homogeneity assumption for a one-way analysis of
variance. There are eight treatments, each with 3 replicates for a total of 24 observations. The estimated treat-
ment standard deviations range from 5.35 to 13.17.

In this case, Bartlett's test is not statistically significant for a stated significance level of .05; whereas Levene's test
is significant with p = 0.006.

#include <imsls.h>
#include <stdio.h>
int main()
{

zi j = ∣xi j − x─i.∣
xi j x─i.

x─i. x~ i.

ei j
ei j = xi j − x

─
i

ẽi j =
ei j

S p
2(1 − 1

ni)

x─.. = ∑
i
∑
j

xi j

CV =
100 · SP

2

x─..
483

 Analysis of Variance and Designed Experiments homogeneity
 int i, page_width = 132;
 int n = 24;
 int n_treatment = 8;
 int treatment[]={
 1, 2, 3, 4, 5, 6, 7, 8,
 1, 2, 3, 4, 5, 6, 7, 8,
 1, 2, 3, 4, 5, 6, 7, 8
 };
 float y[] ={
 30.0, 40.0, 38.9, 38.2,
 41.8, 52.2, 54.8, 58.2,
 20.5, 26.9, 21.4, 25.1,
 26.4, 36.7, 28.9, 35.9,
 21.0, 25.4, 24.0, 23.3,
 34.4, 41.0, 33.0, 34.9
 };
 float bartletts;
 float levenes;
 float grand_mean;
 float cv;
 float *treatment_means;
 float *residuals;
 float *studentized_residuals;
 float *std_devs;
 int n_missing = 0;
 float *p;
 p = imsls_f_homogeneity(n, n_treatment, treatment, y,
 IMSLS_BARTLETTS, &bartletts,
 IMSLS_LEVENES, &levenes,
 IMSLS_LEVENES_MEDIAN,
 IMSLS_N_MISSING, &n_missing,
 IMSLS_GRAND_MEAN, &grand_mean,
 IMSLS_CV, &cv,
 IMSLS_TREATMENT_MEANS, &treatment_means,
 IMSLS_STD_DEVS, &std_devs,
 0);
 printf("\n\n\n *** Bartlett\'s Test ***\n\n");
 printf("Bartlett\'s p-value = %10.3f\n", p[0]);
 printf("Bartlett\'s test statistic = %10.3f\n", bartletts);
 printf("\n\n\n *** Levene\'s Test ***\n\n");
 printf("Levene\'s p-value = %10.3f\n", p[1]);
 printf("Levene\'s test statistic = %10.3f\n", levenes);
 imsls_f_write_matrix("Treatment means", n_treatment, 1,
 treatment_means,
 0);
 imsls_f_write_matrix("Treatment std devs", n_treatment, 1, std_devs,
 0);
 printf("\ngrand_mean = %10.3f\n", grand_mean);
 printf("cv = %10.3f\n", cv);
 printf("n_missing = %d\n", n_missing);
}

484

 Analysis of Variance and Designed Experiments homogeneity
Output

*** Bartlett's Test ***
Bartlett's p-value = 0.944
Bartlett's test statistic = 2.257

*** Levene's Test ***
Levene's p-value = 0.994
Levene's test statistic = 0.135
Treatment means
1 23.83
2 30.77
3 28.10
4 28.87
5 34.20
6 43.30
7 38.90
8 43.00
Treatment std devs
 1 5.35
 2 8.03
 3 9.44
 4 8.13
 5 7.70
 6 8.00
 7 13.92
 8 13.17
grand_mean = 33.871
cv = 28.378
n_missing = 0
485

 Analysis of Variance and Designed Experiments multiple_comparisons
multiple_comparisons
Performs multiple comparisons of means using one of Student-Newman-Keuls, LSD, Bonferroni, or Tukey’s
procedures.

Synopsis
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means[], int df, float std_error,

…, 0)

The type double function is imsls_d_multiple_comparisons.

Required Arguments
int n_groups (Input)

Number of groups i.e., means, being compared.

float means[] (Input)
Array of length n_groups containing the means.

int df (Input)
Degrees of freedom associated with std_error.

float std_error (Input)
Effective estimated standard error of a mean. In fixed effects models, std_error equals the esti-
mated standard error of a mean. For example, in a one-way model

where s2 is the estimate of σ2 and n is the number of responses in a sample mean. In models with
random components, use

where sedif is the estimated standard error of the difference of two means.

std_error = s2
n

std_error = sedif
2

486

 Analysis of Variance and Designed Experiments multiple_comparisons
Return Value
Pointer to the array of length n_groups - 1 indicating the size of the groups of means declared to be equal.
Value equal_means [I] = J indicates the I-th smallest mean and the next J - 1 larger means are declared
equal. Value equal_means [I] = 0 indicates no group of means starts with the I-th smallest mean.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means [], int df, float std_error,

IMSLS_ALPHA, float alpha,
IMSLS_SNK, or
IMSLS_LSD, or
IMSLS_TUKEY, or
IMSLS_BONFERRONI,
IMSLS_RETURN_USER, int *equal_means,
0)

Optional Arguments
IMSLS_ALPHA, float alpha (Input)

Significance level of test. Argument alpha must be in the interval [0.01, 0.10].

Default: alpha = 0.01

IMSLS_RETURN_USER, int *equal_means (Output)
If specified, equal_means is an array of length n_groups - 1 specified by the user. On return,
equal_means contains the size of the groups of means declared to be equal. Value
equal_means [I] = J indicates the i-th smallest mean and the next J - 1 larger means are
declared equal. Value equal_means [I] = 0 indicates no group of means starts with the i-th small-
est mean.

IMSLS_SNK
or

IMSLS_LSD
or

IMSLS_TUKEY
487

 Analysis of Variance and Designed Experiments multiple_comparisons
or

IMSLS_BONFERRONI

Description
Function imsls_f_multiple_comparisons performs a multiple comparison analysis of means using one
of Student-Newman-Keuls, LSD, Bonferroni, or Tukey’s procedures. The null hypothesis is equality of all possible
ordered subsets of a set of means. The methods are discussed in many elementary statistics texts, e.g., Kirk
(1982, pp. 123–125).

The output consists of an array of n_groups –1 integers that describe grouping of means that are considered
not statistically significantly different.

For example, if n_groups=4 and the returned array is equal to {0, 2, 2} then we conclude that:

1. The smallest mean is significantly different from the others.

2. The second and third smallest means are not significantly different from one another.

3. The second and fourth means are significantly different.

4. The third and fourth means are not significantly different from one another.

These relationships can be depicted graphically as three groups of means:

Argument Method

IMSLS_SNK Student-Newman-Keuls (default)

IMSLS_LSD Least significant difference

IMSLS_TUKEY Tukey’s w-procedure, also called the honestly significant
difference procedure.

IMSLS_BONFERRONI Bonferroni t statistic

Smallest
Mean

Group
1

Group
2

Group
3

1 x

2 x

3 x x

4 x
488

 Analysis of Variance and Designed Experiments multiple_comparisons
Examples

Example 1

A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp. 123-125). The results show
that there are three groups of means with three separate sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and
(43.4, 47.2, 48.7).

In this case, the ordered means are {36.7, 40.3, 43.4, 47.2, 48.7} corresponding to treatments {1, 5, 3, 4, 2}. Since
the output table is:

we can say that within each of these three groups, means are not significantly different from one another.

#include <imsls.h>
int main ()
{
 int n_groups = 5;
 int df = 45;
 float std_error = 1.6970563;
 float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
 int *equal_means;
 /* Perform multiple comparisons tests */
 equal_means = imsls_f_multiple_comparisons(n_groups, means, df,
 std_error, 0);
 /* Print results */
 imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1,
 equal_means, 0);
}

Output

Size of Groups of Means
 1 2 3 4

Treatment Mean
Group

1
Group

2
Group

3

1 36.7 x

5 40.3 x x

3 43.4 x x x

4 47.2 x x

2 48.7 x

1 2 3 4
3 3 3 0
489

 Analysis of Variance and Designed Experiments multiple_comparisons
 3 3 3 0

Example 2

This example uses the same data as the previous example but also uses additional methods by specifying
optional arguments.

Example 2 uses the same data as Example 1: Ordered treatment means correspond to treatment order
{1,5,3,4,2}.

The table produced for Bonferroni is:

Thus, these are two groups of similar means.

#include <imsls.h>
int main()
{
 int n_groups = 5;
 int df = 45;
 float std_error = 1.6970563;
 float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
 int equal_means[4];
 /* Student-Newman-Keuls */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_RETURN_USER, equal_means,
 0);
 imsls_i_write_matrix("SNK ", 1, n_groups-1, equal_means,
 0);
 /* Bonferroni */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_BONFERRONI,
 IMSLS_RETURN_USER, equal_means,
 0);

Treatment Mean
Group

1
Group

2

1 36.7 x

5 40.3 x x

3 43.4 x x

4 47.2 x

2 48.7 x

1 2 3 4
3 4 0 0
490

 Analysis of Variance and Designed Experiments multiple_comparisons
 imsls_i_write_matrix("Bonferonni ", 1, n_groups-1, equal_means,
 0);
 /* Least Significant Difference */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_LSD,
 IMSLS_RETURN_USER, equal_means,
 0);
 imsls_i_write_matrix("LSD ", 1, n_groups-1, equal_means,
 0);
 /* Tukey's */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_TUKEY,
 IMSLS_RETURN_USER, equal_means,
 0);
 imsls_i_write_matrix("Tukey ", 1, n_groups-1, equal_means,
 0);
}

Output

SNK
1 2 3 4
3 3 3 0
Bonferonni
1 2 3 4
3 4 0 0
LSD
1 2 3 4
2 2 3 0
Tukey
1 2 3 4
3 3 3 0
491

 Analysis of Variance and Designed Experiments false_discovery_rates
false_discovery_rates
Calculates the False Discovery Rate (FDR) q-values corresponding to a set of p-values resulting from multiple
simultaneous hypothesis tests.

Synopsis
#include <imsls.h>

float *imsls_f_false_discovery_rates (int n_tests, float pvalues[], …, 0)

The type double function is imsls_d_false_discovery_rates.

Required Arguments
int n_tests (Input)

The number of hypothesis tests.

float pvalues[] (Input)
An array of length n_tests containing the p-values associated with the tests.

Return Value
Pointer to an array of length n_tests containing the calculated q-values.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_false_discovery_rates (int n_tests, float pvalues[],

IMSLS_LAMBDAS, int n_lamdas, float lambdas[]
IMSLS_GAMMA_PARAM, float gamma,
IMSLS_METHOD, int method,
IMSLS_SMOOTHING_PAR, float smoothing_par,
IMSLS_N_SAMPLE, int n_samples,
IMSLS_RANDOM_SEED, int random_seed,
IMSLS_CONFIDENCE, float confid,
492

 Analysis of Variance and Designed Experiments false_discovery_rates
IMSLS_NULL_PROB, float *pi0,
IMSLS_UPPER_LIMITS, float **upper_limits,
IMSLS_UPPER_LIMITS_USER, float upper_limits[],
IMSLS_RETURN_USER, float qvalues[],
0)

Optional Arguments
IMSLS_LAMBDAS, int n_lamdas, float lambdas[] (Input)

An array of length n_lambdas containing the grid values on [0,1) used in the estimate of the null
probability.

Default: n_lamdas = 19, lambdas = {0.0,0.05,…,0.90}.

IMSLS_GAMMA_PARAM, float gamma (Input)
Size of the rejection region (0 ≤ gamma ≤ 1.0) used in the calculation of the FDR and pFDR measures.

Default: gamma = 0.05

IMSLS_METHOD, int method (Input)
Specifies the method used to remove the dependence of the null probability estimate on the
lambda variable. method = 1 or method = 0: when method = 0, a bootstrap with n_samples is
used; when method = 1, a cubic spline smoother is used.

Default: method = 0

IMSLS_SMOOTHING_PAR, float smoothing_par (Input)
Smoothing parameter (0 ≤ smoothing_par ≤ 1.0) argument for the cubic spline smoother. Only
used if method = 1.

Default: If method = 1 and this optional argument is not provided, the smoothing parameter is
selected by cross-validation.

IMSLS_N_SAMPLE, int n_samples (Input)
Number of bootstrap samples to make for method = 0 or when estimating upper confidence limits
when IMSLS_CONFIDENCE is present.

Default: n_samples = 100.

IMSLS_RANDOM_SEED, int random_seed (Input)
The seed of the random number generator used in generating the bootstrap samples. If
random_seed is 0, a value is computed using the system clock; hence, the results may be different
between different calls with the same inputs.

Default: random_seed = 0.
493

 Analysis of Variance and Designed Experiments false_discovery_rates
IMSLS_CONFIDENCE, float confid (Input)
Confidence level (0.0 < confid < 100.0). See IMSLS_UPPER_LIMITS.

Default: confid = 95.0

IMSLS_NULL_PROB, float *pi0 (Output)
The null probability estimate.

IMSLS_UPPER_LIMITS, float **upper_limits (Output)
Address of a pointer to an array of length 2 containing the (confid)% upper bounds for pFDR and
FDR.

IMSLS_UPPER_LIMITS_USER, float upper_limits[] (Output)
Storage for array upper_limits is supplied by the user. See IMSLS_UPPER_LIMITS.

IMSLS_RETURN_USER, float qvalues[] (Output)
Storage for the return value is supplied by the user.

Description
Let {p1, p2, ..., pm}be the p-values associated with m independent tests of a statistical hypothesis. The following

table summarizes the possible outcomes of the m tests. Note that the only known quantities in the table are W, R,
and, m.

In the above table, V is the number of false discoveries (and the number of type I errors). Whereas the type I error
rate is the probability of rejecting at least one true null hypothesis, the false discovery rate (FDR) (Benjamini and
Hochberg (1995)), is the expected proportion of falsely rejected true nulls. In other words, the FDR is the
expected proportion of “false positives” among the tests that are deemed significant. Using the notations from
the table,

The denominator R ∨ 1 = max(R,1) avoids division by 0 in case there are no significant results (R = 0). The positive
false discovery rate, or pFDR, defined in Storey (2001), is conditional on there being at least one significant test
(R > 0):

Hypothesis Accept Reject Total

Null is true U V m0

Alternative is true T S m1

Total W R m

FDR = E V
R ∨ 1 = E V

R | R > 0 Pr R > 0
494

 Analysis of Variance and Designed Experiments false_discovery_rates
From Theorem 1 in Storey (2001),

where π0 is the probability that an individual hypothesis is null, and Pr[P ≤ γ ∣ H = 0] = γ is the probability an indi-

vidual hypothesis is rejected given that it is null. The parameter γ is the predefined size of the rejection region.
The denominator is the probability that a test is rejected, given γ. This relationship arises from Baye’s Theorem
and the assumption that the p-values are independent.

An estimator for m0, the number of true null hypotheses is

where λ is a significance level on the interval [0,1) and W(λ) is the number of tests that are accepted at level λ That
is, W(λ) = #{ pi > λ}. An estimator for the probability of a null hypothesis π0 is then:

The parameter λ is a tuning parameter used to estimate the true null distribution. The rationale is that the p-val-
ues of the null hypotheses are uniformly distributed and most of the larger p-values (>λ) will be from the null
distribution. See Storey and Tibshirani (2003) for further details.

Now using

Storey (2002) gives the following estimators for pFDR and FDR:

and

pFDR = E V
R | R > 0

pFDR =
π0Pr[P ≤ γ|H = 0]

Pr[P ≤ γ]

m̂0(λ) =
m − R(λ)
1 − λ =

W (λ)
1 − λ

π̂0(λ) =
m̂0(λ)
m =

W (λ)
m(1 − λ)

P
^
r(P ≤ γ) =

R(γ)
m

pFDR
∧

λ(γ) =
π̂0(λ)γ
P
^
(P ≤ γ)

=
W (λ)γ

(1 − λ){R(γ) ∨ 1}{1 − (1 − γ)m}

FDR
∧

λ(γ) = π̂0(λ)γ =
W (λ)γ

(1 − λ){R(γ) ∨ 1}
495

 Analysis of Variance and Designed Experiments false_discovery_rates
Note that 1-(1 - γ)m is a lower bound for , the probability of at least one significant test, and

is a conservative estimate for the type I error, given that R > 0.

In imsls_f_false_discovery_rates, the estimates above are calculated on a grid of λ values on [0,1)
and the minimizer is noted. The calculations are then repeated on B bootstrap samples of the p-values. The

dependence on λ is removed by one of two methods. In Algorithm 3 of Storey (2002), minimizes the mean
squared error between the bootstrap estimates and the original minimum of the estimates over the grid of λ val-

ues. Then, . A second method, suggested by Storey and Tibshirani (2003), uses a cubic spline

smoother on the set of values, . Then the smoothed value . Upper confidence
bounds are determined by taking the (1 - α) quantile of the bootstrapped pFDR and FDR values, using the

smoothed value obtained by either method above.

The q-value, introduced in Storey (2001), is the pFDR analogue of the p-value. For independent tests, the q-value
of the observed p-value is

Whereas a p-value is the minimum type I error rate that can occur while rejecting a test with a given value of the
test statistic, the q-value is the minimum pFDR that can occur while still rejecting the test. For more details see
Storey (2001) and Storey (2002). To find the q-values, imsls_f_false_discovery_rates implements the
algorithm given in Storey and Tibshirani (2003).

Examples

Example 1

The p-values are 20 independent realizations of a uniform (0,1) random variable. The null-probability estimate,
q-values, and upper confidence limits are returned.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i,n_tests=20,iseed=123457;
 float p1[20]={

P R > 0

γ
1 − (1 − γ)m

λ
^

π^ 0 = π^ 0 λ
^

f
^
λ λi,π^ 0 λi π^ 0 = f

^
1

π^ 0

q(p) = inf
γ≥p
{pFDR(γ)}
496

 Analysis of Variance and Designed Experiments false_discovery_rates
 0.7897864, 0.5600287, 0.04625103, 0.4892959, 0.598915,
 0.2149330, 0.9683629, 0.1449932, 0.4999971, 0.2820091,
 0.3489318, 0.479333, 0.9786092, 0.02232179, 0.2329003,
 0.3600357, 0.1341173, 0.5148499, 0.5693829, 0.9914673,
 };
 float *qvals=NULL,sort_p1[20],pi0,*upper_limits=NULL;
 qvals = imsls_f_false_discovery_rates(n_tests,p1,
 IMSLS_NULL_PROB, &pi0,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_UPPER_LIMITS,&upper_limits,
 0);
 for(i=0;i<n_tests;i++){
 sort_p1[i]=p1[i];
 }
 imsls_f_sort_data(n_tests,1,sort_p1,1,0);
 printf("\nNull Probability Estimate: %4.3f\n",pi0);
 imsls_f_write_matrix("Upper Limits for pFDR and FDR:",
 2, 1, upper_limits, 0);
 printf("\n\tP-Value\t Q-Value\n");
 for(i=0;i<n_tests;i++){
 printf("\t %4.3f \t %4.3f\n", sort_p1[i], qvals[i]);
 }
}

Output

Null Probability Estimate: 0.500
Upper Limits for pFDR and FDR:
 1 1.000
 2 0.869
 P-Value Q-Value
 0.022 0.223
 0.046 0.231
 0.134 0.362
 0.145 0.362
 0.215 0.374
 0.233 0.374
 0.282 0.374
 0.349 0.374
 0.360 0.374
 0.479 0.374
 0.489 0.374
 0.500 0.374
 0.515 0.374
 0.560 0.374
 0.569 0.374
 0.599 0.374
 0.790 0.465
 0.968 0.496
 0.979 0.496
 0.991 0.496
497

 Analysis of Variance and Designed Experiments false_discovery_rates
Example 2

This example applies the cubic spline smoothing method to get an estimate of the null probability. Note that the
p-values are the same as in Example 1, but the null probability estimate is larger in this case.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i,n_tests=20,iseed=123457;
 float p1[20]={
 0.7897864, 0.5600287, 0.04625103, 0.4892959, 0.598915,
 0.2149330, 0.9683629, 0.1449932, 0.4999971, 0.2820091,
 0.3489318, 0.479333, 0.9786092, 0.02232179, 0.2329003,
 0.3600357, 0.1341173, 0.5148499, 0.5693829, 0.9914673,
 };
 float *qvals=NULL,sorted_p1[20],pi0,upper_limits[2];
 qvals = imsls_f_false_discovery_rates(n_tests,p1,
 IMSLS_NULL_PROB, &pi0,
 IMSLS_METHOD,1,
 IMSLS_RANDOM_SEED,iseed,
 IMSLS_UPPER_LIMITS_USER,upper_limits,
 0);
 for(i=0;i<n_tests;i++){
 sorted_p1[i]=p1[i];
 }
 imsls_f_sort_data(n_tests,1,sorted_p1,1,0);
 printf("\nNull Probability Estimate: %4.3f\n",pi0);
 imsls_f_write_matrix("Upper Limits for pFDR and FDR:",
 2, 1, upper_limits, 0);
 printf("\n\tP-Value\t Q-Value\n");
 for(i=0;i<n_tests;i++){
 printf("\t %4.3f \t %4.3f\n",sorted_p1[i],qvals[i]);
 }
}

Output

Null Probability Estimate: 0.870
Upper Limits for pFDR and FDR:
 1 1
 2 1
 P-Value Q-Value
 0.022 0.388
 0.046 0.402
 0.134 0.631
 0.145 0.631
 0.215 0.651
 0.233 0.651
 0.282 0.651
 0.349 0.651
 0.360 0.651
 0.479 0.651
498

 Analysis of Variance and Designed Experiments false_discovery_rates
 0.489 0.651
 0.500 0.651
 0.515 0.651
 0.560 0.651
 0.569 0.651
 0.599 0.651
 0.790 0.808
 0.968 0.863
 0.979 0.863
 0.991 0.863

Warning Errors
IMSLS_NULL_PROBABILITY_0 The null probability estimate is < = 0. Check that the

p-values are correct or try lowering the maximum
“lambda” value, which is currently = #.
499

 Analysis of Variance and Designed Experiments yates
yates
Estimates missing observations in designed experiments using Yate’s method.

Synopsis
#include <imsls.h>
int imsls_f_yates(int n, int n_independent, float x[], …, 0)

The type double function is imsls_d_yates.

Required Arguments
int n (Input)

Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input/Output)
A n by (n_independent+1) 2-dimensional array containing the experimental observations and
missing values. The first n_independent columns contain values for the independent variables
and the last column contains the corresponding observations for the dependent variable or
response. The columns assigned to the independent variables should not contain any missing values.
Missing values are included in this array by placing a NaN (not a number) in the last column of x. The
NaN value can be set using either the function imsls_f_machine(6) or
imsls_d_machine(6), depending upon whether single or double precision is being used,
respectively. Upon successful completion, missing values are replaced with estimates calculated
using Yates’ method.

Return Value
The number of missing values replaced with estimates using the Yates procedure. A negative return value indi-
cates that the function was unable to successfully estimate all missing values. Typically this occurs when all of the
observations for a particular treatment combination are missing. In this case, Yate’s missing value method does
not produce a unique set of missing value estimates.
500

 Analysis of Variance and Designed Experiments yates
Synopsis with Optional Arugments
#include <imsls.h>
int imsls_f_yates (int n, int n_independent, float x[],

IMSLS_DESIGN, int design,
IMSLS_INITIAL_ESTIMATES, int n_missing, float initial_estimates[],
IMSLS_GET_SS, float get_ss (int n, int n_independent, int n_levels[],

float dataMatrix[]),
IMSLS_GET_SS_W_DATA, float fcn (int n, int n_independent, int n_levels[],

float dataMatrix[], void *data), void *data,
IMSLS_GRAD_TOL, float grad_tol,
IMSLS_STEP_TOL, float step_tol,
IMSLS_MAX_ITN, int **itmax,
IMSLS_MISSING_INDEX, int **missing_index[],
IMSLS_MISSING_INDEX_USER, int missing_index[],
IMSLS_ERROR_SS, float *error_ss,
0)

Optional Arguments
IMSLS_RETURN_USER, int n_missing (Output)

The number of missing values replaced with Yate’s estimates. A negative return value indicates that
the function was unable to successfully estimate all missing values.

IMSLS_DESIGN, int design (Input)
An integer indicating whether a custom or standard design is being used. The association of values
for this variable and standard designs is described in the following table:

design Description

0 CRD – Completely Randomized Design. The input matrix, x, is
assumed to have only two columns. The first is used to contain inte-
gers identifying the treatments. The second column should contain
corresponding observations for the dependent variable. In this case,
n_independent=1. Default value when n_independent=1.
501

 Analysis of Variance and Designed Experiments yates
Default: design=0 or design=1, depending upon whether n_independent = 1 or 2 respec-
tively. If n_independent > 2, then design must be set to 2, and get_ss must be provided as
input to imsls_f_yates.

IMSLS_INITIAL_ESTIMATES, int n_missing, float initial_estimates[] (Input)
Initial estimates for the missing values. Argument n_missing is the number of missing values.
Argument initial_estimates is an array of length n_missing containing the initial
estimates.

Default: For design=0 and design=1, the initial estimates are calculated using the Yates formula
for those designs. For design=2, the mean of the non-missing observations is used as the initial
estimate for all missing values.

IMSLS_MAX_ITN, int itmax (Input)
Maximum number of iterations in the optimization function for finding the missing value estimates
that minimize the error sum of squares in the analysis of variance.

Default: itmax = 500.

IMSLS_GET_SS, float get_ss(int n, int n_independent, int n_levels[], float dataMatrix[])
(Input)
A user-supplied function that returns the error sum of squares calculated using the n by
(n_independent+1) matrix dataMatrix. imsls_f_yates calculates the error sum of
squares assuming that dataMatrix contains no missing observations. In general, dataMatrix
should be equal to the input matrix x with missing values replaced by estimates. IMSLS_GET_SS is
required input when design=2. The array n_levels should be of length n_independent and
contain the number of levels associated with each of the first n_independent columns in the
dataMatrix and x arrays.

Arguments

int n (Input)
Number of observations.

1 RCBD – Randomized Complete Block Design. The input matrix is
assumed to have only three columns. The first is used to contain the
treatment identifiers and the second the block identifiers. The last
column contains the corresponding observations for the dependent
variable. In this case, n_independent=2. This is the default value
when n_independent=2.

2 Another design. In this case, the function get_ss is a required input.
The design matrix is passed to that function. Initial values for missing
observations are set to the grand mean of the data, unless initial val-
ues are specified using IMSLS_INITIAL_ESTIMATES.

design Description
502

 Analysis of Variance and Designed Experiments yates
int n_independent (Input)
Number of independent variables.

int n_levels[] (Input)
An array n_levels and should be of length n_independent and contain the
number of levels associated with each of the first n_independent columns in the
dataMatrix and x arrays.

float dataMatrix[] (Input)
dataMatrix should be equal to the input matrix x with missing values replaced by
estimates. dataMatrix should not contain any missing observations.

Return Value
Returns the error sum of squares.

IMSLS_GET_SS_W_DATA, float fcn (int n, int n_independent, int n_levels[],
float dataMatrix[], void *data), void *data, (Input/Output)

float fcn (int n, int n_independent, int n_levels[], float dataMatrix[], void *data)
(Input)
A user-supplied function that returns the error sum of squares calculated using the n by
(n_independent+1) matrix dataMatrix. IMSLS_GET_SS is required input when
design=2. See the Introduction, Passing Data to User-Supplied Functions at the beginning
of this manual for more details.
Arguments

int n (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

int n_levels[] (Input)
An array n_levels and should be of length n_independent and con-
tain the number of levels associated with each of the first
n_independent columns in the dataMatrix and x arrays.

float dataMatrix[] (Input)
dataMatrix should be equal to the input matrix x with missing values
replaced by estimates. dataMatrix should not contain any missing
observations.

void *data (Input/Output)
A pointer to the data to be passed to the user-supplied function.

Return Value
Returns the error sum of squares.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance used to determine whether the difference between the error sum of
squares is small enough to stop the search for missing value estimates.
503

 Analysis of Variance and Designed Experiments yates
Default: grad_tol = , where is the machine precision.

IMSLS_STEP_TOL, float step_tol (Input)
Scaled step tolerance used to determine whether the difference between missing value estimates is
small enough to stop the search for missing value estimates.

Default: step_tol = , where is the machine precision.

IMSLS_MISSING_INDEX, int *missing_index (Output)
An array of length n_missing containing the indices for the missing values in x. The number of
missing values, n_missing, is the return value of imsls_f_yates.

IMSLS_MISSING_INDEX_USER, int missing_index[] (Output)
Storage for the array missing_index, provided by the user.

IMSLS_ERROR_SS, float *errr_ss (Output)
The value of the error sum of squares calculated using the missing value estimates. If design=2
then this is equal to the value returned from get_ss using the Yates missing value estimates.

Description
Several functions for analysis of variance require balanced experimental data, i.e. data containing no missing val-
ues within a block and an equal number of replicates for each treatment. If the number of missing observations
in an experiment is smaller than the Yates method as described in Yates (1933) and Steel and Torrie (1960), can
be used to estimate the missing values. Once the missing values are replaced with these estimates, the data can
be passed to an analysis of variance that requires balanced data.

The basic principle behind the Yates method for estimating missing observations is to replace the missing values
with values that minimize the error sum of squares in the analysis of variance. Since the error sum of squares
depends upon the underlying model for the analysis of variance, the Yates formulas for estimating missing values
vary from anova to anova.

Consider, for example, the model underlying experiments conducted using a completely randomized design. If

 is the i-th observation for the i-th treatment then the error sum of squares for a CRD is calculated using the
following formula:

If an observation is missing then SSE is minimized by replacing that missing observation with the estimate

ɛ2/3 ɛ

ɛ2/3 ɛ

yi j

SSE =∑
i=1

t

∑
j=1

r

yi j − y
─
i.
2 where y─i. is the ith treatment mean.

yi j
504

 Analysis of Variance and Designed Experiments yates
For a randomized complete block design (RCBD), the calculation for estimating a single missing observation can
be derived from the RCBD error sum of squares:

If only a single observation, , is missing from the j-th block and i-th treatment, the estimate for this missing
observation can be derived by solving the equation:

The solution is referred to as the Yates formula for a RCBD:

where r = n_blocks, t = n_treatments, yi = total of all non-missing observations from the i-th treatment,

 =total of all non-missing observations from the j-th block, and y = total of all non-missing observations.

If more than one observation is missing, imsls_f_yates minimization procedure is used to estimate missing
values. For a CRD, all missing observations are set equal to their corresponding treatment means calculated using

the non-missing observations. That is, .

For RCBD designs with more than one missing value, Yate’s formula for estimating a single missing observation is
used to obtain initial estimates for all missing values. These are passed to a function minimization routine to
obtain the values that minimize SSE.

For other designs, specify design=2 and IMSLS_GET_SS. The function get_ss is used to obtain the Yates
missing value estimates by selecting the estimates that minimize sum of squares returned by get_ss. When
called, get_ss calculates the error sum of squares at each iteration assuming that the data matrix it receives is
balanced and contains no missing values.

x̂i j = ȳi.

SSE =∑
i=1

t

∑
j=1

r

yi j − ȳi. − ȳ. j + ȳ̄..
2

yi j

x̂i j = ȳi. + ȳ. j − ȳ̄..

x̂i j =
t · y. j + r · yi. − y..
r − 1 t − 1

y. j

x^ i j = y
─
i.
505

 Analysis of Variance and Designed Experiments yates
Example
Missing values can occur in any experiment. Estimating missing values via the Yates method is usually done by
minimizing the error sum of squares for that experiment. If only a single observation is missing and there is an
analytical formula for calculating the error sum of squares then a formula for estimating the missing value is fairly
easily derived. Consider for example a split-plot experiment with a single missing value.

Suppose, for example, that , the observation for the i-th whole-plot, j-th split plot and k-th block is missing.
Then the estimate for a single missing observation in the i-th whole plot is equal to:

where r = number of blocks, s = number of split-plots, W = total of all non-missing values in same block as the

missing observation, = total of the non-missing observations across blocks of observations from i-th whole-

plot factor level and the j-th split-plot level, and = the total of all observations, across split-plots and blocks of
the non-missing observations for the i-th whole plot.

If more than a single observation is missing, then an iterative solution is required to obtain missing value esti-
mates that minimize the error sum of squares.

Function imsls_f_yates simplifies this procedure. Consider, for example, a split-plot experiment conducted
at a single location using fixed-effects whole and split plots. If there are no missing values, then the error sum of
squares can be calculated from a 3-way analysis of variance using whole-plot, split-plot and blocks as the 3 fac-
tors. For balanced data without missing values, the errors sum of squares would be equal to the sum of the 3-
way interaction between these factors and the split-plot by block interaction.

Calculating the error sum of squares using this 3-way analysis of variance is achieved using the
imsls_f_anova_factorial.

#include <imsls.h>
float get_ss(int n, int n_independent, int *n_levels, float *x)
{
/* This routine assumes that the first three columns of dataMatrix */
/* contain the whole-plot,split-plot and block identifiers in that */
/* order. The last column of this matrix, the fourth column, must */
/* contain the observations from the experiment. It is assumed that */
/* dataMatrix is balanced and does not contain any missing */
/* observations. */
 int i;
 float errorSS, pValue;
 float *test_effects = NULL;
 float *anova_table = NULL;
 float responses[24];
 /* Copy responses from the last column of x into a 1-D array */
 /* as expected by imsls_f_anova_factorial. */
 for (i=0;i<n;i++) {
 responses[i] = x[i*(n_independent+1)+n_independent];

xi j k

Y =
r ·W + s · xi j. − xi..
r − 1 s − 1

xi j.
xi..
506

 Analysis of Variance and Designed Experiments yates
 }
 /* Compute the error sum of squares. */
 pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_POOL_INTERACTIONS, 0);
 errorSS = anova_table[4] + test_effects[21];
 /* Free memory returned by imsls_f_anova_factorial. */
 if (test_effects != NULL) imsls_free(test_effects);
 if (anova_table != NULL) imsls_free(anova_table);
 return errorSS;
}

The above function is passed to the imsls_f_yates as an argument, together with a matrix containing the
data for the split-plot experiment. For this example, the following data matrix obtained from an agricultural
experiment will be used. In this experiment, 4 whole plots were randomly assigned to two 2 blocks. Whole-plots
were subdivided into 2 split-plots. The whole-plot factor consisted of 4 different seed lots, and the split-plot fac-
tor consisted of 2 seed protectants. The data matrix of this example is an n = 24 by 4 matrix with two missing
observations.
507

 Analysis of Variance and Designed Experiments yates
The program below uses these data with imsls_f_yates to replace the two missing values with Yates
estimates.

#include <stdlib.h>
#include <imsls.h>
float get_ss(int n, int n_independent, int *n_levels, float *x);
#define N 24
#define N_INDEPENDENT 3
int main()
{
 char *col_labels[] = {" ", "Whole", "Split", "Block", " "};
 int i;

X =

1 1 1 ∣ NaN
1 2 1 ∣ 53.8
1 3 1 ∣ 49.5
1 1 2 ∣ 41.6
1 2 2 ∣ NaN
1 3 2 ∣ 53.8
2 1 1 ∣ 53.3
2 2 1 ∣ 57.6
2 3 1 ∣ 59.8
2 1 2 ∣ 69.6
2 2 2 ∣ 69.6
2 3 2 ∣ 65.8
3 1 1 ∣ 62.3
3 2 1 ∣ 63.4
3 3 1 ∣ 64.5
3 1 2 ∣ 58.5
3 2 2 ∣ 50.4
3 3 2 ∣ 46.1
4 1 1 ∣ 75.4
4 2 1 ∣ 70.3
4 3 1 ∣ 68.8
4 1 2 ∣ 65.6
4 2 2 ∣ 67.3
4 3 2 ∣ 65.3
508

 Analysis of Variance and Designed Experiments yates
 int n = N;
 int n_independent = N_INDEPENDENT;
 int whole[N]={1,1,1,1,1,1,
 2,2,2,2,2,2,
 3,3,3,3,3,3,
 4,4,4,4,4,4};
 int split[N]={1,2,3,1,2,3,
 1,2,3,1,2,3,
 1,2,3,1,2,3,
 1,2,3,1,2,3};
 int block[N]={1,1,1,2,2,2,
 1,1,1,2,2,2,
 1,1,1,2,2,2,
 1,1,1,2,2,2};
 float y[N] ={0.0, 53.8, 49.5, 41.6, 0.0, 53.8,
 53.3, 57.6, 59.8, 69.6, 69.6, 65.8,
 62.3, 63.4, 64.5, 58.5, 50.4, 46.1,
 75.4, 70.3, 68.8, 65.6, 67.3, 65.3};

 float x[N][N_INDEPENDENT+1];
 float error_ss;
 int *missing_idx;
 int n_missing;
 /* Set the first and fifth observations to missing values. */
 y[0] = imsls_f_machine(6);
 y[4] = imsls_f_machine(6);
 /* Fill the array x with the classification variables and observations. */
 for (i=0;i<n; i++) {
 x[i][0] = (float)whole[i];
 x[i][1] = (float)split[i];
 x[i][2] = (float)block[i];
 x[i][3] = y[i];
 }
 /* Sort the data since imsls_f_anova_factorial expects sorted data. */
 imsls_f_sort_data(n, n_independent+1, (float*)x, 3, 0);

 n_missing = imsls_f_yates(n, n_independent, (float *)&(x[0][0]),
 IMSLS_DESIGN, 2,
 IMSLS_GET_SS, get_ss,
 IMSLS_ERROR_SS, &error_ss,
 IMSLS_MISSING_INDEX, &missing_idx,
 0);
 printf("Returned error sum of squares = %f\n\n", error_ss);
 printf("Missing values replaced: %d\n", n_missing);
 printf("Whole Split Block Estimate\n");
 for (i=0;i<n_missing;i++) {
 printf("%3d %3d %3d %7.3f\n",
 (int)x[missing_idx[i]][0],
 (int)x[missing_idx[i]][1],
 (int)x[missing_idx[i]][2],
 x[missing_idx[i]][n_independent]);
 }
509

 Analysis of Variance and Designed Experiments yates
 imsls_f_write_matrix("Sorted x, with estimates", n, n_independent+1,
 (float*)x,
 IMSLS_WRITE_FORMAT, "%-4.0f%-4.0f%-4.0f%5.2f",
 IMSLS_COL_LABELS, col_labels,
 IMSLS_NO_ROW_LABELS, 0);

}
float get_ss(int n, int n_independent, int *n_levels, float *x)
{
 int i;
 float errorSS, pValue;
 float *test_effects = NULL;
 float *anova_table = NULL;
 float responses[24];
 /*
 * Copy responses from the last column of x into a 1-D array
 * as expected by imsls_f_anova_factorial.
 */
 for (i=0;i<n;i++) {
 responses[i] = x[i*(n_independent+1)+n_independent];
 }
 /*
 * Compute the error sum of squares.
 */
 pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_POOL_INTERACTIONS, 0);
 errorSS = anova_table[4] + test_effects[21];
 /* Free memory returned by imsls_f_anova_factorial. */
 if (test_effects != NULL) imsls_free(test_effects);
 if (anova_table != NULL) imsls_free(anova_table);
 return errorSS;
}
After running this code to replace missing values with Yates estimates, it would be
followed by a call to the split-plot analysis of variance:
float *aov_table, y[24];
int expunit[24], whole[24], split[24];
for(int i=0; i < 24; i++){whole[i] = x[i]; split[i] = x[i+24];
 expunit[i]= x[i+48]; y[i] = x[i+72];}
float aov_table = imsls_f_split_plot (24, 1, 4, 3, expunit, whole,
 split, y[], 0);

Output

Returned error sum of squares = 95.620010
Missing values replaced: 2
Whole Split Block Estimate
 1 1 1 37.300
 1 2 2 58.100
 Sorted x, with estimates
510

 Analysis of Variance and Designed Experiments yates
 Whole Split Block
 1 1 1 37.30
 1 1 2 41.60
 1 2 1 53.80
 1 2 2 58.10
 1 3 1 49.50
 1 3 2 53.80
 2 1 1 53.30
 2 1 2 69.60
 2 2 1 57.60
 2 2 2 69.60
 2 3 1 59.80
 2 3 2 65.80
 3 1 1 62.30
 3 1 2 58.50
 3 2 1 63.40
 3 2 2 50.40
 3 3 1 64.50
 3 3 2 46.10
 4 1 1 75.40
 4 1 2 65.60
 4 2 1 70.30
 4 2 2 67.30
 4 3 1 68.80
 4 3 2 65.30
511

 Categorical and Discrete Data Analysis Functions
Categorical and Discrete Data
Analysis

Functions
Statistics in the Two-Way Contingency Table

Two-way contingency table analysis . contingency_table 514
Exact probabilities in an r × c table; total enumeration exact_enumeration 528
Exact probabilities in an r × c table . exact_network 531

Categorical Models
Generalized linear models . categorical_glm 538
Logistic regression model .logistic_regression 555
Logistic regression prediction . logistic_reg_predict 571
512

 Categorical and Discrete Data Analysis Usage Notes
Usage Notes
Function imsls_f_contingency_table computes many statistics of interest in a two-way table. Statistics
computed by this function includes the usual chi-squared statistics, measures of association, Kappa, and many
others. Exact probabilities for two-way tables can be computed by imsls_f_exact_enumeration, but this
function uses the total enumeration algorithm and, thus, often uses orders of magnitude more computer time
than imsls_f_exact_network, which computes the same probabilities by use of the network algorithm (but
can still be quite expensive).

The function imsls_f_categorical_glm in the second section is concerned with generalized linear models
(see McCullagh and Nelder 1983) in discrete data. This function can be used to compute estimates and associ-
ated statistics in probit, logistic, minimum extreme value, Poisson, negative binomial (with known number of
successes), and logarithmic models. Classification variables as well as weights, frequencies and additive constants
may be used so that general linear models can be fit. Residuals, a measure of influence, the coefficient estimates,
and other statistics are returned for each model fit. When infinite parameter estimates are required, extended
maximum likelihood estimation may be used. Log-linear models can be fit in imsls_f_categorical_glm
through the use of Poisson regression models. Results from Poisson regression models involving structural and
sampling zeros will be identical to the results obtained from the log-linear model functions but will be fit by a
quasi-Newton algorithm rather than through iterative proportional fitting.

Two additional functions, imsls_f_logistic_regression and imsls_f_logistic_reg_predict, are
designed specifically for logistic regression. imsls_f_logistic_regression estimates a logistic regres-
sion model for binomial and multinomial response variables and one or more independent variables. Given an
estimated model, imsls_f_logistic_reg_predict calculates predicted responses at new values of the
regression variables.
513

 Categorical and Discrete Data Analysis contingency_table
contingency_table

Performs a chi-squared analysis of a two-way contingency table.

Synopsis
#include <imsls.h>
float imsls_f_contingency_table (int n_rows, int n_columns, float table[], ..., 0)

The type double function is imsls_d_contingency_table.

Required Arguments
int n_rows (Input)

Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the contingency table.

Return Value
Pearson chi-squared p-value for independence of rows and columns.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_contingency_table (int n_rows, int n_columns, float table[],

IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value,

more...

more...
514

 Categorical and Discrete Data Analysis contingency_table
IMSLS_LRT, int *df, float *g_squared, float *p_value,
IMSLS_EXPECTED, float **expected,
IMSLS_EXPECTED_USER, float expected[],
IMSLS_CONTRIBUTIONS, float **chi_squared_contributions,
IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[],
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats,
IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[],
IMSLS_STATISTICS, float **statistics,
IMSLS_STATISTICS_USER, float statistics[],
0)

Optional Arguments
IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value (Output)

Argument df is the degrees of freedom for the chi-squared tests associated with the table,
chi_squared is the Pearson chi-squared test statistic, and argument p_value is the probability
of a larger Pearson chi-squared.

IMSLS_LRT, int *df, float *g_squared, float *p_value (Output)
Argument df is the degrees of freedom for the chi-squared tests associated with the table, argument
g_squared is the likelihood ratio G2 (chi-squared), and argument p_value is the probability of a
larger G2.

IMSLS_EXPECTED, float **expected (Output)
Address of a pointer to the internally allocated array of size (n_rows + 1) × (n_columns + 1) con-
taining the expected values of each cell in the table, under the null hypothesis, in the first n_rows
rows and n_columns columns. The marginal totals are in the last row and column.

IMSLS_EXPECTED_USER, float expected[] (Output)
Storage for array expected is provided by the user. See IMSLS_EXPECTED.

IMSLS_CONTRIBUTIONS, float **chi_squared_contributions (Output)
Address of a pointer to an internally allocated array of size (n_rows + 1) × (n_columns + 1) con-
taining the contributions to chi-squared for each cell in the table in the first n_rows rows and
n_columns columns. The last row and column contain the total contribution to chi-squared for
that row or column.

IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[] (Output)
Storage for array chi_squared_contributions is provided by the user. See
IMSLS_CONTRIBUTIONS.
515

 Categorical and Discrete Data Analysis contingency_table
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats (Output)
Address of a pointer to an internally allocated array of length 5 containing chi-squared statistics asso-
ciated with this contingency table. The last three elements are based on Pearson’s chi-square statistic
(see IMSLS_CHI_SQUARED).

The chi-squared statistics are given as follows:

IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[] (Output)
Storage for array chi_squared_stat is provided by the user. See
IMSLS_CHI_SQUARED_STATS.

IMSLS_STATISTICS, float **statistics (Output)
Address of a pointer to an internally allocated array of size 23 × 5 containing statistics associated
with this table. Each row corresponds to a statistic.

Element Chi-squared Statistics

0 exact mean

1 exact standard deviation

2 Phi

3 contingency coefficient

4 Cramer’s V

Row Statistic

0 Gamma

1 Kendall’s τb

2 Stuart’s τc

3 Somers’ D for rows (given columns)

4 Somers’ D for columns (given rows)

5 product moment correlation

6 Spearman rank correlation

7 Goodman and Kruskal τ for rows (given columns)

8 Goodman and Kruskal τ for columns (given rows)

9 uncertainty coefficient U (symmetric)

10 uncertainty Ur|c (rows)

11 uncertainty Uc|r(columns)

12 optimal prediction λ (symmetric)

13 optimal prediction λr|c (rows)
516

 Categorical and Discrete Data Analysis contingency_table
If a statistic cannot be computed, or if some value is not relevant for the computed statistic, the entry
is NaN (Not a Number). The columns are as follows:

In the McNemar tests, column 0 contains the statistic, column 1 contains the chi-squared degrees of
freedom, column 3 contains the exact p-value (1 degree of freedom only), and column 4 contains the
chi-squared asymptotic p-value. The Kruskal-Wallis test is the same except no exact p-value is
computed.

IMSLS_STATISTICS_USER, float statistics[] (Output)
Storage for array statistics provided by the user. See IMSLS_STATISTICS.

14 optimal prediction λc|r (columns)

15 optimal prediction λr|c (rows)

16 optimal prediction λc|r (columns)

17 test for linear trend in row probabilities if n_rows = 2
If n_rows is not 2, a test for linear trend in column
probabilities if n_columns = 2.

18 Kruskal-Wallis test for no row effect

19 Kruskal-Wallis test for no column effect

20 kappa (square tables only)

21 McNemar test of symmetry (square tables only)

22 McNemar one degree of freedom test of symmetry
(square tables only)

Column Value

0 estimated statistic

1 standard error for any parameter value

2 standard error under the null hypothesis

3 t value for testing the null hypothesis

4 p-value of the test in column 3

Row Statistic
517

 Categorical and Discrete Data Analysis contingency_table
Description
Function imsls_f_contingency_table computes statistics associated with an r × c
(n_rows × n_columns) contingency table. The function computes the chi-squared test of independence,
expected values, contributions to chi-squared, row and column marginal totals, some measures of association,
correlation, prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the odds and the log
odds ratio, and the kappa statistic (if the appropriate optional arguments are selected).

Notation
Let xij denote the observed cell frequency in the ij cell of the table and n denote the total count in the table. Let

pij = pi∙p∙j denote the predicted cell probabilities under the null hypothesis of independence, where pi∙ and p∙j

are the row and column marginal relative frequencies. Next, compute the expected cell counts as eij = npij.

Also required in the following are auv and buv for u, v = 1, …, n. Let (rs, cs) denote the row and column response of

observation s. Then, auv = 1, 0, or −1, depending on whether ru < rv, ru = rv, or ru > rv, respectively. The buv are

similarly defined in terms of the cs variables.

Chi-squared Statistic
For each cell in the table, the contribution to 2 is given as (xij − eij)

2/eij. The Pearson chi-squared statistic

(denoted 2) is computed as the sum of the cell contributions to chi-squared. It has (r − 1) (c − 1) degrees of
freedom and tests the null hypothesis of independence, i.e., H0:pij = pi∙p∙j. The null hypothesis is rejected if the

computed value of 2 is too large.

The maximum likelihood equivalent of 2, G2 is computed as follows:

G2 is asymptotically equivalent to 2 and tests the same hypothesis with the same degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient,
and Cramer’s V)
There are three measures related to chi-squared that do not depend on sample size:

χ

χ

χ

χ

G2 = − 2∑
i, j

xi j ln xi j / npi j

χ

518

 Categorical and Discrete Data Analysis contingency_table
Since these statistics do not depend on sample size and are large when the hypothesis of independence is
rejected, they can be thought of as measures of association and can be compared across tables with different
sized samples. While both P and V have a range between 0.0 and 1.0, the upper bound of P is actually somewhat
less than 1.0 for any given table (see Kendall and Stuart 1979, p. 587). The significance of all three statistics is the

same as that of the 2 statistic, chi_squared.

The distribution of the 2 statistic in finite samples approximates a chi-squared distribution. To compute the

exact mean and standard deviation of the 2 statistic, Haldane (1939) uses the multinomial distribution with
fixed table marginals. The exact mean and standard deviation generally differ little from the mean and standard
deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures of Association
In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-values are reported. Estimates
of the standard errors are computed in two ways. The first estimate, in Column 1 of the array statistics, is
asymptotically valid for any value of the statistic. The second estimate, in Column 2 of the array, is only correct
under the null hypothesis of no association. The z-scores in Column 3 of statistics are computed using this sec-
ond estimate of the standard errors. The p-values in Column 4 are computed from this z-score. See
Brown and Benedetti (1977) for a discussion and formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns
The measures of association, ɸ, P, and V, do not require any ordering of the row and column categories. Function
imsls_f_contingency_table also computes several measures of association for tables in which the rows
and column categories correspond to ranked observations. Two of these tests, the product-moment correlation
and the Spearman correlation, are correlation coefficients computed using assigned scores for the row and col-
umn categories. The cell indices are used for the product-moment correlation, while the average of the tied ranks
of the row and column marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are computed like a correlation

coefficient in the numerator. In all these measures, the numerator is computed as the “covariance” between the
auv variables and buv variables defined above, i.e., as follows:

phi, φ = χ2 / n

contingency coefficient, P = χ2 / n + χ2

Cramer's V ,V = χ2 / n min r,c

χ

χ
χ

519

 Categorical and Discrete Data Analysis contingency_table
Recall that auv and buv can take values −1, 0, or 1. Since the product auvbuv = 1 only if auv and buv are both 1 or

are both −1, it is easy to show that this ‘‘covariance’’ is twice the total number of agreements minus the number
of disagreements, where a disagreement occurs when auvbuv = −1.

Kendall’s is computed as the correlation between the auv variables and the buv variables (see

Kendall and Stuart 1979, p. 593). In a rectangular table (r ≠ c), Kendall’s cannot be 1.0 (if all marginal totals are
positive). For this reason, Stuart suggested a modification to the denominator of in which the denominator

becomes the largest possible value of the “covariance.” This maximizing value is approximately n2m/(m − 1),

where m = min (r, c). Stuart’s uses this approximate value in its denominator. For large n, .

Gamma can be motivated in a slightly different manner. Because the “covariance” of the auv variables and the buv

variables can be thought of as twice the number of agreements minus the disagreements, 2(A − D), where A is
the number of agreements and D is the number of disagreements, Gamma is motivated as the probability of
agreement minus the probability of disagreement, given that either agreement or disagreement occurred. This is
shown as γ = (A − D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’ D for rows can be
thought of as the regression coefficient for predicting auv from buv. Moreover, Somer’s D for rows is the probabil-

ity of agreement minus the probability of disagreement, given that the column variable, buv, is not 0. Somers’ D

for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty
Optimal Prediction Coefficients: The measures in this section do not require any ordering of the row or column
variables. They are based entirely upon probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under the null hypothesis of indepen-
dence, choose the column with the highest column marginal probability for all rows. In this case, the probability
of misclassification for any row is 1 minus this marginal probability. If independence is not assumed within each
row, choose the column with the highest row conditional probability. The probability of misclassification for the
row becomes 1 minus this conditional probability.

Define the optimal prediction coefficient λc|r for predicting columns from rows as the proportion of the probabil-

ity of misclassification that is eliminated because the random variables are not independent. It is estimated by

∑
u
∑
v

auvbuv

τb
τb

τ

τc τc ≈ mτb /(m − 1)
520

 Categorical and Discrete Data Analysis contingency_table
where m is the index of the maximum estimated probability in the row (pim) or row margin (pm). A similar coeffi-

cient is defined for predicting the rows from the columns. The symmetric version of the optimal prediction λ is
obtained by summing the numerators and denominators of λr|c and λc|r, then dividing. Standard errors for

these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the marginal probabilities. One way to

correct this is to use row conditional probabilities. The optimal prediction λ* coefficients are defined as the corre-
sponding λ coefficients in which first the row (or column) marginals are adjusted to the same number of
observations. This yields

where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability of column j given row i.

is similarly defined.

Goodman and Kruskal : A second kind of prediction measure attempts to explain the proportion of the
explained variation of the row (column) measure given the column (row) measure. Define the total variation in the
rows as follows:

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal coefficient for rows is computed as the reduction of
the total variation for rows accounted for by the columns, divided by the total variation for the rows. To compute
the reduction in the total variation of the rows accounted for by the columns, note that the total variation for the
rows within column j is defined as follows:

λc∣r =
1 − p•m − 1 − ∑

i
pim

1 − p•m

λc∣r
* =

∑
i
max j p j∣i − max j ∑

i
p j∣i

R − max j ∑
i
p j∣i p j∣i

λr∣c
*

τ

n / 2 − ∑
i

xi•
2 / 2n

τ

521

 Categorical and Discrete Data Analysis contingency_table
The total variation for rows within columns is the sum of the qj variables. Consistent with the usual methods in

the analysis of variance, the reduction in the total variation is given as the difference between the total variation
for rows and the total variation for rows within the columns.

Goodman and Kruskal’s for columns is similarly defined. See Bishop et al. (1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the log-likelihood that is
achieved by the most general model over the independence model, divided by the marginal log-likelihood for the
rows. This is given by the following equation:

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty coefficient contains the
same numerator as Ur|c and Uc|r but averages the denominators of these two statistics. Standard errors for U

are given in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type test that assumes the
column variable is monotonically ordered. It tests the null hypothesis that no row populations are identical, using
average ranks for the column variable. The Kruskal-Wallis statistic for columns is similarly defined. Conover (1980)
discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear trend in the row probabilities if
it is assumed that the column variable is monotonically ordered. In this test, the probabilities for row 1 are pre-
dicted by the column index using weighted simple linear regression. This slope is given by

where

is the average column index. An asymptotic test that the slope is 0 may then be obtained (in large samples) as the
usual regression test of zero slope.

q j = x• j / 2 − ∑
i

xi j
2 / 2xi•

τ

Ur∣c =
∑
i, j
xi j log xi•x• j / nxi j

∑
i
xi•log xi• / n

β^ =
∑
j
x• j x1 j / x• j − x1• / n j − j─

∑
j
x• j j − j

─ 2

j─ =∑
j

x• j j / n
522

 Categorical and Discrete Data Analysis contingency_table
In two-column data, a similar test for a linear trend in the column probabilities is computed. This test assumes
that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the kappa statistic, the rows and
columns correspond to the responses of two judges. The judges agree along the diagonal and disagree off the
diagonal. Let

denote the probability that the two judges agree, and let

denote the expected probability of agreement under the independence model. Kappa is then given by
(p0 − pc)/(1 − pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency table. In other words, it is a
test of the null hypothesis H0:θij = θji. The multiple degrees-of-freedom version of the McNemar test with

r (r − 1)/2 degrees of freedom is computed as follows:

The single degree-of-freedom test assumes that the differences, xij − xji, are all in one direction. The single

degree-of-freedom test will be more powerful than the multiple degrees-of-freedom test when this is the case.
The test statistic is given as follows:

The exact probability can be computed by the binomial distribution.

p0 =∑
i

xii / n

pc =∑
i

eii / n

∑
i< j

xi j − x ji
2

xi j + x ji

∑
i< j

xi j − x ji
2

∑
i< j

xi j + x ji
523

 Categorical and Discrete Data Analysis contingency_table
Examples

Example 1

The following example is taken from Kendall and Stuart (1979) and involves the distance vision in the right and
left eyes. Output contains only the p-value.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_rows = 4;
 int n_columns = 4;
 float table[4][4] =
 {821, 112, 85, 35,
 116, 494, 145, 27,
 72, 151, 583, 87,
 43, 34, 106, 331};
 float p_value;
 p_value = imsls_f_contingency_table(n_rows, n_columns,
 &table[0][0],
 0);
 printf ("P-value = %10.6f.\n", p_value);
}

Output

P-value = 0.000000.

Example 2

The following example, which illustrates the use of Kappa and McNemar tests, uses the same distance vision data
as the previous example. The available statistics are output using optional arguments.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_rows = 4;
 int n_columns = 4;
 int df1, df2;
 float table[16] =
 {821.0, 112.0, 85.0, 35.0,
 116.0, 494.0, 145.0, 27.0,
 72.0, 151.0, 583.0, 87.0,
 43.0, 34.0, 106.0, 331.0};
 float p_value1, p_value2, chi_squared, g_squared;
 float *expected, *chi_squared_contributions;
 float *chi_squared_stats, *statistics;
 char *labels[] = {
524

 Categorical and Discrete Data Analysis contingency_table
 "Exact mean",
 "Exact standard deviation",
 "Phi",
 "P",
 "Cramer’s V"
 };
 char *stat_row_labels[] = {"Gamma", "Tau B", "Tau C",
 "D-Row", "D-Column", "Correlation", "Spearman",
 "GK tau rows", "GK tau cols.", "U - sym.", "U - rows",
 "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",
 "l-star-rows", "l-star-col.", "Lin. trend",
 "Kruskal row", "Kruskal col.", "Kappa", "McNemar",
 "McNemar df=1"};
 char *stat_col_labels[] = {"","statistic", "standard error",
 "std. error under Ho", "t-value testing Ho",
 "p-value"};
 imsls_f_contingency_table (n_rows, n_columns, table,
 IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_value1,
 IMSLS_LRT, &df2, &g_squared, &p_value2,
 IMSLS_EXPECTED, &expected,
 IMSLS_CONTRIBUTIONS, &chi_squared_contributions,
 IMSLS_CHI_SQUARED_STATS, &chi_squared_stats,
 IMSLS_STATISTICS, &statistics,
 0);
 printf("Pearson chi-squared statistic %11.4f\n", chi_squared);
 printf("p-value for Pearson chi-squared %11.4f\n", p_value1);
 printf("degrees of freedom %11d\n", df1);
 printf("G-squared statistic %11.4f\n", g_squared);
 printf("p-value for G-squared %11.4f\n", p_value2);
 printf("degrees of freedom %11d\n", df2);
 imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4, table,
 IMSLS_WRITE_FORMAT, "%11.1f",
 0);
 imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5,
 expected,
 IMSLS_WRITE_FORMAT, "%11.2f",
 0);
 imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n", 5,
 5, chi_squared_contributions,
 IMSLS_WRITE_FORMAT, "%11.2f",
 0);
 imsls_f_write_matrix("* * * Chi-square Statistics * * *\n", 5, 1,
 chi_squared_stats,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
 imsls_f_write_matrix("* * * Table Statistics * * *\n", 23, 5,
 statistics,
 IMSLS_ROW_LABELS, stat_row_labels,
 IMSLS_COL_LABELS, stat_col_labels,
 IMSLS_WRITE_FORMAT, "%9.4f",
 0);
}

525

 Categorical and Discrete Data Analysis contingency_table
Output

Pearson chi-squared statistic 3304.3682
p-value for Pearson chi-squared 0.0000
degrees of freedom 9
G-squared statistic 2781.0188
p-value for G-squared 0.0000
degrees of freedom 9
 * * * Table Values * * *
 1 2 3 4
1 821.0 112.0 85.0 35.0
2 116.0 494.0 145.0 27.0
3 72.0 151.0 583.0 87.0
4 43.0 34.0 106.0 331.0
 * * * Expected Values * * *
 1 2 3 4 5
1 341.69 256.92 298.49 155.90 1053.00
2 253.75 190.80 221.67 115.78 782.00
3 289.77 217.88 253.14 132.21 893.00
4 166.79 125.41 145.70 76.10 514.00
5 1052.00 791.00 919.00 480.00 3242.00
 * * * Contributions to Chi-squared* * *
 1 2 3 4 5
1 672.36 81.74 152.70 93.76 1000.56
2 74.78 481.84 26.52 68.08 651.21
3 163.66 20.53 429.85 15.46 629.50
4 91.87 66.63 10.82 853.78 1023.10
5 1002.68 650.73 619.88 1031.08 3304.37
* * * Chi-square Statistics * * *
Exact mean 9.0028
Exact standard deviation 4.2402
Phi 1.0096
P 0.7105
Cramer’s V 0.5829
 * * * Table Statistics * * *
 statistic standard error std. error t-value testing
 under Ho Ho
Gamma 0.7757 0.0123 0.0149 52.1897
Tau B 0.6429 0.0122 0.0123 52.1897
Tau C 0.6293 0.0121 52.1897
D-Row 0.6418 0.0122 0.0123 52.1897
D-Column 0.6439 0.0122 0.0123 52.1897
Correlation 0.6926 0.0128 0.0172 40.2669
Spearman 0.6939 0.0127 0.0127 54.6614
GK tau rows 0.3420 0.0123
GK tau cols. 0.3430 0.0122
U - sym. 0.3171 0.0110
U - rows 0.3178 0.0110
U - cols. 0.3164 0.0110
526

 Categorical and Discrete Data Analysis contingency_table
Lambda-sym. 0.5373 0.0124
Lambda-row 0.5374 0.0126
Lambda-col. 0.5372 0.0126
l-star-rows 0.5506 0.0136
l-star-col. 0.5636 0.0127
Lin. trend
Kruskal row 1561.4861 3.0000
Kruskal col. 1563.0300 3.0000
Kappa 0.5744 0.0111 0.0106 54.3583
McNemar 4.7625 6.0000
McNemar df=1 0.9487 1.0000 0.3459
 p-value
Gamma 0.0000
Tau B 0.0000
Tau C 0.0000
D-Row 0.0000
D-Column 0.0000
Correlation 0.0000
Spearman 0.0000
GK tau rows
GK tau cols.
U - sym.
U - rows
U - cols.
Lambda-sym.
Lambda-row
Lambda-col.
l-star-rows
l-star-col.
Lin. trend
Kruskal row 0.0000
Kruskal col. 0.0000
Kappa 0.0000
McNemar 0.5746
McNemar df=1 0.3301

Warning Errors
IMSLS_DF_GT_30 The degrees of freedom for “IMSLS_CHI_SQUARED”

are greater than 30. The exact mean, standard devi-
ation, and the normal distribution function should
be used.

IMSLS_EXP_VALUES_TOO_SMALL Some expected values are less than #. Some asymp-
totic p-values may not be good.

IMSLS_PERCENT_EXP_VALUES_LT_5 Twenty percent of the expected values are calcu-
lated less than 5.
527

 Categorical and Discrete Data Analysis exact_enumeration
exact_enumeration
Computes exact probabilities in a two-way contingency table using the total enumeration method.

Synopsis
#include <imsls.h>
float imsls_f_exact_enumeration(int n_rows, int n_columns, float table[], …, 0)

The type double function is imsls_d_exact_enumeration.

Required Arguments
int n_rows (Input)

Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the probability of a more extreme
table where “extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_enumeration (int n_rows, int n_columns, float table[],

IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_CHECK_NUMERICAL_ERROR, float *check,
0)
528

 Categorical and Discrete Data Analysis exact_enumeration
Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probability of the observed table occurring, given that the null hypothesis of independent rows and
columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value represents the probability of a more
extreme table where “extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”. The
p-value is also returned in functional form (see “Return Value”). A table is more extreme if its probabil-
ity (for fixed marginals) is less than or equal to prt.

IMSLS_CHECK_NUMERICAL_ERROR, float *check (Output)
Sum of the probabilities of all tables with the same marginal totals. Parameter check should have a
value of 1.0. Deviation from 1.0 indicates numerical error.

Description
Function imsls_f_exact_enumeration computes exact probabilities for an r × c contingency table for
fixed row and column marginals (a marginal is the number of counts in a row or column), where r = n_rows and
c = n_columns. Let fij denote the count in row i and column j of a table, and let fi∙ and f∙j denote the row and

column marginals. Under the hypothesis of independence, the (conditional) probability of the fixed marginals of
the observed table is given by

where f∙∙ is the total number of counts in the table. Pf corresponds to output argument prt.

A “more extreme” table X is defined in the probabilistic sense as more extreme than the observed table if the con-
ditional probability computed for table X (for the same marginal sums) is less than the conditional probability
computed for the observed table. The user should note that this definition can be considered “two-sided” in the
cell counts.

Because imsls_f_exact_enumeration used total enumeration in computing the probability of a more
extreme table, the amount of computer time required increases very rapidly with the size of the table. Tables with
a large total count f∙∙ or a large value of r × c should not be analyzed using imsls_f_exact_enumeration.

In such cases, try using imsls_f_exact_network.

P f =
∏
i=1

r
f i•!∏

j=1

c
f • j!

f ••!∏
i=1

r
∏
j=1

c
f i j!
529

 Categorical and Discrete Data Analysis exact_enumeration
Example
In this example, the exact conditional probability for the 2 × 2 contingency table

is computed.

#include <stdio.h>
#include <imsls.h>
int main()
{
 float p;
 float table[4] = {8, 12,
 8, 2};
 p = imsls_f_exact_enumeration(2, 2, table, 0);
 printf("p-value = %9.4f\n", p);
}

Output

p-value = 0.0577

8 12
8 2
530

 Categorical and Discrete Data Analysis exact_network
exact_network
Computes Fisher exact probabilities and a hybrid approximation of the Fisher exact method for a two-way contin-
gency table using the network algorithm.

Synopsis
#include <imsls.h>
float imsls_f_exact_network (int n_rows, int n_columns, float table[], ..., 0)

The type double function is imsls_d_exact_network.

Required Arguments
int n_rows (Input)

Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the probability of a more extreme
table where “extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_network (int n_rows, int n_columns, float table[],

IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent,

float expected_minimum,
531

 Categorical and Discrete Data Analysis exact_network
IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, int factor1, int factor2, int max_attempts, int *n_attempts,
0)

Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probability of the observed table occurring given that the null hypothesis of independent rows and
columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value represents the probability of a more
extreme table where “extreme” is in the Neyman-Pearson sense. The p_value is “two-sided”. The p-
value is also returned in functional form (see “Return Value”).

A table is more extreme if its probability (for fixed marginals) is less than or equal to prt.

IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent,
float expected_minimum. (Input)
Parameter expect is the expected value used in the hybrid approximation to Fisher’s exact test
algorithm for deciding when to use asymptotic probabilities when computing path lengths. Parame-
ter percent is the percentage of remaining cells that must have estimated expected values greater
than expect before asymptotic probabilities can be used in computing path lengths. Parameter
expected_minimum is the minimum cell estimated value allowed for asymptotic chi-squared
probabilities to be used.

Asymptotic probabilities are used in computing path lengths whenever percent or more of the
cells in the table have estimated expected values of expect or more, with no cell having expected
value less than expected_minimum. See the Description section for details.

Defaults: expect = 5.0, percent = 80.0, expected_minimum = 1.0

IMSLS_NO_APPROXIMATION,
The Fisher exact test is used. Arguments expect, percent, and expected_minimum are
ignored.

IMSLS_WORKSPACE, int factor1, int factor2, int max_attempts, int *n_attempts
(Input/Output)
The network algorithm requires a large amount of workspace. Some of the workspace requirements
are well-defined, while most of the workspace requirements can only be estimated. The estimate is
based primarily on table size.

Note that these defaults correspond to the “Cochran” condition.
532

 Categorical and Discrete Data Analysis exact_network
Function imsls_f_exact_enumeration allocates a default amount of workspace suitable for
small problems. If the algorithm determines that this initial allocation of workspace is inadequate, the
memory is freed, a larger amount of memory allocated (twice as much as the previous allocation),
and the network algorithm is re-started. The algorithm allows for up to max_attempts attempts to
complete the algorithm.

Because each attempt requires computer time, it is suggested that factor1 and factor2 be set
to some large numbers (like 1,000 and 30,000) if the problem to be solved is large. It is suggested that
factor2 be 30 times larger than factor1. Although imsls_f_exact_enumeration will
eventually work its way up to a large enough memory allocation, it is quicker to allocate enough
memory initially.

The known (well-defined) workspace requirements are as follows: Define f∙∙ = ∑∑fij equal to the sum

of all cell frequencies in the observed table, nt = f∙∙ + 1, mx = max (n_rows, n_columns),

mn = min (n_rows, n_columns), t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1)),
and t2 = max (400 + mx, + 1, n_rows + n_columns + 1).

The following amount of integer workspace is allocated: 3mx + 2mn + t1.

The following amount of float (or double, if using imsls_d_exact_network) workspace is allo-
cated: nt + t2.

The remainder of the workspace that is required must be estimated and allocated based on
factor1 and factor2. The amount of integer workspace allocated is 6n (factor1 + factor2).
The amount of real workspace allocated is n (6factor1 + 2factor2). Variable n is the index for
the attempt, 1 < n ≤ max_attempts.

Defaults: factor1 = 100, factor2 = 3000, max_attempts = 10

Description
Function imsls_f_exact_network computes Fisher exact probabilities or a hybrid algorithm approxima-
tion to Fisher exact probabilities for an r × c contingency table with fixed row and column marginals (a marginal is
the number of counts in a row or column), where r = n_rows and c = n_columns. Let fij denote the count in

row i and column j of a table, and let fi∙ and f∙j denote the row and column marginals. Under the hypothesis of

independence, the (conditional) probability of the fixed marginals of the observed table is given by

where f∙∙ is the total number of counts in the table. Pf corresponds to output argument prt.

P f =
∏
i=1

r
f i•!∏

j=1

c
f • j!

f ••!∏
i=1

r
∏
j=1

c
f i j!
533

 Categorical and Discrete Data Analysis exact_network
A “more extreme” table X is defined in the probabilistic sense as more extreme than the observed table if the con-
ditional probability computed for table X (for the same marginal sums) is less than the conditional probability
computed for the observed table. The user should note that this definition can be considered “two-sided” in the
cell counts.

See Example 1 for a comparison of execution times for the various algorithms. Note that the Fisher exact proba-
bility and the usual asymptotic chi-squared probability will usually be different. (The network approximation is
often 10 times faster than the Fisher exact test, and even faster when compared to the total enumeration
method.)

Examples

Example 1

The following example demonstrates and compares the various methods of computing the chi-squared p-value
with respect to accuracy and execution time. As seen in the output of this example, the Fisher exact probability
and the usual asymptotic chi-squared probability (generated using function imsls_f_contingency_table)
can be different. Also, note that the network algorithm with approximation can be up to 10 times faster than the
network algorithm without approximation, and up to 100 times faster than the total enumeration method.

#include <stdio.h>
#include <imsls.h>
int main()
{
 int n_rows = 3;
 int n_columns = 5;
 float p;
 float table[15] = {20, 20, 0, 0, 0,
 10, 10, 2, 2, 1,
 20, 20, 0, 0, 0};
 double a, b;
 printf("Asymptotic Chi-Squared p-value\n");
 p = imsls_f_contingency_table(n_rows, n_columns, table, 0);
 printf("p-value = %9.4f\n", p);
 printf("\nNetwork Algorithm with Approximation\n");
 a = imsls_ctime();
 p = imsls_f_exact_network(n_rows, n_columns, table, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);
 printf("\nNetwork Algoritm without Approximation\n");
 a = imsls_ctime();
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
534

 Categorical and Discrete Data Analysis exact_network
 printf("Execution time = %10.4f\n", b-a);
 printf("\nTotal Enumeration Method\n");
 a = imsls_ctime();
 p = imsls_f_exact_enumeration(n_rows, n_columns, table, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);
}

Output

Asymptotic Chi-Squared p-value
p-value = 0.0323
Network Algorithm with Approximation
p-value = 0.0601
Execution time = 0.0400
Network Algoritm without Approximation
p-value = 0.0598
Execution time = 0.4300
Total Enumeration Method
p-value = 0.0597
Execution time = 3.1400

Example 2

This document example demonstrates the optional keyword IMSLS_WORKSPACE and how different workspace
settings affect execution time. Setting the workspace available too low results in poor performance since the
algorithm will fail, re-allocate a larger amount of workspace (a factor of 10 larger) and re-start the calculations.
(See Test #3, for which n_attempts is returned with a value of 2.) Setting the workspace available very large will
provide no improvement in performance.

#include <stdio.h>
#include <imsls.h>
int main()
{
 int n_rows = 3;
 int n_columns = 5;
 float p;
 float table[15] = {20, 20, 0, 0, 0,
 10, 10, 2, 2, 1,
 20, 20, 0, 0, 0};
 double a, b;
 int i, n_attempts, simulation_size = 10;
 printf("Test #1, factor1 = 1000, factor2 = 30000\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
535

 Categorical and Discrete Data Analysis exact_network
 IMSLS_WORKSPACE, 1000, 30000, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);
 printf("\nTest #2, factor1 = 100, factor2 = 3000\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 100, 3000, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);
 printf("\nTest #3, factor1 = 10, factor2 = 300\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 10, 300, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);
}

Output

Test #1, factor1 = 1000, factor2 = 30000
n_attempts = 1
Execution time = 4.3700
Test #2, factor1 = 100, factor2 = 3000
n_attempts = 1
Execution time = 4.2900
Test #3, factor1 = 10, factor2 = 300
n_attempts = 2
Execution time = 8.3700

Warning Errors
IMSLS_HASH_TABLE_ERROR_2 The value “ldkey” = # is too small. “ldkey” is calcu-

lated as “factor1”*pow(10,”n_attempt”−1) ending
this execution attempt.

IMSLS_HASH_TABLE_ERROR_3 The value “ldstp” = # is too small. “ldstp” is calcu-
lated as “factor2”*pow(10,”n_attempt”−1) ending
this execution attempt.
536

 Categorical and Discrete Data Analysis exact_network
Fatal Errors
IMSLS_HASH_TABLE_ERROR_1 The hash table key cannot be computed because

the largest key is larger than the largest represent-
able integer. The algorithm cannot proceed.
537

 Categorical and Discrete Data Analysis categorical_glm
categorical_glm
Analyzes categorical data using logistic, Probit, Poisson, and other generalized linear models.

Synopsis
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class, int n_continuous,

int model, float x[], ..., 0)

The type double function is imsls_d_categorical_glm.

Required Arguments
int n_observations (Input)

Number of observations.

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data. The six models are as follows:

model Relationship*
PDF of Response
Variable

0 Exponential Poisson

1 Logistic Negative Binomial

2 Logistic Logarithmic

3 Logistic Binomial

4 Probit Binomial

5 Log-log Binomial
538

 Categorical and Discrete Data Analysis categorical_glm
* Relationship between the parameter, θ or λ, and a linear model of the explanatory variables, X β.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m containing data for the
independent variables, dependent variable, and optional parameters.

The columns must be ordered such that the first n_class columns contain data for the class vari-
ables, the next n_continuous columns contain data for the continuous variables, and the next
column contains the response variable. The final (and optional) m − 1 columns contain the optional
parameters.

Return Value
An integer value indicating the number of estimated coefficients (n_coefficients) in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class, int n_continuous,

int model, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_DIST_PARAMETER, int ipar,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy,
IMSLS_EPS, float eps,
IMSLS_TOLERANCE, float tolerance,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects,
IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values, float **class_values,

Note that the lower bound of the response variable is 1 for model = 3 and is 0 for all other models.
See the Description section for more information about these models.
539

 Categorical and Discrete Data Analysis categorical_glm
IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of input array x.

Default: x_col_dim = n_class + n_continuous +1
IMSLS_X_COL_FREQUENCIES, int ifrq (Input)

Column number ifrg of x containing the frequency of response for each observation.

IMSLS_X_COL_FIXED_PARAMETER, int ifix (Input)
Column number ifix of x containing a fixed parameter for each observation that is added to the
linear response prior to computing the model parameter. The ‘fixed’ parameter allows one to test
hypothesis about the parameters via the log-likelihoods.
540

 Categorical and Discrete Data Analysis categorical_glm
IMSLS_X_COL_DIST_PARAMETER, int ipar (Input)
Column number ipar of x containing the value of the known distribution parameter for each
observation, where x[i][ipar] is the known distribution parameter associated with the i-th observa-
tion. The meaning of the distributional parameter depends upon model as follows:

Default: When model ≠ 2, each observation is assumed to have a parameter value of 1. When
model = 2, this parameter is not referenced.

IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy (Input)
This keyword allows specification of the variables to be used in the analysis and overrides the default
ordering of variables described for input argument x. Columns are numbered 0 to x_col_dim-1.
To avoid errors, always specify the keyword IMSLS_X_COL_DIM when using this keyword.

Argument iclass is an index vector of length n_class containing the column numbers of x that
correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous containing the column
numbers of x that correspond to continuous variables.

Argument iy indicates the column of x that contains the dependent variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed when the maximum relative
change in any coefficient estimate is less than eps from one iteration to the next, or when the rela-
tive change in the log-likelihood criterion from one iteration to the next is less than eps / 100.0.

Default: eps = , where ? is the machine precision.

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. When linear dependence is detected, terminal
error IMSLS_RANK_DEFICIENT_FATAL is issued and no results are computed.

model Parameter Meaning of x [i] [ipar]

0 E ln (E) is a fixed intercept to be
included in the linear predictor
(i.e., the offset).

1 S Number of successes required for
the negative binomial distribution.

2 - Not used for this model.

3-5 N Number of trials required for the
binomial distribution.

10 ε
541

 Categorical and Discrete Data Analysis categorical_glm
Computations for a rank deficient model can be forced to continue by specifying a negative toler-
ance. If tolerance is negative, the absolute value of tolerance will be used to determine linear
dependence, but computations will proceed with warning IMSLS_RANK_DEFICIENT_WARN. In
this case the results should be carefully inspected and used with caution.

Default: tolerance = 10ɛ, where ɛ is the machine precision.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the Hessian, stored in
cov, and the Newton step, stored in last_step, at the initial estimates. (The initial estimates must
be input. Use keyword IMSLS_INITIAL_EST_INPUT).

Default: max_iterations = 30

IMSLS_INTERCEPT (input)

or

IMSLS_NO_INTERCEPT (Input)
By default, or if IMSLS_INTERCEPT is specified, the intercept is automatically included in the
model. If IMSLS_NO_INTERCEPT is specified, there is no intercept in the model (unless otherwise
provided for by the user).

IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in the model. Variable
n_var_effects is an array of length n_effects containing the number of variables associated
with each effect in the model. Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + …+ n_var_effects [n_effects − 1].
The first n_var_effects [0] elements give the column numbers of x for each variable in the first
effect. The next n_var_effects [1] elements give the column numbers for each variable in the
second effect. The last n_var_effects [n_effects − 1] elements give the column numbers for
each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL (Input)

or

IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[] (Input)
By default, or if IMSLS_INIT_EST_INTERNAL is specified, then unweighted linear regression is
used to obtain initial estimates. If IMSLS_INITIAL_EST_INPUT is specified, then the
n_coef_input elements of estimates contain initial estimates of the parameters. This requires
that the user knows the number of coefficients in the model prior to the call to
imsls_f_categorical_glm, which can be obtained by calling
imsls_f_regressors_for_glm. The returned value has to be increased by one if optional
argument IMSLS_INTERCEPT is used in the categorical_glm call.
542

 Categorical and Discrete Data Analysis categorical_glm
IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by each classification variable.

Default: max_class = n_observations × n_class
IMSLS_CLASS_INFO, int **n_class_values, float **class_values (Output)

Argument n_class_values is the address of a pointer to the internally allocated array of length
n_class containing the number of values taken by each classification variable; the i-th classification
variable has n_class_values [i] distinct values. Argument class_values is the address of a
pointer to the internally allocated array of length

containing the distinct values of the classification variables in ascending order. The first
n_class_values [0] elements of class_values contain the values for the first classification
variables, the next n_class_values [1] elements contain the values for the second classification
variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[] (Output)
Storage for arrays n_class_values and class_values is provided by the user. See
IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size n_coefficients × 4 containing the
parameter estimates and associated statistics, where n_coefficients can be computed by call-
ing imsls_regressors_for_glm.

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See IMSLS_COEF_STAT.

Column Parameter

0 Coefficient Estimate.

1 Estimated standard deviation of the estimated
coefficient.

2 Asymptotic normal score for testing that the coefficient
is zero.

3 The p-value associated with the normal score in column
2.

∑
i=0

n_class−1
n_class_values i
543

 Categorical and Discrete Data Analysis categorical_glm
IMSLS_CRITERION, float *criterion (Output)
Optimization criterion. The maximized log-likelihood, i.e., the value of the log-likelihood at the final
parameter estimates.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients × n_coefficients containing the estimated asymptotic covariance matrix
of the coefficients. For max_iterations = 0, this is the Hessian computed at the initial parameter
estimates, where n_coefficients can be computed by calling
imsls_regressors_for_glm.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV above.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the means of the design variables.
The array is of length n_coefficients if IMSLS_NO_INTERCEPT is specified, and of length
n_coefficients − 1 otherwise, where n_coefficients can be computed by calling
imsls_regressors_for_glm.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_analysis (Output)
Address of a pointer to the internally allocated array of size n_observations × 5 containing the
case analysis.

Case statistics are computed for all observations except where missing values prevent their
computation.

IMSLS_CASE_ANALYSIS_USER, float case_analysis[] (Output)
Storage for array case_analysis is provided by the user. See IMSLS_CASE_ANALYSIS.

Column Statistic

0 Predicted mean for the observation if model = 0. Other-
wise, contains the probability of success on a single trial.

1 The residual.

2 The estimated standard error of the residual.

3 The estimated influence of the observation.

4 The standardized residual.
544

 Categorical and Discrete Data Analysis categorical_glm
IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length n_coefficients containing the
last parameter updates (excluding step halvings). For max_iterations = 0, last_step contains
the inverse of the Hessian times the gradient vector, all computed at the initial parameter estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length n_observations indicating which
observations are included in the extended likelihood.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See IMSLS_OBS_STATUS.

IMSLS_ITERATIONS, int *n, float **iterations (Output)
Address of a pointer to the internally allocated array of size (max_iterations + 1) × 5 contain-
ing in its first n rows information about the start and each iteration of the analysis.

IMSLS_ITERATIONS_USER, int *n, float iterations[] (Output)
Storage for array iterations is provided by the user. See IMSLS_ITERATIONS.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the following arrays or col-
umns of x: ipar, iy, ifrq, ifix, iclass, icontinuous, or indices_effects.

obs_status [i] Status of observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood
because it contains at least one missing value in
x.

2 Observation i is not in the likelihood. Its esti-
mated parameter is infinite.

Column Statistic

0 Method of iteration. Equal to 0 if a Q-N step
was taken. Equal to 1 if a N-R step was taken.

1 Iteration number.

2 Step Size.

3 Maximum scaled coefficient update.

4 Log-likelihood.
545

 Categorical and Discrete Data Analysis categorical_glm
Remarks
1. Dummy variables are generated for the classification variables as follows: An ascending list of all dis-

tinct values of each classification variable is obtained and stored in class_values. Dummy
variables are then generated for each but the last of these distinct values. Each dummy variable is
zero unless the classification variable equals the list value corresponding to the dummy variable, in
which case the dummy variable is one. See keyword IMSLS_LEAVE_OUT_LAST for optional argu-
ment IMSLS_DUMMY in function imsls_f_regressors_for_glm (Chapter 2,Regression).

2. The “product” of a classification variable with a covariate yields dummy variables equal to the product
of the covariate with each of the dummy variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the usual manner. Each
dummy variable associated with the first classification variable multiplies each dummy variable asso-
ciated with the second classification variable. The resulting dummy variables are such that the index
of the second classification variable varies fastest.

Description
Function imsls_f_categorical_glm uses iteratively re-weighted least squares to compute (extended)
maximum likelihood estimates in some generalized linear models involving categorized data. One of several mod-
els, including the probit, logistic, Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation; or, through the use of optional
argument IMSLS_X_COL_FREQUENCIES, each row can represent several observations. Also note that classifi-
cation variables and their products are easily incorporated into the models via the usual regression-type
specifications.

The models available in imsls_f_categorical_glm are:

model PDF of the Response Variable Parameterization

0

1

2

3

f y = λyexp −λ / y! λ = N × exp ω + η

f y =
S + y − 1
y − 1 θS 1 − θ y θ =

exp ω + η

1 + exp ω + η

f y = − 1 − θ y
/ y · ln θ θ =

exp ω + η

1 + exp ω + η

f y = N
y θy 1 − θ N−y θ =

exp ω + η

1 + exp ω + η
546

 Categorical and Discrete Data Analysis categorical_glm
Here, Φ denotes the cumulative normal distribution, N and S are known distribution parameters specified for
each observation via the optional argument IMSLS_X_COL_DIST_PARAMETER, and ω is an optional fixed
parameter of the linear response, γi, specified for each observation. (If IMSLS_X_COL_FIXED_PARAMETER is

not specified, then ω is taken to be 0.) Since the log-log model (model = 5) probabilities are not symmetric with
respect to 0.5, quantitatively, as well as qualitatively, different models result when the definitions of “success” and
“failure” are interchanged in this distribution. In this model and all other models involving θ, θ is taken to be the
probability of a “success.”

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are computed. The frequency or the
observation in all but binomial distribution models is taken from vector frequencies. In binomial dis-
tribution models, the frequency is taken as the product of n = parameter [i] and
frequencies [i]. Means are computed as

3. By default, and when IMSLS_INITIAL_EST_INTERNAL is specified, initial estimates of the coef-
ficients are obtained (based upon the observation intervals) as multiple regression estimates relating
transformed observation probabilities to the observation design vector. For example, in the binomial
distribution models, θ may be estimated as

and, when model = 3, the linear relationship is given by

4

5

model PDF of the Response Variable Parameterization

f y = N
y θy 1 − θ N−y

θ = ϕ ω + η

f y = N
y θy 1 − θ N−y θ = 1 − exp −exp ω + η

x─ =
∑ f i xi
∑ f i

θ^ = y i /parameter i
547

 Categorical and Discrete Data Analysis categorical_glm
while if model = 4, Φ−1(θ) = Xβ. When computing initial estimates, standard modifications are made to pre-
vent illegal operations such as division by zero. Regression estimates are obtained at this point, as well as
later, by use of function imsls_f_regression (Chapter 2,Regression). Also, at this step of the compu-
tations, the regression function is used to detect linear dependence in the model, by the method described
for imsls_f_regression.

4. Newton-Raphson iteration for the maximum likelihood estimates is implemented via iteratively re-
weighted least squares. Let

denote the log of the probability of the i-th observation for coefficients β. In the least-squares model, the
weight of the i-th observation is taken as the absolute value of the second derivative of

with respect to

(times the frequency of the observation), and the dependent variable is taken as the first derivative Ψ with
respect to γi, divided by the square root of the weight times the frequency. The Newton step is given by

where all derivatives are evaluated at the current estimate of γ and βn+1 = β − Δβ. This step is computed as
the estimated regression coefficients in the least-squares model. Step halving is used when necessary to
ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient update from one iter-
ation to the next is less than eps or when the relative change in the log-likelihood from one iteration
to the next is less than eps / 100. Convergence is also assumed after max_iterations or when
step halving leads to a step size of less than 0.0001 with no increase in the log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon (1981). Let li (γi) denote the

log-likelihood of the i-th observation evaluated at γi. Then, the standardized residual is computed as

ln θ^ / 1 − θ^ ≈ X β

Ψ xi
T β

Ψ xi
T β

γi = xi
T β

Δβ = (∑ Ψ"(γi)|xixi
T)−1∑Ψ '

(γi)xi
548

 Categorical and Discrete Data Analysis categorical_glm
where

is the value of γi when evaluated at the optimal

The denominator of this expression is used as the “standard error of the residual” while the numerator is
“raw” residual. Following Cook and Weisberg (1982), the influence of the i-th observation is assumed to be

This quantity is a one-step approximation to the change in the estimates when the i-th observation is
deleted. Here, the partial derivatives are with respect to β.

Programming Notes
1. Indicator (dummy) variables are created for the classification variables using function

imsls_f_regressors_for_glm (see Chapter 2,Regression) using keyword
IMSLS_LEAVE_OUT_LAST as the argument to the IMSLS_DUMMY optional argument.

2. To enhance precision, “centering” of covariates is performed if the model has an intercept and
n_observations − n_rows_missing > 1. In doing so, the sample means of the design vari-
ables are subtracted from each observation prior to its inclusion in the model. On convergence, the
intercept, its variance, and its covariance with the remaining estimates are transformed to the uncen-
tered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the first method, the ifrq
column of x contains the frequency of the observation while y is 0 or 1 depending upon whether the
observation is a success or failure. In this case, N (distribution parameter) is always 1. The model is
treated as repeated Bernoulli trials, and interval observations are not possible. A second method for
specifying binomial models is to use y to represent the number of successes in N trials. In this case,
frequencies will usually be 1.

ri =
l ′i γ̂i

l ′i γ̂i

γ̂i

β^

l′i γ̂i
T
l ′ ′ γ̂

−1
l′i γ̂i
549

 Categorical and Discrete Data Analysis categorical_glm
Examples

Example 1

The first example is from Prentice (1976) and involves the mortality of beetles after five hours exposure to eight
different concentrations of carbon disulphide. The table below lists the number of beetles exposed (N) to each
concentration level of carbon disulphide (x, given as log dosage) and the number of deaths which result (y). The
data is given as follows:

The number of deaths at each concentration level are fitted as a binomial response using logit (model = 3), pro-
bit (model = 4), and log-log (model = 5) models. Note that the log-log model yields a smaller absolute log
likelihood (14.81) than the logit model (18.78) or the probit model (18.23). This is to be expected since the
response curve of the log-log model has an asymmetric appearance, but both the logit and probit models are
symmetric about θ = 0.5.

#include <imsls.h>
#include <stdio.h>
int main ()
{

 static float x[8][3] = {
 1.69, 6, 59,
 1.724, 13, 60,
 1.755, 18, 62,
 1.784, 28, 56,
 1.811, 52, 63,
 1.836, 53, 59,
 1.861, 61, 62,
 1.883, 60, 60};

 float *coef_statistics, criterion;
 int n_obs=8, n_class=0, n_continuous=1;
 int n_coef, model=3, ipar=2;
 char *fmt = "%12.4f";

Log Dosage
Number of

Beetles Exposed
Number of

Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60
550

 Categorical and Discrete Data Analysis categorical_glm
 static char *clabels[] = {"", "coefficients", "s.e", "z", "p"};
 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,

 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 3", n_coef,
 4, coef_statistics, IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, clabels,0);

 printf ("\nLog likelihood %f \n", criterion);
 model=4;
 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,

 model, &x[0][0], IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 4", n_coef,
 4, coef_statistics, IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);

 printf ("\nLog likelihood %f \n", criterion);
 model=5;
 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,

 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 5", n_coef,
 4, coef_statistics, IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,clabels,0);

 printf ("\nLog likelihood %f \n", criterion);
}

Output

 Coefficient statistics for model 3
coefficients s.e z p
 -60.7568 5.1876 -11.7118 0.0000
 34.2985 2.9164 11.7607 0.0000
Log likelihood -18.778181
 Coefficient statistics for model 4
coefficients s.e z p
 -34.9441 2.6412 -13.2305 0.0000
 19.7367 1.4852 13.2888 0.0000
Log likelihood -18.232355
551

 Categorical and Discrete Data Analysis categorical_glm
 Coefficient statistics for model 5
coefficients s.e z p
 -39.6133 3.2489 -12.1930 0.0000
 22.0685 1.8047 12.2284 0.0000
Log likelihood -14.807850

Example 2

Consider the use of a loglinear model to analyze survival-time data. Laird and Oliver (1981) investigate patient
survival post heart valve replacement surgery. Surveillance after surgery of the 109 patients included in the study
ranged from 3 to 97 months. All patients were classified by heart valve type (aortic or mitral) and by age (less than
55 years or at least 55 years). The data could be considered as a three-way contingency table where patients are
classified by valve type, age, and survival (yes or no). However, it would be inappropriate to analyze this data using
the standard methodology associated with contingency tables, since this methodology ignores survival time.

Consider a variable, say exposure time (Eij), that is defined as the sum of the length of times patients of each

cross-classification are at risk. The length of time for a patient that dies is the number of months from surgery
until death and for a survivor, the length of time is the number of months from surgery until the study ends or
the patient withdraws from the study. Now we can model the effect of A = age and V = valve type on the expected
number of deaths conditional on exposure time. Thus, for the data (shown in the table below), assume the num-
ber of deaths are independent Poisson random variables with means mij and fit the following model,

where u is the overall mean,

is the effect of age, and

is the effect of the valve type.

Age

Heart Valve Type

Aortic (0) Mitral (1)

< 55 years (Age = 0) Deaths 4 1

Exposure 1259 2082

≥ 55 years (Age = 1) Deaths 7 9

Exposure 1417 1647

log
mi j
Ei j

= u + λi
A + λ j

V

λi
A

λ j
V

552

 Categorical and Discrete Data Analysis categorical_glm
From the coefficient statistics table of the output, note that the risk is estimated to be e1.22 = 3.39 times higher
for older patients in the study. This increase in risk is significant (p = 0.02). However, the decrease in risk for the

mitral valve patients is estimated to be e−0.33 = 0.72 times that of the aortic valve patients and this risk is not sig-
nificant (p = 0.45).

#include <imsls.h>
int main ()
{
 int nobs = 4;
 int n_class = 2;
 int n_cont = 0;
 int model = 0;
 float x[16] = {
 4, 1259, 0, 0,
 1, 2082, 0, 1,
 7, 1417, 1, 0,
 9, 1647, 1, 1
 };
 int iclass[2] = {2, 3};
 int icont[1] = {-1};
 int n_coef;
 float *coef;
 char *clabels[5] = {"", "coefficient", "std error", "z-statistic", "p-value"};
 char *fmt = "%10.6W";
 n_coef = imsls_f_categorical_glm(nobs, n_class, n_cont, model, x,
 IMSLS_COEF_STAT, &coef,
 IMSLS_X_COL_VARIABLES, iclass, icont, 0,
 IMSLS_X_COL_DIST_PARAMETER, 1,
 0);
 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef,
 IMSLS_COL_LABELS, clabels, IMSLS_ROW_NUMBER_ZERO,
 IMSLS_WRITE_FORMAT, fmt, 0);
}

Output

 Coefficient Statistics
 coefficient std error z-statistic p-value
0 -5.4210 0.3456 -15.6837 0.0000
1 -1.2209 0.5138 -2.3763 0.0177
2 0.3299 0.4382 0.7528 0.4517
553

 Categorical and Discrete Data Analysis categorical_glm
Warning Errors

Fatal Errors

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is assumed.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is assumed.

IMSLS_RANK_DEFICIENT_WARN The model is rank deficient (rank =#). Computa-
tions will proceed per setting of IMSLS_TOLERANCE.
Check results for accuracy.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified and
“n_coef_input” = #. The model specified requires
coefficients.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the classification
variables exceeds “max_class” = #.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct
values for each classification variable must be
greater than one.

IMSLS_NMAX_EXCEEDED The number of observations to be deleted has
exceeded “lp_max” = #. Rerun with a different
model or increase the workspace.

IMSLS_RANK_DEFICIENT_TERM The model is rank deficient (rank =#). No solution
will be computed. Refer to the documentation of
optional argument IMSLS_TOLERANCE for other
options.
554

 Categorical and Discrete Data Analysis logistic_regression
logistic_regression

more...

Fit a binomial or multinomial logistic regression model using iteratively re-weighted least squares.

Synopsis
#include <imsls.h>
float *imsls_f_logistic_regression (int n_observations, int n_independent,

int n_classes, float x[], float y[], ..., 0)

The type double function is imsls_d_logistic_regression.

Required Arguments
int n_observations (Input)

The number of observations.

int n_independent (Input)
The number of independent variables.

int n_classes (Input)
The number of discrete outcomes, or classes.

float x[] (Input)
An array of length n_observations × n_independent containing the values of the indepen-
dent variables corresponding to the responses in y.

float y[] (Input)
An array of length n_observations × n_classes containing the binomial (n_classes = 2) or
multinomial (n_classes>2) counts per class. In an alternate format, y is an array of length
n_observations × (n_classes - 1) containing the counts for all but one class. The missing
class is treated as the reference class. The optional argument GROUP_COUNTS specifies this format
for y. In another alternative format, y is an array of length n_observations containing the class
id’s. See optional argument IMSLS_GROUPS.
555

 Categorical and Discrete Data Analysis logistic_regression
Return Value
Pointer to an array of length n_coefficients × n_classes containing the estimated coefficients. The func-
tion fits a full model, where n_coefficients = 1 + n_independent. The optional arguments
IMSLS_NO_INTERCEPT, IMSLS_X_INDICES, and IMSLS_X_INTERACTIONS may be used to specify dif-
ferent models. Note that the last column (column n_classes) represents the reference class and is set to all
zeros.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_logistic_regression (intn_observations, int n_independent,

int n_classes, float x[], float y[],

IMSLS_GROUP_COUNTS, or
IMSLS_GROUPS,
IMSLS_COLUMN_WISE,
IMSLS_FREQUENCIES, intfrequencies[],
IMSLS_REFERENCE_CLASS, int ref_class,
IMSLS_NO_INTERCEPT,
IMSLS_X_INDICES, int n_xin, int xin[],
IMSLS_X_INTERACTIONS, int n_xinteract, int xinteract[],
IMSLS_TOLERANCE, float tolerance,
IMSLS_MAX_ITER, int max_iter,
IMSLS_INIT_INPUT, int init,
IMSLS_PREV_RESULTS, Imsls_f_model *prev_model,
IMSLS_NEXT_RESULTS, Imsls_f_model **next_model,
IMSLS_COEFFICIENTS, float coefficients[],
IMSLS_LRSTAT, float *lrstat,
0)

Optional Arguments
IMSLS_GROUP_COUNTS (Input)

or
556

 Categorical and Discrete Data Analysis logistic_regression
IMSLS_GROUPS (Input)
These optional arguments specify the format of the input array y. If IMSLS_GROUP_COUNTS is
present, y is of length n_observations × (n_classes - 1), and contains counts for all but
one of the classes for each observation. The missing class is treated as the reference class.

If IMSLS_GROUPS is present, the input array y is of length n_observations, and y[i] contains
the group or class number to which the observation belongs. In this case, frequencies[i] is set
to 1 for all observations.

Default: y is n_observations × (n_classes), and contains counts for all the classes.

IMSLS_COLUMN_WISE (Input)
If present, the input arrays are column-oriented. That is, contiguous elements in x are values of the
same independent variable, or column, except at multiples of n_observations.

Default: Input arrays are row-oriented.

IMSLS_FREQUENCIES, intfrequencies[] (Input)
An array of length n_observations containing the number of replications or trials for each of the
observations. This argument is required if IMSLS_GROUP_COUNTS is specified and any element of
y > 1.

Default: frequencies[i] = 1.

IMSLS_REFERENCE_CLASS, intref_class (Input)
Number specifying which class or outcome category to use as the reference class. See the
Description section for details.

Note that the last column of coefficients always represents the reference class. So when
ref_class < n_classes, columns ref_class and n_classes are swapped for the output
coefficients, i.e. coefficients for class n_classes will be returned in column ref_class of
coefficients. For example, if ref_class = 1 and n_classes = 3, the first column of
coefficients contains the coefficients for class 3 (n_classes), the second column contains
the coefficients for class 2, and the third column contains all zeros for the reference class.

Default: ref_classes=n_classes
IMSLS_NO_INTERCEPT (Input)

If present, the model will not include an intercept term.

Default: The intercept term is included.

IMSLS_X_INDICES, (Input)
An array of length n_xin providing the column indices of x that correspond to the independent
variables the user wishes to be included in the logistic regression model. For example, suppose there
are five independent variables x0, x1, …, x4. To fit a model that includes only x2 and x3, set
n_xin = 2, xin[0] = 2, and xin[1] = 3.
557

 Categorical and Discrete Data Analysis logistic_regression
Default: All n_independent variables are included.

IMSLS_X_INTERACTIONS, (Input)
An array of length n_xinteract × 2 providing pairs of column indices of x that define the interac-
tion terms in the model. Adjacent indices should be unique. For example, suppose there are two
independent variables x0 and x1. To fit a model that includes their interaction term, x0x1, set
n_xinteract = 1, xinteract[0] = 0, and xinteract[1] = 1.

Default: No interaction terms are included.

IMSLS_TOLERANCE, float tolerance (Input)
Convergence error criteria. Iteration completes when the normed difference between successive
estimates is less than tolerance or max_iter iterations are reached.

Default: tolerance = 100.00 × imsls_f_machine(4)
IMSLS_MAX_ITER, intmax_iter (Input)

The maximum number of iterations.

Default: max_iter = 20

IMSLS_INIT_INPUT, intinit (Input)
init must be 0 or 1. If init = 1, initial values for the coefficient estimates are provided in the user
array coefficients. If init = 0, a default is set within the function. The default setting is the
zero vector.

Default: init = 0

IMSLS_PREV_RESULTS, Imsls_f_model *prev_model (Input)
Pointer to a structure of type Imsls_f_model containing information about a previous logistic regres-
sion fit. The model is combined with the fit to new data or to IMSLS_NEXT_RESULTS, if provided.

IMSLS_NEXT_RESULTS, Imsls_f_model **next_model (Input/Output)
Address of a pointer to a structure of type Imsls_f_model. If present and NULL, the structure is inter-
nally allocated and on output contains the model information. If present and not NULL, its contents
are combined with the fit to new data or to IMSLS_PREV_RESULTS, if provided. The combined
results are returned in next_model.

IMSLS_COEFFICIENTS, floatcoefficients[] (Input/Output)
Storage for the coefficient array of length n_coefficients × n_classes is provided by the
user. When init = 1, coefficients should contain the desired initial values of the estimates.

IMSLS_LRSTAT, float*lrstat (Output)
The value of the likelihood ratio test statistic.
558

 Categorical and Discrete Data Analysis logistic_regression
Description
Function imsls_f_logistic_regression fits a logistic regression model for discrete dependent variables
with two or more mutually exclusive outcomes or classes. For a binary response y, the objective is to model the
conditional probability of success, π1 (x) = Pr[y = 1∣ x], where x = (x1, x2, …, xp)' is a realization of pindependent

variables. Logistic regression models the conditional probability, , using the cdf of the logistic distribution.
In particular,

where

and

are unknown coefficients that are to be estimated.

Solving for the linear component η1 results in the log-odds or logittransformation of π1 (x):

Given a set of N observations (yi, xi), where yi follows a binomial (n, π) distribution with parameters n = 1 and

π = π1 (xi), the likelihood and log-likelihood are, respectively,

The log-likelihood in terms of the parameters, {β01, β1}, is therefore

where

π1 x

π1(x) =
exp(η1)
1 + exp(η1)

≡ 1
1 + exp(− η1)

η1 = β01 + x
Tβ1

β01, β1 = (β11, β12, … β1p) ′

logit(π1(x)) = log
π1(x)
1 − π1(x)

= η1

L =∏
i=1

N

π(xi)
yi(1 − π(xi))

1−yi

l = ∑
i=1

N
yilog(

π(xi)
1 − π(xi)

) + log(1 − π(xi))

l(β0,β1) =∑
i=1

N

yi ηi1 − log(1 + exp(ηi1))
559

 Categorical and Discrete Data Analysis logistic_regression
With a binary outcome, only one probability needs to be modeled. The second probability can be obtained from
the constraint, π1 (x) + π2(x) = 1. If each yi is the number of successes in ni independent trials, the log-likelihood

becomes

or

See optional argument IMSLS_FREQUENCIES to set frequencies ni > 1.

To test the significance of the model, the log-likelihood of the fitted model is compared to that of an inter-
cept-only model. In particular, G = -2 (l(β01) - l(β01, β1)) is a likelihood-ratio test statistic and under the null

hypothesis, H0 : β11 = β12 = … = β1p = 0, G is distributed as chi-squared with p-1 degrees of freedom. A significant

result suggests that at least one parameter in the model is non-zero. See Hosmer and Lemeshow (2000) for fur-
ther discussion.

In the multinomial case, the response vector is yi = (yi1, yi2, …, yiK)', where yik = 1 when the i-th observation

belongs to class kand yik = 0, otherwise. Furthermore, because the outcomes are mutually exclusive,

and π1 (x) + π2 (x) +--- + πK (x) = 1. The last class Kserves as the baseline or reference class in the sense that it is

not modeled directly but found from

If there are multiple trials, ni > 1, then the constraint on the responses is

The log-likelihood in the multinomial case becomes

η1 = β01 + x
Tβ1

l =∑
i=1

N

yilog(
π(xi)
1 − π(xi)

) + nilog(1 − π(xi))

l(β0,β1) =∑
i=1

N

yiηi1 − nilog(1 + exp(ηi1))

∑
k=1

K

yik = 1

πK(x) = 1 −∑
k=1

K−1

πk(x)

∑
k=1

K

yik = ni
560

 Categorical and Discrete Data Analysis logistic_regression
or

The constraint

is handled by setting ηK = 0 for the K-th class, and then the log-likelihood is

Note that for the multinomial case, the log-odds (or logit) is

Note that each of the logits involve the odds ratio of being in class l versus class K, the reference class. Maximum
likelihood estimates can be obtained by solving the score equation for each parameter:

To solve the score equations, the function employs a method known as iteratively re-weighted least squares or IRLS.
In this case the IRLS is equivalent to the Newton-Raphson algorithm (Hastie, et. al., 2009, Thisted, 1988).

Consider the full vector of parameters

the Newton-Raphson iteration is

l(β0l ,βl)l=1
K =∑

i=1

N

∑
l=1

K

yilηil − log ∑
l=1

K

exp(ηil)

l(β0l ,βl)l=1
K =∑

i=1

N

∑
l=1

K

yil (β0l + xi
T βl) − log ∑

l=1

K

exp(β0l + xi
T βl)

∑
k=1

K

πik = 1

l(β0l ,βl)l=1
K−1 =∑

i=1

N

∑
l=1

K−1

yil (β0l + xi
T βl) − log ∑

l=1

K−1

exp(β0l + xi
T βl)

log
πil
πiK = β0l + xi

T βl, l = 1, … K − 1

∂ l β0l,βl

∂ l β jl
= ∑
i=1

N
xi jyil −

xi jexp ηil

1 + ∑
m=1

K−1
exp ηim

= ∑
i=1

N
xi j yil − πil xi

= 0

β = (β01,β11,...βp1,β02,β12,...βp2,...β0K−1,β1K−1,...βpK−1) ′
561

 Categorical and Discrete Data Analysis logistic_regression
where H denotes the Hessian matrix, i.e., the matrix of second partial derivatives defined by

and

and G denotes the gradient vector, the vector of first partial derivatives,

Both the gradient and the Hessian are evaluated at the most recent estimate of the parameters, βn. The iteration
continues until convergence or until maximum iterations are reached. Following the theory of maximum likeli-

hood estimation (Kendall and Stuart, 1979), standard errors are obtained from Fisher’s information matrix (-H)-1
evaluated at the final estimates.

When the IMSLS_NEXT_RESULTS option is specified, the function combines estimates of the same model
from separate fits using the method presented in Xi, Lin, and Chen (2008). To illustrate, let β1and β2be the MLE’s

from separate fits to two different sets of data, and let H1 and H2 be the associated Hessian matrices. Then the

combined estimate,

βn+1 = βn −H−1(βn)G(βn)

∂2l β0l, βl
∂ βkl∂ β jl

= − ∑
i=1

N xi j xikexp ηil ∑
m=1

K
exp ηim − xi j xikexp ηil exp ηil

∑
m=1

K
exp ηim

2

= − ∑
i=1

N
xi j xik pil 1 − pil

∂2l β0l, βl
∂ βkv∂ β jl

= − 1
N ∑
i=1

N −xi j xikexp ηil exp ηiv

∑
l=1

K
exp ηil

2 = 1
N ∑
i=1

N xi j xikexp ηil exp ηiv

∑
l=1

K
exp ηil

2 =

= 1
N ∑
i=1

N
xi j xik pil piv

∂ l β0l, βl
∂ l β jl
562

 Categorical and Discrete Data Analysis logistic_regression
approximates the MLE of the combined data set. The model structure, Imsls_f_model**next_model contains
the combined estimates as well as other elements. See Table 1: Imsls_f_model Data Structure below.

Remarks
Iteration stops when the estimates converge within tolerance, when maximum iterations are reached, or when
the gradient becomes within tolerance of 0, whichever event occurs first. When the gradient converges before
the coefficient estimate converges, a condition in the data known as complete or quasi-complete separation may
be present. Separation in the data means that one or more independent variable perfectly predicts the response.
When detected, the function stops the iteration, issues a warning, and returns the current values of the model
estimates. Some of the coefficient estimates and standard errors may not be reliable. Furthermore, overflow
issues may occur before the gradient converges. In such cases the program issues a fatal error.

Table 34 – The Imsls_f_model Data Structure

Parameter Data Type Description

n_obs int Total number of observations. If the model structure has
been updated three times, first with 100 observations, next
with 50, and third with 50, then n_obs = 200.

n_updates int Total number of times the model structure has been
updated. In the above scenario, n_updates = 3.

n_coefs int Number of coefficients in the model. This parameter must
be the same for each model update.

coefs float[] An array of length n_coefs×n_classes containing the
coefficients.

meany float[] An array of length n_classes containing the overall means
for each class variable.

stderrs float[] An array of length n_coefs×(n_classes - 1) containing
the estimated standard errors for the estimated coefficients.

grad float[] An array of length n_coefs×(n_classes - 1) containing
the estimated gradient at the coefficient estimates.

hess float[] An array of length
n_coefs*(n_classes - 1)×n_coefs×(n_classes - 1)
containing the estimated Hessian matrix at the coefficient
estimates.

β = (H1 +H2)
−1(β1

TH1 + β2
TH2)
563

 Categorical and Discrete Data Analysis logistic_regression
Examples

Example 1

The first example is from Prentice (1976) and involves the mortality of beetles after five hours exposure to eight
different concentrations of carbon disulphide. The table below lists the number of beetles exposed (N) to each
concentration level of carbon disulphide (x, given as log dosage) and the number of deaths which result (y):

The number of deaths at each concentration level is the binomial response (n_classes = 2) and the log-dos-
age is the single independent variable. Note that this example illustrates the GROUP_COUNTS format for y and
the optional argument IMSLS_FREQUENCIES.

#include <imsls.h>
int main(){
 float y1[8]={6,13,18,28,52,53,61,60};
 float x1[8]={1.69,1.724,1.755,1.784,1.811,1.836,1.861,1.883};
 float freqs[8]={59,60,62,56,63,59,62,60};
 float *coefs;
 int n_classes=2,n_observations=8,n_independent=1,n_coefs=2;
 coefs=imsls_f_logistic_regression(n_observations,
 n_independent,n_classes,x1,y1,
 IMSLS_GROUP_COUNTS,
 IMSLS_FREQUENCIES,freqs,
 0);
 imsls_f_write_matrix("Coefficient Estimates",
 (n_coefs)*(n_classes-1),1,coefs,0);
}

Output

Coefficient Estimates

Log Dosage
Number of Bee-
tles Exposed Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60
564

 Categorical and Discrete Data Analysis logistic_regression
 1 -60.76
 2 34.30

Example 2

In this example the response is a multinomial random variable with 4 outcome classes. The 3 independent vari-
ables represent 2 categorical variables and 1 continuous variable. A subset of 2 independent variables along with
the intercept defines the logistic regression model. A test of significance is performed.

#include <imsls.h>
#include <stdio.h>
int main(){
 float x[50*3]={
 3, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 2,
 2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 3, 1, 2,
 1, 1, 1, 3, 1, 3, 2, 3, 3, 1,
 25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084,
 52.6796, 44.28342, 40.63523, 51.76094, 26.30368, 20.70230,
 38.74273, 19.47333, 26.42211, 37.05986, 51.67043, 42.40156,
 33.90027, 35.43282, 44.30369, 46.72387, 46.99262, 36.05923,
 36.83197, 61.66257, 25.67714, 39.08567, 48.84341, 39.34391,
 24.73522, 50.55251, 31.34263, 27.15795, 31.72685, 25.00408,
 26.35457, 38.12343, 49.9403, 42.45779, 38.80948, 43.22799,
 41.87624, 48.0782, 43.23673, 39.41294, 23.93346,
 42.8413, 30.40669, 37.77389,
 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1,
 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2,
 2, 2, 1, 1, 2, 1, 1, 2, 1, 1
 };
 float y[50]={
 1, 2, 3, 4, 3, 3, 4, 4, 4, 4, 2, 1, 4, 1, 1, 1, 4, 4, 3, 1,
 2, 3, 3, 4, 2, 3, 4, 1, 2, 4, 3, 4, 4, 1, 3, 4, 4, 2, 3, 4,
 2, 2, 4, 3, 1, 4, 3, 4, 2, 3
 };
 float *coefs,*preds,model_pval,lrstat;
 int xindices[2],dof,n_classes=4,n_observations=50,
 n_independent=3,n_coefs=3;
 Imsls_f_model *model=NULL;
 xindices[0]=0;
 xindices[1]=1;
 coefs=imsls_f_logistic_regression(n_observations,
 n_independent,n_classes,x,y,
 IMSLS_GROUPS,
 IMSLS_COLUMN_WISE,
 IMSLS_X_INDICES,2,xindices,
 IMSLS_LRSTAT,&lrstat,
 IMSLS_NEXT_RESULTS,&model,0);
 dof = n_coefs*(n_classes-1) - (n_classes-1);
 model_pval = 1.0 - imsls_f_chi_squared_cdf(lrstat,dof);
 imsls_f_write_matrix("Coefficients",(n_coefs)*(n_classes-1),
 1,coefs,0);
565

 Categorical and Discrete Data Analysis logistic_regression
 imsls_f_write_matrix("Std Errs",n_coefs*(n_classes-1),1,
 model->stderrs,0);
 printf("\nLog-likelihood: %5.2f\n",model->loglike);
 printf("LR test statistic: %5.2f\n%d deg. freedom, "
 "p-value: %5.4f\n",lrstat,dof,model_pval,0);
}

Output

Coefficients
1 2.292
2 0.408
3 -0.111
4 -1.162
5 0.245
6 -0.002
7 -0.067
8 0.178
9 -0.017

 Std Errs
1 2.259
2 0.548
3 0.051
4 2.122
5 0.500
6 0.044
7 1.862
8 0.442
9 0.039
Log-likelihood: -62.92
LR test statistic: 7.68
6 deg. freedom, p-value: 0.2623

Example 3

Example 3 uses the same data as in Example 2and an additional set of 50 observations using the same data gen-
erating process. The model structure includes all 3 independent variables and an intercept, and a single model fit
is approximated from two separate model fits. Example 3 also includes a fit on the full data set for comparison
purposes.

#include <imsls.h>
#include <stdlib.h>
int main(){
 float x1[50 * 3]={
 3, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 2, 2,
 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1,
 1, 3, 1, 3, 2, 3, 3, 1,
 25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084,
 52.6796, 44.28342, 40.63523, 51.76094, 26.30368, 20.70230,
 38.74273, 19.47333, 26.42211, 37.05986, 51.67043, 42.40156,
 33.90027, 35.43282, 44.30369, 46.72387, 46.99262, 36.05923,
 36.83197, 61.66257, 25.67714, 39.08567, 48.84341, 39.34391,
 24.73522, 50.55251, 31.34263, 27.15795, 31.72685, 25.00408,
566

 Categorical and Discrete Data Analysis logistic_regression
 26.35457, 38.12343, 49.9403, 42.45779, 38.80948, 43.22799,
 41.87624, 48.0782, 43.23673, 39.41294, 23.93346,
 42.8413, 30.40669, 37.77389,
 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1,
 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2,
 1, 1, 2, 1, 1, 2, 1, 1
 };
 float x2[50 * 3]={
 1, 1, 3, 3, 2, 3, 3, 3, 2, 1, 1, 1, 1, 3, 3, 2, 2, 3, 3, 2, 3,
 2, 1, 3, 3, 2, 2, 3, 3, 2, 1, 2, 1, 2, 3, 3, 1, 1, 2, 2, 3, 1,
 1, 2, 2, 1, 1, 2, 3, 1,
 35.66064, 26.68771, 23.11251, 58.14765, 44.95038, 42.45634,
 34.97379, 53.54269, 32.57257, 46.91201, 30.93306, 51.63743,
 34.67712, 53.84584, 14.97474, 44.4485, 47.10448, 43.96467,
 55.55741, 36.63123, 32.35164, 55.75668, 36.83637, 46.7913,
 44.24153, 49.94011, 41.91916, 24.78584, 50.79019, 39.97886,
 34.42149, 41.93271, 28.59433, 38.47255, 32.11676, 37.19347,
 52.89337, 34.64874, 48.61935, 33.99104, 38.32489, 35.53967,
 29.59645, 21.14665, 51.11257, 34.20155, 44.40374, 49.67626,
 58.35377, 28.03744,
 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2,
 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2,
 1, 1, 2, 1, 1, 2, 1, 1
 };
 float y1[50]={
 1, 2, 3, 4, 3, 3, 4, 4, 4, 4, 2, 1, 4, 1, 1, 1, 4, 4, 3, 1, 2,
 3, 3, 4, 2, 3, 4, 1, 2, 4, 3, 4, 4, 1, 3, 4, 4, 2, 3, 4, 2, 2,
 4, 3, 1, 4, 3, 4, 2, 3
 };
 float y2[50]={
 1, 4, 1, 4, 1, 1, 3, 1, 2, 4, 3, 1, 3, 2, 4, 4, 4, 2, 3, 2, 1,
 4, 4, 4, 4, 3, 1, 1, 3, 1, 4, 2, 4, 2, 1, 2, 3, 1, 1, 4, 1, 2,
 4, 3, 4, 2, 4, 3, 2, 4
 };
 float x3[100 * 3], y3[100], *coefs;
 int i, j, n_classes=4, n_observations=50;
 int n_independent = 3, n_coefs= 4;
 Imsls_f_model *model1 = NULL, *model12 = NULL, *model3 = NULL;
 /* first call with x1, y1 */
 coefs=imsls_f_logistic_regression(n_observations, n_independent,
 n_classes, x1, y1,
 IMSLS_GROUPS,
 IMSLS_COLUMN_WISE,
 IMSLS_NEXT_RESULTS, &model1,
 0);
 imsls_f_write_matrix("First Model Coefficients:",
 n_coefs * (n_classes - 1), 1, model1->coefs,
 0);
 imsls_f_write_matrix("First Model Standard Errors:",
 n_coefs * (n_classes - 1), 1, model1->stderrs,
 0);
 imsls_free(coefs);
567

 Categorical and Discrete Data Analysis logistic_regression
 /* second call with x2,y2 */
 coefs=imsls_f_logistic_regression(n_observations, n_independent,
 n_classes, x2, y2,
 IMSLS_GROUPS,
 IMSLS_COLUMN_WISE,
 IMSLS_PREV_RESULTS, model1,
 IMSLS_NEXT_RESULTS, &model12,
 0);
 imsls_f_write_matrix("Combined Model Coefficients:",
 n_coefs * (n_classes - 1), 1, model12->coefs,
 0);
 imsls_f_write_matrix("Combined Model Standard Errors:",
 n_coefs * (n_classes - 1), 1, model12->stderrs,
 0);
 /* combine data */
 for(j = 0; j < n_independent; j++){
 for(i=0; i < n_observations; i++){
 y3[i]=y1[i];
 y3[i + n_observations]=y2[i];
 x3[i + j * 2 * n_observations] = x1[i + j * n_observations];
 x3[i + j * 2 * n_observations + n_observations] =
 x2[i + j * n_observations];
 }
 }
 imsls_free(coefs);
 coefs=imsls_f_logistic_regression(2 * n_observations, n_independent,
 n_classes, x3, y3,
 IMSLS_GROUPS,
 IMSLS_COLUMN_WISE,
 IMSLS_NEXT_RESULTS, &model3,
 0);
 imsls_f_write_matrix("Full Data Model Coefficients:",
 n_coefs * (n_classes - 1), 1, model3->coefs,
 0);
 imsls_f_write_matrix("Full Data Model Standard Errors:",
 n_coefs * (n_classes - 1), 1, model3->stderrs,
 0);
}

Output

First Model Coefficients:
 1 1.691
 2 0.350
 3 -0.137
 4 1.057
 5 -1.254
 6 0.242
 7 -0.004
 8 0.115
 9 1.032
 10 0.278
 11 0.016
 12 -1.954
568

 Categorical and Discrete Data Analysis logistic_regression
First Model Standard Errors:
 1 2.389
 2 0.565
 3 0.061
 4 1.025
 5 2.197
 6 0.509
 7 0.047
 8 0.885
 9 2.007
 10 0.461
 11 0.043
 12 0.958
Combined Model Coefficients:
 1 -1.169
 2 0.649
 3 -0.038
 4 0.608
 5 -1.935
 6 0.435
 7 0.002
 8 0.215
 9 -0.193
 10 0.282
 11 0.002
 12 -0.630
Combined Model Standard Errors:
 1 1.489
 2 0.359
 3 0.029
 4 0.588
 5 1.523
 6 0.358
 7 0.030
 8 0.584
 9 1.461
 10 0.344
 11 0.030
 12 0.596
Full Data Model Coefficients:
 1 -1.009
 2 0.640
 3 -0.051
 4 0.764
 5 -2.008
 6 0.436
 7 0.003
 8 0.263
 9 -0.413
 10 0.299
 11 0.004
 12 -0.593
Full Data Model Standard Errors:
 1 1.466
 2 0.350
569

 Categorical and Discrete Data Analysis logistic_regression
 3 0.029
 4 0.579
 5 1.520
 6 0.357
 7 0.029
 8 0.581
 9 1.389
 10 0.336
 11 0.028
 12 0.577

Warning Errors

Fatal Errors

IMSLS_NO_CONV_SEP Convergence did not occur in # iterations.
“tolerance” = #, the error between estimates = #,
and the gradient has norm = #. Adjust “tolerance”
or “max_iter”, or there may be a separation prob-
lem in the data.

IMSLS_EMPTY_INT_RESULTS Intermediate results given to the function are empty
and may be expected to be non-empty in this
scenario.

IMSLS_NO_CONV_OVERFLOW The linear predictor = # is too large and will lead to
overflow when exponentiated. The algorithm fails to
converge.
570

 Categorical and Discrete Data Analysis logistic_reg_predict
logistic_reg_predict

more...

Predict a binomial or multinomial outcome given an estimated model and new values of the independent
variables.

Synopsis
#include <imsls.h>
float *imsls_f_logistic_reg_predict (int n_observations, int n_independent,

int n_classes, float coefs[], float x[], ..., 0)

The type double function is imsls_d_logistic_reg_predict.

Required Arguments
int n_observations (Input)

The number of observations.

int n_independent (Input)
The number of independent variables.

int n_classes (Input)
The number of discrete outcomes, or classes.

float coefs[] (Input)
Array of length n_coefficients × n_classes containing the coefficient estimates of the logis-
tic regression model. n_coefficients is the number of coefficients in the model.

float x[] (Input)
Array of length n_observations × n_independent containing the values of the independent
variables.
571

 Categorical and Discrete Data Analysis logistic_reg_predict
Return Value
Pointer to an array containing the predicted responses. The predicted value is the predicted number of out-
comes in each class for each new observation provided in x. If frequencies[i] = 1 for all observations, then
the return value is equivalent to the predicted probabilities. If the option IMSLS_CONFIDENCE is specified, the
length of the return array is (n_observations × n_classes × 3) and the array includes the lower and upper
prediction limits. Otherwise, the array is of length (n_observations × n_classes). Note that if the data is
column-oriented (see IMSLS_COLUMN_WISE), the return value will also be column-oriented.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_logistic_reg_predict (int n_observations, int n_independent,

int n_classes, float coefs[], float x[],

IMSLS_Y, floaty[],
IMSLS_GROUP_COUNTS, or
IMSLS_GROUPS,
IMSLS_COLUMN_WISE,
IMSLS_FREQUENCIES, int frequencies[],
IMSLS_REFERENCE_CLASS, int ref_class,
IMSLS_NO_INTERCEPT,
IMSLS_X_INDICES, int n_xin, int xin[],
IMSLS_X_INTERACTIONS, int n_xinteract, int xinteract[],
IMSLS_CONFIDENCE, float confid,
IMSLS_MODEL, Imsls_f_model *model,
IMSLS_PREDERR, float*prederr,
IMSLS_RETURN_USER, floatyhat[],
0)

Optional Arguments
IMSLS_Y, floaty[] (Input)

Array containing the actual responses corresponding to the independent variables. If present, the
expected length for y is n_observations × n_classes unless one of IMSLS_GROUPS or
IMSLS_GROUP_COUNTS is also present. IMSLS_Y is required when IMSLS_PREDERR is
requested.

Default: The function expects that y is not given.
572

 Categorical and Discrete Data Analysis logistic_reg_predict
IMSLS_GROUP_COUNTS (Input)

or

IMSLS_GROUPS, (Input)
These optional arguments specify alternative formats of the input array y. If
IMSLS_GROUP_COUNTS is present, y is of length n_observations × (n_classes - 1), and
contains counts for all but one of the classes for each observation. The missing class is treated as the
reference class. If IMSLS_GROUP_COUNTS is present and if any y[i] > 1,
IMSLS_FREQUENCIES is required. If IMSLS_GROUPS is present, the input array y is of length
n_observations and y[i] contains the group number to which the observation belongs. In this
case, frequencies[i] is set to 1 for all observations.

Default: Unless one of the arguments is present, the function expects that y is
n_observations × n_classes and contains counts for all the classes.

IMSLS_COLUMN_WISE, (Input)
If present, the input arrays are column-oriented. That is, contiguous elements in x are values of the
same independent variable, or column, except at multiples of n_observations.

Default: Input arrays are row-oriented.

IMSLS_FREQUENCIES, intfrequencies[] (Input)
Array of length n_observations containing the number of replications or trials for each of the
observations. This argument is required if IMSLS_GROUP_COUNTS is present and if any y[i] > 1.

Default: frequencies[i] = 1.

IMSLS_REFERENCE_CLASS, intref_class (Input)
Number specifying which class or outcome category to use as the reference class. The purpose of
the reference class is explained in the Description section.

Default: ref_class = n_classes.

IMSLS_NO_INTERCEPT (Input)
If present, the model will not include an intercept term.

Default: The intercept term is included.

IMSLS_X_INDICES, int n_xin, int xin[] (Input)
An array of length n_xin providing the variable indices of x that correspond to the independent
variables the user wishes to be included in the logistic regression model.

Default: All n_independent variables are included.

IMSLS_X_INTERACTIONS, int n_xinteract, int xinteract[] (Input)
An array of length n_xinteract × 2 providing pairs of variable indices of x that define the interac-
tion terms in the model. Adjacent indices should be unique.
573

 Categorical and Discrete Data Analysis logistic_reg_predict
Default: No interaction terms are included.

IMSLS_CONFIDENCE, floatconfid (Input)
This value provides the confidence level to use in the calculation of the prediction intervals. If this
argument is present and valid (0 < confid < 100), confid% prediction intervals are provided for
each predicted value.

Default: Prediction intervals are not provided.

IMSLS_MODEL, Imsls_f_model*model (Input)
Pointer to a structure of type Imsls_f_model containing information about the logistic regression fit.
See imsls_f_logistic_regression. Required when IMSLS_CONFIDENCE is present.

Default: Not needed if IMSLS_CONFIDENCE is not present.

IMSLS_PREDERR, float *prederr (Output)
The mean squared prediction error when IMSLS_Y is present.

IMSLS_RETURN_USER, floatyhat[] (Output)
Storage for the return value is provided by the user. See the description of the Return Value above
for details.

Description
Function imsls_f_logistic_reg_predict calculates the predicted outcomes for a binomial or multino-
mial response variable given an estimated logistic regression model and new observations of the independent
variables.

For a binary response y, the objective is to estimate the conditional probability of success,

 , where is a realization of pindependent variables. In particular, the
estimated probability of success

where

and

 are the coefficient estimates. Then . That is, is the expected value of
the response under the estimated model given the values of the independent variables.

π1 x = Pr y = 1∣x x = x1, x2, … xp ′

π̂1(x) =
exp(η̂1)
1 + exp(η̂1)

η̂1 = β
^
01 + x

Tβ^ 1

β
^

01,β
^

1 = β
^

11,β
^

12, … β
^

1p ′ y^ = niπ1 xi y^
574

 Categorical and Discrete Data Analysis logistic_reg_predict
Similarly, for a multinomial response, with class Kthe reference class,

Then

and . If the actual responses are given, the mean squared prediction error is

If requested, prediction intervals are provided for the predicted values by first finding the predic-

tion standard errors of the logits, , and then evaluating

to obtain the upper and lower limits for , where is the upper quantile of the standard normal dis-
tribution. Note that properties of the prediction intervals are only valid when the new observations are inside the
range of the original data used to fit the model. Generally, the model should not be used to extrapolate outside
the range of the original data. See Hosmer and Lemeshow (2000) for further details.

π̂k(x) =
exp η̂ik

∑
l=1

K
exp η̂il

=
exp η̂ik

1 + ∑
l=1

K−1
exp η̂il

π̂K(x) = 1 −∑
l=1

K−1

π̂l x

y^ k = niπk xi

mspe = 1
NK∑

k=1

K

∑
i=1

N

(ŷik − yik)
2

100 1 − α %

η^ ik = β
^

0k + xi
Tβ
^

k

exp η̂ik ± zα/2SE η̂ik

1 + ∑
l=1

K−1
exp η̂il ± zα/2SE η̂il

π^ k xi zα/2 α / 2
575

 Categorical and Discrete Data Analysis logistic_reg_predict
Examples

Example 1

The model fit to the beetle mortality data of Prentice (1976) is used to predict the expected mortality at three new
doses. For the original data, seeExample 1 in imsls_f_logistic_regression.

#include <imsls.h>
#include <stdio.h>
int main(){
 float y1[8]={6, 13, 18, 28, 52, 53, 61, 60};
 float x1[8]={1.69, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, 1.883};
 float x2[3]={1.66, 1.87, 1.71};
 float freqs1[8]={59, 60, 62, 56, 63, 59, 62, 60};
 float freqs2[3]={16, 22, 11};
 float *coefs, *yhat;
 int n_classes=2, n_observations=8, n_independent=1,
 n_coefs=2, i,n_new_observations=3;
 coefs=imsls_f_logistic_regression(n_observations,n_independent,
 n_classes,x1,y1,
 IMSLS_GROUP_COUNTS,
 IMSLS_FREQUENCIES,freqs1,
 0);
 imsls_f_write_matrix("Coefficient Estimates",(n_coefs)*(n_classes-1),
 1,coefs,0);
 yhat=imsls_f_logistic_reg_predict(n_new_observations,n_independent,
 n_classes,coefs,x2,IMSLS_FREQUENCIES,freqs2,0);
 printf("\nDose\t N\tExpected Deaths\n");
 for(i=0;i<n_new_observations;i++){
 printf("%5.2f\t%2.1f\t\t%5.2f\n",
 x2[i],freqs2[i],yhat[2*i]);
 }
}

Output

Coefficient Estimates
 1 -60.76
 2 34.30

Log Dosage
Number of Bee-
tles Exposed Number of Deaths

1.66 16 ??

1.87 22 ??

1.71 11 ??
576

 Categorical and Discrete Data Analysis logistic_reg_predict
Dose N Expected Deaths
1.66 16.0 0.34
1.87 22.0 21.28
1.71 11.0 1.19

Example 2

A logistic regression model is fit to artificial (noisy) data with 4 classes and 3 independent variables and used to
predict class probabilities at 10 new values of the independent variables. Also shown are the mean squared pre-
diction error and upper and lower limits of the 95% prediction interval for each predicted value.

#include <imsls.h>
#include <stdio.h>
int main(){
 float x[50*3]={
 3, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 2,
 2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 3, 1, 2,
 1, 1, 1, 3, 1, 3, 2, 3, 3, 1,
 25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084,
 52.6796, 44.28342, 40.63523, 51.76094, 26.30368, 20.70230,
 38.74273, 19.47333, 26.42211, 37.05986, 51.67043, 42.40156,
 33.90027, 35.43282, 44.30369, 46.72387, 46.99262, 36.05923,
 36.83197, 61.66257, 25.67714, 39.08567, 48.84341, 39.34391,
 24.73522, 50.55251, 31.34263, 27.15795, 31.72685, 25.00408,
 26.35457, 38.12343, 49.9403, 42.45779, 38.80948, 43.22799,
 41.87624, 48.0782, 43.23673, 39.41294, 23.93346,
 42.8413, 30.40669, 37.77389,
 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1,
 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2,
 1, 1, 2, 1, 1, 2, 1, 1
 };
 float y[50]={
 1, 2, 3, 4, 3, 3, 4, 4, 4, 4, 2, 1, 4, 1, 1, 1, 4, 4, 3, 1, 2,
 3, 3, 4, 2, 3, 4, 1, 2, 4, 3, 4, 4, 1, 3, 4, 4, 2, 3, 4, 2, 2,
 4, 3, 1, 4, 3, 4, 2, 3
 };
 float newx[10*3]={
 2, 2, 1, 3, 3, 3, 2, 3, 3, 3,
 25.92869, 51.63245, 25.78432, 39.37948, 24.65058, 45.20084,
 52.6796, 44.28342, 40.63523, 51.76094,
 1, 2, 1, 1, 1, 1, 2, 2, 2, 1
 };
 float newy[10]={
 3, 2, 1, 1, 4, 3, 2, 2, 1, 2
 };
 float *coefs,*yhat,mspe,model_pval,lrstat;
 int i,j,n_classes,n_observations,n_new_obs,n_independent,n_coefs,dof;
 Imsls_f_model *model_info_ptr=NULL;
 n_classes=4;
 n_observations=50;
 n_new_obs=10;
 n_independent=3;
 n_coefs=4;
 coefs=imsls_f_logistic_regression(n_observations,n_independent,
577

 Categorical and Discrete Data Analysis logistic_reg_predict
 n_classes,x,y,
 IMSLS_GROUPS,
 IMSLS_COLUMN_WISE,
 IMSLS_LRSTAT,&lrstat,
 IMSLS_NEXT_RESULTS,&model_info_ptr,
 0);
 yhat=imsls_f_logistic_reg_predict(n_new_obs,n_independent,
 n_classes,coefs,newx,
 IMSLS_Y,newy,
 IMSLS_GROUPS,
 IMSLS_COLUMN_WISE,
 IMSLS_CONFIDENCE,95.0,
 IMSLS_MODEL,model_info_ptr,
 IMSLS_PREDERR,&mspe,
 0);
 dof = n_coefs*(n_classes-1) - (n_classes-1);
 model_pval = 1.0 -
 imsls_f_chi_squared_cdf(lrstat,dof);
 printf("Model Fit Summary:\n");
 printf("Log-likelihood: %5.2f \n",model_info_ptr->loglike);
 printf("LR test statistic: %5.2f\n",lrstat);
 printf("Degrees of freedom: %d\n", dof);
 printf("P-value: %5.4f\n", model_pval);
 printf("\nPrediction Summary:\n");
 printf("Mean squared prediction error: %4.2f\n", mspe);
 printf("\n%Obs Class Estimate Lower Upper\n");
 for(j=0;j<n_new_obs;j++){
 for(i=0;i<n_classes;i++){
 printf(" %d\t%d %4.2f %4.2f %4.2f\n",j+1,i+1,
 yhat[i*3*n_new_obs+j],
 yhat[(i*3+1)*n_new_obs+j],
 yhat[(i*3+2)*n_new_obs+j]);
 }
 }
}

Output

Model Fit Summary:
Log-likelihood: -58.58
LR test statistic: 16.37
Degrees of freedom: 9
P-value: 0.0595
Prediction Summary:
Mean squared prediction error: 0.21
Obs Class Estimate Lower Upper
 1 1 0.26 0.14 0.35
 1 2 0.14 0.06 0.20
 1 3 0.31 0.18 0.36
 1 4 0.29 0.10 0.62
 2 1 0.04 0.01 0.14
 2 2 0.27 0.11 0.39
 2 3 0.12 0.04 0.25
 2 4 0.57 0.22 0.85
 3 1 0.23 0.07 0.38
578

 Categorical and Discrete Data Analysis logistic_reg_predict
 3 2 0.13 0.04 0.20
 3 3 0.28 0.12 0.34
 3 4 0.36 0.08 0.77
 4 1 0.06 0.02 0.14
 4 2 0.16 0.07 0.24
 4 3 0.49 0.28 0.54
 4 4 0.29 0.08 0.63
 5 1 0.34 0.17 0.41
 5 2 0.13 0.06 0.19
 5 3 0.30 0.17 0.34
 5 4 0.22 0.05 0.60
 6 1 0.03 0.00 0.09
 6 2 0.16 0.06 0.24
 6 3 0.53 0.27 0.60
 6 4 0.29 0.07 0.67
 7 1 0.04 0.01 0.13
 7 2 0.27 0.10 0.40
 7 3 0.13 0.04 0.26
 7 4 0.57 0.21 0.86
 8 1 0.14 0.04 0.26
 8 2 0.29 0.12 0.37
 8 3 0.12 0.04 0.21
 8 4 0.46 0.15 0.80
 9 1 0.21 0.08 0.33
 9 2 0.27 0.12 0.35
 9 3 0.10 0.03 0.19
 9 4 0.42 0.14 0.77
 10 1 0.01 0.00 0.05
 10 2 0.15 0.04 0.24
 10 3 0.57 0.23 0.67
 10 4 0.28 0.05 0.73
Mean squared prediction error 0.20958

Warning Errors

Fatal Errors

IMSLS_NO_ACTUALS The average squared prediction error cannot be cal-
culated because no actual “y” values are given.

IMSLS_OVERFLOW The linear predictor = # is too large and will lead to
overflow when exponentiated.
579

 Nonparametric Statistics Functions
Nonparametric Statistics

Functions
One sample tests - Nonparametric Statistics

Sign test. sign_test 582
Wilcoxon rank sum test .wilcoxon_sign_rank 586
Noehter’s test for cyclical trend . noether_cyclical_trend 590
Cox and Stuarts’ sign test for trends in location

and dispersion . cox_stuart_trends_test 594
Tie statistics .tie_statistics 600

Two or more samples
Wilcoxon’s rank sum test .wilcoxon_rank_sum 603
Kruskal-Wallis test . kruskal_wallis_test 609
Friedman’s test .friedmans_test 612
Cochran's Q test . cochran_q_test 617
K-sample trends test .k_trends_test 621
580

 Nonparametric Statistics Usage Notes
Usage Notes
Much of what is considered nonparametric imsls_f_k_trends_test statistics is included in other chapters.
Topics of possible interest in other chapters are: nonparametric measures of location and scale (Chapter 1, Basic
Statistics), nonparametric measures in a contingency table (Chapter 5, Categorical and Discrete Data Analysis),
measures of correlation in a contingency table (Chapter 3, Correlation and Covariance), and tests of goodness of
fit and randomness (Chapter 7, Tests of Goodness of Fit).

Missing Values
Most routines described in this chapter automatically handle missing values (NaN, “Not a Number”; see the
Introduction of this manual).

Tied Observations
Many of the routines described in this chapter contain an argument IMSLS_FUZZ in the input. Observations
that are within fuzz of each other in absolute value are said to be tied. Moreover, in some routines, an observa-
tion within fuzz of some value is said to be equal to that value. In routine imsls_f_wilcoxon_sign_rank,
for example, such observations are eliminated from the analysis. If fuzz = 0.0, observations must be identically
equal before they are considered to be tied. Other positive values of fuzz allow for numerical imprecision or
roundoff error.
581

 Nonparametric Statistics sign_test
sign_test
Performs a sign test.

Synopsis
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_sign_test.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the input data.

Return Value
Binomial probability of n_positive_deviations or more positive differences in
n_observations − n_zero_deviation trials. Call this value probability. If no option is chosen, the null
hypothesis is that the median equals 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[],

IMSLS_PERCENTAGE, float percentage,
IMSLS_PERCENTILE, float percentile,
IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations,
IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations,
0)
582

 Nonparametric Statistics sign_test
Optional Arguments
IMSLS_PERCENTAGE, float percentage (Input)

Value in the range (0, 1). Argument percentile is the 100 × percentage percentile of the
population.

Default: percentage = 0.5

IMSLS_PERCENTILE, float percentile (Input)
Hypothesized percentile of the population from which x was drawn.
Default: percentile = 0.0

IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations (Output)
Number of positive differences x[j − 1] − percentile for j = 1, 2, …, n_observations.

IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations (Output)
Number of zero differences (ties) x[j − 1] − percentile for j = 1, 2, …, n_observations.

Description
Function imsls_f_sign_test tests hypotheses about the proportion p of a population that lies below a
value q, where p corresponds to argument percentage and q corresponds to argument percentile. In
continuous distributions, this can be a test that q is the 100 p-th percentile of the population from which x was
obtained. To carry out testing, imsls_f_sign_test tallies the number of values above q in
n_positive_deviations. The binomial probability of n_positive_deviations or more values above
q is then computed using the proportion p and the sample size n_observations (adjusted for the missing
observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative hypotheses:

 H0: Pr(x ≤ q) ≥ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) < p
Reject H0 if probability is less than or equal to the significance level

 H0: Pr(x ≤ q) ≤ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance level

 H0: Pr (x = q) = p (the p-th quantile is q)
H1: Pr((x ≤ q) < p) or Pr((x ≤ q) > p)
Reject H0 if probability is less than or equal to half the significance level or greater than or equal to
1 minus half the significance level

The assumptions are as follows:
583

 Nonparametric Statistics sign_test
1. They are independent and identically distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater than, and equal to exists in
the observations.

Many uses for the sign test are possible with various values of p and q. For example, to perform a matched sam-
ple test that the difference of the medians of y and z is 0.0, let p = 0.5, q = 0.0, and xi = yi − zi in matched

observations y and z. To test that the median difference is c, let q = c.

Examples

Example 1

This example tests the hypothesis that at least 50 percent of a population is negative. Because 0.18 < 0.95, the
null hypothesis at the 5-percent level of significance is not rejected.

#include <imsls.h>
int main ()
{
 int n_observations = 19;
 float probability;
 float x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,
 -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,
 45.0, -33.0, -45.0, -12.0};
 probability = imsls_f_sign_test(n_observations, x, 0);

 printf("probability = %10.6f\n", probability);
}

Output

probability = 0.179642

Example 2

This example tests the null hypothesis that at least 75 percent of a population is negative. Because 0.923 < 0.95,
the null hypothesis at the 5-percent level of significance is rejected.

#include <imsls.h>
#include <stdio.h>
int main ()
{
 int n_observations = 19;
 int n_positive_deviations, n_zero_deviations;
 float probability;
 float percentage = 0.75;
584

 Nonparametric Statistics sign_test
 float percentile = 0.0;
 float x[19] = {
 92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0, 22.0,
 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0
 };
 probability = imsls_f_sign_test(n_observations, x,
 IMSLS_PERCENTAGE, percentage,
 IMSLS_PERCENTILE, percentile,
 IMSLS_N_POSITIVE_DEVIATIONS, &n_positive_deviations,
 IMSLS_N_ZERO_DEVIATIONS, &n_zero_deviations,
 0);
 printf("probability = %10.6f.\n", probability);
 printf("Number of positive deviations is %d.\n",
 n_positive_deviations);
 printf("Number of ties is %d.\n", n_zero_deviations);
}

Output

probability = 0.922543.
Number of positive deviations is 12.
Number of ties is 0.
585

 Nonparametric Statistics wilcoxon_sign_rank
wilcoxon_sign_rank
Performs a Wilcoxon signed rank test.

Synopsis
#include <imsls.h>
float *imsls_f_wilcoxon_sign_rank (int n_observations, float x[], ..., 0)

The type double function is imsls_d_wilcoxon_sign_rank.

Required Arguments
int n_observations (Input)

Number of observations in x.

float x[] (Input)
Array of length n_observations containing the data.

Return Value
Pointer to an array of length two containing the values described below.

The asymptotic probability of not exceeding the standardized (to an asymptotic variance of 1.0) minimum of
(W+, W-) using method 1 under the null hypothesis that the distribution is symmetric about 0.0.

And, the asymptotic probability of not exceeding the standardized (to an asymptotic variance of 1.0) minimum of
(W+, W-) using method 2 under the null hypothesis that the distribution is symmetric about 0.0.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_wilcoxon_sign_rank (int n_observations, float x[],

IMSLS_FUZZ, float fuzz,
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
IMSLS_N_MISSING, float *n_missing,
586

 Nonparametric Statistics wilcoxon_sign_rank
IMSLS_RETURN_USER, float prob[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the combined samples. A tie is
declared when two observations in the combined sample are within fuzz of each other.

Default value for fuzz is 0.0.

IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length 10 containing the following statistics:

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user.

See IMSLS_STAT.

IMSLS_N_MISSING, float *n_missing, (Output)
Number of missing values in y.

IMSLS_RETURN_USER, float prob[] (Output)
User allocated storage for return values.

See Return Value.

Row Statistics

0 The positive rank sum, W+, using method 1.

1 The absolute value of the negative rank sum, W-, using method 1.

2 The standardized (to an asymptotic variance of 1.0) minimum of
(W+, W-) using method 1.

3 The asymptotic probability of not exceeding stat[2] under the
null hypothesis that the distribution is symmetric about 0.0.

4 The positive rank sum, W+, using method 2.

5 The absolute value of the negative rank sum, W-, using method 2.

6 The standardized (to an asymptotic variance of 1.0) minimum of
(W+, W-) using method 2.

7 The asymptotic probability of not exceeding stat[6] under the
null hypothesis that the distribution is symmetric about 0.0.

8 The number of zero observations.

9 The total number of observations that are tied, and that are not
within fuzz of zero.
587

 Nonparametric Statistics wilcoxon_sign_rank
Description
Function imsls_f_wilcoxon_sign_rank performs a Wilcoxon signed rank test of symmetry about zero. In
one sample, this test can be viewed as a test that the population median is zero. In matched samples, a test that
the medians of the two populations are equal can be computed by first computing difference scores. These dif-
ference scores would then be used as input to imsls_f_wilcoxon_sign_rank. A general reference for the
methods used is Conover (1980).

Function imsls_f_wilcoxon_sign_rank computes statistics for two methods for handling zero and tied
observations. In the first method, observations within fuzz of zero are not counted, and the average rank of tied
observations is used. (Observations within fuzz of each other are said to be tied.) In the second method, obser-
vations within fuzz of zero are randomly assigned a positive or negative sign, and the ranks of tied observations
are randomly permuted.

The W+ and W- statistics are computed as the sums of the ranks of the positive observations and the sum of the
ranks of the negative observations, respectively. Asymptotic probabilities are computed using standard methods
(see, e.g., Conover 1980, page 282).

The W+ and W- statistics may be used to test the following hypotheses about the median, M. In deciding whether
to reject the null hypothesis, use the bracketed statistic if method 2 for handling ties is preferred. Possible null
hypotheses and alternatives are given as follows:

 H0 : M ≤ 0 H1 : M > 0
Reject if stat[0] [or stat[4]] is too large.

 H0 : M ≥ 0 H1 : M < 0
Reject if stat[1] [or stat[5]] is too large.

 H0 : M = 0 H1 : M ≠ 0
Reject if stat[2][or stat[6]] is too small. Alternatively, if an asymptotic test is desired, reject if
2 * stat[3] [or 2 * stat[7]] is less than the significance level.

Tabled values of the test statistic can be found in the references. If possible, tabled values should be used. If the
number of nonzero observations is too large, then the asymptotic probabilities computed by
imsls_f_wilcoxon_sign_rank can be used.

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent.

3. All Xi’s have the same median.

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that X1 > X3).
588

 Nonparametric Statistics wilcoxon_sign_rank
If other assumptions are made, related hypotheses that are more (or less) restrictive can be tested.

Example
This example illustrates the application of the Wilcoxon signed rank test to a test on a difference of two matched
samples (matched pairs) {X1 = 223, 216, 211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A
test that the median difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 from each of the differ-
ences prior to calling wilcoxon_sign_rank. As can be seen from the output, the null hypothesis is rejected.
The warning error will always be printed when the number of observations is 50 or less unless printing is turned
off for warning errors.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float *stat=NULL, *result=NULL;
 int nobs = 7, nmiss;
 float fuzz = .0001;
 float x[] = {-25., -21., -19., -15., -13., -11., -8.};
 result = imsls_f_wilcoxon_sign_rank(nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_FUZZ, fuzz,
 IMSLS_STAT, &stat,
 0);
 printf("Statistic\t\t\tMethod 1\tMethod 2\n");
 printf("W+\t\t\t\t %3.0f\t\t %3.0f\n", stat[0], stat[4]);
 printf("W-\t\t\t\t %3.0f\t\t %3.0f\n", stat[1], stat[5]);
 printf("Standardized Minimum\t\t%6.4f\t\t%6.4f\n", stat[2], stat[6]);
 printf("p-value\t\t\t\t %6.4f\t\t %6.4f\n\n", stat[3], stat[7]);
 printf("Number of zeros\t\t\t%3.0f\n", stat[8]);
 printf("Number of ties\t\t\t%3.0f\n", stat[9]);
 printf("Number of missing\t\t %d\n", nmiss);
}

Output

*** WARNING ERROR 4 from imsls_f_wilcoxon_sign_rank. NOBS = 7. The number
*** of observations, NOBS, is less than 50, and exact
*** tables should be referenced for probabilities.
Statistic Method 1 Method 2
W+....................... 0 0
W-....................... 28 28
Standardized Minimum..... -2.3664 -2.3664
p-value.................. 0.0090 0.0090
Number of zeros.......... 0
Number of ties........... 0
Number of missing........ 0
589

 Nonparametric Statistics noether_cyclical_trend
noether_cyclical_trend
Performs the Noether test for cyclical trend.

Synopsis
#include <imsls.h>
float *imsls_f_noether_cyclical_trend (int n_observations, float x[], ..., 0)

The type double function is imsls_d_noether_cyclical_trend.

Required Arguments
int n_observations (Input)

Number of observations in x. n_observations must be greater than or equal to 3.

float x[] (Input)
Array of length n_observations containing the data in chronological order.

Return Value
Array, p, of length 3 containing the probabilities of stat[1] or more, stat[2] or more, or stat[3] or more
monotonic sequences.

If stat[0] is less than 1, p[0] is set to NaN (not a number).

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_noether_cyclical_trend (int n_observations, float x[],

IMSLS_FUZZ, float fuzz,
IMSLS_STAT, int **stat,
IMSLS_STAT_USER, int stat[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, float p[],
0)
590

 Nonparametric Statistics noether_cyclical_trend
Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the combined samples. A tie is
declared when two observations in the combined sample are within fuzz of each other.

Default value for fuzz is 0.0.

IMSLS_STAT, int **stat (Output)
Address of a pointer to an internally allocated array of length 6 containing the following statistics:

IMSLS_STAT_USER, int stat[] (Output)
Storage for array stat is provided by the user.

See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in X.

IMSLS_RETURN_USER, float p[] (Input)
User allocated array of length 3 containing the return values.

Description
Routine imsls_f_noether_cyclical_trend performs the Noether test for cyclical trend (Noether 1956)
for a sequence of measurements. In this test, the observations are first divided into sets of three consecutive
observations. Each set is then inspected, and if the set is monotonically increasing or decreasing, the count vari-
able is incremented.

Row Statistics

stat[0] The number of consecutive sequences of length three used to
detect cyclical trend when tying middle elements are eliminated
from the sequence, and the next consecutive observation is used.

stat[1] The number of monotonic sequences of length three in the set
defined by stat[0].

stat[2] The number of nonmonotonic sequences where tied threesomes
are counted as nonmonotonic.

stat[3] The number of monotonic sequences where tied threesomes are
counted as monotonic.

stat[4] The number of middle observations eliminated because they were
tied in forming the stat[0] sequences.

stat[5] The number of tied sequences found in forming the stat[2] and
stat[3] sequences. A sequence is called a tied sequence if the
middle element is tied with either of the two other elements.
591

 Nonparametric Statistics noether_cyclical_trend
The count variables, stat[1], stat[2], and stat[3], differ in the manner in which ties are handled. A tie
can occur in a set (of size three) only if the middle element is tied with either of the two ending elements. Tied
ending elements are not considered. In stat[1], tied middle observations are eliminated, and a new set of size
3 is obtained by using the next observation in the sample. In stat[2], the original set of size three is used, and
tied middle observations are counted as nonmonotonic. In stat[3], tied middle observations are counted as
monotonic.

The probabilities of occurrence of the counts are obtained from the binomial distribution with p = 1/3, where p is
the probability that a random sample of size three from a continuous distribution is monotonic. The binomial
sample size is, of course, the number of sequences of size three found (adjusted for ties).

Hypothesis test:

H0 : q = Pr(Xi > Xi−1 > Xi−2) + Pr(Xi < Xi −1 < Xi−2) ≤ 1/3 H1 : q > 1/3

Reject if p[0] (or p[1] or p[2] depending on the method used for handling ties) is less than the significance
level of the test.

Assumption: The observations are independent and are from a continuous distribution.

Example
A test for cyclical trend in a sequence of 1000 randomly generated observations is performed. Because of the
sample used, there are no ties and all three test statistics yield the same result.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float *pvalue=NULL;
 int nobs = 1000, nmiss, *stat = NULL;
 float *x = NULL;
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nobs, 0);
 pvalue = imsls_f_noether_cyclical_trend(nobs, x,
 IMSLS_STAT, &stat,
 IMSLS_N_MISSING, &nmiss,
 0);
 imsls_f_write_matrix("P", 0, 2, pvalue, 0);
 imsls_i_write_matrix("STAT", 0, 5, stat, 0);
 printf("\n n missing = %d\n", nmiss);
}

Output

P
 0 1 2
0.6979 0.6979 0.6979
592

 Nonparametric Statistics noether_cyclical_trend
STAT
 0 1 2 3 4 5
333 107 107 107 0 0
n missing = 0
593

 Nonparametric Statistics cox_stuart_trends_test
cox_stuart_trends_test
Performs the Cox and Stuart sign test for trends in location and dispersion.

Synopsis
#include <imsls.h>
float *imsls_f_cox_stuart_trends_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_ cox_stuart_trends_test.

Required Arguments
int n_observations (Input)

Number of observations in x. n_observations must be greater than or equal to 3.

float x[] (Input)
Array of length n_observations containing the data in chronological order.

Return Value
Array, pstat, of length 8 containing the probabilities. The first four elements of pstat are computed from
two groups of observations.

I pstat[I]
0 Probability of nstat[0] + nstat[2] or more negative

signs (ties are considered negative).

1 Probability of obtaining nstat[1] or more positive signs
(ties are considered negative).

2 Probability of nstat[0] + nstat[2] or more negative
signs (ties are considered positive).

3 Probability of obtaining nstat[1] or more positive signs
(ties are considered positive).
594

 Nonparametric Statistics cox_stuart_trends_test
The last four elements of pstat are computed from three groups of observations.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_cox_stuart_trends_test (int n_observations, float x[],

IMSLS_DISPERSION, int k, int ids,
IMSLS_FUZZ, float fuzz,
IMSLS_STAT, int **nstat,
IMSLS_STAT_USER, int nstat[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, float pstat[],
0)

Optional Arguments
IMSLS_DISPERSION, int k, int ids, (Input)

If IMSLS_DISPERSION is supplied, the Cox and Stuart tests for trends in dispersion are com-
puted. Otherwise, as default, the Cox and Stuart tests for trends in location are computed. k is the
number of consecutive x elements to be used to measure dispersion. If ids is zero, the range is
used as a measure of dispersion. Otherwise, the centered sum of squares is used.

IMSLS_FUZZ, float fuzz (Input)
Value used to determine when elements in x are tied. If |x[i] – x[j]| is less than or equal to
fuzz, x[i] and x[j] are said to be tied. fuzz must be nonnegative. Default value for fuzz is 0.0.

4 Probability of nstat[0] + nstat[2] or more negative
signs (ties are considered negative).

5 Probability of obtaining nstat[1] or more positive signs
(ties are considered negative).

6 Probability of nstat[0] + nstat[2] or more negative
signs (ties are considered positive).

7 Probability of obtaining nstat[1] or more positive signs
(ties are considered positive).
595

 Nonparametric Statistics cox_stuart_trends_test
IMSLS_STAT, int **nstat (Output)
Address of a pointer to an internally allocated array of length 8 containing the following statistics:

IMSLS_STAT_USER, int nstat[] (Output)
Storage for array nstat is provided by the user.

See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in x.

IMSLS_RETURN_USER, float pstat[] (Input)
User allocated array of length 8 containing the return values.

Description
Function imsls_f_cox_stuart_trends_test tests for trends in dispersion or location in a sequence of
random variables depending upon the value of IMSLS_DISPERSION. A derivative of the sign test is used (see
Cox and Stuart 1955).

Location Test
For the location test (Default) with two groups, the observations are first divided into two groups with the mid-
dle observation thrown out if there are an odd number of observations. Each observation in group one is then
compared with the observation in group two that has the same lexicographical order. A count is made of the

i nstat[i]
0 Number of negative differences (two groups).

1 Number of positive differences (two groups).

2 Number of zero differences (two groups).

3 Number of differences used to calculate pstat[0] through
pstat[3] (two groups).

4 Number of negative differences (three groups).

5 Number of positive differences (three groups)

6 Number of zero differences (three groups).

7 Number of differences used to calculate pstat[4] through
pstat[7] (three groups).
596

 Nonparametric Statistics cox_stuart_trends_test
number of times a group-one observation is less than (nstat[0]), greater than (nstat[1]), or equal to
(nstat[2]), its counterpart in group two. Two observations are counted as equal if they are within fuzz of one
another.

In the three-group test, the observations are divided into three groups, with the center group losing observations
if the division is not exact. The first and third groups are then compared as in the two-group case, and the counts
are stored in nstat[4] through nstat[6].

Probabilities in pstat are computed using the binomial distribution with sample size equal to the number of
observations in the first group (nstat[3] or nstat[7]), and binomial probability p = 0.5.

Dispersion Test
The dispersion tests (when optional argument IMSLS_DISPERSION is supplied) proceed exactly as with the
tests for location, but using one of two derived dispersion measures. The input value k is used to define
n_observations/k groups of consecutive observations starting with observation 1. The first k observations
define the first group, the next k observations define the second group, etc., with the last observations omitted if
n_observations is not evenly divisible by k. A dispersion score is then computed for each group as either the
range (ids = 0), or a multiple of the variance (ids ≠ 0) of the observations in the group. The dispersion scores
form a derived sample. The tests proceed on the derived sample as above.

Ties
Ties are defined as occurring when a group one observation is within fuzz of its last group counterpart. Ties
imply that the probability distribution of x is not strictly continuous, which means that Pr(x1 > x2) ≠ 0.5 under

the null hypothesis of no trend (and the assumption of independent identically distributed observations). When
ties are present, the computed binomial probabilities are not exact, and the hypothesis tests will be conservative.

Hypothesis Tests
In the following, i indexes an observation from group 1, while j indexes the corresponding observation in group 2
(two groups) or group 3 (three groups).

 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) < Pr(Xi < Xj)
Hypothesis of upward trend. Reject if pstat[2] (or pstat[6])is less than the significance
level.
597

 Nonparametric Statistics cox_stuart_trends_test
 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if pstat[1] (or pstat[5]) is less than the significance
level.

 H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) ≠Pr(Xi < Xj)
Two tailed test. Reject if 2 max(pstat[1], pstat[2]) (or 2 max(pstat[5], pstat[6]) is less
than the significance level.

Assumptions
1. The observations are a random sample; i.e., the observations are independently and identically

distributed.

2. The distribution is continuous.

Example
This example illustrates both the location and dispersion tests. The data, which are taken from Bradley (1968),
page 176, give the closing price of AT&T on the New York stock exchange for 36 days in 1965. Tests for trends in
location (Default), and for trends in dispersion (IMSLS_DISPERSION) are performed. Trends in location are
found.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float *pstat=NULL;
 int nobs = 36, ids = 0, k = 2, nmiss, *stat = NULL;
 float fuzz = 0.001;
 float x[] = {

 9.5, 9.875, 9.25, 9.5, 9.375, 9.0,
 8.75, 8.625, 8.0, 8.25, 8.25, 8.375,
 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,
 7.75, 7.75, 8.0, 7.5, 7.5, 7.125,
 7.25, 7.25, 7.125, 6.75,6.5, 7.0,
 7.0, 6.75, 6.625, 6.625, 7.125, 7.75};

 pstat = imsls_f_cox_stuart_trends_test(nobs, x,
 IMSLS_FUZZ, fuzz,
 IMSLS_STAT, &stat,
 IMSLS_N_MISSING, &nmiss,
 0);

 imsls_i_write_matrix("nstat", 1, 8, stat, 0);
 imsls_f_write_matrix("pstat", 1, 8, pstat,

 IMSLS_WRITE_FORMAT, "%10.5f", 0);
 printf("n missing = %d\n", nmiss);
598

 Nonparametric Statistics cox_stuart_trends_test
 pstat = imsls_f_cox_stuart_trends_test(nobs, x,
 IMSLS_DISPERSION, k, ids,
 IMSLS_FUZZ, fuzz,
 IMSLS_STAT, &stat,
 IMSLS_N_MISSING, &nmiss,
 0);

 imsls_i_write_matrix("nstat", 0, 7, stat, 0);
 imsls_f_write_matrix("pstat", 0, 7, pstat, 0);
 printf("n missing = %d\n", nmiss);

}

Output

*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is detected
in X.
 NSTAT
0 1 2 3 4 5 6 7
0 17 1 18 0 12 0 12
 PSTAT
 0 1 2 3 4
1.00000 0.00007 1.00000 0.00000 1.00000
 5 6 7
0.00024 1.00000 0.00024
n missing = 0
*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is detected
in X.
 NSTAT
0 1 2 3 4 5 6 7
4 3 2 9 4 2 0 6
 PSTAT
 0 1 2 3 4
0.253906 0.910156 0.746094 0.500000 0.343750
 5 6 7
0.890625 0.343750 0.890625
n missing = 0
599

 Nonparametric Statistics tie_statistics
tie_statistics
Compute tie statistics for a sample of observations.

Synopsis
#include <imsls.h>
float *imsls_f_tie_statistics (int n_observations, float x[], ..., 0)

The type double function is imsls_d_tie_statistics.

Required Arguments
int n_observations (Input)

Number of observations in x.

float x[] (Input)
Array of length n_observations containing the observations. x must be ordered monotonically
increasing with all missing values removed.

Return Value
Array of length 4 containing the tie statistics.

where tj is the number of ties in the j-th group (rank) of ties, and is the number of tie groups in the sample.

ties[0] = ∑
j=1

τ
t j t j − 1 / 2

ties[1] = ∑
j=1

τ
t j t j − 1 t j + 1 / 12

ties[2] = ∑
j=1

τ
t j t j − 1 2t j + 5

ties[3] = ∑
j=1

τ
t j t j − 1 t j − 2

τ

600

 Nonparametric Statistics tie_statistics
Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_tie_statistics (int n_observations, float x[],

IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float ties[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Value used to determine ties. Observations i and j are tied if the successive differences
x[k + 1] – x[k] between observations i and j, inclusive, are all less than fuzz. fuzz must be
nonnegative.

Default: fuzz = 0.0
IMSLS_RETURN_USER, float ties[] (Output)

If specified ties[] returns the tie statistics. Storage for ties[] is provided by the user.

See Return Value.

Description
Function imsls_f_tie_statistics computes tie statistics for a monotonically increasing sample of obser-
vations. “Tie statistics” are statistics that may be used to correct a continuous distribution theory nonparametric
test for tied observations in the data. Observations i and j are tied if the successive differences X(k + 1) - X(k),
inclusive, are all less than fuzz. Note that if each of the monotonically increasing observations is equal to its pre-
decessor plus a constant, if that constant is less than fuzz, then all observations are contained in one tie group.
For example, if fuzz = 0.11, then the following observations are all in one tie group.

 0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example
We want to compute tie statistics for a sample of length 7.

#include <imsls.h>
#include <stdlib.h>
int main()
{

601

 Nonparametric Statistics tie_statistics
 float *ties=NULL;
 int nobs = 7;
 float fuzz = .001;
 float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.};
 ties = imsls_f_tie_statistics(nobs, x,
 IMSLS_FUZZ, fuzz,
 0);
 imsls_f_write_matrix("TIES\n", 1, 4, ties,
 IMSLS_WRITE_FORMAT, "%5.2f",
 0);
}

Output

TIES
0 1 2 3
4.00 2.50 84.00 6.00
602

 Nonparametric Statistics wilcoxon_rank_sum
wilcoxon_rank_sum
Performs a Wilcoxon rank sum test for comparing the medians of two populations.

Synopsis
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int nx, float x[],int ny, float y[], ..., 0)

The type double function is imsls_d_wilcoxon_rank_sum.

Required Arguments
int nx (Input)

Number of observations in the first sample.

float x[] (Input)
Array of length nx containing the first sample.

int ny (Input)
Number of observations in the second sample.

float y[] (Input)
Array of length ny containing the second sample.

Return Value
The two-sided p-value for the Wilcoxon rank sum statistic computed with average ranks used in the case of ties.
The p-value is computed using either exact or approximate calculations depending upon the number of observa-
tions and the optional argument IMSLS_EXACT_P_VALUE.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int nx, float x[], int ny, float y[],

IMSLS_FUZZ, float fuzz,
IMSLS_N_MISSING_X, int *nmissx,
603

 Nonparametric Statistics wilcoxon_rank_sum
IMSLS_N_MISSING_Y, int *nmissy,
IMSLS_MANN_WHITNEY, float *mann_whitney,
IMSLS_EXACT_P_VALUES, float **p,
IMSLS_EXACT_P_VALUES_USER, float p[],
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the combined samples. A tie is
declared when two observations in the combined sample are within fuzz of each other.

Default: fuzz = 100 × imsls_f_machine(4) × max {|xi1|, |xj2|}

IMSLS_N_MISSING_X, int *nmissx (Output)
Pointer to a scalar for the number of missing observations detected in x.

IMSLS_N_MISSING_Y, int *nmissy (Output)
Pointer to a scalar for the number of missing observations detected in y.

IMSLS_MANN_WHITNEY, float *mann_whitney (Output)
Pointer to a scalar for the Mann-Whitney test statistic. Although the test statistics for the Mann-Whit-
ney and Wilcoxon rank sum tests are computed differently, the p-values for these tests are equal
since the Wilcoxon test statistic is a linear transformation of the Mann-Whitney test statistic.

IMSLS_EXACT_P_VALUES, float **p (Output)
Address of a pointer to an internally allocated array of length 3 containing the exact p-values accord-
ing to the following table:

IMSLS_EXACT_P_VALUES_USER, float p[] (Output)
Storage for array p is provided by the user. See IMSLS_EXACT_P_VALUES.

Row p-values

0 The exact left-tailed p-value.

1 The exact right-tailed p-value.

2 The exact two-tailed p-value.
604

 Nonparametric Statistics wilcoxon_rank_sum
IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length 10 containing the following statistics:

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

Description
Function imsls_f_wilcoxon_rank_sum conducts the Wilcoxon rank sum test for identical population dis-
tribution functions. The Wilcoxon test and the Mann-Whitney U test are equivalent. If the difference between the
two populations can be attributed solely to a difference in location, then the Wilcoxon test becomes a test of
equality of the population means (or medians) and is the nonparametric equivalent of the two-sample t-test.
Function imsls_f_wilcoxon_rank_sum obtains ranks in the combined sample after first eliminating miss-
ing values from the data. The rank sum statistic is then computed as the sum of the ranks in the x sample. Three
methods for handling ties are used. (A tie is counted when two observations are within fuzz of each other.)
Method 1 uses the largest possible rank for tied observations in the smallest sample, while Method 2 uses the
smallest possible rank for these observations. Thus, the range of possible rank sums is obtained.

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x
observations) adjusted for ties in such a manner that
W is as small as possible.

1 2 × E(W) − W, where E(W) is the expected value of W.

2 Probability of obtaining a statistic less than or equal to
min{W, 2 × E(W) − W}.

3 W statistic adjusted for ties in such a manner that W is
as large as possible.

4 2 × E(W) − W, where E(W) is the expected value of W,
adjusted for ties in such a manner that W is as large as
possible.

5 probability of obtaining a statistic less than or equal to
min{W, 2 × E(W) − W}, adjusted for ties in such a man-
ner that W is as large as possible.

6 W statistic with average ranks used in case of ties.

7 Estimated standard error of stat [6] under the null
hypothesis of no difference.

8 Standard normal score associated with stat [6].

9 Two-sided p-value associated with stat[8].
605

 Nonparametric Statistics wilcoxon_rank_sum
Method 3 uses the average rank of the tied observations for handling tied observations between samples.
Asymptotic standard normal scores are computed for the W score (based on a variance that has been adjusted
for ties) when average ranks are used (see Conover 1980, p. 217), and the probability associated with the two-
sided alternative is computed.

The p-value returned in stat[9] is the two-sided p-value calculated using the normal approximation with the
normal score returned in stat[8]. The p-value returned by this routine is either the approximate or exact two-
sided p-value depending upon the number of observations and IMSLS_EXACT_P_VALUES. The exact two-
sided p-value is returned when the optional argument IMSLS_EXACT_P_VALUES is used or when both nx
and ny are 25 or less.

Hypothesis Tests
In each of the following tests, the first line gives the hypothesis (and its alternative) under the assumptions 1 to 3
below, while the second line gives the hypothesis when assumption 4 is also true. The rejection region is the
same for both hypotheses and is given in terms of Method 3 for handling ties. Another output statistic should be
used, (stat[0] or stat[3]), if another method for handling ties is desired.

Assumptions
1. Arguments x and y contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater than, or equal to exists
among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for some constant c(i.e., the
distribution of y is, at worst, a translation of the distribution of x).

Test Null and Alternative Hypothesis Action

1 H0:Pr(x < y) = 0.5 vs H1:Pr(x < y) ≠ 0.5 or

H0:E(x) = E(y) vs H1:E(x) ≠ E(y)

Reject if p_value is less than the
user’s significance level of the test.

2 H0:Pr(x < y) ≤ 0.5 vs H1:Pr(x < y) > 0.5

or
H0:E(x) ≥ E(y) vs H1:E(x) < E(y)

Reject if stat[6] is too small or if
p[0] is less than the user’s signifi-
cance level of the test

3 H0:Pr(x < y) ≥ 0.5 vs H1:Pr(x < y) < 0.5

or
H0:E(x) ≤ E(y)) vs H1:E(x) > E(y)

Reject if stat[6] is too large or if
p[1] is less than the user’s signifi-
cance level of the test
606

 Nonparametric Statistics wilcoxon_rank_sum
The p-values are calculated using either the large-sample normal approximation or the exact probability calcula-
tions. This approximate calculation is usually considered adequate when the size of one or both samples is
greater than 50. For smaller samples, the exact probability calculations returned by IMSLS_EXACT_P_VALUES
are recommended.

Example
The following example is taken from Conover (1980, p. 224). It involves the mixing time of two mixing machines
using a total of 10 batches of a certain kind of batter, five batches for each machine. The null hypothesis is not
rejected at the 5-percent level of significance. The warning error is always printed when one or more ties are
detected, unless printing for warning errors is turned off. See function imsls_error_options (Chapter 15,
Utilities).

The statistics are output in the array stat.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int nx = 5;
 int ny = 5;
 float x[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
 float y[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
 float *stat, *p;
 char *labels[10] = {
 "Wilcoxon W statistic",
 "2*E(W) - W",
 "p-value",
 "Adjusted Wilcoxon statistic",
 "Adjusted 2*E(W) - W",
 "Adjusted p-value",
 "W statistics for averaged ranks............",
 "Standard error of W (averaged ranks)",
 "Standard normal score of W (averaged ranks)",
 "Approximate Two-sided p-value of W "
 };
 imsls_f_wilcoxon_rank_sum(nx, x, ny, y,
 IMSLS_EXACT_P_VALUES, &p,
 IMSLS_STAT, &stat,
 0);
 imsls_f_write_matrix("statistics", 10, 1, stat,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%7.3f",
 0);
 printf("Exact Left-Tailed p-value %8.3f\n", p[0]);
 printf("Exact Right-Tailed p-value %8.3f\n", p[1]);
 printf("Exact Two-sided p-value %8.3f\n", p[2]);
}

607

 Nonparametric Statistics wilcoxon_rank_sum
Output

*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.

 statistics
Wilcoxon W statistic 34.000
2*E(W) - W 21.000
p-value 0.110
Adjusted Wilcoxon statistic 35.000
Adjusted 2*E(W) - W 20.000
Adjusted p-value 0.075
W statistics for averaged ranks............ 34.500
Standard error of W (averaged ranks) 4.758
Standard normal score of W (averaged ranks) 1.471
Approximate Two-sided p-value of W 0.141
Exact Left-Tailed p-value 0.937
Exact Right-Tailed p-value 0.079
Exact Two-sided p-value 0.159

Warning Errors

Fatal Errors

IMSLS_AT_LEAST_ONE_TIE At least one tie is detected between the samples.

IMSLS_ALL_X_Y_MISSING Each element of x and/or y is a missing (NaN, Not a
Number) value.
608

 Nonparametric Statistics kruskal_wallis_test
kruskal_wallis_test
Performs a Kruskal-Wallis test for identical population medians.

Synopsis
#include <imsls.h>
float *imsls_f_kruskal_wallis_test (int n_groups, int ni[], float y[], ..., 0)

The type double function is imsls_d_kruskal_wallis_test.

Required Arguments
int n_groups (Input)

Number of groups.

int ni[] (Input)
Array of length n_groups containing the number of responses for each of the n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the responses for each of the
n_groups groups. y must be sorted by group, with the ni[0] observations in group 1 coming
first, the ni[1] observations in group two coming second, and so on.

Return Value
Array of length 4 containing the Kruskal-Wallis statistics.

i stat[i]
0 Kruskal-Wallis H statistic.

1 Asymptotic probability of a larger H under the null hypothe-
sis of identical population medians.

2 H corrected for ties.

3 Asymptotic probability of a larger H (corrected for ties)
under the null hypothesis of identical populations.
609

 Nonparametric Statistics kruskal_wallis_test
Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kruskal_wallis_test (int n_groups, int ni, float y[],

IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Constant used to determine ties in y. If (after sorting) |y[i] – y[i + 1]| is less than or equal to
fuzz, then a tie is counted. fuzz must be nonnegative.

IMSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of Kruskal-Wallis statistics.

Description
The function imsls_f_kruskal_wallis_test generalizes the Wilcoxon two-sample test computed by
routine imsls_f_wilcoxon_rank_sum to more than two populations. It computes a test statistic for testing
that the population distribution functions in each of K populations are identical. Under appropriate assumptions,
this is a nonparametric analogue of the one-way analysis of variance. Since more than two samples are involved,
the alternative is taken as the analogue of the usual analysis of variance alternative, namely that the populations
are not identical.

The calculations proceed as follows: All observations are ranked regardless of the population to which they
belong. Average ranks are used for tied observations (observations within fuzz of each other). Missing observa-
tions (observations equal to NaN, not a number) are not included in the ranking. Let Ri denote the sum of the

ranks in the i-th population. The test statistic H is defined as:

where N is the total of the sample sizes, ni is the number of observations in the i-th sample, and S2 is computed

as the (bias corrected) sample variance of the Ri.

H = 1
S2∑

i=1

K Ri
2

ni −
N N + 1 2

4

610

 Nonparametric Statistics kruskal_wallis_test
The null hypothesis is rejected when stat[3] (or stat[1]) is less than the significance level of the test. If the
null hypothesis is rejected, then the procedures given in Conover (1980, page 231) may be used for multiple com-
parisons. The routine imsls_f_kruskal_wallis_test computes asymptotic probabilities using the chi-
squared distribution when the number of groups is 6 or greater, and a Beta approximation (see Wallace 1959)
when the number of groups is 5 or less. Tables yielding exact probabilities in small samples may be obtained from
Owen (1962).

Example
The following example is taken from Conover (1980, page 231). The data represents the yields per acre of four
different methods for raising corn. Since H = 25.5, the four methods are clearly different. The warning error is
always printed when the Beta approximation is used, unless printing for warning errors is turned off.

#include <imsls.h>
int main()
{
 int ngroup = 4, ni[] = {9, 10, 7, 8};
 float y[] = {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,
 81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91.,
 93., 96., 95., 94., 78., 82., 81., 77., 79., 81., 80.,
 81.};
 float fuzz = .001, stat[4];
 char *rlabel[] = {"H (no ties) =",
 "Prob (no ties) =",
 "H (ties) =",
 "Prob (ties) ="};
 imsls_f_kruskal_wallis_test(ngroup, ni, y,
 IMSLS_FUZZ, fuzz,
 IMSLS_RETURN_USER, stat,
 0);
 imsls_f_write_matrix(" ", 4, 1, stat,
 IMSLS_ROW_LABELS, rlabel,
 0);
}

Output

*** WARNING ERROR from imsls_kruskal_wallis_test. The chi-squared degrees
*** of freedom are less than 5, so the Beta approximation is used.
H (no ties) = 25.46
Prob (no ties) = 0.00
H (ties) = 25.63
Prob (ties) = 0.00
611

 Nonparametric Statistics friedmans_test
friedmans_test
Performs Friedman’s test for a randomized complete block design.

Synopsis
#include <imsls.h>
float imsls_f_friedmans_test (int n_blocks, int n_treatments, float y[], ..., 0)

The type double function is imsls_d_friedmans_test.

Required Arguments
int n_blocks (Input)

Number of blocks.

int n_treatments (Input)
Number of treatments.

float y[] (Input)
Array of size n_blocks × n_treatments containing the observations. The first
n_treatments positions of y[] contain the observations on treatments 1, 2, …, n_treatments
in the first block. The second n_treatments positions contain the observations in the second
block, etc., and so on.

Return Value
The Chi-squared approximation of the asymptotic p-value for Friedman’s two-sided test statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_friedmans_test (n_blocks, int n_treatments, float y[],

IMSLS_FUZZ, fuzz,
IMSLS_ALPHA, float alpha,
IMSLS_STAT, float **stat,
612

 Nonparametric Statistics friedmans_test
IMSLS_STAT_USER, float stat[],
IMSLS_SUM_RANK, float **sum_ranks,
IMSLS_SUM_RANK_USER, float sum_rank[],
IMSLS_DIFFERENCE, float *difference,
0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Constant used to determine ties. In the ordered observations, if |y[i] –y[i + 1]| is less than
or equal to fuzz, then y[i] and y[i + 1] are said to be tied.

Default value is 0.0.

IMSLS_ALPHA, float alpha (Input)
Critical level for multiple comparisons. alpha should be between 0 and 1 exclusive.
Default value is 0.05.

IMSLS_STAT, float **stat (Output)
Address of a pointer to an array of length 6 containing the Friedman statistics. Probabilities reported
are computed under the appropriate null hypothesis.

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

IMSLS_SUM_RANK, float **sum_rank (Output)
Address of a pointer to an array of length n_treatments containing the sum of the ranks of each
treatment.

i stat[i]
0 Friedman two-sided test statistic.

1 Approximate F value for stat[0].

2 Page test statistic for testing the ordered alternative that
the median of treatment i is less than or equal to the
median of treatment i + 1, with strict inequality holding for
some i.

3 Asymptotic p-value for stat[0]. Chi-squared
approximation.

4 Asymptotic p-value for stat[1]. F approximation.

5 Asymptotic p-value for stat[2]. Normal approximation.
613

 Nonparametric Statistics friedmans_test
IMSLS_SUM_RANK_USER, float sum_rank[] (Output)
Storage for array sum_rank is provided by the user.
See IMSLS_SUM_RANK.

IMSLS_DIFFERENCE, float *difference (Output)
Minimum absolute difference in two elements of sum_rank to infer at the alpha level of significance
that the medians of the corresponding treatments are different.

Description
Function imsls_f_friedmans_test may be used to test the hypothesis of equality of treatment effects
within each block in a randomized block design. No missing values are allowed. Ties are handled by using the
average ranks. The test statistic is the nonparametric analogue of an analysis of variance F test statistic.

The test proceeds by first ranking the observations within each block. Let A denote the sum of the squared ranks,
i.e., let

where Rank(Yij) is the rank of the i-th observation within the j-th block, b = n_blocks is the number of blocks,

and k = n_treatments is the number of treatments. Let

where

The Friedman test statistic (stat[0]) is given by:

that, under the null hypothesis, has an approximate chi-squared distribution with k - 1 degrees of freedom. The
asymptotic probability of obtaining a larger chi-squared random variable is returned in stat[3].

A =∑
i=1

k

∑
j=1

b

Rank Yi j
2

B = 1b∑
i=1

k

Ri
2

Ri =∑
j=1

b

Rank Yi j

T =
k − 1 bB − b2k k + 1 2 / 4

A − bk k + 1 2 / 4
614

 Nonparametric Statistics friedmans_test
If the F distribution is used in place of the chi-squared distribution, then the usual oneway analysis of variance F-
statistic computed on the ranks is used. This statistic, reported in stat[1], is given by

and asymptotically follows an F distribution with (k - 1) and (b - 1)(k - 1) degrees of freedom under the null
hypothesis. stat[4] is the asymptotic probability of obtaining a larger F random variable. (If A = B, stat[0]

and stat[1] are set to machine infinity, and the significance levels are reported as k!/(k!)b, unless this computa-
tion would cause underflow, in which case the significance levels are reported as zero.) Iman and Davenport
(1980) discuss the relative advantages of the chi-squared and F approximations. In general, the F approximation
is considered best.

The Friedman T statistic is related both to the Kendall coefficient of concordance and to the Spearman rank cor-
relation coefficient. See Conover (1980) for a discussion of the relationships.

If, at the α = alpha level of significance, the Friedman test results in rejection of the null hypothesis, then an
asymptotic test that treatments i and j are different is given by: reject H0 if |Ri - Rj| > D, where

where t has (b - 1)(k - 1) degrees of freedom. Page’s statistic (stat[2]) is used to test the same null hypothesis
as the Friedman test but is sensitive to a monotonic increasing alternative. The Page test statistic is given by

It is largest (and thus most likely to reject) when the Ri are monotonically increasing.

Assumptions
The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually independent (i.e., the results
within one block have no effect on the results within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each block is equally likely. The alterna-
tive is that at least one of the treatments tends to have larger values than one or more of the other treatments.
The Friedman test is a test for the equality of treatment means or medians.

F =
b − 1 T

b k − 1 − T

D = t1−α/2 2b A − B / b − 1 k − 1 1/2

Q =∑
i=1

k

jRi
615

 Nonparametric Statistics friedmans_test
Example
The following example is taken from Bradley (1968), page 127, and tests the hypothesis that 4 drugs have the
same effects upon a person’s visual acuity.

Five subjects were used.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int n_blocks = 5, n_treatments = 4;
 float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69,.64,

 .62,.41,.57,.28,.35,.65,.57,.53,.60};
 float fuzz = .001, alpha = .05;
 float pvalue, *sum_rank, stat[6], difference;
 pvalue = imsls_f_friedmans_test(n_blocks, n_treatments, y,

 IMSLS_SUM_RANK, &sum_rank,
 IMSLS_STAT_USER, stat,
 IMSLS_DIFFERENCE, &difference,
 0);

 printf("\np value for Friedman's T = %f\n\n", pvalue);
 printf("Friedman's T = %4.2f\n", stat[0]);
 printf("Friedman's F = %4.2f\n", stat[1]);
 printf("Page Test = %5.2f\n", stat[2]);
 printf("Prob Friedman's T = %7.5f\n", stat[3]);
 printf("Prob Friedman's F = %7.5f\n", stat[4]);
 printf("Prob Page Test = %7.5f\n", stat[5]);
 printf("Sum of Ranks = %4.2f %4.2f %4.2f %4.2f\n",

 sum_rank[0], sum_rank[1], sum_rank[2], sum_rank[3]);
 printf("difference = %7.5f\n", difference);

}

Output

P value for Friedman’s T = 0.040566
p value for Friedman's T = 0.040566
Friedman's T = 8.28
Friedman's F = 4.93
Page Test = 111.00
Prob Friedman's T = 0.04057
Prob Friedman's F = 0.01859
Prob Page Test = 0.98495
Sum of Ranks = 16.00 17.00 7.00 10.00
difference = 6.656388

The Friedman null hypothesis is rejected at the α = .05 while the Page null hypothesis is not. (A Page test with a
monotonic decreasing alternative would be rejected, however.) Using sum_rank and difference, one can
conclude that treatment 3 is different from treatments 1 and 2, and that treatment 4 is different from treatment
2, all at the α = .05 level of significance.
616

 Nonparametric Statistics cochran_q_test
cochran_q_test
Performs a Cochran Q test for related observations.

Synopsis
#include <imsls.h>
float imsls_f_cochran_q_test (int n_observations, int n_variables, float x[], .… 0)

The type double function is imsls_d_cochran_q_test.

Required Arguments
int n_observations (Input)

Number of blocks for each treatment.

int n_variables (Input)
Number of treatments.

float x[] (Input)
Array of size n_observations × n_variables containing the matrix of dichotomized data.
There are n_observations readings of zero or one on each of the n_variables treatments.

Return Value
The p-value, p_value, for the Cochran Q statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_cochran_q_test (int n_observations, int n_variables, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Q_STATISTIC, float *q,
0)
617

 Nonparametric Statistics cochran_q_test
Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Number of columns in x.

Default: x_col_dim = n_variables
IMSLS_Q_STATISTIC, float *q (Output)

Cochran’s Q statistic.

Description
Function imsls_f_cochran_q_test computes the Cochran Q test statistic that may be used to determine
whether or not M matched sets of responses differ significantly among themselves. The data may be thought of
as arising out of a randomized block design in which the outcome variable must be success or failure, coded as
1.0 and 0.0, respectively. Within each block, a multivariate vector of 1’s or 0’s is observed. The hypothesis is that
the probability of success within a block does not depend upon the treatment.

Assumptions
1. The blocks are a random sample from the population of all possible blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis
The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.

H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.

H0:pi1 = pi2 = … = pic for each i.

H1:pij ≠ pik for some i, and some j ≠ k.

where c (equal to n_variables) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.
618

 Nonparametric Statistics cochran_q_test
Remarks
1. The input data must consist of zeros and ones only. For example, the data may be pass-fail informa-

tion on n_variables questions asked of n_observations people or the test responses of
n_observations individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with n_variables − 1 degrees
of freedom if n_observations is not too small. n_observations greater than or equal to
5 × n_variables is a conservative recommendation.

Example
The following example is taken from Siegal (1956, p. 164). It measures the responses of 18 women to 3 types of
interviews.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float pq;
 float x[54] = {
 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 0.0, 1.0, 0.0,
 1.0, 0.0, 0.0,
 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0};
 pq = imsls_f_cochran_q_test(18, 3, x,
 0);
 printf("pq = %9.5f\n", pq);
}

Output

pq = 0.00024
619

 Nonparametric Statistics cochran_q_test
Warning Errors

Fatal Errors

IMSLS_ALL_0_OR_1 “x” consists of either all ones or all zeros. “q” is set to
NaN (not a number). “pq” is set to 1.0.

IMSLS_INVALID_X_VALUES “x[#][#]” = #. “x” must consist of zeros and ones
only.
620

 Nonparametric Statistics k_trends_test
k_trends_test
Performs a k-sample trends test against ordered alternatives.

Synopsis
#include <imsls.h>
float *imsls_f_ k_trends_test (int n_groups, int ni[], float y[], ..., 0)

The type double function is imsls_d_ k_trends_test.

Required Arguments
int n_groups (Input)

Number of groups. Must be greater than or equal to 3.

int ni[] (Input)
Array of length n_groups containing the number of responses for each of the n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the responses for each of the
n_groups groups. y must be sorted by group, with the ni[0] observations in group 1 coming
first, the ni[1] observations in group two coming second, and so on.

Return Value
Array of length 17 containing the test results.

i stat[i]
0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null
hypothesis.

2 p-value associated with stat[0].

3 p-value associated with stat[1].

4 Continuity corrected stat[2].

5 Continuity corrected stat [3].
621

 Nonparametric Statistics k_trends_test
Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_k_trends_test (int n_groups, int ni, float y[],

IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments
IMSLS_RETURN_USER, float stat[] (Output)

User defined array for storage of test results.

Description
Function imsls_f_k_trends_test performs a k-sample trends test against ordered alternatives. The alter-
native to the null hypothesis of equality is that F1(X) < F2(X) < ... Fk(X), where F1, F2, etc., are cumulative

distribution functions, and the operator < implies that the less than relationship holds for all values of X. While
the trends test used in k_trends_test requires that the background populations be continuous, ties occur-
ring within a sample have no effect on the test statistic or associated probabilities. Ties between samples are
important, however. Two methods for handling ties between samples are used. These are:

1. Ties are randomly split (stat[0]).

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewness is zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon stat[0].

10 Coefficient of rank correlation based upon stat[1].

11 Total number of ties between samples.

12 The t-statistic associated with stat [2].

13 The t-statistic associated with stat[3].

14 The t-statistic associated with stat [4].

15 The t-statistic associated with stat[5].

16 Degrees of freedom for each t-statistic.

i stat[i]
622

 Nonparametric Statistics k_trends_test
2. Ties are counted in a manner that is unfavorable to the alternative hypothesis (stat[1]).

Computational Procedure
Consider the matrices

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation in the m-th population, and

each matrix Mkm is nk by nm where ni = ni[i]. Let Skm denote the sum of all elements in Mkm. Then, stat[1]

is computed as the sum over all elements in Skm, minus the expected value of this sum (computed as

when there are no ties and the distributions in all populations are equal). In stat[0], ties are broken randomly,
and the element in the summation is taken as 2.0 or 0.0 depending upon the result of breaking the tie.

stat[2] and stat[3] are computed using the t distribution. The probabilities reported are asymptotic
approximations based upon the t statistics in stat[12] and stat[13], which are computed as in Jonckheere
(1954, page 141).

Similarly, stat[4] and stat[5] give the probabilities for stat[14] and stat[15], the continuity cor-
rected versions of stat[2] and stat[3]. The degrees of freedom for each t statistic (stat[16]) are
computed so as to make the t distribution selected as close as possible to the actual distribution of the statistic
(see Jonckheere 1954, page 141).

stat[6], the variance of the test statistic stat[0], and stat[7], the kurtosis of the test statistic, are com-
puted as in Jonckheere (1954, page 138). The coefficients of rank correlation in stat[8] and stat[9] reduce

to the Kendall statistic when there are just two groups.

Exact probabilities in small samples can be obtained from tables in Jonckheere (1954). Note, however, that the t
approximation appears to be a good one.

Assumptions
1. The Xmi for each sample are independently and identically distributed according to a single continu-

ous distribution.

2. The samples are independent.

Mkm = mi j
km =

2 if Xki < Xmj
0 otherwise

∑
k<m
nknm

τ

623

 Nonparametric Statistics k_trends_test
Hypothesis tests
H0 : F1(X) ≥ F2(X) ≥ ... ≥ Fk(X)

H1 : F1(X) < F2(X) < ... < Fk(X)

Reject if stat[2] (or stat[3], or stat[4] or stat[5], depending upon the method used) is too large.

Example
The following example is taken from Jonckheere (1954, page 135). It involves four observations in four indepen-
dent samples.

#include <imsls.h>
int main()
{
 float *stat;
 int n_groups = 4;
 int ni[] = {4, 4, 4, 4};
 char *fmt = "%9.5f";
 char *rlabel[] = {
 "stat[0] - Test Statistic (random)",
 "stat[1] - Test Statistic (null hypothesis)",
 "stat[2] - p-value for stat[0]",
 "stat[3] - p-value for stat[1]",
 "stat[4] - Continuity corrected for stat[2]",
 "stat[5] - Continuity corrected for stat[3]",
 "stat[6] - Expected mean",
 "stat[7] - Expected kurtosis",
 "stat[8] - Total sample size",
 "stat[9] - Rank corr. coef. based on stat[0] ...",
 "stat[10]- Rank corr. coef. based on stat[1] ...",
 "stat[11]- Total number of ties",
 "stat[12]- t-statistic associated w/stat[2]",
 "stat[13]- t-statistic asscoiated w/stat[3]",
 "stat[14]- t-statistic associated w/stat[4]",
 "stat[15]- t-statistic asscoiated w/stat[5]",
 "stat[16]- Degrees of freedom"
 };
 float y[] = {19., 20., 60., 130., 21., 61., 80., 129.,
 40., 99., 100., 149., 49., 110., 151., 160.};
 stat = imsls_f_k_trends_test(n_groups, ni, y,
 0);
 imsls_f_write_matrix("stat", 17, 1, stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_ROW_LABELS, rlabel,
 0);
}

624

 Nonparametric Statistics k_trends_test
Output

stat(0) - Test statistic (random) 46.00000
stat(1) - Test statistic (null hypothesis) .. 46.00000
stat(2) - p-value for stat(0) 0.01483
stat(3) - p-value for stat(1) 0.01483
stat(4) - Continuity corrected stat(2) 0.01683
stat(5) - Continuity corrected stat(3) 0.01683
stat(6) - Expected mean 458.66666
stat(7) - Expected kurtosis -0.15365
stat(8) - Total sample size 16.00000
stat(9)- Rank corr. coef. based on stat(0) . 0.47917
stat(10)- Rank corr. coef. based on stat(1) . 0.47917
stat(11)- Total number of ties 0.00000
stat(12)- t-statistic associated w/stat(2) .. 2.26435
stat(13)- t-statistic associated w/stat(3) .. 2.26435
stat(14)- t-statistic associated w/stat(4) .. 2.20838
stat(15)- t-statistic associated w/stat(5) .. 2.20838
stat(16)- Degrees of freedom 36.04963
625

 Tests of Goodness of Fit Functions
Tests of Goodness of Fit

Functions
General Goodness-of-fit tests

Chi-squared goodness-of-fit test . chi_squared_test 628
Conducts the Shapiro-Wilk test for normality. shapiro_wilk_normality_test 640
Performs a Lilliefors test for normality . lilliefors_normality_test 643
Performs a chi-squared test for normality chi_squared_normality_test 646
One-sample continuous data Kolmogorov-Smirnov kolmogorov_one 649
Two-sample continuous data Kolmogorov-Smirnov kolmogorov_two 653
Mardia’s test for multivariate normality . multivar_normality_test 657
Anderson-Darling test for normality . ad_normality_test 662
Cramer-Von Mises test for normality . cvm_normality_test 665

Tests for Randomness
Runs test, Paris-serial test, d2 test or triplets testsrandomness_test 668
626

 Tests of Goodness of Fit Usage Notes
Usage Notes
The functions in this chapter are used to test for goodness of fit and randomness. The goodness-of-fit tests are
described in Conover (1980). There are two goodness-of-fit tests for general distributions, a Kolmog-
orov-Smirnov test and a chi-squared test. The user supplies the hypothesized cumulative distribution function
for these two tests.

There is one function (Lilliefors) that can be used to test specifically for exponential distributions and five func-
tions (Shapiro-Wilk, Lilliefors, Mardia, Anderson-Darling, and Cramer-von Mises) that can be used to test
specifically for normal distributions.

When the sample size is less than 5,000 observations, the Shapiro-Wilk test provides an accurate estimate for
the p-value of this test. Lilliefors test is also popular but it only provides accurate p-value estimates for values
between 0.01 and 0.1. Values below 0.01 are always returned as 0.01, and values above 0.1 are returned as 0.5.
The general version of the chi-squared test is also available for the normal distribution.

The tests for randomness are often used to evaluate the adequacy of pseudorandom number generators. These
tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov functions in this chapter compute exact probabilities in small to moderate sample
sizes. The chi-squared goodness-of-fit test may be used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov, chi-squared, Anderson-Darling, and Cramer-von Mises goodness-of-fit test functions
allow for missing values (NaN, not a number) in the input data. The functions that test for randomness do not
allow for missing values.
627

 Tests of Goodness of Fit chi_squared_test
chi_squared_test
Performs a chi-squared goodness-of-fit test.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(), int n_observations, int

n_categories, float x[], ..., 0)

The type double function is imsls_d_chi_squared_test.

Required Arguments
float user_proc_cdf (float y) (Input)

User-supplied function that returns the hypothesized, cumulative distribution function at the point y.

int n_observations (Input)
Number of data elements input in x.

int n_categories (Input)
Number of cells into which the observations are to be tallied.

float x[] (Input)
Array with n_observations components containing the vector of data elements for this test.

Return Value
The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(), int n_observations,

int n_categories, float x[],

IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSLS_IDO, int ido,
628

 Tests of Goodness of Fit chi_squared_test
IMSLS_CUTPOINTS, float **cutpoints,
IMSLS_CUTPOINTS_USER, float cutpoints[],
IMSLS_CUTPOINTS_EQUAL,
IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DEGREES_OF_FREEDOM, float *df,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_BOUNDS, float lower_bound, float upper_bound,
IMSLS_CELL_COUNTS, float **cell_counts,
IMSLS_CELL_COUNTS_USER, float cell_counts[],
IMSLS_CELL_EXPECTED, float **cell_expected,
IMSLS_CELL_EXPECTED_USER, float cell_expected[],
IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared,
IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters (Input)

Number of parameters estimated in computing the cumulative distribution function.

IMSLS_IDO, int ido (Input)
Processing option. The argument ido must be one of 0, 1, 2, or 3. If ido = 0 (the default), all of the
observations are input during one invocation. If ido = 1, 2, or 3, blocks of rows of the data can be
processed sequentially in separate invocations of imsls_f_chi_squared_test; with this
option, it is not a requirement that all observations be memory resident, thus enabling one to handle
large data sets.

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be made.
Initialization and updating for the n_observations observations of x
will be performed.

2 This is an intermediate invocation; updating for the n_observations
observations of x will be performed.

3 This is the final invocation of this function. Updating for the data in x
and wrap-up computations are performed. Workspace is released. No
further invocations of imsls_f_chi_squared_test with ido greater
than 1 should be made without first invoking
imsls_f_chi_squared_test with ido = 1.
629

 Tests of Goodness of Fit chi_squared_test
Default: ido = 0

IMSLS_CUTPOINTS, float **cutpoints (Output)
Address of a pointer to an internally allocated array of length n_categories − 1 containing the
vector of cutpoints defining the cell intervals. The intervals defined by the cutpoints are such that the
lower endpoint is not included and the upper endpoint is included in any interval. If
IMSLS_CUTPOINTS_EQUAL is specified, equal probability cutpoints are computed and returned
in cutpoints.

IMSLS_CUTPOINTS_USER, float cutpoints[] (Input/Output)
Storage for array cutpoints is provided by the user. See IMSLS_CUTPOINTS.

IMSLS_CUTPOINTS_EQUAL
If IMSLS_CUTPOINTS_USER is specified, then equal probability cutpoints can still be used if, in
addition, the IMSLS_CUTPOINTS_EQUAL option is specified. If IMSLS_CUTPOINTS_USER is
not specified, equal probability cutpoints are used by default.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.

IMSLS_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is returned in *df.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array with n_observations components containing the vector frequencies for the observations
stored in x.

IMSLS_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_BOUNDS is specified, then lower_bound is the lower bound of the range of the distribu-
tion and upper_bound is the upper bound of this range. If lower_bound = upper_bound, a
range on the whole real line is used (the default). If the lower and upper endpoints are different,
points outside the range of these bounds are ignored. Distributions conditional on a range can be
specified when IMSLS_BOUNDS is used. By convention, lower_bound is excluded from the first
interval, but upper_bound is included in the last interval.

IMSLS_CELL_COUNTS, float **cell_counts (Output)
Address of a pointer to an internally allocated array of length n_categories containing the cell
counts. The cell counts are the observed frequencies in each of the n_categories cells.

IMSLS_CELL_COUNTS_USER, float cell_counts[] (Output)
Storage for array cell_counts is provided by the user. See IMSLS_CELL_COUNTS.
630

 Tests of Goodness of Fit chi_squared_test
IMSLS_CELL_EXPECTED, float **cell_expected (Output)
Address of a pointer to an internally allocated array of length n_categories containing the cell
expected values. The expected value of a cell is the expected count in the cell given that the hypoth-
esized distribution is correct.

IMSLS_CELL_EXPECTED_USER, float cell_expected[] (Output)
Storage for array cell_expected is provided by the user. See IMSLS_CELL_EXPECTED.

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared (Output)
Address of a pointer to an internally allocated array of length n_categories containing the cell
contributions to chi-squared.

IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
Storage for array cell_chi_squared is provided by the user. See
IMSLS_CELL_CHI_SQUARED.

IMSLS_FCN_W_DATA, float user_proc_cdf (float y), void *data, (Input)
User-supplied function that returns the hypothesized, cumulative distribution function, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See the Passing Data to User-Supplied Functions section at the beginning
of this manual for more details.

Description
Function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit test that a random sample
of observations is distributed according to a specified theoretical cumulative distribution. The theoretical distri-
bution, which can be continuous, discrete, or a mixture of discrete and continuous distributions, is specified by
the user-defined function user_proc_cdf. Because the user is allowed to give a range for the observations, a
test that is conditional on the specified range is performed.

Argument n_categories gives the number of intervals into which the observations are to be divided. By
default, equiprobable intervals are computed by imsls_f_chi_squared_test, but intervals that are not
equiprobable can be specified through the use of optional argument IMSLS_CUTPOINTS.

Regardless of the method used to obtain the cutpoints, the intervals are such that the lower endpoint is not
included in the interval, while the upper endpoint is always included. If the cumulative distribution function has
discrete elements, then user-provided cutpoints should always be used since imsls_f_chi_squared_test
cannot determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are −∞ and +∞, respectively. If
IMSLS_BOUNDS is specified, the endpoints are user-defined by the two arguments lower_bound and
upper_bound.
631

 Tests of Goodness of Fit chi_squared_test
A tally of counts is maintained for the observations in x as follows:

 If the cutpoints are specified by the user, the tally is made in the interval to which xi belongs, using
the user-specified endpoints.

 If the cutpoints are determined by imsls_f_chi_squared_test, then the cumulative
probability at xi, F(xi), is computed by the function user_proc_cdf.

The tally for xi is made in interval number ⌊mF(xi) + 1⌋, where m = n_categories and ⌊·⌋ is the function that

takes the greatest integer that is no larger than the argument of the function. Thus, if the computer time required
to calculate the cumulative distribution function is large, user-specified cutpoints may be preferred to reduce the
total computing time.

If the expected count in any cell is less than 1, then the chi-squared approximation may be suspect. A warning
message to this effect is issued in this case, as well as when an expected value is less than 5.

Programming Notes
Function user_proc_cdf must be supplied with calling sequence user_proc_cdf(y), which returns the
value of the cumulative distribution function at any point y in the (optionally) specified range. Many of the cumu-
lative distribution functions in Chapter 11, Probability Distribution Functions and Inverses, can be used for
user_proc_cdf, either directly if the calling sequence is correct or indirectly if, for example, the sample means
and standard deviations are to be used in computing the theoretical cumulative distribution function.

Examples

Example 1

This example illustrates the use of imsls_f_chi_squared_test on a randomly generated sample from the
normal distribution. One-thousand randomly generated observations are tallied into 10 equiprobable intervals.
The null hypothesis, that the sample is from a normal distribution, is specified by use of imsls_f_normal_cdf
(Chapter 11), as the hypothesized distribution function. In this example, the null hypothesis is not rejected.

#include <imsls.h>
#include <stdio.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000
int main()
{
 float *x, p_value;
632

 Tests of Goodness of Fit chi_squared_test
 imsls_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsls_f_random_normal (N_OBSERVATIONS,
 0);
 /* Perform chi squared test */
 p_value = imsls_f_chi_squared_test (imsls_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,
 0);
 /* Print results */
 printf ("p-value = %7.4f\n", p_value);
}

Output

p-value = 0.1546

Example 2

In this example, optional arguments are used for the data in the initial example.

#include <imsls.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000
int main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};
 imsls_random_seed_set(SEED);
 /* Generate normal deviates */
 x = imsls_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 chi_squared_statistics[2] =
 imsls_f_chi_squared_test (imsls_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,
 IMSLS_CUTPOINTS, &cutpoints,
 IMSLS_CELL_COUNTS, &cell_counts,
 IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1,
 cutpoints, 0);
 imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES,
 cell_counts, 0);
633

 Tests of Goodness of Fit chi_squared_test
 imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
 N_CATEGORIES, cell_chi_squared,
 0);
}

Output

 Chi Squared Statistics
chi-squared 13.18
degrees of freedom 9.00
p-value 0.15
 Cut Points
 1 2 3 4 5 6
 -1.282 -0.842 -0.524 -0.253 -0.000 0.253
 7 8 9
 0.524 0.842 1.282
 Cell Counts
 1 2 3 4 5 6
 106 109 89 92 83 87
 7 8 9 10
 110 104 121 99
 Cell Contributions to Chi-Squared
 1 2 3 4 5 6
 0.36 0.81 1.21 0.64 2.89 1.69
 7 8 9 10
 1.00 0.16 4.41 0.01

Example 3

In this example, a discrete Poisson random sample of size 1,000 with parameter θ = 5.0 is generated by function
imsls_f_random_poisson (Chapter 12, Random Number Generation). In the call to
imsls_f_chi_squared_test, function imsls_f_poisson_cdf (Chapter 11, Probability Distribution
Functions and Inverses) is used as function user_proc_cdf.

#include <imsls.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 5.0
float user_proc_cdf(float);
int main()
{
 int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
634

 Tests of Goodness of Fit chi_squared_test
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};
 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7",
 "8", "9"};
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};
 imsls_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsls_random_poisson(N_NUMBERS, THETA, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];
 chi_squared_statistics[2] =
 imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS,
 N_CATEGORIES, x,
 IMSLS_CUTPOINTS_USER, cutpoints,
 IMSLS_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSLS_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSLS_ROW_LABELS, cell_row_labels,
 IMSLS_COL_LABELS, cell_col_labels,
 IMSLS_WRITE_FORMAT, "%9.1f",
 0);
}

float user_proc_cdf(float k)
{
 float cdf_v;
 cdf_v = imsls_f_poisson_cdf ((int) k, THETA);
 return cdf_v;
}

Output

 Chi-squared Statistics
chi-squared 10.48
degrees of freedom 9.00
p-value 0.31
635

 Tests of Goodness of Fit chi_squared_test
 Cell Statistics
Poisson value 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150.0
expected count 40.4 84.2 140.4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7
Poisson value 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expected count 146.2 104.4 65.3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0

Example 4

Continuing with Example 1 data, the example below invokes the imsls_f_chi_squared_test function
using values of ido greater than 0. Also, optional arguments are used for the data.

#include <imsls.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000
#define N_OBSERVATIONS_BLOCK_1 300
#define N_OBSERVATIONS_BLOCK_2 300
#define N_OBSERVATIONS_BLOCK_3 400
int main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};
 float lv_x_block_1[N_OBSERVATIONS_BLOCK_1];
 float lv_x_block_2[N_OBSERVATIONS_BLOCK_2];
 float lv_x_block_3[N_OBSERVATIONS_BLOCK_3];
 int i;
 imsls_random_seed_set(SEED);
 /* Generate normal deviates */
 x = imsls_f_random_normal (N_OBSERVATIONS, 0);
 for(i=0; i<N_OBSERVATIONS_BLOCK_1; i++)
 lv_x_block_1[i]=x[i];
 for(i=0; i<N_OBSERVATIONS_BLOCK_2; i++)
 lv_x_block_2[i]=x[N_OBSERVATIONS_BLOCK_1+i];
 for(i=0; i<N_OBSERVATIONS_BLOCK_3; i++)
 lv_x_block_3[i]=x[N_OBSERVATIONS_BLOCK_1+N_OBSERVATIONS_BLOCK_2+i];
 /* Perform chi squared test */
 chi_squared_statistics[2] = imsls_f_chi_squared_test
 (imsls_f_normal_cdf,
 N_OBSERVATIONS_BLOCK_1, N_CATEGORIES, lv_x_block_1,
 IMSLS_IDO, 1,
 IMSLS_CUTPOINTS, &cutpoints,
636

 Tests of Goodness of Fit chi_squared_test
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 IMSLS_CELL_COUNTS, &cell_counts,
 IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
 0);
 if (cutpoints) imsls_free (cutpoints);
 if (cell_counts) imsls_free (cell_counts);
 if (cell_chi_squared) imsls_free (cell_chi_squared);
 chi_squared_statistics[2] = imsls_f_chi_squared_test
 (imsls_f_normal_cdf,
 N_OBSERVATIONS_BLOCK_2, N_CATEGORIES, lv_x_block_2,
 IMSLS_IDO, 2,
 IMSLS_CUTPOINTS, &cutpoints,
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 IMSLS_CELL_COUNTS, &cell_counts,
 IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
 0);
 if (cutpoints) imsls_free (cutpoints);
 if (cell_counts) imsls_free (cell_counts);
 if (cell_chi_squared) imsls_free (cell_chi_squared);
 chi_squared_statistics[2] = imsls_f_chi_squared_test
 (imsls_f_normal_cdf,
 N_OBSERVATIONS_BLOCK_3, N_CATEGORIES, lv_x_block_3,
 IMSLS_IDO, 3,
 IMSLS_CUTPOINTS, &cutpoints,
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 IMSLS_CELL_COUNTS, &cell_counts,
 IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
 0);
 /* Print results */
 imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1,
 cutpoints, 0);
 imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES,
 cell_counts, 0);
 imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
 N_CATEGORIES, cell_chi_squared,
 0);
 if (cutpoints) imsls_free (cutpoints);
 if (cell_counts) imsls_free (cell_counts);
 if (cell_chi_squared) imsls_free (cell_chi_squared);
}

Output

 Chi Squared Statistics
chi-squared 13.18
637

 Tests of Goodness of Fit chi_squared_test
degrees of freedom 9.00
p-value 0.15
 Cut Points
 1 2 3 4 5 6
 -1.282 -0.842 -0.524 -0.253 -0.000 0.253
 7 8 9
 0.524 0.842 1.282
 Cell Counts
 1 2 3 4 5 6
 106 109 89 92 83 87
 7 8 9 10
 110 104 121 99
 Cell Contributions to Chi-Squared
 1 2 3 4 5 6
 0.36 0.81 1.21 0.64 2.89 1.69
 7 8 9 10
 1.00 0.16 4.41 0.01

Warning Errors

Fatal Errors

IMSLS_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSLS_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

IMSLS_X_VALUE_OUT_OF_RANGE Row x contains a value which is out of range.

IMSLS_MISSING_DATA_ELEMENT At least one data element is missing.

IMSLS_ALL_OBSERVATIONS_MISSING All observations contain missing values.

IMSLS_INCORRECT_CDF_1 Function user_proc_cdf is not a cumulative distri-
bution function. The value at the lower bound must
be nonnegative, and the value at the upper bound
must not be greater than 1.

IMSLS_INCORRECT_CDF_2 Function user_proc_cdf is not a cumulative distri-
bution function. The probability of the range of the
distribution is not positive.

IMSLS_INCORRECT_CDF_3 Function user_proc_cdf is not a cumulative distri-
bution function. Its evaluation at an element in x is
inconsistent with either the evaluation at the lower
or upper bound.
638

 Tests of Goodness of Fit chi_squared_test
IMSLS_INCORRECT_CDF_4 Function user_proc_cdf is not a cumulative distri-
bution function. Its evaluation at a cutpoint is
inconsistent with either the evaluation at the lower
or upper bound.

IMSLS_INCORRECT_CDF_5 An error has occurred when inverting the cumula-
tive distribution function. This function must be
continuous and defined over the whole real line.

IMSLS_TOO_MANY_CELL_DELETIONS There are more observations deleted from the cell
than added.

IMSLS_NO_BOUND_AFTER_100_TRYS After 100 attempts, a bound for the inverse cannot
be determined. Try again with a different initial
estimate.

IMSLS_NO_UNIQUE_INVERSE_EXISTS No unique inverse exists.

IMSLS_CONVERGENCE_ASSUMED Over 100 iterations have occurred without conver-
gence. Convergence is assumed.

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by
invoking the function with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the
previous analysis is terminated by invoking the func-
tion with “ido” = 3.

IMSLS_BAD_N_CATEGORIES “n_categories” = #. The number of categories
variable, “n_categories”, must be the same in sep-
arate function calls.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
639

 Tests of Goodness of Fit shapiro_wilk_normality_test
shapiro_wilk_normality_test
Performs the Shapiro-Wilk test for normality.

Synopsis
#include <imsls.h>
float imsls_f_shapiro_wilk_normality_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_shapiro_wilk_normality_test.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the Shapiro-Wilk test for normality is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_shapiro_wilk_normality_test (int n_observations, float x[],

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w,
0)

Optional Arguments
IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w (Output)

A pointer to a scalar for the Shapiro-Wilk W test statistic.
640

 Tests of Goodness of Fit shapiro_wilk_normality_test
Description
The Shapiro-Wilk test for normality is thought by D’Agostino and Stevens (1986, p. 406) to be one of the best
omnibus tests of normality. The function is based on the approximations and code given by Royston (1982a, b, c;
and 1991). The minimum sample size is 3 and sample sizes as large as 5000 have been validated. In the Shapiro
and Wilk test, W is given by

where x(i) is the i-th largest order statistic and is the sample mean. Royston (1982 and 1991) gives approxima-

tions and tabled values that can be used to compute the coefficients ai, i = 1, …, n, and obtains the significance

level of the W statistic.

Example
This example is taken from Conover (1980, pp. 195, 364). The data consists of 50 two-digit numbers taken from a
telephone book. The W test fails to reject the null hypothesis of normality at the .05 level of significance.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_observations = 50;
 float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,
 37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
 56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
 63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
 45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
 58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
 70.0, 97.0};
 float p_value, shapiro_wilk_w;
 /* Shapiro-Wilk test */
 p_value = imsls_f_shapiro_wilk_normality_test (n_observations, x,
 IMSLS_SHAPIRO_WILK_W, &shapiro_wilk_w, 0);
 printf ("p-value = %11.4f\n", p_value);
 printf ("Shapiro Wilk W statistic = %11.4f\n",
 shapiro_wilk_w);
}

Output

p-value = 0.3473

W = ∑ aix i
2
/ ∑ xi − x

─ 2

x─
641

 Tests of Goodness of Fit shapiro_wilk_normality_test
Shapiro Wilk W statistic = 0.9744
642

 Tests of Goodness of Fit lilliefors_normality_test
lilliefors_normality_test
Performs a Lilliefors test for normality.

Synopsis
#include <imsls.h>
float imsls_f_lilliefors_normality_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_lilliefors_normality_test.

Required Arguments
int n_observations (Input)

Number of observations. Argument n_observations must be greater than 4.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the Lilliefors test for normality. Probabilities less than 0.01 are reported as 0.01, and probabilities
greater than 0.10 for the normal distribution are reported as 0.5.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_lilliefors_normality_test (int n_observations, float x[],

IMSLS_MAX_DIFFERENCE, float *max_difference,
0)

Optional Arguments
IMSLS_MAX_DIFFERENCE, float *max_difference (Output)

The maximum absolute difference between the empirical and the theoretical distributions is
returned in max_difference.
643

 Tests of Goodness of Fit lilliefors_normality_test
Description
This function computes Lilliefors test and its p-value for a normal distribution in which both the mean and vari-
ance are estimated. The one-sample, two-sided Kolmogorov-Smirnov statistic D is first computed. The p-value is
then computed using an analytic approximation given by Dallal and Wilkinson (1986). Because Dallal and Wilkin-
son give approximations in the range (0.01, 0.10), if the computed probability of a greater D is less than 0.01, the
Lilliefors test by convention calls for rejection and the p-value is set to 0.01. If the computed probability of a
greater D is greater than 0.1, by convention the null hypothesis is accepted and the p-value is set to 0.50. Note
that because parameters are estimated, p-value in Lilliefors test is not the same as in the Kolmogorov-Smirnov
Test.

Observations from a normal distribution should not be tied. If tied observations are found, an informational mes-
sage is printed. A general reference for the Lilliefors test is Conover (1980). The original reference for the test for
normality is Lilliefors (1967).

Example
The data are the head circumference measurements for 50 male infants. The Lilliefors test fails to reject the null
hypothesis of normality, i.e., p_value is greater than 0.1.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_observations = 50;
 float x[] = {37.715, 37.89, 37.538, 35.828, 35.039,
 34.005, 35.766, 35.337, 37.529, 35.857,
 37.827, 35.083, 35.235, 36.782, 35.946,
 35.2, 38.995, 36.889, 35.932, 35.835,
 38.323, 35.624, 30.925, 37.69, 33.759,
 36.697, 39.222, 37.191, 34.814, 36.775,
 35.751, 33.163, 35.205, 32.805, 32.517,
 37.516, 33.654, 37.382, 36.83, 33.465,
 33.613, 35.211, 34.932, 30.645, 35.063,
 34.604, 34.666, 33.789, 34.678, 35.123};
 float p_value, max_diff;
 p_value = imsls_f_lilliefors_normality_test (n_observations, x,
 IMSLS_MAX_DIFFERENCE, &max_diff, 0);
 printf ("p-value = %11.4f\n", p_value);
 printf ("max difference = %f \n", max_diff);
}

Output

p-value = 0.5000
max difference = 0.085558
644

 Tests of Goodness of Fit lilliefors_normality_test
Warning Errors

Fatal Errors

IMSLS_TWO_OR_MORE_TIED Two or more elements in “x” are tied.

IMSLS_NEED_AT_LEAST_5 All but # elements of “x” are missing. At least five
non-missing observations are necessary to
continue.

IMSLS_NEG_IN_EXPONENTIAL In testing the exponential distribution, an invalid
element in “x” is found (“x[]” = #). Negative values
are not possible in exponential distributions.

IMSLS_NO_VARIATION_INPUT There is no variation in the input data. All non-miss-
ing observations are tied.
645

 Tests of Goodness of Fit chi_squared_normality_test
chi_squared_normality_test
Performs a chi-squared test for normality.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_normality_test (int n_categories, int n_observations,

float x[], ..., 0)

The type double function is imsls_d_chi_squared_normality_test.

Required Arguments
int n_categories (Input)

Number of cells into which the observations are to be tallied. n_categories must be at least 2.

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the chi-squared test for normality. An approximate probability is computed.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_chi_squared_normality_test (int n_categories, int n_observations,

float x[],

IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DEGREES_OF_FREEDOM, float *df,
0)
646

 Tests of Goodness of Fit chi_squared_normality_test
Optional Arguments
IMSLS_CHI_SQUARED, float *chi_squared (Output)

If specified, the chi-squared test statistic is returned in *chi_squared.

IMSLS_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is returned in *df.

Description
This function computes the chi-squared statistic, its p-value, and the degrees of freedom of the test. Argument
n_categories finds the number of intervals into which the observations are to be divided. The intervals are
equiprobable except for the first and last interval, which are infinite in length.

If more flexibility is desired for the specification of intervals, the same test can be performed with a call to func-
tion imsls_f_chi_squared_test using the optional arguments described for that function.

Example
This example is taken from Conover (1980, pp. 195, 364). The data consists of 50 two-digit numbers taken from a
telephone book. Since p_value is greater than 0.1 the chi-squared test fails to reject the null hypothesis of
normality.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_observations = 50;
 int n_categories = 6;
 float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,
 37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
 56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
 63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
 45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
 58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
 70.0, 97.0};
 float p_value, df, chi_squared;
 p_value = imsls_f_chi_squared_normality_test(n_categories,
 n_observations, x,
 IMSLS_DEGREES_OF_FREEDOM, &df,
 IMSLS_CHI_SQUARED, &chi_squared,
 0);
 printf ("p-value = %11.4f\n", p_value);
 printf ("degrees of freedom = %11.4f\n", df);
 printf ("chi squared test = %11.4f\n", chi_squared);
647

 Tests of Goodness of Fit chi_squared_normality_test
}

Output

p-value = 0.4208
degrees of freedom = 5.0000
chi squared test = 4.9600
648

 Tests of Goodness of Fit kolmogorov_one
kolmogorov_one
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_one (float cdf(), int n_observations, float x[], ..., 0)

The type double function is imsls_d_kolmogorov_one.

Required Arguments
float cdf (float x) (Input)

User-supplied function to compute the cumulative distribution function (CDF) at a given value. The
form is CDF(x), where x is the value at which cdf is to be evaluated (Input) and cdf is the value of
CDF at x. (Output)

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
Pointer to an array of length 3 containing Z, p1, and p2.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kolmogorov_one (float cdf(), int n_observations, float x[],

IMSLS_DIFFERENCES, float **differences,
IMSLS_DIFFERENCES_USER, float differences[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, float test_statistic[],
649

 Tests of Goodness of Fit kolmogorov_one
IMSLS_FCN_W_DATA, float cdf(), void *data,
0)

Optional Arguments
IMSLS_DIFFERENCES, float **differences (Output)

Address of a pointer to the internally allocated array containing Dn , Dn
+, Dn

-.

IMSLS_DIFFERENCES_USER, float differences[] (Output)
Storage for the array differences is provided by the user.

See IMSLS_DIFFERENCES.
IMSLS_N_MISSING, int *n_missing (Ouput)

Number of missing values is returned in *n_missing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both one-sided and two-sided
alternatives is stored in array test_statistics provided by the user.

IMSLS_FCN_W_DATA, float cdf (float x) , void *data, (Input)
User-supplied function to compute the cumulative distribution function, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied
function. See the Passing Data to User-Supplied Functions section at the beginning of this manual for
more details.

Description
The routine imsls_f_kolmogorov_one performs a Kolmogorov-Smirnov goodness-of-fit test in one sample.
The hypotheses tested follow:

where F is the cumulative distribution function (CDF) of the random variable, and the theoretical cdf, F*, is spec-
ified via the user-supplied function cdf. Let n = n_observations - n_missing. The test statistics for both
one-sided alternatives

and

• H0:F x = F* x H1:F x ≠ F* x

• H0:F x ≥ F* x H1:F x < F* x

• H0:F x ≤ F* x H1:F x > F* x

Dn
+ = differences 1
650

 Tests of Goodness of Fit kolmogorov_one
and the two-sided (Dn = differences[0]) alternative are computed as well as an asymptotic z-score

(test_statistics[0]) and p-values associated with the one-sided (test_statistics[1]) and two-
sided (test_statistics[2]) hypotheses. For n > 80, asymptotic p-values are used (see Gibbons 1971). For
n ≤ 80, exact one-sided p-values are computed according to a method given by Conover (1980, page 350). An
approximate two-sided test p-value is obtained as twice the one-sided p-value. The approximation is very close
for one-sided p-values less than 0.10 and becomes very bad as the one-sided p-values get larger.

Programming Notes
1. The theoretical CDF is assumed to be continuous. If the CDF is not continuous, the statistics

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data will tend to make the p-values
associated with the test statistics too liberal. The empirical CDF will tend to be closer to the theoreti-
cal CDF than it should be.

3. No attempt is made to check that all points in the sample are in the support of the theoretical CDF. If
all sample points are not in the support of the CDF, the null hypothesis must be rejected.

Example
In this example, a random sample of size 100 is generated via routine imsls_f_random_uniform (Chapter 12,
Random Number Generation) for the uniform (0, 1) distribution. We want to test the null hypothesis that the cdf
is the standard normal distribution with a mean of 0.5 and a variance equal to the uniform (0, 1) variance (1/12).

#include <imsls.h>
#include <stdio.h>
float cdf(float);
int main()
{
 float *statistics=NULL, *diffs = NULL, *x=NULL;
 int nobs = 100, nmiss;
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nobs, 0);
 statistics = imsls_f_kolmogorov_one(cdf, nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_DIFFERENCES, &diffs,
 0);
 printf("D = %8.4f\n", diffs[0]);
 printf("D+ = %8.4f\n", diffs[1]);

Dn
− = differences 2

Dn
*

651

 Tests of Goodness of Fit kolmogorov_one
 printf("D- = %8.4f\n", diffs[2]);
 printf("Z = %8.4f\n", statistics[0]);
 printf("Prob greater D one sided = %8.4f\n", statistics[1]);
 printf("Prob greater D two sided = %8.4f\n", statistics[2]);
 printf("N missing = %d\n", nmiss);
}
float cdf(float x)
{
 float mean = .5, std = .2886751, z;
 z = (x-mean)/std;
 return(imsls_f_normal_cdf(z));
}

Output

D = 0.1471
D+ = 0.0810
D- = 0.1471
Z = 1.4708
Prob greater D one-sided = 0.0132
Prob greater D two-sided = 0.0264
N missing = 0

Warning Errors

Fatal Errors

IMSLS_TIE_DETECTED # ties were detected in the sample.

IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-
rithm.
User flag = "#".
652

 Tests of Goodness of Fit kolmogorov_two
kolmogorov_two
Performs a Kolmogorov-Smirnov two-sample test.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_two (int n_observations_x, float x[],

int n_observations_y, float y[], ..., 0)

The type double function is imsls_d_kolmogorov_two.

Required Arguments
int n_observations_x (Input)

Number of observations in sample one.

float x[] (Input)
Array of size n_observations_x containing the observations from sample one.

int n_observations_y (Input)
Number of observations in sample two.

float y[] (Input)
Array of size n_observations_y containing the observations from sample two.

Return Value
Pointer to an array of length 3 containing Z, p1, and p2.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kolmogorov_two (int n_observations_x, float x[],
int n_observations_y, float y[],

IMSLS_DIFFERENCES, float **differences,
IMSLS_DIFFERENCES_USER, float differences[],
653

 Tests of Goodness of Fit kolmogorov_two
IMSLS_N_MISSING_X, int *xmissing,
IMSLS_N_MISSING_Y, int *ymissing,
IMSLS_RETURN_USER, float test_statistic[],
0)

Optional Arguments
IMSLS_DIFFERENCES, float **differences (Output)

Address of a pointer to the internally allocated array containing Dn , Dn
+, Dn

-.

IMSLS_DIFFERENCES_USER, float differences[] (Output)
Storage for array differences is provided by the user.

See IMSLS_DIFFERENCES.

IMSLS_N_MISSING_X, int *xmissing (Ouput)
Number of missing values in the x sample is returned in *xmissing.

IMSLS_N_MISSING_Y, int *ymissing (Ouput)
Number of missing values in the y sample is returned in *ymissing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both one-sided and two-sided
alternatives is stored in array test_statistics provided by the user.

Description
Function imsls_f_kolmogorov_two computes Kolmogorov-Smirnov two-sample test statistics for testing
that two continuous cumulative distribution functions (CDF’s) are identical based upon two random samples.
One- or two-sided alternatives are allowed. Exact p-values are computed for the two-sided test when
n_observations_x × n_observations_y is less than 104.

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empirical CDF in the Y sample, where

n = n_observations_x - n_missing_x and m = n_observations_y - n_missing_y, and let the
corresponding population distribution functions be denoted by F(x) and G(y), respectively. Then, the hypotheses
tested by imsls_f_kolmogorov_two are as follows:
654

 Tests of Goodness of Fit kolmogorov_two
The test statistics are given as follows:

Asymptotically, the distribution of the statistic

(returned in test_statistics[0]) converges to a distribution given by Smirnov (1939).

Exact probabilities for the two-sided test are computed when n*m is less than or equal to 104, according to an

algorithm given by Kim and Jennrich (1973;). When n*m is greater than 104, the very good approximations given
by Kim and Jennrich are used to obtain the two-sided p-values. The one-sided probability is taken as one half the
two-sided probability. This is a very good approximation when the p-value is small (say, less than 0.10) and not
very good for large p-values.

Example
This example illustrates the imsls_f_kolmogorov_two routine with two randomly generated samples from
a uniform(0,1) distribution. Since the two theoretical distributions are identical, we would not expect to reject the
null hypothesis.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL;
 int nobsx = 100, nobsy = 60, nmissx, nmissy;
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nobsx, 0);
 y = imsls_f_random_uniform(nobsy, 0);
 statistics = imsls_f_kolmogorov_two(nobsx, x, nobsy, y,
 IMSLS_N_MISSING_X, &nmissx,
 IMSLS_N_MISSING_Y, &nmissy,
 IMSLS_DIFFERENCES, &diffs,
 0);
 printf("D = %8.4f\n", diffs[0]);
 printf("D+ = %8.4f\n", diffs[1]);

• H0:F x = G x H1:F x ≠ G x

• H0:F x ≤ G x H1:F x > G x

• H0:F x ≥ G x H1:F x < G x

Dmn = max Dmn
+ ,Dmn

− (differences 0)

Dmn
+ = maxx(Fn(x) − Gm(x)) (differences 1)

Dmn
− = maxx(Gm(x) − Fn(x)) (differences 2)

Z = Dmn m * n / m + n
655

 Tests of Goodness of Fit kolmogorov_two
 printf("D- = %8.4f\n", diffs[2]);
 printf("Z = %8.4f\n", statistics[0]);
 printf("Prob greater D one sided = %8.4f\n", statistics[1]);
 printf("Prob greater D two sided = %8.4f\n", statistics[2]);
 printf("Missing X = %d\n", nmissx);
 printf("Missing Y = %d\n", nmissy);
}

Output

D = 0.1800
D+ = 0.1800
D- = 0.0100
Z = 1.1023
Prob greater D one sided = 0.0720
Prob greater D two sided = 0.1440
Missing X = 0
Missing Y = 0
656

 Tests of Goodness of Fit multivar_normality_test
multivar_normality_test
Computes Mardia’s multivariate measures of skewness and kurtosis and tests for multivariate normality.

Synopsis
#include <imsls.h>
float *imsls_f_multivar_normality_test (int n_observations, int n_variables,

float x[], ..., 0)

The type double function is imsls_d_multivar_normality_test.

Required Arguments
int n_observations (Input)

Number of observations (number of rows of data) x.

int n_variables (Input)
Dimensionality of the multivariate space for which the skewness and kurtosis are to be computed.
Number of variables in x.

float x[] (Input)
Array of size n_observations by n_variables containing the data.

Return Value
A pointer to an array of dimension 13 containing output statistics

i stat[i]
0 Estimated skewness.

1 Expected skewness assuming a multivariate normal
distribution.

2 Asymptotic chi-squared statistic assuming a multivariate
normal distribution.

3 Probability of a greater chi-squared.

4 Mardia and Foster's standard normal score for skewness.

5 Estimated kurtosis.
657

 Tests of Goodness of Fit multivar_normality_test
Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_multivar_normality_test (int n_observations, int n_variables,
float x[],

IMSLS_FREQUENCIES, float frequencies[],

IMSLS_WEIGHTS, float weights[],

IMSLS_SUM_FREQ, int *sum_frequencies,

IMSLS_SUM_WEIGHTS, float *sum_weights,

IMSLS_N_ROWS_MISSING, int *nrmiss,

IMSLS_MEANS, float **means,

IMSLS_MEANS_USER, float means[],

IMSLS_R, float **R_matrix,

IMSLS_R_USER, float R_matrix[],

IMSLS_RETURN_USER, float test_statistics[],

0)

Optional Arguments
IMSLS_FREQUENCIES, float frequencies[] (Input)

Array of size n_observations containing the frequencies. Frequencies must be integer valued.
Default assumes all frequencies equal one.

6 Expected kurtosis assuming a multivariate normal
distribution.

7 Asymptotic standard error of the estimated kurtosis.

8 Standard normal score obtained from stat[5] through
stat[7].

9 p-value corresponding to stat[8].

10 Mardia and Foster's standard normal score for kurtosis.

11 Mardia's SW statistic based upon stat[4] and stat[10].

12 p-value for stat[11].

i stat[i]
658

 Tests of Goodness of Fit multivar_normality_test
IMSLS_WEIGHTS, float weights[] (Input)
Array of size n_observations containing the weights. Weights must be greater than non-nega-
tive. Default assumes all weights equal one.

IMSLS_SUM_FREQ, int *sum_frequencies (Output)
The sum of the frequencies of all observations used in the computations.

IMSLS_SUM_WEIGHTS, float *weights[] (Output)
The sum of the weights times the frequencies for all observations used in the computations.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data in x[] containing any missing values (NaN).

IMSLS_MEANS, float **means (Output)
The address of a pointer to an array of length n_variables containing the sample means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by user. See IMSLS_MEANS.

IMSLS_R, float **R_matrix (Output)
The address of a pointer to an n_variables by n_variables upper triangular matrix contain-
ing the Cholesky RTR factorization of the covariance matrix.

IMSLS_R_USER, float R_matrix[] (Output)
Storage for array R_matrix is provided by user. See IMSLS_R.

IMSLS_RETURN_USER, float stat[] (Output)
User supplied array of dimension 13 containing the estimates and their associated test statistics.

Description
Function imsls_f_multivar_normality_test computes Mardia’s (1970) measures b1,p and b2,p of mul-

tivariate skewness and kurtosis, respectfully, for p = n_variables. These measures are then used in
computing tests for multivariate normality. Three test statistics, one based upon b1,p alone, one based upon b2,p

alone, and an omnibus test statistic formed by combining normal scores obtained from b1,p and b2,p are com-

puted. On the order of np3, operations are required in computing b1,p when the method of Isogai (1983) is used,

where n = n_observations. On the order of np2, operations are required in computing b2,p.

Let

where

di j = wiw j xi − x
─)TS−1 x j − x

─

659

 Tests of Goodness of Fit multivar_normality_test
fi is the frequency of the i-th observation, and wi is the weight for this observation. (Weights wi are defined such

that xi is distributed according to a multivariate normal, N(μ, Σ/wi) distribution, where Σ is the covariance matrix.)

Mardia’s multivariate skewness statistic is defined as:

while Mardia’s kurtosis is given as:

Both measures are invariant under the affine (matrix) transformation AX + D, and reduce to the univariate mea-
sures when p = n_variables = 1. Using formulas given in Mardia and Foster (1983), the approximate
expected value, asymptotic standard error, and asymptotic p-value for b2,p, and the approximate expected value,

an asymptotic chi-squared statistic, and p-value for the b1,p statistic are computed. These statistics are all com-

puted under the null hypothesis of a multivariate normal distribution. In addition, standard normal scores
W1(b1,p) and W2(b2,p) (different from but similar to the asymptotic normal and chi-squared statistics above) are

computed. These scores are combined into an asymptotic chi-squared statistic with two degrees of freedom:

This chi-squared statistic may be used to test for multivariate normality. A p-value for the chi-squared statistic is
also computed.

Example
In this example, 150 observations from a 5 dimensional standard normal distribution are generated via routine
imsls_f_random_normal (Chapter 12, Random Number Generation). The skewness and kurtosis statistics are
then computed for these observations.

#include <imsls.h>
#include <stdio.h>
int main()

S =
∑
i=1

n
wi f i xi − x

─ xi − x
─ T

∑
i=1

n
f i

x─ = 1

∑
i=1

n
wi f i

∑
i=1

n
wi f i xi

b1, p =
1
n2∑

i=1

n

∑
j=1

n

f i f jdi j
3

b2, p =
1
n∑
i=1

n

f idii
2

SW = W1
2 b1, p +W2

2 b2, p
660

 Tests of Goodness of Fit multivar_normality_test
{
 float *x, swt, *xmean, *r, *stats;
 int nobs = 150, ncol = 5, nvar = 5, izero = 0, ni, nrmiss;
 imsls_random_seed_set(123457);
 x = imsls_f_random_normal(nobs*nvar, 0);
 stats = imsls_f_multivar_normality_test(nobs, nvar, x,
 IMSLS_SUM_FREQ, &ni,
 IMSLS_SUM_WEIGHTS, &swt,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 IMSLS_R, &r,IMSLS_MEANS, &xmean,
 0);
 printf("Sum of frequencies = %d\nSum of the weights =%8.3f\n",
 ni, swt);
 printf(" Number rows missing = %3d\n", nrmiss);
 imsls_f_write_matrix("stat", 13, 1, stats,
 IMSLS_ROW_NUMBER_ZERO, 0);
 imsls_f_write_matrix("means", 1, nvar, xmean, 0);
 imsls_f_write_matrix("R", nvar, nvar, r, 0);
}

Output

Sum of frequencies = 150
Sum of the weights = 150.000
Number rows missing = 0
 stat
0 0.73
1 1.36
2 18.62
3 0.99
4 -2.37
5 32.67
6 34.54
7 1.27
8 -1.48
9 0.14
10 1.62
11 8.24
12 0.02
 means
 1 2 3 4 5
 0.02623 0.09238 0.06536 0.09819 0.05639
 R
 1 2 3 4 5
1 1.033 -0.084 -0.065 0.108 0.067
2 0.000 1.049 -0.097 -0.042 -0.021
3 0.000 0.000 1.063 0.006 -0.145
4 0.000 0.000 0.000 0.942 -0.084
5 0.000 0.000 0.000 0.000 0.949
661

 Tests of Goodness of Fit ad_normality_test
ad_normality_test
Performs an Anderson-Darling test for normality.

Synopsis
#include <imsls.h>
float imsls_f_ad_normality_test (int nobs, float x[], … , 0)

The type double function is imsls_d_ad_normality_test.

Required Arguments
int nobs (Input)

Number of observations. nobs must be greater than or equal to 3.

float x[] (Input)
Vector of length nobs containing the observations.

Return Value
The p-value for the Anderson-Darling test of normality.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_ad_normality_test (int nobs, float x[],

IMSLS_STAT, float *adstat,
IMSLS_N_MISSING, int *nmiss,
0)

Optional Arguments
IMSLS_STAT, float *adstat (Output)

The Anderson-Darling statistic.
662

 Tests of Goodness of Fit ad_normality_test
IMSLS_N_MISSING, int *nmiss (Output)
The number of missing observations.

Description
Given a data sample {Xi, i = 1 .. n}, where n = nobs and Xi = x[i-1], function

imsls_f_ad_normality_test computes the Anderson-Darling (AD) normality statistic A = adstat and
the corresponding Return Value (p-value) P = P == {probability that a normally distributed n element sample
would have an AD statistic > A}. If P is sufficiently small (e.g. P < .05), then the AD test indicates that the null
hypothesis that the data sample is normally-distributed should be rejected. A is calculated:

where and and s are the sample mean and standard deviation respectively. P is calculated
by first transforming A to an “n-adjusted” statistic A*:

and then calculating P in terms of A* using a parabolic approximation taken from Table 4.9 in Stephens (1986).

Example
The following example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two-digit num-
bers taken from a telephone book. The AD test fails to reject the null hypothesis of normality at the .05 level of
significance.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int nobs = 50, nmiss;
 float p_value, adstat;
 float x[] = {
 23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 37.0, 54.0, 61.0, 73.0,
 24.0, 40.0, 56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 63.0, 75.0,
 29.0, 43.0, 57.0, 64.0, 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0, 45.0, 58.0, 68.0, 89.0,
 33.0, 48.0, 58.0, 68.0, 93.0, 35.0, 48.0, 59.0, 70.0, 97.0};
 p_value = imsls_f_ad_normality_test (nobs, x,
 IMSLS_STAT, &adstat,

A = − n − 1n∑
i−1

n

[(2i − 1)ln(ϕ (Yi)) + (2n − 2i + 1)ln(1 − ϕ (Yi))]

Y i = X i − X
─

/ s X
─

A * = A 1.0 + 0.75n + 2.25
n2
663

 Tests of Goodness of Fit ad_normality_test
 IMSLS_N_MISSING, &nmiss,
 0);
 printf ("Anderson-Darling statistic = %11.4f \n", adstat);
 printf ("p-value = %11.4f\n", p_value);
 printf ("# missing values = %4d\n", nmiss);
}

Output

Anderson-Darling statistic = 0.3339
p-value = 0.5024
missing values = 0

Informational Errors

Fatal Errors

IMSLS_PVAL_UNDERFLOW The p-value has fallen below the minimum value of
for which its calculation has any accuracy; ZERO is
returned.

IMSLS_TOO_MANY_MISSING After removing the missing observations only 2
observations remain. The test cannot proceed.
664

 Tests of Goodness of Fit cvm_normality_test
cvm_normality_test
Performs a Cramer-von Mises test for normality.

Synopsis
#include <imsls.h>
float imsls_f_cvm_normality_test (int nobs, float x[], … , 0)

The type double function is imsls_d_cvm_normality_test.

Required Arguments
int nobs (Input)

Number of observations. nobs must be greater than or equal to 3.

float x[] (Input)
Vector of length nobs containing the observations.

Return Value
The p-value for the Cramer-von Mises test of normality.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_cvm_normality_test (int nobs, float x[],

IMSLS_STAT, float *cvmstat,
IMSLS_N_MISSING, int *nmiss,
0)

Optional Arguments
IMSLS_STAT, float *cvmstat (Output)

The Cramer-von Mises statistic.
665

 Tests of Goodness of Fit cvm_normality_test
IMSLS_N_MISSING, int *nmiss (Output)
The number of missing observations.

Description
Given a data sample {Xi, i=1 .. n}, where n = nobs and Xi = x[i-1], function

imsls_f_cvm_normality_test computes the Cramer-von Mises (CvM) normality statistic W = cvmstat
and the corresponding Return Value (p-value) P = P == {probability that a normally distributed n element sample
would have a CvM statistic > W}. If P is sufficiently small (e.g. P < .05), then the CvM test indicates that the null
hypothesis that the data sample is normally-distributed should be rejected. W is calculated:

Where is the cumulative distribution function of standard normal N(0,1) distribution, ,

and and s are the sample mean and standard deviation respectively. P is calculated by first transforming W to
an “n-adjusted” statistic W*:

and then calculating P in terms of W* using a parabolic approximation taken from Table 4.9 in Stephens (1986).

Example
This example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two digit numbers taken
from a telephone book. The CvM test fails to reject the null hypothesis of normality at the .05 level of significance.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int nobs = 50, nmiss;
 float p_value, cvmstat;
 float x[] = {
 23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 37.0, 54.0, 61.0, 73.0,
 24.0, 40.0, 56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 63.0, 75.0,
 29.0, 43.0, 57.0, 64.0, 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0, 45.0, 58.0, 68.0, 89.0,
 33.0, 48.0, 58.0, 68.0, 93.0, 35.0, 48.0, 59.0, 70.0, 97.0};
 p_value = imsls_f_cvm_normality_test (nobs, x,
 IMSLS_STAT, &cvmstat,

W = 1
12n +∑

i=1

n

ϕ Y i −
2i − 1
2n

2

ϕ Y i Y i = X i − X
─

/ s

X
─

W * = W 1.0 + 0.5n
666

 Tests of Goodness of Fit cvm_normality_test
 IMSLS_N_MISSING, &nmiss,
 0);
 printf ("Cramer-von Mises statistic = %11.4f \n", cvmstat);
 printf ("p-value = %11.4f\n", p_value);
 printf ("# missing values = %4d\n", nmiss);
}

Output

Cramer-von Mises statistic = 0.0520
p-value = 0.4747
missing values = 0

Informational Errors

Fatal Errors

IMSLS_PVAL_UNDERFLOW The p-value has fallen below the minimum value of
for which its calculation has any accuracy; ZERO is
returned.

IMSLS_TOO_MANY_MISSING After removing the missing observations only 2
observations remain. The test cannot proceed.
667

 Tests of Goodness of Fit randomness_test
randomness_test
Performs a test for randomness.

Synopsis
#include <imsls.h>
float imsls_f_randomness_test (int n_observations, float x[], int n_run, …, 0)

The type double function is imsls_d_randomness_test.

Required Arguments
int n_observations (Input)

Number of observations in x.

float x[] (Input)
Array of size n_observations containing the data.

int n_run (Input)
Length of longest run for which tabulation is desired. For optional arguments IMSLS_PAIRS,
IMSLS_DSQUARE, and IMSLS_DCUBE, n_run stands for the number of equiprobable cells into
which the statistics are to be tabulated.

Return Value
The probability of a larger chi-squared statistic for testing the null hypothesis of a uniform distribution.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_randomness_test (int n_observations, float x[], int n_run,

IMSLS_IDO, int ido, float intermediate_results[],

IMSLS_RUNS, float **runs_count, float **covariances, or

IMSLS_RUNS_USER, float runs_count[], float covariances[], or

IMSLS_PAIRS, int pairs_lag, float **pairs_count, or
668

 Tests of Goodness of Fit randomness_test
IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[], or

IMSLS_DSQUARE, float **dsquare_count, or

IMSLS_DSQUARE_USER, float dsquare_count[], or

IMSLS_DCUBE, float **dcube_count, or

IMSLS_DCUBE_USER, float dcube_count[],

IMSLS_RUNS_EXPECT, float **runs_expect,

IMSLS_RUNS_EXPECT_USER, float runs_expect[],

IMSLS_EXPECT, float *expect,

IMSLS_CHI_SQUARED, float *chi_squared,

IMSLS_DF, float *df,

0)

Optional Arguments
IMSLS_IDO, int ido, float intermediate_results[] (Input/Output)

Process data in blocks.

int ido (Input)
Processing option. The argument ido must be 1, 2, or 3. With this option, it is not a require-
ment that all observations be memory resident, thus enabling one to handle large data sets.
Blocks of rows of the data can be processed sequentially in separate invocations of
imsls_f_randomness_test. Output argument values are returned only when ido = 3.
(See Example 5.)

Default: ido is not used. All the data is input at once.
float intermediate_results[] (Input/Output)

User-supplied array containing results from invocations of the function. The length of
intermediate_results is:

ido Action

1 This is the first invocation with this data; additional
calls will be made. The first set of n_observations
observations is input in x.

2 This is an intermediate invocation. The next set of
n_observations observations is input in x.

3 This is the final invocation of this function. No fur-
ther invocations of imsls_f_randomness_test
with ido greater than 1 should be made without first
invoking imsls_f_randomness_test with ido = 1.
The last set of n_observations observations is
input in x.
669

 Tests of Goodness of Fit randomness_test
In processing blocks of data, x can have different number of observations,
n_observations, in separate invocations.

IMSLS_RUNS, float **runs_count, float **covariances, (Output)
Indicates the runs test is to be performed. Array of length n_run containing the counts of the num-
ber of runs up of each length is returned in runs_count. n_run by n_run matrix containing the
variances and covariances of the counts is returned in covariances. IMSLS_RUNS is the default
test, however, to return the counts and covariances the IMSLS_RUNS argument must be used.

or

IMSLS_RUNS_USER, float runs_count[], float covariances[] (Output)
Storage for runs_count and covariances is provided by the user. See IMSLS_RUNS.

or

IMSLS_PAIRS, int pairs_lag (Input), float **pairs_count, (Output)
Indicates the pairs test is to be performed. The lag to be used in computing the pairs statistic is
stored in pairs_lag. Pairs (x[i], x[i + pairs_lag]) for i = 0,…, N - pairs_lag -1 are tabu-
lated, where N is the total sample size. An n_run by n_run matrix containing the count of the
number of pairs in each cell is returned in pairs_count.

or

IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[] (Output)
Storage for pairs_lag and pairs_count is provided by the user. See IMSLS_PAIRS.

or

IMSLS_DSQUARE, float **dsquare_count, (Output)
Indicates the d2 test is to be performed. dsquare_count is an address of a pointer to an internally
allocated array of length n_run containing the tabulations for the d2 test.

or

IMSLS_DSQUARE_USER, float dsquare_count[] (Output)
Storage for dsquare_count is provided by the user.

Test Length

Runs test (IMSLS_RUNS) n_run

Pairs test (IMSLS_PAIRS) n_run by n_run

d2 test (IMSLS_DSQUARE) n_run

triplets test (IMSLS_DCUBE) n_run by n_run by n_run
670

 Tests of Goodness of Fit randomness_test
See IMSLS_DSQUARE.

or

IMSLS_DCUBE, float **dcube_count, (Output)
Indicates the triplets test is to be performed. dcube_count is an address of a pointer to an inter-
nally allocated array of length n_run by n_run by n_run containing the tabulations for the triplets
test.

or

IMSLS_DCUBE_USER, float dcube_count[] (Output)
Storage for dcube_count is provided by the user. See IMSLS_DCUBE.

IMSLS_RUNS_EXPECT, float **runs_expect (Output)
The address of a pointer to an internally allocated array of length n_run containing the expected
number of runs of each length. This option is valid only for the runs test.

IMSLS_RUNS_EXPECT_USER, float runs_expect[] (Output)
Storage for runs_expect is provided by the user. See IMSLS_RUNS_EXPECT.

IMSLS_EXPECT, float *expect (Output)
Expected number of counts for each cell. This argument is valid only if one of IMSLS_PAIRS,
IMSLS_DSQUARE, or IMSLS_DCUBE is used. It is not valid for the runs test.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
Chi-squared statistic for testing the null hypothesis of a uniform distribution.

IMSLS_DF, float *df (Output)
Degrees of freedom for chi-squared.

Description

Runs Up Test

Function imsls_f_randomness_test performs one of four different tests for randomness. Optional argu-
ment IMSLS_RUNS computes statistics for the runs up test. Runs tests are used to test for cyclical trend in
sequences of random numbers. If the runs down test is desired, each observation should first be multiplied by -
1 to change its sign, and IMSLS_RUNS called with the modified vector of observations.
671

 Tests of Goodness of Fit randomness_test
IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each desired length. For i = 1, ..., r - 1,
where r = n_run, runs_count[i] contains the number of runs of length i. runs_count[n_run] contains the
number of runs of length n_run or greater. As an example of how runs are counted, the sequence (1, 2, 3, 1)
contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, IMSLS_RUNS computes the expected values and the covari-
ances of the counts according to methods given by Knuth (1981, pages 65-67). Let R denote a vector of length
n_run containing the number of runs of each length so that the i-th element of R, ri, contains the count of the

runs of length i. Let ΣR denote the covariance matrix of R under the null hypothesis of randomness, and let μR

denote the vector of expected values for R under this null hypothesis, then an approximate chi-squared statistic
with n_run degrees of freedom is given as

In general, the larger the value of each element of μR, the better the chi-squared approximation.

Pairs Test

IMSLS_PAIRS computes the pairs test (or the Good’s serial test) on a hypothesized sequence of uniform (0,1)
pseudo-random numbers. The test proceeds as follows. Subsequent pairs (x[i], x[i + pairs_lag]) are tallied
into a k × k matrix, where k = n_run. In this tally, element (j, m) of the matrix is incremented, where

where l = pairs_lag, and the notation ⌊ ⌋ represents the greatest integer function, ⌊Y⌋ is the greatest integer
less than or equal to Y, where Y is a real number. If l = 1, then i = 1, 3, 5, ..., n - 1. If l > 1, then i = 1, 2, 3, ..., n - l,
where n is the total number of pseudo-random numbers input on the current invocation of IMSLS_PAIRS (i.e.,
n = n_observations).

Given the tally matrix in pairs_count, chi-squared is computed as

where e = Σoij/k
2, and oij is the observed count in cell (i, j) (oij = pairs_count[i][j]).

χ2 = R − μR
T∑

R

−1 R − μR

j = ⌊kx[i − 1]⌋ + 1
m = ⌊kx[i + l − 1]⌋ + 1

χ2 = ∑
i, j=0

k−1 oi j − e
2

e

672

 Tests of Goodness of Fit randomness_test
Because pair statistics for the trailing observations are not tallied on any call, the user should call IMSLS_PAIRS
with n_observations as large as possible. For pairs_lag < 20 and n_observations = 2000, little
power is lost.

d 2 Test

IMSLS_DSQUARE computes the d2 test for succeeding quadruples of hypothesized pseudo-random uniform (0,

1) deviates. The d2 test is performed as follows. Let X1, X2, X3, and X4 denote four pseudo-random uniform devi-

ates, and consider

D2 = (X

3

 -X

1

)2 + (X

4

 - X

2

)2

The probability distribution of D2 is given as

when D2 ≤ 1, where π denotes the value of pi. If D2 > 1, this probability is given as

See Gruenberger and Mark (1951) for a derivation of this distribution.

For each succeeding set of 4 pseudo-random uniform numbers input in X, d2 and the cumulative probability of

d2 (Pr(D2 ≤ d2)) are computed. The resulting probability is tallied into one of k = n_run equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total number of observations/4). Then,
under the null hypothesis that the numbers input are random uniform (0, 1) numbers, the expected value for
each element in dsquare_count is e = n/k. An approximate chi-squared statistic is computed as

Pr D2 ≤ d2 = d2π − 8d
3

3 + d
4

2

Pr(D2 ≤ d2) = 1
3 + (π − 2)d

2 + 4 d2 − 1

+8
d2 − 1

3
2

3 − d
4

2 − 4d
2arctan

1 − 1
d2
1
d

673

 Tests of Goodness of Fit randomness_test
where oi = dsquare_count[i] is the observed count. Thus, 2 has k - 1 degrees of freedom, and the null

hypothesis of pseudo-random uniform (0, 1) deviates is rejected if 2 is too large. As n increases, the chi-squared
approximation becomes better. A useful generalization is that e > 5 yields a good chi-squared approximation.

Triplets Test

IMSLS_DCUBE computes the triplets test on a sequence of hypothesized pseudo-random uniform(0, 1) devi-
ates. The triplets test is computed as follows:

Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3 equal sized cubes, where m = n_run.

Let i = [mX1] + 1, j = [mX2] + 1, and k = [mX3] + 1. For the triplet (X1, X2, X3), dcube_count[i][j][k] is

incremented.

Under the null hypothesis of pseudo-random uniform(0, 1) deviates, the m3 cells are equally probable and each

has expected value e = n/m3, where n is the number of triplets tallied. An approximate chi-squared statistic is
computed as

where oijk = dcube_count[i][j][k].

The computed chi-squared has m3 - 1 degrees of freedom, and the null hypothesis of pseudo-random uniform

(0, 1) deviates is rejected if 2 is too large.

Examples

Example 1

This example illustrates the use of the runs test on 104 pseudo-random uniform deviates. Since the probability of
a larger chi-squared statistic is 0.1872, there is no strong evidence to support rejection of this null hypothesis of
randomness.

#include <imsls.h>
#include <stdio.h>
int main()

χ2 =∑
i=0

k−1 oi − e
2

e

χ

χ

χ2 = ∑
i, j,k=0

k−1 oi j k − e
2

e

χ

674

 Tests of Goodness of Fit randomness_test
{
 int nran = 10000, n_run = 6;
 char *fmt = "%8.1f";
 float *x, pvalue, *runs_count, *runs_expect, *covariances, chisq, df;
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nran, 0);
 pvalue = imsls_f_randomness_test(nran, x, n_run,
 IMSLS_CHI_SQUARED, &chisq,
 IMSLS_DF, &df,
 IMSLS_RUNS_EXPECT, &runs_expect,
 IMSLS_RUNS, &runs_count, &covariances,
 0);
 imsls_f_write_matrix("runs_count", 1, n_run, runs_count, 0);
 imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 imsls_f_write_matrix("covariances", n_run, n_run, covariances,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 printf("chisq = %f\n", chisq);
 printf("df = %f\n", df);
 printf("pvalue = %f\n", pvalue);
}

Output

 runs_count
 1 2 3 4 5 6
1709.0 2046.0 953.0 260.0 55.0 4.0
 runs_expect
 1 2 3 4 5 6
1667.3 2083.4 916.5 263.8 57.5 11.9
 Covariances
 1 2 3 4 5 6
1 1278.2 -194.6 -148.9 -71.6 -22.9 -6.7
2 -194.6 1410.1 -490.6 -197.2 -55.2 -14.4
3 -148.9 -490.6 601.4 -117.4 -31.2 -7.8
4 -71.6 -197.2 -117.4 222.1 -10.8 -2.6
5 -22.9 -55.2 -31.2 -10.8 54.8 -0.6
6 -6.7 -14.4 -7.8 -2.6 -0.6 11.7
chisq = 8.76514
df = 6.00000
pvalue = 0.187225

Example 2

This example illustrates the calculations of the IMSLS_PAIRS statistics when a random sample of size 104 is
used and the pairs_lag is 1. The results are not significant. IMSL function imsls_f_random_uniform
(Chapter 12, Random Number Generation) is used in obtaining the pseudo-random deviates.

#include <imsls.h>
#include <stdio.h>
int main()
675

 Tests of Goodness of Fit randomness_test
{
 int nran = 10000, n_run = 10;
 float *x, pvalue, *pairs_count, expect, chisq, df;
 imsls_random_seed_set(123467);
 x = imsls_f_random_uniform(nran, 0);
 pvalue = imsls_f_randomness_test(nran, x, n_run,
 IMSLS_CHI_SQUARED, &chisq,
 IMSLS_DF, &df,
 IMSLS_EXPECT, &expect,
 IMSLS_PAIRS, 5, &pairs_count,
 0);
 imsls_f_write_matrix("pairs_count", n_run, n_run, pairs_count, 0);
 printf("expect = %8.2f\n", expect);
 printf("chisq = %8.2f\n", chisq);
 printf("df = %8.2f\n", df);
 printf("pvalue = %10.4f\n", pvalue);
}

Output

pairs_counts
 1 2 3 4 5 6 7 8 9 10
 1 112 82 95 118 103 103 113 84 90 74
 2 104 106 109 108 101 98 102 92 109 88
 3 88 111 86 106 112 79 103 105 106 101
 4 91 110 108 92 88 108 113 93 105 114
 5 104 105 103 104 101 94 96 87 93 104
 6 98 104 103 104 79 89 92 104 92 100
 7 103 91 97 101 116 83 118 118 106 99
 8 105 105 111 91 93 82 100 104 110 89
 9 92 102 82 101 94 128 102 110 125 98
10 79 99 103 98 104 101 93 93 98 105
expect = 99.95
chisq = 104.86
df = 99.00
pvalue = 0.3242

Example 3

In this example, 2000 observations generated via IMSL function imsls_f_random_uniform (Chapter 12, Ran-
dom Number Generation) are input to IMSLS_DSQUARE in one call. In the example, the null hypothesis of a
uniform distribution is not rejected.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int nran = 2000, n_run = 6;
 float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df;
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nran, 0);
 pvalue = imsls_f_randomness_test(nran, x, n_run,
 IMSLS_CHI_SQUARED, &chisq,
 IMSLS_DF, &df,
 IMSLS_EXPECT, &expect,
676

 Tests of Goodness of Fit randomness_test
 IMSLS_DSQUARE, &dsquare_counts,
 0);
 imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0);
 printf("expect = %10.4f\n", expect);
 printf("chisq = %10.4f\n", chisq);
 printf("df = %8.2f\n", df);
 printf("pvalue = %10.4f\n", pvalue);
}

Output

 dsquare_counts
 1 2 3 4 5 6
 87 84 78 76 92 83
expect = 83.3333
chisq = 2.0560
df = 5.00
pvalue = 0.8413

Example 4

In this example, 2001 deviates generated by IMSL function imsls_f_random_uniform (Chapter 12, Random
Number Generation) are input to IMSLS_DCUBE, and tabulated in 27 equally sized cubes. In the example, the
null hypothesis is not rejected.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int nran = 2001, n_run = 3;
 float *x, pvalue, *dcube_counts, expect, chisq, df;
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nran, 0);
 pvalue = imsls_f_randomness_test(nran, x, n_run,
 IMSLS_CHI_SQUARED, &chisq,
 IMSLS_DF, &df,
 IMSLS_EXPECT, &expect,
 IMSLS_DCUBE, &dcube_counts,
 0);
 imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0);
 imsls_f_write_matrix("dcube_counts", n_run, n_run,
 &dcube_counts[n_run*n_run], 0);
 imsls_f_write_matrix("dcube_counts", n_run, n_run,
 &dcube_counts[2*n_run*n_run], 0);
 printf("expect = %10.4f\n", expect);
 printf("chisq = %10.4f\n", chisq);
 printf("df = %8.2f\n", df);
 printf("pvalue = %10.4f\n", pvalue);
}

Output

 dcube_counts
 1 2 3
1 26 27 24
2 20 17 32
677

 Tests of Goodness of Fit randomness_test
3 30 18 21
 dcube_counts
 1 2 3
1 20 16 26
2 22 22 27
3 30 24 26
 dcube_counts
 1 2 3
1 28 30 22
2 23 24 22
3 33 30 27
expect = 24.7037
chisq = 21.7631
df = 26.0000
pvalue = 0.701586

Example 5

This example is based on Example 1 to illustrate the use of the IMSLS_IDO optional argument. In this example,
imsls_f_randomness_test is called 10 times, with 1000 pseudo-random uniform deviates each time.
Since the probability of a larger chi-squared statistic is 0.1872, there is no strong evidence to support rejection of
this null hypothesis of randomness.

#include <imsls.h>
#include <stdio.h>
#define NRAN 1000
#define N_RUN 6
int main()
{
 int ido = 1, i;
 char *fmt = "%8.1f";
 float x[NRAN], intermediate_results[N_RUN], pvalue, *runs_count,
 *runs_expect, *covariances, chisq, df;
 imsls_random_seed_set(123457);
 for (i = 0; i < 10; i++) {
 if (i == 9) ido = 3;
 imsls_f_random_uniform(NRAN, IMSLS_RETURN_USER, x, 0);
 pvalue = imsls_f_randomness_test(NRAN, x, N_RUN,
 IMSLS_IDO, ido, intermediate_results,
 IMSLS_CHI_SQUARED, &chisq,
 IMSLS_DF, &df,
 IMSLS_RUNS_EXPECT, &runs_expect,
 IMSLS_RUNS, &runs_count, &covariances,
 0);
 ido = 2;
 }
678

 Tests of Goodness of Fit randomness_test
 imsls_f_write_matrix("runs_count", 1, N_RUN, runs_count,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 imsls_f_write_matrix("runs_expect", 1, N_RUN, runs_expect,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 imsls_f_write_matrix("covariances", N_RUN, N_RUN, covariances,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 printf("chisq = %f\n", chisq);
 printf("df = %f\n", df);
 printf("pvalue = %f\n", pvalue);
}

Output

 runs_count
 1 2 3 4 5 6
 1709.0 2046.0 953.0 260.0 55.0 4.0
 runs_expect
 1 2 3 4 5 6
 1667.3 2083.4 916.5 263.8 57.5 11.9
 covariances
 1 2 3 4 5 6
1 1278.2 -194.6 -148.9 -71.6 -22.9 -6.7
2 -194.6 1410.1 -490.6 -197.2 -55.2 -14.4
3 -148.9 -490.6 601.4 -117.4 -31.2 -7.8
4 -71.6 -197.2 -117.4 222.1 -10.8 -2.6
5 -22.9 -55.2 -31.2 -10.8 54.8 -0.6
6 -6.7 -14.4 -7.8 -2.6 -0.6 11.7
chisq = 8.765146
df = 6.000000
pvalue = 0.187223
679

 Time Series and Forecasting Functions
Time Series and Forecasting

Functions
ARIMA Models

Computes least-squares or method of moments estimates
of parameters . arma 688

Computes maximum likelihood estimates of
parameters . max_arma 701

Computes forecasts and
their associated probability limits . arma_forecast 708

Fits a univariate seasonal or non-seasonal ARIMA time
series model . arima 716

Fits a univariate, non-seasonal ARIMA time
series model .regression_arima 729

Automatic ARIMA Selection and Fitting Utilities
Automatic selection and fitting of a univariate

autoregressive time series model. . auto_uni_ar 739
Estimates the optimum seasonality parameters for a

time series using an autoregressive model. seasonal_fit 745
Detects and determines outliers and simultaneously estimates

the model parameters in a time series ts_outlier_identification 754
Computes forecasts for an outlier contaminated

time series . ts_outlier_forecast 764
Automatic ARIMA modeling and forecasting in the

presence of possible outliers . auto_arima 773
Estimates structural breaks in non-stationary

univariate time series models . auto_parm 791

Bayesian Time Series Estimation
Decomposes a time series into trend, seasonal, and an

error component .bayesian_seasonal_adj 803

Model Construction and Evaluation Utilities
Performs a Box-Cox transformation . box_cox_transform 812
Performs differencing on a time series .difference 817
Sample autocorrelation function .autocorrelation 823
Computes the sample cross

correlation function . crosscorrelation 829
Computes the multichannel cross-correlation

function . multi_crosscorrelation 836
680

 Time Series and Forecasting Functions
Sample partial autocorrelation function .partial_autocorrelation 847
Lack-of-fit test based on the correlation function . lack_of_fit 851
Estimates missing values in a time series .estimate_missing 855

Exponential Smoothing Methods
Holt-Winters additive or multiplicative method. hw_time_series 863

GARCH Modeling
Computes estimates of the parameters of a GARCH

(p,q) model . garch 873

State-Space Models
Performs Kalman filtering and evaluates the likelihood

function for the state-space model .kalman 879

Vector Auto-Regression and Error Correction
Estimates a vector auto-regressive time series model

with optional moving average components.vector_autoregression 891
681

 Time Series and Forecasting Usage Notes
Usage Notes
The functions in this chapter assume the time series does not contain any missing values. If missing values are
present, they should be set to NaN (see Chapter 15, Utilities function imsls_f_machine), and the function will
return an appropriate error message. To enable fitting of the model, the missing values must be replaced by
appropriate estimates.

Model Construction and Evaluation Utilties
A major component of the model identification step concerns determining if a given time series is stationary. The
sample correlation functions computed by functions imsls_f_autocorrelation,
imsls_f_crosscorrelation, imsls_f_multi_crosscorrelation, and
imsls_f_partial_autocorrelation may be used to diagnose the presence of nonstationarity in the data,
as well as to indicate the type of transformation required to induce stationarity. The family of power transforma-
tions provided by function imsls_f_box_cox_transform coupled with the ability to difference the
transformed data using function imsls_f_difference affords a convenient method of transforming a wide
class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also provide insight into the nature of the
underlying model. Typically, this information is displayed in graphical form via time series plots, plots of the
lagged data, and various correlation function plots.

The observed time series may also be compared with time series generated from various theoretical models to
help identify possible candidates for model fitting. The function imsls_f_random_arma (see Chapter 12, Ran-
dom Number Generation) may be used to generate a time series according to a specified autoregressive moving
average model.

ARIMA Models
Once the data are transformed to stationarity, a tentative model in the time domain is often proposed and
parameter estimation, diagnostic checking and forecasting are performed.

ARIMA Model (Autoregressive Integrated Moving Average)
A small, yet comprehensive, class of stationary time-series models consists of the nonseasonal ARMA processes
defined by

φ(B) (Wt - μ) = θ(B)At, t ∈ Z
682

 Time Series and Forecasting Usage Notes
where Z = {..., -2, -1, 0, 1, 2, ...} denotes the set of integers, B is the backward shift operator defined by BkWt = Wt-

k, μ is the mean of Wt, and the following equations are true:

φ(B) = 1 - φ
1

B - φ
2

B2 - ... - φpBp, p ≥ 0

θ(B) = 1 - θ
1

B - θ
2

B2 - ... - θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B) Wt = θ
0

+ θ(B)At, t ∈ Z

where θ0 is an overall constant defined by the following:

See Box and Jenkins (1976, pp. 92-93) for a discussion of the meaning and usefulness of the overall constant.

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing using imsls_f_difference

induces stationarity, and the model is called ARIMA (AutoRegressive Integrated Moving Average). Parameter esti-

mation is performed on the stationary time series Wt = ∇dZt, where ∇d = (1 - B)d is the backward difference

operator with period 1 and order d, d > 0.

Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS in a call to function
imsls_f_arma for preliminary parameter estimates. These estimates can be used as initial values into the
least-squares procedure by including argument IMSLS_LEAST_SQUARES in a call to function imsls_f_arma.
Other initial estimates provided by the user can be used. The least-squares procedure can be used to compute
conditional or unconditional least-squares estimates of the parameters, depending on the choice of the back-
casting length. The parameter estimates from either the method of moments or least-squares procedures can be

θ0 = μ 1 −∑
i=1

p

ϕi
683

 Time Series and Forecasting Usage Notes
input to function imsls_f_arma_forecastthrough the arma_info structure. The functions for preliminary
parameter estimation, least-squares parameter estimation, and forecasting follow the approach of Box and Jen-
kins (1976, Programs 2 - 4, pp. 498-509).

Regression in Autoregressive Integrated Moving Average
There may be one or more external time series that relate to the time series of interest, which may be useful in
improving forecasts. Function imsls_f_regression_arima allows for the inclusion of one or more regression
time series in the above ARIMA model. That is, if there are r time series {Xi,t, i = 1, ...,r} associated with a times

series Yt, the regression ARIMA model (integrated of order d) is

where

That is, Zt is the residual (indexed by t) of the regression of Yt on {Xi,t, i = 1, ...,r}.

Automatic ARIMA Selection and Fitting Utilities
A popular criterion for comparing autoregressive-moving average (ARMA) models with different lags is a measure
known as Akaike’s Information Criterion (AIC). The AIC for an ARMA univariate series is calculated by:

where L = the value for the maximum likelihood function for the fitted model, and r = p + q + 1, the number of
parameters in the ARMA model. To use the criterion, several choices for p and q are fit to a time series and the fit
with the smallest AIC is considered best. The function, imsls_f_auto_uni_ar uses the AIC criterion to select a
best fitting AR model. The function imsls_f_auto_arima performs a more comprehensive search, considering
not only the ARMA parameters, but also the appropriate Box-Cox transformation, degree of differencing and sea-
sonal adjustment, and also filters the data for outliers by calling imsls_f_ts_outlier_identification.

The function imsls_f_auto_parm uses a second criterion, called “Minimum Description Length” or MDL, to
automatically fit piecewise AR models to a time series with structural breaks (i.e., a potentially non-stationary time
series having stationary segments).

The MDL is defined as

Wt = ∇dZt

Zt = Yt −∑
t=1

r

βiX i, t

AIC = − 2 · ln(L) + 2r
684

 Time Series and Forecasting Usage Notes
where m is the number of structural breaks in the series, are the locations of the breaks, nj is the

number of observations in the j-th segment, pj is the order of the AR model fit to the j-th segment, and L is the

combined likelihood over all segments. imsls_f_auto_parm also allows the choice to use the AIC criterion,

Exponential Smoothing Methods
Exponential smoothing approximates the value of a time series at time t with a weighted average of previous val-
ues, with weights defined in such a way that they decay exponentially over time.

The weights can be determined by a smoothing parameter α and the relation,

⇒

The parameter α is on the interval (0,1) and controls the rate of decay. For values close to 1, the effect decays rap-
idly, whereas for values close to 0, the influence of a past value persists for some time. Exponential smoothing as
a forecasting procedure is widely used and largely effective for short term, mean level forecasting. With the addi-
tion of a term for linear trend and terms or factors for seasonal patterns, exponential smoothing is an intuitive
procedure for many series that arise in business applications. The function imsls_f_hw_time_series per-
forms the Holt-Winters method, otherwise known as triple exponential smoothing, and allows for either an additive
or a multiplicative seasonal effect.

Garch Models
An important assumption in the ARMA model

φ(B) Wt = θ

MDL(m, τ1, … τm, p1, … pm+1)

= ln m + (m − 1)ln n + ∑
j=1

m+1 2 + p j
2 ln n j − ln L,

τ1,τ2,...τm+1

AIC(m, τ1, … τm, p1, … pm+1) = 2(number of parameters) − 2ln L

= 2 1 + m + ∑
j=1

m+1
2 + p j) − 2ln L

yt = αyt−1 + ŷt

yt =∑
j=0

t−1

αt− j(1 − α) jy j =∑
j=0

t−1

wj y j
685

 Time Series and Forecasting Usage Notes
0

 + θ(B)At, t ∈ Z

is that the errors At are independent random variables with mean 0 and constant variance, σ2.

For some time series, the assumptions of independent errors and constant variance will not hold for the underly-
ing series. For example, in the stock market, large errors in one direction are often followed by large errors in the
opposite direction. Variability over time can increase with a price level or trading volume. To account for hetero-
scedastic (non-equal) variances, Engle (1982) introduced the Autoregressive Conditional Heteroscedastic or
ARCH, model:

where the zt’s are independent and identically distributed standard normal random variables. In the ARCH model,

the variance term depends on previous squared errors, up to a given lag q. A generalized ARCH model, called
GARCH, was introduced by Bollerslev (1986) and has the form:

In the GARCH model, the variance has an auto-regressive term in addition to the squared error term. The func-
tion imsls_f_garch estimates ARCH or GARCH models.

State-Space Models
A state-space model is represented by two equations: the state equation

and the observation equation,

where b(t) is the state variable, Y(t) is the observation variable, u(t) is a vector of inputs, and

State-space models originated in the study of dynamical systems. The system state b(t) is not directly observed
but is inferred from the observable variable, Y(t), through the relation defined by the function, h. Y(t) is sometimes
called the measurement variable or output variable. While f and h are completely general functions in the defini-

At = ztσt

σt
2 = σ2 + ∑

i=1

q
αiAt−i

2 ,

At = ztσt

σt
2 = σ2 + ∑

i=1

p
βiσt−i

2 + ∑
i=1

q
αiAt−i

2 ,

ḃ(t) = f (t,b(t),u(t))

Y t = h t,b t ,u t

ḃ(t): = ddtb(t)
686

 Time Series and Forecasting Usage Notes
tion, they are most often linear, based on the assumption that the underlying system behaves linearly or
approximately so. There is often a stochastic or noise term added to the equations and, in the time series con-
text, there are usually no control inputs (u(t) = 0). Under these conditions, the state-space model takes the form,

and

where Z and T are known matrices and w and e are noise variables. Time may evolve continuously or discretely.
For a discrete time variable, it is customary to write the equations as:

and

where k = …-3, -2, -1, 0, 1, 2, 3, ….

Many time series can be expressed in the state-space form, including ARIMA models (See Section 5.5 in Box, Jen-
kins, and Reinsel (2008)). For ARIMA models, the state-space form is convenient for the calculation of the
likelihood and forecasts, and for handling missing values. Once a time series is formulated as a state-space
model, the problem becomes one of solving the equations for the unknown parameters. The Kalman filter
(imsls_f_kalman) is a recursive method for solving the state-space equations when the functions f and h are
linear.

b
.
t = Z t b t + w t

Y t = T t b t + e t

b k + 1 = Z k b k + w k

Y k = T k b k + e k
687

 Time Series and Forecasting arma
arma

more...

Computes least-square estimates of parameters for an ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_arma (int n_observations, float z[], int p, int q, ..., 0)

The type double function is imsls_d_arma.

Required Arguments
int n_observations (Input)

Number of observations.

float z[] (Input)
Array of length n_observations containing the observations.

int p (Input)
Number of autoregressive parameters.

int q (Input)
Number of moving average parameters.

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA parameters. If
IMSLS_NO_CONSTANT is specified, the 0-th element of this array is 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
688

 Time Series and Forecasting arma
float *imsls_f_arma (int n_observations, float z[], int p, int q,

IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT,
IMSLS_AR_LAGS, int ar_lags[],
IMSLS_MA_LAGS, int ma_lags[],
IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES,
IMSLS_BACKCASTING, int maxbc, float tolerance,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_ABS_FCN_TOL, float afcntol,
IMSLS_GRAD_TOL, float grad_tol,
IMSLS_STEP_TOL, float step_tol,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_INITIAL_ESTIMATES, float ar[], float ma[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_PARAM_EST_COV, float **param_est_cov,
IMSLS_PARAM_EST_COV_USER, float param_est_cov[],
IMSLS_AUTOCOV, float **autocov,
IMSLS_AUTOCOV_USER, float autocov[],
IMSLS_SS_RESIDUAL, float *ss_residual,
IMSLS_VAR_NOISE, float *avar,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,
0)

Optional Arguments
IMSLS_NO_CONSTANT
or

IMSLS_CONSTANT
If IMSLS_NO_CONSTANT is specified, the time series is not centered about its mean, z_mean. If
IMSLS_CONSTANT, the default, is specified, the time series is centered about its mean.
689

 Time Series and Forecasting arma
IMSLS_AR_LAGS, int ar_lags[] (Input)
Array of length p containing the order of the autoregressive parameters. The elements of ar_lags
must be greater than or equal to 1.

Default: ar_lags = [1, 2, ..., p]

IMSLS_MA_LAGS, int ma_lags[] (Input)
Array of length q containing the order of the moving average parameters. The ma_lags elements
must be greater than or equal to 1.

Default: ma_lags = [1, 2, ..., q]

IMSLS_METHOD_OF_MOMENTS
or

IMSLS_LEAST_SQUARES
If IMSLS_METHOD_OF_MOMENTS is specified, the autoregressive and moving average parameters
are estimated by a method of moments procedure. If IMSLS_LEAST_SQUARES is specified, the
autoregressive and moving average parameters are estimated by a least-squares procedure.

Default: IMSLS_METHOD_OF_MOMENTS is used.

IMSLS_BACKCASTING, int maxbc, float tolerance (Input)
If IMSLS_BACKCASTING is specified, maxbc is the maximum length of backcasting and must be
greater than or equal to 0. Argument tolerance is the tolerance level used to determine conver-
gence of the backcast algorithm. Typically, tolerance is set to a fraction of an estimate of the
standard deviation of the time series.

Default: maxbc = 10; tolerance = 0.01 × standard deviation of z.

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used in both the method of moments and
least-squares algorithms.

Default: relative_error = 100 × imsls_f_machine(4).

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_ABS_FCN_TOL, float afcntol (Input)
The absolute function tolerance used by the nonlinear least-squares solver that determines the MA
parameters in the method of moments. This variable is only needed for non-standard ARMA models.

Default: afcntol = max(10-10,ɛ2/3), where ɛ = imsls_f_machine(4) is the machine precision.

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_GRAD_TOL, float grad_tol (Input)
The scaled gradient tolerance used by the nonlinear least-squares solver that determines the MA
parameters in the method of moments. This variable is only needed for non-standard ARMA models.
690

 Time Series and Forecasting arma
Default: grad_tol = in single, in double, where ɛ = imsls_f_machine(4) is the machine
precision.

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_STEP_TOL, float step_tol (Input)
The scaled step tolerance used by the nonlinear least-squares solver that determines the MA param-
eters in the method of moments. This variable is only needed for non-standard ARMA models.

Default: step_tol = ɛ2/3, where ɛ = imsls_f_machine(4) is the machine precision.

See documentation for function imsls_f_machine (Chapter 15, Utilities).

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equation solver used in both the method of
moments and least-squares algorithms.

Default: max_iterations = 200.

IMSLS_MEAN_ESTIMATE, float *z_mean (Input or Input/Output)
On input, z_mean is an initial estimate of the mean of the time series z. On return, z_mean con-
tains an update of the mean.

If IMSLS_NO_CONSTANT and IMSLS_LEAST_SQUARES are specified, z_mean is not used in
parameter estimation.

IMSLS_INITIAL_ESTIMATES, float ar[], float ma[] (Input)
If specified, ar is an array of length p containing preliminary estimates of the autoregressive parame-
ters, and ma is an array of length q containing preliminary estimates of the moving average
parameters; otherwise, these are computed internally. IMSLS_INITIAL_ESTIMATES is only
applicable if IMSLS_LEAST_SQUARES is also specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
na = (n_observations - max (ar_lags [i]) + maxbc) containing the residuals (including back-
casts) at the final parameter estimate point in the first n_observations -
max(ar_lags[i]) + nb, where nb is the number of values backcast.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_PARAM_EST_COV, float **param_est_cov (Output)
Address of a pointer to an internally allocated array containing the variance-covariance matrix of the
estimated ARMA parameters and (optionally) of the estimated mean of series z. The size of the array
is np × np, where np = p + q + 1 if z is centered about z_mean, and np = p + q if z is not centered.
The ordering of variables in param_est_cov is z_mean, ar, and ma. Argument np must be 1 or
larger.

ε ε
3

691

 Time Series and Forecasting arma
IMSLS_PARAM_EST_COV_USER, float param_est_cov[] (Output)
Storage for array param_est_cov is provided by the user. See IMSLS_PARAM_EST_COV.

IMSLS_AUTOCOV, float **autocov (Output)
Address of a pointer to an array of length p + q + 2 containing the variance and autocovariances of
the time series z. Argument autocov[0] contains the variance of the series z. Argument
autocov[k] contains the autocovariance at lag k, where k = 0, 1, ..., p + q + 1.

IMSLS_AUTOCOV_USER, float autocov[] (Output)
Storage for array autocov is provided by the user. See IMSLS_AUTOCOV.

IMSLS_SS_RESIDUAL, float *ss_residual (Output)
If specified, ss_residual contains the sum of squares of the random shock,
ss_residual = residual[1]2 + ... + residual[na]2, where na is equal to the number of
residuals.

IMSLS_VAR_NOISE, float *avar (Output)
If specified, avar contains the innovation variance of the series.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p containing the
final autoregressive parameter estimates, and ma is an array of length q containing the final moving
average parameter estimates. If p or q equals zero, a NULL array may be used.

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output)
Address of a pointer to an internally allocated structure of type Imsls_f_arma that contains informa-
tion necessary in the call to imsls_f_arma_forecast.

Description
Function imsls_f_arma computes estimates of parameters for a nonseasonal ARMA model given a sample of
observations, {Wt}, for t = 1, 2, ..., n, where n = n_observations. There are two methods, method of moments

and least squares, from which to choose. The default is method of moments.

Two methods of parameter estimation, method of moments and least squares, are provided. The user can
choose the method of moments algorithm with the optional argument IMSLS_METHOD_OF_MOMENTS. The
least-squares algorithm is used if the user specifies IMSLS_LEAST_SQUARES. If the user wishes to use the
least-squares algorithm, the preliminary estimates are the method of moments estimates by default. Otherwise,
692

 Time Series and Forecasting arma
the user can input initial estimates by specifying optional argument IMSLS_INITIAL_ESTIMATES. The fol-
lowing table lists the appropriate optional arguments for both the method of moments and least-squares
algorithm:

Method of Moments Estimation
The method of moments assumes that the stationary time series {Zt} can be described by a nonseasonal ARMA

model of the form

φ(B)Zt = θ
0

+ θ(B)At, t ∈ {0, ±1, ±2, ...}

where B is the backward shift operator, μ is the mean of Zt, and

with p autoregressive and q moving average parameters.

Function imsls_f_arma first orders the AR and MA lags in strictly increasing order. Without loss of generality,
it therefore can be assumed that

1 ≤lφ(1) < lφ(2) < ... < lφ(p), 1 ≤lθ(1) < lθ(2) < ... < lθ(q)

so that the nonseasonal ARMA model is of order (p’, q’), where p’ = lθ (p) and q’ = lθ (q).

Method of Moments Only Least Squares Only

Both Method of
Moments and Least
Squares

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR
IMSLS_ABS_FCN_TOL IMSLS_CONSTANT

(or IMSLS_NO_CONSTANT)
IMSLS_MAX_ITERATIONS

IMSLS_GRAD_TOL IMSLS_BACKCASTING IMSLS_MEAN_ESTIMATE
IMSLS_STEP_TOL IMSLS_INITIAL_ESTIMATES IMSLS_AUTOCOV(_USER)

IMSLS_RESIDUAL(_USER) IMSLS_RETURN_USER
IMSLS_PARAM_EST_COV(_USER) IMSLS_ARMA_INFO
IMSLS_SS_RESIDUAL IMSLS_AR_LAGS

IMSLS_MA_LAGS
IMSLS_VAR_NOISE

ϕ B = 1 − ϕ1B
lϕ 1

− ϕ2B
lϕ 2

− ... − ϕpB
lϕ p

for p ≥ 0

θ B = 1 − θ1B
lθ 1 − θ2B

lθ 2 − ... − θqB
lθ q for q ≥ 0
693

 Time Series and Forecasting arma
In order to keep the notation simple, the following explanations assume the standard ARMA (p, q) model with lφ(i)

= i, i = 1,...,p, and lθ (i) = i, i = 1,...,q.

Let μ = z_mean be the estimate of the mean μ of the time series{Zt}, where μ equals the following:

The autocovariance function is estimated by

for k = 0, 1, ..., K, where K = p + q. Note that (0) is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method of moments estimates of the autoregres-
sive parameters using the extended Yule-Walker equations as follows:

where

The overall constant θ0 is estimated by the following:

The moving average parameters are estimated based on a system of nonlinear equations given K = p + q + 1
autocovariances, σ(k) for k = 1, ..., K, and p autoregressive parameters φi for i = 1, ..., p.

Let Zʹt = φ(B)Zt. The autocovariances of the derived moving average process Zʹt = θ(B)At are estimated by the fol-

lowing relation:

μ̂ =
μ for μ known
1
n ∑
t=1

n
Zt for μ unknown

σ̂ k = 1n∑
t=1

n−k

Zt − μ̂ Zt+k − μ̂

σ^

∑
^
ϕ^ = σ̂

ϕ^ = ϕ^1, … ,ϕ^ p
T

∑
^
i j = σ̂ ∣q + i − j∣ , i, j = 1, … ,p

σ̂i = σ̂ q + i , i = 1, … ,p

θ^0 =
μ̂ for p = 0

μ̂ 1 − ∑
i=1

p
ϕ^ i for p > 0
694

 Time Series and Forecasting arma
The iterative procedure for determining the moving average parameters is based on the relation

where σ(k) denotes the autocovariance function of the original Zt process.

Let and f = (f0, f1, ..., fq)T, where

and

The nonlinear system

is solved by a trust-region method. If is the estimate of obtained at the i-th iteration and if a full

Newton step is possible, then the new value at the (i + 1)-th iteration is determined by

where

is a square matrix of order q + 1 with entries

σ̂ ′ k =

σ̂ k for p = 0

∑
i=0

p
∑
j=0

p
ϕ^ iϕ
^
j σ̂ ∣k + i − j∣ for p ≥ 1,ϕ^0 ≡ − 1

σ k =
1 + θ1

2 + ... + θq
2 σA

2 for k = 0

−θk + θ1θk+1 + ... + θq−kθq σA
2 for k ≥ 1

τ = (τ0,τ1,...τq)
T

τ j =
σA for j = 0
−θ jτ0 for j = 1, … ,q

f j(τ0,...,τq) = ∑
i=0

q− j
τiτi+ j − σ̂ ′ j for j = 0,...,q.

f (τ0, … ,τq) = 0

τi = (τ0
i ,...,τq

i) τ

τi+1 = τi − Ti
−1
f i,

Ti: =
∂ f j
i

∂τk 0≤ j,k≤q
695

 Time Series and Forecasting arma
The estimation procedure begins with the initial value

and terminates at iteration i when either ∥fi∥ is less than relative_error or i equals max_iterations.

The moving average parameter estimates are obtained from the final estimate of by setting

The random shock variance is estimated by the following:

See Box and Jenkins (1976, pp. 498-500) for a description of a function that performs similar computations.

Least-squares Estimation
Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form,

φ(B) (Zt - μ) = θ(B)At for t ∈ {0, ±1, ±2, …}

where B is the backward shift operator, μ is the mean of Zt, and

with p autoregressive and q moving average parameters. Without loss of generality, the following is assumed:

1 ≤ lφ (1) ≤ lφ (2) ≤ … ≤ lφ (p)

1 ≤ lθ (1) ≤ lθ (2) ≤ … ≤ lθ (q)

so that the nonseasonal ARMA model is of order (p’, q’), where p’ = lφ (p) and q’ = lθ (q). Note that the usual hierar-

chical model assumes the following:

lφ (i) = i, 1 ≤ i ≤ p

lθ (j) = j, 1 ≤ j ≤ q

∂ f j
i

∂τk
= τk+ j

i + τk− j
i , τl

i: = 0 for l < 0 and l > q.

τ0 = σ̂ ′ 0 ,0, … ,0
T

τ

θ^ j = − τ j / τ0 for j = 1, … ,q

σ̂A
2 =

σ̂(0) − ∑i=1
p ϕ^ iσ̂ i for q = 0

τ0
2 for q > 0

ϕ B = 1 − ϕ1B
lϕ 1

− ϕ2B
lϕ 2

− ... − ϕpB
lϕ p

for p ≥ 0

θ B = 1 − θ1B
lθ 1 − θ2B

lθ 2 − ... − θqB
lθ q for q ≥ 0
696

 Time Series and Forecasting arma
Consider the sum-of-squares function

where

and T is the backward origin. The random shocks {At} are assumed to be independent and identically distributed

random variables. Hence, the log-likelihood function is given by

where f (μ, φ, θ) is a function of μ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Zt and At required to initialize the

model. The method of selecting these initial values usually introduces transient bias into the model
(Box and Jenkins 1976, pp. 210-211). For T = ∞, this dependency vanishes, and estimation problem concerns
maximization of the unconditional log-likelihood function. Box and Jenkins (1976, p. 213) argue that

dominates

The parameter estimates that minimize the sum-of-squares function are called least-squares estimates. For large
n, the unconditional least-squares estimates are approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T will enable sufficient approximation of the unconditional sum-of-squares function.
The values of [AT] needed to compute the unconditional sum of squares are computed iteratively with initial val-

ues of Zt obtained by back forecasting. The residuals (including backcasts), estimate of random shock variance,

and covariance matrix of the final parameter estimates also are computed. ARIMA parameters can be computed
by using imsls_f_difference with imsls_f_arma.

ST μ,ϕ,θ = ∑
−T+1

n

At
2

At = E At∣ μ,ϕ,θ,Z

N 0,σA
2

l μ,ϕ,θ,σA = f μ,ϕ,θ − n ln σA −
ST μ,ϕ,θ
2σA
2

S∞ μ,ϕ,θ / 2σA
2

l μ,ϕ,θ,σA
2

697

 Time Series and Forecasting arma
Examples

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each
year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from
1770 through 1869. The method of moments estimates

for the ARMA(2, 1) model

where the errors At are independently normally distributed with mean zero and variance .

#include <imsls.h>
#include <stdio.h>
int main()
{
 int p=2, q=1, i, n_observations=100, max_iterations=0;
 float w[176][2], z[100], *parameters, relative_error=0.0;
 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];
 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_RELATIVE_ERROR, relative_error,
 IMSLS_MAX_ITERATIONS, max_iterations,
 0);
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
}

Output

AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.

Example 2

The data for this example are the same as that for the initial example. Preliminary method of moments estimates
are computed by default, and the method of least squares is used to find the final estimates.

θ
^

0,ϕ
^

1
,ϕ
^

2
, and θ

^

1

Zt = θ0 + ϕ1Zt−1 + ϕ2Zt−2 − θ1At−1 + At
σA
2

698

 Time Series and Forecasting arma
#include <imsls.h>
#include <stdio.h>
int main()
{
 int p=2, q=1, i, n_observations=100;
 float w[176][2], z[100], *parameters;
 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];
 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_LEAST_SQUARES,
 0);
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
}

Output

AR estimates are 1.5300 and -0.8931.
MA estimate is -0.1324.

Warning Errors
IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the parameters has

failed to converge. Solution from last iteration is
returned. The estimates of the parameters at the
last iteration may be used as new starting values.

IMSLS_NEED_POSITIVE_GRADTL The gradient tolerance must be nonnegative while
“grad_tol” = # is given. The algorithm will use
“grad_tol” = #.

IMSLS_NEGATIVE_STEP_TOL The step tolerance must be nonnegative while
“step_tol” = # is given. The algorithm will use
“step_tol” = #.

IMSLS_NEGATIVE_ABS_FCN_TOL The absolute function tolerance must be nonnega-
tive while “afcntol” = # is given. The algorithm will
use “afcntol” = #.
699

 Time Series and Forecasting arma
Fatal Errors
IMSLS_TOO_MANY_CALLS The number of calls to the function has exceeded

“itmax”*(“n”+1) = %(i1). The user may try a new ini-
tial guess.

IMSLS_INCREASE_ERRREL The bound for the relative error, “errrel” = %(r1), is
too small. No further improvement in the approxi-
mate solution is possible. The user should increase
“errrel”.

IMSLS_NEW_INITIAL_GUESS The iteration has not made good progress. The user
may try a new initial guess.
700

 Time Series and Forecasting max_arma
max_arma
Exact maximum likelihood estimation of the parameters in a univariate ARMA (autoregressive, moving average)
time series model.

Synopsis
#include <imsls.h>
float *imsls_f_max_arma(int n_obs, float w[], int p, int q,…,0)

The type double function is imsls_d_max_arma.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

float w[] (Input)
Array of length n_obs containing the time series.

int p (Input)
Non-negative number of autoregressive parameters.

int q (Input)
Non-negative number of moving average parameters.

Return Value
Pointer to an array of length 1+p+q with the estimated constant, AR and MA parameters. If no value can be com-
puted, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_max_arma (int n_obs, float w[], int p, int q,

IMSLS_INITIAL_ESTIMATES, float init_ar[], float init_ma[],
IMSLS_PRINT_LEVEL, int iprint,
701

 Time Series and Forecasting max_arma
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_LOG_LIKELIHOOD, float *log_likeli,
IMSLS_VAR_NOISE, float *avar,

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,

IMSLS_MEAN_ESTIMATE, float *w_mean,
IMSLS_RESIDUAL, float **residuals,
IMSLS_RESIDUAL_USER, float residuals[],
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
0)

Optional Arguments
IMSLS_INITIAL_ESTIMATES, float init_ar[], float init_ma[] (Input)

If specified, init_ar is an array of length p containing preliminary estimates of the autoregressive
parameters, and init_ma is an array of length q containing preliminary estimates of the moving
average parameters; otherwise, they are computed internally. If p=0 or q=0, then the corresponding
arguments are ignored.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing options:

Default: iprint = 0.

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of estimation iterations.

Default: maxit = 300

IMSLS_VAR_NOISE, float *avar (Output)
Estimate of innovation variance.

IMSLS_LOG_LIKELIHOOD, float *log_likeli (Output)
Value of -2 × (ln(likelihood)) for the fitted model.

iprint Action

0 No Printing.

1 Prints final results only.

2 Prints intermediate and final results.
702

 Time Series and Forecasting max_arma
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output)
Address of a pointer to an internally allocated structure of type Imsls_f_arma that contains informa-
tion necessary in the call to imsls_f_arma_forecast.

IMSLS_MEAN_ESTIMATE, float *w_mean (Input/Output)
Estimate of the mean of the time series w. On return, w_mean contains an update of the mean.

Default: Time series w is centered about its sample mean.

IMSLS_RESIDUAL, float **residuals (Output)
Address of a pointer to an internally allocated array of length n_obs containing the residuals of the
requested ARMA fit.

IMSLS_RESIDUAL_USER, float residuals[] (Output)
Storage array residuals is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p containing the
final autoregressive parameter estimates, and ma is an array of length q containing the final moving
average parameter estimates.

Description
The function imsls_f_max_arma is derived from the maximum likelihood estimation algorithm described by
Akaike, Kitagawa, Arahata and Tada (1979), and the XSARMA routine published in the TIMSAC-78 Library.

Using the notation developed in the Time Domain Methodology at the beginning of this chapter, the stationary

time series with mean can be represented by the nonseasonal autoregressive moving average (ARMA)
model by the following relationship:

where

B is the backward shift operator defined by ,

and

Wt μ

ϕ B Wt − μ = θ B at

t ∈ ZZ = ⋯ , − 2, − 1,0,1,2, ⋯ ,

BkWt = Wt−k

ϕ B = 1 − ϕ1B − ϕ2B
2 − ⋯ − ϕpB

p
, p ≥ 0,
703

 Time Series and Forecasting max_arma
Function imsls_f_max_arma estimates the AR coefficients and the MA coefficients

 using maximum likelihood estimation.

Function imsls_f_max_arma checks the initial estimates for both the autoregressive and moving average
coefficients to ensure that they represent a stationary and invertible series respectively.

If

are the initial estimates for a stationary series then all (complex) roots of the following polynomial will fall outside
the unit circle:

Initial values for the AR and MA coefficients can be supplied by vectors init_ar and init_ma. Otherwise, esti-
mates are computed internally by the method of moments. imsls_f_max_arma computes the roots of the
associated polynomials. If the AR estimates represent a non-stationary series, imsls_f_max_arma issues a
warning message and replaces init_ar with initial values that are stationary. If the MA estimates represent a
non-invertible series, imsls_f_max_arma issues a terminal error, and new initial values have to be sought.

imsls_f_max_arma also validates the final estimates of the AR coefficients to ensure that they too represent
a stationary series. This is done to guard against the possibility that the internal log-likelihood optimizer con-
verged to a non-stationary solution. If non-stationary estimates are encountered, imsls_f_max_arma issues
a fatal error message. Functions imsls_error_options and imsls_error_code (see Chapter 15, Utilities)
can be used to verify that the stationarity condition was met.

For model selection, the ARMA model with the minimum value for AIC might be preferred,

Function imsls_f_max_arma can also handle white noise processes, i.e. ARMA(0,0) Processes.

θ B = 1 − θ1B − θ2B
2 − ⋯ − θqB

q
, q ≥ 0.

ϕ1,ϕ2, ⋯ ,ϕp
θ1,θ2, ⋯ ,θq

ϕ1,ϕ2, ⋯ ,ϕp

1 − ϕ1z − ϕ2z
2 − ⋯ − ϕpz

p
.

AIC = log_likeli + 2 p + q
704

 Time Series and Forecasting max_arma
Examples

Example 1

Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of sunspots observed each
year from 1770 through 1869. In this example, imsls_f_max_arma is used to fit the following ARMA(2,1)
model:

with , the sample mean of the time series .

For these data, imsls_f_max_arma calculated the following model:

Defining the overall constant by , we obtain the following equivalent representations:

and

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i;
 int n_obs = 100;
 int p = 2, q = 1;
 float z[176][2];
 float w[100];
 float *parameters = NULL;
 float avar, log_likeli;
 /* get wolfer sunspot data */
 imsls_f_data_sets (2,
 IMSLS_X_COL_DIM, 2,
 IMSLS_RETURN_USER, z,
 0);
 for (i=0; i<n_obs; i++)
 w[i] = z[21+i][1];
 parameters = imsls_f_max_arma (n_obs, w, p, q,
 IMSLS_MAX_ITERATIONS, 12000,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &log_likeli,

w~ t = ϕ1w
~
t−1 + ϕ2w

~
t−2 + at − θ1at−1

w~ t : = wt − μ μ wt

w~ t = 1.22w
~
t−1 − 0.56w

~
t−2 + at + 0.38at−1

ϕ0 ϕ0 : = μ 1 − ∑i=1
p ϕi

wt = ϕ0 + ϕ1wt−1 + ϕ2wt−2 + at − θ1at−1,

wt = 15.76 + 1.22wt−1 − 0.56wt−2 + at + 0.38at−1.
705

 Time Series and Forecasting max_arma
 0);
 printf("AR estimates are %11.4f and %11.4f.\n", parameters[1],
 parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
 printf("Constant estimate is %11.4f.\n", parameters[0]);
 printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli);
 printf("White noise variance = %11.4f.\n", avar);
 if (parameters)
 {
 imsls_free(parameters);
 parameters = NULL;
 }
}

Output

AR estimates are 1.2245 and -0.5601.
MA estimate is -0.3831.
Constant estimate is 15.7624.
-2*ln(Maximum Log Likelihood) = 539.5839.
White noise variance = 214.5123.

Example 2

This example is the same as Example 1, but now initial values for the AR and MA parameters are explicitly given.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i;
 int n_obs = 100;
 int p = 2, q = 1;
 float z[176][2];
 float w[100];
 float parameters[4];
 float avar, log_likeli;
 float init_ar[2] = {1.244e0, -0.575e0};
 float init_ma[1] = {-0.1241e0};
 /* get wolfer sunspot data */
 imsls_f_data_sets (2,
 IMSLS_X_COL_DIM, 2,
 IMSLS_RETURN_USER, z,
 0);
 for (i=0; i<n_obs; i++)
 w[i] = z[21+i][1];
 imsls_f_max_arma (n_obs, w, p, q,
 IMSLS_MAX_ITERATIONS, 12000,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &log_likeli,
706

 Time Series and Forecasting max_arma
 IMSLS_INITIAL_ESTIMATES, init_ar, init_ma,
 IMSLS_RETURN_USER, ¶meters[0], ¶meters[1], ¶meters[3],
 0);
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
 printf("Constant estimate is %11.4f.\n", parameters[0]);
 printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli);
 printf("White noise variance = %11.4f.\n", avar);
}

Output

AR estimates are 1.2252 and -0.5607.
MA estimate is -0.3828.
Constant estimate is 15.7587.
-2*ln(Maximum Log Likelihood) = 539.5839.
White noise variance = 214.5083.
707

 Time Series and Forecasting arma_forecast
arma_forecast
Computes forecasts and their associated probability limits for an ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict, ..., 0)

The type double function is imsls_d_arma_forecast.

Required Arguments
Imsls_f_arma *arma_info (Input)

Pointer to a structure of type Imsls_f_arma that is passed from the imsls_f_arma function.

int n_predict (Input)
Maximum lead time for forecasts. Argument n_predict must be greater than 0.

Return Value
Pointer to an array of length n_predict × (backward_origin + 3) containing the forecasts up to
n_predict steps ahead and the information necessary to obtain pairwise confidence intervals. More informa-
tion is given in the description of argument IMSLS_RETURN_USER.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict,

IMSLS_CONFIDENCE, float confidence,
IMSLS_BACKWARD_ORIGIN, int backward_origin,
IMSLS_ONE_STEP_FORECAST, float **forecast,
IMSLS_ONE_STEP_FORECAST_USER, float forecast[],
IMSLS_RETURN_USER, float forecasts[],
0)
708

 Time Series and Forecasting arma_forecast
Optional Arguments
IMSLS_CONFIDENCE, float confidence (Input)

Value in the exclusive interval (0, 100) used to specify the confidence percent probability limits of
the forecasts. Typical choices for confidence are 90.0, 95.0, and 99.0.

Default: confidence = 95.0.

IMSLS_BACKWARD_ORIGIN, int backward_origin (Input)
If specified, the maximum backward origin. Argument backward_origin must be greater than or
equal to 0 and less than or equal to n_observations - max(maxar, maxma), where
maxar = max(ar_lags[i]), maxma = max (ma_lags[j]), and n_observations = the number of
observations in the series, as input in function imsls_f_arma. n_predict forecasts beginning
at origins n_observations - backward_origin +1 through n_observations are
generated.

Default: backward_origin = 0.

IMSLS_ONE_STEP_FORECAST, float **forecast (Output)
Address of a pointer to an internally allocated array of length backward_origin + n_predict
containing forecasts. The first backward_origin forecasts are one-step ahead forecasts for the
last backward_origin values in the series. The next n_predict values in the returned series
are forecasts for the next values beyond the series.

IMSLS_ONE_STEP_FORECAST_USER, float forecast[] (Output)
Storage for array forecast is provided by the user. See IMSLS_ONE_STEP_FORECAST.

IMSLS_RETURN_USER, float forecasts[] (Output)
If specified, a user-specified array of length n_predict × (backward_origin + 3) as defined
below.

Also see Examples for additional explanation of how to interpret this output.

Column Content

j forecasts for lead times l = 1, ..., n_predict at ori-
gins n_observations - backward_origin + 1+ j,
where j = 0, ..., backward_origin

backward_origin + 1 deviations from each forecast that give the confi-
dence percent probability limits

backward_origin + 2 psi weights of the infinite order moving average form
of the model
709

 Time Series and Forecasting arma_forecast
Description
The Box-Jenkins forecasts and their associated probability limits for a nonseasonal ARMA model are computed
given a sample of n = n_observations {Zt} for t = 1, 2, ..., n, where n_observations = the number of

observations in the series, as input in function imsls_f_arma.

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form

φ(B)Zt = θ
0

+ θ(B)At

for t ∈ {0, ±1, ±2, ...}, where B is the backward shift operator, θ0 is the constant, and

with p autoregressive and q moving average parameters. Without loss of generality, the following is assumed:

1 ≤ lφ (1) ≤ lφ (2) ≤ … ≤ lφ (p)

1 ≤ lθ (1) ≤ lθ (2) ≤ … ≤ lθ (q)

so that the nonseasonal ARMA model is of order (pʹ, qʹ), where pʹ = lφ(p) and qʹ = lθ(q). Note that the usual hierar-

chical model assumes the following:

lφ (i) = i, 1 ≤ i ≤ p

lθ (j) = j, 1 ≤ j ≤ q

The Box-Jenkins forecast at origin t for lead time l of Zt+l is defined in terms of the difference equation

where the following is true:

ϕ B = 1 − ϕ1B
lϕ 1

− ϕ2B
lϕ 2

− ... − ϕpB
lϕ p

θ B = 1 − θ1B
lθ 1 − θ2B

lθ 2 − ... − θqB
lθ q

Z^ t l = θ0 + ϕ1 Zt+l−lϕ 1
+ ... + ϕp Zt+l−lϕ p

+ At+l − θ1 At+l−lθ 1
− − θq At+l−lθ q
710

 Time Series and Forecasting arma_forecast
The 100(1 - α) percent probability limits for Zt+l are given by

where z(a/2) is the 100(1 - α/2) percentile of the standard normal distribution

(returned from imsls_f_arma) and

are the parameters of the random shock form of the difference equation. Note that the forecasts are computed
for lead times l = 1, 2, ..., L at origins t = (n - b), (n - b + 1), ..., n, where L = n_predict and
b = backward_origin.

The Box-Jenkins forecasts minimize the mean-square error

Also, the forecasts can be easily updated according to the following equation:

This approach and others are discussed in Chapter 5, Forecasting of Box and Jenkins (1976).

Zt+k =
Zt+k for k = 0, − 1, − 2, …

Z^ t k for k = 1,2, …

At+k =
Zt+k − Z

^
t+k−1 1 for k = 0, − 1, − 2, …

0 for k = 1,2, …

Z^ t l ± zα/2 1 +∑
j=1

l−1

ψ j
2

1/2

σA

σA
2

ψ j

E Zt+l − Z
^
t l

2

Z^ t+1 l = Z^ t l + 1 + ψlAt+1
711

 Time Series and Forecasting arma_forecast
Examples

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of sunspots observed each
year from 1749 through 1924. The data set for this example consists of the number of sunspots observed from
1770 through 1869. Function imsls_f_arma_forecast computes forecasts and 95-percent probability lim-
its for the forecasts for an ARMA(2, 1) model fit using function imsls_f_arma with the method of moments
option. With backward_origin = 3, columns zero through three of forecasts provide forecasts starting
with 1867, 1868, 1869, and 1870, respectively. Note that the values in the first row are the one-step ahead fore-
casts for 1867, 1868, 1869, and 1870; the values in the second row are the two-step ahead forecasts for 1868,
1869, 1870, and 1871; etc. Column four gives the deviations for computing probability limits, and column five
gives the psi weights, which can be used to update forecasts when more data is available. For example, the fore-
cast for the 102nd observation (year 1871) given the data through the 100th observation (year 1869) is 77.21;

and 95-percent probability limits are given by 77.21 56.30. After observation 101 (Z101 for year 1870) is avail-

able, the forecast can be updated by using

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation 101 (Z101 - 83.72) to give

the following:

77.21 + 1.37 × (Z

101

- 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are now given by the forecast
33.22.

#include <imsls.h>
int main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 int max_iterations = 0;
 int n_predict = 12;
 int backward_origin = 3;
 float w[176][2];
 float z[100];
 float *parameters;
 float rel_error = 0.0;

∓

Z^ t l ± zα/2 1 +∑
j=1

l−1

ψ j
2

1/2

σA

∓

712

 Time Series and Forecasting arma_forecast
 float *forecasts;
 Imsls_f_arma *arma_info;
 char *col_labels[] = {
 "Lead Time",
 "Forecast From 1866",
 "Forecast From 1867",
 "Forecast From 1868",
 "Forecast From 1869",
 "Dev. for Prob. Limits",
 "Psi"};
 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_RELATIVE_ERROR,
 rel_error,
 IMSLS_MAX_ITERATIONS,
 max_iterations,
 IMSLS_ARMA_INFO,
 &arma_info,
 0);
 printf("Method of Moments initial estimates:\n");
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
 forecasts = imsls_f_arma_forecast(arma_info, n_predict,
 IMSLS_BACKWARD_ORIGIN,
 backward_origin,
 0);

 imsls_f_write_matrix("* * * Forecast Table * * *\n",
 n_predict, backward_origin+3,
 forecasts,
 IMSLS_COL_LABELS, col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Output

Method of Moments initial estimates:
AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.
 * * * Forecast Table * * *
Lead Time Forecast From Forecast From Forecast From Forecast From
 1866 1867 1868 1869
 1 18.2833 16.6151 55.1893 83.7196
 2 28.9182 32.0189 62.7606 77.2092
 3 41.0101 45.8275 61.8922 63.4608
 4 49.9387 54.1496 56.4571 50.0987
 5 54.0937 56.5623 50.1939 41.3803
 6 54.1282 54.7780 45.5268 38.2174
713

 Time Series and Forecasting arma_forecast
 7 51.7815 51.1701 43.3221 39.2965
 8 48.8417 47.7072 43.2631 42.4582
 9 46.5335 45.4736 44.4577 45.7715
 10 45.3524 44.6861 45.9781 48.0758
 11 45.2103 44.9909 47.1827 49.0371
 12 45.7128 45.8230 47.8072 48.9080
Lead Time Dev. for Prob. Psi
 Limits
 1 33.2179 1.3684
 2 56.2980 1.1274
 3 67.6168 0.6158
 4 70.6432 0.1178
 5 70.7515 -0.2076
 6 71.0869 -0.3261
 7 71.9074 -0.2863
 8 72.5337 -0.1687
 9 72.7498 -0.0452
 10 72.7653 0.0407
 11 72.7779 0.0767
 12 72.8225 0.0720

Example 2

Using the same data as in example 1, option IMSLS_ONE_STEP_FORECAST is used to compute the one-step
ahead forecasts with backward_origin = 0 and n_predict = 5. This obtains the one-step ahead forecasts for
the last 10 observations in the series, i.e. years 1860-1869, plus the next 5 years. The upper 90% confidence lim-
its are computed for these forecasts using the deviations in column backward_origin +1 of forecasts.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 int max_iterations = 0;
 int n_predict = 5;
 int backward_origin = 10;
 int year=1860;
 int devindex;
 float w[176][2];
 float z[100];
 float *parameters;
 float rel_error = 0.0;
 float *forecasts;
 float *one_step_forecast;
 float confidence=90.;
 Imsls_f_arma *arma_info;
 imsls_f_data_sets(2, IMSLS_X_COL_DIM, 2,
 IMSLS_RETURN_USER, w,
 0);
714

 Time Series and Forecasting arma_forecast
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];
 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_RELATIVE_ERROR, rel_error,
 IMSLS_MAX_ITERATIONS, max_iterations,
 IMSLS_ARMA_INFO, &arma_info,
 0);
 /* get one-step ahead forecasts */
 forecasts = imsls_f_arma_forecast(arma_info, n_predict,
 IMSLS_BACKWARD_ORIGIN, backward_origin,
 IMSLS_ONE_STEP_FORECAST, &one_step_forecast,
 IMSLS_CONFIDENCE, confidence,
 0);
 devindex = backward_origin+1; /* forecasts index for deviations */
 printf (" ARMA ONE-STEP AHEAD FORECASTS\n");
 printf ("Year Observed Forecast Residual UCL(90\x25) \n\n");
 for (i=0; i<backward_origin; i++)
 printf ("%d %7.3f %7.3f %7.3f %7.3f\n", year+i,
 z[n_observations-backward_origin+i],
 one_step_forecast[i],
 z[n_observations-backward_origin+i]-one_step_forecast[i],
 one_step_forecast[i]+forecasts[devindex]);
 for (i=backward_origin; i<backward_origin+n_predict; i++)
 printf ("%d - %7.3f - %7.3f\n",
 year+i, one_step_forecast[i],
 one_step_forecast[i]+
 forecasts[devindex+(i-backward_origin)*(backward_origin+3)]);
}

Output

 ARMA ONE-STEP AHEAD FORECASTS
Year Observed Forecast Residual UCL(90%)
1860 95.700 100.737 -5.037 128.615
1861 77.200 81.295 -4.095 109.173
1862 59.100 57.067 2.033 84.944
1863 44.000 44.426 -0.426 72.303
1864 47.000 36.353 10.647 64.230
1865 30.500 47.396 -16.896 75.274
1866 16.300 28.558 -12.258 56.436
1867 7.300 19.804 -12.504 47.682
1868 37.300 16.804 20.496 44.681
1869 73.900 55.213 18.687 83.090
1870 - 83.723 - 111.600
1871 - 77.213 - 124.460
1872 - 63.464 - 120.210
1873 - 50.100 - 109.386
1874 - 41.380 - 100.757
715

 Time Series and Forecasting arima
arima

more...

Fits a univariate seasonal or non-seasonal ARIMA time series model with optional regression variables.

Synopsis
#include <imsls.h>
float *imsls_f_arima (int n_obs, float y[], int model[], ..., 0)

The type double function is imsls_d_arima.

Required Arguments
int n_obs (Input)

Number of observations.

float y[] (Input)
Array of length n_obs containing the observations.

int model[] (Input)
Array of length 3 containing the model order parameters p, d, q.

Return Value
Pointer to an array of length 1 + p + q + P + Q with the estimated constant, autoregressive (AR), and moving aver-
age (MA) parameters.

Element Description

0 Order of the autoregressive part, p, where p≥ 0.

1 Order of the non-seasonal difference operator, d,
where d≥ 0.

2 Order of the moving average part, q, where q≥ 0.
716

 Time Series and Forecasting arima
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arima (int n_obs, float y[], int model[],

IMSLS_SEASONAL_MODEL, int sper, int seasonal_model[],
IMSLS_REGRESSION, int n_cols, float x[],
IMSLS_REGRESSION_INDICES, int n_regressors, int indices[],
IMSLS_REGRESSION_FORECASTS, float xlead[],
IMSLS_INITIAL_EST_INPUT, int n_params, float params[],
IMSLS_NO_TREND,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_DIFFERENCES, float ** differences,
IMSLS_DIFFERENCES_USER, float differences[],
IMSLS_FORECASTS, int n_predict,

float **forecasts, float **forecast_variances,
IMSLS_FORECASTS_USER, int n_predict,

float forecasts[], float forecast_variances[],
IMSLS_REGRESSION_COEF, float **coefficients,
IMSLS_REGRESSION_COEF_USER, float coefficients[],
IMSLS_SE_ARMA, float **arma_std_errors,
IMSLS_SE_ARMA_USER, float arma_std_errors[],
IMSLS_VAR_NOISE, float *avar,
IMSLS_SE_COEF, float **regcoef_std_errors,
IMSLS_SE_COEF_USER, float regcoef_std_errors[],
IMSLS_COEF_COVARIANCES, float **coef_covar,
IMSLS_COEF_COVARIANCES_USER, float coef_covar[],
IMSLS_AIC, float *aic,
IMSLS_LOG_LIKELIHOOD, float *log_likelihood,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
0)
717

 Time Series and Forecasting arima
Optional Arguments
IMSLS_SEASONAL_MODEL, int sper, int seasonal_model[] (Input)

Argument sper specifies the seasonal period, with sper ≥ 0. Argument seasonal_model is an
array of length 3 containing the seasonal model order parameters P, D, Q.

Default: P = D = Q = 0.

IMSLS_REGRESSION, int n_cols, float x[] (Input)
Array of length n_obs × n_cols containing the regression variables. Specific columns of x may be
selected using the optional argument IMSLS_REGRESSION_INDICES.

Default: n_cols = 0 (No regression variables are included).

IMSLS_REGRESSION_INDICES, int n_regressors, int indices[] (Input)
Argument n_regressors specifies the length of array indices and the number of regression
variables to be included in the ARIMA fit. Argument indices contains the indices of the regression
variables in matrices x and xlead.

Default: All regression variables in x and xlead will be used.

IMSLS_REGRESSION_FORECASTS, float xlead[] (Input)
Array of length n_predict × n_cols containing the regression variables to be used in obtaining
forecasts. Specific columns of xlead may be selected using the optional argument
IMSLS_REGRESSION_INDICES.

Default: Not used.

Element Description

0 Order of the autoregressive part, P, where P≥ 0.

1 Order of the non-seasonal difference operator, D,
where D≥ 0.

2 Order of the moving average part, Q, where Q≥ 0.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then
IMSLS_REGRESSION_FORECASTS is required.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then
IMSLS_REGRESSION_FORECASTS is required.
718

 Time Series and Forecasting arima
IMSLS_INITIAL_EST_INPUT, int n_params, float params[] (Input)
Array of length n_params containing initial estimates for the parameters. Note that n_params
must be equal to p+q+P+Q. The order of each parameter must be as stated, i.e. first the p autoregres-
sive (AR) and q moving average (MA) parameters, followed by the P seasonal AR and Q seasonal MA
parameters.

Default: Initial estimates are set by the program.

IMSLS_NO_TREND, (Input)
If IMSLS_NO_TREND is specified, the function will not include a trend variable. A trend variable has
the effect of fitting an intercept term in the regression. If the difference operator model[1] = d > 0,
the effect of trend on the model in the original, undifferenced space is polynomial of order d.

Default: The function includes a trend variable.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations.

Default: max_iterations = 100

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0

IMSLS_DIFFERENCES, float **differences (Output)
Address of a pointer to an internally allocated array of length
n_obs - model[1] - seasonal_model[1]*sper containing the differenced series.

IMSLS_DIFFERENCES_USER, float differences[] (Output)
Storage for the array differences is provided by user.

IMSLS_FORECASTS, int n_predict, float **forecasts, float **forecast_variances (Out-
put)
Addresses of pointers to internally allocated arrays of length n_predict containing the forecasts
and forecast variances for time points t = n+1, n+2, …, n+n_predict, where n = n_obs.

iprint Action

0 No printing

1 Prints final results only.

2 Prints intermediate and final results.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then
IMSLS_REGRESSION_FORECASTS is required.
719

 Time Series and Forecasting arima
IMSLS_FORECASTS_USER, int n_predict, float forecasts[], float forecast_variances[]
(Output)
Storage arrays forecasts and forecast_variances are provided by the user. See
IMSLS_FORECASTS.

IMSLS_REGRESSION_COEF, float **coefficients (Output)
Address of a pointer to an internally allocated array of length n_regressors+t containing the esti-
mated regression coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

IMSLS_REGRESSION_COEF_USER, float coefficients[] (Output)
Storage array coefficients is provided by user. See IMSLS_REGRESSION_COEF.

IMSLS_SE_ARMA, float **arma_std_errors (Output)
Address of a pointer to an internally allocated array of length p+q+P+Q containing the standard
errors of the ARMA parameter estimates, where p = model[0], q = model[2], P =
seasonal_model[0] and Q = seasonal_model[2].

IMSLS_SE_ARMA_USER, float arma_std_errors[] (Output)
Storage array arma_std_errors is provided by user. See IMSLS_SE_ARMA.

IMSLS_VAR_NOISE, float *avar (Output)
White noise variance estimate. For a regression-only model (p=q=P=Q=0), avar is the mean squared
regression residual for w_t, the time series after applying any differencing.

IMSLS_SE_COEF, float **regcoef_std_errors (Output)
Address of a pointer to an internally allocated array of length n_regressors+ t containing the
standard errors of the regression coefficients, where t = 0 if IMSLS_NO_TREND is specified, other-
wise t = 1.

IMSLS_SE_COEF_USER, float regcoef_std_errors[] (Output)
Storage array regcoef_std_errors is provided by user. See IMSLS_SE_COEF.

IMSLS_COEF_COVARIANCES, float **coef_covar (Output)
Address of a pointer to an internally allocated array of length
(n_regressors+t) × (n_regressors+t) containing the variances and covariances of the regres-
sion coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

IMSLS_COEF_COVARIANCES_USER, float coef_covar[] (Output)
Storage array coef_covar is provided by user. See IMSLS_COEF_COVARIANCES.

IMSLS_AIC, float *aic (Output)
Akaike’s Information Criterion for the fitted ARMA model.

IMSLS_LOG_LIKELIHOOD, float *log_likelihood (Output)
Value of ln(likelihood) for fitted model.
720

 Time Series and Forecasting arima
IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p+P containing
the final autoregressive parameter estimates, and ma is an array of length q+Q containing the final
moving average parameter estimates.

Description
Function imsls_f_arima fits a seasonal or non-seasonal ARIMA time series with the possible inclusion of one
or more regression variables.

Suppose , , is a time series such that the d-th difference is stationary. Further, suppose is a

series of uncorrelated, mean 0 random variables with variance .

First, for the non-seasonal case, the Auto-Regressive Integrated Moving Average (ARIMA) model for can
be expressed as

where B is the backshift operator,

and

The notation for this model is ARIMA(p, d, q) where p is the order of the autoregressive polynomial , d is

the order of the differencing needed to make stationary, and q is the order of the moving-average polynomial

 .

The ARIMA model can be extended to include regression variables , by using the residuals

(of the multiple regression of on) in place of in the above ARIMA model:

Equivalently,

Y t t = 1,...N at
σa
2

Y t,at

ϕ(B)(1 − B)dY t = θ(B)at

Bzt = zt−1,B
2zt = zt−2,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 + ⋯ − ϕpB

p
,

θ(B) = 1 − θ1B − θ2B
2 − ⋯ − θqB

q

ϕ B
Y t

θ B

K X 1t, X 2t… , XKt

Y t X 1t, X 2t… , XKt Y t

ϕ B 1 − B d Y t − β0 −∑
i=1

K

βiX it = θ B at
721

 Time Series and Forecasting arima
where

is the differenced residual series. Note that if IMSLS_NO_TREND is specified, β0 will be 0.

To estimate the p + q + K (and + 1 for trend) parameters of the specified regression ARIMA model,
imsls_f_arima uses the iterative generalized least squares method (IGLS) as described in Otto, Bell, and Bur-
man (1987).

The IGLS method iterates between two steps, one step to estimate the regression parameters via generalized
least squares (GLS) and the second step to estimate the ARMA parameters. In particular, at iteration m, the first
step finds

by solving the GLS problem with weight matrix

where

That is, minimizes , where , is an N by K + 1 matrix with i-th

column, , , and , and is an N by N weight matrix defined

using the theoretical autocovariances of the series

The series is modeled as an ARMA(p,q) process with parameters and

 . At iteration m, the second step is then to obtain new estimates of and for

the updated series, . The function then finds the maximum likelihood estimates, and , by minimizing
the negative log-likelihood over the parameter vector. The log-likelihood is calculated using the innovations algo-
rithm as described in Brockwell & Davis, Chapter 8.

ϕ(B)wt = θ(B)at

wt = 1 − B d Y t − β0 −∑
i=1

K

βiX it

β^m = (β
^
m0,β

^
m1, … ,β^mK)

′

V (i, j) = γw(| j − i|), i, j = 1, … ,N

γw(j − i) = E[wt− jwt−i|ϕ
^
m−1,θ

^
m−1]

β
^

m (Y − X β)′V −1(Y − X β) Y = Y 1,...YN ′ X

X i = (X i1, … ,X iN)
′ i = 1, … ,K X 0 = (1, … ,1)′ V

wm−1,t = (1 − B)
d Y t − βm−1,0 − ∑i=1

K β^m−1,iX it

wm−1, t ϕ
^

m−1 = ϕ
^

m−1,1, … ϕ
^

m−1, p ′

θ^m−1 = (θ
^
m−1,1, … , ϕ^m−1,q)

′ ϕ
^

m θ
^

m

wm, t ϕ
^

m θ
^

m

722

 Time Series and Forecasting arima
The method is essentially the same for a seasonal ARIMA model. The notation for a seasonal model is
ARIMA (p, d, q)x(P, D, Q)s where P is the order of the seasonal autoregressive polynomial, D (along with d) is the

order of the differencing needed for stationarity, Q is the order of the seasonal moving-average polynomial, and s
is the seasonal period. In particular, the seasonal ARIMA model has the form

φ(B) (Bs)wt = θ(B)Θ(Bs)at

where wt = (1 - B)d (1- Bs)D , d,D≥0 are the difference orders, s≥1 is an integer specifying the seasonal period,

and at is the white noise process as before. The seasonal autoregressive and moving average polynomials are

given by

(Bs) = 1- 1Bs- 2B2s-⋯- p BPs

and

Θ(Bs) = 1- Θ1Bs- Θ2B2s-⋯-ΘQ BQs

respectively.

Remarks
When forecasts are requested (n_predict > 0), imsls_f_arima requires that future values of the indepen-
dent variables be provided in optional argument IMSLS_REGRESSION_FORECASTS. In effect,
imsls_f_arima assumes the future X’s are known without error, which is valid for any deterministic function
of time such as a seasonal indicator. Also, in economics, certain factors that are considered to be leading indica-
tors are treated as deterministic for the purpose of predicting changes in the economy. Users may consider using
a more general transfer function model if this is an unreasonable assumption. Function imsls_f_arima calcu-
lates forecast variances using the asymptotic result found in Fuller (1996), Theorem 2.9.4. To obtain the standard
errors of the ARMA parameters, imsls_f_arima calls function imsls_f_arma for the final w series.

Examples

Example 1

The data set consists of annual mileage per passenger vehicle and annual US population (in 10000’s) spanning
the years 1980 to 2006 (U.S. Energy Information Administration, 2008). Consider modeling the annual mileage
using US population as a regression variable.

#include <imsls.h>
#include <stdlib.h>
int main()
{

Φ

Y t

Φ Φ Φ Φ
723

 Time Series and Forecasting arima
 int nobs = 24;
 int model[3] = { 1, 0, 0 };
 int n_predict = 5;
 float avar, llike, *result = NULL, *regcoef = NULL, *regstderr = NULL;
 float *coefcovar = NULL, *armastderr = NULL, *fcst = NULL;
 float *fcst_var = NULL;
 float y[29] = {
 9062.0, 8813.0, 8873.0, 9050.0, 9118.0,
 9248.0, 9419.0, 9464.0, 9720.0, 9972.0,
 10157.0, 10504.0, 10571.0, 10857.0, 10804.0,
 10992.0, 11203.0, 11330.0, 11581.0, 11754.0,
 11848.0, 11976.0, 11831.0, 12202.0, 12325.0,
 12460.0, 12510.0, 12485.0, 12293.0
 };
 float regX[29] = { 22722.4681, 22946.5714, 23166.4458,
 23379.1990, 23582.4902, 23792.3795, 24013.2887,
 24228.8918, 24449.8982, 24681.923, 24962.2814,
 25298.0941, 25651.4224, 25991.8588, 26312.5821,
 26627.8393, 26939.4284, 27264.6925, 27585.4104,
 27904.0168, 28217.1936, 28503.9803, 28772.6647,
 29021.0914, 29289.2127, 29556.0549, 29836.2973,
 30129.0332, 30405.9724
 };
 result = imsls_f_arima(nobs, y, model,
 IMSLS_REGRESSION, 1, regX,
 IMSLS_REGRESSION_FORECASTS, ®X[nobs],
 IMSLS_FORECASTS, n_predict, &fcst, &fcst_var,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &llike,
 IMSLS_REGRESSION_COEF, ®coef,
 IMSLS_SE_COEF, ®stderr,
 IMSLS_COEF_COVARIANCES, &coefcovar,
 IMSLS_SE_ARMA, &armastderr,
 IMSLS_PRINT_LEVEL, 1,
 0);
 if (result) imsls_free(result);
 if (fcst) imsls_free(fcst);
 if (fcst_var) imsls_free(fcst_var);
 if (regcoef) imsls_free(regcoef);
 if (regstderr) imsls_free(regstderr);
 if (coefcovar) imsls_free(coefcovar);
 if (armastderr) imsls_free(armastderr);
}

Output

Final results for ARIMA model (p,d,q)x(P,D,Q)_s = (1,0,0)x(0,0,0)_0
 Final AR parameter estimates/ std errors
 0.56471 0.13500
-2*ln(maximum log likelihood) = 299.944427
 White noise variance = 15425.566406
724

 Time Series and Forecasting arima
 Regression estimates:
 COEFFICIENTS Regression STD Errors
 0 -3480.87573 689.33929
 1 0.54236 0.02674
 Forecasts with standard deviation
 T Y fcst Y fcst std dev
24 12368.37207 124.19970
25 12524.92871 142.63528
26 12683.60254 148.03239
27 12846.14355 149.71263
28 12998.47363 150.24451

Example 2

The data set consists of simulated weekly observations containing a strong annual seasonality. The seasonal vari-
ables are constructed and sent into imsls_f_arima as regression variables.

#include <imsls.h>
#include <math.h>
#include <stdlib.h>
int main()
{
 int nobs = 100, n_predict = 4, n_regressors = 2;
 int i, model[3] = { 2, 0, 0 };
 float PI, *coefcovar = NULL, *regcoef = NULL, *regstderr = NULL;
 float *result = NULL, *armastderr = NULL, *fcst = NULL;
 float *fcstvar = NULL;
 float avar, llike;
 float x[104][2];
 float y[104] = {
 32.27778, 32.63300, 33.13768, 34.4517,
 34.63824, 37.31262, 37.35704, 37.03092,
 36.39894, 35.75541, 35.10829, 34.70107,
 34.69592, 32.75326, 30.85370, 31.10936,
 29.47493, 29.14361, 28.50466, 30.09714,
 28.49403, 27.23268, 23.49674, 22.71225,
 21.42798, 18.68601, 17.40035, 16.06832,
 15.31862, 14.75179, 13.40089, 13.01101,
 12.44863, 11.27890, 11.51770, 14.31982,
 14.67036, 14.76331, 15.35644, 17.04353,
 18.39931, 18.21919, 18.72777, 19.61794,
 22.31733, 23.79600, 25.41326, 25.60497,
 27.93579, 29.21765, 29.60981, 28.46994,
 28.78081, 30.96402, 35.49537, 35.75124,
 36.18933, 37.2627, 35.02454, 33.57089,
 35.00683, 34.83886, 34.19827, 33.73966,
 34.49709, 34.07127, 32.74709, 31.97856,
 31.3029, 30.21916, 27.46015, 26.78431,
 25.32815, 23.97863, 21.83837, 21.00647,
 20.58846, 19.94578, 17.38271, 17.12572,
725

 Time Series and Forecasting arima
 16.71847, 17.45425, 16.15050, 13.07448,
 12.54188, 12.42137, 13.51771, 14.84232,
 14.28870, 13.39561, 15.48938, 16.47175,
 17.62758, 16.57677, 18.20737, 20.8491,
 20.15616, 20.93857, 23.73973, 25.30449,
 26.51106, 29.43261, 32.02672, 32.18846
 };
 /*
 * The data are simulated weekly observations
 * with an annual seasonal cycle
 */
 PI = acos(-1.0);
 for (i = 0; i < nobs + n_predict; i++)
 {
 x[i][0] = sin(2.0 * PI * i / 52.0);
 x[i][1] = cos(2.0 * PI * i / 52.0);
 }
 result = imsls_f_arima(nobs, y, model,
 IMSLS_REGRESSION, 2, x,
 IMSLS_REGRESSION_FORECASTS, &x[100][0],
 IMSLS_FORECASTS, n_predict, &fcst, &fcstvar,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &llike,
 IMSLS_REGRESSION_COEF, ®coef,
 IMSLS_SE_COEF, ®stderr,
 IMSLS_COEF_COVARIANCES, &coefcovar,
 IMSLS_SE_ARMA, &armastderr,
 IMSLS_PRINT_LEVEL, 1,
 0);
 if (coefcovar) imsls_free(coefcovar);
 if (regcoef) imsls_free(regcoef);
 if (regstderr) imsls_free(regstderr);
 if (result) imsls_free(result);
 if (armastderr) imsls_free(armastderr);
 if (fcst) imsls_free(fcst);
 if (fcstvar) imsls_free(fcstvar);
}

Output

Final results for ARIMA model (p,d,q)x(P,D,Q)_s = (2,0,0)x(0,0,0)_0
 Final AR parameter estimates/ std errors
 0.71727 0.09837
 -0.26694 0.09828
-2*ln(maximum log likelihood) = 270.166840
 White noise variance = 0.868012
 Regression estimates:
 COEFFICIENTS Regression STD Errors
726

 Time Series and Forecasting arima
 0 24.81011 0.17172
 1 8.91972 0.24034
 2 6.84813 0.24701
 Forecasts with standard deviation
 T Y fcst Y fcst std dev
100 26.74694 0.93167
101 28.07994 1.14655
102 29.33769 1.16952
103 30.53127 1.16959

Example 3

The data set consists of the number of monthly accidental deaths in the USA from 1973 to 1978 (Brockwell &
Davis, 2006). The following example fits a (0,1,1)x(0,1,1) ARIMA model with seasonal period = 12. With monthly
data, a seasonal period of 12 corresponds to an annual seasonal cycle.

#include <imsls.h>
#include <stdlib.h>
int main()
{
 int nobs = 72, iprint = 1;
 int model[3] = { 0, 1, 1 };
 int seas_model[3] = { 0, 1, 1 };
 int sper = 12;
 int n_predict = 24;
 float params[2] = { .25, .25 };
 float avar, llike;
 float *ses = NULL, *result = NULL;
 float deaths[72] = {
 9007, 8106, 8928, 9137, 10017, 10826, 11317, 10744, 9713, 9938,
 9161, 8927, 7750, 6981, 8038, 8422, 8714, 9512, 10120, 9823,
 8743, 9129, 8710, 8680, 8162, 7306, 8124, 7870, 9387, 9556,
 10093, 9620, 8285, 8433, 8160, 8034, 7717, 7461, 7776, 7925,
 8634, 8945, 10078, 9179, 8037, 8488, 7874, 8647, 7792, 6957,
 7726, 8106, 8890, 9299, 10625, 9302, 8314, 8850, 8265, 8796,
 7836, 6892, 7791, 8129, 9115, 9434, 10484, 9827, 9110, 9070,
 8633, 9240
 };
 result = imsls_f_arima(nobs, deaths, model,
 IMSLS_SEASONAL_MODEL, sper, seas_model,
 IMSLS_LOG_LIKELIHOOD, &llike,
 IMSLS_NO_TREND,
 IMSLS_INITIAL_EST_INPUT, 2, params,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_SE_ARMA, &ses, 0);
 if (result) imsls_free(result);
 if (ses) imsls_free(ses);
}

727

 Time Series and Forecasting arima
Output

Final results for ARIMA model (p,d,q)x(P,D,Q)_s = (0,1,1)x(0,1,1)_12
 Final MA parameter estimates/ std errors
 0.42643 0.11604
 Final Seasonal MA parameter estimates/ std errors
 0.55822 0.13508
-2*ln(maximum log likelihood) = 851.065125
 White noise variance = 99502.765625
728

 Time Series and Forecasting regression_arima
regression_arima

more...

Fits a univariate ARIMA (p, d, q) time series model with the inclusion of one or more regression variables.

Synopsis
#include <imsls.h>
float *imsls_f_regression_arima (int n_obs, float y[], int model[], ..., 0)

The type double function is imsls_d_regression_arima.

Required Arguments
int n_obs (Input)

Number of observations.

float y[] (Input)
Array of length n_obs containing the observations.

int model[] (Input)
Array of length 3 containing the model order parameters p, d, q.

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, autoregressive (AR), and moving average (MA)
parameters.

Element Description

0 Order of the autoregressive part, p, where p≥ 0.

1 Order of the non-seasonal difference operator, d,
where d≥ 0.

2 Order of the moving average part, q, where q≥ 0.
729

 Time Series and Forecasting regression_arima
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regression_arima (int n_obs, float y[], int model[],

IMSLS_REGRESSION, int n_regressors, float x[],
IMSLS_REGRESSION_FORECASTS, float xlead[],
IMSLS_REGRESSION_INDICES, int n_indices, int indices[],
IMSLS_NO_TREND,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_FORECASTS, int n_predict,

float **forecasts, float **forecast_variances,
IMSLS_FORECASTS_USER, int n_predict,

float forecasts[], float forecast_variances[],
IMSLS_REGRESSION_COEF, float **coefficients,
IMSLS_REGRESSION_COEF_USER, float coefficients[],
IMSLS_SE_ARMA, float **arma_std_errors,
IMSLS_SE_ARMA_USER, float arma_std_errors[],
IMSLS_VAR_NOISE, float *avar,
IMSLS_SE_COEF, float **regcoef_std_errors,
IMSLS_SE_COEF_USER, float regcoef_std_errors[],
IMSLS_COEF_COVARIANCES, float **coef_covar,
IMSLS_COEF_COVARIANCES_USER, float coef_covar[],
IMSLS_AIC, float *aic,
IMSLS_LOG_LIKELIHOOD, float *log_likelihood,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
0)

Optional Arguments
IMSLS_REGRESSION, int n_regressors, float x[] (Input)

Array of length n_obs × n_regressors containing the regression variables. Specific columns of x
may be selected using the optional argument IMSLS_REGRESSION_INDICES.

Default: n_regressors = 0 (No regression variables are included).

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then
IMSLS_REGRESSION_FORECASTS is required.
730

 Time Series and Forecasting regression_arima
IMSLS_REGRESSION_FORECASTS, float xlead[] (Input)
Array of length n_predict × n_regressors containing the regression variables to be used in
obtaining forecasts. Specific columns of xlead may be selected using the optional argument
IMSLS_REGRESSION_INDICES.

Default: Not used.

IMSLS_REGRESSION_INDICES, int n_indices, int indices[] (Input)
Argument n_indices specifies the length of array indices and the number of regression vari-
ables to be included in the ARIMA fit. Argument indices contains the indices of the regression
variables in matrices x and xlead.

Default: All regression variables in x and xlead will be used.

IMSLS_NO_TREND, (Input)
If IMSLS_NO_TREND is specified, the function will not include a trend variable. A trend variable has
the effect of fitting an intercept term in the regression. If the difference operator model[1] = d > 0,
the effect of no trend on the model in the original, undifferenced space is polynomial of order d.

Default: The function will include a trend variable.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations.

Default: max_iterations = 50

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then
IMSLS_REGRESSION_FORECASTS is required.

iprint Action

0 No printing

1 Prints final results only.

2 Prints intermediate and final results.
731

 Time Series and Forecasting regression_arima
IMSLS_FORECASTS, int n_predict, float **forecasts, float **forecast_variances (Out-
put)
Addresses of pointers to internally allocated arrays of length n_predict containing the forecasts
and forecast variances for time points t = n+1, n+2, …, n+n_predict, where n = n_obs.

IMSLS_FORECASTS_USER, int n_predict, float forecasts[], float forecast_variances[]
(Output)
Storage arrays forecast and forecast_variance are provided by user. See
IMSLS_FORECASTS.

IMSLS_REGRESSION_COEF, float **coefficients (Output)
Address of a pointer to an internally allocated array of length n_regressors+t containing the esti-
mated regression coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

IMSLS_REGRESSION_COEF_USER, float coefficients[] (Output)
Storage array coefficients is provided by user. See IMSLS_REGRESSION_COEF.

IMSLS_SE_ARMA, float **arma_std_errors (Output)
Address of a pointer to an internally allocated array of length p+q containing the standard errors of
the ARMA parameter estimates, where p = model[0] and q = model[2].

IMSLS_SE_ARMA_USER, float arma_std_errors[] (Output)
Storage array arma_std_errors is provided by user. See IMSLS_SE_ARMA.

IMSLS_VAR_NOISE, float *avar (Output)
White noise variance estimate. If model[0]+model[2]= 0 and n_regressors > 0, avar is the
mean squared regression residual.

IMSLS_SE_COEF, float **regcoef_std_error (Output)
Address of a pointer to an internally allocated array of length n_regressors+ t containing the
standard errors of the ARMA parameter estimates, where t = 0 if IMSLS_NO_TREND is specified,
otherwise t = 1.

IMSLS_SE_COEF_USER, float regcoef_std_errors[] (Output)
Storage array regcoef_std_errors is provided by user. See IMSLS_SE_COEF.

IMSLS_COEF_COVARIANCES, float **coef_covar (Output)
Address of a pointer to an internally allocated array of length
(n_regressors+t) × (n_regressors+t) containing the variances and covariances of the regres-
sion coefficients, where t = 0 if IMSLS_NO_TREND is specified, otherwise t = 1.

If optional arguments IMSLS_FORECASTS and IMSLS_REGRESSION are present, then
IMSLS_REGRESSION_FORECASTS is required.
732

 Time Series and Forecasting regression_arima
IMSLS_COEF_COVARIANCES_USER, float coef_covar[] (Output)
Storage array coef_covar is provided by user. See IMSLS_COEF_COVARIANCES.

IMSLS_AIC, float *aic (Output)
Akaike’s Information Criterion for the fitted ARMA model.

IMSLS_LOG_LIKELIHOOD, float *log_likelihood (Output)
Value of –2(ln(likelihood)) for fitted model.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of length p containing the
final autoregressive parameter estimates, and ma is an array of length q containing the final moving
average parameter estimates.

Description
Function imsls_f_regression_arima fits an ARIMA(p, d, q) to a univariate time series with the possible
inclusion of one or more regression variables.

Suppose , , is a time series such that the d-th difference is stationary. Further, suppose is a

series of uncorrelated, mean 0 random variables with variance .

The Auto-Regressive Integrated Moving Average (ARIMA) model for can be expressed as

where B is the backshift operator,

and

The notation for this model is ARIMA(p, d, q) where p is the order of the autoregressive polynomial , d is

the order of the differencing needed to make stationary, and q is the order of the moving-average polynomial

 .

The ARIMA model can be extended to include regression variables , by using the residuals

(of the multiple regression of on) in place of in the above ARIMA model.

Y t t = 1,...N at
σa
2

Y t,at

ϕ(B)(1 − B)dY t = θ(B)at

Bzt = zt−1,B
2zt = zt−2,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 + ⋯ − ϕpB

p
,

θ(B) = 1 − θ1B − θ2B
2 − ⋯ − θqB

q

ϕ B
Y t

θ B

K X 1t, X 2t… , XKt

Y t X 1t, X 2t… , XKt Y t
733

 Time Series and Forecasting regression_arima
Equivalently,

where

is the differenced residual series.

To estimate the (p + q + K) parameters of the specified regression ARIMA model,
imsls_f_regression_arima uses the iterative generalized least squares method (IGLS) as described in
Otto, Bell, and Burman (1987).

The IGLS method iterates between two steps, one step to estimate the regression parameters via generalized
least squares (GLS) and the second step to estimate the ARMA parameters. In particular, at iteration m, the first
step finds

by solving the GLS problem with weight matrix

where

That is, minimizes , where , is an N by K matrix with i-th

column, , , and , and is an N by N weight matrix defined

using the theoretical autocovariances of the series

ϕ B 1 − B d Y t − β0 −∑
i=1

K

βiX it = θ B at

ϕ(B)wt = θ(B)at

wt = 1 − B d Y t − β0 −∑
i=1

K

βiX it

β^m = (β
^
m0,β

^
m1, … ,β^mK)

′

V (i, j) = γw(| j − i|), i, j = 1, … ,N

γw(j − i) = E[wt− jwt−i|ϕ
^
m−1,θ

^
m−1]

β
^

m (Y − X β)′V −1(Y − X β) Y = Y 1,...YN ′ X

X i = (X i1, … ,X iN)
′ i = 1, … ,K X 0 = (1, … ,1)′ V
734

 Time Series and Forecasting regression_arima
The series is modeled as an ARMA(p,q) process with parameters and

 . At iteration m, the second step is then to obtain new estimates of and for

the updated series, . To find the estimates and , imsls_f_regression_arima uses the exact
likelihood method as described in Akaike, Kitagawa, Arahata and Tada (1979) and used in function,
imsls_f_max_arma.

Remarks
When forecasts are requested (n_predict > 0), imsls_f_regression_arima requires that future values
of the independent variables be provided in optional argument IMSLS_REGRESSION_FORECASTS. In effect,
imsls_f_regression_arima assumes the future X’s are known without error, which is valid for any deter-
ministic function of time such as a seasonal indicator. Also, in economics, certain factors that are considered to
be leading indicators are treated as deterministic for the purpose of predicting changes in the economy. Users
may consider using a more general transfer function model if this is an unreasonable assumption. Function
imsls_f_regression_arima calculates forecast variances using the asymptotic result found in Fuller
(1996), Theorem 2.9.4. To obtain the standard errors of the ARMA parameters,
imsls_f_regression_arima calls function imsls_f_arma for the final w series.

Examples

Example 1

The data set consists of annual mileage per passenger vehicle and annual US population (in 1000’s) spanning the
years 1980 to 2006 (U.S. Energy Information Administration, 2008). Consider modeling the annual mileage using
US population as a regression variable.

#include <imsls.h>
int main()
{
 int nobs= 24, model[3] = {1, 0, 0};
 int indices[1] = {0}, n_predict=5;
 float avar, llike, *result;
 float *regcoef, *regstderr, *coefcovar, *armastderr;
 float *fcst, *fcst_var;
 float y[29] = {
 9062.0, 8813.0, 8873.0, 9050.0, 9118.0,
 9248.0, 9419.0, 9464.0, 9720.0, 9972.0,
 10157.0, 10504.0, 10571.0, 10857.0, 10804.0,

wm−1,t = (1 − B)
d Y t − βm−1,0 − ∑i=1

K β^m−1,iX it

wm−1, t ϕ
^

m−1 = ϕ
^

m−1,1, … ϕ
^

m−1, p ′

θ^m−1 = (θ
^
m−1,1, … , ϕ^m−1,q)

′ ϕ
^

m θ
^

m

wm, t ϕ
^

m θ
^

m

735

 Time Series and Forecasting regression_arima
 10992.0, 11203.0, 11330.0, 11581.0, 11754.0,
 11848.0, 11976.0, 11831.0, 12202.0, 12325.0,
 12460.0, 12510.0, 12485.0, 12293.0
 };
 float regX[29][2] = {
 {22722.4681, 9062.0},
 {22946.5714, 8813.0},
 {23166.4458, 8873.0},
 {23379.1990, 9050.0},
 {23582.4902, 9118.0},
 {23792.3795, 9248.0},
 {24013.2887, 9419.0},
 {24228.8918, 9464.0},
 {24449.8982, 9720.0},
 {24681.923, 9972.0},
 {24962.2814, 10157.0},
 {25298.0941, 10504.0},
 {25651.4224, 10571.0},
 {25991.8588, 10857.0},
 {26312.5820999999, 10804.0},
 {26627.8393, 10992.0},
 {26939.4284, 11203.0},
 {27264.6925, 11330.0},
 {27585.4104, 11581.0},
 {27904.0168, 11754.0},
 {28217.1936, 11848.0},
 {28503.9803, 11976.0},
 {28772.6647, 11831.0},
 {29021.0914, 12202.0},
 {29289.2127, 12325.0},
 {29556.0549, 12460.0},
 {29836.2973, 12510.0},
 {30129.0332, 12485.0},
 {30405.9724, 12293.0}
 };

 result = imsls_f_regression_arima (nobs, y, model,
 IMSLS_REGRESSION,2, regX,
 IMSLS_REGRESSION_FORECASTS, ®X[24][0],
 IMSLS_FORECASTS, n_predict, &fcst, &fcst_var,
 IMSLS_REGRESSION_INDICES, 1, indices,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &llike,
 IMSLS_REGRESSION_COEF, ®coef,
 IMSLS_SE_COEF, ®stderr,
 IMSLS_COEF_COVARIANCES, &coefcovar,
 IMSLS_SE_ARMA, &armastderr,
 IMSLS_PRINT_LEVEL, 1,
 0);
}

Output

Final results for regression ARIMA model (p,d,q) = 1, 0, 0s
Final AR parameter estimates/ std errors

 0.73000 0.13498
736

 Time Series and Forecasting regression_arima
-2*ln(maximum log likelihood) = 231.835464
White noise variance = 15427.915039
Regression estimates:

 COEFFICIENTS Regression STD Errors
0 -3483.13306 687.21167
1 0.54244 0.02666
Forecasts with standard deviation
T Y fcst Y fcst std dev

24 12360.51563 124.20916
25 12514.80664 153.78410
26 12673.78906 167.42434
27 12837.66895 174.25776
28 12991.60547 177.79208

Example 2

The data set consists of simulated weekly observations containing a strong annual seasonality. The seasonal vari-
ables are constructed and sent into regression_arima as regression variables.

#include <imsl.h>
#include <imsls.h>
#include <math.h>
int main()
{
 int nobs=100, n_predict=4, n_regressors=2;
 int i, model[3] = {2,0,0};
 float PI, *coefcovar, *regcoef, *regstderr, *result;
 float *armastderr, *fcst, *fcstvar;
 float avar, llike;
 float x[104][2];
 float y[104] = {
 32.27778, 32.63300, 33.13768, 34.4517,
 34.63824, 37.31262, 37.35704, 37.03092,
 36.39894, 35.75541, 35.10829, 34.70107,
 34.69592, 32.75326, 30.85370, 31.10936,
 29.47493, 29.14361, 28.50466, 30.09714,
 28.49403, 27.23268, 23.49674, 22.71225,
 21.42798, 18.68601, 17.40035, 16.06832,
 15.31862, 14.75179, 13.40089, 13.01101,
 12.44863, 11.27890, 11.51770, 14.31982,
 14.67036, 14.76331, 15.35644, 17.04353,
 18.39931, 18.21919, 18.72777, 19.61794,
 22.31733, 23.79600, 25.41326, 25.60497,
 27.93579, 29.21765, 29.60981, 28.46994,
 28.780810, 30.96402, 35.49537, 35.75124,
 36.18933, 37.2627, 35.02454, 33.57089,
 35.00683, 34.83886, 34.19827, 33.73966,
 34.49709, 34.07127, 32.74709, 31.97856,
 31.3029, 30.21916, 27.46015, 26.78431,
 25.32815, 23.97863, 21.83837, 21.00647,
737

 Time Series and Forecasting regression_arima
 20.58846, 19.94578, 17.38271, 17.12572,
 16.71847, 17.45425, 16.15050, 13.07448,
 12.54188, 12.42137, 13.51771, 14.84232,
 14.28870, 13.39561, 15.48938, 16.47175,
 17.62758, 16.57677, 18.20737, 20.8491,
 20.15616, 20.93857, 23.73973, 25.30449,
 26.51106, 29.43261, 32.02672, 32.18846
 };
 /*
 * The data are simulated weekly observations
 * with an annual seasonal cycle
 */
 PI = imsl_f_constant("PI",0);
 for (i=0; i<nobs+n_predict;i++)
 {
 x[i][0] = sin(2*PI*i/ 52.0);
 x[i][1] = cos(2*PI*i/ 52.0);
 }
 result = imsls_f_regression_arima (nobs, y, model,
 IMSLS_REGRESSION,2, x,
 IMSLS_REGRESSION_FORECASTS, &x[100][0],
 IMSLS_FORECASTS, n_predict, &fcst, &fcstvar,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &llike,
 IMSLS_REGRESSION_COEF, ®coef,
 IMSLS_SE_COEF, ®stderr,
 IMSLS_COEF_COVARIANCES, &coefcovar,
 IMSLS_SE_ARMA, &armastderr,
 IMSLS_PRINT_LEVEL, 1,
 0);
}

Output

Final AR parameter estimates/ std errors
 0.71855 0.09838
 -0.25989 0.09828
-2*ln(maximum log likelihood) = -13.621020
White noise variance = 0.868007
Regression estimates:
 COEFFICIENTS Regression STD Errors
0 24.81011 0.17177
1 8.91971 0.24042
2 6.84814 0.24709
Forecasts with standard deviation
T Y fcst Y fcst std dev
100 26.74492 0.93167
101 28.07804 1.14725
102 29.33707 1.35615
103 30.53160 1.52323
738

 Time Series and Forecasting auto_uni_ar
auto_uni_ar

more...

Automatic selection and fitting of a univariate autoregressive time series model. The lag for the model is auto-
matically selected using Akaike’s information criterion (AIC). Estimates of the autoregressive parameters for the
model with minimum AIC are calculated using method of moments, method of least squares, or maximum
likelihood.

Synopsis
#include <imsls.h>
float *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag, int *p, …,0)

The type double function is imsls_d_auto_uni_ar.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

float z[] (Input)
Array of length n_obs containing the stationary time series.

int maxlag (Input)
Maximum number of autoregressive parameters requested. It is required that
1≤ maxlag ≤ n_obs/2.

int *p (Output)
Number of autoregressive parameters in the model with minimum AIC.

Return Value
Vector of length 1+ maxlag containing the estimates for the constant and the autoregressive parameters in the
model with minimum AIC. The estimates are located in the first 1+ p locations of this array.
739

 Time Series and Forecasting auto_uni_ar
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag, int *p,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_METHOD, int method,
IMSLS_VAR_NOISE, float *avar,
IMSLS_AIC, float *aic,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_RETURN_USER, float *constant, float ar[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option:

Default: iprint = 0.

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of estimation iterations.

Default: maxit = 300

IMSLS_METHOD, int method (Input)
Estimation method option:

iprint Action

0 No Printing.

1 Prints final results only.

2 Prints intermediate and final results.

method Action

0 Method of moments.

1 Method of least squares realized
through Householder
transformations.

2 Maximum likelihood
740

 Time Series and Forecasting auto_uni_ar
Default: method = 1.

IMSLS_VAR_NOISE, float *avar (Output)
Estimate of innovation variance.

IMSLS_AIC, float *aic (Output)
Minimum AIC.

IMSLS_MEAN_ESTIMATE, float *z_mean (Input/Output)
Estimate of the mean of the time series z. On return, z_mean contains an update of the mean.

Default: Time series z is centered about its sample mean.

IMSLS_RETURN_USER, float *constant, float ar[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of length maxlag con-
taining the final autoregressive parameter estimates in its first p locations.

Description
Function auto_uni_ar automatically selects the order of the AR model that best fits the data and then com-
putes the AR coefficients. The algorithm used in auto_uni_ar is derived from the work of Akaike, H., et. al
(1979) and Kitagawa and Akaike (1978). This code was adapted from the UNIMAR procedure published as part of
the TIMSAC-78 Library.

The best fit AR model is determined by successively fitting AR models with 0, 1, 2, ..., maxlag autoregressive
coefficients. For each model, Akaike’s Information Criterion (AIC) is calculated based on the formula

Function auto_uni_ar uses the approximation to this formula developed by Ozaki and Oda (1979),

where is an estimate of the residual variance of the series, commonly known in time series analysis as the
innovation variance. By dropping the constant

the calculation is simplified to

AIC = − 2 ln(likelihood) + 2 p + 1

AIC = n_obs − maxlag ln σ̂2 + 2 p + 1 + n_obs − maxlag ln 2π + 1 ,

σ^ 2

n_obs − maxlag ln 2π + 1 ,
741

 Time Series and Forecasting auto_uni_ar
The best fit model is the model with minimum AIC. If the number of parameters in this model is equal to the high-
est order autoregressive model fitted, i.e., p=maxlag, then a model with smaller AIC might exist for larger values
of maxlag. In this case, increasing maxlag to explore AR models with additional autoregressive parameters
might be warranted.

If method = 0, estimates of the autoregressive coefficients for the model with minimum AIC are calculated using
method of moments. If method =1, the coefficients are determined by the method of least squares applied in
the form described by Kitagawa and Akaike (1978). Otherwise, if method =2, the coefficients are estimated using
maximum likelihood.

Example
Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of sunspots observed each
year from 1770 through 1869. In this example, imsls_f_auto_uni_ar found the minimum AIC fit is an
autoregressive model with 3 lags:

where

μ the sample mean of the time series . Defining the overall constant by , we

obtain the following equivalent representation:

The example computes estimates for for each of the three parameter estimation methods available.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i;
 int maxlag = 20;
 int n_obs = 100;
 int p;
 float w[176][2];
 float z[100];
 float *parameters = NULL;
 float avar, aic, constant;
 float ar[20];

AIC = n_obs − maxlag ln σ̂2 + 2 p + 1

w~ t = ϕ1w
~
t−1 + ϕ2w

~
t−2 + ϕ3w

~
t−3 + at,

w~ t : = wt − μ,

wt ϕ0 ϕ0 : = μ 1 − ∑i=1
3 ϕi

wt = ϕ0 + ϕ1wt−1 + ϕ2wt−2 + ϕ3wt−3 + at.

ϕ0,ϕ1,ϕ2,ϕ3
742

 Time Series and Forecasting auto_uni_ar
 /* get wolfer sunspot data */
 imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2,
 IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_obs; i++)
 z[i] = w[21+i][1];
 /* Compute AR parameters for minimum AIC by method of moments */
 printf("\n\nAIC Automatic Order selection\n");
 printf("AR coefficients estimated using method of moments\n");
 parameters = imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_METHOD, 0,
 IMSLS_AIC, &aic,
 0);
 printf("Order selected: %d\n", p);
 printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
 printf("Constant estimate is %11.4f.\n", parameters[0]);
 imsls_f_write_matrix(
 "Final AR coefficients estimated by method of moments",
 p, 1, ¶meters[1],
 0);
 if (parameters)
 {
 imsls_free(parameters);
 parameters = NULL;
 }
 /* Compute AR parameters for minimum AIC
 by method of least squares */
 printf("\n\nAIC Automatic Order selection\n");
 printf("AR coefficients estimated using method of least squares\n");
 imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_METHOD, 1,
 IMSLS_AIC, &aic,
 IMSLS_RETURN_USER, &constant, ar,
 0);
 printf("Order selected: %d\n", p);
 printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
 printf("Constant estimate is %11.4f.\n", constant);
 imsls_f_write_matrix(
 "Final AR coefficients estimated by method of least squares",
 p, 1, ar,
 0);
 /* Compute AR parameters for minimum AIC
 by maximum likelihood estimation */
 printf("\n\nAIC Automatic Order selection\n");
 printf("AR coefficients estimated using maximum likelihood\n");
743

 Time Series and Forecasting auto_uni_ar
 imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_METHOD, 2,
 IMSLS_AIC, &aic,
 IMSLS_RETURN_USER, &constant, ar,
 0);
 printf("Order selected: %d\n", p);
 printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
 printf("Constant estimate is %11.4f.\n", constant);
 imsls_f_write_matrix(
 "Final AR coefficients estimated by maximum likelihood",
 p, 1, ar,
 0);
}

Output

AIC Automatic Order selection
AR coefficients estimated using method of moments
Order selected: 3
AIC = 633.0114, Variance = 287.2694
Constant estimate is 13.7098.
Final AR coefficients estimated by method of moments
 1 1.368
 2 -0.738
 3 0.078

AIC Automatic Order selection
AR coefficients estimated using method of least squares
Order selected: 3
AIC = 633.0114, Variance = 144.7149
Constant estimate is 9.8934.
Final AR coefficients estimated by method of least squares
 1 1.604
 2 -1.024
 3 0.209

AIC Automatic Order selection
AR coefficients estimated using maximum likelihood
Order selected: 3
AIC = 633.0114, Variance = 218.8337
Constant estimate is 11.3902.
Final AR coefficients estimated by maximum likelihood
 1 1.553
 2 -1.001
 3 0.205
744

 Time Series and Forecasting seasonal_fit
seasonal_fit
Estimates the optimum seasonality parameters for a time series using an autoregressive model, AR(p), to repre-
sent the time series.

Synopsis
#include <imsls.h>
float *imsls_f_seasonal_fit(int n_obs, float z[], int maxlag, int n_differences,

int n_s_initial, int s_initial[], …,0)

The type double function is imsls_d_seasonal_fit.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

float z[] (Input)
An array of length n_obs containing the time series. No missing values in the series are allowed.

int maxlag (Input)
The maximum lag allowed when fitting an AR(p) model.

int n_differences (Input)
The number of differences to perform. Argument n_differences must be greater than or equal
to one.

int n_s_initial (Input)
The number of rows of the array containing the seasonal differences.

int s_initial[] (Input)
Array of dimension n_s_initial by n_differences containing the seasonal differences to
test. All values of s_initial must be greater than or equal to one.
745

 Time Series and Forecasting seasonal_fit
Return Value
Pointer to an array of length n_obs or n_obs-n_lost containing the optimum seasonally adjusted, autore-
gressive series. The first n_lost observations in this series are set to NaN, missing values. The seasonal

adjustment is done by selecting optimum values for , (m=n_differences) and in the
AR model:

where is the original time series, is the backward shift operator defined by , , is

Gaussian white noise with and ,

 , with , and is a cen-
tering parameter for the differenced series.

If an error occurred, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_seasonal_fit (int n_obs, float z[], int maxlag, int n_differences,

int n_s_initial, int s_initial[],

IMSLS_RETURN_USER, float w[],
IMSLS_D_INITIAL, int n_d_initial, int d_initial[],
IMSLS_SET_FIRST_TO_NAN, or
IMSLS_EXCLUDE_FIRST,
IMSLS_CENTER, int n_center,
IMSLS_LOST, int *n_lost,
IMSLS_BEST_PERIODS, int **s,
IMSLS_BEST_PERIODS_USER, int s[],
IMSLS_BEST_ORDERS, int **d,
IMSLS_BEST_ORDERS_USER, int d[],
IMSLS_AR_ORDER, int *p,
IMSLS_AIC, float *aic,
0)

NOTE that , the identity operator, i.e., .

d1, … ,dm s1, … ,sm p

ϕp B Δs1
d1Δs2

d2 ⋯ Δsm
dmZt − μ = at

Zt B BkZt = Zt−k k ≥ 0 at
E at = 0 VAR at = σ2

ϕp B = 1 − ϕ1B − ϕ2B
2 − ⋯ − ϕpB

p,0 ≤ p ≤ maxlag Δs
d = 1 − Bs)d, s > 0,d ≥ 0 μ

Δs
0 = 1 Δs

0Y t = Y t
746

 Time Series and Forecasting seasonal_fit
Optional Arguments
IMSLS_RETURN_USER, float w[] (Output)

An array of length n_obs supplied by the user to hold the seasonally adjusted series returned by
imsls_f_seasonal_fit.

IMSLS_D_INITIAL, int n_d_initial, int d_initial[] (Input)
An array of dimension n_d_initial by n_differences containing the candidate values for
d[], from which the optimum is being selected. All candidate values in d_initial[] must be
non-negative and n_d_initial ≥ 1.

Default: n_d_initial=1, d_initial an array of length n_differences filled with ones.

IMSLS_SET_FIRST_TO_NAN (Input)

or

IMSLS_EXCLUDE_FIRST (Input)
If IMSLS_EXCLUDE_FIRST is specified, the first n_lost values are excluded from w due to differ-
encing. The differenced series w is of length n_obs–n_lost. If IMSLS_SET_FIRST_TO_NAN is
specified, the first n_lost observations are set to NaN (Not a Number).

Default: IMSLS_SET_FIRST_TO_NAN.

IMSLS_CENTER, int n_center (Input)
If supplied, IMSLS_CENTER controls the method used to center the differenced series. If
n_center=0 then the series is not centered. If n_center=1, the mean of the series is used to
center the data, and if n_center=2, the median is used.

Default: n_center=1.

IMSLS_LOST, int *n_lost (Output)
The number of observations lost due to differencing the time series. This is also equal to the number
of NaN values that appear in the first n_lost locations of the returned seasonally adjusted series.

IMSLS_BEST_PERIODS, int **s (Output)
Address of a pointer to an internally allocated array of length m=n_differences containing the
optimum values for the seasonal adjustment parameters selected from the list of candi-
dates contained in s_initial[].

IMSLS_BEST_PERIODS_USER, int s[] (Output)
A user supplied array of length n_differences for storage of the array s.

IMSLS_BEST_ORDERS, int **d (Output)
Address of a pointer to an internally allocated array of length m=n_differences containing the
optimum values for the seasonal adjustment parameters selected from the list of can-
didates contained in d_initial[].

s1, s2, … , sm

d1, d2, … ,dm
747

 Time Series and Forecasting seasonal_fit
IMSLS_BEST_ORDERS_USER, int d[] (Output)
A user supplied array of length n_differences for storage of the array d.

IMSLS_AR_ORDER, int *p (Output)
The optimum value for the autoregressive lag.

IMSLS_AIC, float *aic (Output)
Akaike’s Information Criterion (AIC) for the optimum seasonally adjusted model.

Description
Many time series contain seasonal trends and cycles that can be modeled by first differencing the series. For
example, if the correlation is strong from one period to the next, the series might be differenced by a lag of 1.

Instead of fitting a model to the series , the model is fitted to the transformed series: . Higher
order lags or differences are warranted if the series has a cycle every 4 or 13 weeks.

Function imsls_f_seasonal_fit does not center the original series. If IMSLS_CENTER is specified with

either n_center =1 or n_center =2, then the differenced series, , is centered before determination of

minimum AIC and optimum lag. For every combination of rows in s_initial and d_initial, the series is
converted to the seasonally adjusted series using the following computation

where , represent specific rows of arrays s_initial and d_initial

respectively, and =n_differences.

This transformation of the series to is accomplished using function imsls_f_difference. After
this transformation,

is (optionally) centered and a call is made to imsls_f_auto_uni_ar to automatically determine the optimum

lag for an AR(p) representation for . This procedure is repeated for every possible combination of rows

of s_initial and d_initial. The series with the minimum AIC is identified as the optimum representation
and returned.

Zt Wt = Zt − Zt−1

Wt

Zt

Wt(s,d) = Δs1
d1Δs2

d2 ⋯ Δsm
dmZt =∏

i=1

m

(1 − B
si)
diZt =∏

i=1

m

∑
j=0

di di
j (− 1)

jB
j−siZt

s : = s1, … , sm d : = d1, … ,dm
m

Zt Wt s,d

Wt(s,d)

Wt s,d
748

 Time Series and Forecasting seasonal_fit
Example
Consider the Airline Data (Box, Jenkins and Reinsel 1994, p. 547) consisting of the monthly total number of inter-
national airline passengers from January 1949 through December 1960. Function imsls_f_seasonal_fit
is used to compute the optimum seasonality representation of the adjusted series

where

or

and

As differenced series with minimum AIC,

is identified.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 int maxlag = 10;
 int nobs = 144;

 int n_differences = 2;
 int n_s_initial = 2;
 int nlost;
 int npar;
 float aic;
 int s_init[] = {

 1, 1,
 1, 12

 };
 int *s = NULL;
 int *d = NULL;
 float *z = NULL;
 float *difference = NULL;
 z = imsls_f_data_sets(4,

 0);

Wt(s,d) = Δs1
d1Δs2

d2Zt = (1 − B
s1)
d1(1 − B

s2)
d2Zt ,

s = 1,1

s = 1,12

d = 1,1 .

Wt = Δ1
1Δ12
1 Zt = Zt − Zt−12 − Zt−1 − Zt−13 ,
749

 Time Series and Forecasting seasonal_fit
 difference = imsls_f_seasonal_fit(nobs, z, maxlag, n_differences,
 n_s_initial, s_init,
 IMSLS_LOST, &nlost,
 IMSLS_BEST_PERIODS, &s,
 IMSLS_BEST_ORDERS, &d,
 IMSLS_AIC, &aic,
 IMSLS_AR_ORDER, &npar,
 0);

 printf("\nnlost = %d\n", nlost);
 printf("s = (%d, %d)\n", s[0], s[1]);
 printf("d = (%d, %d)\n", d[0], d[1]);
 printf("Order of optimum AR process: %d\n", npar);
 printf("aic = %lf\n", aic);

 printf("\ni\tz[i]\t\tdifference[i]\n");
 for (i=0; i<nobs; i++)

 printf("%d\t%f\t%f\n", i, z[i], difference[i]);
 if (s)
 {

 imsls_free(s);
 s = NULL;

 }
 if (d)
 {

 imsls_free(d);
 d = NULL;

 }
 if (z)
 {

 imsls_free(z);
 z = NULL;

 }
 if (difference)
 {

 imsls_free(difference);
 difference = NULL;

 }
}

Output

nlost = 13
s = (1, 12)
d = (1, 1)
Order of optimum AR process: 1
aic = 949.780334
i z[i] difference[i]
0 112.000000 NaN
1 118.000000 NaN
2 132.000000 NaN
750

 Time Series and Forecasting seasonal_fit
3 129.000000 NaN
4 121.000000 NaN
5 135.000000 NaN
6 148.000000 NaN
7 148.000000 NaN
8 136.000000 NaN
9 119.000000 NaN
10 104.000000 NaN
11 118.000000 NaN
12 115.000000 NaN
13 126.000000 5.000000
14 141.000000 1.000000
15 135.000000 -3.000000
16 125.000000 -2.000000
17 149.000000 10.000000
18 170.000000 8.000000
19 170.000000 0.000000
20 158.000000 0.000000
21 133.000000 -8.000000
22 114.000000 -4.000000
23 140.000000 12.000000
24 145.000000 8.000000
25 150.000000 -6.000000
26 178.000000 13.000000
27 163.000000 -9.000000
28 172.000000 19.000000
29 178.000000 -18.000000
30 199.000000 0.000000
31 199.000000 0.000000
32 184.000000 -3.000000
33 162.000000 3.000000
34 146.000000 3.000000
35 166.000000 -6.000000
36 171.000000 0.000000
37 180.000000 4.000000
38 193.000000 -15.000000
39 181.000000 3.000000
40 183.000000 -7.000000
41 218.000000 29.000000
42 230.000000 -9.000000
43 242.000000 12.000000
44 209.000000 -18.000000
45 191.000000 4.000000
46 172.000000 -3.000000
47 194.000000 2.000000
48 196.000000 -3.000000
49 196.000000 -9.000000
50 236.000000 27.000000
51 235.000000 11.000000
52 229.000000 -8.000000
53 243.000000 -21.000000
54 264.000000 9.000000
55 272.000000 -4.000000
56 237.000000 -2.000000
57 211.000000 -8.000000
58 180.000000 -12.000000
59 201.000000 -1.000000
60 204.000000 1.000000
61 188.000000 -16.000000
62 235.000000 7.000000
751

 Time Series and Forecasting seasonal_fit
63 227.000000 -7.000000
64 234.000000 13.000000
65 264.000000 16.000000
66 302.000000 17.000000
67 293.000000 -17.000000
68 259.000000 1.000000
69 229.000000 -4.000000
70 203.000000 5.000000
71 229.000000 5.000000
72 242.000000 10.000000
73 233.000000 7.000000
74 267.000000 -13.000000
75 269.000000 10.000000
76 270.000000 -6.000000
77 315.000000 15.000000
78 364.000000 11.000000
79 347.000000 -8.000000
80 312.000000 -1.000000
81 274.000000 -8.000000
82 237.000000 -11.000000
83 278.000000 15.000000
84 284.000000 -7.000000
85 277.000000 2.000000
86 317.000000 6.000000
87 313.000000 -6.000000
88 318.000000 4.000000
89 374.000000 11.000000
90 413.000000 -10.000000
91 405.000000 9.000000
92 355.000000 -15.000000
93 306.000000 -11.000000
94 271.000000 2.000000
95 306.000000 -6.000000
96 315.000000 3.000000
97 301.000000 -7.000000
98 356.000000 15.000000
99 348.000000 -4.000000
100 355.000000 2.000000
101 422.000000 11.000000
102 465.000000 4.000000
103 467.000000 10.000000
104 404.000000 -13.000000
105 347.000000 -8.000000
106 305.000000 -7.000000
107 336.000000 -4.000000
108 340.000000 -5.000000
109 318.000000 -8.000000
110 362.000000 -11.000000
111 348.000000 -6.000000
112 363.000000 8.000000
113 435.000000 5.000000
114 491.000000 13.000000
115 505.000000 12.000000
116 404.000000 -38.000000
117 359.000000 12.000000
118 310.000000 -7.000000
119 337.000000 -4.000000
120 360.000000 19.000000
121 342.000000 4.000000
122 406.000000 20.000000
752

 Time Series and Forecasting seasonal_fit
123 396.000000 4.000000
124 420.000000 9.000000
125 472.000000 -20.000000
126 548.000000 20.000000
127 559.000000 -3.000000
128 463.000000 5.000000
129 407.000000 -11.000000
130 362.000000 4.000000
131 405.000000 16.000000
132 417.000000 -11.000000
133 391.000000 -8.000000
134 419.000000 -36.000000
135 461.000000 52.000000
136 472.000000 -13.000000
137 535.000000 11.000000
138 622.000000 11.000000
139 606.000000 -27.000000
140 508.000000 -2.000000
141 461.000000 9.000000
142 390.000000 -26.000000
143 432.000000 -1.000000
753

 Time Series and Forecasting ts_outlier_identification
ts_outlier_identification
Detects and determines outliers and simultaneously estimates the model parameters in a time series whose
underlying outlier free series follows a general seasonal or nonseasonal ARMA model.

Synopsis
#include <imsls.h>

float *imsls_f_ts_outlier_identification (int n_obs, int model[], float w[], …,0)

The type double function is imsls_d_ts_outlier_identification.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

int model[] (Input)
Vector of length 4 containing the numbers p, q, s, d of the ARIMA (p, 0, q) × (0, d, 0)s model the outlier
free series is following.

float w[] (Input)
An array of length n_obs containing the time series.

Return Value
Pointer to an array of length n_obs containing the outlier free time series. If an error occurred, NULL is
returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_ts_outlier_identification (int n_obs, int model[], float w[],

IMSLS_RETURN_USER, float x[],

IMSLS_DELTA, float delta,

IMSLS_CRITICAL, float critical,
754

 Time Series and Forecasting ts_outlier_identification
IMSLS_EPSILON, float epsilon,

IMSLS_RELATIVE_ERROR, float relative_error,

IMSLS_RESIDUAL, float **residual,

IMSLS_RESIDUAL_USER, float residual[],

IMSLS_RESIDUAL_SIGMA, float *res_sigma,

IMSLS_NUM_OUTLIERS, int *num_outliers,

IMSLS_OUTLIER_STATISTICS, int **outlier_stat,

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[],

IMSLS_TAU_STATISTICS, float **tau_stat,

IMSLS_TAU_STATISTICS_USER, float tau_stat[],

IMSLS_OMEGA_WEIGHTS, float **omega,

IMSLS_OMEGA_WEIGHTS_USER, float omega[],

IMSLS_ARMA_PARAM, float **parameters,

IMSLS_ARMA_PARAM_USER, float parameters[],

IMSLS_AIC, float *aic,

0)

Optional Arguments
IMSLS_RETURN_USER, float x[] (Output)

A user supplied array of length n_obs containing the outlier free series.

IMSLS_DELTA, float delta (Input)
The dampening effect parameter used in the detection of a Temporary Change Outlier (TC),
0<delta < 1.

Default: delta = 0.7

IMSLS_CRITICAL, float critical (Input)
Critical value used as a threshold for outlier detection, critical > 0.

Default: critical = 3.0

IMSLS_EPSILON, float epsilon (Input)
Positive tolerance value controlling the accuracy of parameter estimates during outlier detection.

Default: epsilon = 0.001
755

 Time Series and Forecasting ts_outlier_identification
IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for the nonlinear equation solver used in function imsls_f_arma.

Default: relative_error = .

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_obs containing the residuals for the
outlier free series.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RESIDUAL_SIGMA, float *res_sigma (Output)
Residual standard error of the outlier free series.

IMSLS_NUM_OUTLIERS, int *num_outliers (Output)
The number of outliers detected.

IMSLS_OUTLIER_STATISTICS, int **outlier_stat (Output)
Address of a pointer to an internally allocated array of length num_outliers × 2 containing out-
lier statistics. The first column contains the time at which the outlier was observed (t=1,2,...,n_obs)
and the second column contains an identifier indicating the type of outlier observed.

Outlier types fall into one of five categories:

Use IMSLS_NUM_OUTLIERS to obtain num_outliers, the number of detected outliers.

If num_outliers = 0, NULL is returned.

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[] (Output)
A user allocated array of length n_obs × 2 containing outlier statistics in the first num_outliers
locations. See IMSLS_OUTLIER_STATISTICS.

If num_outliers = 0, outlier_stat stays unchanged.

IMSLS_TAU_STATISTICS, float **tau_stat (Output)
Address of a pointer to an internally allocated array of length num_outliers containing the t value
for each detected outlier.

If num_outliers = 0, NULL is returned.

0 Innovational Outliers (IO)

1 Additive outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI).

10−10
756

 Time Series and Forecasting ts_outlier_identification
IMSLS_TAU_STATISTICS_USER, float tau_stat[] (Output)
A user allocated array of length n_obs containing the t value for each detected outlier in its first
num_outliers locations.

If num_outliers = 0, tau_stat stays unchanged.

IMSLS_OMEGA_WEIGHTS, float **omega (Output)
Address of a pointer to an internally allocated array of length num_outliers containing the com-
puted weights for the detected outliers.

If num_outliers = 0, NULL is returned.

IMSLS_OMEGA_WEIGHTS_USER float omega[] (Output)
A user allocated array of length n_obs containing the computed weights for the detected outliers
in its first num_outliers locations.

If num_outliers = 0, omega stays unchanged.

IMSLS_ARMA_PARAM, float **parameters (Output)
Address of a pointer to an internally allocated array of length 1+p+q containing the estimated con-
stant, AR and MA parameters.

IMSLS_ARMA_PARAM_USER float parameters[] (Output)
A user allocated array of length 1+p+q containing the estimated constant, AR and MA parameters.

IMSLS_AIC, float *aic (Output)
Akaike’s information criterion (AIC).

Description

Consider a univariate time series that can be described by the following multiplicative seasonal ARIMA

model of order (p, 0, q) × (0, d, 0)s:

Here, , . is the lag opera-

tor, , is a white noise process, and denotes the mean of the series .

ω

ω

Yt

Y t − μ =
θ B
Δs
dϕ B

at, t = 1, … ,n.

Δs
d = 1 − Bs)d θ B = 1 − θ1B − … − θqB

q, ϕ B = 1 − ϕ1B − … − ϕpB
p
B

BkY t = Y t−k at μ Y t
757

 Time Series and Forecasting ts_outlier_identification
In general, is not directly observable due to the influence of outliers. Chen and Liu (1993) distinguish
between four types of outliers: innovational outliers (IO), additive outliers (AO), temporary changes (TC) and level
shifts (LS). If an outlier occurs as the last observation of the series, then Chen and Liu’s algorithm is unable to
determine the outlier’s classification. In imsls_f_ts_outlier_identification, such an outlier is called
a UI (unable to identify) and is treated as an innovational outlier.

In order to take the effects of multiple outliers occurring at time points into account, Chen and Liu
consider the following model:

Here, is the observed outlier contaminated series, and and denote the magnitude and

dynamic pattern of outlier , respectively. is an indicator function that determines the temporal course

of the outlier effect, , otherwise. Note that operates on via

 .

The last formula shows that the outlier free series can be obtained from the original series by

removing all occurring outlier effects:

The different types of outliers are characterized by different values for :

1. for an innovational outlier,

2. for an additive outlier,

3. for a level shift outlier and

4. for a temporary change outlier.

Y t

t1, t2, … , tm

Y t
* − μ =∑ j=1

m
ω jL j B It t j +

θ B
Δs
dϕ B

at.

Y t
* ωj L j B

j It t j
I t j t j = 1 I t t j = 0 Lj B It

BkI t = I t−k, k = 0,1, …

Y t Y t
*

Yt = Yt
* −∑ j=1

m
ω jL j B It t j

L j B

Lj B =
θ B

Δs
dϕ B

L j B = 1

Lj B = 1 − B)−1

Lj B = 1 − δB)−1, 0 < δ < 1,
758

 Time Series and Forecasting ts_outlier_identification
Function imsls_f_ts_outlier_identification is an implementation of Chen and Liu’s algorithm. It

determines the coefficients in and the outlier effects in the model for the observed series jointly
in three stages. The magnitude of the outlier effects is determined by least squares estimates. Outlier detection
itself is realized by examination of the maximum value of the standardized statistics of the outlier effects. For a
detailed description, see Chen and Liu’s original paper (1993).

Intermediate and final estimates for the coefficients in and are computed by functions

imsls_f_arma and imsls_f_max_arma. If the roots of or lie on or within the unit circle, then
the algorithm stops with an appropriate error message. In this case, different values for p and q should be tried.

Examples

Example 1

This example is based on estimates of the Canadian lynx population. In order to simulate a measurement error,
the actual time series value at time point t=30, which is 0.25570e + 01, was replaced by 0.35570e + 01. Function
imsls_f_ts_outlier_identification is used to fit an AR(2) model of the form

 , , {at} Gaussian White noise, to the given series. Function

imsls_f_ts_outlier_identification computes parameters , and

 and identifies an additive outlier at time point t=30.

#include <imsls.h>
#include <stdio.h>
int main(){
 float series[114]={
 0.24300e+01,0.25060e+01,0.27670e+01,0.29400e+01,0.31690e+01,0.34500e+01,
 0.35940e+01,0.37740e+01,0.36950e+01,0.34110e+01,0.27180e+01,0.19910e+01,
 0.22650e+01,0.24460e+01,0.26120e+01,0.33590e+01,0.34290e+01,0.35330e+01,
 0.32610e+01,0.26120e+01,0.21790e+01,0.16530e+01,0.18320e+01,0.23280e+01,
 0.27370e+01,0.30140e+01,0.33280e+01,0.34040e+01,0.29810e+01,0.25570e+01,
 0.25760e+01,0.23520e+01,0.25560e+01,0.28640e+01,0.32140e+01,0.34350e+01,
 0.34580e+01,0.33260e+01,0.28350e+01,0.24760e+01,0.23730e+01,0.23890e+01,
 0.27420e+01,0.32100e+01,0.35200e+01,0.38280e+01,0.36280e+01,0.28370e+01,
 0.24060e+01,0.26750e+01,0.25540e+01,0.28940e+01,0.32020e+01,0.32240e+01,
 0.33520e+01,0.31540e+01,0.28780e+01,0.24760e+01,0.23030e+01,0.23600e+01,
 0.26710e+01,0.28670e+01,0.33100e+01,0.34490e+01,0.36460e+01,0.34000e+01,
 0.25900e+01,0.18630e+01,0.15810e+01,0.16900e+01,0.17710e+01,0.22740e+01,
 0.25760e+01,0.31110e+01,0.36050e+01,0.35430e+01,0.27690e+01,0.20210e+01,
 0.21850e+01,0.25880e+01,0.28800e+01,0.31150e+01,0.35400e+01,0.38450e+01,
 0.38000e+01,0.35790e+01,0.32640e+01,0.25380e+01,0.25820e+01,0.29070e+01,
 0.31420e+01,0.34330e+01,0.35800e+01,0.34900e+01,0.34750e+01,0.35790e+01,
 0.28290e+01,0.19090e+01,0.19030e+01,0.20330e+01,0.23600e+01,0.26010e+01,
 0.30540e+01,0.33860e+01,0.35530e+01,0.34680e+01,0.31870e+01,0.27230e+01,
 0.26860e+01,0.28210e+01,0.30000e+01,0.32010e+01,0.34240e+01,0.35310e+01
 };

ϕ B ,θ B

ϕ B θ B

ϕ B θ B

1 − ϕ1B − ϕ2B
2 Y t = θ0 + at t = 1,2, … ,144

θ0 = 1.052683 ϕ1 = 1.389253
ϕ2 = − 0.752184
759

 Time Series and Forecasting ts_outlier_identification
 int i, model[4] = {2,0,1,0}, n_obs = 114;
 int *outlier_stat = NULL, num_outliers;
 float *parameters = NULL, *result = NULL;
 float res_sigma, aic;
 /* Simulate measurement error */
 series[29] = 0.35570e+01;
 result = imsls_f_ts_outlier_identification(n_obs, model, series,
 IMSLS_CRITICAL, 3.5,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_ARMA_PARAM, ¶meters,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_AIC, &aic, 0);
 printf("\nARMA parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("%d\t\t%lf\n", i, parameters[i]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n");
 printf("Time point\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf(" t=%2d\t\t Type=%d\n", outlier_stat[2*i],
 outlier_stat[2*i+1]);
 printf("\n\nRSE: %lf\n", res_sigma);
 printf("AIC: %lf\n", aic);
 printf("\nExtract from the series:\n\n");
 printf ("time point original series outlier free series\n\n");
 for (i=0; i<36; i++)
 printf ("%2d %21.4f %21.4f\n", i+1, series[i], result[i]);
}

Output

ARMA parameters:
0 1.052683
1 1.389253
2 -0.752184
Number of outliers: 1
Outlier statistics:
Time point Outlier type
t=30 Type=1
RSE: 0.225020
AIC: 202.958511
Extract from the series:
time point original series outlier free series
1 2.4300 2.4300
2 2.5060 2.5060
3 2.7670 2.7670
4 2.9400 2.9400
5 3.1690 3.1690
6 3.4500 3.4500
760

 Time Series and Forecasting ts_outlier_identification
7 3.5940 3.5940
8 3.7740 3.7740
9 3.6950 3.6950
10 3.4110 3.4110
11 2.7180 2.7180
12 1.9910 1.9910
13 2.2650 2.2650
14 2.4460 2.4460
15 2.6120 2.6120
16 3.3590 3.3590
17 3.4290 3.4290
18 3.5330 3.5330
19 3.2610 3.2610
20 2.6120 2.6120
21 2.1790 2.1790
22 1.6530 1.6530
23 1.8320 1.8320
24 2.3280 2.3280
25 2.7370 2.7370
26 3.0140 3.0140
27 3.3280 3.3280
28 3.4040 3.4040
29 2.9810 2.9810
30 3.5570 2.7403
31 2.5760 2.5760
32 2.3520 2.3520
33 2.5560 2.5560
34 2.8640 2.8640
35 3.2140 3.2140
36 3.4350 3.4350

Example 2

This example is an artificial realization of an ARMA(1,1) process via formula

 Gaussian white noise, E[Yt]=50.0.

An additive outlier with was added at time point t=150, a temporary change outlier with was
added at time point t=200.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i, n_obs = 300, num_outliers;
 int outlier_stat[300], model[4] = {1,1,1,0};
 float res_sigma, aic;
 float parameters[300], result[300], omega[300];

 float series[300]={
 50.0000000,50.2728081,50.6242599,51.0373917,51.9317627,50.3494759,
 51.6597252,52.7004929,53.5499802,53.1673279,50.2373505,49.3373871,
 49.5516472,48.6692696,47.6606636,46.8774185,45.7315445,45.6469727,
 45.9882355,45.5216560,46.0479660,48.1958656,48.6387749,49.9055367,
 49.8077278,47.7858467,47.9386749,49.7691956,48.5425873,49.1239853,
 49.8518791,50.3320694,50.9146347,51.8772049,51.8745689,52.3394470,

Y t − 0.8Y t−1 = 10.0 + at + 0.5at−1, t = 1, … ,300,

ω1 = 4.5 ω2 = 3.0
761

 Time Series and Forecasting ts_outlier_identification
 52.7273712,51.4310036,50.6727448,50.8370399,51.2843437,51.8162918,
 51.6933670,49.7038231,49.0189247,49.455703,50.2718010,49.9605980,
 51.3775749,50.2285385,48.2692299,47.6495590,49.2938499,49.1924858,
 49.6449242,50.0446815,51.9972496,54.2576981,52.9835434,50.4193535,
 50.3617897,51.8276901,53.1239929,54.0682144,54.9238319,55.6877632,
 54.8896332,54.0701065,52.2754097,52.2522354,53.1248703,51.1287193,
 50.5003815,49.6504173,47.2453079,45.4555626,45.8449707,45.9765129,
 45.7682228,45.2343674,46.6496811,47.0894432,49.3368340,50.8058052,
 49.9132500,49.5893288,48.2470627,46.9779968,45.6760864,45.7070389,
 46.6158409,47.5303612,47.5630417,47.0389214,46.0352287,45.8161545,
 45.7974396,46.0015373,45.3796463,45.3461685,47.6444016,49.3327446,
 49.3810692,50.2027817,51.4567032,52.3986320,52.5819206,52.7721825,
 52.6919098,53.3274345,55.1345940,56.8962631,55.7791634,55.0616989,
 52.3551178,51.3264084,51.0968323,51.1980476,52.8001442,52.0545082,
 50.8742943,51.5150337,51.2242050,50.5033989,48.7760124,47.4179192,
 49.7319527,51.3320541,52.3918304,52.4140434,51.0845947,49.6485748,
 50.6893463,52.9840813,53.3246994,52.4568024,51.9196091,53.6683121,
 53.4555359,51.7755814,49.2915611,49.8755112,49.4546776,48.6171913,
 49.9643021,49.3766441,49.2551308,50.1021881,51.0769119,55.8328133,
 52.0212708,53.4930801,53.2147255,52.2356453,51.9648819,52.1816330,
 51.9898071,52.5623627,51.0717278,52.2431946,53.6943054,54.3752098,
 54.1492615,53.8523254,52.1093712,52.3982697,51.2405128,50.3018112,
 51.3819618,49.5479546,47.5024452,47.4447708,47.8939056,48.4070015,
 48.2440681,48.7389755,49.7309227,49.1998024,49.5798340,51.1196213,
 50.6288414,50.3971405,51.6084099,52.4564743,51.6443901,52.4080658,
 52.4643364,52.6257210,53.1604691,51.9309731,51.4137230,52.1233368,
 52.9867249,53.3180733,51.9647636,50.7947655,52.3815842,50.8353729,
 49.4136009,52.8355217,52.2234840,51.1392517,48.5245132,46.8700218,
 46.1607285,45.2324257,47.4157829,48.9989090,49.6230736,50.4352913,
 51.1652985,50.2588654,50.7820129,51.0448799,51.2880516,49.6898804,
 49.0288200,49.9338837,48.2214432,46.2103348,46.9550171,47.5595894,
 47.7176018,48.4502945,50.9816895,51.6950073,51.6973495,52.1941261,
 51.8988075,52.5617599,52.0218391,49.5236053,47.9684906,48.2445183,
 48.8275146,49.7176971,51.5649338,52.5627213,52.0182419,50.9688835,
 51.5846901,50.9486771,48.8685837,48.5600624,48.4760094,48.5348396,
 50.4187813,51.2542381,50.1872864,50.4407692,50.6222687,50.4972000,
 51.0036087,51.3367500,51.7368202,53.0463791,53.6261253,52.0728683,
 48.9740753,49.3280830,49.2733917,49.8519020,50.8562126,49.5594254,
 49.6109200,48.3785629,48.0026474,49.4874268,50.1596375,51.8059540,
 53.0288620,51.3321075,49.3114815,48.7999306,47.7201881,46.3433914,
 46.5303612,47.6294632,48.6012459,47.8567657,48.0604057,47.1352806,
 49.5724792,50.5566483,49.4182968,50.5578079,50.6883736,50.6333389,
 51.9766159,51.0595245,49.3751640,46.9667702,47.1658173,47.4411278,
 47.5360374,48.9914742,50.4747620,50.2728043,51.9117165,53.7627792};
 imsls_f_ts_outlier_identification(n_obs, model, series,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS_USER, outlier_stat,
 IMSLS_OMEGA_WEIGHTS_USER, omega,
 IMSLS_ARMA_PARAM_USER, parameters,
 IMSLS_RETURN_USER, result,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_AIC, &aic,
 IMSLS_RELATIVE_ERROR, 1.0e-05,
 0);
 printf("\nARMA parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("%d\t\t%lf\n", i, parameters[i]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);
762

 Time Series and Forecasting ts_outlier_identification
 printf("Outlier statistics:\n");
 printf("Time point\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
 printf("\nOmega statistics:\n");
 printf("Time point\tomega\n");
 for (i=0; i<num_outliers; i++)
 printf("%d%21.6f\n", outlier_stat[2*i], omega[i]);
 printf("\nRSE: %lf\n", res_sigma);
 printf("AIC: %lf\n\n", aic);
}

Output

ARMA parameters:
0 10.833087
1 0.785139
2 -0.496548
Number of outliers: 2
Outlier statistics:
Time point Outlier type
150 1
200 3
Omega statistics:
Time point omega
150 4.477888
200 3.381441
RSE: 1.007223
AIC: 1417.044434
763

 Time Series and Forecasting ts_outlier_forecast
ts_outlier_forecast
Computes forecasts, their associated probability limits and weights for an outlier contaminated time series
whose underlying outlier free series follows a general seasonal or nonseasonal ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_ts_outlier_forecast (int n_obs, float series[], int num_outliers,

int outlier_statistics[], float omega[], float delta, int model[], float parameters[],
int n_predict, …, 0)

The type double function is imsls_d_ts_outlier_forecast.

Required Arguments
int n_obs (Input)

Number of observations in the time series.

float series[] (Input)
An array of length n_obs by 2 containing the outlier free time series in its first column and the resid-
uals of the series in the second column.

int num_outliers (Input)
Number of detected outliers in the original outlier contaminated series as computed in
imsls_f_ts_outlier_identification.

int outlier_statistics[] (Input)
An array of length num_outliers by 2 containing the outlier statistics from
imsls_f_ts_outlier_identification. If num_outliers=0, this array is ignored.

float omega[] (Input)
Array of length num_outliers containing the weights for the outliers determined in
imsls_f_ts_outlier_identification. Ignored, if num_outliers=0.

float delta (Input)
The dynamic dampening effect parameter used in the outlier detection.

ψ

ψ

764

 Time Series and Forecasting ts_outlier_forecast
int model[] (Input)
Vector of length 4 containing the numbers p, q, s, d of the ARIMA model the
outlier free series is following.

float parameters[] (Input)
Vector of length 1+p+q containing the estimated constant, AR and MA parameters as output from
imsls_f_ts_outlier_identification.

int n_predict (Input)
Maximum lead time for forecasts. The forecasts are taken at origin t=n_obs, the time point of the
last observed value, for lead times 1,2,...,n_predict.

Return Value
Pointer to an array of length n_predict by 3. The first column contains the forecasted values for the original
outlier contaminated series. The second column contains the deviations from each forecast for computing confi-
dence probability limits, and the third column contains the weights of the infinite moving average form of the
model.

If an error occurred, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_ts_outlier_forecast(int n_obs, float series[], int num_outliers,

int outlier_statistics[], float omega[], float delta, int model[], float parameters[],
int n_predict,

IMSLS_RETURN_USER, float forecast[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast,
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[],
0)

Optional Arguments
IMSLS_RETURN_USER, float forecast[] (Output)

An array of length n_predict by 3 supplied by the user containing the forecasts for the original
outlier contaminated series in column 1, deviations from each forecast in column 2 and the
weights of the infinite moving average form of the model in column 3.

p,0,q × 0,d,0)s

ψ

ψ

765

 Time Series and Forecasting ts_outlier_forecast
IMSLS_CONFIDENCE, float confidence (Input)
Value in the exclusive interval (0,100) used to specify the confidence percent probability limits of
the forecast.Typical choices for confidence are 90.0, 95.0 and 99.0.

Default: confidence = 95.0

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast (Output)
Address of a pointer to an array of length n_predict by 3 containing the forecasts for the original
outlier free series in column 1, deviations from each forecast in column 2 and the weights of the
infinite moving average form of the model in column 3.

IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[] (Output)
Storage for array outfree_forecast is provided by the user. For a description, see
IMSLS_OUT_FREE_FORECAST.

Description

Consider the following model for a given outlier contaminated univariate time series :

For an explanation of the notation, see the Description section for
imsls_f_ts_outlier_identification. It follows from the formula above that the Box-Jenkins forecast

at origin for lead time , , can be computed as:

Therefore, computation of the forecasts for is done in two steps:

1. Computation of the forecasts for the outlier free series .

2. Computation of the forecasts for the original series by adding the multiple outlier effects to

the forecasts for .

Step 1 above:

Since

ψ

{Y t
*}t =1,…,n

Y t
* = Yt +∑ j=1

m
ω jL j B It t j .

t l Y
^
t

*
(l)

Y^ t
*
l = Y^ t l +∑ j=1

m
ω jL j B It+l t j , l = 1, … ,n_predict.

{Y t
*}

{Y t}

{Y t
*}

{Y t}
766

 Time Series and Forecasting ts_outlier_forecast
where

the Box-Jenkins forecast at origin for lead time , , can be computed recursively as:

Here,

and

Step 2 above:

The formulas for for the different types of outliers are as follows:

Assuming the outlier occurs at time point , the outlier impact is therefore:

Innovational outliers (IO)

Additive outliers (AO)

Level shifts (LS)

Temporary changes (TC)

Innovational outliers (IO)

Additive outliers (AO)

Level shifts (LS)

Temporary changes (TC)

φ B Yt − μ = θ B at,

φ B : = Δs
dϕ B = 1 − φ1B − … − φp+sdB

p+sd
,

t l Y
^
t(l)

Y^ t l = 1 −∑ j=1

p+sdφ j μ +∑ j=1

p+sdφ jY
^
t l − j −∑ j=l

q
θ jat+l− j.

Y^ t l − j =
Yt+l− j for l − j ≤ 0

Y^ t l − j for l − j > 0

ak =
0 for k ≤ max 1,p + sd

Yk − Y
^
k−1 1 for k = max 1,p + sd + 1, … ,n

Lj(B)

Lj(B) =
θ(B)
Δs
dϕ(B)

: = ψ(B) = ∑k=0
∞ ψkB

k, ψ0 = 1

Lj(B) = 1

Lj(B) =
1

1 − B = ∑k=0
∞ Bk

L j(B) =
1

1 − δB = ∑k=0
∞ δkBk

t jω j L j(B) It(t j) =
0 for t < t j,

ωjψk for t = t j + k, k ≥ 0,ωj L j(B) It(t j) =
0 for t ≠ t j,
ωj for t = t j,ωj L j(B) It(t j) =
0 for t < t j,
ωj for t = t j + k, k ≥ 0,ωj L j(B) It(t j) =
0 for t < t j,

ωjδ
k for t = t j + k, k ≥ 0 .
767

 Time Series and Forecasting ts_outlier_forecast
From these formulas, the forecasts can be computed easily.

The percent probability limits for and are given by

where is the percentile of the standard normal distribution, is an estimate of the vari-

ance of the random shocks (returned from imsls_f_ts_outlier_identification), and the weights

 are the coefficients in

For a detailed explanation of these concepts, see Chapter 5, Forecasting, Box, Jenkins and Reinsel (1994).

Example
This example is a realization of an ARMA(2,1) process described by the model

 , a Gaussian white noise process.

Outliers were artificially added to the outlier free series {Yt}t=1, ...,280 at time points (level shift,

) and (additive outlier,), resulting in the outlier contaminated series {Zt}t=1,

...,280. For both series, forecasts were determined for time points t=281, ..., 290 and compared with the actual val-

ues of the series.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float time_series[290] ={
 41.6699982, 41.6699982, 42.0752144, 42.6123962, 43.6161919,
 42.1932831, 43.1055450, 44.3518715, 45.3961258, 45.0790215,
 41.8874397, 40.2159805, 40.2447319, 39.6208458, 38.6873589,
 37.9272423, 36.8718872, 36.8310852, 37.4524879, 37.3440933,
 37.9861374, 40.3810501, 41.3464622, 42.6495285, 42.6096764,
 40.3134537, 39.7971268, 41.5401535, 40.7160759, 41.0363541,
 41.8171883, 42.4190292, 43.0318832, 43.9968109, 44.0419617,
 44.3225212, 44.6082611, 43.2199631, 42.0419197, 41.9679718,
 42.4926224, 43.2091255, 43.2512283, 41.2301674, 40.1057358,
 40.4510574, 41.5329170, 41.5678177, 43.0090141, 42.1592140,
 39.9234505, 38.8394127, 40.4319878, 40.8679352, 41.4551926,
 41.9756317, 43.9878922, 46.5736389, 45.5939293, 42.4487762,

Y^ t
*
(l)

100(1 − α) Y t+l
* Y t+l

Y^ t
*
(l)(or Y^ t(l), resp.) ± uα/2(1 +∑ j=1

l−1ψ j
2)1/2sa,

uα/2 100(1 − α / 2) sa
2

σa
2 ψ

{ψ j}

ψ B : = ∑
k=0

∞
ψkB

k : =
θ B
Δs
dϕ B

, ψ0 = 1.

Y t − Y t−1 + 0.24Y t−2 = 10.0 + at + 0.5at−1 at

t = 150
ω1 = + 2.5 t = 200 ω2 = + 3.2
768

 Time Series and Forecasting ts_outlier_forecast
 41.5325394, 42.8830910, 44.5771217, 45.8541985, 46.8249474,
 47.5686378, 46.6700745, 45.4120026, 43.2305107, 42.7635345,
 43.7112923, 42.0768661, 41.1835632, 40.3352280, 37.9761467,
 35.9550056, 36.3212509, 36.9925880, 37.2625008, 37.0040665,
 38.5232544, 39.4119797, 41.8316803, 43.7091446, 42.9381447,
 42.1066780, 40.3771248, 38.6518707, 37.0550499, 36.9447708,
 38.1017685, 39.4727097, 39.8670387, 39.3820763, 38.2180786,
 37.7543488, 37.7265244, 38.0290642, 37.5531158, 37.4685936,
 39.8233147, 42.0480766, 42.4053535, 43.0117416, 44.1289330,
 45.0393829, 45.1114540, 45.0086479, 44.6560631, 45.0278931,
 46.7830849, 48.7649765, 47.7991905, 46.5339661, 43.3679199,
 41.6420822, 41.2694893, 41.5959740, 43.5330009, 43.3643608,
 42.1471291, 42.5552788, 42.4521446, 41.7629128, 39.9476891,
 38.3217010, 40.5318718, 42.8811569, 44.4796944, 44.6887932,
 43.1670265, 41.2226143, 41.8330154, 44.3721924, 45.2697029,
 44.4174194, 43.5068550, 44.9793015, 45.0585403, 43.2746620,
 40.3317070, 40.3880501, 40.2627106, 39.6230278, 41.0305252,
 40.9262009, 40.8326912, 41.7084885, 42.9038048, 45.8650513,
 46.5231590, 47.9916115, 47.8463135, 46.5921936, 45.8854408,
 45.9130440, 45.7450371, 46.2964249, 44.9394569, 45.8141251,
 47.5284042, 48.5527802, 48.3950577, 47.8753052, 45.8880005,
 45.7086983, 44.6174774, 43.5567932, 44.5891113, 43.1778679,
 40.9405632, 40.6206894, 41.3330421, 42.2759552, 42.4744949,
 43.0719833, 44.2178459, 43.8956337, 44.1033440, 45.6241455,
 45.3724861, 44.9167595, 45.9180603, 46.9077835, 46.1666603,
 46.6013489, 46.6592331, 46.7291603, 47.1908340, 45.9784355,
 45.1215782, 45.6791115, 46.7379875, 47.3036957, 45.9968834,
 44.4669495, 45.7734680, 44.6315041, 42.9911766, 46.3842583,
 43.7214432, 43.5276833, 41.3946495, 39.7013168, 39.1033401,
 38.5292892, 41.0096245, 43.4535828, 44.6525154, 45.5725899,
 46.2815285, 45.2766647, 45.3481712, 45.5039482, 45.6745682,
 44.0144806, 42.9305000, 43.6785469, 42.2500534, 40.0007210,
 40.4477005, 41.4432716, 42.0058670, 42.9357758, 45.6758842,
 46.8809929, 46.8601494, 47.0449791, 46.5420647, 46.8939934,
 46.2963371, 43.5479164, 41.3864059, 41.4046364, 42.3037987,
 43.6223717, 45.8602371, 47.3016396, 46.8632469, 45.4651413,
 45.6275482, 44.9968376, 42.7558670, 42.0218239, 41.9883728,
 42.2571678, 44.3708687, 45.7483635, 44.8832512, 44.7945862,
 44.8922577, 44.7409401, 45.1726494, 45.5686874, 45.9946709,
 47.3151054, 48.0654068, 46.4817467, 42.8618279, 42.4550323,
 42.5791168, 43.4230957, 44.7787971, 43.8317108, 43.6481781,
 42.4183960, 41.8426285, 43.3475227, 44.4749908, 46.3498306,
 47.8599319, 46.2449913, 43.6044006, 42.4563484, 41.2715340,
 39.8492508, 39.9997292, 41.4410820, 42.9388237, 42.5687332,
 42.6384087, 41.7088661, 43.9399033, 45.4284401, 44.4558411,
 45.1761856, 45.3489113, 45.1892662, 46.3754730, 45.6082802
 };
 int n_obs = 280, i;
 float *parameters = NULL, *result = NULL, *forecast = NULL;
 float *outfree_forecast = NULL, *omega = NULL, *residual = NULL;
 float res_sigma, aic;
 float delta = 0.7;
 float series[560];
 int *outlier_stat = NULL;
 int num_outliers;
 int n_predict = 10;
 int model[4];
 float forecast_table[40];
769

 Time Series and Forecasting ts_outlier_forecast
 model[0] = 2;
 model[1] = 1;
 model[2] = 1;
 model[3] = 0;
 result = imsls_f_ts_outlier_identification(n_obs, model, time_series,
 IMSLS_RELATIVE_ERROR, 1.0e-5,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_RESIDUAL, &residual,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_OMEGA_WEIGHTS, &omega,
 IMSLS_ARMA_PARAM, ¶meters,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_AIC, &aic,
 0);
 printf("\nARMA parameters:\n");
 for (i = 0; i <= model[0] + model[1]; i++)
 printf("%d\t\t%lf\n", i, parameters[i]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n");
 printf("Time point\t\tOutlier type\n");
 for (i = 0; i < num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat[2 * i],
 outlier_stat[2 * i + 1]);
 printf("\n");
 printf("RSE:%lf\n", res_sigma);
 printf("AIC:%lf\n", aic);
 for (i = 0; i < n_obs; i++)
 {
 series[2 * i] = result[i];
 series[2 * i + 1] = residual[i];
 }
 forecast = imsls_f_ts_outlier_forecast(n_obs, series, num_outliers,
 outlier_stat, omega, delta, model, parameters, n_predict,
 IMSLS_OUT_FREE_FORECAST,&outfree_forecast,
 0);
 for (i = 0; i < n_predict; i++)
 {
 forecast_table[4 * i] = time_series[n_obs + i];
 forecast_table[4 * i + 1] = forecast[3 * i];
 forecast_table[4 * i + 2] = forecast[3 * i + 1];
 forecast_table[4 * i + 3] = forecast[3 * i + 2];
 }
 imsls_f_write_matrix("\t* * * Forecast Table for outlier"
 " contaminated series * * *\nOrig. Series \tforecast\tprob."
 " limits\tpsi weights\n", n_predict, 4, forecast_table,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
 for (i = 0; i < n_predict; i++)
 {
770

 Time Series and Forecasting ts_outlier_forecast
 forecast_table[4 * i] = time_series[n_obs + i] - 2.5;
 forecast_table[4 * i + 1] = outfree_forecast[3 * i];
 forecast_table[4 * i + 2] = outfree_forecast[3 * i + 1];
 forecast_table[4 * i + 3] = outfree_forecast[3 * i + 2];
 }
 printf("\n");
 imsls_f_write_matrix("\t* * * Forecast Table for outlier free"
 " series * * *\n\nOutlier free series\tforecast \tprob. limits"
 "\tpsi weights\n", n_predict, 4, forecast_table,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Output

ARMA parameters:
0 8.892076
1 0.943928
2 -0.150295
3 -0.559073
Number of outliers: 2
Outlier statistics:
Time point Outlier type
150 2
200 1
RSE:1.004306
AIC:1323.617310
 * * * Forecast Table for outlier contaminated series * * *
 Orig. Series forecast prob. limits psi weights
 1 2 3 4
 1 42.6384 42.3158 1.9684 1.5030
 2 41.7089 42.7934 3.5535 1.2684
 3 43.9399 43.2822 4.3430 0.9714
 4 45.4284 43.6718 4.7453 0.7263
 5 44.4558 43.9662 4.9560 0.5396
 6 45.1762 44.1854 5.0685 0.4002
 7 45.3489 44.3481 5.1293 0.2966
 8 45.1893 44.4688 5.1625 0.2199
 9 46.3755 44.5582 5.1806 0.1629
 10 45.6083 44.6245 5.1905 0.1208

 * * * Forecast Table for outlier free series * * *
Outlier free series forecast prob. limits psi weights
 1 2 3 4
 1 40.1384 40.5903 1.9684 1.5030
 2 39.2089 41.0679 3.5535 1.2684
 3 41.4399 41.5567 4.3430 0.9714
 4 42.9284 41.9463 4.7453 0.7263
771

 Time Series and Forecasting ts_outlier_forecast
 5 41.9558 42.2406 4.9560 0.5396
 6 42.6762 42.4599 5.0685 0.4002
 7 42.8489 42.6226 5.1293 0.2966
 8 42.6893 42.7433 5.1625 0.2199
 9 43.8755 42.8327 5.1806 0.1629
10 43.1083 42.8990 5.1905 0.1208
772

 Time Series and Forecasting auto_arima
auto_arima

more...

Automatically identifies time series outliers, determines parameters of a multiplicative seasonal ARIMA

 model and produces forecasts that incorporate the effects of outliers whose effects persist
beyond the end of the series.

Synopsis
#include <imsls.h>
float *imsls_f_auto_arima (int n_obs, int tpoints[], float x[], …, 0)

The type double function is imsls_d_auto_arima.

Required Arguments
int n_obs (Input)

Number of observations in the original time series. Assuming that the series is defined at time points
 , the actual length of the series, including missing observations is .

int tpoints[] (Input)
A vector of length n_obs containing the time points the time series was observed. It
is required that are in strictly ascending order.

float x[] (Input)
A vector of length n_obs containing the observed time series values . This series
can contain outliers and missing observations. Outliers are identified by this function and missing val-
ues are identified by the time values in vector tpoints. If the time interval between two
consecutive time points is greater than one, i.e. , then missing values are
assumed to exist between and at times . Therefore, the gap free
series is assumed to be defined for equidistant time points . Missing values are automatically esti-
mated prior to identifying outliers and producing forecasts. Forecasts are generated for both missing
and observed values.

(p, 0,q) × (0,d, 0)s

t1, … ,tn_obs n = tn_obs − t1 + 1

t1,t2, … tn_obs
t1,t2, … tn_obs

Y 1
*,Y 2

, ⋯ ,Yn_obs

ti+1 − ti = m > 1 m − 1
ti ti+1 ti + 1, ti + 2, … , ti+1 − 1
773

 Time Series and Forecasting auto_arima
Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR and MA parameters used to fit the outlier-
free series using an ARIMA (p, 0, q) × (0, d, 0)s model. Upon completion, if d=model[3]=0, then an ARMA(p, q)

model or AR(p) model is fitted to the outlier-free version of the observed series . If d=model[3]>0, these
parameters are computed for an ARMA(p,q) representation of the seasonally adjusted series

 , where and s=model[2]≥1.

If an error occurred, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_auto_arima (int n_obs, int tpoints[], float x[],

IMSLS_METHOD, int method,
IMSLS_MAX_LAG, int maxlag,
IMSLS_MODEL, int model[],
IMSLS_DELTA, float delta,
IMSLS_CRITICAL, float critical,
IMSLS_EPSILON, float epsilon,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_RESIDUAL_SIGMA, float *res_sigma,
IMSLS_NUM_OUTLIERS, int *num_outliers,
IMSLS_P_INITIAL, int n_p_initial, int p_initial[],
IMSLS_Q_INITIAL, int n_q_initial, int q_initial[],
IMSLS_S_INITIAL, int n_s_initial, int s_initial[],
IMSLS_D_INITIAL, int n_d_initial, int d_initial[],
IMSLS_OUTLIER_STATISTICS, int **outlier_stat,
IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[],
IMSLS_AIC, float *aic,
IMSLS_AICC, float *aicc,
IMSLS_BIC, float *bic,
IMSLS_MODEL_SELECTION_CRITERION, int criterion,
IMSLS_OUT_FREE_SERIES, float **outfree_series,
IMSLS_OUT_FREE_SERIES_USER, float outfree_series[],

Y t
*

Zt
* = Δs

d ·Y t
* = (1 − Bs)

d ·Y t
*

BsY t
* = Y t−s

*

774

 Time Series and Forecasting auto_arima
IMSLS_CONFIDENCE, float confidence,
IMSLS_NUM_PREDICT, int n_predict,
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast,
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[],
IMSLS_OUTLIER_FORECAST, float **outlier_forecast,
IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[],
IMSLS_SUPPLY_WORK_ARRAYS, int liwork, int iwork[], int lwork, float work[],
IMSLS_RETURN_USER, float parameters[],
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

The method used in model selection:

For more information, see the “Description” section.

Default: method = 1

IMSLS_MAX_LAG, int maxlag (Input)
The maximum lag allowed when fitting an AR(p) model.

Default: maxlag = 10
IMSLS_MODEL, int model[] (Input/Output)

Array of length 4 containing the values for p, q, s, d. If method = 3 is chosen, then the values for p
and q must be defined. If IMSLS_S_INITIAL and IMSLS_D_INITIAL are not defined, then also
s and d must be given. If method = 1 or method = 2, then model is ignored as an input array. On
output, model contains the optimum values for p, q, s, d in model[0], model[1], model[2]
and model[3], respectively.

IMSLS_DELTA, float delta (Input)
The dampening effect parameter used in the detection of a Temporary Change Outlier (TC),
0<delta<1.

method Description

1 Automatic ARIMA (p, 0, 0) × (0, d, 0)s selection.

2 Grid search. Requires arguments IMSLS_P_INITIAL and
IMSLS_Q_INITIAL.

3 Specified ARIMA (p, 0, q) × (0, d, 0)s model. Requires argument
IMSLS_MODEL.
775

 Time Series and Forecasting auto_arima
Default: delta = 0.7

IMSLS_CRITICAL, float critical (Input)
Critical value used as a threshold for outlier detection, critical > 0.

Default: critical = 3.0

IMSLS_EPSILON, float epsilon (Input)
Positive tolerance value controlling the accuracy of parameter estimates during outlier detection.

Default: epsilon = 0.001

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used in the method of moments algorithm
that computes initial parameter estimates for the least-squares algorithm.

Default: relative_error = 102 * imsls_f_machine(4)in single precision and 104 *
imsls_d_machine(4)in double precision.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length , containing

 , the estimates of the white noise in the outlier free original series.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RESIDUAL_SIGMA, float *res_sigma (Output)
Residual standard error (RSE) of the outlier free original series.

IMSLS_NUM_OUTLIERS, int *num_outliers (Output)
The number of outliers detected.

IMSLS_P_INITIAL, int n_p_initial, int p_initial[] (Input)
An array with n_p_initial elements containing the candidate values for p, from which the opti-
mum is being selected. All candidate values in p_initial[] must be non-negative and
n_p_initial ≥ 1. If method=2, then IMSLS_P_INITIAL must be defined. Otherwise,
n_p_initial and p_initial are ignored.

IMSLS_Q_INITIAL, int n_q_initial, int q_initial[] (Input)
An array with n_q_initial elements containing the candidate values for q, from which the opti-
mum is being selected. All candidate values in q_initial[] must be non-negative and
n_q_initial ≥ 1. If method=2, then IMSLS_Q_INITIAL must be defined. Otherwise,
n_q_initial and q_initial are ignored.

IMSLS_S_INITIAL, int n_s_initial, int s_initial[] (Input)
A vector of length n_s_initial containing the candidate values for s, from which the optimum is
being selected. All candidate values in s_initial[] must be positive and n_s_initial ≥ 1.

n = tn_obs − t1 + 1 ≥ n_obs
e^ t
776

 Time Series and Forecasting auto_arima
Default: n_s_initial=1, s_initial={1}

IMSLS_D_INITIAL, int n_d_initial, int d_initial[] (Input)
A vector of length n_d_initial containing the candidate values for d, from which the optimum is
being selected. All candidate values in d_initial[] must be non-negative and
n_d_initial ≥ 1.

Default: n_d_initial=1, d_initial={0}

IMSLS_OUTLIER_STATISTICS, int **outlier_stat (Output)
Address of a pointer to an internally allocated array of length num_outliers by 2 containing out-
lier statistics. The first column contains the time at which the outlier was observed
() and the second column contains an identifier indicating the type of
outlier observed. Outlier types fall into one of five categories:

If num_outliers = 0, NULL is returned.

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[] (Output)
A user allocated array of length n × 2 containing outlier statistics in its first num_outliers rows.
Here, . See IMSLS_OUTLIER_STATISTICS. If num_outliers = 0,
outlier_stat stays unchanged.

IMSLS_AIC, float *aic (Output)
The AIC (Akaike’s Information Criterion) value for the optimum model. Uses an approximation of the
maximum log-likelihood based on an estimate of the innovation variance of the series.

IMSLS_AICC, float *aicc (Output)
The AICC (corrected AIC) value for the optimum model. Uses an approximation of the maximum log-
likelihood based on an estimate of the innovation variance of the series.

IMSLS_BIC, float *bic (Output)
The BIC (Bayesian Information Criterion) value for the optimum model. Uses an approximation of the
maximum log-likelihood based on an estimate of the innovation variance of the series.

0 Innovational Outliers (IO)

1 Additive Outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI).

t = t1, t1 + 1, t1 + 2, … , tn_obs

n = tn_obs − t1 + 1 ≥ n_obs
777

 Time Series and Forecasting auto_arima
IMSLS_MODEL_SELECTION_CRITERION, int criterion (Input)
The information criterion used for optimum model selection.

Default: criterion = 0.
IMSLS_OUT_FREE_SERIES, float **outfree_series (Output)

Address of a pointer to an internally allocated array of length n by 2, where . The
first column of outfree_series contains the n_obs observations from the original series, ,
plus estimated values for any time gaps. The second column contains the same values as the first col-
umn adjusted by removing any outlier effects. In effect, the second column contains estimates of the
underlying outlier-free series, . If no outliers are detected then both columns will contain identical
values.

IMSLS_OUT_FREE_SERIES_USER, float outfree_series[] (Output)
A user allocated array of length n by 2, where . For further details, see
IMSLS_OUT_FREE_SERIES.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for computing forecast confidence limits, taken from the exclusive interval (0, 100).
Typical choices for confidence are 90.0, 95.0 and 99.0.

Default: confidence = 95.0

IMSLS_NUM_PREDICT, int n_predict (Input)
The number of forecasts requested. Forecasts are made at origin , i.e. from the last observed
value of the series.

Default: n_predict = 0

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast (Output)
Address of a pointer to an internally allocated array of length n_predict by 3. The first column
contains the forecasted values for the original outlier free series for t= +1, + 2,...,
+ n_predict. The second column contains standard errors for these forecasts, and the third col-
umn contains the psi weights of the infinite order moving average form of the model.

IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[] (Output)
A user allocated array of length n_predict by 3. For more information, see
IMSLS_OUT_FREE_FORECAST.

criterion selected information criterion

0 Akaike’s Information Criterion (AIC)

1 Akaike’s Corrected Information Criterion (AICC)

2 Bayesian Information Criterion (BIC)

n = tn_obs − t1 + 1
Y t
*

Y t

n = tn_obs − t1 + 1

tn_obs

tn_obs tn_obs tn_obs
778

 Time Series and Forecasting auto_arima
IMSLS_OUTLIER_FORECAST, float **outlier_forecast (Output)
Address of a pointer to an internally allocated array of length n_predict by 3. The first column
contains the forecasted values for the original series for t= +1, +2,..., +n_predict.
The second column contains standard errors for these forecasts, and the third column contains the

 weights of the infinite order moving average form of the model.

IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[] (Output)
A user allocated array of length n_predict by 3. For more information, see
IMSLS_OUTLIER_FORECAST.

IMSLS_SUPPLY_WORK_ARRAYS, int liwork, int iwork[], int lwork, float work[], (Input/Out-
put)
The use of this optional argument will increase efficiency and avoid memory fragmentation run-time
failures for large problems by allowing the user to provide the sizes and locations of the working
arrays work and iwork. It is also useful if many time series have to be processed sequentially
because it can significantly reduce the amount of memory that has to be reallocated. This optional
argument can be used in conjunction with method = 1 and method = 2. With maxt as the max-
imum number of threads that will be active and nobs_act the length of the time series (including
missing values), it is required that

liwork ≥ 2 × maxt × (2 + nobs_act).
The minimum length of array work depends on the choice of the method. For method 1, it is
required that

lwork ≥ maxt × (3 × nobs_act + 1 + maxlag).
Method 2 requires

lwork ≥ maxt × (3 × nobs_act + 1 + ub_p + ub_q),
where ub_p and ub_q denote the maximum values in arrays p_initial and q_initial,
respectively.

Without the use of OpenMP and parallel threading, maxt× = 1.

IMSLS_RETURN_USER, float x[] (Output)
A user allocated array containing the estimated constant, AR and MA parameters in its first 1+p+q
locations. The values p and q can be estimated by upper bounds: If method=1, an upper bound for
p would be maxlag, and q= 0. If method=2, upper bounds for p and q would be the maximum val-
ues in arrays p_initial and q_initial, respectively. If method=3, p= model[0] and
q= model[1].

tn_obs tn_obs tn_obs

ψ

779

 Time Series and Forecasting auto_arima
Description
Function imsls_f_auto_arima determines the parameters of a multiplicative seasonal ARIMA (p, 0, q) × (0,
d, 0)s model, and then uses the fitted model to identify outliers and prepare forecasts. The order of this model

can be specified or automatically determined.

The ARIMA (p, 0, q) × (0, d, 0)s model handled by imsls_f_auto_arima has the following form:

where

and

It is assumed that all roots of and lie outside the unit circle. Clearly, if this reduces to the
traditional ARIMA(p, d, q) model.

 is the unobserved, outlier-free time series with mean , and white noise . This model is referred to as the
underlying, outlier-free model. Function imsls_f_auto_arima does not assume that this series is observ-
able. It assumes that the observed values might be contaminated by one or more outliers, whose effects are
added to the underlying outlier-free series:

Outlier identification uses the algorithm developed by Chen and Liu (1993). Outliers are classified into 1 of 5
types:

1. innovational

2. additive

3. level shift

4. temporary change and

5. unable to identify

Once outliers are identified, imsls_f_auto_arima estimates , the outlier-free series representation of
the data, by removing the estimated outlier effects.

ϕ B Δs
d Y t − μ = θ B at, t = 1,2, … ,n,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 − ⋯ − ϕpB

p
, θ(B) = 1 − θ1B − θ2B

2 − ⋯ − θqB
q
, Δs

d = (1 − Bs)d

BkY t = Yt−k.

ϕ B θ B s = 1

Y t μ at

Y t
* = Yt + outlier_effectt.

Y t
780

 Time Series and Forecasting auto_arima
Using the information about the adjusted ARIMA (p, 0, q) × (0, d, 0)s model and the removed outliers, forecasts

are then prepared for the outlier-free series. Outlier effects are added to these forecasts to produce a forecast

for the observed series, . If there are no outliers, then the forecasts for the outlier-free series and the
observed series will be identical.

Model Selection

Users have an option of either specifying specific values for p, q, s and d or have imsls_f_auto_arima auto-
matically select best fit values. Model selection can be conducted in one of three methods listed below
depending upon the value of variable method.

Method 1: Automatic ARIMA (p, 0, 0) × (0, d, 0)s Selection

This method initially searches for the AR(p) representation with minimum AIC for the noisy data, where
p = 0,...,maxlag.

If IMSLS_D_INITIAL is defined then the values in s_initial and d_initial are included in the search
to find an optimum ARIMA (p, 0, 0) × (0, d, 0)s representation of the series. Here, every possible combination of

values for p, s in s_initial and d in d_initial is examined. The best found ARIMA (p, 0, 0) × (0, d, 0)s repre-

sentation is then used as input for the outlier detection routine.

The optimum values for p, q, s and d are returned in model[0], model[1], model[2] and model[3],
respectively.

Method 2: Grid Search

The second automatic method conducts a grid search for p and q using all possible combinations of candidate
values in p_initial and q_initial. Therefore, for this method the definition of IMSLS_P_INITIAL and
IMSLS_Q_INITIAL is required.

If IMSLS_D_INITIAL is defined, the grid search is extended to include the candidate values for s and d given
in s_initial and d_initial, respectively.

If IMSLS_D_INITIAL is not defined, no seasonal adjustment is attempted, and the grid search is restricted to
searching for optimum values of p and q only.

The optimum values of p, q, s and d are returned in model[0], model[1], model[2] and model[3],
respectively.

Y t
*

781

 Time Series and Forecasting auto_arima
Method 3: Specified ARIMA (p, 0, q) × (0, d, 0)s Model

In the third method, specific values for p, q, s and d are given. The values for p and q must be defined in
model[0] and model[1], respectively. If IMSLS_S_INITIAL and IMSLS_D_INITIAL are not defined,
then values and must be specified in model[2] and model[3]. If IMSLS_S_INITIAL and
IMSLS_D_INITIAL are defined, then a grid search for the optimum values of s and d is conducted using all
possible combinations of input values in s_initial and d_initial. The optimum values of s and d can be
found in model[2] and model[3], respectively.

Outliers

The algorithm of Chen and Liu (1993) is used to identify outliers. The number of outliers identified is returned in
num_outliers. Both the time and classification for these outliers are returned in outlier_stat[]. Outli-
ers are classified into one of five categories based upon the standardized statistic for each outlier type. The time
at which the outlier occurred is given in the first column of outlier_stat. The outlier identifier returned in
the second column is according to the descriptions in the following table:

Outlier

Identifier Name General Description

0 (IO)

Innovational
Outlier

Innovational outliers persist. That is, there is an initial
impact at the time the outlier occurs. This effect continues
in a lagged fashion with all future observations. The lag
coefficients are determined by the coefficient of the under-
lying ARIMA (p, 0, q) × (0, d, 0)s model.

1 (AO)

Additive
Outlier

Additive outliers do not persist. As the name implies, an
additive outlier effects only the observation at the time the
outlier occurs. Hence additive outliers have no effect on
future forecasts.

2 (LS)

Level Shift

Level shift outliers persist. They have the effect of either
raising or lowering the mean of the series starting at the
time the outlier occurs. This shift in the mean is abrupt and
permanent.

s > 0 d ≥ 0
782

 Time Series and Forecasting auto_arima
Except for additive outliers (AO), the effect of an outlier persists to observations following that outlier. Forecasts
produced by imsls_f_auto_arima take this into account.

Examples

Example 1

This example uses time series D from Box, Jenkins and Reinsel (1994), the hourly viscosity readings of a chemical
process. Method 1 without seasonal adjustment is chosen to find an appropriate AR(p) model for the first 304
observations of this series, measured at time points t = 1 to t = 304. A forecast is then done at origin t = 304 for
lead times 1 to 6 and compared with the actual time series values which are stored in array actual.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_obs, n_predict, i, num_outliers;
 int *outlier_stat = NULL, model[4], times[304];
 float aic, res_sigma, *parameters = NULL;
 float outlier_forecast[18], forecast_table[24];
 /* Values of series D at time points t=1,...,t=304 */
 float x[304] = {
 8.0,8.0,7.4,8.0,8.0,8.0,8.0,8.8,8.4,8.4,8.0,8.2,8.2,8.2,8.4,
 8.4,8.4,8.6,8.8,8.6,8.6,8.6,8.6,8.6,8.8,8.9,9.1,9.5,8.5,8.4,
 8.3,8.2,8.1,8.3,8.4,8.7,8.8,8.8,9.2,9.6,9.0,8.8,8.6,8.6,8.8,
 8.8,8.6,8.6,8.4,8.3,8.4,8.3,8.3,8.1,8.2,8.3,8.5,8.1,8.1,7.9,
 8.3,8.1,8.1,8.1,8.4,8.7,9.0,9.3,9.3,9.5,9.3,9.5,9.5,9.5,9.5,
 9.5,9.5,9.9,9.5,9.7,9.1,9.1,8.9,9.3,9.1,9.1,9.3,9.5,9.3,9.3,
 9.3,9.9,9.7,9.1,9.3,9.5,9.4,9.0,9.0,8.8,9.0,8.8,8.6,8.6,8.0,

3 (TC)

Temporary
Change

Temporary change outliers persist and are similar to level
shift outliers with one major exception. Like level shift out-
liers, there is an abrupt change in the mean of the series at
the time this outlier occurs. However, unlike level shift out-
liers, this shift is not permanent. The TC outlier gradually
decays, eventually bringing the mean of the series back to
its original value. The rate of this decay is modeled using
the parameter delta. The default of delta= 0.7 is the
value recommended for general use by Chen and Liu
(1993).

4 (UI)

Unable to
Identify

If an outlier is identified as the last observation, then the
algorithm is unable to determine the outlier’s classifica-
tion. For forecasting, a UI outlier is treated as an IO outlier.
That is, its effect is lagged into the forecasts.

Outlier

Identifier Name General Description
783

 Time Series and Forecasting auto_arima
 8.0,8.0,8.0,8.6,8.0,8.0,8.0,7.6,8.6,9.6,9.6,10.0,9.4,9.3,9.2,
 9.5,9.5,9.5,9.9,9.9,9.5,9.3,9.5,9.5,9.1,9.3,9.5,9.3,9.1,9.3,
 9.1,9.5,9.4,9.5,9.6,10.2,9.8,9.6,9.6,9.4,9.4,9.4,9.4,9.6,9.6,
 9.4,9.4,9.0,9.4,9.4,9.6,9.4,9.2,8.8,8.8,9.2,9.2,9.6,9.6,9.8,
 9.8,10.0,10.0,9.4,9.8,8.8,8.8,8.8,8.8,9.6,9.6,9.6,9.2,9.2,9.0,
 9.0,9.0,9.4,9.0,9.0,9.4,9.4,9.6,9.4,9.6,9.6,9.6,10.0,10.0,9.6,
 9.2,9.2,9.2,9.0,9.0,9.6,9.8,10.2,10.0,10.0,10.0,9.4,9.2,9.6,9.7,
 9.7,9.8,9.8,9.8,10.0,10.0,8.6,9.0,9.4,9.4,9.4,9.4,9.4,9.6,10.0,
 10.0,9.8,9.8,9.7,9.6,9.4,9.2,9.0,9.4,9.6,9.6,9.6,9.6,9.6,9.6,
 9.0,9.4,9.4,9.4,9.6,9.4,9.6,9.6,9.8,9.8,9.8,9.6,9.2,9.6,9.2,
 9.2,9.6,9.6,9.6,9.6,9.6,9.6,10.0,10.0,10.4,10.4,9.8,9.0,9.6,9.8,
 9.6,8.6,8.0,8.0,8.0,8.0,8.4,8.8,8.4,8.4,9.0,9.0,9.4,10.0,10.0,
 10.0,10.2,10.0,10.0,9.6,9.0,9.0,8.6,9.0,9.6,9.6,9.0,9.0,8.9,8.8,
 8.7,8.6,8.3,7.9};
 /* Actual values of series D at time points t=305,...,t=310 */
 float actual[6] = {8.5,8.7,8.9,9.1,9.1,9.1};

 char *col_labels[] = {
 "Lead Time",
 "Orig. Series",
 "Forecast",
 "Dev. for Prob. Limits",
 "Psi"};
 n_predict = 6;
 n_obs = 304;
 /* Define times from t=1 to t=304 */
 for (i=0;i<n_obs;i++) times[i] = i+1;
 parameters = imsls_f_auto_arima(n_obs, times, x,
 IMSLS_MODEL, model,
 IMSLS_AIC, &aic,
 IMSLS_MAX_LAG, 5,
 IMSLS_CRITICAL, 3.8,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_NUM_PREDICT, n_predict,
 IMSLS_OUTLIER_FORECAST_USER, outlier_forecast,
 0);
 printf("\nMethod 1: Automatic ARIMA model selection,"
 " no differencing\n");
 printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0],
 model[1], model[2], model[3]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n\n");
 printf("Time point Outlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d%11d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
 printf("\nAIC = %lf\n", aic);
 printf("RSE = %lf\n\n", res_sigma);
 printf("Parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("parameters[%d] = %lf\n", i, parameters[i]);
 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = actual[i];
 forecast_table[4*i+1] = outlier_forecast[3*i];
 forecast_table[4*i+2] = outlier_forecast[3*i+1];
784

 Time Series and Forecasting auto_arima
 forecast_table[4*i+3] = outlier_forecast[3*i+2];
 }
 imsls_f_write_matrix("* * * Forecast Table * * *",
 n_predict, 4, forecast_table,
 IMSLS_COL_LABELS, col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f", 0);
}

Output

Method 1: Automatic ARIMA model selection, no differencing
Model chosen: p=1, q=0, s=1, d=0
Number of outliers: 1
Outlier statistics:
Time point Outlier type
217 3
AIC = 678.224731
RSE = 0.290680
Parameters:
parameters[0] = 1.044163
parameters[1] = 0.887724
 * * * Forecast Table * * *
Lead Time Orig. Series Forecast Dev. for Prob. Psi
 Limits
 1 8.5000 8.0572 0.5697 0.8877
 2 8.7000 8.1967 0.7618 0.7881
 3 8.9000 8.3206 0.8843 0.6996
 4 9.1000 8.4306 0.9699 0.6210
 5 9.1000 8.5282 1.0325 0.5513
 6 9.1000 8.6148 1.0792 0.4894

Example 2

This is the same as Example 1, except now imsls_f_auto_arima uses Method 2 with a possible seasonal
adjustment. As a result, the unadjusted model with is chosen as optimum.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_obs, n_predict, i, num_outliers;
 int model[4], times[304];
 int n_p_initial = 4, n_q_initial = 4;
 int n_s_initial = 2, n_d_initial = 3;
 int s_initial[2] = {1,2}, d_initial[3] = {0,1,2};
 int p_initial[4] = {0,1,2,3}, q_initial[4] = {0,1,2,3};
 int outlier_stat[608];
 float aic, res_sigma;
 float parameters[7], outlier_forecast[18], forecast_table[24];

p = 3, q = 1, s = 1, d = 0
785

 Time Series and Forecasting auto_arima
 /* Values of series D at time points t=1,...,t=304 */
 float x[310] = {
 8.0,8.0,7.4,8.0,8.0,8.0,8.0,8.8,8.4,8.4,8.0,8.2,8.2,8.2,8.4,
 8.4,8.4,8.6,8.8,8.6,8.6,8.6,8.6,8.6,8.8,8.9,9.1,9.5,8.5,8.4,
 8.3,8.2,8.1,8.3,8.4,8.7,8.8,8.8,9.2,9.6,9.0,8.8,8.6,8.6,8.8,
 8.8,8.6,8.6,8.4,8.3,8.4,8.3,8.3,8.1,8.2,8.3,8.5,8.1,8.1,7.9,
 8.3,8.1,8.1,8.1,8.4,8.7,9.0,9.3,9.3,9.5,9.3,9.5,9.5,9.5,9.5,
 9.5,9.5,9.9,9.5,9.7,9.1,9.1,8.9,9.3,9.1,9.1,9.3,9.5,9.3,9.3,
 9.3,9.9,9.7,9.1,9.3,9.5,9.4,9.0,9.0,8.8,9.0,8.8,8.6,8.6,8.0,
 8.0,8.0,8.0,8.6,8.0,8.0,8.0,7.6,8.6,9.6,9.6,10.0,9.4,9.3,9.2,
 9.5,9.5,9.5,9.9,9.9,9.5,9.3,9.5,9.5,9.1,9.3,9.5,9.3,9.1,9.3,
 9.1,9.5,9.4,9.5,9.6,10.2,9.8,9.6,9.6,9.4,9.4,9.4,9.4,9.6,9.6,
 9.4,9.4,9.0,9.4,9.4,9.6,9.4,9.2,8.8,8.8,9.2,9.2,9.6,9.6,9.8,
 9.8,10.0,10.0,9.4,9.8,8.8,8.8,8.8,8.8,9.6,9.6,9.6,9.2,9.2,9.0,
 9.0,9.0,9.4,9.0,9.0,9.4,9.4,9.6,9.4,9.6,9.6,9.6,10.0,10.0,9.6,
 9.2,9.2,9.2,9.0,9.0,9.6,9.8,10.2,10.0,10.0,10.0,9.4,9.2,9.6,9.7,
 9.7,9.8,9.8,9.8,10.0,10.0,8.6,9.0,9.4,9.4,9.4,9.4,9.4,9.6,10.0,
 10.0,9.8,9.8,9.7,9.6,9.4,9.2,9.0,9.4,9.6,9.6,9.6,9.6,9.6,9.6,
 9.0,9.4,9.4,9.4,9.6,9.4,9.6,9.6,9.8,9.8,9.8,9.6,9.2,9.6,9.2,
 9.2,9.6,9.6,9.6,9.6,9.6,9.6,10.0,10.0,10.4,10.4,9.8,9.0,9.6,9.8,
 9.6,8.6,8.0,8.0,8.0,8.0,8.4,8.8,8.4,8.4,9.0,9.0,9.4,10.0,10.0,
 10.0,10.2,10.0,10.0,9.6,9.0,9.0,8.6,9.0,9.6,9.6,9.0,9.0,8.9,8.8,
 8.7,8.6,8.3,7.9};
 /* Actual values of series D at time points t=305,...,t=310 */
 float actual[6] = {8.5,8.7,8.9,9.1,9.1,9.1};
 char *col_labels[] = {
 "Lead Time",
 "Orig. Series",
 "Forecast",
 "Dev. for Prob. Limits",
 "Psi"};
 n_predict = 6;
 n_obs = 304;
 /* Define times from t=1 to t=304 */
 for (i=0;i<n_obs;i++) times[i] = i+1;
 imsls_f_auto_arima(n_obs, times, x,
 IMSLS_MODEL, model,
 IMSLS_AIC, &aic,
 IMSLS_CRITICAL, 3.8,
 IMSLS_MAX_LAG, 5,
 IMSLS_METHOD, 2,
 IMSLS_P_INITIAL, n_p_initial, p_initial,
 IMSLS_Q_INITIAL, n_q_initial, q_initial,
 IMSLS_S_INITIAL, n_s_initial, s_initial,
 IMSLS_D_INITIAL, n_d_initial, d_initial,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS_USER, outlier_stat,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_NUM_PREDICT, n_predict,
 IMSLS_OUTLIER_FORECAST_USER, outlier_forecast,
 IMSLS_RETURN_USER, parameters,
 0);
 printf("\nMethod 2: Grid search, differencing allowed\n");
 printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0],
 model[1], model[2], model[3]);
786

 Time Series and Forecasting auto_arima
 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n\n");
 printf("Time point Outlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d%11d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
 printf("\nAIC = %lf\n", aic);
 printf("RSE = %lf\n\n", res_sigma);
 printf("Parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("parameters[%d] = %lf\n", i, parameters[i]);
 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = actual[i];
 forecast_table[4*i+1] = outlier_forecast[3*i];
 forecast_table[4*i+2] = outlier_forecast[3*i+1];
 forecast_table[4*i+3] = outlier_forecast[3*i+2];
 }
 imsls_f_write_matrix("* * * Forecast Table * * *",
 n_predict, 4, forecast_table,
 IMSLS_COL_LABELS, col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f", 0);
}

Output

Method 2: Grid search, differencing allowed
Model chosen: p=3, q=1, s=1, d=0
Number of outliers: 1
Outlier statistics:
Time point Outlier type
217 3
AIC = 675.885986
RSE = 0.286720
Parameters:
parameters[0] = 1.892720
parameters[1] = 0.184380
parameters[2] = 0.641278
parameters[3] = -0.029176
parameters[4] = -0.743030
 * * * Forecast Table * * *
Lead Time Orig. Series Forecast Dev. for Prob. Psi
 Limits
 1 8.5000 8.0471 0.5620 0.9274
 2 8.7000 8.2004 0.7664 0.8123
 3 8.9000 8.3347 0.8921 0.7153
 4 9.1000 8.4534 0.9785 0.6257
 5 9.1000 8.5569 1.0397 0.5504
 6 9.1000 8.6483 1.0847 0.4819
787

 Time Series and Forecasting auto_arima
Example 3

This example is the same as Example 2 but now Method 3 with the optimum model parameters
 from Example 2 are chosen for outlier detection and forecasting.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_obs, n_predict, i, num_outliers;
 int *outlier_stat = NULL;
 int model[4] = {3,1,1,0}, times[304];
 float aic, res_sigma, *parameters = NULL;
 float outlier_forecast[18], forecast_table[24];
 /* Values of series D at time points t=1,...,t=304 */
 float x[304] = {
 8.0,8.0,7.4,8.0,8.0,8.0,8.0,8.8,8.4,8.4,8.0,8.2,8.2,8.2,8.4,
 8.4,8.4,8.6,8.8,8.6,8.6,8.6,8.6,8.6,8.8,8.9,9.1,9.5,8.5,8.4,
 8.3,8.2,8.1,8.3,8.4,8.7,8.8,8.8,9.2,9.6,9.0,8.8,8.6,8.6,8.8,
 8.8,8.6,8.6,8.4,8.3,8.4,8.3,8.3,8.1,8.2,8.3,8.5,8.1,8.1,7.9,
 8.3,8.1,8.1,8.1,8.4,8.7,9.0,9.3,9.3,9.5,9.3,9.5,9.5,9.5,9.5,
 9.5,9.5,9.9,9.5,9.7,9.1,9.1,8.9,9.3,9.1,9.1,9.3,9.5,9.3,9.3,
 9.3,9.9,9.7,9.1,9.3,9.5,9.4,9.0,9.0,8.8,9.0,8.8,8.6,8.6,8.0,
 8.0,8.0,8.0,8.6,8.0,8.0,8.0,7.6,8.6,9.6,9.6,10.0,9.4,9.3,9.2,
 9.5,9.5,9.5,9.9,9.9,9.5,9.3,9.5,9.5,9.1,9.3,9.5,9.3,9.1,9.3,
 9.1,9.5,9.4,9.5,9.6,10.2,9.8,9.6,9.6,9.4,9.4,9.4,9.4,9.6,9.6,
 9.4,9.4,9.0,9.4,9.4,9.6,9.4,9.2,8.8,8.8,9.2,9.2,9.6,9.6,9.8,
 9.8,10.0,10.0,9.4,9.8,8.8,8.8,8.8,8.8,9.6,9.6,9.6,9.2,9.2,9.0,
 9.0,9.0,9.4,9.0,9.0,9.4,9.4,9.6,9.4,9.6,9.6,9.6,10.0,10.0,9.6,
 9.2,9.2,9.2,9.0,9.0,9.6,9.8,10.2,10.0,10.0,10.0,9.4,9.2,9.6,9.7,
 9.7,9.8,9.8,9.8,10.0,10.0,8.6,9.0,9.4,9.4,9.4,9.4,9.4,9.6,10.0,
 10.0,9.8,9.8,9.7,9.6,9.4,9.2,9.0,9.4,9.6,9.6,9.6,9.6,9.6,9.6,
 9.0,9.4,9.4,9.4,9.6,9.4,9.6,9.6,9.8,9.8,9.8,9.6,9.2,9.6,9.2,
 9.2,9.6,9.6,9.6,9.6,9.6,9.6,10.0,10.0,10.4,10.4,9.8,9.0,9.6,9.8,
 9.6,8.6,8.0,8.0,8.0,8.0,8.4,8.8,8.4,8.4,9.0,9.0,9.4,10.0,10.0,
 10.0,10.2,10.0,10.0,9.6,9.0,9.0,8.6,9.0,9.6,9.6,9.0,9.0,8.9,8.8,
 8.7,8.6,8.3,7.9};
 /* Actual values of series D at time points t=305,...,t=310 */
 float actual[6] = {8.5,8.7,8.9,9.1,9.1,9.1};
 char *col_labels[] = {
 "Lead Time",
 "Orig. Series",
 "Forecast",
 "Dev. for Prob. Limits",
 "Psi"};

 n_predict = 6;
 n_obs = 304;
 /* Define times from t=1 to t=304 */
 for (i=0;i<n_obs;i++) times[i] = i+1;
 parameters = imsls_f_auto_arima(n_obs, times, x,
 IMSLS_MODEL, model,

p = 3, q = 1, s = 1, d = 0
788

 Time Series and Forecasting auto_arima
 IMSLS_AIC, &aic,
 IMSLS_CRITICAL, 3.8,
 IMSLS_METHOD, 3,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_NUM_PREDICT, n_predict,
 IMSLS_OUTLIER_FORECAST_USER, outlier_forecast,
 0);
 printf("\nMethod 3: Specified ARIMA model\n");
 printf("\nModel: p=%d, q=%d, s=%d, d=%d\n", model[0], model[1],
 model[2], model[3]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n\n");
 printf("Time point Outlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d%11d\n", outlier_stat[2*i], outlier_stat[2*i+1]);
 printf("\nAIC = %lf\n", aic);
 printf("RSE = %lf\n", res_sigma);
 printf("\nParameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("parameters[%d] = %lf\n", i, parameters[i]);
 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = actual[i];
 forecast_table[4*i+1] = outlier_forecast[3*i];
 forecast_table[4*i+2] = outlier_forecast[3*i+1];
 forecast_table[4*i+3] = outlier_forecast[3*i+2];
 }
 imsls_f_write_matrix("* * * Forecast Table * * *",
 n_predict, 4, forecast_table,
 IMSLS_COL_LABELS, col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f", 0);
}

Output

Method 3: Specified ARIMA model
Model: p=3, q=1, s=1, d=0
Number of outliers: 1
Outlier statistics:
Time point Outlier type
217 3
AIC = 675.885925
RSE = 0.286720
Parameters:
parameters[0] = 1.892720
parameters[1] = 0.184380
parameters[2] = 0.641278
parameters[3] = -0.029176
parameters[4] = -0.743030
789

 Time Series and Forecasting auto_arima
 * * * Forecast Table * * *
Lead Time Orig. Series Forecast Dev. for Prob. Psi
 Limits
 1 8.5000 8.0471 0.5620 0.9274
 2 8.7000 8.2004 0.7664 0.8123
 3 8.9000 8.3347 0.8921 0.7153
 4 9.1000 8.4534 0.9785 0.6257
 5 9.1000 8.5569 1.0397 0.5504
 6 9.1000 8.6483 1.0847 0.4819
790

 Time Series and Forecasting auto_parm
auto_parm
Estimates structural breaks in non-stationary univariate time series.

Synopsis
#include <imsls.h>

int *imsls_f_auto_parm (int nobs, float y[], int *npcs, ..., 0)

The type double function is imsls_d_auto_parm.

Required Arguments
int nobs (Input)

The number of observations in the time series (y).

float y[] (Input)
An array of length nobs containing the time series.

int *npcs (Input/Output)
The number of requested/estimated pieces or segments of the time series. npcs is considered
input only when IMSLS_AR_MODEL is provided.

Return Value
A pointer to an array (arp) of length npcs × 2 containing the break points and AR orders for the derived model.
If IMSLS_AR_MODEL is used, the return value is NULL.

Synopsis with Optional Arguments
#include <imsls.h>

Column Index Description

0 Structural break points

1 AR order () for each
segment

τ j
p j
791

 Time Series and Forecasting auto_parm
int *imsls_f_auto_parm (int nobs, float y[], int *npcs,

IMSLS_MAX_AR_ORDER, int max_ar_order,
IMSLS_METHOD, int method,
IMSLS_MODEL_SELECTION_CRITERION, int criterion,
IMSLS_MAXIMUM_LIKELIHOOD, int likelihood,
IMSLS_AR_MODEL, int arp[],
IMSLS_PRINT, int print,
IMSLS_RANDOM_SEED, int seed,
IMSLS_PROB_DISTRIBUTION, float pdistn[],
IMSLS_MIN_OBSERVATIONS, int mspan[],
IMSLS_GA_PARAMETERS, float gaparm[],
IMSLS_ISLAND, int island[],
IMSLS_MAX_MIGRATIONS, int maxmig,
IMSLS_STOP_ITERATIONS, int stopiters,
IMSLS_SELECTION_CRITERION_VALUE, float *value,
IMSLS_AR_FIT, float **arfit,
IMSLS_AR_FIT_USER, float arfit[],
IMSLS_AR_STATS, float **arstat,
IMSLS_AR_STATS_USER, float arstat[],
0)

Optional Arguments
IMSLS_MAX_AR_ORDER, int max_ar_order (Input)

Maximum order to consider for each AR model.

Default: max_ar_order = 20.

IMSLS_METHOD, int method (Input)
Method of estimation.

Default: method = 0.

method Method Used

0 Yule –Walker

1 Least Squares

2 Burg
792

 Time Series and Forecasting auto_parm
IMSLS_MODEL_SELECTION_CRITERION, int criterion (Input)
Selection criterion.

Default: criterion = 0.

IMSLS_MAXIMUM_LIKELIHOOD, int likelihood (Input)
Likelihood computation method.

Default: likelihood = 0.

IMSLS_AR_MODEL, int arp[] (Input)
A user specified array of length npcs × 2 containing the break points and AR orders. When this argu-
ment is used, only the AR parameters and quality of the fit are determined.

IMSLS_PRINT, int print (Input)
Printing option.

Default: print = 0.

criterion Criterion Used

0 Minimum Description Length (MDL)

1 Akaike’s Information Criterion (AIC)

likelihood Computation Method

0 Exact

1 Approximate

Column Index Description

0 Structural break points

1 AR order () for each segment

print Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results

τ j
p j
793

 Time Series and Forecasting auto_parm
IMSLS_RANDOM_SEED, int seed (Input)
Seed of the random number generator. For the same data and parameter settings,
imsls_f_auto_parm will return the same results each time if a seed is set. If seed = 0, the sys-
tem clock will be used to generate a seed. The result will be nondeterministic.

Default: seed = 0.

IMSLS_PROB_DISTRIBUTION, float pdistn[] (Input)
Array of length max_ar_order + 1 giving the probability distribution over the AR order variable
p = 0,…, max_ar_order. i = 0,…, max_ar_order is used to randomly assign an AR order to
breakpoint position for a given chromosome. pdistn[i] > = 0 and if Σpdistn is not equal to 1, the
values will be normalized, i.e., pdistn[i] = pdistn[i]/ Σpdistn.

Default: pdistn[i] = 1/(max_ar_order + 1) for all i.

IMSLS_MIN_OBSERVATIONS, int mspan[] (Input)
Array of length max_ar_order + 1 containing minimum number of observations required for valid
estimates of AR model with order p = 0, …, max_ar_order.

Default: mspan [p] = 2 ×(number of parameters) + 2 = 2 × (p + 2) + 2.

IMSLS_GA_PARAMETERS, float gaparm[] (Input)
Array of length 4 containing parameters that control the behavior of the genetic algorithm. These
values should be strictly greater than zero and less than one to avoid unexpected results.

Note: The following input arguments are for setting up and running the embedded Genetic Algorithm. In
most situations, the default values should be used for these arguments. Users may wish to change some
or all for testing or research purposes.

Index Behavior

0 Probability used to set initial break points in a chromo-
some. Default: min (mspan) / nobs.

1 Probability of crossover used to decide between a
crossover and a mutation.
Default: 1 – min (mspan) / nobs.

2 In the mutation operation, probability an AR(p) model
is enforced at the current position.
Default: 0.4.

3 In the mutation operation, probability a break point is
disallowed at the current position.
Default: 0.3.

Note: gaparm[2] and gaparm[3] must be valid probabilities and their sum must be between 0 and 1.
1 – gaparm[2] – gaparm[3] is the probability that the chromosome j inherits the parent's chromo-
some j.
794

 Time Series and Forecasting auto_parm
IMSLS_ISLAND, int island[] (Input)
Array of length 5 containing the migration policy parameters.

IMSLS_MAX_MIGRATIONS, int maxmig (Input)
Maximum number of times that migrations may take place before the function is stopped if conver-
gence has not occurred.

Default: maxmig = 20.

IMSLS_STOP_ITERATIONS, int stopiters (Input)
Number of iterations. The function will declare convergence and stop the iterations if the criterion
value (MDL/AIC) has not changed after stopiters consecutive migrations. Otherwise, the algo-
rithm will declare non-convergence and stop after maxmig migrations have taken place. See also
IMSLS_MAX_MIGRATIONS and island[1]. Note that logically, stopiters < maxmig.

Default: stopiters = 10.

IMSLS_SELECTION_CRITERION_VALUE, float *value (Output)
Final value of the selection criterion.

IMSLS_AR_FIT, float **arfit (Output)
Address of a pointer to an internally allocated array of length npcs × max_ar_order containing
the AR coefficient estimates φ for each segment. arfit[i*max_ar_order+j] is the j-th coeffi-
cient for segment i where i = 0, …, npcs - 1 and j = 0, …, arp[i×2 + 1].

Note that the intercept is not reported.

Index Policy

0 Number of islands.
Default: 40.

1 Number of generations that pass before migration
occurs. Note that the convergence of the algorithm is
revised whether migrations take place or not (see argu-
ment island[4]).
Default: 5.

2 Number of subjects that migrate at each migration
event.
Default: 2.

3 Population size (number of chromosomes) per island.
Default: 40.

4 Migration flag. If 1, migration is performed.
Default: 1.
795

 Time Series and Forecasting auto_parm
IMSLS_AR_FIT_USER, float arfit[] (Output)
Storage for array arfit is provided by the user. If npcs is output, the user should allocate
(nobs - 1) × max_ar_order to assure sufficient space. See IMSLS_AR_FIT.

IMSLS_AR_STATS, float **arstat (Output)
Address of a pointer to an internally allocated array of length npcs × 2.

IMSLS_AR_STATS_USER, float arstat[] (Output)
Storage for array arstat is provided by the user. If npcs is output, the user should allocate
(nobs - 1) × 2 to assure sufficient space. See IMSLS_AR_STATS.

Description
Function imsls_f_auto_parm estimates the structural breaks of a non-stationary time series using, with per-
mission from the authors, the method developed by Davis et al (2006). imsls_f_auto_parm estimates a
partition of the time index and models the time series in each segment as a separate auto-regressive (AR(p)) pro-
cess. The function returns the estimated breakpoints, the estimated AR(p) models, and supporting statistics.

For the observed time series the problem is to find m, the number of breaks, their locations,

 , and , , the order of the AR process in which the j-th segment is

modeled. That is, for (for convenience, and), where {Xt,j} is an AR

process of order

and , the noise sequence, is independent and identically distributed with mean 0 and variance 1. Note that a

series with m breaks will have m + 1 segments (m + 1 = npcs).

The vector completely specifies a piecewise AR model. To estimate this vector

imsls_f_auto_parm optimizes, with respect to this vector, one of two selection criteria: the first is a Mini-
mum Description Length (MDL) criterion, and the second is the Akaike's Information Criterion (AIC). The MDL is
defined as

Column Index Description

0 Likelihood values for each of the fitted AR
models

1 Residual variances for each of the fitted AR
models

Y t, t = 1, … n
1 < τ1 < τ2 < ⋯ < τm < n pj j = 1, … ,m + 1

Y t = X t, j τ j−1 ≤ t < τ j τ0: = 1 τm+1: = n + 1
pj

X t, j = ϕ j,1X t−1, j + ⋯ + ϕ j,p jX t− j,p j + σtɛt

ɛt

m, τ1, … τm, p1, … pm+1
796

 Time Series and Forecasting auto_parm
while the AIC criterion is given by

where, given a candidate value of the vector , is the likelihood of the fitted piece-

wise AR model evaluated at the parameter estimates,

The parameters of the j-th AR segment are estimated by the choice of one of three estima-

tion methods: Yule-Walker, Burg, or Least Squares.

For simplicity, assume the mean of each series {Xt,j} is 0 and that the errors are Gaussian. Then, the piecewise AR

model has Gaussian likelihood

where is the variance-covariance of the j-th AR segment (of order) and is the vector of observations

of the j-th segment, i.e., .

To find the minimizer of either MDL or AIC, imsls_f_auto_parm employs a Genetic Algorithm
with islands, migration, cross-over and mutations. See Davis et.al. (2006) for further details.

Remarks
Function imsls_f_auto_parm approximates locally stationary time series by independent auto-regressive
processes. Experimental results suggest that imsls_f_auto_parm gives reasonable estimates of the struc-
tural breaks of a given time series, even if the segment series are not autoregressive. Also, based on experimental
results, MDL gives better results than AIC as a selection criterion.

MDL(m, τ1, … τm, p1, … pm+1)

= ln m + (m − 1)ln n + ∑
j=1

m+1 2 + p j
2 ln n j − ln L

AIC(m, τ1, … τm, p1, … , pm+1) = 2(number of parameters) − 2ln L

= 2(1 + m + ∑
j=1

m+1
2 + p j)) − 2ln L

m, τ1, … τm, p1, … pm+1 L

{γ̂1,ϕ
^
1,1, … ϕ^1,p1, σ̂1

2, … γ̂m+1,ϕ
^
m+1,1, … ϕ^m+1, pm+1, σ̂m+1

2 }.

γ j,ϕ1,1,...ϕ1,p j,σ j
2

L =∏
j=1

m+1

2π
−n j/2∣V j∣−1/2exp −Y jTV jY j

V j p j Y j

Y j = Yτ j,Yτ j+1, … ,Yτ j+1−1)
T

m,τ j, pj
*

797

 Time Series and Forecasting auto_parm
If seed is set out of range, an informational (error) message is issued indicating that the seed will be reset to
123457. Also if maxmig migrations are reached in the genetic algorithm before the selection criterion value con-
verges an informational message is issued suggesting the increase of maxmig or the use of the double precision
function.

Example
The examples below illustrate different scenarios using imsls_f_auto_parm. The example series used in
each case is the airline demand data (Box, Jenkins and Reinsel, 1994), which gives monthly total demand for the
period January 1949 through December 1960. Each scenario sets the optional argument, seed = 123457.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N 144

 int n=N, npcs=0, iseed=123457, *arp=NULL, iper, iord, nlost;
 int maxarorder, *arpnull=NULL, arp2[4]={0,2,59,1};
 float x[N], *arfit=NULL, *arstat=NULL, sc, dx[N];
 /* get data */
 imsls_f_data_sets(4, IMSLS_RETURN_USER, x, 0);

/* Example 1: Use default values */
 printf ("Example 1: Use defaults\n\n");
 arp = imsls_f_auto_parm(n, x, &npcs,

 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 2: differenced series set period for the difference.
 iper is in years for this data set */

 printf ("\n\nExample 2: differenced series\n\n");
 iper = 1;

/* set the order for the difference. */
 iord = 1;

/* get differenced series dx */
 imsls_f_difference(n, x, 1, &iper,

 IMSLS_ORDERS, &iord,
 IMSLS_LOST, &nlost,
 IMSLS_RETURN_USER, dx,
0);
798

 Time Series and Forecasting auto_parm
 arp = imsls_f_auto_parm(n-nlost, &dx[nlost], &npcs,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 3: original series, lower order allowed
 lower maximum AR order */
 printf("\n\nExample 3: original series, lower order allowed\n\n");
 maxarorder=5;
 arp = imsls_f_auto_parm(n, x, &npcs,

 IMSLS_MAX_AR_ORDER, maxarorder,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 4: differenced series, lower order allowed */
 printf("\n\nExample 4: differenced series, lower order allowed\n\n");
 maxarorder=5;
 arp = imsls_f_auto_parm(n-nlost, &dx[nlost], &npcs,

 IMSLS_MAX_AR_ORDER, maxarorder,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

 imsls_free(arp);
 imsls_free(arfit);
 imsls_free(arstat);

/* Example 5: original series, force fit the segments
 Fit only at the break points */
 printf("\n\nExample 5: original series, force fit the segments\n\n");
 npcs=2;
 arpnull = imsls_f_auto_parm(n, x, &npcs,

 IMSLS_AR_MODEL, arp2,
 IMSLS_PRINT, 1,
 IMSLS_RANDOM_SEED, iseed,
 IMSLS_SELECTION_CRITERION_VALUE, &sc,
799

 Time Series and Forecasting auto_parm
 IMSLS_AR_FIT, &arfit,
 IMSLS_AR_STATS, &arstat,
 0);

}

Output

Example 1: Use defaults
 ============== final results ===============

number of pieces: 2
selection criteria value: 684.243164
total time: 3.203000 conv: 1
==================== final model estimates =====================
break point order est. coeff. likelihood resid. var
 arp[0] arp[1] arfit[0- 0] arstat[0] arstat[1]

 0 1 0.77542
 186.945 355.025

 arp[2] arp[3] arfit[20-32] arstat[2] arstat[3]
 43 13 1.03700

 -0.07801
 -0.03891
 -0.03452
 0.11961

 -0.12851
 0.01990

 -0.04885
 0.08089

 -0.13117
 0.22122
 0.53862

 -0.61515
 486.666 691.486

Example 2: differenced series
 ============== final results ===============

number of pieces: 1
selection criteria value: 624.283508
total time: 3.031000 conv: 1
==================== final model estimates =====================
break point order est. coeff. likelihood resid. var
 arp[0] arp[1] arfit[0-11] arstat[0] arstat[1]

 0 12 -0.02842
 -0.22436
 -0.16846
 -0.24267
 -0.10573
 -0.22429
 -0.12126
800

 Time Series and Forecasting auto_parm
 -0.26446
 -0.07087
 -0.24327
 -0.07136
 0.57129

 619.321 297.352

Example 3: original series, lower order allowed
 ============== final results ===============

number of pieces: 2
selection criteria value: 705.296631
total time: 2.312000 conv: 1
==================== final model estimates =====================
break point order est. coeff. likelihood resid. var
arp[0] arp[1] arfit[0- 0] arstat[0] arstat[1]

 0 1 0.89533
 270.393 333.563

 arp[2] arp[3] arfit[5- 6] arstat[2] arstat[3]
 62 2 1.19788

 -0.35922
 424.270 1632.335

Example 4: differenced series, lower order allowed
 ============== final results ===============

number of pieces: 2
selection criteria value: 698.359497
total time: 2.219000 conv: 1
==================== final model estimates =====================
break point order est. coeff. likelihood resid. var
 arp[0] arp[1] arfit[0- 0] arstat[0] arstat[1]

 0 0 -------
 335.565 357.388

 arp[2] arp[3] arfit[5- 5] arstat[2] arstat[3]
 76 1 0.33310

 352.175 1786.345

Example 5: original series, force fit the segments
 ============== final results ===============

number of pieces: 2
selection criteria value: 712.521
==================== final model estimates =====================
break point order est. coeff. likelihood resid. var
 arp[0] arp[1] arfit[0- 1] arstat[0] arstat[1]

 0 2 1.12156
 -0.24876

 258.192 313.889
 arp[2] arp[3] arfit[20-20] arstat[2] arstat[3]
 59 1 0.88605
801

 Time Series and Forecasting auto_parm
 443.696 1937.633

Warning Errors
IMSLS_MAX_MIGRATIONS_EXCEEDED “maxmig” migrations or “stopiters” iterations

were reached in the genetic algorithm before the
selection criterion value converged. Try increasing
“maxmig”, “stopiters” or using the double preci-
sion routine.
802

 Time Series and Forecasting bayesian_seasonal_adj
bayesian_seasonal_adj
Decomposes a time series into trend, seasonal, and an error component.

Synopsis
#include <imsls.h>

float imsls_f_bayesian_seasonal_adj(int nobs, float w[], …, 0)

The type double function is imsls_d_bayesian_seasonal_adj.

Required Arguments
int nobs (Input)

The number of equally spaced series values.

float w[] (Input)
An array of length nobs containing the stationary time series.

Return Value
The average Akaike Bayesian Information Criterion for the estimated model. NaN is returned on error.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_bayesian_seasonal_adj (int nobs, float w[],

IMSLS_TREND_ORDER, int t_order,
IMSLS_SEASONAL_ORDER, int s_order,
IMSLS_NUM_PREDICT, int n_predict,
IMSLS_PERIOD, int period,
IMSLS_SPAN, int span,
IMSLS_RIGIDITY, float rigidity,
IMSLS_MODEL, int model,
IMSLS_PRINT_LEVEL, int print_level,
803

 Time Series and Forecasting bayesian_seasonal_adj
IMSLS_NONSEASONAL_TREND, float **trend,
IMSLS_NONSEASONAL_TREND_USER, float trend[],
IMSLS_SEASONAL, float **seasonal,
IMSLS_SEASONAL_USER, float seasonal[],
IMSLS_IRREGULAR_COMPONENTS, float **irr_comp,
IMSLS_IRREGULAR_COMPONENTS_USER, float irr_comp[],
IMSLS_SERIES_SMOOTHED, float **smoothed,
IMSLS_SERIES_SMOOTHED_USER, float smoothed[],
0)

Optional Arguments
IMSLS_TREND_ORDER, int t_order (Input)

The order of trend differencing where t_order ≥ 0.
Default: t_order = 2.

IMSLS_SEASONAL_ORDER, int s_order (Input)
The order of seasonal differencing where s_order ≥ 1.
Default: s_order = 1.

IMSLS_NUM_PREDICT, int n_predict (Input)
The number of values to forecast where n_predict ≥ 0.
Default: n_predict = 0.

IMSLS_PERIOD, int period (Input)
The number of seasons within a period where period ≥ 1.
Default: period = 12.

IMSLS_SPAN, int span (Input)
The number of periods to be processed at one time where 1 ≤ span ≤ nobs/period.
Default: span = nobs/period.

IMSLS_RIGIDITY, float rigidity (Input)
Controls the rigidity of the seasonal pattern where 0 ≤ rigidity ≤ 1.0.
Default: rigidity = 1.0.
804

 Time Series and Forecasting bayesian_seasonal_adj
IMSLS_MODEL, int model (Input)
Model option.

Default: model = 0.

IMSLS_PRINT_LEVEL, int print_level (Input)
Printing option.

Default: print_level = 0.

IMSLS_NONSEASONAL_TREND, float **trend (Output)
Address of a pointer to an internally allocated array of length nobs + n_predict containing the
estimated trend component for each data value followed by the trend estimates for the
n_predict forecasted values.

IMSLS_NONSEASONAL_TREND_USER, float trend[] (Output)
Storage array trend is provided by the user. See IMSLS_NONSEASONAL_TREND.

IMSLS_SEASONAL, float **seasonal (Output)
Address of a pointer to an internally allocated array of length nobs + n_predict containing the
estimated seasonal components for each data value followed by the estimates for the n_predict
forecasted seasonal values.

IMSLS_SEASONAL_USER, float seasonal[] (Output)
Storage array seasonal is provided by the user. See IMSLS_SEASONAL above.

IMSLS_IRREGULAR_COMPONENTS, float **irr_comp (Output)
Address of a pointer to an internally allocated array of length nobs containing the estimated irregu-
lar components.

IMSLS_IRREGULAR_COMPONENTS_USER, float irr_comp[] (Output)
Storage array irr_comp is provided by the user. See IMSLS_IRREGULAR_COMPONENTS above.

model Action

0 Non-additive logistic model

1 Log additive logistic model

print_level Action

0 No printing

1 Prints final results only

2 Prints intermediate and final results
805

 Time Series and Forecasting bayesian_seasonal_adj
IMSLS_SERIES_SMOOTHED, float **smoothed (Output)
Address of a pointer to an internally allocated array of length nobs + n_predict containing the
estimated smoothed component for each of the time series values followed by the n_predict
forecast values.

IMSLS_SERIES_SMOOTHED_USER, float smoothed[] (Output)
Storage array smoothed is provided by the user. See IMSLS_SERIES_SMOOTHED above.

Description
Function imsls_f_bayesian_seasonal_adj is based upon the algorithm published by Akaike (1980). This
algorithm uses a Bayesian approach to the problem of fitting the following autoregressive model for a time series
Wt decomposed into a trend and a seasonal component.

Adopting the notation described earlier in the Usage Notes section of this chapter, if

t ∈ ℤ = {…, -2, - 1, 0, 1, 2, … }

then a seasonal autoregressive model can be represented by the following relationship:

Wt = Tt + St + At

where Wt is the stationary time series with mean μ, Tt denotes an underlying trend, St denotes a seasonal compo-

nent and At denotes a noise or irregular component.

A non-Bayesian approach to this problem would be to estimate the trend and seasonal components by
minimizing

where the difference operator is denoted by ∇ and defined as ∇Tt = (Tt - Tt-1), for k ≥ 1, ∇kTt =∇(∇k-1Tt), with

∇0Tt = Tt. Similarly, ∇pSt = (St - St-p) and ∇l
pSt =∇p(∇p

l-1St), l ≥ 1, with ∇0
pSt = St.

The period of the seasonal component, p, the trend order, k, and the seasonal order l correspond to parameter
options IMSLS_PERIOD, IMSLS_TREND_ORDER, and IMSLS_SEASONAL_ORDER respectively. d, z, and r
are constants determined as follows.

∑
t=1

N

(Wt − Tt − St)
2 + d2(∇kTt + r2∇p

l St + z
2 (∑

j=0

p−1

St− j)
2)
806

 Time Series and Forecasting bayesian_seasonal_adj
In imsls_f_bayesian_seasonal_adj, the approach is to select the parameter d, which controls the
smoothness of the trend and seasonality estimates, using Bayesian methods. The prior distribution controls the
smoothness of the trend and seasonal components by assuming low-order Gaussian autoregressive models for
some differences of these components. The choice of the variance of the Gaussian distribution is realized by
maximizing the log likelihood of the Bayesian model.

The other smoothing parameters, r and z, are determined by the value of rigidity. The default value for
rigidity is 1. Larger values of rigidity produce a more rigid seasonal pattern. Normally, a series is first fit
using the default value for rigidity. The smoothness of the trend and seasonality estimates are examined
and then rigidity is either increased or decreased depending upon whether more or less seasonal smooth-
ing is needed.

Additionally, imsls_f_bayesian_seasonal_adj selects the optimum autoregressive model as the model
that minimizes the Akaike Bayesian Information Criterion (ABIC).

ABIC = -2 ln(likelihood)

where the likelihood in this case is the mixed Bayesian maximum likelihood. Smaller values of ABIC represent a
better fit. The basic minimization procedure is applied to blocks of data of length span*period. The final
return value of the criterion is averaged over these blocks. By default, the data is treated in one block.

Example
This example uses unadjusted unemployment for women over 20 years of age in the U.S. for 1991-2001, as
reported by the U.S. Bureau of Labor Statistics (www.bls.gov).

#include <imsls.h>
#include <stdio.h>
#define NDATA 132
#define NFOCAST 12
int main(){
 float y[]={2968.0, 3009.0, 2962.0, 2774.0, 3040.0, 3165.0,
 3104.0, 3313.0, 3178.0, 3142.0, 3129.0, 3107.0, 3397.0,
 3447.0, 3328.0, 3229.0, 3286.0, 3577.0, 3799.0, 3867.0,
 3655.0, 3360.0, 3310.0, 3369.0, 3643.0, 3419.0, 3108.0,
 3118.0, 3146.0, 3385.0, 3458.0, 3468.0, 3330.0, 3244.0,
 3135.0, 3005.0, 3462.0, 3272.0, 3275.0, 2938.0, 2894.0,
 3106.0, 3150.0, 3289.0, 3136.0, 2829.0, 2776.0, 2467.0,
 2944.0, 2787.0, 2749.0, 2762.0, 2578.0, 2900.0, 3100.0,
 3102.0, 2934.0, 2864.0, 2652.0, 2456.0, 3088.0, 2774.0,
 2701.0, 2555.0, 2677.0, 2741.0, 3052.0, 2966.0, 2772.0,
 2723.0, 2705.0, 2640.0, 2898.0, 2788.0, 2718.0, 2406.0,
 2520.0, 2645.0, 2708.0, 2811.0, 2666.0, 2380.0, 2292.0,
 2187.0, 2750.0, 2595.0, 2554.0, 2213.0, 2218.0, 2449.0,
 2532.0, 2639.0, 2449.0, 2326.0, 2302.0, 2065.0, 2447.0,
 2398.0, 2381.0, 2250.0, 2086.0, 2397.0, 2573.0, 2475.0,
 2299.0, 2054.0, 2127.0, 1935.0, 2425.0, 2245.0, 2298.0,
807

https://www.bls.gov/

 Time Series and Forecasting bayesian_seasonal_adj
 2005.0, 2208.0, 2379.0, 2459.0, 2539.0, 2182.0, 1959.0,
 2012.0, 1834.0, 2404.0, 2329.0, 2285.0, 2175.0, 2245.0,
 2492.0, 2636.0, 2892.0, 2784.0, 2771.0, 2878.0, 2856.0};
 int nobs = NDATA, focast = NFOCAST;
 float trend[NDATA+NFOCAST], seasonal[NDATA+NFOCAST];
 float irr_comp[NDATA], abic=0.0;
 char *months[] = {"Jan","Feb","Mar","Apr","May","Jun","Jul",
 "Aug","Sep","Oct","Nov","Dec"};
 char *years[] = {"","1991","1992","1993","1994","1995",
 "1996","1997","1998","1999","2000","2001","2002"};
 abic = imsls_f_bayesian_seasonal_adj(nobs, y,
 IMSLS_TREND_ORDER, 2,
 IMSLS_SEASONAL_ORDER, 1,
 IMSLS_NUM_PREDICT, focast,
 IMSLS_NONSEASONAL_TREND_USER, &trend,
 IMSLS_SEASONAL_USER, &seasonal,
 IMSLS_IRREGULAR_COMPONENTS_USER, &irr_comp,
 0);
 printf("Average ABIC = %f\n", abic);
 imsls_f_write_matrix("TREND with last 12 values forecasted",
 12, 12, trend,
 IMSLS_TRANSPOSE,
 IMSLS_ROW_LABELS, months,
 IMSLS_COL_LABELS, years,
 IMSLS_WRITE_FORMAT, "%8.1f",
 0);
 imsls_f_write_matrix("SEASONAL with last 12 values forecasted",
 12, 12, seasonal,
 IMSLS_TRANSPOSE,
 IMSLS_ROW_LABELS, months,
 IMSLS_COL_LABELS, years,
 IMSLS_WRITE_FORMAT, "%6.1f",
 0);
 imsls_f_write_matrix("IRREGULAR=Original data-TREND-SEASONAL",
 11, 12, irr_comp,
 IMSLS_TRANSPOSE,
 IMSLS_ROW_LABELS, months,
 IMSLS_COL_LABELS, years,
 IMSLS_WRITE_FORMAT, "%6.1f",
 0);
}

Output

Average ABIC = 1297.640259
 TREND with last 12 values forecasted
 1991 1992 1993 1994 1995 1996 1997
Jan 2879.8 3318.9 3422.6 3228.7 2827.3 2795.7 2743.1
Feb 2918.2 3359.9 3387.8 3206.0 2815.8 2785.6 2720.6
808

 Time Series and Forecasting bayesian_seasonal_adj
Mar 2955.1 3399.1 3355.5 3177.0 2812.4 2777.9 2694.2
Apr 2990.0 3436.1 3329.5 3142.1 2814.7 2773.2 2665.2
May 3022.7 3469.0 3309.6 3103.9 2819.3 2771.3 2636.0
Jun 3052.8 3496.1 3294.8 3064.8 2825.5 2771.0 2607.4
Jul 3082.8 3514.5 3283.8 3025.7 2830.9 2772.4 2580.8
Aug 3116.2 3521.9 3276.0 2987.3 2833.2 2773.6 2557.2
Sep 3153.4 3517.8 3270.3 2949.0 2831.7 2774.7 2536.3
Oct 3193.8 3503.7 3264.8 2911.3 2826.1 2774.5 2518.0
Nov 3235.6 3482.4 3256.8 2876.6 2816.6 2770.4 2503.0
Dec 3277.6 3455.2 3245.3 2847.6 2805.9 2760.2 2491.5
 1998 1999 2000 2001 2002
Jan 2481.3 2352.1 2235.9 2206.0 3166.1
Feb 2469.7 2345.6 2237.6 2239.0 3275.1
Mar 2455.4 2338.1 2239.3 2281.4 3384.1
Apr 2439.0 2328.3 2238.9 2333.1 3493.0
May 2422.8 2315.5 2235.2 2393.9 3602.0
Jun 2408.5 2301.4 2226.3 2464.7 3710.9
Jul 2396.8 2286.0 2212.8 2545.7 3819.9
Aug 2387.7 2269.8 2196.6 2636.7 3928.9
Sep 2380.3 2255.5 2181.3 2735.7 4037.8
Oct 2373.6 2244.6 2171.9 2840.4 4146.8
Nov 2366.6 2238.3 2172.1 2948.2 4255.8
Dec 2359.1 2235.6 2183.3 3057.2 4364.7
 SEASONAL with last 12 values forecasted
 1991 1992 1993 1994 1995 1996 1997 1998 1999
Jan 162.9 165.6 169.3 172.0 173.8 176.3 176.4 177.3 176.4
Feb 51.4 51.5 50.5 49.5 48.6 48.8 50.0 51.1 51.0
Mar -24.0 -23.9 -23.4 -18.8 -16.3 -13.0 -8.7 -4.9 -3.0
Apr -191.0 -190.1 -189.1 -188.0 -186.6 -187.8 -188.5 -187.9 -186.6
May -140.6 -143.3 -145.4 -147.4 -148.1 -147.1 -147.1 -147.9 -147.7
Jun 67.2 66.6 65.8 64.4 63.3 62.2 62.7 63.6 64.9
Jul 176.9 180.1 181.6 183.0 185.5 186.6 185.8 186.1 187.2
Aug 251.9 253.0 252.6 253.3 253.1 252.8 253.7 254.4 255.2
Sep 76.4 77.2 77.1 77.3 75.5 73.3 72.6 70.7 68.9
Oct -79.5 -80.5 -80.1 -80.8 -81.5 -84.3 -87.6 -90.1 -93.4
Nov -119.8 -120.7 -120.5 -120.2 -120.4 -119.7 -119.7 -118.1 -117.6
Dec -235.7 -237.9 -243.0 -247.9 -250.5 -251.2 -254.2 -256.2 -257.5
 2000 2001 2002
Jan 177.2 177.6 177.5
Feb 50.8 51.6 51.5
Mar -1.9 -1.7 -1.8
Apr -187.2 -186.5 -186.6
May -145.7 -145.6 -145.7
Jun 65.6 65.1 65.0
Jul 186.4 184.7 184.7
Aug 256.8 256.9 256.9
Sep 67.3 67.0 67.0
Oct -95.1 -94.6 -94.6
Nov -117.3 -116.6 -116.6
Dec -258.1 -257.1 -257.1
 IRREGULAR=Original data-TREND-SEASONAL
 1991 1992 1993 1994 1995 1996 1997 1998 1999
Jan -74.7 -87.5 51.1 61.2 -57.1 116.0 -21.5 91.4 -81.5
Feb 39.4 35.6 -19.3 16.5 -77.4 -60.4 17.3 74.2 1.5
Mar 30.9 -47.2 -224.1 116.8 -47.1 -63.9 32.5 103.5 45.9
Apr -25.0 -17.0 -22.5 -16.1 133.9 -30.5 -70.6 -38.0 108.3
809

 Time Series and Forecasting bayesian_seasonal_adj
May 157.8 -39.7 -18.2 -62.6 -93.1 52.8 31.2 -56.9 -81.9
Jun 45.0 14.3 24.4 -23.1 11.2 -92.1 -25.1 -23.2 30.7
Jul -155.6 104.4 -7.4 -58.6 83.6 93.0 -58.6 -50.9 99.9
Aug -55.0 92.1 -60.6 48.4 15.7 -60.4 0.1 -3.1 -49.9
Sep -51.8 60.0 -17.4 109.6 26.8 -76.0 57.1 -2.1 -25.3
Oct 27.7 -63.3 59.3 -1.5 119.4 32.8 -50.3 42.5 -97.1
Nov 13.2 -51.7 -1.3 19.5 -44.3 54.3 -91.3 53.5 6.3
Dec 65.1 151.7 2.7 -132.8 -99.4 131.0 -50.3 -37.9 -43.1
 2000 2001
Jan 11.9 20.4
Feb -43.5 38.4
Mar 60.5 5.3
Apr -46.7 28.5
May 118.5 -3.3
Jun 87.1 -37.7
Jul 59.9 -94.4
Aug 85.6 -1.6
Sep -66.6 -18.7
Oct -117.8 25.3
Nov -42.7 46.4
Dec -91.2 56.0

Figure 8, Sample Smoothed Predictions from bayesian_seasonal_adj
810

 Time Series and Forecasting bayesian_seasonal_adj
Figure 9, Sample Trend Predictions from bayesian_seasonal_adj
811

 Time Series and Forecasting box_cox_transform
box_cox_transform
Performs a forward or an inverse Box-Cox (power) transformation.

Synopsis
#include <imsls.h>
float *imsls_f_box_cox_transform (int n_observations, float z[], float power, ..., 0)

The type double function is imsls_d_box_cox_transform.

Required Arguments
int n_observations (Input)

Number of observations in z.

float z[] (Input)
Array of length n_observations containing the observations.

float power (Input)
Exponent parameter in the Box-Cox (power) transformation.

Return Value
Pointer to an internally allocated array of length n_observations containing the transformed data. To release
this space, use imsls_free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_box_cox_transform (int n_observations, float z[], float power,

IMSLS_SHIFT, float shift,
IMSLS_INVERSE_TRANSFORM,
IMSLS_RETURN_USER, float x[],
0)
812

 Time Series and Forecasting box_cox_transform
Optional Arguments
IMSLS_SHIFT, float shift (Input)

Shift parameter in the Box-Cox (power) transformation. Parameter shift must satisfy the relation min
(z(i)) + shift > 0.

Default: shift = 0.0.

IMSLS_INVERSE_TRANSFORM (Input)
If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is performed.

IMSLS_RETURN_USER, float x[] (Output)
User-allocated array of length n_observations containing the transformed data.

Description
Function imsls_f_box_cox_transform performs a forward or an inverse Box-Cox (power) transformation
of n = n_observations observations {Zt} for t = 1, 2, ..., n.

The forward transformation is useful in the analysis of linear models or models with nonnormal errors or noncon-
stant variance (Draper and Smith 1981, p. 222). In the time series setting, application of the appropriate
transformation and subsequent differencing of a series can enable model identification and parameter estima-
tion in the class of homogeneous stationary autoregressive-moving average models. The inverse transformation
can later be applied to certain results of the analysis, such as forecasts and prediction limits of forecasts, in order
to express the results in the scale of the original data. A brief note concerning the choice of transformations in
the time series models is given in Box and Jenkins (1976, p. 328).

The class of power transformations discussed by Box and Cox (1964) is defined by

where Zt + ξ > 0 for all t. Since

the family of power transformations is continuous.

Let λ = power and ξ = shift; then, the computational formula used by imsls_f_box_cox_transform is
given by

X t =

Zt + ξ
λ − 1

λ λ ≠ 0

ln Zt + ξ λ = 0

lim
λ→0

Zt + ξ
λ − 1

λ = ln Zt + ξ
813

 Time Series and Forecasting box_cox_transform
where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only in the scale and origin of the trans-

formed data. Consequently, the general analysis of the data is unaffected (Draper and Smith 1981, p. 225).

The inverse transformation is computed by

where {Zt} now represents the result computed by imsls_f_box_cox_transform for a forward transfor-

mation of the original data using parameters λ and ξ.

Examples

Example 1

The following example performs a Box-Cox transformation with power = 2.0 on 10 data points.

#include <imsls.h>
int main() {
 int n_observations = 10;
 float power = 2.0;
 float *x;
 static float z[10] ={
 1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};
 /* Transform Data using Box Cox Transform */
 x = imsls_f_box_cox_transform(n_observations, z, power, 0);

 imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);
 imsls_free(x);
}

Output

 Transformed Data
 1 2 3 4 5 6
 1.0 4.0 9.0 16.0 25.0 30.2
 7 8 9 10
 42.2 56.2 64.0 100.0

X t =
Zt + ξ

λ λ ≠ 0

ln Zt + ξ λ = 0

X t =
Zt
1/λ − ξ λ ≠ 0
exp Zt − ξ λ = 0
814

 Time Series and Forecasting box_cox_transform
Example 2

This example extends the first example—an inverse transformation is applied to the transformed data to return
to the original data values.

#include <imsls.h>
int main() {
 int n_observations = 10;
 float power = 2.0;
 float *x, *y;
 static float z[10] ={
 1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};
 /* Transform Data using Box Cox Transform */
 x = imsls_f_box_cox_transform(n_observations, z, power, 0);

 imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);
 /* Perform an Inverse Transform on the Transformed Data */
 y = imsls_f_box_cox_transform(n_observations, x, power,
 IMSLS_INVERSE_TRANSFORM, 0);

 imsls_f_write_matrix("Inverse Transformed Data", 1, n_observations,
 y, 0);
 imsls_free(x);
 imsls_free(y);
}

Output

 Transformed Data
 1 2 3 4 5 6
 1.0 4.0 9.0 16.0 25.0 30.2
 7 8 9 10
 42.2 56.2 64.0 100.0
 Inverse Transformed Data
 1 2 3 4 5 6
 1.0 2.0 3.0 4.0 5.0 5.5
 7 8 9 10
 6.5 7.5 8.0 10.0
815

 Time Series and Forecasting box_cox_transform
Fatal Errors
IMSLS_ILLEGAL_SHIFT “shift” = # and the smallest element of “z” is “z[#]”

= #. “shift” plus “z[#]” = #. “shift” + “z[i]” must be
greater than 0 for i = 1,…, “n_observations”.
“n_observations” = #.

IMSLS_BCTR_CONTAINS_NAN One or more elements of “z” is equal to NaN (Not a
number). No missing values are allowed. The small-
est index of an element of “z” that is equal to NaN is
#.

IMSLS_BCTR_F_UNDERFLOW Forward transform. “power” = #. “shift” = #. The
minimum element of “z” is “z[#]” = #. (“z[#]”+
“shift”) ^ “power” will underflow.

IMSLS_BCTR_F_OVERFLOW Forward transformation. “power” = #. “shift” = #.
The maximum element of “z” is “z[#]” = #.
(“z[#]” + “shift”) ^ “power” will overflow.

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. “power” = #. The minimum
element of “z” is “z[#]” = #. exp(“z[#]”) will
underflow.

IMSLS_BCTR_I_OVERFLOW Inverse transformation. “power” = #. The maximum
element of “z[#]” = #. exp(“z[#]”) will overflow.

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. “power” = #. The element of
“z” with the smallest absolute value is “z[#]” = #.
“z[#]” ^ (1/ “power”) will underflow.

IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. “power” = #. The element of
“z” with the largest absolute value is
“z[#]” = #. “z[#]” ^ (1/ “power”) will overflow.
816

 Time Series and Forecasting difference
difference
Differences a seasonal or nonseasonal time series.

Synopsis
#include <imsls.h>
float *imsls_f_difference (int n_observations, float z[], int n_differences,

int periods[], ..., 0)

The type double function is imsls_d_difference.

Required Arguments
int n_observations (Input)

Number of observations.

float z[] (Input)
Array of length n_observations containing the time series.

int n_differences (Input)
Number of differences to perform. Argument n_differences must be greater than or equal to 1.

int periods[] (Input)
Array of length n_differences containing the periods at which z is to be differenced.

Return Value
Pointer to an array of length n_observations containing the differenced series.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_difference (int n_observations, float z[], int n_differences,

int periods[],

IMSLS_ORDERS, int orders[],
IMSLS_LOST, int *n_lost,
817

 Time Series and Forecasting difference
IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ORDERS, int orders[] (Input)

Array of length n_differences containing the order of each difference given in periods. The ele-
ments of orders must be greater than or equal to 0.

IMSLS_LOST, int *n_lost (Output)
Number of observations lost because of differencing the time series z.

IMSLS_EXCLUDE_FIRST (Input)

or

IMSLS_SET_FIRST_TO_NAN (Input)
If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded from w due to differencing.
The differenced series w is of length n_observations - n_lost. If
IMSLS_SET_FIRST_TO_NAN is specified, the first n_lost observations are set to NaN (Not a
Number). This is the default if neither IMSLS_EXCLUDE_FIRST nor
IMSLS_SET_FIRST_TO_NAN is specified.

IMSLS_RETURN_USER, float w[] (Output)
If specified, w contains the differenced series. If IMSLS_EXCLUDE_FIRST also is specified, w is of
length n_observations. If IMSLS_SET_FIRST_TO_NAN is specified or neither
IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is specified, w is of length
n_observations - n_lost.

Description
Function imsls_f_difference performs m = n_differences successive backward differences of period
si = periods [i - 1] and order di = orders [i - 1] for i = 1, ..., m on the n = n_observations observations

{Zt} for t = 1, 2, ..., n.

Consider the backward shift operator B given by

for all k. Then, the backward difference operator with period s is defined by the following:

BkZt = Zt−k
818

 Time Series and Forecasting difference
Note that and are defined only for t = (s + 1), ..., n. Repeated differencing with period s is simply

where d ≥ 0 is the order of differencing. Note that

is defined only for t = (sd + 1), ..., n.

The general difference formula used in the function imsls_f_difference is given by

where nL represents the number of observations “lost” because of differencing and NaN represents the missing

value code. See the functions imsls_f_machine and imsls_d_machineto retrieve missing values. Note that

A homogeneous, stationary time series can be arrived at by appropriately differencing a homogeneous, nonsta-
tionary time series (Box and Jenkins 1976, p. 85). Preliminary application of an appropriate transformation
followed by differencing of a series can enable model identification and parameter estimation in the class of
homogeneous stationary autoregressive moving average models.

Examples

Example 1

Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly total number of international
airline passengers from January 1949 through December 1960. Function imsls_f_difference is used to
compute

for t = 14, 15, ..., 24.

ΔsZt = 1 − Bs Zt = Zt − Zt−s for s > 0.

BsZt ΔsZt

Δs
dZt = 1 − Bs dZt =∑

j=0

d
d!

j! d − j ! −1
jBs jZt

Δs
dZt

Wt =
NaN for t = 1, … nL

Δs1
d1Δs2

d2 … Δsm
dmZt for t = nL + 1, … n

nL =∑
j

s jd j

Wt = Δ1Δ12Zt = Zt − Zt−12 − Zt−1 − Zt−13
819

 Time Series and Forecasting difference
#include <imsls.h>
#include <stdio.h>
int main()
{
 int i;
 int n_observations = 24;
 int n_differences = 2;
 int periods[2] = {1, 12};
 float *z;
 float *difference;
 z = imsls_f_data_sets (4,
 0);
 difference = imsls_f_difference (n_observations, z, n_differences,
 periods,
 0);
 printf ("i\tz[i]\tdifference[i]\n");
 for (i = 0; i < n_observations; i++)
 printf ("%d\t%f\t%f\n", i, z[i], difference[i]);
}

Output

 i z[i] difference[i]
 0 112.000000 NaN
 1 118.000000 NaN
 2 132.000000 NaN
 3 129.000000 NaN
 4 121.000000 NaN
 5 135.000000 NaN
 6 148.000000 NaN
 7 148.000000 NaN
 8 136.000000 NaN
 9 119.000000 NaN
10 104.000000 NaN
11 118.000000 NaN
12 115.000000 NaN
13 126.000000 5.000000
14 141.000000 1.000000
15 135.000000 -3.000000
16 125.000000 -2.000000
17 149.000000 10.000000
18 170.000000 8.000000
19 170.000000 0.000000
20 158.000000 0.000000
21 133.000000 -8.000000
22 114.000000 -4.000000
23 140.000000 12.000000
820

 Time Series and Forecasting difference
Example 2

The data for this example is the same as that for the initial example. The first n_lost observations are excluded
from W due to differencing, and n_lost is also output.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i;
 int n_observations = 24;
 int n_differences = 2;
 int periods[2] = {1, 12};
 int n_lost;
 float *z;
 float *difference;
 /* Get airline data */
 z = imsls_f_data_sets (4,
 0);
 /* Compute differenced time series when observations
 lost are excluded from the differencing */
 difference = imsls_f_difference (n_observations, z, n_differences,
 periods,
 IMSLS_EXCLUDE_FIRST,
 IMSLS_LOST, &n_lost,
 0);
 /* Print the number of lost observations */
 printf ("n_lost equals %d\n", n_lost);
 printf ("\n\ni\tz[i]\t difference[i]\n");
 /* Print the original time series and the differenced
 time series */
 for (i = 0; i < n_observations - n_lost; i++)
 printf ("%d\t%f\t%f\n", i, z[i], difference[i]);
}

Output

n_lost equals 13

 i z[i] difference[i]
 0 112.000000 5.000000
 1 118.000000 1.000000
 2 132.000000 -3.000000
 3 129.000000 -2.000000
 4 121.000000 10.000000
 5 135.000000 8.000000
 6 148.000000 0.000000
 7 148.000000 0.000000
 8 136.000000 -8.000000
 9 119.000000 -4.000000
10 104.000000 12.000000
821

 Time Series and Forecasting difference
Fatal Errors
IMSLS_PERIODS_LT_ZERO “period[#]” = #. All elements of “period” must be

greater than 0.

IMSLS_ORDER_NEGATIVE “order[#]” = #. All elements of “order” must be
nonnegative.

IMSLS_Z_CONTAINS_NAN “z[#]” = NaN; “z” can not contain missing values.
There may be other elements of “z” that are equal
to NaN.
822

 Time Series and Forecasting autocorrelation
autocorrelation

more...

Computes the sample autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_autocorrelation (int n_observations, float x[], int lagmax, ...0)

The type double function is imsls_d_autocorrelation.

Required Arguments
int n_observations (Input)

Number of observations in the time series x. n_observations must be greater than or equal to
2.

float x[] (Input)
Array of length n_observations containing the time series.

int lagmax (Input)
Maximum lag of autocovariance, autocorrelations, and standard errors of autocorrelations to be
computed. lagmax must be greater than or equal to 1 and less than n_observations.

Return Value
Pointer to an array of length lagmax + 1 containing the autocorrelations of the time series x. The 0-th element
of this array is 1. The k-th element of this array contains the autocorrelation of lag k where k = 1, ..., lagmax.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_autocorrelation (int n_observations, float x[], int lagmax,
823

 Time Series and Forecasting autocorrelation
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_X_MEAN_IN, float x_mean_in,
IMSLS_X_MEAN_OUT, float *x_mean_out,
IMSLS_ACV, float **autocovariances,
IMSLS_ACV_USER, float autocovariances[],
IMSLS_SEAC, float **standard_errors, int se_option,

IMSLS_SEAC_USER, float standard_errors[], int se_option,

IMSLS_RETURN_USER, float autocorrelations[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default = 0.

IMSLS_X_MEAN_IN, float x_mean_in (Input)
User input estimate of the mean of the time series x.

IMSLS_X_MEAN_OUT, float *x_mean_out (Output)
If specified, x_mean_out is the computed arithmetic mean of the time series x.

IMSLS_ACV, float **autocovariances (Output)
Address of a pointer to an array of length lagmax + 1 containing the variance and autocovariances
of the time series x. The 0-th element of this array is the variance of the time series x. The k-th ele-
ment contains the autocovariance of lag k where k = 1, ..., lagmax.

IMSLS_ACV_USER, float autocovariances[] (Output)
If specified, autocovariances is an array of length lagmax + 1 containing the variance and
autocovariances of the time series x.

See IMSLS_ACV.

iprint Action

0 No printing is performed.

1 Prints the mean and variance.

2 Prints the mean, variance, and autocovariances.

3 Prints the mean, variance, autocovariances, auto-
correlations, and standard errors of
autocorrelations.
824

 Time Series and Forecasting autocorrelation
IMSLS_SEAC, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length lagmax containing the standard errors of the autocorrela-
tions of the time series x.

Method of computation for standard errors of the autocorrelations is chosen by se_option.

IMSLS_SEAC_USER, float standard_errors[], int se_option (Output)
If specified, autocovariances is an array of length lagmax containing the standard errors of
the autocorrelations of the time series x. See IMSLS_SEAC.

IMSLS_RETURN_USER, float autocorrelations[] (Output)
If specified, autocorrelations is an array of length lagmax + 1 containing the autocorrelations of the
time series x. The 0-th element of this array is 1. The k-th element of this array contains the autocor-
relation of lag k where k = 1, …, lagmax.

Description
Function imsls_f_autocorrelation estimates the autocorrelation function of a stationary time series
given a sample of n = n_observations observations {Xt} for t = 1, 2, …, n.

Let be the estimate of the mean μ of the time series {Xt} where

The autocovariance function σ(k) is estimated by

se_option Action

1 Compute the standard errors of autocorrelations using
Barlett’s formula.

2 Compute the standard errors of autocorrelations using
Moran’s formula.

μ̂

μ̂ =
μ, μ known (x_mean_in)
1
n ∑
t=1

n
X t μ unknown (x_mean_out)

σ̂ k = 1n∑
t=1

n−k

X t − μ̂ X t+k − μ̂ , k = 0,1, … ,K
825

 Time Series and Forecasting autocorrelation
where K = lagmax. Note that

is an estimate of the sample variance. The autocorrelation function ρ(k) is estimated by

Note that

by definition.

The standard errors of the sample autocorrelations may be optionally computed according to argument
se_option for the optional argument IMSLS_SEAC. One method (Bartlett 1946) is based on a general
asymptotic expression for the variance of the sample autocorrelation coefficient of a stationary time series with
independent, identically distributed normal errors. The theoretical formula is

where

assumes μ is unknown. For computational purposes, the autocorrelations r(k) are replaced by their estimates

for |k| ≤ K, and the limits of summation are bounded because of the assumption that r(k) = 0 for all k such that
|k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the sample autocorrelation coeffi-
cient of a random process with independent, identically distributed normal errors. The theoretical formula is

where μ is assumed to be equal to zero. Note that this formula does not depend on the autocorrelation function.

σ̂ 0

ρ̂ k =
σ̂ k
σ̂ 0

, k = 0,1, … ,K

ρ̂ 0 ≡ 1

var ρ̂ k = 1n∑
i=−∞

∞

ρ2 i + ρ i − k ρ i + k − 4ρ i ρ k ρ i − k + 2ρ2 i ρ2 k

ρ̂ k

ρ̂ k

var ρ̂ k = n − k
n n + 2
826

 Time Series and Forecasting autocorrelation
Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed
from 1770 through 1869. Function imsls_f_autocorrelation with optional arguments computes the
estimated autocovariances, estimated autocorrelations, and estimated standard errors of the autocorrelations.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float *result=NULL, data[176][2], x[100], xmean;
 int i, nobs = 100, lagmax = 20;
 float *acv=NULL, *seac=NULL;

 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<nobs;i++) x[i] = data[21+i][1];
 result = imsls_f_autocorrelation(nobs, x, lagmax,
 IMSLS_X_MEAN_OUT, &xmean,
 IMSLS_ACV, &acv,
 IMSLS_SEAC, &seac, 1,
 0);
 printf("Mean = %8.3f\n", xmean);
 printf("Variance = %8.1f\n", acv[0]);
 printf("\nLag\t ACV\t\t AC\t\t SEAC\n");
 printf("%2d\t%8.1f\t%8.5f\n", 0, acv[0], result[0]);
 for(i=1; i<21; i++)
 printf("%2d\t%8.1f\t%8.5f\t%8.5f\n", i, acv[i], result[i],
 seac[i-1]);

}

Output

Mean = 46.976
Variance = 1382.9
Lag ACV AC SEAC
 0 1382.9 1.00000
 1 1115.0 0.80629 0.03478
 2 592.0 0.42809 0.09624
 3 95.3 0.06891 0.15678
 4 -236.0 -0.17062 0.20577
 5 -370.0 -0.26756 0.23096
 6 -294.3 -0.21278 0.22899
 7 -60.4 -0.04371 0.20862
 8 227.6 0.16460 0.17848
 9 458.4 0.33146 0.14573
10 567.8 0.41061 0.13441
11 546.1 0.39491 0.15068
12 398.9 0.28848 0.17435
827

 Time Series and Forecasting autocorrelation
13 197.8 0.14300 0.19062
14 26.9 0.01945 0.19549
15 -77.3 -0.05588 0.19589
16 -143.7 -0.10394 0.19629
17 -202.0 -0.14610 0.19602
18 -245.4 -0.17743 0.19872
19 -230.8 -0.16691 0.20536
20 -142.9 -0.10332 0.20939

Figure 10, Sample Autocorrelation Function
828

 Time Series and Forecasting crosscorrelation
crosscorrelation

more...

Computes the sample cross-correlation function of two stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[], float y[],

int lagmax, ..., 0)

The type double function is imsls_d_crosscorrelation.

Required Arguments
int n_observations (Input)

Number of observations in each time series. n_observations must be greater than or equal to 2.

float x[] (Input)
Array of length n_observations containing the first time series.

float y[] (Input)
Array of length n_observations containing the second time series.

int lagmax (Input)
Maximum lag of cross-covariances and cross-correlations to be computed. lagmax must be greater
than or equal to 1 and less than n_observations.

Return Value
Pointer to an array of length 2 × lagmax + 1 containing the cross-correlations between the time series x and y.
The k-th element of this array contains the cross-correlation between x and y at lag(k-lagmax) where k = 0,
1, …, 2*lagmax. To release this space, use imsls_free. If no solution can be computed, NULL is returned.
829

 Time Series and Forecasting crosscorrelation
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[], float y[], int lagmax,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in,
IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out,
IMSLS_VARIANCES, float *x_variance, float *y_variance,
IMSLS_SE_CCF, float **standard_errors, int se_option,
IMSLS_SE_CCF_USER, float standard_errors[], int se_option,
IMSLS_CROSS_COVARIANCES, float **cross_covariances,
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[],
IMSLS_RETURN_USER, float crosscorrelations[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default = 0.

IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in (Input)
If specified, x_mean_in is the user input of the estimate of the mean of the time series x and
y_mean_in is the user input of the estimate of the mean of the time series y.

IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out (Output)
If specified, x_mean_out is the mean of the time series x and y_mean_out is the mean of the
time series y.

iprint Action

0 No printing is performed.

1 Prints the means and variances.

2 Prints the means, variances, and cross-covariances.

3 Prints the means, variances, cross-covariances, cross-cor-
relations, and standard errors of cross-correlations.
830

 Time Series and Forecasting crosscorrelation
IMSLS_VARIANCES, float *x_variance, float *y_variance (Output)
If specified, x_variance is variance of the time series x and y_variance is variance of the time
series y.

IMSLS_SE_CCF, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length 2 × lagmax + 1containing the standard errors of the
cross-correlations between the time series x and y. Method of computation for standard errors of
the cross-correlations is chosen by se_option.

IMSLS_SE_CCF_USER, float standard_errors[], int se_option (Output)
If specified, standard_errors is an array of length 2 × lagmax + 1 containing the standard
errors of the cross-correlations between the time series x and y. See IMSLS_SE_CC.

IMSLS_CROSS_COVARIANCES, float **cross_covariances (Output)
Address of a pointer to an array of length 2 × lagmax + 1 containing the cross-covariances between
the time series x and y. The k-th element of this array contains the cross-covariances between x and
y at lag (k-lagmax), where k = 0, 1, …, 2 × lagmax.

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[] (Output)
If specified, cross_covariances is a user-specified array of length 2*lagmax + 1 containing
the cross-covariances between the time series x and y. See IMSLS_CROSS_COVARIANCES.

IMSLS_RETURN_USER, float crosscorrelations[] (Output)
If specified, crosscorrelations is an array of length 2 × lagmax + 1 containing the cross-correlations
between the time series x and y. The k-th element of this array contains the cross-correlation
between x and y at lag (k-lagmax) where k = 0, 1, …, 2×lagmax.

Description
Function imsls_f_crosscorrelation estimates the cross-correlation function of two jointly stationary
time series given a sample of n = n_observations observations {Xt} and {Yt} for t = 1, 2, …, n.

Let be the estimate of the mean μX of the time series {Xt} where

se_option Action

1 Compute standard errors of cross-correlations using
Bartlett’s formula.

2 Compute standard errors of cross-correlations using
Bartlett’s formula with the assumption of no cross-
correlation.

μ̂x
831

 Time Series and Forecasting crosscorrelation
The autocovariance function of {Xt}, σX(k), is estimated by

where K = lagmax. Note that

is equivalent to the sample variance x_variance. The autocorrelation function ρX(k) is estimated by

Note that

by definition. Let

be similarly defined.

The cross-covariance function σXY(k) is estimated by

The cross-correlation function ρXY(k) is estimated by

μ̂X =
μX μX known (x_mean_in)
1
n ∑
t=1

n
X t μX unknown (x_mean_out)

σ̂X k = 1n∑
t=1

n−k

X t − μ̂X X t+k − μ̂X , k = 0,1, … ,K

σ̂X 0

ρ̂X k =
σ̂X k
σ̂X 0

k = 0,1, … ,K

ρ̂X 0 ≡ 1

μ̂Y , σ̂Y k , and ρ̂Y k

σ̂XY k =

1
n ∑
t=1

n−k
X t − μ̂X Y t+k − μ̂Y k = 0,1, … ,K

1
n ∑
t=1−k

n
X t − μ̂X Y t+k − μ̂Y k = − 1, − 2, … , − K
832

 Time Series and Forecasting crosscorrelation
The standard errors of the sample cross-correlations may be optionally computed according to argument
se_option for the optional argument IMSLS_SE_CCF. One method is based on a general asymptotic expres-
sion for the variance of the sample cross-correlation coefficient of two jointly stationary time series with
independent, identically distributed normal errors given by Bartlett (1978, page 352). The theoretical formula is

For computational purposes, the autocorrelations ρX(k) and ρY(k) and the cross-correlations ρXY(k) are replaced

by their corresponding estimates for |k| ≤ K, and the limits of summation are equal to zero for all k such that
|k| > K.

A second method evaluates Bartlett’s formula under the additional assumption that the two series have no cross-
correlation. The theoretical formula is

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 377).

An important property of the cross-covariance coefficient is σXY(k) = σYX(-k) for k ≥ 0. This result is used in the

computation of the standard error of the sample cross-correlation for lag k < 0. In general, the cross-covariance
function is not symmetric about zero so both positive and negative lags are of interest.

Example
Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X is the input gas rate in cubic
feet/minute and Y is the percent CO2 in the outlet gas. Function imsls_f_crosscorrelation is used to

compute the cross-covariances and cross-correlations between time series X and Y with lags from -10 through
lag 10. In addition, the estimated standard errors of the estimated cross-correlations are computed. The stan-
dard errors are based on the additional assumption that all cross-correlations for X and Y are zero.

#include <imsls.h>
#include <stdio.h>
#define nobs 296

ρ̂XY(k) =
σ̂XY(k)

σ̂X(0)σ̂Y(0)
1/2 k = 0, ± 1, … , ± K

var ρ̂XY k = 1
n − k ∑

i=−∞

∞
ρX i ρY i + ρXY i − k ρXY i + k

−2ρXY k ρX i ρXY i + k + ρXY −i ρY i + k

+ρXY
2 k ρX i + 12 ρX

2 i + 12 ρY
2 i]

var ρ̂XY k = 1
n − k ∑

i=−∞

∞
ρX i ρY i k ≥ 0
833

 Time Series and Forecasting crosscorrelation
#define lagmax 10
int main ()
{
 int i;
 float data[nobs][2], x[nobs], y[nobs];
 float *secc = NULL, *ccv = NULL, *cc = NULL;
 float xmean, ymean, xvar, yvar;
 imsls_f_data_sets (7, IMSLS_X_COL_DIM, 2, IMSLS_RETURN_USER, data, 0);
 for (i = 0; i < nobs; i++)
 {
 x[i] = data[i][0];
 y[i] = data[i][1];
 }
 cc = imsls_f_crosscorrelation (nobs, x, y, lagmax,
 IMSLS_OUTPUT_MEANS, &xmean, &ymean,
 IMSLS_VARIANCES, &xvar, &yvar,
 IMSLS_SE_CCF, &secc, 2,
 IMSLS_CROSS_COVARIANCES, &ccv, 0);
 printf ("Mean of series X = %g\n", xmean);
 printf ("Variance of series X = %g\n\n", xvar);
 printf ("Mean of series Y = %g\n", ymean);
 printf ("Variance of series Y = %g\n\n", yvar);
 printf ("Lag CCV CC SECC\n\n");
 for (i = 0; i < 2 * lagmax + 1; i++)
 printf ("%-5d%13g%13g%13g\n", i - lagmax, ccv[i], cc[i], secc[i]);
}

Output

Mean of series X = -0.0568344
Variance of series X = 1.14694
Mean of series Y = 53.5091
Variance of series Y = 10.2189
Lag CCV CC SECC
-10 -0.404502 -0.118154 0.162754
-9 -0.508491 -0.148529 0.16247
-8 -0.61437 -0.179456 0.162188
-7 -0.705476 -0.206067 0.161907
-6 -0.776167 -0.226716 0.161627
-5 -0.831474 -0.242871 0.161349
-4 -0.891316 -0.260351 0.161073
-3 -0.980605 -0.286432 0.160798
-2 -1.12477 -0.328542 0.160524
-1 -1.34704 -0.393467 0.160252
0 -1.65853 -0.484451 0.159981
1 -2.04865 -0.598405 0.160252
2 -2.48217 -0.725033 0.160524
3 -2.88541 -0.84282 0.160798
4 -3.16536 -0.924592 0.161073
834

 Time Series and Forecasting crosscorrelation
5 -3.25344 -0.950319 0.161349
6 -3.13113 -0.914593 0.161627
7 -2.83919 -0.82932 0.161907
8 -2.45302 -0.716521 0.162188
9 -2.05269 -0.599584 0.16247
10 -1.69466 -0.495004 0.162754
835

 Time Series and Forecasting multi_crosscorrelation
multi_crosscorrelation

more...

Computes the multichannel cross-correlation function of two mutually stationary multichannel time series.

Synopsis
#include <imsls.h>

float *imsls_f_multi_crosscorrelation (int n_observations_x,
int n_channel_x, float x[], int n_observations_y, int n_channel_y, float y[],
int lagmax, ..., 0)

The type double function is imsls_d_multi_crosscorrelation.

Required Arguments
int n_observations_x (Input)

Number of observations in each channel of the first time series x. n_observations_x must be
greater than or equal to two.

int n_channel_x (Input)
Number of channels in the first time series x. n_channel_x must be greater than or equal to one.

float x[] (Input)
Array of length n_observations_x by n_channel_x containing the first time series.

int n_observations_y (Input)
Number of observations in each channel of the second time series y. n_observations_y must
be greater than or equal to two.

int n_channel_y (Input)
Number of channels in the second time series y. n_channel_y must be greater than or equal to
one.

float y[] (Input)
Array of length n_observations_y by n_channel_y containing the second time series.
836

 Time Series and Forecasting multi_crosscorrelation
int lagmax (Input)
Maximum lag of cross-covariances and cross-correlations to be computed. lagmax must be greater
than or equal to one and less than the minimum of n_observations_x and
n_observations_y.

Return Value
Pointer to an array of length n_channel_x× n_channel_y × (2 × lagmax + 1) containing the cross-cor-
relations between the channels of x and y. The m-th element of this array contains the cross-correlation
between channel i of the x series and channel j of the y series at lag (k-lagmax) where

i = 1, …, n_channel_x

j = 1, …, n_channel_y
k = 0, 1, …, 2*lagmax, and

m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j))

To release this space, use imsls_free. If no solution can be computed, NULL is return.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_multi_crosscorrelation(int n_observations_x, int n_channel_x,

float x[], int n_observations_y, int n_channel_y, float y[], int lagmax,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in,
IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out,
IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[],
IMSLS_VARIANCES, float **x_variance, float **y_variance,
IMSLS_VARIANCES_USER, float x_variance[], float y_variance[],
IMSLS_CROSS_COVARIANCES, float **cross_covariances,
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[],
IMSLS_RETURN_USER, float crosscorrelations[],
0)
837

 Time Series and Forecasting multi_crosscorrelation
Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default = 0.

IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in (Input)
If specified, x_mean_in is an array of length n_channel_x containing the user input of the esti-
mate of the means of the channels of x and y_mean_in is an array of length n_channel_y
containing the user input of the estimate of the means of the channels of y.

IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out (Output)
If specified, x_mean_out is the address of a pointer to an array of length n_channel_x contain-
ing the means of the channels of x and y_mean_out is the address of a pointer to an array of
length n_channel_y containing the means of the channels of y.

IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[] (Output)
If specified, x_mean_out is an array of length n_channel_x containing the means of the chan-
nels of x and y_mean_out is an array of length n_channel_y containing the means of the
channels of y. See IMSLS_OUTPUT_MEANS.

IMSLS_VARIANCES, float **x_variance, float **y_variance (Output)
If specified, x_variance is the address of a pointer to an array of length n_channel_x contain-
ing the variances of the channels of x and y_variance is the address of a pointer to an array of
length n_channel_y containing the variances of the channels of y.

IMSLS_VARIANCES_USER, float x_variance[], float y_variance[] (Output)
If specified, x_variance is an array of length n_channel_x containing the variances of the chan-
nels of x and y_variance is an array of length n_channel_y containing the variances of the
channels of y. See IMSLS_VARIANCES.

iprint Action

0 No printing is performed.

1 Prints the means and variances.

2 Prints the means, variances, and cross-covariances.

3 Prints the means, variances, cross-covariances, and cross-
correlations.
838

 Time Series and Forecasting multi_crosscorrelation
IMSLS_CROSS_COVARIANCES, float **cross_covariances (Output)
Address of a pointer to an array of length n_channel_x × n_channel_y × (2×lagmax + 1)
containing the cross-covariances between the channels of x and y. The mth element of this array
contains the cross-covariance between channel i of the x series and channel j of the y series at lag
(k−lagmax) where

i = 1, …, n_channel_x
j = 1, …, n_channel_y
k = 0, 1, …, 2*lagmax, and

m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)).

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances (Output)
If specified, cross_covariances is an array of length
n_channel_x × n_channel_y × (2×lagmax + 1) containing the cross-covariances between
the channels of x and y. See IMSLS_CROSS_COVARIANCES.

IMSLS_RETURN_USER, float crosscorrelations[] (Output)
If specified, crosscorrelations is a user-specified array of length
n_channel_x × n_channel_y × (2×lagmax + 1) containing the cross-correlations between
the channels of x and y. See Return Value.

Description
Function imsls_f_multi_crosscorrelation estimates the multichannel cross-correlation function of
two mutually stationary multichannel time series. Define the multichannel time series X by

X = (X

1

, X

2

, ..., Xp)

where

Xj = (X

1

j, X

2

j, ..., Xnj)
T, j = 1, 2, ..., p

with n = n_observations_x and p = n_channel_x. Similarly, define the multichannel time series Y by
839

 Time Series and Forecasting multi_crosscorrelation
Y = (Y

1

, Y

2

, ..., Yq)

where

Yj = (Y

1

j, Y

2

j, ..., Ymj)
T, j = 1, 2, ..., q

with m = n_observations_y and q = n_channel_y. The columns of X and Y correspond to individual chan-
nels of multichannel time series and may be examined from a univariate perspective. The rows of X and Y
correspond to observations of p-variate and q-variate time series, respectively, and may be examined from a mul-
tivariate perspective. Note that an alternative characterization of a multivariate time series X considers the
columns to be observations of the multivariate time series while the rows contain univariate time series. For
example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let be the row vector containing the means of the channels of X. In particular,

where for j = 1, 2, …, p

Let be similarly defined for the means of the channels of Y. The cross-covariance of lag k between channel i of

X and channel j of Y is estimated by

where i = 1, …, p, j = 1, …, q, and K = lagmax. The summation on t extends over all possible cross-products with N
equal to the number of cross-products in the sum

μ̂X

μ̂X = μ̂X1, μ̂X2, … , μ̂X p

μ̂X j =

μX j μX j known (x─mean─in)
1
n ∑
t=1

n
X tj μX j unknown (x─mean─out)

μ̂Y

σ̂X iY j k =

1
N∑
t
X ti − μ̂X i Y t+k, j − μ̂Y j k = 0,1, … ,K

1
N∑
t
X ti − μ̂X i Y t+k, j − μ̂Y j k = − 1, − 2, … , − K
840

 Time Series and Forecasting multi_crosscorrelation
Let

be the row vector consisting of the estimated variances of the channels of X. In particular,

where

Let

be similarly defined. The cross-correlation of lag k between channel i of X and channel j of Y is estimated by

Example
Consider the Wolfer Sunspot Data (Y) (Box and Jenkins 1976, page 530) along with data on northern light activity
(X1) and earthquake activity (X2) (Robinson 1967, page 204) to be a three-channel time series. Function

imsls_f_multi_crosscorrelation is used to compute the cross-covariances and cross-correlations
between X1 and Y and between X2 and Y with lags from −10 through 10.

#include <imsls.h>
#include <stdio.h>
int main () {
 int i, lagmax, nobsx, nchanx, nobsy, nchany;
 float x[100 * 2], y[100], *result = NULL, *xvar = NULL, *yvar = NULL,
 *xmean = NULL, *ymean = NULL, *ccv = NULL;
 float data[100][4];
 char line[20];
 nobsx = nobsy = 100;
 nchanx = 2;
 nchany = 1;
 lagmax = 10;

σ̂X 0 = x_variance

σ̂X 0 = σ̂X1 0 ,σ̂X2 0 , … ,σ̂X p 0

σ̂X j 0 = 1n∑
t=1

n

X tj − μ̂X j
2 j = 1,2, … ,p

σ̂Y 0 = y_variance

ρ̂X iY j(k) =
σ̂X iY j(k)

σ̂X i(0)σ̂Y j(0)
1/2 k = 0, ± 1, … , ± K
841

 Time Series and Forecasting multi_crosscorrelation
 imsls_f_data_sets (8, IMSLS_X_COL_DIM, 4, IMSLS_RETURN_USER, data, 0);
 for (i = 0; i < 100; i++)
 {
 y[i] = data[i][1];
 x[i * 2] = data[i][2];
 x[i * 2 + 1] = data[i][3];
 }
 result =
 imsls_f_multi_crosscorrelation (nobsx, nchanx, &x[0], nobsy, nchany,
 &y[0], lagmax, IMSLS_VARIANCES, &xvar,
 &yvar, IMSLS_OUTPUT_MEANS, &xmean, &ymean,
 IMSLS_CROSS_COVARIANCES, &ccv, 0);
 imsls_f_write_matrix ("Channel means of x", 1, nchanx, xmean, 0);
 imsls_f_write_matrix ("Channel variances of x", 1, nchanx, xvar, 0);
 imsls_f_write_matrix ("Channel means of y", 1, nchany, ymean, 0);
 imsls_f_write_matrix ("Channel variances of y", 1, nchany, yvar, 0);
 printf ("\nMultichannel cross-covariance between x and y\n");
 for (i = 0; i < (2 * lagmax + 1); i++)
 {
 sprintf (line, "Lag K = %d", i - lagmax);
 imsls_f_write_matrix (line, nchanx, nchany,
 &ccv[nchanx * nchany * i], 0);
 }
842

 Time Series and Forecasting multi_crosscorrelation
 printf ("\nMultichannel cross-correlation between x and y\n");
 for (i = 0; i < (2 * lagmax + 1); i++)
 {
 sprintf (line, "Lag K = %d", i - lagmax);
 imsls_f_write_matrix (line, nchanx, nchany,
 &result[nchanx * nchany * i], 0);
 }
}

Output

 Channel means of x
 1 2
 63.43 97.97
Channel variances of x
 1 2
 2644 1978
Channel means of y
 46.94
Channel variances of y
 1384
Multichannel cross-covariance between x and y
 Lag K = -10
1 -20.51
2 70.71
 Lag K = -9
1 65.02
2 38.14
 Lag K = -8
1 216.6
2 135.6
 Lag K = -7
1 246.8
2 100.4
 Lag K = -6
1 142.1
2 45.0
 Lag K = -5
1 50.70
2 -11.81
 Lag K = -4
1 72.68
2 32.69
 Lag K = -3
1 217.9
2 -40.1
843

 Time Series and Forecasting multi_crosscorrelation
 Lag K = -2
1 355.8
2 -152.6
 Lag K = -1
1 579.7
2 -213.0
 Lag K = 0
1 821.6
2 -104.8
 Lag K = 1
1 810.1
2 55.2
 Lag K = 2
1 628.4
2 84.8
 Lag K = 3
1 438.3
2 76.0
 Lag K = 4
1 238.8
2 200.4
 Lag K = 5
1 143.6
2 283.0
 Lag K = 6
1 253.0
2 234.4
 Lag K = 7
1 479.5
2 223.0
 Lag K = 8
1 724.9
2 124.5
 Lag K = 9
1 925.0
2 -79.5
 Lag K = 10
1 922.8
2 -279.3
Multichannel cross-correlation between x and y
 Lag K = -10
1 -0.01072
2 0.04274
 Lag K = -9
844

 Time Series and Forecasting multi_crosscorrelation
1 0.03400
2 0.02305
 Lag K = -8
1 0.1133
2 0.0819
 Lag K = -7
1 0.1290
2 0.0607
 Lag K = -6
1 0.07431
2 0.02718
 Lag K = -5
1 0.02651
2 -0.00714
 Lag K = -4
1 0.03800
2 0.01976
 Lag K = -3
1 0.1139
2 -0.0242
 Lag K = -2
1 0.1860
2 -0.0923
 Lag K = -1
1 0.3031
2 -0.1287
 Lag K = 0
1 0.4296
2 -0.0633
 Lag K = 1
1 0.4236
2 0.0333
 Lag K = 2
1 0.3285
2 0.0512
 Lag K = 3
1 0.2291
2 0.0459
 Lag K = 4
1 0.1248
2 0.1211
 Lag K = 5
1 0.0751
2 0.1710
 Lag K = 6
845

 Time Series and Forecasting multi_crosscorrelation
1 0.1323
2 0.1417
 Lag K = 7
1 0.2507
2 0.1348
 Lag K = 8
1 0.3790
2 0.0752
 Lag K = 9
1 0.4836
2 -0.0481
 Lag K = 10
1 0.4825
2 -0.1688
846

 Time Series and Forecasting partial_autocorrelation
partial_autocorrelation
Computes the sample partial autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_partial_autocorrelation (int lagmax, int cf[], …, 0)

The type double function is imsls_d_partial_autocorrelation.

Required Arguments
int lagmax (Input)

Maximum lag of partial autocorrelations to be computed.

float cf[] (Input)
Array of length lagmax + 1 containing the autocorrelations of the time series x.

Return Value
Pointer to an array of length lagmax containing the partial autocorrelations of the time series x.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_partial_autocorrelation (int lagmax, float cf[],

IMSLS_RETURN_USER, float partial_autocorrelations[],
0)

Optional Arguments
IMSLS_RETURN_USER, float partial_autocorrelations[] (Output)

If specified, the partial autocorrelations are stored in an array of length lagmax provided by the
user.
847

 Time Series and Forecasting partial_autocorrelation
Description
Function imsls_f_partial_autocorrelation estimates the partial autocorrelations of a stationary
time series given the K = lagmax sample autocorrelations

for k = 0, 1, …, K. Consider the AR(k) process defined by

where φkj denotes the j-th coefficient in the process. The set of estimates

for k = 1, …, K is the sample partial autocorrelation function. The autoregressive parameters

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k) models where k = 1, …, K. Based on
the sample Yule-Walker equations

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The equations are given by

and

This procedure is sensitive to rounding error and should not be used if the parameters are near the nonstation-
arity boundary. A possible alternative would be to estimate {φkk} for successive AR(k) models using least or

maximum likelihood. Based on the hypothesis that the true process is AR(p), Box and Jenkins (1976, page 65)
note

ρ̂ k

X t = ϕk1X t−1 + ϕk2X t−2 + … + ϕkkX t−k + At

ϕ^kk

ϕ^k j

ρ̂ j = ϕ^k1ρ̂ j − 1 + ϕ^k2ρ̂ j − 2 + … + ϕ^kk ρ̂ j − k , j = 1, 2, … k

ϕ^kk =

ρ̂ 1 k = 1

ρ̂ k − ∑
j=1

k−1
ϕ^k−1, jρ̂ k − j

1 − ∑
j=1

k−1
ϕ^k−1, jρ̂ j

k = 2,...K

ϕ^k j =
ϕ^k−1, j − ϕ

^
kkϕ
^
k−1,k− j j = 1,2, … ,k − 1

ϕ^kk j = k
848

 Time Series and Forecasting partial_autocorrelation
See Box and Jenkins (1976, pages 82-84) for more information concerning the partial autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed
from 1770 through 1869. Function imsls_f_partial_autocorrelation is used to compute the esti-
mated partial autocorrelations.

#include <imsls.h>
#include <stdlib.h>
int main()
{
 float *partial = NULL, data[176][2], x[100];
 int i, nobs = 100, lagmax = 20;
 float *ac;
 imsls_f_data_sets(2,
 IMSLS_RETURN_USER, data,
 0);
 for (i=0;i<nobs;i++)
 x[i] = data[21+i][1];
 ac = imsls_f_autocorrelation(100, x, lagmax,
 0);
 partial = imsls_f_partial_autocorrelation(lagmax, ac,
 0);
 imsls_f_write_matrix("Lag PACF", 20, 1, partial,
 0);
}

Output

Lag PACF
 1 0.806
 2 -0.635
 3 0.078
 4 -0.059
 5 -0.001
 6 0.172
 7 0.109
 8 0.110
 9 0.079
10 0.079
11 0.069

var ϕ^kk ≃ 1
n k ≥ p + 1
849

 Time Series and Forecasting partial_autocorrelation
12 -0.038
13 0.081
14 0.033
15 -0.035
16 -0.131
17 -0.155
18 -0.119
19 -0.016
20 -0.004
850

 Time Series and Forecasting lack_of_fit
lack_of_fit
Performs lack-of-fit test for a univariate time series or transfer function given the appropriate correlation
function.

Synopsis
#include <imsls.h>
float *imsls_lack_of_fit (int n_observations, float cf[], int lagmax, int npfree, …, 0)

Required Arguments
int n_observations (Input)

Number of observations of the stationary time series.

float cf[] (Input)
Array of length lagmax +1 containing the correlation function.

int lagmax (Input)
Maximum lag of the correlation function.

int npfree (Input)
Number of free parameters in the formulation of the time series model. npfree must be greater
than or equal to zero and less than lagmax. Woodfield (1990) recommends npfree = p + q for an
ARMA(p,q) model.

Return Value
Pointer to an array of length 2 with the test statistic, Q, and its p-value, p. Under the null hypothesis, Q has an
approximate chi-squared distribution with lagmax-lagmin+1-npfree degrees of freedom.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_lack_of_fit (int n_observations, float cf[], int lagmax, int npfree,

IMSLS_LAGMIN, int lagmin,
851

 Time Series and Forecasting lack_of_fit
IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments
IMSLS_LAGMIN, int lagmin (Input)

Minimum lag of the correlation function. lagmin corresponds to the lower bound of summation in
the lack of fit test statistic.

Default value is 1.

IMSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of lack-of-fit statistics.

Description
Function imsls_f_lack_of_fit may be used to diagnose lack of fit in both ARMA and transfer function
models. Typical arguments for these situations are:

Function imsls_f_lack_of_fit performs a portmanteau lack of fit test for a time series or transfer function
containing n observations given the appropriate sample correlation function

for k = L, L + 1, …, K where L = lagmin and K = lagmax.

The basic form of the test statistic Q is

with L = 1 if

Model LAGMIN LAGMAX NPFREE
ARMA (p, q) 1

p + q

Transfer function 0

r + s

n
─
observations

n
─
observations

ρ̂ k

Q = n n + 2 ∑
k=L

K

n − k −1ρ̂ k
852

 Time Series and Forecasting lack_of_fit
is an autocorrelation function. Given that the model is adequate, Q has a chi-squared distribution with
K − L + 1 − m degrees of freedom where m = npfree is the number of parameters estimated in the model. If
the mean of the time series is estimated, Woodfield (1990) recommends not including this in the count of the
parameters estimated in the model. Thus, for an ARMA(p, q) model set npfree= p + q regardless of whether the
mean is estimated or not. The original derivation for time series models is due to Box and Pierce (1970) with the
above modified version discussed by Ljung and Box (1978). The extension of the test to transfer function models
is discussed by Box and Jenkins (1976, pages 394–395).

Example
Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the number of sunspots observed
each year from 1749 through 1924. The data set for this example consists of the number of sunspots observed
from 1770 through 1869. An ARMA(2,1) with nonzero mean is fitted using function imsls_f_arma. The autocor-
relations of the residuals are estimated using function imsls_f_autocorrelation. A portmanteau lack of fit
test is computed using 10 lags with imsls_f_lack_of_fit.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int p=2, q=1, i, n_observations=100, max_itereations=0, lagmin=1,
 lagmax=10, npfree=4;
 float data[176][2], x[100], *parameters, *correlations,
 *residuals, *result;
 /* Get sunspot data for 1770 through 1869, store it in x[]. */
 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<n_observations;i++) x[i] = data[21+i][1];
 /* Get residuals from ARMA(2,1) for autocorrelation/lack of fit */
 parameters = imsls_f_arma(n_observations, x, p, q,
 IMSLS_LEAST_SQUARES,
 IMSLS_RESIDUAL, &residuals,
 0);
 /* Get autocorrelations from residuals for lack of fit test */
 /* NOTE: number of OBS is equal to number of residuals */
 correlations = imsls_f_autocorrelation(n_observations-p+lagmax,
 residuals, lagmax, 0);
 /* Get lack of fit test statistic and p-value */
 /* NOTE: number of OBS is equal to original number of data */
 result = imsls_f_lack_of_fit(n_observations, correlations,
 lagmax, npfree, 0);
 /* Print parameter estimates, test statistic, and p-value */

ρ̂ k
853

 Time Series and Forecasting lack_of_fit
 /* NOTE: Test Statistic Q follows a Chi-squared dist. */
 printf("Lack of Fit Statistic, Q = \t%3.5f\n", result[0]);
 printf(" P-value of Q = \t %1.5f\n\n", result[1]);
}

Output

Lack of Fit Statistic, Q = 23.89239
 P-value of Q = 0.00055
854

 Time Series and Forecasting estimate_missing
estimate_missing
Estimates missing values in a time series.

Synopsis
#include <imsls.h>
float *imsls_f_estimate_missing(int n_obs, int tpoints[], float z[], …,0)

The type double function is imsls_d_estimate_missing.

Required Arguments
int n_obs (Input)

Number of non-missing observations in the time series. The time series must not contain gaps with
more than 3 missing values.

int tpoints[] (Input)
Vector of length n_obs containing the time points at which the time series values were
observed. The time points must be in strictly increasing order. Time points for missing values must lie
in the open interval .

float z[] (Input)
Vector of length n_obs containing the time series values. The values must be ordered in accordance
with the values in vector tpoints. It is assumed that the time series after estimation of missing val-
ues contains values at equidistant time points where the distance between two consecutive time
points is one. If the non-missing time series values are observed at time points t1, … tn_obs, then
missing values between ti and ti+1, i = 1, …, n_obs - 1 , exist if ti+1 - ti > 1. The size of the gap
between ti and ti+1 is then ti+1 - ti - 1. The total length of the time series with non-missing and esti-
mated missing values is tn_obs - ti + 1, or tpoints[n_obs-1]-tpoints[0]+1.

Return Value
Pointer to an array of length (tpoints[n_obs-1]-tpoints[0]+1) containing the time series together with
estimates for the missing values. If an error occurred, NULL is returned.

t1, … , tn_obs

t1, tn_obs
855

 Time Series and Forecasting estimate_missing
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_estimate_missing (int n_obs, int tpoints[], float z[],

IMSLS_METHOD, int method,
IMSLS_MAX_LAG, int maxlag,
IMSLS_NTIMES, int *ntimes,
IMSLS_MEAN_ESTIMATE, float mean_estimate,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_TIMES_ARRAY, int **times,
IMSLS_TIMES_ARRAY_USER, int times[],
IMSLS_MISSING_INDEX, int **missing_index,
IMSLS_MISSING_INDEX_USER, int missing_index[],
IMSLS_RETURN_USER, float u_z[],
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

The method used for estimating the missing values:

If method = 2 is chosen, then all values of gaps beginning at time points or are esti-

mated by method 0. If method = 3 is chosen and the first gap starts at , then the values of
this gap are also estimated by method 0. If the length of the series before a gap, denoted len, is
greater than 1 and less than 2⋅ maxlag, then maxlag is reduced to len/2 for the computation of
the missing values within this gap.

Default: method = 3

Index Description

0 Use median.

1 Use cubic spline interpolation.

2 Use one-step-ahead forecasts from an
AR(1) model.

3 Use one-step-ahead forecasts from an
AR(p) model.

t1 + 1 t1 + 2
t1 + 1
856

 Time Series and Forecasting estimate_missing
IMSLS_MAX_LAG, int maxlag (Input)
Maximum lag number when method = 3 was chosen.

Default: maxlag = 10

IMSLS_NTIMES, int *ntimes (Output)
Number of elements in the time series with estimated missing values. Note that
ntimes = tpoints[n_obs-1]-tpoints[0]+1.

IMSLS_MEAN_ESTIMATE, float mean_estimate (Input)
Estimate of the mean of the time series.

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used by method 2.

Default: relative_error = 100 × imsls_f_machine(4) for single precision,
relative_error = 100 × imsls_d_machine(4) for double precision.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equations solver used by method 2.

Default: max_iterations = 200.

IMSLS_TIMES_ARRAY, int **times (Output)
Address of a pointer to an internally allocated array of length ntimes = tpoints[n_obs-1]-
tpoints[0]+1 containing the time points of the time series with estimates for the missing values.

IMSLS_TIMES_ARRAY_USER, int times[] (Output)
Storage for array times is provided by the user. See IMSLS_TIMES_ARRAY.

IMSLS_MISSING_INDEX, int **missing_index (Output)
Address of a pointer to an internally allocated array of length (ntimes-n_obs) containing the
indices for the missing values in array times. If ntimes-n_obs = 0, then no missing value could be
found and NULL is returned.

IMSLS_MISSING_INDEX_USER, int missing_index[] (Output)
Storage for array missing_index is provided by the user. See IMSLS_MISSING_INDEX.

IMSLS_RETURN_USER, float u_z[] (Output)
If specified, u_z is a vector of length tpoints[n_obs-1]-tpoints[0]+1 containing the time
series values together with estimates for missing values.
857

 Time Series and Forecasting estimate_missing
Description
Traditional time series analysis as described by Box, Jenkins and Reinsel (1994) requires the observations made at

equidistant time points . When observations are missing, the problem occurs to deter-
mine suitable estimates. Function imsls_f_estimate_missing offers 4 estimation methods:

Method 0 estimates the missing observations in a gap by the median of the last four time series values before
and the first four values after the gap. If not enough values are available before or after the gap then the number
is reduced accordingly. This method is very fast and simple, but its use is limited to stationary ergodic series with-
out outliers and level shifts.

Method 1 uses a cubic spline interpolation method to estimate missing values. Here the interpolation is again
done over the last four time series values before and the first four values after the gap. The missing values are
estimated by the resulting interpolant. This method gives smooth transitions across missing values.

Method 2 assumes that the time series before the gap can be well described by an AR(1) process. If the last

observation prior to the gap is made at time point then it uses the time series values at to

compute the one-step-ahead forecast at origin . This value is taken as an estimate for the missing value at time

point . If the value at is also missing then the values at time points are used to

recompute the AR(1) model, estimate the value at and so on. The coefficient in the AR(1) model is com-
puted internally by the method of least squares from function imsls_f_arma.

Finally, method 3 uses an AR(p) model to estimate missing values by a one-step-ahead forecast . First, function
imsls_f_auto_uni_ar, applied to the time series prior to the missing values, is used to determine the opti-

mum p from the set {0, 1, ..., max_lag} of possible values and to compute the parameters of the
resulting AR(p) model. The parameters are estimated by the least squares method based on Householder trans-

formations as described in Kitagawa and Akaike (1978). Denoting the mean of the series by μ

the one-step-ahead forecast at origin , , can be computed by the formula

This value is used as an estimate for the missing value. The procedure starting with imsls_f_auto_uni_ar is
then repeated for every further missing value in the gap. All four estimation methods treat gaps of missing values
in increasing time order.

Example
Consider the AR(1) process

t1, t1 + 1, t1 + 2, … , tn

tm t1, t1 + 1, … , tm
tm

tm+1 tm+1 t1, t1 + 1, … , tm+1
tm+2 ϕ1

ϕ1, … ,ϕp

yt1, yt1+1, … , ytm
tm y^ tm 1

ŷtm 1 = μ 1 −∑ j=1

p
ϕ j +∑ j=1

p
ϕ jytm+1− j.
858

 Time Series and Forecasting estimate_missing
We assume that {at} is a Gaussian white noise process, . Then, E[Yt] = 0 and

 (see Anderson, p. 174).

The time series in the code below was artificially generated from an AR(1) process characterized by

and . This process is stationary with VAR[Yt] = 1. As initial value, was taken. The

sequence {at} was generated by a random number generator.

From the original series, we remove the observations at time points t=130, t=140, t=141, t=160, t=175, t=176.
Then, imsls_f_estimate_missing is used to compute estimates for the missing values by all 4 estimation
methods available. The estimated values are compared with the actual values.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
int main()
{
 int i, j, k, maxlag = 20, times_1[200], times_2[200], ntemp,
 n_obs, n_miss, ntimes, miss_ind, *times = NULL,
 *missing_index = NULL;
 float x_1[200], x_2[200], *result = NULL;
 float y[200] = {
 1.30540,-1.37166,1.47905,-0.91059,1.36191,-2.16966,3.11254,
 -1.99536,2.29740,-1.82474,-0.25445,0.33519,-0.25480,-0.50574,
 -0.21429,-0.45932,-0.63813,0.25646,-0.46243,-0.44104,0.42733,
 0.61102,-0.82417,1.48537,-1.57733,-0.09846,0.46311,0.49156,
 -1.66090,2.02808,-1.45768,1.36115,-0.65973,1.13332,-0.86285,
 1.23848,-0.57301,-0.28210,0.20195,0.06981,0.28454,0.19745,
 -0.16490,-1.05019,0.78652,-0.40447,0.71514,-0.90003,1.83604,
 -2.51205,1.00526,-1.01683,1.70691,-1.86564,1.84912,-1.33120,
 2.35105,-0.45579,-0.57773,-0.55226,0.88371,0.23138,0.59984,
 0.31971,0.59849,0.41873,-0.46955,0.53003,-1.17203,1.52937,
 -0.48017,-0.93830,1.00651,-1.41493,-0.42188,-0.67010,0.58079,
 -0.96193,0.22763,-0.92214,1.35697,-1.47008,2.47841,-1.50522,
 0.41650,-0.21669,-0.90297,0.00274,-1.04863,0.66192,-0.39143,
 0.40779,-0.68174,-0.04700,-0.84469,0.30735,-0.68412,0.25888,
 -1.08642,0.52928,0.72168,-0.18199,-0.09499,0.67610,0.14636,
 0.46846,-0.13989,0.50856,-0.22268,0.92756,0.73069,0.78998,
 -1.01650,1.25637,-2.36179,1.99616,-1.54326,1.38220,0.19674,
 -0.85241,0.40463,0.39523,-0.60721,0.25041,-1.24967,0.26727,
 1.40042,-0.66963,1.26049,-0.92074,0.05909,-0.61926,1.41550,
 0.25537,-0.13240,-0.07543,0.10413,1.42445,-1.37379,0.44382,
 -1.57210,2.04702,-2.22450,1.27698,0.01073,-0.88459,0.88194,
 -0.25019,0.70224,-0.41855,0.93850,0.36007,-0.46043,0.18645,
 0.06337,0.29414,-0.20054,0.83078,-1.62530,2.64925,-1.25355,
 1.59094,-1.00684,1.03196,-1.58045,2.04295,-2.38264,1.65095,
 -0.33273,-1.29092,0.14020,-0.11434,0.04392,0.05293,-0.42277,
 0.59143,-0.03347,-0.58457,0.87030,0.19985,-0.73500,0.73640,
 0.29531,0.22325,-0.60035,1.42253,-1.11278,1.30468,-0.41923,

Yt = ϕ1Yt−1 + at, t = 1,2,3, …

at ∼ N 0,σ2

VAR Yt = σ2 / 1 − ϕ1
2

ϕ1 = − 0.7

σ2 = 1 − ϕ1
2 = 0.51 Y 0 : = a0
859

 Time Series and Forecasting estimate_missing
 -0.38019,0.50937,0.23051,0.46496,0.02459,-0.68478,0.25821,
 1.17655,-2.26629,1.41173,-0.68331
 };
 int tpoints[200] = {
 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,
 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,
 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,
 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,
 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,
 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,
 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,
 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,
 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,
 187,188,189,190,191,192,193,194,195,196,197,198,199,200
 };

 n_miss = 0;
 times_1[0] = times_2[0] = tpoints[0];
 x_1[0] = x_2[0] = y[0];
 k = 0;
 for (i = 1; i < 200; i++) {
 times_1[i] = tpoints[i];
 x_1[i] = y[i];
 /* Generate series with missing values */
 if (i!=129 && i!= 139 && i!=140 && i!=159 && i!=174 && i!=175) {
 k += 1;
 times_2[k] = times_1[i];
 x_2[k] = x_1[i];
 }
 }
 n_obs = k + 1;
 for (j=0;j<=3;j++) {
 if (j <= 2)
 result = imsls_f_estimate_missing(n_obs, times_2, x_2,
 IMSLS_METHOD, j,
 IMSLS_NTIMES, &ntimes,
 IMSLS_TIMES_ARRAY, ×,
 IMSLS_MISSING_INDEX, &missing_index,
 0);
 else
 result = imsls_f_estimate_missing(n_obs, times_2, x_2,
 IMSLS_METHOD, j,
 IMSLS_NTIMES, &ntimes,
 IMSLS_MAX_LAG, 20,
 IMSLS_TIMES_ARRAY, ×,
 IMSLS_MISSING_INDEX, &missing_index,
 0);

 if (!result) {
 if (times) {
 imsls_free(times);
 times = NULL;
860

 Time Series and Forecasting estimate_missing
 }
 if (missing_index) {
 imsls_free(missing_index);
 missing_index = NULL;
 }
 return;
 }
 if (j == 0) printf("\nMethod: Median\n");
 if (j == 1) printf("\nMethod: Cubic Spline Interpolation\n");
 if (j == 2) printf("\nMethod: AR(1) Forecast\n");
 if (j == 3) printf("\nMethod: AR(p) Forecast\n");
 printf("ntimes = %d\n", ntimes);
 printf("time\tactual\tpredicted\tdifference\n");
 n_miss = ntimes-n_obs;
 for (i = 0; i < n_miss; i++) {
 miss_ind = missing_index[i];
 printf("%d, %10.5f, %10.5f, %18.6f\n", times[miss_ind],
 x_1[miss_ind], result[miss_ind],
 fabs(x_1[miss_ind]-result[miss_ind]));
 }
 if (result) {
 imsls_free(result);
 result = NULL;
 }
 if (times) {
 imsls_free(times);
 times = NULL;
 }
 if (missing_index) {
 imsls_free(missing_index);
 missing_index = NULL;
 }
 }
}

Output

Method: Median
ntimes = 200
time actual predicted difference
130, -0.92074, 0.26132, 1.182060
140, 0.44382, 0.05743, 0.386390
141, -1.57210, 0.05743, 1.629530
160, 2.64925, 0.04680, 2.602450
175, -0.42277, 0.04843, 0.471195
176, 0.59143, 0.04843, 0.543005
Method: Cubic Spline Interpolation
ntimes = 200
time actual predicted difference
130, -0.92074, 1.54109, 2.461829
140, 0.44382, -0.40730, 0.851119
861

 Time Series and Forecasting estimate_missing
141, -1.57210, 2.49709, 4.069194
160, 2.64925, -2.94712, 5.596371
175, -0.42277, 0.25066, 0.673430
176, 0.59143, 0.38032, 0.211107
Method: AR(1) Forecast
ntimes = 200
time actual predicted difference
130, -0.92074, -0.92971, 0.008968
140, 0.44382, 1.02824, 0.584424
141, -1.57210, -0.74527, 0.826832
160, 2.64925, 1.22880, 1.420454
175, -0.42277, 0.01049, 0.433259
176, 0.59143, 0.03683, 0.554601
Method: AR(p) Forecast
ntimes = 200
time actual predicted difference
130, -0.92074, -0.86385, 0.056894
140, 0.44382, 0.98098, 0.537164
141, -1.57210, -0.64489, 0.927206
160, 2.64925, 1.18966, 1.459592
175, -0.42277, -0.00105, 0.421722
176, 0.59143, 0.03773, 0.553705
862

 Time Series and Forecasting hw_time_series
hw_time_series

more...

Calculates parameters and forecasts using the Holt-Winters Multiplicative or Additive forecasting method for sea-
sonal data.

Synopsis
#include <imsls.h>

float *imsls_f_hw_time_series (int nobs, int nseason, float y[], …, 0)

The type double function is imsls_d_hw_time_series.

Required Arguments
int nobs (Input)

The number of equally spaced series values.

int nseason (Input)
The number of time points in a season, or the length of the season. The function requires that
2 ≤ nseason ≤ nobs unless one of the non-seasonal options is specified, in which case nseason
is ignored. See the optional arguments for details.

float y[] (Input)
An array of length nobs containing the values of the time series.

Return Value
Pointer to an array of length (nobs + 1)*3 containing the values of the smoothing parameters followed by the
level, trend, and seasonal component sequences. Note that if IMSLS_NONSEASONAL_TREND is specified, the
array is of length (nobs + 1)*2 and if IMSLS_NONSEASONAL_CONSTANT is specified, it is of length
(nobs + 1).
863

 Time Series and Forecasting hw_time_series
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_hw_time_series (int nobs, int nseason, float y[],

IMSLS_ADDITIVE, int add,
IMSLS_SERIES_INCREMENT, int incy,
IMSLS_NONSEASONAL_TREND,
IMSLS_NONSEASONAL_CONSTANT,
IMSLS_USE_PARAMS, float params[],
IMSLS_N_SAMPLE, int nsamples,
IMSLS_BOUNDS, float bounds[],
IMSLS_INIT_INPUT, int init,
IMSLS_FORECAST_CONFIDENCE, float confid,
IMSLS_RETURN_USER, float sequences[],
IMSLS_FORECASTS, int nforecasts, float **forecasts,
IMSLS_FORECASTS_USER, int nforecasts, float forecasts[],
IMSLS_SERIES_SMOOTHED, float **ysmoothed,
IMSLS_SERIES_SMOOTHED_USER, float ysmoothed[],
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_SS_RESIDUAL, float *sumofsquares,
0)

Optional Arguments
IMSLS_ADDITIVE, int add (Input)

Specifies the use of the Multiplicative or Additive time series model. add must be 1 or 0. If add = 1
the Additive model is used.

Default: add = 0. The Multiplicative model is the default.

IMSLS_SERIES_INCREMENT, int incy (Input)
The constant stride through the series data y. The length of y must be at least
(nobs-1)×|incy|+1. When incy < 0, the series is incremented in reverse order beginning at
index nobs*(-incy)-1.

Default: incy = 1.
864

 Time Series and Forecasting hw_time_series
IMSLS_NONSEASONAL_TREND, (Input)
Remove the seasonal component and fit only the level and trend. If present, the models involve only
the level (α) and trend (β) parameters. The method is equivalent to double exponential smoothing.

Default: The method includes all three components

IMSLS_NONSEASONAL_CONSTANT, (Input)
Remove the trend and the seasonal components and fit only the level. If present, the models involve
only the level (α) parameter. The method is simple exponential smoothing.

Default: The method includes all three components.

IMSLS_USE_PARAMS, float params[] (Input)
An array containing the values of the smoothing parameters for the level (α), the trend (β), and the
seasonal (γ) component sequences. The array should be length 3 unless
IMSLS_NONSEASONAL_TREND is specified, in which case it is of length 2 containing values for level
(α) and the trend (β). Likewise, if IMSLS_NONSEASONAL_CONSTANT is specified, params is of
length 1 and contains the value for the level parameter (α) only.

Default: Parameter values are selected by minimizing the mean squared one step ahead forecast
error.

IMSLS_N_SAMPLE, int nsamples (Input)
Number of evaluations of the residual norm that are sampled to obtain starting values for the
smoothing parameters, (α, β, γ).

Default: nsamples = nobs.

IMSLS_BOUNDS, float bounds[] (Input)
An array of length 6 that contains the lower and upper bounds for each of the smoothing parame-
ters, (α, β, γ). The three lower bounds are followed by the 3 upper bounds. Note that the lower and
upper bounds must be in the interval [0,1], inclusive. The array is ignored if IMSLS_USE_PARAMS is
used.

Default: Lower bounds are all 0 and upper bounds are all 1.

IMSLS_INIT_INPUT, int init (Input)
init must be 1 or 0. If init = 1, the initial values for the level, trend, and seasonal component
sequences are provided in the user array, sequences. The values must be stored in rows
1, 2, …, nseason of the return array. See IMSLS_RETURN_USER and the Description section for
more information.

Default: init = 0. Initial values are computed by the function.
865

 Time Series and Forecasting hw_time_series
IMSLS_FORECAST_CONFIDENCE, float confid (Input)
This value provides the confidence level to use in the calculation of the prediction intervals. If this
argument is present and valid (0.0 < confid < 100.0), prediction intervals are provided for each
forecast.

Default: Prediction intervals are not provided.

IMSLS_RETURN_USER, float sequences[] (Input/Output)
Storage for the return value is provided by the user. When IMSLS_INIT_INPUT is set to 1,
sequences must contain initial values for the component sequences on input in rows
1, 2, …, nseason of the array. Rows 0 and nseason + 1 to nobs are ignored on input. See the
Description section for the required format of the array.

IMSLS_FORECASTS, int nforecasts, float **forecasts
int nforecasts (Input)

The number of forecasts desired past the series data.
float **forecasts (Output)

Address of a pointer to an internally allocated array of length nforecasts. The value of
the i-th row is the forecast (i + 1) steps past the series data. If the option
IMSLS_FORECAST_CONFIDENCE is used, the array will be of length nforecasts×3
and the value of the i-th row is the forecast (i+1) steps ahead followed by the prediction
interval lower and upper bounds.

IMSLS_FORECASTS_USER, int nforecasts, float forecasts[]
int nforecasts (Input)

The number of forecasts desired past the series data.
float forecasts[] (Output)

Storage for array forecasts is provided by the user. See IMSLS_FORECASTS.

IMSLS_SERIES_SMOOTHED, float **ysmoothed (Output)
The address of a pointer to the internally allocated array of length nobs containing the fitted series
values.

IMSLS_SERIES_SMOOTHED_USER, float ysmoothed[] (Output)
Storage for array ysmoothed is provided by the user. See IMSLS_SERIES_SMOOTHED.

IMSLS_COV, float **cov (Output)
The address of a pointer to an internally allocated array containing the variance-covariance matrix of
the smoothing parameters estimated by minimizing the mean squared forecast error. The length of
the array is 3 × 3 unless IMSLS_NONSEASONAL_TREND is specified, in which case it is 2 × 2, or
unless IMSLS_NONSEASONAL_CONSTANT is specified, in which case it is 1 × 1. IMSLS_COV is
ignored when the option IMSLS_USE_PARAMS is present.

IMSLS_COV_USER, float cov[] (Output)
Storage for array cov is provided by the user. See IMSLS_COV.
866

 Time Series and Forecasting hw_time_series
IMSLS_SS_RESIDUAL, float *sumofsquares (Output)
The sum of squares of the one step ahead forecast errors.

Description
Function imsls_f_hw_time_series performs the Holt-Winters forecasting method to an equally spaced

time series, {yt} where N = nobs and (or where

 and). The Holt-Winters procedure fits three component sequences known as the
level, the trend, and the seasonal sequence. There are two formulations, depending on whether the seasonal com-
ponent of the time series is thought to be additive or multiplicative. The seasonal component depends on the
length of the season, nseason = s, where s = 2,…,N.

Holt-Winters Additive Model

Holt-Winters Multiplicative Model

Note that without a seasonal component, both the additive and multiplicative formulations reduce to the same
methods. (The seasonal sequence is set to 1 for the multiplicative model, and identically 0 for the additive model.)

Default Starting Values

the level sequence

the trend sequence

the seasonal sequence

the forecast sequence

the level sequence

the trend sequence

the seasonal sequence

the forecast sequence

t = 1, … ,N t = 0,1 ·incy, 2 ·incy, … ,K ·incy
K ·incy ≤ N incy ≥ 1

Lt = α yt − St−s + 1 − α Lt−1 + bt−1

bt = β Lt − Lt−1 + 1 − β bt−1

St = γ yt − Lt + 1 − γ St−s,

Ft+k = Lt + kbt + St+k−s

Lt = α yt / St−s + 1 − α Lt−1 + bt−1

bt = β Lt − Lt−1 + 1 − β bt−1

St = γ yt / Lt + 1 − γ St−s

Ft+k = Lt + kbt St+k−s
867

 Time Series and Forecasting hw_time_series
Initial values are required for these sequences. The software allows the user code to define these initial values
(see optional argument IMSLS_INIT_INPUT). If they are not provided, then the first two seasons of data are
used:

The smoothing parameters (α, β, γ) are each in the interval [0,1] and can be specified by the user (see optional
argument IMSLS_USE_PARAMS), or automatically set by minimizing the within sample one-step ahead mean
squared forecast error. Note that this objective function is not necessarily convex and solutions will depend on
starting values. See Chatfield and Yar (1988) for further discussion. Starting values for (α, β, γ) are obtained by
minimizing the mean squared error over nsamples bootstrap samples of the time series. Experiments suggest
that this approach helps prevent poor starting values. Note, that solutions may vary for different settings of the
number of random samples, nsamples.

The return value of the imsls_hw_time_series is the array of length 3*(N + 1) = 3*(nobs + 1) containing
the smoothing parameter values on the first row, followed by the calculated level, trend, and seasonal sequences.
When N = nobs and s = nseason, the format of the return value is as follows:

 (Multiplicative or Additive)

Series Storage

Row Value

0

1 0 0 S1

2 0 0 S2

⋮ ⋮ ⋮ ⋮
s Ls bs Ss

s+1 Ls+1 bs+1 Ss+1

⋮ ⋮ ⋮ ⋮
N LN bN SN

Ls =
1
s∑
i=1

s

yi, s > 1

bs =
1
s∑
i=1

s yi+s − yi
s , s > 1

Si = yi / Ls or yi − Ls, i = 1, … ,s

α̂ β^ γ̂
868

 Time Series and Forecasting hw_time_series
If one of the nonseasonal options is specified, the return value will be of length 2*(nobs + 1) or (nobs + 1)
accordingly.

The variance-covariance matrix for the parameters (α, β, γ) is

where ei is the one-step-ahead forecast error, and is the Jacobian matrix of the series using the forecast model

and calculating forecasts one step ahead of each datum. Prediction intervals are calculated following Chatfield
and Yar (1991).

Example
A series of nobs = 12 seasonal data values are analysed using the Multiplicative and the Additive Holt-Winters
method. The season size is nseason = 4. The objective is to predict one season ahead, nforecasts = 4 using
each method. The forecasts and prediction interval lower and upper bounds are returned. The mean sum of
squares of the one-step ahead forecast errors is shown to be smallest using the Multiplicative model.

#include <imsls.h>
#include <stdio.h>
#define NOBS 12
#define NSEASON 4
int main()
{
 float y[NOBS]={23,25,36,31,26,28,48,36,31,42,53,43};
 float *seriesm,*seriesa, *forecasts, *ysmoothed;
 float ss,confidence;
 int nforecasts=NSEASON,nvars=3;
 /* Compute the time series and forecasts
 using the Multiplicative model. */
 confidence=95.0;
 seriesm=imsls_f_hw_time_series(NOBS,NSEASON,y,
 IMSLS_FORECAST_CONFIDENCE,confidence,
 IMSLS_FORECASTS,nforecasts,&forecasts,
 IMSLS_SERIES_SMOOTHED, &ysmoothed,
 IMSLS_SS_RESIDUAL,&ss,
 0);
 imsls_f_write_matrix(" Input time series ", 1,NOBS,y,0);
 imsls_f_write_matrix(" Smoothed Multiplicative series ",
 1,NOBS, ysmoothed,0);
 imsls_f_write_matrix(" Parameters and internal sequences ",
 NOBS+1,nvars,seriesm,0);
 imsls_f_write_matrix("Multiplicative forecasts\nwith"
 " 95% prediction interval",
 nforecasts,3,forecasts,0);

cov =
∑ ei

2

N − 2s − 3 J
TJ

−1

J

869

 Time Series and Forecasting hw_time_series
 printf("MSS - Multiplicative %3.2f \n",
 ss/(float)(NOBS-NSEASON));
 imsls_free(seriesm);
 imsls_free(forecasts);
 imsls_free(ysmoothed);
 /* Compute the time series and forecasts
 using the Additive model. */
 seriesa=imsls_f_hw_time_series(NOBS, NSEASON, y,
 IMSLS_FORECASTS,nforecasts,&forecasts,
 IMSLS_SS_RESIDUAL, &ss,
 IMSLS_ADDITIVE, 1,
 IMSLS_FORECAST_CONFIDENCE,confidence,
 IMSLS_SERIES_SMOOTHED,&ysmoothed,
 0);
 imsls_f_write_matrix(" Smoothed Additive series ",
 1,NOBS, ysmoothed,0);
 imsls_f_write_matrix(" Parameters and internal sequences ",
 NOBS+1,nvars,seriesa,0);
 imsls_f_write_matrix("Additive forecasts\nwith"
 " 95% prediction interval",
 nforecasts,3, forecasts,0);
 printf("MSS - Additive %3.2f \n",
 ss/(float)(NOBS-NSEASON));
}
#undef NOBS
#undef NSEASON

Output

 Input time series
 1 2 3 4 5 6
 23 25 36 31 26 28
 7 8 9 10 11 12
 48 36 31 42 53 43
 Smoothed Multiplicative series
 1 2 3 4 5 6
 23.00 25.00 36.00 31.00 24.15 27.65
 7 8 9 10 11 12
 41.77 38.04 30.44 33.72 54.51 45.25
 Parameters and internal sequences
 1 2 3
 1 0.04 1.00 0.44
 2 0.00 0.00 0.80
 3 0.00 0.00 0.87
 4 0.00 0.00 1.25
 5 28.75 1.44 1.08
 6 30.28 1.53 0.83
 7 31.82 1.54 0.87
 8 33.55 1.73 1.33
 9 35.20 1.66 1.05
870

 Time Series and Forecasting hw_time_series
10 36.89 1.68 0.83
11 38.93 2.04 0.96
12 40.93 2.00 1.31
13 42.85 1.92 1.03
 Multiplicative forecasts
 with 95% prediction interval
 1 2 3
1 37.26 27.54 46.97
2 44.99 35.24 54.74
3 63.91 53.99 73.83
4 52.14 42.17 62.11
MSS - Multiplicative 15.35
 Smoothed Additive series
 1 2 3 4 5 6
 23.00 25.00 36.00 31.00 23.00 26.32
 7 8 9 10 11 12
 38.58 38.54 34.05 35.73 56.63 43.83
 Parameters and internal sequences
 1 2 3
 1 0.27 0.64 1.00
 2 0.00 0.00 -5.75
 3 0.00 0.00 -3.75
 4 0.00 0.00 7.25
 5 28.75 0.00 2.25
 6 29.56 0.52 -3.56
 7 30.52 0.81 -2.52
 8 33.86 2.43 14.14
 9 35.61 1.99 0.39
10 36.79 1.47 -5.79
11 39.94 2.55 2.06
12 41.51 1.92 11.49
13 43.22 1.78 -0.22
 Additive forecasts
 with 95% prediction interval
 1 2 3
1 39.21 27.80 50.62
2 48.84 36.37 61.31
3 60.05 45.74 74.35
4 50.13 33.24 67.01
MSS - Additive 21.18
871

 Time Series and Forecasting hw_time_series
Warning Errors

Fatal Errors

IMSLS_HW_COV_NOT_EST The covariance matrix could not be estimated. The
parameter estimates may be at the upper or lower
bound.

IMSLS_HW_SEASON_SIZE The number for a Holt-Winters series season length
must be > = 2. Input value is =#.

IMSLS_HW_SERIES_SIZE The number of observations for a Holt-Winters input
series must be “nobs” > 2*“nseason”+ 3. Now have
“nobs” = # and “nseason”=#.

IMSLS_HW_SERIES_SIGN The values of the input series, using the Holt-Winters
Multiplicative method, must be positive. The series
entry with index = # now has the non-positive value #.
872

 Time Series and Forecasting garch
garch
Computes estimates of the parameters of a GARCH(p,q) model.

Synopsis
#include <imsls.h>
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[], …, 0)

The type double function is imsls_d_garch.

Required Arguments
int p (Input)

Number of GARCH parameters.

int q (Input)
Number of ARCH parameters.

int m (Input)
Length of the observed time series.

float y[] (Input)
Array of length m containing the observed time series data.

float xguess[] (Input)
Array of length p + q + 1 containing the initial values for the parameter array x[].

Return Value
Pointer to the parameter array x[] of length p + q + 1 containing the estimated values of sigma squared, fol-
lowed by the q ARCH parameters, and the p GARCH parameters.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_garch (int p, int q, int m, float y[], float xguess[],
873

 Time Series and Forecasting garch
IMSLS_MAX_SIGMA, float max_sigma,
IMSLS_A, float *a,
IMSLS_AIC, float *aic,
IMSLS_VAR, float *var,
IMSLS_VAR_USER, float var[],
IMSLS_VAR_COL_DIM, int var_col_dim,
IMSLS_RETURN_USER, float x[],
0)

Optional Arguments
IMSLS_MAX_SIGMA, float max_sigma (Input)

Value of the upperbound on the first element (sigma) of the array of returned estimated coefficients.

Default = 10.

IMSLS_A, float *a (Output)
Value of Log-likelihood function evaluated at the estimated parameter array x.

IMSLS_AIC, float *aic (Output)
Value of Akaike Information Criterion evaluated at the estimated parameter array x.

IMSLS_VAR, float *var (Output)
Array of size (p+q+1)x(p+q+1) containing the variance-covariance matrix.

IMSLS_VAR_USER, float var[] (Output)
Storage for array var is provided by the user. See IMSLS_VAR.

IMSLS_VAR_COL_DIM, int var_col_dim (Input)
Column dimension (p+q+1)of the variance-covariance matrix.

IMSLS_RETURN_USER, float x[] (Output)
If specified, x returns an array of length p +q+1 containing the estimated values of sigma squared,
followed by the q ARCH parameters, and the p GARCH parameters. Storage for estimated parameter
array x is provided by the user.

Description
The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model for a time series {wt} is defined as
874

 Time Series and Forecasting garch
where zt’s are independent and identically distributed standard normal random variables,

The above model is denoted as GARCH(p,q). The βi and αi coefficients will be referred to as GARCH and ARCH

coefficients, respectively. When βi = 0, i = 1,2,…, p, the above model reduces to ARCH(q) which was proposed by

Engle (1982). The nonnegativity conditions on the parameters imply a nonnegative variance and the condition on
the sum of the βi’s and αi’s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have often found to appropriately
account for conditional heteroskedasticity (Palm 1996). This finding is similar to linear time series analysis based
on ARMA models.

It is important to notice that for the above models positive and negative past values have a symmetric impact on
the conditional variance. In practice, many series may have strong asymmetric influence on the conditional vari-
ance. To take into account this phenomena, Nelson (1991) put forward Exponential GARCH (EGARCH). Lai (1998)
proposed and studied some properties of a general class of models that extended linear relationship of the con-
ditional variance in ARCH and GARCH into nonlinear fashion

The maximum likelihood method is used in estimating the parameters in GARCH(p,q). The log-likelihood of the
model for the observed series {wt} with length m is

Thus log(L) is maximized subject to the constraints on the αi, βi, and σ.

In this model, if q = 0, the GARCH model is singular since the estimated Hessian matrix is singular.

The initial values of the parameter vector x entered in vector xguess must satisfy certain constraints. The first

element of xguess refers to σ2 and must be greater than zero and less than max_sigma. The remaining p+q
initial values must each be greater than or equal to zero and sum to a value less than one.

To guarantee stationarity in model fitting,

wt = ztσt

σt
2 = σ2 + ∑

i=1

p
βiσt−i

2 + ∑
i=1

q
αiwt−i

2 ,

0 < σ2 < max_sigma, βi ≥ 0, αi ≥ 0 and

∑
i=2

p+q+1
x i = ∑

i=1

p
βi + ∑

i=1

q
αi < 1.

log(L) = − m2 log(2π) −
1
2 ∑
t=1

m
yt
2 / σt

2 − 12 ∑
t=1

m
logσt

2,

where σt
2 = σ2 + ∑

i=1

p
βiσt−i

2 + ∑
i=1

q
αiwt−i

2 .
875

 Time Series and Forecasting garch
is checked internally. The initial values should selected from values between zero and one.

AIC is computed by

- 2 log (L) + 2(p+q+1),

where log(L) is the value of the log-likelihood function.

Statistical inferences can be performed outside the function GARCH based on the output of the log-likelihood
function (a), the Akaike Information Criterion (aic), and the variance-covariance matrix (var).

Example
The data for this example are generated to follow a GARCH(p,q) process by using a random number generation
function sgarch. The data set is analyzed and estimates of sigma, the ARCH parameters, and the GARCH
parameters are returned. The values of the Log-likelihood function and the Akaike Information Criterion are
returned from the optional arguments IMSLS_A and IMSLS_AIC.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
void sgarch (int p, int q, int m, float x[],
 float y[], float z[], float y0[], float sigma[]);
#define MAX(a, b) ((a)>(b)?(a):(b))
#define M 1000
#define N (P + Q + 1)
#define P 2
#define Q 1
int main ()
{
 float a, aic, wk1[M + 1000], wk2[M + 1000],
 wk3[M + 1000], x[N], xguess[N], y[M];
 float *result;
 imsls_random_seed_set (182198625);
 x[0] = 1.3;
 x[1] = .2;
 x[2] = .3;
 x[3] = .4;
 xguess[0] = 1.0;
 xguess[1] = .1;
 xguess[2] = .2;
 xguess[3] = .3;

∑
i=2

p+q+1

x i =∑
i=1

p

βi +∑
i=1

q

αi < 1
876

 Time Series and Forecasting garch
 sgarch (P, Q, M, x, y, wk1, wk2, wk3);
 result = imsls_f_garch(P, Q, M, y, xguess,
 IMSLS_A, &a,
 IMSLS_AIC, &aic,
 0);
 printf("Sigma estimate is\t%11.4f\n", result[0]);
 printf("ARCH(1) estimate is\t%11.4f\n", result[1]);
 printf("GARCH(1) estimate is\t%11.4f\n", result[2]);
 printf("GARCH(2) estimate is\t%11.4f\n", result[3]);
 printf("\nLog-likelihood function value is\t%11.4f\n", a);
 printf("Akaike Information Criterion value is\t%11.4f\n", aic);
}
void sgarch (int p, int q, int m, float x[],
 float y[], float z[], float y0[], float sigma[])
{
 int i, j, l;
 float s1, s2, s3;
 imsls_f_random_normal (m + 1000, IMSLS_RETURN_USER, z, 0);
 l = MAX (p, q);
 l = MAX (l, 1);
 for (i = 0; i < l; i++) y0[i] = z[i] * x[0];
 /* COMPUTE THE INITIAL VALUE OF SIGMA */
 s3 = 0.0;
 if (MAX (p, q) >= 1) {
 for (i = 1; i < (p + q + 1); i++) s3 += x[i];
 }
 for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3);
 for (i = l; i < (m + 1000); i++) {
 s1 = 0.0;
 s2 = 0.0;
 if (q >= 1) {
 for (j = 0; j < q; j++)
 s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];
 }
 if (p >= 1) {
 for (j = 0; j < p; j++)
 s2 += x[q + 1 + j] * sigma[i - j - 1];
 }
 sigma[i] = x[0] + s1 + s2;
 y0[i] = z[i] * sqrt (sigma[i]);
 }
 /* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS */
 for (i = 0; i < m; i++) y[i] = y0[1000 + i];
}

877

 Time Series and Forecasting garch
Output

Sigma estimate is 1.7629
ARCH(1) estimate is 0.2517
GARCH(1) estimate is 0.3340
GARCH(2) estimate is 0.3034
Log-likelihood function value is -2707.0886
Akaike Information Criterion value is 5422.1772
878

 Time Series and Forecasting kalman
kalman
Performs Kalman filtering and evaluates the likelihood function for the state-space model.

Synopsis
#include <imsls.h>
void imsls_f_kalman (int nb, float nb[], float covb[], int *n, float *ss, float *alndet, ..., 0)

The type double function is imsls_d_kalman.

Required Arguments
int nb (Input)

Number of elements in the state vector.

float b[] (Input/Output)
Array of length nb containing the estimated state vector. The input is the estimated state vector at
time k given the observations through time k - 1. The output is the estimated state vector at time
k + 1 given the observations through time k. On the first call to imsls_f_kalman, the input b must
be the prior mean of the state vector at time 1.

float covb[] (Input/Output)
Array of size nb by nb such that covb×σ 2 is the mean squared error matrix for b. Before the first
call to imsls_f_kalman, covb×σ 2 must equal the variance-covariance matrix of the state
vector.

int *n (Input/Output)
Pointer to the rank of the variance-covariance matrix for all the observations. n must be initialized to
zero before the first call to imsls_f_kalman. In the usual case when the variance-covariance
matrix is nonsingular, n equals the sum of the ny’s from the invocations to imsls_f_kalman. See
optional argument IMSLS_UPDATE below for the definition of ny.

float *ss (Input/Output)
Pointer to the generalized sum of squares. The estimate of σ2 is given by . ss must be initialized
to zero before the first call to imsls_f_kalman is made.

ssn
879

 Time Series and Forecasting kalman
float *alndet (Input/Output)
Pointer to the natural log of the product of the nonzero eigenvalues of P where P × σ 2 is the vari-
ance-covariance matrix of the observations. Although alndet is computed, imsls_f_kalman
avoids the explicit computation of P. alndet must be initialized to zero before the first call to
imsls_f_kalman. In the usual case when P is nonsingular, alndet is the natural log of the deter-
minant of P.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_kalman (int nb, float b[], float covb[], int *n, float *ss, float *alndet,

IMSLS_UPDATE, int ny, float *y, float *z, float *r,
IMSLS_Z_COL_DIM, int z_col_dim,
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_T, float *t,
IMSLS_T_COL_DIM, int t_col_dim,
IMSLS_Q, float *q,
IMSLS_Q_COL_DIM, int q_col_dim,
IMSLS_TOLERANCE, float tolerance,
IMSLS_V, float **v,
IMSLS_V_USER, float v[],
IMSLS_COVV, float **covv,
IMSLS_COVV_USER, float covv[],
0)

Optional Arguments
IMSLS_UPDATE, int ny, float *y, float *z, float *r (Input)

Perform computation of the update equations.

ny: Number of observations for current update.

y: Array of length ny containing the observations.

z: ny by nb array containing the matrix relating the observations to the state vector in the observa-
tion equation.
r: ny by ny array containing the matrix such that r × σ2 is the variance-covariance matrix of errors
in the observation equation.

σ 2 is a positive unknown scalar. Only elements in the upper triangle of r are referenced.
880

 Time Series and Forecasting kalman
IMSLS_Z_COL_DIM, int z_col_dim (Input)
Column dimension of the matrix z.

Default: z_col_dim = nb
IMSLS_R_COL_DIM, int r_col_dim (Input)

Column dimension of the matrix r.
Default: r_col_dim = ny

IMSLS_T, float *t (Input)
nb by nb transition matrix in the state equation
Default: t = identity matrix

IMSLS_T_COL_DIM, int t_col_dim (Input)
Column dimension of the matrix t.
Default: t_col_dim = nb

IMSLS_Q, float *q (Input)
nb by nb matrix such that q × σ2 is the variance-covariance matrix of the error vector in the state
equation.

Default: There is no error term in the state equation.

IMSLS_Q_COL_DIM, int q_col_dim (Input)
Column dimension of the matrix q.

Default: q_col_dim = nb
IMSLS_TOLERANCE, float tolerance (Input)

Tolerance used in determining linear dependence.

Default: tolerance = 100.0 × imsls_f_machine(4)
IMSLS_V, float **v (Output)

Address to a pointer v to an array of length ny containing the one-step-ahead prediction error.

IMSLS_V_USER, float v[] (Output)
Storage for v is provided by the user. See IMSLS_V.

IMSLS_COVV, float **covv (Output)
The address to a pointer of size ny by ny containing a matrix such that covv × σ2 is the variance-
covariance matrix of v.

IMSLS_COVV_USER, float covv[] (Output)
Storage for covv is provided by the user. See IMSLS_COVV.
881

 Time Series and Forecasting kalman
Description
Function imsls_f_kalman is based on a recursive algorithm given by Kalman (1960), which has come to be
known as the Kalman filter. The underlying model is known as the state-space model. The model is specified
stage by stage where the stages generally correspond to time points at which the observations become available.
The function imsls_f_kalman avoids many of the computations and storage requirements that would be
necessary if one were to process all the data at the end of each stage in order to estimate the state vector. This is
accomplished by using previous computations and retaining in storage only those items essential for processing
of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in y using optional argument

IMSLS_UPDATE) be the nk × 1 vector of observations that become available at time k. The subscript k is used

here rather than t, which is more customary in time series, to emphasize that the model is expressed in stages k
= 1, 2, … and that these stages need not correspond to equally spaced time points. In fact, they need not corre-
spond to time points of any kind. The observation equation for the state-space model is

yk = Zkbk + ek k = 1, 2, …

Here, Zk (input in z using optional argument IMSLS_UPDATE) is an nk × q known matrix and bk is the q × 1 state

vector. The state vector bk is allowed to change with time in accordance with the state equation

bk

+1

 = Tk+

1

bk + w k+

1

k = 1, 2, …
starting with b1 = μ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the transition matrix T k+1 (the identity

matrix by default, or optionally input using IMSLS_T), which is assumed known. It is assumed that the q-dimen-
sional wks (k = 1, 2,…) are independently distributed multivariate normal with mean vector 0 and variance-

covariance matrix σ 2Qk, that the nk-dimensional eks (k = 1, 2,…) are independently distributed multivariate nor-

mal with mean vector 0 and variance-covariance matrix σ 2Rk, and that the wks and eks are independent of each

other. Here, μ1 is the mean of b1 and is assumed known, σ 2 is an unknown positive scalar. Qk+1(input in q) and

Rk (input in r) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations y1, y2, …, yj by
882

 Time Series and Forecasting kalman
By definition, the mean squared error matrix for

is

At the time of the k-th invocation, we have

and Ck|k-1 which were computed from the (k-1)-st invocation, input in b and covb, respectively. During the k-th

invocation, function imsls_f_kalman computes the filtered estimate

along with Ck|k. These quantities are given by the update equations:

where

and where

Here, vk (stored in v) is the one-step-ahead prediction error, and σ 2Hk is the variance-covariance matrix for vk. Hk

is stored in covv. The “start-up values” needed on the first invocation of imsls_f_kalman are

and C 1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation are completed by

imsls_f_kalman computing the one-step-ahead estimate

β^ k∣ j

β^ k∣ j

σ2Ck∣ j = E(β
^
k∣ j − bk)(β

^
k∣ j − bk)

T

β^ k∣k−1

β^ k∣k

β^ k∣k = β
^
k∣k−1 + Ck∣k−1Zk

THk
−1vk

Ck∣k = Ck∣k−1 − Ck∣k−1Zk
THk

−1ZkCk∣k−1

vk = yk − Zkβ
^
k∣k−1

Hk = Rk + ZkCk∣k−1Zk
T

β^ 1∣0 = μ1
883

 Time Series and Forecasting kalman
along with Ck+1|k given by the prediction equations:

If both the filtered estimates and one-step-ahead estimates are needed by the user at each time point,
imsls_f_kalman can be invoked twice for each time point—first without IMSLS_T and IMSLS_Q to
produce

and Ck|k, and second without IMSLS_UPDATE to produce

and Ck+1|k. (Without IMSLS_T and IMSLS_Q, the prediction equations are skipped. Without IMSLS_UPDATE,

the update equations are skipped.)

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an estimate of

is needed where k > j + 1. At time j, imsls_f_kalman is invoked with IMSLS_UPDATE to compute

Subsequent invocations of imsls_f_kalman without IMSLS_UPDATE can compute

Computations for

and Ck|j assume the variance-covariance matrices of the errors in the observation equation and state equation

are known up to an unknown positive scalar multiplier, σ 2. The maximum likelihood estimate of σ 2 based on the
observations y1, y2, …, ym, is given by

β^ k+1∣k

β^ k+1∣k = Tk+1β
^
k∣k

Ck+1∣k = Tk+1Ck∣kTk+1
T + Qk+1

β^ k∣k

β^ k+1∣k

β^ k∣ j

β^ j+1∣ j

β^ j+2∣ j, β
^
j+3∣ j, … β^ k∣ j

β^ k∣ j
884

 Time Series and Forecasting kalman
where

N and SS are the input/output arguments n and ss.

If σ 2 is known, the Rks and Qks can be input as the variance-covariance matrices exactly. The earlier discussion is

then simplified by letting σ 2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may be known functions of an

unknown parameter vector θ. In this case, imsls_f_kalman can be used in conjunction with an optimization
program (see function imsl_f_min_uncon_multivar, IMSL C/Math/Library, Chapter 8, Optimization) to
obtain a maximum likelihood estimate of θ. The natural logarithm of the likelihood function for y1, y2, …, ym differs

by no more than an additive constant from

(Harvey 1981, page 14, equation 2.21).

Here,

(stored in alndet) is the natural logarithm of the determinant of V where σ 2V is the variance-covariance matrix
of the observations.

Minimization of -2L(θ, σ 2; y1, y2, ..., ym) over all θ and σ 2 produces maximum likelihood estimates. Equivalently,

minimization of -2Lc(θ;y1, y2, ..., ym) where

produces maximum likelihood estimates

σ̂2 = SS /N

N =∑
k=1

m

nk and SS =∑
k=1

m

vk
THk

−1vk

L(θ,σ2; y1, y2, … , ym) = −
1
2N ln σ

2

− 12 ∑
k=1

m
ln[det Hk] −

1
2σ
−2 ∑
k=1

m
vk
THk

−1vk

∑
k=1

m

ln[det Hk]

Lc θ; y1, y2, … , ym = − 12N ln
SS
N − 12∑

k=1

m

ln[det Hk]
885

 Time Series and Forecasting kalman
The minimization of -2Lc(θ;y1, y2, ..., ym) instead of -2L(θ, σ 2; y1, y2, ..., ym), reduces the dimension of the minimi-

zation problem by one. The two optimization problems are equivalent since

minimizes -2L(θ, σ 2; y1, y2, ..., ym) for all θ, consequently,

can be substituted for σ 2 in L(θ, σ 2; y1, y2, ..., ym) to give a function that differs by no more than an additive con-

stant from Lc(θ;y1, y2, ..., ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification for singular distributions

described by Rao (1973, pages 527–528) is used. The necessary changes in the preceding discussion are as
follows:

 Replace by a generalized inverse.

 Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

 Replace N by

Maximum likelihood estimation of parameters in the Kalman filter is discussed by Sallas and Harville (1988) and
Harvey (1981, pages 111–113).

Example 1

Function imsls_f_kalman is used to compute the filtered estimates and one-step-ahead estimates for a sca-
lar problem discussed by Harvey (1981, pages 116-117). The observation equation and state equation are given
by

where the eks are identically and independently distributed normal with mean 0 and variance σ 2, the wks are

identically and independently distributed normal with mean 0 and variance 4σ 2, and b1is distributed normal with

mean 4 and variance 16σ 2. Two invocations of imsls_f_kalman are needed for each time point in order to
compute the filtered estimate and the one-step-ahead estimate. The first invocation does not use the optional
arguments IMSLS_T and IMSLS_Q so that the prediction equations are skipped in the computations. The
update equations are skipped in the computations in the second invocation.

θ^ and σ̂2 = SS /N

σ̂2 θ = SS θ /N

σ̂2 θ

Hk
−1

∑k=1
m rank Hk

yk = bk + ek
bk+1 = bk + wk+1 k = 1,2,3,4
886

 Time Series and Forecasting kalman
This example also computes the one-step-ahead prediction errors. Harvey (1981, page 117) contains a misprint
for the value v4 that he gives as 1.197. The correct value of v4 = 1.003 is computed by imsls_f_kalman.

#include <stdio.h>
#include <imsls.h>
#define NB 1
#define NOBS 4
#define NY 1
int main()
{
 int nb = NB, nobs = NOBS, ny = NY;
 int ldcovb, ldcovv, ldq, ldr, ldt, ldz;
 int i, iq, it, n, nout;
 float alndet, b[NB], covb[NB][NB], covv[NY][NY],
 q[NB][NB], r[NY][NY], ss,
 t[NB][NB], tol, v[NY], y[NY], z[NY][NB];
 float ydata[] = {4.4, 4.0, 3.5, 4.6};
 z[0][0] = 1.0;
 r[0][0] = 1.0;
 q[0][0] = 4.0;
 t[0][0] = 1.0;
 b[0] = 4.0;
 covb[0][0] = 16.0;
 /* Initialize arguments for initial call to imsls_f_kalman. */
 n = 0;
 ss = 0.0;
 alndet = 0.0;
 printf("k/j b covb n ss alndet v covv\n");
 for (i = 0; i < nobs; i++) {
 /* Update */
 y[0] = ydata[i];
 imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_UPDATE, ny, y, z, r,
 IMSLS_V_USER, v,
 IMSLS_COVV_USER, covv,
 0);

 printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
 i, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);
 /* Prediction */
 imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_T, t,
 IMSLS_Q, q,
 0);

 printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
 i+1, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);
 }
}

887

 Time Series and Forecasting kalman
Output

k/j b covb n ss alndet v covv
0/0 4.376 0.941 1 0.009 2.833 0.400 17.000
1/0 4.376 4.941 1 0.009 2.833 0.400 17.000
1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941
2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3/3 4.428 0.828 4 0.260 8.141 1.003 5.829
4/3 4.428 4.828 4 0.260 8.141 1.003 5.829

Example 2

Function imsls_f_kalman is used with function imsl_f_min_uncon_multivar, (see IMSL
C/Math/Library, Chapter 8, Optimization) to find a maximum likelihood estimate of the parameter θ in a MA(1)
time series represented by yk = ɛk - θɛk-1. Function imsls_f_random_arma (see Chapter 12, Random Number

Generation) is used to generate 200 random observations from an MA(1) time series with θ = 0.5 and σ 2 = 1.

The MA(1) time series is cast as a state-space model of the following form (see Harvey 1981, pages 103–104,
112):

where the two-dimensional wks are independently distributed bivariate normal with mean 0 and variance σ 2 Qk

and

The warning error that is printed as part of the output is not serious and indicates that
imsl_f_min_uncon_multivar (see C/Math/Library, Chapter 8, Optimization) is generally used for multi-
parameter minimization.

#include <stdio.h>
#include <math.h>
#include <imsl.h>
#include <imsls.h>
#define NOBS 200
#define NTHETA 1
#define NB 2
#define NY 1

yk = 1 0 bk

bk =
0 1
0 0

bk−1 + wk

Q1 =
1 + θ2 −θ
−θ θ2

Qk =
1 −θ
−θ θ2

k = 2,3,...200
888

 Time Series and Forecasting kalman
float fcn(int ntheta, float theta[]);
float *ydata;
int main ()
{
 int lagma[1];
 float pma[1];
 float *theta;
 imsls_random_seed_set(123457);
 pma[0] = 0.5;
 lagma[0] = 1;
 ydata = imsls_f_random_arma(200, 0, NULL, 1, pma,
 IMSLS_ACCEPT_REJECT_METHOD,
 IMSLS_NONZERO_MALAGS, lagma,
 0);
 theta = imsl_f_min_uncon_multivar(fcn, NTHETA, 0);
 printf("* * * Final Estimate for THETA * * *\n");
 printf("Maximum likelihood estimate, THETA = %f\n", theta[0]);
}

float fcn(int ntheta, float theta[])
{
 int i, n;
 float res, ss, alndet;
 float t[] = {0.0, 1.0, 0.0, 0.0};
 float z[] = {1.0, 0.0};
 float q[NB][NB], r[NY][NY], b[NB], covb[NB][NB], y[NY];
 if (fabs(theta[0]) > 1.0) {
 res = 1.0e10;
 } else {
 q[0][0] = 1.0;
 q[0][1] = -theta[0];
 q[1][0] = -theta[0];
 q[1][1] = theta[0]*theta[0];
 r[0][0] = 0.0;
 b[0] = 0.0;
 b[1] = 0.0;
 covb[0][0] = 1.0 + theta[0]*theta[0];
 covb[0][1] = -theta[0];
 covb[1][0] = -theta[0];
 covb[1][1] = theta[0]*theta[0];
 n = 0;
 ss = 0.0;
 alndet = 0.0;
 for (i = 0; i<NOBS; i++) {
 y[0] = ydata[i];
 imsls_f_kalman(NB, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_UPDATE, NY, y, z, r,
889

 Time Series and Forecasting kalman
 IMSLS_Q, q,
 IMSLS_T, t,
 0);
 }
 res = n*log(ss/n) + alndet;
 }
 return(res);
}

Output
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. This routine
*** may be inefficient for a problem of size "n" = 1.
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. The last global
*** step failed to locate a lower point than the current X value.
*** The current X may be an approximate local minimizer and no more
*** accuracy is possible or the step tolerance may be too large
*** where "step_tol" = 2.422181e-05 is given.
* * * Final Estimate for THETA * * *
Maximum likelihood estimate, THETA = 0.453256
890

 Time Series and Forecasting vector_autoregression
vector_autoregression
Estimates a vector auto-regressive time series model with optional moving average components.

Synopsis
#include <imsls.h>

float *imsls_f_vector_autoregression (int n_obs, int n_cols, float y[], int p, …, 0)

The type double function is imsls_d_vector_autoregression.

Required Arguments
int n_obs (Input)

The number of rows in y. n_obs is equal to the number of observations of each time series.

int n_cols (Input)
The number of columns in y. n_cols = K, the number of individual time series.

float y[] (Input)
An array of size n_obs by n_cols containing the data.

int p (Input)
The autoregressive lag order.

Return Value
An array containing the estimated coefficients. The array has length
n_cols×(trend+n_xvars+n_cols×(p+q+1)) if a non-trivial A0 is included in the model. Otherwise, the

array has length n_cols×(trend+n_xvars+n_cols×(p+q)). trend = 1 if IMSLS_TREND is specified,
and 0 otherwise.

The array elements occur in this order:

 If IMSLS_TREND is specified, the trend coefficient vector (b0) of length K (K=n_cols).

 The coefficient matrix for the deterministic variables (D), of size K by n_xvars, oriented by
column.

 The p (or p+1) autoregressive coefficient matrices (A), each of size K by K, oriented by column.
891

 Time Series and Forecasting vector_autoregression
 The q moving average coefficient matrices (M), each of size K by K, oriented by column.

This arrangement corresponds to the vectorized coefficient matrix,

B = vec[b

0

, D, A

0

, A

1

, …, Ap, M1, M2, …, Mq]

or

B = vec[b

0

, D, A

1

, …, Ap, M1, M

2

, …, Mq]

See also optional argument IMSLS_RETURN_USER for a different form of these output values. To release this
space, use imsls_free. If no value can be computed, or IMSLS_RETURN_USER is supplied, returns NULL.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_vector_autoregression (int n_obs, int n_cols, float y[], int p,
IMSLS_MA_LAG, int q,
IMSLS_A0,
IMSLS_AR_MODEL, int ar[],
IMSLS_MA_MODEL, int ma[],
IMSLS_AR_CONSTANTS, float ar_c[],
IMSLS_MA_CONSTANTS, float ma_c[],
IMSLS_PRESAMPLE, int n_T,
IMSLS_MAX_LAG, int max_lag,
IMSLS_N_STEPS, int max_steps,
IMSLS_MAX_ITERATIONS, int max_iter,
IMSLS_TOLERANCE, float tol,
892

 Time Series and Forecasting vector_autoregression
IMSLS_TREND,
IMSLS_SCALE,
IMSLS_CENTER,
IMSLS_X_DATA, int n_xvars, float x[],
IMSLS_ERROR_CORRECTION, int irank,
IMSLS_CAUSALITY, int size_S1, int S1[], int S2[],
IMSLS_CAUSALITY_STATS, float stats[],
IMSLS_VAR_INFO, Imsls_f_regression **var_info,
IMSLS_VARMA_INFO, Imsls_f_regression **varma_info,
IMSLS_UNIT_ROOT, f_complex **ur_evals,
IMSLS_UNIT_ROOT_USER, f_complex ur_evals[],
IMSLS_VECM_COEF, float **vecm_coef,
IMSLS_VECM_COEF_USER, float vecm_coef[],
IMSLS_VECM_EIGENVALUES, f_complex **vecm_eigens,
IMSLS_VECM_EIGENVALUES_USER, f_complex vecm_eigens[],
IMSLS_VECM_ALPHABETA, float **vecm_alphabeta,
IMSLS_VECM_ALPHABETA_USER, float vecm_alphabeta[],
IMSLS_FORECASTS, float **forecasts,
IMSLS_FORECASTS_USER, float forecasts[],
IMSLS_CRITERIA, float criteria[],
IMSLS_LOG_LIKELIHOOD, float *ll,
IMSLS_RETURN_USER, float b0[], float d[], float a[], float m[],
0)

Optional Arguments
IMSLS_MA_LAG, int q (Input)

Fit a moving average component of order q.
Default: q = 0.

IMSLS_A0, (Input)
Indicates that the model has a non-trivial, lower-triangular leading AR operator, A0. See the
Description section for more details. By default, A0 = Ik, where K = n_cols and Ik is the K by K identity
matrix.

IMSLS_AR_MODEL, int ar[] (Input)
An array used to specify restrictions on the AR coefficient matrices. If IMSLS_A0 is present, ar is of
length K by K by (p+1). If IMSLS_A0 is not present, ar is K by K by p. Each element of ar should
be one of {-1, 0, 1}. If IMSLS_A0 is present, indicating a non-trivial A0, the ordering of AR corre-
sponds to the parameters as follows:
893

 Time Series and Forecasting vector_autoregression
[α
11,0

,α
21,0

, … αK

1,0

, …, α
1

K,

0

, α
2

K,

0

, …, αKK,

0

,

α
11,1

, α
21,1

, …, αK

1,1

, …, α
1

K,

1

,α
2

K,

1

, …, αKK,

1

, …,
894

 Time Series and Forecasting vector_autoregression
α
1

K,p,α
2

K,p, …, αKK,p]

If A0 is trivial (equal to the identity matrix), the ordering is the same but the elements αKi,0 are left out

and the first element is α11,1. If ar[i]=1 or ar[i]=-1, A(k,i) = αki,j is estimated. If ar[i]=0, the

parameter is restricted to be equal to 0 or some other constant. Constants other than 0 can be spec-
ified in the optional argument IMSLS_AR_CONSTANTS. By default, all parameters are estimated.
Default: ar[i] = 1.

IMSLS_MA_MODEL, int ma[] (Input)
An array of length K by K by (q+1)if IMSLS_A0, or K by K by q if not IMSLS_A0. ma is used to
specify restrictions on the moving-average coefficients. ma is constructed analagously to the ar
restriction matrix detailed above. If IMSLS_A0, the first K by K by 1 entries in ma are only used when
ar is not provided, because it is assumed that M0 = A0 .
Default: ma[i] = 1.

IMSLS_AR_CONSTANTS, float ar_c[] (Input)
An array of length K by (p+1)(or K by p) specifying the constants when certain of the AR parame-
ters are restricted. Note that a lower triangular A0 is always assumed, with 1’s on the diagonal.
However, constants for the lower triangle can be specified using this optional argument.
Default ar_c[i] = 0.

IMSLS_MA_CONSTANTS, float ma_c[] (Input)
An array of length K by (q+1)(or K by q) specifying the constants when certain of the MA parame-
ters are restricted. Note that the leading MA coefficient matrix M0 = A0 and thus there is no
specification for it.
Default ma_c[i] = 0.

IMSLS_PRESAMPLE, int n_T (Input).
Specifies the number of rows of y to use as a presample in the estimation procedure. n_T must be
strictly greater than 0.

Default n_T = max_lag.

IMSLS_MAX_LAG, int max_lag (Input)
Specifies the maximum AR order or lag to use in the unrestricted VAR model. max_lag must be
strictly greater than 0.
Default: max_lag = 6.
895

 Time Series and Forecasting vector_autoregression
IMSLS_N_STEPS, int max_steps (Input)
Specifies the maximum number of steps ahead. When requested, forecasts are produced for times
t+h where h = 1, 2, …, max_steps and t = n_T, n_T+1, …, n_obs.
Default: max_steps = 4.

IMSLS_MAX_ITERATIONS, int max_iter (Input)
Specifies the maximum number of iterations. max_iter > 0.
Default: max_iter = 100.

IMSLS_TOLERANCE, float tol (Input)
Specifies the error tolerance used in the iterations.
Default: tol = 100×imsls_f_machine(4).

IMSLS_TREND, (Input)
Indicates that a constant trend (intercept) term should be included in the model.
 Default: No trend.

IMSLS_SCALE, (Input)
Indicates that the data series in y should be centered and then scaled before the analysis begins.
Default: No scaling.

IMSLS_CENTER, (Input)
Indicates that the data series in y should be centered before the analysis begins. Note that if
IMSLS_SCALE is provided, IMSLS_CENTER has no effect.
Default: No centering.

IMSLS_X_DATA, int n_xvars, float x[] (Input)
Input values of the deterministic variables.

int n_xvars (Input)
The number of deterministic variables.

float x[] (Input)
The n_obs by n_xvars array containing the values of the deterministic variables. Note
that if x is provided when forecasts are requested, x must have additional rows that can be
used for the forecasts. That is, x is an array of at least (n_obs + max_steps) rows by
n_xvars.
Default: n_xvars = 0.

IMSLS_ERROR_CORRECTION, int irank (Input)
Estimate the error-correcting form of the VAR model assuming the series are integrated of order 1
and there are 0 <= irank <= n_cols co-integrating relationships. When irank=0, the error-
correcting model is not estimated.
Default: irank = 0.
896

 Time Series and Forecasting vector_autoregression
IMSLS_CAUSALITY, int size_S1, int S1[], int S2[] (Input)
Specification for a test of Granger causality.

int size_S1 (Input)
The number of variables with indices given in array S1. 0 <= size_S1 < n_cols. No test is
performed when size_S1 = 0.
Default: size_S1 = 0.

float S1[] (Input)
An array of length size_S1 containing the indices of the variables that are not Granger-
caused by the variables specified in S2, under the null hypothesis. Each index must be
between 1 and n_cols inclusive and must not equal any index in S2.

float S2[] (Input)
An array of length n_cols-size_S1 containing the indices of the variables that do not
Granger-cause the variables specified in S1, under the null hypothesis. Each index must be
between 1 and n_cols inclusive and must not equal any index in S1.

IMSLS_CAUSALITY_STATS, float stats[] (Output)
An array of length 2 containing the test statistic value and associated p-value resulting from the
requested Granger causality test. It is an error to request this output without specifying the test
using IMSLS_CAUSALITY.

IMSLS_VAR_INFO, Imsls_f_regression **var_info (Output)
Contains the regression information from the first stage fitting of the model, VAR(max_lag). This
structure may be used as input to imsls_f_regression_summary. See also
imsls_f_regression optional argument IMSLS_REGRESSION_INFO.

IMSLS_VARMA_INFO, Imsls_f_regression **varma_info (Output)
Contains the regression information from the second stage fitting of the model. VARMA(p,q). This
structure may be used as input to imsls_f_regression_summary. See also
imsls_f_regression optional argument IMSLS_REGRESSION_INFO.

IMSLS_UNIT_ROOT, f_complex **ur_evals (Output)
Address of a pointer to a complex array of length K by(p+q) containing the eigenvalues of the
determinantal polynomial.

IMSLS_UNIT_ROOT_USER, f_complex ur_evals[] (Output)
Storage for the array ur_evals is provided by the user.

IMSLS_VECM_COEF, float **vecm_coef (Output)
Address of a pointer to an array of length K by K by (p+1)or (K by K by p) containing the estimated
parameters when the model is put into the error-correcting form.

IMSLS_VECM_COEF_USER, float vecm_coef[] (Output)
Storage for the array vecm_coef is provided by the user.
897

 Time Series and Forecasting vector_autoregression
IMSLS_VECM_EIGENVALUES, f_complex **vecm_eigens (Output)
Address of a pointer to an array of length K containing the eigenvalues associated with each cointe-
grating rank r, 0 <= r <= K.

IMSLS_VECM_EIGENVALUES_USER, f_complex vecm_eigens[] (Output)
Storage for the array vecm_eigens is provided by the user.

IMSLS_VECM_ALPHABETA, float **vecm_alphabeta (Output)
An array of length 2×(K by irank) containing the estimates of the coefficient matrix of the
error-correction model. The first K by irank elements correspond to α and the second irank by K
elements correspond to β’.

IMSLS_VECM_ALPHABETA_USER, float vecm_alphabeta[] (Output)
Storage for the array vecm_alphabeta is provided by the user.

IMSLS_FORECASTS, float **forecasts (Output)
An array of length n_obs by n_cols by max_steps containing the 1, 2, …, max_steps ahead
forecasts based on the final fitted VARMA model.

IMSLS_FORECASTS_USER, float forecasts[] (Output)
Storage for the array forecasts is provided by the user.

IMSLS_CRITERA, float criteria[] (Output)
An array of size 4 containing AIC, BIC, HQ, and FPE fit critieria for the given model.

IMSLS_LOG_LIKELIHOOD, float *ll (Output)
Log–likelihood of the estimated VARMA(p,q) model.

IMSLS_RETURN_USER, float b0[], float d[], float a[], float m[] (Output)
Storage for the return value is supplied by the user in separate arrays.

float b0[] (Output)
If IMSLS_TREND is specified, the estimated constant trend coefficient of length
K (K = n_cols) is returned in b0. If IMSLS_TREND is not specified, b0 is ignored and can
be NULL.

float d[] (Output)
If n_xvars > 0, the estimated K by n_xvars coefficient matrix for the deterministic vari-
ables is returned in d. If n_xvars = 0, d is ignored and can be NULL.

float a[] (Output)
If IMSLS_A0 is specified, the estimated (p+1) autoregressive matrices, each of length
K by K, are returned in a. If IMSLS_A0 is not specified, the (p) autoregressive matrices,
each of length K by K, are returned in a. If p = 0, a is ignored and can be NULL. Note that if
p = 0, q must be greater than 0 (and vice-versa).

Π = αβ′
898

 Time Series and Forecasting vector_autoregression
float m[] (Output)
The estimated (q) moving average coefficient matrices, each of length K by K, are returned
in m. If q = 0, m is ignored and can be NULL. Note that if q = 0, p must be greater than 0 (and
vice-versa).

Description
This function estimates a vector-autoregression moving average model using one and two-stage multivariate
least squares regressions.

The general model can be written in operator notation as

A(L)(yt-μ) = M(L)ut + Dxt

where yt is a K-dimensional real-valued time series with stationary mean μ , ut is a K-dimensional white noise

series with a non-singular covariance matrix, Σu, and xt respresents a matrix of deterministic components such as

trend or seasonal variables. For autoregression (ar) lag parameter, p ≥ 0 , and moving average (ma) lag parame-
ter, q ≥ 0, the operators are defined as

A(L) = A

0

-A

1

L-A

2

L2-…ApLp

M(L) = M

0

-M

1

L-M

2

L2-…MqLq

where L is the lag or backshift operator, defined as

Lyt = yt-
1

, Lkyt = yt-k

and the Aj, Mj are K×K matrices of coefficients. That is,
899

 Time Series and Forecasting vector_autoregression
Aj(k,i) = [αki,j], k,i = 1, …,K, j = 0, …, p

Mj(k,i) = [mki,j], k,i = 1, …,K, j = 0, …, q

The model has many equivalent forms, such as

A

0

(yt-μ) = A

1

(yt-
1

-μ) + … + Ap(yt-p-μ) + A

0

ut + M1ut-
1

+ … + Mqut-q

A pure vector autoregression with q = 0 is often denoted VAR(p) and the autoregressive moving-average is
VARMA(p,q).

The estimation procedures for the most part assume that the underlying time series is stable and invertible.
These conditions are satisfied when

det(IK - A

1

z - … - Apzp) ≠ 0 for |z|≤ 1 (stability condition)

det(IK + M

1

z + … + Mqzq) ≠ 0 for |z|≤ 1 (invertibility condition).

In other words, the conditions for a stable and invertible process are that the roots of the determinantal polyno-
mial are outside the (complex) unit circle, or equivalently, that the eigenvalues of the determinantal matrix have
modulus less than 1. To provide for unit-root tests, this function returns the eigenvalues of the estimated model
via the optional argument IMSLS_UNIT_ROOT. In the case of unit-roots, when some fall on the unit circle
(|z| = 1) there may still be stationary combinations of the variables. This behavior, known as cointegration, is dis-
cussed below.
900

 Time Series and Forecasting vector_autoregression
Error-Correction form and Cointegration

Another form of expressing the VARMA(p,q) model is the error-correcting form:

A

0

Δyt = Πyt-
1

+ Γ(L)Δyt + M(L)ut

where

Π = -(A

0

-A

1

-…-Ap),

Γ(L) = (Γ
1

L + Γ
2

L2 + … + ΓpLp), and

M(L) = (M

0

+ M

1

L + … + MqLq) .

The error-correcting or error-correction model (ECM) was developed for economic variables that tend to track
close to each other due to common trends. The concept is closely aligned with that of cointegration. A K-dimen-
sional process is said to be integrated of order 1, denoted as yt ~ I(1), when yt is non-stationary while the first-

differenced series, Δyt, is stationary. In this case, there may exist a stationary linear combination in the levels (non-

differenced versions). That is, there may exist a

zt = β ′yt = β
1

ty

1

t + β
901

 Time Series and Forecasting vector_autoregression
2

ty

2

t + … βKtyKt ,

where at least one βit ≠ 0 such that zt is stationary.

The interpretation is that cointegrated variables have common trends that cause them to move together in some
sense. Consider the price of a commodity in two different locations. At their individual levels, they are non-station-
ary, unpredictable processes, but market forces keep the two prices from being too far apart so the difference in
their prices is stationary.

We obtain an estimate of each coefficient matrix in the ECM form of the model. Then we are interested in the
decomposition of Π = αβ ′ where α,β are K×irank (rank irank coefficient matrices). From the ECM form it can
be deduced that zt = β ′yt is the cointegrating relationship under the given assumptions. However, the cointegrat-

ing rank r is not known in practice. As discussed in Lütkepohl, 2007, Ch. 7, the most common tests for the correct
cointegrating rank are

H

0

: r = r

0

 vs H

1

: r

0

< r ≤ K

and

H

0

: r = r

0

 vs H

1

: r = r

0

+ 1
902

 Time Series and Forecasting vector_autoregression
The likelihood ratio test statistic for testing the first hypothesis is known as the trace test, and the second is
known as the maximum eigenvalue test (Johansen 1988, 1995). In particular,

where λ1 ≥… ≥ λK are eigenvalues of a particular matrix associated with the likelihood function. To allow for

various tests, this function returns the eigenvalues λ1 ≥… ≥ λK through the optional argument

IMSLS_VECM_EIGENVALUES.

The Granger-Causality Test

Partition the K- dimensional time series as yt’ = (zt,xt)’, where zt is of length m and xt is of length K-m. In general, xt

is said to Granger-cause zt when predictions for zt can be improved by taking xt into account, and vice-versa. In the

context of a stable and invertible VAR(p) or VARMA(p,q) process, a test for Granger causality amounts to testing for
certain 0 restrictions on the AR or MA coefficients. Given a partition yt’ = (zt,xt)’, the test of

H

0

: xt does not Granger-cause zt

H

1

: xt does Granger-cause zt

is performed using a version of the Wald statistic which has an approximate F-distribution,

λW / N ≈ F(N,T - K(p + q) - 1)

where N is the number of 0 restrictions induced by the test. This function returns the test statistic and associated
p-value when a test is specified through the optional argument IMSLS_CAUSALITY.

Comments
1. There are different notational conventions in the literature. Box, Jenkins, and Reinsel typically use

(Φ,Θ) in place of (A,M) and B instead of L for the backshift or lag operator. Because it is the main refer-
ence for this implementation, we follow the notation used by Lütkepohl (2007).

2. The two-stage regression approach is robust in the sense that results are produced even when there
are roots close to 1 or less than 1 (in modulus). The estimates can be tested for unstable roots using
the optional argument IMSLS_UNIT_ROOT.

λ(r0,K) = − T ∑
i=r0+1

K
ln(1 − λi) and

λ(r0,r0 + 1) = − T ln(1 − λr0+1)
903

 Time Series and Forecasting vector_autoregression
3. In general a collection of K time series yt = (y1t, y2t, …, ykt)′ is said to be cointegrated of order (d-b)

when they are each individually integrated of order d, but there exists a linear combination
zt = β ′yt = β1ty1t + β2ty2t + … βKtyKt, with βit ≠ 0 for at least one i, which is integrated of order b. In

this implementation, only the case where d = 1 and b = 0 is considered. An even more general situa-
tion allows the individual time series to have differing orders of integration. For more details, see, for
example, Engle and Granger, (1991).

Examples

Example 1

In this example we use a small data set with 2 time series. A VARMA(1,0) model is requested.

#include <imsls.h>
#include <stdlib.h>
int main(){
 int n_obs=20, n_cols=2;
 int p=1;
 float *coef=NULL;
 float y[]={0, 0,
 -0.148105526820657, 0.0507420782620461,
 -1.13674727366735, 0.862892721126079,
 1.54366183541037, -1.13804802266371,
 -0.0923211737957721, 1.65649055346038,
 0.521764564424907, -2.11208211206815,
 0.843683397890515, 2.56656798707681,
 -2.70330819114831, -2.83452914666041,
 4.93683704766295, 3.95965377457266,
 -4.78314880243807, -2.23136673998374,
 6.24911547448071, 0.40543051970714,
 -6.76582567372196, 0.816818897274206,
 6.21142944093012, -4.247694573354,
 -5.29817270483491, 5.08246614505046,
 4.19557583927549, -5.35697380907112,
 -3.21572784971078, 7.89716072829777,
 0.485717553966479, -8.25930665413043,
 2.69490292018773, 10.9017252520684,
 -5.41090143363388, -10.400477539227,
 8.29423327234419, 9.10321370415527};
 coef=imsls_f_vector_autoregression(n_obs, n_cols, y, p, 0);
 imsls_f_write_matrix("A1", 2, 2, coef,
 IMSLS_TRANSPOSE,
 0);
 if(coef){
 imsls_free(coef);
 coef = NULL;
 }
904

 Time Series and Forecasting vector_autoregression
}

Output

 A1
 1 2
1 -1.017 -0.296
2 0.273 -1.053

Example 2

In this example, we fit the unrestricted VARMA(1,1) model and request 1 and 2 step ahead forecasts for each
observation.

#include <imsls.h>
#include <stdlib.h>
int main(){
 int n_obs=50, n_cols=2, p=1, q=1, max_step=2;
 float forecasts[2*2*50];
 float *coef = NULL;
 char *clabel[] = {"t","t+1,Y1","t+1,Y2 ", "t+2, Y1","t+2, Y2"};
 float y[]=
 {
 0.143280117400598, 0.691517079320758, -1.054002748442,
 1.89368500251305, -0.595435384283415, -1.53385197609914,
 -0.450087415747451, -0.522758296071267, 0.338719815948114,
 1.73890633300759, -0.0420130132503371, -0.00933890926865466,
 -0.939527210947825, -0.279211957506804, 0.985111509818102,
 -0.185903912738057, -0.779058630583496, -1.52829111438157,
 -0.0444517646926054, -0.605935345974391, 1.17870357395841,
 0.979822006409954, -1.75509211790604, -1.02617250037744,
 -2.64443752185661, -0.405444884498378, -0.558146570012133,
 1.17006139568333, -0.14877513906561, 1.67436399145195,
 1.21251151094695, -0.236411746432856, -0.319260279201159,
 1.53774676549506, -0.798919508505848,-1.25907348772775,
 -0.43488363747126, 1.18754392780486, 2.49394567166528,
 -0.505392075680617, -0.939902530453777, -1.3000118234638,
 0.308365204823071, -0.0346715133254558, 0.155821836363299,
 1.53865066350577, -0.446013548645569, 0.421382795732249,
 -0.810472750765929, -0.475790066827614, -1.21547965787564,
 0.873092852598299, 0.314687304446453, -0.166494291509063,
 1.20846773815425, -0.21319122737697, 0.885697825416125,
 1.06749862455588, -0.417811475765902, 1.81350258917296,
 1.06312903931625, -0.357098401483029, -2.54962241395723,
 1.58241298127273, -0.445333714405381, -1.54921054521057,
 0.763932954657703, -0.459132068443737, -0.135020632775658,
 0.768987806710127, -2.21000914520305, -0.416578967811937,
 -0.787803924930718, -0.381994679294779, 0.651886558080692,
 -0.296275077784937, -1.34100151116192, -0.695511844572305,
 -1.38111408367782, -0.453263483406621, 0.546836142779091,
 1.35617195687341, 1.47675672302528, -0.879275538764735,
 1.33724523036386,-1.19560541543992, -0.355724070126155,
 -1.35440645398376, 0.215557787562229, -0.0705280128055462,
 2.64174061572298, 0.622022977819918, 1.85193603585307,
905

 Time Series and Forecasting vector_autoregression
 1.1425463214074, 1.47034707550646, -0.274392879035261,
 -0.0256438865664471, -1.32768501270967, 1.4002259906097,
 -1.13393234222336, 0.420685154939234, -1.14369662556446,
 -0.229525100642792,-1.14556440309372, -0.0726173507068031,
 0.537003424016424, 2.21081287812981, -0.329847605902733,
 0.658135565199115, 1.25161597712012, 0.324279854980608,
 -0.122777642651712, -0.746398274242844, -0.510384971856952,
 -1.52397549713935,-0.590932096161281, 0.351879848132452,
 -0.486815223667361, -0.582122931146207, -0.129708090826525,
 -1.83261132721672, -0.438855077878885, 0.160891671954672,
 0.130903505342111, -1.0930038744212, 0.858667240391389,
 -0.650140333935879, -0.192590383440759, -0.495902099869389,
 -0.0970274914548782, 0.271597266914655, -1.25629606008009,
 -1.82411099200514, -0.0862331652538604, -1.48736902275701,
 -0.702589236231933, 1.66371111576656, 0.260453048198016,
 0.472465295167692, 2.03959666287312, -1.47220802239244,
 0.584452376204567, 0.29538916638251, -0.424471774108761,
 1.35117053520231, 0.792966672512426, 0.559666965721712,
 1.03877148575442, 0.32764651319845, 0.792431599069095,
 1.79713629328279, 2.53306185903747, 0.382061987152509,
 -0.55974023663989, 0.261351966632211, 0.928359586004826,
 1.05805881312766, -0.448798293155081, -2.8433140252059,
 -1.29380365284521, 1.60167210548413, -0.58790657908656,
 -0.0697276516437701, 0.669259446155372, -0.756109095074059,
 -1.04262502361173, -0.689533522981508, 0.322514092974764,
 -0.62456134593389, 0.343601164613668, 0.406496690190247,
 -0.579352431691941, -0.38067184267295, 1.15818332237678,
 -1.3763494217139, 1.07842256464695, -0.607885118048254,
 -0.551750338671028, -0.688013574614753, -0.66192239892944,
 0.840882344143739, 0.501181908666563, 0.810882707408453,
 -0.373132840815414, -1.53884108045858, -0.0475950419868607,
 -1.11456391432642, -1.39312192248506, 0.374292584707849,
 0.307055843720151, 0.0883771102062163, 1.51499635303431,
 0.544284404231116, 1.62863647405725, 0.666268752934375,
 3.15259591439161, 0.535584045927088, 0.438326104669433,
 1.25375087298954, 1.2784768691421
 };
 coef = imsls_f_vector_autoregression(n_obs, n_cols, y, p,
 IMSLS_MA_LAG, q,
 IMSLS_N_STEPS, max_step,
 IMSLS_FORECASTS_USER, forecasts,
 0);
 imsls_f_write_matrix("* * * Forecasts * * *\n", n_obs, n_cols*max_step,
 forecasts,
 IMSLS_COL_LABELS, clabel,
 0);
 if(coef){
 imsls_free(coef);
 coef = NULL;
 }
}

Output

 * * * Forecasts * * *
906

 Time Series and Forecasting vector_autoregression
t t+1,Y1 t+1,Y2 t+2, Y1 t+2, Y2
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000
7 0.009 -0.739 0.002 -0.086
8 -0.501 0.893 -0.017 -0.050
9 0.773 -1.779 0.024 -0.479
10 -0.935 0.042 -0.038 -0.251
11 0.164 0.959 -0.067 0.306
12 0.393 -1.377 0.009 -0.263
13 -0.672 -0.873 0.013 -0.058
14 -0.447 0.644 0.036 0.368
15 0.187 1.540 0.027 0.689
16 0.897 -0.117 0.191 -0.172
17 0.020 0.621 -0.039 0.556
18 0.008 -1.719 0.079 -0.444
19 -1.059 0.790 -0.056 0.397
20 0.193 0.264 0.035 -0.319
21 0.194 -1.050 -0.121 -0.377
22 -0.415 0.529 -0.042 0.039
23 0.433 0.658 0.048 0.495
24 0.074 0.493 0.044 0.235
25 0.402 -1.035 0.114 -0.230
26 -0.634 0.428 -0.073 0.351
27 0.109 -0.094 0.059 -0.061
28 -0.026 0.133 0.009 -0.164
29 0.067 1.258 -0.078 0.435
30 0.677 0.780 0.105 0.674
31 0.210 -0.299 0.145 -0.250
32 -0.200 -0.262 -0.086 0.671
33 -0.656 -1.024 0.134 -0.676
34 -0.351 -0.130 -0.169 -0.188
35 -0.152 0.708 -0.084 0.377
36 0.351 -1.377 0.122 -0.147
37 -0.826 -0.399 -0.026 -0.125
38 -0.256 0.717 -0.018 -0.026
39 0.716 -0.898 0.071 -0.139
40 -0.316 -1.153 0.058 -0.236
41 -0.804 1.543 -0.100 0.486
42 0.765 0.139 0.071 -0.257
43 0.443 -0.054 0.039 -0.434
44 0.345 -1.797 -0.050 -0.503
45 -1.165 0.730 -0.124 -0.028
46 0.531 1.303 -0.022 0.174
47 0.765 1.889 0.014 0.390
48 1.281 0.188 0.069 -0.089
49 0.306 -1.741 0.017 -0.569
50 -1.140 0.239 -0.172 -0.441

Example 3

In this example we fit the following VARMA(1,1) restricted model on simulated data of two dimensions:
907

 Time Series and Forecasting vector_autoregression
In this specification there are 7 free parameters:

= (α
21,0

, α
11,1

, α
21,1

, α
12,1

, α
22,1

, α
21,1

, α
12,1

)’

The first stage and the second stage results are shown. From the second stage results, we see that (to two deci-
mals) the estimate is

= (-0.03, 0.00, 0.05, -0.01, -0.06, 0.01)’
#include <imsls.h>
#include <stdlib.h>
int main(){
 int k, n_obs=100, n_cols=2, p=1, q=1;
 int ar[]={0, -1, 0, 0, 1, 1, 1, 1};
 int ma[]={0, -1, 0, 0, 0, 1, 1, 0};
 float ar_c[]={1, 0, 0, 1, 0, 0, 0, 0};
 float ma_c[]={1, 0, 0, 1, 0, 0, 0, 0};
 float *coef=NULL;
 int max_lag=6, n_coef1, n_coef2;
 float *coef_ttests1=NULL, *coef_ttests2=NULL;
 Imsls_f_regression *stage1_var_info=NULL;
 Imsls_f_regression *stage2_varma_info=NULL;
 char *clabel[] = {"id", "coef", "SE", "t-stat", "p-value"};
 float y[]=
 {
 0.143280117400598, 0.691517079320758, -1.054002748442,
 1.89368500251305, -0.595435384283415, -1.53385197609914,
 -0.450087415747451, -0.522758296071267, 0.338719815948114,

1 0
−α21,0 1 yt −

α11,1 α12,1
α21,1 α22,1 yt−1 =

1 0
−α21,0 1 ut +

0 m12,1
m21,1 0

ut−1

γ

γ̂

908

 Time Series and Forecasting vector_autoregression
 1.73890633300759, -0.0420130132503371, -0.00933890926865466,
 -0.939527210947825, -0.279211957506804, 0.985111509818102,
 -0.185903912738057, -0.779058630583496, -1.52829111438157,
 -0.0444517646926054, -0.605935345974391, 1.17870357395841,
 0.979822006409954, -1.75509211790604, -1.02617250037744,
 -2.64443752185661, -0.405444884498378, -0.558146570012133,
 1.17006139568333, -0.14877513906561, 1.67436399145195,
 1.21251151094695, -0.236411746432856, -0.319260279201159,
 1.53774676549506, -0.798919508505848,-1.25907348772775,
 -0.43488363747126, 1.18754392780486, 2.49394567166528,
 -0.505392075680617, -0.939902530453777, -1.3000118234638,
 0.308365204823071, -0.0346715133254558, 0.155821836363299,
 1.53865066350577, -0.446013548645569, 0.421382795732249,
 -0.810472750765929, -0.475790066827614, -1.21547965787564,
 0.873092852598299, 0.314687304446453, -0.166494291509063,
 1.20846773815425, -0.21319122737697, 0.885697825416125,
 1.06749862455588, -0.417811475765902, 1.81350258917296,
 1.06312903931625, -0.357098401483029, -2.54962241395723,
 1.58241298127273, -0.445333714405381, -1.54921054521057,
 0.763932954657703, -0.459132068443737, -0.135020632775658,
 0.768987806710127, -2.21000914520305, -0.416578967811937,
 -0.787803924930718, -0.381994679294779, 0.651886558080692,
 -0.296275077784937, -1.34100151116192, -0.695511844572305,
 -1.38111408367782, -0.453263483406621, 0.546836142779091,
 1.35617195687341, 1.47675672302528, -0.879275538764735,
 1.33724523036386,-1.19560541543992, -0.355724070126155,
 -1.35440645398376, 0.215557787562229, -0.0705280128055462,
 2.64174061572298, 0.622022977819918, 1.85193603585307,
 1.1425463214074, 1.47034707550646, -0.274392879035261,
 -0.0256438865664471, -1.32768501270967, 1.4002259906097,
 -1.13393234222336, 0.420685154939234, -1.14369662556446,
 -0.229525100642792,-1.14556440309372, -0.0726173507068031,
 0.537003424016424, 2.21081287812981, -0.329847605902733,
 0.658135565199115, 1.25161597712012, 0.324279854980608,
 -0.122777642651712, -0.746398274242844, -0.510384971856952,
 -1.52397549713935,-0.590932096161281, 0.351879848132452,
 -0.486815223667361, -0.582122931146207, -0.129708090826525,
 -1.83261132721672, -0.438855077878885, 0.160891671954672,
 0.130903505342111, -1.0930038744212, 0.858667240391389,
 -0.650140333935879, -0.192590383440759, -0.495902099869389,
 -0.0970274914548782, 0.271597266914655, -1.25629606008009,
 -1.82411099200514, -0.0862331652538604, -1.48736902275701,
 -0.702589236231933, 1.66371111576656, 0.260453048198016,
 0.472465295167692, 2.03959666287312, -1.47220802239244,
 0.584452376204567, 0.29538916638251, -0.424471774108761,
 1.35117053520231, 0.792966672512426, 0.559666965721712,
 1.03877148575442, 0.32764651319845, 0.792431599069095,
 1.79713629328279, 2.53306185903747, 0.382061987152509,
 -0.55974023663989, 0.261351966632211, 0.928359586004826,
 1.05805881312766, -0.448798293155081, -2.8433140252059,
 -1.29380365284521, 1.60167210548413, -0.58790657908656,
 -0.0697276516437701, 0.669259446155372, -0.756109095074059,
 -1.04262502361173, -0.689533522981508, 0.322514092974764,
 -0.62456134593389, 0.343601164613668, 0.406496690190247,
 -0.579352431691941, -0.38067184267295, 1.15818332237678,
 -1.3763494217139, 1.07842256464695, -0.607885118048254,
 -0.551750338671028, -0.688013574614753, -0.66192239892944,
 0.840882344143739, 0.501181908666563, 0.810882707408453,
 -0.373132840815414, -1.53884108045858, -0.0475950419868607,
 -1.11456391432642, -1.39312192248506, 0.374292584707849,
909

 Time Series and Forecasting vector_autoregression
 0.307055843720151, 0.0883771102062163, 1.51499635303431,
 0.544284404231116, 1.62863647405725, 0.666268752934375,
 3.15259591439161, 0.535584045927088, 0.438326104669433,
 1.25375087298954, 1.2784768691421
 };
 coef=imsls_f_vector_autoregression(n_obs, n_cols, y, p,
 IMSLS_MA_LAG, q,
 IMSLS_A0,
 IMSLS_AR_MODEL, ar,
 IMSLS_MA_MODEL, ma,
 IMSLS_MAX_LAG, max_lag,
 IMSLS_AR_CONSTANTS, ar_c,
 IMSLS_MA_CONSTANTS, ma_c,
 IMSLS_VAR_INFO, &stage1_var_info,
 IMSLS_VARMA_INFO, &stage2_varma_info,
 0);
 n_coef1=n_cols*max_lag;
 for(k=0;k<n_cols;k++){
 imsls_f_regression_summary(stage1_var_info,
 IMSLS_INDEX_REGRESSION, k,
 IMSLS_COEF_T_TESTS, &coef_ttests1,
 0);
 imsls_f_write_matrix("* * * VAR Stage 1 Coefficients * * *\n",
 n_coef1, 4, coef_ttests1,
 IMSLS_COL_LABELS, clabel,
 0);
 imsls_free(coef_ttests1);
 }
 /* stage 2 restricted model
 estimates 1 A0 parameter, 4 A1 parameters, and 2 M1 parameters */
 n_coef2=7;
 imsls_f_regression_summary(stage2_varma_info,
 IMSLS_COEF_T_TESTS, &coef_ttests2,
 0);
 imsls_f_write_matrix("* * * VARMA Stage 2 Coefficients * * *\n",
 n_coef2, 4, coef_ttests2,
 IMSLS_COL_LABELS, clabel,
 0);
 if(stage1_var_info){
 imsls_free(stage1_var_info);
 stage1_var_info=NULL;
 }
 if(stage2_varma_info){
 imsls_free(stage2_varma_info);
 stage2_varma_info=NULL;
 }
 if(coef){
 imsls_free(coef);
 coef=NULL;
 }
 if(coef_ttests2){
910

 Time Series and Forecasting vector_autoregression
 imsls_free(coef_ttests2);
 coef_ttests2=NULL;
 }
}

Output

 * * * VAR Stage 1 Coefficients * * *
id coef SE t-stat p-value
 1 0.229 0.110 2.075 0.041
 2 0.292 0.125 2.345 0.021
 3 -0.274 0.110 -2.501 0.014
 4 -0.242 0.127 -1.896 0.062
 5 0.372 0.116 3.208 0.002
 6 0.280 0.128 2.198 0.031
 7 -0.027 0.116 -0.232 0.817
 8 -0.349 0.128 -2.722 0.008
 9 0.240 0.109 2.208 0.030
10 0.296 0.128 2.316 0.023
11 -0.145 0.110 -1.323 0.190
12 -0.144 0.126 -1.136 0.259

 * * * VAR Stage 1 Coefficients * * *
id coef SE t-stat p-value
 1 0.182 0.099 1.840 0.069
 2 0.177 0.112 1.577 0.119
 3 -0.287 0.099 -2.907 0.005
 4 0.064 0.115 0.561 0.577
 5 0.075 0.104 0.721 0.473
 6 0.066 0.115 0.579 0.564
 7 -0.111 0.104 -1.066 0.290
 8 -0.193 0.115 -1.675 0.098
 9 -0.066 0.098 -0.675 0.501
10 0.018 0.115 0.160 0.873
11 0.034 0.099 0.348 0.729
12 0.092 0.114 0.813 0.418

 * * * VARMA Stage 2 Coefficients * * *
id coef SE t-stat p-value
 1 -0.099 0.232 -0.429 0.668
 2 0.130 0.097 1.346 0.180
 3 -0.050 0.208 -0.240 0.811
 4 -0.618 0.242 -2.559 0.011
 5 0.123 0.115 1.068 0.287
 6 0.204 0.257 0.791 0.430
 7 0.914 0.270 3.388 0.001
911

 Multivariate Analysis Functions
Multivariate Analysis

Functions
Hierarchical Cluster Analysis

Computes matrix of dissimilarities or similarities .dissimilarities 916
Hierarchical cluster analysis . cluster_hierarchical 921
Retrieves cluster numbers in hierarchical cluster analysis cluster_number 927

K-means Cluster Analysis
Performs a K-means (centroid) cluster analysis cluster_k_means 932

Principal Component Analysis
Computes principal components . principal_components 938

Factor Analysis
Extracts factor-loading estimates. factor_analysis 945
Performs discriminant function analysis . discriminant_analysis 965
912

 Multivariate Analysis Usage Notes
Usage Notes

Cluster Analysis
Function imsls_f_cluster_k_means performs a K-means cluster analysis. Basic K-means clustering attempts
to find a clustering that minimizes the within-cluster sums-of-squares. In this method of clustering the data,
matrix X is grouped so that each observation (row in X) is assigned to one of a fixed number, K, of clusters. The
sum of the squared difference of each observation about its assigned cluster’s mean is used as the criterion for
assignment. In the basic algorithm, observations are transferred from one cluster or another when doing so
decreases the within-cluster sums-of-squared differences. When no transfer occurs in a pass through the entire
data set, the algorithm stops. Function imsls_f_cluster_k_means is one implementation of the basic
algorithm.

The usual course of events in K-means cluster analysis is to use imsls_f_cluster_k_means to obtain the
optimal clustering. The clustering is then evaluated by functions described in Chapter 1, Basic Statistics and/or
other chapters in this manual. Often, K-means clustering with more than one value of K is performed, and the
value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion of the function
imsls_f_cluster_k_means assumes the clustering is to be performed on the observations, which corre-
spond to the rows of the input data matrix. If variables, rather than observations, are to be clustered, the data
matrix should first be transposed. In the documentation for imsls_f_cluster_k_means, the words “observa-
tion” and “variable” are interchangeable.

Principal Components
The idea in principal components is to find a small number of linear combinations of the original variables that
maximize the variance accounted for in the original data. This amounts to an eigensystem analysis of the covari-
ance (or correlation) matrix. In addition to the eigensystem analysis, imsls_f_principal_components
computes standard errors for the eigenvalues. Correlations of the original variables with the principal component
scores also are computed.

Factor Analysis
Factor analysis and principal component analysis, while quite different in assumptions, often serve the same
ends. Unlike principal components in which linear combinations yielding the highest possible variances are
obtained, factor analysis generally obtains linear combinations of the observed variables according to a model
913

 Multivariate Analysis Usage Notes
relating the observed variable to hypothesized underlying factors, plus a random error term called the unique
error or uniqueness. In factor analysis, the unique errors associated with each variable are usually assumed to be
independent of the factors. Additionally, in the common factor model, the unique errors are assumed to be
mutually independent. The factor analysis model is expressed in the following equation:

x − μ = Λf + e

where x is the p vector of observed values, μ is the p vector of variable means, Λ is the p × k matrix of factor load-
ings, f is the k vector of hypothesized underlying random factors, e is the p vector of hypothesized unique random
errors, p is the number of variables in the observed variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand or was expensive on early com-
puters, quick (but dirty) algorithms that made the calculations possible were developed. One result is the many
factor extraction methods available today. Generally speaking, in the exploratory or model building phase of a
factor analysis, a method of factor extraction that is not computationally intensive (such as principal components,
principal factor, or image analysis) is used. If desired, a computationally intensive method is then used to obtain
the final factors.

In exploratory factor analysis, the unrotated factor loadings obtained from the factor extraction are generally
transformed (rotated) to simplify the interpretation of the factors. Rotation is possible because of the overparam-
eterization in the factor analysis model. The method used for rotation may result in factors that are independent
(orthogonal rotations) or correlated (oblique rotations). Prior information may be available (or hypothesized) in
which case a Procrustes rotation could be used. When no prior information is available, an analytic rotation can
be performed.

The steps generally used in a factor analysis are summarized as follows:

Steps in a Factor Analysis

Step 1

Step 2

Calculate Covariance (Correlation) Matrix
IMSL routine imsls_f_covariances

(see Correlation and Covariance.

Initial Factor Extraction

imsls_f_factor_analysis
914

 Multivariate Analysis Usage Notes
Step 3

 Step 4

Factor Rotation
using imsls_f_factor_analysis’ optional arguments

Orthogonal Oblique

No Prior Info.
IMSLS_ORTHOMAX_ROTATION

No Prior Info.
IMSLS_OBLIQUE_PROMAX_ROTATION
IMSLS_DIRECT_OBLIMIN_ROTATION
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION

Prior Info.
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION

Prior Info.
IMSLS_OBLIQUE_PROCRUSTES_ROTATION

Factor Structure and Variance

imsls_f_factor_analysis
optional argument

IMSLS_FACTOR_STRUCTURE
915

 Multivariate Analysis dissimilarities
dissimilarities

more...

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.

Synopsis
#include <imsls.h>
float *imsls_f_dissimilarities (int nrow, int ncol, float x[], …, 0)

The type double function is imsls_d_dissimilarities.

Required Arguments
int nrow (Input)

Number of rows in the matrix.

int ncol (Input)
Number of columns in the matrix.

float x[] (Input)
Array of size nrow by ncol containing the matrix.

Return Value
An array of size m by m containing the computed dissimilarities or similarities, where m = nrow if optional argu-
ment IMSLS_ROWS is used, and m = ncol otherwise.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_dissimilarities (int nrow, int ncol, float x[],

IMSLS_ROWS, or
IMSLS_COLUMNS,
916

 Multivariate Analysis dissimilarities
IMSLS_INDEX, int ndstm, int ind[],
IMSLS_METHOD, int imeth,
IMSLS_SCALE, int iscale,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float dist[],
0)

Optional Arguments
IMSLS_ROWS (Input)

or

IMSLS_COLUMNS, (Input)
Exactly one of these options can be present to indicate whether distances are computed between
rows or columns of x.

Default: Distances are computed between rows.

IMSLS_INDEX, int ndstm, int ind[] (Input)
Argument ind is an array of length ndstm containing the indices of the rows (columns if
IMSLS_ROWS is used) to be used in computing the distance measure.

Default: All rows(columns) are used.

IMSLS_METHOD, int imeth (Input)
Method to be used in computing the dissimilarities or similarities.

Default: imeth = 0.

imeth Method

0 Euclidean distance (L2 norm)

1 Sum of the absolute differences (L1 norm)

2 Maximum difference (L∞ norm)

3 Mahalanobis distance

4 Absolute value of the cosine of the angle between the
vectors

5 Angle in radians (0, π) between the lines through the origin
defined by the vectors

6 Correlation coefficient

7 Absolute value of the correlation coefficient

8 Number of exact matches
917

 Multivariate Analysis dissimilarities
See the Description section for a more detailed description of each measure.

IMSLS_SCALE, int iscale (Input)
Scaling option. iscale is not used for methods 3 through 8.

Default: iscale = 0.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.

Default: x_col_dim = ncol.

IMSLS_RETURN_USER, float dist[] (Output)
User allocated array of size m by m containing the computed dissimilarities or similarities, where m =
nrow if IMSLS_ROWS is used, and m = ncol otherwise.

Description
Function imsls_f_dissimilarities computes an upper triangular matrix (excluding the diagonal) of dis-
similarities (or similarities) between the columns or rows of a matrix. Nine different distance measures can be
computed. For the first three measures, three different scaling options can be employed. Output from
imsls_f_dissimilarities is generally used as input to clustering or multidimensional scaling functions.

The following discussion assumes that the distance measure is being computed between the columns of the
matrix, i.e., that IMSLS_COLUMNS is used. If distances between the rows of the matrix are desired, use optional
argument IMSLS_ROWS.

For imeth = 0 to 2, each row of x is first scaled according to the value of iscale. The scaling parameters are
obtained from the values in the row scaled as either the standard deviation of the row or the row range; the stan-
dard deviation is computed from the unbiased estimate of the variance. If iscale is 0, no scaling is performed,
and the parameters in the following discussion are all 1.0. Once the scaling value (if any) has been computed, the

iscale Scaling Performed

0 No scaling is performed.

1 Scale each column (row, if IMSLS_ROWS is used) by the stan-
dard deviation of the column (row).

2 Scale each column (row, if IMSLS_ROWS is used) by the range
of the column (row).
918

 Multivariate Analysis dissimilarities
distance between column i and column j is computed via the difference vector zk = (xk - yk)/sk, i = 1, ..., ndstm,

where xk denotes the k-th element in the i-th column, and yk denotes the corresponding element in the j-th col-

umn. For given zi, the metrics 0 to 2 are defined as:

Distance measures corresponding to imeth = 3 to 8 do not allow for scaling. These measures are defined via
the column vectors X = (xi), Y = (yi), and Z = (xi - yi) as follows:

For the Mahalanobis distance, any variable used in computing the distance measure that is (numerically) linearly
dependent upon the previous variables in the ind vector is omitted from the distance measure.

Example
The following example illustrates the use of imsls_f_dissimilarities for computing the Euclidean dis-
tance between the rows of a matrix.

#include <imsls.h>

imeth Metric

0 Euclidean distance

1 L1 norm

2
L∞ norm

imeth Metric

3
 Mahalanobis distance, where is the usual
unbiased sample estimate of the covariance matrix of the
rows.

4
 the dot product of
X and Y divided by the length of X times the length of Y .

5 θ, where θ is defined in 4.

6 ρ = the usual (centered) estimate of the correlation between
X and Y.

7 The absolute value of ρ (where ρ is defined in 6).

8 The number of times xi = yi, where xi and yi are elements of X
and Y.

∑i=1
ndstmzi

2

∑i=1
ndstm∣zi∣

max
i
∣zi∣

Z ′Σ
^ −1
Z = Σ

^

cos θ = XTY / XTX YTY =
919

 Multivariate Analysis dissimilarities
int main()
{
 int ncol=2, nrow = 4;
 float x [4][2] = {1., 1.,
 1., 0.,
 1.,-1.,
 1., 2.};
 float *dist;
 dist = imsls_f_dissimilarities(nrow, ncol, (float*)x, 0);
 imsls_f_write_matrix("dist", 4, 4, dist, 0);
}

Output

 dist
 1 2 3 4
1 0 1 2 1
2 0 0 1 2
3 0 0 0 3
4 0 0 0 0

920

 Multivariate Analysis cluster_hierarchical
cluster_hierarchical

more...

Performs a hierarchical cluster analysis given a distance matrix.

Synopsis
#include <imsls.h>
void imsls_f_cluster_hierarchical (int npt, float *dist, …, 0)

The type double function is imsls_d_cluster_hierarchical.

Required Arguments
int npt (Input)

Number of data points to be clustered.

floa dist[] (Input/Ouput)
An npt by npt symmetric matrix containing the distance (or similarity) matrix. dist is a symmetric
matrix. On input, only the upper triangular part needs to be present. The function
imsls_f_cluster_hierarchical saves the upper triangular part of dist in the lower trian-
gle. On return from imsls_f_cluster_hierarchical, the upper triangular part of dist is
restored, and the matrix is made symmetric.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_cluster_hierarchical (int npt, float dist[],

IMSLS_METHOD, int imeth,
IMSLS_TRANSFORMATION, int itrans,
IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson,
IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int icrson[],
0)
921

 Multivariate Analysis cluster_hierarchical
Optional Arguments
IMSLS_METHOD, int imeth (Input)

Option giving the clustering method to be used.

Default: imeth = 0.

IMSLS_TRANSFORMATION, int itrans (Input)
Option giving the method to be used for clustering.

Default: itrans = 0.

IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson (Output)
Argument clevel is the address of an array of length npt - 1 containing the level at which the clus-
ters are joined. clevel[k-1] contains the distance (or similarity) level at which cluster npt + k was
formed. If the original data in dist was transformed via the optional argument
IMSLS_TRANSFORMATION, the inverse transformation is applied to the values in clevel prior to
exit from imsls_f_cluster_hierarchical. Argument iclson is the address of an array of
length npt - 1 containing the left sons of each merged cluster. Argument icrson is the address of
an array of length npt - 1 containing the right sons of each merged cluster. Cluster npt + k is
formed by merging clusters iclson[k-1] and icrson[k-1].

imeth Method

0 Single linkage (minimum distance)

1 Complete linkage (maximum distance)

2 Average distance within (average distance between objects
within the merged cluster)

3 Average distance between (average distance between
objects in the two clusters)

4 Ward’s method (minimize the within-cluster sums of
squares). For Ward’s method, the elements of dist are
assumed to be Euclidean distances.

imeth Method

0 No transformation is required. The elements of dist are
distances.

1 Convert similarities to distances by multiplication by -1.0.

2 Convert similarities (usually correlations) to distances by tak-
ing the reciprocal of the absolute value.
922

 Multivariate Analysis cluster_hierarchical
IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int icrson[] (Output)
Storage for arrays clevel, iclson, and icrson is provided by the user. See
IMSLS_CLUSTERS.

Description
Function imsls_f_cluster_hierarchical conducts a hierarchical cluster analysis based upon the dis-
tance matrix, or by appropriate use of the IMSLS_TRANSFORMATION optional argument, based upon a
similarity matrix. Only the upper triangular part of the matrix dist is required as input to
imsls_f_cluster_hierarchical.

Hierarchical clustering in imsls_f_cluster_hierarchical proceeds as follows. Initially, each data point
is considered to be a cluster, numbered 1 to n = npt.

1. If the data matrix contains similarities, they are converted to distances by the method specified by
IMSLS_TRANSFORMATION. Set k = 1.

2. A search is made of the distance matrix to find the two closest clusters. These clusters are merged to
form a new cluster, numbered n + k. The cluster numbers of the two clusters joined at this stage are
saved in icrson and iclson, and the distance measure between the two clusters is stored in
clevel.

3. Based upon the method of clustering, updating of the distance measure in the row and column of
dist corresponding to the new cluster is performed.

4. Set k = k + 1. If k < n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two clusters have been joined. The
IMSLS_METHOD optional argument specifies how the distance of the cluster just merged with each of the
remaining clusters will be updated. Function imsls_f_cluster_hierarchical allows five methods for
computing the distances. To understand these measures, suppose in the following discussion that clusters “A”
and “B” have just been joined to form cluster “Z”, and interest is in computing the distance of Z with another clus-
ter called “C”.
923

 Multivariate Analysis cluster_hierarchical
In general, single linkage will yield long thin clusters while complete linkage will yield clusters that are more spher-
ical. Average linkage and Ward’s linkage tend to yield clusters that are similar to those obtained with complete
linkage.

Function imsls_f_cluster_hierarchical produces a unique representation of the binary cluster tree
via the following three conventions; the fact that the tree is unique should aid in interpreting the clusters. First,
when two clusters are joined and each cluster contains two or more data points, the cluster that was initially
formed with the smallest level (in clevel) becomes the left son. Second, when a cluster containing more than
one data point is joined with a cluster containing a single data point, the cluster with the single data point
becomes the right son. Finally, when two clusters containing only one object are joined, the cluster with the small-
est cluster number becomes the right son.

Comments
1. The clusters corresponding to the original data points are numbered from 1 to npt. The npt - 1

clusters formed by merging clusters are numbered npt + 1 to npt + (npt - 1).

imeth Method

0 Single linkage method. The distance from Z to C is the minimum of the
distances (A to C, B to C).

1 Complete linkage method. The distance from Z to C is the maximum of
the distances (A to C, B to C).

2 Average-distance-within-clusters method. The distance from Z to C is the
average distance of all objects that would be within the cluster formed
by merging clusters Z and C. This average may be computed according to
formulas given by Anderberg (1973, page 139).

3 Average-distance-between-clusters method. The distance from Z to C is
the average distance of objects within cluster Z to objects within cluster
C. This average may be computed according to methods given by Ander-
berg (1973, page 140).

4 Ward’s method. Clusters are formed so as to minimize the increase in
the within-cluster sums of squares. The distance between two clusters is
the increase in these sums of squares if the two clusters were merged. A
method for computing this distance from a squared Euclidean distance
matrix is given by Anderberg (1973, pages 142-145).
924

 Multivariate Analysis cluster_hierarchical
2. Raw correlations, if used as similarities, should be made positive and transformed to a distance mea-
sure. One such transformation can be performed by specifying optional argument
IMSLS_TRANSFORMATION, with itrans = 2 in imsls_f_cluster_hierarchical.

3. The user may cluster either variables or observations in imsls_f_cluster_hierarchical
since a dissimilarity matrix, not the original data, is used. Function imsls_f_dissimilarities
may be used to compute the matrix dist for either the variables or observations.

Example
In the following example, the average distance within clusters method is used to perform a hierarchical cluster
analysis of the Fisher Iris data. Function imsls_f_data_sets (see Chapter 15, Utilities) is first used to obtain
the Fisher Iris data. The example is typical in that after the program obtains the data, function
imsls_f_dissimilarities computes the distance matrix (dist) prior to calling
imsls_f_cluster_hierarchical.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int iscale=1, ncol=5, nrow=150, nvar=4, npt = 150;
 int i, iclson[149], icrson[149], ind[4] = {1, 2, 3, 4};
 float clevel[149], *dist, *x;
 x = imsls_f_data_sets(3,
 0);
 dist = imsls_f_dissimilarities(nrow, ncol, x,
 IMSLS_INDEX, nvar, ind,
 IMSLS_SCALE, iscale,
 0);
 imsls_f_cluster_hierarchical(npt, dist,
 IMSLS_CLUSTERS_USER, clevel, iclson, icrson,
 IMSLS_METHOD, 2,
 0);
 for (i=0;i<149;i+=15)
 printf("%6.2f\t", clevel[i]);
 printf("\n");
 for (i=0;i<149;i+=15)
 printf("%6d\t", iclson[i]);
 printf("\n");
 for (i=0;i<149;i+=15)
 printf("%6d\t", icrson[i]);
 printf("\n");
925

 Multivariate Analysis cluster_hierarchical
}

Output

 0.00 0.17 0.23 0.27 0.31 0.37 0.41 0.48 0.60 0.78
 143 153 17 140 53 198 186 218 261 249
 102 29 6 113 51 91 212 243 266 262

926

 Multivariate Analysis cluster_number
cluster_number
Computes cluster membership for a hierarchical cluster tree.

Synopsis
#include <imsls.h>
int *imsls_cluster_number (int npt, int iclson[], int icrson[], int k, …, 0)

Required Arguments
int npt (Input)

Number of data points to be clustered.

int iclson[] (Input)
An array of length npt - 1 containing the left son cluster numbers.

Cluster npt + i is formed by merging clusters iclson[i-1] and icrson[i-1].

int icrson[] (Input)
An array of length npt - 1 containing the right son cluster numbers.

Cluster npt + i is formed by merging clusters iclson[i-1] and icrson[i-1].

int k (Input)
Desired number of clusters.

Return Value
An array of length npt containing the cluster membership of each observation.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_cluster_number (int npt, int iclson[], int icrson[], int k,

IMSLS_OBS_PER_CLUSTER, int **nclus,
IMSLS_OBS_PER_CLUSTER_USER, int nclus[],
IMSLS_RETURN_USER, int iclus[],
927

 Multivariate Analysis cluster_number
0)

Optional Arguments
IMSLS_OBS_PER_CLUSTER, int **nclus (Output)

Address of a pointer to an internally allocated array of length k containing the number of observa-
tions in each cluster.

IMSLS_OBS_PER_CLUSTER_USER, int nclus[] (Output)
Storage for array nclus is provided by the user. See IMSLS_OBS_PER_CLUSTER.

IMSLS_RETURN_USER, float iclus[] (Output)
User allocated array of length npt containing the cluster membership of each observation.

Description
Given a fixed number of clusters (K) and the cluster tree (vectors icrson and iclson) produced by the hierar-
chical clustering algorithm (see function imsls_f_cluster_hierarchical, function
imsls_cluster_number determines the cluster membership of each observation. The function
imsls_cluster_number first determines the root nodes for the K distinct subtrees forming the K clusters
and then traverses each subtree to determine the cluster membership of each observation. The function
imsls_cluster_number also returns the number of observations found in each cluster.

Examples

Example 1

In the following example, cluster membership for K = 2 clusters is found for the displayed cluster tree. The output
vector iclus contains the cluster numbers for each observation.
928

 Multivariate Analysis cluster_number
#include <imsls.h>
int main()
{
 int k = 2, npt = 5, *iclus;
 int iclson[] = {5, 6, 4, 7};
 int icrson[] = {3, 1, 2, 8};
 iclus = imsls_cluster_number(npt, iclson, icrson, k, 0);
 imsls_i_write_matrix("iclus", 1, 5, iclus, 0);
}

Output

 iclus
1 2 3 4 5
1 2 1 2 1

Example 2

This example illustrates the typical usage of imsls_cluster_number. The Fisher Iris data (see function
imsls_f_data_sets, Utilities.) is clustered. First the distance between the irises is computed using function
imsls_f_dissimilarities. The resulting distance matrix is then clustered using function
imsls_f_cluster_hierarchical. The cluster membership for 5 clusters is then obtained via function
imsls_cluster_number using the output from imsls_f_cluster_hierarchical. The need for 5
clusters can be obtained either by theoretical means or by examining a cluster tree. The cluster membership for
each of the iris observations is printed.

#include <imsls.h>
#include <stdlib.h>
#define MAX(A,B) ((A)>(B)?(A): (B))
int main()
{
 int ncol = 5, nrow = 150, nvar = 4, npt = 150, k = 5;
 int i, j, *iclson, *icrson, *iclus, *nclus;
 int ind[4] = {1, 2, 3, 4};
 float *clevel, dist[150][150], *x, f_rand;
 int *p_iclus = NULL, *p_nclus = NULL;
 x = imsls_f_data_sets (3,
 0);
 imsls_f_dissimilarities(nrow, ncol, x,
 IMSLS_INDEX, nvar, ind,
 IMSLS_RETURN_USER, dist,
 0);
 imsls_random_seed_set (4);
 for (i = 0; i < npt; i++)
 {
929

 Multivariate Analysis cluster_number
 for (j = i + 1; j < npt; j++)
 {
 imsls_f_random_uniform (1,
 IMSLS_RETURN_USER, &f_rand,
 0);
 dist[i][j] = MAX (0.0, dist[i][j] + .001 * f_rand);
 dist[j][i] = dist[i][j];
 }
 dist[i][i] = 0.;
 }
 imsls_f_cluster_hierarchical (npt, (float*)dist,
 IMSLS_CLUSTERS, &clevel, &iclson, &icrson,
 0);
 iclus = imsls_cluster_number (npt, iclson, icrson, k,
 IMSLS_OBS_PER_CLUSTER, &nclus,
 0);
 imsls_i_write_matrix ("iclus", 25, 5, iclus,
 0);
 imsls_i_write_matrix ("nclus", 1, 5, nclus,
 0);
}

Output

 iclus
 1 2 3 4 5
 1 5 5 5 5 5
 2 5 5 5 5 5
 3 5 5 5 5 5
 4 5 5 5 5 5
 5 5 5 5 5 5
 6 5 5 5 5 5
 7 5 5 5 5 5
 8 5 5 5 5 5
 9 5 5 5 5 5
10 5 5 5 5 5
11 2 2 2 2 2
12 2 2 1 2 2
13 1 2 2 2 2
14 2 2 2 2 2
15 2 2 2 2 2
16 2 2 2 2 2
17 2 2 2 2 2
18 2 2 2 2 2
19 2 2 2 1 2
20 2 2 2 1 2
21 2 2 2 2 2
22 2 3 2 2 2
23 2 2 2 2 2
24 2 2 4 2 2
25 2 2 2 2 2
 nclus
 1 2 3 4 5
930

 Multivariate Analysis cluster_number
 4 93 1 2 50
931

 Multivariate Analysis cluster_k_means
cluster_k_means
Performs a K-means (centroid) cluster analysis.

Synopsis
#include <imsls.h>
int *imsls_f_cluster_k_means (int n_observations, int n_variables, float x[], int

n_clusters, float cluster_seeds, ..., 0)

The type double function is imsls_d_cluster_k_means.

Required Arguments
int n_observations (Input)

Number of observations.

int n_variables (Input)
Number of variables to be used in computing the metric.

float x[] (Input)
Array of length n_observations × n_variables containing the observations to be clustered.

int n_clusters (Input)
Number of clusters.

float cluster_seeds[] (Input)
Array of length n_clusters × n_variables containing the cluster seeds, i.e., estimates for the
cluster centers.

Return Value
The cluster membership for each observation is returned.

Synopsis with Optional Arguments
#include <imsls.h>
932

 Multivariate Analysis cluster_k_means
int *imsls_f_cluster_k_means (int n_observations, int n_variables, float x[],
int n_clusters, float cluster_seeds,

IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_CLUSTER_HISTORY, int *n_itr, int **cluster_history,
IMSLS_CLUSTER_HISTORY_USER, int *n_itr, int cluster_history[],
IMSLS_CLUSTER_MEANS, float **cluster_means,
IMSLS_CLUSTER_MEANS_USER, float cluster_means[],
IMSLS_CLUSTER_SSQ, float **cluster_ssq,
IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim,
IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim,
IMSLS_CLUSTER_COUNTS, int **cluster_counts,
IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[],
IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[],
IMSLS_RETURN_USER, int cluster_group[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[] (Input)

Array of length n_observations containing the weight of each observation of matrix x.

Default: weights = 1.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency of each observation of matrix x.

Default: frequencies = 1.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations.

Default: max_iterations = 30.

IMSLS_CLUSTER_HISTORY, int *n_itr, int **cluster_history (Output)
cluster_history is a pointer to an array of size n_iter by n_observations containing the
cluster membership of each observation per iteration. Note that n_iter is the number of com-
pleted iterations in the algorithm.
933

 Multivariate Analysis cluster_k_means
IMSLS_CLUSTER_HISTORY_USER, int *n_itr, int cluster_history[] (Output)
Storage for array cluster_history is provided by the user. cluster_history is an array of
size max_iterations by n_observations containing the cluster membership of each obser-
vation per iteration. Note that only the first n_itr rows of cluster_history is set upon return.

IMSLS_CLUSTER_MEANS, float **cluster_means (Output)
The address of a pointer to an internally allocated array of length n_clusters × n_variables
containing the cluster means.

IMSLS_CLUSTER_MEANS_USER, float cluster_means[] (Output)
Storage for array cluster_means is provided by the user. See IMSLS_CLUSTER_MEANS.

IMSLS_CLUSTER_SSQ, float **cluster_ssq (Output)
The address of a pointer to internally allocated array of length n_clusters containing the within
sum-of-squares for each cluster.

IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[] (Output)
Storage for array cluster_ssq is provided by the user. See IMSLS_CLUSTER_SSQ.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.

Default: x_col_dim = n_variables.

IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim (Input)
Column dimension for the vector cluster_means.

Default: cluster_means_col_dim = n_variables.

IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim (Input)
Column dimension for the vector cluster_seeds.

Default: cluster_seeds_col_dim = n_variables.

IMSLS_CLUSTER_COUNTS, int **cluster_counts (Output)
The address of a pointer to an internally allocated array of length n_clusters containing the num-
ber of observations in each cluster.

IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[] (Output)
Storage for array cluster_counts is provided by the user. See IMSLS_CLUSTER_COUNTS.

IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[] (Input)
Vector of length n_variables containing the columns of x to be used in computing the metric.
Columns are numbered 0, 1, 2, …, n_variables
Default: cluster_variables [] = 0, 1, 2, …, n_variables.
934

 Multivariate Analysis cluster_k_means
IMSLS_RETURN_USER, int cluster_group[] (Output)
User-allocated array of length n_observations containing the cluster membership for each
observation.

Description
Function imsls_f_cluster_k_means is an implementation of Algorithm AS 136 by Hartigan and Wong
(1979). It computes K-means (centroid) Euclidean metric clusters for an input matrix starting with initial estimates
of the K-cluster means. The function allows for missing values coded as NaN (Not a Number) and for weights and
frequencies.

Let p = n_variables be the number of variables to be used in computing the Euclidean distance between
observations. The idea in K-means cluster analysis is to find a clustering (or grouping) of the observations so as to
minimize the total within-cluster sums-of-squares. In this case, the total sums-of-squares within each cluster is
computed as the sum of the centered sum-of-squares over all nonmissing values of each variable. That is,

where νim denotes the row index of the m-th observation in the i-th cluster in the matrix X; ni is the number of

rows of X assigned to group i; f denotes the frequency of the observation; w denotes its weight; δ is 0 if the j-th
variable on observation νim is missing, otherwise δ is 1; and

is the average of the nonmissing observations for variable j in group i. This method sequentially processes each
observation and reassigns it to another cluster if doing so results in a decrease of the total within-cluster sums-
of-squares. See Hartigan and Wong (1979) or Hartigan (1975) for details.

Example
This example performs K-means cluster analysis on Fisher’s Iris data, which is obtained by function
imsls_f_data_sets (see Chapter 15, Utilities). The initial cluster seed for each iris type is an observation
known to be in the iris type.

#include <imsls.h>
int main()
{
#define N_OBSERVATIONS 150
#define N_VARIABLES 4
#define N_CLUSTERS 3

ϕ =∑
i=1

K

∑
j=1

p

∑
m=1

ni

f vimwvimδvim, j xvim, j − x
─
i j

2

x─i j
935

 Multivariate Analysis cluster_k_means
 float x[N_OBSERVATIONS][5];
 float cluster_seeds[N_CLUSTERS][N_VARIABLES];
 float cluster_means[N_CLUSTERS][N_VARIABLES];
 float cluster_ssq[N_CLUSTERS];
 int cluster_variables[N_VARIABLES] = {1, 2, 3, 4};
 int cluster_counts[N_CLUSTERS];
 int cluster_group[N_OBSERVATIONS];
 int i;
 /* Retrieve the data set */
 imsls_f_data_sets(3,
 IMSLS_RETURN_USER, x,
 0);
 /* Assign initial cluster seeds */
 for (i=0; i<N_VARIABLES; i++) {
 cluster_seeds[0][i] = x[0][i+1];
 cluster_seeds[1][i] = x[50][i+1];
 cluster_seeds[2][i] = x[100][i+1];
 }
 /* Perform the analysis */
 imsls_f_cluster_k_means(N_OBSERVATIONS, N_VARIABLES, (float*)x,
 N_CLUSTERS, (float*)cluster_seeds,
 IMSLS_X_COL_DIM, 5,
 IMSLS_CLUSTER_VARIABLE_COLUMNS, cluster_variables,
 IMSLS_CLUSTER_COUNTS_USER, cluster_counts,
 IMSLS_CLUSTER_MEANS_USER, cluster_means,
 IMSLS_CLUSTER_SSQ_USER, cluster_ssq,
 IMSLS_RETURN_USER, cluster_group,
 0);
 /* Print results */
 imsls_i_write_matrix("Cluster Membership", 1, N_OBSERVATIONS,
 cluster_group,
 0);
 imsls_f_write_matrix("Cluster Means", N_CLUSTERS, N_VARIABLES,
 (float*)cluster_means,
 0);
 imsls_f_write_matrix("Cluster Sum of Squares", 1, N_CLUSTERS,
 cluster_ssq,
 0);
 imsls_i_write_matrix("# Observations in Each Cluster", 1,
 N_CLUSTERS, cluster_counts,
 0);
}

Output

 Cluster Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
936

 Multivariate Analysis cluster_k_means
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2
148 149 150
 3 3 2
 Cluster Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071
 Cluster Sum of Squares
 1 2 3
 15.15 39.82 23.88
Observations in Each Cluster
 1 2 3
 50 62 38

Warning Errors
IMSLS_NO_CONVERGENCE Convergence did not occur.
937

 Multivariate Analysis principal_components
principal_components
Computes principal components.

Synopsis
#include <imsls.h>
float *imsls_f_principal_components (int n_variables, float covariances[], ..., 0)

The type double function is imsls_d_principal_components.

Required Arguments
int n_variables (Input)

Order of the covariance matrix.

float covariances[] (Input)
Array of length n_variables by n_variables containing the covariance or correlation matrix.

Return Value
An array of length n_variables containing the eigenvalues of the matrix covariances ordered from larg-
est to smallest.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_principal_components (int n_variables, float covariances[],

IMSLS_COVARIANCE_MATRIX, or
IMSLS_CORRELATION_MATRIX,
IMSLS_CUM_PERCENT, float **cum_percent,
IMSLS_CUM_PERCENT_USER, float cum_percent[],
IMSLS_EIGENVECTORS, float **eigenvectors,
IMSLS_EIGENVECTORS_USER, float eigenvectors[],
IMSLS_CORRELATIONS, float **correlations,
938

 Multivariate Analysis principal_components
IMSLS_CORRELATIONS_USER, float correlations[],
IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev,
IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float eigenvalues[],
0)

Optional Arguments
IMSLS_COVARIANCE_MATRIX (Input)

Treat the input vector covariances as a covariance matrix.

Default = IMSLS_COVARIANCE_MATRIX.

or

IMSLS_CORRELATION_MATRIX (Input)
Treat the input vector covariances as a correlation matrix.

Default = IMSLS_COVARIANCE_MATRIX.

IMSLS_CUM_PERCENT, float **cum_percent (Output)
The address of a pointer to an internally allocated array of length n_variables containing the
cumulative percent of the total variances explained by each principal component.

IMSLS_CUM_PERCENT_USER, float cum_percent[] (Output)
Storage for array cum_percent is provided by the user. See IMSLS_CUM_PERCENT.

IMSLS_EIGENVECTORS, float **eigenvectors (Output)
The address of a pointer to an internally allocated array of length
n_variables by n_variables containing the eigenvectors of covariances, stored column-
wise. Each vector is normalized to have Euclidean length equal to the value one. Also, the sign of each
vector is set so that the largest component in magnitude (the first of the largest if there are ties) is
made positive.

IMSLS_EIGENVECTORS_USER, float eigenvectors[] (Output)
Storage for array eigenvectors is provided by the user. See IMSLS_EIGENVECTORS.

IMSLS_CORRELATIONS, float **correlations (Output)
The address of a pointer to an internally allocated array of length
n_variables by n_variables containing the correlations of the principal components (the col-
umns) with the observed/standardized variables (the rows). If IMSLS_COVARIANCE_MATRIX is
939

 Multivariate Analysis principal_components
specified, then the correlations are with the observed variables. Otherwise, the correlations are with
the standardized (to a variance of 1.0) variables. In the principal component model for factor analysis,
matrix correlations is the matrix of unrotated factor loadings.

IMSLS_CORRELATIONS_USER, float correlations[] (Output)
Storage for array correlations is provided by the user. See IMSLS_CORRELATIONS.

IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev (Input/Output)
Argument n_degrees_freedom contains the number of degrees of freedom in covariances.
Argument std_dev is the address of a pointer to an internally allocated array of length
n_variables containing the estimated asymptotic standard errors of the eigenvalues.

IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[] (Input/Output)
Storage for array std_dev is provided by the user. See IMSLS_STD_DEV.

IMSLS_COV_COL_DIM int cov_col_dim (Input)
Column dimension of covariances.
Default: cov_col_dim = n_variables

IMSLS_RETURN_USER, float eigenvalues[] (Output)
User-supplied array of length n_variables containing the eigenvalues of covariances ordered
from largest to smallest.

Description
Function imsls_f_principal_components finds the principal components of a set of variables from a
sample covariance or correlation matrix. The characteristic roots, characteristic vectors, standard errors for the
characteristic roots, and the correlations of the principal component scores with the original variables are com-
puted. Principal components obtained from correlation matrices are the same as principal components obtained
from standardized (to unit variance) variables.

The principal component scores are the elements of the vector y = ΓTx, where Γ is the matrix whose columns are
the characteristic vectors (eigenvectors) of the sample covariance (or correlation) matrix and x is the vector of
observed (or standardized) random variables. The variances of the principal component scores are the character-
istic roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girschick (1939) and are given more
recently by Kendall et al. (1983, p. 331). These variances are computed either for covariance matrices or for cor-
relation matrices.
940

 Multivariate Analysis principal_components
The correlations of the principal components with the observed (or standardized) variables are given in the
matrix correlations. When the principal components are obtained from a correlation matrix,
correlations is the same as the matrix of unrotated factor loadings obtained for the principal components
model for factor analysis.

Examples

Example 1

In this example, eigenvalues of the covariance matrix are computed.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
 float *values;
 float covariances[N_VARIABLES * N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
 };
 /* Perform analysis */
 values = imsls_f_principal_components(N_VARIABLES, covariances,
 0);
 /* Print results. */
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values,
 0);
 /* Free allocated memory. */
 imsls_free(values);
}

Output

 Eigenvalues
 1 2 3 4 5 6
 4.677 1.264 0.844 0.555 0.447 0.429

 7 8 9
 0.310 0.277 0.196
941

 Multivariate Analysis principal_components
Example 2

In this example, principal components are computed for a nine-variable correlation matrix.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
 float *values, *eigenvectors, *std_dev, *cum_percent, *a;
 static float covariances[N_VARIABLES * N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
 };
 /* Perform analysis */
 values = imsls_f_principal_components(N_VARIABLES, covariances,
 IMSLS_CORRELATION_MATRIX,
 IMSLS_EIGENVECTORS, &eigenvectors,
 IMSLS_STD_DEV, 100, &std_dev,
 IMSLS_CUM_PERCENT, &cum_percent,
 IMSLS_CORRELATIONS, &a,
 0);
 /* Print results */
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values,
 0);
 imsls_f_write_matrix("Eigenvectors", N_VARIABLES, N_VARIABLES,
 eigenvectors,
 0);
 imsls_f_write_matrix("STD", 1, N_VARIABLES, std_dev,
 0);
 imsls_f_write_matrix("PCT", 1, N_VARIABLES, cum_percent,
 0);
 imsls_f_write_matrix("A", N_VARIABLES, N_VARIABLES, a,
 0);
 /* Free allocated memory */
 imsls_free(values);
 imsls_free(eigenvectors);
 imsls_free (cum_percent);
 imsls_free (std_dev);
 imsls_free(a);
}

Output

 Eigenvalues
 1 2 3 4 5 6
 4.677 1.264 0.844 0.555 0.447 0.429
942

 Multivariate Analysis principal_components

 7 8 9
 0.310 0.277 0.196

 Eigenvectors
 1 2 3 4 5 6
1 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974
2 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002
3 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0.1511
4 0.3664 0.4031 0.0406 0.1196 0.0017 0.1152
5 0.3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796
6 0.3455 0.4553 0.1825 0.1114 0.1202 0.0697
7 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355
8 0.2407 -0.3159 0.7383 0.4329 0.0861 -0.1969
9 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498

 7 8 9
1 0.1735 -0.1240 -0.0488
2 0.1386 -0.3032 -0.0079
3 0.0099 -0.0406 -0.0997
4 -0.4022 -0.1178 0.7060
5 0.7295 0.0075 0.0046
6 -0.3742 0.0925 -0.6780
7 -0.2854 -0.3408 -0.1089
8 0.1862 -0.1623 0.0505
9 -0.0251 0.8521 0.1225

 STD
 1 2 3 4 5 6
 0.6498 0.1771 0.0986 0.0879 0.0882 0.0890

 7 8 9
 0.0944 0.0994 0.1113

 PCT
 1 2 3 4 5 6
 0.520 0.660 0.754 0.816 0.865 0.913

 7 8 9
 0.947 0.978 1.000

 A
 1 2 3 4 5 6
1 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0.5224
2 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312
3 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0.0990
4 0.7923 0.4532 0.0373 0.0891 0.0012 0.0755
5 0.6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177
6 0.7472 0.5119 0.1677 0.0830 0.0804 0.0456
7 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853
8 0.5206 -0.3552 0.6784 0.3225 0.0576 -0.1290
9 0.8319 -0.2848 -0.0071 -0.1094 0.0307 -0.0981

 7 8 9
1 0.0966 -0.0652 -0.0216
2 0.0772 -0.1596 -0.0035
3 0.0055 -0.0214 -0.0442
4 -0.2240 -0.0620 0.3127
5 0.4063 0.0039 0.0021
943

 Multivariate Analysis principal_components
6 -0.2084 0.0487 -0.3003
7 -0.1589 -0.1794 -0.0482
8 0.1037 -0.0854 0.0224
9 -0.0140 0.4485 0.0543

Warning Errors
IMSLS_100_DF Because the number of degrees of freedom in

“covariances” and “n_degrees_freedom” is less
than or equal to 0, 100 degrees of freedom will be
used.

IMSLS_COV_NOT_NONNEG_DEF “eigenvalues[#]” = #. One or more eigenvalues
much less than zero are computed. The matrix
“covariances” is not nonnegative definite. In order
to continue computations of “eigenvalues” and
“correlations,” these eigenvalues are treated as
0.

IMSLS_FAILED_TO_CONVERGE The iteration for the eigenvalue failed to converge in
100 iterations before deflating.
944

 Multivariate Analysis factor_analysis
factor_analysis

Extracts initial factor-loading estimates in factor analysis with rotation options.

Synopsis
#include <imsls.h>
float *imsls_f_factor_analysis (int n_variables, float covariances[], int n_factors,

..., 0)

The type double function is imsls_d_factor_analysis.

Required Arguments
int n_variables (Input)

Number of variables.

float covariances[] (Input)
Array of length n_variables×n_variables containing the variance-covariance or correlation
matrix.

int n_factors (Input)
Number of factors in the model.

Return Value
An array of length n_variables×n_factors containing the matrix of factor loadings.

Synopsis with Optional Arguments
#include <imsls.h>

more...

more...
945

 Multivariate Analysis factor_analysis
float *imsls_f_factor_analysis (int n_variables, float covariances[], int n_factors,

IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances, or
IMSLS_PRINCIPAL_COMPONENT, or
IMSLS_PRINCIPAL_FACTOR, or
IMSLS_UNWEIGHTED_LEAST_SQUARES, or
IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances, or
IMSLS_IMAGE, or
IMSLS_ALPHA, int df_covariances,
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[],
IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search,
IMSLS_CONVERGENCE_EPS, float convergence_eps,
IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon,
IMSLS_EIGENVALUES, float **eigenvalues,
IMSLS_EIGENVALUES_USER, float eigenvalues[],
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value,
IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient,
IMSLS_N_ITERATIONS, int *n_iterations,
IMSLS_FUNCTION_MIN, float *function_min,
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b, float **t,
IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[], float t[],
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION, float target[], float **b, float **t,
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION_USER, float target[], float b[],

float t[],
IMSLS_DIRECT_OBLIMIN_ROTATION, float w, int norm, float **b, float **t,

float **factor_correlations,
IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm, float b[], float t[],

float factor_correlations[],
IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[], int norm, float **target,

float **b, float **t, float **factor_correlations,
IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[], int norm,

float target[], float b[], float t[], float factor_correlations[],
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w, float pivot[], int norm,

float **target, float **b, float **t, float **factor_correlations,
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w, float pivot[], int norm,

float target[], float b[], float t[], float factor_correlations[],
946

 Multivariate Analysis factor_analysis
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float target[], float **b, float **t,
float **factor_correlations,

IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER, float target[], float b[], float t[],
float factor_correlations[],
IMSLS_FACTOR_STRUCTURE, float **s, float **fvar,
IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[],

IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float factor_loadings[],
0)

Optional Arguments
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances (Input)

Maximum likelihood (common factor model) method used to obtain the estimates. Argument
df_covariances is the number of degrees of freedom in covariances.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_PRINCIPAL_COMPONENT
Principal component (principal component model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_PRINCIPAL_FACTOR
Principal factor (common factor model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_UNWEIGHTED_LEAST_SQUARES
Unweighted least-squares (common factor model) method used to obtain the estimates. This option
is the default.

Default: This option is the default.

or

IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances (Input)
Generalized least-squares (common factor model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or
947

 Multivariate Analysis factor_analysis
IMSLS_IMAGE
Image-factor analysis (common factor model) method used to obtain the estimates.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
or

IMSLS_ALPHA, int df_covariances (Input)
Alpha-factor analysis (common factor model) method used to obtain the estimates. Argument
df_covariances is the number of degrees of freedom in covariances.

Default: IMSLS_UNWEIGHTED_LEAST_SQUARES
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[] (Input)

Array of length n_variables containing the initial estimates of the unique variances.

Default: Initial estimates are taken as the constant 1 − n_factors/2 × n_variables divided by
the diagonal elements of the inverse of covariances.

IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[] (Output)
User-allocated array of length n_variables containing the estimated unique variances.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations in the iterative procedure.

Default: max_iterations = 60

IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search (Input)
Maximum number of step halvings allowed during any one iteration.

Default: max_steps_line_search = 10

IMSLS_CONVERGENCE_EPS, float convergence_eps (Input)
Convergence criterion used to terminate the iterations. For the unweighted least squares, general-
ized least squares or maximum likelihood methods, convergence is assumed when the relative
change in the criterion is less than convergence_eps. For alpha-factor analysis, convergence is
assumed when the maximum change (relative to the variance) of a uniqueness is less than
convergence_eps.

Default: convergence_eps = 0.0001

IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon (Input)
Convergence criterion used to switch to exact second derivatives. When the largest relative change in
the unique standard deviation vector is less than switch_epsilon, exact second derivative vec-
tors are used. Argument switch_epsilon is not used with the principal component, principal
factor, image-factor analysis, or alpha-factor analysis methods.

Default: switch_epsilon = 0.1
948

 Multivariate Analysis factor_analysis
IMSLS_EIGENVALUES, float **eigenvalues (Output)
The address of a pointer to an internally allocated array of length n_variables containing the
eigenvalues of the matrix from which the factors were extracted.

IMSLS_EIGENVALUES_USER, float eigenvalues[] (Output)
Storage for array eigenvalues is provided by the user. See IMSLS_EIGENVALUES.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value (Output)
Number of degrees of freedom in chi-squared is df; chi_squared is the chi-squared test statistic
for testing that n_factors common factors are adequate for the data; p_value is the probability
of a greater chi-squared statistic.

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient (Output)
Tucker reliability coefficient.

IMSLS_N_ITERATIONS, int *n_iterations (Output)
Number of iterations.

IMSLS_FUNCTION_MIN, float *function_min (Output)
Value of the function minimum.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to an internally allocated array of length n_variables containing the
updates of the unique variance estimates when convergence was reached (or the iterations
terminated).

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See IMSLS_LAST_STEP.

IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b, float **t (Input/Output)
Nonnegative constant w defines the rotation. If norm =1, row normalization is performed. Otherwise,
row normalization is not performed. b contains the address of a pointer to the internally allocated
array of length n_variables by n_factors containing the rotated factor loading matrix. t con-
tains the address of a pointer to the internally allocated array of length n_factors by
n_factors containing the rotation transformation matrix. w = 0.0 results in quartimax rotations,
w = 1.0 results in varimax rotations, and w = n_factors/2.0 results in equamax rotations. Other
nonnegative values of w may also be used, but the best values for w are in the range
(0.0, 5 × n_factors).

IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[], float t[] (Input/Output)
Storage for b and t are provided by the user. See IMSLS_ORTHOMAX_ROTATION.

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION, float target[], float **b, float **t (Input/Out-
put)
If specified, the n_variables by n_factors target matrix target will be used to compute an
949

 Multivariate Analysis factor_analysis
orthogonal Procrustes rotation of the factor-loading matrix. b contains the address of a pointer to
the internally allocated array of length n_variables×n_factors containing the rotated factor
loading matrix. t contains the address of a pointer to the internally allocated array of length
n_factors×n_factors containing the rotation transformation matrix.

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION_USER, float target[], float b[], float t[]
(Input/Output)
Storage for b and t are provided by the user. See
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION.

IMSLS_DIRECT_OBLIMIN_ROTATION, float w, int norm, float **b, float **t,
float **factor_correlations (Input/Output)
Computes a direct oblimin rotation. Nonpositive constant w defines the rotation. If norm =1, row
normalization is performed. Otherwise, row normalization is not performed. b contains the address
of a pointer to the internally allocated array of length n_variables×n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the internally allocated array of
length n_factors×n_factors containing the rotation transformation matrix.
factor_correlations contains the address of a pointer to the internally allocated array of
length n_factors×n_factors containing the factor correlations. The parameter w determines
the type of direct oblimin rotation to be performed. In general w must be negative. w = 0.0 results in
direct quartimin rotations. As w approaches negative infinity, the orthogonality among factors will
increase.

IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm, float b[], float t[],
float factor_correlations[] (Input/Output)
Storage for b, t and factor_correlations are provided by the user. See
IMSLS_DIRECT_OBLIMIN_ROTATION.

IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[], int norm, float **target, float **b,
float **t, float **factor_correlations (Input/Output)
Computes an oblique promax rotation of the factor loading matrix using a power vector. Nonnega-
tive constant w defines the rotation. power, a vector of length n_factors, contains the power
vector. If norm =1, row (Kaiser) normalization is performed. Otherwise, row normalization is not per-
formed. b contains the address of a pointer to the internally allocated array of length
n_variables×n_factors containing the rotated factor loading matrix. t contains the address
of a pointer to the internally allocated array of length n_factors*n_factors containing the
rotation transformation matrix. factor_correlations contains the address of a pointer to the
internally allocated array of length n_factors×n_factors containing the factor correlations.
target contains the address of a pointer to the internally allocated array of length
n_variables×n_factors containing the target matrix for rotation, derived from the orthomax
rotation. w is used in the orthomax rotation, see the optional argument
IMSLS_ORTHOMAX_ROTATION for common values of w.
950

 Multivariate Analysis factor_analysis
All power[j] should be greater than 1.0, typically 4.0. Generally, the larger the values of power
[j], the more oblique the solution will be.

IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[], int norm, float target[],
float b[], float t[], float factor_correlations[] (Input/Output)
 Storage for b, t, factor_correlations, and target are provided by the user. See
IMSLS_OBLIQUE_PROMAX_ROTATION.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w, float pivot[], int norm,
float **target , float **b, float **t, float **factor_correlations (Input/Output)
Computes an oblique pivotal promax rotation of the factor loading matrix using pivot constants.
Nonnegative constant w defines the rotation. pivot, a vector of length n_factors, contains the
pivot constants. pivot[j] should be in the interval (0.0, 1.0). If norm = 1, row (Kaiser) normaliza-
tion is performed. Otherwise, row normalization is not performed. b contains the address of a
pointer to the internally allocated array of length n_variables×n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the internally allocated array of
length n_factors×n_factors containing the rotation transformation matrix.
factor_correlations contains the address of a pointer to the internally allocated array of
length n_factors*n_factors containing the factor correlations. target contains the address
of a pointer to the internally allocated array of length n_variables×n_factors containing the
target matrix for rotation, derived from the orthomax rotation. w is used in the orthomax rotation,
see the optional argument IMSLS_ORTHOMAX_ROTATION for common values of w.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w, float pivot[], int norm, float
target[], float b[], float t[], float factor_correlations[] (Input/Output)
 Storage for b, t, factor_correlations, and target are provided by the user. See
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION.

IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float **target, float **b, float **t,
float **factor_correlations (Input/Output)
Computes an oblique procrustes rotation of the factor loading matrix using a target matrix. target
is a hypothesized rotated factor loading matrix based upon prior knowledge with loadings chosen to
enhance interpretability. A simple structure solution will have most of the weights target[i][j]
either zero or large in magnitude. b contains the address of a pointer to the internally allocated array
of length n_variables×n_factors containing the rotated factor loading matrix. t contains the
address of a pointer to the internally allocated array of length n_factors×n_factors contain-
ing the rotation transformation matrix. factor_correlations contains the address of a pointer
to the internally allocated array of length n_factors×n_factors containing the factor
correlations.
951

 Multivariate Analysis factor_analysis
IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER, float target[], float b[], float t[],
float factor_correlations[] (Input/Output)
Storage for b, t, and factor_correlations are provided by the user. See
IMSLS_PROCRUSTES_ROTATION.

IMSLS_FACTOR_STRUCTURE, float **s, float **fvar (Output)
Computes the factor structure and the variance explained by each factor. s contains the address of a
pointer to the internally allocated array of length n_variables×n_factors containing the fac-
tor structure matrix. fvar contains the address of a pointer to the internally allocated array of
length n_factors containing the variance accounted for by each of the n_factors rotated fac-
tors. A factor rotation matrix is used to compute the factor structure and the variance. One and only
one rotation option argument can be specified.

IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[] (Output)
Storage for s, and fvar are provided by the user. See IMSLS_FACTOR_STRUCTURE.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of the matrix covariances.

Default: cov_col_dim = n_variables
IMSLS_RETURN_USER, float factor_loadings[] (Output)

User-allocated array of length n_variables×n_factors containing the unrotated factor
loadings.

Description
Function imsls_f_factor_analysis computes factor loadings in exploratory factor analysis models. Mod-
els available in imsls_f_factor_analysis are the principal component model for factor analysis and the
common factor model with additions to the common factor model in alpha-factor analysis and image analysis.
Methods of estimation include principal components, principal factor, image analysis, unweighted least squares,
generalized least squares, and maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as Σ = ΛΛT + Ψ, where Σ is the
p × p population covariance matrix, Λ is the p × k matrix of factor loadings relating the factors f to the observed
variables x, and Ψ is the p × p matrix of covariances of the unique errors e. Here, p = n_variables and
k = n_factors. The relationship between the factors, the unique errors, and the observed variables is given as
x = Λf + e, where in addition, the expected values of e, f, and x are assumed to be 0. (The sample means can be
subtracted from x if the expected value of x is not 0.) It also is assumed that each factor has unit variance, the fac-
tors are independent of each other, and that the factors and the unique errors are mutually independent. In the
952

 Multivariate Analysis factor_analysis
common factor model, the elements of unique errors e also are assumed to be independent of one another so
that the matrix Ψ is diagonal. This is not the case in the principal component model in which the errors may be
correlated.

Further differences between the various methods concern the criterion that is optimized and the amount of
computer effort required to obtain estimates. Generally speaking, the least-squares and maximum likelihood
methods, which use iterative algorithms, require the most computer time with the principal factor, principal com-
ponent and the image methods requiring much less time since the algorithms in these methods are not iterative.
The algorithm in alpha-factor analysis is also iterative, but the estimates in this method generally require some-
what less computer effort than the least-squares and maximum likelihood estimates. In all methods, one
eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods
Both the principal component and principal factor methods compute the factor-loading estimates as

where Γ and the diagonal matrix Δ are the eigenvectors and eigenvalues of a matrix. In the principal component
model, the eigensystem analysis is performed on the sample covariance (correlation) matrix S, while in the princi-
pal factor model, the matrix (S + Ψ) is used. If the unique error variances Ψ are not known in the principal factor
mode, then imsls_f_factor_analysis obtains estimates for them.

The basic idea in the principal component method is to find factors that maximize the variance in the original
data that is explained by the factors. Because this method allows the unique errors to be correlated, some factor
analysts insist that the principal component method is not a factor analytic method. Usually, however, the esti-
mates obtained by the principal component model and factor analysis model will be quite similar.

It should be noted that both the principal component and principal factor methods give different results when
the correlation matrix is used in place of the covariance matrix. Indeed, any rescaling of the sample covariance
matrix can lead to different estimates with either of these methods. A further difficulty with the principal factor
method is the problem of estimating the unique error variances. Theoretically, these must be known in advance
and be passed to imsls_f_factor_analysis using optional argument
IMSLS_UNIQUE_VARIANCES_INPUT. In practice, the estimates of these parameters are produced by
imsls_f_factor_analysis when IMSLS_UNIQUE_VARIANCES_INPUT is not specified. In either case,
the resulting adjusted covariance (correlation) matrix

may not yield the n_factors positive eigenvalues required for n_factors factors to be obtained. If this
occurs, the user must either lower the number of factors to be estimated or give new unique error variance
values.

Γ^ Δ^
−1/2

S − ψ̂
953

 Multivariate Analysis factor_analysis
Least-squares and Maximum Likelihood Methods
Unlike the previous two methods, the algorithm used to compute estimates in this section is iterative (see Jöre-
skog 1977). As with the principal factor model, the user may either initialize the unique error variances or allow
imsls_f_factor_analysis to compute initial estimates. Unlike the principal factor method,
imsls_f_factor_analysis optimizes the criterion function with respect to both Ψ and Γ. (In the principal
factor method, Ψ is assumed to be known. Given Ψ, estimates for Λ may be obtained.)

The major difference between the methods discussed in this section is in the criterion function that is optimized.
Let S denote the sample covariance (correlation) matrix, and let Σ denote the covariance matrix that is to be esti-
mated by the factor model. In the unweighted least-squares method, also called the iterated principal factor
method or the minres method (see Harman 1976, p. 177), the function minimized is the sum-of-squared differ-

ences between S and Σ. This is written as Φu1= 0.5 (trace (S − Σ)2).

Generalized least-squares and maximum likelihood estimates are asymptotically equivalent methods. Maximum

likelihood estimates maximize the (normal theory) likelihood {Φm1 = trace (Σ−1S) − log (|Σ−1S|)}, while generalized

least squares optimizes the function Φgs = trace (ΣS−1 − I)2.

In all three methods, a two-stage optimization procedure is used. This proceeds by first solving the likelihood
equations for Λ in terms of Ψ and substituting the solution into the likelihood. This gives a criterion ɸ (Ψ, Λ (Ψ)),

which is optimized with respect to Ψ. In the second stage, the estimates are obtained from the estimates for
Ψ.

The generalized least-squares and maximum likelihood methods allow for the computation of a statistic
(IMSLS_CHI_SQUARED_TEST) for testing that n_factors common factors are adequate to fit the model.
This is a chi-squared test that all remaining parameters associated with additional factors are 0. If the probability
of a larger chi-squared is so small that the null hypothesis is rejected, then additional factors are needed
(although these factors may not be of any practical importance). Failure to reject does not legitimize the model.
The statistic IMSLS_CHI_SQUARED_TEST is a likelihood ratio statistic in maximum likelihood estimation. As
such, it asymptotically follows a chi-squared distribution with degrees of freedom given by df.

The Tucker and Lewis reliability coefficient, ρ, is returned by IMSLS_TUCKER_RELIABILITY_COEFFICIENT
when the maximum likelihood or generalized least-squares methods are used. This coefficient is an estimate of
the ratio of explained variation to the total variation in the data. It is computed as follows:

Λ
^

954

 Multivariate Analysis factor_analysis
where |S| is the determinant of covariances, p = n_variables, k = n_variables, ɸ is the optimized crite-
rion, and d = df_covariances.

Image Analysis Method
The term image analysis is used here to denote the noniterative image method of Kaiser (1963). It is not the
image analysis discussed by Harman (1976, p. 226). The image method (as well as the alpha-factor analysis
method) begins with the notion that only a finite number from an infinite number of possible variables have been
measured. The image factor pattern is calculated under the assumption that the ratio of the number of factors to
the number of observed variables is near 0, so that a very good estimate for the unique error variances (for stan-
dardized variables) is given as 1 minus the squared multiple correlation of the variable under consideration with
all variables in the covariance matrix.

First, the matrix D2 = (diag (S−1))−1 is computed where the operator “diag” results in a matrix consisting of the
diagonal elements of its argument and S is the sample covariance (correlation) matrix. Then, the eigenvalues Λ

and eigenvectors Γ of the matrix D−1SD−1 are computed. Finally, the unrotated image-factor pattern is computed

as DΓ [(Λ − I)2Λ−1]1?2.

Alpha-factor Analysis Method
The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-loading estimates to maximize the cor-
relation between the factors and the complete universe of variables of interest. The basic idea in this method is
that only a finite number of variables out of a much larger set of possible variables is observed. The population
factors are linearly related to this larger set, while the observed factors are linearly related to the observed vari-
ables. Let f denote the factors obtainable from a finite set of observed random variables, and let ξ denote the
factors obtainable from the universe of observable variables. Then, the alpha method attempts to find factor-
loading estimates so as to maximize the correlation between f and ξ. In order to obtain these estimates, the iter-
ative algorithm of Kaiser and Caffrey (1965) is used.

ρ =
mM0 − mMk
mM0 − 1

m = d −
2p + 5
6 − 2k6

M0 =
−ln ∣S∣
p p − 1 / 2

Mk =
ϕ

p − k 2 − p − k / 2
955

 Multivariate Analysis factor_analysis
Rotation Methods
The IMSLS_ORTHOMAX_ROTATION optional argument performs an orthogonal rotation according to an
orthomax criterion. In this analytic method of rotation, the criterion function

is minimized by finding an orthogonal rotation matrix T such that (λij) = Λ = AT where A is the matrix of unrotated

factor loadings. Here, ≥ 0 is a user-specified constant (w) yielding a family of rotations, and p is the number of
variables.

Kaiser (row) normalization can be performed on the factor loadings prior to rotation by specifying the parameter
norm =1. In Kaiser normalization, the rows of A are first “normalized” by dividing each row by the square root of
the sum of its squared elements (Harman 1976). After the rotation is complete, each row of b is “denormalized”
by multiplication by its initial normalizing constant.

The method for optimizing Q proceeds by accumulating simple rotations where a simple rotation is defined to be
one in which Q is optimized for two columns in Λ and for which the requirement that T be orthogonal is satisfied.
A single iteration is defined to be such that each of the
n_factors(n_factors - 1)/2 possible simple rotations is performed where n_factors is the number of
factors. When the relative change in Q from one iteration to the next is less than convergence_eps (the user-
specified convergence criterion), the algorithm stops. convergence_eps = 0.0001 is usually sufficient. Alter-
natively, the algorithm stops when the user-specified maximum number of iterations, max_iterations, is
reached. max_iterations = 30 is usually sufficient.

The parameter in the rotation, , is used to provide a family of rotations. When = 0.0, a direct quartimax rota-

tion results. Other values of yield other rotations.

The IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION optional argument performs orthogonal Procrustes
rotation according to a method proposed by Schöneman (1966). Let k = n_factors denote the number of fac-
tors, p = n_variables denote the number of variables, A denote the p × k matrix of unrotated factor loadings,

T denote the k × k orthogonal rotation matrix (orthogonality requires that TT T be a k × k identity matrix), and let X
denote the target matrix. The basic idea in orthogonal Procrustes rotation is to find an orthogonal rotation matrix
T such that B = AT and T provides a least-squares fit between the target matrix X and the rotated loading matrix B.

Schöneman’s algorithm proceeds by finding the singular value decomposition of the matrix AT X = UΣVT. The rota-

tion matrix is computed as T = UVT.

The IMSLS_DIRECT_OBLIMIN_ROTATION optional argument performs direct oblimin rotation. In this ana-
lytic method of rotation, the criterion function

Q =∑
i
∑
r

λir
4 −

γ
p∑

r
∑
i

λir
2 2

γ

γ γ
γ

956

 Multivariate Analysis factor_analysis
is minimized by finding a rotation matrix T such that (λir) = Λ = AT and (TT T)−1 is a correlation matrix. Here, ≤ 0

is a user-specified constant (w) yielding a family of rotations, and p is the number of variables. The rotation is said
to be direct because it minimizes Q with respect to the factor loadings directly, ignoring the reference structure.

Kaiser normalization can be performed on the factor loadings prior to rotation via the parameter norm. In Kaiser
normalization (see Harman 1976), the rows of the factor loading matrix are first “normalized” by dividing each row
by the square root of the sum of its squared elements. After the rotation is complete, each row of b is “denormal-
ized” by multiplication by its initial normalizing constant.

The method for optimizing Q is essentially the method first proposed by Jennrich and Sampson (1966). It pro-
ceeds by accumulating simple rotations where a simple rotation is defined to be one in which Q is optimized for a

given factor in the plane of a second factor, and for which the requirement that (TTT)−1 be a correlation matrix is
satisfied. An iteration is defined to be such that each of the n_factors[n_factors - 1] possible simple rota-
tions is performed, where n_factors is the number of factors. When the relative change in Q from one
iteration to the next is less than convergence_eps (the user-specified convergence criterion), the algorithm
stops. convergence_eps = .0001 is usually sufficient. Alternatively, the algorithm stops when the user-speci-
fied maximum number of iterations, max_iterations, is reached. max_iterations = 30 is usually
sufficient.

The parameter in the rotation, , is used to provide a family of rotations. Harman (1976) recommends that be

strictly less than or equal to zero. When = 0.0, a direct quartimin rotation results. Other values of yield other
rotations. Harman (1976) suggests that the direct quartimin rotations yield the most highly correlated factors

while more orthogonal factors result as approaches -∞.

IMSLS_OBLIQUE_PROMAX_ROTATION, IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, optional arguments perform oblique rotations using the Pro-
max, pivotal Promax, or oblique Procrustes methods. In all of these methods, a target matrix X is first either
computed or specified by the user. The differences in the methods relate to how the target matrix is first
obtained.

Given a p × k target matrix, X, and a p × k orthogonal matrix of unrotated factor loadings, A, compute the rotation

matrix T as follows: First regress each column of A on X yielding a k × k matrix β. Then, let = diag(βT β) where
diag denotes the diagonal matrix obtained from the diagonal of the square matrix. Standardize β to obtain T =
−1?2 β. The rotated loadings are computed as B = AT while the factor correlations can be computed as the

inverse of the T TT matrix.

Q =∑
r≠s
∑
i

λir
2 λis
2 −

γ
p∑

i

λir
2∑
i

λis
2

γ

γ γ
γ γ

γ

γ

γ

957

 Multivariate Analysis factor_analysis
In the Promax method, the unrotated factor loadings are first rotated according to an orthomax criterion via
optional argument IMSLS_ORTHOMAX_ROTATION. The target matrix X is taken as the elements of the B raised
to a power greater than one but retaining the same sign as the original loadings. The column i of the rotated
matrix B is raised to the power power[i]. A power of four is commonly used. Generally, the larger the power,
the more oblique the solution.

In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax orthogonal solution as in the
Promax case. Then, rather than raising the i-th column in B to the power pivot[i], the elements xij of X are

obtained from the elements bij of B by raising the ij element of B to the power pivot[i]/bij. This has the effects

of greatly increasing in X those elements in B that are greater in magnitude than the pivot elements pivot[i],
and of greatly decreasing those elements that are less than pivot[i].

In the oblique Procrustes method, the elements of X are specified by the user as input to the routine via the
target argument. No orthogonal rotation is performed in the oblique Procrustes method.

Factor Structure and Variance
The IMSLS_FACTOR_STRUCTURE optional argument computes the factor structure matrix (the matrix of cor-
relations between the observed variables and the hypothesized factors) and the variance explained by each of
the factors (for orthogonal rotations). For oblique rotations, IMSLS_FACTOR_STRUCTURE computes a mea-
sure of the importance of the factors, the sum of the squared elements in each column.

Let Δ denote the diagonal matrix containing the elements of the variance of the original data along its diagonal.
The estimated factor structure matrix S is computed as

while the elements of fvar are computed as the diagonal elements of

If the factors were obtained from a correlation matrix (or the factor variances for standardized variables are
desired), then the variances should all be 1.0.

Comments
1. Function imsls_f_factor_analysis makes no attempt to solve for n_factors. In general, if

n_factors is not known in advance, several different values of n_factors should be used and
the most reasonable value kept in the final solution.

S = Δ
−12A(T−1)T

STΔ
1
2AT
958

 Multivariate Analysis factor_analysis
2. Iterative methods are generally thought to be superior from a theoretical point of view, but in prac-
tice, often lead to solutions that differ little from the noniterative methods. For this reason, it is
usually suggested that a noniterative method be used in the initial stages of the factor analysis and
that the iterative methods be used when issues such as the number of factors have been resolved.

3. Initial estimates for the unique variances can be input. If the iterative methods fail for these values,
new initial estimates should be tried. These can be obtained by use of another factoring method.
(Use the final estimates from the new method as the initial estimates in the old method.)

Examples

Example 1

In this example, factor analysis is performed for a nine-variable matrix using the default method of unweighted
least squares.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;
 float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
 };
 /* Perform analysis */
 a = imsls_f_factor_analysis (9, &covariances[0][0], 3,
 0);
 /* Print results */
 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS, a,
 0);
 imsls_free(a);
}

Output

 Unrotated Loadings
 1 2 3
959

 Multivariate Analysis factor_analysis
1 0.7018 -0.2316 0.0796
2 0.7200 -0.1372 -0.2082
3 0.5351 -0.2144 -0.2271
4 0.7907 0.4050 0.0070
5 0.6532 0.4221 -0.1046
6 0.7539 0.4842 0.1607
7 0.7127 -0.2819 -0.0701
8 0.4835 -0.2627 0.4620
9 0.8192 -0.3137 -0.0199

Example 2

The following data were originally analyzed by Emmett (1949). There are 211 observations on 9 variables. Follow-
ing Lawley and Maxwell (1971), three factors are obtained by the method of maximum likelihood.

#include <imsls.h>
#include <stdio.h>
int main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;
 float *evals;
 float chi_squared, p_value, reliability_coef, function_min;
 int chi_squared_df, n_iterations;
 float uniq[N_VARIABLES];
 float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
 };
 /* Perform analysis */
 a = imsls_f_factor_analysis (9, &covariances[0][0], 3,
 IMSLS_MAXIMUM_LIKELIHOOD, 210,
 IMSLS_SWITCH_EXACT_HESSIAN, 0.01,
 IMSLS_CONVERGENCE_EPS, 0.000001,
 IMSLS_MAX_ITERATIONS, 30,
 IMSLS_MAX_STEPS_LINE_SEARCH, 10,
 IMSLS_EIGENVALUES, &evals,
 IMSLS_UNIQUE_VARIANCES_OUTPUT, uniq,
 IMSLS_CHI_SQUARED_TEST, &chi_squared_df, &chi_squared, &p_value,
 IMSLS_TUCKER_RELIABILITY_COEFFICIENT, &reliability_coef,
 IMSLS_N_ITERATIONS, &n_iterations,
 IMSLS_FUNCTION_MIN, &function_min,
 0);
 /* Print results */
 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a, 0);
960

 Multivariate Analysis factor_analysis
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, evals, 0);
 imsls_f_write_matrix("Unique Error Variances", 1, N_VARIABLES,
 uniq, 0);
 printf("\n\nchi_squared_df = %d\n", chi_squared_df);
 printf("chi_squared = %f\n", chi_squared);
 printf("p_value = %f\n\n", p_value);
 printf("reliability_coef = %f\n", reliability_coef);
 printf("function_min = %f\n", function_min);
 printf("n_iterations = %d\n", n_iterations);
 imsls_free(evals);
 imsls_free(a);
}

Output

 Unrotated Loadings
 1 2 3
1 0.6642 -0.3209 0.0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0.8372 0.2924 -0.0354
5 0.7050 0.3148 -0.1528
6 0.8187 0.3767 0.1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0.4913
9 0.7657 -0.4274 -0.0117

 Eigenvalues
 1 2 3 4 5 6
 0.063 0.229 0.541 0.865 0.894 0.974

 7 8 9
 1.080 1.117 1.140

 Unique Error Variances
 1 2 3 4 5 6
 0.4505 0.4271 0.6166 0.2123 0.3805 0.1769

 7 8 9
 0.3995 0.4615 0.2309

chi_squared_df = 12
chi_squared = 7.149356
p_value = 0.847588
reliability_coef = 1.000000
function_min = 0.035017
n_iterations = 5
961

 Multivariate Analysis factor_analysis
Example 3

This example is a continuation of example 1 and illustrates the use of the IMSLS_FACTOR_STRUCTURE
optional argument when the structure and an index of factor importance for obliquely rotated loadings are

desired. A direct oblimin rotation is used to compute the factors, derived from nine variables and using = -1.

Note in this example that the elements of fvar are not variances since the rotation is oblique.

#include <imsls.h>
int main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;
 float w= -1.0;
 int norm=1;
 float *b, *t, *fcor;
 float *s, *fvar;
 float covariances[9][9] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0
 };
 /* Perform analysis */
 a = imsls_f_factor_analysis (9, (float *)covariances, 3,
 IMSLS_MAXIMUM_LIKELIHOOD, 210,
 IMSLS_SWITCH_EXACT_HESSIAN, 0.01,
 IMSLS_CONVERGENCE_EPS, 0.00001,
 IMSLS_MAX_ITERATIONS, 30,
 IMSLS_MAX_STEPS_LINE_SEARCH, 10,
 IMSLS_DIRECT_OBLIMIN_ROTATION, w, norm, &b, &t, &fcor,
 IMSLS_FACTOR_STRUCTURE, &s, &fvar,
 0);
 /* Print results */
 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a,
 0);
 imsls_f_write_matrix("Rotated Loadings", N_VARIABLES, N_FACTORS, b,
 0);
 imsls_f_write_matrix("Transformation Matrix", N_FACTORS, N_FACTORS,
 t,
 0);
 imsls_f_write_matrix("Factor Correlation Matrix", N_FACTORS,
 N_FACTORS, fcor,
 0);
 imsls_f_write_matrix("Factor Structure", N_VARIABLES, N_FACTORS, s,
 0);
 imsls_f_write_matrix("Factor Variance", 1, N_FACTORS, fvar,

γ

962

 Multivariate Analysis factor_analysis
 0);
}

Output

 Unrotated Loadings
 1 2 3
1 0.6642 -0.3209 0.0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0.8372 0.2924 -0.0354
5 0.7050 0.3148 -0.1528
6 0.8187 0.3767 0.1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0.4913
9 0.7657 -0.4274 -0.0117
 Rotated Loadings
 1 2 3
1 0.1128 -0.5144 0.2917
2 0.1847 -0.6602 -0.0018
3 0.0128 -0.6354 -0.0585
4 0.7797 -0.1751 0.0598
5 0.7147 -0.1813 -0.0959
6 0.8520 0.0039 0.1820
7 0.0354 -0.6844 0.1510
8 0.0276 -0.0941 0.6824
9 0.0729 -0.7100 0.2493
 Transformation Matrix
 1 2 3
1 0.611 -0.462 0.203
2 0.923 0.813 -0.249
3 0.042 0.728 1.050
 Factor Correlation Matrix
 1 2 3
1 1.000 -0.427 0.217
2 -0.427 1.000 -0.411
3 0.217 -0.411 1.000
 Factor Structure
 1 2 3
1 0.3958 -0.6824 0.5275
2 0.4662 -0.7383 0.3094
3 0.2714 -0.6169 0.2052
4 0.8675 -0.5326 0.3011
5 0.7713 -0.4471 0.1339
6 0.8899 -0.4347 0.3656
7 0.3605 -0.7616 0.4398
8 0.2161 -0.3861 0.7271
9 0.4302 -0.8435 0.5568
 Factor Variance
 1 2 3
 2.170 2.560 0.914
963

 Multivariate Analysis factor_analysis
Warning Errors

Fatal Errors

IMSLS_VARIANCES_INPUT_IGNORED When using the IMSLS_PRINCIPAL_COMPONENT option,
the unique variances are assumed to be zero. Input for
IMSLS_UNIQUE_VARIANCES_INPUT is ignored.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is assumed.

IMSLS_NO_DEG_FREEDOM There are no degrees of freedom for the significance
testing.

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is assumed.

IMSLS_NO_ROTATION n_factors = 1. No rotation is possible.

IMSLS_SVD_ERROR An error occurred in the singular value decomposition of
tran(A)*X. The rotation matrix, T, may not be correct.

IMSLS_HESSIAN_NOT_POS_DEF The approximate Hessian is not semi-definite on iteration
#. The computations cannot proceed. Try using different
initial estimates.

IMSLS_FACTOR_EVAL_NOT_POS “eigenvalues[#]” = #. An eigenvalue corresponding to a
factor is negative or zero. Either use different initial esti-
mates for “unique_variances” or reduce the number of
factors.

IMSLS_COV_NOT_POS_DEF “covariances” is not positive semi-definite. The compu-
tations cannot proceed.

IMSLS_COV_IS_SINGULAR The matrix “covariances” is singular. The computations
cannot continue because variable # is linearly related to
the remaining variables.

IMSLS_COV_EVAL_ERROR An error occurred in calculating the eigenvalues of the
adjusted (inverse) covariance matrix. Check
“covariances.”

IMSLS_ALPHA_FACTOR_EVAL_NEG In alpha factor analysis on iteration #, eigenvalue # is #.
As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced or
new initial estimates for “unique_variances” must be
given.

IMSLS_RANK_LESS_THAN The rank of TRAN(A)*target = #. This must be greater
than or equal to n_factors = #.
964

 Multivariate Analysis discriminant_analysis
discriminant_analysis
Performs a linear or a quadratic discriminant function analysis among several known groups.

Synopsis
#include <imsls.h>
void imsls_f_discriminant_analysis (int n_rows, int n_variables, float x[],

int n_groups, …, 0)

The type double function is imsls_d_discriminant_analysis.

Required Arguments
int n_rows (Input)

Number of rows of x to be processed.

int n_variables (Input)
Number of variables to be used in the discrimination.

float x[] (Input)
Array of size n_rows by n_variables + 1 containing the data. The first n_variables columns
correspond to the variables, and the last column (column n_variables) contains the group num-
bers. The groups must be numbered 1, 2, ..., n_groups.

int n_groups (Input)
Number of groups in the data.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_discriminant_analysis (int n_rows, int n_variables, float x[],

int n_groups,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_METHOD, int method,
IMSLS_IDO, int ido,
965

 Multivariate Analysis discriminant_analysis
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE,
IMSLS_PRIOR_EQUAL, or
IMSLS_PRIOR_PROPORTIONAL, or
IMSLS_PRIOR_INPUT, float prior_input[],
IMSLS_PRIOR_OUTPUT, float **prior_output,
IMSLS_PRIOR_OUTPUT_USER, float prior_output[],
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[]
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COV, float **covariances,
IMSLS_COV_USER, float covariances[],
IMSLS_COEF, float **coefficients,
IMSLS_COEF_USER, float coefficients[],
IMSLS_CLASS_MEMBERSHIP, int **class_membership,
IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[],
IMSLS_CLASS_TABLE, float **class_table,
IMSLS_CLASS_TABLE_USER, float class_table[],
IMSLS_PROB, float **prob,
IMSLS_PROB_USER, float prob[],
IMSLS_MAHALANOBIS, float **d2,
IMSLS_MAHALANOBIS_USER, float d2[],
IMSLS_STATS, float **stats,
IMSLS_STATS_USER, float stats[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of array x.

Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers of x in which particular
types of data are stored. Columns are numbered 0 … x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group numbers are stored.
966

 Multivariate Analysis discriminant_analysis
Parameter ind contains the indices of the variables to be used in the analysis.

Parameters ifrq and iwt contain the column numbers of x in which the frequencies and weights,
respectively, are stored. Set ifrq = −1 if there will be no column for frequencies. Set iwt = −1 if
there will be no column for weights. Weights are rounded to the nearest integer. Negative weights are
not allowed.

Defaults: igrp = n_variables, ind[] = 0, 1, ..., n_variables − 1, ifrq = −1, and iwt = −1

IMSLS_METHOD, int method (Input)
Method of discrimination. The method chosen determines whether linear or quadratic discrimina-
tion is used, whether the group covariance matrices are computed (the pooled covariance matrix is
always computed), and whether the leaving-out-one or the reclassification method is used to classify
each observation.

In the leaving-out-one method of classification, the posterior probabilities are adjusted so as to elim-
inate the effect of the observation from the sample statistics prior to its classification. In the
classification method, the effect of the observation is not eliminated from the classification function.

When optional argument IMSLS_IDO is specified, the following rules for mixing methods apply;
Methods 1, 2, 4, and 5 can be intermixed, as can methods 3 and 6. Methods 1, 2, 4, and 5 cannot be
intermixed with methods 3 and 6.

Default: method = 1

IMSLS_IDO, int ido (Input)
Processing option. See Comments 3 and 4 for more information.

method
discrimination
method

covariances
computed

classification
method

1 linear pooled, group reclassification

2 quadratic pooled, group reclassification

3 linear pooled reclassification

4 linear pooled, group leaving-out-one

5 quadratic pooled, group leaving-out-one

6 linear pooled leaving-out-one

ido Action

0 This is the only invocation; all the data are input at once.
(Default)

1 This is the first invocation with this data; additional calls will
be made. Initialization and updating for the n_rows observa-
tions of x will be performed.
967

 Multivariate Analysis discriminant_analysis
Default: ido = 0

IMSLS_ROWS_ADD (Input)

or

IMSLS_ROWS_DELETE (Input)
By default (or if IMSLS_ROWS_ADD is specified), then the observations in x are added to the dis-
criminant statistics. If IMSLS_ROWS_DELETE is specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if there is only one
invocation).

IMSLS_PRIOR_EQUAL (Input)

or

IMSLS_PRIOR_PROPORTIONAL (Input)

or

IMSLS_PRIOR_INPUT, float prior_input[] (Input)
By default, (or if IMSLS_PRIOR_EQUAL is specified), equal prior probabilities are calculated as
1.0/n_groups.

If IMSLS_PRIOR_PROPORTIONAL is specified, prior probabilities are calculated to be propor-
tional to the sample size in each group.

If IMSLS_PRIOR_INPUT is specified, then array prior_input is an array of length n_groups
containing the prior probabilities for each group, such that the sum of all prior probabilities is equal
to 1.0. Prior probabilities are not used if ido is equal to 1, 2, 5, or 6.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 All statistics are updated for the n_rows observations. The
discriminant functions and other statistics are computed.

4 The discriminant functions are used to classify each of the
n_rows observations of x.

5 The covariance matrices are computed, and workspace is
released. No further call to discriminant_analysis with
ido greater than 1 should be made without first calling
discriminant_analysis with ido = 1.

6 Workspace is released. No further calls to
discriminant_analysis with ido greater than 1 should be
made without first calling discriminant_analysis with
ido = 1. Invocation with this option is not required if a call
has already been made with ido = 5.

ido Action
968

 Multivariate Analysis discriminant_analysis
IMSLS_PRIOR_OUTPUT, float **prior_output (Output)
Address of a pointer to an array of length n_groups containing the most recently calculated or
input prior probabilities. If IMSLS_PRIOR_PROPORTIONAL is specified, every element of
prior_output is equal to −1 until a call is made with ido equal to 0 or 3, at which point the pri-
ors are calculated. Note that subsequent calls to discriminant_analysis with
IMSLS_PRIOR_PROPORTIONAL specified, and ido not equal to 0 or 3 will result in the elements
of prior_output being reset to −1.

IMSLS_PRIOR_OUTPUT_USER, float prior_output[] (Output)
Storage for array prior_output is provided by the user. See IMSLS_PRIOR_OUTPUT.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing the number of observations
in each group. Array gcounts is updated when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See IMSLS_GROUP_COUNTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables. The i-th row of means con-
tains the group i variable means. Array means is updated when ido is equal to 0, 1, 2, or 5. The
means are unscaled until a call is made with ido = 5, where the unscaled means are calculated as
Σwifi xi and the scaled means as

where xi is the value of the i-th observation, wi is the weight of the i-th observation, and fi is the fre-

quency of the i-th observation.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COV, float **covariances (Output)
Address of a pointer to an array of size g by n_variables by n_variables containing the
within-group covariance matrices (methods 1, 2, 4, and 5 only) as the first g-1 matrices, and the
pooled covariance matrix as the g-th matrix (that is, the first n_variables × n_variables ele-
ments comprise the group 1 covariance matrix, the next n_variables × n_variables
elements comprise the group 2 covariance, ..., and the last n_variables × n_variables ele-
ments comprise the pooled covariance matrix). If method is 3 or 6 then g is equal to 1. Otherwise, g
is equal to n_groups + 1. Argument cov is updated when ido is equal to 0, 1, 2, 3, or 5.

IMSLS_COV_USER, float covariances[] (Output)
Storage for array covariances is provided by the user. See IMSLS_COVARIANCES.

∑wi f ixi
∑wi f i
969

 Multivariate Analysis discriminant_analysis
IMSLS_COEF, float **coefficients (Output)
Address of a pointer to an array of size n_groups by (n_variables + 1) containing the linear dis-
criminant coefficients. The first column of coefficients contains the constant term, and the
remaining columns contain the variable coefficients. Row i − 1 of coefficients corresponds to
group i, for i = 1, 2, … n_groups. Array coefficients is always computed as the linear discrimi-
nant function coefficients even when quadratic discrimination is specified. Specifically, given the
linear discriminant function

the intercept is assigned to coefficients[i×(n_variables+1)] and

the j-th element of is assigned to coefficients[i×(n_variables+1)+j], where

i = 0, …, n_groups-1 and j=1, …, n_variables+1. Array coefficients is updated when
ido is equal to 0 or 3.

IMSLS_COEF_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user. See IMSLS_COEFFICIENTS.

IMSLS_CLASS_MEMBERSHIP, int **class_membership (Output)
Address of a pointer to an integer array of length n_rows containing the group to which the obser-
vation was classified. Array class_membership is updated when ido is equal to 0 or 4.

If an observation has an invalid group number, frequency, or weight when the leaving-out-one
method has been specified, then the observation is not classified and the corresponding elements of
class_membership (and prob, see IMSLS_PROB) are set to zero.

IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[] (Ouput)
Storage for array class_membership is provided by the user. See
IMSLS_CLASS_MEMBERSHIP.

IMSLS_CLASS_TABLE, float **class_table (Output)
Address of a pointer to an array of size n_groups by n_groups containing the classification table.
Array class_table is updated when ido is equal to 0, 1, or 4. Each observation that is classified
and has a group number 1.0, 2.0, ..., n_groups is entered into the table. The rows of the table cor-
respond to the known group membership. The columns refer to the group to which the observation
was classified. Classification results accumulate with each call to
imsls_f_discriminant_analysis with ido equal to 4. For example, if two calls with ido
equal to 4 are made, the elements in class_table sum to the total number of valid observations
in the two calls.

IMSLS_CLASS_TABLE_USER, float class_table[] (Output)
Storage for array class_table is provided by the user. See IMSLS_CLASS_TABLE.

zi = ln(pi) − 0.5x
─
i
TS p
−1x─i + x

TSp
−1x─i

ln(pi) − 0.5x
─
i
TSp
−1x─i

Sp
−1x─i
970

 Multivariate Analysis discriminant_analysis
IMSLS_PROB, float **prob (Output)
Address of a pointer to an array of size n_rows by n_groups containing the posterior probabilities
for each observation. Argument prob is updated when ido is equal to 0 or 4.

IMSLS_PROB_USER, float prob[] (Output)
Storage for array prob is provided by the user. See IMSLS_PROB.

IMSLS_MAHALANOBIS, float **d2 (Output)
Address of a pointer to an array of size n_groups by n_groups containing the Mahalanobis
distances

between the group means. Argument d2 is updated when ido is equal to 0 or 3.

For linear discrimination, the Mahalanobis distance is computed using the pooled covariance matrix.
Otherwise, the Mahalanobis distance

between group means i and j is computed using the within covariance matrix for group i in place of
the pooled covariance matrix.

IMSLS_MAHALANOBIS_USER, float d2[] (Output)
Storage for array d2 is provided by the user. See IMSLS_MAHALANOBIS.

IMSLS_STATS, float **stats (Output)
Address of a pointer to an array of length 4 + 2 × (n_groups + 1) containing various statistics of
interest. Array stats is updated when ido is equal to 0, 2, 3, or 5. The first element of stats is the
sum of the degrees of freedom for the within-covariance matrices. The second, third, and fourth ele-
ments of stats correspond to the chi-squared statistic, its degrees of freedom, and the probability
of a greater chi-squared, respectively, of a test of the homogeneity of the within-covariance matrices
(not computed if method is equal to 3 or 6). The fifth through 5 + n_groups elements of stats
contain the log of the determinants of each group’s covariance matrix (not computed if method is
equal to 3 or 6) and of the pooled covariance matrix (element 4 + n_groups). Finally, the last
n_groups + 1 elements of stats contain the sum of the weights within each group, and in the last
position, the sum of the weights in all groups.

IMSLS_STATS_USER, float stats[] (Output)
Storage for array stats is provided by the user. See IMSLS_STATS_USER.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to discriminant_analysis containing missing
values (NaN) for the classification, group, weight, and/or frequency variables. If a row of data contains
a missing value (NaN) for any of these variables, that row is excluded from the computations.

Di j
2

Di j
2

971

 Multivariate Analysis discriminant_analysis
Array nrmiss is updated when ido is equal to 0, 1, 2, or 3.

Comments
1. Common choices for the Bayesian prior probabilities are given by:

prior_input[i] = 1.0∕n_groups (equal priors)

prior_input[i] = gcounts[i]∕n_rows (proportional priors)

prior_input[i] = Past history or subjective judgment.

In all cases, the priors should sum to 1.0.

2. Two passes of the data are made. In the first pass, the statistics required to compute the discriminant
functions are obtained (ido equal to 1, 2, and 3). In the second pass, the discriminant functions are
used to classify the observations. When ido is equal to 0, all of the data are memory resident, and
both passes are made in one call to imsls_f_discriminant_analysis. When ido > 0
(optional argument IMSLS_IDO is specified), a third call to
imsls_f_discriminant_analysis involving no data is required with ido equal to 5 or 6.

3. Here are a few rules and guidelines for the correct value of ido in a series of calls:

a. Calls with ido = 0 or ido = 1 may be made at any time, subject to rule 2. These calls indicate that a
new analysis is to begin, and therefore allocate memory and destroy all statistics from previous calls.

b. Each series of calls to imsls_f_discriminant_analysis which begins with ido = 1 must
end with ido equal to 5 or 6 to ensure the proper release of workspace, subject to rule 3.

c. ido may not be 4 or 5 before a call with ido = 3 has been made.

d. ido may not be 2, 3, 4, 5, or 6
i) Immediately after a call with ido = 0.
ii) Before a call with ido = 1 has been made.
iii) Immediately after a call with ido equal to 5 or 6 has been made.

The following is a valid sequence of ido’s:

ido Explanation

0 Data Set A: Perform a complete analysis. All data to be used in
the analysis must be present in x. Since cleanup of workspace is
automatic for ido = 0, no further calls are necessary.

1 Data Set B: Begin analysis. The n_rows observations in x are
used for initialization.
972

 Multivariate Analysis discriminant_analysis
4. Because of the internal workspace allocation and saved variables, function
imsls_f_discriminant_analysis must complete the analysis of a data set before begin-
ning processing of the next data set.

Description
Function imsls_f_discriminant_analysis performs discriminant function analysis using either linear
or quadratic discrimination. The output includes a measure of distance between the groups, a table summarizing
the classification results, a matrix containing the posterior probabilities of group membership for each observa-
tion, and the within-sample means and covariance matrices. The linear discriminant function coefficients are also
computed.

By default (or if optional argument IMSLS_IDO is specified with ido = 0) all observations are input during one
call, a method of operation that has the advantage of simplicity. Alternatively, one or more rows of observations
can be input during separate calls. This method does not require that all observations be memory resident, a sig-
nificant advantage with large data sets. Note, however, that the algorithm requires two passes of the data. During
the first pass the discriminant functions are computed while in the second pass, the observations are classified.
Thus, with the second method of operation, the data will usually need to be input twice.

2 Data Set B: Continue analysis. New observations placed in x are
added to (or deleted from, see IMSLS_ROWS_DELETE) the
analysis.

2 Data Set B: Continue analysis. n_rows new observations placed
in x are added to (or deleted from, see IMSLS_ROWS_DELETE)
the analysis.

3 Data Set B: Continue analysis. n_rows new observations are
added (or deleted) and discriminant functions and other statis-
tics are computed.

4 Data Set B: Classification of each of the n_rows observations in
the current x matrix.

5 Data Set B: End analysis. Covariance matrices are computed and
workspace is released. This analysis could also have been ended
by choosing ido = 6

1 Data Set C: Begin analysis. Note that for this call to be valid the
previous call must have been made with ido equal to 5 or 6.

3 Data Set C: Continue analysis.

4 Data Set C: Continue analysis.

3 Data Set C: Continue analysis.

6 Data Set C: End analysis.

ido Explanation
973

 Multivariate Analysis discriminant_analysis
Because both methods result in the same operations being performed, the algorithm is discussed as if only a few
observations are input during each call. The operations performed during each call depend upon the ido
parameter.

The ido = 1 step is the initialization step. “Private” internally allocated saved variables corresponding to means,
class_table, and covariances are initialized to zero, and other program parameters are set (copies of
these private variables are written to the corresponding output variables upon return from the function call,
assuming ido values such that the results are to be returned). Parameters n_rows, x, and method can be
changed from one call to the next within the two sets {1, 2, 4, 5} and {3, 6} but not between these sets when
ido > 1. That is, do not specify method = 1 in one call and method = 3 in another call without first making a call
with ido = 1.

After initialization has been performed in the ido = 1 step, the within-group means are updated for all valid
observations in x. Observations with invalid group numbers are ignored, as are observation with missing values.
The LU factorization of the covariance matrices are updated by adding (or deleting) observations via Givens
rotations.

The ido = 2 step is used solely for adding or deleting observations from the model as in the above paragraph.

The ido = 3 step begins by adding all observations in x to the means and the factorizations of the covariance
matrices. It continues by computing some statistics of interest: the linear discriminant functions, the prior proba-
bilities (by default, or if IMSLS_PROPORTIONAL_PRIORS is specified), the log of the determinant of each of
the covariance matrices, a test statistic for testing that all of the within-group covariance matrices are equal, and
a matrix of Mahalanobis distances between the groups. The matrix of Mahalanobis distances is computed via the
pooled covariance matrix when linear discrimination is specified; the row covariance matrix is used when the dis-
crimination is quadratic.

Covariance matrices are defined as follows: Let Ni denote the sum of the frequencies of the observations in

group i and Mi denote the number of observations in group i. Then, if Si denotes the within-group i covariance

matrix,

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is the j-th observation column vec-

tor (in group i), and denotes the mean vector of the observations in group i. The mean vectors are computed
as

Si =
1

Ni − 1∑
j=1

Mi

w j f j x j − x
─ x j − x

─ T

x─
974

 Multivariate Analysis discriminant_analysis
Given the means and the covariance matrices, the linear discriminant function for group i is computed as:

where ln (pi) is the natural log of the prior probability for the i-th group, x is the observation to be classified, and Sp

denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group covariance matrices Si. (S will be the

pooled covariance matrix in linear discrimination, and Si otherwise.) The Mahalanobis distance between group i

and group j is computed as:

Finally, the asymptotic chi-squared test for the equality of covariance matrices is computed as follows (Morrison
1976, p. 252):

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is the number of groups,

and

where p is the number of variables.

When ido = 4, the estimated posterior probability of each observation x belonging to group i is computed using
the prior probabilities and the sample mean vectors and estimated covariance matrices under a multivariate nor-
mal assumption. Under quadratic discrimination, the within-group covariance matrices are used to compute the
estimated posterior probabilities. The estimated posterior probability of an observation x belonging to group i is

x─ = 1
Wi ∑

j=1

Mi

w j f jx j where Wi =∑
j=1

Mi

w j f j

zi = ln pi − 0.5x
─
i
TS p
−1x─i + x

TSp
−1x─i

Di j
2 = x─i − x

─
j
TS−1 x─i − x

─
j

γ = C−1∑
i=1

k

ni ln ∣Sp∣ − ln ∣Si∣

C−1 = 1 −
2p2 + 3p − 1

6 p + 1 k − 1 ∑
i=1

k
1
ni −

1
∑ jn j
975

 Multivariate Analysis discriminant_analysis
where

For the leaving-out-one method of classification (method equal to 4, 5 or 6), the sample mean vector and sam-
ple covariance matrices in the formula for

are adjusted so as to remove the observation x from their computation. For linear discrimination (method equal
to 1, 3, 4, or 6), the linear discriminant function coefficients are actually used to compute the same posterior
probabilities.

Using the posterior probabilities, each observation in x is classified into a group; the result is tabulated in the
matrix class_table and saved in the vector class_membership. Matrix class_table is not altered at
this stage if x[i][igrp] (see optional argument IMSLS_X_INDICES) contains a group number that is out of
range. If the reclassification method is specified, then all observations with no missing values in the
n_variables classification variables are classified. When the leaving-out-one method is used, observations
with invalid group numbers, weights, frequencies, or classification variables are not classified. Regardless of the
frequency, a 1 is added (or subtracted) from class_table for each row of x that is classified and contains a
valid group number.

When method > 3, adjustment is made to the posterior probabilities to remove the effect of the observation in
the classification rule. In this adjustment, each observation is presumed to have a weight of x[i][iwt] if
iwt > −1 (and a weight of 1.0 if iwt = −1), and a frequency of 1.0. See Lachenbruch (1975, p. 36) for the
required adjustment.

Finally, when ido = 5, the covariance matrices are computed from their LU factorizations. Internally allocated and
saved variables are cleaned up at this step (ido equal to 5 or 6).

q̂i x =
exp −0.5Di

2 x

∑
j=1

k
exp −0.5Dj

2 x

Di
2 x =

x − x─i
TSi
−1 x − x─i + ln∣Si∣ − 2ln pi method = 1 or 2

x − x─i
TS p
−1 x − x─i − 2ln pi method = 3

Di
2

976

 Multivariate Analysis discriminant_analysis
Examples

Example 1

The following example uses liner discrimination with equal prior probabilities on Fisher’s (1936) Iris data. This
example illustrates the execution of imsls_f_discriminant_analysis when one call is made (i.e. using
the default of ido = 0).

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
 int n_groups = 3;
 int nrow, nvar, ncol, nrmiss;
 float *x, *xtemp;
 float *prior_out, *means, *cov, *coef;
 float *table, *d2, *stats, *prob;
 int *counts, *cm;
 static int perm[5] = {1, 2, 3, 4, 0};
 /* Retrieve the Fisher Iris Data Set */
 xtemp = imsls_f_data_sets(3,
 IMSLS_N_OBSERVATIONS, &nrow,
 IMSLS_N_VARIABLES, &ncol,
 0);
 nvar = ncol - 1;
 /* Move the group column to end of the the matrix */
 x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,
 IMSLS_PERMUTE_COLUMNS,
 0);
 imsls_free(xtemp);
 imsls_f_discriminant_analysis (nrow, nvar, x, n_groups,
 IMSLS_METHOD, 3,
 IMSLS_GROUP_COUNTS, &counts,
 IMSLS_COEF, &coef,
 IMSLS_MEANS, &means,
 IMSLS_STATS, &stats,
 IMSLS_CLASS_MEMBERSHIP, &cm,
 IMSLS_CLASS_TABLE, &table,
 IMSLS_PROB, &prob,
 IMSLS_MAHALANOBIS, &d2,
 IMSLS_COV, &cov,
 IMSLS_PRIOR_OUTPUT, &prior_out,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 IMSLS_PRIOR_EQUAL,
 IMSLS_METHOD, 3,
 0);
 imsls_i_write_matrix("Counts", 1, n_groups, counts,
 0);
 imsls_f_write_matrix("Coef", n_groups, nvar+1, coef,
977

 Multivariate Analysis discriminant_analysis
 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means,
 0);
 imsls_f_write_matrix("Stats", 12, 1, stats,
 0);
 imsls_i_write_matrix("Membership", 1, nrow, cm,
 0);
 imsls_f_write_matrix("Table", n_groups, n_groups, table,
 0);
 imsls_f_write_matrix("Prob", nrow, n_groups, prob,
 0);
 imsls_f_write_matrix("D2", n_groups, n_groups, d2,
 0);
 imsls_f_write_matrix("Covariance", nvar, nvar, cov,
 0);
 imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out,
 0);
 printf("\nnrmiss = %3d\n", nrmiss);
 free(means);
 free(stats);
 free(counts);
 free(coef);
 free(cm);
 free(table);
 free(prob);
 free(d2);
 free(prior_out);
 free(cov);
}

Output

 Counts
 1 2 3
50 50 50
 Coef
 1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1
 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026
 Stats
1 147
2
3
4
5
6
7
8 -10
978

 Multivariate Analysis discriminant_analysis
9 50
10 50
11 50
12 150
 Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
148 149 150
 3 3 3
 Table
 1 2 3
1 50 0 0
2 0 48 2
3 0 1 49
 Prob
 1 2 3
 1 1.000 0.000 0.000
 2 1.000 0.000 0.000
 3 1.000 0.000 0.000
 4 1.000 0.000 0.000
 5 1.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 0.000 0.000
 8 1.000 0.000 0.000
 9 1.000 0.000 0.000
 10 1.000 0.000 0.000
 11 1.000 0.000 0.000
 12 1.000 0.000 0.000
 13 1.000 0.000 0.000
 14 1.000 0.000 0.000
 15 1.000 0.000 0.000
 16 1.000 0.000 0.000
 17 1.000 0.000 0.000
 18 1.000 0.000 0.000
 19 1.000 0.000 0.000
979

 Multivariate Analysis discriminant_analysis
 20 1.000 0.000 0.000
 21 1.000 0.000 0.000
 22 1.000 0.000 0.000
 23 1.000 0.000 0.000
 24 1.000 0.000 0.000
 25 1.000 0.000 0.000
 26 1.000 0.000 0.000
 27 1.000 0.000 0.000
 28 1.000 0.000 0.000
 29 1.000 0.000 0.000
 30 1.000 0.000 0.000
 31 1.000 0.000 0.000
 32 1.000 0.000 0.000
 33 1.000 0.000 0.000
 34 1.000 0.000 0.000
 35 1.000 0.000 0.000
 36 1.000 0.000 0.000
 37 1.000 0.000 0.000
 38 1.000 0.000 0.000
 39 1.000 0.000 0.000
 40 1.000 0.000 0.000
 41 1.000 0.000 0.000
 42 1.000 0.000 0.000
 43 1.000 0.000 0.000
 44 1.000 0.000 0.000
 45 1.000 0.000 0.000
 46 1.000 0.000 0.000
 47 1.000 0.000 0.000
 48 1.000 0.000 0.000
 49 1.000 0.000 0.000
 50 1.000 0.000 0.000
 51 0.000 1.000 0.000
 52 0.000 0.999 0.001
 53 0.000 0.996 0.004
 54 0.000 1.000 0.000
 55 0.000 0.996 0.004
 56 0.000 0.999 0.001
 57 0.000 0.986 0.014
 58 0.000 1.000 0.000
 59 0.000 1.000 0.000
 60 0.000 1.000 0.000
 61 0.000 1.000 0.000
 62 0.000 0.999 0.001
 63 0.000 1.000 0.000
 64 0.000 0.994 0.006
 65 0.000 1.000 0.000
 66 0.000 1.000 0.000
 67 0.000 0.981 0.019
 68 0.000 1.000 0.000
 69 0.000 0.960 0.040
 70 0.000 1.000 0.000
 71 0.000 0.253 0.747
 72 0.000 1.000 0.000
 73 0.000 0.816 0.184
 74 0.000 1.000 0.000
 75 0.000 1.000 0.000
 76 0.000 1.000 0.000
 77 0.000 0.998 0.002
 78 0.000 0.689 0.311
 79 0.000 0.993 0.007
980

 Multivariate Analysis discriminant_analysis
 80 0.000 1.000 0.000
 81 0.000 1.000 0.000
 82 0.000 1.000 0.000
 83 0.000 1.000 0.000
 84 0.000 0.143 0.857
 85 0.000 0.964 0.036
 86 0.000 0.994 0.006
 87 0.000 0.998 0.002
 88 0.000 0.999 0.001
 89 0.000 1.000 0.000
 90 0.000 1.000 0.000
 91 0.000 0.999 0.001
 92 0.000 0.998 0.002
 93 0.000 1.000 0.000
 94 0.000 1.000 0.000
 95 0.000 1.000 0.000
 96 0.000 1.000 0.000
 97 0.000 1.000 0.000
 98 0.000 1.000 0.000
 99 0.000 1.000 0.000
100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.001 0.999
103 0.000 0.000 1.000
104 0.000 0.001 0.999
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.049 0.951
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000
111 0.000 0.013 0.987
112 0.000 0.002 0.998
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000
116 0.000 0.000 1.000
117 0.000 0.006 0.994
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.221 0.779
121 0.000 0.000 1.000
122 0.000 0.001 0.999
123 0.000 0.000 1.000
124 0.000 0.097 0.903
125 0.000 0.000 1.000
126 0.000 0.003 0.997
127 0.000 0.188 0.812
128 0.000 0.134 0.866
129 0.000 0.000 1.000
130 0.000 0.104 0.896
131 0.000 0.000 1.000
132 0.000 0.001 0.999
133 0.000 0.000 1.000
134 0.000 0.729 0.271
135 0.000 0.066 0.934
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.006 0.994
139 0.000 0.193 0.807
981

 Multivariate Analysis discriminant_analysis
140 0.000 0.001 0.999
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.001 0.999
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.006 0.994
148 0.000 0.003 0.997
149 0.000 0.000 1.000
150 0.000 0.018 0.982
 D2
 1 2 3
1 0.0 89.9 179.4
2 89.9 0.0 17.2
3 179.4 17.2 0.0
 Covariance
 1 2 3 4
1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419
 Prior OUT
 1 2 3
 0.3333 0.3333 0.3333
nrmiss = 0

Example 2

Continuing with Fisher’s Iris data, the example below computes the quadratic discriminant functions using values
of IDO greater than 0. In the first loop, all observations are added to the functions, one at a time. In the second
loop, each of the observations is classified, one by one, using the leaving-out-one method.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>
int main() {
 int n_groups = 3;
 int nrow, nvar, ncol, i, nrmiss;
 float *x, *xtemp;
 float *prior_out, *means, *cov, *coef;
 float *table, *d2, *stats, *prob;
 int *counts, *cm;
 int perm[5] = {1, 2, 3, 4, 0};
 /* Retrieve the Fisher Iris Data Set */
 xtemp = imsls_f_data_sets(3,
 IMSLS_N_OBSERVATIONS, &nrow,
 IMSLS_N_VARIABLES, &ncol,
 0);
 nvar = ncol - 1;
982

 Multivariate Analysis discriminant_analysis
 /* Move the group column to end of the the matrix */
 x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,
 IMSLS_PERMUTE_COLUMNS,
 0);
 imsls_free(xtemp);
 prior_out = (float *) malloc(n_groups*sizeof(float));
 counts = (int *) malloc(n_groups*sizeof(int));
 means = (float *) malloc(n_groups*nvar*sizeof(float));
 cov = (float *) malloc(nvar*nvar*(n_groups+1)*sizeof(float));
 coef = (float *) malloc(n_groups*(nvar+1)*sizeof(float));
 table = (float *) malloc(n_groups*n_groups*sizeof(float));
 d2 = (float *) malloc(n_groups*n_groups*sizeof(float));
 stats = (float *) malloc((4+2*(n_groups+1))*sizeof(float));
 cm = (int *) malloc(nrow*sizeof(int));
 prob = (float *) malloc(nrow*n_groups*sizeof(float));
 /*Initialize Analysis*/
 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_IDO, 1,
 IMSLS_METHOD, 2,
 0);
 /*Add In Each Observation*/
 for (i=0;i<nrow;i=i+1) {
 imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
 IMSLS_IDO, 2,
 0);
 }
 /*Remove observation 0 from the analysis */
 imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,
 IMSLS_ROWS_DELETE,
 IMSLS_IDO, 2,
 0);
 /*Add observation 0 back into the analysis */
 imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,
 IMSLS_IDO, 2,
 0);
 /*Compute statistics*/
 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_PRIOR_PROPORTIONAL,
 IMSLS_PRIOR_OUTPUT_USER, prior_out,
 IMSLS_IDO, 3,
 0);
 imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);
 /*Classify One observation at a time, using proportional priors*/
 for (i=0;i<nrow;i=i+1) {
 imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
 IMSLS_IDO, 4,
 IMSLS_CLASS_MEMBERSHIP_USER, (cm+i),
 IMSLS_PROB_USER, (prob+i*n_groups),
 0);
 }
983

 Multivariate Analysis discriminant_analysis
 /*Compute covariance matrices and release internal workspace*/
 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_IDO, 5,
 IMSLS_COV_USER, cov,
 IMSLS_GROUP_COUNTS_USER, counts,
 IMSLS_COEF_USER, coef,
 IMSLS_MEANS_USER, means,
 IMSLS_STATS_USER, stats,
 IMSLS_CLASS_TABLE_USER, table,
 IMSLS_MAHALANOBIS_USER, d2,
 IMSLS_N_ROWS_MISSING, &nrmiss, 0);
 imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
 imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
 imsls_f_write_matrix("Stats", 12, 1, stats, 0);
 imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
 imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
 imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
 imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);
 imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
 printf("\nnrmiss = %3d\n", nrmiss);
 free(means);
 free(stats);
 free(counts);
 free(coef);
 free(cm);
 free(table);
 free(prob);
 free(d2);
 free(prior_out);
 free(cov);
}

Output

 Prior OUT
 1 2 3
 0.3333 0.3333 0.3333
 Counts
 1 2 3
50 50 50
 Coef
 1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1
 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026
 Stats
984

 Multivariate Analysis discriminant_analysis
 1 147.0
 2 143.8
 3 20.0
 4 0.0
 5 -13.1
 6 -10.9
 7 -8.9
 8 -10.0
 9 50.0
10 50.0
11 50.0
12 150.0
 Membership
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
148 149 150
 3 3 3
 Table
 1 2 3
1 50 0 0
2 0 48 2
3 0 1 49
 Prob
 1 2 3
 1 1.000 0.000 0.000
 2 1.000 0.000 0.000
 3 1.000 0.000 0.000
 4 1.000 0.000 0.000
 5 1.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 0.000 0.000
 8 1.000 0.000 0.000
 9 1.000 0.000 0.000
 10 1.000 0.000 0.000
 11 1.000 0.000 0.000
985

 Multivariate Analysis discriminant_analysis
 12 1.000 0.000 0.000
 13 1.000 0.000 0.000
 14 1.000 0.000 0.000
 15 1.000 0.000 0.000
 16 1.000 0.000 0.000
 17 1.000 0.000 0.000
 18 1.000 0.000 0.000
 19 1.000 0.000 0.000
 20 1.000 0.000 0.000
 21 1.000 0.000 0.000
 22 1.000 0.000 0.000
 23 1.000 0.000 0.000
 24 1.000 0.000 0.000
 25 1.000 0.000 0.000
 26 1.000 0.000 0.000
 27 1.000 0.000 0.000
 28 1.000 0.000 0.000
 29 1.000 0.000 0.000
 30 1.000 0.000 0.000
 31 1.000 0.000 0.000
 32 1.000 0.000 0.000
 33 1.000 0.000 0.000
 34 1.000 0.000 0.000
 35 1.000 0.000 0.000
 36 1.000 0.000 0.000
 37 1.000 0.000 0.000
 38 1.000 0.000 0.000
 39 1.000 0.000 0.000
 40 1.000 0.000 0.000
 41 1.000 0.000 0.000
 42 1.000 0.000 0.000
 43 1.000 0.000 0.000
 44 1.000 0.000 0.000
 45 1.000 0.000 0.000
 46 1.000 0.000 0.000
 47 1.000 0.000 0.000
 48 1.000 0.000 0.000
 49 1.000 0.000 0.000
 50 1.000 0.000 0.000
 51 0.000 1.000 0.000
 52 0.000 1.000 0.000
 53 0.000 0.998 0.002
 54 0.000 0.997 0.003
 55 0.000 0.997 0.003
 56 0.000 0.989 0.011
 57 0.000 0.995 0.005
 58 0.000 1.000 0.000
 59 0.000 1.000 0.000
 60 0.000 0.994 0.006
 61 0.000 1.000 0.000
 62 0.000 0.999 0.001
 63 0.000 1.000 0.000
 64 0.000 0.988 0.012
 65 0.000 1.000 0.000
 66 0.000 1.000 0.000
 67 0.000 0.973 0.027
 68 0.000 1.000 0.000
 69 0.000 0.813 0.187
 70 0.000 1.000 0.000
 71 0.000 0.336 0.664
986

 Multivariate Analysis discriminant_analysis
 72 0.000 1.000 0.000
 73 0.000 0.699 0.301
 74 0.000 0.972 0.028
 75 0.000 1.000 0.000
 76 0.000 1.000 0.000
 77 0.000 0.998 0.002
 78 0.000 0.861 0.139
 79 0.000 0.992 0.008
 80 0.000 1.000 0.000
 81 0.000 1.000 0.000
 82 0.000 1.000 0.000
 83 0.000 1.000 0.000
 84 0.000 0.154 0.846
 85 0.000 0.943 0.057
 86 0.000 0.996 0.004
 87 0.000 0.999 0.001
 88 0.000 0.999 0.001
 89 0.000 1.000 0.000
 90 0.000 0.999 0.001
 91 0.000 0.981 0.019
 92 0.000 0.997 0.003
 93 0.000 1.000 0.000
 94 0.000 1.000 0.000
 95 0.000 0.999 0.001
 96 0.000 1.000 0.000
 97 0.000 1.000 0.000
 98 0.000 1.000 0.000
 99 0.000 1.000 0.000
100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.000 1.000
103 0.000 0.000 1.000
104 0.000 0.006 0.994
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.004 0.996
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000
111 0.000 0.006 0.994
112 0.000 0.001 0.999
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000
116 0.000 0.000 1.000
117 0.000 0.033 0.967
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.041 0.959
121 0.000 0.000 1.000
122 0.000 0.000 1.000
123 0.000 0.000 1.000
124 0.000 0.028 0.972
125 0.000 0.001 0.999
126 0.000 0.007 0.993
127 0.000 0.057 0.943
128 0.000 0.151 0.849
129 0.000 0.000 1.000
130 0.000 0.020 0.980
131 0.000 0.000 1.000
987

 Multivariate Analysis discriminant_analysis
132 0.000 0.009 0.991
133 0.000 0.000 1.000
134 0.000 0.605 0.395
135 0.000 0.000 1.000
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.050 0.950
139 0.000 0.141 0.859
140 0.000 0.000 1.000
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.000 1.000
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.000 1.000
148 0.000 0.001 0.999
149 0.000 0.000 1.000
150 0.000 0.061 0.939
 D2
 1 2 3
1 0.0 323.1 706.1
2 103.2 0.0 17.9
3 168.8 13.8 0.0

 Covariance
 1 2 3 4
1 0.1242 0.0992 0.0164 0.0103
2 0.0992 0.1437 0.0117 0.0093
3 0.0164 0.0117 0.0302 0.0061
4 0.0103 0.0093 0.0061 0.0111
nrmiss = 0
988

 Multivariate Analysis discriminant_analysis
Warning Errors

Fatal Errors

IMSLS_BAD_OBS_1 In call #, row # of the data matrix, “x”, has group
number = #. The group number must be an integer
between 1.0 and “n_groups” = #, inclusively. This obser-
vation will be ignored.

IMSLS_BAD_OBS_2 The leaving out one method is specified but this observa-
tion does not have a valid group number (Its group
number is #.). This observation (row #) is ignored.

IMSLS_BAD_OBS_3 The leaving out one method is specified but this observa-
tion does not have a valid weight or it does not have a
valid frequency. This observation (row #) is ignored.

IMSLS_COV_SINGULAR_3 The group # covariance matrix is singular. “stats[1]”
cannot be computed. “stats[1]” and “stats[3]” are
set to the missing value code (NaN).

IMSLS_BAD_IDO_1 “ido” = #. Initial allocations must be performed by making
a call to discriminant_analysis with “ido” = 1.

IMSLS_BAD_IDO_2 “ido” = #. A new analysis may not begin until the previous
analysis is terminated with “ido” equal to 5 or 6.

IMSLS_COV_SINGULAR_1 The variance-covariance matrix for population number #
is singular. The computations cannot continue.

IMSLS_COV_SINGULAR_2 The pooled variance-covariance matrix is singular. The
computations cannot continue.

IMSLS_COV_SINGULAR_4 A variance-covariance matrix is singular. The index of the
first zero element is equal to #.
989

 Survival and Reliability Analysis Functions
Survival and Reliability Analysis

Functions
Survival Analysis

Computes Kaplan-Meier estimates of survival
probabilities. kaplan_meier_estimates 992

Analyzes survival and reliability data using Cox’s
proportional hazards model .prop_hazards_gen_lin 999

Analyzes survival data using the generalized
linear model . survival_glm 1014

Estimates using various parametric modes .survival_estimates 1038

Reliability Analysis
Estimates a reliability hazard function using a

nonparametric approach . nonparam_hazard_rate 1045

Actuarial Tables
Produces population and cohort life tables . life_tables 1055
990

 Survival and Reliability Analysis Usage Notes
Usage Notes
The functions described in this chapter have primary application in the areas of reliability and life testing, but they
may find application in any situation in which analysis of binomial events over time is of interest. Kalbfleisch and
Prentice (1980), Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and Chi-
ang (1968) and Tanner and Wong (1984) are references for discussing the models and methods described in this
chapter.

Function imsls_f_kaplan_meier_estimates produces Kaplan-Meier (product-limit) estimates of the survival
distribution in a single population, and these can be printed using the IMSLS_PRINT optional argument.

Function imsls_f_prop_hazards_gen_lin computes the parameter estimates in a proportional hazards
model.

Function imsls_f_survival_glm fits any of several generalized linear models for survival data, and
imsls_f_survival_estimates computes estimates of survival probabilities based upon the same models.

Function imsls_f_nonparam_hazard_rate performs nonparametric hazard rate estimation using kernel
functions and quasi-likelihoods.

Function imsls_f_life_tables computes and (optionally) prints an actuarial table based either upon a
cohort followed over time or a cross-section of a population.
991

 Survival and Reliability Analysis kaplan_meier_estimates
kaplan_meier_estimates
Computes Kaplan-Meier estimates of survival probabilities in stratified samples.

Synopsis
#include <imsls.h>
float *imsls_f_kaplan_meier_estimates (int n_observations, int ncol, float x[], ..., 0)

The type double function is imsls_d_kaplan_meier_estimates.

Required Arguments
int n_observations (Input)

Number of observations.

int ncol (Input)
Number of columns in x.

float x[] (Input)
Two-dimensional data array of size n_observations×ncol.

Return Value
Pointer to an array of length n_observations×2. The first column contains the estimated survival probabili-
ties, and the second column contains Greenwood’s estimate of the standard deviation of these probabilities. If
the i-th observation contains censor codes out of range or if a variable is missing, then the corresponding ele-
ments of the return value are set to missing (NaN, not a number). Similarly, if an element in the return value is not
defined, then it is set to missing.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_kaplan_meier_estimates (int n_observations, int ncol, float x[],

IMSLS_PRINT,

IMSLS_X_RESPONSE_COL, int irt,
992

 Survival and Reliability Analysis kaplan_meier_estimates
IMSLS_CENSOR_CODES_COL, int icen,

IMSLS_FREQ_RESPONSE_COL, int ifrq,

IMSLS_STRATUM_NUMBER_COL, int igrp,

IMSLS_SORTED,

IMSLS_N_MISSING, int *nrmiss,

IMSLS_RETURN_USER, float table[],

0)

Optional Arguments
IMSLS_PRINT, (Input)

Print Kaplan-Meier estimates of survival probabilities in stratified samples.

IMSLS_X_RESPONSE_COL, int irt (Input)
Column index for the response times in the data array, x. The interpretation of these times as either
right-censored or exact failure times depends on IMSLS_CENSOR_CODES_COL.

Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen (Input)
Column index for the optional censoring codes in the data array, x. If x[i][icen]= 0, the failure
time x[i] [irt] is treated as an exact time of failure. Otherwise it is treated as a right-censored
time.

Default: It is assumed that there is no censor code column in x. All observations are assumed to be
exact failure times.

IMSLS_FREQ_RESPONSE_COL, int ifrq (Input)
Column index for the number of responses associated with each row in the data array, x.

Default: It is assumed that there is no frequency response column in x. Each observation in the data
array is assumed to be for a single failure.

IMSLS_STRATUM_NUMBER_COL, int igrp (Input)
Column index for the stratum number for each observation in the data array, x. Column igrp of x
contains a unique value for each stratum in the data. Kaplan-Meier estimates are computed within
each stratum.

Default: It is assumed that there is no stratum number column in x. The data is assumed to come
from one stratum.
993

 Survival and Reliability Analysis kaplan_meier_estimates
IMSLS_SORTED, (Input)
If this option is used, column irt of x is assumed to be sorted in ascending order within each stra-
tum. Otherwise, a detached sort is conducted prior to analysis. If sorting is performed, all censored
individuals are assumed to follow tied failures.

Default: Column irt of x is not sorted.

IMSLS_N_MISSING, int *nrmiss (Output)
Number of rows of data in x containing missing values.

IMSLS_RETURN_USER, float table[] (Output)
User supplied storage of an array of length n_observations×2 containing the estimated survival
probabilities and their associated standard deviations. See Return Value section.

Description
Function imsls_f_kaplan_meier_estimates computes Kaplan-Meier (or product-limit) estimates of sur-
vival probabilities for a sample of failure times that can be right censored or exact times. A survival probability S(t)
is defined as 1 - F(t), where F(t) is the cumulative distribution function of the failure times (t). Greenwood’s esti-
mate of the standard errors of the survival probability estimates are also computed. (See Kalbfleisch and
Prentice, 1980, pages 13 and 14.)

Let (ti, δi), for i = 1,…, n denote the failure censoring times and the censoring codes for the n observations in a sin-

gle sample. Here, ti = xi-1, irt is a failure time if δi is 0, where δI = xi-1, icen. Also, ti is a right censoring time if δi is 1.

Rows in x containing values other than 0 or 1 for δi are ignored. Let the number of observations in the sample

that have not failed by time s(i) be denoted by n(i), where s(i) is an ordered (from smallest to largest) listing of the

distinct failure times (censoring times are omitted). Then the Kaplan-Meier estimate of the survival probabilities is
a step function, which in the interval from s(i) to s(i+1) (including the lower endpoint) is given by

where d(j) denotes the number of failures occurring at time s(j), and n(j) is the number of observation that have

not failed prior to s(j).

Note that one row of X may correspond to more than one failed (or censored) observation when the frequency
option is in effect (ifrq is specified). The Kaplan-Meier estimate of the survival probability prior to time s(1) is 1.0,

while the Kaplan-Meier estimate of the survival probability after the last failure time is not defined.

Greenwood’s estimate of the variance of

S^ t =∏
j=1

i n j − d j
n j
994

 Survival and Reliability Analysis kaplan_meier_estimates
in the interval from s(i) to s(i+1) is given as

Function imsls_f_kaplan_meier_estimates computes the single sample estimates of the survival
probabilities for all samples of data included in x during a single call. This is accomplished through the igrp col-
umn of x, which if present, must contain a distinct code for each sample of observations. If igrp is not specified,
there is no grouping column, and all observations are assumed to come from the same sample.

When failures and right-censored observations are tied and the data are to be sorted by
imsls_f_kaplan_meier_estimates (IMSLS_SORTED optional argument is not used),
imsls_f_kaplan_meier_estimates assumes that the time of censoring for the tied-censored observa-
tions is immediately after the tied failure (within the same sample). When the IMSLS_SORTED optional
argument is used, the data are assumed to be sorted from smallest to largest according to column irt of x
within each stratum. Furthermore, a small increment of time is assumed (theoretically) to elapse between the
failed and censored observations that are tied (in the same sample). Thus, when the IMSLS_SORTED optional
argument is used, the user must sort all of the data in x from smallest to largest according to column irt (and
column igrp, if present). By appropriate sorting of the observations, the user can handle censored and failed
observations that are tied in any manner desired.

The IMSLS_PRINT option prints life tables. One table for each stratum is printed. In addition to the survival
probabilities at each failure point, the following is also printed: the number of individuals remaining at risk, Green-
wood’s estimate of the standard errors for the survival probabilities, and the Kaplan-Meier log-likelihood. The
Kaplan-Meier log-likelihood is computed as:

where the sum is with respect to the distinct failure times s(j), d(j).

Example
The following example is taken from Kalbfleisch and Prentice (1980, page 1). The first column in x contains the
death/censoring times for rats suffering from vaginal cancer. The second column contains information as to
which of two forms of treatment were provided, while the third column contains the censoring code. Finally, the
fourth column contains the frequency of each observation. The product-limit estimates of the survival probabili-
ties are computed for both groups with one call to imsls_f_kaplan_meier_estimates.

S^ t

est.var(S^(t)) = S^
2
(t)∑

j=1

i d(j)
n(j) n(j) − d(j)

ℓ =∑
j

d(j)ln d(j) + n(j) − d(j) ln n(j) − d(j) − n(j)ln n(j)
995

 Survival and Reliability Analysis kaplan_meier_estimates
Function imsls_f_kaplan_meier_estimates could have been called with the IMSLS_SORTED optional
argument if the censored observations had been sorted with respect to the failure time variable. IMSLS_PRINT
option is used to print the life tables.

#include <imsls.h>
int main ()
{
 int icen = 2, ifrq = 3, igrp = 1, ncol = 4, n_observations = 33;
 float x[] = {
 143, 5, 0, 1,
 164, 5, 0, 1,
 188, 5, 0, 2,
 190, 5, 0, 1,
 192, 5, 0, 1,
 206, 5, 0, 1,
 209, 5, 0, 1,
 213, 5, 0, 1,
 216, 5, 0, 1,
 220, 5, 0, 1,
 227, 5, 0, 1,
 230, 5, 0, 1,
 234, 5, 0, 1,
 246, 5, 0, 1,
 265, 5, 0, 1,
 304, 5, 0, 1,
 216, 5, 1, 1,
 244, 5, 1, 1,
 142, 7, 0, 1,
 156, 7, 0, 1,
 163, 7, 0, 1,
 198, 7, 0, 1,
 205, 7, 0, 1,
 232, 7, 0, 2,
 233, 7, 0, 4,
 239, 7, 0, 1,
 240, 7, 0, 1,
 261, 7, 0, 1,
 280, 7, 0, 2,
 296, 7, 0, 2,
 323, 7, 0, 1,
 204, 7, 1, 1,
 344, 7, 1, 1
 };
 imsls_f_kaplan_meier_estimates (n_observations, ncol, x,
 IMSLS_PRINT,
 IMSLS_FREQ_RESPONSE_COL, ifrq,
 IMSLS_CENSOR_CODES_COL, icen,
 IMSLS_STRATUM_NUMBER_COL, igrp,
 0);
}

Output

 Kaplan Meier Survival Probabilities
 For Group Value = 5
996

 Survival and Reliability Analysis kaplan_meier_estimates
 Number Number Survival Estimated
 at risk Failing Time Probability Std. Error
 19 1 143 0.94737 0.051228
 18 1 164 0.89474 0.070406
 17 2 188 0.78947 0.093529
 15 1 190 0.73684 0.10102
 14 1 192 0.68421 0.10664
 13 1 206 0.63158 0.11066
 12 1 209 0.57895 0.11327
 11 1 213 0.52632 0.11455
 10 1 216 0.47368 0.11455
 8 1 220 0.41447 0.11452
 7 1 227 0.35526 0.11243
 6 1 230 0.29605 0.10816
 5 1 234 0.23684 0.10145
 3 1 246 0.15789 0.093431
 2 1 265 0.078947 0.072792
 1 1 304 0
Total number in group = 19
Total number failing = 17
Product Limit Likelihood = -49.1692
 Kaplan Meier Survival Probabilities
 For Group Value = 7
 Number Number Survival Estimated
 at risk Failing Time Probability Std. Error
 21 1 142 0.95238 0.046471
 20 1 156 0.90476 0.064056
 19 1 163 0.85714 0.07636
 18 1 198 0.80952 0.085689
 16 1 205 0.75893 0.094092
 15 2 232 0.65774 0.10529
 13 4 233 0.45536 0.11137
 9 1 239 0.40476 0.10989
997

 Survival and Reliability Analysis kaplan_meier_estimates
 8 1 240 0.35417 0.10717
 7 1 261 0.30357 0.10311
 6 2 280 0.20238 0.090214
 4 2 296 0.10119 0.067783
 2 1 323 0.050595 0.049281
Total number in group = 21
Total number failing = 19
Product Limit Likelihood = -50.4277
998

 Survival and Reliability Analysis prop_hazards_gen_lin
prop_hazards_gen_lin
Analyzes survival and reliability data using Cox’s proportional hazards model.

Synopsis
#include <imsls.h>
float *imsls_f_prop_hazards_gen_lin int n_observations, int n_columns, float x[],

int nef, int n_var_effects[], int indices_effects[], int max_class, int *ncoef, …, 0)

The type double function is imsls_d_prop_hazards_gen_lin.

Required Arguments
int n_observations (Input)

Number of observations.

int n_columns (Input)
Number of columns in x.

float x[] (Input)
Array of length n_observations×n_columns containing the data. When optional argument
itie = 1, the observations in x must be grouped by stratum and sorted from largest to smallest fail-
ure time within each stratum, with the strata separated.

int nef (Input)
Number of effects in the model. In addition to effects involving classification variables, simple covari-
ates and the product of simple covariates are also considered effects.

int n_var_effects[] (Input)
Array of length nef containing the number of variables associated with each effect in the model.

int indices_effects[] (Input)
Index array of length n_var_effects[0] + ... + n_var_effects[nef-1] containing the col-
umn indices of x associated with each effect. The first n_var_effects[0] elements of
indices_effects contain the column indices of x for the variables in the first effect. The next
n_var_effects[1] elements in indices_effects contain the column indices for the sec-
ond effect, etc.
999

 Survival and Reliability Analysis prop_hazards_gen_lin
int max_class (Input)
An upper bound on the total number of different values found among the classification variables in
x. For example, if the model consisted of two class variables, one with the values {1, 2, 3, 4} and a
second with the values {0, 1}, then the total number of different classification values is 4 + 2 = 6, and
max_class >= 6.

int *ncoef (Output)
Number of estimated coefficients in the model.

Return Value
Pointer to an array of length ncoef×4, coef, containing the parameter estimates and associated statistics.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_prop_hazards_gen_lin(int n_observations, int n_columns, float x[],

int nef, int n_var_effects[], int indices_effects[], int max_class, int *ncoef,

IMSLS_RETURN_USER, float cov[],

IMSLS_PRINT_LEVEL, int iprint,

IMSLS_MAX_ITERATIONS, int max_iterations,

IMSLS_CONVERGENCE_EPS, float eps,

IMSLS_RATIO, float ratio,

IMSLS_X_RESPONSE_COL, int irt,

IMSLS_CENSOR_CODES_COL, int icen,

IMSLS_STRATIFICATION_COL, int istrat,

IMSLS_CONSTANT_COL, int ifix,

IMSLS_FREQ_RESPONSE_COL, int ifrq,

Column Statistic

1 Coefficient estimate

2 Estimated standard deviation of the estimated coefficient.

3 Asymptotic normal score for testing that the coefficient is
zero against the two-sided alternative.

4 p-value associated with the normal score in column 3.

β
^

1000

 Survival and Reliability Analysis prop_hazards_gen_lin
IMSLS_TIES_OPTION, int itie,

IMSLS_MAXIMUM_LIKELIHOOD, float algl,

IMSLS_N_MISSING, int *nrmiss,

IMSLS_STATISTICS, float **case,

IMSLS_STATISTICS_USER, float case[],

IMSLS_X_MEAN, float **xmean,

IMSLS_X_MEAN_USER, float xmean[],

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov,

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[],

IMSLS_INITIAL_EST_INPUT, float in_coef[],

IMSLS_UPDATE, float **gr,

IMSLS_UPDATE_USER, float gr[],

IMSLS_DUMMY, int n_class_var, int index_class_var[],

IMSLS_STRATUM_NUMBER, int **igrp,

IMSLS_STRATUM_NUMBER_USER, int igrp[],

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values,

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float class_values[],

0)

Optional Arguments
IMSLS_RETURN_USER, float coef[] (Output)

If specified, coef is an array of length ncoef×4 containing the parameter estimates and associated
statistics. See Return Value.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0.

iprint Action

0 No printing is performed.

1 Printing is performed, but observa-
tional statistics are not printed.

2 All output statistics are printed.
1001

 Survival and Reliability Analysis prop_hazards_gen_lin
IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. max_iterations = 30 will usually be sufficient. Use
max_iterations = 0 to compute the Hessian and gradient, stored in cov and gr, at the initial
estimates. When max_iterations = 0, IMSLS_INITIAL_EST_INPUT must be used.

Default: max_iterations = 30.

IMSLS_CONVERGENCE_EPS, float eps (Input)
Convergence criterion. Convergence is assumed when the relative change in algl from one itera-
tion to the next is less than eps. If eps is zero, eps = 0.0001 is assumed.

Default: eps = 0.0001.

IMSLS_RATIO, float ratio (Input)
Ratio at which a stratum is split into two strata. Let

be the observation proportionality constant, where zk is the design row vector for the k-th observa-

tion and wk is the optional fixed parameter specified by xk, ifix. Let rmin be the minimum value rk in a

stratum, where, for failed observations, the minimum is over all times less than or equal to the time
of occurrence of the k-th observation. Let rmax be the maximum value of rk for the remaining obser-

vations in the group. Then, if rmin > ratio rmax, the observations in the group are divided into two

groups at k. ratio = 1000 is usually a good value. Set ratio = -1.0 if no division into strata is to be
made.

Default: ratio = 1000.0.

IMSLS_X_RESPONSE_COL, int irt (Input)
Column index in x containing the response variable. For point observations, xi, irt contains the time
of the i-th event. For right-censored observations, xi, irt contains the right-censoring time. Note that
because imsls_f_prop_hazards_gen_lin only uses the order of the events, negative “times”
are allowed.

Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen (Input)
Column index in x containing the censoring code for each observation. Default: A censoring code of
0 is assumed for all observations.

x

i,icen

Censoring

rk = exp zkβ
^
+ wk
1002

 Survival and Reliability Analysis prop_hazards_gen_lin
IMSLS_STRATIFICATION_COL, int istrat (Input)
Column number in x containing the stratification variable. Column istrat in x contains a unique
number for each stratum. The risk set for an observation is determined by its stratum.

Default: All observations are considered to be in one stratum.

IMSLS_CONSTANT_COL, int ifix (Input)
Column index in x containing a constant, wi, to be added to the linear response. The linear response
is taken to be where wi is the observation constant, zi is the observation design row vector,
and is the vector of estimated parameters. The “fixed” constant allows one to test hypotheses
about parameters via the log-likelihoods.

Default: wi is assumed to be 0 for all observations.

IMSLS_FREQ_RESPONSE_COL, int ifrq (Input)
Column index in x containing the number of responses for each observation.

Default: A response frequency of 1 for each observation is assumed.

IMSLS_TIES_OPTION, int itie (Input)
Method for handling ties.

Default: itie = 0.

IMSLS_MAXIMUM_LIKELIHOOD, float *algl (Output)
The maximized log-likelihood.

IMSLS_N_MISSING, int *nrmiss (Output)
Number of rows of data in X that contain missing values in one or more columns irt, ifrq, ifix,
icen, istrat, index_class_var, or indices_effects of x.

0 Exact censoring time xi, irt.

1 Right censored. The exact censoring time is greater
than xi, irt.

itie Method

0 Breslow’s approximate method.

1 Failures are assumed to occur in the same order as
the observations input in x. The observations in x
must be sorted from largest to smallest failure time
within each stratum, and grouped by stratum. All
observations are treated as if their failure/censoring
times were distinct when computing the log-
likelihood.

wi + ziβ
^

β
^

1003

 Survival and Reliability Analysis prop_hazards_gen_lin
IMSLS_STATISTICS, float **case (Output)
Address of a pointer to an array of length n_observations×5 containing the case statistics for
each observation.

IMSLS_STATISTICS_USER, float case[] (Output)
Storage for case is provided by the user. See IMSLS_STATISTICS.

IMSLS_X_MEAN, float **xmean (Output)
Address of a pointer to an array of length ncoef containing the means of the design variables.

IMSLS_X_MEAN_USER, float xmean[] (Output)
Storage for xmean is provided by the user. See IMSLS_X_MEAN.

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov (Output)
Address of a pointer to an array of length ncoef*ncoef containing the estimated asymptotic vari-
ance-covariance matrix of the parameters. For max_iterations = 0, the return value is the
inverse of the Hessian of the negative of the log-likelihood, computed at the estimates input in
in_coef.

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[] (Output)
Storage for cov is provided by the user. See IMSLS_VARIANCE_COVARIANCE_MATRIX.

IMSLS_INITIAL_EST_INPUT, float *in_coef (Input)
An array of length ncoef containing the initial estimates on input to prop_hazards_gen_lin.

Default: all initial estimates are taken to be 0.

IMSLS_UPDATE, float **gr (Output)
Address of a pointer to an array of length ncoef containing the last parameter updates (excluding
step halvings). For max_iterations = 0, gr contains the inverse of the Hessian times the gradi-
ent vector computed at the estimates input in in_coef.

IMSLS_UPDATE_USER, float gr[] (Output)
Storage for gr is provided by the user. See IMSLS_UPDATE.

Column Statistic

1 Estimated survival probability at the observation time.

2 Estimated observation influence or leverage.

3 A residual estimate.

4 Estimated cumulative baseline hazard rate.

5 Observation proportionality constant.
1004

 Survival and Reliability Analysis prop_hazards_gen_lin
IMSLS_DUMMY, int n_class_var, int index_class_var[] (Input)
Variable n_class_var is the number of classification variables. Dummy variables are generated
for classification variables using the dummy_method = IMSLS_LEAVE_OUT_LAST of the
IMSLS_DUMMY option of imsls_f_regressors_for_glm function (see Regression). Argument
index_class_var is an index array of length n_class_var containing the column numbers of
x that are the classification variables. (If n_class_var is equal to zero, index_class_var is
not used).

Default: n_class_var = 0.

IMSLS_STRATUM_NUMBER, int **igrp (Output)
Address of a pointer to an array of length n_observations giving the stratum number used for
each observation. If ratio is not -1.0, additional “strata” (other than those specified by column
istrat of x) may be generated. igrp also contains a record of the generated strata. See the
Description section for more detail.

IMSLS_STRATUM_NUMBER_USER, int igrp[] (Output)
Storage for igrp is provided by the user. See IMSLS_STRATUM_NUMBER.

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values (Output)
n_class_values is an address of a pointer to an array of length n_class_var containing the
number of values taken by each classification variable. n_class_values[i] is the number of dis-
tinct values for the i-th classification variable. class_values is an address of a pointer to an array
of length
n_class_values[0] + n_class_values[1] + … + n_class_values[n_class_var-
1] containing the distinct values of the classification variables. The first n_class_values[0] ele-
ments of class_values contain the values for the first classification variable, the next
n_class_values[1] elements contain the values for the second classification variable, etc.

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float class_values[] (Output)
Storage for n_class_values and class_values is provided by the user. The length of
class_values will not be known in advance, use max_class as the maximum length of
class_values. See IMSLS_CLASS_VARIABLES.

Description
Function imsls_f_prop_hazards_gen_lin computes parameter estimates and other statistics in Pro-
portional Hazards Generalized Linear Models. These models were first proposed by Cox (1972). Two methods for
handling ties are allowed in imsls_f_prop_hazards_gen_lin. Time-dependent covariates are not
allowed. The user is referred to Cox and Oakes (1984), Kalbfleisch and Prentice (1980), Elandt-Johnson and John-
son (1980), Lee (1980), or Lawless (1982), among other texts, for a thorough discussion of the Cox proportional
hazards model.
1005

 Survival and Reliability Analysis prop_hazards_gen_lin
Let λ(t, zi) represent the hazard rate at time t for observation number i with covariables contained as elements of

row vector zi. The basic assumption in the proportional hazards model (the proportionality assumption) is that

the hazard rate can be written as a product of a time varying function λ0(t), which depends only on time, and a

function ƒ(zi), which depends only on the covariable values. The function ƒ(zi) used in

imsls_f_prop_hazards_gen_lin is given as ƒ(zi) = exp(wi + βzi) where wi is a fixed constant assigned to

the observation, and β is a vector of coefficients to be estimated. With this function one obtains a hazard rate
λ(t, zi) = λ0(t) exp(wi + βzi). The form of λ0(t) is not important in proportional hazards models.

The constants wi may be known theoretically. For example, the hazard rate may be proportional to a known

length or area, and the wi can then be determined from this known length or area. Alternatively, the wi may be

used to fix a subset of the coefficients β (say, β1) at specified values. When wi is used in this way, constants

wi = β1z1i are used, while the remaining coefficients in β are free to vary in the optimization algorithm. If user-

specified constants are not desired, the user should set ifix to 0 so that wi = 0 will be used.

With this definition of λ(t, zi), the usual partial (or marginal, see Kalbfleisch and Prentice (1980)) likelihood

becomes

where R(ti) denotes the set of indices of observations that have not yet failed at time ti (the risk set), ti denotes

the time of failure for the i-th observation, nd is the total number of observations that fail. Right-censored obser-

vations (i.e., observations that are known to have survived to time ti, but for which no time of failure is known) are

incorporated into the likelihood through the risk set R(ti). Such observations never appear in the numerator of the

likelihood. When itie = 0, all observations that are censored at time ti are not included in R(ti), while all observa-

tions that fail at time ti are included in R(ti).

If it can be assumed that the dependence of the hazard rate upon the covariate values remains the same from
stratum to stratum, while the time-dependent term, λ0(t), may be different in different strata, then

imsls_f_prop_hazards_gen_lin allows the incorporation of strata into the likelihood as follows. Let k
index the m = istrat strata. Then, the likelihood is given by

L =∏
i=1

nd exp wi + βzi
∑

j∈R ti
exp wj + βz j
1006

 Survival and Reliability Analysis prop_hazards_gen_lin
In imsls_f_prop_hazards_gen_lin, the log of the likelihood is maximized with respect to the coefficients
β. A quasi-Newton algorithm approximating the Hessian via the matrix of sums of squares and cross products of
the first partial derivatives is used in the initial iterations (the “Q-N” method in the output). When the change in
the log-likelihood from one iteration to the next is less than 100*eps, Newton-Raphson iteration is used (the “N-
R” method). If, during any iteration, the initial step does not lead to an increase in the log-likelihood, then step
halving is employed to find a step that will increase the log-likelihood.

Once the maximum likelihood estimates have been computed, imsls_f_prop_hazards_gen_lin com-
putes estimates of a probability associated with each failure. Within stratum k, an estimate of the probability that
the i-th observation fails at time ti given the risk set R(tki) is given by

A diagnostic “influence” or “leverage” statistic is computed for each noncensored observation as:

where Hs is the matrix of second partial derivatives of the log-likelihood, and

is computed as:

Influence statistics are not computed for censored observations.

A “residual” is computed for each of the input observations according to methods given in Cox and Oakes (1984,
page 108). Residuals are computed as

Ls =∏
k=1

m

∏
i=1

nk exp wki + βzki
∑ j∈R tki

exp wkj + βzkj

pki =
exp wki + zkiβ

∑ j∈R tki
exp wkj + zkjβ

lki = − g′kiHs
−1g′ki

g′ki

g′ki = zki −
zkiexp wki + zkiβ

∑ j∈R tki
exp wkj + zk jβ
1007

 Survival and Reliability Analysis prop_hazards_gen_lin
where dkj is the number of tied failures in group k at time tkj. Assuming that the proportional hazards assumption

holds, the residuals should approximate a random sample (with censoring) from the unit exponential distribu-
tion. By subtracting the expected values, centered residuals can be obtained. (The j-th expected order statistic
from the unit exponential with censoring is given as

where h is the sample size, and censored observations are not included in the summation.)

An estimate of the cumulative baseline hazard within group k is given as

The observation proportionality constant is computed as

Programming Notes
1. The covariate vectors zki are computed from each row of the input matrix x via function

imsls_f_regressors_for_glm (see Chapter 2, Regression). Thus, class variables are easily incor-
porated into the zki. The reader is referred to the document for

imsls_f_regressors_for_glm in the regression chapter for a more detailed discussion.

Note that imsls_f_prop_hazards_gen_lin calls imsls_f_regressors_for_glm with
dummy_method = IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option.

2. The average of each of the explanatory variables is subtracted from the variable prior to computing
the product zkiβ. Subtraction of the mean values has no effect on the computed log-likelihood or the

estimates since the constant term occurs in both the numerator and denominator of the likelihood.
Subtracting the mean values does help to avoid invalid exponentiation in the algorithm and may also
speed convergence.

rki = exp wki + zkiβ
^ ∑

j∈R tki

dkj

∑
ℓ∈R tk j

exp wkℓ + zkℓβ
^

e j =∑
l≤ j

1
h − l + 1

H^ k0 tik = ∑
tk j≤tki

dk j

∑l∈R tk j
exp wkl + zkl β

^

exp wki + zkiβ
^

1008

 Survival and Reliability Analysis prop_hazards_gen_lin
3. Function imsls_f_prop_hazards_gen_lin allows for two methods of handling ties. In the
first method (itie = 1), the user is allowed to break ties in any manner desired. When this method is
used, it is assumed that the user has sorted the rows in X from largest to smallest with respect to the
failure/censoring times xi, irt within each stratum (and across strata), with tied observations (failures

or censored) broken in the manner desired. The same effect can be obtained with itie = 0 by add-
ing (or subtracting) a small amount from each of the tied observations failure/ censoring times ti = xi,

irt so as to break the ties in the desired manner.

The second method for handling ties (itie = 0) uses an approximation for the tied likelihood proposed by
Breslow (1974). The likelihood in Breslow’s method is as specified above, with the risk set at time ti including
all observations that fail at time ti, while all observations that are censored at time ti are not included.

(Tied censored observations are assumed to be censored immediately prior to the time ti).

4. If IMSLS_INITIAL_EST_INPUT option is used, then it is assumed that the user has provided ini-
tial estimates for the model coefficients β in in_coef. When initial estimates are provided by the
user, care should be taken to ensure that the estimates correspond to the generated covariate vec-
tor zki. If IMSLS_INITIAL_EST_INPUT option is not used, then initial estimates of zero are used

for all of the coefficients. This corresponds to no effect from any of the covariate values.

5. If a linear combination of covariates is monotonically increasing or decreasing with increasing failure
times, then one or more of the estimated coefficients is infinite and extended maximum likelihood

estimates must be computed. Such estimates may be written as where ρ = ∞ at the

supremum of the likelihood so that is the finite part of the solution. In
imsls_f_prop_hazards_gen_lin, it is assumed that extended maximum likelihood esti-
mates must be computed if, within any group k, for any time t,

where ρ = ratio is specified by the user. Thus, for example, if ρ = 10000, then
imsls_f_prop_hazards_gen_lin does not compute extended maximum likelihood estimates until
the estimated proportionality constant

is 10000 times larger for all observations prior to t than for all observations after t. When this occurs,
imsls_f_prop_hazards_gen_lin computes estimates for by splitting the failures in stratum k into
two strata at t (see Bryson and Johnson 1981). Censored observations in stratum k are placed into a stratum
based upon the associated value for

β
^
= β

^

f + ργ
^

β
^

f

min
tki<t

exp wki + zkiβ
^
> ρmax

tki<t
exp wki + zkiβ

^

exp wki + zkiβ
^

β
^

f

1009

 Survival and Reliability Analysis prop_hazards_gen_lin
The results of the splitting are returned in igrp.

The estimates based upon the stratified likelihood represent the finite part of the extended maximum
likelihood solution. Function imsls_f_prop_hazards_gen_lin does not compute explicitly, but an
estimate for may be obtained in some circumstances by setting ratio = -1 and optimizing the log-likeli-
hood without forming additional strata. The solution obtained will be such that for some
finite value of ρ > 0. At this solution, the Newton-Raphson algorithm will not have “converged” because the
Newton-Raphson step sizes returned in gr will be large, at least for some variables. Convergence will be
declared, however, because the relative change in the log-likelihood during the final iterations will be small.

Example
The following data are taken from Lawless (1982, page 287) and involve the survival of lung cancer patients based
upon their initial tumor types and treatment type. In the first example, the likelihood is maximized with no strata
present in the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The input data is printed in
the output. The model is given as:

where αi and γj correspond to dummy variables generated from column indices 5 and 6 of x, respectively, x1 cor-

responds to column index 2, x2 corresponds to column index 3, and x3 corresponds to column index 4 of x.

#include <imsls.h>
#define NOBS 40
#define NCOL 7
#define NCLVAR 2
#define NEF 5
int main ()
{
 int icen = 1, iprint = 2, maxcl = 6, ncoef;
 int indef[NEF] = { 2, 3, 4, 5, 6 };
 int nvef[NEF] = { 1, 1, 1, 1, 1 };
 int indcl[NCLVAR] = { 5, 6 };
 float *coef, ratio = 10000.0;
 float x[NOBS * NCOL] = {
 411, 0, 7, 64, 5, 1, 0,
 126, 0, 6, 63, 9, 1, 0,
 118, 0, 7, 65, 11, 1, 0,
 92, 0, 4, 69, 10, 1, 0,
 8, 0, 4, 63, 58, 1, 0,
 25, 1, 7, 48, 9, 1, 0,
 11, 0, 7, 48, 11, 1, 0,
 54, 0, 8, 63, 4, 2, 0,
 153, 0, 6, 63, 14, 2, 0,

exp wki + zkiβ
^

β
^

f

γ^

γ^

β
^

β
^
= β

^

f + ργ
^

ln λ = β1x1 + β2x2 + β3x3 + αi + γ j
1010

 Survival and Reliability Analysis prop_hazards_gen_lin
 16, 0, 3, 53, 4, 2, 0,
 56, 0, 8, 43, 12, 2, 0,
 21, 0, 4, 55, 2, 2, 0,
 287, 0, 6, 66, 25, 2, 0,
 10, 0, 4, 67, 23, 2, 0,
 8, 0, 2, 61, 19, 3, 0,
 12, 0, 5, 63, 4, 3, 0,
 177, 0, 5, 66, 16, 4, 0,
 12, 0, 4, 68, 12, 4, 0,
 200, 0, 8, 41, 12, 4, 0,
 250, 0, 7, 53, 8, 4, 0,
 100, 0, 6, 37, 13, 4, 0,
 999, 0, 9, 54, 12, 1, 1,
 231, 1, 5, 52, 8, 1, 1,
 991, 0, 7, 50, 7, 1, 1,
 1, 0, 2, 65, 21, 1, 1,
 201, 0, 8, 52, 28, 1, 1,
 44, 0, 6, 70, 13, 1, 1,
 15, 0, 5, 40, 13, 1, 1,
 103, 1, 7, 36, 22, 2, 1,
 2, 0, 4, 44, 36, 2, 1,
 20, 0, 3, 54, 9, 2, 1,
 51, 0, 3, 59, 87, 2, 1,
 18, 0, 4, 69, 5, 3, 1,
 90, 0, 6, 50, 22, 3, 1,
 84, 0, 8, 62, 4, 3, 1,
 164, 0, 7, 68, 15, 4, 1,
 19, 0, 3, 39, 4, 4, 1,
 43, 0, 6, 49, 11, 4, 1,
 340, 0, 8, 64, 10, 4, 1,
 231, 0, 7, 67, 18, 4, 1
 };
 coef = imsls_f_prop_hazards_gen_lin (NOBS, NCOL, x, NEF,
 nvef, indef, maxcl, &ncoef,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_CENSOR_CODES_COL, icen,
 IMSLS_RATIO, ratio,
 IMSLS_DUMMY, NCLVAR, &indcl[0], 0);
}

Output

 Initial Estimates
 1 2 3 4 5 6 7
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Method Iteration Step size Maximum scaled Log
 coef. update likelihood
 Q-N 0 -102.4
 Q-N 1 1.0000 0.5034 -91.04
 Q-N 2 1.0000 0.5782 -88.07
 N-R 3 1.0000 0.1131 -87.92
 N-R 4 1.0000 0.06958 -87.89
 N-R 5 1.0000 0.0008145 -87.89
Log-likelihood -87.88778
1011

 Survival and Reliability Analysis prop_hazards_gen_lin
 Coefficient Statistics
 Coefficient Standard Asymptotic Asymptotic
 error z-statistic p-value
1 -0.585 0.137 -4.272 0.000
2 -0.013 0.021 -0.634 0.526
3 0.001 0.012 0.064 0.949
4 -0.367 0.485 -0.757 0.449
5 -0.008 0.507 -0.015 0.988
6 1.113 0.633 1.758 0.079
7 0.380 0.406 0.936 0.349
 Asymptotic Coefficient Covariance
 1 2 3 4 5
1 0.01873 0.000253 0.0003345 0.005745 0.00975
2 0.0004235 -4.12e-005 -0.001663 -0.0007954
3 0.0001397 0.0008111 -0.001831
4 0.235 0.09799
5 0.2568
 6 7
1 0.004264 0.002082
2 -0.003079 -0.002898
3 0.0005995 0.001684
4 0.1184 0.03735
5 0.1253 -0.01944
6 0.4008 0.06289
7 0.1647
 Case Analysis
 Survival Influence Residual Cumulative Prop.
 Probability hazard constant
 1 0.00 0.04 2.05 6.10 0.34
 2 0.30 0.11 0.74 1.21 0.61
 3 0.34 0.12 0.36 1.07 0.33
 4 0.43 0.16 1.53 0.84 1.83
 5 0.96 0.56 0.09 0.05 2.05
 6 0.74 0.13 0.31 0.42
 7 0.92 0.37 0.03 0.08 0.42
 8 0.59 0.26 0.14 0.53 0.27
 9 0.26 0.12 1.20 1.36 0.88
10 0.85 0.15 0.97 0.17 5.76
11 0.55 0.31 0.21 0.60 0.36
12 0.74 0.21 0.96 0.31 3.12
13 0.03 0.06 3.02 3.53 0.86
14 0.94 0.09 0.17 0.06 2.71
15 0.96 0.16 1.31 0.05 28.89
16 0.89 0.23 0.59 0.12 4.82
17 0.18 0.09 2.62 1.71 1.54
18 0.89 0.19 0.33 0.12 2.68
19 0.14 0.23 0.72 1.96 0.37
20 0.05 0.09 1.66 2.95 0.56
21 0.39 0.22 1.17 0.94 1.25
22 0.00 0.00 1.73 21.11 0.08
23 0.08 2.19 2.52 0.87
24 0.00 0.00 2.46 8.89 0.28
25 0.99 0.31 0.05 0.01 4.28
26 0.11 0.17 0.34 2.23 0.15
27 0.66 0.25 0.16 0.41 0.38
28 0.87 0.22 0.15 0.14 1.02
29 0.39 0.45 0.94 0.48
1012

 Survival and Reliability Analysis prop_hazards_gen_lin
30 0.98 0.25 0.06 0.02 2.53
31 0.77 0.26 1.03 0.26 3.90
32 0.63 0.35 1.80 0.46 3.88
33 0.82 0.26 1.06 0.19 5.47
34 0.47 0.26 1.65 0.75 2.21
35 0.51 0.32 0.39 0.67 0.58
36 0.22 0.18 0.49 1.53 0.32
37 0.80 0.26 1.08 0.23 4.77
38 0.70 0.16 0.26 0.36 0.73
39 0.01 0.23 0.87 4.66 0.19
40 0.08 0.20 0.81 2.52 0.32
 Last Coefficient Update
 1 2 3 4 5 6
-1.296e-008 2.269e-009 -5.894e-009 -4.782e-007 -1.787e-007 1.509e-007
 7
4.327e-008
 Covariate Means
 1 2 3 4 5 6
 5.65 56.58 15.65 0.35 0.28 0.13
 7
 0.53
Distinct Values For Each Class Variable
Variable 1: 1 2 3 4
Variable 2: 0 1
 Stratum Numbers For Each Observation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Number of Missing Values 0
1013

 Survival and Reliability Analysis survival_glm
survival_glm
Analyzes censored survival data using a generalized linear model.

Synopsis
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class, int n_continuous, int

model, float x[], ..., 0)

The type double function is imsls_d_survival_glm.

Required Arguments
int n_observations (Input)

Number of observations.

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data.

model PDF of the Response Variable

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value
1014

 Survival and Reliability Analysis survival_glm
See the Description section for more information about these models.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m containing data for the
independent variables, dependent variable, and optional parameters.

The columns must be ordered such that the first n_class columns contain data for the class vari-
ables, the next n_continuous columns contain data for the continuous variables, and the next
column contains the response variable. The final (and optional) m − 1 columns contain the optional
parameters.

Return Value
An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class, int n_continuous, int

model, float x[],

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy,
IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_INFINITY_CHECK, int lp_max, or
IMSLS_NO_INFINITY_CHECK,
IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects,
IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[],

9 Extreme value

10 Weibull

model PDF of the Response Variable
1015

 Survival and Reliability Analysis survival_glm
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values, float **class_values,
IMSLS_CLASS_INFO_USER, int n_class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info,
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous + 1

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt (Input)
Parameter icen is the column in x containing the censoring code for each observation.

x [i] [icen] Censoring type

0 Exact failure at x [i] [irt]

1 Right Censored. The response is greater than
x [i] [irt].
1016

 Survival and Reliability Analysis survival_glm
Parameter ilt is the column number of x containing the upper endpoint of the failure interval for
interval- and left-censored observations. If there are no right-censored or interval-censored observa-
tions, ilt should be set to −1.

Parameter irt is the column number of x containing the lower endpoint of the failure interval for
interval- and right-censored observations. If there are no right-censored or interval-censored obser-
vations, irt should be set to −1.

Exact failure times are specified in column iy of x. By default, iy is column
n_class + n_continuous of x. The default can be changed if keyword
IMSLS_X_COL_VARIABLES is specified.

Note that it is allowable to set iy = irt, since a row with an iy value will never have an irt value,
and vice versa. This use is illustrated in Example 2.

IMSLS_X_COL_FREQUENCIES, int ifrq (Input)
Column number of x containing the frequency of response for each observation.

IMSLS_X_COL_FIXED_PARAMETER, int ifix (Input)
Column number in x containing a fixed parameter for each observation that is added to the linear
response prior to computing the model parameter. The “fixed” parameter allows one to test hypoth-
esis about the parameters via the log-likelihoods.

IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], int iy (Input)
This keyword allows specification of the variables to be used in the analysis, and overrides the default
ordering of variables described for input argument x. Columns are numbered from 0 to
x_col_dim − 1. To avoid errors, always specify the keyword IMSLS_X_COL_DIM when using this
keyword.

Argument iclass is an index vector of length n_class containing the column numbers of x that
correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous containing the column
numbers of x that correspond to continuous variables.

Argument iy corresponds to the column of x which contains the dependent variable.

2 Left Censored. The response is less than or
equal to x [i] [irt].

3 Interval Censored. The response is greater
than x [i] [irt], but less than or equal to
x [i] [ilt].

x [i] [icen] Censoring type
1017

 Survival and Reliability Analysis survival_glm
IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed when the maximum relative
change in any coefficient estimate is less than eps from one iteration to the next or when the relative
change in the log-likelihood, criterion, from one iteration to the next is less than eps/100.0.

Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the Hessian, stored in
cov, and the Newton step, stored in last_step, at the initial estimates (The initial estimates must
be input. Use keyword IMSLS_INITIAL_EST_INPUT).

Default: max_iterations = 30

IMSLS_INTERCEPT, (Input)
Indicates the intercept is automatically included in the model.

Default: IMSLS_INTERCEPT
or

IMSLS_NO_INTERCEPT, (Input)
Indicates there is no intercept in the model (unless otherwise provided for by the user).

Default: IMSLS_INTERCEPT
IMSLS_INFINITY_CHECK, int lp_max (Input)

Remove a right- or left-censored observation from the log-likelihood whenever the probability of the
observation exceeds 0.995. At convergence, use linear programming to check that all removed
observations actually have infinite linear response

obs_status [i] is set to 2 if the linear response is infinite (See optional argument
IMSLS_OBS_STATUS). If not all removed observations have infinite linear response, re-compute
the estimates based upon the observations with finite

Parameter lp_max is the maximum number of observations that can be handled in the linear pro-
gramming. Setting lp_max = n_observations is always sufficient.

Default: IMSLS_NO_INFINITY_CHECK; lp_max = 0

or

ziβ
^

ziβ
^

1018

 Survival and Reliability Analysis survival_glm
IMSLS_NO_INFINITY_CHECK
Iterates without checking for infinite estimates.

Default: IMSLS_NO_INFINITY_CHECK
IMSLS_EFFECTS, int n_effects, int n_var_effects[], int indices_effects[] (Input)

Use this keyword to specify the effects in the model.

Variable n_effects is the number of effects (sources of variation) in the model. Variable
n_var_effects is an array of length n_effects containing the number of variables associated
with each effect in the model.

Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + … + n_var_effects [n_effects − 1]. The
first n_var_effects [0] elements give the column numbers of x for each variable in the first
effect. The next n_var_effects[1] elements give the column numbers for each variable in the
second effect. The last n_var_effects [n_effects − 1] elements give the column numbers for
each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL, (Input)
Indicates unweighted linear regression is used to obtain initial estimates.

Default: IMSLS_INITIAL_EST_INTERNAL
or

IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[] (Input)
Indicates the n_coef_input elements of estimates contain initial estimates of the parameters
(which requires that the user know the number of coefficients in the model prior to the call to
survival_glm). See optional argument IMSLS_COEF_STAT for a description of the
“nuisance” parameter, which is the first element of array estimates.

Default: IMSLS_INITIAL_EST_INTERNAL
IMSLS_MAX_CLASS, int max_class (Input)

An upper bound on the sum of the number of distinct values taken on by each classification variable.
Internal workspace usage can be significantly reduced with an appropriate choice of max_class.

Default: max_class = n_observations × n_class
IMSLS_CLASS_INFO, int **n_class_values, float **class_values (Output)

Argument n_class_values is the address of a pointer to the internally allocated array of length
n_class containing the number of values taken by each classification variable; the i-th classification
variable has n_class_values [i] distinct values. Argument class_values is the address of a
pointer to the internally allocated array of length
1019

 Survival and Reliability Analysis survival_glm
containing the distinct values of the classification variables in ascending order. The first
n_class_values [0] elements of class_values contain the values for the first classification
variables, the next n_class_values [1] elements contain the values for the second classification
variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[] (Output)
Storage for arrays n_class_values and class_values is provided by the user. See
IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size n_coefficients × 4 containing the
parameter estimates and associated statistics:

When present in the model, the first coefficient in coef_statistics is the estimate of the “nui-
sance” parameter, and the remaining coefficients are estimates of the parameters associated with
the “linear” model, beginning with the intercept, if present. Nuisance parameters are as follows:

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See IMSLS_COEF_STAT.

IMSLS_CRITERION, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the log-likelihood.

Column Statistic

0 Coefficient estimate.

1 Estimated standard deviation of the estimated
coefficient.

2 Asymptotic normal score for testing that the coeffi-
cient is zero.

3 The p-value associated with the normal score in Col-
umn 2.

Model Description

0 No nuisance parameter

1 Coefficient of the quadratic term in time, θ
2-9 Scale parameter, σ
10 Shape parameter, θ

∑
i=0

n_class−1
n_class_values i
1020

 Survival and Reliability Analysis survival_glm
IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size n_coefficients by
n_coefficients containing the estimated asymptotic covariance matrix of the coefficients. For
max_iterations = 0, this is the Hessian computed at the initial parameter estimates.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the means of the design variables.
The array is of length n_coefficients − m if IMSLS_NO_INTERCEPT is specified, and of
length n_coefficients − m − 1 otherwise. Here, m is equal to 0 if model = 0, and equal to 1
otherwise.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_statistics (Output)
Address of a pointer to the internally allocated array of size n_observations by 5 containing the
case analysis below:

If max_iterations = 0, case_statistics is an array of length n_observations contain-
ing the estimated probability (for censored observations) or the estimated density (for non-censored
observations)

IMSLS_CASE_ANALYSIS_USER, float case_statistics[] (Output)
Storage for array case_statistics is provided by the user. See IMSLS_CASE_ANALYSIS.

Column Statistic

0 Estimated predicted value.

1 Estimated influence or leverage.

2 Estimated residual.

3 Estimated cumulative hazard.

4 Non-censored observations: Estimated density at the
observation failure time and covariate values.
Censored observations: The corresponding estimated
probability.
1021

 Survival and Reliability Analysis survival_glm
IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length n_coefficients containing the
last parameter updates (excluding step halvings). Parameter last_step is computed as the
inverse of the matrix of second partial derivatives times the vector of first partial derivatives of the
log-likelihood. When max_iterations = 0, the derivatives are computed at the initial estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length n_observations indicating which
observations are included in the extended likelihood.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See IMSLS_OBS_STATUS.

IMSLS_ITERATIONS, int *n, float **iterations (Output)
Address of a pointer to the internally allocated array of size, n by 5 containing information about
each iteration of the analysis, where n is equal to the number of iterations.

IMSLS_ITERATIONS_USER, int *n, float iterations[] (Output)
Storage for array iterations is provided by the user. See IMSLS_ITERATIONS.

obs_status[i] Status of Observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood because
it contains at least one missing value in x.

2 Observation i is not in the likelihood. Its estimated
parameter is infinite.

Column Statistic

0 Method of iteration
Q-N Step = 0
N-R Step = 1

1 Iteration number

2 Step size

3 Maximum scaled coefficient update

4 Log-likelihood
1022

 Survival and Reliability Analysis survival_glm
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info (Output)
Address of the pointer to an internally allocated structure of type Imsls_f_survival containing informa-
tion about the survival analysis. This structure is required input for function
imsls_f_survival_estimates.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the following vectors or col-
umns of x: iy, icen, ilt, irt, ifrq, ifix, iclass, icontinuous, or indices_effects.

Comments
1. Dummy variables are generated for the classification variables as follows: An ascending list of all dis-

tinct values of each classification variable is obtained and stored in class_values. Dummy
variables are then generated for each but the last of these distinct values. Each dummy variable is
zero unless the classification variable equals the list value corresponding to the dummy variable, in
which case the dummy variable is one. See keyword IMSLS_LEAVE_OUT_LAST for optional argu-
ment IMSLS_DUMMY in imsls_f_regressors_for_glm (Chapter 2, Regression).

2. The “product” of a classification variable with a covariate yields dummy variables equal to the product
of the covariate with each of the dummy variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the usual manner. Each
dummy variable associated with the first classification variable multiplies each dummy variable asso-
ciated with the second classification variable. The resulting dummy variables are such that the index
of the second classification variable varies fastest.

Description
Function imsls_f_survival_glm computes the maximum likelihood estimates of parameters and associ-
ated statistics in generalized linear models commonly found in survival (reliability) analysis. Although the
terminology used will be from the survival area, the methods discussed have applications in many areas of data
analysis, including reliability analysis and event history analysis. These methods can be used anywhere a random
variable from one of the discussed distributions is parameterized via one of the models available in
imsls_f_survival_glm. Thus, while it is not advisable to do so, standard multiple linear regression can be
performed by function imsls_f_survival_glm. Estimates for any of 10 standard models can be computed.
Exact, left-censored, right-censored, or interval-censored observations are allowed (note that left censoring is the
same as interval censoring with the left endpoint equal to the left endpoint of the support of the distribution).
1023

 Survival and Reliability Analysis survival_glm
Let η = xTβ be the linear parameterization, where x is a design vector obtained by imsls_f_survival_glm
via function imsls_f_regressors_for_glm from a row of x, and β is a vector of parameters associated
with the linear model. Let T denote the random response variable and S(t) denote the probability that T > t. All
models considered also allow a fixed parameter wi for observation i (input in column ifix of x). Use of this

parameter is discussed below. There also may be nuisance parameters θ > 0, or σ > 0 to be estimated (along with
β) in the various models. Let Φ denote the cumulative normal distribution. The survival models available in
imsls_f_survival_glm are:

Note that the log-least-extreme-value model is a reparameterization of the Weibull model. Moreover, models 0, 1,
2, 4, 6, 8, and 10 require that T > 0, while all of the remaining models allow any value for T, −∞ < T <∞.

Each row vector in the data matrix can represent a single observation; or, through the use of vector frequencies,
each row can represent several observations. Also note that classification variables and their products are easily
incorporated into the models via the usual regression-type specifications.

model Name S (t)

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull

exp −texp wi + η

exp − t + θt2
2 exp wi + η

1 − ϕ
ln t − η − wi

σ

1 − ϕ
t − η − wi

σ

1 + exp
ln t − η − wi

σ

−1

1 + exp
t − η − wi

σ
−1

exp −exp
ln t − η − wi

σ

exp −exp
t − η − wi

σ

1 − exp −exp
ln t − η − wi

σ

1 − exp −exp
t − η − wi

σ

exp − t
exp wi + η

θ

1024

 Survival and Reliability Analysis survival_glm
The constant parameter Wi is input in x and may be used for a number of purposes. For example, if the parame-

ter in an exponential model is known to depend upon the size of the area tested, volume of a radioactive mass,
or population density, etc., then a multiplicative factor of the exponential parameter λ = exp (xβ) may be known
apriori. This factor can be input in Wi (Wi is the log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), where β2 is known. Letting Wi = x2β2, esti-

mates for β1 can be obtained via imsls_f_survival_glm with the known fixed values for β2. Standard

methods can then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistency and validity. Estimates of the means of the “inde-
pendent” or design variables are computed. Means are computed as

2. If initial estimates are not provided by the user (see optional argument
IMSLS_INITIAL_EST_INPUT), the initial estimates are calculated as follows

Models 2-10

a. Kaplan-Meier estimates of the survival probability,

at the upper limit of each failure interval are obtained. (Because upper limits are used, interval- and
left-censored data are assumed to be exact failures at the upper endpoint of the failure interval.) The
Kaplan-Meier estimate is computed under the assumption that all failure distributions are identical
(i.e., all β’s but the intercept, if present, are assumed to be zero).

b. If there is an intercept in the model, a simple linear regression is performed predicting

where tʹ is computed at the upper endpoint of each failure interval, tʹ = t in models 3, 5, 7, and 9, and
tʹ = ln (t) in models 2, 4, 6, 8, and 10, and wi is the fixed constant, if present.

If there is no intercept in the model, then α is fixed at zero, and the model

is fit instead. In this model, the coefficients β are used in place of the location estimate α above. Here

x─ =
∑ f ixi
∑ f i

S^ t

S−1 S^ t − wi = α + ϕt ′

S−1 S^ t − ϕ^t ′ − wi = x
Tβ
1025

 Survival and Reliability Analysis survival_glm
is estimated from the simple linear regression with α = 0.

c. If the intercept is in the model, then in log-location-scale models (models 1-8),

and the initial estimate of the intercept is assumed to be .

In the Weibull model

and the intercept is assumed to be . Initial estimates of all parameters β, other than the intercept,
are assumed to be zero. If there is no intercept in the model, the scale parameter is estimated as
above, and the estimates

from Step 2 are used as initial estimates for the β’s.
Models 0 and 1

For the exponential models (model = 0 or 1), the “average total time on” test statistic is used to obtain an esti-
mate for the intercept. Specifically, let Tt denote the total number of failures divided by the total time on test.
The initial estimates for the intercept is then ln(Tt). Initial estimates for the remaining parameters β are
assumed to be zero, and if model = 1, the initial estimate for the linear hazard parameter θ is assumed to be a
small positive number. When the intercept is not in the model, the initial estimate for the parameter θ is
assumed to be a small positive number, and initial estimates of the parameters β are computed via multiple
linear regression as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian estimate

where lʹiαj is the partial derivative of the i-th term in the log-likelihood with respect to the parameter αj, and
αj denotes one of the parameters to be estimated.

When the relative change in the log-likelihood from one iteration to the next is 0.1 or less, exact second par-
tial derivatives are used for the Hessian so the Newton-Rapheson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full step is used. If the log-likelihood
decreases for the initial step size, the step size is halved, and a check for an increase in the log-likelihood
performed. Step-halving is performed (as a simple line search) until an increase in the log-likelihood is
detected, or until the step size becomes very small (the initial step size is 1.0).

ϕ^

σ̂ = ϕ^

α^

θ^ = 1 / ϕ^

α^

β^

H^ κ jκl =∑
i

l ′iα jiαl
1026

 Survival and Reliability Analysis survival_glm
4. Convergence is assumed when the maximum relative change in any coefficient update from one iter-
ation to the next is less than eps or when the relative change in the log-likelihood from one iteration
to the next is less than eps/100. Convergence is also assumed after maxit iterations or when step
halving leads to a very small step size with no increase in the log-likelihood.

5. If requested (see optional argument IMSLS_INFINITY_CHECK), then the methods of Clarkson
and Jennrich (1988) are used to check for the existence of infinite estimates in

As an example of a situation in which infinite estimates can occur, suppose that observation j is right-cen-
sored with tj > 15 in a normal distribution model in which the mean is

where xj is the observation design vector. If the design vector xj for parameter βm is such that xjm = 1 and
xim = 0 for all i ≠ j, then the optimal estimate of βm occurs at

leading to an infinite estimate of both βm and ηj. In imsls_f_survival_glm, such estimates can be
“computed”.

In all models fit by imsls_f_survival_glm, infinite estimates can only occur when the optimal esti-
mated probability associated with the left- or right-censored observation is 1. If infinity checking is on, left-
or right-censored observations that have estimated probability greater than 0.995 at some point during the
iterations are excluded from the log-likelihood, and the iterations proceed with a log-likelihood based on the
remaining observations. This allows convergence of the algorithm when the maximum relative change in the
estimated coefficients is small and also allows for a more precise determination of observations with infinite

At convergence, linear programming is used to ensure that the eliminated observations have infinite ηi. If
some (or all) of the removed observations should not have been removed (because their estimated ηi’s must
be finite), then the iterations are restarted with a log-likelihood based upon the finite ηi observations. See
Clarkson and Jennrich (1988) for more details.

When infinity checking is turned off (see optional argument IMSLS_NO_INFINITY_CHECK), no observa-
tions are eliminated during the iterations. In this case, the infinite estimates occur, some (or all) of the coef-
ficient estimates

will become large, and it is likely that the Hessian will become (numerically) singular prior to convergence.

ηi = xi
T β

μ j = x j
T β = η j

β^m = ∞

ηi = xi
T β

β^
1027

 Survival and Reliability Analysis survival_glm
6. The case statistics are computed as follows: Let Ii (θi)denote the log-likelihood of the i-th observa-

tion evaluated at θi, let I’i denote the vector of derivatives of Ii with respect to all parameters, I’h,i

denote the derivative of Ii with respect to η = xTβ, H denote the Hessian, and E denote expectation.

Then the columns of case_statistics are:

a. Predicted values are computed as E (T/x) according to standard formulas. If model is 4 or 8, and if
s ≥ 1, then the expected values cannot be computed because they are infinite.

b. Following Cook and Weisberg (1982), the influence (or leverage) of the i-th observation is assumed to
be

This quantity is a one-step approximation of the change in the estimates when the i-th observation is
deleted (ignoring the nuisance parameters).

c. The “residual” is computed as Iʹh,i.

d. The cumulative hazard is computed at the observation covariate values and, for interval observa-
tions, the upper endpoint of the failure interval. The cumulative hazard also can be used as a
“residual” estimate. If the model is correct, the cumulative hazards should follow a standard exponen-
tial distribution. See Cox and Oakes (1984).

Programming Notes
Indicator (dummy) variables are created for the classification variables using function
imsls_f_regressors_for_glm (Chapter 2, Regression)) using keyword IMSLS_LEAVE_OUT_LAST as the
argument to the IMSLS_DUMMY optional argument.

Examples

Example 1

This example is taken from Lawless (1982, p. 287) and involves the mortality of patients suffering from lung can-
cer. An exponential distribution is fit for the model

η = μ + αi + γk + β
6

x

3

+ β

I ′i
TH−1I ′i
1028

 Survival and Reliability Analysis survival_glm
7

x

4

+ β
8

x

5

where αi is associated with a classification variable with four levels, and γk is associated with a classification vari-

able with two levels. Note that because the computations are performed in single precision, there will be some
small variation in the estimated coefficients across different machine environments.

#include <imsls.h>
int main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
1029

 Survival and Reliability Analysis survival_glm
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int n_coef;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 float *coef_stat;
 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous, model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_COEF_STAT, &coef_stat,
 0);
 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
 coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);
}

Output

 Coefficient Statistics
coefficient s.e. z p
 -1.1027 1.3140 -0.8392 0.4016
 -0.3626 0.4446 -0.8156 0.4149
 0.1271 0.4863 0.2613 0.7939
 0.8690 0.5861 1.4825 0.1385
 0.2697 0.3882 0.6948 0.4873
 -0.5400 0.1081 -4.9946 0.0000
 -0.0090 0.0197 -0.4594 0.6460
 -0.0034 0.0117 -0.2912 0.7710

Example 2

This example is the same as Example 1, but more optional arguments are demonstrated.

#include <imsls.h>
#include <stdio.h>
int main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
1030

 Survival and Reliability Analysis survival_glm
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0
 };
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int n_coef;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 int n, *ncv, nrmiss, *obs;
 float *iterations, *cv, criterion;
 float *coef_stat, *casex;
 char *fmt = "%12.4f";
 char *fmt2 = "%4d%4d%6.4f%8.4f%8.1f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
 static char *clabels2[] = {"", "Method", "Iteration", "Step Size",
 "Coef Update", "Log-Likelihood"};
 n_coef = imsls_f_survival_glm(n_observations, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_COEF_STAT, &coef_stat,
 IMSLS_ITERATIONS, &n, &iterations,
 IMSLS_CASE_ANALYSIS, &casex,
 IMSLS_CLASS_INFO, &ncv, &cv,
 IMSLS_OBS_STATUS, &obs,
1031

 Survival and Reliability Analysis survival_glm
 IMSLS_CRITERION, &criterion,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 0);
 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);
 imsls_f_write_matrix("Iteration Information", n, 5, iterations,
 IMSLS_WRITE_FORMAT, fmt2,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels2,
 0);
 printf("\nLog-Likelihood = %12.5f\n", criterion);
 imsls_f_write_matrix("Case Analysis", 1, n_observations, casex,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 imsls_f_write_matrix(
 "Distinct Values for Classification Variable 1", 1, ncv[0],
 &cv[0],
 IMSLS_NO_COL_LABELS,
 0);
 imsls_f_write_matrix(
 "Distinct Values for Classification Variable 2", 1, ncv[1],
 &cv[ncv[0]],
 IMSLS_NO_COL_LABELS,
 0);
 imsls_i_write_matrix("Observation Status", 1, n_observations, obs,
 0);
 printf("\nNumber of Missing Values = %2d\n", nrmiss);
}

Output

 Coefficient Statistics
coefficient s.e. z p
 -1.1027 1.3140 -0.8392 0.4016
 -0.3626 0.4446 -0.8156 0.4149
 0.1271 0.4863 0.2613 0.7939
 0.8690 0.5861 1.4825 0.1385
 0.2697 0.3882 0.6948 0.4873
 -0.5400 0.1081 -4.9946 0.0000
 -0.0090 0.0197 -0.4594 0.6460
 -0.0034 0.0117 -0.2912 0.7710
 Iteration Information
Method Iteration Step Size Coef Update Log-Likelihood
 0 0 -224.0
 0 1 1.0000 0.9839 -213.4
 1 2 1.0000 3.6033 -207.3
 1 3 1.0000 10.1236 -204.3
1032

 Survival and Reliability Analysis survival_glm
 1 4 1.0000 0.1430 -204.1
 1 5 1.0000 0.0117 -204.1
Log-Likelihood = -204.13916
 Case Analysis
 1 2 3 4 5
 262.6884 0.0450 -0.5646 1.5646 0.0008
 6 7 8 9 10
 153.7777 0.0042 0.1806 0.8194 0.0029
 11 12 13 14 15
 270.5347 0.0482 0.5638 0.4362 0.0024
 16 17 18 19 20
 55.3168 0.0844 -0.6631 1.6631 0.0034
 21 22 23 24 25
 61.6845 0.3765 0.8703 0.1297 0.0142
 26 27 28 29 30
 230.4414 0.0025 -0.1085 0.1085 0.8972
 31 32 33 34 35
 232.0135 0.1960 0.9526 0.0474 0.0041
 36 37 38 39 40
 272.8432 0.1677 0.8021 0.1979 0.0030
Distinct Values for Classification Variable 1
 1 2 3 4
Distinct Values for Classification Variable 2
 0 1
 Observation Status
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Missing Values = 0

Example 3

In this example, the same data and model as Example 1 are used, but max_iterations is set to zero itera-
tions with model coefficients restricted such that μ = −1.25, β6 = −0.6, and the remaining six coefficients are

equal to zero. A chi-squared statistic, with 8 degrees of freedom for testing the coefficients is specified as above
(versus the alternative that it is not as specified), can be computed, based on the output, as

where

χ2 = gTΣ^
−1
g

1033

 Survival and Reliability Analysis survival_glm
is output in cov. The resulting test statistic, Χ2 = 6.107, based upon no iterations is comparable to likelihood ratio
test that can be computed from the log-likelihood output in this example (−206.6835) and the log-likelihood out-
put in Example 2 (−204.1392).

Neither statistic is significant at the α = 0.05 level.

#include <imsls.h>
#include <stdio.h>
int main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0
 };

Σ
^

χLR
2 = 2 206.6835 − 204.1392 = 5.0886
1034

 Survival and Reliability Analysis survival_glm
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 int n_coef_input = 8;
 static float estimates[8] = {
 -1.25, 0.0, 0.0, 0.0, 0.0, -0.6, 0.0, 0.0
 };
 int n_coef;
 float *coef_stat, *means, *cov;
 float criterion, *last_step;
 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
 n_coef = imsls_f_survival_glm(n_observations, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_INITIAL_EST_INPUT, n_coef_input, estimates,
 IMSLS_MAX_ITERATIONS, 0,
 IMSLS_COEF_STAT, &coef_stat,
 IMSLS_MEANS, &means,
 IMSLS_COV, &cov,
 IMSLS_CRITERION, &criterion,
 IMSLS_LAST_STEP, &last_step,
 0);
 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);
 imsls_f_write_matrix("Covariate Means", 1, n_coef-1, means,
 0);
 imsls_f_write_matrix("Hessian", n_coef, n_coef, cov,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_PRINT_UPPER,
 0);
 printf("\nLog-Likelihood = %12.5f\n", criterion);
 imsls_f_write_matrix("Newton-Raphson Step", 1, n_coef, last_step,
 IMSLS_WRITE_FORMAT, fmt,
 0);
}

Output

 Coefficient Statistics
coefficient s.e. z p
 -1.2500 1.3833 -0.9036 0.3664
 0.0000 0.4288 0.0000 1.0000
 0.0000 0.5299 0.0000 1.0000
 0.0000 0.7748 0.0000 1.0000
1035

 Survival and Reliability Analysis survival_glm
 0.0000 0.4051 0.0000 1.0000
 -0.6000 0.1118 -5.3652 0.0000
 0.0000 0.0215 0.0000 1.0000
 0.0000 0.0109 0.0000 1.0000
 Covariate Means
 1 2 3 4 5 6
 0.35 0.28 0.12 0.53 5.65 56.58
 7
 15.65
 Hessian
 1 2 3 4 5
1 1.9136 -0.0906 -0.1641 -0.1681 0.0778
2 0.1839 0.0996 0.1191 0.0358
3 0.2808 0.1264 -0.0226
4 0.6003 0.0460
5 0.1641
 6 7 8
1 -0.0818 -0.0235 -0.0012
2 -0.0005 -0.0008 0.0006
3 0.0104 0.0005 -0.0021
4 0.0193 -0.0016 0.0007
5 0.0060 -0.0040 0.0017
6 0.0125 0.0000 0.0003
7 0.0005 -0.0001
8 0.0001
Log-Likelihood = -206.68349
 Newton-Raphson Step
 1 2 3 4 5
 0.1706 -0.3365 0.1333 1.2967 0.2985
 6 7 8
 0.0625 -0.0112 -0.0026
1036

 Survival and Reliability Analysis survival_glm
Warning Errors

Fatal Errors

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for the
log logistic distribution (“model” = 4) does not exist.
Predicted values will not be calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for the
log extreme value distribution(“model” = 8) does not
exist. Predicted values will not be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one negative eigenvalue.
An upper bound on the absolute value of the mini-
mum eigenvalue is # corresponding to variable
index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #. The
censoring interval has length 0.0. The censoring
code for this observation is being set to 0.0.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the classification
variables exceeds “max_class” = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified, and
“n_coef_input” = #. The model specified requires
coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = # and “n_rows_missing” = #.
“n_observations”−”n_rows_missing” must be
greater than or equal to 2 in order to estimate the
coefficients.

IMSLS_SVGLM_1 For the exponential model (“model” = 0) with
“n_effects” = # and no intercept, “n_coef” has
been determined to equal 0. With no coefficients in
the model, processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be deleted from the
model. Either use a different model or increase the
workspace.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct
values for each classification variable must be
greater than one.
1037

 Survival and Reliability Analysis survival_estimates
survival_estimates
Estimates survival probabilities and hazard rates for the various parametric models.

Synopsis
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival *survival_info,

int n_observations, float xpt[], float time, int npt, float delta, ..., 0)

The type double function is imsls_d_survival_estimates.

Required Arguments
Imsls_f_survival *survival_info (Input)

Pointer to structure of type Imsls_f_survival containing the estimated survival coefficients and other
related information. See imsls_f_survival_glm.

int n_observations (Input)
Number of observations for which estimates are to be calculated.

float xpt[] (Input)
Array xpt is an array of size n_observations by x_col_dim containing the groups of covari-
ates for which estimates are desired, where x_col_dim is described in the documentation for
imsls_f_survival_glm. The covariates must be specified exactly as in the call to
imsls_f_survival_glm which produced survival_info.

float time (Input)
Beginning of the time grid for which estimates are desired. Survival probabilities and hazard rates are
computed for each covariate vector over the grid of time points time + i×delta for
i = 0, 1, …, npt − 1.

int npt (Input)
Number of points on the time grid for which survival probabilities are desired.

float delta (Input)
Increment between time points on the time grid.
1038

 Survival and Reliability Analysis survival_estimates
Return Value
An array of size npt by (2 ×n_observations + 1) containing the estimated survival probabilities for the
covariate groups specified in xpt. Column 0 contains the survival time. Columns 1 and 2 contain the estimated
survival probabilities and hazard rates, respectively, for the covariates in the first row of xpt. In general, the sur-
vival and hazard for row i of xpt is contained in columns 2i − 1 and 2i, respectively, for i = 1, 2, …, npt.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival survival_info, int n_observations,

float xpt[], float time, int npt, float delta,

IMSLS_XBETA, float **xbeta,
IMSLS_XBETA_USER, float xbeta[],
IMSLS_RETURN_USER, float sprob[],
0)

Optional Arguments
IMSLS_XBETA, float **xbeta (Output)

Address of a pointer to an array of length n_observations containing the estimated linear
response

for each row of xpt.

IMSLS_XBETA_USER, float xbeta[] (Output)
Storage for array xbeta is provided by the user. See IMSLS_XBETA.

IMSLS_RETURN_USER, float sprob[] (Output)
User supplied array of size npt by (2×n_observations + 1) containing the estimated survival
probabilities for the covariate groups specified in xpt. Column 0 contains the survival time. Columns
1 and 2 contain the estimated survival probabilities and hazard rates, respectively, for the covariates
in the first row of xpt. In general, the survival and hazard for row i of xpt is contained in columns
2i − 1 and 2i, respectively, for i = 1, 2, …, npt.

w + xβ^
1039

 Survival and Reliability Analysis survival_estimates
Description
Function imsls_f_survival_estimates computes estimates of survival probabilities and hazard rates for
the parametric survival/reliability models fit by function imsls_f_survival_glm.

Let η = xTβ be the linear parameterization, where x is the design vector corresponding to a row of xpt
(imsls_f_survival_estimates generates the design vector using function
imsls_f_regressors_for_glm), and β is a vector of parameters associated with the linear model. Let T
denote the random response variable and S(t) denote the probability that T > t. All models considered also allow
a fixed parameter w (input in column ifix of xpt). Use of the parameter is discussed in function
imsls_f_survival_glm. There also may be nuisance parameters θ > 0 or σ > 0. Let Φ denote the cumulative
normal distribution. The survival models available in imsls_f_survival_estimates are:

Let λ(t) denote the hazard rate at time t. Then λ(t) and S(t) are related at

Model Name S (t)

0 Exponential exp [−t exp (wi + η)]

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme
value

7 Least extreme
value

8 Log extreme value

9 Extreme value

10 Weibull

exp − t + θt2
2 exp wi + η

1 − ϕ
ln t − η − wi

σ

1 − ϕ
t − η − wi

σ

1 + exp
ln t − η − wi

σ

−1

1 + exp
t − η − wi

σ
−1

exp −exp
ln t − η − wi

σ

exp −exp
t − η − wi

σ

1 − exp −exp
ln t − η − wi

σ

1 − exp −exp
t − η − wi

σ

exp − t
exp wi + η

θ

1040

 Survival and Reliability Analysis survival_estimates
Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume λ(s) = 0 for s < 0), while the remaining mod-
els allow arbitrary values for T, −∞ < T <∞. The computations proceed in function
imsls_f_survival_estimates as follows:

1. The input arguments are checked for consistency and validity.

2. For each row of xpt, the explanatory variables are generated from the classification and variables
and the covariates using function imsls_f_regressors_for_glm (see Chapter 2, Regression)
with dummy_method = IMSLS_LEAVE_OUT_LAST. Given the explanatory variables x, η is com-

puted as η = xTβ, where β is input in survival_info.

3. For each point requested in the time grid, the survival probabilities and hazard rates are computed.

Example
This example is a continuation of the first example given for function imsls_f_survival_glm. Prior to calling
survival_estimates, imsls_f_survival_glm is invoked to compute the parameter estimates (con-
tained in the structure survival_info). The example is taken from Lawless (1982, p. 287) and involves the
mortality of patients suffering from lung cancer.

#include <imsls.h>
int main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,

S t = exp ∫−∞
t
λ s ds
1041

 Survival and Reliability Analysis survival_estimates
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0
 };
 int n_observations = 40;
 int n_estimates = 2;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 float time = 10.0;
 int npt = 10;
 float delta = 20.0;
 int n_coef;
 float *sprob;
 Imsls_f_survival *survival_info;
 char *fmt = "%12.2f%10.4f%10.6f%10.4f%10.6f";
 char *clabels[] = {"", "Time", "S1", "H1", "S2", "H2"};
 n_coef = imsls_f_survival_glm(n_observations, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_SURVIVAL_INFO, &survival_info,
 0);
 sprob = imsls_f_survival_estimates(survival_info, n_estimates,
 &x[0][0], time, npt, delta,
 0);
 imsls_f_write_matrix("Survival and Hazard Estimates", npt,
 2 * n_estimates + 1, sprob,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);
 imsls_free (survival_info);
 imsls_free (sprob);
}

1042

 Survival and Reliability Analysis survival_estimates
Output

 Survival and Hazard Estimates
 Time S1 H1 S2 H2
 10.00 0.9626 0.003807 0.9370 0.006503
 30.00 0.8921 0.003807 0.8228 0.006503
 50.00 0.8267 0.003807 0.7224 0.006503
 70.00 0.7661 0.003807 0.6343 0.006503
 90.00 0.7099 0.003807 0.5570 0.006503
 110.00 0.6579 0.003807 0.4890 0.006503
 130.00 0.6096 0.003807 0.4294 0.006503
 150.00 0.5649 0.003807 0.3770 0.006503
 170.00 0.5235 0.003807 0.3310 0.006503
 190.00 0.4852 0.003807 0.2907 0.006503

Note that the hazard rate is constant over time for the exponential model.

Warning Errors

Fatal Errors

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for the
log logistic distribution (“model” = 4) does not exist.
Predicted values will not be calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for the
log extreme value distribution (“model” = 8) does
not exist. Predicted values will not be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one negative eigenvalue.
An upper bound on the absolute value of the mini-
mum eigenvalue is # corresponding to variable
index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #. The
censoring interval has length 0.0. The censoring
code for this observation is being set to 0.0.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the classification
variables exceeds “max_class” = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified, and
“n_coef_input” = #. The model specified requires #
coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = %(i1) and “n_rows_missing”
= #. “n_observations”−”n_rows_missing” must
be greater than or equal to 2 in order to estimate
the coefficients.
1043

 Survival and Reliability Analysis survival_estimates
IMSLS_SVGLM_1 For the exponential model (“model” = 0) with
“n_effects” = # and no intercept, “n_coef” has
been determined to equal 0. With no coefficients in
the model, processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be deleted from the
model. Either use a different model or increase the
workspace.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct
values for each classification variable must be
greater than one.
1044

 Survival and Reliability Analysis nonparam_hazard_rate
nonparam_hazard_rate
Performs nonparametric hazard rate estimation using kernel functions and quasi-likelihoods.

Synopsis
#include <imsls.h>
float *imsls_f_nonparam_hazard_rate (int n_observations, float t[], int n_hazard,

float hazard_min, float hazard_increment, …, 0)

The type double function is imsls_d_nonparam_hazard_rate.

Required Arguments
int n_observations (Input)

Number of observations.

float t[] (Input)
An array of n_observations containing the failure times. If optional argument
IMSLS_CENSOR_CODES is used, the values of t may be treated as exact failure times, as right-cen-
sored times, or a combination of exact and right censored times. By default, all times in t are
assumed to be exact failure times.

int n_hazard (Input)
Number of grid points at which to compute the hazard. The function computes the hazard rates over
the range given by: hazard_min + j * hazard_increment, for j = 0, ..., n_hazard - 1.

float hazard_min (Input)
First grid value.

float hazard_increment (Input)
Increment between grid values.

Return Value
Pointer to an array of length n_hazard containing the estimated hazard rates.
1045

 Survival and Reliability Analysis nonparam_hazard_rate
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonparam_hazard_rate(int n_observations, float t[], int n_hazard,

float hazard_min, float hazard_increment,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_CENSOR_CODES, int censor_codes[],
IMSLS_WEIGHT, int iwto,
IMSLS_SORT_OPTION, int isort,
IMSLS_K_GRID, int n_k, int k_min, int k_increment,
IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float beta_increment,
IMSLS_N_MISSING, int *nmiss,
IMSLS_ALPHA, float *alpha,
IMSLS_BETA, float *beta,
IMSLS_CRITERION, float *vml,
IMSLS_K, int *k,
IMSLS_SORTED_EVENT_TIMES, float **event_times,
IMSLS_SORTED_EVENT_TIMES_USER, float event_times[],
IMSLS_SORTED_CENSOR_CODES, int **isorted_censor,
IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[],
IMSLS_RETURN_USER, float haz[],
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default: iprint = 0.

iprint Action

0 No printing is performed.

1 The grid estimates and the opti-
mized estimates are printed for each
value of k.
1046

 Survival and Reliability Analysis nonparam_hazard_rate
IMSLS_CENSOR_CODES, int censor_codes[] (Input)
censor_codes is an array of length n_observations containing the censoring codes for each
time in t. If censor_codes[i]=0 the failure time t[i] is treated as an exact time of failure. Oth-
erwise it is treated as a right-censored time; that is, the exact time of failure is greater than t[i].

Default: All failure times are treated as exact times of failure with no censoring.

IMSLS_WEIGHT_OPTION, int iwto (Input)
Weight option. If iwto = 1, then is used for the i-th
smallest observation. Otherwise, is used.

Default: iwto = 0.

IMSLS_SORT_OPTION, int isort (Input)
Sorting option. If isort = 1, then the event times are not automatically sorted by the function. Oth-
erwise, sorting is performed with exact failure times following tied right-censored times.
Default: isort = 0.

IMSLS_K_GRID, int n_k, int k_min, int k_increment (Input)
Finds the optimal value of k over the range given by: kmin + (j - 1) × k_increment, for
j = 1, ..., n_k. Where n_k is the number of values of k to be considered. k_min is the minimum
value for parameter k. k_increment is the increment between successive values of parameter k.
Parameter k is the number of nearest neighbors to be used in computing the k-th nearest neighbor
distance.

Default: k_min is the smallest possible value of k, k_increment =2, and n_k will be at most 10
points.

IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float beta_increment (Input)
For n_beta_grid > 0, a user-defined grid is used. This grid is defined as
beta_start + (j - 1)*beta_increment, for j = 1, …, n_beta_grid. beta_start is the first
value to be used in the user-defined grid and beta_increment is the increment between succes-
sive grid values of beta.

Default: The values in the initial beta search are given as follows:

Let β* = - 8, - 4, - 2, - 1, - 0.5,0.5,1, and 2, and

For each value of β, vml is computed at the optimizing β. The maximizing β is used to initiate
the iterations. If the initial β* is determined from the search to be less than -6, then it is pre-
sumed that β is infinite, and an analytic estimate of α based upon infinite β is used. Infinite β
corresponds to a flat hazard rate.

IMSLS_N_MISSING, int *nmiss (Output)
Number of missing (NaN, not a number) failure times in t.

weight = ln 1 + 1 / n_observations − i
weight = 1 / n_observations − i

β = e−β
*

1047

 Survival and Reliability Analysis nonparam_hazard_rate
IMSLS_ALPHA, float *alpha (Output)
Optimal estimate for the parameter α.

IMSLS_BETA, float *beta (Output)
Optimal estimate for the parameter β.

IMSLS_CRITERION, float *vml (Output)
Optimum value of the criterion function.

IMSLS_K, int *k (Output)
Optimal estimate for the parameter k.

IMSLS_SORTED_EVENT_TIMES, float **event_times (Output)
Address of a pointer to an array of length n_observations containing the times of occurrence of
the events, sorted from smallest to largest.

IMSLS_SORTED_EVENT_TIMES_USER, float event_times[] (Output)
Storage for event_times is provided by the user. See IMSLS_SORTED_EVENT_TIMES.

IMSLS_SORTED_CENSOR_CODES, int **isorted_censor (Output)
Address of a pointer to an array of length n_observations containing the sorted censor codes.
Censor codes are sorted corresponding to the events event_times[i], with censored observa-
tions preceding tied failures.

IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[] (Output)
Storage for isorted_censor is provided by the user. See IMSLS_SORTED_CENSOR_CODE.

IMSLS_RETURN_USER, float haz[] (Output)
If specified, haz is a user supplied array of length n_hazard containing the estimated hazard rates.

Description
Function imsls_f_nonparam_hazard_rate is an implementation of the methods discussed by Tanner
and Wong (1984) for estimating the hazard rate in survival or reliability data with right censoring. It uses the
biweight kernel,

and a modified likelihood to obtain data-based estimates of the smoothing parameters α, β, and k needed in the
estimation of the hazard rate. For kernel K(x), define the “smoothed” kernel Ks(x - x(j)) as follows:

K(x) =
15
16(1 − x

2)2 for | x | < 1
0 elsewhere
1048

 Survival and Reliability Analysis nonparam_hazard_rate
where djk is the distance to the k-th nearest failure from x(j), and x(j) is the j-th ordered observation (from smallest

to largest). For given α and β, the hazard at point x is then

where N = n_observations, δi is the i-th observation’s censor code (1 = censored, 0 = failed), and wi is the i-th

ordered observation’s weight, which may be chosen as either 1/(N - i + 1), or ln(1 + 1/(N - i + 1)). Let

The likelihood is given by

where ∏ denotes product. Since the likelihood leads to degenerate estimates, Tanner and Wong (1984) suggest
the use of a modified likelihood. The modification consists of deleting observation xi in the calculation of h(xi) and

H(xi) when the likelihood term for xi is computed using the usual optimization techniques. α and β for given k can

then be estimated.

Estimates for α and β are computed as follows: for given β, a closed form solution is available for α. The problem
is thus reduced to the estimation of β.

A grid search for β is first performed. Experience indicates that if the initial estimate of β from this grid search is

greater than, say, e6 ,then the modified likelihood is degenerate because the hazard rate does not change with
time. In this situation, β should be taken to be infinite, and an estimate of α corresponding to infinite β should be

directly computed. When the estimate of β from the grid search is less than e6, a secant algorithm is used to opti-
mize the modified likelihood. The secant algorithm iteration stops when the change in β from one iteration to the

next is less than 10−5. Alternatively, the iterations may cease when the value of β becomes greater than e6, at
which point an infinite β with a degenerate likelihood is assumed.

To find the optimum value of the likelihood with respect to k, a user-specified grid of k-values is used. For each
grid value, the modified likelihood is optimized with respect to α and β. That grid point, which leads to the small-
est likelihood, is taken to be the optimal k.

KS x − x j = 1
αd jk

K
x − x j

βd jk

h x =∑
i=1

N

1 − δi wiKs x − x i

H x = ∫0
x

h s ds

L =∏
i=1

N
h(xi)

(1−δi)exp(− H(x(i)))
1049

 Survival and Reliability Analysis nonparam_hazard_rate
Programming Notes
1. If sorting of the data is performed by imsls_f_nonparam_hazard_rate, then the sorted array

will be such that all censored observations at a given time precede all failures at that time. To specify
an arbitrary pattern of censored/failed observations at a given time point, the isort = 1 option
must be used. In this case, it is assumed that the times have already been sorted from smallest to
largest.

2. The smallest value of k must be greater than the largest number of tied failures since djk must be

positive for all j. (Censored observations are not counted.) Similarly, the largest value of k must be
less than the total number of failures. If the grid specified for k includes values outside the allowable
range, then a warning error is issued; but k is still optimized over the allowable grid values.

3. The secant algorithm iterates on the transformed parameter β* = exp(- β). This assures a positive β,
and it also seems to lead to a more desirable grid search. All results returned to the user are in the
original parameterization, however.

4. Since local minimums have been observed in the modified likelihood, it is recommended that more
than one grid of initial values for α and β be used.

5. Function imsls_f_nonparam_hazard_rate assumes that the hazard grid points are new data
points.

Example
The following example is taken from Tanner and Wong (1984). The data are from Stablein, Carter, and Novak
(1981) and involve the survival times of individuals with nonresectable gastric carcinoma. Only individuals treated
with both radiation and chemotherapy are used. For each value of k from 18 to 22 with increment of 2, the
default grid search for β is performed. Using the optimal value of β in the grid, the optimal parameter estimates
of α and β are computed for each value of k. The final solution is the parameter estimates for the value of k which
optimizes the modified likelihood (vml). Because the iprint = 1 is in effect,
imsls_f_nonparam_hazard_rate prints all of the results in the output.

#include <imsls.h>
#include <stdio.h>
int main ()
{
 int n_observations = 45, iprint = 1, kmin = 18;
 int increment_k = 2, n_k = 3, isort = 1, nmiss, *isorted_censor;
 float *event_times, *haz;
 int n_hazard = 100;
 float hazard_min = 0.0, hazard_inc = 10;
 float t[] = {
1050

 Survival and Reliability Analysis nonparam_hazard_rate
 17.0, 42.0, 44.0, 48.0, 60.0, 72.0, 74.0, 95.0,
 103.0, 108.0, 122.0, 144.0, 167.0, 170.0, 183.0,
 185.0, 193.0, 195.0, 197.0, 208.0, 234.0, 235.0,
 254.0, 307.0, 315.0, 401.0, 445.0, 464.0, 484.0,
 528.0, 542.0, 567.0, 577.0, 580.0, 795.0, 855.0,
 882.0, 892.0,1031.0,1033.0,1306.0,1335.0,1366.0,
 1452.0, 1472.0
 };
 int censor_codes[] = {
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1, 1, 1, 1, 1, 1, 1, 1, 1
 };
 haz = imsls_f_nonparam_hazard_rate (n_observations, t, n_hazard,
 hazard_min, hazard_inc,
 IMSLS_K_GRID, n_k, kmin, increment_k,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_SORT_OPTION, isort,
 IMSLS_CENSOR_CODES, censor_codes,
 IMSLS_SORTED_EVENT_TIMES, &event_times,
 IMSLS_SORTED_CENSOR_CODES, &isorted_censor,
 0);
 printf ("\nnmiss = %d\n", nmiss);
 imsls_f_write_matrix ("Sorted Event Times", 1, n_observations,
 event_times,
 IMSLS_WRITE_FORMAT, "%7.1f",
 0);
 imsls_i_write_matrix ("Sorted Censors", 1, n_observations,
 isorted_censor,
 0);
 imsls_f_write_matrix ("Hazard Rates", 1, n_hazard, haz,
 0);
}

Output

 *** Grid search for k = 18 ***
 alpha beta vml
 4.57832 2980.96 -266.805
 4.54312 54.5982 -266.62
 4.33646 20.0855 -265.541
 4.01933 12.1825 -264.001
 3.54274 7.38906 -262.54
 2.99058 4.48169 -262.512
 2.35154 2.71828 -262.634
 1.58417 1.64872 -262.158
 0.966332 1 -262.868
 *** Optimal parameter estimates ***
 alpha beta vml
 1.69515 1.76926 -262.119
1051

 Survival and Reliability Analysis nonparam_hazard_rate
 *** Grid search for k = 20 ***
 alpha beta vml
 4.05393 2980.96 -266.526
 4.03284 54.5982 -266.401
 3.90505 20.0855 -265.648
 3.68782 12.1825 -264.402
 3.30434 7.38906 -262.666
 2.82272 4.48169 -262.08
 2.25276 2.71828 -262.445
 1.55578 1.64872 -261.772
 0.955586 1 -262.618
 *** Optimal parameter estimates ***
 alpha beta vml
 1.54053 1.63155 -261.771
 *** Grid search for k = 22 ***
 alpha beta vml
 3.65641 2980.96 -267.595
 3.64159 54.5982 -267.499
 3.55056 20.0855 -266.904
 3.38875 12.1825 -265.859
 3.07147 7.38906 -264.066
 2.64504 4.48169 -263.039
 2.1374 2.71828 -263.335
 1.51261 1.64872 -262.64
 0.936368 1 -262.683
 *** Optimal parameter estimates ***
 alpha beta vml
 1.34217 1.45001 -262.561
 *** The final solution (k = 20) ***
 alpha beta vml
 1.54053 1.63155 -261.771
nmiss = 0
 Sorted Event Times
 1 2 3 4 5 6 7 8
 17.0 42.0 44.0 48.0 60.0 72.0 74.0 95.0
 9 10 11 12 13 14 15 16
 103.0 108.0 122.0 144.0 167.0 170.0 183.0 185.0
 17 18 19 20 21 22 23 24
 193.0 195.0 197.0 208.0 234.0 235.0 254.0 307.0
 25 26 27 28 29 30 31 32
 315.0 401.0 445.0 464.0 484.0 528.0 542.0 567.0
 33 34 35 36 37 38 39 40
 577.0 580.0 795.0 855.0 882.0 892.0 1031.0 1033.0
 41 42 43 44 45
1306.0 1335.0 1366.0 1452.0 1472.0
 Sorted Censors
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1052

 Survival and Reliability Analysis nonparam_hazard_rate
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
39 40 41 42 43 44 45
 1 1 1 1 1 1 1
 Hazard Rates
 1 2 3 4 5 6
 0.000962 0.001111 0.001276 0.001451 0.001634 0.001819
 7 8 9 10 11 12
 0.002004 0.002185 0.002359 0.002523 0.002675 0.002813
 13 14 15 16 17 18
 0.002935 0.003040 0.003126 0.003193 0.003240 0.003266
 19 20 21 22 23 24
 0.003273 0.003260 0.003229 0.003179 0.003114 0.003034
 25 26 27 28 29 30
 0.002941 0.002838 0.002727 0.002612 0.002495 0.002381
 31 32 33 34 35 36
 0.002273 0.002175 0.002084 0.001998 0.001917 0.001841
 37 38 39 40 41 42
 0.001771 0.001709 0.001655 0.001608 0.001569 0.001537
 43 44 45 46 47 48
 0.001510 0.001484 0.001459 0.001435 0.001411 0.001388
 49 50 51 52 53 54
 0.001365 0.001343 0.001323 0.001304 0.001285 0.001266
 55 56 57 58 59 60
 0.001247 0.001228 0.001208 0.001188 0.001167 0.001146
 61 62 63 64 65 66
 0.001125 0.001103 0.001081 0.001060 0.001040 0.001020
 67 68 69 70 71 72
 0.000999 0.000979 0.000958 0.000936 0.000913 0.000891
 73 74 75 76 77 78
 0.000868 0.000845 0.000821 0.000798 0.000775 0.000752
 79 80 81 82 83 84
 0.000730 0.000708 0.000685 0.000662 0.000640 0.000617
 85 86 87 88 89 90
 0.000595 0.000573 0.000552 0.000530 0.000510 0.000490
 91 92 93 94 95 96
 0.000471 0.000452 0.000434 0.000416 0.000399 0.000383
 97 98 99 100
 0.000366 0.000351 0.000336 0.000321
1053

 Survival and Reliability Analysis nonparam_hazard_rate
Fatal Errors
IMSLS_ALL_OBSERVATIONS_MISSING All observations are missing (NaN, not a number) values.
1054

 Survival and Reliability Analysis life_tables
life_tables
Produces population and cohort life tables.

Synopsis
#include <imsls.h>
float *imsls_f_life_tables (int n_classes, float age[], float a[], int n_cohort[], …, 0)

The type double function is imsls_d_life_tables.

Required Arguments
int n_classes (Input)

Number of age classes.

float age[] (Input)
Array of length n_classes + 1 containing the lowest age in each age interval, and in
age[n_classes], the endpoint of the last age interval. Negative age[0] indicates that the age
intervals are all of length |age[0]| and that the initial age interval is from 0.0 to |age[0]|. In this
case, all other elements of age need not be specified. age[n_classes] need not be specified
when getting a cohort table.

float a[] (Input)
Array of length n_classes containing the fraction of those dying within each interval who die
before the interval midpoint. A common choice for all a[i] is 0.5. This choice may also be specified
by setting a[0] to any negative value. In this case, the remaining values of a need not be specified.

int n_cohort[] (Input)
Array of length n_classes containing the cohort sizes during each interval. If the
IMSL_POPULATION_LIFE_TABLE option is used, then n_cohort[i] contains the size of the
population at the midpoint of interval i. Otherwise, n_cohort[i] contains the size of the cohort
at the beginning of interval i. When requesting a population table, the population sizes in
n_cohort may need to be adjusted to correspond to the number of deaths in n_deaths. See the
Description section for more information.
1055

 Survival and Reliability Analysis life_tables
Return Value
Pointer to an array of length n_classes by 12 containing the life table. The function returns a cohort table by
default. If the IMSL_POPULATION_LIFE_TABLE option is used, a population table is returned. Entries in the
ith row are for the age interval defined by age[i]. Column definitions are described in the following table.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_life_tables (int n_classes, float age[], float a[], int n_cohort[],

IMSLS_RETURN_USER, float table[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_POPULATION_SIZE, int initial_pop,
IMSLS_POPULATION_LIFE_TABLE, int *n_deaths,
0)

Column Description

0 Lowest age in the age interval.

1 Fraction of those dying within the interval who die before the
interval midpoint.

2 Number surviving to the beginning of the interval.

3 Number of deaths in the interval.

4 Death rate in the interval. For cohort table, this column is set
to NaN (not a number).

5 Proportion dying in the interval.

6 Standard error of the proportion dying in the interval.

7 Proportion of survivors at the beginning of the interval.

8 Standard error of the proportion of survivors at the begin-
ning of the interval.

9 Expected lifetime at the beginning of the interval.

10 Standard error of the expected life at the beginning of the
interval.

11 Total number of time units lived by all of the population in
the interval.
1056

 Survival and Reliability Analysis life_tables
Optional Arguments
IMSLS_RETURN_USER, float table[] (Output)

If specified, table is an user-specified array of length n_classes×12 containing the life table.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.

Default: iprint = 0.

IMSLS_POPULATION_SIZE, int initial_pop (Input)
The population size at the beginning of the first age interval in requesting population table. A default
value of 10,000 is used to allow easy entry of n_cohorts and n_deaths when numbers are avail-
able as percentages.

Default: initial_pop = 10000.

IMSLS_POPULATION_LIFE_TABLE, int *n_deaths (Input)
Compute a population table. n_deaths is an array of length n_classes containing the number
of deaths in each age interval.

Description
Function imsls_f_life_tables computes population (current) or cohort life tables based upon the
observed population sizes at the middle (for population table) or the beginning (for cohort table) of some user-
specified age intervals. The number of deaths in each of these intervals must also be observed.

The probability of dying prior to the middle of the interval, given that death occurs somewhere in the interval,
may also be specified. Often, however, this probability is taken to be 0.5. For a discussion of the probability mod-
els underlying the life table here, see the references.

Let ti, for i = 0, 1, ..., tn denote the time grid defining the n age intervals, and note that the length of the age inter-

vals may vary. Following Gross and Clark (1975, page 24), let di denote the number of individuals dying in age

interval i, where age interval i ends at time ti. For population table, the death rate at the middle of the interval is

given by ri = di/(Mihi), where Mi is the number of individuals alive at the middle of the interval, and hi = ti - ti−1, t0

iprint Action

0 No printing is performed.

1 The life table is printed.
1057

 Survival and Reliability Analysis life_tables
= 0. The number of individuals alive at the beginning of the interval may be estimated by Pi = Mi + (1 - ai)di where

ai is the probability that an individual dying in the interval dies prior to the interval midpoint. For cohort table, Pi is

input directly while the death rate in the interval, ri, is not needed.

The probability that an individual dies during the age interval from ti−1 to ti is given by qi = di/Pi. It is assumed that

all individuals alive at the beginning of the last interval die during the last interval. Thus, qn = 1.0. The asymptotic

variance of qi can be estimated by

For population table, the number of individuals alive in the middle of the time interval (input in n_cohort[i])
must be adjusted to correspond to the number of deaths observed in the interval. Function
imsls_f_life_tables assumes that the number of deaths observed in interval hi occur over a time period

equal to hi. If di is measured over a period ui, where ui ≠ di, then n_cohort[i] must be adjusted to corre-

spond to di by multiplication by ui/hi, i.e., the value Mi input into imsls_f_life_tables as n_cohort[i]

is computed as

Let Si denote the number of survivors at time ti from a hypothetical (for population table) or observed (for cohort

table) population. Then, S0 = initial_pop for population table, and S0 = n_cohort[0] for cohort table, and

Si is given by Si = Si−1 - δi−1 where δi = Siqi is the number of individuals who die in the i-th interval. The propor-

tion of survivors in the interval is given by Vi = S /S0 while the asymptotic variance of Vi can be estimated as

follows.

The expected lifetime at the beginning of the interval is calculated as the total lifetime remaining for all survivors
alive at the beginning of the interval divided by the number of survivors at the beginning of the interval. If ei

denotes this average expected lifetime, then the variance of ei can be estimated as (see Chiang 1968)

where var(en) = 0.0.

Finally, the total number of time units lived by all survivors in the time interval can be estimated as:

σi
2 = qi 1 − qi / Pi

Mi
* = Miui / hi

var Vi = Vi
2∑
j=1

i−1 σ j
2

1 − q j
2

var ei =

∑
j=i

n−1
P j
2σ j
2 e j+1 + h j+1 1 − a j

2

P j
2

1058

 Survival and Reliability Analysis life_tables
Example
This example is taken from Chiang (1968). The cohort life table has thirteen equally spaced intervals, so age[0]
is set to -5.0. Similarly, the probabilities of death prior to the middle of the interval are all taken to be 0.5, so
a[0] is set to -1.0. Since IMSLS_PRINT_LEVEL option is used, imsls_f_life_tables prints the life
table.

#include <imsls.h>
#define N_CLASSES 13
int main ()
{
 int iprint = 1;
 int n_cohort[] =
 { 270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76, 34, 13 };
 float age[N_CLASSES + 1], a[N_CLASSES];
 float *result;
 age[0] = -5.0;
 a[0] = -1.0;
 result = imsls_f_life_tables (N_CLASSES, age, a, n_cohort,
 IMSLS_PRINT_LEVEL, iprint, 0);
}

Output

 Life Table
Age Class Age PDHALF Alive Deaths Death Rate
 1 0 0.5 270 2
 2 5 0.5 268 4
 3 10 0.5 264 3
 4 15 0.5 261 7
 5 20 0.5 254 3
 6 25 0.5 251 3
 7 30 0.5 248 16
 8 35 0.5 232 66
 9 40 0.5 166 36
 10 45 0.5 130 54
 11 50 0.5 76 42
 12 55 0.5 34 21
 13 60 0.5 13 13
Age Class P(D) Std(P(D)) P(S) Std(P(S)) Lifetime
 1 0.007407 0.005218 1 0 43.19
 2 0.01493 0.007407 0.9926 0.005218 38.49
 3 0.01136 0.006523 0.9778 0.008971 34.03
 4 0.02682 0.01 0.9667 0.01092 29.4
 5 0.01181 0.006779 0.9407 0.01437 25.14
 6 0.01195 0.006859 0.9296 0.01557 20.41
 7 0.06452 0.0156 0.9185 0.01665 15.63

Ui = hi Si − δi 1 − ai
1059

 Survival and Reliability Analysis life_tables
 8 0.2845 0.02962 0.8593 0.02116 11.53
 9 0.2169 0.03199 0.6148 0.02962 10.12
 10 0.4154 0.04322 0.4815 0.03041 7.231
 11 0.5526 0.05704 0.2815 0.02737 5.592
 12 0.6176 0.08334 0.1259 0.02019 4.412
 13 1 0 0.04815 0.01303 2.5
Age Class Std(Life) Time Units
 1 0.6993 1345
 2 0.6707 1330
 3 0.623 1313
 4 0.594 1288
 5 0.5403 1263
 6 0.5237 1248
 7 0.5149 1200
 8 0.4982 995
 9 0.4602 740
 10 0.4328 515
 11 0.4361 275
 12 0.4167 117.5
 13 0 32.5
1060

 Probability Distribution Functions and Inverses Functions
Probability Distribution Functions
and Inverses

Functions
Discrete Random Variables: Distribution Functions and Probability Functions

Distribution Functions
Binomial distribution function . binomial_cdf 1066
Binomial probability function . binomial_pdf 1068
Discrete geometric cumulative distribution function. geometric_cdf 1070
Inverse of the discrete geometric cumulative

distribution function . geometric_inverse_cdf 1072
Discrete geometric probability density function . geometric_pdf 1074
Hypergeometric distribution function .hypergeometric_cdf 1076
Hypergeometric probability function .hypergeometric_pdf 1079
Poisson distribution function . poisson_cdf 1081
Poisson probability function .poisson_pdf 1084
Discrete uniform cumulative distribution function discrete_uniform_cdf 1086
Inverse of the discrete uniform cumulative

distribution function . discrete_uniform_inverse_cdf 1088
Discrete uniform probability density functiondiscrete_uniform_pdf 1090

Continuous Random Variables
Distribution Functions and their Inverses

Beta distribution function .beta_cdf 1092
Inverse beta distribution function .beta_inverse_cdf 1094
Noncentral beta cumulative distribution

function (CDF). non_central_beta_cdf 1096
Inverse of the noncentral beta CDF. non_central_beta_inverse_cdf 1099
Noncentral beta probability density function (PDF) non_central_beta_pdf 1102
Bivariate normal distribution function. bivariate_normal_cdf 1105
Chi-squared distribution function . chi_squared_cdf 1107
Inverse chi-squared distribution functionchi_squared_inverse_cdf 1110
Calculates the complement of the chi-squared

distribution. complementary_chi_squared_cdf 1112
Noncentral chi-squared distribution function non_central_chi_sq 1115
Inverse of the noncentral chi-squared distribution function non_central_chi_sq_inv 1119
Noncentral chi-squared probability

density function (PDF) . non_central_chi_sq_pdf 1121
1061

 Probability Distribution Functions and Inverses Functions
Exponential cumulative distribution function . exponential_cdf 1124
Inverse of the exponential cumulative

distribution function . exponential_inverse_cdf 1126
Exponential probability density function. exponential_pdf 1128
F distribution function. F_cdf 1130
Inverse F distribution function . F_inverse_cdf 1133
Calculates the complement of the F distribution

function . complementary_F_cdf 1135
Noncentral F probability density

function (PDF). .non_central_F_pdf 1138
Noncentral F cumulative distribution

function (CDF). .non_central_F_cdf 1142
Calculates the complement of the noncentral

F CDF . complementary_non_central_F_cdf 1145
Inverse of the noncentral F distribution function non_central_F_inverse_cdf 1149
Gamma distribution function . gamma_cdf 1152
Inverse gamma distribution function . gamma_inverse_cdf 1155
Lognormal cumulative distribution function . lognormal_cdf 1157
Inverse of the lognormal cumulative distribution function lognormal_inverse_cdf 1159
Lognormal probability density function . lognormal_pdf 1161
Normal (Gaussian) distribution function. .normal_cdf 1163
Multivariate normal distribution function multivariate_normal_cdf 1166
Inverse normal distribution function . normal_inverse_cdf 1174
Student’s t distribution function .t_cdf 1176
Inverse Student’s t distribution function . t_inverse_cdf 1179
Calculates the complement of the Student’s t

distribution. complementary_t_cdf 1181
Noncentral Student’s t distribution function . non_central_t_cdf 1185
Inverse of the noncentral Student’s t distribution function non_central_t_inv_cdf 1188
Pareto cumulative probability distribution function. pareto_cdf 1193
Pareto probability density function. pareto_pdf 1195

Parameter Estimation
Maximum likelihood estimation for univariate

probability distributions . max_likelihood_estimates 1197
1062

 Probability Distribution Functions and Inverses Usage Notes
Usage Notes
The distribution function for the (real, single-valued) random variable X is the function F defined for all
real x by

F(x) = Pr(X ≤ x)

where Pr(⋅) denotes the probability of an event. The distribution function is often called the cumulative distribu-
tion function (CDF).

In general, the CDF does not have an inverse because it is not one-to-one. Nevertheless, a quantile function, also
called an inverse CDF, is well-defined as

F-1(p) = min {x∈ ℜ : F(x)≥p}, p ∈ (0,1)

Here p represents a probability on the open interval, (0, 1).

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz (1969, 1970a,
1970b). These are also good references for the specific distributions.

Discrete Distributions
For discrete distributions, the function giving the probability that a random variable takes on specific values is
called the probability mass function, or just probability function, defined by

f(x) = Pr(X = x)

The CDF for a discrete random variable is

where A is the set such that k ≤ x.

Continuous Distributions
For continuous distributions, a probability function, as defined above, would not be useful because the probabil-
ity of any given point is 0. For such distributions, the useful analog is the probability density function(PDF). The
integral of the PDF is the probability over the interval. If the continuous random variable X has PDF f, then

F x = Pr[X ≤ x] =∑
A

f (k)
1063

 Probability Distribution Functions and Inverses Usage Notes
The relationship between the CDF and the PDF is

The “_cdf” functions described in this chapter evaluate cumulative distribution functions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the support of the distri-
bution. Thus, the inverse-CDF is a proper inverse function on the interval (0,1) and

F-1(F(x)) = x .

The “_inverse_cdf” functions described in this chapter compute the inverses of the distribution functions.
The inverses are defined only over the open interval (0,1).

Parameter Notation and Estimation
To emphasize the dependence of a PDF or CDF on one or more parameters, we use the following notation:

f (x∣θ) or F(x∣θ)

where θ represents one or more distributional parameters. The vertical bar "∣" is read as "given". Some authors
prefer to use the semi-colon instead of the vertical bar, as in f (x; θ), to emphasize this dependency. However, the
vertical bar is more consistent with the notation used for conditional probability distributions. For instance, in the
Bayesian framework, there is a distribution on the parameters, so in that sense the probability distributions
treated in this chapter are conditional distributions.

A related task to evaluating a probability density or distribution function is to estimate the values of its parame-
ters. For many of the distributions covered in this chapter, functionimsls_f_max_likelihood_estimates
provides maximum likelihood estimates of the unknown parameter values given a sample of observations.

Additional Comments
1. In order to keep the calling sequences simple, whenever possible the functions described in this

chapter are written for standard forms of statistical distributions. Hence, the number of parameters
for any given distribution may be fewer than the number often associated with the distribution. For
example, while a gamma distribution is often characterized by two parameters (or even a third, "loca-
tion"), there is only one parameter that is necessary, the "shape".

Pr(a < X ≤ b) = ∫a
b
f (x)dx

F(x) = ∫−∞
x

f (t)dt
1064

 Probability Distribution Functions and Inverses Usage Notes
2. The "scale" parameter can be used to scale the variable to the standard gamma distribution. Also, the
functions relating to the normal distribution,imsls_f_normal_cdf and
imsls_f_normal_inverse_cdf, are for a normal distribution with mean equal to zero and vari-
ance equal to one. For other means and variances, it is very easy to standardize the variables by
subtracting the mean and dividing by the square root of the variance.

3. Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to an
inverse function, it is often impossible to achieve good accuracy because of the nature of the repre-
sentation of numeric values. In this case, it may be better to work with the complementary
distribution function (one minus the distribution function). If the distribution is symmetric about
some point (as the normal distribution, for example) or is reflective about some point (as the beta
distribution, for example), the complementary distribution function has a simple relationship with the
distribution function. For example, to evaluate the standard normal distribution at 4.0, using
imsls_f_normal_inverse_cdf directly, the result to six places is 0.999968. Only two of those
digits are really useful, however. A more useful result may be 1.000000 minus this value, which can
be obtained to six significant figures as 3.16713E-05 by evaluating
imsls_f_normal_inverse_cdf at -4.0. For the normal distribution, the two values are related
by Φ(x) = 1 - Φ(-x), where Φ(⋅) is the normal distribution function. Another example is the beta distri-
bution with parameters 2 and 10. This distribution is skewed to the right, so evaluating
imsls_f_beta_cdf at 0.7, 0.999953 is obtained. A more precise result is obtained by evaluating
imsls_f_beta_cdf with parameters 10 and 2 at 0.3. This yields 4.72392E-5. (In both of these
examples, it is wise not to trust the last digit.)

4. Many of the algorithms used by functions in this chapter are discussed by Abramowitz and Stegun
(1964). The algorithms make use of various expansions and recursive relationships and often use dif-
ferent methods in different regions.

5. Cumulative distribution functions are defined for all real arguments, however, if the input to one of
the distribution functions in this chapter is outside the range of the random variable, an error of Type
1 is issued, and the output is set to zero or one, as appropriate. A Type 1 error is of lowest severity, a
“note”, and, by default, no printing or stopping of the program occurs. The other common errors that
occur in the functions of this chapter are Type 2, “alert”, for a function value being set to zero due to
underflow, Type 3, “warning”, for considerable loss of accuracy in the result returned, and Type 5, “ter-
minal”, for incorrect and/or inconsistent input, complete loss of accuracy in the result returned, or
inability to represent the result (because of overflow). When a Type 5 error occurs, the result is set to
NaN (not a number, also used as a missing value code).

6. For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than the
left endpoint and 1 for values greater than the right endpoint. The functions described in this chapter
return the correct values for the distribution functions when values outside of the range of the ran-
dom variable are input, but warning error conditions are set in these cases.
1065

 Probability Distribution Functions and Inverses binomial_cdf
binomial_cdf
Evaluates the binomial distribution function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_cdf (int k, int n, float p)

The type double function is imsls_d_binomial_cdf.

Required Arguments
int k (Input)

Argument for which the binomial distribution function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that k or fewer successes occur in n independent Bernoulli trials, each of which has a probability
p of success.

Description
The imsls_f_binomial_cdf function evaluates the distribution function of a binomial random variable with
parameters n and p. It does this by summing probabilities of the random variable taking on the specific values in
its range. These probabilities are computed by the recursive relationship:

such that:

Pr X = j =
n + 1 − j p
j 1 − p Pr X = j − 1
1066

 Probability Distribution Functions and Inverses binomial_cdf
To avoid the possibility of underflow, the probabilities are computed forward from 0 if k is not greater than n × p;
otherwise, they are computed backward from n. The smallest positive machine number, ɛ, is used as the starting

value for summing the probabilities, which are rescaled by (1 − p)nɛ if forward computation is performed and by

pnɛ if backward computation is used.

For the special case of p = 0, imsls_f_binomial_cdf is set to 1; for the case p = 1,
imsls_f_binomial_cdf is set to 1 if k = n and is set to 0 otherwise.

Example
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, the function finds the probabil-
ity that X is less than or equal to 3.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int k = 3, n = 5;
 float p = 0.95, pr;
 pr = imsls_f_binomial_cdf(k,n,p);
 printf("Pr(x <= %d) = %6.4f\n", k, pr);

}

Output

Pr(x <= 3) = 0.0226

Informational Errors
IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution func-

tion is set to zero.

IMSLS_GREATER_THAN_N The input argument, k, is greater than the number
of Bernoulli trials, n.

F(k∣n,p) =∑
i = 0

k

Pr(X = j)
1067

 Probability Distribution Functions and Inverses binomial_pdf
binomial_pdf
Evaluates the binomial probability function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_pdf (int k, int n, float p)

The type double function is imsls_d_binomial_pdf.

Required Arguments
int k (Input)

Argument for which the binomial probability function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that a binomial random variable takes on a value equal to k.

Description
The function imsls_f_binomial_pdf evaluates the probability that a binomial random variable with param-
eters n and p takes on the value k. Specifically,

where k = {0,1,2,…,n}, n≥1, 0≤p≤1, and

f (k∣n,p) = Pr(X = k) = n
k pk(1 − p)n−k
1068

 Probability Distribution Functions and Inverses binomial_pdf
These probabilities are computed by the recursive relationship:

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not greater than
n × p, and are computed backward from n otherwise. The smallest positive machine number, ɛ, is used as the

starting value for summing the probabilities, which are rescaled by (1-p)nɛ if forward computation is performed

and by pnɛ if backward computation is done.

For the special case of p = 0, imsls_f_binomial_pdf is set to 0 if k is greater than 0 and to 1 otherwise;
and for the case p = 1, imsls_f_binomial_pdf is set to 0 if k is less than n and to 1 otherwise.

Examples
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we find the probability that X is
equal to 3.

#include <stdio.h>
#include <imsls.h>
int main()
{

 int k = 3, n = 5;
 float p = 0.95, prob;
 prob = imsls_f_binomial_pdf(k, n, p);
 printf("The probability that X is equal to "

 "%d is %f\n", k, prob);
}

Output

The probability that X is equal to 3 is 0.021434

n
k = n!

k!(n − k)!

Pr X = k =
n + 1 − k p
k 1 − p Pr X = k − 1
1069

 Probability Distribution Functions and Inverses geometric_cdf
geometric_cdf
Evaluates the discrete geometric cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_geometric_cdf(intix, floatpin)

The type double function is imsls_d_geometric_cdf.

Required Arguments
intix (Input)

Argument for which the discrete geometric CDF is to be evaluated. ix must be non-negative.

floatpin (Input)
Probability parameter of the discrete geometric CDF (the probability of success for each independent
trial). pin must be in the open interval (0, 1).

Return Value
The probability that a discrete geometric random variable takes a value less than or equal to ix. A value of NaN is
returned if an input value is in error.

Description
The function geometric_cdf evaluates the discrete geometric cumulative distribution function (CDF), defined

where the return value F(I∣p) is the probability that up to I = ix trials would be observed before observing a suc-
cess, and input parameter p = pin is the probability of success for each independent trial.

F I∣p =∑
i=0

I

p 1 − p i = 1 − 1 − p I+1, 0 < p < 1
1070

 Probability Distribution Functions and Inverses geometric_cdf
Example
In this example, we evaluate the discrete geometric CDF at ix = 3, pin = 0.25.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int ix = 3;
 float pin = 0.25;
 float p;
 p = imsls_f_geometric_cdf(ix, pin);
 printf("The probability that a discrete geometric ");
 printf("random variable\nwith probability ");
 printf("parameter pin = %4.2f is less than ", pin);
 printf("or equal\nto %1i is %8.6f\n\n", ix, p);
}

Output
The probability that a discrete geometric random variable
with probability parameter pin = 0.25 is less than or equal
to 3 is 0.683594
1071

 Probability Distribution Functions and Inverses geometric_inverse_cdf
geometric_inverse_cdf
Evaluates the inverse of the discrete geometric cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
intimsls_f_geometric_inverse_cdf(floatp, floatpin)

The type double function is imsls_d_geometric_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the discrete geometric CDF is to be evaluated. p must be in the
open interval (0, 1).

floatpin (Input)
Probability parameter of the discrete geometric CDF (the probability of success for each independent
trial). pin must be in the open interval (0, 1).

Return Value
The probability that a discrete geometric random variable takes a value less than or equal to the returned value is
the input probability, p. A value of -1 is returned if an input value is in error.

Description
The function geometric_inverse_cdf evaluates the inverse CDF of a discrete geometric random
variable with parameter pin. The discrete geometric CDF is defined:
1072

 Probability Distribution Functions and Inverses geometric_inverse_cdf
where the return value p = F(I∣P) is the probability that up to I trials would be observed before observing a suc-
cess, and input parameter P = pin is the probability of success for each independent trial. The discrete
geometric inverse CDF is defined:

which is the smallest integer I such that the discrete geometric CDF is greater than or equal to input argument p=
p, where 0 < p < 1, and input parameter P = pin.

Example
In this example, we evaluate the inverse probability function at pin = 0.25, p = 0.6835.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int ix;
 float pin = 0.25;
 float p = 0.6835;
 ix = imsls_f_geometric_inverse_cdf(p, pin);
 printf("The probability that a discrete geometric ");
 printf("random variable\nwith probability ");
 printf("parameter pin = %4.2f is less than ", pin);
 printf("or equal\nto %2i is %6.4f\n\n", ix, p);
}

Output
The probability that a discrete geometric random variable
with probability parameter pin = 0.25 is less than or equal
to 3 is 0.6835

p = F(I∣P) =∑
i=0

I

P(1 − P)i = 1 − (1 − P)I+1

I = F−1 p∣P = ⌈ log 1 − plog 1 − P − 1⌉
1073

 Probability Distribution Functions and Inverses geometric_pdf
geometric_pdf
Evaluates the discrete geometric probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_geometric_pdf(intix, floatpin)

The type double function is imsls_d_geometric_pdf.

Required Arguments
intix (Input)

Argument for which the discrete geometric PDF is to be evaluated. ix must be non-negative.

floatpin (Input)
Probability parameter of the discrete geometric PDF (the probability of success for each independent
trial). pin must be in the open interval (0, 1).

Return Value
The probability that a discrete geometric random variable having parameter pin will be equal to ix. A value of
NaN is returned if an input value is in error.

Description
The function geometric_pdf evaluates the discrete geometric probability density function (PDF), defined

where the return value f(I∣p) is the probability that I = ix trials would be observed before observing a success,
and input parameter p = pin is the probability of success for each independent trial.

f I | p = p 1 − p I, 0 < p < 1
1074

 Probability Distribution Functions and Inverses geometric_pdf
Example
In this example, we evaluate the discrete geometric PDF at ix = 3, pin = 0.25.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int ix = 3;
 float pin = 0.25;
 float p;
 p = imsls_f_geometric_pdf(ix, pin);
 printf("The probability density of a discrete ");
 printf("geometric\nrandom variable with ");
 printf("probability parameter pin = %4.2f\n", pin);
 printf("and value ix = %1i is %8.6f\n\n", ix, p);
}

Output
The probability density of a discrete geometric
random variable with probability parameter pin = 0.25
and value ix = 3 is 0.105469
1075

 Probability Distribution Functions and Inverses hypergeometric_cdf
hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis
#include <imsls.h>
float imsls_f_hypergeometric_cdf (int k, int n, int m, int l)

The type double function is imsls_d_hypergeometric_cdf.

Required Arguments
int k (Input)

Argument for which the hypergeometric distribution function is to be evaluated.

int n (Input)
Sample size. Argument n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size. Argument l must be greater than or equal to n and m.

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from a lot of size l that contains m
defectives.

Description
Function imsls_f_hypergeometric_cdf evaluates the distribution function of a hypergeometric random
variable with parameters n, l, and m. The hypergeometric random variable x can be thought of as the number of
items of a given type in a random sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is
1076

 Probability Distribution Functions and Inverses hypergeometric_cdf
where i = max (0, n − l + m) and

If k is greater than or equal to i and less than or equal to min (n, m), imsls_f_hypergeometric_cdf sums
the terms in this expression for j going from i up to k; otherwise, 0 or 1 is returned, as appropriate. To avoid
rounding in the accumulation, imsls_f_hypergeometric_cdf performs the summation differently,
depending on whether or not k is greater than the mode of the distribution, which is the greatest integer less
than or equal to (m + 1) (n + 1)/(l + 2).

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this example, evaluate the
distribution function at 7.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int k = 7, l = 1000, m = 70, n = 100;
 float p;
 p = imsls_f_hypergeometric_cdf(k,n,m,l);
 printf("Pr (x <= %d) = %6.4f\n", k, p);

}

Output

Pr (x <= 7) = 0.5995

Pr x = j =

m
j

l − m
n − j
l
n

for j = i, i + 1, … , min n,m

F(k∣n,m,l) =∑
i=0

k

Pr(X = j)
1077

 Probability Distribution Functions and Inverses hypergeometric_cdf
Informational Errors

Fatal Errors

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution func-
tion is set to zero.

IMSLS_K_GREATER_THAN_N The input argument, k, is greater than the sample
size.

IMSLS_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to n and m.
1078

 Probability Distribution Functions and Inverses hypergeometric_pdf
hypergeometric_pdf
Evaluates the hypergeometric probability function.

Synopsis
#include<imsls.h>
floatimsls_f_hypergeometric_pdf (intk, intn, intm, intl)

The type doublefunction is imsls_d_hypergeometric_pdf.

Required Arguments
intk (Input)

Argument for which the hypergeometric probability function is to be evaluated.

intn (Input)
Sample size. n must be greater than zero and greater than or equal to k.

intm (Input)
Number of defectives in the lot.

int l (Input)
Lot size. l must be greater than or equal to n and m.

Return Value
The probability that a hypergeometric random variable takes a value equal to k. This value is the probability that
exactly k defectives occur in a sample of size n drawn from a lot of size l that contains m defectives.

Description
The function imsls_f_hypergeometic_pdf evaluates the probability function of a hypergeometric ran-
dom variable with parameters n, l, and m. The hypergeometric random variable X can be thought of as the
number of items of a given type in a random sample of size n that is drawn without replacement from a popula-
tion of size l containing m items of this type. The probability function is
1079

 Probability Distribution Functions and Inverses hypergeometric_pdf
where

and

imsls_f_hypergeometic_pdf evaluates the expression using log gamma functions.

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this example, we evaluate
the probability function at 7.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int k=7, n = 100, l = 1000, m = 70;
 float pr;
 pr = imsls_f_hypergeometric_pdf(k, n, m, l);
 printf("The probability that X is equal to "

 "%d is %6.4f\n", k, pr);
}

Output

The probability that X is equal to 7 is 0.1628

f (k∣n,m,l) = Pr(X = k) =
m
k

l − m
n − k
l
n

for k = i, i + 1, i + 2, … min(n,m)

m
k = m!

k!(n − k)!

i = max(0, n − l + m).
1080

 Probability Distribution Functions and Inverses poisson_cdf
poisson_cdf
Evaluates the Poisson distribution function.

Synopsis
#include <imsls.h>
float imsls_f_c (int k, float theta)

The type double function is imsls_d_poisson_cdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
The probability that a Poisson random variable takes a value less than or equal to k.

Description
Function imsls_f_poisson_cdf evaluates the distribution function of a Poisson random variable with
parameter theta. The mean of the Poisson random variable, theta, must be positive. The probability function
(with θ = theta) is as follows:

The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed.
Function imsls_f_poisson_cdf uses the recursive relationship

f x | θ = e−θθx / x!, for x = 0,1,2, …
1081

 Probability Distribution Functions and Inverses poisson_cdf
with f (0) = e-q.

Figure 11, Plot of Fp (k, θ)

Example
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the probability that X is less than
or equal to 7.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int k = 7;
 float theta = 10.0, p;
 p = imsls_f_poisson_cdf(k, theta);
 printf("Pr(x <= %d) = %6.4f\n", k, p);

}

f x + 1 | θ = f x | θ θ / x + 1 for x = 0,1,2, … ,k − 1
1082

 Probability Distribution Functions and Inverses poisson_cdf
Output

Pr(x <= 7) = 0.2202

Informational Errors
IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution func-

tion is set to zero.
1083

 Probability Distribution Functions and Inverses poisson_pdf
poisson_pdf
Evaluates the Poisson probability function.

Synopsis
#include <imsls.h>
float imsls_f_poisson_pdf (int k, float theta)

The type double function is imsls_d_poisson_pdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

floattheta (Input)
Mean of the Poisson distribution. theta must be positive.

Return Value
Function value, the probability that a Poisson random variable takes a value equal to k.

Description
Function imsls_f_poisson_pdf evaluates the probability function of a Poisson random variable with
parameter theta. theta, which is the mean of the Poisson random variable, must be positive. The probability
function (with θ = theta) is

f(x|θ) = e-θ θk/k!, for k = 0, 1, 2,...

imsls_f_poisson_pdf evaluates this function directly, taking logarithms and using the log gamma function.
1084

 Probability Distribution Functions and Inverses poisson_pdf
Figure 12, Poisson Probability Function

Example
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the probability function at 7.

#include <imsls.h>
#include <stdio.h>
int main () {

 int k = 7;
 float theta = 10.0;
 printf ("The probability that X is equal to %d is %g.\n",

 k, imsls_f_poisson_pdf (k, theta));
}

Output

The probability that X is equal to 7 is 0.0900792.
1085

 Probability Distribution Functions and Inverses discrete_uniform_cdf
discrete_uniform_cdf
Evaluates the discrete uniform cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_discrete_uniform_cdf(int ix, int n)

The type double function is imsls_d_discrete_uniform_cdf.

Required Arguments
intix (Input)

Argument for which the discrete uniform CDF is to be evaluated. ix must be positive.

intn (Input)
Scale parameter. n must be positive.

Return Value
The probability that a discrete uniform random variable takes a value less than or equal to ix. A value of NaN is
returned if an input value is in error.

Description
The function discrete_uniform_cdf evaluates the discrete uniform cumulative distribution function (CDF)
with scale parameter n, defined

where I = ix and N = n.

F I∣N = IN , 1 ≤ I ≤ N
1086

 Probability Distribution Functions and Inverses discrete_uniform_cdf
Example
In this example, we evaluate the discrete uniform CDF at ix = 3, n = 5.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int ix = 3;
 int n = 5;
 float p;
 p = imsls_f_discrete_uniform_cdf(ix, n);
 printf("The probability that a discrete uniform ");
 printf("random variable\nwith scale ");
 printf("parameter n = %1i is less than ", n);
 printf("or equal to %li\nis %6.4f\n\n", ix, p);
}

Output

The probability that a discrete uniform random variable
with scale parameter n = 5 is less than or equal to 3
is 0.6000
1087

 Probability Distribution Functions and Inverses discrete_uniform_inverse_cdf
discrete_uniform_inverse_cdf
Evaluates the inverse of the discrete uniform cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
int imsls_f_discrete_uniform_inverse_cdf(float p, int n)

The type double function is imsls_d_discrete_uniform_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the discrete uniform cumulative distribution function is to be
evaluated. p must lie in the closed interval [0, 1].

int n (Input)
Scale parameter. n must be positive.

Return Value
The probability that a discrete uniform random variable takes a value less than or equal to the returned value is
the input probability p. A value of -1 is returned if an input value is in error.

Description
The function discrete_uniform_inverse_cdf evaluates the integer value I of the discrete uniform
inverse cumulative distribution function (CDF) with probability argument p and scale parameter N, i.e. the small-
est integer I ≤ N with discrete uniform CDF value ≥ p, defined

where p = p, N = n, and is defined as the smallest integer ≥ real value x.

I = F−1 p∣N = ⌈pN⌉, 0 ≤ p ≤ 1

⌈x⌉
1088

 Probability Distribution Functions and Inverses discrete_uniform_inverse_cdf
Example
#include <imsls.h>
#include <stdio.h>
int main()
{
 float p = 0.60;
 int n = 5;
 int ix;
 ix = imsls_f_discrete_uniform_inverse_cdf(p, n);
 printf("The probability that a discrete uniform ");
 printf("random variable\nwith scale ");
 printf("parameter n = %1i is less than ", n);
 printf("or equal to %2i\nis %4.2f\n\n", ix, p);
}

Output

The probability that a discrete uniform random variable
with scale parameter n = 5 is less than or equal to 3
is 0.60
1089

 Probability Distribution Functions and Inverses discrete_uniform_pdf
discrete_uniform_pdf
Evaluates the discrete uniform probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_discrete_uniform_pdf(int ix, int n)

The type double function is imsls_d_discrete_uniform_pdf.

Required Arguments
intix (Input)

Argument for which the discrete uniform PDF is to be evaluated. ix must be positive.

intn (Input)
Scale parameter. nmust be positive.

Return Value
The probability that a random variable from a discrete uniform distribution with scale parameter n will be equal
to ix. A value of NaN is returned if an input value is in error.

Description
The function discrete_uniform_pdf evaluates the discrete uniform probability density function (PDF) with
scale parameter n, defined

where I = ix and N = n. As a convenience to the user, discrete_uniform_pdf accepts values of I > N,
returning p = 0. discrete_uniform_pdfreturns an error message for values of I ≤ 0.

p = f I∣N = 1N , 1 ≤ I ≤ N
1090

 Probability Distribution Functions and Inverses discrete_uniform_pdf
Example
In this example, we evaluate the discrete uniform PDF at ix = 3, n = 5.

#include <imsls.h>
#include <stdio.h>

int main()
{
 int ix = 3;
 int n = 5;
 float p;

 p = imsls_f_discrete_uniform_pdf(ix, n);
 printf("The probability density of a discrete ");
 printf("uniform\nrandom variable with ");
 printf("scale parameter n = %1i\n", n);
 printf("and value ix = %1d is %6.4f\n\n", ix, p);
}

Output

The probability density of a discrete uniform
random variable with scale parameter n = 5
and value ix = 3 is 0.2000
1091

 Probability Distribution Functions and Inverses beta_cdf
beta_cdf
Evaluates the beta probability distribution function.

Synopsis
#include <imsls.h>
float imsls_f_beta_cdf (float x, float pin, float qin)

The type double function is imsls_d_beta_cdf.

Required Arguments
float x (Input)

Argument for which the beta probability distribution function is to be evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal to x.

Description
Function imsls_f_beta_cdf evaluates the distribution function of a beta random variable with parameters
pin and qin. It is given by

where Γ (⋅) is the gamma function. This function is sometimes called the incomplete beta ratio and, with p = pin
and q = qin, is denoted by Ix (p, q).

F x∣p,q =
Γ p Γ q
Γ p + q ∫0

x

t p−1 1 − t q−1dt
1092

 Probability Distribution Functions and Inverses beta_cdf
The integral in the expression above is called the incomplete beta function and is denoted by βx(p, q). The con-

stant in the expression is the reciprocal of the beta function (the incomplete function evaluated at 1) and is
denoted by β(p, q).

Function imsls_f_beta_cdf uses the method of Bosten and Battiste (1974).

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric distribution). This example
finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric
beta random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsls.h>
#include <stdio.h>
int main()
{

 float pin = 12.0, qin = 12.0, x = 0.6, p;
 p = imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is less than "

 "%3.1f is %6.4f\n",x , p);
 x = 0.5;
 p -= imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is between "

 "%3.1f and", x);
 printf(" 0.6 is %6.4f\n", p);

}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
1093

 Probability Distribution Functions and Inverses beta_inverse_cdf
beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis
#include <imsls.h>
float imsls_f_beta_inverse_cdf (float p, float pin, float qin)

The type double function is imsls_d_beta_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the beta distribution function is to be evaluated. Argument p
must be in the open interval (0.0, 1.0).

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
Function imsls_f_beta_inverse_cdf returns the inverse distribution function of a beta random variable
with parameters pin and qin.

Description
With P = p, p = pin, and q = qin, the beta_inverse_cdf returns x such that

where Γ (⋅) is the gamma function. In other words:

P =
Γ p + q
Γ p Γ q ∫0

x

t p−1 1 − t q−1dt
1094

 Probability Distribution Functions and Inverses beta_inverse_cdf
The probability that the random variable takes a value less than or equal to x is P.

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric distribution). In this example,
we find the value x such that the probability that X is less than or equal to x is 0.9.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float pin = 12.0, qin = 12.0, p = 0.9, x;
 x = imsls_f_beta_inverse_cdf(p, pin, qin);
 printf(" X is less than %6.4f with "

 "probability %3.1f.\n", x, p);
}

Output

X is less than 0.6299 with probability 0.9.

F−1(P∣pin,qin) = x
1095

 Probability Distribution Functions and Inverses non_central_beta_cdf
non_central_beta_cdf
Evaluates the noncentral beta cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_beta_cdf (float x, float shape1, float shape2, float lambda)

The type double function is imsls_d_non_central_beta_cdf.

Required Arguments
float x (Input)

Argument for which the noncentral beta cumulative distribution function is to be evaluated. x must
be non-negative and less than or equal to 1.

float shape1 (Input)
First shape parameter of the noncentral beta distribution. shape1 must be positive.

float shape2 (Input)
Second shape parameter of the noncentral beta distribution. shape2 must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability that a noncentral beta random variable takes a value less than or equal to x.

Description
The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square ran-
dom variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random variable

with 2α2 degrees of freedom which is statistically independent of Z, then
1096

 Probability Distribution Functions and Inverses non_central_beta_cdf
is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply defined
in terms of the noncentral F CDF

where Fx(x∣α1, α2, λ) is a noncentral beta CDF with x = x, α1= shape1, α2 = shape2, and noncentrality parame-

ter λ = lambda; FF(f ∣ 2α1, 2α2, λ) is a noncentral F CDF with argument f, numerator and denominator degrees

of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; and

(See documentation for function imsls_f_non_central_F_cdf for a discussion of how the noncentral F CDF
is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example
This example traces out a portion of a noncentral beta distribution with parameters shape1 = 50, shape2 = 5,
and lambda = 10.
#include <imsls.h>
#include <stdio.h>
int main()
{
 int i;
 float f[] = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float x, shape1 = 50., shape2 = 5., lambda =10.;
 float bcdfv, fcdfv, bcdfvexpect;
 printf ("shape1: %4.0f\n", shape1);
 printf ("shape2: %4.0f\n", shape2);
 printf ("lambda: %4.0f\n\n", lambda);
 printf (" x ncbetcdf(x) ncbetcdf(x)\n");
 printf (" expected\n");
 for (i=0; i<8; i++) {
 x = (shape1*f[i]) / (shape1*f[i] + shape2);

X = Z
Z + Y =

α1F
α1F + α2

F =
α2Z
α1Y

=
α2X

α1 1 − X

Fx(x∣α1,α2,λ) = FF(f ∣2α1,2α2,λ)

f =
α2
α1

x
1 − x ; x =

α1 f
α1 f + α2
1097

 Probability Distribution Functions and Inverses non_central_beta_cdf
 fcdfv = imsls_f_non_central_F_cdf
 (f[i], 2.*shape1, 2.*shape2, lambda);
 bcdfvexpect = fcdfv;
 bcdfv = imsls_f_non_central_beta_cdf
 (x, shape1, shape2, lambda);
 printf (" %8.4f %12.4e %12.4e\n",
 x, bcdfvexpect, bcdfv);
 }
}

Output

shape1: 50
shape2: 5
lambda: 10
 x ncbetcdf(x) ncbetcdf(x)
 expected
 0.0000 0.0000e+000 0.0000e+000
 0.8000 4.8879e-003 4.8879e-003
 0.8889 2.0263e-001 2.0263e-001
 0.9231 5.2114e-001 5.2114e-001
 0.9412 7.3385e-001 7.3385e-001
 0.9524 8.5041e-001 8.5041e-001
 0.9655 9.4713e-001 9.4713e-001
 0.9756 9.8536e-001 9.8536e-001
1098

 Probability Distribution Functions and Inverses non_central_beta_inverse_cdf
non_central_beta_inverse_cdf
Evaluates the inverse of the noncentral beta cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_beta_inverse_cdf (float p, float shape1, float shape2,

float lambda)

The type double function is imsls_d_non_central_beta_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral beta cumulative distribution function is to be eval-
uated. p must be non-negative and less than or equal to 1.

float shape1 (Input)
First shape parameter of the noncentral beta distribution. shape1 must be positive.

float shape2 (Input)
Second shape parameter of the noncentral beta distribution. shape2 must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
If the probability that a noncentral beta random variable takes a value less than or equal to x is p, then x is the
return value of the noncentral beta inverse CDF evaluated at p.

Description
The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square ran-
dom variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random variable

with 2α2 degrees of freedom which is statistically independent of Z, then
1099

 Probability Distribution Functions and Inverses non_central_beta_inverse_cdf
is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply defined
in terms of the noncentral F CDF:

where Fx(x∣α1, α2, λ) is a noncentral beta CDF with x = x, α1= shape1,α2 = shape2, and noncentrality parame-

ter λ = lambda; FF(f ∣ 2α1, 2α2, λ) is a noncentral F CDF with argument f , numerator and denominator degrees

of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; p = the probability that

F < f = the probability that X < x; and

(See documentation for function imsls_f_non_central_F_cdf for a discussion of how the noncentral F
CDF is defined and calculated.) The correspondence between the arguments of function
imsls_f_non_central_beta_inverse_cdf and the variables in the above equations is as follows:
α1 = shape1, α2 = shape2, λ = lambda, and p = p.

Function imsls_f_non_central_beta_inverse_cdf evaluates

by first evaluating

and then solving for x using

(See documentation for function imsls_f_non_central_F_inverse_cdf for a discussion of how the inverse
noncentral F CDF is calculated.)

X = Z
Z + Y =

α1F
α1F + α2

F =
α2Z
α1Y

=
α2X

α1 1 − X

p = Fx(x∣α1,α2,λ) = FF(f ∣2α1,2α2,λ)

f =
α2
α1

x
1 − x ; x =

α1 f
α1 f + α2

x = Fx
−1(p∣α1,α2,λ)

f = FF
−1(p∣2α1,2α2,λ)

x =
α1 f

α1 f + α2
1100

 Probability Distribution Functions and Inverses non_central_beta_inverse_cdf
Example
This example traces out a portion of an inverse noncentral beta distribution with parameters shape1 = 50,
shape2 = 5, and lambda = 10.
#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float shape1 = 50., shape2 = 5., lambda =10.;
 float x, p, bcdfinv;
 printf ("shape1: %4.0f\n", shape1);
 printf ("shape2: %4.0f\n", shape2);
 printf ("lambda: %4.0f\n\n", lambda);
 printf (" x p = cdf(x) cdfinv(p)\n");
 for (i=0; i<8; i++) {

 x = (shape1*f[i]) / (shape1*f[i] + shape2);
 p = imsls_f_non_central_beta_cdf

 (x, shape1, shape2, lambda);
 bcdfinv = imsls_f_non_central_beta_inverse_cdf

 (p, shape1, shape2, lambda);
 printf (" %12.4e %12.4e %12.4e\n", x, p, bcdfinv);

 }
}

Output
shape1: 50
shape2: 5
lambda: 10

 x p = cdf(x) cdfinv(p)
 0.0000e+000 0.0000e+000 0.0000e+000
 8.0000e-001 4.8879e-003 8.0000e-001
 8.8889e-001 2.0263e-001 8.8889e-001
 9.2308e-001 5.2114e-001 9.2308e-001
 9.4118e-001 7.3385e-001 9.4118e-001
 9.5238e-001 8.5041e-001 9.5238e-001
 9.6552e-001 9.4713e-001 9.6552e-001
 9.7561e-001 9.8536e-001 9.7561e-001
1101

 Probability Distribution Functions and Inverses non_central_beta_pdf
non_central_beta_pdf
Evaluates the noncentral beta probability density function (PDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_beta_pdf (float x, float shape1, float shape2, float lambda)

The type double function is imsls_d_non_central_beta_pdf.

Required Arguments
float x (Input)

Argument for which the noncentral beta probability density function is to be evaluated. x must be
non-negative and less than or equal to 1.

float shape1 (Input)
First shape parameter of the noncentral beta distribution. shape1 must be positive.

float shape2 (Input)
Second shape parameter of the noncentral beta distribution. shape2 must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability density associated with a noncentral beta random variable with value x.

Description
The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square ran-
dom variable with noncentrality parameter λ and 2α1 degrees of freedom, and Y is a chi-square random variable

with 2α2 degrees of freedom which is statistically independent of Z, then
1102

 Probability Distribution Functions and Inverses non_central_beta_pdf
is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable. The PDF for noncentral beta variable X can thus be simply defined
in terms of the noncentral F PDF:

where is a noncentral beta PDF with x = x, α1= shape1, α2 = shape2, and noncentrality param-

eter λ = lambda; is a noncentral F PDF with argument f, numerator and denominator degrees

of freedom 2α1 and 2α2 respectively, and noncentrality parameter λ; and:

(See documentation for function imsls_f_non_central_F_pdf for a discussion of how the noncentral F PDF
is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example
This example traces out a portion of a noncentral beta distribution with parameters shape1 = 50, shape2 = 5,
and lambda = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i;
 float f[] = {0., .4, .8, 3.2, 5.6, 8.8, 14., 18.};
 float x, shape1 = 50., shape2 = 5., lambda =10.;
 float bpdfv, fpdfv, bpdfvexpect, dfdx;
 printf ("shape1: %4.0f\n", shape1);
 printf ("shape2: %4.0f\n", shape2);

X = Z
Z + Y =

α1F
α1F + α2

F =
α2Z
α1Y

=
α2X

α1 1 − X

f x(x∣α1,α2,λ) = f F(f ∣2α1,2α2,λ)
df
dx

f x(x∣α1,α2,λ)
f F(f ∣2α1,2α2,λ)

f =
α2
α1

x
1 − x ; x =

α1 f
α1 f + α2

;

df
dx =

α2 + α1 f
2

α1α2 =
α2
α1

1

1 − x 2
1103

 Probability Distribution Functions and Inverses non_central_beta_pdf
 printf ("lambda: %4.0f\n\n", lambda);
 printf (" x ncbetpdf(x) ncbetpdf(x)\n");
 printf (" expected\n");
 for (i=0; i<8; i++) {
 x = (shape1*f[i]) / (shape1*f[i] + shape2);
 dfdx = (shape2/shape1) / ((1. - x) * (1. - x));
 fpdfv = imsls_f_non_central_F_pdf
 (f[i], 2.*shape1, 2.*shape2, lambda);
 bpdfvexpect = dfdx * fpdfv;
 bpdfv = imsls_f_non_central_beta_pdf
 (x, shape1, shape2, lambda);
 printf (" %8.4f %12.4e %12.4e\n",
 x, bpdfvexpect, bpdfv);
 }
}

Output

shape1: 50
shape2: 5
lambda: 10
 x ncbetpdf(x) ncbetpdf(x)
 expected
 0.0000 0.0000e+000 0.0000e+000
 0.8000 2.4372e-001 2.4372e-001
 0.8889 6.5862e+000 6.5862e+000
 0.9697 4.0237e+000 4.0237e+000
 0.9825 9.1954e-001 9.1954e-001
 0.9888 2.1910e-001 2.1910e-001
 0.9929 4.3665e-002 4.3665e-002
 0.9945 1.7522e-002 1.7522e-002
1104

 Probability Distribution Functions and Inverses bivariate_normal_cdf
bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis
#include <imsls.h>
float imsls_f_bivariate_normal_cdf (float x, float y, float rho)

The type double function is imsls_d_bivariate_normal_cdf.

Required Arguments
float x (Input)

The x-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value
The probability that a bivariate normal random variable with correlation rho takes a value less than or equal to x
and less than or equal to y.

Description
Function imsls_f_bivariate_normal_cdf evaluates the distribution function F of a bivariate normal dis-
tribution with means of zero, variances of one, and correlation of rho; that is, with ρ = rho, and ∣ρ∣ < 1,
1105

 Probability Distribution Functions and Inverses bivariate_normal_cdf
To determine the probability that U ≤ u0 and V ≤ v0, where (U, V)T is a bivariate normal random variable with

mean μ = (μU, μV)T and variance-covariance matrix

transform (U, V)T to a vector with zero means and unit variances. The input to
imsls_f_bivariate_normal_cdf would be X = (u0 – μU)/σU, Y = (v0 – μV)/σV, and ρ = σUV/(σUσV).

Function imsls_f_bivariate_normal_cdf uses the method of Owen (1962, 1965). Computation of
Owen’s T-function is based on code by M. Patefield and D. Tandy (2000). For ∣ρ∣ = 1, the distribution function is
computed based on the univariate statistic, Z = min(x, y), and on the normal distribution function
imsls_f_normal_cdf.

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance matrix as follows:

In this example, we find the probability that Xis less than −2.0 and Y is less than 0.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float rho = 0.9, x = -2.0, y = 0.0, p;
 p = imsls_f_bivariate_normal_cdf(x, y, rho);
 printf(" The probability that X is less than %4.1f\n"

 " and Y is less than %3.1f is %6.4f\n", x, y, p);
}

Output

The probability that X is less than -2.0
and Y is less than 0.0 is 0.0228

F x,y = 1
2π 1 − ρ2 ∫−∞

x

∫
−∞

y

exp −
u2 − 2ρuv + v2

2 1 − ρ2
dudv

∑ =
σU
2 σUV
σUV σV

2

1.0 0.9
0.9 1.0
1106

 Probability Distribution Functions and Inverses chi_squared_cdf
chi_squared_cdf
Evaluates the chi-squared cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_cdf (float chi_squared, float df)

The type double function is imsls_d_chi_squared_cdf.

Required Arguments
float chi_squared (Input)

Argument for which the chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument df must be greater than 0.

Return Value
The probability p that a chi-squared random variable takes a value less than or equal to chi_squared.

Description
Function imsls_f_chi_squared_cdf evaluates the distribution function, F(x∣v) , of a chi-squared random
variable x = chi_squared with ν = df degrees of freedom, where:

and Γ (⋅) is the gamma function. The value of the distribution function at the point x is the probability that the ran-
dom variable takes a value less than or equal to x.

For v > vmax = 1.e7, imsls_f_chi_squared_cdf uses the Wilson-Hilferty approximation

(Abramowitz and Stegun [A&S] 1964, Equation 26.4.17) for p in terms of the normal CDF, which is evaluated using
function imsls_f_normal_cdf.

F(x∣v) = 1
2v/2Γ v / 2 ∫0

x

e−t/2tv/2−1dt
1107

 Probability Distribution Functions and Inverses chi_squared_cdf
For v ≤ vmax, imsls_f_chi_squared_cdf uses series expansions to evaluate p: for x < ν,

imsls_f_chi_squared_cdf calculates p using A&S series 6.5.29, and for x > ν,
imsls_f_chi_squared_cdf calculates p using the continued fraction expansion of the incomplete gamma
function given in A&S equation 6.5.31.

Figure 13, Plot of Fx (x, df)

Example
Suppose X is a chi-squared random variable with two degrees of freedom. In this example, we find the probability
that X is less than 0.15 and the probability that X is greater than 3.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float chi_squared = 0.15, df = 2.0, p;
 p = imsls_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared"

 " with %1.0f df is less than %4.2f is %5.4f\n",
 df, chi_squared, p);

 chi_squared = 3.0;
1108

 Probability Distribution Functions and Inverses chi_squared_cdf
 p = 1.0 - imsls_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared"

 " with %1.0f df is greater than %3.1f is %5.4f\n",
 df, chi_squared, p);

}

Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Informational Errors

Alert Errors

IMSLS_ARG_LESS_THAN_ZERO Since “chi_squared” = # is less than zero, the dis-
tribution function is zero at “chi_squared.”

IMSLS_NORMAL_UNDERFLOW Using the normal distribution for large degrees of
freedom, underflow would have occurred.
1109

 Probability Distribution Functions and Inverses chi_squared_inverse_cdf
chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_inverse_cdf (float p, float df)

The type double function is imsls_d_chi_squared_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the chi-squared distribution function is to be evaluated. Argu-
ment p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument df must be greater than 0.

Return Value
The inverse at the chi-squared distribution function evaluated at p. The probability that a chi-squared random
variable takes a value less than or equal to imsls_f_chi_squared_inverse_cdf is p.

Description
Function imsls_f_chi_squared_inverse_cdf evaluates the inverse distribution function of a chi-
squared random variable with ν = df and with probability p. That is, it determines
x = imsls_f_chi_squared_inverse_cdf (p, df), such that

where Γ (⋅) is the gamma function. The probability that the random variable takes a value less than or equal to x is
p.

p = F(x | υ) = 1
2v/2Γ v / 2 ∫0

x

e−t/2tv/2−1dt
1110

 Probability Distribution Functions and Inverses chi_squared_inverse_cdf
For ν < 40, imsls_f_chi_squared_inverse_cdf uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to
find the point at which the chi-squared distribution function is equal to p. The distribution function is evaluated
using IMSL function imsls_f_chi_squared_cdf.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, Equation 26.4.18) to
the normal distribution is used. IMSL function imsls_f_normal_cdf is used to evaluate the inverse of the nor-
mal distribution function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
Equation 26.4.17) is used.

Example
In this example, we find the 99-th percentage point of a chi-squared random variable with 2 degrees of freedom
and of one with 64 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main ()
{

float p = 0.99, df = 2.0, x;
 x = imsls_f_chi_squared_inverse_cdf(p, df);
 printf("For p = %3.2f with %1.0f df, x = %7.3f.\n",

 p, df, x);
 df = 64.0;
 x = imsls_f_chi_squared_inverse_cdf(p,df);
 printf("For p = %3.2f with %2.0f df, x = %7.3f.\n",

 p, df, x);
}

Output

For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

Warning Errors
IMSLS_UNABLE_TO_BRACKET_VALUE The bounds that enclose “p” could not be found. An

approximation for
imsls_f_chi_squared_inverse_cdf is returned.

IMSLS_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared could not be
found within a specified number of iterations. An
approximation for
imsls_f_chi_squared_inverse_cdf is returned.
1111

 Probability Distribution Functions and Inverses complementary_chi_squared_cdf
complementary_chi_squared_cdf
Evaluates the complement of the chi-squared cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_complementary_chi_squared_cdf (float chi_squared, float df)

The type double function is imsls_d_complementary_chi_squared_cdf.

Required Arguments
float chi_squared (Input)

Argument for which the complementary chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the complementary chi-squared distribution. df must be greater
than 0.

Return Value
The probability p that a chi-squared random variable takes a value greater than chi_squared.

Description
Function imsls_f_complementary_chi_squared_cdf evaluates the complement of the CDF,

 , of a chi-squared random variable x = chi_squared with ν = df degrees of freedom, where,

is the chi-squared CDF and Γ (⋅) is the gamma function. The value of the complementary chi-squared CDF at the
point x is the probability that the random variable takes a value greater than x.

1 − F x|ν

F x|v = 1
2v/2Γ v / 2 ∫0

x

e−t/2tv/2−1dt
1112

 Probability Distribution Functions and Inverses complementary_chi_squared_cdf
For ν > vmax = 1.e7, imsls_f_complementary_chi_squared_cdf uses the Wilson-Hilferty approxima-

tion (Abramowitz and Stegun [A&S] 1964, Equation 26.4.17) for p in terms of the normal CDF, which is evaluated
using function imsls_f_normal_cdf.

For v ≤ vmax, imsls_f_complementary_chi_squared_cdf uses series expansions to evaluate p: for

x < ν, imsls_f_complementary_chi_squared_cdf calculates p using A&S series 6.5.29, and for x ≥ ν,
imsls_f_complementary_chi_squared_cdf calculates p using the continued fraction expansion of the
incomplete gamma function given in A&S equation 6.5.31.

Function imsls_f_complementary_chi_squared_cdf provides higher right tail accuracy for the com-
plementary chi-squared distribution than does function 1 - imsls_f_chi_squared_cdf.

Figure 14, Plot of Fx (x, df)
1113

 Probability Distribution Functions and Inverses complementary_chi_squared_cdf
Example
In this example, we find the probability that X, a chi-squared random variable, is less than 0.15 and the probability
that X is greater than 3.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float chi_squared = 0.15, df = 2.0, p;
 p = imsls_f_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared\n");
 printf(" with df = %1.0f is less than %4.2f is %6.4f\n",

 df, chi_squared, p);
 chi_squared = 3.0;
 p = imsls_f_complementary_chi_squared_cdf(chi_squared, df);
 printf("The probability that chi-squared\n");
 printf(" with df = %1.0f is greater than %4.2f is %6.4f\n",

 df, chi_squared, p);
}

Output

The probability that chi-squared
with df = 2 is less than 0.15 is 0.0723
The probability that chi-squared
with df = 2 is greater than 3.00 is 0.2231

Informational Errors
IMSLS_COMP_CHISQ_ZERO Since “chi_squared” = # is less than zero, the distri-

bution function is one at “chi_squared”.
1114

 Probability Distribution Functions and Inverses non_central_chi_sq
non_central_chi_sq
Evaluates the noncentral chi-squared distribution function.

Synopsis
#include <imsls.h>
floatimsls_f_non_central_chi_sq (floatchi_squared, floatdf , floatdelta)

The type double function is imsls_d_non_central_chi_sq.

Required Arguments
float chi_squared (Input)

Argument for which the noncentral chi-squared distribution function is to be evaluated.

floatdf (Input)
Number of degrees of freedom of the noncentral chi-squared distribution. Argument df must be
greater than 0.

float delta (Input)
The noncentrality parameter.delta must be nonnegative, and delta + df must be less than or equal
to 200,000.

Return Value
The probability that a noncentral chi-squared random variable takes a value less than or equal to
chi_squared.

Description
Function imsls_f_non_central_chi_sq evaluates the distribution function of a noncentral chi-squared
random variable with df degrees of freedom and noncentrality parameter alam, that is, with v = df, λ = alam,
and x = chi_squared,
1115

 Probability Distribution Functions and Inverses non_central_chi_sq
where Γ (⋅) is the gamma function. This is a series of central chi-squared distribution functions with Poisson
weights. The value of the distribution function at the point x is the probability that the random variable takes a
value less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution function above, or alternatively
and equivalently, as the sum of squares of independent normal random variables. If Yi have independent normal

distributions with means μi and variances equal to one and

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality parameter equal to

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the chi-squared
distribution.

Function imsls_f_non_central_chi_sq determines the point at which the Poisson weight is greatest,
and then sums forward and backward from that point, terminating when the additional terms are sufficiently
small or when a maximum of 1000 terms have been accumulated. The recurrence relation 26.4.8 of Abramowitz
and Stegun (1964) is used to speed the evaluation of the central chi-squared distribution functions.

F x|υ,λ =∑
i=0

∞ e−λ/2 λ / 2 i

i! ∫0
x
t
v+2i /2−1

e−t/2

2
v+2i /2

Γ v + 2i
2

dt

X =∑
i=1

n

Y i
2

∑
i=1

n

μi
2

1116

 Probability Distribution Functions and Inverses non_central_chi_sq
Figure 15, Noncentral Chi-squared Distribution Function

Example
In this example, imsls_f_non_central_chi_sq is used to compute the probability that a random variable
that follows the noncentral chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of free-
dom is less than or equal to 8.642.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float chsq = 8.642, df = 2.0, alam = 1.0, p;
 p = imsls_f_non_central_chi_sq(chsq, df, alam);
 printf("The probability that a noncentral chi-squared "

 "random\nvariable with %2.0f df and noncentrality "
 "parameter %3.1f is less\nthan %5.3f is %5.3f.\n",
 df, alam, chsq, p);

}

Output

The probability that a noncentral chi-squared random
1117

 Probability Distribution Functions and Inverses non_central_chi_sq
variable with 2 df and noncentrality parameter 1.0 is less
than 8.642 is 0.950
1118

 Probability Distribution Functions and Inverses non_central_chi_sq_inv
non_central_chi_sq_inv
Evaluates the inverse of the noncentral chi-squared function.

Synopsis
#include<imsls.h>
floatimsls_f_non_central_chi_sq_inv (floatp, floatdf, floatdelta)

The type double function is imsls_d_non_central_chi_sq_inv.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral chi-squared distribution function is to be evalu-
ated. p must be in the open interval (0.0, 1.0).

floatdf (Input)
Number of degrees of freedom of the noncentral chi-squared distribution. Argument df must be
greater than 0.

float delta (Input)
The noncentrality parameter.delta must be nonnegative, and delta + df must be less than or equal
to 200,000.

Return Value
The probability that a noncentral chi-squared random variable takes a value less than or equal to
imsls_f_non_central_chi_sq_inv is p.

Description
Function imsls_f_non_central_chi_sq_inv evaluates the inverse distribution function of a noncentral
chi-squared random variable with df degrees of freedom and noncentrality parameter delta; that is, with P = p,
v = df, and λ = delta, it determines c0 (= imsls_f_non_central_chi_sq_inv (p, df, delta)),

such that
1119

 Probability Distribution Functions and Inverses non_central_chi_sq_inv
where Γ (⋅) is the gamma function. In other words:

The probability that the random variable takes a value less than or equal to c0is P.

Function imsls_f_non_central_chi_sq_inv uses bisection and modified regula falsi to invert the distri-
bution function, which is evaluated using function imsls_f_non_central_chi_sq. See
imsls_f_non_central_chi_sq for an alternative definition of the noncentral chi-squared random vari-
able in terms of normal random variables.

Example
In this example, we find the 95-th percentage point for a noncentral chi-squared random variable with 2 degrees
of freedom and noncentrality parameter 1.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int df = 2;
 float p = .95, delta = 1.0, chi_squared;
 chi_squared = imsls_f_non_central_chi_sq_inv(p, df, delta);
 printf("The %4.2f noncentral chi-squared critical value is "

 "%6.4f.\n", 1.0-p, chi_squared);
}

Output

The 0.05 noncentral chi-squared critical value is 8.6422.

P =∑
i=0

∞ e−λ/2(λ / 2)i
i! ∫0

c0 x(v+2i)/2−1e−x/2

2
(v+2i)/2 Γ(v + 2i2)

dx

F−1(P∣df ,delta) = x
1120

 Probability Distribution Functions and Inverses non_central_chi_sq_pdf
non_central_chi_sq_pdf
Evaluates the noncentral chi-squared probability density function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq_pdf (floatx, floatdf, floatlambda)

The type doublefunction is imsls_d_non_central_chi_sq_pdf.

Required Arguments
floatx (Input)

Argument for which the noncentral chi-squared probability density function is to be evaluated. x
must be greater than or equal to 0.

floatdf (Input)
Number of degrees of freedom of the noncentral chi-squared distribution. df must be greater than
0.

floatlambda (Input)
Noncentrality parameter. lambda must be greater than or equal to 0.

Return Value
The probability density associated with a noncentral chi-squared random variable with value x.

Description
The noncentral chi-squared distribution is a generalization of the chi-squared distribution. If {Xi}are k indepen-

dent, normally distributed random variables with means μi and variances σ2
i, then the random variable:
1121

 Probability Distribution Functions and Inverses non_central_chi_sq_pdf
is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution has
two parameters: k which specifies the number of degrees of freedom (i.e. the number of Xi), and λ which is

related to the mean of the random variables Xi by:

The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with k + 2i degrees of
freedom, where i is the value of a Poisson distributed random variable with parameter λ / 2. Thus, the probability
density function is given by:

where the (central) chi-squared PDF f(x∣k)is given by:

where Γ (⋅)is the gamma function. The above representation of F(x∣k,λ)can be shown to be equivalent to the
representation:

Function imsls_f_non_central_chi_sq_pdf evaluates the probability density function of a noncentral
chi-squared random variable with df degrees of freedom and noncentrality parameter lambda, corresponding
to k = df, λ = lambda, and x = x.

Function imsls_f_non_central_chi_sq evaluates the cumulative distribution function incorporating the
above probability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central chi-
squared distribution.

X =∑
i=1

k X i
σi

2

λ =∑
i=1

k μi
σi

2

F x|k,λ =∑
i=0

∞ e−λ/2 λ / 2 i

i! f x,k + 2i

f x|k =
x / 2 k/2e−x/2

xΓ k / 2 for x > 0, else 0

F x|k,λ =
e
− λ+x /2

x / 2 k/2

x ∑
i=0

∞

ϕi

ϕi =
λx / 4 i

i!Γ k / 2 + i
1122

 Probability Distribution Functions and Inverses non_central_chi_sq_pdf
Example
This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of freedom
and noncentrality parameter λ = 40.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float x[] = {0, 8, 40, 136, 280, 400};
 float df = 100, lambda = 40.0, pdfv;
 printf ("\n\n df: %4.0f; lambda: %4.0f\n\n",

 df, lambda);
 printf (" x pdf(x)\n");
 for (i=0; i<6; i++) {

 pdfv = imsls_f_non_central_chi_sq_pdf(x[i], df, lambda);
 printf (" %5.0f %12.4e\n",x[i], pdfv);

 }
}

Output

df: 100; lambda: 40
 x pdf(x)
 0 0.0000e+000
 8 4.7644e-044
 40 3.4621e-014
 136 2.1092e-002
 280 4.0027e-010
 400 1.1250e-022
1123

 Probability Distribution Functions and Inverses exponential_cdf
exponential_cdf
Evaluates the exponential cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_exponential_cdf(float x, float b)

The type double function is imsls_d_exponential_cdf.

Required Arguments
float x (Input)

Argument for which the exponential CDF is to be evaluated. x must be non-negative.

float b (Input)
Scale parameter of the exponential CDF. b must be positive.

Return Value
The probability that an exponential random variable takes a value less than or equal to x. A value of NaN is
returned if an input value is in error.

Description
The function imsls_f_exponential_cdf evaluates the exponential cumulative distribution function (CDF).
This function is a special case of the gamma CDF

Setting a=1 and applying the scale parameter b = b yields the exponential CDF

G x = 1
Γ a ∫0

x

e
− tbta−1dt
1124

 Probability Distribution Functions and Inverses exponential_cdf
This relationship between the gamma and exponential CDFs is used by imsls_f_exponential_cdf.

Example
In this example, we evaluate the exponential CDF at x = 2.0, b = 1.0.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float x = 2.0;
 float b = 1.0;
 float p;
 p = imsls_f_exponential_cdf(x,b);
 printf("The probability that exponential random ");
 printf("variable X with\nscale parameter b = ");
 printf("%3.1f is less than or equal to %3.1f", b, x);
 printf("\nis %6.4f\n\n", p);
}

Output
The probability that exponential random variable X with
scale parameter b = 1.0 is less than or equal to 2.0
is 0.8647

F x = ∫0
x

e
− tbdt = 1 − e

− xb
1125

 Probability Distribution Functions and Inverses exponential_inverse_cdf
exponential_inverse_cdf
Evaluates the inverse of the exponential cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
float imsls_f_exponential_inverse_cdf(floatp, floatb)

The type double function is imsls_d_exponential_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the exponential CDF is to be evaluated. p must lie in the closed
interval [0, 1].

floatb (Input)
Scale parameter of the exponential CDF. b must be positive.

Return Value
Function value, the value of the inverse of the exponential CDF. A value of NaN is returned if an input value is in
error.

Description
The function imsls_f_exponential_inverse_cdf(p, b) evaluates F-1(p∣b), the inverse CDF of an
exponential random variable with probability argument p = p and scale parameter b = b:

F-1(p∣b) = -blog(1-p)

The probability that an exponential random variable takes a value less than or equal to the returned value is p.

Example
In this example, we evaluate the exponential inverse CDF at p = 0.8647, b = 1.0.:
1126

 Probability Distribution Functions and Inverses exponential_inverse_cdf
#include <imsls.h>
#include <stdio.h>
int main()
{
 float p = 0.8647;
 float b = 1.0;
 float x;
 x = imsls_f_exponential_inverse_cdf(p, b);
 printf("The probability that exponential random ");
 printf("variable X with\nscale parameter b = ");
 printf("%3.1f is less than or equal to %6.4f", b, x);
 printf("\nis %6.4f\n\n", p);
}

Output
The probability that exponential random variable X with
scale parameter b = 1.0 is less than or equal to 2.0003
is 0.8647
1127

 Probability Distribution Functions and Inverses exponential_pdf
exponential_pdf
Evaluates the exponential probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_exponential_pdf(floatx, floatb)

The type double function is imsls_d_exponential_pdf.

Required Arguments
floatx (Input)

Argument for which the exponential PDF is to be evaluated. x must be non-negative.

floatb (Input)
Scale parameter of the exponential PDF. b must be positive.

Return Value
The value of the exponential probability density function with argument x and scale parameter b. A value of NaN
is returned if an input value is in error.

Description
The function imsls_f_exponential_pdf evaluates the exponential probability density function. The expo-
nential distribution is a special case of the gamma distribution and is defined as

Example
In this example, we evaluate the exponential PDF at x = 2.0, b = 1.0.

#include <imsls.h>

f x∣b = Γ x∣1,b = 1be
− xb
1128

 Probability Distribution Functions and Inverses exponential_pdf
#include <stdio.h>
int main()
{
 float x = 2.0;
 float b = 1.0;
 float p;
 p = imsls_f_exponential_pdf(x,b);
 printf("The probability density of exponential ");
 printf("random variable X\nwith scale parameter b = ");
 printf("%3.1f and value x = %3.1f is %6.4f\n\n", b, x, p);
}

Output
The probability density of exponential random variable X
with scale parameter b = 1.0 and value x = 2.0 is 0.1353
1129

 Probability Distribution Functions and Inverses F_cdf
F_cdf
Evaluates the F distribution function.

Synopsis
#include <imsls.h>
float imsls_f_F_cdf (float f, float df_numerator, float df_denominator)

The type double function is imsls_d_F_cdf.

Required Arguments
float f (Input)

Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
The denominator degrees of freedom. Argument df_denominator must be positive.

Return Value
The probability that an F random variable takes a value less than or equal to the input point, f.

Description
Function imsls_f_F_cdf evaluates the distribution function of a Snedecor’s F random variable with
df_numerator and df_denominator. The function is evaluated by making a transformation to a beta ran-
dom variable, then evaluating the incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom

and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q= ν2/2. Function

imsls_f_F_cdf also uses a relationship between F random variables that can be expressed as

FF(f|v1, v
2

) = 1 - FF(1/f|v
1130

 Probability Distribution Functions and Inverses F_cdf
2

, v
1

)

where FF is the distribution function for an F random variable.

Figure 16, Plot of FF(f, 1.0, 1.0)

Example
This example finds the probability that an F random variable with one numerator and one denominator degree of
freedom is greater than 648.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float F = 648.0, df_numerator = 1.0;
 float df_denominator = 1.0, p;
1131

 Probability Distribution Functions and Inverses F_cdf
 p = 1.0 - imsls_f_F_cdf(F,df_numerator, df_denominator);
 printf("The probability that an F(%1.0f,%1.0f) variate"

 "is greater than %3.0f is %6.4f.\n", df_numerator,
 df_denominator, F, p);

}

Output

The probability that an F(1,1) variate is greater than 648 is 0.0250.
1132

 Probability Distribution Functions and Inverses F_inverse_cdf
F_inverse_cdf
Evaluates the inverse of the F distribution function.

Synopsis
#include <imsls.h>
float imsls_f_F_inverse_cdf (float p, float df_numerator, float df_denominator)

The type double function is imsls_d_F_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the F distribution function is to be evaluated. Argument p must be
in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be positive.

Return Value
The value of the inverse of the F distribution function evaluated at p. The probability that an F random variable
takes a value less than or equal to imsls_f_F_inverse_cdf is p.

Description
Function imsls_f_F_inverse_cdf evaluates the inverse distribution function of a Snedecor’s F random
variable with ν1 = df_numerator numerator degrees of freedom and ν2 = df_denominator denominator

degrees of freedom. The function is evaluated by making a transformation to a beta random variable, then evalu-
ating the inverse of an incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom and
1133

 Probability Distribution Functions and Inverses F_inverse_cdf
Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2. If p ≤ 0.5,

imsls_f_F_inverse_cdf uses this relationship directly; otherwise, it also uses a relationship between F
random variables that can be expressed as follows:

FF(f|v

1

, v

2

) = 1 - FF(1/f|v

2

, v

1

)

Example
This example finds the 99-th percentage point for an F random variable with 7 and 1 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float df_denominator = 1.0, df_numerator = 7.0, p = 0.99, f;
 f = imsls_f_F_inverse_cdf(p, df_numerator, df_denominator);
 printf("The F(7,1) 0.01 critical value is %6.3f\n", f);

}

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors
IMSLS_F_INVERSE_OVERFLOW Function imsls_f_F_inverse_cdf overflows. This

is because df_numerator or df_denominator and
p are too large. The return value is set to machine
infinity.
1134

 Probability Distribution Functions and Inverses complementary_F_cdf
complementary_F_cdf
Evaluates the complement of the F distribution function.

Synopsis
#include <imsls.h>
float imsls_f_complementary_F_cdf (float f, float df_numerator, float df_denominator)

The type double function is imsls_d_complementary_F_cdf.

Required Arguments
float f (Input)

Argument for which Pr(x > f) is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
The denominator degrees of freedom. Argument df_denominator must be positive.

Return Value
The probability that an F random variable takes a value greater than f.

Description
Function imsls_f_complementary_F_cdf evaluates one minus the distribution function of a Snedecor’s F
random variable with df_numerator and df_denominator. The function is evaluated by making a transfor-
mation to a beta random variable, then evaluating the incomplete beta function. If X is an F variate with ν1 and ν2

degrees of freedom and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q= ν2/2. Func-

tion imsls_f_comlementary_F_cdf also uses a relationship between F random variables that can be
expressed as
1135

 Probability Distribution Functions and Inverses complementary_F_cdf
where FF is the distribution function for an F random variable.

This function provides higher right tail accuracy for the F distribution.

Figure 17, Plot of FF(f/df_n, df_d)

Example
This example finds the probability that an F random variable with one numerator and one denominator degree of
freedom is greater than 648.

#include <imsls.h>
#include <stdio.h>

FF(f ∣υ1,υ2) = FF(1 f | υ2,υ1)
1136

 Probability Distribution Functions and Inverses complementary_F_cdf
int main()
{

 float F = 648.0, df_numerator = 1.0, df_denominator = 1.0, p;
 p = imsls_f_complementary_F_cdf(F,df_numerator, df_denominator);
 printf("The probability that an F(%2.1f,%2.1f) variate is greater",

 df_numerator, df_denominator);
 printf(" than %5.1f is %6.4f.\n", F, p);

}

Output

The probability that an F(1.0,1.0) variate is greater than 648.0 is 0.0250.
1137

 Probability Distribution Functions and Inverses non_central_F_pdf
non_central_F_pdf
Evaluates the noncentral F probability density function (PDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_F_pdf (float f, float df_numerator, float df_denominator, float

lambda)

The type double function is imsls_d_non_central_F_pdf.

Required Arguments
float f (Input)

Argument for which the noncentral F probability density function is to be evaluated. f must be non-
negative.

float df_numerator (Input)
Numerator degrees of freedom of the noncentral F distribution. df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the noncentral F distribution. df_denominator must be
positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability density associated with a noncentral F random variable with value f.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y

is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then
1138

 Probability Distribution Functions and Inverses non_central_F_pdf
is a noncentral F-distributed random variable whose PDF is given by

where

and Γ (⋅) is the gamma function, ν1 = df_numerator, ν2 = df_denominator, λ= lambda, and f = f.

With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.

The efficiency of the calculation of the above series is enhanced by:

1. calculating each term Φkin the series recursively in terms of either the term Φk-1preceding it or the

term Φk+1following it, and.

2. initializing the sum with the largest series term and adding the subsequent terms in order of
decreasing magnitude

Special cases:

F = X / v1 / Y / v2

PDF f ∣ν1,ν2,λ = Ψ∑
k=0

∞

ϕk

Ψ =
e−λ/2 ν1 f

ν1/2 ν2
ν2/2

f ν1 f + ν2
ν1+ν2 /2

Γ ν2 / 2

ϕk =
RkΓ

ν1 + ν2
2 + k

k!Γ
ν1
2 + k

R =
λν1 f

2 ν1 f + ν2
1139

 Probability Distribution Functions and Inverses non_central_F_pdf
Example
This example traces out a portion of a noncentral F distribution with parameters df_numerator = 100,
df_denominator = 10, and lambda = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0., .4, .8, 3.2, 5.6, 8.8, 14., 18.};
 float df_numerator = 100., df_denominator = 10., lambda =10., pdfv;
 printf ("df_numerator: %4.0f\n", df_numerator);
 printf ("df_denominator: %4.0f\n", df_denominator);
 printf ("lambda: %4.0f\n\n", lambda);
 printf (" f pdf(f)\n");
 for (i=0; i<8; i++) {

 pdfv = imsls_f_non_central_F_pdf
 (f[i], df_numerator, df_denominator, lambda);

 printf (" %5.1f %12.4e\n", f[i], pdfv);
 }

}

Output

df_numerator: 100
df_denominator: 10
lambda: 10
 f pdf(f)
 0.0 0.0000e+000
 0.4 9.7488e-002

For R = λ f = 0:

PDF(f ∣v1,v2,λ) = ΨΦ0 = Ψ
Γ([v1 + v2]/2)
Γ(v1 / 2)

For λ = 0:

PDF(f ∣v1,v2,λ) =
(v1 f)

v1/2(v2)
v2/2Γ([v1 + v2]/2)

f (v1 f + v2)
(v1+v2)/2Γ(v1 / 2)Γ(v2 / 2)

For f = 0:

PDF(f ∣v1,v2,λ) =
e−λ/2 f

v1/2−1(v1 / v2)
v1/2Γ([v1 + v2]/2)

Γ(v1 / 2)Γ(v2 / 2)
=

0 if v1 > 2;

e−λ/2 if v1 = 2
∞ if v1 < 2
1140

 Probability Distribution Functions and Inverses non_central_F_pdf
 0.8 8.1312e-001
 3.2 3.6948e-002
 5.6 2.8302e-003
 8.8 2.7661e-004
 14.0 2.1963e-005
 18.0 5.3483e-006
1141

 Probability Distribution Functions and Inverses non_central_F_cdf
non_central_F_cdf
Evaluates the noncentral F cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_F_cdf (float f, float df_numerator, float df_denominator,

float lambda)

The type double function is imsls_d_non_central_F_cdf.

Required Arguments
float f (Input)

Argument for which the noncentral F cumulative distribution function is to be evaluated. f must be
non-negative.

float df_numerator (Input)
Numerator degrees of freedom of the noncentral F distribution. df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the noncentral F distribution. df_denominator must be
positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability that a noncentral F random variable takes a value less than or equal to f.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y

is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then
1142

 Probability Distribution Functions and Inverses non_central_F_cdf
is a noncentral F-distributed random variable whose CDF is given by:

where:

and Γ (⋅) is the gamma function. The above series expansion for the noncentral F CDF was taken from Butler and
Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below:

F = X / ν1 / Y / ν2

CDF f |ν1,ν2,λ =∑
j=0

∞

c j

c j = ωjIx
ν1
2 + j,

ν2
2

ωj = e
−λ/2 λ / 2) j / j! = λ

2 jω j−1

I x a,b ≡ incomplete beta function ratio ≡
Bx a,b
B a,b

Bx a,b ≡ incomplete beta function ≡ ∫
0

x

ta−1 1 − t)b−1dt

= xa∑
j=0

∞ Γ j + 1 − b
a + j Γ 1 − b j!x

j

x =
ν1 f

ν2 + ν1 f
< = = > f =

ν2x
ν1 1 − x

B a, b = B1 a, b =
Γ a Γ b
Γ a + b

Ix a + 1, b = I x a, b − Tx a, b

Tx a, b =
Γ a + b

Γ a + 1 Γ b x
a 1 − x)b = Tx a − 1, b

a − 1 + b
a x
1143

http://fmwww.bc.edu/CEF99/papers/Paolella.pdf

 Probability Distribution Functions and Inverses non_central_F_cdf
extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and
Bhattacharjee (1973).

The correspondence between the arguments of function imsls_f_non_central_F_cdf and the variables
in the above equations is as follows: ν1 = df_numerator, ν2 = df_denominator, λ = lambda, and f = f.

For λ = 0, the noncentral F distribution is the same as the F distribution.

Example
This example traces out a portion of a noncentral F cumulative distribution function with parameters
df_numerator = 100, df_denominator = 10, and lambda = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0., .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float df_numerator = 100., df_denominator = 10., lambda =10., cdfv;
 printf ("\n df_numerator: %4.0f\n", df_numerator);
 printf (" df_denominator: %4.0f\n", df_denominator);
 printf (" lambda: %4.0f\n\n", lambda);
 printf (" f CDF(f)\n\n");
 for (i=0; i<8; i++) {

 cdfv = imsls_f_non_central_F_cdf
 (f[i], df_numerator, df_denominator, lambda);

 printf (" %5.1f %12.4e \n", f[i], cdfv);
 }

}

Output

df_numerator: 100
df_denominator: 10
lambda: 10
 f cdf(f)
 0.0 0.0000e+000
 0.4 4.8879e-003
 0.8 2.0263e-001
 1.2 5.2114e-001
 1.6 7.3385e-001
 2.0 8.5041e-001
 2.8 9.4713e-001
 4.0 9.8536e-001

I x a + 1, b = I x a, b − Tx a, b
1144

 Probability Distribution Functions and Inverses complementary_non_central_F_cdf
complementary_non_central_F_cdf
Evaluates the complementary noncentral F cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_complementary_non_central_F_cdf (float f, float df_numerator,

float df_denominator, float lambda)

The type double function is imsls_d_complementary_non_central_F_cdf.

Required Arguments
float f (Input)

Argument for which the complementary noncentral F cumulative distribution function is to be evalu-
ated. f must be non-negative.

float df_numerator (Input)
Numerator degrees of freedom of the complementary noncentral F distribution. df_numerator
must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the complementary noncentral F distribution.
df_denominator must be positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The probability that a noncentral F random variable takes a value greater than f.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y

is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then
1145

 Probability Distribution Functions and Inverses complementary_non_central_F_cdf
is a noncentral F-distributed random variable whose CDF is given by:

where:

and Γ (⋅) is the gamma function. The above series expansion for the noncentral F CDF, denoted by F(⋅), was taken
from Butler and Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below:

F = X / ν1 / Y / ν2

F f ∣ν1,ν2,λ =∑
j=0

∞

c j

c j = ωjIx
ν1
2 + j,

ν2
2

ωj = e
−λ/2 λ / 2) j / j! = λ

2 jω j−1

I x a,b ≡ incomplete beta function ratio ≡
Bx a,b
B a,b

Bx a,b ≡ incomplete beta function ≡ ∫
0

x

ta−1 1 − t)b−1dt

= xa∑
j=0

∞ Γ j + 1 − b
a + j Γ 1 − b j!x

j

x =
ν1 f

ν2 + ν1 f
< = = > f =

ν2x
ν1 1 − x

B a, b = B1 a, b =
Γ a Γ b
Γ a + b

Ix a + 1, b = I x a, b − Tx a, b

Tx a, b =
Γ a + b

Γ a + 1 Γ b x
a 1 − x)b = Tx a − 1, b

a − 1 + b
a x
1146

http://fmwww.bc.edu/CEF99/papers/Paolella.pdf

 Probability Distribution Functions and Inverses complementary_non_central_F_cdf
extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and
Bhattacharjee (1973).

The series approximation of the complementary (cmp) noncentral F CDF, denoted by F(⋅), is obtainable by using
the following identities:

Thus:

The correspondence between the arguments of function
imsls_f_complementary_non_central_F_cdf and the variables in the above equations is as follows:
ν1 = df_numerator, ν2 = df_denominator, λ = lambda, and f = f.

Also, we can use the above expansion of and the identities:

to recursively calculate .

For λ = 0, the noncentral F distribution is the same as the F distribution.

Example
This example traces out a portion of a complementary noncentral F cumulative distribution function with param-
eters df_numerator = 100, df_denominator = 10, and lambda = 10.

I x a + 1, b = I x a, b − Tx a, b

∑
j=0

∞

ωj = 1

I1−x b, a = 1 − I x a, b

I1−x b,a + 1 = 1 − I x a + 1,b = 1 − I x a,b + Tx a,b = I1−x b,a + Tx a,b

F─(f ∣ν1,ν2,λ) = 1 − ∑
j=0

∞
c j = ∑

j=0

∞
ωj[1 − I x(

ν1
2 + j,

ν2
2)]

= ∑
j=0

∞
ωjI1−x(

ν2
2 ,
ν1
2 + j)

F
─
f ∣ν1,ν2,λ

I1−x b, a + 1 = I1−x b, a + Tx a, b

Tx a, b =
Γ a + b

Γ a + 1 Γ b x
a 1 − x)b = Tx a − 1, b

a − 1 + b
a x

F
─
f |ν1,ν2,λ
1147

 Probability Distribution Functions and Inverses complementary_non_central_F_cdf
#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float df_numerator = 100.0, df_denominator = 10.0;
 float lambda =10.0, cmpcdfv;
 printf ("\n df_numerator: %4.0f\n", df_numerator);
 printf (" df_denominator: %4.0f\n", df_denominator);
 printf (" lambda: %4.0f\n\n", lambda);
 printf (" f cmpCDF(f)\n\n");
 for (i=0; i<8; i++) {

 cmpcdfv = imsls_f_complementary_non_central_F_cdf
 (f[i], df_numerator, df_denominator, lambda);

 printf (" %5.1f %12.4e \n", f[i], cmpcdfv);
 }

}

Output

df_numerator: 100
df_denominator: 10
lambda: 10
 f cmpCDF(f)
 0.0 1.0000e+000
 0.4 9.9511e-001
 0.8 7.9737e-001
 1.2 4.7886e-001
 1.6 2.6615e-001
 2.0 1.4959e-001
 2.8 5.2875e-002
 4.0 1.4642e-002
1148

 Probability Distribution Functions and Inverses non_central_F_inverse_cdf
non_central_F_inverse_cdf
Evaluates the inverse of the noncentral F cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_non_central_F_inverse_cdf (float p, float df_numerator,

float df_denominator float lambda)

The type double function is imsls_d_non_central_F_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral F cumulative distribution function is to be evalu-
ated. p must be non-negative and less than one.

float df_numerator (Input)
Numerator degrees of freedom of the noncentral F distribution. df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom of the noncentral F distribution. df_denominator must be
positive.

float lambda (Input)
Noncentrality parameter. lambda must be non-negative.

Return Value
The inverse of the noncentral F distribution function evaluated at p. The probability that a noncentral F random
variable takes a value less than or equal to imsls_f_non_central_F_inverse_cdf is p.

Description
If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y

is a chi-square random variable with ν2 degrees of freedom that is statistically independent of X, then
1149

 Probability Distribution Functions and Inverses non_central_F_inverse_cdf
is a noncentral F-distributed random variable whose cumulative distribution function p = CDF(f, ν1, ν2, λ) is

defined as the probability p that F ≤ f and is evaluated using function imsls_f_non_central_F_cdf (f,
df_numerator, df_denominator, lambda), where ν1 = df_numerator, ν2 = df_denominator,

λ = lambda, and p = p.

Function imsls_f_non_central_F_inverse_cdf evaluates

Function imsls_f_non_central_F_inverse_cdf uses bisection and modified regula falsi search algo-
rithms to invert the distribution function CDF(f∣ ν1, ν2, λ). For sufficiently small p, an accurate approximation of

CDF-1(p∣ ν1, ν2, λ) can be used which requires no such inverse search algorithms.

Example
This example traces out a portion of a noncentral F cumulative distribution function with parameters
df_numerator = 100, df_denominator = 10, and lambda =10 and for each value of f prints

f, p==CDF(f), and CDF-1(p).

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float f[] = {0., .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0};
 float df_numerator = 100.0, df_denominator = 10.0;
 float lambda =10.0, cdfv, cdfiv;
 printf ("\n df_numerator: %4.0f\n", df_numerator);
 printf (" df_denominator: %4.0f\n", df_denominator);
 printf (" lambda: %4.0f\n\n", lambda);
 printf (" f p = cdf(f) cdfinv(p)\n\n");
 for (i=0; i<8; i++) {

 cdfv = imsls_f_non_central_F_cdf
 (f[i], df_numerator, df_denominator, lambda);

 cdfiv = imsls_f_non_central_F_inverse_cdf
 (cdfv, df_numerator, df_denominator, lambda);

 printf (" %5.1f %12.4e %7.3f\n", f[i], cdfv, cdfiv);
 }

}

F = X / ν1 / Y / ν2

f = CDF−1 p|ν1,ν1,λ
1150

 Probability Distribution Functions and Inverses non_central_F_inverse_cdf
Output

df_numerator: 100
df_denominator: 10
lambda: 10
 f p = cdf(f) cdfinv(p)
 0.0 0.0000e+000 0.000
 0.4 4.8879e-003 0.400
 0.8 2.0263e-001 0.800
 1.2 5.2114e-001 1.200
 1.6 7.3385e-001 1.600
 2.0 8.5041e-001 2.000
 2.8 9.4713e-001 2.800
 4.0 9.8536e-001 4.000
1151

 Probability Distribution Functions and Inverses gamma_cdf
gamma_cdf
Evaluates the gamma distribution function.

Synopsis
#include <imsls.h>
float imsls_f_gamma_cdf (float x, float a)

The type double function is imsls_d_gamma_cdf.

Required Arguments
float x (Input)

Argument for which the gamma distribution function is to be evaluated.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to x.

Description
Function imsls_f_gamma_cdf evaluates the distribution function, F, of a gamma random variable with shape
parameter a,

where Γ(⋅) is the gamma function. (The gamma function is the integral from 0 to ∞ of the same integrand as
above.) The value of the distribution function at the point x is the probability that the random variable takes a
value less than or equal to x.

F x = 1
Γ a ∫

0

x

e−tta−1dt
1152

 Probability Distribution Functions and Inverses gamma_cdf
The gamma distribution is often defined as a two-parameter distribution with a scale parameter b (which must be
positive) or as a three-parameter distribution in which the third parameter c is a location parameter. In the most
general case, the probability density function over (c, ∞) is as follows:

If T is a random variable with parameters a, b, and c, the probability that T ≤ t0 can be obtained from

imsls_f_gamma_cdf by setting x = (t0 − c)/b.

If x is less than a or less than or equal to 1.0, imsls_f_gamma_cdf uses a series expansion; otherwise, a con-
tinued fraction expansion is used. (See Abramowitz and Stegun 1964.)

Example
Let X be a gamma random variable with a shape parameter of four. (In this case, it has an Erlang distribution since
the shape parameter is an integer.) This example finds the probability that X is less than 0.5 and the probability
that X is between 0.5 and 1.0.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float x = 0.5, a = 4.0, p;
 p = imsls_f_gamma_cdf(x,a);
 printf("The probability that X is less than "

 "%3.1f is %6.4f\n", x, p);
 x = 1.0;
 p = imsls_f_gamma_cdf(x,a) - p;
 printf("The probability that X is between 0.5 and "

 "%3.1f is %6.4f\n", x, p);
}

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

f t = 1
baΓ a e

− t−c /b
x − c a−1
1153

 Probability Distribution Functions and Inverses gamma_cdf
Informational Errors

Fatal Errors

IMSLS_ARG_LESS_THAN_ZERO Since “x” = # is less than zero, the distribution func-
tion is zero at “x”.

IMSLS_X_AND_A_TOO_LARGE Since “x” = # and “a” = # are so large, the algorithm
would overflow.
1154

 Probability Distribution Functions and Inverses gamma_inverse_cdf
gamma_inverse_cdf
Evaluates the inverse of the gamma distribution function.

Synopsis
#include <imsls.h>
floatimsls_f_gamma_inverse_cdf (floatp, floata)

The type doublefunction is imsls_d_gamma_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the gamma distribution function is to be evaluated. p must be in
the open interval (0.0, 1.0).

floata (Input)
The shape parameter of the gamma distribution. This parameter must be positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to the returned value is p.

Description
Function imsls_f_gamma_inverse_cdf evaluates the inverse distribution function of a gamma random
variable with shape parameter a, that is, it determines x (=imsls_f_gamma_inverse_cdf (p, a)), such that

where Γ(⋅) is the gamma function. In other words:

The probability that the random variable takes a value less than or equal to x is P. See the documentation for
function imsls_f_gamma_cdf for further discussion of the gamma distribution.

P = 1
Γ a ∫0

x

e−tta−1dt

F−1(P∣a) = x
1155

 Probability Distribution Functions and Inverses gamma_inverse_cdf
Function imsls_f_gamma_inverse_cdf uses bisection and modified regula falsi to invert the distribution
function, which is evaluated using function imsls_f_gamma_cdf.

Example
In this example, we find the 95-th percentage point for a gamma random variable with shape parameter of 4.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float p = .95, a = 4.0, x;
 x = imsls_f_gamma_inverse_cdf(p,a);
 printf("The %4.2f gamma(%1.0f) critical value is %6.4f\n",

 1.0 - p, a, x);
}

Output

The 0.05 gamma(4) critical value is 7.7537
1156

 Probability Distribution Functions and Inverses lognormal_cdf
lognormal_cdf
Evaluates the lognormal cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_lognormal_cdf(float x, float amu, float sigma)

The type double function is imsls_d_lognormal_cdf.

Required Arguments
floatx (Input)

Argument for which the lognormal CDF is to be evaluated. x must be non-negative.

floatamu (Input)
Location parameter of the lognormal CDF.

floatsigma (Input)
Shape parameter of the lognormal CDF. sigma must be positive.

Return Value
The probability that a lognormal random variable takes a value less than or equal to x. A value of NaN is returned
if an input value is in error.

Description
The function imsls_f_lognormal_cdf evaluates the lognormal cumulative distribution function (CDF),
defined as

where

F x∣μ,σ = 1
σ 2π ∫0

x
1
t e

−12
log t −μ

σ
2

dt = ϕ
log x − μ

σ

1157

 Probability Distribution Functions and Inverses lognormal_cdf
is the standard normal CDF.

Example
In this example, we evaluate the CDF at x = 0.7137, amu = 0.0,
sigma = 0.5.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float x = 0.7137;
 float amu = 0.0;
 float sigma = 0.5;
 float p;
 p = imsls_f_lognormal_cdf(x,amu,sigma);
 printf("The probability that lognormal random ");
 printf("variable X\n");
 printf("with location parameter amu = %3.1f ", amu);
 printf("and shape parameter\nsigma = %3.1f ", sigma);
 printf("is less than or equal to ");
 printf("%6.4f is %6.4f\n\n", x, p);
}

Output
The probability that lognormal random varisable X
with location parameter amu = 0.0 and shape parameter
sigma = 0.5 is less than or equal to 0.7137 is 0.2500

ϕ y = 1
2π ∫−∞

y

e
−12 u

2

du
1158

 Probability Distribution Functions and Inverses lognormal_inverse_cdf
lognormal_inverse_cdf
Evaluates the inverse of the lognormal cumulative distribution function (CDF).

Synopsis
#include<imsls.h>
floatimsls_f_lognormal_inverse_cdf(float p, float amu, float sigma)

The type double function is imsls_d_lognormal_inverse_cdf.

Required Arguments
floatp (Input)

Probability for which the inverse of the lognormal CDF is to be evaluated. p must lie in the closed
interval [0, 1].

floatamu (Input)
Location parameter of the lognormal CDF.

floatsigma (Input)
Shape parameter of the lognormal CDF. sigma must be positive.

Return Value
Function value, the probability that a lognormal random variable takes a value less than or equal to the returned
value is the input probability p. A value of NaN is returned if an input value is in error.

Description
The function imsls_f_lognormal_inverse_cdf evaluates the inverse CDF of a lognormal random vari-
able with location parameter amu and scale parameter sigma. The probability that a standard lognormal
random variable takes a value less than or equal to the returned value is p (p=P).
1159

 Probability Distribution Functions and Inverses lognormal_inverse_cdf
where

In other words

Example
In this example, we evaluate the inverse CDF at p = 0.25, amu = 0.0, sigma = 0.5.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float p = 0.25;
 float amu = 0.0;
 float sigma = 0.5;
 float x;
 x = imsls_f_lognormal_inverse_cdf(p, amu, sigma);
 printf("The probability that lognormal random ");
 printf("variable X\n");
 printf("with location parameter amu = %3.1f ", amu);
 printf("and shape parameter\nsigma = %3.1f ", sigma);
 printf("is less than or equal to ");
 printf("%6.4f is %4.2f\n\n", x, p);
}

Output
The probability that lognormal random variable X
with location parameter amu = 0.0 and shape parameter
sigma = 0.5 is less than or equal to 0.7137 is 0.25

P = 1
σ 2π ∫

0

x
e
−12

log(t)−μ
σ

2

t dt = φ
log(x) − μ

σ

φ(y) = 1
2π ∫

−∞

y

e
−12u

2

du

F−1 = (P∣μ,σ) = x
1160

 Probability Distribution Functions and Inverses lognormal_pdf
lognormal_pdf
Evaluates the lognormal probability density function (PDF).

Synopsis
#include<imsls.h>
floatimsls_f_lognormal_pdf(float x, float amu, float sigma)

The type double function is imsls_d_lognormal_pdf.

Required Arguments
floatx (Input)

Argument for which the lognormal PDF is to be evaluated. x must be non-negative.

floatamu (Input)
Location parameter of the lognormal PDF.

floatsigma (Input)
Shape parameter of the lognormal PDF. sigma must be positive.

Return Value
The probability density of a lognormally distributed random variable with value x, location parameter amu, and
shape parameter sigma. A value of NaN is returned if an input value is in error.

Description
The function imsls_f_lognormal_pdf evaluates the lognormal probability density function (PDF), defined
as
1161

 Probability Distribution Functions and Inverses lognormal_pdf
Example
In this example, we evaluate the PDF at x = 1.0, amu = 0.0, sigma = 0.5.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float x = 1.0;
 float amu = 0.0;
 float sigma = 0.5;
 float pdfv;
 pdfv = imsls_f_lognormal_pdf(x, amu, sigma);
 printf("The probability density of lognormal random ");
 printf("variable X\n");
 printf("with location parameter amu = %3.1f, ", amu);
 printf("shape parameter\nsigma = %3.1f, ", sigma);
 printf("and value x = %3.1f is %6.4f\n\n", x, pdfv);
}

Output
The probability density of lognormal random variable X
with location parameter amu = 0.0, shape parameter
sigma = 0.5, and value x = 1.0 is 0.7979

f x∣μ,σ = 1
xσ 2π e

−
log x −μ 2

2σ2
1162

 Probability Distribution Functions and Inverses normal_cdf
normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>
float imsls_f_normal_cdf (float x)

The type double function is imsls_d_normal_cdf.

Required Arguments
float x (Input)

Point at which the normal distribution function is to be evaluated.

Return Value
The probability that a normal random variable takes a value less than or equal to x.

Description
Function imsls_f_normal_cdf evaluates the distribution function, F(x), of a standard normal (Gaussian) ran-
dom variable as follows:

The value of the distribution function at the point x is the probability that the random variable takes a value less
than or equal to x.

The standard normal distribution (for which imsls_f_normal_cdf is the distribution function) has mean of 0

and variance of 1. The probability that a normal random variable with mean μ and variance σ2 is less than y is
given by imsls_f_normal_cdf evaluated at (y − μ)/σ.

F x = 1
2π ∫
−∞

x

e−t
2/2dt
1163

 Probability Distribution Functions and Inverses normal_cdf
Figure 18, Plot of F(x)

Example
Suppose X is a normal random variable with mean 100 and variance 225. This example finds the probability that X
is less than 90 and the probability that X is between 105 and 110.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float p, x1, x2;
 x1 = (90.0-100.0)/15.0;
 p = imsls_f_normal_cdf(x1);
 printf("The probability that X is less than 90 "

 "is %6.4f\n", p);
 x1 = (105.0-100.0)/15.0;
 x2 = (110.0-100.0)/15.0;
 p = imsls_f_normal_cdf(x2) - imsls_f_normal_cdf(x1);
 printf("The probability that X is between 105 and "

 "110 is %6.4f\n", p);
}

1164

 Probability Distribution Functions and Inverses normal_cdf
Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
1165

 Probability Distribution Functions and Inverses multivariate_normal_cdf
multivariate_normal_cdf

more...

Evaluates the cumulative distribution function for the multivariate normal distribution.

Synopsis
#include <imsls.h>
float imsls_f_multivariate_normal_cdf (int k, float h[], float mean[], float sigma[], …,0)

The type double function is imsls_d_multivariate_normal_cdf.

Required Arguments
intk (Input)

The number of variates in the multivariate normal distribution. The number of variates must be
greater than or equal to 1 and less than or equal to 1100.

float h[] (Input)
Array of length k containing the upper bounds for calculating the cumulative distribution function,

 .

float mean[] (Input)
Array of length k containing the mean of the multivariate normal distribution, i.e.,

 .

float sigma[] (Input)
Array of length k by k containing the positive definite symmetric variance-covariance matrix for the
multivariate normal distribution, i.e., .

Return Value
The value of the cumulative distribution function for a multivariate normal random variable,

 .

F X 1 < h1, X 2 < h2, ⋯ , Xk < hk

E x1, x2, ... xk = μT = μ1, μ2, ... μk

Var x1, x2, ... xk = ∑

F X 1 < h1, X 2 < h2, ⋯ , Xk < hk
1166

 Probability Distribution Functions and Inverses multivariate_normal_cdf
Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_multivariate_normal_cdf (int k, float h[], float mean[], float sigma[],

IMSLS_PRINT,
IMSLS_ERR_ABS, float err_abs,
IMSLS_ERR_REL, float err_rel,
IMSLS_TOLERANCE, float tolerance,
IMSLS_MAX_EVALS, int max_evals,
IMSLS_RANDOM_SEED, int random_seed,
IMSLS_ERR_EST, float *err_est,
0)

Optional Arguments
IMSLS_PRINT, (Input)

Print intermediate computations.

Default: No printing.

IMSLS_ERR_ABS, float err_abs (Input)
The absolute accuracy requested for the calculated cumulative probability.

Default: err_abs = 1.0e-3.

IMSLS_ERR_REL, float err_rel (Input)
The relative accuracy desired.

Default: err_rel = 1.0e-5.

IMSLS_TOLERANCE, float tolerance (Input)
The minimum value for the smallest eigenvalue of sigma. If the smallest eigenvalue is less than
tolerance, then the terminal error IMSLS_SIGMA_SINGULAR is issued. Default: tolerance=
ɛ, where ɛ is the machine precision.

IMSLS_MAX_EVALS, int max_evals (Input)
The maximum number of function evaluations allowed. If this limit is exceeded, the
IMSLS_MAX_EVALS_EXCEEDED warning message is issued and the optimization terminates.

Default: max_evals = 1000×k.
1167

 Probability Distribution Functions and Inverses multivariate_normal_cdf
IMSLS_RANDOM_SEED, int random_seed (Input)
The value of the random seed used for generating quadrature points. By using different seeds on dif-
ferent calls to this function, slightly different answers will be obtained in the digits beyond the
estimated error. If random_seed = 0, then the seed is set to the value of the system clock which
will automatically generate slightly different answers for each call.

Default: random_seed = 7919.

IMSLS_ERR_EST, float *err_est (Output)
The estimated error.

Description
Function imsls_f_multivariate_normal_cdf evaluates the cumulative distribution function F of a mul-
tivariate normal distribution with E(X1, X2, ⋯, Xk) =μ and Var(X1, X2, ⋯, Xk) =∑. The input arrays mean and sigma

are used as the values for μ and ∑, respectively. The formula for the CDF calculation is given by the multiple inte-
gral described in Johnson and Kotz (1972):

∑ must be positive definite, i.e. |∑| >0.

In the special case of non-negative equal correlations (i.e. Cov(Xm, Xn) = ρ≥0, m≠n), the above integral is trans-

formed into a univariate integral using the transformation developed by Dunnett and Sobel(1955). This produces
very accurate and fast calculations even for a large number of variates.

If k > 2 and the correlations are not equal or both equal and negative, the Cholesky decomposition transforma-
tion described by Genz (1992) is used (with permission from the author). This transforms the problem into a
definite integral involving k-1 variables which is solved numerically using randomized Korobov rules if k ≤ 100,
see Cranley and Patterson (1976) and Keast (1973); otherwise, the integral is solved using quasi-random Richt-
meyer points described in Davis and Rabinowitz (1984).

Setting σi = Var(Xi) and denoting the correlation matrix related to ∑ by W = (ρmn), where

an integral transformation transforms F(h1, h2, ⋯, hk) into the standardized k-variate normal distribution with cor-

relation matrix W:

F(h1,h2,...,hk) = (2π)
−k/2|∑ |−1/2 ∫

−∞

h1
∫
−∞

h2
... ∫
−∞

hk
e
−12(x−μ)

Τ∑−1(x−μ)
dxkdxk−1...dx1

ρmn = Cov(Xm,Xn)/(σm σn),

Φ (
h1 − μ1
σ1
,...,

hk − μk
σk
) = (2π)−k/2∣W∣−1/2 ∫−∞

(h1−μ1)/ σ1...∫−∞
(hk−μk)/ σk e

−12u
ΤW−1u

duk...du1.
1168

 Probability Distribution Functions and Inverses multivariate_normal_cdf
Therefore, it’s also possible to compute the integral with the correlation matrix W defined in argument sigma if
in addition the variances σ1, ⋯, σk are known: If, with respect to the variance-covariance matrix, the bounds of

the integral are h1, ⋯, hk and the means are μ1, ⋯, μk, set required argument h to h[i] = and

required argument mean to mean[i] = 0 for i = 0, ⋯, k-1 .

Examples

Example 1

This example evaluates the cumulative distribution function for a trivariate normal random variable. There are
three calculations. The first calculation is of F(1.96,1.96, 1.96) for a trivariate normal variable with μ = {0, 0, 0}, and

In this case, imsls_f_multivariate_normal_cdf calculates F(1.96, 1.96, 1.96) = 0.958179.

The second calculation involves a trivariate variable with the same correlation matrix as the first calculation but
with a mean of μ = {0, 1, -1}. This is the same distribution as the first example shifted by the mean. The calculation
of F(1.96, 2.96, 0.96) verifies that this probability is equal to the same value as reported for the first case.

The last calculation is the same calculation reported in Genz (1992) for a trivariate normal random variable with μ
= {0, 0, 0} and

In this example the calculation of F(1, 4, 2) = 0.827985.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float bounds1[3] = {1.96, 1.96, 1.96};
 float bounds2[3] = {1.96, 2.96, 0.96};
 float bounds3[3] = {1.0, 4.0, 2.0};
 float mean1[3] = {0.0, 0.0, 0.0};
 float mean2[3] = {0.0, 1.0, -1.0};
 float stdev1[9] = {1.0, 0.9, 0.9,

0.9, 1.0, 0.9,
 0.9, 0.9, 1.0};

(hi+1 − μi+1)/ σi+1

∑ =
1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

∑ =
1 3 / 5 1 / 3
3 / 5 1 11 / 15
1 / 3 11 / 15 1
1169

 Probability Distribution Functions and Inverses multivariate_normal_cdf
 float stdev2[9] = {1.0, 0.6, 1.0/3.0,
0.6, 1.0, 11.0/15.0,

 1.0/3.0, 11.0/15.0, 1.0};
 float f;
 char *fmt = {"%5.3W"};
 imsls_f_write_matrix("Mean Vector", 1, 3, mean1,

 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix("Correlation Matrix", 3, 3,
 stdev1, IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 f = imsls_f_multivariate_normal_cdf(3, bounds1, mean1,
 stdev1, 0);

 printf("\nF(X1<%f, X2<%f, X3<%f) = %f\n\n",
bounds1[0], bounds1[1], bounds1[2], f);

 imsls_f_write_matrix("Mean Vector\n", 1, 3, mean2,
IMSLS_NO_ROW_LABELS,

 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix("Correlation Matrix", 3, 3,
 stdev1, IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 f = imsls_f_multivariate_normal_cdf(3, bounds2, mean2,
 stdev1, 0);

 printf("\nF(X1<%f, X2<%f, X3<%f) = %f\n",
bounds2[0], bounds2[1], bounds2[2], f);

 imsls_f_write_matrix("Mean Vector", 1, 3, mean1,
IMSLS_NO_ROW_LABELS,

 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix("Correlation Matrix", 3, 3, stdev2,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 f = imsls_f_multivariate_normal_cdf(3, bounds3, mean1,
 stdev2, 0);
 printf("\nF(X1<%f, X2<%f, X3<%f) = %f\n",

bounds3[0], bounds3[1], bounds3[2], f);
}

Output

 Mean Vector
 0 0 0
Correlation Matrix
 1.0 0.9 0.9
1170

 Probability Distribution Functions and Inverses multivariate_normal_cdf
 0.9 1.0 0.9
 0.9 0.9 1.0
F(X1<1.960000, X2<1.960000, X3<1.960000) = 0.958179

 Mean Vector
 0 1 -1
Correlation Matrix
 1.0 0.9 0.9
 0.9 1.0 0.9
 0.9 0.9 1.0
F(X1<1.960000, X2<2.960000, X3<0.960000) = 0.958179
 Mean Vector
 0 0 0
Correlation Matrix
 1.00 0.60 0.33
 0.60 1.00 0.73
 0.33 0.73 1.00
F(X1<1.000000, X2<4.000000, X3<2.000000) = 0.827985

Example 2

This example illustrates the calculation of the cdf for a multivariate normal distribution with a mean of μ = {1, 0, -
1, 0, 1, -1}, and a correlation matrix of

The optional argument IMSLS_PRINT is used to illustrate the type of intermediate output available from this
function. This function sorts the variables by the limits for the cdf calculation specified in x. This improves the
accuracy of the calculations, see Genz (1992). In this case, F(X1<1, X2< 2.5, X3< 2, X4< 0.5, X5< 0, X6< 0.8) =
0.087237 with an estimated error of 8.7e-05.

By increasing the correlation of X2 and X3 from 0.1 to 0.7, the correlation matrix becomes singular. This function

checks for this condition and issues an error when sigma is not symmetric or positive definite.

#include <imsls.h>
#include <stdio.h>

∑ =

1 0.1 0.2 0.3 0.4 0
0.1 1 0.6 0.1 0.2 0.5
0.2 0.6 1 0 0.1 0.2
0.3 0.1 0 1 0 0.5
0.4 0.2 0.1 0 1 0.3
0 0.5 0.2 0.5 0.3 1
1171

 Probability Distribution Functions and Inverses multivariate_normal_cdf
int main()
{

 float bounds[6] = {1.0, 2.5, 2.0, 0.5, 0.0, 0.8};
 float mean[6] = {1.0, 0.0, -1.0, 0.0, 1.0, -1.0};
 float s1[6*6] = {1.0, 0.1, 0.2, 0.3, 0.4, 0.0,

 0.1, 1.0, 0.6, 0.1, 0.2, 0.5,
 0.2, 0.6, 1.0, 0.0, 0.1, 0.2,
 0.3, 0.1, 0.0, 1.0, 0.0, 0.5,
 0.4, 0.2, 0.1, 0.0, 1.0, 0.3,
 0.0, 0.5, 0.2, 0.5, 0.3, 1.0};

 /* The following matrix is not positive definite */
 float s2[6*6] = {1.0, 0.1, 0.2, 0.3, 0.4, 0.0,

 0.1, 1.0, 0.6, 0.7, 0.2, 0.5,
 0.2, 0.6, 1.0, 0.0, 0.1, 0.2,
 0.3, 0.7, 0.0, 1.0, 0.0, 0.5,
 0.4, 0.2, 0.1, 0.0, 1.0, 0.3,
 0.0, 0.5, 0.2, 0.5, 0.3, 1.0};

 float f, err;
 int i, k=6;
 f = imsls_f_multivariate_normal_cdf(k, bounds, mean, s1,

 IMSLS_PRINT,
 IMSLS_ERR_EST, &err,
 0);

 printf("F(X1<%2.1f, X2<%2.1f, X3<%2.1f, ",
 bounds[0], bounds[1], bounds[2]);

 printf("X4<%2.1f, X5<%2.1f, X6<%2.1f) = %f\n",
bounds[3], bounds[4], bounds[5], f);

 printf("Estimated Error = %g\n", err);
 /* example of error message when sigma is not positive definite */
 f = imsls_f_multivariate_normal_cdf(k, bounds, mean, s2,

 IMSLS_ERR_EST, &err,
 0);

}

Output

 Original H Limits
 1.0 2.5 2.0 0.5 0.0 0.8
 Original Sigma Matrix
 1.0 0.1 0.2 0.3 0.4 0.0
 0.1 1.0 0.6 0.1 0.2 0.5
 0.2 0.6 1.0 0.0 0.1 0.2
 0.3 0.1 0.0 1.0 0.0 0.5
 0.4 0.2 0.1 0.0 1.0 0.3
 0.0 0.5 0.2 0.5 0.3 1.0
 Sorted Sigma Matrix
 1.0 0.3 0.4 0.0 0.1 0.2
 0.3 1.0 0.0 0.5 0.1 0.0
 0.4 0.0 1.0 0.3 0.2 0.1
 0.0 0.5 0.3 1.0 0.5 0.2
 0.1 0.1 0.2 0.5 1.0 0.6
 0.2 0.0 0.1 0.2 0.6 1.0
Eigenvalues of Sigma
eigenvalue[0] = 2.215651
eigenvalue[1] = 1.256233
1172

 Probability Distribution Functions and Inverses multivariate_normal_cdf
eigenvalue[2] = 1.165661
eigenvalue[3] = 0.843083
eigenvalue[4] = 0.324266
eigenvalue[5] = 0.195106
Condition Number of Sigma = 7.327064
Cholesky Decomposition of Sorted Sigma Matrix
1.000 0.300 0.400 0.000 0.100 0.200
0.300 0.954 -0.126 0.524 0.073 -0.063
0.400 -0.126 0.908 0.403 0.186 0.013
0.000 0.524 0.403 0.750 0.515 0.303
0.100 0.073 0.186 0.515 0.827 0.515
0.200 -0.063 0.013 0.303 0.515 0.774
Prob. = 0.0872375 Error = 3.10012e-005
F(X1<1.0, X2<2.5, X3<2.0, X4<0.5, X5<0.0, X6<0.8) = 0.087237
Estimated Error = 3.10012e-005
eigenvalue[0] = 2.477894
eigenvalue[1] = 1.250438
eigenvalue[2] = 1.039730
eigenvalue[3] = 0.854005
eigenvalue[4] = 0.382186
eigenvalue[5] = -0.004253
*** FATAL Error IMSLS_SIGMA_SINGULAR from
*** imsls_f_multivariate_normal_cdf.
*** "sigma" is not positive definite. Its smallest eigenvalue is
*** "e[5]"=-4.252925e-003 which is less than
*** "tolerance"=1.192093e-007.

Warning Errors

Fatal Errors

IMSLS_MAX_EVALS_EXCEEDED The maximum number of iterations for the CDF cal-
culation has exceeded max_evals. Required
accuracy may not have been achieved.

IMSLS_SIGMA_SINGULAR “sigma” is not positive definite. Its smallest eigen-
value is “e[#]”=#, which is less than “tolerance” =
#.
1173

 Probability Distribution Functions and Inverses normal_inverse_cdf
normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>
float imsls_f_normal_inverse_cdf (float p)

The type double function is imsls_d_normal_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the normal distribution function is to be evaluated. Argument p
must be in the open interval (0.0, 1.0).

Return Value
The inverse of the normal distribution function evaluated at p. The probability that a standard normal random
variable takes a value less than or equal to imsls_f_normal_inverse_cdf is p.

Description
Function imsls_f_normal_inverse_cdf evaluates the inverse of the distribution function, F(x), of a stan-

dard normal (Gaussian) random variable, imsls_f_normal_inverse_cdf(p) = F−1(x), where

The value of the distribution function at the point x is the probability that the random variable takes a value less
than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.

F x = 1
2π ∫
−∞

x

e−t
2/2dt
1174

 Probability Distribution Functions and Inverses normal_inverse_cdf
Function imsls_f_normal_inverse_cdf is evaluated by use of minimax rational-function approximations
for the inverse of the error function. General descriptions of these approximations are given in Hart et al. (1968)
and Strecok (1968). The rational functions used in imsls_f_normal_inverse_cdf are described by
Kinnucan and Kuki (1968).

Example
This example computes the point such that the probability is 0.9 that a standard normal random variable is less
than or equal to this point.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float p = 0.9, x;
 x = imsls_f_normal_inverse_cdf(p);
 printf("The %2.0fth percentile of a standard normal is "

 "%6.4f.\n", p*100.0, x);
}

Output

The 90th percentile of a standard normal is 1.2816.
1175

 Probability Distribution Functions and Inverses t_cdf
t_cdf
Evaluates the Student’s t cumulative distribution function (CDF).

Synopsis
#include <imsls.h>
float imsls_f_t_cdf (float t, float df)

The type double function is imsls_d_t_cdf.

Required Arguments
float t (Input)

Argument for which the Student’s t cumulative distribution function is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value less than or equal to the input t.

Description
Function imsls_f_t_cdf evaluates the cumulative distribution function of a Student’s t random variable with

ν = df degrees of freedom. If t2 ≥ ν, the following identity relating the Student’s t cumulative distribution func-

tion, F(t, ν) to the incomplete beta ratio function is used:

where

and

I x a, b

F t|ν = 12 I x
ν
2,
1
2 ,t ≤ 0,t2 ≥ v

x = ν
t2 + ν
1176

 Probability Distribution Functions and Inverses t_cdf
If t2 < ν, the solution space is partitioned into four algorithms as follows: If ν ≥ 64 and t2/ν ≤ 0.1, a Cornish-Fisher
expansion is used to evaluate the distribution function. If ν < 64 and an integer and |t| < 2.0, a trigonometric
series is used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some rearrangement). If
ν < 64 and an integer and |t| ≥ 2.0, a series given by Hill (1970) that converges well for large values of t is used.

For the remaining t2 < ν cases, F(t|ν) is calculated using the identity:

where

Figure 19, Plot of Ft (t, 6.0)

Example
This example finds the probability that a t random variable with 6 degrees of freedom is greater in absolute value
than 2.447. The fact that t is symmetric about 0 is used.

F t|ν = 1 − F −t,ν ,t > 0,t2 ≥ v

F t|ν = I x
ν
2,
ν
2

x = t + t2 + ν
2 t2 + ν
1177

 Probability Distribution Functions and Inverses t_cdf
#include <imsls.h>
#include <stdio.h>
int main ()
{

 float t = 2.447, df = 6.0, p;
 p = 2.0*imsls_f_t_cdf(-t,df);
 printf("Pr(|t(%1.0f)| > %5.3f) = %6.4f\n", df, t, p);

}

Output

Pr(|t(6)| > 2.447) = 0.0500
1178

 Probability Distribution Functions and Inverses t_inverse_cdf
t_inverse_cdf
Evaluates the inverse of the Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_t_inverse_cdf (float p, float df)

The type double function is imsls_d_t_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the Student’s t distribution function is to be evaluated. Argument
p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The inverse of the Student’s t distribution function evaluated at p. The probability that a Student’s t random vari-
able takes a value less than or equal to imsls_f_t_inverse_cdf is p.

Description
Function imsls_f_t_inverse_cdf evaluates the inverse distribution function of a Student’s t random vari-
able with ν = df degrees of freedom. If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between
1 and 2, the relationship of a t to a beta random variable is exploited and the inverse of the beta distribution is
used to evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values of ν greater than 2,

Hill’s algorithm inverts an integrated expansion in 1/(1 + t2/ν) of the t density. For larger values, an asymptotic
inverse Cornish-Fisher type expansion about normal deviates is used.
1179

 Probability Distribution Functions and Inverses t_inverse_cdf
Example
This example finds the 0.05 critical value for a two-sided t test with 6 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main()
{

 float df = 6.0, p = 0.975, t;
 t = imsls_f_t_inverse_cdf(p,df);
 printf("The two-sided t(%1.0f) %4.2f critical value is "

 "%6.3f\n", df, (1.0-p)*2.0, t);
}

Output

The two-sided t(6) 0.05 critical value is 2.447

Informational Errors
IMSLS_OVERFLOW Function imsls_f_t_inverse_cdf is set to

machine infinity since overflow would occur upon
modifying the inverse value for the F distribution
with the result obtained from the inverse beta
distribution.
1180

 Probability Distribution Functions and Inverses complementary_t_cdf
complementary_t_cdf
Evaluates the complement of the Student’s t distribution.

Synopsis
#include <imsls.h>
float imsls_f_complementary_t_cdf (float t, float df)

The type double function is imsls_d_complementary_t_cdf.

Required Arguments
float t (Input)

Argument for which Pr(x > t) is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value greater than t.

Description
Function imsls_f_complementary_t_cdf evaluates one minus the distribution function of a Student’s t

random variable with ν = df degrees of freedom. If t2 ≥ ν, the following identity relating the complementary Stu-

dent’s t cumulative distribution function, denoted by , to the incomplete beta ratio function is
used:

where

F
─
t|ν Ix a, b

F─ t|ν = 12 I x
ν
2,
1
2 , t > 0, t2 ≥ v
1181

 Probability Distribution Functions and Inverses complementary_t_cdf
and

If t2 < ν, the solution space is partitioned into four algorithms as follows: If ν ≥ 64 and t2/ν ≤ 0.1, a Cornish-Fisher
expansion is used to evaluate the distribution function. If ν < 64 and an integer and |t| < 2.0, a trigonometric
series is used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some rearrangement). If ν
< 64 and an integer and |t| ≥ 2.0, a series given by Hill (1970) that converges well for large values of t is used.

For the remaining t2 < ν cases, is calculated using the identity:

where

This function provides higher right tail accuracy for the Student's t distribution.

x = ν
t2 + ν

F─ t|ν = 1 − F─ −t | ν , t ≤ 0, t2 ≥ v

F
─
t|ν

F─(t|ν) = I1−x(
ν
2,
ν
2)

x = t + t2 + ν
2 t2 + ν
1182

 Probability Distribution Functions and Inverses complementary_t_cdf
Figure 20, Plot of Ft (t, df)
1183

 Probability Distribution Functions and Inverses complementary_t_cdf
Example
This example finds the 2-tail probability that a Student’s t random variable exceeds 2.447.

#include <imsls.h>
#include <stdio.h>
int main ()
{

 float t = 2.447, df = 6.0, p;
 p = 2.0*imsls_f_complementary_t_cdf(t,df);
 printf("Pr(|t(%1.0f)| > %4.3f) = %6.4f\n", df, t, p);

}

Output

Pr(|t(6)| > 2.447) = 0.0500
1184

 Probability Distribution Functions and Inverses non_central_t_cdf
non_central_t_cdf
Evaluates the noncentral Student’s t distribution function.

Synopsis
#include <imsls.h>

floatimsls_f_non_central_t_cdf(float t, int df, float delta)

The type double function is imsls_d_non_central_t_cdf.

Required Arguments
float t (Input)

Argument for which the noncentral Student’s t distribution function is to be evaluated.

intdf (Input)
Number of degrees of freedom of the noncentral Student’s t distribution. Argument df must be
greater than or equal to 0.0.

float delta (Input)
The noncentrality parameter.

Return Value
The probability that a noncentral Student’s t random variable takes a value less than or equal to t.

Description
Function imsls_f_non_central_t_cdf evaluates the distribution function F of a noncentral t random vari-
able with df degrees of freedom and noncentrality parameter delta; that is, with v = df, δ = delta, and t0 = t,
1185

 Probability Distribution Functions and Inverses non_central_t_cdf
where Γ(⋅) is the gamma function. The value of the distribution function at the point t0 is the probability that the

random variable takes a value less than or equal to t0.

The noncentral t random variable can be defined by the distribution function above, or alternatively and equiva-
lently, as the ratio of a normal random variable and an independent chi-squared random variable. If w has a
normal distribution with mean δ and variance equal to one, u has an independent chi-squared distribution with v
degrees of freedom, and

then x has a noncentral t distribution with degrees of freedom and noncentrality parameter δ.

The distribution function of the noncentral t can also be expressed as a double integral involving a normal density
function (see, for example, Owen 1962, page 108). The function TNDF uses the method of Owen (1962, 1965),
which uses repeated integration by parts on that alternate expression for the distribution function.

Figure 21, Noncentral Student’s t Distribution Function

F t0 = ∫−∞
t0 vv/2e−δ

2/2

π Γ v / 2 v + x2
v+1 /2∑

i=0

∞ Γ v + i + 1 / 2 δx i 2 / v + x2
i/2

i! dx

x = w / u / v
1186

 Probability Distribution Functions and Inverses non_central_t_cdf
Example
Suppose t is a noncentral t random variable with 6 degrees of freedom and noncentrality parameter 6. In this
example, we find the probability that t is less than 12.0. (This can be checked using the table on page 111 of Owen
1962, with η = 0.866, which yields λ = 1.664.)

#include <imsls.h>
#include <stdio.h>
int main()
{

 int df = 6;
 float t = 12.0, delta = 6.0, p;
 p = imsls_f_non_central_t_cdf(t, df, delta);
 printf("The probability that t is less than %2.0f "

 "is %6.4f.\n", t, p);
}

Output
The probability that T is less than 12.0 is 0.9501
1187

 Probability Distribution Functions and Inverses non_central_t_inv_cdf
non_central_t_inv_cdf
Evaluates the inverse of the noncentral Student’s tdistribution function.

Synopsis
#include <imsls.h>
floatimsls_f_non_central_t_inv_cdf(float p, int df, float delta)

The type double function is imsls_d_non_central_t_inv_cdf.

Required Arguments
floatp (Input)

A Probability for which the inverse of the noncentral Student’s tdistribution function is to be
evaluated.p must be in the open interval (0.0, 1.0).

intdf (Input)
Number of degrees of freedom of the noncentral Student’s t distribution. Argument df must be
greater than or equal to 0.0

float delta (Input)
The noncentrality parameter.

Return Value
The probability that a noncentral Student’s t random variable takes a value less than or equal to t is p.

Description
Function imsls_f_non_central_t_inv_cdf evaluates the inverse distribution function of a noncentral t
random variable with df degrees of freedom and noncentrality parameter delta; that is, with P = p, v = df, and
δ = delta, it determines t0 (= imsls_f_non_central_t_inv_cdf (p, df, delta)), such that
1188

 Probability Distribution Functions and Inverses non_central_t_inv_cdf
where Γ(⋅) is the gamma function. In other words:

The probability that the random variable takes a value less than or equal to t0 is P. See

imsls_f_non_central_t_cdf for an alternative definition in terms of normal and chi-squared random vari-
ables. The function imsls_f_non_central_t_inv_cdf uses bisection and modified regula falsi to invert
the distribution function, which is evaluated using function imsls_f_non_central_t_cdf.

Example
In this example, we find the 95-th percentage point for a noncentral t random variable with 6 degrees of freedom
and noncentrality parameter 6.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int df = 6;
 float p = 0.95, delta = 6.0, t;
 t = imsls_f_non_central_t_inv_cdf(p, df, delta);
 printf("The %4.2f noncentral t critical value is "

 "%6.4f.\n", 1.0-p, t);
}

Output

The 0.05 noncentral t critical value is 11.995.

P = ∫−∞
t0 vv/2e−δ

2/2

π Γ(v / 2)(v + x2)(v+1)/2∑
i=0

∞

Γ((v + i + 1)/2)(δ
i

i!)(
2x2

v + x2
)i/2dx

F−1 = (P∣df ,delta) = x
1189

 Probability Distribution Functions and Inverses non_central_t_pdf
non_central_t_pdf
Evaluates the noncentral Student's t probability density function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_pdf (floatt, floatdf, floatdelta)

The type doublefunction is imsls_d_non_central_t_pdf.

Required Arguments
floatt (Input)

Argument for which the noncentral Student’s t probability density function is to be evaluated.

floatdf (Input)
Number of degrees of freedom of the noncentral Student’s t distribution. df must be greater than 0.

floatdelta (Input)
Noncentrality parameter.

Return Value
The probability density associated with a noncentral Student’s t random variable with value t.

Description
If w is a normally distributed random variable with unit variance and mean δ and u is a chi-square random vari-
able with ν degrees of freedom that is statistically independent of w, then

is a noncentral t-distributed random variable with ν degrees of freedom and noncentrality parameter δ, that
is,with ν = df, and δ = delta. The probability density function for the noncentral t-distribution is:

T = w / u / v
1190

 Probability Distribution Functions and Inverses non_central_t_pdf
where

and t = t.

For δ = 0, the PDF reduces to the (central) Student’s tPDF:

and, for t = 0, the PDF becomes:

Example
This example calculates the noncentral Student’s tPDF for a distribution with 2 degrees of freedom and noncen-
trality parameter δ = 10.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int i;
 float t[] = {-.5, 1.5, 3.5, 7.5, 51.5, 99.5};
 float df = 2.0, delta =10.0, pdfv;
 printf ("\n\n df: %4.0f; delta: %4.0f\n\n", df, delta);
 printf (" t pdf(t)\n");
 for (i=0; i<6; i++) {

 pdfv = imsls_f_non_central_t_pdf(t[i], df, delta);
 printf (" %5.1f %12.4e\n",t[i], pdfv);

 }
}

f t|v,δ = vv/2e−δ
2/2

π Γ v / 2 v + t2
v+1 /2∑

i=0

∞

ϕi

ϕi =
Γ v + i + 1 / 2 δt i 2 / v + t2

i/2

i!

f t|v,0 =
Γ v + 1 / 2 1 + t2 / v

− v+1 /2

vπ Γ v / 2

f 0|v,δ =
Γ v + 1 / 2 e−δ

2/2

vπ Γ v / 2
1191

 Probability Distribution Functions and Inverses non_central_t_pdf
Output

df: 2; delta: 10
 t pdf(t)
 -0.5 1.6399e-024
 1.5 7.4417e-010
 3.5 2.8972e-003
 7.5 7.8853e-002
 51.5 1.4215e-003
 99.5 2.0290e-004
1192

 Probability Distribution Functions and Inverses pareto_cdf
pareto_cdf
Evaluates the Pareto cumulative probability distribution function.

Synopsis
#include <imsls.h>
float imsls_f_pareto_cdf (float x, float xm, float k)

The type double function is imsls_d_pareto_cdf.

Required Arguments
float x (Input)

Argument for which the Pareto distribution function is to be evaluated.

float xm (Input)
The scale parameter.

float k (Input)
The shape parameter.

Return Value
The probability that a Pareto random variable takes a value less than or equal to x. NaN is returned on error.

Description
The imsls_f_pareto_cdf function evaluates the distribution function, F, of a Pareto random variable with
scale parameter xmand shape parameter k. It is given by:

where xm > 0 and k > 0. The function is only defined for x ≥ xm.

F x|xm, k = 1 −
xm
x

k

1193

 Probability Distribution Functions and Inverses pareto_cdf
Example
Suppose X is a Pareto random variable with xm = 0.4 and k = 0.7. The function finds the probability that X is less

than or equal to 0.5.

#include <imsls.h>
#include <stdio.h>
int main(){
 float x = 0.5;
 float xm = 0.4;
 float k = 0.7;
 float pr = 0.0;
 pr = imsls_f_pareto_cdf(x, xm, k);
 printf("Pr(x <= %3.1f) = %6.4f\n", x, pr);
}

Output

Pr(x <= 0.5) = 0.1446
1194

 Probability Distribution Functions and Inverses pareto_pdf
pareto_pdf
Evaluates the Pareto probability density function.

Synopsis
#include <imsls.h>
float imsls_f_pareto_pdf (float x, float xm, float k)

The type double function is imsls_d_pareto_pdf.

Required Arguments
float x (Input)

Argument for which the function is to be evaluated.

float xm (Input)
The scale parameter.

float k (Input)
The shape parameter.

Return Value
The probability density at x. NaN is returned on error.

Description
The probability density function of the Pareto distribution is:

where the scale parameter xm > 0 and the shape parameter k > 0. The function is only defined for x ≥ xm.

f x|xm, k = k x
k
m

xk+1
1195

 Probability Distribution Functions and Inverses pareto_pdf
Example
In this example, we evaluate the Pareto PDF at x = 0.5, xm = 0.4 and k = 0.7.

#include <imsls.h>
#include <stdio.h>
int main(){
 float x = 0.5;
 float xm = 0.4;
 float k = 0.7;
 float pr = 0.0;
 pr = imsls_f_pareto_pdf(x, xm, k);
 printf("The probability density of a Pareto random");
 printf("variable X with\na scale parameter xm = ");
 printf("%3.1f and a shape parameter ", xm);
 printf("k = %3.1f\nand value x = %3.1f is %6.4f.\n",
 k, x, pr);
}

Output

The probability density of a Pareto random variable X with
a scale parameter xm = 0.4 and a shape parameter k = 0.7
and value x = 0.5 is 1.1975.
1196

 Probability Distribution Functions and Inverses max_likelihood_estimates
max_likelihood_estimates
Calculates maximum likelihood estimates (MLE) for the parameters of one of several univariate probability
distributions.

Synopsis
#include <imsls.h>
float*imsls_f_max_likelihood_estimates (int n_observations, float x[], int ipdf, ..., 0)

The type double function is imsls_d_max_likelihood_estimates.

Required Arguments
int n_observations (Input)

Number of observations.

float x[] (Input)
Array of length n_observations containing the data.

int ipdf (Input)
Specifies the probability density function.

Distribution ipdf n_parameters i parameters[i]

Discrete uniform 0 1 0 scale - upper limit

Bernoulli 1 1 0 probability of success (mean)

Binomial (1) 2 1 0 probability of success

Negative binomial (2) 3 1 0 probability of success

Poisson 4 1 0 location (mean) - θ
Geometric 5 1 0 probability of success

Continuous uniform 6 2 0
1

scale - lower boundary
scale - upper boundary

Beta 7 2 0
1

shape - p
shape - q

Exponential 8 1 0 scale - b
1197

 Probability Distribution Functions and Inverses max_likelihood_estimates
Note: 1 - The binomial distribution requires the optional argument IMSLS_NUMBER_OF_TRIALS.

Note: 2 - The negative binomial distribution requires the optional argument
IMSLS_NUMBER_OF_FAILURES.

Return Value
A pointer to an array of length n_parameters containing the parameter values (see ipdf table above).

Gamma 9 2 0
1

shape - k
scale - θ

Weibull 10 2 0
1

scale - λ
shape - k

Rayleigh 11 1 0 scale - α
Extreme value 12 2 0

1
location - μ
scale - σ

Generalized extreme value 13 3 0
1
2

location - μ
scale - σ
shape - β

Pareto 14 2 0
1

scale (lower boundary) xm
shape - k

Generalized Pareto 15 2 0
1

scale - σ
shape - α

Normal 16 2 0
1

location(mean) - μ
scale(variance) - σ2

Log-normal 17 2 0
1

location(mean of log(x)) - μ
scale(variance of log(x)) - σ2

Logistic 18 2 0
1

location(mean) - μ
scale - s

Log-logistic 19 2 0
1

scale(exp(mean)) - eμ
shape - β

Inverse Gaussian 20 2 0
1

location(mean) - μ
shape - λ

Distribution ipdf n_parameters i parameters[i]
1198

 Probability Distribution Functions and Inverses max_likelihood_estimates
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_max_likelihood_estimates (int n_observations, float x[], int ipdf,

IMSLS_PRINT_LEVEL, int iprint,
IMSLS_N_PARAMETERS, int *n_parameters,
IMSLS_NUMBER_OF_TRIALS, int n_trials,
IMSLS_NUMBER_OF_FAILURES, int n_failures,
IMSLS_MLOGLIKE, float *mloglike,
IMSLS_STD_ERRORS, float **se,
IMSLS_STD_ERRORS_USER, float se[],
IMSLS_HESSIAN, float **hess,
IMSLS_HESSIAN_USER, float hess[],
IMSLS_RETURN_USER, float param[],
IMSLS_PARAM_LB, float paramlb[],
IMSLS_PARAM_UB, float paramub[],
IMSLS_INITIAL_ESTIMATES, float initial_estimates[],
IMSLS_XSCALE, float xscale[],
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_MAX_FCN, int maxfcn,
IMSLS_MAX_GRAD, int maxgrad,
0)

Optional Arguments
IMSLS_PRINT_LEVEL, int iprint (Input)

Printing option.

Default: iprint = 0.

IMSLS_N_PARAMETERS, int*n_parameters (Output)
The number of parameters in the distribution specified by ipdf.

iprint Action

0 No printing

1 Print final results only

2 Print intermediate and final results
1199

 Probability Distribution Functions and Inverses max_likelihood_estimates
IMSLS_NUMBER_OF_TRIALS, int n_trials (Input)
The number of trials. n_trials is required for the binomial distribution, (ipdf = 2).

Default: Not used, except for ipdf = 2.

IMSLS_NUMBER_OF_FAILURES, int n_failures (Input)
The number of failures. n_failures is required for the negative binomial distribution, (ipdf = 3).

Default: Not used, except for ipdf = 3.

IMSLS_MLOGLIKE, float *mloglike (Output)
Minus log-likelihood evaluated at the parameter estimates.

IMSLS_STD_ERRORS, float**se (Output)
Address of a pointer to an internally allocated array of length n_parameters containing the stan-
dard errors of the parameter estimates.

IMSLS_STD_ERRORS_USER, float se[] (Output)
Storage for array se is provided by the user. See IMSLS_STD_ERRORS.

IMSLS_HESSIAN, float**hess (Output)
Address of a pointer to an internally allocated array of length n_parameters × n_parameters
containing the Hessian matrix.

IMSLS_HESSIAN_USER, float hess[] (Output)
Storage for array hess is provided by the user. See IMSLS_HESSIAN.

IMSLS_RETURN_USER, float param[] (Output)
User-allocated array of length n_parameters containing the estimated parameters.

IMSLS_PARAM_LB, float paramlb[] (Input)
Array of length n_parameters containing the lower bounds of the parameters.

Note: The following optional arguments are used in cases in which a quasi-Newton method is used to
solve the likelihood problem (ipdf = 7,9,10,12,13,15,18,19).

Exceptions paramlb
Extreme value distribution
(ipdf = 12)

paramlb[1] = 0.25, for the scale
parameter

Generalized Pareto distribution
(ipdf = 15)

paramlb[1] = -5.0, for the shape
parameter

Generalized extreme value distribu-
tion (ipdf = 13)

paramlb[2] = -10.0, for the shape
parameter
1200

 Probability Distribution Functions and Inverses max_likelihood_estimates
Default: The default lower bound depends on the range of the parameter. That is, if the range of the
parameter is positive for the desired distribution, paramlb[i] = 0.01. If the range of the parame-
ter is non-negative (≥ 0), then paramlb[i] = 0.0. If the range of the parameter is unbounded, then
paramlb[i] = -10000.00.

IMSLS_PARAM_UB, float paramub[] (Input)
Array of length n_parameters containing the upper bounds of the parameters.

Default: paramub[i] = 10000.0.

IMSLS_INITIAL_ESTIMATES, float initial_estimates[] (Input)
Array of length n_parameters containing the initial estimates of the parameters.

Default: Method of moments estimates are used for initial estimates.

IMSLS_XSCALE, float xscale[] (Input)
Array of length n_parameters containing the scaling factors for the parameters. xscale is used
in the optimization algorithm in scaling the gradient and the distance between two points.

Default: xscale[i] = 1.0.

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of iterations.

Default: maxit = 100.

IMSLS_MAX_FCN, int maxfcn (Input)
Maximum number of function evaluations.

Default: maxfcn = 400.

IMSLS_MAX_GRAD, int maxgrad (Input)
Maximum number of gradient evaluations.

Default: maxgrad = 400.

Exceptions paramlb
Generalized Pareto distribution
(ipdf = 15)

paramub[1] = -5.0, for the shape
parameter

Generalized extreme value distri-
bution (ipdf = 13)

paramub[2] = -10.0, for the shape
parameter
1201

 Probability Distribution Functions and Inverses max_likelihood_estimates
Description
Function imsls_f_max_likelihood_estimates calculates maximum likelihood estimates for the param-
eters of a univariate probability distribution, where the distribution is one specified by ipdf and where the input
data x is (assumed to be) a random sample from that distribution.

Let {xi, i=1, ..., N} represent a random sample from a probability distribution with density function , which

depends on a vector containing the values of the parameters of the distribution. The values in θ are
fixed but unknown and the problem is to find an estimate for θ given the sample data.

The likelihood function is defined to be the product

The estimator

That is, the estimator that maximizes L also maximizes log L and is the maximum likelihood estimate, or MLE for θ.

The likelihood problem is in general a constrained non-linear optimization problem, where the constraints are
determined by the permissible range of θ. In some situations, the problem has a closed form solution. Otherwise,
imsls_f_max_likelihood_estimates uses a quasi-Newton method to solve the likelihood problem. If
optional argument IMSLS_INITIAL_ESTIMATES is not supplied, method of moments estimates serve as
starting values of the parameters. In some cases, method of moments estimators may not exist, such as when
certain moments of the true distribution do not exist; thus it is possible that the starting values are not truly
method of moments estimates.

Upper and lower bounds, when needed for the optimization, have default values for each selection of ipdf
(defaults will vary depending on the allowable range of the parameters). It is possible that the optimization will
fail. In such cases, the user may try adjusting upper and lower bounds using the optional arguments
IMSLS_PARAM_LB, IMSLS_PARAM_UB, or adjusting up or down the scaling factors using optional argument
IMSLS_XSCALE, which can sometimes help the optimization converge.

f x∣θ
θ∈ ℜp

L(θ | {xi;i = 1, … ,N}) = ∏
i=1,…,N

f (xi | θ)

θ^MLE = arg maxθL(θ | {x1, x2, … , xN)
= arg maxθ ∏

i=1,…,N
f (xi | θ)

= arg maxθ ∑
i=1,…,N

log(f (xi | θ))
1202

 Probability Distribution Functions and Inverses max_likelihood_estimates
Standard errors and covariances are supplied, in most cases, using the asymptotic properties of MLestimators.
Under some general regularity conditions, MLestimates are consistent and asymptotically normally distributed
with variance-covariance equal to the inverse Fisher’s Informationmatrix evaluated at the true value of the param-
eter, θ0:

imsls_f_max_likelihood_estimates approximates the asymptotic variance using the negative inverse
Hessian evaluated at the MLestimate:

The Hessian is approximated numerically for all but a few cases where it can be determined in closed form.

In cases when the asymptotic result does not hold, standard errors may be available from the known sampling
distribution. For example, the MLestimate of the Pareto distribution location parameter is the minimum of the
sample. The variance is estimated using the known sampling distribution of the minimum or first order-statistic
for the Pareto distribution.

For further details regarding the properties of the estimators and the theory of the maximum likelihood method,
see Kendall and Stuart (1979). The different probability distributions have wide coverage in the statistical litera-
ture. See Johnson and Kotz (1970a, 1970b, or later editions).

Parameter estimation (including maximum likelihoood) for the generalized Pareto distribution is studied in Hosk-
ing and Wallis (1987) and Giles and Feng (2009), and estimation for the generalized extreme value distribution is
treated in Hosking, Wallis, and Wood (1985).

Remarks
1. The location parameter is not estimated for the generalized Pareto distribution (ipdf=15). Instead,

the minimum of the sample is subtracted from each observation before the estimation procedure.

2. Only the probability of success parameter is estimated for the binomial and negative binomial distri-
butions, (ipdf = 2,3). The number of trials and the number of failures, respectively, must be
provided using optional arguments IMSLS_NUMBER_OF_TRIALS or
IMSLS_NUMBER_OF_FAILURES.

Var(θ^) = I(θ0)
−1 = − E

∂2logL
∂θ2 θ0

−1

Var(θ^) ≈ −
∂2logL
∂θ2 θ=θ^MLE

−1
1203

 Probability Distribution Functions and Inverses max_likelihood_estimates
3. imsls_f_max_likelihood_estimates issues an error if missing or NaN values are encoun-
tered in the input data. Missing or NaN values should be removed before calling
imsls_f_max_likelihood_estimates.

Examples

Example 1

The data are N= 100 observations generated from the logistic distribution with location parameter and

parameter .

#include <imsls.h>
int main() {

 int ipdf = 18, n_observations = 100;
 float *p_hess, *p_se, *param, mloglike;
 float x[100] = {

 2.020394,2.562315,-0.5453395,1.258546,0.7704533, 0.3662717,
 0.6885536,2.619634,-0.49581,2.972249,0.5356222,0.4262079,
 1.023666,0.8286033,1.319018,2.123659,0.3904647,-0.1196832,
 1.629261,1.069602,0.9438083,1.314796,1.404453,-0.5496156,
 0.8326595,1.570288,1.326737,0.9619384,-0.1795268,1.330161,
 -0.2916453,0.7430826,1.640854,1.582755,1.559261,0.6177695,
 1.739638,1.308973,0.568709,0.2587071,0.745583,1.003815,
 1.475413,1.444586,0.4515438,1.264374,1.788313,1.062330,
 2.126034,0.3626510,1.365612,0.5044735,2.51385,0.7910572,
 0.5932584,1.140248,2.104453,1.345562,-0.9120445,0.0006519341,
 1.049729,-0.8246097,0.8053433,1.493787,-0.5199705,2.285175,
 0.9005916,2.108943,1.40268,1.813626,1.007817,1.925250,1.037391,
 0.6767235,-0.3574937,0.696697,1.104745,-0.7691124,1.554932,
 2.090315,0.60919,0.4949385,-2.449544,0.668952,0.9480486,
 0.9908558,-1.495384,2.179275,0.1858808,-0.3715074,0.1447150,
 0.857202,1.805844,0.405371,1.425935,0.3187476,1.536181,
 -0.6352768,0.5692068,1.706736};

 param = imsls_f_max_likelihood_estimates(n_observations, x, ipdf,
IMSLS_PRINT_LEVEL, 2,

 IMSLS_HESSIAN, &p_hess,
 IMSLS_STD_ERRORS, &p_se,
 IMSLS_MLOGLIKE, &mloglike,
 0);

}

Output

Maximum likelihood estimation for the logistic distribution
Starting Estimates: 0.90677 0.51128
Initial -log-likelihood: 132.75304

-log-likelihood 132.61490

μ = 0.85
σ = 0.5
1204

 Probability Distribution Functions and Inverses max_likelihood_estimates
MLE for parameter 1 0.95321
MLE for parameter 2 0.50953
Std error for parameter 1 0.08825
Std error for parameter 2 0.04354

 Hessian
 1 2

1 -128.5 -7.6
2 -7.6 -527.9

Example 2

The data are N = 100 observations generated from the generalized extreme value distribution with location

parameter , scale parameter , and shape parameter .

#include <imsls.h>
int main() {

 int ipdf = 13, n_observations = 100;
 float *p_hess, *p_se, *param, mloglike;
 float x[100] = {

 0.7688048,0.1944504,-0.2992029,-0.3853738,
 -1.185593,0.3056149,-0.4407711,0.5001115,
 0.3635027,-1.058632,-0.2927695,-0.3205969,
 0.03367599,0.8850839,1.860485,0.4841038,
 0.5421101,1.883694,1.707392,0.2166106,
 1.537204,1.340291,0.4589722,1.616080,
 -0.8389288,0.7057426,1.532988,1.161350,
 0.9475416,0.4995294,-0.2392898,0.8167126,

 0.992479,-0.8357962,-0.3194499,1.233603,
 2.321555,-0.3715629,-0.1735171,0.4624801,
 -0.6249577,0.7040129,-0.3598889,0.7121399,
 -0.5178735,-1.069429,0.7169358,0.4148059,
 1.606248,-0.4640152,1.463425,0.9544342,
 -1.383239,0.1393160,0.622689,0.365793,
 0.7592438,0.810005,0.3483791,2.375727,
 -0.08124195,-0.4726068,0.1496043,0.4961212,
 1.532723,-0.1106993,1.028553,0.856018,
 -0.6634978,0.3573150,0.06391576,0.3760349,
 -0.5998756,0.4158309,-0.2832369,-1.023551,
 1.116887,1.237714,1.900794,0.6010037,
 1.599663,-0.3341879,0.5278575,0.5497694,
 0.6392933,0.592865,1.646261,-1.042950,
 -1.113611,1.229645,1.655998,0.6913992,
 0.4548073,0.4982649,-1.073640,-0.4765107,
 -0.8692533,-0.8316462,-0.03609102,0.655814};

 param = imsls_f_max_likelihood_estimates(n_observations,
 x, ipdf,
 IMSLS_PRINT_LEVEL, 2,
 IMSLS_HESSIAN, &p_hess,
 IMSLS_STD_ERRORS, &p_se,

μ = 0 σ = 1.0 ξ = − 0.25
1205

 Probability Distribution Functions and Inverses max_likelihood_estimates
 IMSLS_MLOGLIKE, &mloglike,
 0);

}

Output

Maximum likelihood estimation for the generalized extreme value distribution
Starting Estimates: -0.00888 0.67451 0.00000
Initial -log-likelihood: 135.43817

-log-likelihood 126.09406
MLE for parameter 1 0.07541
MLE for parameter 2 0.85112
MLE for parameter 3 -0.27974
Std error for parameter 1 0.09419
Std error for parameter 2 0.06906
Std error for parameter 3 0.06603

 Hessian
 1 2 3

1 -141.7 -53.9 -112.4
2 -53.9 -340.8 -239.7
3 -112.4 -239.7 -439.7

Warning Errors
IMSLS_HESSIAN_NOT_CALCULATED The Hessian is not calculated for the requested

distribution.

IMSLS_HESSIAN_NOT_USED The Hessian is not used to calculate the standard errors
of the estimates for the # distribution.

IMSLS_HESSIAN_NOT_CALC_2 For the Pareto distribution, the Hessian cannot be cal-
culated because the parameter estimate is 0.
1206

 Random Number Generation Functions
Random Number Generation

Functions
Univariate Discrete Distributions

Generates pseudorandom binomial numbersrandom_binomial 1215
Generates pseudorandom geometric numbers random_geometric 1218
Generates pseudorandom hypergeometric numbers random_hypergeometric 1220
Generates pseudorandom logarithmic numbersrandom_logarithmic 1223
Generates pseudorandom negative binomial numbersrandom_neg_binomial 1225
Generates pseudorandom Poisson numbers random_poisson 1228
Generates pseudorandom discrete uniform numbers random_uniform_discrete 1230
Generates pseudorandom numbers from

a general discrete distribution . random_general_discrete 1232
Sets up a table to generate pseudorandom numbers from

a general discrete distribution . discrete_table_setup 1237

Univariate Continuous Distributions
Generates pseudorandom beta numbers . random_beta 1243
Generates pseudorandom Cauchy numbers. .random_cauchy 1246
Generates pseudorandom chi_squared numbersrandom_chi_squared 1248
Generates pseudorandom exponential numbers. random_exponential 1250
Generates pseudorandom mixed

exponential numbers. random_exponential_mix 1252
Generates pseudorandom gamma numbers . random_gamma 1255
Generates peudorandom lognormal numbers random_lognormal 1258
Generates pseudorandom normal numbers . random_normal 1261
Generates pseudorandom numbers from a

stable distribution .random_stable 1264
Generates pseudorandom Student’s t . random_student_t 1267
Generates pseudorandom triangular numbers random_triangular 1269
Generates pseudorandom uniform numbers . random_uniform 1271
Generates pseudorandom Von Mises numbers random_von_mises 1274
Generates pseudorandom Weibull numbers . random_weibull 1276
Generates pseudorandom numbers from a general

continuous distribution .random_general_continuous 1279
Sets up table to generate pseudorandom numbers
1207

 Random Number Generation Functions
from a general continuous distribution continuous_table_setup 1282

Multivariate Continuous Distributions
Generates multivariate normal vectors random_normal_multivariate 1286
Generates a pseudorandom orthogonal matrix

or a correlation matrix . random_orthogonal_matrix 1290
Generates pseudorandom numbers from a multivariate distribution

determined from a given sample. random_mvar_from_data 1293
Generates pseudorandom numbers from a

multinomial distribution . random_multinomial 1297
Generates pseudorandom points on a unit circle or

K-dimensional sphere . random_sphere 1300
Generates a pseudorandom two-way table random_table_twoway 1303
Generates multivariate Gaussian Copula vectors random_mvar_gaussian_copula 1306
Generates multivariate Student’s t Copula vectorsrandom_mvar_t_copula 1311
Generates a canonical correlation matrix canonical_correlation 1317

Order Statistics
Generates pseudorandom order statistics from a standard

normal distribution. .random_order_normal 1323
Generates pseudorandom order statistics from a

uniform (0, 1) distribution . random_order_uniform 1326

Stochastic Processes
Generates pseudorandom ARMA

process numbers . random_arma 1329
Generates pseudorandom numbers from a

nonhomogeneous Poisson process . random_npp 1334

Samples and Permutations
Generates a pseudorandom permutation random_permutation 1338
Generates a simple pseudorandom sample of indices random_sample_indices 1340
Generates a simple pseudorandom sample from

a finite population .random_sample 1342

Utility Functions
Selects the uniform (0, 1) generator . random_option 1346
Retrieves the uniform (0, 1) multiplicative congruential

pseudorandom number generator . random_option_get 1348
Retrieves the current value of the seed . random_seed_get 1349
Retrieves a seed for the congruential generatorsrandom_substream_seed_get 1351
Initializes a random seed . random_seed_set 1353
Sets the current table used in the shuffled generato random_table_set 1354
Retrieves the current table used in the shuffled generator random_table_get 1355
Sets the current able used in the GFSR generator random_GFSR_table_set 1357
Retrieves the current table used in the GFSR generator. . . . random_GFSR_table_get 1358
Initializes the 32-bit Mersenne Twister

generator using an array. random_MT32_init 1362
1208

 Random Number Generation Functions
Retrieves the current table used in the 32-bit
Mersenne Twister generator . random_MT32_table_get 1363

Sets the current table used in the 32-bit
Mersenne Twister generator . random_MT32_table_set 1366

Initializes the 64-bit Mersenne Twister
generator using an array. random_MT64_init 1367

Retrieves the current table used in the 64-bit
Mersenne Twister generato . random_MT64_table_get 1368

Sets the current table used in the 64-bit
Mersenne Twister generator . random_MT64_table_set 1371

Low-discrepancy sequence
Generates a shuffled Faure sequence . faure_next_point 1372
1209

 Random Number Generation Usage Notes
Usage Notes

Overview of Random Number Generation
This chapter describes functions for the generation of random numbers that are useful for applications in Monte
Carlo or simulation studies. Before using any of the random number generators, the generator must be initialized
by selecting a seed or starting value. The user can do this by calling the function imsls_random_seed_set. If
the user does not select a seed, one is generated using the system clock. A seed needs to be selected only once
in a program, unless two or more separate streams of random numbers are maintained. Other utility functions in
this chapter can be used to select the form of the basic generator to restart simulations and to maintain separate
simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates”, “deviates”, and “variates” are
used interchangeably. The phrase “pseudorandom” is sometimes used to emphasize that the numbers generated
are really not “random” since they result from a deterministic process. The usefulness of pseudorandom num-
bers is derived from the similarity, in a statistical sense, of samples of the pseudorandom numbers to samples of
observations from the specified distributions. In short, while the pseudorandom numbers are completely deter-
ministic and repeatable, they simulate the realizations of independent and identically distributed random
variables.

Basic Uniform Generators
The random number generators in this chapter use either a multiplicative congruential method or a generalized
feedback shift register. The selection of the type of generator is made by calling the function
imsls_random_option. If no selection is made explicitly, a multiplicative generator (with multiplier 16807) is
used. Whatever distribution is being simulated, uniform (0, 1) numbers are first generated and then transformed
if necessary. These functions are portable in the sense that, given the same seed and for a given type of genera-
tor, they produce the same sequence in all computer/compiler environments. There are many other issues that
must be considered in developing programs for the methods described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators
The form of the multiplicative congruential generators is

xi ≡ cxi−

1

mod (231 - 1)
1210

 Random Number Generation Usage Notes
Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root modulo 231 − 1 (which is a

prime), then the generator will have a maximal period of 231 − 2. There are several other considerations, how-
ever. See Knuth (1981) for a good general discussion. The possible values for c in the generators are 16807,
397204094, and 950706376. The selection is made by the function imsls_random_option. The choice of
16807 will result in the fastest execution time, but other evidence suggests that the performance of 950706376
is best among these three choices (Fishman and Moore 1982). If no selection is made explicitly, the functions use
the multiplier 16807, which has been in use for some time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function imsls_f_random_uniform. This function is
portable in the sense that, given the same seed, it produces the same sequence in all computer/compiler
environments.

Shuffled Generators
The user also can select a shuffled version of these generators using imsls_random_option. The shuffled gen-
erators use a scheme due to Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128
uniform (0,1) numbers resulting from the simple multiplicative congruential generator. Then, for each xi from the

simple generator, the low-order bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in

the table is then delivered as the random number; and xi, after being scaled into the unit interval, is inserted into

the j-th position in the table. This scheme is similar to that of Bays and Durham (1976), and their analysis is appli-
cable to this scheme as well.

The Generalized Feedback Shift Register Generator
The GFSR generator uses the recursion Xt = Xt−1563 ⊕ Xt−96. This generator, which is different from earlier GFSR

generators, was proposed by Fushimi (1990), who discusses the theory behind the generator and reports on sev-
eral empirical tests of it. Background discussions on this type of generator can be found in Kennedy and Gentle
(1980), pages 150−162.

Setting the Seed
The seed of the generator can be set in imsls_random_seed_set and can be retrieved by
imsls_random_seed_get. Prior to invoking any generator in this section, the user can call
imsls_random_seed_set to initialize the seed, which is an integer variable with a value between 1 and
2147483647. If it is not initialized by imsls_random_seed_set, a random seed is obtained from the system
clock. Once it is initialized, the seed need not be set again.
1211

 Random Number Generation Usage Notes
If the user wants to restart a simulation, imsls_random_seed_get can be used to obtain the final seed value
of one run to be used as the starting value in a subsequent run. Also, if two simultaneous random number
streams are desired in one run, imsls_random_seed_set and imsls_random_seed_get can be used
before and after the invocations of the generators in each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting the seed, the user must also reset
some values in a table. For the shuffled generators, this is done using the functions
imsls_f_random_table_get and imsls_f_random_table_set; and for the GFSR generator; the table is
retrieved and set by the functions imsls_random_GFSR_table_get and imsls_random_GFSR_table_set.
The tables for the shuffled generators are separate for single and double precision; so, if precisions are mixed in
a program, it is necessary to manage each precision separately for the shuffled generators.

Timing Considerations
The generation of the uniform (0,1) numbers is done by the function imsls_f_random_uniform. The particular
generator selected in imsls_random_option, that is, the value of the multiplier and whether shuffling is done
or whether the GFSR generator is used, affects the speed of imsls_f_random_uniform. The smaller multi-
plier (16807, selected by iopt = 1) is faster than the other multipliers. The multiplicative congruential generators
that do not shuffle are faster than the ones that do. The GFSR generator is roughly as fast as the fastest multipli-
cative congruential generator, but the initialization for it (required only on the first invocation) takes longer than
the generation of thousands of uniform random numbers. Precise statements of relative speeds depend on the
computing system.

Distributions Other than the Uniform
The nonuniform generators use a variety of transformation procedures. All of the transformations used are exact
(mathematically). The most straightforward transformation is the inverse CDF technique, but it is often less efficient
than others involving acceptance/rejection and mixtures. See Kennedy and Gentle (1980) for discussion of these
and other techniques.

Many of the nonuniform generators in this chapter use different algorithms depending on the values of the
parameters of the distributions. This is particularly true of the generators for discrete distributions. Schmeiser
(1983) gives an overview of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on different computers, because of
rounding, the nonuniform generators that use acceptance/rejection may occasionally produce different
sequences on different computer/compiler environments.
1212

 Random Number Generation Usage Notes
Although the generators for nonuniform distributions use fast algorithms, if a very large number of deviates from
a fixed distribution are to be generated, it might be worthwhile to consider a table-sampling method, as imple-
mented in the functions imsls_f_random_general_discrete, imsls_f_discrete_table_setup,
imsls_f_random_general_continuous, and imsls_f_continuous_table_setup. After an initialization
stage, which may take some time, the actual generation may proceed very fast.

Tests
Extensive empirical tests of some of the uniform random number generators available in
imsls_f_random_uniform are reported by Fishman and Moore (1982 and 1986). Results of tests on the gen-
erator using the multiplier 16807 with and without shuffling are reported by Learmonth and Lewis (1973b). If the
user wishes to perform additional tests, the functions in Chapter 7, Tests of Goodness of Fit, may be of use. Often
in Monte Carlo applications, it is appropriate to construct an ad hoc test that is sensitive to departures that are
important in the given application. For example, in using Monte Carlo methods to evaluate a one-dimensional
integral, autocorrelations of order one may not be harmful, but they may be disastrous in evaluating a two-
dimensional integral. Although generally the functions in this chapter for generating random deviates from non-
uniform distributions use exact methods, and, hence, their quality depends almost solely on the quality of the
underlying uniform generator, it is often advisable to employ an ad hoc test of goodness of fit for the transforma-
tions that are to be applied to the deviates from the nonuniform generator.

Copula Generators and Canonical Correlation
A copula is a multivariate cumulative probability distribution (CDF) whose arguments are random variables uni-
formly distributed on the interval [0, 1] corresponding to the probabilities (variates) associated with arbitrarily
distributed marginal deviates. The copula structure allows the multivariate CDF to be partitioned into the copula,
which has associated with it information characterizing the dependence among the marginal variables, and the
set of separate marginal deviates, each of which has its own distribution structure.

Two functions, imsls_f_random_mvar_gaussian_copula and imsls_f_random_mvar_t_copula, allow
the user to specify a correlation structure (in the form of a Cholesky matrix) which can be used to imprint correla-
tion information on a sequence of multivariate random vectors. Each call to one of these functions returns a
random vector whose elements (variates) are each uniformly distributed on the interval [0, 1] and correlated
according to a user-specified Cholesky matrix. These variate vector sequences may then be inverted to marginal
deviate sequences whose distributions and imprinted correlations are user-specified.

Function imsls_f_random_mvar_gaussian_copula generates a random Gaussian copula vector by
inverting a vector of uniform [0, 1] random numbers to an N(0, 1) deviate vector, imprinting the N(0,1) vector with
the correlation information by multiplying it with the Cholesky matrix, and then using the N(0,1) CDF to map the
Cholesky-imprinted deviate vector back to a vector of imprinted uniform [0, 1] variates.
1213

 Random Number Generation Usage Notes
Function imsls_f_random_mvar_t_copula inverts a vector of uniform [0, 1] random numbers to an
N(0, 1) deviate vector, imprints the vector with correlation information by multiplying it with the Cholesky matrix,
transforms the imprinted N(0, 1) vector to an imprinted Student’s t vector (where each element is Student’s t dis-

tributed with degrees of freedom) by dividing each element of the imprinted N(0, 1) vector by , where s is

a random deviate taken from a chi-squared distribution with degrees of freedom, and finally maps each ele-
ment of the resulting imprinted Student’s t vector back to a uniform [0, 1] distributed variate using the Student’s t
CDF.

The third copula function, imsls_f_canonical_correlation, extracts a “canonical correlation” matrix
from a sequence of multivariate deviate vectors whose component marginals are arbitrarily distributed. This is
accomplished by first extracting the empirical CDF from each of the marginal deviate sequences and then using
this empirical CDF to map the deviates to uniform [0, 1] variates which are then inverted to N(0, 1) deviates. Each
element Ci j of the canonical correlation matrix can then be extracted by averaging the products zit zjt of N(0, 1)

deviates i and j over the t-indexed sequence. The utility of function imsls_f_canonical_correlation is
that because the canonical correlation matrix is derived from N(0, 1) deviates, the correlation is unbiased, i.e.
undistorted by the arbitrary marginal distribution structures of the original deviate vector sequences. This is
important in such financial applications as portfolio optimization, where correlation is used to estimate and mini-
mize risk.

Additional Notes on Usage

The generators for continuous distributions are available in both single and double-precision versions. This is
merely for the convenience of the user; the double-precision versions should not be considered more “accurate,”
except possibly for the multivariate distributions.

v s v

v

1214

 Random Number Generation random_binomial
random_binomial
Generates pseudorandom numbers from a binomial distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_binomial(int n_random, int n, float p, …, 0)

The type double function is imsls_d_random_binomial.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial. Parameter p must be greater than 0.0 and less than 1.0.

Return Value
An integer array of length n_random containing the random binomial deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_binomial (int n_random, int n, float p,

IMSLS_RETURN_USER, int ir[],
0)
1215

 Random Number Generation random_binomial
Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random binomial deviates.

Description
Function imsls_f_random_binomial generates pseudorandom numbers from a binomial distribution with
parameters n and p. Parameters n and p must be positive, and p must less than 1. The probability function (with
n = n and p = p) is

for x = 0, 1, 2, …, n.

The algorithm used depends on the values of n and p. If np < 10 or p is less than machine epsilon (see
imsls_f_machine, Chapter 15, Utilities), the inverse CDF technique is used; otherwise, the BTPE algorithm of
Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection method
using a composition of four regions. (TPE=Triangle, Parallelogram, Exponential, left and right.)

Example
In this example, imsls_f_random_binomial generates five pseudorandom binomial deviates from a bino-
mial distribution with parameters 20 and 0.5.

#include <imsls.h>
int main()
{
 int n_random = 5;
 int n = 20;
 float p = 0.5;
 int *ir;
 imsls_random_seed_set(123457);
 ir = imsls_f_random_binomial(n_random, n, p,
 0);
 imsls_i_write_matrix("Binomial (20, 0.5) random deviates:", 1,
 n_random, ir,
 IMSLS_NO_COL_LABELS,
 0);
}

f x =
n
x px 1 − p n−x
1216

 Random Number Generation random_binomial
Output

Binomial (20, 0.5) random deviates:
 14 9 12 10 12
1217

 Random Number Generation random_geometric
random_geometric
Generates pseudorandom numbers from a geometric distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_geometric(int n_random, float p, …, 0)

The type double function is imsls_d_random_geometric.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float p (Input)
Probability of success on each trial. Parameter p must be positive and less than 1.0.

Return Value
An integer array of length n_random containing the random geometric deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_geometric (int n_random, float p,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random geometric deviates.
1218

 Random Number Generation random_geometric
Description
Function imsls_f_random_geometric generates pseudorandom numbers from a geometric distribution
with parameter P, where P is the probability of getting a success on any trial. A geometric deviate can be inter-
preted as the number of trials until the first success (including the trial in which the first success is obtained). The
probability function is

for x = 1, 2, … and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than (log (Ui))/(log (1 − P)), where the Ui

are independent uniform(0, 1) random numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P. Such deviates can be obtained by
subtracting 1 from each element of ir (the returned vector of random deviates).

Example
In this example, imsls_f_random_geometric generates five pseudorandom geometric deviates from a
geometric distribution with parameter an equal to 0.3.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float p = 0.3;
 int *ir;
 imsls_random_seed_set(123457);
 ir = imsls_f_random_geometric(n_random, p,
 0);
 imsls_i_write_matrix("Geometric(0.3) random deviates:", 1, n_random,
 ir,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

Geometric(0.3) random deviates:
 1 4 1 2 1

f x = P 1 − P x−1
1219

 Random Number Generation random_hypergeometric
random_hypergeometric
Generates pseudorandom numbers from a hypergeometric distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_hypergeometric(int n_random, int n, int m, int l, …, 0)

The type double function is imsls_d_random_hypergeometric.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int n (Input)
Number of items in the sample. Parameter n must be positive.

int m (Input)
Number of special items in the population, or lot. Parameter m must be positive.

int l (Input)
Number of items in the lot. Parameter l must be greater than both n and m.

Return Value
An integer array of length n_random containing the random hypergeometric deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_hypergeometric (int n_random, int n, int m, int l,

IMSLS_RETURN_USER, int ir[],
0)
1220

 Random Number Generation random_hypergeometric
Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random hypergeometric deviates.

Description
Function imsls_f_random_hypergeometric generates pseudorandom numbers from a hypergeometric
distribution with parameters N, M, and L. The hypergeometric random variable X can be thought of as the num-
ber of items of a given type in a random sample of size N that is drawn without replacement from a population of
size L containing M items of this type. The probability function is

for x = max (0, N − L + M), 1, 2, …, min (N, M)

If the hypergeometric probability function with parameters N, M, and L evaluated at N − L + M (or at 0 if this is
negative) is greater than the machine epsilon (see imsls_f_machine, Chapter 15, Utilities), and less than 1.0
minus the machine epsilon, then imsls_f_random_hypergeometric uses the inverse CDF technique. The
function recursively computes the hypergeometric probabilities, starting at x = max (0, N − L + M) and using the
ratio

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, the
imsls_f_random_hypergeometric generates integer deviates uniformly in the interval [1, L − i] for
i = 0, 1, ..., and at the i-th step, if the generated deviate is less than or equal to the number of special items
remaining in the lot, the occurrence of one special item is tallied and the number of remaining special items is
decreased by one. This process continues until the sample size of the number of special items in the lot is
reached, whichever comes first. This method can be much slower than the inverse CDF technique. The timing
depends on N. If N is more than half of L (which in practical examples is rarely the case), the user may wish to
modify the problem, replacing N by L − N, and to consider the generated deviates to be the number of special
items not included in the sample.

f x =

M
x

L − M
N − x
L
N

f X = x + 1
f X = x
1221

 Random Number Generation random_hypergeometric
Example
In this example, imsls_f_random_hypergeometric generates five pseudorandom hypergeometric devi-
ates from a hypergeometric distribution to simulate taking random samples of size 4 from a lot containing 20
items, of which 12 are defective. The resulting hypergeometric deviates represent the numbers of defectives in
each of the five samples of size 4.

#include <imsls.h>
int main()
{
 int n_random = 5;
 int n = 4;
 int m = 12;
 int l = 20;
 int *ir;
 imsls_random_seed_set(123457);
 ir = imsls_f_random_hypergeometric(n_random, n, m, l,
 0);
 imsls_i_write_matrix("Hypergeometric random deviates: ", 1,
 n_random, ir,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

Hypergeometric random deviates:
 4 2 3 3 3

Fatal Errors
IMSLS_LOT_SIZE_TOO_SMALL The lot size must be greater than the sample size

and the number of defectives in the lot. Lot size = #.
Sample size = #. Number of defectives in the lot = #.
1222

 Random Number Generation random_logarithmic
random_logarithmic
Generates pseudorandom numbers from a logarithmic distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_logarithmic(int n_random, float a, …, 0)

The type double function is imsls_d_random_logarithmic.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float a (Input)
Parameter of the logarithmic distribution. Parameter a must be positive and less than 1.0.

Return Value
An integer array of length n_random containing the random logarithmic deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_logarithmic (int n_random, float a,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random logarithmic deviates.
1223

 Random Number Generation random_logarithmic
Description
Function imsls_f_random_logarithmic generates pseudorandom numbers from a logarithmic distribu-
tion with parameter a. The probability function is

for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. If a is less than 0.95, Kemp’s algo-
rithm LS, which is a “chop-down” variant of an inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK,
which gives special treatment to the highly probable values of 1 and 2 is used.

Example
In this example, imsls_f_random_logarithmic generates five pseudorandom logarithmic deviates from a
logarithmic distribution with parameter a equal to 0.3.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float a = 0.3;
 int *ir;
 imsls_random_seed_set(123457);
 ir = imsls_f_random_logarithmic(n_random, a,
 0);
 imsls_i_write_matrix("logarithmic random deviates:", 1, n_random, ir,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

logarithmic random deviates:
 2 1 1 1 2

f x = − ax
x ln 1 − a
1224

 Random Number Generation random_neg_binomial
random_neg_binomial
Generates pseudorandom numbers from a negative binomial distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_neg_binomial(int n_random, float rk, float p, …, 0)

The type double function is imsls_d_random_neg_binomial.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float rk (Input)
Negative binomial parameter. Parameter rk must be positive. If rk is an integer, the generated devi-
ates can be thought of as the number of failures in a sequence of Bernoulli trials before rk
successes occur.

float p (Input)
Probability of failure on each trial. Parameter p must be greater than machine epsilon (see
imsls_f_machine, Chapter 15, Utilities) and less than 1.0.

Return Value
An integer array of length n_random containing the random negative binomial deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_neg_binomial (int n_random, float rk, float p,

IMSLS_RETURN_USER, int ir[],
0)
1225

 Random Number Generation random_neg_binomial
Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random negative binomial deviates.

Description
Function imsls_f_random_neg_binomial generates pseudorandom numbers from a negative binomial
distribution with parameters rk and p. Parameters rk and p must be positive and p must be less than 1. The
probability function (with r = rk and p = p) is

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can be thought of as modeling the
length of a sequence of Bernoulli trials until r successes are obtained, where p is the probability of getting a fail-
ure on any trial. In this form, the random variable takes values r, r + 1, r + 2, … and can be obtained from the
negative binomial random variable defined above by adding r to the negative binomial variable. This latter form is
also equivalent to the sum of r geometric random variables defined as taking values 1, 2, 3, ...

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon,
imsls_f_random_neg_binomial uses the inverse CDF technique; otherwise, for each negative binomial
deviate, imsls_f_random_neg_binomial generates a gamma (r, p/(1 − p)) deviate Y and then generates a
Poisson deviate with parameter Y.

Example
In this example, imsls_f_random_neg_binomial generates five pseudorandom negative binomial devi-
ates from a negative binomial (Pascal) distribution with parameters r equal to 4 and p equal to 0.3.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float rk = 4.0;
 float p = 0.3;
 int *ir;
 imsls_random_seed_set(123457);
 ir = imsls_f_random_neg_binomial(n_random, rk, p,
 0);

f x = r + x − 1
x 1 − p rpx
1226

 Random Number Generation random_neg_binomial
 imsls_i_write_matrix(
 "Negative Binomial (4.0, 0.3) random deviates: ", 1, n_random,
 ir,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

Negative Binomial (4.0, 0.3) random deviates:
 5 1 3 2 3
1227

 Random Number Generation random_poisson
random_poisson

more...

Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <imsls.h>
int *imsls_random_poisson(int n_random, float theta, …, 0)

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
An array of length n_random containing the random Poisson deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_poisson (int n_random, float theta,

IMSLS_RETURN_USER, int r[],
0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length n_random containing the random Poisson deviates.
1228

 Random Number Generation random_poisson
Description
Function imsls_random_poisson generates pseudorandom numbers from a Poisson distribution with pos-
itive mean theta. The probability function (with θ = theta) is

If theta is less than 15, imsls_random_poisson uses an inverse CDF method; otherwise, the PTPE method
of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used. The PTPE method uses a composi-
tion of four regions, a triangle, a parallelogram, and two negative exponentials. In each region except the triangle,
acceptance/rejection is used. The execution time of the method is essentially insensitive to the mean of the
Poisson.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.

Example
In this example, imsls_random_poisson is used to generate five pseudorandom deviates from a Poisson
distribution with mean equal to 0.5.

#include <imsls.h>
#define N_RANDOM 5
int main()
{
 int *r;
 int seed = 123457;
 float theta = 0.5;
 imsls_random_seed_set (seed);
 r = imsls_random_poisson (N_RANDOM, theta, 0);
 imsls_i_write_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM, r, 0);
}

Output

Poisson(0.5) random deviates
 1 2 3 4 5
 2 0 1 0 1

f x = e−θθx / x! for x = 0,1,2, …
1229

 Random Number Generation random_uniform_discrete
random_uniform_discrete
Generates pseudorandom numbers from a discrete uniform distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_uniform_discrete(int n_random, int k, …, 0)

The type double function is imsls_d_random_uniform_discrete.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int k (Input)
Parameter of the discrete uniform distribution. The integers 1, 2, ..., k occur with equal probability.
Parameter k must be positive.

Return Value
An integer array of length n_random containing the random discrete uniform deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_uniform_discrete (int n_random, int k,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random discrete uniform deviates.
1230

 Random Number Generation random_uniform_discrete
Description
Function imsls_f_random_uniform_discrete generates pseudorandom numbers from a uniform dis-
crete distribution over the integers 1, 2, ...k. A random integer is generated by multiplying k by a uniform (0, 1)
random number, adding 1.0, and truncating the result to an integer. This, of course, is equivalent to sampling with
replacement from a finite population of size k.

Example
In this example, imsls_f_random_uniform_discrete generates five pseudorandom discrete uniform
deviates from a discrete uniform distribution over the integers 1 to 6.

#include <imsls.h>
int main()
{
 int n_random = 5;
 int k = 6;
 int *ir;
 imsls_random_seed_set(123457);
 ir = imsls_f_random_uniform_discrete(n_random, k,
 0);
 imsls_i_write_matrix("Discrete uniform (1, 6) random deviates:" , 1,
 n_random, ir,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

Discrete uniform (1, 6) random deviates:
 6 2 5 4 6
1231

 Random Number Generation random_general_discrete
random_general_discrete
Generates pseudorandom numbers from a general discrete distribution using an alias method or optionally a
table lookup method.

Synopsis
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int nmass,

float probs[], …, 0)

The type double function is imsls_d_random_general_discrete.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int imin (Input)
Smallest value the random deviate can assume.

This is the value corresponding to the probability in probs[0].

int nmass (Input)
Number of mass points in the discrete distribution.

float probs[] (Input)
Array of length nmass containing probabilities associated with the individual mass points. The ele-
ments of probs must be nonnegative and must sum to 1.0.

If the optional argument IMSLS_TABLE is used, then probs is a vector of length at least
nmass + 1 containing in the first nmass positions the cumulative probabilities and, possibly, indexes
to speed access to the probabilities. IMSL function imsls_f_discrete_table_setup can be used
to initialize probs properly. If no elements of probs are used as indexes, probs [nmass] is 0.0 on
input. The value in probs[0] is the probability of imin. The value in probs [nmass-1] must be
exactly 1.0 (since this is the CDF at the upper range of the distribution.)
1232

 Random Number Generation random_general_discrete
Return Value
An integer array of length n_random containing the random discrete deviates. To release this space, use
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int nmass, float probs[],

IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk,
IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[],
IMSLS_SET_INDEX_VECTORS, int iwk[], float wk[],
IMSLS_RETURN_USER, int ir[],
IMSLS_TABLE,
0)

Optional Arguments
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk (Output)

Retrieve indexing vectors that can be used to increase efficiency when multiple calls will be made to
imsls_f_random_general_discrete with the same values in probs.

IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[] (Output)
User-supplied arrays of length nmass used to retrieve indexing vectors that can be used to increase
efficiency when multiple calls will be made to imsls_f_random_general_discrete with the
same values in probs.

IMSLS_SET_INDEX_VECTORS, int *iwk, float *wk (Input)
Arrays of length nmass that can be used to increase efficiency when multiple calls will be made to
imsls_f_random_general_discrete with the same values in probs. These arrays are
obtained by using one of the options IMSLS_GET_INDEX_VECTORS or
IMSLS_GET_INDEX_VECTORS_USER in the first call to
imsls_f_random_general_discrete.

IMSLS_TABLE, (Input)
Generate pseudorandom numbers from a general discrete distribution using a table lookup method.
If this option is used, then probs is a vector of length at least nmass + 1 containing in the first
nmass positions the cumulative probabilities and, possibly, indexes to speed access to the
probabilities.
1233

 Random Number Generation random_general_discrete
IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of length n_random containing the random discrete deviates.

Description
Function imsls_f_random_general_discrete generates pseudorandom numbers from a discrete dis-
tribution with probability function given in the vector probs; that is

Pr(X = i) = pj

for i = imin, imin + 1, …, imin + nm - 1 where j = i - imin + 1, pj = probs[j-1], imin = imin, and nm = nmass.

The algorithm is the alias method, due to Walker (1974), with modifications suggested by Kronmal and Peterson
(1979). The method involves a setup phase, in which the vectors iwk and wk are filled. After the vectors are filled,
the generation phase is very fast. To increase efficiency, the first call to
imsls_f_random_general_discrete can retrieve the arrays iwk and wk using the optional arguments
IMSLS_GET_INDEX_VECTORS or IMSLS_GET_INDEX_VECTORS_USER , then subsequent calls can be
made using the optional argument IMSLS_SET_INDEX_VECTORS.

If the optional argument IMSLS_TABLE is used, imsls_f_random_general_discrete generates pseu-
dorandom deviates from a discrete distribution, using the table probs, which contains the cumulative
probabilities of the distribution and, possibly, indexes to speed the search of the table. The function
imsls_f_discrete_table_setup can be used to set up the table probs.
imsls_f_random_general_discrete uses the inverse CDF method to generate the variates.

Examples

Example 1

In this example, imsls_f_random_general_discrete is used to generate five pseudorandom variates
from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

When imsls_f_random_general_discrete is called the first time, IMSLS_GET_INDEX_VECTORS is
used to initialize the index vectors iwk and wk. In the next call, IMSLS_GET_INDEX_VECTORS is used, so the
setup phase is bypassed.
1234

 Random Number Generation random_general_discrete
#include <imsls.h>
int main()
{
 int nr = 5, nmass = 5, iopt = 0, imin = 1, *iwk, *ir;
 float probs[] = {.05, .45, .31, .04, .15};
 float *wk;
 imsls_random_seed_set(123457);
 ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
 IMSLS_GET_INDEX_VECTORS, &iwk, &wk,
 0);
 imsls_i_write_matrix("Random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);
 imsls_free(ir);
 ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
 IMSLS_SET_INDEX_VECTORS, iwk, wk,
 0);
 imsls_i_write_matrix("Random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 Random deviates
3 2 2 3 5
 Random deviates
1 3 4 5 3

Example 2

In this example, imsls_f_discrete_table_setup is used to set up a table and then
imsls_f_random_general_discrete is used to generate five pseudorandom variates from the binomial
distribution with parameters 20 and 0.5.

#include <imsls.h>
#include <stdlib.h>
float prf(int ix);
int main()
{
 int nndx = 12, imin = 0, nmass = 21, nr = 5;
 float del = 0.00001, *cumpr;
 int *ir = NULL;
1235

 Random Number Generation random_general_discrete
 cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin,
 &nmass,
 0);
 imsls_random_seed_set(123457);
 ir = imsls_f_random_general_discrete(nr, imin, nmass, cumpr,
 IMSLS_TABLE,
 0);
 imsls_i_write_matrix("Binomial (20, 0.5) random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);
}
float prf(int ix)
{
 int n = 20;
 float p = .5;
 return imsls_f_binomial_pdf (ix, n, p);
}

Output

Binomial (20, 0.5) random deviates
 14 9 12 10 12
1236

 Random Number Generation discrete_table_setup
discrete_table_setup
Sets up table to generate pseudorandom numbers from a general discrete distribution.

Synopsis
#include <imsls.h>
float *imsls_f_discrete_table_setup (float prf(), float del, int nndx, int *imin,

int *nmass, ..., 0)

The type double function is imsls_d_discrete_table_setup.

Required Arguments
float prf(int ix) (Input)

User-supplied function to compute the probability associated with each mass point of the distribu-
tion The argument to the function is the point at which the probability function is to be evaluated. ix
can range from imin to the value at which the cumulative probability is greater than or equal to 1.0
- del.

float del (Input)
Maximum absolute error allowed in computing the cumulative probability. Probabilities smaller than
del are ignored; hence, del should be a small positive number. If del is too small, however, the
return value, cumpr [nmass-1] must be exactly 1.0 since that value is compared to 1.0 - del.

int nndx (Input)
The number of elements of cumpr available to be used as indexes. nndx must be greater than or
equal to 1. In general, the larger nndx is, to within sixty or seventy percent of nmass, the more effi-
cient the generation of random numbers using imsls_f_random_general_discrete will be.

int *imin (Input/Output)
Pointer to a scalar containing the smallest value the random deviate can assume. (Input/Output)
imin is not used if optional argument IMSLS_INDEX_ONLY is used. By default, prf is evaluated
at imin. If this value is less than del, imin is incremented by 1 and again prf is evaluated at
imin. This process is continued until prf(imin) ≥ del. imin is output as this value and the
return value cumpr [0] is output as prf(imin).
1237

 Random Number Generation discrete_table_setup
int *nmass (Input/Output)
Pointer to a scalar containing the number of mass points in the distribution. Input, if
IMSLS_INDEX_ONLY is used; otherwise, output.
By default, nmass is the smallest integer such that prf(imin + nmass - 1) > 1.0 - del. nmass
does include the points iminin + j for which prf(iminin + j) < del, for j = 0, 1, ..., iminout -
iminin, where iminin denotes the input value of imin and iminout denotes its output value.

Return Value
Array, cumpr, of length nmass + nndx containing in the first nmass positions, the cumulative probabilities and
in some of the remaining positions, indexes to speed access to the probabilities. To release this space, use
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_discrete_table_setup(float prf(), float del, int nndx, int *imin,

int *nmass,
IMSLS_INDEX_ONLY,
IMSLS_RETURN_USER, float cumpr[], int lcumpr,
IMSLS_FCN_W_DATA, float prf(), void *data,
0)

Optional Arguments
IMSLS_INDEX_ONLY, (Input)

Fill only the index portion of the result, cumpr, using the values in the first nmass positions. prf is
not used and may be a dummy function; also, imin is not used. The optional argument
IMSLS_RETURN_USER is required if IMSLS_INDEX_ONLY is used.

IMSLS_RETURN_USER, float cumpr[], int lcumpr (Input/Output)
cumpr is a user-allocated array of length nmass + nndx containing in the first nmass positions, the
cumulative probabilities and in some of the remaining positions, indexes to speed access to the
probabilities. lcumpr is the actual length of cumpr as specified in the calling function. Since, by
default, the logical length of cumpr is determined in imsls_f_discrete_table_setup,
lcumpr is used for error checking. If the option IMSLS_INDEX_ONLY is used, then only the index
portion of cumpr is filled.
1238

 Random Number Generation discrete_table_setup
IMSLS_FCN_W_DATA, float prf(int ix), void *data (Input)
User-supplied function to compute the probability associated with each mass point of the distribu-
tion, which also accepts a pointer to data that is supplied by the user. data is a pointer to the data to
be passed to the user-supplied function. See the Passing Data to User-Supplied Functions section at
the beginning of this manual for more details.

Description
Function imsls_f_discrete_table_setup sets up a table that function
imsls_f_random_general_discrete uses to generate pseudorandom deviates from a discrete distribution.
The distribution can be specified either by its probability function prf or by a vector of values of the cumulative
probability function. Note that prf is not the cumulative probability distribution function. If the cumulative prob-
abilities are already available in cumpr, the only reason to call imsls_f_discrete_table_setup is to
form an index vector in the upper portion of cumpr so as to speed up the generation of random deviates by the
function imsls_f_random_general_discrete.

Examples

Example 1

In this example, imsls_f_discrete_table_setup is used to set up a table to generate pseudorandom
variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly in cumpr and request 3 indexes to be com-
puted (nndx = 4). Since the number of mass points is so small, the indexes would not have much effect on the
speed of the generation of the random variates.

#include <imsls.h>
#include <stdlib.h>
float prf(int ix);
int main()
{
 int i, lcumpr = 9, ir[5];
 int nndx = 4, imin = 1, nmass = 5, nr = 5;
1239

 Random Number Generation discrete_table_setup
 float cumpr[9], del = 0.00001, *p_cumpr = NULL;
 i = 0;
 cumpr[i++] = .05;
 cumpr[i++] = .5;
 cumpr[i++] = .81;
 cumpr[i++] = .85;
 cumpr[i++] = 1.0;
 imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass,
 IMSLS_INDEX_ONLY,
 IMSLS_RETURN_USER, cumpr, lcumpr,
 0);
 imsls_f_write_matrix("Cumulative probabilities and indexes",
 1, lcumpr, cumpr,
 0);
}
float prf(int ix)
{
 return 0.;
}

Output

 Cumulative probabilities and indexes
 1 2 3 4 5 6
 0.05 0.50 0.81 0.85 1.00 3.00
 7 8 9
 1.00 2.00 5.00

Example 2

This example, imsls_f_random_general_discrete is used to set up a table to generate binomial vari-
ates with parameters 20 and 0.5. The function imsls_f_binomial_pdf (Chapter 11, Probability Distribution
Functions and Inverses) is used to compute the probabilities.

#include <stdio.h>
#include <imsls.h>
float prf(int ix);
int main()
{
 int lcumpr = 33;
 int nndx = 12, imin = 0, nmass = 21, nr = 5;
 float del = 0.00001, *cumpr;
 int *ir = NULL;

 cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);
 printf("The smallest point with positive probability using \n");
 printf("the given del is %d and all points after \n", imin);
 printf("point number %d (counting from the input value\n", nmass);
1240

 Random Number Generation discrete_table_setup
 printf("of IMIN) have zero probability.\n");
 imsls_f_write_matrix("Cumulative probabilities and indexes",
 nmass+nndx, 1, cumpr,
 IMSLS_WRITE_FORMAT, "%11.7f", 0);
}
float prf(int ix)
{
 int n = 20;
 float p = .5;
 return imsls_f_binomial_pdf(ix, n, p);
}

Output

The smallest point with positive probability using
the given del is 1 and all points after
point number 19 (counting from the input value
of IMIN) have zero probability.
Cumulative probabilities and indexes
 1 0.0000191
 2 0.0002003
 3 0.0012875
 4 0.0059080
 5 0.0206938
 6 0.0576583
 7 0.1315873
 8 0.2517219
 9 0.4119013
 10 0.5880987
 11 0.7482781
 12 0.8684127
 13 0.9423417
 14 0.9793062
 15 0.9940920
 16 0.9987125
 17 0.9997997
 18 0.9999809
 19 1.0000000
 20 11.0000000
 21 1.0000000
 22 7.0000000
 23 8.0000000
 24 9.0000000
 25 9.0000000
 26 10.0000000
 27 11.0000000
 28 11.0000000
 29 12.0000000
 30 13.0000000
 31 19.0000000
1241

 Random Number Generation discrete_table_setup
Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm.
User flag = "#".
1242

 Random Number Generation random_beta
random_beta

more...

Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_beta(int n_random, float pin, float qin, …, 0)

The type double function is imsls_d_random_beta.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
If no optional arguments are used, imsls_f_random_beta returns an array of length n_random containing
the random standard beta deviates. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_beta (int n_random, float pin, float qin,
IMSLS_RETURN_USER, float r[],
0)
1243

 Random Number Generation random_beta
Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

Array of length n_random containing the random standard beta deviates.

Description
Function imsls_f_random_beta generates pseudorandom numbers from a beta distribution with parame-
ters pin and qin, both of which must be positive. With p = pin and q = qin, the probability density function is

where Γ (⋅) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p = 1 or q = 1, in which the
inverse CDF method is used, all of the methods use acceptance/rejection. If p and q are both less than 1, the
method of Jöhnk (1964) is used. If either p or q is less than 1 and the other is greater than 1, the method of Atkin-
son (1979) is used. If both p and q are greater than 1, algorithm BB (Cheng 1978), which requires very little setup
time, is used if n_random is less than 4; and algorithm B4PE of Schmeiser and Babu (1980) is used if
n_random is greater than or equal to 4. Note that for p and q both greater than 1, calling
imsls_f_random_beta in a loop getting less than four variates on each call will not yield the same set of
deviates as calling imsls_f_random_beta once and getting all the deviates at once because two different
algorithms are used.

The values returned in r are less than 1.0 and greater than ɛ, where ɛ is the smallest positive number such that
1.0 − ɛ is less than 1.0.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator;
function imsls_random_option can be used to select the form of the generator.

Example
In this example, imsls_f_random_beta generates five pseudorandom beta (3, 2) variates.

#include <imsls.h>
int main()
{
 int n_random = 5;
 int seed = 123457;
 float pin = 3.0;

f x =
Γ p + q
Γ p Γ q x

p−1
1 − x q−1

for 0 ≤ x ≤ 1
1244

 Random Number Generation random_beta
 float qin = 2.0;
 float *r;
 imsls_random_seed_set (seed);
 r = imsls_f_random_beta (n_random, pin, qin, 0);
 imsls_f_write_matrix("Beta (3,2) random deviates", 1, n_random,
 r, 0);
}

Output

 Beta (3,2) random deviates
 1 2 3 4 5
 0.2814 0.9483 0.3984 0.3103 0.8296
1245

 Random Number Generation random_cauchy
random_cauchy
Generates pseudorandom numbers from a Cauchy distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_cauchy(int n_random, …, 0)

The type double function is imsls_d_random_cauchy.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random Cauchy deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_cauchy (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random Cauchy deviates.
1246

 Random Number Generation random_cauchy
Description
Function imsls_f_random_cauchy generates pseudorandom numbers from a Cauchy distribution. The
probability density function is

where T is the median and T − S is the first quartile. This function first generates standard Cauchy random num-
bers (T = 0 and S = 1) using the technique described below, and then scales the values using T and S.

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1) deviate, u, as
tan [π (u − 0.5)]. Rather than evaluating a tangent directly, however, random_cauchy generates two uniform
(−1, 1) deviates, x1 and x2. These values can be thought of as sine and cosine values. If

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate; otherwise, x1 and x2 are rejected

and two new uniform (−1, 1) deviates are generated. This method is also equivalent to taking the ration of two
independent normal deviates.

Example
In this example, imsls_f_random_cauchy generates five pseudorandom Cauchy numbers. The generator
used is a simple multiplicative congruential with a multiplier of 16807.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_random = 5;
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_cauchy(n_random, 0);
 printf("Cauchy random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Cauchy random deviates: 3.5765 0.9353 15.5797 2.0815 -0.1333

f x = S
π S2 + x − T 2

x1
2 + x2

2

1247

 Random Number Generation random_chi_squared
random_chi_squared
Generates pseudorandom numbers from a chi-squared distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_chi_squared(int n_random, float df, …, 0)

The type double function is imsls_d_random_chi_squared.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random chi-squared deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_chi_squared (int n_random, float df,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random chi-squared deviates.
1248

 Random Number Generation random_chi_squared
Description
Function imsls_f_random_chi_squared generates pseudorandom numbers from a chi-squared distribu-
tion with df degrees of freedom. If df is an even integer less than 17, the chi-squared deviate r is generated as

where n = df/2 and the ui are independent random deviates from a uniform (0, 1) distribution. If df is an odd

integer less than 17, the chi-squared deviate is generated in the same way, except the square of a normal deviate
is added to the expression above. If df is greater than 16 or is not an integer, and if it is not too large to cause
overflow in the gamma random number generator, the chi-squared deviate is generated as a special case of a
gamma deviate, using function imsls_random_gamma. If overflow would occur in imsls_f_random_gamma,
the chi-squared deviate is generated in the manner described above, using the logarithm of the product of uni-
forms, but scaling the quantities to prevent underflow and overflow.

Example
In this example, imsls_f_random_chi_squared generates five pseudorandom chi-squared deviates with
five degrees of freedom.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float df = 5.0;
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_chi_squared(n_random, df,
 0);
 imsls_f_write_matrix("Chi-Squared random deviates: ", 1, n_random, r,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 Chi-Squared random deviates:
 12.09 0.48 1.80 14.87 1.75

r = − 2ln ∏
i=1

n

ui
1249

 Random Number Generation random_exponential
random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_exponential(int n_random, …, 0)

The type double function is imsls_d_random_exponential.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random standard exponential deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random standard exponential deviates.
1250

 Random Number Generation random_exponential
Description
Function imsls_f_random_exponential generates pseudorandom numbers from a standard exponential

distribution. The probability density function is f (x) = e−x, for x > 0. Function
imsls_f_random_exponential uses an antithetic inverse CDF technique; that is, a uniform random devi-
ate U is generated, and the inverse of the exponential cumulative distribution function is evaluated at 1.0 − U to
yield the exponential deviate.

Deviates from the exponential distribution with mean θ can be generated by using
imsls_f_random_exponential and then multiplying each entry in r by θ.

Example
In this example, imsls_f_random_exponential generates five pseudorandom deviates from a standard
exponential distribution.

#include <imsls.h>
#include <stdio.h>
#define N_RANDOM 5
int main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;
 imsls_random_seed_set(seed);
 r = imsls_f_random_exponential(n_random,
 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Exponential random deviates", r[0], r[1], r[2], r[3], r[4]);
}

Output

Exponential random deviates: 0.0344 1.3443 0.2662 0.5633 0.1686
1251

 Random Number Generation random_exponential_mix
random_exponential_mix

more...

Generates pseudorandom numbers from a mixture of two exponential distributions.

Synopsis
#include <imsls.h>
float *imsls_f_random_exponential_mix(int n_random, float theta1, float theta2,

float p, …, 0)

The type double function is imsls_d_random_exponential_mix.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float theta1 (Input)
Mean of the exponential distribution which has the larger mean.

float theta2 (Input)
Mean of the exponential distribution which has the smaller mean. Parameter theta2 must be posi-
tive and less than or equal to theta1.

float p (Input)
Mixing parameter. Parameter p must be non-negative and less than or equal to
theta1/(theta1 − theta2).

Return Value
An array of length n_random containing the random deviates of a mixture of two exponential distributions.
1252

 Random Number Generation random_exponential_mix
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential_mix (int n_random, float theta1, float theta2, float p,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random deviates.

Description
Function imsls_f_random_exponential_mix generates pseudorandom numbers from a mixture of two
exponential distributions. The probability density function is

for x > 0, where p = p, θ1 = theta1, and θ2 = theta2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p is interpretable as a probability;
and imsls_f_random_exponential_mix with probability p generates an exponential deviate with mean
θ1, and with probability 1 − p generates an exponential with mean θ2. When p is greater than 1, but less than

θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or the sum of two exponentials with means θ1 and

θ2 is generated. The probabilities are q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential

and the sum of the two exponentials.

Example
In this example, imsls_f_random_exponential_mix is used to generate five pseudorandom deviates
from a mixture of exponentials with means 2 and 1, respectively, and with mixing parameter 0.5.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float theta1 = 2.0;
 float theta2 = 1.0;
 float p = 0.5;

f x =
p
θ1
e
−x/θ1 +

1 − p
θ2

e
−x/θ2
1253

 Random Number Generation random_exponential_mix
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_exponential_mix(n_random, theta1, theta2, p,
 0);
 imsls_f_write_matrix("Mixed exponential random deviates: ", 1,
 n_random, r,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 Mixed exponential random deviates:
 0.070 1.302 0.630 1.976 0.372
1254

 Random Number Generation random_gamma
random_gamma

more...

Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_gamma(int n_random, float a, …, 0)

The type double function is imsls_d_random_gamma.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be positive.

Return Value
An array of length n_random containing the random standard gamma deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_gamma (int n_random, float a,

IMSLS_RETURN_USER, float r[],
0)
1255

 Random Number Generation random_gamma
Optional Arguments
IMSLS_USER_RETURN, float r[] (Output)

User-supplied array of length n_random containing the random standard gamma deviates.

Description
Function imsls_f_random_gamma generates pseudorandom numbers from a gamma distribution with
shape parameter a and unit scale parameter. The probability density function is

Various computational algorithms are used depending on the value of the shape parameter a. For the special
case of a = 0.5, squared and halved normal deviates are used; for the special case of a = 1.0, exponential deviates
are generated. Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, described in
Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-region rejection procedure developed by
Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and scale parameter b can be gen-
erated by using imsls_f_random_gamma and then multiplying each entry in r by b. The following statements
(in single precision) would yield random deviates from a gamma (a, b) distribution.

float *r;
r = imsls_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter having a value equal to a pos-
itive integer; hence, imsls_f_random_gamma generates pseudorandom deviates from an Erlang distribution
with no modifications required.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.

Example
In this example, imsls_f_random_gamma generates five pseudorandom deviates from a gamma (Erlang) dis-
tribution with shape parameter equal to 3.0.

#include <imsls.h>
int main()

f x = 1
Γ a x

a−1e−x for x ≥ 0
1256

 Random Number Generation random_gamma
{
 int seed = 123457;
 int n_random = 5;
 float a = 3.0;
 float *r;
 imsls_random_seed_set(seed);
 r = imsls_f_random_gamma(n_random, a, 0);
 imsls_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}

Output

 Gamma(3) random deviates
 1 2 3 4 5
 6.843 3.445 1.853 3.999 0.779
1257

 Random Number Generation random_lognormal
random_lognormal

more...

Generates pseudorandom numbers from a lognormal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_lognormal(int n_random, float mean, float std, …, 0)

The type double function is imsls_d_random_lognormal.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float mean (Input)
Mean of the underlying normal distribution.

float std (Input)
Standard deviation of the underlying normal distribution.

Return Value
An array of length n_random containing the random deviates of a lognormal distribution. The log of each ele-
ment of the vector has a normal distribution with mean mean and standard deviation std.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_lognormal (int n_random, float mean, float std,

IMSLS_RETURN_USER, float r[],
0)
1258

 Random Number Generation random_lognormal
Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random lognormal deviates.

Description
Function imsls_f_random_lognormal generates pseudorandom numbers from a lognormal distribution
with parameters mean and std. The scale parameter in the underlying normal distribution, std, must be posi-
tive. The method is to generate normal deviates with mean mean and standard deviation std and then to
exponentiate the normal deviates.

With μ = mean and σ = std, the probability density function for the lognormal distribution is

for x > 0. The mean and variance of the lognormal distribution are exp (μ + σ2/2) and

exp (2μ + 2σ2) − exp (2μ + σ2), respectively.

Example
In this example, imsls_f_random_lognormal is used to generate five pseudorandom lognormal deviates
with a mean of 0 and standard deviation of 1.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float mean = 0.0;
 float std = 1.0;
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_lognormal(n_random, mean, std,
 0);
 imsls_f_write_matrix("lognormal random deviates:", 1, n_random, r,
 IMSLS_NO_COL_LABELS,
 0);
}

f x = 1
σx 2π exp −

1
2σ2

ln x − μ 2
1259

 Random Number Generation random_lognormal
Output

 lognormal random deviates:
 7.780 2.954 1.086 3.588 0.293
1260

 Random Number Generation random_normal
random_normal

more...

Generates pseudorandom numbers from a normal, N (μ, σ2), distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_normal(int n_random, …, 0)

The type double function is imsls_d_random_normal.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random normal deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_normal (int n_random,
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
IMSLS_ZIGGURAT_METHOD,
IMSLS_RETURN_USER, float r[],
0)
1261

 Random Number Generation random_normal
Optional Arguments
IMSLS_MEAN, float mean (Input)

Parameter mean contains the mean, μ, of the N(μ, σ2) from which random normal deviates are to be
generated.

Default: mean = 0.0

IMSLS_VARIANCE, float variance (Input)
Parameter variance contains the variance of the N (μ, σ2) from which random normal deviates are to
be generated.

Default: variance = 1.0

IMSLS_ZIGGURAT_METHOD, (Input)
By default, random numbers are generated using an inverse CDF technique. When optional argu-
ment IMSLS_ZIGGURAT_METHOD is specified, the Ziggurat method is used instead. See the
“Description” section for details about each method.

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the generated random standard normal
deviates.

Description
By default, function imsls_f_random_normal generates pseudorandom numbers from a normal (Gaussian)
distribution using an inverse CDF technique. In this method, a uniform (0, 1) random deviate is generated. The
inverse of the normal distribution function is then evaluated at that point, using the function
imsls_f_normal_inverse_cdf (Chapter 11, Probability Distribution Functions and Inverses).

If optional argument IMSLS_ZIGGURAT_METHOD is specified, function imsls_f_random_normal gener-
ates pseudorandom numbers using the Ziggurat method. This method cuts the density into many small pieces.
For each random number generated, an interval is chosen at random and a random normal is generated from
the chosen interval. In this implementation, the density is cut into 256 pieces, but symmetry is used so that only
128 pieces are needed by the computation. Following Doornik (2005), different uniform random deviates are
used to determine which slice to use and to determine the normal deviate from the slice. This method is faster
than the default inverse CDF technique.

Remarks
Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.
1262

 Random Number Generation random_normal
Example
In this example, imsls_f_random_normal generates five pseudorandom deviates from a standard normal
distribution.

#include <imsls.h>
#include <stdio.h>
#define N_RANDOM 5
int main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;
 imsls_random_seed_set (seed);
 r = imsls_f_random_normal(n_random, 0);
 printf("%s:\n%8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Standard normal random deviates:
-0.6412 0.7266 0.1747 1.0145
1263

 Random Number Generation random_stable
random_stable
Generates pseudorandom numbers from a stable distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_stable(int n_random, float alpha, float bprime, …, 0)

The type double function is imsls_d_random_stable.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float alpha (Input)
Characteristic exponent of the stable distribution. This parameter must be positive and less than or
equal to 2.

float bprime (Input)
Skewness parameter of the stable distribution. When bprime = 0, the distribution is symmetric.
Unless alpha = 1, bprime is not the usual skewness parameter of the stable distribution. bprime
must be greater than or equal to - 1 and less than or equal to 1.

Return Value
An integer array of length n_random containing the random deviates. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_stable (int n_random, float alpha, float bprime,

IMSLS_RETURN_USER, float r[],
0)
1264

 Random Number Generation random_stable
Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random deviates.

Description
Function imsls_f_random_stable generates pseudorandom numbers from a stable distribution with
parameters alpha and bprime. alpha is the usual characteristic exponent parameter α and bprime is
related to the usual skewness parameter β of the stable distribution. With the restrictions 0 < α ≤ 2 and - 1 ≤ β
≤ 1, the characteristic function of the distribution is

φ(t) = exp[-| t |α exp(πiβ(1 - |1 - α|)sign(t)/2)] for α ≠ 1

and

φ(t) = exp[-| t |(1 + 2iβ ln| t |)sign(t)/π)] for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is normal with mean 0 and vari-
ance 2; and if α = 1, the distribution is Cauchy.

The parameterization using bprime and the algorithm used here are due to Chambers, Mallows, and Stuck
(1976). The relationship between bprime = β’ and the standard β is

β’ = -tan(π(1 - α)/2) tan(-πβ(1 - |1 - α|)/2) for α ≠ 1

and

β’ = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential random variate.

Example
In this example, imsls_f_random_stable is used to generate five pseudorandom symmetric stable variates
with characteristic exponent 1.5. The tails of this distribution are heavier than those of a normal distribution, but
not so heavy as those of a Cauchy distribution. The variance of this distribution does not exist, however. (This is
the case for any stable distribution with characteristic exponent less than 2.)

#include <imsls.h>
int main()
{
 int nr = 5;
 float alpha = 1.5, bprime = 0.0, *r;
 imsls_random_seed_set(123457);
1265

 Random Number Generation random_stable
 r = imsls_f_random_stable(nr, alpha, bprime,
 0);
 imsls_f_write_matrix("Stable random deviates", 5, 1, r,
 IMSLS_NO_ROW_LABELS,
 0);
}

Output

Stable random deviates
 4.409
 1.056
 2.546
 5.672
 2.166
1266

 Random Number Generation random_student_t
random_student_t
Generates pseudorandom numbers from a Student’s t distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_student_t(int n_random, float df, …, 0)

The type double function is imsls_d_random_student_t.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random deviates of a Student’s t distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_student_t (int n_random, float df,

IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
IMSLS_RETURN_USER, float r[],
0)
1267

 Random Number Generation random_student_t
Optional Arguments
IMSLS_MEAN, float mean (Input)

Mean of the Student’s t distribution.
Default: mean = 0.0

IMSLS_VARIANCE, float variance (Input)
Variance of the Student’s t distribution.
Default: variance = 1.0

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random Student’s t deviates.

Description
Function imsls_f_random_student_t generates pseudorandom numbers from a Student’s t distribution
with df degrees of freedom, using a method suggested by Kinderman et al. (1977). The method (“TMX” in the ref-
erence) involves a representation of the t density as the sum of a triangular density over (−2, 2) and the
difference of this and the t density. The mixing probabilities depend on the degrees of freedom of the t distribu-
tion. If the triangular density is chosen, the variate is generated as the sum of two uniforms; otherwise, an
acceptance/rejection method is used to generate the difference density.

Example
In this example, imsls_f_random_student_t generates five pseudorandom deviates from a Student’s t
distribution with 12 degrees of freedom.

#include <imsls.h>
#include <stdio.h>
int main()
{

 int seed = 123457, n_random = 5;
 float df = 12.0, *r;
 imsls_random_seed_set (seed);
 r = imsls_f_random_student_t (n_random, df, 0);
 printf("Student's t deviates with %8.4f degrees "

 "of freedom:", df);
 printf("\n%8.4f %8.4f %8.4f %8.4f %8.4f\n",

 r[0], r[1], r[2], r[3], r[4]);
}

Output

Student's t deviates with 12.0000 degrees of freedom:
 0.6152 1.1468 0.0877 1.3318 -0.9933
1268

 Random Number Generation random_triangular
random_triangular

more...

Generates pseudorandom numbers from a triangular distribution on the interval (0, 1).

Synopsis
#include <imsls.h>
float *imsls_f_random_triangular(int n_random, …, 0)

The type double function is imsls_d_random_triangular.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random deviates of a triangular distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_triangular (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random triangular deviates.
1269

 Random Number Generation random_triangular
Description
Function imsls_f_random_triangular generates pseudorandom numbers from a triangular distribution
over the unit interval. The probability density function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for
0.5 < x ≤ 1. An inverse CDF technique is used.

Example
In this example, imsls_f_random_triangular is used to generate five pseudorandom deviates from a tri-
angular distribution.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_triangular(n_random,
 0);
 imsls_f_write_matrix("Triangular random deviates:", 1, n_random, r,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 Triangular random deviates:
 0.8700 0.3610 0.6581 0.5360 0.7215
1270

 Random Number Generation random_uniform
random_uniform
Generates pseudorandom numbers from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_uniform(int n_random, …, 0)

The type double function is imsls_d_random_uniform.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

Return Value
An array of length n_random containing the random uniform (0, 1) deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_uniform (int n_random,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random uniform (0, 1) deviates.
1271

 Random Number Generation random_uniform
Description
Function imsls_f_random_uniform generates pseudorandom numbers from a uniform (0, 1) distribution
using a multiplicative congruential method. The form of the generator is as follows:

xi ≡ cxi−

1

mod (231 − 1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the generators are 16807,

397204094, and 950706376. The selection is made by the function imsls_random_option. The choice of
16807 will result in the fastest execution time. If no selection is made explicitly, the functions use the multiplier
16807.

Function imsls_random_seed_set can be used to initialize the seed of the random number generator; func-
tion imsls_random_option can be used to select the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table is filled with the first 128 uni-
form (0, 1) numbers resulting from the simple multiplicative congruential generator. Then, for each xi from the

simple generator, the low-order bits of xi are used to select a random integer, j, from 1 to 128. The j-th entry in

the table is then delivered as the random number, and xi, after being scaled into the unit interval, is inserted into

the j-th position in the table.

The values returned by imsls_f_random_uniform are positive and less than 1.0. However, some values
returned may be smaller than the smallest relative spacing; hence, it may be the case that some value, for exam-
ple r [i], is such that 1.0 − r [i] = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be obtained by scaling the output
from imsls_f_random_uniform. The following statements (in single precision) would yield random deviates
from a uniform (a, b) distribution.

float *r;
r = imsls_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i] = r[i]*(b-a) + a;

Example
In this example, imsls_f_random_uniform generates five pseudorandom uniform numbers. Since function
imsls_random_option is not called, the generator used is a simple multiplicative congruential one with a
multiplier of 16807.

#include <imsls.h>
#include <stdio.h>
1272

 Random Number Generation random_uniform
#define N_RANDOM 5
int main()
{
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_uniform(N_RANDOM, 0);
 printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448
1273

 Random Number Generation random_von_mises
random_von_mises
Generates pseudorandom numbers from a von Mises distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_von_mises(int n_random, float c, …, 0)

The type double function is imsls_d_random_von_mises.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float c (Input)
Parameter of the von Mises distribution. This parameter must be greater than one-half of machine
epsilon (On many machines, the lower bound for c is 10−3).

Return Value
An array of length n_random containing the random deviates of a von Mises distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_von_mises (int n_random, float c,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random von Mises deviates.
1274

 Random Number Generation random_von_mises
Description
Function imsls_f_random_von_mises generates pseudorandom numbers from a von Mises distribution
with parameter c, which must be positive. With c = c, the probability density function is

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of order 0. The probability density is

equal to 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution as the majorizing distribu-
tion. It is due to Nest and Fisher (1979).

Example
In this example, imsls_f_random_von_mises is used to generate five pseudorandom von Mises variates
with c = 1.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float c = 1.0;
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_von_mises(n_random, c,
 0);
 imsls_f_write_matrix("Von Mises random deviates:", 1, n_random, r,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 Von Mises random deviates:
 0.247 -2.433 -1.022 -2.172 -0.503

f x = 1
2πI0 c

exp c cos x
1275

 Random Number Generation random_weibull
random_weibull
Generates pseudorandom numbers from a Weibull distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_weibull(int n_random, float a, …, 0)

The type double function is imsls_d_random_weibull.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

float a (Input)
Shape parameter of the Weibull distribution. This parameter must be positive.

Return Value
An array of length n_random containing the random deviates of a Weibull distribution.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_weibull (int n_random, float a,
IMSLS_B, float b,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_B, float b (Input)

Scale parameter of the two parameter Weibull distribution.
1276

 Random Number Generation random_weibull
Default: b = 1.0

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random Weibull deviates.

Description
Function imsls_f_random_weibull generates pseudorandom numbers from a Weibull distribution with
shape parameter a and scale parameter b. The probability density function is

for x ≥ 0, a > 0, and b > 0. Function imsls_f_random_weibull uses an antithetic inverse CDF technique to
generate a Weibull variate; that is, a uniform random deviate U is generated and the inverse of the Weibull cumu-
lative distribution function is evaluated at 1.0 − U to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 and scale parameter b equal to

Example
In this example, imsls_f_random_weibull is used to generate five pseudorandom deviates from a Weibull
distribution with shape parameter equal to 3.0.

#include <imsls.h>
int main()
{
 int n_random = 5;
 float a = 3.0;
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_weibull(n_random, a,
 0);
 imsls_f_write_matrix("Weibull random deviates:", 1, n_random, r,

f x = abxa−1exp −bxa

r x = 1
α2
xe
− x2/ 2α2

2α

α = 3 2
1277

 Random Number Generation random_weibull
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 Weibull random deviates:
 0.325 1.104 0.643 0.826 0.552

Warning Errors
IMSLS_SMALL_A The shape parameter is so small that a relatively

large proportion of the values of deviates from the
Weibull cannot be represented.
1278

 Random Number Generation random_general_continuous
random_general_continuous

more...

Generates pseudorandom numbers from a general continuous distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_general_continuous(int n_random, int ndata, float table[], …, 0)

The type double function is imsls_d_random_general_continuous.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int ndata (Input)
Number of points at which the CDF is evaluated for interpolation. ndata must be greater than or
equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative distribution function. The first col-
umn of table contains abscissas of the cumulative distribution function in ascending order, the
second column contains the values of the CDF (which must be strictly increasing beginning with 0.0
and ending at 1.0) and the remaining columns contain values used in interpolation. This table is set
up using function imsls_f_continous_table_setup.

Return Value
An array of length n_random containing the random discrete deviates. To release this space, use imsls_free.
1279

 Random Number Generation random_general_continuous
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_general_continuous (int n_random, int ndata, float table[],

IMSLS_TABLE_COL_DIM, int table_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)

Column dimension of the matrix table.

Default: table_col_dim = 5
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random continuous deviates.

Description
Function imsls_f_random_general_continuous generates pseudorandom numbers from a continu-
ous distribution using the inverse CDF technique, by interpolation of points of the distribution function given in
table, which is set up by function imsls_f_continuous_table_setup. A strictly monotone increasing dis-
tribution function is assumed. The interpolation is by an algorithm attributable to Akima (1970), using piecewise
cubics. The use of this technique for generation of random numbers is due to Guerra, Tapia, and Thompson
(1976), who give a description of the algorithm and accuracy comparisons between this method and linear inter-
polation. The relative errors using the Akima interpolation are generally considered very good.

Example
In this example, imsls_f_continuous_table_setup is used to set up a table for generation of beta pseudo-
random deviates. The CDF for this distribution is computed by the function imsls_f_beta_cdf (Chapter 11,
Probability Distribution Functions and Inverses). The table contains 100 points at which the CDF is evaluated and
that are used for interpolation.

#include <imsls.h>
float cdf(float);
int main()
{
 int i, iopt=0, ndata= 100;
1280

 Random Number Generation random_general_continuous
 float table[100][5], x = 0.0, *r;
 for (i=0;i<ndata;i++) {
 table[i][0] = x;
 x += .01;
 }
 imsls_f_continuous_table_setup(cdf, iopt, ndata, (float*)table,
 0);
 imsls_random_seed_set(123457);
 r = imsls_f_random_general_continuous (5, ndata, &table[0][0],
 0);
 imsls_f_write_matrix("Beta (3, 2) random deviates", 5, 1, r,
 0);
}
float cdf(float x)
{
 return imsls_f_beta_cdf(x, 3., 2.);
}

Output

*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.
Beta (3, 2) random deviates
 1 0.9208
 2 0.4641
 3 0.7668
 4 0.6536
 5 0.8171

1281

 Random Number Generation continuous_table_setup
continuous_table_setup

more...

Sets up a table to generate pseudorandom numbers from a general continuous distribution.

Synopsis
#include <imsls.h>
void imsls_f_continuous_table_setup(float cdf(), int iopt, int ndata, float *table, …, 0)

The type double function is imsls_d_continuous_table_setup.

Required Arguments
float cdf(float x) (Input)

User-supplied function to compute the cumulative distribution function. The argument to the func-
tion is the point at which the distribution function is to be evaluated

int iopt (Input)
Indicator of the extent to which table is initialized prior to calling
imsls_f_continuous_table_setup.

iopt Action

0 imsls_f_continuous_table_setup fills the last
four columns of table. The user inputs the points at
which the CDF is to be evaluated in the first column of
table. These must be in ascending order.

1 imsls_f_continuous_table_setup fills the last
three columns of table. The user supplied function
cdf is not used and may be a dummy function;
instead, the cumulative distribution function is speci-
fied in the first two columns of table. The abscissas
(in the first column) must be in ascending order and
the function must be strictly monotonically increasing.
1282

 Random Number Generation continuous_table_setup
int ndata (Input)
Number of points at which the CDF is evaluated for interpolation. ndata must be greater than or
equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative distribution function. The first col-
umn of table contains abscissas of the cumulative distribution function in ascending order, the
second column contains the values of the CDF (which must be strictly increasing), and the remaining
columns contain values used in interpolation. The first row of table corresponds to the left limit of
the support of the distribution and the last row corresponds to the right limit of the support; that is,
table[0][1] = 0.0 and table[ndata-1][1] = 1.0.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_continuous_table_setup (float cdf(), int iopt, int ndata, float table[],

IMSLS_TABLE_COL_DIM,
IMSLS_FCN_W_DATA, float cdf(), void *data,
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)

Column dimension of the array table.
Default: table_col_dim = 5

IMSLS_FCN_W_DATA, float cdf(float x), void *data (Input)
User-supplied function to compute the cumulative distribution function, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed to the user-supplied
function. See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual
for more details.

Description
Function imsls_f_continuous_table_setup sets up a table that function
imsls_f_random_general_continuous can use to generate pseudorandom deviates from a continuous dis-
tribution. The distribution is specified by its cumulative distribution function, which can be supplied either in
tabular form in table or by a function cdf. See the documentation for the function
imsls_f_random_general_continuous for a description of the method.
1283

 Random Number Generation continuous_table_setup
On some platforms, imsls_f_continuous_table_setup can evaluate the user-supplied function cdf in
parallel. This is done only if the function imsls_omp_options is called to flag user-defined functions as thread-
safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the
result of writing to global or static variables.

Example
In this example, imsls_f_continuous_table_setup is used to set up a table to generate pseudorandom
variates from a beta distribution. This example is continued in the documentation for function
imsls_f_random_general_continuous to generate the random variates.

#include <stdio.h>
#include <imsls.h>
float cdf(float);
int main()
{
 int i, iopt=0, ndata= 100;
 float table[100][5], x = 0.0;
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 for (i=0;i<ndata;i++) {
 table[i][0] = x;
 x += .01;
 }
 imsls_f_continuous_table_setup(cdf, iopt, ndata, &table[0][0], 0);
 printf("The first few values from the table:\n");
 for (i=0;i<10;i++)
 printf("%4.2f\t%8.4f\n", table[i][0], table[i][1]);
}

float cdf(float x)
{
 return imsls_f_beta_cdf(x, 3., 2.);
}

Output

*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.
The first few values from the table:
0.00 0.0000
0.01 0.0000
1284

 Random Number Generation continuous_table_setup
0.02 0.0000
0.03 0.0001
0.04 0.0002
0.05 0.0005
0.06 0.0008
0.07 0.0013
0.08 0.0019
0.09 0.0027

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm.
User flag = "#".
1285

 Random Number Generation random_normal_multivariate
random_normal_multivariate
Generates pseudorandom numbers from a multivariate normal distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_normal_multivariate(int n_vectors, int length,
float *covariances, …, 0)

The type double function is imsls_d_random_normal_multivariate.

Required Arguments
int n_vectors (Input)

Number of random multivariate normal vectors to generate.

int length (Input)
Length of the multivariate normal vectors.

float *covariances (Input)
Array of size length × length containing the variance-covariance matrix.

Return Value
An array of length n_vectors × length containing the random multivariate normal vectors stored
consecutively.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_normal_multivariate (int n_vectors, int length,
float *covariances,
IMSLS_RETURN_USER, float r[],
0)
1286

 Random Number Generation random_normal_multivariate
Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_vectors × length containing the random multivariate normal
vectors stored consecutively.

Description
Function imsls_f_random_normal_multivariate generates pseudorandom numbers from a multivari-
ate normal distribution with mean vector consisting of all zeros and variance-covariance matrix covariances.
First, the Cholesky factor of the variance-covariance matrix is computed. Then, independent random normal devi-
ates with mean 0 and variance 1 are generated, and the matrix containing these deviates is postmultiplied by the
Cholesky factor. Because the Cholesky factorization is performed in each invocation, it is best to generate as
many random vectors as needed at once.

Deviates from a multivariate normal distribution with means other than 0 can be generated by using
imsls_f_random_normal_multivariate and then by adding the vectors of means to each row of the
result.

Example 1
In this example, imsls_f_random_normal_multivariate generates five pseudorandom normal vectors
of length 2 with variance-covariance matrix equal to the following:

#include <imsls.h>
int main()
{
 int n_vectors = 5;
 int length = 2;
 float covariances[] = {.5, .375, .375, .5};
 float *random;
 imsls_random_seed_set (123457);
 random = imsls_f_random_normal_multivariate (n_vectors, length,
 covariances, 0);
 imsls_f_write_matrix ("multivariate normal random deviates",
 n_vectors, length, random, 0);
}

0.500 0.375
0.375 0.500
1287

 Random Number Generation random_normal_multivariate
Output
multivariate normal random deviates
 1 2
 1 1.451 1.595
 2 0.058 0.641
 3 -0.867 -0.492
 4 -0.933 -1.413
 5 -0.325 -0.527

Example 2
Using the same variance-covariance matrix as above, imsls_f_random_normal_multivariate gener-
ates 10 pseudorandom normal vectors of length 2 in 2 blocks of 5. After resetting the random number generator,
in this case the Mersenne Twister, imsls_f_random_normal_multivariate then generates all 10 ran-
dom vectors at once. Because the generator is reset, the values in the third call match the combined values of the
first two.

#include <imsls.h>
int main(){
 int seed = 123457, j;
 int n_vectors, l_vectors;
 float *r1 = NULL, *r2 = NULL, *r3 = NULL;
 float covariances[] = {1.0, 0.5, 0.5, 1.0};
 unsigned long long *itable;
 imsls_random_option(9);
 imsls_random_seed_set (seed);
 n_vectors = 5;
 l_vectors = 2;
 /* Generate the first matrix. */
 r1 = imsls_f_random_normal_multivariate (n_vectors, l_vectors,
 covariances, 0);
 printf("multivariate random normal deviates");
 imsls_f_write_matrix ("\nmatrix 1: ", n_vectors, l_vectors,
 r1, 0);
 /* Generate the second matrix.*/
 r2 = imsls_f_random_normal_multivariate (n_vectors, l_vectors,
 covariances, 0);
 imsls_f_write_matrix ("\nmatrix 2: ", n_vectors, l_vectors, r2, 0);
 /* Reset the generator. Setting itable[0] to a value > 625 resets
 the generator to its original state.*/
 imsls_random_MT64_table_get (&itable,0);
 itable[0] = 1000;
 imsls_random_MT64_table_set (itable);
 /* Generate all rows after resetting the generator. */
 n_vectors = 10;
1288

 Random Number Generation random_normal_multivariate
 r3 = imsls_f_random_normal_multivariate (n_vectors, l_vectors,
 covariances, 0);
 imsls_f_write_matrix ("\nmatrix 3: ", n_vectors, l_vectors, r3, 0);
 imsls_free(r1);
 imsls_free(r2);
 imsls_free(r3);
 imsls_free(itable);
}

Output
multivariate random normal deviates

 matrix 1:
 1 2
1 1.321 0.598
2 0.055 1.050
3 -0.546 -1.876
4 0.724 1.548
5 -0.591 0.764

 matrix 2:
 1 2
1 -0.0288 -0.7060
2 -0.9761 -0.0418
3 0.8074 -0.8965
4 -0.6163 -0.7335
5 -0.4368 0.0183

 matrix 3:
 1 2
 1 1.321 0.598
 2 0.055 1.050
 3 -0.546 -1.876
 4 0.724 1.548
 5 -0.591 0.764
 6 -0.029 -0.706
 7 -0.976 -0.042
 8 0.807 -0.896
 9 -0.616 -0.734
10 -0.437 0.018
1289

 Random Number Generation random_orthogonal_matrix
random_orthogonal_matrix
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Synopsis
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix(int n, …, 0)

The type double function is imsls_d_random_orthogonal_matrix.

Required Arguments
int n (Input)

The order of the matrix to be generated.

Return Value
n by n random orthogonal matrix. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix (int n,

IMSLS_EIGENVALUES, float *eigenvalues[],
IMSLS_A_MATRIX, float *a,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_EIGENVALUES, float *eigenvalues (Input)

A vector of length n containing the eigenvalues of the correlation matrix to be generated. The ele-
ments of eigenvalues must be positive, they must sum to n, and they cannot all be equal.
1290

 Random Number Generation random_orthogonal_matrix
IMSLS_A_MATRIX, float *a (Input)
n by n random orthogonal matrix. A random correlation matrix is generated using the orthogonal
matrix input in a. The option IMSLS_EIGENVALUES must also be supplied if IMSLS_A_MATRIX
is used.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of the matrix a.

Default: a_col_dim = n
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n × n containing the random correlation matrix.

Description
Function imsls_f_random_orthogonal_matrix generates a pseudorandom orthogonal matrix from the
invariant Haar measure. For each column, a random vector from a uniform distribution on a hypersphere is
selected and then is projected onto the orthogonal complement of the columns already formed. The method is
described by Heiberger (1978). (See also Tanner and Thisted 1982.)

If the optional argument IMSLS_EIGENVALUES is used, a correlation matrix is formed by applying a sequence

of planar rotations to the matrix AT DA, where D = diag(eigenvalues[0], ...,
eigenvalues [n-1]), so as to yield ones along the diagonal. The planar rotations are applied in such an order
that in the two by two matrix that determines the rotation, one diagonal element is less than 1.0 and one is
greater than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not known. Bendel and Mickey (1978)
and Johnson and Welch (1980) discuss the distribution.

For larger matrices, rounding can become severe; and the double precision results may differ significantly from
single precision results.

Example
In this example, imsls_f_random_orthogonal_matrix is used to generate a 4 by 4 pseudorandom cor-
relation matrix with eigenvalues in the ratio 1:2:3:4.

#include <imsls.h>
int main()
{
 int i, n = 4;
 float *a, *cor;
 float ev[] = {1., 2., 3., 4.};
1291

 Random Number Generation random_orthogonal_matrix
 for (i = 0; i < 4; i++)
 ev[i] = 4. * ev[i]/10.;
 imsls_random_seed_set(123457);
 a = imsls_f_random_orthogonal_matrix(n,
 0);
 imsls_f_write_matrix("Random orthogonal matrix", 4, 4, (float*)a,
 0);
 cor = imsls_f_random_orthogonal_matrix(n,
 IMSLS_EIGENVALUES, ev,
 IMSLS_A_MATRIX, a,
 0);
 imsls_f_write_matrix("Random correlation matrix", 4, 4, (float*)cor,
 0);
}

Output

 Random orthogonal matrix
 1 2 3 4
1 -0.8804 -0.2417 0.4065 -0.0351
2 0.3088 -0.3002 0.5520 0.7141
3 -0.3500 0.5256 -0.3874 0.6717
4 -0.0841 -0.7584 -0.6165 0.1941
 Random correlation matrix
 1 2 3 4
1 1.000 -0.236 -0.326 -0.110
2 -0.236 1.000 0.191 -0.017
3 -0.326 0.191 1.000 -0.435
4 -0.110 -0.017 -0.435 1.000
1292

 Random Number Generation random_mvar_from_data
random_mvar_from_data
Generates pseudorandom numbers from a multivariate distribution determined from a given sample.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_from_data(int n_random, int ndim, int nsamp, float x[],

int nn …, 0)

The type double function is imsls_d_random_mvar_from_data.

Required Arguments
int n_random (Input)

Number of random multivariate vectors to generate.

int ndim (Input)
The length of the multivariate vectors, that is, the number of dimensions.

int nsamp (Input)
Number of given data points from the distribution to be simulated.

float x[] (Input)
Array of size nsamp × ndim matrix containing the given sample.

int nn (Input)
Number of nearest neighbors of the randomly selected point in x that are used to form the output
point in the result.

Return Value
n_random × ndim matrix containing the random multivariate vectors in its rows. To release this space, use
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
1293

 Random Number Generation random_mvar_from_data
float *imsls_f_random_mvar_from_data (int n_random, int ndim, int nsamp, float x[], int nn,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of the matrix x.

Default: x_col_dim = ndim
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random × ndim containing the random correlation matrix.

Description
Given a sample of size n (= nsamp) of observations of a k-variate random variable,
imsls_f_random_mvar_from_data generates a pseudorandom sample with approximately the same
moments as the given sample. The sample obtained is essentially the same as if sampling from a Gaussian kernel
estimate of the sample density. (See Thompson 1989.) Function imsls_f_random_mvar_from_data uses
methods described by Taylor and Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An observation, xj, is chosen randomly; its

nearest m (= nn) neighbors,

are determined; and the mean

of those nearest neighbors is calculated. Next, a random sample u1, u2, ..., um is generated from a uniform distri-

bution with lower bound

and upper bound

x j1, x j2,...x jm

x─ j

1
m −

3 m − 1
m2
1294

 Random Number Generation random_mvar_from_data
The random variate delivered is

The process is then repeated until n_random such simulated variates are generated and stored in the rows of
the result.

Example
In this example, imsls_f_random_mvar_from_data is used to generate 5 pseudorandom vectors of
length 4 using the initial and final systolic pressure and the initial and final diastolic pressure from Data Set A in
Afifi and Azen (1979) as the fixed sample from the population to be modeled. (Values of these four variables are
in the seventh, tenth, twenty-first, and twenty-fourth columns of data set number nine in function
imsls_f_data_sets, Chapter 15, Utilities.)

#include <imsls.h>
int main()
{
 int i, nrrow, nrcol, nr = 5, k=4, nsamp = 113, nn = 5;
 float x[113][4], rdata[113][34], *r;
 imsls_random_seed_set(123457);
 imsls_f_data_sets(9,
 IMSLS_N_OBSERVATIONS, &nrrow,
 IMSLS_N_VARIABLES, &nrcol,
 IMSLS_RETURN_USER, rdata,
 0);
 for (i=0;i<nrrow;i++) {
 x[i][0] = rdata[i][6];
 x[i][1] = rdata[i][9];
 x[i][2] = rdata[i][20];
 x[i][3] = rdata[i][23];
 }
 r = imsls_f_random_mvar_from_data(nr, k, nsamp, &x[0][0], nn,
 0);
 imsls_f_write_matrix("Random variates", 5, 4, r,
 0);
}

1
m +

3 m − 1
m2

∑
l=1

m

ul x jl − x
─
j + x

─
j

1295

 Random Number Generation random_mvar_from_data
Output

 Random variates
 1 2 3 4
1 162.8 90.5 153.7 104.9
2 153.4 78.3 176.7 85.2
3 93.7 48.2 153.5 71.4
4 101.8 54.2 113.1 56.3
5 91.7 58.8 48.4 28.1
1296

 Random Number Generation random_multinomial
random_multinomial
Generates pseudorandom numbers from a multinomial distribution.

Synopsis
#include <imsls.h>
int *imsls_random_multinomial(int n_random, int n, int k, float p[], …, 0)

Required Arguments
int n_random (Input)

Number of random multinomial vectors to generate.

int n (Input)
Multinomial parameter indicating the number of independent trials.

int k (Input)
The number of mutually exclusive outcomes on any trial. k is the length of the multinomial vectors. k
must be greater than or equal to 2.

float p[] (Input)
Vector of length k containing the probabilities of the possible outcomes. The elements of p must be
positive and must sum to 1.0.

Return Value
n_random by k matrix containing the random multinomial vectors in its rows. To release this space, use
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_multinomial (int n_random, int n, int k, float p[],

IMSLS_RETURN_USER, float r[],
0)
1297

 Random Number Generation random_multinomial
Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random × k containing the random deviates.

Description
Function imsls_random_multinomial generates pseudorandom numbers from a K-variate multinomial
distribution with parameters n and p. k and n must be positive. Each element of p must be positive and the ele-
ments must sum to 1. The probability function (with n = n, k = k, and pi = p[i-1]) is

for xi ≥ 0 and

The deviate in each row of r is produced by generation of the binomial deviate x0 with parameters n and pi and

then by successive generations of the conditional binomial deviates xj given x0, x1, …, xj−2 with parameters n -
x0 - x1 - … - xj−2 and pj /(1 - p0 - p1 − … −pj−2).

Example
In this example, imsls_random_multinomial is used to generate five pseudorandom 3-dimensional multi-
nomial variates with parameters n = 20 and p = [0.1, 0.3, 0.6].

#include <imsls.h>
int main()
{
 int nr = 5, n = 20, k = 3, *ir;
 float p[3] = {.1, .3, .6};
 imsls_random_seed_set(123457);
 ir = imsls_random_multinomial(nr, n, k, p,
 0);
 imsls_i_write_matrix("Multinomial random_deviates", 5, 3, ir,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);

f x1, x2, ... xk = n!
x1! x2! ... xk!

p1
x1 p2

x2 ... pk
xk

∑
i=0

k−1

xi = n
1298

 Random Number Generation random_multinomial
}

Output

Multinomial random_deviates
 5 4 11
 3 6 11
 3 3 14
 5 5 10
 4 5 11
1299

 Random Number Generation random_sphere
random_sphere
Generates pseudorandom points on a unit circle or K-dimensional sphere

Synopsis
#include <imsls.h>
float *imsls_f_random_sphere(int n_random, int k, …, 0)

The type double function is imsls_d_random_sphere.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int k (Input)
Dimension of the circle (k = 2) or of the sphere.

Return Value
n_random by k matrix containing the random Cartesian coordinates on the unit circle or sphere. To release this
space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_sphere (int n_random, int k,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of size n_random by k containing the random Cartesian coordinates on the
unit circle or sphere.
1300

 Random Number Generation random_sphere
Description
Function imsls_f_random_sphere generates pseudorandom coordinates of points that lie on a unit circle
or a unit sphere in K-dimensional space. For points on a circle (k = 2), pairs of uniform (-1, 1) points are gener-
ated and accepted only if they fall within the unit circle (the sum of their squares is less than 1), in which case they
are scaled so as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are used. For three dimensions, two
independent uniform (-1, 1) deviates U1 and U2 are generated and accepted only if the sum of their squares S1 is

less than 1. Then, the coordinates

are formed. For four dimensions, U1, U2, and S1 are produced as described above. Similarly, U3, U4, and S2 are

formed. The coordinates are then

and

For spheres in higher dimensions, K independent normal deviates are generated and scaled so as to lie on the
unit sphere in the manner suggested by Muller (1959).

Example
In this example, imsls_f_random_sphere is used to generate two uniform random deviates from the sur-
face of the unit sphere in three space.

#include <imsls.h>
int main()
{
 int n_random = 2;
 int k = 3;
 float *z;
 char *rlabel[] = {"First point", "Second point"};
 imsls_random_seed_set(123457);
 z = imsls_f_random_sphere(n_random, k,
 0);
 imsls_f_write_matrix("Coordinates", n_random, k, z,
 IMSLS_ROW_LABELS, rlabel,
 IMSLS_NO_COL_LABELS,
 0);

Z1 = 2U1 1 − S1 ,Z2 = 2U2 1 − S1 , and Z3 = 1 − 2S1

Z1 = U1, Z2 = U2, Z3 = U3 1 − S1 / S2

Z4 = U4 1 − S1 / S2
1301

 Random Number Generation random_sphere
}

Output

 Coordinates
First point 0.8893 0.2316 0.3944
Second point 0.1901 0.0396 -0.9810
1302

 Random Number Generation random_table_twoway
random_table_twoway
Generates a pseudorandom two-way table.

Synopsis
#include <imsls.h>
int *imsls_random_table_twoway(int nrow, int ncol, int nrtot[], int nctot[], …, 0)

Required Arguments
int nrow (Input)

Number of rows in the table.

int ncol (Input)
Number of columns in the table.

int nrtot[] (Input)
Array of length nrow containing the row totals.

int nctot[] (Input)
Array of length ncol containing the column totals. The elements of nrtot and nctot must be
nonnegative and must sum to the same quantity.

Return Value
nrow by ncol random matrix with the given row and column totals. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[], int nctot[],

IMSLS_RETURN_USER, int ir[],
 0)
1303

 Random Number Generation random_table_twoway
Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of size nrow by ncol containing the random matrix with the given row and col-
umn totals.

Description
Function imsls_random_table_twoway generates pseudorandom entries for a two-way contingency table
with fixed row and column totals. The method depends on the size of the table and the total number of entries in
the table. If the total number of entries is less than twice the product of the number of rows and columns, the
method described by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In this method, a work
vector is filled with row indices so that the number of times each index appears equals the given row total. This
vector is then randomly permuted and used to increment the entries in each row so that the given row total is
attained.

For tables with larger numbers of entries, the method of Patefield (1981) is used. This method can be consider-
ably faster in these cases. The method depends on the conditional probability distribution of individual elements,
given the entries in the previous rows. The probabilities for the individual elements are computed starting from
their conditional means.

Example
In this example, imsls_random_table_twoway is used to generate a two by three table with row totals 3
and 5, and column totals 2, 4, and 2.

#include <imsls.h>
int main()
{
 int *itable, nrow = 2, ncol = 3;
 int nrtot[2] = {3, 5};
 int nctot[3] = {2, 4, 2};
 char *title = "A random contingency table with fixed"
 " marginal totals";
 imsls_random_seed_set(123457);
 itable = imsls_random_table_twoway(nrow, ncol, nrtot, nctot,
 0);
 imsls_i_write_matrix(title, nrow, ncol, itable,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
}

1304

 Random Number Generation random_table_twoway
Output

A random contingency table with fixed marginal totals
 0 2 1
 2 2 1
1305

 Random Number Generation random_mvar_gaussian_copula
random_mvar_gaussian_copula
Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Gaussian Cop-
ula distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_gaussian_copula(int n, float chol[], …, 0)

The type double function is imsls_d_ random_mvar_gaussian_copula.

Required Arguments
int n (Input)

Number of random numbers to generate.

float chol[] (Input)
Array of size n × n containing the upper-triangular Cholesky factorization of the correlation matrix
of order n.

Return Value
An array of length n containing the pseudorandom numbers from a multivariate Gaussian Copula distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_mvar_gaussian_copula (int n, float chol[],

IMSLS_RETURN_USER, r[],
0)
1306

 Random Number Generation random_mvar_gaussian_copula
Optional Arguments
IMSLS_RETURN_USER, r[] (Output)

User-supplied array of length n containing the pseudorandom numbers from a multivariate Gaussian
Copula distribution.

Description
Function imsls_f_random_mvar_gaussian_copula generates pseudorandom numbers from a multi-
variate Gaussian Copula distribution which are uniformly distributed on the interval (0,1) representing the
probabilities associated with standard normal N(0,1) deviates imprinted with correlation information from input
upper-triangular Cholesky matrix chol. Cholesky matrix chol is defined as the “square root” of a user-defined
correlation matrix, that is chol is an upper triangular matrix such that the transpose of chol × chol is the cor-
relation matrix. First, a length n array of independent random normal deviates with mean 0 and variance 1 is
generated, and then this deviate array is post-multiplied by Cholesky matrix chol. Finally, the Cholesky-imprinted
random N(0,1) deviates are mapped to output probabilities using the N(0,1) cumulative distribution function
(CDF).

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information con-
tained in Cholesky matrix chol can then be generated by inverting the output probabilities using user-specified
inverse CDF functions.

Example: Using Gaussian Copulas to Imprint and Extract Correlation
Information
This example uses function imsls_f_random_mvar_gaussian_copula to generate a multivariate
sequence gcdevt whose marginal distributions are user-defined and imprinted with a user-specified input cor-
relation matrix corrin and then uses function imsls_f_canonical_correlation to extract an output
canonical correlation matrix corrout from this multivariate random sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multivari-
ate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a user-defined
correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate deviate input
sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. cumulative distribution
function values representing the probability that each random variable has a value less than or equal to the input
deviate. The variates are then inverted, using the inverse standard normal CDF function, to N(0,1) deviates; and
finally, a canonical covariance matrix is extracted from the multivariate N(0,1) sequence using the standard sum
of products.
1307

 Random Number Generation random_mvar_gaussian_copula
This example demonstrates that function imsls_f_random_mvar_gaussian_copula correctly embeds
the user-defined correlation information into an arbitrary marginal distribution sequence by extracting the
canonical correlation from these sequences and showing that they differ from the original correlation matrix by a
small relative error, which generally decreases as the number of multivariate sequence vectors increases.

#include <imsls.h>
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NVAR 3
int main()
{
 int lmax=15000, i, j, k, kmax, kk;
 float chol[NVAR*NVAR], gcvart[NVAR], *gcdevt, corrout[NVAR*NVAR],
 relerr, arg1=10.0, arg2=15.0, rs, rs00;
 float corrin[] = {
 1.0, -0.9486832, 0.8164965,
 -0.9486832, 1.0, -0.6454972,
 0.8164965, -0.6454972, 1.0
 };
 printf("Off-diagonal elements of Input Correlation Matrix:\n\n");
 for (i = 1; i < NVAR; i++) {
 for (j = 0; j < i; j++) {
 printf(" CorrIn(%d,%d) = %10.6f\n",
 i, j, corrin[i*NVAR + j]);
 }
 }
 printf("\nOff-diagonal elements of Output Correlation Matrices\n");
 printf("calculated from Gaussian Copula imprinted multivariate\n");
 printf("sequence:\n");
 /*
 * Compute the Cholesky factorization of corrin
 *
 * Use IMSL function imsl_f_lin_sol_posdef to generate
 * the NVAR by NVAR upper triangular matrix chol from
 * the Cholesky decomposition R*RT of input correlation
 * matrix corrin:
 */
 imsl_f_lin_sol_posdef (NVAR, corrin, NULL,
 IMSL_FACTOR_USER, chol,
 IMSL_FACTOR_ONLY,
 0);
 kmax = lmax / 100;
 for (kk = 1; kk <= 3; kk++) {
 gcdevt = (float *) malloc(kmax * NVAR * sizeof(float));
 printf("\n# of vectors in multivariate sequence: %7d\n\n",
 kmax);
1308

 Random Number Generation random_mvar_gaussian_copula
 /* use Congruential RN generator, with multiplier 16807 */
 imsls_random_option(1);
 /* set RN generator seed to be 123457 */
 imsls_random_seed_set(123457);
 for (k = 0; k < kmax; k++) {
 /*
 * generate a NVAR-length random Gaussian Copula
 * variate output vector gcvart which is uniformly
 * distributed on the interval [0,1] and imprinted
 * with correlation information from input Cholesky
 * matrix chol:
 */
 imsls_f_random_mvar_gaussian_copula(NVAR, chol,
 IMSLS_RETURN_USER, gcvart,
 0);
 for (j = 0; j < 3; j++) {
 /*
 * invert Gaussian Copula probabilities to deviates
 * using variable-specific inversions: j = 0: Chi
 * Square; j = 1: F; j = 2: Normal(0,1); will end
 * up with deviate sequences ready for mapping to
 * canonical correlation matrix:
 */
 if (j == 0) {
 /* convert probs into ChiSquare(df=10) deviates */
 gcdevt[k*NVAR + j] =
 imsls_f_chi_squared_inverse_cdf(gcvart[j], arg1);
 } else if (j == 1) {
 /* convert probs into F(dfn=15,dfd=10) deviates */
 gcdevt[k*NVAR + j] =
 imsls_f_F_inverse_cdf(gcvart[j], arg2, arg1);
 } else {
 /*
 * convert probs into Normal(mean=0,variance=1)
 * deviates:
 */
 gcdevt[k*NVAR + j] =
 imsls_f_normal_inverse_cdf(gcvart[j]);
 }
 }
 }
 /*
 * extract Canonical Correlation matrix from arbitrarily
 * distributed deviate sequences gcdevt (k=1..kmax, j=1..NVAR)
 * which have been imprinted with corrin (i=1..NVAR, j=1..NVAR)
 * above:
 */
 imsls_f_canonical_correlation(kmax, NVAR, gcdevt,
 IMSLS_RETURN_USER, corrout,
 0);
 for (i = 1; i < NVAR; i++) {
 for (j = 0; j <= i-1; j++) {
 rs00 = corrin[i*NVAR + j];
1309

 Random Number Generation random_mvar_gaussian_copula
 rs = corrout[i*NVAR + j];
 relerr = fabs((rs - rs00)/rs00);
 printf(" CorrOut(%d,%d) = %10.6f; relerr = %10.6f\n",
 i, j, corrout[i*NVAR + j], relerr);
 }
 }
 free(gcdevt);
 kmax *= 10;
 }
}

Output

Off-diagonal elements of Input Correlation Matrix:
 CorrIn(1,0) = -0.948683
 CorrIn(2,0) = 0.816496
 CorrIn(2,1) = -0.645497
Off-diagonal elements of Output Correlation Matrices
calculated from Gaussian Copula imprinted multivariate
sequence:
of vectors in multivariate sequence: 150
 CorrOut(1,0) = -0.940215; relerr = 0.008926
 CorrOut(2,0) = 0.794511; relerr = 0.026927
 CorrOut(2,1) = -0.616082; relerr = 0.045570
of vectors in multivariate sequence: 1500
 CorrOut(1,0) = -0.947444; relerr = 0.001306
 CorrOut(2,0) = 0.808306; relerr = 0.010031
 CorrOut(2,1) = -0.635650; relerr = 0.015255
of vectors in multivariate sequence: 15000
 CorrOut(1,0) = -0.948263; relerr = 0.000443
 CorrOut(2,0) = 0.817261; relerr = 0.000936
 CorrOut(2,1) = -0.646206; relerr = 0.001098
1310

 Random Number Generation random_mvar_t_copula
random_mvar_t_copula
Given a Cholesky factorization of a correlation matrix, generates pseudorandom numbers from a Student’s t Cop-
ula distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_t_copula(float df, int n, float chol[], …, 0)

The type double function is imsls_d_random_mvar_t_copula.

Required Arguments
float df (Input)

Degrees of freedom. df must be greater than 2.

int n (Input)
Number of random numbers to generate.

float chol[] (Input)
An array of size n × n containing the upper-triangular Cholesky factorization of the correlation matrix
of order n.

Return Value
An array of length n containing the pseudorandom numbers from a multivariate Student’s t Copula distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_mvar_t_copula (float df, int n, float chol[],

IMSLS_RETURN_USER, r[],
0)
1311

 Random Number Generation random_mvar_t_copula
Optional Arguments
IMSLS_RETURN_USER, r[] (Output)

User-supplied array of length n containing the pseudorandom numbers from a multivariate
Student’s t Copula distribution.

Description
Function imsls_f_random_mvar_t_copula generates pseudorandom numbers from a multivariate Stu-
dent’s t Copula distribution which are uniformly distributed on the interval (0,1) representing the probabilities
associated with Student’s t deviates with df degrees of freedom imprinted with correlation information from
input upper-triangular Cholesky matrix chol. Cholesky matrix chol is defined as the “square root” of a user-
defined correlation matrix. That is, chol is an upper triangular matrix such that the transpose of chol times
chol is the correlation matrix. First, a length n array of independent random normal deviates with mean 0 and
variance 1 is generated, and then this deviate array is post-multiplied by Cholesky matrix chol. Each of the n ele-
ments of the resulting vector of Cholesky-imprinted random deviates is then divided by

where = df and s is a random deviate taken from a chi-squared distribution with df degrees of freedom. Each
element of the Cholesky-imprinted standard normal N(0,1) array is a linear combination of normally distributed
random numbers and is therefore itself normal, and the division of each element by

insures that each element of the resulting array is Student’s t distributed. Finally, each element of the Cholesky-
imprinted Student’s t array is mapped to an output probability using the Student’s t cumulative distribution func-
tion (CDF) with df degrees of freedom.

Random deviates from arbitrary marginal distributions which are imprinted with the correlation information con-
tained in Cholesky matrix chol can then be generated by inverting the output probabilities using user-specified
inverse CDF functions.

s v ,

v

s v
1312

 Random Number Generation random_mvar_t_copula
Example: Using Student’s t Copulas to Imprint and Extract
Correlation Information
This example uses function imsls_f_random_mvar_t_copula to generate a multivariate sequence
tcdevt whose marginal distributions are user-defined and imprinted with a user-specified input correlation
matrix corrin and then uses function imsls_f_canonical_correlation to extract an output canoni-
cal correlation matrix corrout from this multivariate random sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multivari-
ate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a user-defined
correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate deviate input
sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. cumulative distribution
function values representing the probability that each random variable has a value less than or equal to the input
deviate. The variates are then inverted, using the inverse standard normal CDF function, to N(0,1) deviates; and
finally, a canonical covariance matrix is extracted from the multivariate N(0,1) sequence using the standard sum
of products.

This example demonstrates that function imsls_f_random_mvar_t_copula correctly imbeds the user-
defined correlation information into an arbitrary marginal distribution sequence by extracting the canonical cor-
relation from these sequences and showing that they differ from the original correlation matrix by a small relative
error.

Recall that a Gaussian Copula array sequence, whose probabilities are mapped directly from Cholesky-imprinted
N(0,1) deviates, has the property that the relative error between the input and output correlation matrices gener-
ally decreases as the number of multivariate sequence vectors increases. This is understandable because the
correlation imprinting and extraction processes both act upon N(0,1) marginal distributions, and one would
expect that a larger sample would therefore result in more accurate imprinting and extraction of correlation
information.

In contrast, the imprinting of correlation information onto the Student’s t vector sequence is accomplished by
imprinting onto an N(0,1) array and then dividing the array components by a scaled chi-squared random deviate,
thereby introducing noise into the imprinting process. (An array of Student’s t deviates cannot be Cholesky-
imprinted directly, because a linear combination of Student’s t deviates is not Student’s t distributed.) A larger
sample would thus contain additional correlation information and additional noise, so the accuracy would be
expected to plateau. This is illustrated in the example below, which should be compared with the Gaussian Cop-
ula example given for CNL function imsls_f_random_mvar_gaussian_copula.

#include <imsls.h>
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NVAR 3
1313

 Random Number Generation random_mvar_t_copula
int main()
{
 int lmax=15000, i, j, k, kmax, kk;
 float chol[NVAR*NVAR], tcvart[NVAR], *tcdevt, corrout[NVAR*NVAR],
 df=5.0, relerr, arg1=10.0, arg2=15.0, rs, rs00;
 float corrin[] = {
 1.0, -0.9486832, 0.8164965,
 -0.9486832, 1.0, -0.6454972,
 0.8164965, -0.6454972, 1.0
 };
 printf("Off-diagonal elements of Input Correlation Matrix:\n\n");
 for (i = 1; i < NVAR; i++) {
 for (j = 0; j < i; j++) {
 printf(" CorrIn(%d,%d) = %10.6f\n",
 i, j, corrin[i*NVAR + j]);
 }
 }
 printf("\n Degrees of freedom df = %6.2f\n", df);
 printf("\n Imprinted random sequences distributions:");
 printf("\n 1: Chi, 2: F, 3: Normal;\n");
 printf("\nOff-diagonal elements of Output Correlation Matrices\n");
 printf("calculated from Student's t Copula imprinted\n");
 printf("multivariate sequence:\n");
 /*
 * Compute the Cholesky factorization of corrin
 *
 * Use IMSL function imsl_f_lin_sol_posdef to generate
 * the NVAR by NVAR upper triangular matrix chol from
 * the Cholesky decomposition R*RT of input correlation
 * matrix corrin:
 */
 imsl_f_lin_sol_posdef (NVAR, corrin, NULL,
 IMSL_FACTOR_USER, chol,
 IMSL_FACTOR_ONLY,
 0);
 kmax = lmax / 100;
 for (kk = 1; kk <= 3; kk++) {
 tcdevt = (float *) malloc(kmax * NVAR * sizeof(float));
 printf("\n# of vectors in multivariate sequence: %7d\n\n",
 kmax);
 /* use Congruential RN generator, with multiplier 16807 */
 imsls_random_option(1);
 /* set RN generator seed to be 123457 */
 imsls_random_seed_set(123457);
 for (k = 0; k < kmax; k++) {
 /*
 * generate a NVAR-length random Student's t Copula
1314

 Random Number Generation random_mvar_t_copula
 * variate output vector tcvart which is uniformly
 * distributed on the interval [0,1] and imprinted
 * with correlation information from input Cholesky
 * matrix chol:
 */
 imsls_f_random_mvar_t_copula(df, NVAR, chol,
 IMSLS_RETURN_USER, tcvart,
 0);
 for (j = 0; j < 3; j++) {
 /*
 * invert Student's t Copula probabilities to
 * deviates using variable-specific
 * inversions: j = 0: Chi Square; j = 1: F;
 * j = 2: Normal(0,1); will end up with deviate
 * sequences ready for mapping to canonical
 * correlation matrix:
 */
 if (j == 0) {
 /* convert probs into ChiSquare(df=10) deviates */
 tcdevt[k*NVAR + j] =
 imsls_f_chi_squared_inverse_cdf(tcvart[j], arg1);
 } else if (j == 1) {
 /* convert probs into F(dfn=15,dfd=10) deviates */
 tcdevt[k*NVAR + j] =
 imsls_f_F_inverse_cdf(tcvart[j], arg2, arg1);
 } else {
 /*
 * convert probs into Normal(mean=0,variance=1)
 * deviates:
 */
 tcdevt[k*NVAR + j] =
 imsls_f_normal_inverse_cdf(tcvart[j]);
 }
 }
 }
 /*
 * extract Canonical Correlation matrix from arbitrarily
 * distributed deviate sequences tcdevt (k=1..kmax, j=1..NVAR)
 * which have been imprinted with corrin (i=1..NVAR, j=1..NVAR)
 * above:
 */
 imsls_f_canonical_correlation (kmax, NVAR, tcdevt,
 IMSLS_RETURN_USER, corrout,
 0);
 for (i = 1; i < NVAR; i++) {
 for (j = 0; j <= i-1; j++) {
 rs00 = corrin[i*NVAR + j];
 rs = corrout[i*NVAR + j];
 relerr = fabs((rs - rs00)/rs00);
 printf(" CorrOut(%d,%d) = %10.6f; relerr = %10.6f\n",
 i, j, corrout[i*NVAR + j], relerr);
 }
 }
 free (tcdevt);
 kmax *= 10;
1315

 Random Number Generation random_mvar_t_copula
 }
}

Output

Off-diagonal elements of Input Correlation Matrix:
 CorrIn(1,0) = -0.948683
 CorrIn(2,0) = 0.816496
 CorrIn(2,1) = -0.645497
 Degrees of freedom df = 5.00
 Imprinted random sequences distributions:
 1: Chi, 2: F, 3: Normal;
Off-diagonal elements of Output Correlation Matrices
calculated from Student's t Copula imprinted
multivariate sequence:
of vectors in multivariate sequence: 150
 CorrOut(1,0) = -0.953573; relerr = 0.005154
 CorrOut(2,0) = 0.774720; relerr = 0.051166
 CorrOut(2,1) = -0.621418; relerr = 0.037303
of vectors in multivariate sequence: 1500
 CorrOut(1,0) = -0.944316; relerr = 0.004603
 CorrOut(2,0) = 0.810164; relerr = 0.007756
 CorrOut(2,1) = -0.636348; relerr = 0.014174
of vectors in multivariate sequence: 15000
 CorrOut(1,0) = -0.946770; relerr = 0.002017
 CorrOut(2,0) = 0.808564; relerr = 0.009715
 CorrOut(2,1) = -0.636321; relerr = 0.014216
1316

 Random Number Generation canonical_correlation
canonical_correlation

more...

Given an input array of deviate values, generates a canonical correlation array.

Synopsis
#include <imsls.h>
float *imsls_f_canonical_correlation(int nseq, int nvar, float devt[], …, 0)

The type double function is imsls_d_canonical_correlation.

Required Arguments
int nseq (Input)

Number of steps in each deviate variable sequence.

int nvar (Input)
Number of deviate variables.

float devt[] (Input)
An array of length nseq × nvar of deviate values containing nseq row elements for each of nvar
variables (columns).

Return Value
An array of length nvar × nvar containing the canonical correlation array.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_canonical_correlation(int nseq, int nvar, float devt[],

IMSLS_RETURN_USER, corr[],
0)
1317

 Random Number Generation canonical_correlation
Optional Arguments
IMSLS_RETURN_USER, corr[] (Output)

User-supplied array of length nvar × nvar containing canonical correlation array.

Description
Function imsls_f_canonical_correlation generates a canonical correlation matrix from an arbitrarily
distributed multivariate deviate sequence devt with nvar deviate variables, nseq elements in each deviate
sequence, and a Gaussian Copula dependence structure.

Function imsls_f_canonical_correlation first maps each of the j = 0, ..., nvar-1 input deviate
sequences devt[k = 0, ..., nseq-1][j] into a corresponding sequence of variates, say Vkj (where variates are

values of the empirical cumulative probability function, CDF(x), defined as the probability that random deviate vari-
able X ≤ x). The variate matrix element Vkj is then mapped into standard normal N(0,1) distributed deviates zkj

using the inverse standard normal CDF imsls_f_normal_inverse_cdf(Vkj) and then the standard covari-

ance estimator

(where m = nseq and i and j have values between 1 and nvar) is used to calculate the canonical correlation
matrix corr, where Ci j = corr[i-1][j-1] = the return value canonical correlation array.

If a multivariate distribution has Gaussian marginal distributions, then the standard “empirical” correlation matrix
given above is “unbiased”, i.e. an accurate measure of dependence among the variables. But when the marginal
distributions depart significantly from Gaussian, i.e. are skewed or flattened, then the empirical correlation may
become biased. One way to remove such bias from dependence measures is to map the non-Gaussian-distrib-
uted marginal deviates to N(0,1) deviates (by mapping the non-Gaussian marginal deviates to empirically derived
marginal CDF variate values, then inverting the variates to N(0,1) deviates as described above), and calculating the
standard empirical correlation matrix from these N(0,1) deviates as in the equation above. The resulting “canoni-
cal correlation” matrix thereby avoids the bias that would occur if the empirical correlation matrix were extracted
from the non-Gaussian marginal distributions directly.

The canonical correlation matrix may be of value in such applications as Markowitz portfolio optimization, where
an unbiased measure of dependence is required to evaluate portfolio risk, defined in terms of the portfolio vari-
ance which is in turn defined in terms of the correlation among the component portfolio instruments.

The utility of the canonical correlation derives from the observation that a “copula” multivariate distribution with
uniformly-distributed deviates (corresponding to the CDF probabilities associated with the marginal deviates)
may be mapped to arbitrarily distributed marginals, so that an unbiased dependence estimator derived from one

Ci j =
1
m∑
k=1

m

zkizk j
1318

 Random Number Generation canonical_correlation
set of marginals N(0,1) (distributed marginals) can be used to represent the dependence associated with arbi-
trarily-distributed marginals. The “Gaussian Copula” (whose variate arguments are derived from N(0,1) marginal
deviates) is a particularly useful structure for representing multivariate dependence.

Example: Using Gaussian Copulas to Imprint and Extract Correlation
Information
This example uses function imsls_f_random_mvar_gaussian_copula to generate a multivariate sequence
gcdevt whose marginal distributions are user-defined and imprinted with a user-specified input correlation
matrix corrin and then uses function imsls_f_canonical_correlation to extract an output canoni-
cal correlation matrix corrout from this multivariate random sequence.

This example illustrates two useful copula related procedures. The first procedure generates a random multivari-
ate sequence with arbitrary user-defined marginal deviates whose dependence is specified by a user-defined
correlation matrix. The second procedure is the inverse of the first: an arbitrary multivariate deviate input
sequence is first mapped to a corresponding sequence of empirically derived variates, i.e. cumulative distribution
function values representing the probability that each random variable has a value less than or equal to the input
deviate. The variates are then inverted, using the inverse standard normal CDF function, to N(0,1) deviates; and
finally, a canonical covariance matrix is extracted from the multivariate N(0,1) sequence using the standard sum
of products.

This example demonstrates that function imsls_f_random_mvar_gaussian_copula correctly embeds
the user-defined correlation information into an arbitrary marginal distribution sequence by extracting the
canonical correlation from these sequences and showing that they differ from the original correlation matrix by a
small relative error, which generally decreases as the number of multivariate sequence vectors increases.

#include <imsls.h>
#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NVAR 3
int main()
{
 int lmax=15000, i, j, k, kmax, kk;
 float chol[NVAR*NVAR], gcvart[NVAR], *gcdevt, corrout[NVAR*NVAR],
 relerr, arg1=10.0, arg2=15.0, rs, rs00;
 float corrin[] = {
 1.0, -0.9486832, 0.8164965,
 -0.9486832, 1.0, -0.6454972,
 0.8164965, -0.6454972, 1.0
 };
 printf("Off-diagonal elements of Input Correlation Matrix:\n\n");
1319

 Random Number Generation canonical_correlation
 for (i = 1; i < NVAR; i++) {
 for (j = 0; j < i; j++) {
 printf(" CorrIn(%d,%d) = %10.6f\n",
 i, j, corrin[i*NVAR + j]);
 }
 }
 printf("\nOff-diagonal elements of Output Correlation Matrices\n");
 printf("calculated from Gaussian Copula imprinted multivariate\n");
 printf("sequence:\n");
 /*
 * Compute the Cholesky factorization of corrin
 *
 * Use IMSL function imsl_f_lin_sol_posdef to generate
 * the NVAR by NVAR upper triangular matrix chol from
 * the Cholesky decomposition R*RT of input correlation
 * matrix corrin:
 */
 imsl_f_lin_sol_posdef (NVAR, corrin, NULL,
 IMSL_FACTOR_USER, chol,
 IMSL_FACTOR_ONLY,
 0);
 kmax = lmax / 100;
 for (kk = 1; kk <= 3; kk++) {
 gcdevt = (float *) malloc(kmax * NVAR * sizeof(float));
 printf("\n# of vectors in multivariate sequence: %7d\n\n",
 kmax);
 /* use Congruential RN generator, with multiplier 16807 */
 imsls_random_option(1);
 /* set RN generator seed to be 123457 */
 imsls_random_seed_set(123457);
 for (k = 0; k < kmax; k++) {
 /*
 * generate a NVAR-length random Gaussian Copula
 * variate output vector gcvart which is uniformly
 * distributed on the interval [0,1] and imprinted
 * with correlation information from input Cholesky
 * matrix chol:
 */
 imsls_f_random_mvar_gaussian_copula(NVAR, chol,
 IMSLS_RETURN_USER, gcvart,
 0);
 for (j = 0; j < 3; j++) {
 /*
 * invert Gaussian Copula probabilities to deviates
 * using variable-specific inversions: j = 0: Chi
 * Square; j = 1: F; j = 2: Normal(0,1); will end
 * up with deviate sequences ready for mapping to
 * canonical correlation matrix:
 */
 if (j == 0) {
 /* convert probs into ChiSquare(df=10) deviates */
 gcdevt[k*NVAR + j] =
1320

 Random Number Generation canonical_correlation
 imsls_f_chi_squared_inverse_cdf(gcvart[j], arg1);
 } else if (j == 1) {
 /* convert probs into F(dfn=15,dfd=10) deviates */
 gcdevt[k*NVAR + j] =
 imsls_f_F_inverse_cdf(gcvart[j], arg2, arg1);
 } else {
 /*
 * convert probs into Normal(mean=0,variance=1)
 * deviates:
 */
 gcdevt[k*NVAR + j] =
 imsls_f_normal_inverse_cdf(gcvart[j]);
 }
 }
 }
 /*
 * extract Canonical Correlation matrix from arbitrarily
 * distributed deviate sequences gcdevt (k=1..kmax, j=1..NVAR)
 * which have been imprinted with corrin (i=1..NVAR, j=1..NVAR)
 * above:
 */
 imsls_f_canonical_correlation(kmax, NVAR, gcdevt,
 IMSLS_RETURN_USER, corrout,
 0);
 for (i = 1; i < NVAR; i++) {
 for (j = 0; j <= i-1; j++) {
 rs00 = corrin[i*NVAR + j];
 rs = corrout[i*NVAR + j];
 relerr = fabs((rs - rs00)/rs00);
 printf(" CorrOut(%d,%d) = %10.6f; relerr = %10.6f\n",
 i, j, corrout[i*NVAR + j], relerr);
 }
 }
 free(gcdevt);
 kmax *= 10;
 }
}

Outputs

Off-diagonal elements of Input Correlation Matrix:
 CorrIn(1,0) = -0.948683
 CorrIn(2,0) = 0.816496
 CorrIn(2,1) = -0.645497
Off-diagonal elements of Output Correlation Matrices
calculated from Gaussian Copula imprinted multivariate
sequence:
of vectors in multivariate sequence: 150
 CorrOut(1,0) = -0.940215; relerr = 0.008926
 CorrOut(2,0) = 0.794511; relerr = 0.026927
1321

 Random Number Generation canonical_correlation
 CorrOut(2,1) = -0.616082; relerr = 0.045570
of vectors in multivariate sequence: 1500
 CorrOut(1,0) = -0.947444; relerr = 0.001306
 CorrOut(2,0) = 0.808306; relerr = 0.010031
 CorrOut(2,1) = -0.635650; relerr = 0.015255
of vectors in multivariate sequence: 15000
 CorrOut(1,0) = -0.948263; relerr = 0.000443
 CorrOut(2,0) = 0.817261; relerr = 0.000936
 CorrOut(2,1) = -0.646206; relerr = 0.001098
1322

 Random Number Generation random_order_normal
random_order_normal
Generates pseudorandom order statistics from a standard normal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_normal(int ifirst, int ilast, int n, …, 0)

The type double function is imsls_d_random_order_normal.

Required Arguments
int ifirst (Input)

First order statistic to generate.

int ilast (Input)
Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order statistics from ifirst to
ilast is generated. If only one order statistic is desired, set ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 - ifirst containing the random order statistics in ascending order. The first ele-
ment is the ifirst order statistic in a random sample of size n from the standard normal distribution. To
release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,

IMSLS_RETURN_USER, float r[],
0)
1323

 Random Number Generation random_order_normal
Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 - ifirst containing the random order statistics in
ascending order.

Description
Function imsls_f_random_order_normal generates the ifirst through the ilast order statistics
from a pseudorandom sample of size n from a normal (0, 1) distribution. Function
imsls_f_random_order_normal uses the function imsls_f_random_order_uniform to generate
order statistics from the uniform (0, 1) distribution and then obtains the normal order statistics using the inverse
CDF transformation.

Each call to imsls_f_random_order_normal yields an independent event so order statistics from differ-
ent calls may not have the same order relations with each other.

Example
In this example, imsls_f_random_order_normal is used to generate the fifteenth through the nineteenth
order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>
int main()
{
 float *r = NULL;
 imsls_random_seed_set(123457);
 r = imsls_f_random_order_normal(15, 19, 20, 0);
 printf("The 15th through the 19th order statistics from a \n");
 printf("random sample of size 20 from a normal distribution\n");
 imsls_f_write_matrix("", 5, 1, r, 0);
}

Output

The 15th through the 19th order statistics from a
random sample of size 20 from a normal distribution
1 0.4056
2 0.4681
3 0.4697
4 0.9067
1324

 Random Number Generation random_order_normal
5 0.9362
1325

 Random Number Generation random_order_uniform
random_order_uniform
Generates pseudorandom order statistics from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_uniform(int ifirst, int ilast, int n, …, 0)

The type double function is imsls_d_random_order_uniform.

Required Arguments
int ifirst (Input)

First order statistic to generate.

int ilast (Input)
Last order statistic to generate. ilast must be greater than or equal to ifirst. The full set of
order statistics from ifirst to ilast is generated. If only one order statistic is desired, set
ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 - ifirst containing the random order statistics in ascending order. The first ele-
ment is the ifirst order statistic in a random sample of size n from the uniform (0, 1) distribution. To release
this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_uniform (int ifirst, int ilast, int n,

IMSLS_RETURN_USER, float r[],
 0)
1326

 Random Number Generation random_order_uniform
Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 - ifirst containing the random order statistics in
ascending order.

Description
Function imsls_f_random_order_uniform generates the ifirst through the ilast order statistics
from a pseudorandom sample of size n from a uniform (0, 1) distribution. Depending on the values of ifirst
and ilast, different methods of generation are used to achieve greater efficiency. If ifirst = 1 and
ilast = n, that is, if the full set of order statistics are desired, the spacings between successive order statistics
are generated as ratios of exponential variates. If the full set is not desired, a beta variate is generated for one of
the order statistics, and the others are generated as extreme order statistics from conditional uniform distribu-
tions. Extreme order statistics from a uniform distribution can be obtained by raising a uniform deviate to an
appropriate power.

Each call to imsls_f_random_order_uniform yields an independent event. This means, for example, that
if on one call the fourth order statistic is requested and on a second call the third order statistic is requested, the
“fourth” may be smaller than the “third”. If both the third and fourth order statistics from a given sample are
desired, they should be obtained from a single call to imsls_f_random_order_uniform (by specifying
ifirst less than or equal to 3 and ilast greater than or equal to 4).

Example
In this example, imsls_f_random_order_uniform is used to generate the fifteenth through the nine-
teenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>
int main()
{
 float *r = NULL;
 imsls_random_seed_set(123457);
 r = imsls_f_random_order_uniform(15, 19, 20, 0);
 printf("The 15th through the 19th order statistics from a \n");
 printf("random sample of size 20 from a uniform distribution\n");
 imsls_f_write_matrix("", 5, 1, r, 0);
}

1327

 Random Number Generation random_order_uniform
Output

The 15th through the 19th order statistics from a
random sample of size 20 from a uniform distribution
1 0.6575
2 0.6802
3 0.6807
4 0.8177
5 0.8254
1328

 Random Number Generation random_arma
random_arma
Generates a time series from a specific ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_random_arma(int n_observations, int p, float ar[], int q, float ma[], …, 0)

The type double function is imsls_d_random_arma.

Required Arguments
int n_observations (Input)

Number of observations to be generated. Parameter n_observations must be greater than or
equal to one.

int p (Input)
Number of autoregressive parameters. Parameter p must be greater than or equal to zero.

float ar[] (Input)
Array of length p containing the autoregressive parameters.

int q (Input)
Number of moving average parameters. Parameter q must be greater than or equal to zero.

float ma[] (Input)
Array of length q containing the moving average parameters.

Return Value
An array of length n_observations containing the generated time series.

Synopsis with Optional Arguments
#include <imsls.h>
1329

 Random Number Generation random_arma
float *imsls_f_random_arma (int n_observations, int p, float ar[], int q, float ma[],
IMSLS_ARMA_CONSTANT, float constant,
IMSLS_VAR_NOISE, float *a_variance, or
IMSLS_INPUT_NOISE, float *a_input,
IMSLS_OUTPUT_NOISE, float **a_return,
IMSLS_OUTPUT_NOISE_USER, float a_return[],
IMSLS_NONZERO_ARLAGS, int *ar_lags,
IMSLS_NONZERO_MALAGS, int *ma_lags,
IMSLS_INITIAL_W, float *w_initial,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ARMA_CONSTANT, float constant (Input)

Overall constant. See Description.

Default: constant = 0.

IMSLS_VAR_NOISE, float a_variance (Input)
If IMSLS_VAR_NOISE is specified (and IMSLS_INPUT_NOISE is not specified) the noise at will
be generated from a normal distribution with mean 0 and variance a_variance.

Default: a_variance = 1.0

or

IMSLS_INPUT_NOISE, float *a_input (Input)
If IMSLS_INPUT_NOISE is specified, the user will provide an array of length n_observations +
max (ma_lags[i]) containing the random noises. If this option is specified, then
IMSLS_VAR_NOISE should not be specified (a warning message will be issued and the option
IMSLS_VAR_NOISE will be ignored).

IMSLS_OUTPUT_NOISE, float **a_return (Output)
An address of a pointer to an internally allocated array of length n_observations +
max (ma_lags[i]) containing the random noises.

IMSLS_OUTPUT_NOISE_USER, float a_return[] (Output)
Storage for array a_return is provided by user. See IMSLS_OUTPUT_NOISE.

IMSLS_NONZERO_ARLAGS, int ar_lags[] (Input)
An array of length p containing the order of the nonzero autoregressive parameters.
1330

 Random Number Generation random_arma
Default: ar_lags = [1, 2, ..., p]

IMSLS_NONZERO_MALAGS, int ma_lags (Input)
An array of length q containing the order of the nonzero moving average parameters.

Default: ma_lags = [1, 2, ..., q]

IMSLS_INITIAL_W, float w_initial[] (Input)
Array of length max (ar_lags[i]) containing the initial values of the time series.

Default: all the elements in w_initial = constant/(1 − ar [0] − ar [1] −… − ar [p − 1])

IMSLS_ACCEPT_REJECT_METHOD, (Input)
If IMSLS_ACCEPT_REJECT_METHOD is specified, the random noises will be generated from a
normal distribution using an acceptance/rejection method. If IMSLS_ACCEPT_REJECT_METHOD
is not specified, the random noises will be generated using an inverse normal CDF method. This argu-
ment will be ignored if IMSLS_INPUT_NOISE is specified.

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_observations containing the generated time series.

Description
Function imsls_f_random_arma simulates an ARMA(p, q) process, {Wt}, for t = 1, 2, ..., n (with

n = n_observations, p = p, and q = q). The model is

Let μ be the mean of the time series {Wt}. The overall constant θ0 (constant) is

Time series whose innovations have a nonnormal distribution may be simulated by providing the appropriate
innovations in a_input and start values in w_initial.

The time series is generated according to the following model:

X[i] = constant + ar[0] ∙ X[i − ar_lags[0]] + … +

ar[p − 1] ∙ X[i − ar_lags[p − 1]] +

ϕ B Wt = θ0 + θ B At t ∈ Z

ϕ B = 1 − ϕ1B − ϕ2B
2 − ... − ϕpB

P

θ B = 1 − θ1B − θ2B
2 − ... − θqB

q

θ0 =
μ p = 0

μ 1 − ∑i=1
p ϕi p > 0
1331

 Random Number Generation random_arma
A[i] − ma[0] ∙ A[i − ma_lags[0]] − … −
ma[q − 1] ∙ A[i − ma_lags[q − 1]]

where the constant is related to the mean of the series,

as follows:

and where

X[t] = W[t], t = 0, 1, …, n_observations − 1

and

W[t] = w_initial[t + p], t = −p, −p + 1, …, −2, −1

and A is either a_input (if IMSLS_INPUT_NOISE is specified) or a_return (otherwise).

Examples

Example 1

In this example, imsls_f_random_arma is used to generate a time series of length five, using an ARMA
model with three autoregressive parameters and two moving average parameters.

#include <imsls.h>
int main()
{
 int n_random = 5;
 int np = 3;
 float phi[3] = {0.5, 0.25, 0.125};
 int nq = 2;
 float theta[2] = {-0.5, -0.25};
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_arma(n_random, np, phi, nq, theta,
 0);
 imsls_f_write_matrix("ARMA random deviates:", 1, n_random, r,
 IMSLS_NO_COL_LABELS,
 0);
}

W─

constant = W─· 1 − ar 0 − ... − ar q − 11
1332

 Random Number Generation random_arma
Output

 ARMA random deviates:
 0.863 0.809 1.904 0.110 2.266

Example 2

In this example, a time series of length 5 is generated using an ARMA model with 3 autoregressive parameters
and 2 moving average parameters. The start values are 0.1, 0.05 and 0.0375. Constant and noise are also input.

#include <imsls.h>
int main()
{
 int n_random = 5;
 int np = 3;
 float phi[3] = {0.5, 0.25, 0.125};
 int nq = 2;
 float theta[2] = {-0.5, -0.25};
 float wi[3] = {0.1, 0.05, 0.0375};
 float theta0 = 1.0;
 float avar = 0.1;
 float *r;
 imsls_random_seed_set(123457);
 r = imsls_f_random_arma(n_random, np, phi, nq, theta,
 IMSLS_ACCEPT_REJECT_METHOD,
 IMSLS_INITIAL_W, wi,
 IMSLS_ARMA_CONSTANT, theta0,
 IMSLS_VAR_NOISE, avar,
 0);
 imsls_f_write_matrix("ARMA random deviates:", 1, n_random, r,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 ARMA random deviates:
 1.403 2.220 2.286 2.888 2.832

Warning Errors
IMSLS_RNARM_NEG_VAR VAR(a) = “a_variance” = #, VAR(a) must be greater

than 0. The absolute value of # is used for VAR(a).

IMSLS_RNARM_IO_NOISE Both IMSLS_INPUT_NOISE and
IMSLS_OUTPUT_NOISE are specified.
IMSLS_INPUT_NOISE is used.
1333

 Random Number Generation random_npp
random_npp
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Synopsis
#include <imsls.h>
float *imsls_f_random_npp(float tbegin, float tend, float ftheta(), float theta_min,

float theta_max, int neub, int *ne, …, 0)

The type double function is imsls_d_random_npp.

Required Arguments
float tbegin (Input)

Lower endpoint of the time interval of the process. tbegin must be nonnegative. Usually,
tbegin = 0.

float tend (Input)
Upper endpoint of the time interval of the process. tend must be greater than tbegin.

float ftheta(float t) (Input)
User-supplied function to provide the value of the rate of the process as a function of time. This func-
tion must be defined over the interval from tbegin to tend and must be nonnegative in that
interval.

float theta_min (Input)
Minimum value of the rate function ftheta() in the interval (tbegin, tend). If the actual mini-
mum is unknown, set theta_min = 0.0.

float theta_max (Input)
Maximum value of the rate function ftheta() in the interval (tbegin, tend). If the actual maxi-
mum is unknown, set theta_max to a known upper bound of the maximum. The efficiency of
imsls_f_random_npp is less the greater theta_max exceeds the true maximum.

int neub (Input)
Upper bound on the number of events to be generated. In order to be reasonably sure that the full
process through time tend is generated, calculate neub as neub = X + 10.0 × sqrt(X), where
X = theta_max × (tend – tbegin).
1334

 Random Number Generation random_npp
int *ne (Output)
Number of events actually generated. If ne is less that neub, the time tend is reached before neub
events are realized.

Return Value
An array of length neub containing the times to events in the first ne elements. To release this space, use
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), float theta_min,

float theta_max, int neub, int *ne,

IMSLS_RETURN_USER, float r[],
IMSLS_FCN_W_DATA, float ftheta(), void *data,
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length neub containing the times to events in the first ne elements.

IMSLS_FCN_W_DATA, float ftheta(float t), void *data (Input)
User-supplied function to provide the value of the rate of the process as a function of time, which
also accepts a pointer to data that is supplied by the user. data is a pointer to the data to be passed
to the user-supplied function. See the Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
Function imsls_f_random_npp simulates a one-dimensional nonhomogeneous Poisson process with rate
function ftheta in a fixed interval (tbegin, tend].

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Function imsls_f_random_npp uses a method

of thinning a nonhomogeneous Poisson process {N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1], where the

number of events, N*, in the interval (t0, t1] has a Poisson distribution with parameter
1335

 Random Number Generation random_npp
The function

is called the integrated rate function. In imsls_f_random_npp, λ*(t) is taken to be a constant
λ*(= theta_max) so that at time ti, the time of the next event ti+1 is obtained by generating and cumulating

exponential random numbers

with parameter λ*, until for the first time

where the uj,i are independent uniform random numbers between 0 and 1. This process is continued until the

specified number of events, neub, is realized or until the time, tend, is exceeded. This method is due to Lewis
and Shedler (1979), who also review other methods. The most straightforward (and most efficient) method is by
inverting the integrated rate function, but often this is not possible.

If theta_max is actually greater than the maximum of λ(t) in (t0, t1], the function will work, but less efficiently.

Also, if λ(t) varies greatly within the interval, the efficiency is reduced. In that case, it may be desirable to divide the
time interval into subintervals within which the rate function is less variable. This is possible because the process
is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for the required number of events to
be realized. Care must be taken; however, that ftheta is defined over the entire interval.

After simulating a given number of events, the next event can be generated by setting tbegin to the time of the
last event (the sum of the elements in R) and calling imsls_f_random_npp again. Cox and Lewis (1966) dis-
cuss modeling applications of nonhomogeneous Poisson processes.

Example
In this example, imsls_f_random_npp is used to generate the first five events in the time 0 to 20 (if that
many events are realized) in a nonhomogeneous process with rate function

λ(t) = 0.6342 exp(0.001427t)

for 0 < t ≤ 20.

μ0 = ∫t0
t1
λ t dt

Λ t = ∫0
t′
λ t dt

E1,i
* , E2,i

* , ...

u j, i ≤ ti + E1, i
* + ... + E j, i

* / λ*
1336

 Random Number Generation random_npp
Since this is a monotonically increasing function of t, the minimum is at t = 0 and is 0.6342, and the maximum is
at t = 20 and is 0.6342 exp(0.02854) = 0.652561.

#include <stdio.h>
#include <imsls.h>
float ftheta (float t);
int main()
{
 int i, neub = 5, ne;
 float *r, tmax= .652561, tmin = .6342, tbeg=0., tend=20.;
 imsls_random_seed_set(123457);
 r = imsls_f_random_npp(tbeg, tend, ftheta, tmin, tmax, neub, &ne, 0);
 printf("Inter-event times for the first ");
 printf("%d events in the process:\n", ne);
 for (i=0; i<ne; i++) printf("\t%f\n", r[i]);
}

float ftheta (float t)
{
 return 0.6342*exp(0.001427*t);
}

Output

Inter-event times for the first 5 events in the process:
 0.052660
 0.407979
 0.258399
 0.019767
 0.167641

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm.
User flag = "#".
1337

 Random Number Generation random_permutation
random_permutation
Generates a pseudorandom permutation.

Synopsis
#include <imsls.h>
int *imsls_random_permutation (int k, ..., 0)

Required Arguments
int k (Input)

Number of integers to be permuted.

Return Value
An array of length k containing the random permutation of the integers from 1 to k. To release this space, use
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_permutation (int k,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length k containing the random permutation of the integers from 1 to k.
1338

 Random Number Generation random_permutation
Description
Function imsls_random_permutation generates a pseudorandom permutation of the integers from 1 to
k. It begins by filling a vector of length k with the consecutive integers 1 to k. Then, with M initially equal to k, a
random index J between 1 and M (inclusive) is generated. The element of the vector with the index M and the ele-
ment with index J swap places in the vector. M is then decremented by 1 and the process repeated until M = 1.

Example
In this example, imsls_random_permutation is called to produce a pseudorandom permutation of the
integers from 1 to 10.

#include <stdio.h>
#include <imsls.h>
int main()
{
 int *ir, k = 10;
 imsls_random_seed_set(123457);
 ir = imsls_random_permutation(k, 0);

 printf("Random permutation of the integers from 1 to 10\n");
 imsls_i_write_matrix("", 1, k, ir,
 IMSLS_NO_COL_LABELS, 0);
}

Output

Random permutation of the integers from 1 to 10
 5 9 2 8 1 6 4 7 3 10
1339

 Random Number Generation random_sample_indices
random_sample_indices
Generates a simple pseudorandom sample of indices.

Synopsis
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop, ..., 0)

Required Arguments
int nsamp (Input)

Sample size desired.

int npop (Input)
Number of items in the population.

Return Value
An array of length nsamp containing the indices of the sample. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop,

 IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length nsamp containing the indices of the sample.
1340

 Random Number Generation random_sample_indices
Description
Function imsls_random_sample_indices generates the indices of a pseudorandom sample, without
replacement, of size nsamp numbers from a population of size npop. If nsamp is greater than npop/2, the inte-
gers from 1 to npop are selected sequentially with a probability conditional on the number selected and the
number remaining to be considered. If, when the i-th population index is considered, j items have been included
in the sample, then the index i is included with probability (nsamp- j)/(npop + 1-i).

If nsamp is not greater than npop/2, a O(nsamp) algorithm due to Ahrens and Dieter (1985) is used. Of the
methods discussed by Ahrens and Dieter, the one called SG* is used in imsls_random_sample_indices.
It involves a preliminary selection of q indices using a geometric distribution for the distances between each
index and the next one. If the preliminary sample size q is less than nsamp, a new preliminary sample is chosen,
and this is continued until a preliminary sample greater in size than nsamp is chosen. This preliminary sample is
then thinned using the same kind of sampling as described above for the case in which the sample size is greater
than half of the population size. Function imsls_random_sample_indices does not store the preliminary
sample indices, but rather restores the state of the generator used in selecting the sample initially, and then
passes through once again, making the final selection as the preliminary sample indices are being generated.

Example
In this example, imsls_random_sample_indices is used to generate the indices of a pseudorandom sam-
ple of size 5 from a population of size 100.

#include <imsls.h>
int main()
{
 int *ir, nsamp = 5, npop = 100;
 imsls_random_seed_set(123457);
 ir = imsls_random_sample_indices(nsamp, npop,
 0);
 imsls_i_write_matrix("Random Sample", 1, nsamp, ir,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 Random Sample
 2 22 53 61 79
1341

 Random Number Generation random_sample
random_sample
Generates a simple pseudorandom sample from a finite population.

Synopsis
#include <imsls.h>
float *imsls_f_random_sample(int nrow, int nvar, float population[], int nsamp, …, 0)

The type double function is imsls_d_random_sample.

Required Arguments
int nrow (Input)

Number of rows of data in population.

int nvar (Input)
Number of variables in the population and in the sample.

float population[] (Input)
nrow by nvar matrix containing the population to be sampled. If either of the optional arguments
IMSLS_FIRST_CALL or IMSLS_ADDITIONAL_CALL are specified, then population con-
tains a different part of the population on each invocation, otherwise population contains the
entire population.

int nsamp (Input)
The sample size desired.

Return Value
nsamp by nvar matrix containing the sample. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
1342

 Random Number Generation random_sample
float *imsls_f_random_sample (int nrow, int nvar, float population[], int nsamp,
IMSLS_FIRST_CALL, int **index, int *npop,
IMSLS_FIRST_CALL_USER, int index[], int *npop,
IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp,
IMSLS_POPULATION_COL_DIM, int population_col_dim,
IMSLS_RETURN_USER, int samp[],
 0)

Optional Arguments
IMSLS_FIRST_CALL, int **index, int *npop (Output)

This is the first invocation with this data; additional calls to imsls_f_random_sample may be
made to add to the population. Additional calls should be made using the optional argument
IMSLS_ADDITIONAL_CALL. Argument index is the address of a pointer to an internally allo-
cated array of length nsamp containing the indices of the sample in the population. Argument npop
returns the number of items in the population. If the population is input a few items at a time, the
first call to imsls_f_random_sample should use IMSLS_FIRST_CALL, and subsequent calls
should use IMSLS_ADDITIONAL_CALL. See example 2.

IMSLS_FIRST_CALL_USER, int index[], int *npop (Output)
Storage for index is provided by the user. See IMSLS_FIRST_CALL.

IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp (Input/Output)
This is an additional invocation of imsls_f_random_sample, and updating for the subpopula-
tion in population is performed. Argument index is a pointer to an array of length nsamp
containing the indices of the sample in the population, as returned using optional argument
IMSLS_FIRST_CALL. Argument npop, also obtained using optional argument
IMSLS_FIRST_CALL, returns the number of items in the population. It is not necessary to know
the number of items in the population in advance. npop is used to cumulate the population size and
should not be changed between calls to imsls_f_random_sample. Argument samp is a pointer
to the array of size nsamp by nvar containing the sample. samp is the result of calling
imsls_f_random_sample with optional argument IMSLS_FIRST_CALL. See Example 2.

IMSLS_POPULATION_COL_DIM, int population_col_dim (Input)
Column dimension of the matrix population.

Default: x_col_dim = nvar
IMSLS_RETURN_USER, int samp[] (Output)

User-supplied array of size nrow by nvar containing the sample. This option should not be used if
IMSLS_ADDITIONAL_CALL is used.
1343

 Random Number Generation random_sample
Description
Function imsls_f_random_sample generates a pseudorandom sample from a given population, without
replacement, using an algorithm due to McLeod and Bellhouse (1983).

The first nsamp items in the population are included in the sample. Then, for each successive item from the pop-
ulation, a random item in the sample is replaced by that item from the population with probability equal to the
sample size divided by the number of population items that have been encountered at that time.

Examples

Example 1

In this example, imsls_f_random_sample is used to generate a sample of size 5 from a population stored in
the matrix population.

#include <imsls.h>
int main()
{
 int nrow = 176, nvar = 2, nsamp = 5;
 float *population;
 float *sample;
 population = imsls_f_data_sets(2,
 0);
 imsls_random_seed_set(123457);
 sample = imsls_f_random_sample(nrow, nvar, population, nsamp,
 0);
 imsls_f_write_matrix("The sample", nsamp, nvar, sample,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

 The sample
 1764 36
 1828 62
 1923 6
 1773 35
 1769 106
1344

 Random Number Generation random_sample
Example 2

Function imsls_f_random_sample is now used to generate a sample of size 5 from the same population as
in the example above except the data are input to imsls_f_random_sample one observation at a time. This
is the way imsls_f_random_sample may be used to sample from a large data file. Notice that the number
of records need not be known in advance.

#include <stdio.h>
#include <imsls.h>
int main()
{
 int i, nrow = 176, nvar = 2, nsamp = 5;
 int *index, npop;
 float *population;
 float *sample;
 population = imsls_f_data_sets(2, 0);
 imsls_random_seed_set(123457);
 sample = imsls_f_random_sample(1, 2, population, nsamp,
 IMSLS_FIRST_CALL, &index, &npop,
 0);
 for (i = 1; i < 176; i++) {
 imsls_f_random_sample(1, 2, &population[2*i], nsamp,
 IMSLS_ADDITIONAL_CALL, index, &npop, sample,
 0);
 }
 printf("The population size is %d\n", npop);
 imsls_i_write_matrix("Indices of random sample", 5, 1, index, 0);

 imsls_f_write_matrix("The sample", nsamp, nvar, sample,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
}

Output

The population size is 176
Indices of random sample
 1 16
 2 80
 3 175
 4 25
 5 21
 The sample
 1764 36
 1828 62
 1923 6
 1773 35
 1769 106
1345

 Random Number Generation random_option
random_option
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator or a generalized feedback
shift register (GFSR) method.

Synopsis
#include <imsls.h>
void imsls_random_option (int generator_option)

Required Arguments
int generator_option (Input)

Indicator of the generator. Argument generator_option is used to choose the multiplier and
whether or not shuffling is done, or the GFSR method.

generator_option Generator

1 The multiplier 16807 is used.

2 The multiplier 16807 is used with shuffling.

3 The multiplier 397204094 is used.

4 The multiplier 397204094 is used with shuffling.

5 The multiplier 950706376 is used.

6 The multiplier 950706376 is used with shuffling.

7 GFSR, with the recursion Xt = Xt−1563 ⊕ Xt−96 is used.

8 A 32-bit Mersenne Twister generator is used. The float
and double random numbers are generated from 32-bit
integers.

9 A 64-bit Mersenne Twister generator is used. The float
and double random numbers are generated from 64-bit
integers. This ensures that all bits of both float and dou-
bles are random.
1346

 Random Number Generation random_option
Description
The uniform pseudorandom number generators use a multiplicative congruential method, with or without shuf-
fling. The value of the multiplier and whether or not to use shuffling are determined by
imsls_random_option. The description of function imsls_f_random_uniform may provide some guid-
ance in the choice of the form of the generator. If no selection is made explicitly, the generators use the multiplier
16807 without shuffling. This form of the generator has been in use for some time (see Lewis et al. 1969).

Both of the Mersenne Twister generators have a period of 219937-1 and a 623-dimensional equidistribution prop-
erty. See Matsumoto et al. 1998 for details.

The IMSL Mersenne Twister generators are derived from code copyright (C) 1997 - 2002, Makoto Matsumoto and
Takuji Nishimura, All rights reserved. It is subject to the following notice:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The IMSL 32-bit Mersenne Twister generator is based on the Matsumoto and Nishimura code ‘mt19937ar’ and
the 64-bit code is based on ‘mt19937-64’.

Example
See function imsls_random_GFSR_table_get.
1347

 Random Number Generation random_option_get
random_option_get
Retrieves the uniform (0, 1) multiplicative congruential pseudorandom number generator.

Synopsis
#include <imsls.h>
int imsls_random_option_get ()

Return Value
Indicator of the generator.

Description
The function imsls_random_option_get retrieves the uniform (0, 1) multiplicative congruential pseudoran-
dom number generator or the GRSR method. The uniform pseudorandom number generators use a
multiplicative congruential method, with or without shuffling. The value of the multiplier and whether or not to
use shuffling are determined by imsls_random_option.

Result Generator

1 The multiplier 16807 is used.

2 The multiplier 16807 is used with shuffling.

3 The multiplier 397204094 is used.

4 The multiplier 397204094 is used with shuffling.

5 The multiplier 950706376 is used.

6 The multiplier 950706376 is used with shuffling.

7 GFSR, with the recursion Xt = Xt−1563 ⊕ Xt−96 is used
1348

 Random Number Generation random_seed_get
random_seed_get
Retrieves the current value of the seed used in the random number generators.

Synopsis
#include <imsls.h>
int imsls_random_seed_get ()

Return Value
The value of the seed.

Description
Function imsls_random_seed_get retrieves the current value of the “seed” used in the random number
generators. A reason for doing this would be to restart a simulation, using function
imsls_random_seed_set to reset the seed.

Example
This example illustrates the statements required to restart a simulation using imsls_random_seed_get and
imsls_random_seed_set. The example shows that restarting the sequence of random numbers at the value
of the seed last generated is the same as generating the random numbers all at once.

#include <imsls.h>
#define N_RANDOM 5
int main()
{
 int seed = 123457;
 float *r1, *r2, *r;

 imsls_random_seed_set(seed);
 r1 = imsls_f_random_uniform(N_RANDOM, 0);
 imsls_f_write_matrix ("First Group of Random Numbers", 1,
 N_RANDOM, r1, 0);
 seed = imsls_random_seed_get();
 imsls_random_seed_set(seed);
1349

 Random Number Generation random_seed_get
 r2 = imsls_f_random_uniform(N_RANDOM, 0);
 imsls_f_write_matrix ("Second Group of Random Numbers", 1,
 N_RANDOM, r2, 0);
 imsls_random_seed_set(123457);
 r = imsls_f_random_uniform(2*N_RANDOM, 0);
 imsls_f_write_matrix ("Both Groups of Random Numbers", 1,
 2*N_RANDOM, r, 0);
}

Output

 First Group of Random Numbers
 1 2 3 4 5
 0.9662 0.2607 0.7663 0.5693 0.8448
 Second Group of Random Numbers
 1 2 3 4 5
 0.0443 0.9872 0.6014 0.8964 0.3809
 Both Groups of Random Numbers
 1 2 3 4 5 6
 0.9662 0.2607 0.7663 0.5693 0.8448 0.0443
 7 8 9 10
 0.9872 0.6014 0.8964 0.3809
1350

 Random Number Generation random_substream_seed_get
random_substream_seed_get
Retrieves a seed for the congruential generators that do not do shuffling that will generate random numbers
beginning 100,000 numbers farther along.

Synopsis
#include <imsls.h>
int imsls_random_substream_seed_get (int iseed1)

Required Arguments
int iseed1 (Input)

The seed that yields the first stream.

Return Value
The seed that yields a stream beginning 100,000 numbers beyond the stream that begins with iseed1.

Description
Given a seed, iseed1, imsls_random_substream_seed_get determines another seed, such that if one
of the IMSL multiplicative congruential generators, using no shuffling, went through 100,000 generations starting
with iseed1, the next number in that sequence would be the first number in the sequence that begins with the
returned seed.

Note that imsls_random_substream_seed_get works only when a multiplicative congruential generator
without shuffling is used. This means that either the function imsls_random_option has not been called at
all or that it has been last called with generator_option taking a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use the inverse CDF method, the dis-
tance between the sequences generated starting with iseed1 and starting with the returned seed may be less
than 100,000. This is because the nonuniform generators that use other techniques may require more than one
uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known distance apart is for blocking Monte
Carlo experiments or for running parallel streams
1351

 Random Number Generation random_substream_seed_get
Example
In this example, imsls_random_substream_seed_get is used to determine seeds for 4 separate
streams, each 200,000 numbers apart, for a multiplicative congruential generator without shuffling. (Since
imsls_random_option is not invoked to select a generator, the multiplier is 16807.) Since the streams are
200,000 numbers apart, each seed requires two invocations of imsls_random_substream_seed_get. All
of the streams are non-overlapping, since the period of the underlying generator is 2,147,483,646. The resulting
seed are then verified by checking the seed after generating random sequences of length 200,000.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i, is1, is2, is3, is4;
 float *r;
 is1 = 123457;
 is2 = imsls_random_substream_seed_get(is1);
 is2 = imsls_random_substream_seed_get(is2);
 is3 = imsls_random_substream_seed_get(is2);
 is3 = imsls_random_substream_seed_get(is3);
 is4 = imsls_random_substream_seed_get(is3);
 is4 = imsls_random_substream_seed_get(is4);
 printf("Seeds for four separate streams:\n");
 printf("%d\t%d\t%d\t%d\n\n", is1, is2, is3, is4);
 imsls_random_seed_set(is1);
 for (i=0;i<3;i++) {
 r = imsls_f_random_uniform(200000,
 0);
 printf("seed after %d random numbers: %d\n", (i + 1) * 200000,
 imsls_random_seed_get());
 if (r)
 imsls_free(r);
 }
}

Output

Seeds for four separate streams:
123457 2016130173 85016329 979156171
seed after 200000 random numbers: 2016130173
seed after 400000 random numbers: 85016329
seed after 600000 random numbers: 979156171
1352

 Random Number Generation random_seed_set
random_seed_set
Initializes a random seed for use in the random number generators.

Synopsis
#include <imsls.h>
void imsls_random_seed_set (int seed)

Required Arguments
int seed (Input)

The seed of the random number generator. The argument seed must be in the range (0,
2147483646). If seed is 0, a value is computed using the system clock; hence, the results of pro-
grams using the random number generators will be different at various times.

Description
Function imsls_random_seed_set is used to initialize the seed used in the random number generators.
The form of the generators is as follows:

xi ≡ cxi−

1

mod (231 − 1)

The value of x0 is the seed. If the seed is not initialized prior to invocation of any of the functions for random

number generation by calling imsls_random_seed_set, the seed is initialized by the system clock. The seed
can be reinitialized to a clock-dependent value by calling imsls_random_seed_set with seed set to 0.

The effect of imsls_random_seed_set is to set some global values used by the random number genera-
tors. A common use of imsls_random_seed_set is in conjunction with function
imsls_random_seed_get to restart a simulation.

Example
See function imsls_random_seed_get.
1353

 Random Number Generation random_table_set
random_table_set
Sets the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_set (float table[])

The type double function is imsls_d_random_table_set.

Required Arguments
float table[] (Input)

Array of length 128 used in the shuffled generators.

Description
The values in table are initialized by the IMSL random number generators. The values are all positive except if
the user wishes to reinitialize the array, in which case the first element of the array is input as a nonpositive value.
(Usually, one should avoid reinitializing these arrays, but it might be necessary sometimes in restarting a simula-
tion.) If the first element of table is set to a nonpositive value on the call to imsls_random_table_set, on
the next invocation of a function to generate random numbers using a shuffled method , the appropriate array
will be reinitialized.

Example
See function imsls_random_GFSR_table_get.
1354

 Random Number Generation random_table_get
random_table_get
Retrieves the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_get (float **table, ..., 0)

The type double function is imsls_d_random_table_get.

Required Arguments
float **table (Output)

Address of a pointer to an array of length 128 containing the table used in the shuffled generators.
Typically, float *table is declared and &table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_random_table_get (float **table,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length 128 containing the table used in the shuffled generators.

Description
Function imsls_f_random_table_get retrieves the current table used in the shuffled generator. A reason
for doing this would be to restart a simulation, using function imsls_f_random_table_set to reset the table.
To restart a simulation using a shuffled generator, both the seed and the table must be reset (see
1355

 Random Number Generation random_table_get
random_GFSR_table_get example). The tables for the shuffled generators are separate for single and double
precision, so, if precisions are mixed in a program, it is necessary to manage each precision separately for the
shuffled generators.

Example
See function imsls_random_GFSR_table_get.
1356

 Random Number Generation random_GFSR_table_set
random_GFSR_table_set
Sets the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_f_random_GFSR_table_set (int table[])

Required Arguments
int table [] (Input)

Array of length 1565 used in the GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The values are all positive except if
the user wishes to reinitialize the array, in which case the first element of the array is input as a nonpositive value.
(Usually, one should avoid reinitializing these arrays, but it might be necessary sometimes in restarting a simula-
tion.) If the first element of table is set to a nonpositive value on the call to
imsls_random_GFSR_table_set, on the next invocation of a function to generate random numbers using
a GFSR method, the appropriate array will be reinitialized.

Example
See function imsls_random_GFSR_table_get.
1357

 Random Number Generation random_GFSR_table_get
random_GFSR_table_get
Retrieves the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_random_GFSR_table_get (int **table, ..., 0)

Required Arguments
int **table (Output)

Address of a pointer to an array of length 1565 containing the table used in the GFSR generators.
Typically, int *table is declared and &table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_GFSR_table_get (int **table,

IMSLS_RETURN_USER, int r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length 1565 containing the table used in the GFSR generators.

Description
Function imsls_f_random_GFSR_table_get retrieves the current table used in the GFSR generator. A
reason for doing this would be to restart a simulation, using function imsls_f_random_GFSR_table_set to
reset the table. To restart a simulation using a GFSR generator, both the seed and the table must be reset (see
example). The tables for the GFSR generators are separate for single and double precision, so, if precisions are
mixed in a program, it is necessary to manage each precision separately for the GFSR generators.
1358

 Random Number Generation random_GFSR_table_get
Example
In this example, three separate simulation streams are used, each with a different form of the generator. Each
stream is stopped and restarted. (Although this example is obviously an artificial one, there may be reasons for
maintaining separate streams and stopping and restarting them because of the nature of the usage of the ran-
dom numbers coming from the separate streams.)

#include <imsls.h>
#include <stdio.h>
int main()
{
 float *r, *table;
 int nr, iseed1, iseed2, iseed7;
 int *itable;
 nr = 5;
 iseed1 = 123457;
 iseed2 = 123457;
 iseed7 = 123457;
 /* Begin first stream, iopt = 1 (by default) */
 imsls_random_seed_set (iseed1);
 r = imsls_f_random_uniform (nr,
 0);
 iseed1 = imsls_random_seed_get ();
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 printf(" Output seed\t%d\n\n", iseed1);
 imsls_free(r);
 /* Begin second stream, iopt = 2 */
 imsls_random_option (2);
 imsls_random_seed_set (iseed2);
 r = imsls_f_random_uniform (nr,
 0);
 iseed2 = imsls_random_seed_get ();
 imsls_f_random_table_get (&table,
 0);
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 printf(" Output seed\t%d\n\n", iseed2);
1359

 Random Number Generation random_GFSR_table_get
 imsls_free(r);
 /* Begin third stream, iopt = 7 */
 imsls_random_option (7);
 imsls_random_seed_set (iseed7);
 r = imsls_f_random_uniform (nr,
 0);
 iseed7 = imsls_random_seed_get ();
 imsls_random_GFSR_table_get (&itable,
 0);
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 printf(" Output seed\t%d\n\n", iseed7);
 imsls_free(r);
 /* Reinitialize seed and resume first stream */
 imsls_random_option (1);
 imsls_random_seed_set (iseed1);
 r = imsls_f_random_uniform (nr,
 0);
 iseed1 = imsls_random_seed_get ();
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 printf(" Output seed\t%d\n\n", iseed1);
 imsls_free(r);
 /* Reinitialize seed and table for shuffling and resume second
 * stream */
 imsls_random_option (2);
 imsls_random_seed_set (iseed2);
 imsls_f_random_table_set (table);
 r = imsls_f_random_uniform (nr,
 0);
 iseed2 = imsls_random_seed_get ();
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 printf(" Output seed\t%d\n\n", iseed2);
 imsls_free(r);
1360

 Random Number Generation random_GFSR_table_get
 /* Reinitialize seed and table for GFSR and resume third stream. */
 imsls_random_option (7);
 imsls_random_seed_set (iseed7);
 imsls_random_GFSR_table_set (itable);
 r = imsls_f_random_uniform (nr,
 0);
 iseed7 = imsls_random_seed_get ();
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 printf(" Output seed\t%d\n\n", iseed7);
 imsls_free(r);
}

Output

 First stream output
 0.9662 0.2607 0.7663 0.5693 0.8448
Output seed 1814256879

 Second stream output
 0.7095 0.1861 0.4794 0.6038 0.3790
Output seed 1965912801

 Third stream output
 0.3914 0.0263 0.7622 0.0281 0.8997
Output seed 1932158269

 First stream output
 0.0443 0.9872 0.6014 0.8964 0.3809
Output seed 817878095

 Second stream output
 0.2557 0.4788 0.2258 0.3455 0.5811
Output seed 2108806573

 Third stream output
 0.7519 0.5084 0.9070 0.0910 0.6917
Output seed 1485334679
1361

 Random Number Generation random_MT32_init
random_MT32_init
Initializes the 32-bit Mersenne Twister generator using an array.

Synopsis
#include <imsls.h>
void imsls_random_MT32_init (int key_length, unsigned int key[])

Required Arguments
int key_length (Input)

Length of the array key.

unsigned int key[] (Input)
Array of length key_length used to initialize the 32-bit Mersenne Twister generator.

Description
By default, the Mersenne Twister random number generator is initialized using the current seed value (see
imsls_random_seed_get). The seed is limited to one integer for initialization. This function allows an arbitrary
length array to be used for initialization.

This function completely replaces the use of the seed for initialization of the 32-bit Mersenne Twister generator.

Example
See function imsls_random_MT32_table_get.
1362

 Random Number Generation random_MT32_table_get
random_MT32_table_get
Retrieves the current table used in the 32-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT32_table_get (unsigned int **table, ..., 0)

Required Arguments
unsigned int **table (Output)

Address of a pointer to an array of length 625 containing the table used in the 32-bit Mersenne
Twister generator. Typically, unsigned int *table is declared and &table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_MT32_table_get (int **table,

IMSLS_RETURN_USER, int r[],
0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length 625 containing the table used in the 32-bit Mersenne Twister
generator.

Description
The values in table contain the state of the 32-bit Mersenne Twister random number generator. The table can
be used by imsls_random_MT32_table_set to set the generator back to this state.
1363

 Random Number Generation random_MT32_table_get
Example
In this example, four simulation streams are generated. The first series is generated with the seed used for initial-
ization. The second series is generated using an array for initialization. The third series is obtained by resetting
the generator back to the state it had at the beginning of the second stream. Therefore, the second and third
streams are identical. The fourth stream is obtained by resetting the generator back to its original, uninitialized
state, and having it reinitialize using the seed. The fourth and first streams are therefore the same.

#include <imsls.h>
int main()
{
 unsigned int init[] = {0x123, 0x234, 0x345, 0x456};
 float *r;
 int iseed = 123457;
 int *itable;
 int nr = 5;
 /* Initialize Mersenne Twister series with a seed */
 imsls_random_option (8);
 imsls_random_seed_set (iseed);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 /* Reinitialize Mersenne Twister series with an array */
 imsls_random_option (8);
 imsls_random_MT32_init(4, init);
 /* Save the state of the series */
 imsls_random_MT32_table_get(&itable, 0);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 /* Restore the state of the series */
 imsls_random_MT32_table_set(itable);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 /* Reset the series - it will reinitialize from the seed */
 itable[0] = 1000;
 imsls_random_MT32_table_set(itable);
 r = imsls_f_random_uniform (nr, 0);
1364

 Random Number Generation random_MT32_table_get
 imsls_f_write_matrix ("Fourth stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 return 0;
}

Output

 First stream output
 0.4347 0.3522 0.0139 0.2091 0.4956

 Second stream output
 0.2486 0.2226 0.1111 0.9563 0.9846

 Third stream output
 0.2486 0.2226 0.1111 0.9563 0.9846

 Fourth stream output
 0.4347 0.3522 0.0139 0.2091 0.4956
1365

 Random Number Generation random_MT32_table_set
random_MT32_table_set
Sets the current table used in the 32-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT32_table_set (unsigned int table[])

Required Arguments
unsigned int table [] (Input)

Array of length 625 used in the 32-bit Mersenne Twister generator.

Description
The values in table are the state of the 32-bit Mersenne Twister random number generator obtained by a call
to imsls_random_MT32_table_get. The values in the table can be used to restore the state of the
generator.

Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized, state.

Example
See function imsls_random_MT32_table_get.
1366

 Random Number Generation random_MT64_init
random_MT64_init
Initializes the 64-bit Mersenne Twister generator using an array.

Synopsis
#include <imsls.h>
void imsls_random_MT64_init (int key_length, unsigned long long key[])

Required Arguments
int key_length (Input)

Length of the array key.

unsigned long long key[] (Input)
Array of length key_length used to initialize the 64-bit Mersenne Twister generator.

Description
By default, the Mersenne Twister random number generator is initialized using the current seed value (see
imsls_random_seed_get). The seed is limited to one integer for initialization. This function allows an arbitrary
length array to be used for initialization.

This function completely replaces the use of the seed for initialization of the 64-bit Mersenne Twister generator.

Example
See function imsls_random_MT64_table_get.
1367

 Random Number Generation random_MT64_table_get
random_MT64_table_get
Retrieves the current table used in the 64-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT64_table_get (unsigned long long **table, ..., 0)

Required Arguments
unsigned long long **table (Output)

Address of a pointer to an array of length 625 containing the table used in the 64-bit Mersenne
Twister generator. Typically, unsigned long long *table is declared and &table is used as an
argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_MT64_table_get (unsigned long long **table,

IMSLS_RETURN_USER, unsigned long long r[],
0)

Optional Arguments
IMSLS_RETURN_USER, unsigned long long r[] (Output)

User-supplied array of length 625 containing the table used in the 64-bit Mersenne Twister
generator.

Description
The values in the table contain the state of the 64-bit Mersenne Twister random number generator. The table
can be used by imsls_random_MT64_table_set to set the generator back to this state.
1368

 Random Number Generation random_MT64_table_get
Example
In this example, four simulation streams are generated. The first series is generated with the seed used for initial-
ization. The second series is generated using an array for initialization. The third series is obtained by resetting
the generator back to the state it had at the beginning of the second stream. Therefore the second and third
streams are identical. The fourth stream is obtained by resetting the generator back to its original, uninitialized
state, and having it reinitialize using the seed. The fourth and first streams are therefore the same.

#include <imsls.h>
int main()
{
 unsigned long long init[] = {0x123, 0x234, 0x345, 0x456};
 float *r;
 int iseed = 123457;
 unsigned long long *itable;
 int nr = 5;
 /* Initialize 64-bit Mersenne Twister series with a seed */
 imsls_random_option (9);
 imsls_random_seed_set (iseed);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 /* Reinitialize Mersenne Twister series with an array */
 imsls_random_option (9);
 imsls_random_MT64_init(4, init);
 /* Save the state of the series */
 imsls_random_MT64_table_get(&itable, 0);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 /* Restore the state of the series */
 imsls_random_MT64_table_set(itable);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 /* Reset the series - it will reinitialize from the seed */
 itable[0] = 1000;
 imsls_random_MT64_table_set(itable);
 r = imsls_f_random_uniform (nr, 0);
1369

 Random Number Generation random_MT64_table_get
 imsls_f_write_matrix ("Fourth stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 imsls_free(r);
 return 0;
}

Output

 First stream output
 0.5799 0.9401 0.7102 0.1640 0.5457
 Second stream output
 0.4894 0.7397 0.5725 0.0863 0.7588
 Third stream output
 0.4894 0.7397 0.5725 0.0863 0.7588
 Fourth stream output
 0.5799 0.9401 0.7102 0.1640 0.5457
1370

 Random Number Generation random_MT64_table_set
random_MT64_table_set
Sets the current table used in the 64-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT64_table_set (unsigned long long table[])

Required Arguments
unsigned long long table [] (Input)

Array of length 625 used in the 64-bit Mersenne Twister generator.

Description
The values in table are the state of the 64-bit Mersenne Twister random number generator obtained by a call
to imsls_random_MT64_table_get. The values in the table can be used to restore the state of the
generator.

Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized, state.

Example
See function imsls_random_MT64_table_get.
1371

 Random Number Generation faure_next_point
faure_next_point

more...

Computes a shuffled Faure sequence.

Synopsis
#include <imsls.h>
Imsls_faure *imsls_faure_sequence_init(int ndim, …, 0)

float *imsls_f_faure_next_point (Imsls_faure *state, …, 0)

void imsls_faure_sequence_free (Imsls_faure *state)

The type double function is imsls_d_faure_next_point. The functions
imsls_faure_sequence_init and imsls_faure_sequence_free are precision independent.

Required Arguments for imsls_faure_sequence_init
int ndim (Input)

The dimension of the hyper-rectangle.

Return Value for imsls_faure_sequence_init
Returns a structure that contains information about the sequence. The structure should be freed using
imsls_faure_sequence_free after it is no longer needed.

Required Arguments for imsls_faure_next_point
Imsls_faure *state (Input/Output)

Structure created by a call to imsls_faure_sequence_init.
1372

 Random Number Generation faure_next_point
Return Value for imsls_faure_next_point
Returns the next point in the shuffled Faure sequence. To release this space, use
imsls_faure_sequence_free.

Required Arguments for imsls_faure_sequence_free
Imsls_faure *state (Input/Output)

Structure created by a call to imsls_faure_sequence_init.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_faure *imsls_faure_sequence_init(int ndim,

IMSLS_BASE, int base,
IMSLS_SKIP, int skip,
0)

float *imsls_f_faure_next_point(Imsls_faure *state,
IMSLS_RETURN_USER, float *user,
IMSLS_RETURN_SKIP, int *skip,
0)

Optional Arguments
IMSLS_BASE, int base (Input)

The base of the Faure sequence.

Default: The smallest prime greater than or equal to ndim.

IMSLS_SKIP, int *skip (Input)
The number of points to be skipped at the beginning of the Faure sequence.

Default: , where and B is the largest representable integer.

IMSLS_RETURN_USER, float *user (Output)
User-supplied array of length ndim containing the current point in the sequence.

IMSLS_RETURN_SKIP, int *skip (Output)
The current point in the sequence. The sequence can be restarted by initializing a new sequence
using this value for IMSLS_SKIP, and using the same dimension for ndim.

⌊basem/2−1⌋ m = ⌊logB / logbase⌋
1373

 Random Number Generation faure_next_point
Description
Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set , is

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a constant c(d), depending

only on d, such that

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest bound for the discrepancy is
obtained for the smallest prime b≥d, so the optional argument IMSLS_BASE defaults to the smallest prime
greater than or equal to the dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

where ai(n) are integers, .

The j-th coordinate of xn is

The generator matrix for the series, , is defined to be

x1, ... xn ∈ 0,1
d
, d ≥ 1

Dn
d
= sup

E
| A E; n

n − λ E | ,

E = 0,t1 × ... × 0,td , 0 ≤ t j ≤ 1, 1 ≤ j ≤ d,

A E; n

Dn
d
≤ c d

log n d

n

n =∑
i=0

∞

ai n bi

0 ≤ ai n < b

xn
j
=∑
k=0

∞

∑
d=0

∞

ckd
j
ad n b−k−1, 1 ≤ j ≤ d

ckd
j

1374

 Random Number Generation faure_next_point
and is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It can be shown
that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into the integer given by
its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure sequence.

Example
In this example, five points in the Faure sequence are computed. The points are in the three-dimensional unit
cube.

Note that imsls_faure_sequence_init is used to create a structure that holds the state of the sequence.
Each call to imsls_f_faure_next_point returns the next point in the sequence and updates the Imsls_-
faure structure. The final call to imsls_faure_sequence_free frees data items, stored in the structure,
that were allocated by imsls_faure_sequence_init.

#include "stdio.h"
#include "imsls.h"
int main()
{
 Imsls_faure *state;
 float *x;
 int ndim = 3;
 int k;
 state = imsls_faure_sequence_init(ndim, 0);
 for (k = 0; k < 5; k++) {
 x = imsls_f_faure_next_point(state, 0);
 printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
 imsls_free(x);
 }
 imsls_faure_sequence_free(state);
 return 0;
}

ckd
j
= jd−kckd

ckd

ckd =
d!

c! d − c !
k ≤ d

0 k > d
1375

 Random Number Generation faure_next_point
Output

 0.334 0.493 0.064
 0.667 0.826 0.397
 0.778 0.270 0.175
 0.111 0.604 0.509
 0.445 0.937 0.842
1376

 Data Mining Functions
Data Mining

Functions
Apriori — Market Basket Analysis

Computes frequent itemsets . apriori 1386
Computes frequent itemsets using aggregation . aggr_apriori 1392
Prints an Imsls_f_apriori_itemsets data structure write_apriori_itemsets 1402
Prints an Imsls_f_association_rule data structurewrite_association_rules 1403
Frees memory allocated for an

Imsls_f_apriori_itemsets data structure free_apriori_itemsets 1404
Frees memory allocated for an

Imsls_f_association_rules data structure free_association_rules 1405

Decision Trees
Decision Trees – An Overview . 1406
Generates a decision tree for a single response variable

and two or more predictor variables .decision_tree 1409
Computes predicted values using a decision tree decision_tree_predict 1445
Prints a decision tree . decision_tree_print 1452
Frees the memory associated with a decision treedecision_tree_free 1457
Frees the memory associated with an array of

decision trees . bagged_trees_free 1458
Performs stochastic gradient boosting of decision trees gradient_boosting 1459

Genetic Algorithms
Genetic Algorithms – An Overview . 1482

Genetic Algorithm Data Structures
Creates a chromosome . ga_chromosome 1491
Copies one chromosome to another . ga_copy_chromosome 1497
Clones an existing chromosome . ga_clone_chromosome 1498
Creates an individual . ga_individual 1500
Copies the contents of one individual into

another individual . ga_copy_individual 1505
Clones an existing individual .ga_clone_individual 1506
Applies mutation to an individual . ga_mutate 1508
Decodes an individual’s chromosome into its phenotype ga_decode 1510
Encodes an individual’s phenotype into its chromosome ga_encode 1511
Frees memory allocated to an individual . ga_free_individual 1512
Creates a population from an array of individuals ga_population 1513
1377

 Data Mining Functions
Creates a population of randomly selected
individuals . ga_random_population 1520

Copies a population into an existing population ga_copy_population 1529
Creates a copy of a population . ga_clone_population 1530
Add individuals to a population . ga_grow_population 1532
Creates a new population by merging two

populations . ga_merge_population 1534
Frees memory allocated to a population . ga_free_population 1536

Genetic Algorithm Search and Optimization
Applies a genetic algorithm to find individuals with

maximum fitness . genetic_algorithm 1537

Naive Bayes
Naive Bayes – An Overview . 1559
Trains a Naive Bayes classifier . naive_bayes_trainer 1561
Classifies patterns using a previously trained

Naive Bayes classifier. naive_bayes_classification 1580
Frees memory allocated for a Naive Bayes

classifier . nb_classifier_free 1589
Writes a Naive Bayes classifier to an ASCII file nb_classifier_write 1590
Retrieves a Naive Bayes classifier . nb_classifier_read 1595

Neural Networks
Neural Networks – An Overview . 1601

Neural Network Data Structures
Multilayer Feedforward Neural Networks. 1612
Initializes a data structure for training

a neural network . mlff_network_init 1622
Multilayered feedforward neural network. mlff_network 1624
Frees memory allocated for an

Imsls_f_NN_Network data structure . mlff_network_free 1636
Writes a trained neural network to an

ASCII file . mlff_network_write 1637
Retrieves a neural network from a file

previously saved .mlff_network_read 1643
Initializes weights for neural network . mlff_initialize_weights 1649

Forecasting Neural Networks
Trains a multilayered feedforward

neural network . mlff_network_trainer 1664
Calculates forecasts for trained multilayered

feedforward neural networks. mlff_network_forecast 1676
Classification Neural Networks

Trains a neural network for classification. mlff_classification_trainer 1683
Calculates classifications from a

trained neural network . mlff_pattern_classification 1710
1378

 Data Mining Functions
Preprocessing Data Filters
Encodes or decodes continuous input attributes . scale_filter 1725
Encodes a time series into lagged values . time_series_filter 1732
Encodes a time series into lagged values of

a nominal classification attribute . time_series_class_filter 1735
Encodes or decodes a nominal input

attributes . unsupervised_nominal_filter 1740
Encodes or decodes ordinal input

attributes . unsupervised_ordinal_filter 1744

Self-Organizing Maps
Trains a Kohonen network. kohonenSOM_trainer 1749
Calculates forecasts using a trained Kohonen network.kohonenSOM_forecast 1759

Support Vector Machines
Support Vector Machines – An Overview . 1761
Trains a Support Vector Machines classifier support_vector_trainer 1763
Classifies patterns using a previously trained

Support Vector Machines classifier. support_vector_classification 1780
Frees memory allocated for a Support Vector Machines

classifier . svm_classifier_free 1785
1379

 Data Mining Data Mining Usage Notes
Data Mining Usage Notes
Data mining is a collection of statistical and analytical methods for extracting useful information from large data-
bases. The problem of extracting information from large databases is common to government, industry,
engineering and sciences.

Apriori
The Apriori algorithm is used for association rule discovery. Association rules are statements of the form, "if X,
then Y", given with some measure of confidence. The main application for association rule discovery is market
basket analysis, in which X and Y are products or groups of products, and the occurrences are individual transac-
tions, or "market baskets." The results help sellers learn relationships between the products they sell, supporting
better marketing decisions. Besides market basket analysis, association rule discovery has been used in the areas
of text mining and bioinformatics. The function imsls_f_apriori implements the Apriori algorithm. The func-
tion imsls_f_aggr_apriori performs the Apriori algorithm on subsets of transactions and aggregates the
results.

Decision Trees
Decision trees are data mining methods for predicting a single response variable based on multiple predictor
variables. If the response variable is categorical or discrete, the data mining problem is a classification problem;
whereas if the response is continuous, the problem is a type of regression problem. Decision trees are generally
applicable in both situations. The function imsls_f_decision_tree includes four of the most widely used
algorithms for decision trees — the C4.5 method, ALACART, CHAID, and QUEST. The function
imsls_f_decision_tree_predict applies a decision tree to a new set of data.

Random Decision Trees
The ensemble method known as random forest (Breiman, 2001) fits a collection of decision trees on bootstrap
samples. In addition, the set of predictor variables is randomized before each branching or splitting decision
within the decision tree algorithms. This extra randomization reduces correlation among the different trees in the
ensemble. The method is available in the decision tree function imsls_f_decision_tree.

For more details, see the Description section of imsls_f_apriori.

For a detailed overview, see Decision Trees – An Overview and the Description section of
imsls_f_decision_tree.
1380

 Data Mining Data Mining Usage Notes
Gradient Boosting
The function imsls_f_gradient_boosting implements the stochastic gradient tree boosting algorithm of
Friedman (1999). The algorithm combines the outputs of relatively weak classifiers or predictive models to
achieve iteratively better and better accuracy in either regression problems (the response variable is continuous)
or classification problems (the response variable has two or more discrete values). Gradient boosting is an
ensemble method, but instead of using independent trees, gradient boosting forms a sequence of trees, itera-
tively and judiciously re-weighted to minimize prediction errors. In particular, the decision tree at iteration m+1 is
estimated on pseudo-residuals generated using the decision tree at step m. Hence, successive trees are depen-
dent on previous trees. The algorithm in gradient boosting iterates for a fixed number of times and stops, rather
than iterating until a convergence criteria is met. The number of iterations is therefore a parameter in the model.
Using a randomly selected subset of the training data in each iteration has been shown to substantially improve
efficiency and robustness. Thus, the method is called stochastic gradient boosting. For further discussion, see
Hastie, et al. (2009).

Genetic Algorithms
The original genetic algorithm is generally attributed to John Holland and his students from the University of
Michigan. During the 1970s they investigated the use of concepts in genetics and biology in optimizing a function.
Since that original work, many variations of the original algorithm have been developed by pioneers working in
the interface between genetics, computer science and statistics to solve complex problems. These include tradi-
tional optimization and search problems in engineering, decision making, game solutions, engineering and
pattern recognition.

The genetic algorithm operates on a population of individuals designed to represent the problem being solved.
Each individual is rated according to a fitness function designed to measure how close that individual is to solving
the problem. For optimization problems, the fitness function is usually constructed from the function being opti-
mized. For other problems, the fitness function can be more complex defined only by the algorithm being
investigated. A chess program, for example, might use a fitness function that scores the quality of a board posi-
tion represented by each individual.

The solution represented by each individual in a population is encoded into the individual chromosome. The fit-
ness function calculates a fitness value for each individual from the information in the individual chromosome. An
investor might search for the best set of trading rules for optimizing the returns from the individual investment.

In this case, chromosomes would contain encoded representations of different variations of candidate trading
rules. One binary bit might indicate whether a particular technical indicator was being used. Another part of the
chromosome might be encoded to indicate how that indicator would be used to buy and sell investments. The
fitness function would calculate a rate of return for each individual based upon actual historical data.
1381

 Data Mining Data Mining Usage Notes
Several functions are available for building, cloning and copying chromosomes and individuals:

Solving any problem using a genetic algorithm always begins by creating a chromosome used for representing
the problem. Four data types can be represented in a chromosome: binary, nominal, integer and real, or continu-
ous attributes. Binary attributes are mapped directly into a chromosome as zeros and ones. A nominal attribute
is represented as integers 0, 1, …, k-1, where k is the maximum number of classes for that attribute. Integer and
real attributes are mapped into a binary representation by dividing the range of the attribute into a finite number
of subintervals. The range and number of intervals is supplied by the user when the chromosome is constructed.
Either base-2 or Gray encoding can be used to encode integer and real attributes.

By default, encoding and decoding of chromosomes is automatic. That is each individual not only carries the
chromosome but it also carries the original phenotype values encoded in the chromosome. Before the fitness of
an individual is evaluated by calling the user’s fitness function, the information in its chromosome is decoded into
phenotype values. If this is too time consuming, automatic encoding and decoding can be disabled and done
within the fitness functions. The functions imsls_f_ga_encode and imsls_f_ga_decode have been provided
to encode and decode the chromosome of individuals, if needed. The routine imsls_f_ga_mutate has been
provided to allow users to create their own genetic algorithm instead of using imsls_f_genetic_algorithm.

The memory allocated to a chromosome data structure can be released using the imsls_free function. How-
ever, the function imsls_f_ga_free_individual has been provided to release memory allocated to an
individual.

The genetic algorithm implemented in imsls_f_genetic_algorithm evolves an initial population of individu-
als through several generations, searching for the optimum individuals. The initial population can be created
using one of several functions. The easiest approach is to create a population of randomly selected individuals
using imsls_f_ga_random_population. However, in some cases it might be better to initialize the population
using an array of individuals selected based upon their fitness or diversity. The function
imsls_f_ga_population can create a population data structure from an array of individuals.

In some cases it might be useful to restart a genetic algorithm search using a previous generation. The function
imsls_f_ga_clone_population can be used to create an exact duplicate of a population. The function
imsls_f_ga_copy_population replaces the individuals in one population with those from another. Two pop-

C Stat Library Function Description

imsls_f_ga_chromosome Creates the structure for a chromosome.

imsls_f_ga_clone_chromosome Creates an exact duplicate of an existing chromosome.

imsls_f_ga_copy_chromosome Copies the information contained in one chromosome into
another.

imsls_f_ga_individual Creates an individual using an existing chromosome.

imsls_f_ga_clone_individual Creates an exact duplicate of an existing individual.

imsls_f_ga_copy_individual Copies the information from one individual into another.
1382

 Data Mining Data Mining Usage Notes
ulations can be merged using imsls_f_ga_merge_population and individuals can be added to an existing
population using imsls_f_ga_grow_population. Memory allocated to a population can be released using
imsls_f_ga_free_population.

The actual search or optimization using an initial population is conducted using
imsls_f_genetic_algorithm. This function returns the fittest individual found during the search. Also avail-
able are convergence statistics, including generation statistics, and the final population. This information can be
used to evaluate the quality of the solution and if an additional search is warranted, the final population might be
used as an initial population for that search.

Naive Bayes
Naive Bayes is a classification algorithm. First a classifier is trained using imsls_f_naive_bayes_trainer.
Once this is done imsls_f_naive_bayes_classification can be used to classify patterns with unknown
classifications using the trained classifier represented in an Imsls_f_naive_bayes data structure.

In addition, imsls_f_nb_classifier_write can be used to store the data structure created by
imsls_f_naive_bayes_trainer for future use. The function imsls_f_nb_classifier_read restores a
Naive Bayes data structure from a file written using imsls_f_nb_classifier_write.

Classification problems can be solved using other algorithms such as discriminant analysis and neural networks.
In general these alternatives have smaller classification error rates, but they are too slow for large classification
problems. During training imsls_f_naive_bayes_trainer uses the non-missing training data to estimate
two-way correlations among the attributes. Higher order correlations are assumed to be zero. This can increase
the classification error rate, but it significantly reduces the time needed to train the classifier.

In addition, the Naive Bayes algorithm is the only classification algorithm that can handle data with missing values.
Other algorithms such as discriminant analysis do not allow missing values in the data. This is a significant limita-
tion for applying other techniques to a larger database.

Memory allocated to the Naive Bayes data structure created by imsls_f_naive_bayes_trainer and
imsls_f_nb_classifier_read, can be released using imsls_f_nb_classifier_free.

For a detailed overview, see Genetic Algorithms – An Overview.

For a detailed overview, see Naive Bayes – An Overview.
1383

 Data Mining Data Mining Usage Notes
Neural Networks
Neural networks can be used for forecasting and classification. A neural network data structure is first created
using imsls_f_mlff_network_init and imsls_f_mlff_network. Although forecasting and classification
neural networks are initialized and represented using the same data structure, separate functions are provided
for forecasting and classification in order to make them easier to use and to reduce network training times.

Once the network architecture is created, the network can be trained using imsls_f_mlff_network_trainer
for forecasting problems and imsls_f_mlff_classification_trainer for classification problems. By
default these algorithms initialize the network weights, but weight initialization can be controlled using
imsls_f_mlff_initialize_weights.

Once a network is trained either imsls_mlff_network_forecast or
imsls_f_mlff_pattern_classification is used to produce forecasts or to classify unknown patterns.

In many cases, network training will be completed on one computer and forecasting or classification might be
done on another. The function imsls_f_mlff_network_write stores a trained network to a file which can be
restored using imsls_f_mlff_network_read.

Memory allocated to a neural network data structure can be released using imsls_f_mlff_network_free.

Data Filtering
The first step in this process is to filter data from its raw form into formats required by sophisticated analytical
algorithms.

Data fall into two major categories: continuous and categorical. Many algorithms, such as neural network fore-
casting, perform better if continuous data are mapped into a common scale. The function
imsls_f_scale_filter implements several techniques for automatically scaling continuous data, including
several variations of z-score scaling. If the continuous data represent a time series,
imsls_f_time_series_filter and imsls_f_time_series_class_filter can be used to create a
matrix of lagged values required as input to forecasting neural networks.

Categorical data must also be mapped into a corresponding numerical representation before they can be used in
solving forecasting and classification problems. There are two types of categorical data: ordinal and nominal. Ordi-
nal data have a natural ordering among the categories, such as a school grade. Nominal data are categories
without a natural ordering, such as eye color. The function imsls_f_unsupervised_ordinal_filter
encodes and decodes ordinal data into the range [0, 1] using cumulative percentages. The function
imsls_f_unsupervised_nominal_filter uses binary encoding to map nominal data into a matrix of zeros
and ones.

For a detailed overview, see Neural Networks – An Overview.
1384

 Data Mining Data Mining Usage Notes
Kohonen Self-organizing Map
A self-organizing map (SOM), also known as a Kohonen map or Kohonen SOM, is a technique for gathering high-
dimensional data into clusters that are constrained to lie in low dimensional space, usually two dimensions. It is a
widely used technique for the purpose of feature extraction and visualization for very high dimensional data. The
Kohonen SOM is equivalent to an artificial neural network having inputs linked to every node in the network. The
creation of a Kohonen map involves two steps: training and forecasting. Training builds the map using input
examples, and forecasting classifies new input. The functions imsls_f_kohonenSOM_trainer and
imsls_f_kohonenSOM_forecast achieve these two steps.

Support Vector Machines
Support Vector Machines (SVM) is a class of learning algorithms that can be used for classification, regression,
and distribution estimation. First, a classifier is trained using imsls_f_support_vector_trainer specifying
either a classification, distribution, or regression type model. Then
imsls_f_support_vector_classification can be used for classification, distribution estimation, or
regression on patterns with unknown classifications using the trained classifier model represented in an
Imsls_f_svm_classifier data structure.

For more details, see the Description sections of imsls_f_kohonenSOM_trainer and
imsls_f_kohonenSOM_forecast.

For a detailed overview, see Support Vector Machines – An Overview
1385

 Data Mining apriori
apriori
Computes the frequent itemsets in a transaction set.

Synopsis
#include <imsls.h>
Imsls_f_apriori_itemsets *imsls_f_apriori (int n, int x[], int max_num_products, …, 0)

The type double function is imsls_d_apriori.

Required Arguments
int n (Input)

Number of (transaction, item) pairs in x.

int x[] (Input)
Array of size n x 2, each row of which represents a transaction id and item id pair.

int max_num_products (Input)
Maximum number of unique items or products that may be present in the transactions.
max_num_products must be greater than or equal to the number of items in x.

Return Value
Pointer to an Imsls_f_apriori_itemsets data structure containing the frequent itemsets in the transac-
tion set x. If no value can be computed, then NULL is returned. To release this space,
use imsls_free_apriori_itemsets. Please see Data Structures for a description of this data structure.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_apriori_itemsets *imsls_f_apriori (int n, int x[], int max_num_products,

IMSLS_MAX_SET_SIZE, int max_set_size,
IMSLS_MIN_SUPPORT, double min_pct_support,
1386

 Data Mining apriori
IMSLS_ASSOCIATION_RULES, float confidence, float lift,
Imsls_f_association_rules **assoc_rules,

0)

Optional Arguments
IMSLS_MAX_SET_SIZE, int max_set_size (Input)

Maximum size of an itemset. Only frequent itemsets with max_set_size or fewer items are con-
sidered in the analysis.
Default: max_set_size = 5.

IMSLS_MIN_SUPPORT, double min_pct_support (Input)
Minimum percentage of transactions in which an item or itemset must be present to be considered
frequent. min_pct_support must be in the interval [0,1].
Default: min_pct_support= 0.1.

IMSLS_ASSOCIATION_RULES, float confidence, float lift, Imsls_f_association_rules
**assoc_rules (Input/Output)
Computes the strong association rules among itemsets.

float confidence (Input)
The minimum confidence used to determine the strong association rules. confidence
must be in the interval [0,1]. lift is the other criterion that determines whether an associa-
tion is "strong." If either criterion, confidence or lift, is exceeded, the association rule is
considered "strong."

float lift (Input)
The minimum lift used to determine the strong association rules. lift must be non-nega-
tive. confidence is the other criterion that determines whether an association is "strong."
If either criterion, confidence or lift, is exceeded, the association rule is considered
"strong."

Imsls_f_association_rules **assoc_rules (Output)
Address of a pointer to an Imsls_f_association_rules data structure containing
the strong association rules among the itemsets. If no value can be computed, then NULL is
returned. To release this space, use imsls_f_free_association_rules.

Description
The function imsls_f_apriori performs the Apriori algorithm for association rule discovery. Association
rules are statements of the form, "if X, then Y", given with some measure of confidence. The main application for
association rule discovery is market basket analysis, where X and Y are products or groups of products, and the
occurrences are individual transactions, or “market baskets." The results help sellers learn relationships between
1387

 Data Mining apriori
the different products they sell, supporting better marketing decisions. There are other applications for associa-
tion rule discovery, such as the problem areas of text mining and bioinformatics. The Apriori algorithm (Agrawal
and Srikant, 1994) is one of the most popular algorithms for association rule discovery in transactional datasets.

For distributed data or data larger than physical memory, see imsls_f_aggr_apriori.

In the first and most critical stage, the Apriori algorithm mines the transactions for frequent itemsets. An itemset
is frequent if it appears in more than a minimum number of transactions. The number of transactions containing
an itemset is known as its “support”, and the minimum support (as a percentage of transactions) is a control
parameter in the algorithm. The algorithm begins by finding the frequent single items. Then the algorithm gener-
ates all two-item sets from the frequent single items and determines which among them are frequent. From the
collection of frequent pairs, Apriori forms candidate three-item subsets and determines which are frequent, and
so on. The algorithm stops when either a maximum itemset size is reached, or when none of the candidate item-
sets are frequent. In this way, the Apriori algorithm exploits the apriori-property: for an itemset to be frequent, all
of its proper subsets must also be frequent. At each step the problem is reduced to only the frequent subsets.

In the second stage, the algorithm generates association rules. These are of the form, X Y (read, "if X, then Y"),
where Y and X are disjoint frequent itemsets. The confidence measure associated with the rule is defined as the
proportion of transactions containing X that also contain Y. Denote the support of X (the number of transactions
containing X) as SX, and SZ is the support of Z = X ∪ Y. The confidence of the rule X Y is the ratio, SZ/SX. Note

that the confidence ratio is the conditional probability

where P[XY] denotes the probability of both X and Y. The probability of an itemset X is estimated by SX/N, where N

is the total number of transactions.

Another measure of the strength of the association is known as the lift, which is the ratio (SZN) / (SXSY). Lift values

close to 1.0 suggest the sets are independent, and that they occur together by chance. Large lift values indicate a
strong association. A minimum confidence threshold and a lift threshold can be specified.

Data Structures
The data structures output by imsls_f_apriori are described below. (For imsls_d_apriori, the struc-
ture names are Imsls_d_apriori_itemsets, Imsls_d_association_rules, and
Imsls_d_rule_components where type float becomes double).

Structure definitions are provided for informational purposes and may be subject to change.

⇒

⇒

P X |Y =
P XY
P X
1388

 Data Mining apriori
Table 35 – Imsls_f_apriori_itemsets
Field Description

int n_itemsets Length of array itemsets containing the
Imsls_apriori_items structures.

Imsls_apriori_items *itemsets Array of Imsls_apriori_items structures
containing the set of frequent items and the
support for that set.

int n_trans Number of transactions.

int max_num_products Maximum number of products.

int max_set_size Maximum itemset size.

double min_pct_support Minimum percentage of transactions.

Table 36 – Imsls_apriori_items
Field Description

int n_items Length of items.

int *items Array containing the set of frequent items.

int support The number of transactions in which the
item appears.

Table 37 – Imsls_f_association_rules
Field Description

int n_rules Length of array rules containing the
Imsls_f_rule_components structures.

Imsls_f_rule_components *rules Array containing the association rules.

Table 38 – Imsls_f_rule_components
Field Description

int n_x Length of x.

int *x Array containing the X components of the
association rule.

int n_y Length of y.
1389

 Data Mining apriori
Example
This example applies Apriori to find the frequent itemsets and strong association rules. The data are 50 transac-
tions involving five different product IDs. The minimum support percentage is set to 0.30, giving a minimum
required support of 15 transactions.

#include <imsls.h>
#define N 144
int main() {
 int max_num_products = 5, max_set_size = 10;
 float confidence = 0.8, lift = 2.0;
 double min_pct_support = 0.3;
 int x[N][2] = {
 {1, 3}, {1, 2}, {1, 1}, {2, 1}, {2, 2}, {2, 4}, {2, 5},
 {3, 3}, {4, 4}, {4, 3}, {4, 5}, {4, 1}, {5, 5}, {6, 1},
 {6, 2}, {6, 3}, {7, 5}, {7, 3}, {7, 2}, {8, 3}, {8, 4},
 {8, 1}, {8, 5}, {8, 2}, {9, 4}, {10, 5}, {10, 3}, {11, 2},
 {11, 3}, {12, 4}, {13, 4}, {14, 2}, {14, 3}, {14, 1}, {15, 3},
 {15, 5}, {15, 1}, {16, 2}, {17, 3}, {17, 5}, {17, 1}, {18, 5},
 {18, 1}, {18, 2}, {18, 3}, {19, 2}, {20, 4}, {21, 1}, {21, 4},
 {21, 2}, {21, 5}, {22, 5}, {22, 4}, {23, 2}, {23, 5}, {23, 3},
 {23, 1}, {23, 4}, {24, 3}, {24, 1}, {24, 5}, {25, 3}, {25, 5},
 {26, 1}, {26, 4}, {26, 2}, {26, 3}, {27, 2}, {27, 3}, {27, 1},
 {27, 5}, {28, 5}, {28, 3}, {28, 4}, {28, 1}, {28, 2}, {29, 4},
 {29, 5}, {29, 2}, {30, 2}, {30, 4}, {30, 3}, {31, 2}, {32, 5},
 {32, 1}, {32, 4}, {33, 4}, {33, 1}, {33, 5}, {33, 3}, {33, 2},
 {34, 3}, {35, 5}, {35, 3}, {36, 3}, {36, 5}, {36, 4}, {36, 1},
 {36, 2}, {37, 1}, {37, 3}, {37, 2}, {38, 4}, {38, 2}, {38, 3},
 {39, 3}, {39, 2}, {39, 1}, {40, 2}, {40, 1}, {41, 3}, {41, 5},
 {41, 1}, {41, 4}, {41, 2}, {42, 5}, {42, 1}, {42, 4}, {43, 3},
 {43, 2}, {43, 4}, {44, 4}, {44, 5}, {44, 2}, {44, 3}, {44, 1},
 {45, 4}, {45, 5}, {45, 3}, {45, 2}, {45, 1}, {46, 2}, {46, 4},
 {46, 5}, {46, 3}, {46, 1}, {47, 4}, {47, 5}, {48, 2}, {49, 1},
 {49, 4}, {49, 3}, {50, 3}, {50, 4}
 };
 Imsls_f_apriori_itemsets *itemsets = NULL;
 Imsls_f_association_rules *assoc_rules = NULL;
 /* Compute and print the strong association rules. */
 itemsets = imsls_f_apriori(N, &x[0][0], max_num_products,

int *y Array containing the Y components of the
association rule.

int support[3] Support for Z, X and Y components of the
association rule.

float confidence Confidence of the association rule.

float lift Lift of the association rule.

Table 38 – Imsls_f_rule_components
Field Description
1390

 Data Mining apriori
 IMSLS_MAX_SET_SIZE, max_set_size,
 IMSLS_MIN_SUPPORT, min_pct_support,
 IMSLS_ASSOCIATION_RULES, confidence, lift, &assoc_rules,
 0);
 imsls_f_write_apriori_itemsets(itemsets);
 imsls_f_write_association_rules(assoc_rules);
 imsls_f_free_apriori_itemsets(itemsets);
 imsls_f_free_association_rules(assoc_rules);
}

Output

Frequent Itemsets (Out of 50 Transactions):
Size Support Itemset
 1 27 { 1 }
 1 30 { 2 }
 1 33 { 3 }
 1 27 { 4 }
 1 27 { 5 }
 2 20 { 1 2 }
 2 22 { 1 3 }
 2 16 { 1 4 }
 2 19 { 1 5 }
 2 22 { 2 3 }
 2 16 { 2 4 }
 2 15 { 2 5 }
 2 16 { 3 4 }
 2 19 { 3 5 }
 2 17 { 4 5 }
 3 17 { 1 2 3 }
 3 15 { 1 3 5 }
Association Rules (itemset X implies itemset Y):
X = {1} ==> Y = {3}
 supp(X)=27, supp(Y)=33, supp(X U Y)=22
 conf= 0.81, lift=1.23
X = {1 2} ==> Y = {3}
 supp(X)=20, supp(Y)=33, supp(X U Y)=17
 conf= 0.85, lift=1.29

Warning Errors

Fatal Errors

IMSLS_MIN_SUPPORT_NOT_MET No items met minimum support of #.

IMSLS_NEED_IARG_GE "name" = #. “name“ must be greater than
or equal to #.
1391

 Data Mining aggr_apriori
aggr_apriori
Computes the frequent itemsets in a transaction set using aggregation.

Synopsis
#include <imsls.h>
void imsls_f_aggr_apriori (Imsls_keyword step, …, 0)

The type double function is imsls_d_aggr_apriori.

Required Arguments
Imsls_keyword step (Input)

One optional argument must be supplied to indicate which calculation step is to be performed.
step is the name of the optional argument, defined as follows:

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_aggr_apriori (

IMSLS_FREQUENT_ITEMSETS, int n, int x[], int max_num_products,
int max_set_size,

 double min_pct_support, Imsls_f_apriori_itemsets **itemsets, or
IMSLS_UNION, Imsls_f_apriori_itemsets *itemsets1,

 Imsls_f_apriori_itemsets *itemsets2, Imsls_f_apriori_itemsets **cand_itemsets, or

step Description

IMSLS_FREQUENT_ITEMSETS Compute the frequent itemsets.

IMSLS_UNION Compute the union of two itemsets.

IMSLS_COUNT Count the occurrence of each itemset
in the transaction data set.

IMSLS_SUM Add the counts of two itemsets.

IMSLS_UPDATE_FREQ_ITEMSETS Update the set of frequent itemsets.

IMSLS_ASSOCIATION_RULES Compute the strong association rules.
1392

 Data Mining aggr_apriori
IMSLS_COUNT, Imsls_f_apriori_itemsets *cand_itemsets, int n, int x[], int **freq, or
IMSLS_SUM, int n_itemsets,int prev_freq1[], int prev_freq2[], int freq[],or
IMSLS_UPDATE_FREQ_ITEMSETS, Imsls_f_apriori_itemsets *cand_itemsets,

int n_itemsets, int freq[], Imsls_f_apriori_itemsets **itemsets, or
IMSLS_ASSOCIATION_RULES, Imsls_f_apriori_itemsets *itemsets,float confidence,

float lift, Imsls_f_association_rules **assoc_rules,
0)

Optional Arguments
IMSLS_FREQUENT_ITEMSETS, int n, int x[], int max_num_products, int max_set_size,

double min_pct_support, Imsls_f_apriori_itemsets **itemsets (Input/Output)

Computes the frequent itemsets in a transaction set.

int n (Input)
Number of (transaction, item) pairs in x.

int x[] (Input)
Array of size n x 2, each row of which represents a transaction id and item id pair. The algo-
rithm assumes that an individual transaction is complete within a single dataset. That is,
there is no matching of transaction ids between different data sets.

int max_num_products (Input)
Maximum number of items or products that may be present in the aggregation of all
transactions.

int max_set_size (Input)
Maximum size of an itemset. Only frequent itemsets with max_set_size or fewer items
are considered in the analysis.

double min_pct_support (Input)
Minimum percentage of transactions in which an item or itemset must be present to be con-
sidered frequent. min_pct_support must be in the interval [0,1].

Imsls_f_apriori_itemsets **itemsets (Output)
Address of a pointer to an Imsls_f_apriori_itemsets data structure containing the
frequent itemsets in the transaction set x. If no value can be computed, then NULL is
returned. To release this space, use imsls_free_apriori_itemsets.

or

IMSLS_UNION, Imsls_f_apriori_itemsets *itemsets1, Imsls_f_apriori_itemsets *itemsets2,
Imsls_f_apriori_itemsets **cand_itemsets (Input/Output)

Computes the union of two itemsets.

Imsls_f_apriori_itemsets *itemsets1 (Input)
Pointer to an Imsls_f_apriori_itemsets data structure containing the frequent
itemsets for the union.
1393

 Data Mining aggr_apriori
Imsls_f_apriori_itemsets *itemsets2 (Input)
Pointer to an Imsls_f_apriori_itemsets data structure containing the frequent
itemsets for the union.

Imsls_f_apriori_itemsets **cand_itemsets (Output)
Address of a pointer to an Imsls_f_apriori_itemsets data structure containing the
union of two itemsets. If no value can be computed, then NULL is returned. To release this
space, use imsls_free_apriori_itemsets.

or

IMSLS_COUNT, Imsls_f_apriori_itemsets *cand_itemsets, int n, int x[], int **freq (Input/Output)

Counts the frequency of each itemset in a transaction data set.

Imsls_f_apriori_itemsets cand_itemsets (Input)
Candidate itemsets and the corresponding number of transactions.

int n (Input)
Number of transaction/item pairs in x.

int x[] (Input)
Array of size n x 2, each row of which represents a transaction id and item id pair. The algo-
rithm assumes that an individual transaction is complete within a single dataset. That is,
there are no matching of transaction ids between different data sets.

int **freq (Output)
Address of an internally allocated array of length cand_itemsets->n_itemsets con-
taining the number of occurrences of each itemset in x. To release this space, use
imsls_free.

or

IMSLS_SUM, int n_itemsets, int prev_freq1[],int prev_freq2[], int **freq (Input/Output)

Sum up the itemset frequencies in prev_freq1 and prev_freq2 and return in freq.

int n_itemsets (Input)
Length of prev_freq1 and prev_freq2 which corresponds to the number of itemsets.

int prev_freq1[] (Input)
Array of length n_itemsets containing the itemset frequencies counted over one or more
blocks of transaction data.

int prev_freq2[] (Input)
 Array of length n_itemsets containing the itemset frequencies counted over a second set
of blocks of transaction data.

int **freq (Output)
Array of length n_itemsets containing the sum of the frequencies.

or

IMSLS_UPDATE_FREQ_ITEMSETS, Imsls_f_apriori_itemsets *cand_itemsets, int n_itemsets,
int freq[], Imsls_f_apriori_itemsets **itemsets (Input/Output)

Updates the set of frequent items.
1394

 Data Mining aggr_apriori
Imsls_f_apriori_itemsets *cand_itemsets (Input)
Candidate itemsets and the corresponding number of transactions.

int n_itemsets (Input)
Length of freq.

int freq[] (Input)
Array of length n_itemsets containing the frequencies for each itemset in
cand_itemsets.

Imsls_f_apriori_itemsets **itemsets (Output)
Address of a pointer to an Imsls_f_apriori_itemsets data structure containing the
frequent itemsets. If no value can be computed, then NULL is returned. To release this
space, use imsls_free_apriori_itemsets.

or

IMSLS_ASSOCIATION_RULES, Imsls_f_apriori_itemsets *itemsets, float confidence, float lift,
Imsls_f_association_rules **assoc_rules (Input/Output)

Computes the strong association rules among itemsets.

Imsls_f_apriori_itemsets *itemsets (Input)
A pointer to an Imsls_f_itemsets data structure containing the itemsets.

float confidence (Input)
The minimum confidence used to determine the strong association rules. confidence
must be in the interval [0,1]. lift is the other criterion that determines whether an associa-
tion is “strong.” If either criterion, confidence or lift is exceeded, the association rule is
considered “strong.”

float lift (Input)
The minimum lift used to determine the strong association rules. lift must be non-nega-
tive. confidence is the other criterion which determines whether an association is
“strong.” If either criterion, confidence or lift is exceeded, the association rule will be
considered “strong.”

Imsls_f_association_rules **assoc_rules (Output)
Address of a pointer to an Imsls_f_association_rules data structure containing
the strong association rules among the itemsets. If no value can be computed, then NULL is
returned. To release this space, use imsls_free_association_rules.

Description
The function imsls_f_aggr_apriori performs the Apriori algorithm for association rule discovery. Associa-
tion rules are statements of the form, "if X, then Y", given with some measure of confidence. The main application
for association rule discovery is market basket analysis, where X and Y are products or groups of products, and
the occurrences are individual transactions, or "market baskets." The results help sellers learn relationships
between the different products they sell, supporting better marketing decisions. There are other applications for
1395

 Data Mining aggr_apriori
association rule discovery, such as the problem areas of text mining and bioinformatics. The Apriori algorithm
(Agrawal and Srikant, 1994) is one of the most popular algorithms for association rule discovery in transactional
datasets. For a full description of the Apriori algorithm, see imsls_f_apriori.

The interface to the function imsls_f_aggr_apriori is designed to complete the analysis over a series of
steps, with each step requiring a call to the function. With this design, Apriori can be applied to separate blocks of
transactions. For each dataset or block, call imsls_f_aggr_apriori with IMSLS_FREQUENT_ITEMSETS
to obtain the frequent itemsets from each block. The same parameter settings, such as minimum support per-
centage, must be used in each separate call. Then, call imsls_f_aggr_apriori with the keyword
IMSLS_UNION sequentially to obtain the union of all the frequent itemsets. The resulting set serves as the "can-
didate" itemsets for the global set of transactions.

An itemset which is frequent in one transaction set may or may not be frequent in the larger collection. To find
the itemsets that are frequent over the entire set of transactions, imsls_f_aggr_apriori performs
another pass through the individual blocks, this time counting the occurrences of each of the itemsets in each of
the transaction sets. This step can be done in parallel, using keyword IMSLS_COUNT. The next step is then to
sum up the individual counts before filtering for the frequent itemsets. This is achieved with the keyword
IMSLS_SUM, applied successively to pairs of previous counts. After this step, the frequencies of each itemset
over all of the transactions are known and it remains to be seen if any meet the threshold to be considered "fre-
quent". The final step in determining the frequent itemsets is IMSLS_UPDATE_FREQ_ITEMSETS. Once the
frequent itemsets are known, the strong association rules can be found using the step,
IMSLS_ASSOCIATION_RULES , although this is not a special step in the aggregation. The method is due to
Savasere, Omiecinski, and Navathe (1995) and is also summarized and compared with other approaches in Raja-
raman and Ullman (2011).

Since imsls_f_aggr_apriori can operate on subsets of data, it can be used when physical memory can-
not hold the entire data set. Additionally, this design may be useful in parallel computing environments where
nodes can be programmed to calculate intermediate results in parallel.

Data Structures
The data structures used by imsls_f_aggr_apriori are described below. (For
imsls_d_aggr_apriori, the structure names are Imsls_d_apriori_itemsets,
Imsls_d_association_rules, and Imsls_d_rule_components where type float becomes double).

Structure definitions are provided for informational purposes and may be subject to change.
1396

 Data Mining aggr_apriori
Table 39 – Imsls_f_apriori_itemsets
Field Description

int n_itemsets Length of array itemsets containing the
Imsls_apriori_items structures.

Imsls_apriori_items *itemsets Array of Imsls_apriori_items structures
containing the set of frequent items and the
support for that set.

int n_trans Number of transactions.

int max_num_products Maximum number of products.

int max_set_size Maximum itemset size.

double min_pct_support Minimum percentage of transactions.

Table 40 – Imsls_apriori_items
Field Description

int n_items Length of items.

int *items Array containing the set of frequent items.

int support Number of transactions in which the item
appears.

Table 41 – Imsls_f_association_rules
Field Description

int n_rules Length of array rules containing the
Imsls_f_rule_components structures.

Imsls_f_rule_components *rules Array containing the association rules.

Table 42 – Imsls_f_rule_components
Field Description

int n_x Length of x.

int *x Array containing the X components of the
association rule.

int n_y Length of y.
1397

 Data Mining aggr_apriori
Example
This example shows how to apply Apriori to separate blocks of data and combine results. The data are two sepa-
rate blocks of 50 transactions involving five different product IDs. The minimum support percentage is set to 0.30,
providing a minimum required support of 30 transactions overall.

#include <imsls.h>
#define N1 144
#define N2 147
int main() {
 int i;
 int max_num_products = 5, max_set_size = 4;
 float confidence = 0.8, lift = 2.0;
 double min_pct_support = 0.30;
 int x1[N1][2] = {
 {1, 3}, {1, 2}, {1, 1}, {2, 1}, {2, 2}, {2, 4}, {2, 5},
 {3, 3}, {4, 4}, {4, 3}, {4, 5}, {4, 1}, {5, 5}, {6, 1},
 {6, 2}, {6, 3}, {7, 5}, {7, 3}, {7, 2}, {8, 3}, {8, 4},
 {8, 1}, {8, 5}, {8, 2}, {9, 4}, {10, 5}, {10, 3}, {11, 2},
 {11, 3}, {12, 4}, {13, 4}, {14, 2}, {14, 3}, {14, 1}, {15, 3},
 {15, 5}, {15, 1}, {16, 2}, {17, 3}, {17, 5}, {17, 1}, {18, 5},
 {18, 1}, {18, 2}, {18, 3}, {19, 2}, {20, 4}, {21, 1}, {21, 4},
 {21, 2}, {21, 5}, {22, 5}, {22, 4}, {23, 2}, {23, 5}, {23, 3},
 {23, 1}, {23, 4}, {24, 3}, {24, 1}, {24, 5}, {25, 3}, {25, 5},
 {26, 1}, {26, 4}, {26, 2}, {26, 3}, {27, 2}, {27, 3}, {27, 1},
 {27, 5}, {28, 5}, {28, 3}, {28, 4}, {28, 1}, {28, 2}, {29, 4},
 {29, 5}, {29, 2}, {30, 2}, {30, 4}, {30, 3}, {31, 2}, {32, 5},
 {32, 1}, {32, 4}, {33, 4}, {33, 1}, {33, 5}, {33, 3}, {33, 2},
 {34, 3}, {35, 5}, {35, 3}, {36, 3}, {36, 5}, {36, 4}, {36, 1},
 {36, 2}, {37, 1}, {37, 3}, {37, 2}, {38, 4}, {38, 2}, {38, 3},
 {39, 3}, {39, 2}, {39, 1}, {40, 2}, {40, 1}, {41, 3}, {41, 5},
 {41, 1}, {41, 4}, {41, 2}, {42, 5}, {42, 1}, {42, 4}, {43, 3},
 {43, 2}, {43, 4}, {44, 4}, {44, 5}, {44, 2}, {44, 3}, {44, 1},
 {45, 4}, {45, 5}, {45, 3}, {45, 2}, {45, 1}, {46, 2}, {46, 4},
 {46, 5}, {46, 3}, {46, 1}, {47, 4}, {47, 5}, {48, 2}, {49, 1},
 {49, 4}, {49, 3}, {50, 3}, {50, 4}
 };
 int x2[N2][2] = {
 {1, 2}, {1, 1}, {1, 4}, {1, 3}, {2, 2}, {2, 5}, {2, 3},
 {2, 1}, {2, 4}, {3, 5}, {3, 4}, {4, 2}, {5, 4}, {5, 2},

int *y Array containing the Y components of the
association rule.

int support[3] Support for Z, X and Y components of the
association rule.

float confidence Confidence of the association rule.

float lift Lift of the association rule.

Table 42 – Imsls_f_rule_components
Field Description
1398

 Data Mining aggr_apriori
 {5, 3}, {5, 5}, {6, 3}, {6, 5}, {7, 2}, {7, 5}, {7, 4},
 {7, 1}, {7, 3}, {8, 2}, {9, 2}, {9, 4}, {10, 4}, {10, 2},
 {11, 4}, {11, 1}, {12, 3}, {12, 1}, {12, 5}, {12, 2}, {13, 2},
 {14, 3}, {14, 4}, {14, 2}, {15, 2}, {16, 5}, {16, 2}, {16, 4},
 {17, 1}, {18, 2}, {18, 3}, {18, 4}, {19, 3}, {19, 1}, {19, 2},
 {19, 4}, {20, 5}, {20, 1}, {21, 5}, {21, 4}, {21, 1}, {21, 3},
 {22, 4}, {22, 1}, {22, 5}, {23, 1}, {23, 2}, {24, 4}, {25, 4},
 {25, 3}, {26, 5}, {26, 2}, {26, 3}, {26, 4}, {26, 1}, {27, 2},
 {27, 1}, {27, 5}, {27, 3}, {28, 1}, {28, 2}, {28, 3}, {28, 4},
 {29, 5}, {29, 2}, {29, 1}, {30, 5}, {30, 3}, {30, 2}, {30, 4},
 {31, 4}, {31, 1}, {32, 1}, {32, 2}, {32, 3}, {32, 4}, {32, 5},
 {33, 3}, {33, 2}, {33, 4}, {33, 5}, {33, 1}, {34, 3}, {34, 4},
 {34, 5}, {34, 2}, {35, 2}, {35, 3}, {36, 3}, {36, 5}, {36, 4},
 {37, 1}, {37, 4}, {37, 2}, {37, 3}, {37, 5}, {38, 5}, {38, 3},
 {38, 1}, {38, 2}, {39, 2}, {39, 5}, {40, 4}, {40, 2}, {41, 4},
 {42, 4}, {43, 5}, {43, 4}, {44, 5}, {44, 4}, {44, 3}, {44, 2},
 {44, 1}, {45, 1}, {45, 2}, {45, 3}, {45, 5}, {45, 4}, {46, 3},
 {46, 4}, {47, 4}, {47, 5}, {47, 2}, {47, 3}, {48, 5}, {48, 3},
 {48, 2}, {48, 1}, {48, 4}, {49, 4}, {49, 5}, {50, 4}, {50, 1}
 };
 Imsls_f_apriori_itemsets *itemsets1 = NULL, *itemsets2 = NULL,
 *cand_itemsets = NULL, *itemsets = NULL;
 int *prev_freq1 = NULL, *prev_freq2 = NULL, *freq = NULL;
 Imsls_f_association_rules *assoc_rules = NULL;
 /* Find frequent itemsets in x1 and x2. */
 imsls_f_aggr_apriori(IMSLS_FREQUENT_ITEMSETS,
 N1, &x1[0][0], max_num_products,
 max_set_size, min_pct_support, &itemsets1,
 0);
 imsls_f_aggr_apriori(IMSLS_FREQUENT_ITEMSETS,
 N2, &x2[0][0], max_num_products,
 max_set_size, min_pct_support, &itemsets2,
 0);
 /* Take the union of itemsets1 and itemsets2. */
 imsls_f_aggr_apriori(IMSLS_UNION,
 itemsets1, itemsets2, &cand_itemsets,
 0);
 /* Count the frequencies of each candidate itemset in
 each of the data sets */
 imsls_f_aggr_apriori(IMSLS_COUNT, cand_itemsets,
 N1, &x1[0][0], &prev_freq1,
 0);
 imsls_f_aggr_apriori(IMSLS_COUNT, cand_itemsets,
 N2, &x2[0][0], &prev_freq2,
 0);

 /* Sum the frequencies. */
 imsls_f_aggr_apriori(IMSLS_SUM, cand_itemsets->n_itemsets,
 prev_freq1, prev_freq2, &freq,
 0);
 /* Determine which of the candidate itemsets are frequent. */
 imsls_f_aggr_apriori(IMSLS_UPDATE_FREQ_ITEMSETS,
 cand_itemsets, cand_itemsets->n_itemsets, freq, &itemsets,
 0);
 /* Generate the strong association rules. */
1399

 Data Mining aggr_apriori
 imsls_f_aggr_apriori(IMSLS_ASSOCIATION_RULES,
 itemsets, confidence, lift, &assoc_rules,
 0);
 imsls_f_write_apriori_itemsets(itemsets);
 imsls_f_write_association_rules(assoc_rules);
 imsls_f_free_apriori_itemsets(itemsets1);
 imsls_f_free_apriori_itemsets(itemsets2);
 imsls_f_free_apriori_itemsets(cand_itemsets);
 imsls_f_free_apriori_itemsets(itemsets);
 imsls_f_free_association_rules(assoc_rules);
 imsls_free(prev_freq1);
 imsls_free(prev_freq2);
 imsls_free(freq);
}

Output

Frequent Itemsets (Out of 100 Transactions):
Size Support Itemset
 1 51 { 1 }
 1 63 { 2 }
 1 60 { 3 }
 1 63 { 4 }
 1 54 { 5 }
 2 37 { 1 2 }
 2 38 { 1 3 }
 2 33 { 1 4 }
 2 35 { 1 5 }
 2 44 { 2 3 }
 2 38 { 2 4 }
 2 34 { 2 5 }
 2 38 { 3 4 }
 2 38 { 3 5 }
 2 37 { 4 5 }
 3 32 { 1 2 3 }
 3 31 { 2 3 4 }
Association Rules (itemset X implies itemset Y):
X = {1 2} ==> Y = {3}
 supp(X)=37, supp(Y)=60, supp(X U Y)=32
 conf= 0.86, lift=1.44
X = {1 3} ==> Y = {2}
 supp(X)=38, supp(Y)=63, supp(X U Y)=32
 conf= 0.84, lift=1.34
X = {2 4} ==> Y = {3}
 supp(X)=38, supp(Y)=60, supp(X U Y)=31
 conf= 0.82, lift=1.36
X = {3 4} ==> Y = {2}
 supp(X)=38, supp(Y)=63, supp(X U Y)=31
 conf= 0.82, lift=1.29
1400

 Data Mining aggr_apriori
Warning Errors

Fatal Errors

IMSLS_MIN_SUPPORT_NOT_MET No items met minimum support of #.

IMSLS_NEED_IARG_GE "name" = #. "name" must be greater than or
equal to #.

IMSLS_NEED_IARG_GT "name" = #. "name" must be greater than #.

IMSLS_INEQUALITY_VIOLATION_12 "name1" = # must equal "name2" = #.
1401

 Data Mining write_apriori_itemsets
write_apriori_itemsets
Prints frequent itemsets.

Synopsis
#include <imsls.h>
void imsls_f_write_apriori_itemsets (Imsls_f_apriori_itemsets *itemsets)

The type double function is imsls_d_write_apriori_itemsets.

Required Arguments
Imsls_f_apriori_itemsets *itemsets (Input)

A pointer to an Imsls_f_apriori_itemsets data structure containing the itemsets.

Description
The function imsls_f_write_apriori_itemsets prints frequent itemsets stored in an
Imsls_f_apriori_itemsets structure.

Output is written to the file specified by the function imsls_output_file (Chapter 15, Utilities. The default out-
put file is standard output (corresponding to the file pointer stdout).

Example
See imsls_f_apriori or imsls_f_aggr_apriori.
1402

 Data Mining write_association_rules
write_association_rules
Prints association rules.

Synopsis
#include <imsls.h>
void imsls_f_write_association_rules (Imsls_f_association_rules *assoc_rules)

The type double function is imsls_d_write_association_rules.

Required Arguments
Imsls_f_association_rules *assoc_rules (Input)

A pointer to an Imsls_f_association_rules data structure containing the association rules.

Description
The function imsls_f_write_association_rules prints the strong association rules stored in an
Imsls_f_association_rules structure.

Output is written to the file specified by the function imsls_output_file. The default output file is standard
output (corresponding to the file pointer stdout).

Example
See imsls_f_apriori or imsls_f_aggr_apriori.
1403

 Data Mining free_apriori_itemsets
free_apriori_itemsets
Frees the memory allocated within a frequent itemsets structure.

Synopsis
#include <imsls.h>
void imsls_f_free_apriori_itemsets (Imsls_f_apriori_itemsets *itemsets)

The type double function is imsls_d_free_apriori_itemsets.

Required Arguments
Imsls_f_apriori_itemsets *itemsets (Input)

A pointer to an Imsls_f_apriori_itemsets data structure containing the itemsets. See
imsls_f_apriori.

Description
Frees the memory allocated within a frequent itemsets structure.

Example
See imsls_f_apriori or imsls_f_aggr_apriori.
1404

 Data Mining free_association_rules
free_association_rules
Frees the memory allocated within an association rules structure.

Synopsis
#include <imsls.h>
void imsls_f_free_association_rules (Imsls_f_association_rules *assoc_rules)

The type double function is imsls_d_free_association_rules.

Required Arguments
Imsls_f_association_rules *assoc_rules (Input)

A pointer to an Imsls_f_association_rules data structure containing the association rules.
See imsls_f_association_rules.

Description
Frees the memory allocated within an association rules structure.

Example
See the examples in imsls_f_apriori or imsls_f_aggr_apriori.
1405

 Data Mining Decision Trees – An Overview
Decision Trees – An Overview
Decision trees are data mining methods for predicting a single response variable based on multiple predictor
variables. If the response variable is categorical or discrete, the data mining problem is a classification problem,
whereas if the response is continuous, the problem is a type of regression problem. Decision trees are generally
applicable in both situations.

A trivial but illustrative example regards the decision to play golf or not, depending on the weather. The training
data, from Quinlan (1993), is given in Table 43 and a decision tree fit to the data is shown in Figure 22. Other
examples include predicting the chance of survival for heart attack patients based on age, blood pressure and
other vital signs; scoring loan applications based on credit history, income, and education; classifying an email as
spam based on its characteristics, and so on.

Tree-growing algorithms have similar steps: starting with all observations in a root node, a predictor variable is
selected to split the dataset into two or more child nodes or branches. The form of the split depends on the type
of predictor and on specifics of the algorithm. If the predictor is categorical, taking discrete values {A, B, C, D} for
example, the split may consist of two or more proper subsets, such as {A}, {B, C}, and {D}. If the predictor is con-
tinuous, a split will consist of two or more intervals, such as X <= 2, X > 2. The splitting procedure is then repeated
for each child node and continued in such manner until one of several possible stopping conditions is met. The
result of the decision tree algorithm is a tree structure with a root and a certain number of branches (or nodes).
Each branch defines a subset or partition of the data and, conditional on that subset of data, a predicted value
for the response variable. A traversal of a branch of the tree thus leads to a prediction, or decision about the
response variable. To predict a new out of sample observation, we find the terminal node to which the observa-
tion belongs by traversing the tree and finding the data subset (branch) that contains the observation.

For example, the decision tree in Figure 22 can be expressed as a set of rules: If the weather is sunny, don’t play
golf. If the weather is overcast, play golf. If the weather is rainy and there is no wind, play golf. On the other hand,
if it is rainy and windy, don’t play golf.

Decision trees are intuitive and can be very effective predictive tools. As with any predictive model, a decision tree
should be tested on hold-out datasets or refined using K-fold cross-validation to prevent over-fitting.
1406

 Data Mining Decision Trees – An Overview
Figure 22, Play Golf? This tree has a size of 6, 4 terminal nodes, and a height or depth of 2.

Table 43 – Golf training data

Outlook
Tempera-
ture Humidity Wind Play

sunny 85 85 FALSE don't play

sunny 80 90 TRUE don't play

overcast 83 78 FALSE play

rainy 70 96 FALSE play

rainy 68 80 FALSE play

rainy 65 70 TRUE don't play

overcast 64 65 TRUE play

sunny 72 95 FALSE don't play

sunny 69 70 FALSE play

rainy 75 80 FALSE play

sunny 75 70 TRUE play

overcast 72 90 TRUE play
1407

 Data Mining Decision Trees – An Overview
overcast 81 75 FALSE play

rainy 71 80 TRUE don't play

overcast 81 75 FALSE play

rainy 71 80 TRUE don't play

Table 43 – Golf training data

Outlook
Tempera-
ture Humidity Wind Play
1408

 Data Mining decision_tree
decision_tree
Generates a decision tree for a single response variable and two or more predictor variables.

Synopsis
#include <imsls.h>

Imsls_f_decision_tree* imsls_f_decision_tree (int n, int n_cols, float xy[],
int response_col_idx, int var_type[], ..., 0)

The type double function is imsls_d_decision_tree.

Required Arguments
int n (Input)

The number of rows in xy.

int n_cols (Input)
The number of columns in xy.

float xy[] (Input)
Array of size n × n_cols containing the data.

int response_col_idx (Input)
Column index of the response variable.

int var_type[] (Input)
Array of length ncols indicating the type of each variable.

var_type[i] Type

0 Categorical

1 Ordered Discrete (Low, Med., High)

2 Quantitative or Continuous

3 Ignore this variable
1409

 Data Mining decision_tree
Return Value
A pointer to a structure of type Imsls_f_decision_tree. If an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_decision_tree *imsls_f_decision_tree (int n, int n_cols, float xy[],
int response_col_idx, int var_type[],
IMSLS_METHOD, int method,
IMSLS_CRITERIA, int criteria,
IMSLS_RATIO,
IMSLS_WEIGHTS, float weights[],
IMSLS_COST_MATRIX, int n_classes, float cost_matrix[],
IMSLS_CONTROL, int params[],
IMSLS_COMPLEXITY, float complexity,
IMSLS_N_SURROGATES, int n_surrogates,
IMSLS_ALPHAS, float alphas[],
IMSLS_PRIORS, int n_classes, float priors[],
IMSLS_N_FOLDS, int n_folds,
IMSLS_N_SAMPLE, int n_samples,
IMSLS_RANDOM_FEATURES,
IMSLS_N_RANDOM_FEATURES, int n_features,
IMSLS_TOLERANCE, float tol,
IMSLS_RANDOM_SEED, int seed,
IMSLS_PRINT, int print_level,
IMSLS_TEST_DATA, int n_test, float xy_test[],
IMSLS_TEST_DATA_WEIGHTS, float weights_test[],
IMSLS_ERROR_SS, float *pred_err_ss,
IMSLS_PREDICTED, float **predictions,
IMSLS_PREDICTED_USER, float predictions[],

NOTE: When the variable type (var_type) is specified as Categorical (0), the numbering of the
categories must begin at 0. For example, if there are three categories, they must be represented
as 0, 1 and 2 in the xy array.

The number of classes for a categorical response variable is determined by the largest value
discovered in the data. To set this value in another way, see optional arguments IMSLS_PRIORS or
IMSLS_COST_MATRIX. Also note that a warning message is displayed if a class level in
0, 1, …, n_classes-1 has a 0 count in the data.
1410

 Data Mining decision_tree
IMSLS_CLASS_ERROR, float **class_errors,
IMSLS_CLASS_ERROR_USER, float class_errors[],
IMSLS_MEAN_ERROR, float *mean_error,
IMSLS_OUT_OF_BAG_PREDICTED, float **oob_predicted,
IMSLS_OUT_OF_BAG_PREDICTED_USER, float oob_predicted[],
IMSLS_OUT_OF_BAG_MEAN_ERROR, float *out_of_bag_mean_error,
IMSLS_OUT_OF_BAG_CLASS_ERROR, float **out_of_bag_class_errors,
IMSLS_OUT_OF_BAG_CLASS_ERROR_USER, float out_of_bag_class_errors[],
IMSLS_OUT_OF_BAG_VAR_IMPORTANCE, float **out_of_bag_var_importance,
IMSLS_OUT_OF_BAG_VAR_IMPORTANCE_USER, float out_of_bag_var_importance[],
IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees,
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

Specifies the tree generation method. The key for the variable type index is provided above.

Default: method = 0.

IMSLS_CRITERIA, int criteria (Input)
Specifies which criteria the ALACART method and the C4.5 method should use in the gain calcula-
tions to determine the best split at each node.

Default: criteria = 0.

method Method
Response
var_type

Predictor
var_type

0 C4.5 0 0, 1, 2

1 ALACART (Breiman, et. al.) 0, 1, 2 0, 1, 2

2 CHAID 0, 1, 2 0

3 QUEST 0 0, 1, 2

criteria Measure

0 Shannon Entropy

1 Gini Index

2 Deviance
1411

 Data Mining decision_tree
Shannon Entropy – A measure of randomness or uncertainty.
For a categorical variable having C distinct values over the data set S, the Shannon Entropy is
defined as

where

pi = Pr(Y = i)

and where

pi log(pi) := 0

if pi = 0

Gini Index – A measure of statistical dispersion.
For a categorical variable having C distinct values over the data set S, the Gini Index is defined
as

where p(i|S) denotes the probability that the variable is equal to the state i on the data set, S.
Deviance – A measure of the quality of fit.

For a categorical variable having C distinct values over a data set S, the Deviance measure is

where

pi = Pr(Y = i)

and where

ni

is the number of cases with Y = i on the node.

IMSLS_RATIO, (Input)
If present, the ALACART method and C4.5 method each uses a gain ratio instead of just the gain to
determine the best split.
Default: Uses gain.

IMSLS_WEIGHTS, float weights[] (Input)
An array of length n containing case weights.
Default: weights[i] = 1.0.

∑
i=1

C
pi log(pi)

I(S) = ∑
i, j=1
i≠ j

C
p(i∣S) = 1 − ∑

i=1

C
p2(i∣S)

∑
i=1

C
ni log(pi)
1412

 Data Mining decision_tree
IMSLS_COST_MATRIX, int n_classes, float cost_matrix[] (Input)
An array of length n_classes x n_classes containing the cost matrix for a categorical
response variable, where n_classes is the number of classes the response variable may assume.
The cost matrix has elements C(i, j) = cost of misclassifying a response in class j as in class i. The diag-
onal elements of the cost matrix must be 0.
Default: cost_matrix[i] = 1.0, for i on the off-diagonal, cost_matrix[i] = 0.0, for i
on the diagonal.

IMSLS_CONTROL,int params[] (Input)
Array of length 5 containing parameters to control the maximum size of the tree and other stopping
rules.

Default: params[] = {7, 21, 10, 100, 10}

IMSLS_COMPLEXITY, float complexity (Input)
The minimum complexity parameter to use in cross-validation. Complexity must be ≥ 0.
Default: complexity = 0.0.

IMSLS_N_SURROGATES, int n_surrogates (Input)
Indicates the number of surrogate splits. Only used if method = 1.
Default: n_surrogates = 0.

IMSLS_ALPHAS, float alphas[] (Input)
An array of length 3 containing the significance levels. alphas[0] = significance level for split vari-
able selection (CHAID and QUEST); alphas[1]= significance level for merging categories of a
variable (CHAID), and alphas[2] = significance level for splitting previously merged categories
(CHAID). Valid values are in the range 0 < alphas[i] < 1.0, and alphas[2] <= alphas[1].
Setting alphas[2] = -1.0 disables splitting of merged categories.
Default: alphas[] = {0.05, 0.05, -1.0}

params[i] name Action

0 min_n_node Do not split a node if one of its child nodes will have
fewer than min_n_node observations.

1 min_split Do not split a node if the node has fewer than
min_split observations

2 max_x_cats Allow for up to max_x_cats for categorical predic-
tor variables.

3 max_size Stop growing the tree once it has reached max_size
number of nodes.

4 max_depth Stop growing the tree once it has reached
max_depth number of levels.
1413

 Data Mining decision_tree
IMSLS_PRIORS, int n_classes, float priors[] (Input)
An array of length n_classes, where n_classes is the number of classes the response variable
may assume, containing prior probabilities for class membership. The argument is ignored for contin-
uous response variables (var_type[response_col_idx]=2). By default, the prior
probabilities are estimated from the data.

IMSLS_N_FOLDS, int n_folds (Input)
The number of folds to use in cross validation tree selection. n_folds must be between 1 and n,
inclusive. If n_folds = 1 the full data set is used once to generate the decision tree. In other words,
no cross-validation is performed. If 1 < n/n_folds ≤ 3, then leave-one-out cross validation is
performed.
Default: n_folds = 10.

IMSLS_N_SAMPLE, int n_samples (Input)
The number of bootstrap samples to use in bootstrap aggregation (bagging) when predicted values
are requested. To obtain predictions produced by bagging, set n_samples > 0 and use one of
IMSLS_PREDICTED or IMSLS_PREDICTED_USER.
Default: n_samples = 0 unless random features or out-of-bag calculations are requested; then,
n_samples = 50.

IMSLS_RANDOM_FEATURES, (Input)
If present, the decision tree splitting rules at each node are decided from a random subset of
predictors. Use this argument to generate a random forest for predictions. Use the argument
IMSLS_N_SAMPLE to control the number of trees and IMSLS_N_RANDOM_FEATURES to control
the number of random features.
Default: No random feature selection. The algorithms use all predictors in every selection.

IMSLS_N_RANDOM_FEATURES, int n_random_features (Input)
The number of predictors in each random subset from which to select during random feature selec-
tion, when it is activated.
Default: For categorical variables, n_random_features = the nearest integer ≤ or 1; for
regression variables, n_random_features = the nearest integer ≤ or 1, whichever is
larger, where p = the number of variables.

IMSLS_TOLERANCE, float tol (Input)
Error tolerance to use in the algorithm.
Default: tol = 100.0 * imsls_f_machine(4).

IMSLS_RANDOM_SEED, int seed (Input)
The seed of the random number generator used in sampling or cross-validation. By changing the
value of seed on different calls to imsls_f_decision_tree, with the same data set, calls may

p / 3
p / 3
1414

 Data Mining decision_tree
produce slightly different results. Setting seed to zero forces random number seed determination
by the system clock.
Default: seed = 0

IMSLS_PRINT, int print_level (Input)

Default: print_level = 0.
IMSLS_TEST_DATA, int n_test, float xy_test[] (Input)

xy_test is an array of size n_test x ncols containing hold-out or test data for which predictions
are requested. When this optional argument is present, the number of observations in xy_test,
n_test, must be greater than 0. The response variable may have missing values in xy_test, but it
must be in the same column and the predictors must be in the same columns as they are in xy. If the
test data is not provided but predictions are requested, then xy is used and the predictions are the
fitted values.

Default: xy_test = xy
IMSLS_TEST_DATA_WEIGHTS, float weights_test[] (Input)

An array of size n_test containing frequencies or weights for each observation in xy_test. This
argument is ignored if IMSLS_TEST_DATA is not present.
Default: weights_test = weights.

IMSLS_ERROR_SS, float *pred_err_ss (Output)
The fitted data error mean sum of squares in the absence of test data (xy_test). When test data is
provided, the prediction error mean sum of squares is returned.

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to an array of length n containing the fitted or predicted value of the response
variable for each case in the input data or test data, if provided.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for the array of the fitted or predicted value for each case is provided by the user.

IMSLS_CLASS_ERROR, float **class_errors (Output)
Address of a pointer to an array of length 2 × (n_classes + 1) containing classification errors
for each level of the categorical response variable, along with the total occurrence in the input data

print_level Action

0 No printing

1 Prints final results only.

2 Prints intermediate and final results.
1415

 Data Mining decision_tree
or test data, and overall totals.
To illustrate, if class_errors[2*j] = 20, and class_errors[2*j+1] = 105, then we
know there were 20 misclassifications of class level j out of a total of 105 in the data.

IMSLS_CLASS_ERROR_USER, float class_errors[] (Output)
Storage for the array of the class errors is provided by the user.

IMSLS_MEAN_ERROR, float *mean_error (Output)
The fitted data error mean sum of squares (continuous response) or misclassification percentage
(categorical response) in the absence of test data (xy_test). When test data is provided, the
prediction mean error is returned.

IMSLS_OUT_OF_BAG_PREDICTED, float **oob_predicted (Output)
Address of a pointer to an array of length n containing the out-of-bag predicted value of the
response variable for every case in the input data when bagging is performed.

IMSLS_OUT_OF_BAG_PREDICTED_USER, float oob_predicted[] (Output)
Storage for the array of the out-of-bag predicted values is provided by the user.

IMSLS_OUT_OF_BAG_MEAN_ERROR, float *out_of_bag_mean_error (Output)
The out-of-bag predictive error mean sum of squares (continuous response) or misclassification
percentage (categorical response) on the input data, when bagging is performed.

IMSLS_OUT_OF_BAG_CLASS_ERROR, float ***out_of_bag_class_errors (Output)
Address of a pointer to an array of length 2 × (n_classes + 1) containing out-of-bag
classification errors for each level of the categorical response variable, along with the total occur-
rence in the input data, and overall totals. This output is populated only when bagging
(n_samples > 1) is requested.

IMSLS_OUT_OF_BAG_CLASS_ERROR_USER, float out_of_bag_class_errors[] (Output)
Storage for the array of the out-of-bag class errors is provided by the user.

IMSLS_OUT_OF_BAG_VAR_IMPORTANCE, float **out_of_bag_var_importance (Output)
Address of a pointer to an array of length n_preds containing the out-of-bag variable importance
measure for each predictor. This output is populated only when bagging (n_samples > 1) is
requested.

IMSLS_OUT_OF_BAG_VAR_IMPORTANCE_USER, float out_of_bag_var_importance[] (Out-
put)
Storage for the array of the out-of-bag variable importance is provided by the user.

IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees (Output)
Address of a pointer to an array of length n_samples containing the collection of trees generated
during the algorithm. To release this space, use imsls_bagged_trees_free.
1416

 Data Mining decision_tree
Description
This implementation includes four of the most widely used algorithms for decision trees. Below is a brief sum-
mary of each approach.

C4.5

The method C4.5 (Quinlan, 1995) is a tree partitioning algorithm for a categorical response variable and categori-
cal or quantitative predictor variables. The procedure follows the general steps outlined above, using as splitting
criterion the information gain or gain ratio. Specifically, the entropy or uncertainty in the response variable with C
categories over the full training sample S is defined as

Where pi = Pr[Y = i|S] is the probability that the response takes on category i on the dataset S. This measure is

widely known as the Shannon Entropy. Splitting the dataset further may either increase or decrease the entropy
in the response variable. For example, the entropy of Y over a partitioning of S by X, a variable with K categories, is
given by

If any split defined by the values of a categorical predictor decreases the entropy in Y, then it is said to yield infor-
mation gain:

g (S,X) = E(S) - E(S,X)

 The best splitting variable according to the information gain criterion is the variable yielding the largest informa-
tion gain, calculated in this manner. A modified criterion is the gain ratio:

where

with

E S = −∑
i=1

C

pilog pi

E S,X = −∑
k=1

K

∑
i=1

Ck

p Sk E Sk

gR S,X =
E S − E S,X

EX S

Ex S = −∑
k=1

K

vklog vk
1417

 Data Mining decision_tree
νk = Pr[X= k|S]

Note that EX(S) is just the entropy of the variable X over S. The gain ratio is thought to be less biased toward pre-

dictors with many categories. C4.5 treats the continuous variable similarly, except that only binary splits of the
form X ≤ d and X > d are considered, where d is a value in the range of X on S. The best split is determined by the
split variable and split point that gives the largest criterion value. It is possible that no variable meets the thresh-
old for further splitting at the current node, in which case growing stops and the node becomes a terminal node.
Otherwise, the node is split creating two or more child nodes. Then, using the dataset partition defined by the
splitting variable and split value, the very same procedure is repeated for each child node. Thus a collection of
nodes and child-nodes are generated, or, in other words, the tree is grown. The growth stops after one or more
different conditions are met.

ALACART

ALACART implements the method of Breiman, Friedman, Olshen and Stone (1984), the original authors and
developers of CART™. CART™ is the trademarked name for Classification and Regression Trees. In ALACART, only
binary splits are considered for categorical variables. That is, if X has values {A, B, C, D}, splits into only two subsets
are considered, e.g., {A} and {B, C, D}, or {A, B} and {C, D}, are allowed, but a three-way split defined by {A}, {B} and
{C,D} is not.

For classification problems, ALACART uses a similar criterion to information gain called impurity. The method
searches for a split that reduces the node impurity the most. For a given set of data S at a node, the node impu-
rity for a C-class categorical response is a function of the class probabilities

I(S)=φ(p(1|S), p(2|S),…, p(C|S))

The measure function φ(⋅) should be 0 for “pure” nodes, where all Y are in the same class, and maximum when Y
is uniformly distributed across the classes.

As only binary splits of a subset S are considered (S1, S2 such that S = S1 ∪ S2 and S = S1 ∩ S2 =∅), the reduction

in impurity when splitting S into S1, S2 is

ΔI = I(S) -q

1

I(S

1

) -q

2

I(S

2

)

where qj =Pr[Sj], j =1,2 — the node probability.
1418

 Data Mining decision_tree
The gain criteria and the reduction in impurity ΔI are similar concepts and equivalent when I is entropy and when
only binary splits are considered. Another popular measure for the impurity at a node is the Gini index, given by

ve

If Y is an ordered response or continuous, the problem is a regression problem. ALACART generates the tree
using the same steps, except that node-level measures or loss-functions are the mean squared error (MSE) or
mean absolute error (MAD) rather than node impurity measures.

CHAID

The third method is appropriate only for categorical or discrete ordered predictor variables. Due to Kass (1980),
CHAID is an acronym for chi-square automatic interaction detection. At each node, as above, CHAID looks for the
best splitting variable. The approach is as follows: given a predictor variable X, perform a 2-way chi-squared test
of association between each possible pair of categories of X with the categories of Y. The least significant result is
noted and, if a threshold is met, the two categories of X are merged. Treating this merged category as a single cat-
egory, repeat the series of tests and determine if there is further merging possible. If a merged category consists
of three or more of the original categories of X, CHAID calls for a step to test whether the merged categories
should be split. This is done by forming all binary partitions of the merged category and testing each one against
Y in a 2-way test of association. If the most significant result meets a threshold, then the merged category is split
accordingly. As long as the threshold in this step is smaller than the threshold in the merge step, the splitting step
and the merge step will not cycle back and forth. Once each predictor is processed in this manner, the predictor
with the most significant qualifying 2-way test with Y is selected as the splitting variable, and its last state of
merged categories define the split at the given node. If none of the tests qualify (by having an adjusted p-value
smaller than a threshold), then the node is not split. This growing procedure continues until one or more stop-
ping conditions are met.

QUEST

The fourth method, the QUEST algorithm (Loh and Shih, 1997), is appropriate for a categorical response variable
and predictors of either categorical or quantitative type. For each categorical predictor, QUEST performs a multi-
way chi-square test of association between the predictor and Y. For every continuous predictor, QUEST performs
an ANOVA test to see if the means of the predictor vary among the groups of Y. Among these tests, the variable
with the most significant result is selected as a potential splitting variable, say, Xj. If the p-value (adjusted for mul-

tiple tests) is less than the specified splitting threshold, then Xj is the splitting variable for the current node. If not,

QUEST performs for each continuous variable X a Levene’s test of homogeneity to see if the variance of X varies

I S = ∑
i, j=1
i≠ j

C

p i | S p j | S = 1 −∑
i=1

C

p2 i | S
1419

 Data Mining decision_tree
within the different groups of Y. Among these tests, we again find the predictor with the most significant result,
say Xi If its p-value (adjusted for multiple tests) is less than the splitting threshold, Xi is the splitting variable. Other-

wise, the node is not split.

Assuming a splitting variable is found, the next step is to determine how the variable should be split. If the
selected variable Xj is continuous, a split point d is determined by quadratic discriminant analysis (QDA) of Xj into

two populations determined by a binary partition of the response Y. The goal of this step is to group the classes
of Y into two subsets or super classes, A and B. If there are only two classes in the response Y, the super classes
are obvious. Otherwise, calculate the means and variances of Xj in each of the classes of Y. If the means are all

equal, put the largest-sized class into group A and combine the rest to form group B. If they are not all equal, use
a k-means clustering method (k = 2) on the class means to determine A and B.

 Xj in A and in B is assumed to be normally distributed with estimated means , , and variances S2
j|A, S2

j|B, respectively. The quadratic discriminant is the partition Xj ≤ d and Xj > d such that Pr(Xj, A) = Pr(Xj, B). The dis-

criminant rule assigns an observation to A if xij ≤ d and to B if xij > d. For d to maximally discriminate, the

probabilities must be equal.

If the selected variable Xj is categorical, it is first transformed using the method outlined in Loh and Shih (1997)

and then QDA is performed as above. The transformation is related to the discriminant coordinate (CRIMCOORD)
approach due to Gnanadesikan (1977).

Minimal-Cost Complexity Pruning

One way to address overfitting is to grow the tree as large as possible, and then use some logic to prune it back.
Let T represent a decision tree generated by any of the methods above. The idea (from Breiman, et. al.) is to find
the smallest sub-tree of T that minimizes the cost complexity measure:

Rδ(T) =R(T)+δ∣ ∣,

 denotes the set of terminal nodes, ∣ ∣ represents the number of terminal nodes, and δ ≥ 0 is a cost-com-
plexity parameter. For a categorical target variable

 ,

p(t) = Pr[x ∈ t],

and p(j∣t) = Pr[y = j ∣ x ∈ t],

x─ j|A x̄ j∣B

T
~

T
~

T
~

R(T) =∑
t∈T~
R(t) =∑

t∈T~
r(t)p(t)

r(t) = min
i ∑

j

C(i∣ j)p(j∣t)
1420

 Data Mining decision_tree
and C(i∣j) is the cost for misclassifying the actual class j as i. Note that C(j∣j) = 0 and C(i∣j) > 0, for i ≠ j.

When the target is continuous (and the problem is a regression problem), the metric is instead the mean squared
error

This software implements the optimal pruning algorithm10.1, page 294 in Breiman, et. al (1984). The result of the
algorithm is a sequence of sub-trees Tmax ≻ T1 ≻ T2 ≻ ⋯ TM-1 ≻ {t0} obtained by pruning the fully generated tree,

Tmax , until the sub-tree consists of the single root node, {t0}. Corresponding to the sequence of sub-trees is the

sequence of complexity values, 0 ≤ δmin = δ1 < δ2 < ⋯ <δM-1 < δM where M is the number of steps it takes in

the algorithm to reach the root node. The sub-trees represent the optimally pruned sub-trees for the sequence
of complexity values. The minimum complexity δmin can be set via an optional argument.

V-Fold Cross-Validation

In V-fold cross validation, the training data is partitioned randomly into V approximately equally sized sub-sam-
ples. The model is then trained V different times with each of the sub-samples removed in turn. The cross-
validated estimate of the risk of a decision function R(dk) is

where L(y, d(x)) is the loss incurred when the decision is d(x) for the actual, y. The symbol η denotes the full train-

ing data set, and denotes the set of decisions corresponding to Tk
v, the kth optimally pruned tree using the

training sample η-ηv and , where δk, δk+1 come from the pruning on the full data set, η.

For example, if the problem is classification, priors are estimated from the data Nj/N and T represents any tree,

where

R(T) =∑
t∈T̃

R(t) = 1N∑
t∈T̃
∑
yn∈t
(yn − ŷ(t))

2

RCV dk = 1N∑
v=1

V

∑
xn,yn ∈ηv

L yn, dk
v xn

dk
v

δk
′ = δkδk+1

RCV(T) = ∑
j
RCV(j)π̂ j = ∑

j
(∑
i
C(i| j)QCV(i| j))

N j
N = ∑

j
(∑
i
C(i| j)N

i j

N j
)
N j
N

= 1
N∑
j
(∑
i
C(i| j)Ni j)
1421

 Data Mining decision_tree

and

is the overall number of j cases misclassified as i. The standard error of RCV(dk) is approximated with

 ,

where

 ,

the “sample variance” of the cross-validated estimates.

Final selection rules include:

1. Select such that

2. Select such that k2 is the largest k satisfying .

3. For a specified complexity parameter , select such that

.

Bagging

Bagging is a resampling approach for generating predictions. In particular, bagging stands for bootstrap aggregat-
ing. In the procedure, m bootstrap samples of size n are drawn from the training set of size n. Bootstrap sampling
is sampling with replacement so that almost every sample has repeated observations, and some observations will

Q*(i∣ j) = P(d(X) = i∣Y = j)

R*(j) =∑
i

C(i∣ j)Q*(i∣ j)

R*(d) =∑
j

R* j π j

Ni j =∑
v=1

V

Nv
i j

SE RCV dk = s2 /N

s2 = 1N∑
η

[L(Yn,dk
(vn)(xn)) − R

CV(dk)]
2

Tk1 RCV(Tk1) = mink RCV(Tk)

Tk2 RCV(Tk2) ≤ R
CV(Tk1) + SE(R

CV(Tk1))

δ f in Tk3 RCV(Tk3) ≤ mink R
CV(Tk) + δ fin∣T̃ k∣
1422

 Data Mining decision_tree
be left out. A decision tree is grown treating each sample as a separate training set. The tree is then used to gen-
erate predictions for the test data. For each test case, the m predictions are combined by averaging the output
(regression) or voting (classification) to obtain a final prediction.

The bagged predictions are generated for the test data if test data is provided. Otherwise, the bagged predictions
are generated for the input data (training data). The out-of-bag predictions are available outputs as well, but
these are always for the input data. An out-of-bag prediction of a particular observation is combined using only
those bootstrap samples that do not include that observation.

Bagging leads to "improvements for unstable procedures," such as neural nets, classification and regression
trees, and subset selection in linear regression. On the other hand, it can mildly degrade the performance of
stable methods such as K-nearest neighbors (Breiman, 1996).

Random Trees

A random forest is an ensemble of decision trees. Like bootstrap aggregation, a tree is fit to each of m bootstrap
samples from the training data. Each tree is then used to generate predictions. For a regression problem (contin-
uous response variable), the m predictions are combined into a single predicted value by averaging. For
classification (categorical response variable), majority vote is used.

A random forest also randomizes the predictors. That is, in every tree, the splitting variable at every node is
selected from a random subset of the predictors. Randomization of the predictors reduces correlation among

individual trees. The random forest was invented by Leo Breiman in 2001 (Breiman, 2001). Random ForestsTM is
the trademark term for this approach. Also see Hastie, Tibshirani, and Friedman, 2009, for further discussion.

To generate predictions or fitted values using a random forest, use the optional argument,
IMSLS_RANDOM_FEATURES. The number of trees is equivalent to the number of bootstrap samples and can
be set using IMSLS_N_SAMPLE. The number of random features can also be set using an optional argument.

Missing Values

Any observation or case with a missing response variable is eliminated from the analysis. If a predictor has a miss-
ing value, each algorithm will skip that case when evaluating the given predictor. When making a prediction for a
new case, if the split variable is missing, the prediction function applies surrogate split-variables and splitting rules
in turn, if they are estimated with the decision tree. Otherwise, the prediction function returns the prediction from
the most recent non-terminal node. In this implementation, only ALACART estimates surrogate split variables
when requested.
1423

 Data Mining decision_tree
Structure Definitions

Table 44 – Structure Imsls_f_decision_tree

Name Type Description

n_classes int Number of classes assumed by the response
variable, if the response variable is categorical

n_levels int Number of levels or depth of tree

n_nodes int Number of nodes or size of tree

nodes Imsls_f tree_node* Pointer to an array of tree_node structures of
size n_nodes

n_preds int Number of predictors used in the model

n_surrogates int Number of surrogate splits searched for at
each node. Available for method=1

pred_type int* Pointer to an array of length n_preds contain-
ing the type of each predictor variable

pred_n_values int* Pointer to an array of length n_preds contain-
ing the number of values of each predictor
variable

response_type int Type of the response variable

terminal_nodes int* Pointer to an array of length n_nodes indicat-
ing which nodes are terminal nodes

Table 45 – Structure tree_node
Name Type Description

children_ids int* Pointer to an array of length n_children con-
taining the IDs of the children nodes

cost float Misclassification cost (in-sample cost measure
at the current node)

n_cases int Number of cases of the training data that fall
into the current node

n_children int Number of children of the current node

node_id int Node ID, where the root node corresponds to
node_id= 0

node_prob float* Estimate of the probability of a new case
belonging to the node

node_split_value float Value around which the node will be split, if the
node variable is of continuous type
1424

 Data Mining decision_tree
Examples

Example 1

In this example, we use a small data set with response variable, Play, which indicates whether a golfer plays (1) or
does not play (0) golf under weather conditions measured by Temperature, Humidity, Outlook (Sunny (0), Over-
cast (1), Rainy (2)), and Wind (True (0), False (1)). A decision tree is generated by C4.5 and the ALACART methods.
The control parameters are adjusted because of the small data size and no cross-validation or pruning is per-
formed. The maximal trees are printed out using Imsls_f_decision_tree_print. Notice that C4.5 splits on Outlook,
then Humidity and Wind, while ALACART splits on Outlook, then Temperature.

#include <imsls.h>
#include <stdio.h>
int main(){
 float xy[] =
 {
 0, 85, 85, 0, 0,
 0, 80, 90, 1, 0,
 1, 83, 78, 0, 1,
 2, 70, 96, 0, 1,
 2, 68, 80, 0, 1,
 2, 65, 70, 1, 0,
 1, 64, 65, 1, 1,
 0, 72, 95, 0, 0,
 0, 69, 70, 0, 1,
 2, 75, 80, 0, 1,
 0, 75, 70, 1, 1,
 1, 72, 90, 1, 1,
 1, 81, 75, 0, 1,
 2, 71, 80, 1, 0

node_values_ind int* Values of the split variable for the current node,
if node_var_id has type 0 or 1

node_var_id int ID of the variable that defined the split in the
parent node

parent_id int ID of the parent of the node with ID node_id
predicted_class int Predicted class at the current node, for

response variables of categorical type

predicted_val float Predicted value of the response variable if the
response variable is of continuous type

surrogate_info float* Array containing the surrogate split information

y_probs float* Pointer to the array of class probabilities at the
current node, if the response variable is of cate-
gorical type

Table 45 – Structure tree_node
1425

 Data Mining decision_tree
 };
 int n = 14;
 int ncols = 5;
 int response_col_idx = 4;
 int method = 1;
 int var_type[] = {0, 2, 2, 0, 0};
 int control[] = {2, 3, 10, 50, 10};
 const char* names[] = {"Outlook", "Temperature", "Humidity", "Wind",
 "Play"};
 const char* class_names[] = {"Don't Play", "Play"};
 const char* var_levels[] = {"Sunny", "Overcast", "Rainy", "False", "True"};
 Imsls_f_decision_tree *tree = NULL;
 tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
 IMSLS_N_FOLDS, 1,
 IMSLS_CONTROL, control,
 0);
 printf("Decision Tree using Method C4.5:\n\n");
 imsls_f_decision_tree_print(tree,
 IMSLS_VAR_NAMES, names,
 IMSLS_CLASS_NAMES, class_names,
 IMSLS_CATEG_NAMES, var_levels,
 0);
 imsls_f_decision_tree_free(tree);
 tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
 IMSLS_N_FOLDS, 1,
 IMSLS_METHOD, method,
 IMSLS_CONTROL, control,
 0);
 printf("Decision Tree using Method ALACART:\n\n");
 imsls_f_decision_tree_print(tree,
 IMSLS_VAR_NAMES, names,
 IMSLS_CLASS_NAMES, class_names,
 IMSLS_CATEG_NAMES, var_levels,
 0);
 imsls_f_decision_tree_free(tree);
}

Output
Decision Tree using Method C4.5:

Decision Tree:
Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes: 1 4 5
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y: Play
 Node 1: Cost = 0.143, N= 5, Level = 1, Child nodes: 2 3
 Rule: Outlook in: { Sunny }
1426

 Data Mining decision_tree
 P(Y=0)= 0.600
 P(Y=1)= 0.400
 Predicted Y: Don't Play
 Node 2: Cost = 0.000, N= 2, Level = 2
 Rule: Humidity <= 77.500
 P(Y=0)= 0.000
 P(Y=1)= 1.000
 Predicted Y: Play
 Node 3: Cost = 0.000, N= 3, Level = 2
 Rule: Humidity > 77.500
 P(Y=0)= 1.000
 P(Y=1)= 0.000
 Predicted Y: Don't Play
 Node 4: Cost = 0.000, N= 4, Level = 1
 Rule: Outlook in: { Overcast }
 P(Y=0)= 0.000
 P(Y=1)= 1.000
 Predicted Y: Play
 Node 5: Cost = 0.143, N= 5, Level = 1, Child nodes: 6 7
 Rule: Outlook in: { Rainy }
 P(Y=0)= 0.400
 P(Y=1)= 0.600
 Predicted Y: Play
 Node 6: Cost = 0.000, N= 3, Level = 2
 Rule: Wind in: { False }
 P(Y=0)= 0.000
 P(Y=1)= 1.000
 Predicted Y: Play
 Node 7: Cost = 0.000, N= 2, Level = 2
 Rule: Wind in: { True }
 P(Y=0)= 1.000
 P(Y=1)= 0.000
 Predicted Y: Don't Play
Decision Tree using Method ALACART:

Decision Tree:
Node 0: Cost = 0.357, N= 14, Level = 0, Child nodes: 1 8
P(Y=0)= 0.357
P(Y=1)= 0.643
Predicted Y: Play
 Node 1: Cost = 0.357, N= 10, Level = 1, Child nodes: 2 7
 Rule: Outlook in: { Sunny Rainy }
 P(Y=0)= 0.500
 P(Y=1)= 0.500
 Predicted Y: Don't Play
 Node 2: Cost = 0.214, N= 8, Level = 2, Child nodes: 3 6
 Rule: Temperature <= 77.500
 P(Y=0)= 0.375
 P(Y=1)= 0.625
 Predicted Y: Play
 Node 3: Cost = 0.214, N= 6, Level = 3, Child nodes: 4 5
 Rule: Temperature <= 73.500
 P(Y=0)= 0.500
 P(Y=1)= 0.500
 Predicted Y: Don't Play
 Node 4: Cost = 0.071, N= 4, Level = 4
1427

 Data Mining decision_tree
 Rule: Temperature <= 70.500
 P(Y=0)= 0.250
 P(Y=1)= 0.750
 Predicted Y: Play
 Node 5: Cost = 0.000, N= 2, Level = 4
 Rule: Temperature > 70.500
 P(Y=0)= 1.000
 P(Y=1)= 0.000
 Predicted Y: Don't Play
 Node 6: Cost = 0.000, N= 2, Level = 3
 Rule: Temperature > 73.500
 P(Y=0)= 0.000
 P(Y=1)= 1.000
 Predicted Y: Play
 Node 7: Cost = 0.000, N= 2, Level = 2
 Rule: Temperature > 77.500
 P(Y=0)= 1.000
 P(Y=1)= 0.000
 Predicted Y: Don't Play
 Node 8: Cost = 0.000, N= 4, Level = 1
 Rule: Outlook in: { Overcast }
 P(Y=0)= 0.000
 P(Y=1)= 1.000
 Predicted Y: Play

Example 2

This example applies the QUEST method to a simulated data set with 50 cases and three predictors of mixed-
type. A maximally grown tree under the default controls and the optimally pruned sub-tree obtained from cross-
validation and minimal cost complexity pruning are produced. Notice that the optimally pruned tree consists of
just the root node, whereas the maximal tree has five nodes and three levels.

#include <imsls.h>
#include <stdio.h>
int main(){
 float xy[50*4] =
 {
 2, 25.928690, 0, 0,
 1, 51.632450, 1, 1,
 1, 25.784321, 0, 2,
 0, 39.379478, 0, 3,
 2, 24.650579, 0, 2,
 2, 45.200840, 0, 2,
 2, 52.679600, 1, 3,
 1, 44.283421, 1, 3,
 2, 40.635231, 1, 3,
 2, 51.760941, 0, 3,
 2, 26.303680, 0, 1,
 2, 20.702299, 1, 0,
 2, 38.742729, 1, 3,
 2, 19.473330, 0, 0,
 1, 26.422110, 0, 0,
 2, 37.059860, 1, 0,
 1, 51.670429, 1, 3,
 0, 42.401562, 0, 3,
 2, 33.900269, 1, 2,
1428

 Data Mining decision_tree
 1, 35.432819, 0, 0,
 1, 44.303692, 0, 1,
 0, 46.723869, 0, 2,
 1, 46.992619, 0, 2,
 0, 36.059231, 0, 3,
 2, 36.831970, 1, 1,
 1, 61.662571, 1, 2,
 0, 25.677139, 0, 3,
 1, 39.085670, 1, 0,
 0, 48.843410, 1, 1,
 1, 39.343910, 0, 3,
 2, 24.735220, 0, 2,
 1, 50.552509, 1, 3,
 0, 31.342630, 1, 3,
 1, 27.157949, 1, 0,
 0, 31.726851, 0, 2,
 0, 25.004080, 0, 3,
 1, 26.354570, 1, 3,
 2, 38.123428, 0, 1,
 0, 49.940300, 0, 2,
 1, 42.457790, 1, 3,
 0, 38.809479, 1, 1,
 0, 43.227989, 1, 1,
 0, 41.876240, 0, 3,
 2, 48.078201, 0, 2,
 0, 43.236729, 1, 0,
 2, 39.412941, 0, 3,
 1, 23.933460, 0, 2,
 2, 42.841301, 1, 3,
 2, 30.406691, 0, 1,
 0, 37.773891, 0, 2
 };
 int n = 50;
 int ncols = 4;
 int method = 3;
 int var_type[] = {0, 2, 0, 0};
 int response_col_idx = 3;
 Imsls_f_decision_tree *tree = NULL;
 tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
 IMSLS_METHOD, method,
 IMSLS_RANDOM_SEED, 123457,
 IMSLS_PRINT, 1,
 0);
 printf("\nMaximal tree: \n\n");
 imsls_f_decision_tree_print(tree,
 IMSLS_PRINT_MAX,
 0);
 printf("\nOptimally pruned subtree: \n\n");
 imsls_f_decision_tree_print(tree, 0);
 imsls_f_decision_tree_free(tree);
}

1429

 Data Mining decision_tree
Output
Growing the maximal tree using method QUEST:
Cross-Validation:
Tree complexity CV-err CV-Std.Error
 0 0.00000 0.70406 0.08044
 1 0.02000 0.72641 0.08562
 2 0.04000 0.72814 0.08598
Select tree number 2, cost complexity parameter = 0.04000:
Maximal tree:

Decision Tree:
Node 0: Cost = 0.620, N= 50, Level = 0, Child nodes: 1 2
P(Y=0)= 0.180
P(Y=1)= 0.180
P(Y=2)= 0.260
P(Y=3)= 0.380
Predicted Y: 3
 Node 1: Cost = 0.220, N= 17, Level = 1
 Rule: X1 <= 35.031
 P(Y=0)= 0.294
 P(Y=1)= 0.118
 P(Y=2)= 0.353
 P(Y=3)= 0.235
 Predicted Y: 2
 Node 2: Cost = 0.360, N= 33, Level = 1, Child nodes: 3 4
 Rule: X1 > 35.031
 P(Y=0)= 0.121
 P(Y=1)= 0.212
 P(Y=2)= 0.212
 P(Y=3)= 0.455
 Predicted Y: 3
 Node 3: Cost = 0.180, N= 19, Level = 2
 Rule: X1 <= 43.265
 P(Y=0)= 0.211
 P(Y=1)= 0.211
 P(Y=2)= 0.053
 P(Y=3)= 0.526
 Predicted Y: 3
 Node 4: Cost = 0.160, N= 14, Level = 2
 Rule: X1 > 43.265
 P(Y=0)= 0.000
 P(Y=1)= 0.214
 P(Y=2)= 0.429
 P(Y=3)= 0.357
 Predicted Y: 2
Optimally pruned subtree:

Decision Tree:
Node 0: Cost = 0.620, N= 50, Level = 0
P(Y=0)= 0.180
P(Y=1)= 0.180
1430

 Data Mining decision_tree
P(Y=2)= 0.260
P(Y=3)= 0.380
Predicted Y: 3
Pruned at Node id 0.

Example 3

This example uses the dataset Kyphosis. The 81 cases represent 81 children who have undergone surgery to cor-
rect a type of spinal deformity known as Kyphosis. The response variable is the presence or absence of Kyphosis
after the surgery. Three predictors are Age of the patient in months, Start, the number of the vertebra where the
surgery started, and Number, the number of vertebra involved in the surgery. This example uses the method
QUEST to produce a maximal tree. It also requests predictions for a test-data set consisting of 10 “new” cases.

#include <imsls.h>
#include <stdio.h>
int main()
{
 float xy[81*4] =
 {
 0, 71, 3, 5,
 0, 158, 3, 14,
 1, 128, 4, 5,
 0, 2, 5, 1,
 0, 1, 4, 15,
 0, 1, 2, 16,
 0, 61, 2, 17,
 0, 37, 3, 16,
 0, 113, 2, 16,
 1, 59, 6, 12,
 1, 82, 5, 14,
 0, 148, 3, 16,
 0, 18, 5, 2,
 0, 1, 4, 12,
 0, 168, 3, 18,
 0, 1, 3, 16,
 0, 78, 6, 15,
 0, 175, 5, 13,
 0, 80, 5, 16,
 0, 27, 4, 9,
 0, 22, 2, 16,
 1, 105, 6, 5,
 1, 96, 3, 12,
 0, 131, 2, 3,
 1, 15, 7, 2,
 0, 9, 5, 13,
 0, 8, 3, 6,
 0, 100, 3, 14,
 0, 4, 3, 16,
 0, 151, 2, 16,
 0, 31, 3, 16,
 0, 125, 2, 11,
 0, 130, 5, 13,
 0, 112, 3, 16,
 0, 140, 5, 11,
 0, 93, 3, 16,
1431

 Data Mining decision_tree
 0, 1, 3, 9,
 1, 52, 5, 6,
 0, 20, 6, 9,
 1, 91, 5, 12,
 1, 73, 5, 1,
 0, 35, 3, 13,
 0, 143, 9, 3,
 0, 61, 4, 1,
 0, 97, 3, 16,
 1, 139, 3, 10,
 0, 136, 4, 15,
 0, 131, 5, 13,
 1, 121, 3, 3,
 0, 177, 2, 14,
 0, 68, 5, 10,
 0, 9, 2, 17,
 1, 139, 10, 6,
 0, 2, 2, 17,
 0, 140, 4, 15,
 0, 72, 5, 15,
 0, 2, 3, 13,
 1, 120, 5, 8,
 0, 51, 7, 9,
 0, 102, 3, 13,
 1, 130, 4, 1,
 1, 114, 7, 8,
 0, 81, 4, 1,
 0, 118, 3, 16,
 0, 118, 4, 16,
 0, 17, 4, 10,
 0, 195, 2, 17,
 0, 159, 4, 13,
 0, 18, 4, 11,
 0, 15, 5, 16,
 0, 158, 5, 14,
 0, 127, 4, 12,
 0, 87, 4, 16,
 0, 206, 4, 10,
 0, 11, 3, 15,
 0, 178, 4, 15,
 1, 157, 3, 13,
 0, 26, 7, 13,
 0, 120, 2, 13,
 1, 42, 7, 6,
 0, 36, 4, 13
 };
 float xy_test[10*4] =
 {
 0, 71, 3, 5,
 1, 128, 4, 5,
 0, 1, 4, 15,
 0, 61, 6, 10,
 0, 113, 2, 16,
 1, 82, 5, 14,
 0, 148, 3, 16,
 0, 1, 4, 12,
 0, 1, 3, 16,
 0, 175, 5, 13
 };
1432

 Data Mining decision_tree
 int n = 81;
 int ncols = 4;
 int response_col_idx = 0;
 int method = 3;
 int control[] = {5, 10, 10, 50, 10};
 int var_type[] = {0, 2, 2, 2};
 int n_test = 10;
 int i, idx;
 float *predictions;
 float pred_err_ss;
 const char* names[] = {"Age", "Number", "Start"};
 const char* class_names[] = {"Absent", "Present"};
 const char* response_name[] = {"Kyphosis"};
 Imsls_f_decision_tree *tree = NULL;
 tree=imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
 IMSLS_METHOD, method,
 IMSLS_N_FOLDS, 1,
 IMSLS_CONTROL, control,
 IMSLS_TEST_DATA, n_test, xy_test,
 IMSLS_PRINT, 2,
 IMSLS_PREDICTED, &predictions,
 IMSLS_ERROR_SS, &pred_err_ss,
 0);
 imsls_f_decision_tree_print(tree,
 IMSLS_RESP_NAME, response_name,
 IMSLS_VAR_NAMES, names,
 IMSLS_CLASS_NAMES, class_names,
 0);
 printf("\nPredictions for test data:\n");
 printf("%5s%8s%7s%10s\n", names[0], names[1], names[2],
 response_name[0]);
 for(i=0;i<n_test;i++){
 printf("%5.0f%8.0f%7.0f",
 xy_test[i*ncols+1],
 xy_test[i*ncols+2],
 xy_test[i*ncols+3]);
 idx = (int)predictions[i];
 printf("%10s\n", class_names[idx]);
 }
 printf("\nMean squared prediction error: %f\n", pred_err_ss);
 imsls_f_decision_tree_free(tree);
 imsls_free(predictions);
}

Output
The response variable has 0 missing values.
Growing the maximal tree using method QUEST:
Node 2 is a terminal node. It has 7 cases--too few cases to split.
Node 3 is a terminal node. It has 6 cases--too few cases to split.
Node 5 is a terminal node. It has 6 cases--too few cases to split.
Node 8 is an terminal node. The split is too thin having count 2.
Node 10 is a terminal node. It has 6 cases--too few cases to split.
1433

 Data Mining decision_tree
Node 11 is a terminal node, because it is pure.
Node 11 is a terminal node. It has 7 cases--too few cases to split.
Node 13 is a terminal node. It has 5 cases--too few cases to split.
Node 14 is a terminal node, because it is pure.
Decision Tree:
Node 0: Cost = 0.210, N= 81, Level = 0, Child nodes: 1 4
P(Y=0)= 0.790
P(Y=1)= 0.210
Predicted Kyphosis Absent
Node 1: Cost = 0.074, N= 13, Level = 1, Child nodes: 2 3
Rule: Start <= 5.155
P(Y=0)= 0.538
P(Y=1)= 0.462
Predicted Kyphosis Absent
Node 2: Cost = 0.025, N= 7, Level = 2
Rule: Age <= 84.030
P(Y=0)= 0.714
P(Y=1)= 0.286
Predicted Kyphosis Absent
Node 3: Cost = 0.025, N= 6, Level = 2
Rule: Age > 84.030
P(Y=0)= 0.333
P(Y=1)= 0.667
Predicted Kyphosis Present
Node 4: Cost = 0.136, N= 68, Level = 1, Child nodes: 5 6
Rule: Start > 5.155
P(Y=0)= 0.838
P(Y=1)= 0.162
Predicted Kyphosis Absent
Node 5: Cost = 0.012, N= 6, Level = 2
Rule: Start <= 8.862
P(Y=0)= 0.167
P(Y=1)= 0.833
Predicted Kyphosis Present
Node 6: Cost = 0.074, N= 62, Level = 2, Child nodes: 7 12
Rule: Start > 8.862
P(Y=0)= 0.903
P(Y=1)= 0.097
Predicted Kyphosis Absent
Node 7: Cost = 0.062, N= 28, Level = 3, Child nodes: 8 9
Rule: Start <= 13.092
P(Y=0)= 0.821
P(Y=1)= 0.179
Predicted Kyphosis Absent
Node 8: Cost = 0.025, N= 15, Level = 4
Rule: Age <= 91.722
P(Y=0)= 0.867
P(Y=1)= 0.133
Predicted Kyphosis Absent
Node 9: Cost = 0.037, N= 13, Level = 4, Child nodes: 10 11
Rule: Age > 91.722
P(Y=0)= 0.769
P(Y=1)= 0.231
Predicted Kyphosis Absent
Node 10: Cost = 0.037, N= 6, Level = 5
Rule: Number <= 3.450
P(Y=0)= 0.500
P(Y=1)= 0.500
1434

 Data Mining decision_tree
Predicted Kyphosis Absent
Node 11: Cost = 0.000, N= 7, Level = 5
Rule: Number > 3.450
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Kyphosis Absent
Node 12: Cost = 0.012, N= 34, Level = 3, Child nodes: 13 14
Rule: Start > 13.092
P(Y=0)= 0.971
P(Y=1)= 0.029
Predicted Kyphosis Absent
Node 13: Cost = 0.012, N= 5, Level = 4
Rule: Start <= 14.864
P(Y=0)= 0.800
P(Y=1)= 0.200
Predicted Kyphosis Absent
Node 14: Cost = 0.000, N= 29, Level = 4
Rule: Start > 14.864
P(Y=0)= 1.000
P(Y=1)= 0.000
Predicted Kyphosis Absent
Predictions for test data:
 Age Number Start Kyphosis
 71 3 5 Absent
 128 4 5 Present
 1 4 15 Absent
 61 6 10 Absent
 113 2 16 Absent
 82 5 14 Absent
 148 3 16 Absent
 1 4 12 Absent
 1 3 16 Absent
 175 5 13 Absent
Mean squared prediction error: 0.010000

Example 4

For the Kyphosis dataset of Example 3, this example produces random forest predictions using the optional
arguments for random feature selection.

#include <imsls.h>
#include <stdio.h>
#define NOBS 81
#define NCLASSES 2
#define NPREDS 3
#define NTEST 10
int main(){
 float xy[81 * 4] = {
 0, 71, 3, 5,
 0, 158, 3, 14,
 1, 128, 4, 5,
 0, 2, 5, 1,
 0, 1, 4, 15,
 0, 1, 2, 16,
1435

 Data Mining decision_tree
 0, 61, 2, 17,
 0, 37, 3, 16,
 0, 113, 2, 16,
 1, 59, 6, 12,
 1, 82, 5, 14,
 0, 148, 3, 16,
 0, 18, 5, 2,
 0, 1, 4, 12,
 0, 168, 3, 18,
 0, 1, 3, 16,
 0, 78, 6, 15,
 0, 175, 5, 13,
 0, 80, 5, 16,
 0, 27, 4, 9,
 0, 22, 2, 16,
 1, 105, 6, 5,
 1, 96, 3, 12,
 0, 131, 2, 3,
 1, 15, 7, 2,
 0, 9, 5, 13,
 0, 8, 3, 6,
 0, 100, 3, 14,
 0, 4, 3, 16,
 0, 151, 2, 16,
 0, 31, 3, 16,
 0, 125, 2, 11,
 0, 130, 5, 13,
 0, 112, 3, 16,
 0, 140, 5, 11,
 0, 93, 3, 16,
 0, 1, 3, 9,
 1, 52, 5, 6,
 0, 20, 6, 9,
 1, 91, 5, 12,
 1, 73, 5, 1,
 0, 35, 3, 13,
 0, 143, 9, 3,
 0, 61, 4, 1,
 0, 97, 3, 16,
 1, 139, 3, 10,
 0, 136, 4, 15,
 0, 131, 5, 13,
 1, 121, 3, 3,
 0, 177, 2, 14,
 0, 68, 5, 10,
 0, 9, 2, 17,
 1, 139, 10, 6,
 0, 2, 2, 17,
 0, 140, 4, 15,
 0, 72, 5, 15,
 0, 2, 3, 13,
 1, 120, 5, 8,
 0, 51, 7, 9,
 0, 102, 3, 13,
 1, 130, 4, 1,
 1, 114, 7, 8,
 0, 81, 4, 1,
 0, 118, 3, 16,
 0, 118, 4, 16,
 0, 17, 4, 10,
1436

 Data Mining decision_tree
 0, 195, 2, 17,
 0, 159, 4, 13,
 0, 18, 4, 11,
 0, 15, 5, 16,
 0, 158, 5, 14,
 0, 127, 4, 12,
 0, 87, 4, 16,
 0, 206, 4, 10,
 0, 11, 3, 15,
 0, 178, 4, 15,
 1, 157, 3, 13,
 0, 26, 7, 13,
 0, 120, 2, 13,
 1, 42, 7, 6,
 0, 36, 4, 13 };
 float xytest[10 * 4] = { 0, 71, 3, 5,
 1, 128, 4, 5,
 0, 1, 4, 15,
 0, 61, 6, 10,
 0, 113, 2, 16,
 1, 82, 5, 14,
 0, 148, 3, 16,
 0, 1, 4, 12,
 0, 1, 3, 16,
 0, 175, 5, 13 };
 int N = NOBS;
 int nclasses = NCLASSES;
 int npreds = NPREDS;
 int ncols = NPREDS + 1;
 int response_idx = 0;
 int var_type[] = { 0, 2, 2, 2 };
 int ntest = NTEST;
 int i;
 long seed = 123457;
 float *predictions = NULL;
 Imsls_f_decision_tree *tree = NULL;
 tree = imsls_f_decision_tree(N, ncols,
 xy,
 response_idx,
 var_type,
 IMSLS_METHOD, 1,
 IMSLS_N_FOLDS, 1,
 IMSLS_PREDICTED, &predictions,
 IMSLS_TEST_DATA, ntest, xytest,
 0);
 printf("Single tree predictions vs. actuals:\n\n");
 for (i = 0; i < ntest; i++){
 printf("%d\t%f \t %f\n", i + 1, predictions[i],
 xytest[i*ncols + response_idx]);
 }
 imsls_f_decision_tree_free(tree);
 imsls_free(predictions);
 tree = imsls_f_decision_tree(N, ncols,
 xy,
1437

 Data Mining decision_tree
 response_idx,
 var_type,
 IMSLS_METHOD, 1,
 IMSLS_N_FOLDS, 1,
 IMSLS_PREDICTED, &predictions,
 IMSLS_TEST_DATA, ntest, xytest,
 IMSLS_RANDOM_FEATURES,
 IMSLS_N_RANDOM_FEATURES, 2,
 IMSLS_RANDOM_SEED, seed,
 IMSLS_N_SAMPLE, 100,
 0);
 printf("\n\nRandom forest predictions vs. actuals:\n\n");
 for (i = 0; i < ntest; i++){
 printf("%d\t%f\t %f\n", i + 1, predictions[i],
 xytest[i*ncols + response_idx]);
 }
 imsls_f_decision_tree_free(tree);
 imsls_free(predictions);
}

Output
Single tree predictions vs. actuals:
1 0.000000 0.000000
2 0.000000 1.000000
3 0.000000 0.000000
4 1.000000 0.000000
5 0.000000 0.000000
6 0.000000 1.000000
7 0.000000 0.000000
8 0.000000 0.000000
9 0.000000 0.000000
10 0.000000 0.000000

Random forest predictions vs. actuals:
1 0.000000 0.000000
2 1.000000 1.000000
3 0.000000 0.000000
4 0.000000 0.000000
5 0.000000 0.000000
6 0.000000 1.000000
7 0.000000 0.000000
8 0.000000 0.000000
9 0.000000 0.000000
10 0.000000 0.000000

Example 5

In example 5, the random forest is used to produce predictions for Fisher's Iris data.

#include <imsls.h>
#include <stdio.h>
1438

 Data Mining decision_tree
#define NOBS 150
#define NCLASSES 3
#define NPREDS 4
int main(){
 int i = 0;
 int n = NOBS;
 int ncols = NPREDS + 1;
 int nclasses = NCLASSES;
 int response_idx = 0;
 int var_type[] = { 0, 2, 2, 2, 2 };
 float iris_xy[150 * 5];
 float *iris_data = NULL;
 char *classLabel[] = { "Setosa", "Versicolour", "Virginica",
 "Total" };
 char *colLabel[] = { "Species", "Number of Errors",
 "Total N" };
 float out_of_bag_mean_error = 0.0;
 float *out_of_bag_class_errors = NULL;
 Imsls_f_decision_tree *tree = NULL;

 iris_data = imsls_f_data_sets(3, 0);
 for (i = 0; i < n*ncols; i++){
 iris_xy[i] = iris_data[i];
 }
 for (i = 0; i < n; i++){
 iris_xy[i*ncols + response_idx] -= 1;
 }
 tree = imsls_f_decision_tree(n, ncols,
 iris_xy,
 response_idx,
 var_type,
 IMSLS_METHOD, 1,
 IMSLS_N_FOLDS, 1,
 IMSLS_OUT_OF_BAG_MEAN_ERROR, &out_of_bag_mean_error,
 IMSLS_OUT_OF_BAG_CLASS_ERROR, &out_of_bag_class_errors,
 IMSLS_RANDOM_FEATURES,
 IMSLS_RANDOM_SEED, 123457,
 0);
 imsls_f_write_matrix("Out of bag errors by class", nclasses + 1, 2,
 out_of_bag_class_errors,
 IMSLS_ROW_LABELS, classLabel,
 IMSLS_COL_LABELS, colLabel, 0);
 printf("\nOut-of-bag mean error = %3.2f\n", out_of_bag_mean_error);
 imsls_f_decision_tree_free(tree);
 imsls_free(out_of_bag_class_errors);
 imsls_free(iris_data);
}

Output
1439

 Data Mining decision_tree
 Out of bag errors by class
Species Number of Errors Total N

Setosa 0 50
Versicolour 3 50
Virginica 6 50
Total 9 150
Out-of-bag mean error = 0.06

Example 6

In this example, a random forest is used to predict the categorical response on simulated data. The data is
random with no real relationship among the predictors and the response variable, reflected by the high number
of errors. Furthermore, the variable importance measure is slightly negative for the predictors, another symptom
of noisy data.

#include <imsls.h>
#include <stdio.h>
#define NOBS 50
#define NCLASSES 3
#define NPREDS 3
int main(){
 int n = NOBS;
 int nclasses = NCLASSES;
 int ncols = NPREDS + 1;
 int var_type[] = { 0, 2, 0, 0 };
 int response_idx = 0;
 float xy[50 * 4] =
 {
 2, 25.92869, 0, 0,
 1, 51.63245, 1, 1,
 1, 25.78432, 0, 2,
 0, 39.37948, 0, 3,
 2, 24.65058, 0, 2,
 2, 45.20084, 0, 2,
 2, 52.67960, 1, 3,
 1, 44.28342, 1, 3,
 2, 40.63523, 1, 3,
 2, 51.76094, 0, 3,
 2, 26.30368, 0, 1,
 2, 20.70230, 1, 0,
 2, 38.74273, 1, 3,
 2, 19.47333, 0, 0,
 1, 26.42211, 0, 0,
 2, 37.05986, 1, 0,
 1, 51.67043, 1, 3,
 0, 42.40156, 0, 3,
 2, 33.90027, 1, 2,
 1, 35.43282, 0, 0,
 1, 44.30369, 0, 1,
 0, 46.72387, 0, 2,
 1, 46.99262, 0, 2,
 0, 36.05923, 0, 3,
 2, 36.83197, 1, 1,
1440

 Data Mining decision_tree
 1, 61.66257, 1, 2,
 0, 25.67714, 0, 3,
 1, 39.08567, 1, 0,
 0, 48.84341, 1, 1,
 1, 39.34391, 0, 3,
 2, 24.73522, 0, 2,
 1, 50.55251, 1, 3,
 0, 31.34263, 1, 3,
 1, 27.15795, 1, 0,
 0, 31.72685, 0, 2,
 0, 25.00408, 0, 3,
 1, 26.35457, 1, 3,
 2, 38.12343, 0, 1,
 0, 49.94030, 0, 2,
 1, 42.45779, 1, 3,
 0, 38.80948, 1, 1,
 0, 43.22799, 1, 1,
 0, 41.87624, 0, 3,
 2, 48.07820, 0, 2,
 0, 43.23673, 1, 0,
 2, 39.41294, 0, 3,
 1, 23.93346, 0, 2,
 2, 42.84130, 1, 3,
 2, 30.40669, 0, 1,
 0, 37.77389, 0, 2
 };
 float out_of_bag_mean_error = 0.0;
 float *out_of_bag_class_errors = NULL;
 float *variable_importance = NULL;
 Imsls_f_decision_tree *tree = NULL;
 tree = imsls_f_decision_tree(n, ncols,
 xy,
 response_idx,
 var_type,
 IMSLS_METHOD, 0,
 IMSLS_N_FOLDS, 1,
 IMSLS_OUT_OF_BAG_MEAN_ERROR, &out_of_bag_mean_error,
 IMSLS_OUT_OF_BAG_CLASS_ERROR, &out_of_bag_class_errors,
 IMSLS_OUT_OF_BAG_VAR_IMPORTANCE, &variable_importance,
 IMSLS_RANDOM_FEATURES,
 IMSLS_RANDOM_SEED, 123457,
 0);
 imsls_f_write_matrix("Errors by class", nclasses + 1, 2,
 out_of_bag_class_errors, 0);
 printf("\nout-of-bag mean error = %f\n", out_of_bag_mean_error);
 imsls_f_write_matrix("Variable importance", ncols - 1, 1,
 variable_importance, 0);
 imsls_f_decision_tree_free(tree);
 imsls_free(out_of_bag_class_errors);
 imsls_free(variable_importance);
}

Output
 Errors by class
 1 2
1441

 Data Mining decision_tree
1 11 15
2 14 16
3 15 19
4 40 50
out-of-bag mean error = 0.800000

Variable importance
 1 -0.01758
 2 0.00133
 3 -0.00881

Example 7

In this example, the bagged trees generated in a random forest are returned.

#include <imsls.h>
#include <stdio.h>
#define NOBS 150
#define NPREDS 4
int main(){
 int i = 0;
 int n = NOBS;
 int ncols = NPREDS + 1;
 int response_idx = 0;
 int control[] = { 7, 21, 10, 4, 3 };
 int var_type[] = { 0, 2, 2, 2, 2 };
 float iris_xy[150 * 5];
 float *iris_data = NULL;
 Imsls_f_decision_tree *tree = NULL;
 Imsls_f_decision_tree **bagged_trees = NULL;
 iris_data = imsls_f_data_sets(3, 0);
 for (i = 0; i < n*ncols; i++){
 iris_xy[i] = iris_data[i];
 }
 for (i = 0; i < n; i++){
 iris_xy[i*ncols + response_idx] -= 1;
 }
 tree = imsls_f_decision_tree(n, ncols,
 iris_xy,
 response_idx,
 var_type,
 IMSLS_METHOD, 1,
 IMSLS_N_FOLDS, 1,
 IMSLS_CONTROL, control,
 IMSLS_RETURN_TREES, &bagged_trees,
 IMSLS_RANDOM_FEATURES,
 IMSLS_RANDOM_SEED, 123457,
 0);
 /* Print the first and the last bagged tree:*/
 imsls_f_decision_tree_print(bagged_trees[0], 0);
 imsls_f_decision_tree_print(bagged_trees[49], 0);
1442

 Data Mining decision_tree
 imsls_f_decision_tree_free(tree);
 imsls_f_bagged_trees_free(50, bagged_trees);
 imsls_free(iris_data);
}

Output
Decision Tree:
Node 0: Cost = 0.633, N= 150, Level = 0, Child nodes: 1 2
P(Y=0)= 0.347
P(Y=1)= 0.287
P(Y=2)= 0.367
Predicted Y: 2
 Node 1: Cost = 0.113, N= 67, Level = 1
 Rule: X0 <= 5.550
 P(Y=0)= 0.746
 P(Y=1)= 0.224
 P(Y=2)= 0.030
 Predicted Y: 0
 Node 2: Cost = 0.200, N= 83, Level = 1
 Rule: X0 > 5.550
 P(Y=0)= 0.024
 P(Y=1)= 0.337
 P(Y=2)= 0.639
 Predicted Y: 2
Decision Tree:
Node 0: Cost = 0.660, N= 150, Level = 0, Child nodes: 1 2
P(Y=0)= 0.333
P(Y=1)= 0.340
P(Y=2)= 0.327
Predicted Y: 1
 Node 1: Cost = 0.000, N= 50, Level = 1
 Rule: X2 <= 2.600
 P(Y=0)= 1.000
 P(Y=1)= 0.000
 P(Y=2)= 0.000
 Predicted Y: 0
 Node 2: Cost = 0.327, N= 100, Level = 1
 Rule: X2 > 2.600
 P(Y=0)= 0.000
 P(Y=1)= 0.510
 P(Y=2)= 0.490
 Predicted Y: 1
1443

 Data Mining decision_tree
Warning Errors

Fatal Errors

IMSLS_NO_SURROGATES Use of surrogates is limited to method 1 (ALACART).

IMSLS_NO_CONVERGENCE Convergence was not achieved.

IMSLS_EMPTY_CLASS_LEVEL The count of class level # in the training data is zero.

IMSLS_INVALID_METHOD2 Choose a valid tree generation method; 0 (C4.5), 1
(ALACART), 2 (CHAID) or 3 (QUEST).

IMSLS_VALUE_GT_ZERO The value of # must be strictly positive.
1444

 Data Mining decision_tree_predict
decision_tree_predict
Computes predicted values using a decision tree.

Synopsis
#include <imsls.h>

float* imsls_f_decision_tree_predict (int n, int n_cols, float x[], int var_type[],
Imsls_f_decision_tree *tree, ..., 0)

The type double function is imsls_d_decision_tree_predict.

Required Arguments
int n (Input)

The the number of rows in x.

int n_cols (Input)
The number of columns in x.

float x[] (Input)
Array of size n × ncols containing the data.

int var_type[] (Input)
Array of length ncols indicating the type of each variable.

imsls_f_decision_tree *tree (Input)
An estimated decision tree.

Value Type

0 Categorical

1 Ordered Discrete (Low, Med., High)

2 Quantitative or Continuous

3 Ignore this variable
1445

 Data Mining decision_tree_predict
Return Value
An array of length n containing the predicted values. If an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float* imsls_f_decision_tree_predict (int n, int n_cols, float x[], int var_type[],
Imsls_f_decision_tree *tree,
IMSLS_N_SURROGATES, int n_surrogates,
IMSLS_X_RESPONSE_COL, int response_col_idx,
IMSLS_WEIGHTS, float weights[],
IMSLS_X_NODE_IDS, int **node_ids,
IMSLS_X_NODE_IDS_USER, int node_ids[],
IMSLS_ERROR_SS, float *pred_err_ss,
IMSLS_RETURN_USER, float predictions[],
0)

Optional Arguments
IMSLS_N_SURROGATES, int n_surrogates (Input)

Indicates the number of surrogate splits for use in methods that find surrogate splits in order to han-
dle missing values.
Default: n_surrogates = 0.

IMSLS_WEIGHTS, float weights[] (Input)
An array of length n containing case weights.
Default: weights[i]=1.0.

IMSLS_X_RESPONSE_COL, int response_col_idx (Input)
The column index of the response variable, if present in the data. A negative value indicates there is
no response column.
Default: response_col_idx = -1.

IMSLS_X_NODE_IDS, int **node_ids (Output)
Address of a pointer to the internally allocated array of length n containing for each row in x, the ter-
minal node of the tree to which the observation belongs.

IMSLS_X_NODE_IDS_USER, int node_ids[] (Output)
Storage for node_ids is provided by the user.
1446

 Data Mining decision_tree_predict
IMSLS_ERROR_SS, float* pred_err_ss (Output)
The prediction error mean sum of squares, available when values for the response are present in the
data.

IMSLS_RETURN_USER, float predictions[] (Input)
Storage for the return value is provided by the user.

Description
To predict a new set of cases using a fitted or estimated decision tree, imsls_f_decision_tree_predict
finds the terminal node of the tree to which each new case belongs. The predicted value is then the predicted
value of that node. This is a matter of “putting the data through the tree.” For example, suppose the following
weather conditions:

According to the C4.5 decision tree in Example 1 for imsls_f_decision_tree, will the golfer play golf or not,
under these conditions? The tree splits the root node on Outlook into three nodes: {Sunny, Rainy, and Overcast}.
Rainy defines node 5. Node 5 is split into child nodes 6 and 7, according to the presence of wind. If there is wind,
Node 7, the prediction is “Don’t Play.” If there is no wind, Node 6, the prediction is “Play.” Therefore, the new obser-
vation belongs to Node 6, and the tree predicts that the golfer will play under the given weather conditions. In the
ALACART decision tree, Node 4 is the terminal node, and the associated prediction is “Play.”

Comments
1. Users can request predictions and error sum of squares directly from imsls_f_decision_tree

or use this separate prediction function when it is not necessary to re-estimate a decision tree.

2. If requested, the prediction mean sum of squared error (mean squared prediction error) is com-
puted when actual response values are available in the data.

3. For cases with missing values in predictors that are involved in the splitting rules of the tree,
imsls_f_decision_tree_predict uses surrogate rules if available and when requested.
Otherwise, predicted values are missing, and the error sum of squares does include that case.

Temperature = 70

Humidity = 82

Outlook = Rainy

Wind = FALSE
1447

 Data Mining decision_tree_predict
Example
Using the kyphosis data of Example 2 for imsls_f_decision_tree, this example illustrates using a separate
call to imsls_f_decision_tree_predict to obtain the predicted values for a new set of observations
(xy_test).

#include <imsls.h>
#include <stdio.h>
int main()
{
 float xy[81*4] =
 {
 0, 71, 3, 5,
 0, 158, 3, 14,
 1, 128, 4, 5,
 0, 2, 5, 1,
 0, 1, 4, 15,
 0, 1, 2, 16,
 0, 61, 2, 17,
 0, 37, 3, 16,
 0, 113, 2, 16,
 1, 59, 6, 12,
 1, 82, 5, 14,
 0, 148, 3, 16,
 0, 18, 5, 2,
 0, 1, 4, 12,
 0, 168, 3, 18,
 0, 1, 3, 16,
 0, 78, 6, 15,
 0, 175, 5, 13,
 0, 80, 5, 16,
 0, 27, 4, 9,
 0, 22, 2, 16,
 1, 105, 6, 5,
 1, 96, 3, 12,
 0, 131, 2, 3,
 1, 15, 7, 2,
 0, 9, 5, 13,
 0, 8, 3, 6,
 0, 100, 3, 14,
 0, 4, 3, 16,
 0, 151, 2, 16,
 0, 31, 3, 16,
 0, 125, 2, 11,
 0, 130, 5, 13,
 0, 112, 3, 16,
 0, 140, 5, 11,
 0, 93, 3, 16,
 0, 1, 3, 9,
 1, 52, 5, 6,
 0, 20, 6, 9,
 1, 91, 5, 12,
 1, 73, 5, 1,
 0, 35, 3, 13,
 0, 143, 9, 3,
 0, 61, 4, 1,
1448

 Data Mining decision_tree_predict
 0, 97, 3, 16,
 1, 139, 3, 10,
 0, 136, 4, 15,
 0, 131, 5, 13,
 1, 121, 3, 3,
 0, 177, 2, 14,
 0, 68, 5, 10,
 0, 9, 2, 17,
 1, 139, 10, 6,
 0, 2, 2, 17,
 0, 140, 4, 15,
 0, 72, 5, 15,
 0, 2, 3, 13,
 1, 120, 5, 8,
 0, 51, 7, 9,
 0, 102, 3, 13,
 1, 130, 4, 1,
 1, 114, 7, 8,
 0, 81, 4, 1,
 0, 118, 3, 16,
 0, 118, 4, 16,
 0, 17, 4, 10,
 0, 195, 2, 17,
 0, 159, 4, 13,
 0, 18, 4, 11,
 0, 15, 5, 16,
 0, 158, 5, 14,
 0, 127, 4, 12,
 0, 87, 4, 16,
 0, 206, 4, 10,
 0, 11, 3, 15,
 0, 178, 4, 15,
 1, 157, 3, 13,
 0, 26, 7, 13,
 0, 120, 2, 13,
 1, 42, 7, 6,
 0, 36, 4, 13
 };
 float xy_test[10*4] =
 {
 0, 71, 3, 5,
 1, 128, 4, 5,
 0, 1, 4, 15,
 0, 61, 6, 10,
 0, 113, 2, 16,
 1, 82, 5, 14,
 0, 148, 3, 16,
 0, 1, 4, 12,
 0, 1, 3, 16,
 0, 175, 5, 13
 };
 int n = 81;
 int ncols = 4;
 int response_col_idx = 0;
 int method = 3;
 int control[] = {5, 10, 10, 50, 10};
 int var_type[] = {0, 2, 2, 2};
1449

 Data Mining decision_tree_predict
 int n_test = 10;
 int i, idx;
 float *predictions;
 float pred_err_ss;
 const char* names[] = {"Age", "Number", "Start"};
 const char* classNames[] = {"Absent", "Present"};
 const char* responseName[] = {"Kyphosis"};
 Imsls_f_decision_tree *tree = NULL;
 tree = imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
 IMSLS_METHOD, method,
 IMSLS_N_FOLDS, 1,
 IMSLS_CONTROL, control,
 IMSLS_TEST_DATA, n_test, xy_test,
 0);
 predictions = imsls_f_decision_tree_predict(n_test, ncols, xy_test,
 var_type, tree,
 IMSLS_X_RESPONSE_COL, response_col_idx,
 IMSLS_ERROR_SS, &pred_err_ss,
 0);
 printf("\nPredictions for test data:\n");
 printf("%5s%8s%7s%10s\n", names[0], names[1], names[2],
 responseName[0]);
 for(i=0; i<n_test; i++){
 printf("%5.0f%8.0f%7.0f",
 xy_test[i*ncols+1],
 xy_test[i*ncols+2],
 xy_test[i*ncols+3]);
 idx = (int)predictions[i];
 printf("%10s\n", classNames[idx]);
 }
 printf("\nMean squared prediction error: %f\n", pred_err_ss);
 imsls_f_decision_tree_free(tree);
 imsls_free(predictions);
}

Output

Predictions for test data:
 Age Number Start Kyphosis
 71 3 5 Absent
 128 4 5 Present
 1 4 15 Absent
 61 6 10 Absent
 113 2 16 Absent
 82 5 14 Absent
 148 3 16 Absent
 1 4 12 Absent
 1 3 16 Absent
 175 5 13 Absent
Mean squared prediction error: 0.100000
1450

 Data Mining decision_tree_predict
Warning Errors
IMSLS_NO_SURROGATES Use of surrogates is limited to method 1

(ALACART).

IMSLS_INVALID_PARAM The value of # is out of range.
1451

 Data Mining decision_tree_print
decision_tree_print
Prints a decision tree.

Synopsis
#include <imsls.h>

void imsls_f_decision_tree_print (Imsls_f_decision_tree *tree, ..., 0)

The type double function is imsls_d_decision_tree_print.

Required Arguments
imsls_f_decision_tree *tree (Input)

An estimated decision tree.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_decision_tree_print (Imsls_f_decision_tree *tree,
IMSLS_RESP_NAME, char *response_name,
IMSLS_VAR_NAMES, char *names[],
IMSLS_CLASS_NAMES, char *class_names[],
IMSLS_CATEG_NAMES, char *categ_names[],
IMSLS_PRINT_MAX,
0)

Optional Arguments
IMSLS_RESP_NAME, char *response_name (Input)

An array of length 1 containing a pointer to a character string representing the name of the response
variable.
Default: response_name[0] = “Y”.
1452

 Data Mining decision_tree_print
IMSLS_VAR_NAMES, char *var_names[] (Input)
An array of length tree->npreds containing pointers to character strings representing the names
of the predictors.
Default: var_names[0]=”X0”, var_names[1]=”X1”, etc.

IMSLS_CLASS_NAMES, char *class_names[] (Input)
An array of length tree->nclasses containing pointers to character strings representing the
names of the different classes in Y, assuming Y is of categorical type.
Default: class_names[0]=”0”, class_names[1]=”1”, etc.

IMSLS_CATEG_NAMES, char *categ_names[] (Input)
An array of length tree->pred_nvalues[0] + tree->pred_nvalues[1] + … +
tree->pred_nvalues[tree->npreds-1] containing pointers to character strings repre-
senting the names of the different category levels for each predictor of categorical type.
Default: categ_names[0]=”0”, categ_names[1]=”1”, etc.

IMSLS_PRINT_MAX, (Input)
If present, the maximal tree is printed despite any pruning information.
Default: Accounts for pruning.

Description
Function imsls_f_decision_tree_print provides a convenient way to quickly see the structure of the
tree. More elaborate visualization methods or summaries can be written for the decision tree structure described
in Structure Definitions for function decision_tree, and Figure 22 in the Overview section].

Comments
1. The nodes are labeled as the tree was grown. In other words, the first child of the root node is

labeled Node 1, the first child node of Node 1 is labeled Node 2, and so on, until the branch stops
growing. The numbering continues with the most recent split one level up.

2. If the tree has fewer than five levels, each new level is indented. Otherwise, there is no indentation.

Example
This example operates on simulated categorical data.

#include <imsls.h>
#include <stdio.h>
int main()
1453

 Data Mining decision_tree_print
{
 float xy[30*3] =
 {
 2, 0, 2,
 1, 0, 0,
 2, 1, 3,
 0, 1, 0,
 1, 2, 0,
 2, 2, 3,
 2, 2, 3,
 0, 1, 0,
 0, 0, 0,
 0, 1, 0,
 1, 2, 0,
 2, 0, 2,
 0, 2, 0,
 2, 0, 1,
 0, 0, 0,
 2, 0, 1,
 1, 0, 0,
 0, 2, 0,
 2, 0, 1,
 1, 2, 0,
 0, 2, 2,
 2, 1, 3,
 1, 1, 0,
 2, 2, 3,
 1, 2, 0,
 2, 2, 3,
 2, 0, 1,
 2, 1, 3,
 1, 2, 0,
 1, 1, 0
 };
 int n = 30;
 int ncols = 3;
 int response_col_idx= 2;
 int var_type[] = {0, 0, 0};
 int control[] = {5, 10, 10, 50, 10};
 const char* names[] = {"Var1", "Var2"};
 const char* class_names[] = {"c1", "c2", "c3", "c4"};
 const char* response_name = "Response";
 const char* var_levels[] = {"L1", "L2", "L3", "A", "B", "C"};
 Imsls_f_decision_tree *tree = NULL;
 tree = imsls_f_decision_tree(n, ncols, xy, response_col_idx, var_type,
 IMSLS_CONTROL, control,
 0);
 printf("\nGenerated labels:\n");
 imsls_f_decision_tree_print(tree,
 IMSLS_PRINT_MAX,
 0);
 printf("\nCustom labels:\n");
 imsls_f_decision_tree_print(tree,
 IMSLS_RESP_NAME, &response_name,
1454

 Data Mining decision_tree_print
 IMSLS_VAR_NAMES, names,
 IMSLS_CATEG_NAMES, var_levels,
 IMSLS_CLASS_NAMES, class_names,
 IMSLS_PRINT_MAX,
 0);
 imsls_f_decision_tree_free(tree);
}

Output

Generated labels:
Decision Tree:
Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2 3
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
Predicted Y: 0
 Node 1: Cost = 0.033, N= 8, Level = 1
 Rule: X0 in: { 0 }
 P(Y=0)= 0.875
 P(Y=1)= 0.000
 P(Y=2)= 0.125
 P(Y=3)= 0.000
 Predicted Y: 0
 Node 2: Cost = 0.000, N= 9, Level = 1
 Rule: X0 in: { 1 }
 P(Y=0)= 1.000
 P(Y=1)= 0.000
 P(Y=2)= 0.000
 P(Y=3)= 0.000
 Predicted Y: 0
 Node 3: Cost = 0.200, N= 13, Level = 1
 Rule: X0 in: { 2 }
 P(Y=0)= 0.000
 P(Y=1)= 0.308
 P(Y=2)= 0.154
 P(Y=3)= 0.538
 Predicted Y: 3
Custom labels:
Decision Tree:
Node 0: Cost = 0.467, N= 30, Level = 0, Child nodes: 1 2 3
P(Y=0)= 0.533
P(Y=1)= 0.133
P(Y=2)= 0.100
P(Y=3)= 0.233
Predicted Response c1
 Node 1: Cost = 0.033, N= 8, Level = 1
 Rule: Var1 in: { L1 }
 P(Y=0)= 0.875
 P(Y=1)= 0.000
 P(Y=2)= 0.125
1455

 Data Mining decision_tree_print
 P(Y=3)= 0.000
 Predicted Response c1
 Node 2: Cost = 0.000, N= 9, Level = 1
 Rule: Var1 in: { L2 }
 P(Y=0)= 1.000
 P(Y=1)= 0.000
 P(Y=2)= 0.000
 P(Y=3)= 0.000
 Predicted Response c1
 Node 3: Cost = 0.200, N= 13, Level = 1
 Rule: Var1 in: { L3 }
 P(Y=0)= 0.000
 P(Y=1)= 0.308
 P(Y=2)= 0.154
 P(Y=3)= 0.538
 Predicted Response c4
1456

 Data Mining decision_tree_free
decision_tree_free
Frees the memory associated with a decision tree.

Synopsis
#include <imsls.h>

void imsls_f_decision_tree_free (Imsls_f_decision_tree *tree)

The type double function is imsls_d_decision_tree_free.

Required Arguments
imsls_f_decision_tree *tree (Input)

A decision tree structure.

Description
imsls_f_decision_tree_free frees the memory associated with a decision tree structure.

Example
See imsls_f_decision_tree, Example 1.
1457

 Data Mining bagged_trees_free
bagged_trees_free
Frees the memory associated with an array of decision trees generated in the bagging procedure.

Synopsis
#include <imsls.h>

void imsls_f_bagged_trees_free(int ntrees, Imsls_f_decision_tree **tree)

The type double function is imsls_d_bagged_trees_free.

Required Arguments
int ntrees (Input)

The number of decision tree structures.

imsls_f_decision_tree **trees (Input)
An array of size ntrees containing the decision tree structures.

Description
imsls_f_bagged_trees_free frees the memory associated with an array of decision tree structures.

Example
See imsls_f_decision_tree, Example 7.
1458

 Data Mining gradient_boosting
gradient_boosting
Performs stochastic gradient boosting of decision trees.

Synopsis
#include <imsls.h>
float imsls_f_gradient_boosting (int n, int n_cols, float xy[], int response_col_idx,

int var_type[], …, 0)

The type double function is imsls_d_gradient_boosting.

Required Arguments
int n (Input)

The number of rows in xy.

int n_cols (Input)
The number of columns in xy.

float xy[] (Input)
Array of size n × n_cols containing the data.

int response_col_idx (Input)
The column index of xy containing the response variable.

int var_type[] (Input)
Array of length n_cols indicating the type of each variable.

var_type[i] Description

0 Categorical

1 Ordered Discrete (e.g., Low, Med, High)

2 Quantitative or Continuous

3 Ignore this variable
1459

 Data Mining gradient_boosting
Return Value
A pointer to an array of predicted values on the test data if test data is provided (see optional argument,
IMSLS_TEST_DATA). If test data is not provided, the predicted values are the fitted values on the training data. If
an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_gradient_boosting (int n, int n_cols, float xy[], int response_col_idx,

int var_type[],

IMSLS_TEST_DATA, int n_test, float xy_test[],
IMSLS_TEST_DATA_WEIGHTS, float weights_test[],
IMSLS_WEIGHTS, float weights[],
IMSLS_N_SAMPLE, int sample_size,
IMSLS_SAMPLE_PROPORTION, float sample_p,
IMSLS_SHRINKAGE, float shrinkage,
IMSLS_MAX_ITER, int max_iter,
IMSLS_LOSS_FCN, int loss_fcn_type,
IMSLS_ALPHA, float huber_alpha,
IMSLS_CONTROL, int params[],
IMSLS_RANDOM_SEED, int seed,
IMSLS_PRINT, int print_level,
IMSLS_LOSS_VALUE, float *loss_value,
IMSLS_TEST_LOSS_VALUE, float *test_loss_value,
IMSLS_FITTED_VALUES, float **fitted_values,
IMSLS_FITTED_VALUES_USER, float fitted_values[],
IMSLS_PROBABILITIES, float **probs,
IMSLS_PROBABILITIES_USER, float probs[],
IMSLS_FITTED_PROBABILITIES, float **fitted_probs,

Note: When the variable type is specified as Categorical (var_type[i] = 0), the number-
ing of the categories must begin at 0. For example, if there are three categories, they must
be represented as 0, 1, and 2 in the xy array.

The number of classes for a categorical response variable is determined by the largest
value discovered in the data. Note that a warning message is displayed if a class level in 0,
1, …, n_classes - 1 has a 0 count in the data.
1460

 Data Mining gradient_boosting
IMSLS_FITTED_PROBABILITIES_USER, float fitted_probs[],
IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees,
IMSLS_RETURN_USER, float predictions[],
0)

Optional Arguments
IMSLS_TEST_DATA, int n_test, float xy_test[] (Input)

xy_test is an array of size n_test × n_cols containing test data for which predictions are
requested. When this optional argument is present, the number of observations n_test must be
greater than 0. The response variable may have missing values in xy_test, but it must be in the
same column as it is in xy and the predictors must be in the same columns as they are in xy. If the
test data is not provided but predictions are requested, then xy is used, and the predictions are the
fitted values.
Default: n_test = n, xy_test = xy.

IMSLS_TEST_DATA_WEIGHTS, float weights_test[] (Input)
An array of size n_test containing the frequencies or weights for each observation in xy_test.
This argument is ignored if IMSLS_TEST_DATA is not present.
Default: weights_test[i] = 1.0.

IMSLS_WEIGHTS, float weights[] (Input)
An array of length n containing frequencies or weights for each observation in xy.
Default: weights[i] = 1.0.

IMSLS_N_SAMPLE, int sample_size (Input)
The number of examples to be drawn randomly from the training data in each iteration.
Default: sample_size = sample_p*n.

IMSLS_SAMPLE_PROPORTION, float sample_p (Input)
The proportion of the training examples to be drawn randomly from the training data in each
iteration.
Default: sample_p = 0.5.

IMSLS_SHRINKAGE, float shrinkage (Input)
The shrinkage parameter to be used in the boosting algorithm. The parameter must be in the interval
[0,1] inclusive.
Default: shrinkage = 1.0 (no shrinkage).

IMSLS_MAX_ITER, int max_iter (Input)
The number of iterations. This value is equivalent to M in the boosting algorithm described below.
Default: max_iter = 50.
1461

 Data Mining gradient_boosting
IMSLS_LOSS_FCN, int loss_fcn_type (Input)
An integer specifying the loss function to use in the algorithm for regression problems
(loss_fcn_type = 0, 1, 2) or binary classification problems (loss_fcn_type = 3, 4).
1462

 Data Mining gradient_boosting
See the Description section for the loss function in the multinomial case (categorical response vari-
ables with more than two outcomes).
Default: loss_fcn_type = 0.

IMSLS_ALPHA, float huber_alpha (Input)
The quantile value for the Huber-M loss function.
Default: huber_alpha = 0.05.

Name loss_fcn_type Definition

Least Squares 0 The loss function is the sum of squared error:

Least Absolute Deviation 1 The loss function is the sum of absolute errors:

Huber M 2 The loss function is the weighted mixture of squared
error and absolute error:

where

and where δ is the α empirical quantile of the errors,

.

Adaboost 3 The loss function is the AdaBoost.M1 criterion:

Bernoulli or binomial
deviance

4 The loss function is the binomial or Bernoulli negative
log-likelihood:

L = ∑
i=1

n
(yi − f (xi))

2

L = ∑
i=1

n
|yi − f (xi)|

L = ∑
i=1

n
Ψ(yi , f (xi))

Ψ(y,z) = 0.5(y − z)2 |y − z| ≤ δ
δ(|y − z| − 0.5δ) |y − z| > δ

(yi − f (xi)),i = 1,...n

L = ∑
i=1

n
exp(− (2yi − 1) f (xi))

L = − 2∑
i=1

n
(yi f (xi) − log(1 + exp(f (xi)))
1463

 Data Mining gradient_boosting
IMSLS_CONTROL, int params[] (Input)
Array of length 5 containing parameters to control the size and other characteristics of the decision
trees.

Default: params[] = {10, 21, 10, 4, 10}.

IMSLS_RANDOM_SEED, int seed (Input)
Sets the seed of the random number generator used in sampling. Using the same seed in repeated
calls will result in the same output. If seed = 0, the random seed is set by the system clock and
repeated calls result in slightly different results.
Default: seed = 0.

IMSLS_PRINT, int print_level (Input)

Default: print_level = 0.

IMSLS_LOSS_VALUE, float *loss_value (Output)
The final value of the loss function after M iterations of the algorithm.

IMSLS_TEST_LOSS_VALUE, float *test_loss_value (Output)
The final value of the loss function after M iterations of the algorithm on the test data.

IMSLS_FITTED_VALUES, float **fitted_values (Output)
Address of a pointer to an array of length n containing the fitted values on the training data xy after
M iterations of the algorithm.

params[i] Name Action

0 min_n_node Do not split a node if one of its child nodes will
have fewer than min_n_node observations.

1 min_split Do not split a node if the node has fewer than
min_split observations.

2 max_x_cats Allow for up to max_x_cats number of catego-
ries or levels for categorical variables.

3 max_size Stop growing the tree once it has reached
max_size number of nodes.

4 max_depth Stop growing the tree once it has reached
max_depth number of levels.

print_level Action

0 No printing

1 Print final results only

2 Print intermediate and final results
1464

 Data Mining gradient_boosting
IMSLS_FITTED_VALUES_USER, float fitted_values[] (Output)
Storage for the array of the fitted values for the training data is provided by the user.

IMSLS_PROBABILITIES, float **probs (Output)
Address of a pointer to an array of length n*n_classes containing the predicted class
probabilities for each observation in the test data.

IMSLS_PROBABILITIES_USER, float probs[] (Output)
Storage for the array of the predicted class probabilities is provided by the user.

IMSLS_FITTED_PROBABILITIES, float **fitted_probabilities (Output)
Address of a pointer to an array of length n*n_classes containing the fitted class probabilities on
the training data for classification problems.

IMSLS_FITTED_PROBABILITIES_USER, float fitted_probabilities[] (Output)
Storage for the array of the fitted class probabilities is provided by the user.

IMSLS_RETURN_TREES, Imsls_f_decision_tree ***bagged_trees (Output)
Address of a pointer to an array of length M containing the collection of trees generated during the
algorithm. To release this space, use imsls_f_bagged_trees_free.

IMSLS_RETURN_USER, float probabilities[] (Output)
Storage for the array of the return value is provided by the user.

Description
Stochastic gradient boosting is an optimization algorithm for minimizing residual errors to improve the accuracy
of predictions. This function implements the algorithm by Friedman (1999). For further discussion, see Hastie, et
al. (2009).

In the following, xi is the vector of predictor variable values, and yi is the response variable value in the observa-

tion at row i. The function fm(xi) evaluated at xi is the predicted value in a particular iteration, m. This value is

iteratively reweighted to minimize a loss function. Specifically, the algorithm is:

Initialize the predictor function to the constant

For each iteration ,

1. Calculate the pseudo-residuals

f 0(x) = arg minγ∑
i=1

n
L(yi,γ)

m = 1,2,...M
1465

 Data Mining gradient_boosting
2. Fit a regression tree to the pseudo-residuals rim and use the resulting models to predict the

observations in the training data. The resulting terminal nodes define Jm terminal regions Rjm for the

response. Compute

3. Update the prediction function for each observation, xi,

where λ∈[0,1] is a shrinkage parameter (λ = 1 means no shrinking, whereas λ = 0 gives just fM = f0).

After M iterations, the function fM(⋅) forms the basis of the predictions for the response variable.

Specifically

Response variable type Definition

QUANTITATIVE_CONTINU-
OUS

For the regression problem, the predicted value
at a new observation vector xi is

rim = −
∂L(yi, f (xi))
∂ f (xi) | f = f m−1

γ jm = arg minγ ∑
xi∈R jm

L(yi, f m−1(xi) + γ)

fm (xi) = fm −1(xi) + λ∑
j=1

Jm
γjm I(xi∈R jm)

ŷi = fM (xi)
1466

 Data Mining gradient_boosting
For regression problems, the algorithm uses the squared error loss by default. For classification problems with
two categories, the Bernoulli or binomial loss function is the default (see optional argument IMSLS_LOSS_FCN).
For a categorical response with three or more categories, the multinomial deviance (described below) is used.

For a categorical response with K categories, the loss function is the multinomial negative log-likelihood, or multi-
nomial deviance:

where

CATEGORICAL with 2 out-
comes (binomial)

For a classification problem with 2 outcomes, the
predicted probability is

Then the predicted value is

where I{⋅} is the indicator function.

CATEGORICAL with 3 or more
outcomes (multinomial)

For a classification problem with K≥ 3
outcomes, the predicted probabilities for
k = 1,…,K are

Then the predicted value is

Response variable type Definition

pi = Pr[yi = 1] =
exp(fM (xi))
1 + exp(fM (xi))

ŷi = I{ pi > 0.5}

pik =
exp(f kM(xi))

∑
j=1

K
exp(f jM(xi))

ŷi = arg maxk{pik}

L = − 2∑
i=1

n
∑
k=1

K
yik log(pik)
1467

 Data Mining gradient_boosting
Examples

Example 1

This example uses stochastic gradient boosting to obtain fitted values for a regression variable on a small data set
with six predictor variables.

#include <imsls.h>
#include <stdio.h>

#define ROW 61
#define COL 7

int main(){

 float XY[ROW][COL] = {
 { 4.45617685, 0.8587425048, 1.2705688183, 0.0, 0.0, 1.0, 0.836626959 },
 { 3.01895357, 0.8928761308, 1.3886538362, 2.0, 1.0, 2.0, 2.155131825 },
 { 5.16899757, 0.7385954093, 1.5773203815, 0.0, 4.0, 2.0, 0.075368922 },
 { -0.23062048, 0.6227398487, 0.0228797458, 3.0, 4.0, 2.0, 0.070793233 },
 { 2.43144968, 0.8519553537, 1.2141886768, 2.0, 4.0, 2.0, 0.762200702 },
 { 2.28255119, 0.5578103897, 0.9185446175, 2.0, 4.0, 2.0, 0.085492814 },
 { 4.51650903, 0.4178302658, 1.3686663737, 0.0, 0.0, 0.0, 2.573941051 },
 { 5.42996967, 0.9829705667, 0.7817731784, 0.0, 5.0, 1.0, 0.865016054 },
 { 0.99551212, 0.3859238869, 0.2746516233, 3.0, 4.0, 0.0, 1.908151819 },
 { 1.23525017, 0.4165328839, 1.3154437956, 3.0, 4.0, 2.0, 2.752358041 },
 { 1.51599306, 0.2008399745, 0.9003028921, 3.0, 0.0, 2.0, 1.437127559 },
 { 2.72854297, 0.2072261081, 1.2282209327, 2.0, 5.0, 2.0, 0.68596562 },
 { 3.06956138, 0.9067490781, 0.8283077031, 2.0, 0.0, 2.0, 2.862403627 },
 { 1.81659279, 0.4506153886, 1.2822537781, 3.0, 4.0, 2.0, 1.710525684 },
 { 3.75978142, 0.2638894715, 0.4995447062, 0.0, 1.0, 1.0, 1.077172402 },
 { 5.72383445, 0.7682430062, 1.4758595745, 0.0, 3.0, 1.0, 2.365233736 },
 { 3.78155015, 0.6888140934, 0.4809393724, 0.0, 0.0, 1.0, 1.061246069 },
 { 3.60023233, 0.8470419827, 1.6149122352, 1.0, 1.0, 0.0, 0.01120048 },
 { 4.30238917, 0.9484412405, 1.6122899544, 1.0, 4.0, 2.0, 0.782038861 },
 { -0.19206757, 0.7674867723, 0.01665624, 3.0, 5.0, 2.0, 2.924944949 },
 { 3.03246318, 0.8747456241, 1.6051767552, 2.0, 1.0, 0.0, 2.233971364 },
 { 1.56652306, 0.0947128241, 1.470864601, 3.0, 0.0, 1.0, 1.851705944 },
 { 2.77490671, 0.1347932827, 1.3693161067, 1.0, 2.0, 0.0, 0.795709459 },
 { 1.05042043, 0.258093959, 0.4679728113, 3.0, 5.0, 0.0, 2.897785557 },
 { 2.73366469, 0.152943752, 0.5244769375, 1.0, 4.0, 2.0, 2.712871963 },
 { 1.78996951, 0.7921472492, 0.4686144991, 2.0, 4.0, 1.0, 1.295327727 },
 { 1.10343272, 0.123231777, 0.563989053, 2.0, 4.0, 1.0, 0.510414582 },
 { 1.70883743, 0.1931027549, 1.8561577178, 3.0, 5.0, 1.0, 0.165721288 },
 { 2.17977731, 0.316932481, 1.3376214528, 2.0, 2.0, 0.0, 2.366607214 },
 { 2.46127675, 0.9601344266, 0.2090187217, 1.0, 3.0, 1.0, 0.846218965 },
 { 1.92249547, 0.1104206559, 1.739415036, 3.0, 0.0, 0.0, 0.652622544 },
 { 5.81907137, 0.7049566596, 1.6238740934, 0.0, 3.0, 0.0, 1.685337845 },
 { 2.04774497, 0.0480224835, 0.7510998738, 2.0, 5.0, 2.0, 1.400641323 },

pik =
exp(fk (xi))

∑
j=1

K
exp(f j (xi))
1468

 Data Mining gradient_boosting
 { 4.54023907, 0.0557708007, 1.0864350675, 0.0, 1.0, 1.0, 1.630408823 },
 { 3.66100874, 0.2939440177, 0.9709178614, 0.0, 1.0, 0.0, 0.06970193 },
 { 4.39253655, 0.0982369843, 1.2492676578, 0.0, 2.0, 2.0, 0.138188998 },
 { 3.23303353, 0.3775206071, 0.2937129182, 0.0, 0.0, 2.0, 1.070823081 },
 { 3.13800098, 0.7891691434, 1.90897633, 2.0, 3.0, 0.0, 1.240732062 },
 { 1.49034639, 0.2456938969, 0.9157859818, 3.0, 5.0, 0.0, 0.850803277 },
 { 0.09486277, 0.1240615626, 0.3891524528, 3.0, 5.0, 0.0, 2.532516038 },
 { 3.74460501, 0.0181218453, 1.4921644945, 1.0, 2.0, 1.0, 1.92839241 },
 { 3.24158796, 0.9203409508, 1.1644667462, 2.0, 3.0, 1.0, 1.956283022 },
 { 1.97796767, 0.5977597698, 0.5501609747, 2.0, 5.0, 2.0, 0.39384095 },
 { 4.15214037, 0.1433333508, 1.4292114358, 1.0, 0.0, 0.0, 1.114095218 },
 { 0.7799787, 0.8539819908, 0.7039108537, 3.0, 0.0, 1.0, 1.468978726 },
 { 2.01869009, 0.8919721926, 1.1436212659, 3.0, 4.0, 1.0, 2.09256257 },
 { 0.56311561, 0.0899261576, 0.7989077698, 3.0, 5.0, 0.0, 0.195650739 },
 { 4.74296429, 0.9625684835, 1.5732420743, 0.0, 3.0, 2.0, 2.685061853 },
 { 2.97981809, 0.5511086562, 1.6053283028, 2.0, 5.0, 2.0, 0.906810926 },
 { 2.82187135, 0.3869563073, 0.9321342241, 1.0, 5.0, 1.0, 0.756223386 },
 { 5.24390592, 0.3500950718, 1.7769328682, 0.0, 3.0, 2.0, 1.328165314 },
 { 3.17307157, 0.8798056154, 1.4647966106, 2.0, 5.0, 1.0, 0.561835038 },
 { 0.78246075, 0.1472158518, 0.4658273738, 2.0, 0.0, 0.0, 1.317240539 },
 { 1.57827027, 0.3415432149, 0.7513634153, 2.0, 2.0, 0.0, 1.502675544 },
 { 0.84104905, 0.1501226462, 0.9332020828, 3.0, 1.0, 2.0, 1.083374695 },
 { 2.63627352, 0.1707233109, 1.1676406977, 2.0, 3.0, 0.0, 2.236639737 },
 { 1.30863625, 0.2616807753, 0.8342161868, 3.0, 2.0, 2.0, 1.778402721 },
 { 2.7313073, 0.9616109401, 1.596915911, 3.0, 3.0, 1.0, 0.303127344 },
 { 3.56848173, 0.4072918599, 1.5345127448, 1.0, 2.0, 2.0, 1.47452504 },
 { 5.40152982, 0.7796053565, 1.3659530994, 0.0, 4.0, 1.0, 0.484531098 },
 { 3.94901823, 0.5052344366, 1.9319026601, 1.0, 2.0, 0.0, 2.504392843 },
 };
 int i;
 int response_col_idx = 0;
 int var_type[] = { 2, 2, 2, 0, 0, 0, 2 };
 float *fitted_values = NULL;
 float loss_value;

 fitted_values = imsls_f_gradient_boosting(ROW, COL, &XY[0][0], response_col_idx,
 var_type,
 IMSLS_RANDOM_SEED, 123457,
 IMSLS_LOSS_VALUE, &loss_value,
 0);

 printf("Fitted values vs actuals:\n");
 for (i = 0; i < ROW; i++){
 printf("\t%5.3f %5.3f\n", fitted_values[i], XY[i][response_col_idx]);
 }

 printf("\nLoss value: %5.5f\n", loss_value);
 imsls_free(fitted_values);

}

Output

Fitted values vs actuals:
 4.956 4.456
 2.908 3.019
 5.105 5.169
 0.229 -0.231
 2.124 2.431
1469

 Data Mining gradient_boosting
 2.338 2.283
 4.333 4.517
 5.273 5.430
 0.734 0.996
 1.491 1.235
 1.359 1.516
 2.611 2.729
 2.275 3.070
 1.875 1.817
 3.233 3.760
 6.246 5.724
 3.676 3.782
 3.981 3.600
 3.742 4.302
 0.716 -0.192
 3.367 3.032
 1.975 1.567
 3.105 2.775
 0.471 1.050
 2.386 2.734
 1.307 1.790
 1.370 1.103
 1.709 1.709
 2.371 2.180
 3.386 2.461
 1.404 1.922
 5.822 5.819
 2.207 2.048
 4.028 4.540
 3.831 3.661
 4.824 4.393
 3.451 3.233
 3.451 3.138
 2.285 1.490
 0.471 0.095
 3.728 3.745
 3.204 3.242
 1.474 1.978
 4.291 4.152
 0.937 0.780
 1.709 2.019
 0.534 0.563
 5.608 4.743
 3.376 2.980
 2.749 2.822
 5.656 5.244
 3.192 3.173
 1.659 0.782
 1.851 1.578
 0.435 0.841
 2.880 2.636
 1.869 1.309
 2.201 2.731
 3.517 3.568
 5.263 5.402
 3.584 3.949
Loss value: 0.08452
1470

 Data Mining gradient_boosting
Example 2

This example uses stochastic gradient boosting to obtain probability estimates for a binary response variable and
four predictor variables. An estimate of P[Y = 0] is obtained for each example in the training data as well as a
small test data set.

Probabilities ≤ 0.5 lead to a prediction of Y = 0, while probabilities > 0.5 lead to a prediction of Y = 1.0.

#include <imsls.h>
#include <stdio.h>

#define TROW 100
#define TCOL 5
#define TSTROW 10

int main(){
 float training_data[TROW][TCOL] = {
 { 0.0, 0.4223019897, 1.7540411302, 3.0, 0.763836258 },
 { 0.0, 0.0907259332, 0.8722643796, 2.0, 1.859006285 },
 { 0.0, 0.1384744535, 0.838324877, 1.0, 0.249729405 },
 { 1.0, 0.5435024537, 1.2359190206, 4.0, 0.831992314 },
 { 0.0, 0.8359154933, 1.8527500411, 1.0, 1.089201049 },
 { 1.0, 0.3577950741, 0.3652825342, 3.0, 2.204364955 },
 { 1.0, 0.6799094002, 0.6610595905, 3.0, 1.44730419 },
 { 0.0, 0.5821297709, 1.6180879478, 1.0, 2.957565282 },
 { 1.0, 0.8229457375, 1.0201675948, 3.0, 2.872570117 },
 { 0.0, 0.0633462721, 0.4140600134, 1.0, 0.63906323 },
 { 1.0, 0.1019134156, 0.0677204356, 3.0, 1.493447564 },
 { 0.0, 0.1551713238, 1.541201456, 3.0, 1.90219884 },
 { 1.0, 0.8273822817, 0.2114979578, 3.0, 2.855730173 },
 { 0.0, 0.7955570114, 1.8757067556, 2.0, 2.930132627 },
 { 0.0, 0.6537275917, 1.2139678737, 2.0, 1.535853243 },
 { 1.0, 0.1243124125, 1.5130919744, 4.0, 2.733670775 },
 { 0.0, 0.2163864174, 0.7051185896, 2.0, 2.755841087 },
 { 0.0, 0.2522670308, 1.2821007571, 2.0, 0.342119491 },
 { 0.0, 0.8677104027, 1.9003869346, 2.0, 2.454376481 },
 { 1.0, 0.8670932774, 0.7993045617, 4.0, 2.732812615 },
 { 0.0, 0.5384287981, 0.1856947718, 1.0, 1.838702635 },
 { 0.0, 0.7236269342, 0.4993310347, 1.0, 1.030699128 },
 { 0.0, 0.0789361731, 1.011216166, 1.0, 2.539607478 },
 { 1.0, 0.7631686032, 0.0536725423, 2.0, 1.401761686 },
 { 0.0, 0.1157020777, 0.0123261618, 1.0, 2.098372295 },
 { 1.0, 0.1451248352, 1.9153951635, 3.0, 0.492650534 },
 { 1.0, 0.8497178114, 1.80941298, 4.0, 2.653985489 },
 { 0.0, 0.8027864883, 1.2631045617, 3.0, 2.716214291 },
 { 0.0, 0.798560373, 0.6872106791, 2.0, 2.763023936 },
 { 1.0, 0.1816879204, 0.4323868025, 4.0, 0.098090197 },
 { 1.0, 0.6301239238, 0.3670980479, 3.0, 0.02313788 },
 { 1.0, 0.0411311248, 0.0173408454, 3.0, 1.994786958 },
 { 1.0, 0.0427366099, 0.8114635572, 3.0, 2.966069741 },
 { 1.0, 0.4107826762, 0.1929467283, 4.0, 0.573832348 },
 { 0.0, 0.9441903098, 0.0729898885, 1.0, 1.710992303 },
 { 1.0, 0.3597549822, 0.2799857073, 2.0, 0.969428934 },
 { 0.0, 0.3741368004, 1.6052779425, 2.0, 1.866030486 },
 { 0.0, 0.3515911719, 0.3383029872, 1.0, 2.639469598 },
 { 0.0, 0.9184092905, 1.7116801264, 1.0, 1.380178652 },
 { 1.0, 0.77803064, 1.9830028405, 3.0, 1.834021992 },
1471

 Data Mining gradient_boosting
 { 0.0, 0.573786814, 0.0258851023, 1.0, 1.52130144 },
 { 1.0, 0.3279244492, 0.6977945678, 4.0, 1.322451157 },
 { 0.0, 0.7924819048, 0.3694838509, 1.0, 2.369654865 },
 { 0.0, 0.9787846403, 1.1470323382, 2.0, 0.037156113 },
 { 1.0, 0.6910662795, 0.1019420708, 2.0, 2.58588334 },
 { 0.0, 0.1367050812, 0.6635301332, 2.0, 0.368273583 },
 { 0.0, 0.2826360366, 1.4468787988, 1.0, 2.705811968 },
 { 0.0, 0.4524727969, 0.7885378413, 2.0, 0.851228449 },
 { 0.0, 0.5118664701, 1.061143666, 1.0, 0.249325278 },
 { 0.0, 0.9965170731, 0.2068265025, 2.0, 0.9210639 },
 { 1.0, 0.7801500652, 1.565742691, 4.0, 1.827419217 },
 { 0.0, 0.2906187973, 1.7036567871, 2.0, 2.842997725 },
 { 0.0, 0.1753704017, 0.7124397112, 2.0, 1.262811961 },
 { 1.0, 0.7796778064, 0.3478030777, 3.0, 0.90719801 },
 { 1.0, 0.3889356288, 1.1771452101, 4.0, 1.298438454 },
 { 0.0, 0.9374473374, 1.1879778663, 1.0, 1.854424331 },
 { 1.0, 0.1939157653, 0.093336341, 4.0, 0.166025681 },
 { 1.0, 0.2023756928, 0.0623724433, 3.0, 0.536441906 },
 { 0.0, 0.1691352043, 1.1587338657, 2.0, 2.15494096 },
 { 1.0, 0.0921523357, 0.2247394961, 3.0, 2.006995301 },
 { 0.0, 0.819186907, 0.0392292971, 1.0, 1.282159743 },
 { 0.0, 0.9458126165, 1.5268264762, 1.0, 1.960050194 },
 { 0.0, 0.1373939656, 1.8025095677, 2.0, 0.633624267 },
 { 0.0, 0.0555424779, 0.5022063241, 2.0, 0.639495004 },
 { 1.0, 0.3581428374, 1.4436954968, 3.0, 1.408938169 },
 { 1.0, 0.1189418568, 0.8011626904, 4.0, 0.210266769 },
 { 1.0, 0.5782070206, 1.58215921, 3.0, 2.648622607 },
 { 0.0, 0.460689794, 0.0704823257, 1.0, 1.45671379 },
 { 0.0, 0.6959878858, 0.2245675903, 2.0, 1.849515461 },
 { 0.0, 0.1930288749, 0.6296302159, 2.0, 2.597390946 },
 { 0.0, 0.4912149447, 0.0713489084, 1.0, 0.426487798 },
 { 0.0, 0.3496920248, 1.0135462089, 1.0, 2.962295362 },
 { 1.0, 0.7716284667, 0.5387295927, 4.0, 0.736709363 },
 { 1.0, 0.3463061263, 0.7819578522, 4.0, 1.597238498 },
 { 1.0, 0.6897138762, 1.2793166582, 4.0, 2.376281484 },
 { 0.0, 0.2818824656, 1.4379718141, 3.0, 2.627468417 },
 { 0.0, 0.5659798421, 1.6243568249, 1.0, 1.624809581 },
 { 0.0, 0.7965560518, 0.3933029529, 2.0, 0.415849269 },
 { 0.0, 0.9156922165, 1.0465683565, 1.0, 2.802914008 },
 { 0.0, 0.8299879942, 1.2237155279, 1.0, 2.611676934 },
 { 0.0, 0.0241912066, 1.9213823564, 1.0, 0.659596571 },
 { 0.0, 0.0948590154, 0.3609640412, 1.0, 1.287687748 },
 { 0.0, 0.230467916, 1.9421709292, 3.0, 2.290064565 },
 { 0.0, 0.2209760561, 0.4812708795, 1.0, 1.862393057 },
 { 0.0, 0.4704530933, 0.2644400774, 1.0, 1.960189529 },
 { 1.0, 0.1986645423, 0.48924731, 2.0, 0.333790415 },
 { 0.0, 0.9201823308, 1.4247304946, 1.0, 0.367654009 },
 { 1.0, 0.8118424334, 0.1017034058, 2.0, 2.001390385 },
 { 1.0, 0.1347265388, 0.1362061207, 3.0, 1.151431168 },
 { 0.0, 0.9884603191, 1.5700038988, 2.0, 0.717332943 },
 { 0.0, 0.1964012324, 0.4306495111, 1.0, 1.689056823 },
 { 1.0, 0.4031848807, 1.1251849262, 4.0, 1.977734922 },
 { 1.0, 0.0341882701, 0.3717348906, 4.0, 1.830587439 },
 { 0.0, 0.5073120815, 1.7860476542, 3.0, 0.142862822 },
 { 0.0, 0.6363195451, 0.6631249222, 2.0, 1.211148724 },
 { 1.0, 0.1642774614, 1.1963615627, 3.0, 0.843113448 },
 { 0.0, 0.0945515088, 1.8669327218, 1.0, 2.417198514 },
 { 0.0, 0.2364508687, 1.4035215094, 2.0, 2.964026097 },
 { 1.0, 0.7490112646, 0.1778408242, 4.0, 2.343119453 },
 { 1.0, 0.5193473259, 0.3090019161, 3.0, 1.300277323 }
1472

 Data Mining gradient_boosting
 };

 float test_data[TSTROW][TCOL] = {
 { 0.0, 0.0093314846, 0.0315045565, 1.0, 2.043737003 },
 { 0.0, 0.0663379349, 0.0822378928, 2.0, 1.202557951 },
 { 1.0, 0.9728333529, 0.8778284262, 4.0, 0.205940753 },
 { 1.0, 0.7655418115, 0.3292853828, 4.0, 2.940793653 },
 { 1.0, 0.1610695978, 0.3832762009, 4.0, 1.96753633 },
 { 0.0, 0.0849463812, 1.4988451041, 2.0, 2.307902221 },
 { 0.0, 0.7932621511, 1.2098399368, 1.0, 0.886761862 },
 { 0.0, 0.1336030525, 0.2794256401, 2.0, 2.672175208 },
 { 0.0, 0.4758480834, 0.0441179522, 1.0, 0.399722717 },
 { 1.0, 0.1137434335, 0.922533263, 3.0, 1.927635631 }
 };

 int i;
 int n_classes = 2;
 int var_type[] = { 0, 2, 2, 0, 2 };
 /* min_n_node, min_split, max_x_cats, max_size, max_depth*/
 int tree_control_params[] = { 10, 21, 10, 4, 10 };
 int response_col_idx = 0;
 float *predicted_values = NULL;
 float *fitted_values = NULL;
 float *probabilities = NULL;
 float *fitted_probabilities = NULL;
 float loss_value;
 float test_loss_value;

 predicted_values = imsls_f_gradient_boosting(TROW, TCOL, &training_data[0][0],
 response_col_idx,
 var_type,
 IMSLS_SHRINKAGE, 0.05,
 IMSLS_RANDOM_SEED, 123457,
 IMSLS_LOSS_VALUE, &loss_value,
 IMSLS_TEST_LOSS_VALUE, &test_loss_value,
 IMSLS_CONTROL, tree_control_params,
 IMSLS_TEST_DATA, TSTROW, &test_data[0][0],
 IMSLS_FITTED_VALUES, &fitted_values,
 IMSLS_PROBABILITIES, &probabilities,
 IMSLS_FITTED_PROBABILITIES, &fitted_probabilities,
 0);

 printf("Training data fitted prob[Y=0] and actuals:\n");
 for (i = 0; i < TROW; i++){
 printf("\t%3.2f %3.0f\n ", fitted_probabilities[i*n_classes],
 training_data[i][response_col_idx]);
 }
 printf("\nTraining data loss_value=%f\n\n", loss_value);

 printf("Test data predicted prob[Y=0] and actuals:\n");
 for (i = 0; i < TSTROW; i++){
 printf("\t%3.2f %3.0f\n", probabilities[i*n_classes],
 test_data[i][response_col_idx]);
 }
 printf("\nTest data loss value=%f\n", test_loss_value);

 imsls_free(predicted_values);
 imsls_free(fitted_values);
 imsls_free(probabilities);
1473

 Data Mining gradient_boosting
 imsls_free(fitted_probabilities);
}

Output

Training data fitted prob[Y=0] and actuals:
 0.35 0
 0.82 0
 0.87 0
 0.25 1
 0.90 0
 0.24 1
 0.26 1
 0.90 0
 0.30 1
 0.84 0
 0.23 1
 0.35 0
 0.24 1
 0.85 0
 0.84 0
 0.26 1
 0.82 0
 0.85 0
 0.85 0
 0.22 1
 0.83 0
 0.85 0
 0.87 0
 0.75 1
 0.83 0
 0.35 1
 0.26 1
 0.35 0
 0.81 0
 0.18 1
 0.24 1
 0.23 1
 0.30 1
 0.17 1
 0.83 0
 0.76 1
 0.85 0
 0.83 0
 0.90 0
 0.35 1
 0.83 0
 0.21 1
 0.84 0
 0.83 0
 0.75 1
 0.81 0
 0.90 0
 0.82 0
 0.87 0
 0.76 0
 0.26 1
 0.85 0
 0.82 0
1474

 Data Mining gradient_boosting
 0.24 1
 0.24 1
 0.89 0
 0.16 1
 0.23 1
 0.83 0
 0.24 1
 0.83 0
 0.90 0
 0.85 0
 0.78 0
 0.35 1
 0.22 1
 0.35 1
 0.83 0
 0.76 0
 0.78 0
 0.83 0
 0.87 0
 0.18 1
 0.22 1
 0.26 1
 0.35 0
 0.90 0
 0.77 0
 0.87 0
 0.89 0
 0.90 0
 0.83 0
 0.35 0
 0.84 0
 0.83 0
 0.77 1
 0.90 0
 0.75 1
 0.23 1
 0.85 0
 0.84 0
 0.22 1
 0.18 1
 0.35 0
 0.81 0
 0.32 1
 0.90 0
 0.85 0
 0.16 1
 0.24 1

Training data loss_value=0.650631

Test data predicted prob[Y=0] and actuals:
 0.83 0
 0.75 0
 0.22 1
 0.17 1
 0.18 1
 0.85 0
 0.89 0
 0.76 0
 0.83 0
1475

 Data Mining gradient_boosting
 0.30 1

Test data loss value=0.440048

Example 3

This example uses the same data as in Example 2, but switches the response variable to the 4th column of the
training data. Because the response is categorical with more than two categories, the multinomial loss function is
used.

#include <imsls.h>
#include <stdio.h>

#define TROW 100
#define TCOL 5
#define TSTROW 10

int main(){

 float training_data[TROW][TCOL] = {
 { 0.0, 0.4223019897, 1.7540411302, 3.0, 0.763836258 },
 { 0.0, 0.0907259332, 0.8722643796, 2.0, 1.859006285 },
 { 0.0, 0.1384744535, 0.838324877, 1.0, 0.249729405 },
 { 1.0, 0.5435024537, 1.2359190206, 4.0, 0.831992314 },
 { 0.0, 0.8359154933, 1.8527500411, 1.0, 1.089201049 },
 { 1.0, 0.3577950741, 0.3652825342, 3.0, 2.204364955 },
 { 1.0, 0.6799094002, 0.6610595905, 3.0, 1.44730419 },
 { 0.0, 0.5821297709, 1.6180879478, 1.0, 2.957565282 },
 { 1.0, 0.8229457375, 1.0201675948, 3.0, 2.872570117 },
 { 0.0, 0.0633462721, 0.4140600134, 1.0, 0.63906323 },
 { 1.0, 0.1019134156, 0.0677204356, 3.0, 1.493447564 },
 { 0.0, 0.1551713238, 1.541201456, 3.0, 1.90219884 },
 { 1.0, 0.8273822817, 0.2114979578, 3.0, 2.855730173 },
 { 0.0, 0.7955570114, 1.8757067556, 2.0, 2.930132627 },
 { 0.0, 0.6537275917, 1.2139678737, 2.0, 1.535853243 },
 { 1.0, 0.1243124125, 1.5130919744, 4.0, 2.733670775 },
 { 0.0, 0.2163864174, 0.7051185896, 2.0, 2.755841087 },
 { 0.0, 0.2522670308, 1.2821007571, 2.0, 0.342119491 },
 { 0.0, 0.8677104027, 1.9003869346, 2.0, 2.454376481 },
 { 1.0, 0.8670932774, 0.7993045617, 4.0, 2.732812615 },
 { 0.0, 0.5384287981, 0.1856947718, 1.0, 1.838702635 },
 { 0.0, 0.7236269342, 0.4993310347, 1.0, 1.030699128 },
 { 0.0, 0.0789361731, 1.011216166, 1.0, 2.539607478 },
 { 1.0, 0.7631686032, 0.0536725423, 2.0, 1.401761686 },
 { 0.0, 0.1157020777, 0.0123261618, 1.0, 2.098372295 },
 { 1.0, 0.1451248352, 1.9153951635, 3.0, 0.492650534 },
 { 1.0, 0.8497178114, 1.80941298, 4.0, 2.653985489 },
 { 0.0, 0.8027864883, 1.2631045617, 3.0, 2.716214291 },
 { 0.0, 0.798560373, 0.6872106791, 2.0, 2.763023936 },
 { 1.0, 0.1816879204, 0.4323868025, 4.0, 0.098090197 },
 { 1.0, 0.6301239238, 0.3670980479, 3.0, 0.02313788 },

Note: The response variable is considered to have five categorical levels because its largest value is 4, but the
code assumes categorical variables start in '0'. Since '0' is not present in the data, a warning message is
printed.
1476

 Data Mining gradient_boosting
 { 1.0, 0.0411311248, 0.0173408454, 3.0, 1.994786958 },
 { 1.0, 0.0427366099, 0.8114635572, 3.0, 2.966069741 },
 { 1.0, 0.4107826762, 0.1929467283, 4.0, 0.573832348 },
 { 0.0, 0.9441903098, 0.0729898885, 1.0, 1.710992303 },
 { 1.0, 0.3597549822, 0.2799857073, 2.0, 0.969428934 },
 { 0.0, 0.3741368004, 1.6052779425, 2.0, 1.866030486 },
 { 0.0, 0.3515911719, 0.3383029872, 1.0, 2.639469598 },
 { 0.0, 0.9184092905, 1.7116801264, 1.0, 1.380178652 },
 { 1.0, 0.77803064, 1.9830028405, 3.0, 1.834021992 },
 { 0.0, 0.573786814, 0.0258851023, 1.0, 1.52130144 },
 { 1.0, 0.3279244492, 0.6977945678, 4.0, 1.322451157 },
 { 0.0, 0.7924819048, 0.3694838509, 1.0, 2.369654865 },
 { 0.0, 0.9787846403, 1.1470323382, 2.0, 0.037156113 },
 { 1.0, 0.6910662795, 0.1019420708, 2.0, 2.58588334 },
 { 0.0, 0.1367050812, 0.6635301332, 2.0, 0.368273583 },
 { 0.0, 0.2826360366, 1.4468787988, 1.0, 2.705811968 },
 { 0.0, 0.4524727969, 0.7885378413, 2.0, 0.851228449 },
 { 0.0, 0.5118664701, 1.061143666, 1.0, 0.249325278 },
 { 0.0, 0.9965170731, 0.2068265025, 2.0, 0.9210639 },
 { 1.0, 0.7801500652, 1.565742691, 4.0, 1.827419217 },
 { 0.0, 0.2906187973, 1.7036567871, 2.0, 2.842997725 },
 { 0.0, 0.1753704017, 0.7124397112, 2.0, 1.262811961 },
 { 1.0, 0.7796778064, 0.3478030777, 3.0, 0.90719801 },
 { 1.0, 0.3889356288, 1.1771452101, 4.0, 1.298438454 },
 { 0.0, 0.9374473374, 1.1879778663, 1.0, 1.854424331 },
 { 1.0, 0.1939157653, 0.093336341, 4.0, 0.166025681 },
 { 1.0, 0.2023756928, 0.0623724433, 3.0, 0.536441906 },
 { 0.0, 0.1691352043, 1.1587338657, 2.0, 2.15494096 },
 { 1.0, 0.0921523357, 0.2247394961, 3.0, 2.006995301 },
 { 0.0, 0.819186907, 0.0392292971, 1.0, 1.282159743 },
 { 0.0, 0.9458126165, 1.5268264762, 1.0, 1.960050194 },
 { 0.0, 0.1373939656, 1.8025095677, 2.0, 0.633624267 },
 { 0.0, 0.0555424779, 0.5022063241, 2.0, 0.639495004 },
 { 1.0, 0.3581428374, 1.4436954968, 3.0, 1.408938169 },
 { 1.0, 0.1189418568, 0.8011626904, 4.0, 0.210266769 },
 { 1.0, 0.5782070206, 1.58215921, 3.0, 2.648622607 },
 { 0.0, 0.460689794, 0.0704823257, 1.0, 1.45671379 },
 { 0.0, 0.6959878858, 0.2245675903, 2.0, 1.849515461 },
 { 0.0, 0.1930288749, 0.6296302159, 2.0, 2.597390946 },
 { 0.0, 0.4912149447, 0.0713489084, 1.0, 0.426487798 },
 { 0.0, 0.3496920248, 1.0135462089, 1.0, 2.962295362 },
 { 1.0, 0.7716284667, 0.5387295927, 4.0, 0.736709363 },
 { 1.0, 0.3463061263, 0.7819578522, 4.0, 1.597238498 },
 { 1.0, 0.6897138762, 1.2793166582, 4.0, 2.376281484 },
 { 0.0, 0.2818824656, 1.4379718141, 3.0, 2.627468417 },
 { 0.0, 0.5659798421, 1.6243568249, 1.0, 1.624809581 },
 { 0.0, 0.7965560518, 0.3933029529, 2.0, 0.415849269 },
 { 0.0, 0.9156922165, 1.0465683565, 1.0, 2.802914008 },
 { 0.0, 0.8299879942, 1.2237155279, 1.0, 2.611676934 },
 { 0.0, 0.0241912066, 1.9213823564, 1.0, 0.659596571 },
 { 0.0, 0.0948590154, 0.3609640412, 1.0, 1.287687748 },
 { 0.0, 0.230467916, 1.9421709292, 3.0, 2.290064565 },
 { 0.0, 0.2209760561, 0.4812708795, 1.0, 1.862393057 },
 { 0.0, 0.4704530933, 0.2644400774, 1.0, 1.960189529 },
 { 1.0, 0.1986645423, 0.48924731, 2.0, 0.333790415 },
 { 0.0, 0.9201823308, 1.4247304946, 1.0, 0.367654009 },
 { 1.0, 0.8118424334, 0.1017034058, 2.0, 2.001390385 },
 { 1.0, 0.1347265388, 0.1362061207, 3.0, 1.151431168 },
 { 0.0, 0.9884603191, 1.5700038988, 2.0, 0.717332943 },
 { 0.0, 0.1964012324, 0.4306495111, 1.0, 1.689056823 },
1477

 Data Mining gradient_boosting
 { 1.0, 0.4031848807, 1.1251849262, 4.0, 1.977734922 },
 { 1.0, 0.0341882701, 0.3717348906, 4.0, 1.830587439 },
 { 0.0, 0.5073120815, 1.7860476542, 3.0, 0.142862822 },
 { 0.0, 0.6363195451, 0.6631249222, 2.0, 1.211148724 },
 { 1.0, 0.1642774614, 1.1963615627, 3.0, 0.843113448 },
 { 0.0, 0.0945515088, 1.8669327218, 1.0, 2.417198514 },
 { 0.0, 0.2364508687, 1.4035215094, 2.0, 2.964026097 },
 { 1.0, 0.7490112646, 0.1778408242, 4.0, 2.343119453 },
 { 1.0, 0.5193473259, 0.3090019161, 3.0, 1.300277323 }
 };

 float test_data[TSTROW][TCOL] = {
 { 0.0, 0.0093314846, 0.0315045565, 1.0, 2.043737003 },
 { 0.0, 0.0663379349, 0.0822378928, 2.0, 1.202557951 },
 { 1.0, 0.9728333529, 0.8778284262, 4.0, 0.205940753 },
 { 1.0, 0.7655418115, 0.3292853828, 4.0, 2.940793653 },
 { 1.0, 0.1610695978, 0.3832762009, 4.0, 1.96753633 },
 { 0.0, 0.0849463812, 1.4988451041, 2.0, 2.307902221 },
 { 0.0, 0.7932621511, 1.2098399368, 1.0, 0.886761862 },
 { 0.0, 0.1336030525, 0.2794256401, 2.0, 2.672175208 },
 { 0.0, 0.4758480834, 0.0441179522, 1.0, 0.399722717 },
 { 1.0, 0.1137434335, 0.922533263, 3.0, 1.927635631 }
 };

 int i, j;
 int n_classes = 5;
 int response_col_idx = 3;
 int var_type[] = { 0, 2, 2, 0, 2 };
 float *predicted_values = NULL;
 float *fitted_values = NULL;
 float *probabilities = NULL;
 float *fitted_probabilities = NULL;
 float loss_value;
 float test_loss_value;
 /* min_n_node, min_split, max_x_cats, max_size, max_depth*/
 int tree_control_params[] = { 10, 21, 10, 4, 10 };

 predicted_values = imsls_f_gradient_boosting(TROW, TCOL, &training_data[0][0],
 response_col_idx,
 var_type,
 IMSLS_SHRINKAGE, 0.05,
 IMSLS_RANDOM_SEED, 123457,
 IMSLS_LOSS_VALUE, &loss_value,
 IMSLS_CONTROL, tree_control_params,
 IMSLS_TEST_LOSS_VALUE, &test_loss_value,
 IMSLS_TEST_DATA, TSTROW, &test_data[0][0],
 IMSLS_FITTED_VALUES, &fitted_values,
 IMSLS_PROBABILITIES, &probabilities,
 IMSLS_FITTED_PROBABILITIES, &fitted_probabilities,
 0);

 printf("Training data fitted probabilities and actuals:\n\n");
 printf("Class: ");
 for (j = 0; j < n_classes; j++){
 printf("\t %d ", j);
 }
 printf("\tActual\n");
 for (i = 0; i < TROW; i++){
1478

 Data Mining gradient_boosting
 for (j = 0; j < n_classes; j++){
 printf("\t%3.2f ", fitted_probabilities[i*n_classes + j]);
 }
 printf(" %3.0f\n", training_data[i][response_col_idx]);
 }
 printf("\nTraining data loss value=%f\n\n", loss_value);

 printf("Test data predicted probabilities and actuals:\n\n");
 printf("Class: ");
 for (j = 0; j < n_classes; j++){
 printf("\t %d ", j);
 }
 printf("\tActual\n");
 for (i = 0; i < TSTROW; i++){
 for (j = 0; j < n_classes; j++){
 printf("\t%3.2f ", probabilities[i*n_classes + j]);
 }
 printf(" %3.0f\n", test_data[i][response_col_idx]);
 }
 printf("\nTest data loss value=%f\n\n", test_loss_value);

 imsls_free(predicted_values);
 imsls_free(fitted_values);
 imsls_free(probabilities);
 imsls_free(fitted_probabilities);

}

Output

*** WARNING Error IMSLS_EMPTY_CLASS_LEVEL from imsls_f_gradient_boosting.
*** The count of class level 0 in the training data is zero.

Training data fitted probabilities and actuals:

Class: 0 1 2 3 4 Actual
 0.02 0.39 0.35 0.17 0.06 3
 0.02 0.45 0.33 0.14 0.06 2
 0.02 0.39 0.40 0.13 0.06 1
 0.02 0.06 0.16 0.36 0.40 4
 0.02 0.44 0.34 0.15 0.05 1
 0.02 0.10 0.17 0.40 0.32 3
 0.02 0.07 0.19 0.32 0.39 3
 0.02 0.45 0.29 0.17 0.06 1
 0.02 0.08 0.19 0.32 0.39 3
 0.02 0.46 0.34 0.12 0.05 1
 0.02 0.09 0.16 0.43 0.29 3
 0.02 0.42 0.30 0.20 0.06 3
 0.02 0.11 0.19 0.37 0.31 3
 0.02 0.43 0.33 0.16 0.05 2
 0.02 0.43 0.36 0.13 0.05 2
 0.02 0.06 0.13 0.46 0.34 4
 0.02 0.44 0.35 0.13 0.06 2
 0.02 0.37 0.39 0.15 0.07 2
 0.02 0.46 0.32 0.15 0.05 2
 0.02 0.08 0.19 0.31 0.39 4
 0.02 0.55 0.28 0.12 0.04 1
1479

 Data Mining gradient_boosting
 0.02 0.46 0.38 0.10 0.05 1
 0.02 0.45 0.33 0.14 0.06 1
 0.02 0.10 0.20 0.37 0.31 2
 0.02 0.52 0.28 0.14 0.04 1
 0.02 0.05 0.15 0.43 0.36 3
 0.02 0.07 0.16 0.40 0.35 4
 0.02 0.44 0.35 0.14 0.05 3
 0.02 0.45 0.37 0.11 0.05 2
 0.02 0.08 0.18 0.32 0.40 4
 0.02 0.09 0.20 0.35 0.34 3
 0.02 0.09 0.16 0.43 0.30 3
 0.02 0.07 0.16 0.37 0.38 3
 0.02 0.08 0.19 0.37 0.34 4
 0.02 0.55 0.30 0.10 0.03 1
 0.02 0.09 0.19 0.39 0.31 2
 0.02 0.44 0.31 0.18 0.06 2
 0.02 0.52 0.29 0.13 0.04 1
 0.02 0.47 0.32 0.15 0.05 1
 0.02 0.07 0.16 0.41 0.35 3
 0.02 0.55 0.28 0.12 0.04 1
 0.02 0.07 0.17 0.34 0.40 4
 0.02 0.53 0.31 0.10 0.04 1
 0.02 0.41 0.41 0.10 0.06 2
 0.02 0.10 0.19 0.37 0.31 2
 0.02 0.39 0.40 0.13 0.06 2
 0.02 0.43 0.31 0.18 0.06 1
 0.02 0.41 0.39 0.12 0.06 2
 0.02 0.41 0.38 0.12 0.06 1
 0.02 0.50 0.35 0.10 0.03 2
 0.02 0.07 0.16 0.41 0.35 4
 0.02 0.43 0.31 0.18 0.06 2
 0.02 0.44 0.35 0.13 0.06 2
 0.02 0.09 0.22 0.36 0.31 3
 0.02 0.07 0.16 0.34 0.40 4
 0.02 0.48 0.35 0.11 0.05 1
 0.02 0.08 0.19 0.37 0.34 4
 0.02 0.08 0.19 0.37 0.34 3
 0.02 0.44 0.34 0.14 0.06 2
 0.02 0.09 0.16 0.43 0.30 3
 0.02 0.54 0.30 0.10 0.03 1
 0.02 0.47 0.32 0.14 0.05 1
 0.02 0.37 0.36 0.19 0.06 2
 0.02 0.41 0.38 0.13 0.05 2
 0.02 0.06 0.14 0.43 0.36 3
 0.02 0.06 0.18 0.34 0.40 4
 0.02 0.06 0.13 0.43 0.36 3
 0.02 0.55 0.28 0.12 0.04 1
 0.02 0.52 0.32 0.11 0.04 2
 0.02 0.44 0.34 0.13 0.06 2
 0.02 0.48 0.33 0.12 0.04 1
 0.02 0.45 0.34 0.13 0.06 1
 0.02 0.07 0.21 0.29 0.41 4
 0.02 0.07 0.17 0.34 0.40 4
 0.02 0.07 0.17 0.37 0.37 4
 0.02 0.42 0.31 0.18 0.06 3
 0.02 0.46 0.29 0.17 0.06 1
 0.02 0.46 0.38 0.09 0.05 2
 0.02 0.48 0.34 0.11 0.05 1
 0.02 0.47 0.34 0.12 0.05 1
 0.02 0.38 0.35 0.19 0.06 1
1480

 Data Mining gradient_boosting
 0.02 0.52 0.29 0.14 0.04 1
 0.02 0.43 0.31 0.18 0.06 3
 0.02 0.51 0.30 0.12 0.05 1
 0.02 0.55 0.27 0.12 0.04 1
 0.02 0.07 0.19 0.32 0.40 2
 0.02 0.41 0.38 0.14 0.06 1
 0.02 0.11 0.19 0.37 0.31 2
 0.02 0.09 0.17 0.43 0.29 3
 0.02 0.41 0.37 0.14 0.06 2
 0.02 0.52 0.30 0.12 0.05 1
 0.02 0.07 0.16 0.35 0.40 4
 0.02 0.09 0.16 0.40 0.33 4
 0.02 0.40 0.35 0.17 0.06 3
 0.02 0.42 0.39 0.11 0.05 2
 0.02 0.05 0.17 0.40 0.36 3
 0.02 0.42 0.30 0.20 0.06 1
 0.02 0.43 0.33 0.16 0.06 2
 0.02 0.10 0.19 0.37 0.31 4
 0.02 0.10 0.16 0.39 0.32 3

Training data loss value=0.992967

Test data predicted probabilities and actuals:

Class: 0 1 2 3 4 Actual
 0.02 0.52 0.28 0.14 0.04 1
 0.02 0.50 0.31 0.14 0.04 2
 0.02 0.07 0.22 0.28 0.41 4
 0.02 0.10 0.19 0.37 0.32 4
 0.02 0.09 0.16 0.39 0.34 4
 0.02 0.43 0.30 0.19 0.06 2
 0.02 0.39 0.41 0.12 0.05 1
 0.02 0.51 0.29 0.14 0.04 2
 0.02 0.48 0.33 0.12 0.04 1
 0.02 0.07 0.16 0.37 0.38 3

Test data loss value=1.006980

Warning Errors
IMSLS_NO_PREDICTORS The model has no predictors.

IMSLS_INVALID_LOSS_FCN The loss function type # is invalid for a response
variable of type #. Resetting to loss function type #
= "#".

IMSLS_EMPTY_CLASS_LEVEL The count of class level # in the training data is zero.
1481

 Data Mining Genetic Algorithms – An Overview
Genetic Algorithms – An Overview
Genetic algorithms are increasingly popular for solving optimization, search and machine learning problems. The
analog between optimizing a fitness function and biological processes of natural selection and genetics is gener-
ally attributed to John H. Holland and his students at the University of Michigan. His landmark publication
“Adaptation in Natural and Artificial Systems” (Holland, 1975) sparked wide ranging investigations into his
approach in a variety of areas ranging from science and engineering to business.

This genetic algorithm implementation supports Holland’s basic algorithm with most popular variations. This is
achieved by supporting:

1. User defined population size and selection method including roulette, remainder, tournament and
stochastic universal sampling both with and without replacement,

2. Random or user defined initial populations,

3. Any combination of four different data types: nominal, binary, integer and real,

4. Base 2 and Gray encoding and decoding of integer and real data types,

5. Automatic encoding and decoding of chromosome information into phenotypes,

6. User specified number of crossover points and three different options for crossover: standard, inver-
sion and partially matched crossover,

7. Elitism to ensure fittest individuals are retained between generations,

8. User supplied fitness functions with or without additional function parameters,

9. User defined crossover and mutation probabilities,

10. Linear and sigma fitness scaling,

11. Customized and predetermined stopping criteria,

12. Measures of algorithm convergence and efficiency – velocity, on-line and off-line fitness.

Data Structures

Alleles

The genetic encoding of a real or artificial organism is contained within their chromosomes. Each chromosome
consists of a large number of genes, each uniquely located on the chromosome. Each gene in turn is composed
of several alleles. In artificial organisms, i.e. genetic algorithms, an allele is encoded with discrete values.
1482

 Data Mining Genetic Algorithms – An Overview
The original simple genetic algorithm encoded alleles as either zero or one, represented by a single computer bit.
This algorithm uses the same encoding for binary, integer and real phenotype values. In addition, users can spec-
ify nominal phenotypes which can use any non-negative value. This expands the basic genetic algorithm to
include search domains with any number of symbols encoded as nominal phenotypes.

Each nominal phenotype is encoded into a single non-negative integer. Integer phenotypes, on the other hand,
are encoded into a binary representation using either Base-2 or Gray encoding.

The crossover operation in imsls_f_genetic_algorithm handles a wide variety of allele encoding. Users
define their allele encoding using single or multiple bits or a combination. In imsls_f_genetic_algorithm
nominal, binary, integer and real phenotypes can be defined with any number of crossover points. The crossover
and mutation probabilities can be specified. In addition, inversion can be specified for any phenotype and par-
tially matched crossover can be automatically invoked for nominal phenotypes.

This large variety of data types, encoding and crossover options allows users to solve a wide range of search and
optimization problems using imsls_f_genetic_algorithm.

Chromosomes

In natural systems, chromosomes consist of thousands of genes, each encoded using alleles. In artificial systems,
chromosomes are strings of alleles. The relationship between phenotype values and the chromosome allele data
structure is created using imsls_f_ga_chromosome.

The chromosome data structure for an individual consists of an integer array representing the alleles, and addi-
tional information needed for encoding and decoding nominal, integer and real phenotype values into the allele.
This information is used for implementing automatic Base-2 and Gray encoding and differentiating between
nominal phenotypes requiring partially matched crossover and other classes of nominal phenotypes.

A detailed description of the Imsls_f_chromosome data structure is given in Table 46. The data structure not only
contains the chromosome information encoded as an integer array of alleles, it also contains phenotype values.
By default, information in the allele array is automatically decoded into phenotypes. This behavior can be sup-
pressed using the IMSLS_NO_DECODE option in the imsls_f_genetic_algorithm function.

Table 46: The Imsls_f_chromosome Data Structure

Parameter Data Type Description

total_length int Total number of bytes allocated to the data structure.

c_length int The length of the allele array.

allele int[] An array of of length c_length containing the allele values (bits) for
the chromosome.

n_binary int The number of binary phenotypes.

n_nominal int The number of nominal phenotypes.
1483

 Data Mining Genetic Algorithms – An Overview
Individuals

An individual consists of an expressed chromosome for the individual. By default the data structure for individu-
als also contains decoded values for all phenotypes. This allows users to program their fitness function to use
phenotype values instead of their encoded allele representation.

A phenotype is the expression of a collection of genes. In organisms, this expression includes physical character-
istics, such as eye color, and behavior. In artificial systems, a phenotype is generally thought of as an attribute.
For function optimization problems phenotypes might be floating points or integer values. Phenotypes in a
search problem might include nominal or binary encoded information about the search space.

n_integer int The number of integer phenotypes.

n_real int The number of real phenotypes.

n_intBits int The total number of bits in allele used to represent the integer
phenotypes.

n_realBits int The total number of bits in allele used to represent the real
phenotypes.

binaryIndex int The index of the first bit in allele used to represent the binary
phenotypes.

nominalIndex int The index of the first bit in allele used to represent the nominal
phenotypes.

integerIndex int The index of the first bit in allele used to represent the integer
phenotypes.

realIndex int The index of the first bit in allele used to represent the real
phenotypes.

n_categories int[] An array of length n_nominal containing the maximum number of
categories for each nominal phenotype.

i_intervals int[] An array of length n_integer containing the number of discrete
intervals used to represent each integer phenotype.

i_bits int[] An array of length n_integer containing the number of bits in the
allele array assigned to each integer phenotype.

i_bounds int[] An array of size n_integer by 2 containing rows of lower and upper
limits for each integer phenotype.

r_intervals int[] An array of length n_real containing the number of discrete inter-
vals used to represent each real phenotype.

r_bits int[] An array of length n_real containing the number of bits in the allele
array assigned to each real phenotype.

r_bounds float[] An array of size n_real by 2 containing rows of lower and upper
limits for each real phenotype.

Table 46: The Imsls_f_chromosome Data Structure

Parameter Data Type Description
1484

 Data Mining Genetic Algorithms – An Overview
Phenotypes are encoded into the chromosome allele as groups of bits. Later, when the fitness function is evalu-
ated, the algorithm decodes the bits in these groups into their phenotype values. By default this is Base-2
encoding, but Gray encoding can be declared in the imsls_f_ga_individual,
imsls_f_ga_random_population and imsls_f_genetic_algorithm functions. Support is provided for
mapping integer and real values into allele encoding using discretization and either Base-2 or Gray encoding.

Traditional Base-2 encoding of integer and floating point phenotypes can produce binary representations with
widely different representations for phenotypes with similar values. Adjacent integral values encoded using Gray’s
mapping differ by only one bit. For example, in binary, the numbers 15 and 16 have very different representa-
tions: 15=“01111” and 16=“10000”. The Gray encoded values for this number are closer, differing by only a single
bit: 15=“01000” and 16=“11000”.

Although the majority of applications discretize integer and real phenotypes and then encode them using either
Base-2 or Gray encoding, other encoding methods can be implemented by incorporating phenotype encoding
and decoding into the fitness function.

Decoding of chromosome information into its associated phenotypes can be suppressed using the
IMSLS_NO_DECODING argument inimsls_f_genetic_algorithm. In that case the phenotype values in the
Imsls_f_individual data structure will not be updated with every crossover. They are only decoded for the final gen-
eration. Encoding can be either Base-2 or Gray. Base-2 is the default, but Gray encoding can be invoked using the
IMSLS_GRAY argument in imsls_f_ga_individual, imsls_f_ga_random_population or
imsls_f_genetic_algorithm.

Table 47 describes the contents of the Imsls_f_individual data structure.

Table 47: The Imsls_f_individual Data Structure

Parameter Data Type Description

encoding int Controls encoding of real and integer phenotypes.
Encoding is either Base-2, the default, or Gray
invoked using the optional IMSLS_GRAY argument
with imsls_f_genetics_algorithm.

total_length int Total number of bytes allocated to the data
structure.

nominalPhenotype int[] An array of integers of length
chromosome->n_nominal containing the values of
the nominal phenotypes.

binaryPhenotype int[] An array of integers of length
chromosome->n_binary containing the values of
the binary phenotypes.

integerPhenotype int[] An array of integers of length
chromosome->n_integer containing the values of
the integer phenotypes.
1485

 Data Mining Genetic Algorithms – An Overview
Population

A population is a collection of individuals. A genetic algorithm operates on a population, transforming it from one
generation to the next using rules including selection, reproduction, crossover and mutation. A population is
described by the chromosome and individual data structures and the number of its members.

The initial population can be created randomly using imsls_f_ga_random_population, or it can be created
from a user specified set of individuals using imsls_f_ga_population. Both of these functions return an
Imsls_f_population data structure, which is required input to imsls_f_genetic_algorithm.

Table 48 describes the Imsls_f_population data structure.

realPhenotype float[] An array of floating point values of length
chromosome->n_real containing the values of the
real phenotypes.

chromosome Imsls_f_chromosome* A pointer to the chromosome data structure for this
individual.

Table 48: The Imsls_f_population data structure

Parameter Data Type Description

n int The number of individuals in the population.

indexFittest int The index in individual of the fittest individual
within the population.

indexWeakest int The index in individual of the weakest individ-
ual within the population.

avgFitness float The average fitness for the population.

stdFitness float The standard deviation of the fitness for the
population.

maxFitness float The maximum fitness of the population.

minFitness float The minimum fitness of the population.

fitness float* An array of the fitness values for each individual in
the population.

chromosome Imsls_f_chromosome* A pointer to the chromosome data structure for
the individuals in the population.

individual Imsls_f_individual** A pointer to an array of size n containing the indi-
viduals of the population.

Table 47: The Imsls_f_individual Data Structure

Parameter Data Type Description
1486

 Data Mining Genetic Algorithms – An Overview
Note that the fitness values in this data structure are only initialized if the fitness function is passed to the
imsls_f_ga_population or imsls_f_ga_random_population. Upon completion,
imsls_f_genetic_algorithm updates these parameters to the values associated with the last generation.

Fitness and Penalty Functions

The genetic algorithm is designed to find the phenotype that maximizes the fitness function. This is a user sup-
plied function that describes the fitness of a particular phenotype. With each succeeding generation, the genetic
algorithm transforms a population into better performing individuals as defined by the fitness function.

The fitness function is a required argument to imsls_f_genetic_algorithm. Phenotype restrictions other
than simple lower and upper value boundaries are handled by incorporating a penalty function into the fitness
calculation.

The optional argument IMSLS_FITNESS_FCN_WITH_PARMS allows users to have the algorithm pass individ-
uals and parameters to the fitness function. This provides the flexibility to program a single fitness function that
can be applied to a wider variety of applications.

The Genetic Algorithm
There are many variations of the original simple genetic algorithm described by Holland (1975). Many of these
were developed for particular applications or data types. imsls_f_genetic_algorithm implements both the
simple algorithm as well as more advanced variations. It has also been designed to provide advanced users the
flexibility to provide their own initial populations, stopping criteria, and phenotype encoding and decoding.

Once an initial population is constructed, the genetic algorithm finds a solution to the search or optimization
problem using five basic operations to evolve the population from one generation to the next: selection, repro-
duction, crossover, mutation and fitness.

Selection

Selection is the process used to select individuals for reproduction to create the next generation. This is driven by
a fitness function that makes higher fitness individuals more likely to be selected for creating the next generation.

Optimum selection of individuals for reproduction is important to the efficiency and convergence of a genetics
algorithm. Many methods have been researched. imsls_f_genetic_algorithm implements the following
variations: deterministic selection, roulette wheel selection with and without replacement, remainder selection
with and without replacement, SUS selection, rank selection and two forms of tournament selection. Each of
these can be employed with fitness scaling and elitism.

Fitness scaling is not required, but there are two options available: linear scaling and sigma scaling. See
IMSLS_LINEAR_SCALING and IMSLS_SIGMA_SCALING.
1487

 Data Mining Genetic Algorithms – An Overview
Reproduction and Crossover

After individuals are selected, reproduction involves crossing the individual’s chromosomes to produce their off-
spring’s chromosome. In the simple case, this involves exchanging genetic information by swapping bits within
the parent’s chromosome.

Crossover is a random process. It is controlled by the optional arguments IMSLS_CROSSOVERS and
IMSLS_CROSSOVER_PROB in imsls_f_genetic_algorithm. Not all parents selected for reproduction are
mated. Most genetic algorithms use a crossover probability in the range of 0.6 to 0.9. The
IMSLS_CROSSOVER_PROB argument allows users to select any crossover probability between 0 and 1.

Traditionally chromosomes are crossed at a single point. However, some problems benefit from using more
crossover points. The IMSLS_CROSSOVERS argument allows users to select any number of crossover points.

Once two parents are selected for crossover and their crossover points are defined, a genetic algorithm proceeds
to develop a new offspring by alternately mapping alleles from the two chromosomes, swapping the source of
the alleles at each crossover point.

For most applications, this creates a new offspring with a non-zero fitness value. However, for some applications,
such as the traveling salesman problem, the offspring produced by this simple crossover operation will likely be
infeasible. For these problems partially matched crossover and inversion crossover have been developed to
ensure that the resulting offspring is a feasible solution.

Partially matched and inversion crossover are invoked using the IMSLS_PMX_CROSSOVER and
IMSLS_INVERT_CROSSOVER optional arguments in imsls_f_genetic_algorithm.

Mutation

Mutation stochastically switches allele settings using the mutation probability set with
IMSLS_MUTATION_PROB in imsls_f_genetic_algorithm. Most applications set the mutation probability
to a value in the range 0.01 to 0.001. The IMSLS_MUTATION_PROB argument accepts any probability between
0 and 1. However, high mutation rates cause the genetic algorithm to perform similar to a random search.

For users who prefer to replace imsls_f_genetic_algorithm with their own algorithm, the function
imsls_f_ga_mutate can be used for mutation. Decoding of the resulting chromosome into phenotype values
can be achieved using imsls_f_ga_decode.

This traditional mutation operator can produce infeasible solutions for some problems. In those cases, swap
mutation is used. That is, instead of inverting a single allele value, two alleles are randomly swapped within the
nominal portion of the chromosome. This allows mutation to proceed with search problems such as the traveling
salesman problem.
1488

 Data Mining Genetic Algorithms – An Overview
Fitness and Phenotype Constraints

The fitness function is a required argument to imsls_f_genetic_algorithm. The genetic algorithm function
applies the fitness function to each new individual. It must be scaled to return a non-negative value.

Higher fitness values represent higher performing individuals. Constraints on integer and real phenotypes can be
handled by setting lower and upper bounds. Additional constraints for these phenotypes and others should be
incorporated using a penalty calculation in the fitness function.

Artificial Populations
A critical step in applying genetic algorithms to a search or optimization problem is creating a population of artifi-
cial organisms and their fitness function.

Mapping Phenotypes into Chromosomes

Most applications of genetic algorithms for search and optimization involve binary, nominal, integer or real phe-
notypes. Most introductions to genetic algorithms describe applications involving the use of simple binary
phenotypes, making it easier to focus on the algorithm operations. Binary phenotypes make it possible to imple-
ment basic applications and allow users to develop their own phenotype encoding when default encodings are
insufficient.

In most applications, integer and real phenotypes are encoded into chromosome bits by mapping their values
into a discrete representation. Users specify upper and lower bounds for these phenotypes as well as the num-
ber of discrete intervals used for their encoding.

Nominal phenotypes are treated differently from integer phenotypes. Integer phenotypes use chromosome bits
as alleles. Nominal phenotypes use groups of bits as alleles. This allows symbolic chromosome representations
other than binary. Search problems such as the traveling salesman problem are best represented using nominal
phenotypes with partially mixed crossover rather than binary or integer phenotypes.

Information about the nature of the phenotypes and their chromosome encoding is encapsulated in the
Imsls_f_chromosome data structure created by imsls_f_ga_chromosome.

Describing Individuals and the Population

An individual is described by their expressed chromosome, phenotypes and parentage information. Chromo-
some information is encapsulated into an Imsls_f_chromosome data structure. Individuals are represented by the
Imsls_f_individual data structure, which can be automatically created using imsls_f_ga_random_population
or systematically specified using imsls_f_ga_individual and imsls_f_ga_population.

Typically users create an initial population of 20 to 100 individuals, depending on the length of the chromosome.
1489

 Data Mining Genetic Algorithms – An Overview
Selection

Genetic algorithms support a large variety of methods for selecting population individuals for reproduction. The
initial population is either randomly selected or systematically specified using
imsls_f_ga_random_population or imsls_f_ga_population with imsls_f_ga_individual,
respectively.

Selection between generations can be done using a variety of approaches based upon individual fitness. The
most common approach is stochastic selection with replacement based upon the individual’s fitness. Holland
(1975) also referred to this as roulette wheel selection with replacement. Under this approach, individuals with
higher fitness have a higher probability of selection. The roulette wheel selection works well when the distribution
of fitness across the population is not dominated by the high fitness of a few individuals.

If the population includes a few high fitness individuals, then stochastic selection without replacement can work
better than selection with replacement. When selection without replacement is used, an individual cannot be
selected more than once per generation for reproduction. Effectively, this ensures that the individuals in the next
generation are not generated from just a few, high fitness parents.

In addition to stochastic selection with and without replacement, imsls_f_genetic_algorithm also supports
deterministic, remainder, tournament and stochastic universal sampling.

Reproduction and Crossover

Reproduction involves selection and crossover using a selection and crossover model. Standard, partially
matched and inversion crossover can be selected.

Mutation

Mutation is the stochastic process applied to chromosome bits after crossover. Standard mutation examines
each bit and determines whether it should be changed. The probability that a bit is changed is controlled by the
mutation probability set using the optional argument IMSLS_MUTATION_PROB with
imsls_f_genetic_algorithm.

When partially matched crossover (PMX) is used with nominal phenotypes, the standard mutation algorithm can
result in infeasible offspring. When PMX is employed the mutation algorithm is automatically changed. Instead of
switching individual bits, two are randomly selected and swapped. The probability they are swapped is controlled
by the mutation probability.

Since the mutation probability is generally in the range 0.001 to 0.01, mutation occurs infrequently. Still it plays a
key role in halting premature convergence due to early domination by a few fit individuals resulting in a loss of
diversity.
1490

 Data Mining ga_chromosome
ga_chromosome
Creates an Imsls_f_chromosome data structure containing unencoded and encoded phenotype information.

Synopsis
#include <imsls.h>
Imsls_f_chromosome *imsls_f_ga_chromosome (..., 0)

The type double function is imsls_d_ga_chromosome.

Return Value
The function imsls_f_ga_chromosome returns an Imsls_f_chromosome data structure, which is required
input to imsls_f_ga_individual, imsls_f_ga_population, and
imsls_f_ga_random_population. The memory allocated to this data structure can be released using
imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_chromosome *imsls_f_ga_chromosome (

IMSLS_PRINT,

IMSLS_BINARY, int n_binary,

IMSLS_NOMINAL, int n_nominal, int n_categories[],

IMSLS_INTEGER, int n_integer, int i_intervals[], int i_bounds[],

IMSLS_REAL, int n_real, int r_intervals[], float r_bounds[],

0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, summary results are not printed. This option causes the function to print summary results
describing the chromosome structure.
1491

 Data Mining ga_chromosome
IMSLS_BINARY, int n_binary (Input)
The number of binary phenotypes.

Default: n_binary = 0.

IMSLS_NOMINAL, int n_nominal, int n_categories[] (Input)
The first parameter n_nominal is equal to the number of nominal phenotypes. n_categories
is an array of length n_nominal containing the number of nominal categories for each nominal
phenotype. Each value of this array must be at least 2 or greater. If partially matched crossover is
used during the genetic algorithm search then the array n_categories is ignored since all of its
values are assumed equal to n_nominal.

Default: n_nominal = 0.

IMSLS_INTEGER, int n_integer, int i_intervals[] , int i_bounds[] (Input)
The first parameter n_integer is equal to the number of integer phenotypes. The second parame-
ter in this argument, i_intervals, is a one-dimensional array of length n_integer containing
the number of discrete intervals used to map each integer into the chromosome loci. For efficiency,
each value in this array should be a power of 2 such as 2, 4, 8, 16, etc. The third parameter,
i_bounds is an array of size n_integer by 2 containing the lower and upper bounds for each
integer phenotype. The lower and upper bounds for the i-th integer phenotype are equal to
i_bounds[2*i] and i_bounds[2 * i+1] respectively. Each integer value submitted to
imsls_f_genetic_algorithm for the i-th integer phenotype, must conform to the inequality:

Default: n_integer = 0.

IMSLS_REAL, int n_real , int r_intervals[] , float r_bounds[] (Input)
The first parameter n_real is equal to the number of real phenotypes. Point values are mapped
into chromosome loci using discretization. The second parameter in this argument, r_intervals,
is a one-dimensional array of length n_real containing the number of discrete intervals used to
map each real value into the chromosome loci. For efficiency, each value in this array should be a
power of 2 such as 2, 4, 8, 16, etc. The third parameter, r_bounds is an array of size n_real by 2
containing the lower and upper bounds for each integer phenotype. The lower and upper bounds
for the i-th real phenotype are equal to r_bounds[2*i] and r_bounds[2*i+1] respectively.
Hence, r_bounds[2*i+1] must be greater than r_bounds[2*i]. Each real value submitted to
imsls_f_genetic_algorithm for the i-th real phenotype, i, must conform to the inequality:

Default: n_real = 0.

ω

i_bounds 2i ≤ wi ≤ i_bounds 2i + 1

ω

r_bounds 2i ≤ wi < r_bounds 2i + 1
1492

 Data Mining ga_chromosome
Description
The genetic algorithm requires a chromosome representation of phenotypes. Most textbook applications of
genetic algorithms use phenotypes that have a natural binary encoding. Real world problems often have non-
binary phenotypes. Phenotypes are parameters used by the fitness function. Those can include any data type.
This function allows for easy encoding of binary, nominal, integer and real phenotypes.

Binary phenotypes are mapped directly into the chromosome as binary bits. Each binary phenotype is treated as
a single allele. If the user specifies n_binary>0, then the first n_binary bits in the chromosome are allocated
for encoding this information. When the fitness function is called during genetic optimization, these bits are
translated into zeros and ones and then sent to the fitness function as an integer array of length n_binary.

Nominal phenotypes are mapped into the chromosome following the binary phenotypes. The number of bits
assigned to each nominal phenotype is determined from the number of categories for each nominal phenotype.
The value n_categories[i] is equal to the number of categories for the i-th nominal phenotype. The num-

ber of bits assigned to this category is the smallest value of k such that 2k ≥ n_categories[i], i.e.,

 , where is the ceiling of x (least integer of x). A binary nominal pheno-
type would be assigned one bit, and one bit would constitute a single allele. A trinary nominal phenotype would

be assigned two bits since 22 = 4 ≥ 3, and these bits would be treated as a single allele.

The mapping of multiple bits to a single allele is a key difference between nominal phenotypes and other pheno-
types. Alleles for binary, integer and real phenotypes are represented as single bits in the chromosome. The
alleles for nominal phenotypes consist of multiple bits. Since crossover occurs between alleles, crossover for
nominal phenotypes is treated differently. This ensures that only viable values for nominal phenotypes result
from crossover.

It also means that Gray encoding of individual bits has no effect on nominal phenotypes. For many problems
Gray encoding is used instead of standard Base-2 encoding to reduce large changes of encoded phenotype val-
ues after crossover. As a result, Gray encoding is never applied to nominal phenotypes.

In addition, partially mixed crossover is only an option for nominal phenotypes. Nominal phenotypes combined
with partially mixed crossover make it easy to implement search problems similar to the traveling salesman
problem.

Both integer and real phenotypes are discretized. Although this is the most common approach to encoding these
phenotypes, some problems may benefit from other forms of encoding. If so, users should provide their own
encoding, translating the phenotype into a bit representation that can be mapped into binary phenotypes.

Discretization is controlled by two arrays. For integer phenotypes, the array i_intervals contains the number
of discrete intervals used to represent each integer. The number of chromosome bits assigned to the i-th integer

is determined by the values in this array. If i_intervals[i]= k = 2m then the i-th integer phenotype is
assigned m bits. For example, if i_intervals[i]= 4, then this phenotype is assigned two bits.

k = ⌈log2 n_categories i ⌉ ⌈x⌉
1493

 Data Mining ga_chromosome
The array i_bounds contains the upper and lower bounds for each integer phenotype. The lower bound for
the i-th integer phenotype is equal to lb = i_bounds[2i], and the upper bound is equal to
ub = i_bounds[2i+1]. The values for the i-th phenotype, w, must satisfy the inequality lb ≤ w < ub. w is dis-
cretized to w’ using the formula:

Where ⌊x⌋ is the floor of x (greatest integer of x). This results in mapping the i-th integer phenotype, w, into one of
the integers 0,1,…, k-1.

Real phenotypes are handled in the same fashion as integer phenotypes using the values in r_intervals and
r_bounds.

The number of chromosome bits assigned to each phenotype are described in the following table:

See Table 46 for a description of the allele values (bits) for the chromosome. Chromosome bits are ordered first
by binary phenotypes in bits 0 through bbits -1, then nominals, integers and reals in that order.

The memory allocated to this data structure can be released using imsls_free.

Example
This example creates a chromosome with 1 binary, 2 nominal, 3 integer and 2 real phenotypes. The
IMSLS_PRINT argument is used to print a description of the chromosome structure.

#include <imsls.h>

PHENOTYPE NUMBER of BITS

Binary

Nominal

Integer

Real

w ′ = ⌊k w − lb
ub − lb ⌋

bbits = n_binary

nbits = ∑
i=0

n_nominal−1

⌈log2 n_categories i ⌉

ibits = ∑
i=0

n_integer−1
log2 i_intervals i

rbits = ∑
i=0

n_real−1
log2 r_intervals i
1494

 Data Mining ga_chromosome
int main(){
 int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
 /* number of categories for nominal phenotypes */
 int n_categories[] = {2, 3};
 /* number of intervals and boundaries for integer */
 /* phenotypes */
 int i_intervals[] = {16, 16, 16};
 int i_bounds[] = {0, 1000, -10, 10, -20, 0};
 /* number of intervals and boundaries for real */
 /* phenotypes */
 int r_intervals[] = {512, 1024};
 float r_bounds[] = {0.0, 20.0, -20.0, 20.0};
 /* Chromosome Data Types */
 Imsls_f_chromosome* chromosome;
 chromosome = imsls_f_ga_chromosome(
 IMSLS_BINARY, n_binary,
 IMSLS_NOMINAL, n_nominal, n_categories,
 IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
 IMSLS_REAL, n_real, r_intervals, r_bounds,
 IMSLS_PRINT, 0);
 imsls_free(chromosome);
}

Output

The IMSLS_PRINT option produced the following description of the chromosome. The data structure uses 304
bytes. The chromosome has 34 alleles. The first bit is used to represent the binary phenotype.

The next two alleles are assigned to the nominal phenotypes. The first phenotype will be encoded in allele 1 with
the integers zero and one since it has only two categories. The second nominal phenotype has 3 categories. It will
be encoded with the integers zero, one, and two.

The integer phenotypes are each assigned 4 binary bits. Since the number of intervals is the same for each inte-

ger, 16, 4 bits will be used to encode the integers 0-15. If Base-2 encoding is used, the 16th interval will be
encoded as 15 = {1111}.

The first real phenotype uses 512 intervals to discretize its value. This is encoded using 9 alleles. The second real
phenotype uses 1024 intervals to discretize its value. This requires 10 alleles to properly represent the values 0 to
1023.

**** CHROMOSOME STRUCTURE *****
Data Structure length: 304 Bytes
Chromosome length: 34 Bits
******ALLELE ASSIGNMENTS*******
Binary: 0 - 0 n_binary = 1
1495

 Data Mining ga_chromosome
Nominal: 1 - 2 n_nominal= 2
Integer: 3 - 14 n_integer= 3
Real: 15 - 33 n_real = 2

NOMINAL CATEGORIES*************
 Variable 0: 2 categories
 Variable 1: 3 categories

INTEGER BOUNDS*****************
 Variable 0: [0, 1000]
 Variable 1: [-10, 10]
 Variable 2: [-20, 0]

INTEGER BITS*******************
 Variable 0: 4 bits
 Variable 1: 4 bits
 Variable 2: 4 bits

INTEGER DISCRETE INTERVALS*****
 Variable 0: 16 intervals
 Variable 1: 16 intervals
 Variable 2: 16 intervals

REAL BOUNDS********************
 Variable 0: [0,20]
 Variable 1: [-20,20]

REAL BITS**********************
 Variable 0: 9 bits
 Variable 1: 10 bits

REAL DISCRETE INTERVALS********
 Variable 0: 512 intervals
 Variable 1: 1024 intervals

1496

 Data Mining ga_copy_chromosome
ga_copy_chromosome
Copies the contents of one chromosome into another chromosome.

Synopsis
#include <imsls.h>
void imsls_f_ga_copy_chromosome (Imsls_f_chromosome *chromosomeIn,

Imsls_f_chromosome *chromosomeOut)

The type double function is imsls_d_ga_copy_chromosome.

Required Arguments
Imsls_f_chromosome *chromosomeIn (Input)

An existing chromosome to be copied into chromosomeOut.

Imsls_f_chromosome *chromosomeOut (Input/Output)
The contents of chromosomeOut are replaced with chromosomeIn. The memory for
chromosomeOut must already be allocated.

Description
This function copies the contents of chromosomeIn into chromosomeOut. Both chromosomes must have
been previously created with identical structures. The memory for both data structures must have already been
allocated. If memory is not allocated, use imsls_f_ga_clone_chromosome to create an entirely new copy of
an existing chromosome. Although the structures can have different encoding boundaries, they must have the
same number of binary, nominal, integer and real phenotypes.
1497

 Data Mining ga_clone_chromosome
ga_clone_chromosome
Clones an existing chromosome.

Synopsis
#include <imsls.h>
Imsls_f_chromosome *imsls_f_ga_clone_chromosome (Imsls_f_chromosome *chromosomeIn,

…, 0)

The type double function is imsls_d_ga_clone_chromosome.

Required Arguments
Imsls_f_chromosome *chromosomeIn (Input)

An existing chromosome to be copied and returned as a new Imsls_f_chromosome data structure.

Return Value
The function imsls_f_ga_clone_chromosome returns a copy of an Imsls_f_chromosome data structure.
The memory is allocated for the new data structure and the contents of chromosomeIn are copied into that
structure. The memory allocated for this data structure can be released using imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_chromosome *imsls_f_ga_clone_chromosome (Imsls_f_chromosome *chromosomeIn,

IMSLS_PRINT,
0)

Optional Arguments
IMSLS_PRINT (Input)

By default, results are not printed. This option turns on printing of summary information for the
cloned chromosome.
1498

 Data Mining ga_clone_chromosome
Description
Function ga_clone_chromosome returns an Imsls_f_chromosome data structure containing the contents of
chromosomeIn.
1499

 Data Mining ga_individual
ga_individual
Creates an Imsls_f_individual data structure from user supplied phenotypes.

Synopsis
#include <imsls.h>
Imsls_f_individual *imsls_f_ga_individual (Imsls_f_chromosome *chromosome, ..., 0)

The type double function is imsls_d_ga_individual.

Required Arguments
Imsls_f_chromosome *chromosome (Input)

A chromosome data structure created by imsls_f_ga_chromosome. This structure is cloned
and stored in the Imsls_f_individual data structure.

Return Value
The function imsls_f_ga_individual returns an Imsls_f_individual data structure, which is required input
to imsls_f_ga_population. The memory allocated to this data structure can be freed using
imsls_f_ga_free_individual.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_individual *imsls_f_ga_individual (Imsls_f_chromosome *chromosome,

IMSLS_PRINT,
IMSLS_GRAY_ENCODING,
IMSLS_BINARY, int binaryPhenotype[],
IMSLS_NOMINAL, int nominalPhenotype[],
IMSLS_INTEGER, int intPhenotype[],
IMSLS_REAL, float realPhenotype[],
0)
1500

 Data Mining ga_individual
Optional Arguments
IMSLS_PRINT, (Input)

By default, intermediate results are not printed. This option turns on printing of intermediate results.

IMSLS_GRAY_ENCODING, (Input)
Specifies whether alleles are encoded using Base-2 or Gray encoding for integer and real
phenotypes.

Default: Base-2 encoding.

IMSLS_BINARY, int binaryPhenotype[] (Input)
An array of length chromosome->n_binary containing the integer values for any binary pheno-
types. This is a required argument when chromosome->n_binary> 0.

IMSLS_NOMINAL, int nominalPhenotype[] (Input)
An array of length chromosome->n_nominal containing the integer values for any nominal phe-
notypes. This is a required argument when chromosome->n_nominal is greater than zero. The
value of nominalPhenotype[i] must be one of the integers 0, 1, …,
chromosome > n_categories[i]-1.

IMSLS_INTEGER, int integerPhenotype[] (Input)
An array of length chromosome->n_integer containing the integer values for any integer phe-
notypes. This is a required argument when chromosome->n_integer>0. The value of
integerPhenotype[i] must conform to the inequality:

chromosome->i_bounds[2*i] ≤ integerPhenotype[i] ≤ chromosome->i_bounds
[2*i+1]

IMSLS_REAL, float realPhenotype[] (Input)
An array of length chromosome->n_real containing the floating point values for any real pheno-
types. This is a required argument when chromosome->n_real is greater than zero. The value of
realPhenotype[i] must conform to the inequality:

chromosome->r_bounds[2*i]≤ realPhenotype[i] <chromosome->r_bounds[2*i
+1]

Description
The imsls_f_genetic_algorithm operates on a population of individuals. Individuals can be created auto-
matically using ga_random_population or systematically using imsls_f_ga_population. If the initial
population is created using randomly selected individuals, then this function is not needed. However, if the initial
population is to be constructed systematically, then the individuals for that population must first be created using
this function.
1501

 Data Mining ga_individual
This function takes the phenotype values in the optional arguments and creates an Imsls_f_individual data struc-
ture. This structure contains a chromosome created by encoding the phenotypes into their respective allele
representations using the chromosome map described in Imsls_f_chromosome.

It also allows for incorporating parentage information for the individual, although this is typically not done for the
individuals in the initial population.

Memory allocated for this data structure is released using imsls_f_ga_free_individual. The chromosome
data structure passed to this function is copied into the individual and left unaltered. Hence, releasing memory
using imsls_f_ga_free_individual does not release memory allocated to the original chromosome. The
original chromosome can be released using imsls_free.

Example
This example creates an individual using a chromosome with 1 binary, 2 nominals, 3 integers and 2 real pheno-
types. The IMSLS_PRINT argument is used to print a description of the data structure. By default, Base-2
encoding is used for encoding integer and real phenotypes.

Note that imsls_f_ga_free_individual frees the Imsls_f_chromosome data structure within the individual.

#include <imsls.h>
int main(){
 int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
 /* binary phenotype */
 int binaryPhenotype[] = {1};
 /* number of categories for nomial phenotypes */
 int n_categories[] = {2, 3};
 /* nominal phenotype values */
 int nominalPhenotype[] = {1, 2};
 /* number of intervals and boundaries for integer */
 /* phenotypes */
 int i_intervals[] = {16, 16, 16};
 int i_bounds[] = {0, 1000, -10, 10, -20, 0};
 /* integer phenotype values */
 int integerPhenotype[] = {200, -5, -5};
 /* number of intervals and boundaries for real */
 /* phenotypes */
 int r_intervals[] = {512, 1024};
 float r_bounds[] = {0.0, 20.0, -20.0, 20.0};
 /* real phenotype values */
 float realPhenotype[] = {19.9, 19.9};
 /* Chromosome Data Structure */
 Imsls_f_chromosome* chromosome;
 /* Individual Data Structure */
 Imsls_f_individual* individual;
 chromosome = imsls_f_ga_chromosome(
 IMSLS_BINARY, n_binary,
 IMSLS_NOMINAL, n_nominal, n_categories,
 IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
 IMSLS_REAL, n_real, r_intervals, r_bounds, 0);
1502

 Data Mining ga_individual

 /* Create individual data structure */
 individual = imsls_f_ga_individual(chromosome,
 IMSLS_BINARY, binaryPhenotype,
 IMSLS_NOMINAL, nominalPhenotype,
 IMSLS_INTEGER, integerPhenotype,
 IMSLS_REAL, realPhenotype,
 IMSLS_PRINT, 0);
 imsls_free(chromosome);
 imsls_f_ga_free_individual(individual);
}

Output

The IMSLS_PRINT option produced the following description of the individual. Summary starts with a detailed
description of the chromosome. It consists of 34 alleles split among the phenotypes. The actual encoding of the
phenotypes into alleles is shown below.

Bits assigned to binary phenotypes are not encoded. They are mapped directly into the first n_binary bits of
the chromosome. In this case there is only one binary phenotype. It gets mapped into bit zero.

Following the binary phenotype are the nominal phenotypes. Each of these is also mapped into a single allele.
However, unlike binary phenotypes, the alleles can assume values other than zero and one.

The integer and real phenotypes are discretized into sixteen interval values. These are then encoded into 4 bit
Base-2 representations of the integers 0-15.

**** INDIVIDUAL STRUCTURE *****
 Number of Parents: 2
 Encoding: BASE-2

**** CHROMOSOME STRUCTURE *****
Chromosome length: 34 Bits
*****BIT ASSIGNMENTS***********
Binary: 0 - 0 n_binary = 1
Nominal: 1 - 2 n_nominal= 2
Integer: 3 - 14 n_integer= 3
Real: 15 - 33 n_real = 2

********PHENOTYPES*************
BINARY*************************
 Variable 0: 1

NOMINAL************************
 Variable 0: 1
 Variable 1: 2

INTEGER************************
 Variable 0: 200
1503

 Data Mining ga_individual
 Variable 1: -5
 Variable 2: -5

REAL***************************
 Variable 0: 19.9
 Variable 1: 19.9

**********CHROMOSOME**************************************
BINARY BITS: 1

NOMINAL ALLELES: 1 2

INTEGER BITS: 0 0 1 1 0 1 0 0 1 1 0 0
REAL BITS: 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1
**
1504

 Data Mining ga_copy_individual
ga_copy_individual
Copies the contents of one individual into another individual.

Synopsis
#include <imsls.h>
void imsls_f_ga_copy_individual(Imsls_f_individual *individualIn,

Imsls_f_individual *individualOut)

The type double function is imsls_d_ga_copy_individual.

Required Arguments
Imsls_f_individual *individualIn (Input)

An existing individual to be copied into individualOut.

Imsls_f_individual *individualOut (Input/Output)
The contents of individualOut are replaced with individualIn. individualOut must
have been previously created with a structure which is identical to individualIn.

Description
Function imsls_f_ga_copy_individual copies the contents of individualIn into
individualOut. Both individuals must have been created previously with identical structures. Although they
can have different encoding boundaries, they must have the same number of binary, nominal, integer and real
phenotypes.
1505

 Data Mining ga_clone_individual
ga_clone_individual
Clones an existing individual.

Synopsis
#include <imsls.h>
Imsls_f_individual *imsls_f_ga_clone_individual (Imsls_f_individual *individualIn, …, 0)

The type double function is imsls_d_ga_clone_individual.

Required Arguments
Imsls_f_individual *individualIn (Input)

An existing individual to be copied.

Return Value
Returns a pointer to an Imsls_f_individual data structure containing a copy of individualIn. This data struc-
ture can be released using the imsls_f_ga_free_individual function.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_individual *imsls_f_ga_clone_individual (Imsls_f_individual *individualIn,

IMSLS_PRINT,
0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, results are not printed. This option turns on printing of summary information for the
cloned individual.
1506

 Data Mining ga_clone_individual
Description
Function imsls_f_ga_clone_individual returns an Imsls_f_individual data structure containing the con-
tents of individualIn. Memory is allocated for the returned data structure. It can be released using the
imsls_f_ga_free_individual function.
1507

 Data Mining ga_mutate
ga_mutate
Performs the mutation operation on an individual’s chromosome.

Synopsis
#include <imsls.h>
void imsls_f_ga_mutate (float p, Imsls_f_individual *individual, …, 0)

The type double function is imsls_d_ga_mutate.

Required Arguments
float p (Input)

The mutation probability. p can be any value between 0 and 1. Most applications set the probability
to a value in the range 0.01 to 0.001.

Imsls_f_individual *individual (Input/Output)
An existing individual that will undergo mutation.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_ga_mutate (float p, Imsls_f_individual *individual,

IMSLS_PRINT,
IMSLS_SWAP_MUTATION,
0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, results are not printed. This option turns on printing of summary information for the indi-
vidual showing the chromosome before and after mutation.
1508

 Data Mining ga_mutate
IMSLS_SWAP_MUTATION, (Input)
By default, swap encoding of nominal phenotype values is not used. This option turns on swap muta-
tion for nominal phenotypes which ensures that after mutation the new individual contains the same
nominal phenotype values with at most two of them having swapped positions. Swap mutation has
no effect on the mutation of binary, integer or real phenotypes.

Description
Function imsls_f_ga_mutate performs the genetic algorithm mutation operation on the chromosome of an
Imsls_f_individual data structure. Each bit assigned to binary, integer and real phenotypes undergoes the muta-
tion operation using probability p. If the bit is zero it is switched to one and vice versa.

Mutation for nominal phenotypes is handled differently since these are not encoded as binary bits. Each bit
assigned to a nominal phenotype can take on a range of values from 0, 1, … n_categories[i]-1. Any muta-
tion must preserve this encoding. If the nominal phenotypes are further encoded using PMX crossover, then
mutation must preserve that encoding as well.

For non-PMX encoded nominal phenotypes, each nominal phenotype value is mutated with probability p. If it is
selected for mutation, its new value is randomly selected from the uniform discrete distribution of values from 0,
1,… n_categories[i]-1.

If PMX encoding is being used, the optional argument IMSLS_SWAP_MUTATION should be employed. This
argument invokes swap mutation for the nominal phenotypes. Two nominal phenotypes are randomly selected
and then their values are swapped with probability p. This ensures that the resulting new individual has the same
nominal values, with at most two of them having switched positions.
1509

 Data Mining ga_decode
ga_decode
Decodes an individual’s chromosome into its binary, nominal, integer and real phenotypes.

Synopsis
#include <imsls.h>
void imsls_f_ga_decode(Imsls_f_individual *individual)

The type double function is imsls_d_ga_decode.

Required Arguments
Imsls_f_individual *individual (Input/Output)

An existing individual that will have its chromosome information decoded.

Description
Normally decoding is required after crossover or mutation. By default, if imsls_f_genetic_algorithm is
used, mutation, crossover and decoding is done automatically. If a custom genetic algorithm is being written to
replace imsls_f_genetic_algorithm, then imsls_f_ga_decode can be used within the fitness func-
tion prior to fitness calculations.

Binary and nominal phenotypes are copied directly from their chromosome values. Integer and real phenotypes
are encoded as binary bits using either Gray or Base-2 encoding. This function decodes those bits into their inte-
ger or real representations using the Gray or Base-2 encoding specification contained in the individual’s
chromosome.
1510

 Data Mining ga_encode
ga_encode
Encodes an individual’s binary, nominal, integer and real phenotypes into its chromosome.

Synopsis
#include <imsls.h>
void imsls_f_ga_encode(Imsls_f_individual *individual)

The type double function is imsls_d_ga_encode.

Required Arguments
Imsls_f_individual *individual (Input/Output)

An existing individual whose phenotypes get encoded into its chromosome.

Description
Normally encoding is required after changing phenotype values. By default, if either imsls_f_ga_population
or imsls_f_ga_random_population are used to build an initial population, phenotype values are automati-
cally encoded into the chromosome. Normally this makes it unnecessary to decode the chromosome within the
fitness function. However, if individual phenotype values are changed imsls_f_ga_encode can be used to
encode these values into the individual’s chromosome.

Binary and nominal phenotypes are copied directly from their phenotype values into the individual’s chromo-
some. Integer and real phenotypes are encoded as binary bits using either Gray or Base-2 encoding. This
function encodes those bits into their integer or real representations using the Gray or Base-2 encoding specifi-
cation in the individual’s chromosome.
1511

 Data Mining ga_free_individual
ga_free_individual
Frees memory allocated to an existing individual.

Synopsis
#include <imsls.h>
void imsls_f_ga_free_individual(Imsls_f_individual *individual)

The type double function is imsls_d_ga_free_individual.

Required Arguments
Imsls_f_individual *individual (Input)

The individual whose memory is released.

Description
Function imsls_f_ga_free_individual frees memory allocated to an Imsls_f_individual data structure.

Example
See the Example section of function imsls_f_ga_individual.
1512

 Data Mining ga_population
ga_population
Creates an Imsls_f_population data structure from user supplied individuals.

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_population, (int n, Imsls_f_chromosome *chromosome,

Imsls_f_individual *individual[], ..., 0)

The type double function is imsls_d_ga_population.

Required Arguments
int n (Input)

The number of individuals in the population.

Imsls_f_chromosome *chromosome (Input)
A chromosome data structure created by imsls_f_ga_chromosome describing the chromo-
some encoding for individuals.

Imsls_f_individual *individual[] (Input)
An array of pointers to n individuals.

Return Value
Function imsls_f_ga_population returns an Imsls_f_population data structure, which is required input to
imsls_f_genetic_algorithm. The memory allocated to this data structure can be released using
imsls_f_ga_free_population.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_population *imsls_f_ga_population (int n, Imsls_f_chromosome *chromosome,
Imsls_f_individual *individual[],

IMSLS_PRINT,
1513

 Data Mining ga_population
IMSLS_GRAY_ENCODING,
IMSLS_FITNESS, float fitness[],
IMSLS_FITNESS_FCN, float fitness(),
IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms,
0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, intermediate results are not printed. This option turns on printing of intermediate results.

IMSLS_GRAY_ENCODING, (Input)
Specifies whether alleles are encoded using Base-2 or Gray encoding for integer and real
phenotypes.

Default: Base-2 encoding.

IMSLS_FITNESS, float fitness[] (Input)
An array of length n containing the fitness values for the individuals in the population. fitness[i]
is the fitness for the i-th individual.

IMSLS_FITNESS_FCN, float fitness (Imsls_f_individual *individual) (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included within the expanded population data structure. Otherwise
they are set to zero.

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness (Imsls_f_individual *individual, void
*parms), void *parms (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included in the expanded population data structure. The parameters
in parms are passed to the function.

Description
The imsls_f_genetic_algorithm operates on a population of individuals. ga_population allows users
to systematically create an initial population by adding individuals to that population. It takes the individuals cre-
ated using imsls_f_ga_individual and encapsulates them into an Imsls_f_population data structure.
1514

 Data Mining ga_population
Example
This example creates a population of 40 individuals each with one binary, two nominal, three integer and two real
phenotypes. The IMSLS_PRINT argument is used to print a description of the population. A simple fitness
function calculation is used to illustrate how fitness values can be used to initialize a population with the
IMSLS_FITNESS argument. If fitness is not initialized, the fitness array in the data structure is set to NULL. It
can be initialized using an optional argument with imsls_f_genetic_algorithm.

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
int main(){
 int i;
 /* number of phenotypes by category */
 int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
 int n = 40; /* population size */
 int irandom[1]; /* temporary working storage */
 float rrandom[1]; /* temporary working storage */
 int binaryPhenotype[] = {1}; /* binary phenotype */
 /* number of categories for nomial phenotypes */
 int n_categories[] = {2, 3};
 /* nominal phenotype values */
 int nominalPhenotype[] = {1, 2};
 /* number of intervals and boundaries for integer */
 /* phenotypes */
 int i_intervals[] = {16, 16, 16};
 int i_bounds[] = {0, 1000, -10, 10, -20, 0};
 /* integer phenotype values */
 int integerPhenotype[] = {200, -5, -5};
 /* number of intervals and boundaries for real */
 /* phenotypes */
 int r_intervals[] = {512, 1024};
 float r_bounds[] = {0.0, 20.0, -20.0, 20.0};
 /* real phenotype values */
 float realPhenotype[] = {19.9, 19.9};
 /* fitness array for individuals */
 float fitness[40];
 /* Chromosome Data Structure */
 Imsls_f_chromosome* chromosome=NULL;
 /* Individual Data Structure */
 Imsls_f_individual* individuals[40];
 /* Population Data Structure */
 Imsls_f_population* population=NULL;
 chromosome = imsls_f_ga_chromosome(
 IMSLS_BINARY, n_binary,
 IMSLS_NOMINAL, n_nominal, n_categories,
 IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
 IMSLS_REAL, n_real, r_intervals, r_bounds, 0);
 imsls_random_seed_set(12345);
 /* Create individuals */
 printf("Creating %d Individuals\n", n);
 for(i=0; i<n; i++){
 /* generate random values for phenotypes */
 imsls_f_random_binomial(1, 1, 0.5,
1515

 Data Mining ga_population
 IMSLS_RETURN_USER, binaryPhenotype, 0);
 imsls_f_random_uniform_discrete(1, n_categories[0],
 IMSLS_RETURN_USER, irandom, 0);
 nominalPhenotype[0] = irandom[0]-1;
 imsls_f_random_uniform_discrete(1, n_categories[1],
 IMSLS_RETURN_USER, irandom, 0);
 nominalPhenotype[1] = irandom[0]-1;
 imsls_f_random_uniform_discrete(1, i_bounds[1]-i_bounds[0],
 IMSLS_RETURN_USER, irandom, 0);
 integerPhenotype[0] = irandom[0]-1;
 imsls_f_random_uniform_discrete(1, i_bounds[3]-i_bounds[2],
 IMSLS_RETURN_USER, irandom, 0);
 integerPhenotype[1] = irandom[0]-1+i_bounds[2];
 imsls_f_random_uniform_discrete(1, i_bounds[5]-i_bounds[4],
 IMSLS_RETURN_USER, irandom, 0);
 integerPhenotype[2] = irandom[0]-1+i_bounds[4];
 imsls_f_random_uniform(1, IMSLS_RETURN_USER, rrandom, 0);
 realPhenotype[0] =
 rrandom[0] * (r_bounds[1]-r_bounds[0]) + r_bounds[0];
 imsls_f_random_uniform(1, IMSLS_RETURN_USER, rrandom, 0);
 realPhenotype[1] =
 rrandom[0]*(r_bounds[3]-r_bounds[2]) + r_bounds[2];
 /* create individual from these phenotypes */
 individuals[i] = imsls_f_ga_individual(chromosome,
 IMSLS_BINARY, binaryPhenotype,
 IMSLS_NOMINAL, nominalPhenotype,
 IMSLS_INTEGER, integerPhenotype,
 IMSLS_REAL, realPhenotype, 0);
 /* calculate fitness for this individual */
 fitness[i] = 100.0 + 10*binaryPhenotype[0];
 fitness[i] += 2*nominalPhenotype[1] - 4*nominalPhenotype[0];
 fitness[i] += 0.0001*integerPhenotype[0] +
 abs(integerPhenotype[1]+integerPhenotype[2])*0.1;
 fitness[i] += 0.1*realPhenotype[0];
 if (realPhenotype[1]>0) fitness[i] += 0.2*realPhenotype[1];
 else fitness[i] -= 0.2*realPhenotype[1];
 }
 printf("Creating Population from %d Individuals\n", n);
 population = imsls_f_ga_population(n, chromosome, individuals,
 IMSLS_FITNESS, fitness, IMSLS_PRINT, 0);
 imsls_free(chromosome);
 for(i=0; i<n; i++) imsls_f_ga_free_individual(individuals[i]);
 imsls_f_ga_free_population(population);
}

Output

The IMSLS_PRINT option produced the following description of the population. A summary of the population
chromosome structure and fitness are printed followed by detailed information for the first 5 individuals in the
population.

This example also illustrates the bit ordering within chromosomes. Nominal phenotypes are placed in the first
bits followed by binary and encoded integers and real phenotypes.
1516

 Data Mining ga_population
Creating 40 Individuals
Creating Population from 40 Individuals
Population Size: 40
Average Fitness: 109.472527
Std. Dev. Fitness: 5.927261
Maximum Fitness: 120.244392
Minimum Fitness: 98.221916
Chromosome:

**** CHROMOSOME STRUCTURE *****
Chromosome length: 34 Bits
*****BIT ASSIGNMENTS***********
Binary: 2 - 2 n_binary = 1
Nominal: 1 - 2 n_nominal= 2
Integer: 3 - 14 n_integer= 3
Real: 15 - 33 n_real = 2

NOMINAL CATEGORIES*************
 Variable 0: 2 categories
 Variable 1: 3 categories

INTEGER BOUNDS*****************
 Variable 0: [0, 1000]
 Variable 1: [-10, 10]
 Variable 2: [-20, 0]

INTEGER BITS*******************
 Variable 0: 4 bits
 Variable 1: 4 bits
 Variable 2: 4 bits

INTEGER DISCRETE INTERVALS*****
 Variable 0: 16 intervals
 Variable 1: 16 intervals
 Variable 2: 16 intervals

REAL BOUNDS********************
 Variable 0: [0,20]
 Variable 1: [-20,20]

REAL BITS**********************
 Variable 0: 9 bits
 Variable 1: 10 bits

REAL DISCRETE INTERVALS********
 Variable 0: 512 intervals
 Variable 1: 1024 intervals

1517

 Data Mining ga_population
First 5 Individuals
****** INDIVIDUAL 0 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 105.114510
 PHENOTYPES
*************BINARY************
 Variable 0: 0
************NOMINAL************
 Variable 0: 1
 Variable 1: 2
************INTEGER************
 Variable 0: 35
 Variable 1: -10
 Variable 2: -19
**************REAL*************
 Variable 0: 15.3157
 Variable 1: 3.39719
**********CHROMOSOME**
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0
**
****** INDIVIDUAL 1 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 111.796173
 PHENOTYPES
*************BINARY************
 Variable 0: 1
************NOMINAL************
 Variable 0: 1
 Variable 1: 0
************INTEGER************
 Variable 0: 195
 Variable 1: -5
 Variable 2: -5
**************REAL*************
 Variable 0: 19.6777
 Variable 1: -14.0445
**********CHROMOSOME**
1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0
**
****** INDIVIDUAL 2 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 104.841797
 PHENOTYPES
*************BINARY************
 Variable 0: 0
************NOMINAL************
 Variable 0: 0
 Variable 1: 0
************INTEGER************
 Variable 0: 167
1518

 Data Mining ga_population
 Variable 1: 7
 Variable 2: -16
**************REAL*************
 Variable 0: 18.3331
 Variable 1: -10.4589
**********CHROMOSOME**
0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0
**
****** INDIVIDUAL 3 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 110.905807
 PHENOTYPES
*************BINARY************
 Variable 0: 1
************NOMINAL************
 Variable 0: 1
 Variable 1: 0
************INTEGER************
 Variable 0: 629
 Variable 1: 0
 Variable 2: -17
**************REAL*************
 Variable 0: 18.213
 Variable 1: -6.608
**********CHROMOSOME**
1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0
**
****** INDIVIDUAL 4 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 114.371025
 PHENOTYPES
*************BINARY************
 Variable 0: 1
************NOMINAL************
 Variable 0: 1
 Variable 1: 2
************INTEGER************
 Variable 0: 51
 Variable 1: 8
 Variable 2: -3
**************REAL*************
 Variable 0: 7.13049
 Variable 1: -15.7644
**********CHROMOSOME**
1 2 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0
**
1519

 Data Mining ga_random_population
ga_random_population
Creates an Imsls_f_population data structure from randomly generated individuals.

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_random_population (int n, Imsls_f_chromosome *chromosome,

…, 0)

The type double function is imsls_d_ga_random_population.

Required Arguments
int n (Input)

The number of individuals to be randomly generated for the population.

Imsls_f_chromosome *chromosome (Input)
A chromosome data structure created by imsls_f_ga_chromosome describing the chromosome
encoding for individuals.

Return Value
Function imsls_f_ga_random_population returns a pointer to an Imsls_f_population data structure,
which is required input to imsls_f_genetic_algorithm. The memory allocated to this data structure can be
released using imsls_f_ga_free_population.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_population *imsls_f_ga_random_population (int n, Imsls_f_chromosome *chromosome,

IMSLS_PRINT,
IMSLS_GRAY_ENCODING,
IMSLS_PMX_CROSSOVER,
IMSLS_FITNESS_FCN, float fitness(),
1520

 Data Mining ga_random_population
IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms,
IMSLS_BINARY_SELECTION_PROB, float binary_prob[],
IMSLS_NOMINAL_SELECTION_PROB, float nominal_prob[],
IMSLS_INTEGER_SELECTION_MODEL, int int_s_model[], float i_parms[],
IMSLS_REAL_SELECTION_MODEL, int real_s_model[], float r_parms[],
0)

Optional Arguments
IMSLS_PRINT, (Input)

By default, intermediate results are not printed. This option turns on printing of intermediate results.

IMSLS_GRAY_ENCODING, (Input)
Specifies whether alleles are encoded using Base-2 or Gray encoding for integer and real
phenotypes.

Default: Base-2 encoding.

IMSLS_PMX_CROSSOVER, (Input)
This optional argument applies partially matched crossover to the nominal portion of the chromo-
some. Although imsls_f_ga_random_population does not perform crossover in the
population, this option signals that the nominal phenotypes are sequential with values consisting of
an arrangement of the integers 0, 1, …, n_nominal-1.

Default: Standard crossover. Each nominal phenotype can independently have values from 0 to
n_nominal-1.

IMSLS_FITNESS_FCN, float fitness(Imsls_f_individual *individual) (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included within the expanded population data structure. Otherwise
they are set to zero.

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(Imsls_f_individual *individual, void
*parms), void *parms (Input)
User-supplied function to calculate fitness for individual. If this is supplied, fitness values are cal-
culated for each individual and included in the expanded population data structure. The parameters
in parms are passed to the function.

IMSLS_BINARY_SELECTION_PROB, float binary_prob[], (Input)
The random selection model for randomly generating values for the binary phenotypes. By default
binary phenotype values are selected with equal probability, i.e. p(0) = p (1) = 0.5.
1521

 Data Mining ga_random_population
However, binary_prob can be used to specify any Bernoulli distribution as the random selection
model for individual binary phenotypes. binary_prob is a one-dimensional array of length
n_binary. binary_prob[i] is equal to the probability that the i-th binary phenotype equals
zero. Hence the probability it equals one is 1-binary_prob[i].

IMSLS_NOMINAL_SELECTION_PROB, float nominal_prob[] (Input)
The random selection model for randomly generating values for the nominal phenotypes are
described by an array of length n_cats, where

By default all integer values between zero and n_categories[i]-1 are selected with equal prob-
ability. However, nominal_prob can be used to specify any multinomial distribution as the
random selection model for individual nominal phenotypes. nominal_prob is a jagged two dimen-
sional array. The values in the i-th row of this array contain the probability of selecting 0, 1, …,
n_categories[i]-1 for the i-th nominal attribute. These must be valid probabilities scaled
between 0 and 1, and they must sum to 1.0. The number of values in the i-th row is equal to
n_categories[i]. See imsls_f_ga_chromosome for a description of
n_categories.

IMSLS_INTEGER_SELECTION_MODEL, int int_s_model[], float i_parms[] (Input/Output)
The random selection model for randomly generating values for the integer phenotypes.
int_s_model[i] declares the random selection model for the i-th integer phenotype. If
int_s_model[i]= 0, all integer values between the upper and lower limits specified in
chromosome, i_bounds[2i] and i_bounds[2i+1], are selected with equal probability for
integer i, i = 0, …, n_integer- 1. This is the default selection method for integer phenotypes. If
int_s_model[i]= 0, the contents of i_parms[2i] and i_parms[2i+1] are replaced with
the lower limit of the interval and its width, respectively.

If int_s_model[i]=1, the Poisson random selection model is used. The Poisson distribution
models a population of non-negative integers. If this model is selected, then all values for the i-th
integer phenotype must be non-negative. The user supplied value of i_parms[2i] is used as the
mean for the Poisson distribution and the value of i_parms[2i+1] is ignored.

IMSLS_REAL_SELECTION_MODEL, int real_s_model[], float r_parms[] (Input/Output)
The random selection model for randomly generating values for the real phenotypes.
real_s_model[i] can be used to specify the random selection model for the i-th real pheno-
type. If real_s_model[i]= 0, all real values between i_bounds[2i] and i_bounds[2i+1]
are selected with equal probability using the uniform distribution. This is the default selection
method for real phenotypes.

n_cats = ∑
i=0

n_nominal−1
n_categories i
1522

 Data Mining ga_random_population
If real_s_model[i]=1, then the Gaussian distribution is used. In this case, the value of
r_parms[2i] should be set to the mean of this distribution and r_parms[2i+1] should equal
its variance.

Description
The imsls_f_genetic_algorithm operates on a population of individuals.
imsls_f_ga_random_population creates an initial population of n randomly selected individuals.
imsls_f_ga_random_population takes the chromosome structure described by the chromosome argu-
ment and randomly generates values for each phenotype. These are then encoded into Imsls_f_individual data
structures and placed into the population.

Binary phenotypes are randomly generated Bernoulli random variables with p(0) = p(1)=0.5.

Values for nominal phenotypes are generated with equal probability. That is the probability of sampling each of
the n_categories[i] values for the i-th nominal phenotype is
1/(chromosome->n_categories[i]).

By default, random values for the integer phenotypes are generated using the discrete uniform distribution. All
values between i_bounds[2i] and i_bounds[2i+1] are sampled with equal probability. This default can
be changed using the optional argument IMSLS_INTEGER_SELECTION_MODEL.

Likewise, random values for real phenotypes are generated using the continuous uniform random distribution.
All values between r_bounds[2i] and r_bounds[2i+1] are sampled with equal probability. This default
can be changed using the optional IMSLS_REAL_SELECTION_MODEL argument.

Example
This example creates a population of 40 individuals each with 1 binary, 2 nominals, 3 integers and 2 real pheno-
types. The IMSLS_PRINT argument is used to print a description of the population. A simple fitness function
calculation is used to illustrate how fitness values can be used to initialize a population with the
IMSLS_FITNESS argument. If fitness is not initialized, the fitness array in the data structure is set to NULL. It
can be initialized using an optional argument with imsls_f_genetic_algorithm.

#include <imsls.h>
#include <stdio.h>
#include <math.h>
int main(){
 /* number of phenotypes by category */
 int n_binary=1, n_nominal=2, n_integer=3, n_real=2;
 int n = 40; /* population size */
 /* number of categories for nomial phenotypes */
1523

 Data Mining ga_random_population
 int n_categories[] = {2, 3};
 /* number of intervals and boundaries for integer */
 /* phenotypes */
 int i_intervals[] = {16, 16, 16};
 int i_bounds[] = {0, 1000, -10, 10, -20, 0};
 /* number of intervals and boundaries for real */
 /* phenotypes */
 int r_intervals[] = {512, 1024};
 float r_bounds[] = {0.0, 20.0, -20.0, 20.0};
 /* Fittness Function */
 static float fitness(Imsls_f_individual* individual);
 /* Chromosome Data Structure */
 Imsls_f_chromosome* chromosome;
 /* Population Data Structure */
 Imsls_f_population* population;
 /**/
 /* In this example the user function is thread */
 /* safe. Let CNL know it is safe, which allows *
 /* genetic algorithm to run in parallel, if that */
 /* capability exists on the user computer. */
 imsls_omp_options(
 IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 chromosome = imsls_f_ga_chromosome(
 IMSLS_BINARY, n_binary,
 IMSLS_NOMINAL, n_nominal, n_categories,
 IMSLS_INTEGER, n_integer, i_intervals, i_bounds,
 IMSLS_REAL, n_real, r_intervals, r_bounds,
 0);
 /* Create individuals */
 imsls_random_seed_set(12345);
 printf("Creating Population with %d Individuals\n", n);
 population = imsls_f_ga_random_population(n, chromosome,
 IMSLS_FITNESS_FCN, fitness,
 IMSLS_PRINT,
 0);
 printf("Releasing Allocated Memory\n");
 imsls_free(chromosome);
 imsls_f_ga_free_population(population);
 return 0;
}
static float fitness(Imsls_f_individual* individual){
 float f;
 /* calculate fitness for this individual */
 f = 100.0 + 10*individual->binaryPhenotype[0];
 f += 2*individual->nominalPhenotype[1] -
 4*individual->nominalPhenotype[0];
 f += 0.0001*individual->integerPhenotype[0] +
 abs(individual->integerPhenotype[1]+
 individual->integerPhenotype[2])*0.1;
 f += 0.1*individual->realPhenotype[0];
 if(individual->realPhenotype[1]>0)
 f += 0.2*individual->realPhenotype[1];
1524

 Data Mining ga_random_population
 else
 f += -0.2*individual->realPhenotype[1];
 return f;
}

Output

The IMSLS_PRINT option produced the following description of the population. A summary of the population
chromosome structure and fitness are printed followed by detailed information for the first 5 individuals in the
population.

This example also illustrates the bit ordering within chromosomes. Nominal phenotypes are placed in the first
bits followed by binary and encoded integer and real phenotypes. Note that this output is identical to the exam-
ple for imsls_f_ga_population because the fitness function is identical and the random phenotype
generation uses the same random seed.

Creating Population with 40 Individuals
Population Size: 40
Average Fitness: 109.400070
Std. Dev. Fitness: 5.923696
Maximum Fitness: 120.044495
Minimum Fitness: 98.022011
Chromosome:

**** CHROMOSOME STRUCTURE *****
Chromosome length: 34 Bits
*****BIT ASSIGNMENTS***********
Binary: 2 - 2 n_binary = 1
Nominal: 1 - 2 n_nominal= 2
Integer: 3 - 14 n_integer= 3
Real: 15 - 33 n_real = 2

NOMINAL CATEGORIES*************
 Variable 0: 2 categories
 Variable 1: 3 categories

INTEGER BOUNDS*****************
 Variable 0: [0, 1000]
 Variable 1: [-10, 10]
 Variable 2: [-20, 0]

INTEGER BITS*******************
 Variable 0: 4 bits
 Variable 1: 4 bits
 Variable 2: 4 bits

INTEGER DISCRETE INTERVALS*****
1525

 Data Mining ga_random_population
 Variable 0: 16 intervals
 Variable 1: 16 intervals
 Variable 2: 16 intervals

REAL BOUNDS********************
 Variable 0: [0,20]
 Variable 1: [-20,20]

REAL BITS**********************
 Variable 0: 9 bits
 Variable 1: 10 bits

REAL DISCRETE INTERVALS********
 Variable 0: 512 intervals
 Variable 1: 1024 intervals

First 5 Individuals
****** INDIVIDUAL 0 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 105.114510
 PHENOTYPES
*************BINARY************
 Variable 0: 0
************NOMINAL************
 Variable 0: 1
 Variable 1: 2
************INTEGER************
 Variable 0: 35
 Variable 1: -10
 Variable 2: -19
**************REAL*************
 Variable 0: 15.3157
 Variable 1: 3.39719
**********CHROMOSOME**
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0
**
****** INDIVIDUAL 1 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 111.696175
 PHENOTYPES
*************BINARY************
 Variable 0: 1
************NOMINAL************
 Variable 0: 1
 Variable 1: 0
************INTEGER************
 Variable 0: 195
 Variable 1: -5
 Variable 2: -4
**************REAL*************
1526

 Data Mining ga_random_population
 Variable 0: 19.6777
 Variable 1: -14.0445
**********CHROMOSOME**
1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0
**
****** INDIVIDUAL 2 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 104.741791
 PHENOTYPES
*************BINARY************
 Variable 0: 0
************NOMINAL************
 Variable 0: 0
 Variable 1: 0
************INTEGER************
 Variable 0: 167
 Variable 1: 8
 Variable 2: -16
**************REAL*************
 Variable 0: 18.3331
 Variable 1: -10.4589
**********CHROMOSOME**
0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0
**
****** INDIVIDUAL 3 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 110.805908
 PHENOTYPES
*************BINARY************
 Variable 0: 1
************NOMINAL************
 Variable 0: 1
 Variable 1: 0
************INTEGER************
 Variable 0: 630
 Variable 1: 0
 Variable 2: -16
**************REAL*************
 Variable 0: 18.213
 Variable 1: -6.608
**********CHROMOSOME**
1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0
**
****** INDIVIDUAL 4 **
 Number of Parents: 2
 Encoding: BASE-2
 Fitness: 114.571030
 PHENOTYPES
*************BINARY************
1527

 Data Mining ga_random_population
 Variable 0: 1
************NOMINAL************
 Variable 0: 1
 Variable 1: 2
************INTEGER************
 Variable 0: 51
 Variable 1: 9
 Variable 2: -2
**************REAL*************
 Variable 0: 7.13049
 Variable 1: -15.7644
**********CHROMOSOME**
1 2 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0
**
Releasing Allocated Memory
1528

 Data Mining ga_copy_population
ga_copy_population
Copies the contents of one population into another population.

Synopsis
#include <imsls.h>
void imsls_f_ga_copy_population(Imsls_f_population *populationIn,

Imsls_f_population *populationOut)

The type double function is imsls_d_ga_copy_population.

Required Arguments
Imsls_f_population *populationIn (Input)

An existing population to be copied into populationOut.

Imsls_f_population *populationOut (Input/Output)
The contents of populationOut are replaced with populationIn.

Description
Function imsls_f_ga_copy_population copies the contents of populationIn into
populationOut. Both populations must have been previously created with identical structures. Although they
can have different encoding boundaries, they must have the same number of binary, nominal, integer and real
phenotypes and the same number of individuals.
1529

 Data Mining ga_clone_population
ga_clone_population
Clones an existing population.

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_clone_population (Imsls_f_population *populationIn, …, 0)

The type double function is imsls_d_ga_clone_population.

Required Arguments
Imsls_f_population *populationIn (Input)

A pointer to an existing population that gets cloned and returned as a pointer to a copy of
populationIn.

Return Value
Function imsls_f_ga_clone_population creates a copy of an Imsls_f_population data structure. The
memory is allocated for the new data structure and the contents of populationIn are copied into that struc-
ture. Memory allocated for this data structure can be released using the imsls_f_ga_free_population
function.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_population *imsls_f_ga_clone_population (Imsls_f_population *populationIn,

IMSLS_PRINT,
0)
1530

 Data Mining ga_clone_population
Optional Arguments
IMSLS_PRINT, (Input)

By default, summary information is not printed. This option turns on printing of summary informa-
tion for the cloned population.

Description
Function imsls_f_ga_clone_population returns a pointer to an Imsls_f_population data structure con-
taining the contents of populationIn.
1531

 Data Mining ga_grow_population
ga_grow_population
Adds individuals to an existing population.

Synopsis
#include <imsls.h>
void imsls_f_ga_grow_population (int n, Imsls_f_individual *individual[],

Imsls_f_population *population, …, 0)

The type double function is imsls_d_ga_grow_population.

Required Arguments
int n (Input)

The number of individuals to add to the population.

Imsls_f_individual *individual[] (Input)
An array of pointers to n individuals.

Imsls_f_population *population (Input/Output)
An existing population.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_population *imsls_f_ga_grow_population(int n, Imsls_f_individual *individual[],
Imsls_f_population *population,

IMSLS_PRINT,
IMSLS_FITNESS, float fitness[],
IMSLS_FITNESS_FCN, float fitness(),
IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms,
0)
1532

 Data Mining ga_grow_population
Optional Arguments
IMSLS_PRINT, (Input)

By default, summary statistics are not printed. This option turns on printing of the summary statistics
for the new population.

IMSLS_FITNESS, float fitness[] (Input)
An array of length n containing the fitness values for the individuals added to the population.
fitness[i] is the fitness for the i-th individual.

IMSLS_FITNESS_FCN, float fitness(Imsls_f_individual *individual) (Input)
The fitness function calculated for individual. If this is supplied, fitness values are calculated for
each individual and included within the expanded population data structure. Otherwise they are set
to zero.

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(Imsls_f_individual *individual, void
*parms), void *parms (Input)
The fitness function calculated for individual. If this is supplied, fitness values are calculated for
each individual and included in the expanded population data structure. The parameters in parms
are passed to the function.

Description
Function imsls_f_ga_grow_population grows an existing population by adding new individuals. The
chromosome data structure of the individuals and the population must be identical. Fitness values for the new
population are set to zero unless the fitness function is supplied using the optional arguments
IMSLS_FITNESS_FCN or IMSLS_FITNESS_FCN_WITH_PARMS.

Fitness values for the new individuals can also be supplied using optional argument IMSLS_FITNESS.
1533

 Data Mining ga_merge_population
ga_merge_population
Creates a new population by merging two populations with identical chromosome structures.

Synopsis
#include <imsls.h>
Imsls_f_population *imsls_f_ga_merge_population (Imsls_f_population *population1,

Imsls_f_population *population2, …, 0)

The type double function is imsls_d_ga_merge_population.

Required Arguments
Imsls_f_population *population1 (Input)

An existing population with chromosome data structure and encoding identical to population2.

Imsls_f_population *population2 (Input)
An existing population with chromosome data structure and encoding identical to population1.

Return Value
Function imsls_f_ga_merge_population returns a pointer to a new population consisting of the individ-
uals in population1 and population2. population1 and population2 must have the same
chromosome data structure and encoding, although they can have different population sizes. Memory allocated
to this data structure can be released using imsls_f_ga_free_population.

Synopsis with Optional Arguments
#include <imsls.h>

Imsls_f_population *imsls_f_ga_merge_population (Imsls_f_population *population1,
Imsls_f_population *population2,

IMSLS_PRINT,
0)
1534

 Data Mining ga_merge_population
Optional Arguments
IMSLS_PRINT, (Input)

By default, statistics are not printed. This option turns on printing of the summary statistics for the
new population.

Description
Function imsls_f_ga_merge_population creates a new population by combining the individuals and
chromosome information from two populations. The chromosome data structure of the populations must be
identical.
1535

 Data Mining ga_free_population
ga_free_population
Frees memory allocated to an existing population.

Synopsis
#include <imsls.h>
void imsls_f_ga_free_population(Imsls_f_population *population)

The type double function is imsls_d_ga_free_population.

Required Arguments
Imsls_f_population *population (Input)

The population for which allocated memory is to be released.

Description
Function imsls_f_ga_free_population frees memory allocated to an Imsls_f_population data structure.

Example
See the Example section of function imsls_f_ga_population.
1536

 Data Mining genetic_algorithm
genetic_algorithm

more...

Optimizes a user defined fitness function using a tailored genetic algorithm.

Synopsis
#include <imsls.h>
Imsls_f_individual *imsls_f_genetic_algorithm (float fitness(),

Imsls_f_population *initial_population, ..., 0)

The type double function is imsls_d_genetic_algorithm.

Required Arguments
float fitness(Imsls_f_individual *individual) (Input)

The fitness function. Given the data structure for an individual within the population, fitness
returns the fitness of that individual. The fitness function must return non-negative values.

Imsls_f_population *initial_population (Input)
A pointer to the initial population.

Return Value
Function imsls_f_genetic_algorithm optimizes a user defined fitness function by evolving an initial pop-
ulation using a tailored genetic algorithm that searches for the fittest individual. It returns a pointer to a clone of
the fittest individual in the last generation. Memory allocated to this data structure can be released using
imsls_f_ga_free_individual.

Synopsis with Optional Arguments
#include <imsls.h>
1537

 Data Mining genetic_algorithm
Imsls_f_individual *imsls_f_genetic_algorithm (float fitness(),
Imsls_f_population *initial_population,

IMSLS_GRAY_ENCODING,
IMSLS_NO_ELITISM,
IMSLS_NO_DECODE,
IMSLS_PRINT_LEVEL, int level,
IMSLS_MAX_GENERATIONS, int max_generations,
IMSLS_MAX_FITNESS, float max_fitness,
IMSLS_LINEAR_SCALING, float c,
IMSLS_SIGMA_SCALING,
IMSLS_GENERATION_GAP, float p_gap,
IMSLS_MUTATION_PROB, float p_mutation,
IMSLS_CROSSOVER_PROB, float p_xover,
IMSLS_CROSSOVERS, int n_xover,
IMSLS_PMX_CROSSOVER,
IMSLS_INVERT_CROSSOVER,
IMSLS_SELECTION_MODEL, int selection_model,
IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(), void *parms,
IMSLS_N_GENERATIONS, int *n_generations,
IMSLS_ON_LINE_PERFORMANCE, float **on_line_performance,
IMSLS_OFF_LINE_PERFORMANCE, float **off_line_performance,
IMSLS_VELOCITY, float **velocity,
IMSLS_GENERATION_STATS, float **gen_statistics,
IMSLS_LAST_GENERATION, Imsls_f_population **last_generation,
0)

Optional Arguments
IMSLS_GRAY_ENCODING, (Input)

By default, alleles for integer and real phenotypes are encoded using Base-2 encoding. This argu-
ment changes that default to Gray encoding for integer and real phenotypes.

IMSLS_NO_ELITISM, (Input)
By default, elitism is used to preserve the fittest individual from one generation to the next. This argu-
ment disables elitism.
1538

 Data Mining genetic_algorithm
IMSLS_NO_DECODE ,(Input)
By default, chromosome information is decoded into the individual’s phenotypes before every call to
the user’s fitness function. This argument disables automatic decoding between generations. Decod-
ing is only applied to the last generation, including the fittest individual.

IMSLS_PRINT_LEVEL, int level (Input)
By default, no printing of intermediate and final results occur from this function. The
IMSLS_PRINT_LEVEL argument accepts the following values for level:

IMSLS_MAX_GENERATIONS, int max_generations (Input)
The maximum number of generations. Optimization is halted when the number of generations
exceeds max_generations.

Default: max_generations=100.

IMSLS_MAX_FITNESS, float max_fitness (Input)
The optimization is halted if the maximum fitness is greater than this value.

Default: max_fitness=imsls_f_machine(7), i.e., optimization is not halted by large fitness
values. Optimization only stops when the number of generations exceeds max_generations.

IMSLS_LINEAR_SCALING, float c (Input)
Specifies an upper limit for the linear fitness scaling constant. Set c = 1 for no scaling. A check is
made to ensure that the minimum scaled fitness is non-negative. If it falls below zero, then the scal-
ing constant is automatically reduced to make the minimum scaled fitness equal to zero. For linear
scaling the scaling constant is typically between one and two.

Default: c =1, no linear fitness scaling.

IMSLS_SIGMA_SCALING, (Input)
By default, sigma scaling is not used for fitness scaling. This argument enables sigma scaling.

IMSLS_GENERATION_GAP, float p_gap (Input)
The proportion of weakest individuals replaced between generations. If p_gap=1, all of the individu-
als are replaced.

Default: p_gap=1.

level Enumeration Description

0 IMSLS_NONE Suppresses printing of any results.

1 IMSLS_FINAL Prints summary of final results.

2 IMSLS_TRACE_GEN Prints summary of final results plus
generation statistics.

3 IMSLS_TRACE_ALL Prints summary of final results, genera-
tion statistics and individual crossovers.
1539

 Data Mining genetic_algorithm
IMSLS_MUTATION_PROB, float p_mutation (Input)
The probability of mutation. Although most applications set this to a value between 0.005 and 0.1,
any value between 0 and 1 is allowed.

Default: p_mutation=0.005.

IMSLS_CROSSOVER_PROB, float p_xover (Input)
The probability of crossover. p_xover can be any value between 0 and 1. Most genetic algorithms
use a probability between 0.6 and 0.9.

Default: p_xover= 0.6.

IMSLS_CROSSOVERS, int n_xover (Input)
The number of crossover points. De Jong’s (1975) generalized crossover model R6 is implemented. If
n_xover is odd, then the chromosome is treated as a string with a default crossover at the begin-
ning of the chromosome. If n_xover is even, then the chromosome is treated as a ring with no
beginning or end, and crossovers are selected using the uniform distribution on a circle. Crossing
points occur at the odd crossover points. If the IMSLS_PMX_CROSSOVER optional argument is
used, there are always two crossover points within the nominal portion of the chromosome. For par-
tially matched crossovers, this argument is only used to define the number of crossovers within the
binary, integer and real portion of the chromosome.

Default: n_xover=1.

IMSLS_PMX_CROSSOVER, (Input)
By default this optional argument applies partially matched crossover to the nominal portion of the
chromosome. Crossovers for other phenotypes are still applied using standard crossover and inver-
sion crossover if requested. With partially matched crossover, the number of crossovers for nominal
phenotypes is set to 2, and partially matched crossover is applied only to the nominal phenotype.
The number of crossovers for non-nominal phenotypes is still controlled by the value of n_xover.
However, if this optional argument is used, crossover points are randomly selected separately for
nominal and non-nominal alleles.

IMSLS_INVERT_CROSSOVER, (Input)
This option augments standard or partially matched crossover with inversion. Inversion crossover
inverts the values of the alleles in every other crossover segment. If this is applied with partially
matched crossover, inversion is applied within the matched segment of the alleles for the nominal
phenotypes and then within every other segment of any non-nominal phenotype.
1540

 Data Mining genetic_algorithm
IMSLS_SELECTION_MODEL, int selection_model (Input)
The model used for selecting individuals for reproduction. Selection models are described in the fol-
lowing table:

Default: The original selection method described by Holland (1975),
selection_model=IMSLS_ROULETTE_WITH.

IMSLS_FITNESS_FCN_WITH_PARMS, float fitness(Imsls_f_individual *individual, void
*parms), void *parms (Input)
The fitness function calculated for individual. If this is supplied, fitness values are calculated for
each individual and included in the expanded population data structure. The parameters in parms
are passed to the function.

IMSLS_N_GENERATIONS, int *n_generations (Output)
The number of generations used to find the fittest individual.

selection_model Description

IMSLS_DETERMINISTIC Individuals with highest fitness are selected
for reproduction using their expected sam-
pling frequency. See Goldberg (1989)

IMSLS_ROULETTE_WITH Original fitness-proportional selected
described by Holland(1975). Sampling is
done with replacement.

IMSLS_ROULETTE_WITHOUT The original fitness-proportional selected
except that sampling is done without
replacement. This is also referred to as De
Jong’s (1975) R3 model.

IMSLS_REMAINDER_WITH Remainder selection with replacement.

IMSLS_REMAINDER_WITH Remainder selection with replacement.

IMSLS_REMAINDER_WITHOUT Remainder selection without replacement

IMSLS_SUS_SELECTION Stochastic Universal Sampling as described
by Baker (1987).

IMSLS_RANK_SELECTION Rank selection. The individuals with the high-
est fitness are selected once for
reproduction.

IMSLS_TOURNAMENT_1 Tournament selection as described by Wetzel
(1983). Only the fittest individual in a pair is
selected.

IMSLS_TOURNAMENT_2 Tournament selection as described by Gold-
berg and Deb (1991). The fittest individual in
a pair is selected with probability 0.75. Other-
wise the weaker individual is selected.
1541

 Data Mining genetic_algorithm
IMSLS_ON_LINE_PERFORMANCE, float **on_line_performance (Output)
An array of length max_generations containing on-line performance statistics for each
generation.

IMSLS_OFF_LINE_PERFORMANCE, float **off_line_performance (Output)
An array of length max_generations containing off-line performance statistics for each
generation.

IMSLS_VELOCITY, float **velocity (Output)
An array of length max_generations containing velocity statistics for each generation. The veloc-
ity for the i-th generation is equal to where is the maximum fitness for the i-th
generation.

IMSLS_GENERATION_STATS, float **gen_statistics (Output)
An array of size max_generations × 4 containing the maximum fitness, minimum fitness, aver-
age fitness and standard deviation of the fitness for each generation. The i-th row of
gen_statistics contains the statistics for the i-th generation. When
n_generations<max_generations, rows greater than n_generations - 1 are filled with
NaN values. The four columns contain the following statistics calculated for each generation:

IMSLS_LAST_GENERATION, Imsls_f_population **last_generation (Output)
The last generation produced by the genetic algorithm. Memory allocated to this data structure can
be released using imsls_f_ga_free_population.

Description
Genetic algorithms search for the optimum individual in a population. This is defined as the individual with the
highest fitness. Function imsls_f_genetic_algorithm returns the fittest individual in the last generation.
Mathematically, this is equivalent to finding the values of the phenotypes that maximize a user provided fitness
function. Although there are no requirements that the fitness function be non-negative, in general, convergence
to optimum fitness is faster when values of the fitness function are non-negative. Constraints can be applied by
incorporating a penalty function within the fitness calculation. Phenotypes can consist of any combination of

Column Description

1 Maximum Fitness

2 Minimum Fitness

3 Fitness Average

4 Fitness Standard Deviation

1
2 ln(f i × f 0) f i
1542

 Data Mining genetic_algorithm
nominal, binary, integer and real values. Integer and real values must be encoded into a binary representation.
This procedure provides for either Base-2 or Gray encoding. However, users can supply other encodings within
the fitness function.

The function imsls_f_genetic_algorithm uses the population data structure and fitness with sim-
ulated genetic processes of reproduction to search for the optimum individual, i.e. settings of phenotype values.
Genetic algorithms have been successfully applied to a wide variety of optimization and search problems, see
Holland (1975) and Goldberg (1985).

There are many refinements to the basic genetic algorithm originally described by Holland (1975). His basic algo-
rithm begins with an initial population of n individuals, a fitness function, and probabilities for crossover and
mutation of p_xover and p_mutation respectively. The initial population is transformed from one generation
to the next using the following steps:

1. Select n individuals from the current population to generate a mating pool.

2. Apply crossover with probability p_xover to pairs of the selected individuals within the mating pool
to produce two offspring.

3. Apply mutation with probability p_mutation to the offspring to generate the next generation.

4. Check stopping criteria. If they are met, stop and report the fittest individual within the last
generation.

By default Holland’s approach to these steps are used. However, many variations of these can be selected using
optional arguments.

The initial population can be generated automatically using imsls_f_ga_random population or it can be
created by first creating individuals using imsls_f_ga_individual and then a population for those individ-
uals using imsls_f_ga_population.

By default Holland’s roulette wheel with replacement is used for selecting the mating pool. The optional argu-
ment IMSLS_SELECTION_MODEL allows users to select alternate selection methods including remainder,
tournament and stochastic universal selection. Default crossover and mutation probabilities are p_xover= 0.8
and p_mutation= 0.005. These defaults can be changed using the optional arguments
IMSLS_CROSSOVER_PROB and IMSLS_MUTATION_PROB.

In the original algorithm only a single crossover point was randomly selected. The optional argument
IMSLS_CROSSOVERS allows users to designate any number of crossover points.

Standard crossover proceeds by combining the genes from both parents in the order found in those parents.
Inversion crossover inverts this order for one of the parents. Inversion crossover is selected using the optional
argument IMSLS_INVERT_CROSSOVER.
1543

 Data Mining genetic_algorithm
For certain problems, such as the traveling salesman problem, standard crossover can produce infeasible individ-
uals. One approach is to assign zero fitness to those solutions, but this can be very inefficient. Partially matched
crossover is an approach that ensures individuals are feasible for a certain class of problems. If the problem is
best represented using nominal phenotypes with values
0, 1, …, n_nominal-1 where all values must appear once and only once in the chromosome, then partially
matched crossover preserves that condition. Partially matched crossover is selected using the optional argument
IMSLS_PMX_CROSSOVER.

One issue with some applications of genetic algorithms is premature convergence or convergence to false local
solutions. This can occur when dominant individuals within early generations take over the population prema-
turely reducing population diversity. One approach to this problem is fitness scaling. This implementation allows
users to use either linear or sigma fitness scaling. By default, no scaling is used. However, the optional arguments
IMSLS_LINEAR_SCALING and IMSLS_SIGMA_SCALING allow users to have fitness values automatically
scaled before selection.

The genetic algorithm is stopped when any one of the stopping criteria is met. The algorithm is stopped when the
number of generations exceeds max_generations or when the maximum fitness exceeds max_fitness.
By default max_generations= 100; this can be changed using IMSLS_MAX_GENERATIONS. By default
max_fitness is imsls_f_machine(7); this can be changed using IMSLS_MAX_FITNESS.

On some platforms, imsls_f_genetic_algorithm can evaluate the user-supplied function fitness in
parallel. This is done only if the function imsls_omp_options is called to flag user-defined functions as thread-
safe. A function is thread-safe if there are no dependencies between calls. Such dependencies are usually the
result of writing to global or static variables.

Examples

Example 1

De Jong (1975) examined the performance of a genetic algorithm for finding the maximum of a multivariate func-
tion. This is an example of optimizing a variation of De Jong’s R2 function:

where

-2.048 ≤ x

1

 ≤ 2.048 and -2.048 ≤ x

2

 ≤ 2.048

f (x1,x2) = 4000 − 100(x1
2 − x2)

2 − (1 − x1)
2

1544

 Data Mining genetic_algorithm
Since there were only two real phenotypes and the function is easily calculated, the phenotypes were encoded
using discretization with 65,536 values over the interval [-2.048, 2.048]. By default, encoding and decoding is
done within imsls_f_genetic_algorithm. This allows the fitness function to calculate individual fitness
using the real phenotypes instead of the chromosome. Both the chromosome and its phenotype representation
are available within the Imsls_f_individual data structure argument.

The default selection algorithm IMSLS_ROULETTE_WITH was used, but the number of crossover probability
was set to 0.6. The genetic algorithm was more efficient using a lower crossover probability and Gray encoding
instead of the defaults 0.7 and Base-2 encoding. Each generation consisted of 40 individuals.

#include <imsls.h>
#include <stdio.h>
static float deJongR2(Imsls_f_individual* individual);
int main(){
 int i, j; /* index variables */
 int n = 40; /* population size */
 int n_generations = 0; /* final number of generations*/
 int n_real = 2; /* number of real phenotypes */
 int r_intervals[2] = {65536, 65536};
 float r_bounds[4] = {-2.048, 2.048, -2.048, 2.048};
 float* genStats; /* generation statistics */
 Imsls_f_chromosome* chromosome; /* chromosome data structure */
 Imsls_f_individual* best_individual; /* optimum */
 Imsls_f_population* population; /* population data structure */
 Imsls_f_population* last_generation; /* last generation */
 /***/
 /* In this example the user function is thread safe. Let CNL */
 /* know it is safe, which allows genetic algorithm to run in */
 /* parallel, if that capability exists on the user computer. */
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 imsls_random_seed_set(12345);
 chromosome = imsls_f_ga_chromosome(
 IMSLS_REAL, n_real, r_intervals, r_bounds, 0);
 population = imsls_f_ga_random_population(n, chromosome,
 IMSLS_GRAY_ENCODING,
 IMSLS_FITNESS_FCN, deJongR2, 0);
 best_individual = imsls_f_genetic_algorithm(deJongR2, population,
 IMSLS_PRINT_LEVEL, IMSLS_FINAL,
 IMSLS_MAX_FITNESS, 3999.999,
 IMSLS_CROSSOVER_PROB, 0.6,
 IMSLS_GRAY_ENCODING,
 IMSLS_MAX_GENERATIONS, 1000,
 IMSLS_N_GENERATIONS, &n_generations,
 IMSLS_GENERATION_STATS, &genStats,
 IMSLS_LAST_GENERATION,&last_generation, 0);
 printf("\n*****************GENERATION STATISTICS*****************\n");
 printf("Generation Max. Fit. Avg. Fit. Min. Fit. CV\n");
 printf("***\n");
 for(i=0; i<=n_generations; i++){
 printf("Gen. %3d: %11.5f %10.2f %10.2f %9.2f \n",
 i, genStats[4*i], genStats[4*i+2], genStats[4*i+1],
 100*genStats[4*i+3]/genStats[4*i+2]);
1545

 Data Mining genetic_algorithm
 }
 printf("\nLAST GENERATION\n");
printf("***\n");
printf("\nIndv Fitness Chromosome X1 X2\n");
 for(i=0; i<last_generation->n; i++){
 printf(" %2d %6.2f ", i, last_generation->fitness[i]);
 for(j=0; j<last_generation->chromosome->c_length; j++)
 printf("%d",
 last_generation->individual[i]->chromosome->allele[j]);
 printf("%7.3f %6.3f\n",
 last_generation->individual[i]->realPhenotype[0],
 last_generation->individual[i]->realPhenotype[1]);
 }
 printf("\nMaximum: %6.2f for Individual %d\n",
 last_generation->maxFitness,
 last_generation->indexFittest);
 printf("Minimum: %6.2f for Individual %d\n",
 last_generation->minFitness,
 last_generation->indexWeakest);
 printf("Average: %6.2f\n", last_generation->avgFitness);
 printf("Std. Dev: %6.2f\n\n", last_generation->stdFitness);
printf("***\n");
}
/**/
/* De Jong's R2 Function */
/**/
static float deJongR2(Imsls_f_individual* individual)
{
 float f, x1, x2;
 x1 = individual->realPhenotype[0];
 x2 = individual->realPhenotype[1];
 f = 100*(x1*x1-x2)*(x1*x1-x2) + (1.0-x1)*(1.0-x1);
 f = 4000 - f;
 return f;
}

Output

In this example, the print level is set to IMSLS_FINAL in order to print the optimum solution. The generation
statistics are requested using the IMSLS_GENERATIONS_STATS option, and the last population is requested
using the IMSLS_LAST_GENERATION option.

Although the maximum number of generations is set to 100 using the IMSLS_GENERATIONS option, the
genetic algorithm halted after 26 generations when the maximum population fitness exceeded 3999.999.

OPTIMUM SOLUTION
 Fitness: 3999.999512
 Phenotypes:
 Real: 2
 Function Calculations: 1080
 Population Size: 40
 Number of Generations: 26
 Real Phenotype(s):
 1.023594 1.047844
1546

 Data Mining genetic_algorithm
 Chromosome (Gray Encoded):
 11100000000001011010000111000011

*****************GENERATION STATISTICS*****************
Generation Max. Fit. Avg. Fit. Min. Fit. CV

Gen. 0: 3996.12915 3244.16 578.91 28.62
Gen. 1: 3996.25269 3725.90 2770.41 8.24
Gen. 2: 3999.22974 3699.14 1917.26 10.28
Gen. 3: 3999.22974 3683.41 2551.70 9.87
Gen. 4: 3999.73779 3778.83 2551.70 8.35
Gen. 5: 3999.73779 3823.50 3187.72 5.22
Gen. 6: 3999.73779 3796.59 3187.72 5.76
Gen. 7: 3999.73779 3850.94 3302.26 4.28
Gen. 8: 3999.73779 3860.17 3358.92 3.93
Gen. 9: 3999.73779 3886.33 3138.96 4.23
Gen. 10: 3999.74683 3896.13 3292.64 3.85
Gen. 11: 3999.74683 3900.24 3638.17 2.93
Gen. 12: 3999.74683 3899.95 3376.35 3.17
Gen. 13: 3999.74683 3900.57 3476.12 3.19
Gen. 14: 3999.74683 3897.88 3408.28 3.36
Gen. 15: 3999.74683 3908.28 2331.26 3.36
Gen. 16: 3999.99585 3897.28 3301.18 3.94
Gen. 17: 3999.99585 3910.99 3236.92 3.31
Gen. 18: 3999.99585 3953.46 3429.17 1.31
Gen. 19: 3999.99585 3944.98 3764.08 1.41
Gen. 20: 3999.99585 3945.62 3751.01 1.41
Gen. 21: 3999.99585 3934.07 3751.10 1.81
Gen. 22: 3999.99585 3947.08 3739.52 1.62
Gen. 23: 3999.99609 3943.99 3652.86 1.95
Gen. 24: 3999.99609 3942.42 3652.86 1.99
Gen. 25: 3999.99927 3970.69 3845.42 0.92
Gen. 26: 3999.99951 3970.61 3845.42 0.90
LAST GENERATION

Indv Fitness Chromosome X1 X2
 0 3916.58 11100000000011001100110001010011 1.023 0.134
 1 3996.09 01010000000001011100110001010011 -0.512 0.134
 2 3965.22 11010000000011101110111110011011 0.511 0.849
 3 3993.47 01100101000001011010000001100011 -0.928 1.028
 4 3941.02 11010000000001011010000001100011 0.512 1.028
 5 3998.11 11110000000001011100110001110011 0.512 0.134
 6 3951.04 01100100000101011100110001100011 -0.898 0.132
 7 3919.76 01000000000001011110110001110011 -0.000 0.890
 8 3965.35 11110000000001011110111110011011 0.512 0.849
 9 3913.56 11010000000011101010111101110011 0.511 1.190
10 3948.39 11010000000011101110001110110011 0.511 0.978
11 3996.04 01010000000001011100110001100011 -0.512 0.132
12 3997.44 11100000100111001110111101101001 1.009 0.859
13 3992.45 11110000000001110100000001000011 0.512 -0.008
14 3958.07 01010000000101011110110001110011 -0.510 0.890
15 3951.33 01100100000001011100110001100011 -0.896 0.132
16 3948.39 11010000000011101110001110110011 0.511 0.978
17 4000.00 11100000000001011010000111010001 1.024 1.046
18 3999.96 11100000000001011010000001100011 1.024 1.028
1547

 Data Mining genetic_algorithm
19 3925.31 01010110010001011010000111010001 -0.440 1.046
20 3999.37 11010000000001011101111001101111 0.512 0.325
21 3845.42 01100101010110110101110001100011 -0.921 -0.380
22 3999.64 11010101000011101100111001000011 0.415 0.184
23 3992.37 01100000000011101110111101101001 -1.023 0.859
24 3990.55 01010000000001110100000001110011 -0.512 -0.006
25 3993.26 11110000000011101100000001000011 0.513 0.008
26 3964.15 11010000000011101110111101110011 0.511 0.858
27 3998.36 11010000000011101100110010011011 0.511 0.143
28 3950.63 01100101000011101100111001000011 -0.927 0.184
29 3996.08 01010000000001011100110001110011 -0.512 0.134
30 3997.89 01010110000011101100111001100111 -0.447 0.188
31 3998.11 11110000000001011100110001110011 0.512 0.134
32 3993.47 01100101000001011010000001100011 -0.928 1.028
33 3992.45 11110000000001110100000001000011 0.512 -0.008
34 3916.61 11100000000011011100110001010011 1.023 0.134
35 3929.38 01010110000001011010000001100011 -0.448 1.028
36 3997.89 01010110000011101100111001100011 -0.447 0.188
37 4000.00 11100000000001011010000111010001 1.024 1.046
38 4000.00 11100000000001011010000111000011 1.024 1.048
39 3991.28 01100100000001011010000001110001 -0.896 1.030
Maximum: 4000.00 for Individual 38
Minimum: 3845.42 for Individual 21
Average: 3970.61
Std. Dev: 35.71

Example 2

The traveling salesman problem creates a problem for traditional crossover. In this problem, the objective is to
find the shortest route while traveling to each city once. In this example, there are eight cities, labeled using the
letters a-h, with distances ranging from 17 to 113 miles.

Traditional crossover would create unfeasible routes; that is some routes after crossover would not visit every city
once. Some would not be visited and others would be visited more than once.

Partially matched crossover (PMX) preserves the feasibility of a route. In the general sense, PMX assumes that the
nominal phenotypes consists of a string of numbers from zero to n_nominal-1, with each number appearing
once and only once in that string. Partially matched crossover uses two crossover points within the nominal por-
tion of the chromosome and swaps the middle segment between the parents. The first and third segments are
manipulated to ensure the resulting offspring is feasible.

#include <imsls.h>
#include <stdio.h>
int main(){
 int i, j, k; /* index variables */
 int n = 50; /* population size */
 int n_generations; /* number of generations */
 int n_nominal = 8; /* number of nominal phenotypes*/
 int n_categories[8] = {
 8, 8, 8, 8,
 8, 8, 8, 8 /* nominal category limits */
 };
1548

 Data Mining genetic_algorithm
 float x1; /* temporary storage */
 float avg; /* average fitness */
 float* genStats; /* generation statistics */
 static float pmxFitness(Imsls_f_individual* individual);
 Imsls_f_chromosome* chromosome; /* chromosome data structure */
 Imsls_f_individual* best_individual;/* optimum */
 Imsls_f_population* population; /* population data structure */
 Imsls_f_population* last_generation;/* last generation */
 char *cities[8] = {"a", "b", "c", "d", /* Cities Label a-h */
 "e", "f", "g", "h"};
 /***/
 /* In this example the user function is thread safe. Let CNL */
 /* know it is safe, which allows genetic algorithm to run in */
 /* parallel, if that capability exists on the user computer. */
 imsls_omp_options(
 IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 imsls_random_seed_set(12345);
 chromosome = imsls_f_ga_chromosome(
 IMSLS_NOMINAL, n_nominal, n_categories,
 0);
 population = imsls_f_ga_random_population(n, chromosome,
 IMSLS_PMX_CROSSOVER,
 IMSLS_FITNESS_FCN, pmxFitness,
 0);
 best_individual = imsls_f_genetic_algorithm(pmxFitness, population,
 IMSLS_PRINT_LEVEL, IMSLS_FINAL,
 IMSLS_PMX_CROSSOVER,
 IMSLS_INVERT_CROSSOVER,
 IMSLS_CROSSOVER_PROB, 0.8,
 IMSLS_MAX_GENERATIONS, 10,
 IMSLS_GENERATION_STATS, &genStats,
 IMSLS_N_GENERATIONS, &n_generations,
 IMSLS_LAST_GENERATION, &last_generation,
 0);
 printf("GENERATION STATISTICS\n");
 printf("Total Number of Generations: %d\n\n", n_generations);
 printf("Generation Max. Fit. Min. Fit. Avg. Fit. CV\n");
 for(i=0; i<=n_generations; i++){
 printf("Gen. %3d: %8.0f %8.0f %12.2f %8.2f\n", i,
 genStats[4 * i], genStats[4 * i + 1], genStats[4 * i + 2],
 100 * genStats[4 * i + 3] / genStats[4 * i + 2]
);
 }
 printf("\n\n LAST GENERATION\n");
 printf("*************************************\n");
 printf("Individual Fitness Phenotype Values \n");
 avg = last_generation->avgFitness;
 for(i=0; i<last_generation->n; i++){
 x1 = last_generation->fitness[i];
 printf(" %2d %6.0f ", i, x1);
1549

 Data Mining genetic_algorithm
 for(j=0; j<last_generation->chromosome->c_length; j++) {
 k = last_generation->individual[i]->nominalPhenotype[j];
 printf("%s ", cities[k]);
 }
 if(x1 == last_generation->maxFitness){
 printf("***\n");
 }else{
 printf("\n");
 }
 }
 printf("Average Fitness: %6.1f\n\n", avg);
 printf("*************************************\n");
 printf("OPTIMUM SOLUTION:\n\nFitness:%4.0f\n\nChromosome: ",
 pmxFitness(best_individual));
 for(i=0; i<best_individual->chromosome->c_length; i++)
 printf("%3d", best_individual->chromosome->allele[i]);
 printf("\n\nPhenotype Values: ");
 for(i=0; i<n_nominal; i++) {
 k = best_individual->nominalPhenotype[i];
 printf("->%s", cities[k]);
 }
 printf("\n\n");
 printf("freeing best individual\n");
 imsls_f_ga_free_individual(best_individual);
 printf("freeing last generation\n");
 imsls_f_ga_free_population(last_generation);
 printf("freeing chromosome\n");
 imsls_free(chromosome);
 printf("freeing population\n");
 imsls_f_ga_free_population(population);
}
/***/
/* FITNESS FUNCTION */
/*** */
static float pmxFitness(Imsls_f_individual* individual)
{
 int i=0, k=0, i1, i2; /* Index variables */
 int n_nominal = 8; /* number of nominal phenotypes */
 float f = 0.0; /* fitness value */
 float distances[64] = {
 /* cities:
 a b c d e f g h */
 0, 17, 27, 73, 61, 57, 51, 23, /* a */
 17, 0, 37, 73, 72, 74, 66, 40, /* b */
 27, 37, 0, 48, 35, 49, 65, 50, /* c */
 73, 73, 48, 0, 47, 82, 113, 95, /* d */
 61, 72, 35, 47, 0, 38, 80, 78, /* e */
 57, 74, 49, 82, 38, 0, 48, 65, /* f */
 51, 66, 65, 113, 80, 48, 0, 40, /* g */
 23, 40, 50, 95, 78, 65, 40, 0 /* h */
 };
 n_nominal = individual->chromosome->n_nominal;
 k = individual->chromosome->nominalIndex+1;
 f = 0.0;
1550

 Data Mining genetic_algorithm
 for(i=k; i<k+n_nominal-1; i++){
 i1 = individual->nominalPhenotype[i-1];
 i2 = individual->nominalPhenotype[i];
 f += distances[i1*n_nominal + i2];
 }
 return 516-f;
}

Output

This program produced the following output. Since the print level was set to IMSLS_FINAL, the optimum solu-
tion was printed. The generation statistics were requested using the IMSLS_GENERATIONS_STATS option,
and the last population was requested using the IMSLS_LAST_GENERATION option.

The maximum number of generations was set to 10. The genetic algorithm found the optimum route after evalu-
ating the fitness of 550 routes in 10 generations. Generation zero is the initial generation provided to the
algorithm and is not counted towards the maximum generation count.

OPTIMUM SOLUTION
 Fitness: 269.000000
 Phenotypes:
 Nominal: 8
 Function Calculations: 550
 Population Size: 50
 Number of Generations: 10
 Nominal Phenotype(s):
 3 4 2 1 0 7 6 5
 Chromosome (Base-2 Encoded):
 3 4 2 1 0 7 6 5
GENERATION STATISTICS
Total Number of Generations: 10
Generation Max. Fit. Min. Fit. Avg. Fit. CV
Gen. 0: 194 29 113.64 33.55
Gen. 1: 251 24 119.10 35.08
Gen. 2: 251 37 131.16 35.99
Gen. 3: 251 38 128.96 33.68
Gen. 4: 251 29 135.08 33.25
Gen. 5: 255 38 136.18 33.44
Gen. 6: 255 28 142.38 33.23
Gen. 7: 255 56 150.56 29.31
Gen. 8: 269 55 155.06 28.88
Gen. 9: 269 56 148.62 26.68
Gen. 10: 269 48 146.32 29.59

 LAST GENERATION

Individual Fitness Phenotype Values
1551

 Data Mining genetic_algorithm
 0 106 a c d g b h e f
 1 269 d e c b a h g f ***
 2 222 d e c h g f a b
 3 154 e a g h b d c f
 4 215 e d c a b f g h
 5 215 e d c a b f g h
 6 158 a h b c d f g e
 7 113 c a d b f e h g
 8 78 f a d b h c g e
 9 125 e d h g b c f a
 10 118 c b e g f h a d
 11 209 d e c b h g a f
 12 161 h b a d c f g e
 13 167 g d b a h c e f
 14 169 a f h g b c e d
 15 137 f g a e d h b c
 16 127 h d a b c f e g
 17 90 b d h g c e a f
 18 216 d h b a c e f g
 19 167 g d e c f h a b
 20 120 e h f c d a b g
 21 86 f a h d b c g e
 22 171 a b d f g h c e
 23 156 d h g a c e f b
 24 146 c e a d b h g f
 25 116 f d g e c h a b
 26 118 b c a h e f d g
 27 95 d g a b f e h c
 28 143 d h b a f c e g
 29 157 b f c g h a e d
 30 175 b e a h g f c d
 31 146 c e a d b h g f
 32 111 c b e h g f a d
 33 140 b e a f g h c d
 34 164 b c e d g h a f
 35 166 f e b c a h g d
 36 199 b a g h f c d e
 37 171 e d f a b c g h
 38 97 f a c d h b e g
 39 222 d e c h g f a b
 40 128 d h c g a b e f
 41 99 e g d c b a f h
 42 112 d h f c b a e g
 43 107 h d a b e f c g
 44 143 c h a b f d e g
 45 144 g a c e d b f h
 46 64 a e c g h d f b
 47 103 b d f h g c a e
 48 129 d a g b f e c h
 49 172 f h b g a c d e
Average Fitness: 146.3

OPTIMUM SOLUTION:
Fitness: 269
Chromosome: 3 4 2 1 0 7 6 5
Phenotype Values: ->d->e->c->b->a->h->g->f
1552

 Data Mining genetic_algorithm
freeing best individual
freeing last generation
freeing chromosome
freeing population

Example 3

This example uses the N-Queens problem to illustrate the use of a fitness function with parameters in imple-
menting a genetic algorithm. The N-Queens problem is derived from chess. The genetic algorithm provides an
efficient search for a valid solution. For this problem the chess board consists of N rows and N columns. The
objective is to place N queens on this board with no conflicts. A conflict occurs when one queen can move and
capture another. Since queens can move diagonally, vertically and horizontally this problem is challenging when
N becomes large.

One solution for N = 4 is displayed in the following table. A valid solution must place every queen in a different
row and column. The problem is to ensure the queens are not in conflict because of lying on the same diagonal.

Similar to the traveling salesman problem, the N-Queens problem can be expressed using N nominal phenotypes
with values 0, 1, …, N-1. The value of the i-th phenotype represents the row number for the queen in the i-th col-
umn. This ensures that any arrangement of the phenotype values represents a board with N queens, each placed
in a different row and column.

The solution for N queens displayed above can be represented by the phenotype values {1, 3, 0, 2}. The search
looks for arrangements that also do not place queens on the same diagonal. Two queens fall on the same diago-
nal if the absolute value of the difference between their row numbers equals the absolute value of the difference
between their column numbers.

This example uses this representation with a fitness function equal to (N – C) where C equals the number of con-
flict among the queens. With this fitness, a solution to the N-Queens has a fitness of N.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
typedef struct
{
 int n_queens;

Row/Col 0 1 2 3

0 Q

1 Q

2 Q

3 Q
1553

 Data Mining genetic_algorithm
} inputArgs;
int main(){
 int i, j, k; /* index variables */
 int n = 500; /* population size */
 int n_generations; /* number of generations */
 int n_queens = 25; /* number of nominal phenotypes*/
 int n_categories[25];
 float maxFit; /* maximum fitness hurdle */
 float* genStats; /* generation statistics */
 static float queensFitness(
 Imsls_f_individual* individual, inputArgs* input);
 inputArgs* parameters;
 Imsls_f_chromosome* chromosome; /* chromosome */
 Imsls_f_individual* best_individual;/* optimum */
 Imsls_f_population* population; /* population */
 /**/
 /* In this example the user function is thread */
 /* safe. Let CNL know it is safe, which allows *
 /* genetic algorithm to run in parallel, if that */
 /* capability exists on the user computer. */
 imsls_omp_options(
 IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 imsls_random_seed_set(12345);
 maxFit = n_queens - 0.5;
 for(i=0; i<n_queens; i++)
 n_categories[i] = n_queens;
 chromosome = imsls_f_ga_chromosome(
 IMSLS_NOMINAL, n_queens, n_categories,
 0);
 parameters = (inputArgs*) malloc(sizeof(inputArgs));
 parameters->n_queens = n_queens;
 population = imsls_f_ga_random_population(n, chromosome,
 IMSLS_PMX_CROSSOVER,
 IMSLS_FITNESS_FCN_WITH_PARMS,
 queensFitness, parameters,
 0);
 best_individual = imsls_f_genetic_algorithm(NULL, population,
 IMSLS_FITNESS_FCN_WITH_PARMS, queensFitness, parameters,
 IMSLS_PRINT_LEVEL, IMSLS_FINAL,
 IMSLS_PMX_CROSSOVER,
 IMSLS_LINEAR_SCALING, 2.0,
 IMSLS_CROSSOVER_PROB, 0.7,
 IMSLS_MUTATION_PROB, 0.01,
 IMSLS_MAX_GENERATIONS, 10000,
 IMSLS_MAX_FITNESS, maxFit,
 IMSLS_GENERATION_STATS, &genStats,
 IMSLS_N_GENERATIONS, &n_generations,
 0);
 printf("GENERATION STATISTICS\n");
 printf("Total Number of Generations: %d\n\n", n_generations);
 printf("Generation Max. Fit. Min. Fit. Avg. Fit. CV\n");
1554

 Data Mining genetic_algorithm
 printf("***\n");
 for(i = 0; i <= n_generations; i += 25){
 printf("Gen. %3d: %8.0f %8.0f %12.2f %8.2f\n",
 i, genStats[4 * i], genStats[4 * i + 1], genStats[4 * i + 2],
 100 * genStats[4 * i + 3] / genStats[4 * i + 2]);
 }
 i = n_generations;
 printf("Gen. %3d: %8.0f %8.0f %12.2f %8.2f\n",
 i, genStats[4 * i], genStats[4 * i + 1], genStats[4 * i + 2],
 100 * genStats[4 * i + 3] / genStats[4 * i + 2]);
 printf("***\n");
 printf("OPTIMUM SOLUTION:\n\nFitness:%4.0f\n\nChromosome: ",
 queensFitness(best_individual, parameters));
 for(i = 0; i < best_individual->chromosome->c_length; i++)
 printf("%3d", best_individual->chromosome->allele[i]);
 if(n_queens<100){
 printf("\n\nBoard Positions: \n\n");
 for(i=0; i<n_queens; i++)
 printf("--");
 printf("-\n");
 for(i=0; i<n_queens; i++) {
 for(j=0; j<n_queens; j++){
 k = best_individual->nominalPhenotype[j];
 if(i==k)
 printf("|Q");
 else
 printf("| ");
 }
 printf("|\n");
 for(k=0; k<n_queens; k++)
 printf("--");
 printf("-\n");
 }
 printf("\n\n");
 }
}
static float queensFitness(Imsls_f_individual* individual, inputArgs* input)
{
 int i=0, j=0, k=0; /* Index variables */
 int n_queens;
 float f = 0.0; /* Fitness value */
 n_queens = input->n_queens;
 f = 0;
 for(i=0; i<n_queens-1; i++){
 for(j=i+1; j<n_queens; j++){
 k = individual->chromosome->allele[i] -
 individual->chromosome->allele[j];
1555

 Data Mining genetic_algorithm
 k = abs(k);
 if (abs(i - j) == k) f++;
 }
 }
 f = n_queens - f;
 return f;
}

Output

This program produced the following solution to the N-Queens problem with N=50 queens. Notice that some of
the minimum fitness values are negative. This alters the random selection of the fittest parents, but if these val-
ues are few and small, then the effect is not enough to halt the genetic algorithm.

For 50 queens there are over 1064 ways of placing queens ensuring each is in its own row and column. An
exhaustive search of these possible solutions to find a arrangement without diagonal conflicts would be time
consuming. The genetic algorithm search found a solution in only 568 generations, requiring 284,500 function
evaluations.

OPTIMUM SOLUTION
 Fitness: 25.000000
 Phenotypes:
 Nominal: 25
 Function Calculations: 284500
 Population Size: 500
 Number of Generations: 568
 Nominal Phenotype(s):
 23 12 16 9 13 2 18 1 21 10 6 19
 3 20 0 7 15 4 8 17 22 14 5 11
 24
 Chromosome (Base-2 Encoded):
 23 12 16 9 13 2 18 1 21 10 6 19 3 20 0 7 15 4
 8 17 22 14 5 11 24
GENERATION STATISTICS
Total Number of Generations: 568
Generation Max. Fit. Min. Fit. Avg. Fit. CV

Gen. 0: 19 -10 8.11 52.98
Gen. 25: 21 -2 11.02 30.33
Gen. 50: 21 -4 11.49 29.48
Gen. 75: 21 -1 11.15 29.51
Gen. 100: 21 -3 11.42 33.10
Gen. 125: 21 -3 11.17 31.50
Gen. 150: 21 -4 10.64 34.01
Gen. 175: 21 -8 10.60 34.64
Gen. 200: 21 -4 11.16 32.47
Gen. 225: 21 -2 10.76 34.18
Gen. 250: 22 -1 11.08 32.50
Gen. 275: 22 -4 10.98 34.14
Gen. 300: 23 -3 10.97 33.84
1556

 Data Mining genetic_algorithm
Gen. 325: 23 -1 11.75 29.37
Gen. 350: 23 -10 11.08 33.76
Gen. 375: 23 -4 11.54 31.17
Gen. 400: 23 1 11.55 30.43
Gen. 425: 23 -8 12.76 26.36
Gen. 450: 23 -2 12.01 27.39
Gen. 475: 23 0 12.94 27.34
Gen. 500: 23 3 13.78 22.91
Gen. 525: 23 4 15.05 17.90
Gen. 550: 24 4 16.47 18.41
Gen. 568: 25 12 19.48 11.63

OPTIMUM SOLUTION:
Fitness: 25
Chromosome: 23 12 16 9 13 2 18 1 21 10 6 19 3 20
 0 7 15 4 8 17 22 14 5 11 24
Board Positions:

| | | | | | | | | | | | | | |Q| | | | | | | | | | |

| | | | | | | |Q| | | | | | | | | | | | | | | | | |

| | | | | |Q| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | |Q| | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |Q| | | | | | | |

| |Q| | |

| | | | | | | | | | |Q| | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | |Q| | | | | | | | | |

| | | | | | | | | | | | | | | | | | |Q| | | | | | |

| | | |Q| |

| | | | | | | | | |Q| | | | | | | | | | | | | | | |

| |Q| |

| |Q| |

| | | | |Q| |

| |Q| | | |

| | | | | | | | | | | | | | | | |Q| | | | | | | | |

| | |Q| |

| | | | | | | | | | | | | | | | | | | |Q| | | | | |

| | | | | | |Q| | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | |Q| | | | | | | | | | | | | |
1557

 Data Mining genetic_algorithm

| | | | | | | | | | | | | |Q| | | | | | | | | | | |

| | | | | | | | |Q| | | | | | | | | | | | | | | | |

| |Q| | | | |

|Q| |

| |Q|
--

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm.
User flag = "#".
1558

 Data Mining Naive Bayes – An Overview
Naive Bayes – An Overview
Classification problems are characterized by a need to classify unknown patterns or data into one of m categories
based upon the values of k attributes x1, x2, …, xk. There are many algorithms for solving classification problems

including discriminant analysis, neural networks and Naive Bayes. Each algorithm has its strengths and weak-
nesses. Discriminant analysis is robust but it requires x1, x2, …, xk. to be continuous, and since it uses a simple

linear equation for the discriminant function, its error rate can be higher than the other algorithms. See
imsls_f_discriminant_analysis.

Neural Networks provides a linear or non-linear classification algorithm that accepts both nominal and continu-
ous input attributes. However, network training can be unacceptably slow for problems with a larger number of
attributes, typically when k >1000. Naive Bayes, on the other hand, is a simple algorithm that is very fast. A Naive
Bayes classifier can be trained to classify patterns involving thousands of attributes and applied to thousands of
patterns. As a result, Naive Bayes is a preferred algorithm for text mining and other large classification problems.
However, its computational efficiency comes at a price. The error rate for a Naive Bayes classifier is typically
higher than the equivalent Neural Network classifier, although it is usually low enough for many applications such
as text mining.

If C is the classification attribute and XT={x1, x2, …, xk} is the vector valued array of input attributes, the classifica-

tion problem simplifies to estimating the conditional probability P(c|X) from a set of training patterns. The Bayes
rule states that this probability can be expressed as the ratio:

where c is equal to one of the target classes 0, 1, …, n_classes-1. In practice, the denominator of this expres-
sion is constant across all target classes since it is only a function of the given values of X. As a result, the Naive

Bayes algorithm does not expend computational time estimating for every pattern.

Instead, a Naive Bayes classifier calculates the numerator for each
target class and then classifies X to the target class with the largest value, i.e.,

The classifier simplifies this calculation by assuming conditional independence:

P C = c∣X = x1, x2, ... xk =
P C = c P X = x1, x2, ... xk ∣C = c

P X = x1, x2, ... xk

P X = x1,x2,...xk

P C = c P X = x1,x2,...xk ∣C = c

max
X P(C = c)P(X |C = c)n_classes -1c=0,1,
1559

 Data Mining Naive Bayes – An Overview
This is equivalent to assuming that the values of the input attributes, given C, are independent of one another, i.e.

In real world data this assumption rarely holds, yet in many cases this approach results in surprisingly low classifi-

cation error rates. Thus, the estimate of from a Naive Bayes classifier is
generally an approximation, classifying patterns based upon the Naive Bayes algorithm can have acceptably low
classification error rates.

Function imsls_f_naive_bayes_trainer is used to train a classifier from a set of training patterns that con-
tains patterns with values for both the input and target attributes. This routine stores the trained classifier into an
Imsls_f_nb_classifier data structure. The trained classifier can in turn be stored to a file using
imsls_f_nb_classifier_write, and later retrieved using imsls_f_nb_classifier_read.

Classifications of new patterns with unknown classifications can be predicted by passing the trained classifier
data structure, Imsls_f_nb_classifier, to imsls_f_naive_bayes_classification. If necessary, memory allo-
cated to the trained classifier can be released using imsls_f_nb_classifier_free.

P X = x1, x2, ... xk ∣C = c =∏
j=1

k

P x j∣C = c

P xi∣x j,C = c = P xi∣C = c for all i ≠ j.

P C = c∣X = x1, x2, … xk
1560

 Data Mining naive_bayes_trainer
naive_bayes_trainer

more...

Trains a Naive Bayes classifier.

Synopsis
#include <imsls.h>
int *imsls_f_naive_bayes_trainer (int n_patterns, int n_classes,

int classification[], ..., 0)

The type double function is imsls_d_naive_bayes_trainer.

Required Arguments
int n_patterns (Input)

Number of training patterns.

int n_classes (Input)
Number of target classifications.

int classification[] (Input)
Array of size n_patterns containing the target classifications for the training patterns. These must
be encoded from zero to n_classes-1. Any value outside this range is considered a missing value.
In this case, the data in that pattern are not used to train the Naive Bayes classifier. However, any pat-
tern with missing values is still classified after the classifier is trained.

Return Value
An array of size (n_classes+1) by 2 containing the number of classification errors and the number of non-
missing classifications for each target classification plus the overall totals for these errors. For i < n_classes,
the i-th row contains the number of classification errors for the i-th class and the number of patterns with
non-missing classifications for that class. The last row contains the number of classification errors totaled over all
target classifications and the total number of patterns with non-missing target classifications. The memory allo-
cated for this array can be released using imsls_free.
1561

 Data Mining naive_bayes_trainer
If training is unsuccessful, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_naive_bayes_trainer (int n_patterns, int n_classes,
int classification[],

IMSLS_CONTINUOUS, int n_continuous, float continuous[],

IMSLS_NOMINAL, int n_nominal, int n_categories[], int nominal[],

IMSLS_PRINT_LEVEL, int print_level,

IMSLS_IGNORE_MISSING_VALUE_PATTERNS,

IMSLS_DISCRETE_SMOOTHING_PARM, float d_lambda,

IMSLS_CONTINUOUS_SMOOTHING_PARM, float c_lambda,

IMSLS_ZERO_CORRECTION, float zero_correction,

IMSLS_SELECTED_PDF, int selected_pdf[],

IMSLS_GAUSSIAN_PDF, float means[], float stdev[],

IMSLS_LOG_NORMAL_PDF, float logMean[], float logStdev[],

IMSLS_GAMMA_PDF, float a[], float b[],

IMSLS_POISSON_PDF, float theta[],

IMSLS_USER_PDF, float pdf(),

IMSLS_USER_PDF_WITH_PARMS, float pdf(), void *parms,

IMSLS_STATISTICS, float **means, float **stdev,

IMSLS_STATISTICS_USER, float means[], float stdev[],

IMSLS_PREDICTED_CLASS, int **predicted_class,

IMSLS_PREDICTED_CLASS_USER, int predicted_class[],

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob,

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[],

IMSLS_CLASS_ERROR, float **class_error,

IMSLS_CLASS_ERROR_USER, float class_error[],

IMSLS_COUNT_TABLE, int **count_table,

IMSLS_COUNT_TABLE_USER, int count_table[],

IMSLS_NB_CLASSIFIER, Imsls_f_nb_classifier **nb_classifier,
1562

 Data Mining naive_bayes_trainer
IMSLS_RETURN_USER, int classErrors[],

0)

Optional Arguments
IMSLS_CONTINUOUS, int n_continuous, float continuous[] (Input)

n_continuous is the number of continuous attributes and continuous is an array of size
n_patterns by n_continuous containing the training values for the continuous attributes. The
i-th row contains the input attributes for the i-th training pattern. The j-th column of continuous
contains the values for the j-th continuous attribute. Missing values should be set equal to
imsls_f_machine(6) =NaN. Patterns with both non-missing and missing values are used to
train the classifier unless the IMSLS_IGNORE_MISSING_VALUE_PATTERNS argument is sup-
plied. If the IMSLS_CONTINUOUS argument is not supplied, n_continuous is assumed equal to
zero.

IMSLS_NOMINAL, int n_nominal, int n_categories[], int nominal[] (Input)
n_nominal is the number of nominal attributes. n_categories is an array of length
n_nominal containing the number of categories associated with each nominal attribute. These
must all be greater than zero. nominal is an array of size n_patterns by n_nominal containing
the training values for the nominal attributes. The i-th row contains the nominal input attributes for
the i-th pattern. The j-th column of this matrix contains the classifications for the j-th nominal attri-
bute. The values for the j-th nominal attribute are expected to be encoded with integers starting
from 0 to n_categories[i]-1. Any value outside this range is treated as a missing value. Pat-
terns with both non-missing and missing values are used to train the classifier unless the
IMSLS_IGNORE_MISSING_VALUE_PATTERNS option is supplied. If the IMSLS_NOMINAL
argument is not supplied, n_nominal is assumed equal to zero.

IMSLS_PRINT_LEVEL, int print_level (Input)
Print levels for printing data warnings and final results. print_level should be set to one of the
following values:

print_level Description

IMSLS_NONE Printing of data warnings and final results is
suppressed.

IMSLS_FINAL Prints final summary of Naive Bayes classifier training.

IMSLS_DATA_WARNINGS Prints information about missing values and PDF cal-
culations equal to zero.

IMSLS_TRACE_ALL Prints final summary plus all data warnings associated
with missing values and PDF calculations equal to
zero.
1563

 Data Mining naive_bayes_trainer
Default: IMSLS_NONE.

IMSLS_IGNORE_MISSING_VALUE_PATTERNS, (Input)
By default, patterns with both missing and non-missing values are used to train the classifier. This
option causes the algorithm to ignore patterns with one or more missing input attributes during
training. However, classification predictions are still returned for all patterns.

IMSLS_DISCRETE_SMOOTHING_PARM, float d_lambda (Input)
Parameter for calculating smoothed estimates of conditional probabilities for discrete attributes. This
parameter must be non-negative.

Default: Laplace smoothing of conditional probabilities, i.e. d_lambda=1.

IMSLS_CONTINUOUS_SMOOTHING_PARM, float c_lambda (Input)
Parameter for calculating smoothed estimates of conditional probabilities for continuous attributes.
This parameter must be non-negative.

Default: No smoothing of conditional probabilities for continuous attributes, i.e. c_lambda=0.

IMSLS_ZERO_CORRECTION, float zero_correction (Input)
Parameter used to replace conditional probabilities equal to zero numerically. This parameter must
be non-negative.

Default: No correction, i.e. zero_correction = 0.

IMSLS_SELECTED_PDF, int selected_pdf[] (Input)
An array of length n_continuous specifying the distribution for each continuous input attribute. If
this argument is not supplied, conditional probabilities for all continuous attributes are calculated
using the Gaussian probability density function with its parameters estimated from the training pat-
terns, i.e. selected_pdf[i] = IMSLS_GAUSSIAN. This argument allows users to select other
distributions using the following encoding:

selected_pdf[i], specifies the probability density function for the i-th continuous input
attribute.

selected_pdf[i] Probability Density Function

IMSLS_GAUSSIAN Gaussian (See IMSLS_GAUSSIAN_PDF).

IMSLS_LOG_NORMAL Log-normal (See IMSLS_LOG_NORMAL_PDF).

IMSLS_GAMMA Gamma (See IMSLS_GAMMA_PDF).

IMSLS_POISSON Poisson (See IMSLS_POISSON_PDF).

IMSLS_USER User Defined (See IMSLS_USER_PDF).
1564

 Data Mining naive_bayes_trainer
IMSLS_GAUSSIAN_PDF, float means[], float stdev[] (Input)
The means and stdev are two arrays each of size n_gauss by n_classes where n_gauss
represents the number of Gaussian attributes as specified by optional argument
IMSLS_SELECTED_PDF (i.e., the number of elements in selected_pdf equal to
IMSLS_GAUSSIAN). The i-th row of means and stdev contains the means and standard devia-
tions respectively for the i-th Gaussian attribute in continuous for each value of the target
classification. means[i*n_classes+j] is used as the mean for the i-th Gaussian attribute when
the target classification equals j, and stdev[i*n_classes+j] is used as the standard deviation
for the i-th Gaussian attribute when the target classification equals j. This argument is ignored if
n_continuous = 0.

Default: The means and standard deviations for all Gaussian attributes are estimated from the
means and standard deviations of the training patterns. These estimates are the traditional BLUE
(Best Linear Unbiased Estimates) for the parameters of a Gaussian distribution.

IMSLS_LOG_NORMAL_PDF, float logMean[], float logStdev[] (Input)
Two arrays each of size n_logNormal by n_classes where n_logNormal represents the
number of log-normal attributes as specified by optional argument IMSLS_SELECTED_PDF (i.e.,
the number of elements in selected_pdf equal to IMSLS_LOG_NORMAL). The i-th row of
logMean and logStdev contains the means and standard deviations respectively for the i-th log-
normal attribute for each value of the target classification.

logMean[i*n_classes+j] is used as the mean for the i-th log-normal attribute when the tar-
get classification equals j, and logStdev[i*n_classes+j] is used as the standard deviation
for the i-th log-normal attribute when the target classification equals j. This argument is ignored if
n_continuous = 0.

Default: The means and standard deviations for all log-normal attributes are estimated from the
means and standard deviations of the training patterns. These estimates are the traditional MLE
(Maximum Likelihood Estimates) for the parameters of a log-normal distribution.

IMSLS_GAMMA_PDF, float a[], float b[] (Input)
Two arrays each of size n_gamma by n_classes containing the means and standard deviations for
the Gamma continuous attributes, where n_gamma represents the number of gamma distributed
continuous variables as specified by the optional argument IMSLS_SELECTED_PDF (i.e. the num-
ber of elements in selected_pdf equal to IMSLS_GAMMA). The i-th row of a and b contains the
shape and scale parameters for the i-th Gamma attribute for each value of the target classification.
a[i*n_classes+j] is used as the shape parameter for the i-th Gamma attribute when the target
classification equals j, and b[i*n_classes+j] is used as the scale parameter for the i-th
Gamma attribute when the target classification equals j. This argument is ignored if
n_continuous = 0.
1565

 Data Mining naive_bayes_trainer
Default: The shape and scale parameters for all Gamma attributes are estimated from the training
patterns. These estimates are the traditional MLE (Maximum Likelihood Estimates) for the parame-
ters of a Gamma distribution.

IMSLS_POISSON_PDF, float theta[] (Input)
An array of size n_poisson by n_classes containing the means for the Poisson attributes,
where n_poisson represents the number of Poisson distributed continuous variables as specified
by the optional argument IMSLS_SELECTED_PDF (i.e. the number of elements in
selected_pdf equal to IMSLS_POISSON).The i-th row of theta contains the means for the i-th
Poisson attribute for each value of the target classification. theta[i*n_classes+j] is used as
the mean for the i-th Poisson attribute when the target classification equals j. This argument is
ignored if n_continuous= 0.

Default: The means (theta) for all Poisson attributes are estimated from the means of the training
patterns. These estimates are the traditional MLE (Maximum Likelihood Estimates) for the parame-
ters of a Poisson distribution.

IMSLS_USER_PDF, float pdf(int index[], float x) (Input)
The user-supplied probability density function and parameters used to calculate the conditional
probability density for continuous input attributes is required when selected_pdf[i]=
IMSLS_USER.

When pdf is called, x will equal continuous[i*n_continuous+j], and index is an array of
length 3 which will contain the following values for i, j, and k:

The pattern index ranges from 0 to n_patterns-1 and identifies the pattern index for x. The attri-
butes index ranges from 0 to n_categories[i]-1, and k=classification[i].
This argument is ignored if n_continuous = 0. By default the Gaussian PDF is used for calculat-
ing the conditional probability densities using either the means and variances calculated from the
training patterns or those supplied in IMSLS_GAUSSIAN_PDF.

On some platforms, imsls_f_naive_bayes_trainer can evaluate the user-supplied function
pdf in parallel. This is done only if the function imsls_omp_options is called to flag user-defined
functions as thread-safe. A function is thread-safe if there are no dependencies between calls. Such
dependencies are usually the result of writing to global or static variables.

index Value
index[0] i = pattern index

index[1] j = attribute index

index[2] k = target classification
1566

 Data Mining naive_bayes_trainer
IMSLS_USER_PDF_WITH_PARMS, float pdf(int index[], float x, void *parms), void *parms
(Input)
The user-supplied probability density function and parameters used to calculate the conditional
probability density for continuous input attributes is required when selected_pdf[i]=
IMSLS_USER. pdf also accepts a pointer to parms supplied by the user. The parameters pointed
to by parms are passed to pdf each time it is called. For an explanation of the other arguments, see
IMSLS_USER_PDF.

IMSLS_STATISTICS, float **means, float **stdev (Output)
The address of pointers to two arrays of size n_continuous by n_classes containing the
means and standard deviations for the continuous attributes segmented by the target classes. The
structure of these matrices is identical to the structure described for the IMSLS_GAUSSIAN_PDF
argument. The i-th row of means and stdev contains the means and standard deviations respec-
tively of the i-th continuous attribute for each value of the target classification. That is,
means[i*n_classes+j] is the mean for the i-th continuous attribute when the target classifica-
tion equals j, and stdev[i*n_classes+j] is the standard deviation for the i-th continuous
attribute when the target classification equals j, unless there are no training patterns for this condi-
tion. If there are no training patterns in the i, j-th cell then the mean and standard deviation for that
cell is computed using the mean and standard deviation for the i-th continuous attribute calculated
using all of its non-missing values. Standard deviations are estimated using the minimum variance
unbiased estimator.

IMSLS_STATISTICS_USER, float means[], float stdev[] (Output)
Storage for matrices means and stdev provided by the user. See IMSLS_STATISTICS.

IMSLS_PREDICTED_CLASS, int **pred_class (Output)
The address of a pointer to an array of size n_patterns containing the predicted classification for
each training pattern.

IMSLS_PREDICTED_CLASS_USER, int pred_class[] (Output)
Storage for array pred_class provided by the user. See IMSLS_PREDICTED_CLASS.

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob (Output)
The address of a pointer to an array of size n_patterns by n_classes. The values in the i-th
row are the predicted classification probabilities associated with the target classes.
pred_class_prob[i*n_classes+j] is the estimated probability that the i-th pattern belongs
to the j-th target class.

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[] (Output)
Storage for array pred_class_prob is provided by the user. See
IMSLS_PREDICTED_CLASS_PROB for a description.
1567

 Data Mining naive_bayes_trainer
IMSLS_CLASS_ERROR, float **class_error (Output)
The address of a pointer to an array with n_patterns containing the classification probability
errors for each pattern in the training data. The classification error for the i-th training pattern is
equal to 1- pred_class_prob[i*n_classes+k] where k=classification[i].

IMSLS_CLASS_ERROR_USER, float class_error[] (Output)
Storage for array class_error is provided by the user. See IMSLS_CLASS_ERROR for a
description.

IMSLS_COUNT_TABLE int **count_table (Output)
The address of a pointer to an array of size

where m = n_nominal -1.

count_table[i*n_nominal*n_classes+j*n_classes+k] is equal to the number of train-
ing patterns for the i-th nominal attribute, when the classification[i]=j and
nominal[i*n_classes+j]=k.

IMSLS_COUNT_TABLE_USER, int count_table[] (Output)
Storage for matrix count_table provided by the user. See IMSLS_COUNT_TABLE.

IMSLS_NB_CLASSIFIER, Imsls_f_nb_classifier **nb_classifier (Output)
The address of a pointer to an Imsls_f_nb_classifier structure. Upon return, the structure is populated
with the trained Naive Bayes classifier. This is required input to
imsls_f_naive_bayes_classification. Memory allocated to this structure is released
using imsls_f_nb_classifier_free.

IMSLS_RETURN_USER, int classErrors[] (Output)
An array of size (n_classes +1) by 2 containing the number of classification errors and the number
of non-missing classifications for each target classification and the overall totals. For
0 ≤ i < n_classes, the i-th row contains the number of classification errors for the i-th class and
the number of patterns with non-missing classifications for that class. The last row contains the num-
ber of classification errors totaled over all target classifications and the total number of patterns with
non-missing target classifications.

m + 1 n_classes + n_classes∑
i=0

m

n_categories i
1568

 Data Mining naive_bayes_trainer
Description
Function imsls_f_naive_bayes_trainer trains a Naive Bayes classifier for classifying data into one of
n_classes target classes. Input attributes can be a combination of both nominal and continuous data. Ordinal
data can be treated as either nominal attributes or continuous. If the distribution of the ordinal data is known or
can be approximated using one of the continuous distributions, then associating them with continuous attri-
butes allows a user to specify that distribution. Missing values are allowed.

Let C be the classification attribute with target categories 0, 1, …, n_classes-1, and let

XT={x1, x2, …, xk} be a vector valued array of k = n_nominal+n_continuous input attributes. The

classification problem simplifies to estimate the conditional probability P(C|X) from a set of training patterns. The
Bayes rule states that this probability can be expressed as the ratio:

where c is equal to one of the target classes 0, 1, …, n_classes-1. In practice, the denominator of this expres-
sion is constant across all target classes since it is only a function of the given values of X. As a result, the Naive

Bayes algorithm does not expend computational time estimating for every pattern.

Instead, a Naive Bayes classifier calculates the numerator for each
target class and then classifies X to the target class with the largest value, i.e.,

The classifier simplifies this calculation by assuming conditional independence. That is it assumes that:

This is equivalent to assuming that the values of the input attributes, given C, are independent of one another,
i.e.,

In real world data this assumption rarely holds, yet in many cases this approach results in surprisingly low classifi-

cation error rates. Thus, the estimate of from a Naive Bayes classifier is generally
an approximation. Classifying patterns based upon the Naive Bayes algorithm can have acceptably low classifica-
tion error rates.

P C = c∣X = x1, x2, ... xk =
P C = c P X = x1, x2, ... xk ∣C = c

P X = x1, x2, ... xk

P X = x1, x2, … xk

P C = c P X = x1, x2, … xk ∣C = c

max
X P(C = c)P(X |C = c)n_classes -1c=0,1,

P X = x1, x2, ... xk ∣C = c =∏
j=1

k

P x j∣C = c

P xi∣x j,C = c = P xi∣C = c for all i ≠ j

P C = c∣X = x1,x2,...xk
1569

 Data Mining naive_bayes_trainer
For nominal attributes, this implementation of the Naive Bayes classifier estimates conditional probabilities using
a smoothed estimate:

where #N{Z}is the number of training patterns with attribute Z and j is equal to the number of categories associ-
ated with the j-th nominal attribute.

The probability is also estimated using a smoothed estimate:

These estimates correspond to the maximum a priori (MAP) estimates for a Dirichelet prior assuming equal pri-
ors. The smoothing parameter can be any non-negative value. Setting λ = 0 corresponds to no smoothing. The
default smoothing used in this algorithm, λ = 1, is commonly referred to as Laplace smoothing. This can be
changed using the optional argument IMSLS_DISCRETE_SMOOTHING_PARM.

For continuous attributes, the same conditional probability in the Naive Bayes formula is replaced

with the conditional probability density function . By default, the density function for continuous
attributes is the Gaussian density function:

where μ and σ are the conditional mean and variance, i.e. the mean and variance of xj when . By default

the conditional mean and standard deviations are estimated using the sample mean and standard deviation of
the training patterns. These are returned in the optional argument IMSLS_STATISTICS.

In addition to the default IMSLS_GAUSSIAN, users can select three other continuous distributions to model
the continuous attributes using the argument IMSLS_SELECTED_PDF. These are the Log Normal, Gamma,
and Poisson distributions selected by setting the entries in selected_pdf to IMSLS_LOG_NORMAL,
IMSLS_GAMMA or IMSLS_POISSON. Their probability density functions are equal to:

P x j∣C = c =
#N x j ∩ C = c + λ

#N C = c + λJ

P C = c

P C = c =
#N C = c + λ

n_patterns + λ × n_classes

P xj∣C = c
f x j∣C = c

f (x j|C = c) =
1
2πσ e

−
(x j−μ)

2

2σ2

C = c
1570

 Data Mining naive_bayes_trainer
and

By default parameters for these distributions are estimated from the training patterns using the maximum likeli-
hood method. However, they can also be supplied using the optional input arguments
IMSLS_GAUSSIAN_PDF, IMSLS_LOG_NORMAL_PDF, IMSLS_GAMMA_PDF and IMSLS_POISSON_PDF.

The default Gaussian PDF can be changed and each continuous attribute can be assigned a different density
function using the argument IMSLS_SELECTED_PDF. If any entry in selected_pdf is equal to
IMSLS_USER, the user must supply their own PDF calculation using the IMSLS_USER_PDF argument. Each
continuous attribute can be modeled using a different distribution if appropriate.

Smoothing conditional probability calculations for continuous attributes is controlled by the
IMSLS_CONTINOUS_SMOOTHING_PARM and IMSLS_ZERO_CORRECTION optional arguments. By default
conditional probability calculations for continuous attributes are unadjusted for calculations near zero. If the
value of c_lambda is set using the IMSLS_CONTINOUS_SMOOTHING_PARM argument, the algorithm adds
c_lambda to each continuous probability calculation. This is similar to the effect of d_lambda for the corre-
sponding discrete calculations. By default c_lambda=0.

The value of zero_correction from the IMSLS_ZERO_CORRECTION argument is used when

 . If this condition occurs, the conditional probability is replaced with the
value of zero_correction. By default zero_correction = 0.

Examples

Example 1

Fisher’s (1936) Iris data is often used for benchmarking classification algorithms. It is one of the IMSL data sets
and consists of the following continuous input attributes and classification target:

Continuous Attributes: X0(sepal length), X1(sepal width), X2(petal length), and X3(petal width)

f (x j|C = c) =
1
2πσ e

−
(ln(x j)−μ)

2

2σ2

f x j∣C = c =
x j
a−1e

−x j/b

baΓ a , x j > 0, a > 0 and b > 0,

f x j∣C = c = θ
x je−θ
x j!

, x j > 0 and θ > 0.

f x∣C = c + c_lambda = 0
1571

 Data Mining naive_bayes_trainer
Classification (Iris Type): Setosa, Versicolour, or Virginica.

This example trains a Naive Bayes classifier using 150 training patterns with these data.

#include <imsls.h>
#include <stdio.h>
int main(){
 int i, j;
 int n_patterns =150; /* 150 training patterns */
 int n_continuous =4; /* four continuous input attributes */
 int n_classes =3; /* three classification categories */
 int classification[150], *classErrors, *predictedClass;
 float *pred_class_prob, continuous[4*150] ;
 float *irisData; /* Fishers Iris Data */
 char *classLabel[3] = {"Setosa ", "Versicolour", "Virginica "};
 Imsls_f_nb_classifier *nb_classifier;
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* irisData[]: The raw data matrix. This is a 2-D matrix
 with 150 rows and 5 columns. The last 4 columns are the
 continuous input attributes and the 1st column is the
 classification category (1-3). These data contain no */
 /* nominal input attributes. */
 irisData = imsls_f_data_sets(3,0);
 /* Data corrections described in the KDD data mining archive */
 irisData[5*34+4] = 0.1;
 irisData[5*37+2] = 3.1;
 irisData[5*37+3] = 1.5;
 /* setup the required input arrays from the data matrix */
 for(i=0; i<n_patterns; i++){
 classification[i] = (int) irisData[i*5]-1;
 for(j=1; j<=n_continuous; j++)
 continuous[i*n_continuous+j-1] = irisData[i*5+j];
 }

 classErrors = imsls_f_naive_bayes_trainer(n_patterns,
 n_classes, classification,
 IMSLS_CONTINUOUS, n_continuous, continuous,
 IMSLS_NB_CLASSIFIER, &nb_classifier, 0);

 printf(" Iris Classification Error Rates\n");
 printf("--\n");
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3],
 classErrors[4], classErrors[5],
 classErrors[6], classErrors[7]);
 printf("--\n\n");
};

Output

For Fisher’s data, the Naive Bayes classifier incorrectly classified 6 of the 150 training patterns.

 Iris Classification Error Rates
--
1572

 Data Mining naive_bayes_trainer
 Setosa Versicolour Virginica | TOTAL
 0/50 3/50 3/50 | 6/150
--

Example 2

This example trains a Naive Bayes classifier using 24 training patterns with four nominal input attributes. It illus-
trates the output available from the optional argument IMSLS_PRINT_LEVEL.

The first nominal attribute has three classifications and the others have three. The target classifications are con-
tact lenses prescription: hard, soft or neither recommended. These data are benchmark data from the
Knowledge Discovery Databases archive maintained at the University of California, Irvine:
http://archive.ics.uci.edu/ml/datasets/Lenses.

#include <imsls.h>
int main(){
 int inputData[5 * 24] = { /* DATA MATRIX */
 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1,
 2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1,
 1, 1, 3, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 2, 1, 2, 2, 1, 2, 2, 1,
 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 1, 1, 1,
 3, 3, 1, 1, 2, 3, 3, 1, 2, 1, 3, 3, 1, 2, 2, 1, 3, 2, 1, 1, 3,
 3, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 2, 2, 2, 3
 };
 int i, j;
 int n_patterns = 24; /* 24 training patterns */
 int n_nominal = 4; /* 2 nominal input attributes */
 int n_classes = 3; /* three classification categories */
 int n_categories[4] = {3, 2, 2, 2};
 int nominal[4 * 24], classification[24], *classErrors;
 char *classLabel[3] = {"Hard ", "Soft ", "Neither"};
 imsls_omp_options(
 IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1,
 0);
 /* setup the required input arrays from the data matrix */
 /* subtract 1 from the data to ensure classes start at zero */
 for(i = 0; i < n_patterns; i++){
 classification[i] = inputData[i * 5 + 4] - 1;
 for(j = 0; j < n_nominal; j++)
 nominal[i * n_nominal + j]= inputData[i * 5 + j] - 1;
 }
 classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
 classification,
 IMSLS_NOMINAL, n_nominal, n_categories, nominal,
 IMSLS_PRINT_LEVEL,
 IMSLS_FINAL,
 0);
}

1573

http://archive.ics.uci.edu/ml/datasets/Lenses

 Data Mining naive_bayes_trainer
Output

For these data, only one of the 24 training patterns is misclassified, pattern 17. The target classification for that
pattern is 2 = “Neither”. However, since P(class = 2) = 0.3491 < P(class = 1) = 0.5085, pattern 17 is
classified as class = 1, “Soft Contacts” recommended. The classification error for this probability is calculated as
1.0 - 0.3491 = 0.6509.

--------UNCONDITIONAL TARGET CLASS PROBABILITIES---------
P(Class=0) = 0.1852 P(Class=1) = 0.2222 P(Class=2) = 0.5926

----------------CONDITIONAL PROBABILITIES----------------
----------NOMINAL ATTRIBUTE 0 WITH 3 CATEGORIES----------
P(X(0)=0|Class=0)=0.4286 P(X(0)=1|Class=0)=0.2857 P(X(0)=2|Class=0)=0.2857
P(X(0)=0|Class=1)=0.3750 P(X(0)=1|Class=1)=0.3750 P(X(0)=2|Class=1)=0.2500
P(X(0)=0|Class=2)=0.2778 P(X(0)=1|Class=2)=0.3333 P(X(0)=2|Class=2)=0.3889

----------NOMINAL ATTRIBUTE 1 WITH 2 CATEGORIES----------
P(X(1)=0|Class=0) = 0.6667 P(X(1)=1|Class=0) = 0.3333
P(X(1)=0|Class=1) = 0.4286 P(X(1)=1|Class=1) = 0.5714
P(X(1)=0|Class=2) = 0.4706 P(X(1)=1|Class=2) = 0.5294

----------NOMINAL ATTRIBUTE 2 WITH 2 CATEGORIES----------
P(X(2)=0|Class=0) = 0.1667 P(X(2)=1|Class=0) = 0.8333
P(X(2)=0|Class=1) = 0.8571 P(X(2)=1|Class=1) = 0.1429
P(X(2)=0|Class=2) = 0.4706 P(X(2)=1|Class=2) = 0.5294

----------NOMINAL ATTRIBUTE 3 WITH 2 CATEGORIES----------
P(X(3)=0|Class=0) = 0.1667 P(X(3)=1|Class=0) = 0.8333
P(X(3)=0|Class=1) = 0.1429 P(X(3)=1|Class=1) = 0.8571
P(X(3)=0|Class=2) = 0.7647 P(X(3)=1|Class=2) = 0.2353

 TRAINING PREDICTED CLASS
PATTERN P(class=0) P(class=1) P(class=2) CLASS CLASS ERROR

 0 0.0436 0.1297 0.8267 2 2 0.1733
 1 0.1743 0.6223 0.2034 1 1 0.3777
 2 0.1863 0.0185 0.7952 2 2 0.2048
 3 0.7238 0.0861 0.1901 0 0 0.2762
 4 0.0194 0.1537 0.8269 2 2 0.1731
 5 0.0761 0.7242 0.1997 1 1 0.2758
 6 0.0920 0.0243 0.8836 2 2 0.1164
 7 0.5240 0.1663 0.3096 0 0 0.4760
 8 0.0253 0.1127 0.8621 2 2 0.1379
 9 0.1182 0.6333 0.2484 1 1 0.3667
 10 0.1132 0.0168 0.8699 2 2 0.1301
 11 0.6056 0.1081 0.2863 0 0 0.3944
 12 0.0111 0.1327 0.8562 2 2 0.1438
 13 0.0500 0.7138 0.2362 1 1 0.2862
 14 0.0535 0.0212 0.9252 2 2 0.0748
 15 0.3937 0.1875 0.4188 2 2 0.5812
 16 0.0228 0.0679 0.9092 2 2 0.0908
 17 0.1424 0.5085 0.3491 2 1 0.6509
 18 0.0994 0.0099 0.8907 2 2 0.1093
 19 0.5986 0.0712 0.3301 0 0 0.4014
 20 0.0101 0.0805 0.9093 2 2 0.0907
1574

 Data Mining naive_bayes_trainer
 21 0.0624 0.5937 0.3439 1 1 0.4063
 22 0.0467 0.0123 0.9410 2 2 0.0590
 23 0.3909 0.1241 0.4850 2 2 0.5150

CLASSIFICATION ERRORS
Classification 0: 0/4
Classification 1: 0/5
Classification 2: 1/15
Total Errors: 1/24

Example 3

This example illustrates the power of Naive Bayes classification for text mining applications. This example uses
the spam benchmark data available from the Knowledge Discovery Databases archive maintained at the Univer-
sity of California, Irvine: http://archive.ics.uci.edu/ml/datasets/Spambase and is one of the IMSL data sets.

These data consist of 4601 patterns consisting of 57 continuous attributes and one classification binary classifi-
cation attribute. 41% of these patterns are classified as spam and the remaining as non-spam. The first 54
continuous attributes are word or symbol percentages. That is, they are percents scaled from 0 to 100% repre-
senting the percentage of words or characters in the email that contain a particular word or character. The last
three continuous attributes are word lengths. For a detailed description of these data visit the KDD archive at the
above link.

In this example, the program was written to evaluate alternatives for modeling the continuous attributes. Since
some are percentages and others are lengths with widely different ranges, the classification error rate can be

influenced by scaling. Percentages are transformed using the arcsin/square root transformation
. This transformation often produces a continuous attribute that is more closely approximated by a Gaussian dis-
tribution. There are a variety of possible transformations for the word length attributes. In this example, the
square root transformation is compared to a classifier with no transformation.

In addition, since this Naive Bayes algorithm allows users to select individual statistical distributions for modeling
continuous attributes, the Gaussian and Log Normal distributions are investigated for modeling the continuous
attributes.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
void print_error_rates(int classErrors[]);
int main(){
 int i, j;
 /* Inputs assuming all attributes, except family history,
 are continuous */
 int n_patterns; /* 4601 */
 int n_variables; /* 57 + 1 classification */
 int n_classes = 2; /* (spam or no spam) */
 int n_continuous = 57;
 int *classErrors = NULL;
 int *classification = NULL;
 int selected_pdf[57];

y = sin−1 p
1575

http://archive.ics.uci.edu/ml/datasets/Spambase

 Data Mining naive_bayes_trainer
 /* additional double variables */
 float *continuous, *unscaledContinuous;
 float *spamData;
 int n_spam = 0;
 static char *fmt = "%10.2f";
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 spamData = imsls_f_data_sets(11, IMSLS_N_OBSERVATIONS, &n_patterns,
 IMSLS_N_VARIABLES, &n_variables, 0);
 continuous = (float*) malloc(n_patterns * (n_variables-1)
 * sizeof(float));
 unscaledContinuous = (float*) malloc(n_patterns * (n_variables-1)
 * sizeof(float));
 classification = (int*) malloc(n_patterns*sizeof(int));

 for(i=0; i<n_patterns; i++){
 for(j=0; j<(n_variables-1); j++) {
 if (j<54) {
 continuous[i*(n_variables-1)+j] = (float)
 asin(sqrt(spamData[i*n_variables+j]/100));
 } else {
 continuous[i*(n_variables-1)+j] =
 spamData[i*n_variables+j];
 }
 unscaledContinuous[i*(n_variables-1)+j] =
 spamData[i*n_variables+j];
 }
 classification[i] = (int)spamData[(i*n_variables)+n_variables-1];
 if(classification[i] == 1) n_spam++;
 }
 printf("Number of Patterns = %d \n", n_patterns);
 printf(" Number Classified as Spam = %d \n\n", n_spam);
 classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
 classification,
 IMSLS_CONTINUOUS, n_continuous, unscaledContinuous, 0);
 printf(" Unscaled Gaussian Classification Error Rates \n");
 printf(" No Attribute Transformations \n");
 printf(" All Attributes Modeled as Gaussian Variates.\n");
 print_error_rates(classErrors);
 imsls_free(classErrors);
 classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
 classification, IMSLS_CONTINUOUS, n_continuous, continuous, 0);
 printf(" Scaled Gaussian Classification Error Rates \n");
 printf(" Arsin(sqrt) transformation of first 54 Vars. \n");
 printf(" All Attributes Modeled as Gaussian Variates. \n");
 print_error_rates(classErrors);
 imsls_free(classErrors);
 for(i=0; i<54; i++){
 selected_pdf[i] = IMSLS_GAUSSIAN;
 }
 for(i=54; i<57; i++){
 selected_pdf[i] = IMSLS_LOG_NORMAL;
1576

 Data Mining naive_bayes_trainer
 }
 classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
 classification,
 IMSLS_CONTINUOUS, n_continuous, continuous,
 IMSLS_SELECTED_PDF, selected_pdf, 0);
 printf(" Gaussian/Log Normal Classification Error Rates \n");
 printf(" Arsin(sqrt) transformation of 1st 54 Attributes. \n");
 printf(" Gaussian - 1st 54 & Log Normal - last 3 Attributes\n");
 print_error_rates(classErrors);
 imsls_free(classErrors);
 /* scale continuous attributes using z-score scaling */
 for(i=0; i<n_patterns; i++){
 for(j=54; j<57; j++) continuous[i*n_continuous+j] = (float)
 sqrt(unscaledContinuous[i*n_continuous+j]);
 }
 for(i=0; i<57; i++){
 selected_pdf[i] = IMSLS_GAUSSIAN;
 }
 classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
 classification,
 IMSLS_CONTINUOUS, n_continuous, continuous,
 IMSLS_SELECTED_PDF, selected_pdf, 0);
 printf(" Scaled Classification Error Rates \n");
 printf(" Arsin(sqrt) transformation of 1st 54 Attributes\n");
 printf(" sqrt() transformation for last 3 Attributes \n");
 printf(" All Attributes Modeled as Gaussian Variates. \n");
 print_error_rates(classErrors);
 imsls_free(classErrors);
 for(i=54; i<57; i++){
 selected_pdf[i] = IMSLS_LOG_NORMAL;
 }
 classErrors = imsls_f_naive_bayes_trainer(n_patterns, n_classes,
 classification, IMSLS_CONTINUOUS, n_continuous, continuous,
 IMSLS_SELECTED_PDF, selected_pdf, 0);
 printf(" Scaled Classification Error Rates\n");
 printf(" Arsin(sqrt) transformation of 1st 54 Attributes \n");
 printf(" and sqrt() transformation for last 3 Attributes \n");
 printf(" Gaussian - 1st 54 & Log Normal - last 3 Attributes\n");
 print_error_rates(classErrors);
 imsls_free(classErrors);
}
void print_error_rates(int classErrors[]){
 float p0, p1, p2;
 p0 = (float)100.0*classErrors[0]/classErrors[1];
 p1 = (float)100.0*classErrors[2]/classErrors[3];
 p2 = (float)100.0*classErrors[4]/classErrors[5];
 printf("--\n");
 printf(" Not Spam Spam | TOTAL\n");
 printf(" %d/%d=%4.1f%% %d/%d=%4.1f%% | %d/%d=%4.1f%%\n",
 classErrors[0], classErrors[1],
 p0, classErrors[2], classErrors[3],
 p1, classErrors[4], classErrors[5], p2);
 printf("--\n\n");
}

1577

 Data Mining naive_bayes_trainer
Output

If the continuous attributes are left untransformed and modeled using the Gaussian distribution, the overall clas-
sification error rate is 18.4% with most of these occurring when spam is classified as “not spam.” The error rate
for correctly classifying non-spam is 26.6%.

The lowest overall classification error rate occurs when the percentages are transformed using the arc-sin/square
root transformation and the length attributes are untransformed using logs. Representing the transformed per-
centages as Gaussian attributes and the transformed lengths as log-normal attributes reduces the overall error
rate to 14.2%. However, although the error rate for correctly classifying non-spam email is low for this case, the
error rate for correctly classifying spam is high, about 28%.

In the end, the best model to identify spam may depend upon which type of error is more important, incorrectly
classifying non-spam email or incorrectly classifying spam.

 Data File Opened Successfully
Number of Patterns = 4601
Number Classified as Spam = 1813
 Unscaled Gaussian Classification Error Rates
 No Attribute Transformations
 All Attributes Modeled as Gaussian Variates.
--
 Not Spam Spam | TOTAL
743/2788=26.6% 102/1813= 5.6% | 845/4601=18.4%
--
 Scaled Gaussian Classification Error Rates
 Arsin(sqrt) transformation of first 54 Vars.
 All Attributes Modeled as Gaussian Variates.
--
 Not Spam Spam | TOTAL
84/2788= 3.0% 508/1813=28.0% | 592/4601=12.9%
--
 Gaussian/Log Normal Classification Error Rates
 Arsin(sqrt) transformation of 1st 54 Attributes.
Gaussian - 1st 54 & Log Normal - last 3 Attributes
--
 Not Spam Spam | TOTAL
81/2788= 2.9% 519/1813=28.6% | 600/4601=13.0%
--
 Scaled Classification Error Rates
 Arsin(sqrt) transformation of 1st 54 Attributes
 sqrt() transformation for last 3 Attributes
 All Attributes Modeled as Gaussian Variates.
--
 Not Spam Spam | TOTAL
74/2788= 2.7% 595/1813=32.8% | 669/4601=14.5%
--
 Scaled Classification Error Rates
 Arsin(sqrt) transformation of 1st 54 Attributes
 and sqrt() transformation for last 3 Attributes
1578

 Data Mining naive_bayes_trainer
Gaussian - 1st 54 & Log Normal - last 3 Attributes
--
 Not Spam Spam | TOTAL
73/2788= 2.6% 602/1813=33.2% | 675/4601=14.7%
--

Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm.
User flag = "#".

IMSLS_N_OBS_PER_CLASS Class # has # observation(s). All classes must have at
least 2 observations.
1579

 Data Mining naive_bayes_classification
naive_bayes_classification
Classifies unknown patterns using a previously trained Naive Bayes classifier. The classifier is contained in an
Imsls_f_nb_classifier data structure, which is optional output from imsls_f_naive_bayes_trainer.

Synopsis
#include <imsls.h>
int *imsls_f_naive_bayes_classification (Imsls_f_nb_classifier *nb_classifier,

int n_patterns, …, 0)

The type double function is imsls_d_naive_bayes_classification.

Required Arguments
Imsls_f_nb_classifier *nb_classifier (Input)

Pointer to a structure of the type Imsls_f_nb_classifier from imsls_f_naive_bayes_trainer.

int n_patterns (Input)
Number of patterns to classify.

Return Value
Pointer to an array of size n_patterns containing the predicted classification associated with each input
pattern.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_naive_bayes_classification (Imsls_f_nb_classifier nb_classifier,

int n_patterns,

IMSLS_NOMINAL, int nominal[],

IMSLS_CONTINUOUS, float continuous[],

IMSLS_PRINT_LEVEL, int print_level,

IMSLS_USER_PDF, float pdf(),
1580

 Data Mining naive_bayes_classification
IMSLS_USER_PDF_WITH_PARMS, float pdf(), void *parms,

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob,

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[],

IMSLS_RETURN_USER, int classification[],

0)

Optional Arguments
IMSLS_NOMINAL, int nominal[] (Input)

nominal is an array of size n_patterns by nb_classifier->n_nominal containing values
for the nominal input attributes. The i-th row contains the nominal input attributes for the i-th pat-
tern. The j-th column of this matrix contains the classifications for the j-th nominal attribute. They
must be encoded with integers starting from 0 to nb_classifier->n_categories[i]-1.
Any value outside this range is treated as a missing value. If nb_classifier->n_nominal=0,
this array is ignored.

IMSLS_CONTINUOUS, float continuous[] (Input)
continuous is an array of size n_patterns by nb_classifier->n_continuous contain-
ing values for the continuous input attributes. The i-th row contains the input attributes for the i-th
training pattern. The j-th column of this matrix contains the values for the j-th continuous attribute.
Missing values should be set equal to imsls_f_machine(6)=NaN. Patterns with missing values
are still used to train the classifier unless the IMSLS_IGNORE_MISSING_VALUES option is sup-
plied. If nb_classifier->n_continuous=0, this matrix is ignored.

IMSLS_PRINT_LEVEL, int print_level (Input)
Print levels for printing data warnings and final results. print_level should be set to one of the
following values:

Default: IMSLS_NONE.

print_level Description

IMSLS_NONE Printing of data warnings and final results
is suppressed.

IMSLS_FINAL Prints final summary of Naive Bayes classi-
fier training.

IMSLS_DATA_WARNINGS Prints information about missing values
and PDF calculations equal to zero.

IMSLS_TRACE_ALL Prints final summary plus all data warn-
ings associated with missing values and
PDF calculations equal to zero.
1581

 Data Mining naive_bayes_classification
IMSLS_USER_PDF, float pdf(int index[], float x) (Input)
The user-supplied probability density function and parameters used to calculate the conditional
probability density for continuous input attributes is required when the classifier was trained with
selected_pdf[i]= IMSLS_USER.

When pdf is called, x will equal continuous[i*n_continuous+j], and index will contain
the following values for i, j, and k:

The pattern index ranges from 0 to n_patterns-1 and identifies the pattern index for x. The attri-
butes index ranges from 0 to n_categories[i]-1, and k=classification[i].

This argument is ignored if n_continuous = 0. By default the Gaussian PDF is used for calculat-
ing the conditional probability densities using either the means and variances calculated from the
training patterns or those supplied in IMSLS_GAUSSIAN_PDF.

IMSLS_USER_PDF_WITH_PARMS, float pdf(int index[], float x, void *parms), void *parms
(Input)
The user-supplied probability density function and parameters used to calculate the conditional
probability density for continuous input attributes is required when selected_pdf[i]=
IMSLS_USER. pdf also accepts a pointer to parms supplied by the user. The parameters pointed
to by parms are passed to pdf each time it is called. For an explanation of the other arguments, see
IMSLS_USER_PDF.

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob, (Output)
The address of a pointer to an array of size n_patterns by n_classes, where n_classes is
the number of target classifications. The values in the i-th row are the predicted classification proba-
bilities associated with the target classes. pred_class_prob[i*n_classes+j] is the
estimated probability that the i-th pattern belongs to the j-th target classes.

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[] (Output)
Storage for array pred_class_prob is provided by the user. See
IMSLS_PREDICTED_CLASS_PROB for a description.

IMSLS_RETURN_USER, int classification[] (Output)
An array of length n_patterns containing the predicted classifications for each pattern described
by the input attributes in nominal and continuous.

Index Value
index[0] i = pattern index

index[1] j = attribute index

index[2] k = target classification
1582

 Data Mining naive_bayes_classification
Description
Function imsls_f_naive_bayes_classification estimates classification probabilities from a previ-
ously trained Naive Bayes classifier. Two arrays are used to describe the values of the nominal and continuous
attributes used for calculating these probabilities. The predicted classification returned by this function is the
class with the largest estimated classification probability. The classification probability estimates for each pattern
can be obtained using the optional argument IMSLS_PREDICTED_CLASS_PROB.

Examples

Example 1

Fisher’s (1936) Iris data is often used for benchmarking classification algorithms. It is one of the IMSL data sets
and consists of the following continuous input attributes and classification target:

Continuous Attributes: X0(sepal length), X1(sepal width), X2(petal length), and X3(petal width)

Classification (Iris Type): Setosa, Versicolour or Virginica.

This example trains a Naive Bayes classifier using 150 training patterns from Fisher’s data then classifies ten
unknown plants using their sepal and petal measurements.

#include <imsls.h>
#include <stdio.h>
int main(){
 int i, j;
 int n_patterns =150; /* 150 training patterns */
 int n_continuous =4; /* four continuous input attributes */
 int n_classes =3; /* three classification categories */
 int classification[150], *classErrors, *predictedClass;
 float *pred_class_prob, continuous[150*4] ;
 float *irisData; /* Fishers Iris Data */
 char *classLabel[] = {"Setosa ", "Versicolour", "Virginica "};
 char dashes[] = {
 "--"};
 Imsls_f_nb_classifier *nb_classifier;
 /* irisData[]: The raw data matrix. This is a 2-D matrix with 150
 /* rows and 5 columns. The last 4 columns are the
 /* continuous input attributes and the 1st column is
 /* the classification category (1-3). These data
 /* contain no categorical input attributes. */
 irisData = imsls_f_data_sets(3,0);
 /* Data corrections described in the KDD data mining archive */
 irisData[5*34+4] = 0.1;
 irisData[5*37+2] = 3.1;
 irisData[5*37+3] = 1.5;
 /* setup the required input arrays from the data matrix */
 for(i=0; i<n_patterns; i++){
1583

 Data Mining naive_bayes_classification
 classification[i] = (int) irisData[i*5]-1;
 for(j=1; j<=n_continuous; j++) {
 continuous[i*n_continuous+j-1] = irisData[i*5+j];
 }
 }
 classErrors = imsls_f_naive_bayes_trainer(
 n_patterns, n_classes, classification,
 IMSLS_CONTINUOUS, n_continuous, continuous,
 IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
 printf(" Iris Classification Error Rates\n");
 printf("%s\n",dashes);
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3], classErrors[4],
 classErrors[5], classErrors[6], classErrors[7]);
 printf("%s\n\n", dashes);
 /* CALL NAIVE_BAYES_CLASSIFICATION *************************** */
 predictedClass = imsls_f_naive_bayes_classification(
 nb_classifier, n_patterns,
 IMSLS_CONTINUOUS, continuous,
 IMSLS_PREDICTED_CLASS_PROB,
 &pred_class_prob, 0);
 printf(" PROBABILITIES FOR INCORRECT CLASSIFICATIONS\n",dashes);
 printf("\nTRAINING PATTERNS| PREDICTED\t|\n");
 printf(" X1 X2 X3 X4 | CLASS\t| CLASS\tP(0) P(1) P(2)|\n");
 printf("%s|\n", dashes);
 for(i=0; i<n_patterns; i++){
 if(classification[i] == predictedClass[i]) continue;
 printf(" %4.1f%4.1f%4.1f%4.1f| %s\t| %s\t%4.2f %4.2f %4.2f|\n",
 continuous[i*n_continuous], continuous[i*n_continuous+1],
 continuous[i*n_continuous+2], continuous[i*n_continuous+3],
 classLabel[classification[i]], classLabel[predictedClass[i]],
 pred_class_prob[i*n_classes], pred_class_prob[i*n_classes+1],
 pred_class_prob[i*n_classes+2]);
 }
 printf("%s|\n", dashes);
 imsls_f_nb_classifier_free(nb_classifier);
}

Output

For Fisher’s data, the Naive Bayes classifier incorrectly classified 6 of the 150 training patterns.

 Iris Classification Error Rates
--
 Setosa Versicolour Virginica | TOTAL
 0/50 3/50 3/50 | 6/150
--
 PROBABILITIES FOR INCORRECT CLASSIFICATIONS
TRAINING PATTERNS| PREDICTED |
 X1 X2 X3 X4 | CLASS | CLASS P(0) P(1) P(2)|
--|
1584

 Data Mining naive_bayes_classification
 6.9 3.1 4.9 1.5 | Versicolour | Virginica 0.00 0.46 0.54|
 5.9 3.2 4.8 1.8 | Versicolour | Virginica 0.00 0.16 0.84|
 6.7 3.0 5.0 1.7 | Versicolour | Virginica 0.00 0.08 0.92|
 4.9 2.5 4.5 1.7 | Virginica | Versicolour 0.00 0.97 0.03|
 6.0 2.2 5.0 1.5 | Virginica | Versicolour 0.00 0.96 0.04|
 6.3 2.8 5.1 1.5 | Virginica | Versicolour 0.00 0.71 0.29|
--|

Example 2

This example uses the spam benchmark data available from the Knowledge Discovery Databases archive main-
tained at the University of California, Irvine: http://archive.ics.uci.edu/ml/datasets/Spambase.

These data contain of 4601 patterns consisting of 57 continuous attributes and one classification. 41% of these
patterns are classified as spam and the remaining as non-spam. The first 54 continuous attributes are word or
symbol percentages. That is, they are percents scaled from 0 to 100% representing the percentage of words or
characters in the email that contain a particular word or character. The last three continuous attributes are word
lengths. For a detailed description of these data visit the KDD archive at the above link.

In this example, percentages are transformed using the arcsin/square root transformation . The
last three attributes, word lengths, are transformed using square roots. Transformed percentages and the first
word length attribute are modeled using the Gaussian distribution. The last two word lengths are modeled using
the log normal distribution.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>
static void printErrorRates(int classification_errors[6],
 int n, char *label);
int main(){
 int i, j, k;
 int condPdfTableLength = 0;
 int n_patterns;
 int n_variables;
 int n_sample = 2000;
 int n_classes = 2; /* spam or no spam */
 int n_continuous = 57;
 int *classErrors = NULL;
 int *classification = NULL;
 int classSample[2000];
 int *predictedClass = NULL;
 int *rndSampleIndex = NULL;
 int classification_errors[6];
 float *continuous, *continuousSample;
 char* label1 =
 " Trainer from Training Dataset of %d Observations \n";
 char* label2 =
 " Classifier for Entire Dataset of %d Observations \n";
 Imsls_f_nb_classifier *nb_classifier=NULL;
 float *spamData;
 int n_spam = 0;
 spamData = imsls_f_data_sets(11, IMSLS_N_OBSERVATIONS, &n_patterns,

y = sin−1 p
1585

http://archive.ics.uci.edu/ml/datasets/Spambase

 Data Mining naive_bayes_classification
 IMSLS_N_VARIABLES, &n_variables, 0);
 continuous =
 (float*)malloc((n_patterns*n_continuous)*sizeof(float));
 continuousSample =
 (float*)malloc((n_sample*n_continuous)*sizeof(float));
 classification = (int*)malloc(n_patterns*sizeof(int));
 /* map continuous attributes into transformed representation */
 for(i=0; i<n_patterns; i++){
 for(j=0; j<n_continuous; j++) {
 if (j < 54) {
 continuous[i*(n_variables-1)+j] = (float)
 asin(sqrt(spamData[i*n_variables+j]/100));
 } else {
 continuous[i*(n_variables-1)+j] =
 spamData[i*n_variables+j];
 }
 }
 classification[i] = (int)spamData[(i*n_variables)+n_variables-1];
 if(classification[i] == 1) n_spam++;
 }
 printf("Number of Patterns = %d Number Classified as Spam = %d \n\n",
 n_patterns, n_spam);
 /* select random sample for training Naive Bayes Classifier */
 imsls_random_seed_set(1234567);
 rndSampleIndex=imsls_random_sample_indices(n_sample, n_patterns, 0);
 for(k=0; k<n_sample; k++){
 i = rndSampleIndex[k]-1;
 classSample[k] = classification[i];
 for(j=0; j<n_continuous; j++) {
 continuousSample[k*n_continuous+j] =
 continuous[i*n_continuous+j];
 }
 }
 /* Train Naive Bayes Classifier */
 classErrors = imsls_f_naive_bayes_trainer(n_sample, n_classes,
 classSample,
 IMSLS_CONTINUOUS, n_continuous, continuousSample,
 IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
 /* print error rates for training sample */
 printErrorRates(classErrors, n_sample, label1);
 /* CALL NAIVE_BAYES_CLASSIFICATION TO CLASSIFIY ENTIRE DATASET */
 predictedClass = imsls_f_naive_bayes_classification(nb_classifier,
 n_patterns,
 IMSLS_CONTINUOUS, continuous, 0);
 /* calculate classification error rates for entire dataset */
 for(i=0; i<6; i++) classification_errors[i] = 0;
 for(i=0; i<n_patterns; i++){
 switch (classification[i])
 {
 case 0:
 classification_errors[1]++;
 if(classification[i] != predictedClass[i])
 classification_errors[0]++;
 break;
 case 1:
1586

 Data Mining naive_bayes_classification
 classification_errors[3]++;
 if(classification[i] != predictedClass[i])
 classification_errors[2]++;
 break;
 }
 classification_errors[5] =
 classification_errors[1]+classification_errors[3];
 classification_errors[4] =
 classification_errors[0]+classification_errors[2];
 }
 /* print error rates for entire dataset */
 printErrorRates(classification_errors, n_patterns, label2);
}
static void printErrorRates(int classification_errors[6],
 int n, char *label)
{
 double p, p1, p0;
 p0 = 100.0*classification_errors[0]/classification_errors[1];
 p1 = 100.0*classification_errors[2]/classification_errors[3];
 p = 100.0*classification_errors[4]/classification_errors[5];
 printf(" Classification Error Rates Reported by\n");
 printf(label, n);
 printf("--\n");
 printf(" Not Spam Spam | TOTAL\n");
 printf(" %d/%d=%4.1f%% %d/%d=%4.1f%% | %d/%d=%4.1f%%\n",
 classification_errors[0], classification_errors[1],
 p0, classification_errors[2], classification_errors[3],
 p1, classification_errors[4], classification_errors[5], p);
 printf("--\n\n");
 return;
}

Output

It is interesting to note that the classification error rates obtained by training a classifier from a random sample is
slightly lower than those obtained from training a classifier with all 4601 patterns. When the classifier is trained
using all 4601 patterns, the overall classification error rate was 12.9% (see Example 3 for
imsls_f_naive_bayes_trainer). It is 12.4% for a random sample of 2000 patterns.

Number of Patterns = 4601 Number Classified as Spam = 1813
 Classification Error Rates Reported by
 Trainer from Training Dataset of 2000 Observations
--
 Not Spam Spam | TOTAL
31/1202= 2.6% 218/798=27.3% | 249/2000=12.4%
--
 Classification Error Rates Reported by
 Classifier for Entire Dataset of 4601 Observations
--
 Not Spam Spam | TOTAL
81/2788= 2.9% 549/1813=30.3% | 630/4601=13.7%
--
1587

 Data Mining naive_bayes_classification
Fatal Errors
IMSLS_STOP_USER_FCN Request from user supplied function to stop algo-

rithm.
User flag = "#".
1588

 Data Mining nb_classifier_free
nb_classifier_free
Frees memory allocated to an Imsls_f_nb_classifier data structure.

Synopsis
#include <imsls.h>
void imsls_f_nb_classifier_free (Imsls_f_nb_classifier *nb_classifier)

The type double function is imsls_d_nb_classifier_free.

Required Arguments
Imsls_f_nb_classifier *nb_classifier (Input)

Pointer to a structure of the type Imsls_f_nb_classifier from imsls_f_naive_bayes_trainer.

Description
An Imsls_f_nb_classifier data structure is created by imsls_f_naive_bayes_trainer or
imsls_f_nb_classifier_read. This function frees the memory allocated to this structure when it is no lon-
ger needed.
1589

 Data Mining nb_classifier_write
nb_classifier_write
Writes a Naive Bayes Classifier to an ASCII file for later retrieval using imsls_f_nb_classifier_read.

Synopsis
#include <imsls.h>
void imsls_f_nb_classifier_write (Imsls_f_nb_classifier *nb_classifier,

char *filename, …, 0)

The type double function is imsls_d_nb_classifier_write.

Required Arguments
Imsls_f_nb_classifier *nb_classifier (Input)

A trained Naive Bayes Classifier.

char *filename (Input)
The name of an ASCII file to be created. A full or relative path can be given. If this file exists, it is
replaced with the Naive Bayes Classifier. If it does not exist, it is created. If the optional argument
IMSLS_FILE is used, filename is ignored.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_nb_classifier_write (Imsls_f_nb_classifier *nb_classifier,

char *filename,
IMSLS_PRINT,
IMSLS_FILE, FILE *file,
0)

Optional Arguments
IMSLS_PRINT, (Input)

Prints status of file opening, writing and closing.

Default: No printing.
1590

 Data Mining nb_classifier_write
IMSLS_FILE, FILE *file (Input/Output)
A FILE pointer to a file opened for writing. This file is written but not closed. If this option is pro-
vided, filename is ignored. This option allows users to write additional data and multiple classifiers
to the same file (see Example 2). To ensure the file is opened and closed with the same C run-time
library used by the product, open and close this file using imsls_fopen and imsls_fclose.

Description
This function stores an Imsls_f_nb_classifier data structure containing a trained Naive Bayes Classifier into an ASCII
file. If the optional argument IMSLS_FILE is provided, imsls_f_nb_classifier_write writes the file
and returns without closing the file. If this argument is not provided, imsls_f_nb_classifier_write cre-
ates a file using the path and name provided in filename, writes the data structure to that file and then closes
the file before returning.

Examples

Example 1

This example trains a classifier using Fisher’s Iris data. These data consist of 150 patterns. The input attributes
consist of four continuous attributes and one classification attribute with three classes. The classifier is stored
into four lines of an ASCII file named NB_Classifier_Ex1.txt.

#include <imsls.h>
#include <stdio.h>
int main()
{
 char *filename = "NB_Classifier_Ex1.txt";
 int i, j;
 int n_patterns =150; /* 150 training patterns */
 int n_continuous =4; /* four continuous input attributes */
 int n_classes =3; /* three classification categories */
 int classification[150], *classErrors, *predictedClass;
 float *pred_class_prob, continuous[4*150] ;
 float *irisData; /* Fishers Iris Data */
 char *classLabel[3] = {"Setosa ", "Versicolour", "Virginica "};
 Imsls_f_nb_classifier *nb_classifier;
 irisData = imsls_f_data_sets(3,0);
 /* setup the required input arrays from the data matrix */
 for(i=0; i<n_patterns; i++){
 classification[i] = (int) irisData[i*5]-1;
 for(j=1; j<=n_continuous; j++)
 continuous[i*n_continuous+j-1] = irisData[i*5+j];
 }
 classErrors = imsls_f_naive_bayes_trainer(n_patterns,
1591

 Data Mining nb_classifier_write
 n_classes, classification,
 IMSLS_CONTINUOUS, n_continuous, continuous,
 IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
 printf(" Iris Classification Error Rates\n");
 printf("--\n");
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3],
 classErrors[4], classErrors[5],
 classErrors[6], classErrors[7]);
 printf("--\n\n");
 imsls_f_nb_classifier_write(nb_classifier, filename,
 IMSLS_PRINT, 0);

}

Output

===============
 Iris Classification Error Rates
--
 Setosa Versicolour Virginica | TOTAL
 0/50 3/50 3/50 | 6/150
--
Opening NB_Classifier_Ex1.txt for writing Naive Bayes data structure
Writing Naive Bayes data structure... 5 Lines written.
File NB_Classifier_Ex1.txt closed

Example 2

This example illustrates the use of the optional argument IMSLS_FILE to store multiple classifiers into one file.
Two Naive Bayes classifiers are trained using Fisher’s Iris data. These data consist of 150 patterns. The input attri-
butes consist of four continuous attributes and one classification attribute. The first classifier is trained using all
four inputs and the second using only the first two. The networks are stored into 10 lines of an ASCII file named
NB_Classifier_Ex2.txt.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main()
{
 FILE *file;
 char *filename = "NB_Classifier_Ex2.txt";
 int i, j;
 int n_patterns =150; /* 150 training patterns */
 int n_cont4 =4; /* four continuous input attributes */
 int n_cont2 =2; /* two continuous input attributes */
1592

 Data Mining nb_classifier_write
 int n_classes =3; /* three classification categories */
 int n_classifiers =2; /* two classifiers in this example */
 int classification[150], *classErrors;
 float cont4[4*150], cont2[2*150] ;
 float *irisData; /* Fishers Iris Data */
 char *classLabel[3] = {"Setosa ", "Versicolour", "Virginica "};
 Imsls_f_nb_classifier *nb_classifier;
 irisData = imsls_f_data_sets(3,0);
 /* setup the required input arrays from the data matrix */
 for(i=0; i<n_patterns; i++){
 classification[i] = (int) irisData[i*5]-1;
 for(j=1; j<=n_cont4; j++) {
 cont4[i*n_cont4+j-1] = irisData[i*5+j];
 if(j<3) cont2[i*n_cont2+j-1] = irisData[i*5+j];
 }
 }
 printf("Opening file %s\n\n", filename);
 file = imsls_fopen(filename, "w");
 fprintf(file, "%d\n", 2);
 classErrors = imsls_f_naive_bayes_trainer(n_patterns,
 n_classes, classification,
 IMSLS_CONTINUOUS, n_cont4, cont4,
 IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
 printf("Iris Classification Error Rates - Classifier 1\n");
 printf("--\n");
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3],
 classErrors[4], classErrors[5],
 classErrors[6], classErrors[7]);
 printf("--\n\n");
 imsls_free(classErrors);
 /* write first classifier */
 imsls_f_nb_classifier_write(nb_classifier, NULL, IMSLS_PRINT,
 IMSLS_FILE, file, 0);
 imsls_f_nb_classifier_free(nb_classifier);
 classErrors = imsls_f_naive_bayes_trainer(n_patterns,
 n_classes, classification,
 IMSLS_CONTINUOUS, n_cont2, cont2,
 IMSLS_NB_CLASSIFIER, &nb_classifier, 0);
 printf("Iris Classification Error Rates - Classifier 2\n");
 printf("--\n");
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3],
 classErrors[4], classErrors[5],
 classErrors[6], classErrors[7]);
 printf("--\n\n");
 imsls_f_nb_classifier_write(nb_classifier, NULL, IMSLS_PRINT,
 IMSLS_FILE, file, 0);
 imsls_free(classErrors);
 printf("Closing Classifier File\n");
 imsls_fclose(file);
 return;
1593

 Data Mining nb_classifier_write
}

Output

Opening file NB_Classifier_Ex2.txt
Iris Classification Error Rates - Classifier 1
--
 Setosa Versicolour Virginica | TOTAL
 0/50 3/50 3/50 | 6/150
--
Writing Naive Bayes data structure to file stream.
Writing Naive Bayes data structure... 5 Lines written to file.
File not closed.
Iris Classification Error Rates - Classifier 2
--
 Setosa Versicolour Virginica | TOTAL
 1/50 13/50 19/50 | 33/150
--
Writing Naive Bayes data structure to file stream.
Writing Naive Bayes data structure... 5 Lines written to file.
File not closed.
Closing Classifier File

Fatal Errors
IMSLS_FILE_OPEN_FAILURE Unable to open file for writing network.
1594

 Data Mining nb_classifier_read
nb_classifier_read
Retrieves a Naive Bayes Classifier previously filed using imsls_f_nb_classifier_write.

Synopsis
#include <imsls.h>
Imsls_f_nb_classifier *imsls_f_nb_classifier_read (char *filename, …, 0)

The type double function is imsls_d_nb_classifier_read.

Required Arguments
char *filename (Input)

The name of an ASCII file containing a Naive Bayes Classifier previously saved using
imsls_f_nb_classifier_write. A full or relative path can be given. If the optional argument
IMSLS_FILE is used, filename is ignored.

Return Value
A pointer to an Imsls_f_nb_classifier data structure containing a Naive Bayes Classifier previously stored using
imsls_f_nb_classifier_write.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_nb_classifier *imsls_f_nb_classifier_read (char *filename,

IMSLS_PRINT,
IMSLS_FILE, FILE *file,
0)

Optional Arguments
IMSLS_PRINT, (Input)

Prints status of file opening, reading and closing.
1595

 Data Mining nb_classifier_read
Default: No printing.

IMSLS_FILE, FILE *file (Input)
A FILE pointer to a file opened for reading. This file is read but not closed. If this option is provided,
filename is ignored. This argument allows users to read additional user-defined data and multiple
classifiers from the same file (see Example 2 below). To ensure the file is opened and closed with the
same C run-time library used by the product, open and close this file using imsls_fopen and
imsls_fclose.

Description
Function nb_classifier_read reads a classifier from an ASCII file previously stored using
imsls_f_nb_classifier_write and returns a Naive Bayes Classifier in the form of an Imsls_f_nb_classifier
data structure. If the optional argument IMSLS_FILE is provided, a classifier is read from the file and returned
without closing the file. If this argument is not provided, imsls_f_nb_classifier_read opens the file
using the path and name provided in filename, reads the classifier then closes the file and returns the data
structure.

Examples

Example 1

This example reads a classifier previously trained using Fisher’s Iris data (see Example 2 of
imsls_f_nb_classifier_write). These data consist of 150 patterns, each with four continuous attri-
butes and one dependent variable. The classifier is read from an ASCII file named NB_Classifier_Ex1.txt.

#include <imsls.h>
#include <stdio.h>
int main()
{
 char *filename = "NB_Classifier_Ex1.txt";
 int i, j;
 int n_patterns =150; /* 150 training patterns */
 int n_continuous =4; /* four continuous input attributes */
 int n_classes =3; /* three classification categories */
 int classification[150], *predictedClass;
 int classErrors[8];
 float continuous[4*150] ;
 float *irisData; /* Fishers Iris Data */
 char *classLabel[3] = {"Setosa ", "Versicolour", "Virginica "};
 Imsls_f_nb_classifier *nb_classifier;
 irisData = imsls_f_data_sets(3,0);
 /* setup the required input arrays from the data matrix */
1596

 Data Mining nb_classifier_read
 for(i=0; i<n_patterns; i++){
 classification[i] = (int) irisData[i*5]-1;
 for(j=1; j<=n_continuous; j++)
 continuous[i*n_continuous+j-1] = irisData[i*5+j];
 }
 nb_classifier = imsls_f_nb_classifier_read(filename, IMSLS_PRINT,0);
 predictedClass = imsls_f_naive_bayes_classification(nb_classifier,
 n_patterns, IMSLS_CONTINUOUS, continuous, 0);
 for(i=0; i<6; i++) classErrors[i] = 0;
 for(i=0; i<n_patterns; i++){
 switch (classification[i])
 {
 case 0:
 classErrors[1]++;
 if(classification[i] != predictedClass[i])
 classErrors[0]++;
 break;
 case 1:
 classErrors[3]++;
 if(classification[i] != predictedClass[i])
 classErrors[2]++;
 break;
 case 2:
 classErrors[5]++;
 if(classification[i] != predictedClass[i])
 classErrors[4]++;
 break;
 }
 }
 classErrors[6] = classErrors[0]+classErrors[2]+classErrors[4];
 classErrors[7] = classErrors[1]+classErrors[3]+classErrors[5];
 printf(" Iris Classification Error Rates\n");
 printf("--\n");
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3],
 classErrors[4], classErrors[5],
 classErrors[6], classErrors[7]);
 printf("--\n\n");
 return;
}

Output`

Attempting to open NB_Classifier_Ex1.txt
for reading Naive Bayes data structure
File NB_Classifier_Ex1.txt Successfully Opened
File NB_Classifier_Ex1.txt closed
 Iris Classification Error Rates
--
 Setosa Versicolour Virginica | TOTAL
 0/50 3/50 3/50 | 6/150
--
1597

 Data Mining nb_classifier_read
Example 2

This example illustrates the use of the optional argument IMSLS_FILE to read multiple classifiers stored previ-
ously into a single file using imsls_f_nb_classifier_write (see Example 2 of
imsls_f_nb_classifier_write). Two Naive Bayes classifiers were trained using Fisher’s Iris data. These
data consist of 150 patterns. The input attributes consist of four continuous attributes and one classification
attribute with three classes. The first classifier was trained using all four inputs and the second using only the first
two. The classifiers are read from an ASCII file named NB_Classifier_Ex2.txt.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main()
{
 FILE *file;
 char *filename = "NB_Classifier_Ex2.txt";
 int i, j;
 int n_patterns =150; /* 150 training patterns */
 int n_cont4 =4; /* four continuous input attributes */
 int n_cont2 =2; /* two continuous input attributes */
 int n_classes =3; /* three classification categories */
 int n_classifiers =0; /* number of classifiers */
 int classification[150], *predictedClass;
 int classErrors[8];
 float cont4[4*150], cont2[2*150] ;
 float *irisData; /* Fishers Iris Data */
 char *classLabel[3] = {"Setosa ", "Versicolour", "Virginica "};
 Imsls_f_nb_classifier *nb_classifier4, *nb_classifier2;
 irisData = imsls_f_data_sets(3,0);
 /* setup the required input arrays from the data matrix */
 for(i=0; i<n_patterns; i++){
 classification[i] = (int) irisData[i*5]-1;
 for(j=1; j<=n_cont4; j++) {
 cont4[i*n_cont4+j-1] = irisData[i*5+j];
 if(j<3) cont2[i*n_cont2+j-1] = irisData[i*5+j];
 }
 }
 printf("Opening file %s\n\n", filename);
 file = imsls_fopen(filename, "r");
 fscanf(file, "%d", &n_classifiers);
 nb_classifier4 = imsls_f_nb_classifier_read(" ", IMSLS_PRINT,
 IMSLS_FILE, file, 0);
 predictedClass = imsls_f_naive_bayes_classification(nb_classifier4,
 n_patterns, IMSLS_CONTINUOUS, cont4, 0);
 for(i=0; i<6; i++) classErrors[i] = 0;
 for(i=0; i<n_patterns; i++){
 switch (classification[i])
 {
 case 0:
 classErrors[1]++;
 if(classification[i] != predictedClass[i])
 classErrors[0]++;
1598

 Data Mining nb_classifier_read
 break;
 case 1:
 classErrors[3]++;
 if(classification[i] != predictedClass[i])
 classErrors[2]++;
 break;
 case 2:
 classErrors[5]++;
 if(classification[i] != predictedClass[i])
 classErrors[4]++;
 break;
 }
 }
 classErrors[6] = classErrors[0]+classErrors[2]+classErrors[4];
 classErrors[7] = classErrors[1]+classErrors[3]+classErrors[5];
 printf(" Iris Classification Error Rates\n");
 printf("--\n");
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3], classErrors[4], classErrors[5],
 classErrors[6], classErrors[7]);
 printf("--\n\n");
 imsls_free(predictedClass);
 nb_classifier2 = imsls_f_nb_classifier_read(" ", IMSLS_PRINT,
 IMSLS_FILE, file, 0);
 predictedClass = imsls_f_naive_bayes_classification(nb_classifier2,
 n_patterns,
 IMSLS_CONTINUOUS, cont2, 0);
 for(i=0; i<6; i++) classErrors[i] = 0;
 for(i=0; i<n_patterns; i++){
 switch (classification[i])
 {
 case 0:
 classErrors[1]++;
 if(classification[i] != predictedClass[i])
 classErrors[0]++;
 break;
 case 1:
 classErrors[3]++;
 if(classification[i] != predictedClass[i])
 classErrors[2]++;
 break;
 case 2:
 classErrors[5]++;
 if(classification[i] != predictedClass[i])
 classErrors[4]++;
 break;
 }
 }
 classErrors[6] = classErrors[0]+classErrors[2]+classErrors[4];
 classErrors[7] = classErrors[1]+classErrors[3]+classErrors[5];
 printf(" Iris Classification Error Rates\n");
 printf("--\n");
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 classErrors[0], classErrors[1],
 classErrors[2], classErrors[3], classErrors[4], classErrors[5],
 classErrors[6], classErrors[7]);
 printf("--\n\n");
1599

 Data Mining nb_classifier_read
 imsls_free(predictedClass);
 printf("Closing Classifier File.\n");
 imsls_fclose(file);
}

Output

Opening file NB_Classifier_Ex2.txt
Naive Bayes Classifier restored from file. File not closed.
 Iris Classification Error Rates
--
 Setosa Versicolour Virginica | TOTAL
 0/50 3/50 3/50 | 6/150
--
Naive Bayes Classifier restored from file. File not closed.
 Iris Classification Error Rates
--
 Setosa Versicolour Virginica | TOTAL
 1/50 13/50 19/50 | 33/150
--

Fatal Errors

IMSLS_FILE_OPEN_FAILURE Unable to open file for reading neural network.
1600

 Data Mining Neural Networks – An Overview
Neural Networks – An Overview
Today, neural networks are used to solve a wide variety of problems, some of which have been solved by existing
statistical methods, and some of which have not. These applications fall into one of the following three
categories:

 Forecasting: predicting one or more quantitative outcomes from both quantitative and nominal
input data,

 Classification: classifying input data into one of two or more categories, or

 Statistical pattern recognition: uncovering patterns, typically spatial or temporal, among a set of
variables.

Forecasting, pattern recognition and classification problems are not new. They existed years before the discovery
of neural network solutions in the 1980’s. What is new is that neural networks provide a single framework for solv-
ing so many traditional problems and, in some cases, extend the range of problems that can be solved.

Traditionally, these problems were solved using a variety of widely known statistical methods:

 linear regression and general least squares,

 logistic regression and discrimination,

 principal component analysis,

 discriminant analysis,

 k-nearest neighbor classification, and

 ARMA and NARMA time series forecasts.

In many cases, simple neural network configurations yield the same solution as many traditional statistical appli-
cations. For example, a single-layer, feedforward neural network with linear activation for its output perceptron is
equivalent to a general linear regression fit. Neural networks can provide more accurate and robust solutions for
problems where traditional methods do not completely apply.

Mandic and Chambers (2001) identify the traditional methods for time series forecasting that are unsuitable
when a time series:

 is non-stationary,

 has large amounts of noise, such as a biomedical series, or

 is too short.
1601

 Data Mining Neural Networks – An Overview
ARIMA and other traditional time series approaches can produce poor forecasts when one or more of the above
conditions exist. The forecasts of ARMA and non-linear ARMA (NARMA) depend heavily upon key assumptions
about the model or underlying relationship between the output of the series and its patterns.

Neural networks, on the other hand, adapt to changes in a non-stationary series and can produce reliable fore-
casts even when the series contains a good deal of noise or when only a short series is available for training.
Neural networks provide a single tool for solving many problems traditionally solved using a wide variety of statis-
tical tools and for solving problems when traditional methods fail to provide an acceptable solution.

Although neural network solutions to forecasting, pattern recognition and classification problems can vary vastly,
they are always the result of computations that proceed from the network inputs to the network outputs. The
network inputs are referred to as patterns, and outputs are referred to as classes. Frequently the flow of these
computations is in one direction, from the network input patterns to its outputs. Networks with forward-only flow
are referred to as feedforward networks.

Figure 23, A 2-layer, Feedforward Network with 4 inputs and 2 outputs

Other networks, such as recurrent neural networks, allow data and information to flow in both directions, see
Mandic and Chambers (2001).
1602

 Data Mining Neural Networks – An Overview
Figure 24, A recurrent neural network with 4 inputs and 2 outputs

A neural network is defined not only by its architecture and flow, or interconnections, but also by computations
used to transmit information from one node or input to another node. These computations are determined by
network weights. The process of fitting a network to existing data to determine these weights is referred to as
training the network, and the data used in this process are referred to as patterns. Individual network inputs are
referred to as attributes and outputs are referred to as classes. The table below lists terms used to describe neural
networks that are synonymous to common statistical terminology.

Table 49 – Synonyms between Neural Network and Common Statistical Terminology

Neural Network
Terminology

Traditional Statistical
Terminology Description

Training Model Fitting Estimating unknown parameters or
coefficients in the analysis

Patterns Cases or Observations A single observation of all input and
output variables

Attributes Independent Variables Inputs to the network or model

Classes Dependent Variables Outputs from the network or model
calculations
1603

 Data Mining Neural Networks – An Overview
Neural Networks – History and Terminology

The Threshold Neuron

McCulloch and Pitts’ (1943) wrote one of the first published works on neural networks. This paper describes the
threshold neuron as a model for which the human brain stores and processes information.

Figure 25, The McCulloch and Pitts’ Threshold Neuron

All inputs to a threshold neuron are combined into a single number, Z, using the following weighted sum:

Where m is the number of inputs and is the weight associated with the i-th input (attribute) . The term μ in

this calculation is referred to as the bias term. In traditional statistical terminology it might be referred to as the
intercept. The weights and bias terms in this calculation are estimated during network training.

In McCulloch and Pitts’ (1943) description of the threshold neuron, the neuron does not respond to its inputs
unless Z is greater than zero. If Z is greater than zero then the output from this neuron is set to 1. If Z is less than
or equal to zero the output is zero:

where Y is the neuron’s output.

Years following McCulloch and Pitts’ (1943) article, interest in McCulloch and Pitts’ neural network was limited to
theoretical discussions, such as Hebb (1949), which describe learning, memory and the brain’s structure.

Z =∑
i=1

m

wixi + μ

wi xi

Y = 1 if Z > 0
0 if Z ≤ 0
1604

 Data Mining Neural Networks – An Overview
The Perceptron

The McCulloch and Pitts’ neuron is also referred to as a threshold neuron since it abruptly changes its output
from 0 to 1 when its potential, Z, crosses a threshold. Mathematically, this behavior can be viewed as a step func-
tion that maps the neuron’s potential, Z, to the neuron’s output, Y.

Rosenblatt (1958) extended the McCulloch and Pitts’ threshold neuron by replacing this step function with a con-
tinuous function that maps Z to Y. The Rosenblatt neuron is referred to as the perceptron, and the continuous
function mapping Z to Y makes it easier to train a network of perceptrons than a network of threshold neurons.

Unlike the threshold neuron, the perceptron produces analog output rather than the threshold neuron’s purely
binary output. Carefully selecting the analog function, makes Rosenblatt’s perceptron differentiable, whereas the
threshold neuron is not. This simplifies the training algorithm.

Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted sum of its inputs,

This is referred to as the perceptron’s potential.

Rosenblatt’s perceptron calculates its analog output from its potential. There are many choices for this calcula-
tion. The function used for this calculation is referred to as the activation function as shown in Figure 26 below.

Figure 26, A Neural Net Perceptron

As shown in Figure 26, perceptrons consist of the following five components:

1. Inputs – x1, x2, and x3,

2. Input Weights – W1, W2, and W3,

Z =∑
i=1

m

wixi + μ
1605

 Data Mining Neural Networks – An Overview
3. Potential – , where μ is a bias correction,

4. Activation Function – g(Z), and

5. Output – Y = g(Z) .

Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the output from another
perceptron. The primary purpose of network training is to estimate the weights associated with each perceptron’s
potential. The activation function maps this potential to the perceptron’s output.

The Activation Function

Although theoretically any differentiable function can be used as an activation function, the identity and sigmoid
functions are the two most commonly used.

The identity activation function, also referred to as a linear activation function, is a flow-through mapping of the
perceptron’s potential to its output:

Output perceptrons in a forecasting network often use the identity activation function.

Figure 27, An Identity (Linear) Activation Function

Z = ∑
i=1

3

Wixi + μ

g Z = Z
1606

 Data Mining Neural Networks – An Overview
If the identity activation function is used throughout the network, then it is easily shown that the network is equiv-

alent to fitting a linear regression model of the form , where are the k

network inputs, is the i-th network output and are the coefficients in the regression equation.
As a result, it is uncommon to find a neural network with identity activation used in all its perceptrons.

Sigmoid activation functions are differentiable functions that map the perceptron’s potential to a range of values,

such as 0 to 1, i.e., ℝk→ℝ where K is the number of perceptron inputs.

Figure 28, A Sigmoid Activation Function

In practice, the most common sigmoid activation function is the logistic function that maps the potential into the
range 0 to 1:

Since 0 < g(Z) < 1, the logistic function is very popular for use in networks that output probabilities.

Other popular sigmoid activation functions include:

 the hyperbolic-tangent ,

 the arc-tangent , and

 the squash activation function, see Elliott (1993), .

Y i = β0 + β1x1 + ⋯ + βkxk x1, x2, ⋯ , xk
Y i β0, β1, ⋯ , βk

g Z = 1
1 + e−Z

g Z = tanh Z = eαZ − e−αZ

eαZ + e−αZ

g(Z) = 2
πarctan

πZ
2

g Z = Z
1 + ∣Z∣
1607

 Data Mining Neural Networks – An Overview
It is easy to show that the hyperbolic-tangent and logistic activation functions are linearly related. Consequently,
forecasts produced using logistic activation should be close to those produced using hyperbolic-tangent activa-
tion. However, one function may be preferred over the other when training performance is a concern.
Researchers report that the training time using the hyperbolic-tangent activation function is shorter than using
the logistic activation function.

Network Applications

Forecasting using Neural Networks

There are numerous good statistical forecasting tools. Most require assumptions about the relationship between
the variables being forecasted and the variables used to produce the forecast, as well as the distribution of fore-
cast errors. Such statistical tools are referred to as parametric methods. ARIMA time series models, for example,
assume that the time series is stationary, that the errors in the forecasts follow a particular ARIMA model, and
that the probability distribution for the residual errors is Gaussian, see Box and Jenkins (1970). If these assump-
tions are invalid, then ARIMA time series forecasts can be substandard.

Neural networks, on the other hand, require few assumptions. Since neural networks can approximate highly
non-linear functions, they can be applied without an extensive analysis of underlying assumptions.

Another advantage of neural networks over ARIMA modeling is the number of observations needed to produce a
reliable forecast. ARIMA models generally require 50 or more equally spaced, sequential observations in time. In
many cases, neural networks can also provide adequate forecasts with fewer observations by incorporating exog-
enous, or external, variables in the network’s input.

For example, a company applying ARIMA time series analysis to forecast business expenses would normally
require each of its departments, and each sub-group within each department, to prepare its own forecast. For
large corporations this can require fitting hundreds or even thousands of ARIMA models. With a neural network
approach, the department and sub-group information could be incorporated into the network as exogenous vari-
ables. Although this can significantly increase the network’s training time, the result would be a single model for
predicting expenses within all departments.

Linear least squares models are also popular statistical forecasting tools. These methods range from simple lin-
ear regression for predicting a single quantitative outcome to logistic regression for estimating probabilities
associated with categorical outcomes. It is easy to show that simple linear least squares forecasts and logistic
regression forecasts are equivalent to a feedforward network with a single layer. For this reason, single-layer feed-
forward networks are rarely used for forecasting. Instead multilayer networks are used.
1608

 Data Mining Neural Networks – An Overview
Hutchinson (1994) and Masters (1995) describe using multilayer feedforward neural networks for forecasting.
Multilayer feedforward networks are characterized by the forward-only flow of information in the network. The
flow of information and computations in a feedforward network is always in one direction, mapping an M-dimen-

sional vector of inputs to a C-dimensional vector of outputs, i.e., where .

There are many other types of networks without this feed forward requirement. Information and computations in
a recurrent neural network, for example, flows in both directions. Output from one level of a recurrent neural
network can be fed back, with some delay, as input into the same network (see Figure 24). Recurrent networks
are very useful for time series prediction, see Mandic and Chambers (2001).

Pattern Recognition using Neural Networks

Neural networks are also extensively used in statistical pattern recognition. Pattern recognition applications that
make wide use of neural networks include:

 natural language processing: Manning and Schütze (1999)

 speech and text recognition: Lippmann (1989)

 face recognition: Lawrence, et al. (1997)

 playing backgammon, Tesauro (1990)

 classifying financial news, Calvo (2001).

The interest in pattern recognition using neural networks has stimulated the development of important variations
of feedforward networks. Two of the most popular are:

 Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995),

 and Radial Basis Function Networks, Bishop (1995).

Useful mathematical descriptions of the neural network methods underlying these applications are given by
Bishop (1995), Ripley (1996), Mandic and Chambers (2001), and Abe (2001). From a statistical viewpoint, Warner
and Misra (1996) describes an excellent overview of neural networks.

Neural Networks for Classification

Classifying observations using prior concomitant information is possibly the most popular application of neural
networks. Data classification problems abound in business and research. When decisions based upon data are
needed, they can often be treated as a neural network data classification problem. Decisions to buy, sell, or hold
a stock are decisions involving three choices. Classifying loan applicants as good or bad credit risks, based upon
their application, is a classification problem involving two choices. Neural networks are powerful tools for making
decisions or choices based upon data.

ℜM→ ℜC C < M
1609

 Data Mining Neural Networks – An Overview
These same tools are ideally suited for automatic selection or decision-making. Incoming email, for example, can
be examined to separate spam from important email using a neural network trained for this task. A good over-
view of solving classification problems using multilayer feedforward neural networks is found in Abe (2001) and
Bishop (1995).

There are two popular methods for solving data classification problems using multilayer feedforward neural net-
works, depending upon the number of choices (classes) in the classification problem. If the classification problem
involves only two choices, then it can be solved using a neural network with a single logistic output. This output
estimates the probability that the input data belong to one of the two choices.

For example, a multilayer feedforward network with a single logistic output can be used to determine whether a
new customer is credit-worthy. The network’s input would consist of information on the applicants credit applica-
tion, such as age, income, etc. If the network output probability is above some threshold value (such as 0.5 or
higher) then the applicant’s credit application is approved. This is referred to as binary classification using a multi-
layer feedforward neural network.

If more than two classes are involved then a different approach is needed. A popular approach is to assign logistic
output perceptrons to each class in the classification problem. The network assigns each input pattern to the
class associated with the output perceptron that has the highest probability for that input pattern. However, this
approach produces invalid probabilities since the sum of the individual class probabilities for each input is not
equal to one, which is a requirement for any valid multivariate probability distribution.

To avoid this problem, the softmax activation function, see Bridle (1990), applied to the network outputs ensures
that the outputs conform to the mathematical requirements of multivariate classification probabilities. If the clas-
sification problem has C categories, or classes, then each category is modeled by one of the network outputs. If Zi

is the weighted sum of products between its weights and inputs for the i-th output, i.e.,

then

The softmax activation function ensures that all outputs conform to the requirements for multivariate probabili-
ties. That is, 0 < softmaxi < 1, for all i = 1, 2, …, C and

Zi =∑
j

w jiy ji

softmaxi =
e
Zi

∑
j=1

C
e
Z j
1610

 Data Mining Neural Networks – An Overview
A pattern is assigned to the i-th classification when softmaxi is the largest among all C classes.

However, multilayer feedforward neural networks are only one of several popular methods for solving classifica-
tion problems. Others include:

 Support Vector Machines (SVM Neural Networks), Abe (2001),

 Classification and Regression Trees (CART), Breiman, et al. (1984),

 Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and

 Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997).

Support Vector Machines are simple modifications of traditional multilayer feedforward neural networks (MLFF)
configured for pattern classification.

∑
i=1

C

softmaxi = 1
1611

 Data Mining Multilayer Feedforward Neural Networks
Multilayer Feedforward Neural Networks
A multilayer feedforward neural network is an interconnection of perceptrons in which data and calculations flow
in a single direction, from the input data to the outputs. The number of layers in a neural network is the number
of layers of perceptrons. The simplest neural network is one with a single input layer and an output layer of per-
ceptrons. The network in Figure 13-7 illustrates this type of network. Technically, this is referred to as a one-layer
feedforward network with two outputs because the output layer is the only layer with an activation calculation.

Figure 29, A Single-Layer Feedforward Neural Net

In this single-layer feedforward neural network, the network’s inputs are directly connected to the output layer
perceptrons, Z1 and Z2.

The output perceptrons use activation functions, g1 and g2, to produce the outputs Y1 and Y2.

Since
1612

 Data Mining Multilayer Feedforward Neural Networks
and

When the activation functions g1 and g2 are identity activation functions, the single-layer neural network is equiv-

alent to a linear regression model. Similarly, if g1 and g2 are logistic activation functions, then the single-layer

neural network is equivalent to logistic regression. Because of this correspondence between single-layer neural
networks and linear and logistic regression, single-layer neural networks are rarely used in place of linear and
logistic regression.

The next most complicated neural network is one with two layers. This extra layer is referred to as a hidden layer.
In general there is no restriction on the number of hidden layers. However, it has been shown mathematically
that a two-layer neural network can accurately reproduce any differentiable function, provided the number of
perceptrons in the hidden layer is unlimited.

However, increasing the number of perceptrons increases the number of weights that must be estimated in the
network, which in turn increases the execution time for the network. Instead of increasing the number of percep-
trons in the hidden layers to improve accuracy, it is sometimes better to add additional hidden layers, which
typically reduce both the total number of network weights and the computational time. However, in practice, it is
uncommon to see neural networks with more than two or three hidden layers.

Neural Network Error Calculations

Error Calculations for Forecasting

The error calculations used to train a neural network are very important. Researchers have investigated many
error calculations in an effort to find a calculation with a short training time appropriate for the network’s applica-
tion. Typically, error calculations are very different depending primarily on the network’s application.

Z1 =∑
i=1

3

W1,ixi + μ1 and Z2 =∑
i=1

3

W2, ixi + μ2

Y1 = g1 Z1 = g1 ∑
i=1

3

W1, ixi + μ1

Y2 = g2 Z2 = g2 ∑
i=1

3

W2, ixi + μ2
1613

 Data Mining Multilayer Feedforward Neural Networks
For forecasting, the most popular error function is the sum-of-squared errors, or one of its scaled versions. This is
analogous to using the minimum least squares optimization criterion in linear regression. Like least squares, the
sum-of-squared errors is calculated by looking at the squared difference between what the network predicts for
each training pattern and the target value, or observed value, for that pattern. Formally, the equation is the same
as one-half the traditional least squares error:

where N is the total number of training cases, C is equal to the number of network outputs, is the observed

output for the i-th training case and the j-th network output, and is the network’s forecast for that case.

Common practice recommends fitting a different network for each forecast variable. That is, the recommended
practice is to use C=1 when using a multilayer feedforward neural network for forecasting. For classification prob-
lems with more than two classes, it is common to associate one output with each classification category, i.e.,
C=number of classes.

Notice that in ordinary least squares, the sum-of-squared errors are not multiplied by one-half. Although this has
no impact on the final solution, it significantly reduces the number of computations required during training.

Also note that as the number of training patterns increases, the sum-of-squared errors increases. As a result, it is
often useful to use the root-mean-square (RMS) error instead of the unscaled sum-of-squared errors:

where is the average output:

Unlike the unscaled sum-of-squared errors, ERMS does not increase as N increases. The smaller values for ERMS,

indicate that the network predicts its training targets closer. The smallest value, ERMS =0, indicates that the net-

work predicts every training target exactly. The largest value, ERMS =1, indicates that the network predicts the
training targets only as well as setting each forecast equal to the mean of the training targets.

Notice that the root-mean-squared error is related to the sum-of-squared error by a simple scale factor:

E = 12∑
i=1

N

∑
j=1

C

ti j − t
^
i j

2

ti j
t^i j

ERMS =
∑
i=1

N
∑
j=1

C
ti j − t

^
i j
2

∑
i=1

N
∑
j=1

C
ti j − t

─ 2

t─

t─ =
∑
i=1

N
∑
j=1

C
ti j

NC
1614

 Data Mining Multilayer Feedforward Neural Networks
Another popular error calculation for forecasting from a neural network is the Minkowski-R error. The sum-of-

squared error, E, and the root-mean-squared error, ERMS, are both theoretically motivated by assuming the noise
in the target data is Gaussian. In many cases, this assumption is invalid. A generalization of the Gaussian distribu-
tion to other distributions gives the following error function, referred to as the Minkowski-R error:

Notice that ER=2E when R =2.

A good motivation for using ER instead of E is to reduce the impact of outliers in the training data. The usual error

measures, E and ERMS, emphasize larger differences between the training data and network forecasts since they
square those differences. If outliers are expected, then it is better to de-emphasize larger differences. This can be
done by using the Minkowski-R error with R =1. When R =1, the Minkowski-R error simplifies to the sum of abso-
lute differences:

L is also referred to as the Laplacian error. This name is derived from the fact that it can be theoretically justified
by assuming the noise in the training data follows a Laplacian, rather than Gaussian, distribution.

Of course, similar to E, L generally increases when the number of training cases increases. Similar to ERMS, a
scaled version of the Laplacian error can be calculated using the following formula:

Cross-Entropy Error for Binary Classification

As previously mentioned, multilayer feedforward neural networks can be used for both forecasting and classifica-
tion applications. Training a forecasting network involves finding the network weights that minimize either the

Gaussian or Laplacian distributions, E or L, respectively, or equivalently their scaled versions, ERMSor LRMS.
Although these error calculations can be adapted for use in classification by setting the target classification vari-

ERMS = 2t─E

ER =∑
i=1

N

∑
j=1

C
∣ti j − t^i j∣R

L = E1 =∑
i=1

N

∑
j=1

C
∣ti j − t^i j∣

LRMS =
∑
i=1

N
∑
j=1

C
∣ti j − t^i j∣

∑
i=1

N
∑
j=1

C
∣ti j − t─∣
1615

 Data Mining Multilayer Feedforward Neural Networks
able to zeros and ones, this is not recommended. Use of the sum-of-squared and Laplacian error calculations is
based on the assumption that the target variable is continuous. In classification applications, the target variable is
a discrete random variable with C possible values, where C = number of classes.

A multilayer feedforward neural network for classifying patterns into one of only two categories is referred to as a
binary classification network. It has a single output: the estimated probability that the input pattern belongs to
one of the two categories. The probability that it belongs to the other category is equal to one minus this proba-
bility, i.e., P(C2) = P(not C1) = 1-P(C1).

Binary classification applications are very common. Any problem requiring yes/no classification is a binary classifi-
cation application. For example, deciding to sell or buy a stock is a binary classification problem. Deciding to
approve a loan application is also a binary classification problem. Deciding whether to approve a new drug or to
provide one of two medical treatments are binary classification problems.

For binary classification problems, only a single output is used, C =1. This output represents the probability that
the training case should be classified as “yes.” A common choice for the activation function of the output of a
binary classification network is the logistic activation function, which always results in an output in the range 0 to
1, regardless of the perceptron’s potential.

One choice for training binary classification networks is to use sum-of-squared errors with the class value of yes
patterns coded as a 1 and the no classes coded as a 0, i.e.:

However, using either the sum-of-squared or Laplacian errors for training a network with these target values
assumes that the noise in the training data are Gaussian. In binary classification, the zeros and ones are not
Gaussian. They follow the Bernoulli distribution:

where p is equal to the probability that a randomly selected case belongs to the “yes” class.

Modeling the binary classes as Bernoulli observations leads to the use of the cross-entropy error function
described by Hopfield (1987) and Bishop (1995):

where N is the number of training patterns, is the target value for the i-th case (either 1 or 0), and is the net-
work output for the i-th training pattern. This is equal to the neural network’s estimate of the probability that the
i-th training pattern should be classified as “yes.”

ti =
1 if training pattern i = "yes"
0 if training pattern i = "no"

P ti = t = pt 1 − p)1−t

EC = −∑
i=1

N

tiln t^i + 1 − ti ln 1 − t
^
i

ti t^i
1616

 Data Mining Multilayer Feedforward Neural Networks
For situations in which the target variable is a probability in the range , the value of the cross-entropy
at the network’s optimum is equal to:

Subtracting from gives an error term bounded below by zero, i.e.,

where

This adjusted cross-entropy, , is normally reported when training a binary classification network where

 . Otherwise , the unadjusted cross-entropy error, is used. For , small values, i.e. values near
zero, indicate that the training resulted in a network able to classify the training cases with a low error rate.

Cross-Entropy Error for Multiple Classes

Using a multilayer feedforward neural network for binary classification is relatively straightforward. A network for
binary classification only has a single output that estimates the probability that an input pattern belongs to the

“yes” class, i.e., . In classification problems with more than two mutually exclusive classes, the calculations
and network configurations are not as simple.

One approach is to use multiple network outputs, one for each of the C classes. Using this approach, the j-th out-

put for the i-th training pattern, , is the estimated probability that the i-th pattern belongs to the j-th class,

denoted by . An easy way to estimate these probabilities is to use logistic activation for each output. This

ensures that each output satisfies the univariate probability requirements, i.e., .

However, since the classification categories are mutually exclusive, each pattern can only be assigned to one of
the C classes, which means that the sum of these individual probabilities should always equal 1. Yet, if each out-
put is the estimated probability for that class, it is very unlikely that

In fact, the sum of the individual probability estimates can easily exceed 1 if logistic activation is applied to every
output.

0 < ti j < 1

Emin
C = −∑

i=1

N

tiln ti + 1 − ti ln 1 − ti

Emin
C EC

ECE ≥ 0

ECE = EC − Emin
C = −∑

i=1

N

tiln
t^i
ti + 1 − ti ln

1 − t^i
1 − ti

ECE

0 < ti j < 1 EC ECE

ti = 1

ti j
t^i j

0 ≤ t^i j ≤ 1

∑
j=1

C

t^i j = 1
1617

 Data Mining Multilayer Feedforward Neural Networks
Support Vector Machine (SVM) neural networks use this approach with one modification. An SVM network classi-
fies a pattern as belonging to the i-th category if the activation calculation for that category exceeds a threshold
and the other calculations do not exceed this value. That is, the i-th pattern is assigned to the j-th category if and

only if and for all , where δ is the threshold. If this does not occur, then the pattern is
marked as unclassified.

Another approach to multiclass classification problems is to use the softmax activation function developed by Bri-
dle (1990) on the network outputs. This approach produces outputs that conform to the requirements of a
multinomial distribution. That is

and

The softmax activation function estimates classification probabilities using the following softmax activation
function:

where is the potential for the j-th output perceptron, or category, using the i-th pattern.

For this activation function, it is clear that:

Modeling the C network outputs as multinomial observations leads to the cross-entropy error function described
by Hopfield (1987) and Bishop (1995):

t^i j > δ t^ik ≤ δ k ≠ j

∑
j=1

C

t^i j = 1 for all i = 1,2, ⋯ ,N and 0 ≤ t^i j ≤ 1 for all i = 1,2, ⋯ ,N

j = 1, 2, ⋯ , C

t^i j =
e
Zi j

∑
j=1

C
e
Zi j

Zi j

0 ≤ t^i j ≤ 1 for all i = 1,2, ⋯ ,N , j = 1,2, ⋯ ,C and

∑
j=1

C

t^i j = 1 for all i = 1,2, ⋯ ,N
1618

 Data Mining Multilayer Feedforward Neural Networks
where N is the number of training patterns, is the target value for the j-th class of i-th pattern (either 1 or 0),

and is the network’s j-th output for the i-th pattern. is equal to the neural network’s estimate of the prob-
ability that the i-th pattern should be classified into the j-th category.

For situations in which the target variable is a probability in the range , the value of the cross-entropy
at the networks optimum is equal to:

Subtracting this from EC gives an error term bounded below by zero, i.e., ECE ≥ 0 where:

This adjusted cross-entropy is normally reported when training a binary classification network where 0 < tij < 1.

Otherwise EC, the non-adjusted cross-entropy error, is used. That is, when 1-in-C encoding of the target variable
is used,

Small values, values near zero, indicate that the training resulted in a network with a low error rate and that pat-
terns are being classified correctly most of the time.

Back-Propagation in Multilayer Feedforward Neural Networks

Sometimes a multilayer feedforward neural network is referred to incorrectly as a back-propagation network. The
term back-propagation does not refer to the structure or architecture of a network. Back-propagation refers to
the method used during network training. More specifically, back-propagation refers to a simple method for cal-
culating the gradient of the network, that is the first derivative of the weights in the network.

The primary objective of network training is to estimate an appropriate set of network weights based upon a
training dataset. Many ways have been researched for estimating these weights, but they all involve minimizing
some error function. In forecasting the most commonly used error function is the sum-of-squared errors:

EC = −∑
i=1

N

∑
j=1

C

ti jln t^i j

ti j
t^i j t^i j

0 < ti j < 1

Emin
C = −∑

i=1

N

∑
j=1

C

ti jln ti j

ECE = EC − Emin
C = −∑

i=1

N

∑
j=1

C

ti jln
t^i j
ti j

ti j =
1 if the i − th pattern belongs to the j − th category
0 if the i − th pattern does not belong to the j − th category
1619

 Data Mining Multilayer Feedforward Neural Networks
Training uses one of several possible optimization methods to minimize this error term. Some of the more com-
mon are: steepest descent, quasi-Newton, conjugant gradient and many various modifications of these
optimization routines.

Back-propagation is a method for calculating the first derivative, or gradient, of the error function required by
some optimization methods. It is certainly not the only method for estimating the gradient. However, it is the
most efficient. In fact, some will argue that the development of this method by Werbos (1974), Parker (1985) and
Rumelhart, Hinton and Williams (1986) contributed to the popularity of neural network methods by significantly
reducing the network training time and making it possible to train networks consisting of a large number of
inputs and perceptrons. Function imsls_f_mlff_network_trainer Stage I training is implemented using
Quasi-Newton optimization and steepest ascent with gradients estimated using the back-propagation method.
Stage II training is implemented using Quasi-Newton optimization.

Simply stated, back-propagation is a method for calculating the first derivative of the error function with respect
to each network weight. Bishop (1995) derives and describes these calculations for the two most common fore-
casting error functions – the sum-of-squared errors and Laplacian error functions. Abe (2001) gives the
description for the classification error function - the cross-entropy error function. For all of these error functions,
the basic formula for the first derivative of the network weight wji at the i-th perceptron applied to the output

from the j-th perceptron is:

where is the output from the i-th perceptron after activation, and

is the derivative for a single output and a single training pattern. The overall estimate of the first derivative of wji

is obtained by summing this calculation over all N training patterns and C network outputs.

The term back-propagation gets its name from the way the term δj in the back-propagation formula is calculated:

where the summation is over all perceptrons that use the activation from the j-th perceptron, g(aj).

E = 12∑
i=1

N

∑
j=1

C

ti j − t
^
i j

2

∂E
∂wji

= δ jZi

Zi = g ai

∂E
∂wji

δ j = g ′ a j ∑
k

wk jδk
1620

 Data Mining Multilayer Feedforward Neural Networks
The derivative of the activation functions, g' (aj), varies among these functions. See the following table:

Table 50: Activation Functions and Their Derivatives

Activation Function g(a) g’(a)

Linear

Logistic

Hyperbolic-tangent

Squash

g a = a g ′ a = 1

g a = 1
1 + e−a g ′ a = g a 1 − g a

g a = tanh a g ′ a = sech2 a = 1 − tanh2 a

g a = a
1 + ∣a∣ g ′ a = 1

1 + ∣a∣ 2 = 1 − ∣g a ∣ 2
1621

 Data Mining mlff_network_init
mlff_network_init
Initializes an Imsls_f_NN_Network data structure for use in training a neural network.

Synopsis
#include <imsls.h>
Imsls_f_NN_Network *imsls_f_mlff_network_init (int n_inputs, int n_outputs)

The type double function is imsls_d_mlff_network_init.

Required Arguments
int n_inputs (Input)

The number of network inputs. If the network uses nominal input attributes, the number of inputs
equals the number of encoded columns used to represent these attributes plus the number of con-
tinuous and ordinal input attributes, if any.

int n_outputs (Input)
The number of network outputs. For neural networks used for forecasting continuous responses,
n_outputs is equal to the number of variables being forecasted. Networks used for binary classifi-
cation have only one output. Other classification networks have one output for every possible target
category.

Return Value
An Imsls_f_NN_Network data structure initialized with the number of inputs and outputs specified by n_inputs
and n_outputs. To release this space use imsls_f_mlff_network_free.

Description
The function imsls_f_mlff_network_init is used to initialize the network, the function
imsls_f_mlff_network is used to build up the network in preparation for training, and the function
imsls_f_mlff_network_free is used to free the internally allocated structure.
1622

 Data Mining mlff_network_init
Function imsls_f_mlff_network_init initializes and returns an Imsls_f_NN_Network data structure. This
structure is required input to imsls_f_mlff_network and the network trainers. This function initializes the
structure to accommodate a network with the number of inputs and outputs specified by n_inputs and
n_outputs respectively. This function must be called prior to building the complete network architecture using
imsls_f_mlff_network.

Function imsls_f_mlff_network modifies the structure initialized by this function and builds the network
architecture consisting of hidden layers, perceptrons and links among these objects. This architecture is indepen-
dent of the training data. Once the architecture is complete, the Imsls_f_NN_Network data structure can be used
with imsls_f_mlff_network_trainer or imsls_f_classification_trainer to train the network.

After the network is trained, not only does the Imsls_f_NN_Network data structure contains a description of the
network architecture, it also contains the network weights needed for neural network forecasting or classification.

Example
For details, see the Examples section of mlff_network.
1623

 Data Mining mlff_network
mlff_network
Creates a multilayered feedforward neural network.

Synopsis
#include <imsls.h>
void imsls_f_mlff_network (Imsls_f_NN_Network *network, ..., 0)

The type double functions is imsls_d_mlff_network.

Required Arguments
Imsls_f_NN_Network *network (Input/Output)

A pointer to the structure containing the neural network that was initialized by
imsls_f_mlff_network_init. On output, the data structure will be updated depending on the optional
arguments used.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_mlff_network (Imsls_f_NN_Network *network,

IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons,
IMSLS_ACTIVATION_FCN, int layer_id, int activation_fcn[],
IMSLS_BIAS, int layer_id, float bias[],
IMSLS_LINK_ALL, or
IMSLS_LINK_LAYER, int to, int from, or
IMSLS_LINK_NODE, int to, int from, or
IMSLS_REMOVE_LINK, int to, int from,
IMSLS_N_LINKS, int *n_links,
IMSLS_DISPLAY_NETWORK,
0)
1624

 Data Mining mlff_network
Optional Arguments for imsls_f_mlff_network
IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons (Input)

Creates a hidden layer with n_perceptrons. To create one or more hidden layers
imsls_f_mlff_network must be called multiple times with optional argument
IMSLS_CREATE_HIDDEN_LAYER.

Default: No hidden layer is created.

IMSLS_ACTIVATION_FCN, int layer_id, int activation_fcn[] (Input)
Specifies the activation function for each perceptron in a hidden layer or the output layer, indicated
by layer_id. layer_id must be between 1 and the number of layers. If a hidden layer has been
created, layer_id set to 1 will indicate the first hidden layer. If there are zero hidden layers,
layer_id set to 1 indicates the output layer. Argument activation_fcn is an array of length
n_perceptrons in layer_id, where n_perceptrons is the number of perceptrons in
layer_id. activation_fcn contains the activation function for the i-th perceptron. Valid val-
ues for activation_fcn are:

Default: Output Layer activation_fcn[i] = IMSLS_LINEAR. All hidden layers
activation_fcn[i] = IMSLS_LOGISTIC.

IMSLS_BIAS, int layer_id, float bias[], (Input)
Specifies the bias values for each perceptron in a hidden layer or the output layer, indicated by
layer_id. layer_id must be between 1 and the number of layers. If a hidden layer has been
created, layer_id set to 1 indicates the first hidden layer. If there are zero hidden layers,
layer_id set to 1 indicates the output layer. Argument bias is an array of length
n_perceptrons in layer_id, where n_perceptrons is the number of perceptrons in
layer_id. bias contains the initial bias values for the i-th perceptron.

Default: bias[i] = 0.0

IMSLS_LINK_ALL, (Input)
Connects all nodes in a layer to each node in the next layer, for all layers in the network. To create a
valid network, use IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or IMSLS_LINK_NODE.

or

Activation Function Description

IMSLS_LINEAR Linear

IMSLS_LOGISTIC Logistic

IMSLS_TANH Hyperbolic-tangent

IMSLS_SQUASH Squash
1625

 Data Mining mlff_network
IMSLS_LINK_LAYER, int to, int from (Input)
Creates a link between all nodes in layer from to all nodes in layer to. Layers are numbered starting
at zero with the input layer, then the hidden layers in the order they are created, and finally the out-
put layer. To create a valid network, use IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or
IMSLS_LINK_NODE.

or

IMSLS_LINK_NODE, int to, int from (Input)
Links node from to node to. Nodes are numbered starting at zero with the input nodes, then the
hidden layer perceptrons, and finally the output perceptrons. To create a valid network, use
IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or IMSLS_LINK_NODE.

or

IMSLS_REMOVE_LINK, int to, int from (Input)
Removes the link between node from and node to. Nodes are numbered starting at zero with the
input nodes, then the hidden layer perceptrons, and finally output perceptrons.

IMSLS_N_LINKS, int *n_links (Output)
Returns the number of links in the network.

IMSLS_DISPLAY_NETWORK (Input)
Displays the contents of the network structure.

Default: No printing is done.

Description
A multilayered feedforward network contains an input layer, an output layer and zero or more hidden layers. The
input and output layers are created by the function imsls_f_mlff_network_init. The hidden layers are
created by one or more calls to imsls_f_mlff_network with the keyword
IMSLS_CREATE_HIDDEN_LAYER, where n_perceptrons specifies the number of perceptrons in the hid-
den layer.

The network also contains links or connections between nodes. Links are created by using one of the three
optional arguments in the imsls_f_mlff_network function, IMSLS_LINK_ALL, IMSLS_LINK_LAYER,
IMSLS_LINK_NODE. The most useful is the IMSLS_LINK_ALL, which connects every node in each layer to
every node in the next layer. A feedforward network is a network in which links are only allowed from one layer to
a following layer.
1626

 Data Mining mlff_network
Each link has a weight and gradient value. Each perceptron node has a bias value. When the network is trained, the
weight and bias values are used as initial guesses. After the network is trained using
imsls_f_mlff_network_trainer, the weight, gradient and bias values are updated in the
Imsls_f_NN_Network structure.

Each perceptron has an activation function g, and a bias, μ. The value of the percepton is given by g(Z), where g is
the activation function and Z is the potential calculated using

where xi are the values of nodes input to this perceptron with weights wi.

All information for the network is stored in the structure called Imsls_f_NN_Network. (If the type is double, then the
structure name is Imsls_d_NN_Network.) This structure describes the network that is trained by
imsls_f_mlff_network_trainer.

The following code gives a detailed description of Imsls_f_NN_Network:
typedef struct
{
 int n_inputs;
 int n_outputs;
 int n_layers;
 Imsls_NN_Layer *layers;
 int n_links;
 int next_link;
 Imsls_f_NN_Link *links;
 int n_nodes;
 Imsls_f_NN_Node *nodes;
} Imsls_f_NN_Network;

 where Imsls_NN_Layer is:

typedef struct
{
 int n_nodes;
 int *nodes; /* An array containing the indices into the
 Node array that belong to this layer */
} Imsls_NN_Layer;

 Imsls_NN_Link is:

typedef struct
{
 float weight;
 float gradient;
 int to_node; /* index of to node */
 int from_node; /* index of from node */
} Imsls_f_NN_Link;

Z =∑
i=1

m

wixi + μ
1627

 Data Mining mlff_network
 and, Imsls_NN_Node is:

typedef struct
{
 int layer_id;
 int n_inLinks;
 int n_outLinks;
 int *inLinks; /* index to Links array */
 int *outLinks; /* index to Links array */
 float gradient;
 float bias;
 int ActivationFcn;
} Imsls_f_NN_Node;

In particular, if network is a pointer to the structure of type Imsls_f_NN_Network , then:

Nodes are numbered starting at zero with the input nodes, followed by the hidden layer perceptrons and finally
the output perceptrons.

Table 51: Structure Members and Their Descriptions

Structure member Description

network->n_layers Number of layers in network. Layers are num-
bered starting at 0 for the input layer.

network->n_nodes Total number of nodes in network, including
the input attributes.

network->n_links Total number of links or connections between
input attributes and perceptrons and between
perceptrons from layer to layer.

network->layers[0] Input layer with n_inputs attributes.

network->layers[network->n_layers-1] Output layer with n_outputs perceptrons.

network->n_inputs which is equal to
network->layers[0].n_nodes

n_inputs (number of input attributes).

network->n_outputs which is equal to
network->layers[network->n_layers-1].n_nodes

n_outputs (number of output perceptrons).

network->layers[1].n_nodes Number of perceptrons in first hidden layer, or
number of output perceptrons if no hidden
layer.

network->links[i].weight Initial weight for the i-th link in network. After
the training has completed the structure mem-
ber contains the weight used for forecasting.

network->nodes[i].bias Initial bias value for the i-th node. After the
training has completed the bias value is
updated.
1628

 Data Mining mlff_network
Layers are numbered starting at zero with the input layer, followed by the hidden layers and finally the output
layer. If there are no hidden layers, the output layer is numbered one.

Links are numbered starting at zero in the order the links were created. If the IMSLS_LINK_ALL option was
used, the first link is the input link from the first input node to the first node in the next layer. The second link is
the input link from the first input node to the second node in the next layer, continuing to the link from the last
node in the next to last layer to the last node in the output layer. However, due to the possible variations in the
order the links may be created, it is advised to initialize the weights using the imsls_f_initialize_weights
routine or use the optional argument IMSLS_WEIGHT_INITIALIZATION_METHOD in functions
imsls_f_mlff_network_trainer and imsls_f_mlff_classification_trainer. Alternatively, the
weights can be initialized in the Imsls_f_NN_Network data structure. The following code is an example of how to ini-
tialize the network weights in an Imsls_f_NN_Network variable created with the name network:

 for (j=network->n_inputs; j < network->n_nodes; j++)
 {
 for (k=0; k < network->nodes[j].n_inLinks; k++)
 {
 wIdx = network->nodes[j].inLinks[k];
 /* set specific layer weights */
 if (network->nodes[j].layer_id == 1) {
 network->links[wIdx].weight = 0.5;
 } else if (network->nodes[j].layer_id == 2) {
 network->links[wIdx].weight = 0.33;
 } else {
 network->links[wIdx].weight = 0.25;
 }
 }
 }

The first for loop, j iterates through each perceptron in the network. Since input nodes are not perceptrons, they
are excluded. The second for loop, k iterates through each of the perceptron’s input links, network-
>nodes[j].inLinks[k]. network->nodes[j].n_inLinks is the number of input links for
network->nodes[j]. network->nodes[j].inLinks[k] contains the index of each input link to
network->nodes[j] in the network->links array.

This example also illustrates how to set the weights based on the layer_id number.
network->nodes[j].layer_id contains the layer identification number. This is used to set the weights for
the first hidden layer to 0.5, the second hidden layer weights to 0.33 and all others to 0.25.
1629

 Data Mining mlff_network
Examples

Example 1

This example creates a single-layer feedforward network. The network inputs are directly connected to the out-
put perceptrons using the IMSLS_LINK_ALL argument. The output perceptrons use the default linear
activation function and default bias values of 0.0. The IMSLS_DISPLAY_NETWORK argument is used to show
the default settings of the network.

Figure 30, A Single-Layer Feedforward Neural Net

#include <imsls.h>
int main()
{
 Imsls_f_NN_Network *network;

 network = imsls_f_mlff_network_init(3,2);
 imsls_f_mlff_network(network,
 IMSLS_LINK_ALL,
 IMSLS_DISPLAY_NETWORK,
 0);
 imsls_f_mlff_network_free(network);
}

1630

 Data Mining mlff_network
Output

+++++++++++
Input Layer

 NODE_0
Activation Fcn = 0
Bias = 0.000000
 Output Links : 0 1
 NODE_1
Activation Fcn = 0
Bias = 0.000000
 Output Links : 2 3
 NODE_2
Activation Fcn = 0
Bias = 0.000000
 Output Links : 4 5

Output Layer

 NODE_3
Activation Fcn = 0
Bias = 0.000000
 Input Links : 0 2 4
 NODE_4
Activation Fcn = 0
Bias = 0.000000
 Input Links : 1 3 5

******* Links ********
network->links[0].weight = 0.00000000000000000000
network->links[0].gradient = 1.00000000000000000000
network->links[0].to_node = 3
network->links[0].from_node = 0
network->links[1].weight = 0.00000000000000000000
network->links[1].gradient = 1.00000000000000000000
network->links[1].to_node = 4
network->links[1].from_node = 0
network->links[2].weight = 0.00000000000000000000
network->links[2].gradient = 1.00000000000000000000
network->links[2].to_node = 3
network->links[2].from_node = 1
network->links[3].weight = 0.00000000000000000000
network->links[3].gradient = 1.00000000000000000000
network->links[3].to_node = 4
network->links[3].from_node = 1
network->links[4].weight = 0.00000000000000000000
network->links[4].gradient = 1.00000000000000000000
network->links[4].to_node = 3
network->links[4].from_node = 2
network->links[5].weight = 0.00000000000000000000
network->links[5].gradient = 1.00000000000000000000
network->links[5].to_node = 4
network->links[5].from_node = 2
1631

 Data Mining mlff_network
Example 2

This example creates a two-layer feedforward network with four inputs, one hidden layer with three perceptrons
and two outputs.

Since the default activation function is linear for output and logistic for the hidden layers, to create a network that
uses only linear activation you must specify the linear activation for each hidden layer in the network. This exam-
ple demonstrates how to change the activation function and bias values for hidden and output layer perceptrons
as shown in Figure 31 below.

Figure 31, A 2-layer Feedforward Network with 4 Inputs and 2 Outputs

#include <imsls.h>
int main()
{
 Imsls_f_NN_Network *network;
 int hidActFcn[3] ={IMSLS_LINEAR, IMSLS_LINEAR, IMSLS_LINEAR};
 float outbias[2] = {1.0, 1.0};
 float hidbias[3] = {1.0, 1.0, 1.0};
 network = imsls_f_mlff_network_init(4,2);
 imsls_f_mlff_network(network,
 IMSLS_CREATE_HIDDEN_LAYER, 3,
 IMSLS_ACTIVATION_FCN, 1, &hidActFcn,
 IMSLS_BIAS, 2, outbias,
 IMSLS_LINK_ALL,
 0);
1632

 Data Mining mlff_network
 imsls_f_mlff_network(network,
 IMSLS_BIAS, 1, hidbias,
 0);
 imsls_f_mlff_network_free(network);
}

Example 3

This example creates a three-layer feedforward network with six input nodes and they are not all connected to
every node in the first hidden layer.

Note also that the four perceptrons in the first hidden layer are not connected to every node in the second hid-
den layer, and the perceptrons in the second hidden layer are not all connected to the two outputs:

Figure 32, A network that uses a total of nine perceptrons to produce two forecasts from six input
attributes

This network uses a total of nine perceptrons to produce two forecasts from six input attributes.

Links among the input nodes and perceptrons can be created using one of several approaches. If all inputs are
connected to every perceptron in the first hidden layer, and if all perceptrons are connected to every perceptron
in the following layer, which is a standard architecture for feed forward networks, then a call to the
IMSLS_LINK_ALL method can be used to create these links.
1633

 Data Mining mlff_network
However, this example does not use that standard configuration. Some links are missing. The keyword
IMSLS_LINK_NODE can be used to construct individual links, or, an alternative approach is to first create all
links and then remove those that are not needed. This example illustrates the latter approach.

#include <imsls.h>
int main()
{
 Imsls_f_NN_Network *network;
 network = imsls_f_mlff_network_init(6,2);
 /* Create 2 hidden layers and link all nodes */
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 4, 0);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3,
 IMSLS_LINK_ALL, 0);
 /* Remove unwanted links from Input 1 */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,0, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,9,0, 0);
 /* Remove unwanted links from Input 2 */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,9,1, 0);
 /* Remove unwanted links from Input 3 */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,2, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,9,2, 0);
 /* Remove unwanted links from Input 4 */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,3, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,7,3, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,3, 0);
 /* Remove unwanted links from Input 5 */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,4, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,7,4, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,4, 0);
 /* Remove unwanted links from Input 6 */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,6,5, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,7,5, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,8,5, 0);
 /* Add link from Input 1 to Output Perceptron 1 */
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,13,0, 0);

 /* Remove unwanted links between hidden Layer 1 and hidden layer 2 */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,11,8, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,12,9, 0);
 /* Remove unwanted links between hidden Layer 2 and output layer */
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,14,10, 0);
 imsls_f_mlff_network_free(network);
}

Another approach is to use keywords IMSLS_LINK_NODE and IMSLS_LINK_LAYER to combine links
between the two hidden layers, create individual links, and remove the links that are not needed. This example
illustrates this approach:

#include <imsls.h>
int main()
{
 Imsls_f_NN_Network *network;
1634

 Data Mining mlff_network
 network = imsls_f_mlff_network_init(6,2);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 4, 0);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3, 0);
 /* Link input attributes to first hidden layer */
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,6,0, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,7,0, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,6,1, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,7,1, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,8,1, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,7,2, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,8,2, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,9,3, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,9,4, 0);
 imsls_f_mlff_network(network, IMSLS_LINK_NODE,9,5, 0);
 /* Link hidden layer 1 to hidden layer 2 then remove unwanted links */
 imsls_f_mlff_network(network, IMSLS_LINK_LAYER,2,1, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,11,8, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,12,9, 0);
 /* Link hidden layer 2 to output layer then remove unwanted link */
 imsls_f_mlff_network(network, IMSLS_LINK_LAYER,3,2, 0);
 imsls_f_mlff_network(network, IMSLS_REMOVE_LINK,14,10, 0);
 imsls_f_mlff_network_free(network);
}

1635

 Data Mining mlff_network_free
mlff_network_free
Frees memory allocated to an Imsls_f_NN_Network data structure.

Synopsis
#include <imsls.h>
void imsls_f_mlff_network_free (Imsls_f_NN_Network *network)

The type double function is imsls_d_mlff_network_free.

Required Arguments
Imsls_f_NN_Network *network (Input)

Pointer to a structure of the type Imsls_f_NN_Network.

Description
Function mlff_network_free frees memory allocated for an Imsls_f_NN_Network data structure created by
imsls_f_mlff_network_init and imsls_f_mlff_network. If it is necessary to maintain the network
information contained in this structure for developing forecasts or classifications in the future, the structure can
be stored to a file and retrieved later using imsls_f_mlff_network_write and
imsls_f_mlff_network_read, respectively.

Example
For details, see the Examples section of mlff_network.
1636

 Data Mining mlff_network_write
mlff_network_write
Writes a trained neural network to an ASCII file for later retrieval using imsls_f_mlff_network_read.

Synopsis
#include <imsls.h>
void imsls_f_mlff_network_write(Imsls_f_NN_Network *network, char *filename, ..., 0)

The type double function is imsls_d_mlff_network_write.

Required Arguments
Imsls_f_NN_Network *network (Input)

A trained neural network.

char *filename (Input)
The name of an ASCII file to be created. A complete or relative path can be used. If this file exists, it is
replaced with a description of the neural network. If it does not exist, it is created. If the optional
argument IMSLS_FILE is used, filename is ignored.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_mlff_network_write (Imsls_f_NN_Network *network,

charImsls_f_NN_Network*filename,

IMSLS_PRINT,
IMSLS_FILE, FILE *file,
0)

Optional Arguments
IMSLS_PRINT, (Input)

Prints status of file open, writing and closing.

Default: no printing.
1637

 Data Mining mlff_network_write
IMSLS_FILE, FILE *file (Input/Output)
A FILE pointer to a file opened for writing. This file is written but not closed. If this option is pro-
vided, filename is ignored. This option allows users to read additional user-defined data and
multiple networks from the same file (see Example 2). To ensure this file is opened and closed with
the same C run-time library used by the product, open and close this file using imsls_fopen and
imsls_fclose instead of fopen and fclose.

Description
This function stores an Imsls_f_NN_Network data structure containing a trained neural network into an ASCII file. If
the optional argument IMSLS_FILE is provided, imsls_f_mlff_network_write writes the data struc-
ture and returns without closing the file. If this argument is not provided, imsls_f_mlff_network_write
creates a file using the path and name provided in filename, writes the data structure to that file, and then
closes the file before returning.

Examples

Example 1

This example trains a network using the Draper-Smith data. These data consist of 13 patterns. The input attri-
butes consist of four continuous attributes and one dependent variable. The network is stored into 73 lines of an
ASCII file named NeuralNetworkEx1.txt.

#include <imsls.h>
#include <stdio.h>
int main(){
 char *filename = "NeuralNetworkEx1.txt";
 float *trainStats;
 int i, j;
 int n_patterns =13;
 int n_inputs =4;
 int n_nominal =0;
 int n_continuous =4;
 int n_outputs =1;
 int *nominalAtt=NULL;
 float ss;
 float continuous[4*13], y[13];
 float *draperSmithData;
 float forecasts[13];
 Imsls_f_NN_Network *networkStructure;
 draperSmithData = imsls_f_data_sets(5,0);

 for(i=0; i < n_patterns; i++){
 y[i] = draperSmithData[5*i+4];
 for(j=0; j<4; j++)
 continuous[i*4+j] = draperSmithData[5*i+j];
1638

 Data Mining mlff_network_write
 }
 networkStructure = imsls_f_mlff_network_init(n_inputs, n_outputs);
 imsls_f_mlff_network(networkStructure,
 IMSLS_CREATE_HIDDEN_LAYER, 4, IMSLS_LINK_ALL, 0);
 imsls_random_seed_set(5555);
 trainStats = imsls_f_mlff_network_trainer(networkStructure,
 n_patterns, 0, n_continuous, nominalAtt,
 continuous, y, IMSLS_STAGE_I, 100, 13,
 IMSLS_FORECASTS_USER, forecasts, 0);
 printf("OBS X1 X2 X3 X4 Y ");
 printf("FORECAST\n");
 ss = 0;
 for(i=0; i<n_patterns; i++) {
 ss += (y[i]-forecasts[i])*(y[i]-forecasts[i]);
 printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n",
 i, continuous[i*4], continuous[i*4+1], continuous[i*4+2],
 continuous[i*4+3], y[i], forecasts[i]);
 }
 printf("Sum of Squared Residuals: %7.2f\n\n", ss);
 imsls_f_mlff_network_write(networkStructure, filename,
 IMSLS_PRINT, 0);

}

Output

OBS X1 X2 X3 X4 Y FORECAST
 0 7.00 26.00 6.00 60.00 78.50 78.50
 1 1.00 29.00 15.00 52.00 74.30 74.30
 2 11.00 56.00 8.00 20.00 104.30 104.22
 3 11.00 31.00 8.00 47.00 87.60 87.60
 4 7.00 52.00 6.00 33.00 95.90 95.78
 5 11.00 55.00 9.00 22.00 109.20 109.34
 6 3.00 71.00 17.00 6.00 102.70 102.55
 7 1.00 31.00 22.00 44.00 72.50 72.50
 8 2.00 54.00 18.00 22.00 93.10 93.24
 9 21.00 47.00 4.00 26.00 115.90 116.05
10 1.00 40.00 23.00 34.00 83.80 83.80
11 11.00 66.00 9.00 12.00 113.30 112.30
12 10.00 68.00 8.00 12.00 109.40 110.33
Sum of Squared Residuals: 1.97
Opening NeuralNetworkEx1.txt for writing network data structure
Writing Neural Network... 73 Lines written to network file.
File NeuralNetworkEx1.txt closed.

Example 2

This example illustrates the use of the optional argument IMSLS_FILE to store multiple neural networks into
one file. Two networks are trained using the Draper-Smith data. These data consist of 13 patterns each with four
continuous attributes and one dependent variable. The first network is trained for forecasting the dependent
variable using all four attributes, and the second is trained using only the first three. The networks are stored into
133 lines of an ASCII file named NeuralNetworkEx2.txt.
1639

 Data Mining mlff_network_write
#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main(){
 FILE *file;
 char *filename = "NeuralNetworkEx2.txt";
 float *trainStats;
 int i, j;
 int n_patterns =13;
 int n_inputs4 =4;
 int n_inputs3 =3;
 int n_cont4 =4;
 int n_cont3 =3;
 int n_outputs =1;
 int *categoricalAtt=NULL;
 float ss3, ss4;
 float cont4[4*13], cont3[3*13], y[13];
 float *draperSmithData;
 float forecasts3[13], forecasts4[13];
 Imsls_f_NN_Network *networkStructure;
 draperSmithData = imsls_f_data_sets(5,0);
 for(i=0; i < n_patterns; i++){
 y[i] = draperSmithData[5*i+4];
 for(j=0; j<4; j++){
 cont4[i*4+j] = draperSmithData[5*i+j];
 if(j<3) cont3[i*3+j] = draperSmithData[5*i+j];
 }
 }
 networkStructure = imsls_f_mlff_network_init(n_inputs4,
 n_outputs);
 imsls_f_mlff_network(networkStructure,
 IMSLS_CREATE_HIDDEN_LAYER, 4,
 IMSLS_LINK_ALL, 0);
 imsls_random_seed_set(5555);
 trainStats = imsls_f_mlff_network_trainer(networkStructure,
 n_patterns, 0, n_cont4,
 categoricalAtt, cont4, y,
 IMSLS_MAX_STEP, 100.0,
 IMSLS_STAGE_I, 50, n_patterns,
 IMSLS_FORECASTS_USER, &forecasts4, 0);
 /* open filestream */
 file = imsls_fopen(filename, "w");
 /* Write the number of network being placed into this file */
 fprintf(file, "%d\n", 2);
 printf("Writing network for model with 4 continuous attributes\n");
 imsls_f_mlff_network_write(networkStructure, NULL,
 IMSLS_PRINT, IMSLS_FILE, file, 0);
 /* Create second neural network */
 imsls_f_mlff_network_free(networkStructure);
 imsls_free(trainStats);
 networkStructure = imsls_f_mlff_network_init(n_inputs3,
 n_outputs);
 imsls_f_mlff_network(networkStructure,
 IMSLS_CREATE_HIDDEN_LAYER, 4,
 IMSLS_LINK_ALL, 0);
 imsls_random_seed_set(5555);
1640

 Data Mining mlff_network_write
 trainStats = imsls_f_mlff_network_trainer(networkStructure,
 n_patterns, 0, n_cont3,
 categoricalAtt, cont3, y,
 IMSLS_MAX_STEP, 100.0,
 IMSLS_STAGE_I, 50, n_patterns,
 IMSLS_FORECASTS_USER, &forecasts3, 0);
 printf("Writing network for model with 3 continuous attributes\n");
 imsls_f_mlff_network_write(networkStructure, NULL, IMSLS_PRINT,
 IMSLS_FILE, file, 0);
 imsls_fclose(file);
 printf("File %s Closed.\n", filename);
 printf("\nPrinting Forecasts for models with 3 and 4");
 printf(" continuous attributes:\n");
 printf("\n ");
 printf("FORECAST FORECAST\n");
 printf("OBS X1 X2 X3 X4 Y ");
 printf("n_cont=3 n_cont=4\n");
 ss4 = 0;
 ss3 = 0;
 for(i=0; i<n_patterns; i++) {
 ss4 += (y[i]-forecasts4[i])*(y[i]-forecasts4[i]);
 ss3 += (y[i]-forecasts3[i])*(y[i]-forecasts3[i]);
 printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %9.2f\n",
 i, cont4[i*4], cont4[i*4+1], cont4[i*4+2],
 cont4[i*4+3], y[i], forecasts3[i], forecasts4[i]);
 }
 printf("Sum of Squared Residuals for X1-X3: %7.2f\n", ss3);
 printf("Sum of Squared Residuals for X1-X4: %7.2f\n", ss4);
}

Output

Writing network for model with 4 continuous attributes
Writing Neural Network... 73 Lines written to network file.
File not closed.
Writing network for model with 3 continuous attributes
Writing Neural Network... 60 Lines written to network file.
File not closed.
File NeuralNetworkEx2.txt Closed.
Printing Forecasts for models with 3 and 4 continuous attributes:
 FORECAST FORECAST
OBS X1 X2 X3 X4 Y n_cont=3 n_cont=4
 0 7.00 26.00 6.00 60.00 78.50 78.97 78.50
 1 1.00 29.00 15.00 52.00 74.30 73.62 74.30
 2 11.00 56.00 8.00 20.00 104.30 104.61 104.30
 3 11.00 31.00 8.00 47.00 87.60 87.32 87.60
 4 7.00 52.00 6.00 33.00 95.90 94.88 95.90
 5 11.00 55.00 9.00 22.00 109.20 108.82 109.20
 6 3.00 71.00 17.00 6.00 102.70 102.69 102.70
 7 1.00 31.00 22.00 44.00 72.50 72.97 72.50
 8 2.00 54.00 18.00 22.00 93.10 94.28 93.10
 9 21.00 47.00 4.00 26.00 115.90 115.04 115.90
10 1.00 40.00 23.00 34.00 83.80 83.64 83.80
11 11.00 66.00 9.00 12.00 113.30 114.45 113.30
12 10.00 68.00 8.00 12.00 109.40 109.20 109.40
Sum of Squared Residuals for X1-X3: 5.76
Sum of Squared Residuals for X1-X4: 0.00
1641

 Data Mining mlff_network_write
Fatal Errors
IMSLS_FILE_OPEN_FAILURE Unable to open file for writing network.
1642

 Data Mining mlff_network_read
mlff_network_read
Retrieves a neural network from a file previously saved using imsls_f_mlff_network_write.

Synopsis
#include <imsls.h>
Imsls_f_NN_Network *imsls_f_mlff_network_read (char *filename, …, 0)

The type double function is imsls_d_mlff_network_read.

Required Arguments
char *filename (Input)

The name of an ASCII file containing a description of a trained neural network previously saved using
imsls_f_mlff_network_write. A complete or relative path can be used. If the optional argu-
ment IMSLS_FILE is used, filename is ignored and the file is not closed before returning.

Return Value
A pointer to an Imsls_f_NN_Network data structure containing the neural network stored using
imsls_f_mlff_network_write. This space can be released by using the imsls_free function.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_NN_Network *imsls_f_mlff_network_read (char *filename,

IMSLS_PRINT,
IMSLS_FILE, FILE *file,
0)

Optional Arguments
IMSLS_PRINT , (Input)

Prints status of file open, reading and closing.
1643

 Data Mining mlff_network_read
Default: No printing.

IMSLS_FILE, FILE *file (Input)
A FILE pointer to a file opened for reading. This file is read but not closed. If this option is provided,
filename is ignored. This option allows users to read additional user-defined data and multiple
networks from the same file (see Example 2). To ensure this file is opened and closed with the same C
run-time library used by the product, open and close this file using imsls_fopen and
imsls_fclose instead of fopen and fclose.

Description
This function reads an Imsls_f_NN_Network data structure, a neural network previously stored as an ASCII file using
imsls_f_mlff_network_write. If the optional argument IMSLS_FILE is provided, the data structure is
read from that file stream and the file stream is not closed. If this argument is not provided,
imsls_f_mlff_network_read opens a file using the path and name provided in filename, reads the
data structure from that file, and then closes the file before returning.

Examples

Example 1

This example reads a network previously trained using the Draper-Smith data. These data consist of 13 patterns,
each with four continuous attributes and one dependent variable. The network was stored into 73 lines of an
ASCII file named NeuralNetworkEx1.txt using imsls_f_mlff_network_write (see Example 1 of
imsls_f_mlff_network_write).

#include <imsls.h>
#include <stdio.h>
int main(){
 char *filename = "NeuralNetworkEx1.txt";
 int i, j;
 int n_patterns =13;
 int n_inputs =4;
 int n_categorical =0;
 int n_continuous =4;
 int n_outputs =1;
 int *categoricalAtt=NULL;
 float ss;
 float continuous[4*13], y[13], contAtt[4];
 float *draperSmithData;
 float forecast[1], forecasts[13];
 Imsls_f_NN_Network *network;
 draperSmithData = imsls_f_data_sets(5,0);

 for(i=0; i < n_patterns; i++){
 y[i] = draperSmithData[5*i+4];
1644

 Data Mining mlff_network_read
 for(j=0; j<n_continuous; j++)
 continuous[i*n_continuous+j] = draperSmithData[5*i+j];
 }
 network = imsls_f_mlff_network_read(filename,
 IMSLS_PRINT, 0);
 for(i=0; i<n_patterns; i++){
 for(j=0; j<n_inputs; j++)
 contAtt[j] = continuous[i*n_continuous+j];
 imsls_f_mlff_network_forecast(network,
 n_categorical, n_continuous, categoricalAtt, contAtt,
 IMSLS_RETURN_USER, forecast, 0);
 forecasts[i] = forecast[0];
 }
 printf("\nOBS X1 X2 X3 X4 Y");
 printf(" FORECAST\n");
 ss = 0;
 for(i=0; i<n_patterns; i++) {
 ss += (y[i]-forecasts[i])*(y[i]-forecasts[i]);
 printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n",
 i, continuous[i*n_continuous], continuous[i*n_continuous+1],
 continuous[i*n_continuous+2], continuous[i*n_continuous+3],
 y[i], forecasts[i]);
 }
 printf("Sum of Squared Residuals: %7.2f\n", ss);
}

Output

Notice that the forecasts produced using imsls_f_mlff_network_forecast are identical to the original
forecasts in Example 1 of imsls_f_mlff_network_write.

Attempting to open NeuralNetworkEx1.txt for
reading network data structure
File NeuralNetworkEx1.txt Successfully Opened
File NeuralNetworkEx1.txt closed
OBS X1 X2 X3 X4 Y FORECAST
 0 7.00 26.00 6.00 60.00 78.50 78.50
 1 1.00 29.00 15.00 52.00 74.30 74.30
 2 11.00 56.00 8.00 20.00 104.30 104.22
 3 11.00 31.00 8.00 47.00 87.60 87.60
 4 7.00 52.00 6.00 33.00 95.90 95.78
 5 11.00 55.00 9.00 22.00 109.20 109.34
 6 3.00 71.00 17.00 6.00 102.70 102.55
 7 1.00 31.00 22.00 44.00 72.50 72.50
 8 2.00 54.00 18.00 22.00 93.10 93.24
 9 21.00 47.00 4.00 26.00 115.90 116.05
10 1.00 40.00 23.00 34.00 83.80 83.80
11 11.00 66.00 9.00 12.00 113.30 112.30
12 10.00 68.00 8.00 12.00 109.40 110.33
Sum of Squared Residuals: 1.97
1645

 Data Mining mlff_network_read
Example 2

This example illustrates the use of the optional argument IMSLS_FILE to read multiple neural networks previ-
ously stored into a single file using imsls_f_mlff_network_write. Two networks were trained using the
Draper-Smith data. These data consist of 13 patterns, each with four continuous attributes and one dependent
variable. The first network is trained to forecast the dependent variable using all 4 inputs and the second using
only the first 3. The networks are read from an ASCII file previously created using
imsls_f_mlff_network_write named NeuralNetworkEx2.txt (see Example 2 of
imsls_f_mlff_network_write).

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern int imsls_fclose(FILE* file);
int main(){
 FILE *file;
 char *filename = "NeuralNetworkEx2.txt";
 int i, j, n;
 int n_patterns =13;
 int n_inputs =4;
 int n_categorical =0;
 int n_continuous =4;
 int n_outputs =1;
 int n_networks =0;
 int *categoricalAtt=NULL;
 float ss3, ss4;
 float cont4[4*13], y[13], contAtt4[4];
 float cont3[3*13];
 float *draperSmithData;
 float forecast[1], forecasts[2*13];
 Imsls_f_NN_Network **neural_network;
 draperSmithData = imsls_f_data_sets(5,0);

 for(i=0; i < n_patterns; i++){
 y[i] = draperSmithData[5*i+4];
 for(j=0; j<n_continuous; j++){
 cont4[i*n_continuous+j] = draperSmithData[5*i+j];
 if(j<3) cont3[i*3+j] = draperSmithData[5*i+j];
 }
 }

 /* open filestream */
 file = imsls_fopen(filename, "r");
 printf("File %s Opened\n", filename);
 /* Read the number of network being placed into this file */
 fscanf(file, "%d", &n_networks);
 printf("File contains %d neural networks\n", n_networks);
 neural_network = (Imsls_f_NN_Network **) malloc(n_networks*
 sizeof(Imsls_f_NN_Network *));
 printf("Reading Networks and Preparing Forecasts...\n");
 for(n=0; n<n_networks; n++){
 neural_network[n] = imsls_f_mlff_network_read(NULL,
 IMSLS_PRINT, IMSLS_FILE, file, 0);
1646

 Data Mining mlff_network_read
 n_continuous = neural_network[n]->layers[0].n_nodes;
 printf("Preparing forecasts for network with");
 printf(" %d continuous attributes\n", n_continuous);
 for(i=0; i<n_patterns; i++){
 for(j=0; j<4; j++) contAtt4[j] = cont4[i*4+j];
 imsls_f_mlff_network_forecast(neural_network[n],
 n_categorical, n_continuous,
 categoricalAtt, contAtt4,
 IMSLS_RETURN_USER, forecast, 0);
 forecasts[n*n_patterns + i] = forecast[0];
 }
 }

 imsls_fclose(file);
 printf("File %s Closed.\n\n", filename);
 printf(" ");
 printf("FORECAST FORECAST\n");
 printf("OBS X1 X2 X3 X4 Y ");
 printf("n_cont=3 n_cont=4\n");
 ss4 = 0;
 ss3 = 0;
 for(i=0; i<n_patterns; i++) {
 ss4 += (y[i]-forecasts[i])*(y[i]-forecasts[i]);
 ss3 += (y[i]-forecasts[n_patterns+i])*
 (y[i]-forecasts[n_patterns+i]);
 printf("%2d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %9.2f\n",
 i, cont4[i*4], cont4[i*4+1], cont4[i*4+2], cont4[i*4+3],
 y[i], forecasts[n_patterns+i], forecasts[i]);
 }
 printf("Sum of Squared Residuals for X1-X3: %7.2f\n", ss3);
 printf("Sum of Squared Residuals for X1-X4: %7.2f\n", ss4);
}

Output

Notice that the forecasts produced using imsls_f_mlff_network_forecast are identical to the original
forecasts in Example 2 of imsls_f_mlff_network_write.

File NeuralNetworkEx2.txt Opened
File contains 2 neural networks
Reading Networks and Preparing Forecasts...
Network restored from file. File not closed.
Preparing forecasts for network with 4 continuous attributes
Network restored from file. File not closed.
Preparing forecasts for network with 3 continuous attributes
File NeuralNetworkEx2.txt Closed.
 FORECAST FORECAST
OBS X1 X2 X3 X4 Y n_cont=3 n_cont=4
 0 7.00 26.00 6.00 60.00 78.50 78.97 78.50
 1 1.00 29.00 15.00 52.00 74.30 73.62 74.30
 2 11.00 56.00 8.00 20.00 104.30 104.61 104.30
 3 11.00 31.00 8.00 47.00 87.60 87.32 87.60
 4 7.00 52.00 6.00 33.00 95.90 94.88 95.90
 5 11.00 55.00 9.00 22.00 109.20 108.82 109.20
 6 3.00 71.00 17.00 6.00 102.70 102.69 102.70
 7 1.00 31.00 22.00 44.00 72.50 72.97 72.50
1647

 Data Mining mlff_network_read
 8 2.00 54.00 18.00 22.00 93.10 94.28 93.10
 9 21.00 47.00 4.00 26.00 115.90 115.04 115.90
10 1.00 40.00 23.00 34.00 83.80 83.64 83.80
11 11.00 66.00 9.00 12.00 113.30 114.45 113.30
12 10.00 68.00 8.00 12.00 109.40 109.20 109.40
Sum of Squared Residuals for X1-X3: 5.76
Sum of Squared Residuals for X1-X4: 0.00

Fatal Errors
IMSLS_FILE_OPEN_FAILURE Unable to open file for reading neural network.
1648

 Data Mining mlff_initialize_weights
mlff_initialize_weights
Initializes weights for multilayered feedforward neural networks prior to network training using one of four user
selected methods.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_initialize_weights (Imsls_f_NN_Network *network, int n_patterns,

int n_nominal, int n_continuous, int nominal[], float continuous[], ..., 0)

The type double function is imsls_d_mlff_initialize_weights.

Required Arguments
Imsls_f_NN_Network *network (Input/Output)

Pointer to a structure of type Imsls_f_NN_Network containing the parameters that define the feedfor-
ward network’s architecture, including network weights and bias values. For more details, see
imsls_f_mlff_network. When network training is successful, the weights and bias values in
network are replaced with the values calculated for the optimum trained network.

int n_patterns (Input)
Number of training patterns.

int n_nominal (Input)
Number of unencoded nominal attributes.

int nominal[] (Input)
Array of size n_patterns by n_nominal containing the nominal input variables.

int n_continuous (Input)
Number of continuous attributes, including ordinal attributes encoded using cumulative percentage.

float continuous[] (Input)
Array of size n_patterns by n_continuous containing the continuous and scaled ordinal input
variables.
1649

 Data Mining mlff_initialize_weights
Return Value
Pointer to an array of length network->n_links + (network->n_nodes-network->n_inputs) con-
taining the initialized weights. See the Description section for details on weight ordering. This space can be
released by using the imsls_free function.
1650

 Data Mining mlff_initialize_weights
Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_mlff_initialize_weights (Imsls_f_NN_Network *network, int n_patterns,
int n_nominal, int n_continuous, int nominal[], float continuous[],

IMSLS_METHOD, int method,
IMSLS_PRINT,
IMSLS_CLASSIFICATION, int classification[],
IMSLS_RETURN_USER, float weights[],
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

Specifies the algorithm to use for initializing weights. method contains the weight initialization
method to be used. Valid values for method are:

The discriminant weights method can only be used to initialize weights for classification networks
without binary encoded nominal attributes. See the Description section for details.

Default: method = IMSLS_RANDOM.

IMSLS_PRINT, (Input)
Initial weights are printed.

Default: No printing is performed.

IMSLS_CLASSIFICATION, int classification[] (Input)
An array of length n_patterns containing the encoded training target classifications which must be
integers from 0 to n_classes-1. Here n_classes =network- >n_outputs except when
n_outputs=1 then n_classes =2. classification[i] is the target classification for the i-
th training pattern described by nominal[i] and continuous[i]. This option is used by the
discriminant analysis weight initialization. This option is ignored for all other methods.

method Algorithm

IMSLS_EQUAL Equal weights

IMSLS_RANDOM Random Weights

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights

IMSLS_DISCRIMINANT Discriminant Analysis Weights
1651

 Data Mining mlff_initialize_weights
IMSLS_RETURN_USER, float weights[] (Output)
If specified, the initialized weights are returned in a user provided array of length
 -network--->n_links---(network->n_nodes–network->n_inputs)

Description
Function imsls_f_mlff_initialize_weights calculates initial values for the weights of a feedforward
neural network using one of the following algorithms:

The keyword IMSLS_METHOD can be used to select the algorithm for weight initialization. By default, the ran-
dom weights algorithm will be used.

The 3-layer feed forward network with 3 input attributes and 6 perceptrons in Figure 33 is used to describe the
initialization algorithms. In this example, one of the input attributes is continuous (X3) and the others are nominal

(X1 and X2).

method Algorithm

IMSLS_EQUAL Equal weights

IMSLS_RANDOM Random Weights

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights

IMSLS_DISCRIMINANT Discriminant Analysis Weights
1652

 Data Mining mlff_initialize_weights
Figure 33, A 3-layer, Feed Forward Network with 3 Input Attributes and 6 Perceptrons

This network has a total of 23 weights. The first nine weights, labeled W1, W2, …, W9, are the weights assigned to

the links connecting the network inputs to the perceptrons in the first hidden layer. Note that W1, W2, W4, W5, W7,

and W8 are assigned to the two nominal attributes and W3, W6 and W9 are assigned to the continuous attribute.

All neural network functions in the C Stat Library use this weight ordering. Weights for all nominal attributes are
placed before the weights for any continuous attributes.

PERCEPTRON POTENTIAL

H1,1

H1,2

H1,3

H2,1

H2,2

Z1

g1 = W 18 +W 1X 1 +W 2X 2 +W 3X 3
g2 = W 19 +W 4X 1 +W 5X 2 +W 6X 3
g3 = W 20 +W 7X 1 +W 8X 2 +W 9X 3
g4 = W 21 +W 10g1 +W 11g2 +W 12g3
g5 = W 22 +W 13g1 +W 14g2 +W 15g3
g6 = W 23 +W 16g4 +W 17g5
1653

 Data Mining mlff_initialize_weights
The next six weights are the weights between the first and second hidden layers, and W16 and W17 are the

weights for the links connecting the second hidden layer to the output layer. The last six elements in the
weights array are the perceptron bias weights. These weights, W18, W19, …, W23 are the weights for percep-

trons H1,1, …,H1,3, H2,1…, H2,3, and Z1, respectively.

The perceptron potential calculations for this network are described in the table above. Following the notation

presented in the introduction to this chapter, are the perceptron activations from perceptrons
H1,1, …,H1,3, H2,1…, H2,3, respectively.

All initialization algorithms in mlff_initialize_weights set the weights for perceptrons not linked directly
to the input perceptrons in the same manner. Bias weights for perceptrons not directly linked to input attributes
are set to zero. All non-bias weights for these same perceptrons are assigned a value of 1/k where k=the number
of links into that perceptron (network->nodes[i].n_inlinks).

For example, in this network, the last three bias weights W21, W22 and W23 are initialized to zero since percep-

trons H2,1, H2,1 and Z1 and not directly connected to the input attributes. The other weights to perceptrons H2,1

and H2,2 are assigned a value of one half since these perceptrons each have only two input links. The weights to

the output perceptron, Z1, are also one half since Z1 has two inputs links.

The calculation of the weights for the links between the input attributes and their perceptrons are initialized dif-
ferently by the four algorithms. All algorithms, however, scale these weights so that the average potential for the
first layer perceptrons is zero. This reduces the possibility of saturation or numerical overflow during the initial
stages of optimization.

Equal Weights (method=IMSLS_EQUAL)

In this algorithm, the non-bias weights for each link between the input attributes and the perceptrons in the first
layer are initialized to:

where Wi is the weight for all links between the i-th input attributes, n is equal to the total number of input attri-

butes and Si is equal to the standard deviation of the potential for the i-th input attribute. In the above example,

the values for weights W1, W2, …, W9, each would be set to:

since this network has three input attributes.

Next the average potential for each of the perceptrons connected to the input layer is calculated by:

g1, g2, ⋯ , g5

Wi =
1
nSi

1
3Si
1654

 Data Mining mlff_initialize_weights
where is equal to the average potential for the i-th input attribute. All other bias weights are set to zero.

Random Weights (method=IMSLS_RANDOM)

This algorithm first generates random values for the input layer weights using the Uniform [-0.5, +0.5] distribu-
tion. These are then scaled using the standard deviation of the input layer potentials.

where U is a random number uniformly distributed on the interval [-0.5,+0.5] and Si is equal to the standard devi-

ation of the potential for the i-th input attribute.

Next the average potential for each of the perceptrons connected to the input layer is calculated by:

where is equal to the average potential for the i-th input attribute. All other bias weights are set to zero.

Principal Component Weights (method=IMSLS_PRINCIPAL_COMPONENTS)

This uses principal component analysis to generate weights. The arrays nominal and continuous are combined
into a single matrix. The correlation matrix of this matrix is decomposed using principal component analysis. The
elements of the principal components from this analysis are used to initialize weights associated with the net-
work inputs. As with the other methods the principal component weights are scaled by using the standard
deviation of the potential for the perceptrons connected to the input layer:

where Wi is the weight for the link between the i-th input attribute and the j-th perceptron, ξij is the i-th value of

the j-th principal component, and Si is equal to the standard deviation of the potential for the i-th input attribute.

If the number of principal components is less than the number of perceptrons in the first layer, i.e.,
(n_continuous+n_nominal) < n_layer1, where n_layer1 is the number of perceptrons in the first layer, then it
is not possible to initialize all weights with principal components. In this case, the first (n_continuous +
n_nominal) perceptrons are initialized using the principal components and then the remainder are initialized
using random weights (method=IMSLS_RANDOM).

As with the other methods, the bias weights for each of the first layer perceptrons is set to ensure that the aver-
age potential in this layer is equal to zero:

Wi =
−X─i
Si

X
─
i

W i =
U
Si

Wi =
−X─i
Si

X
─
i

W i =
ξi j
S j
1655

 Data Mining mlff_initialize_weights
where is equal to the average potential for the link between i-th input attribute and the j-th first layer percep-

tron, and is the standard deviation for this same potential.

Discriminant Weights (method=IMSLS_DISCRIMINANT)

This method is very similar to principal component weights. Instead the discriminant analysis elements replace
the principal component elements. The weights between the i-th input attribute and the j-th perceptron in the
first layer are calculated by:

Where Wi is the weight for the link between the i-th input attribute and the j-th perceptron, θij is the i-th value of

the j-th discriminant component, and Si is equal to the standard deviation of the potential for the i-th input

attribute.

If the number of discriminant components is less than the number of perceptrons in the first layer, i.e.,
(n_continuous + n_nominal) < n_layer1, where n_layer1 is the number of perceptrons in the first layer, then
it is not possible to initialize all weights with components from the discriminant analysis. In this case, the first
(n_continuous + n_nominal) perceptrons are initialized using the discriminant components and then the
remainder are initialized using random weights (method=IMSLS_RANDOM).

As with the other methods, the bias weights for each of the first layer perceptrons is set to ensure that the aver-
age potential in this layer is equal to zero:

where is equal to the average potential for the link between i-th input attribute and the j-th first layer percep-
tron, and Sij is the standard deviation for this same potential.

Examples

Example 1

This example illustrates random initialization algorithms for a three layer network with one output. The first and
second hidden layers contain three and two perceptrons for a total of five network perceptrons, respectively.

Wi =
−X─i j
Si j

X
─
i j

Si j

W i =
θi j
Si

Wi =
−X─i j
Si j

X
─
i j
1656

 Data Mining mlff_initialize_weights
The nine input attributes consist of two continuous attributes plus seven binary attributes encoded from two
nominal attributes using binary encoding.

The weights are initialized using the random weights algorithm. This results in different weights for every percep-
tron in the first hidden layer. The weights in other layers are initialized using equal weights. It should be noted
that the bias weights in the first layer are not random. Except for the discriminant weights algorithm, the bias
weights are always calculated to ensure that the average potential for each perceptron in the first layer is zero.

#include <stdio.h>
#include <imsls.h>
int main(){
 Imsls_f_NN_Network *network;
 int i, j, k, m;
 int n_patterns =24; /* no. of training patterns */
 int n_nvars =2; /* 2 nominal unencoded variables */
 int n_nominal =7; /* 7 inputs for the binary encoded
 nominal vars */
 int n_continuous =2; /* 2 continuous input attributes */
 int nominalIn[24]; /* work arrays used to encode */
 int *nominalOut; /* nominal data */
 int n_classes;
 int classification[24] = {
 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
 };
 /* raw nominal input data */
 int nominal_unencododed[2*24] =
 {
 0, 0, 0, 1, 0, 2,
 1, 0, 1, 1, 1, 2,
 2, 0, 2, 1, 2, 2,
 3, 0, 3, 1, 3, 2,
 0, 0, 0, 1, 0, 2,
 1, 0, 1, 1, 1, 2,
 2, 0, 2, 1, 2, 2,
 3, 0, 3, 1, 3, 2
 };
 /* input array for binary encoded version of
 nominal_unencododed[] array above */
 int nominal[7*24];
 float *weights;
 float continuous[2*24] =
 {
 0.00,0.00,0.02,0.02,0.04,0.04,0.06,0.06,0.08,0.08,0.10,0.10,
 0.12,0.12,0.14,0.14,0.16,0.16,0.18,0.18,0.20,0.20,0.22,0.22,
 0.24,0.28,0.26,0.30,0.28,0.32,0.30,0.34,0.32,0.36,0.34,0.38,
 0.36,0.40,0.38,0.42,0.40,0.44,0.42,0.46,0.44,0.48,0.46,0.50
 };
 /* Setup Nominal Input Attributes Using Binary Encoding */
 m=0;
 for (i=0; i<n_nvars; i++){
 for (j=0; j<n_patterns; j++) {
 nominalIn[j] = nominal_unencododed[2*j+i] + 1;
 }
1657

 Data Mining mlff_initialize_weights
 nominalOut = imsls_unsupervised_nominal_filter(n_patterns,
 &n_classes, nominalIn, 0);
 for(k=0; k<n_classes; k++){
 for(j=0; j<n_patterns; j++){
 nominal[j*n_nominal+m] = nominalOut[j*n_classes+k];
 }
 m++;
 }
 }
 printf("\tINPUT TRAINING PATTERNS\n");
 printf("\tY Nom1 Nom2 X0 X1 \n");
 for(i=0; i<n_patterns; i++){
 printf("\t%d %d \t %d %f %f \n", classification[i],
 nominal_unencododed[i*2], nominal_unencododed[i*2+1],
 continuous[i*2], continuous[i*2+1]);
 }
 /* Binary classification network 9 inputs 1 output = 2 classes */
 network = imsls_f_mlff_network_init(9, 1);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3, 0);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 2,
 IMSLS_LINK_ALL, 0);
 /* Note the following statement is for repeatable output */
 imsls_random_seed_set(5555);
 /* Random Weights */
 weights = imsls_f_mlff_initialize_weights(network, n_patterns,
 n_nominal, n_continuous, nominal, continuous,
 IMSLS_PRINT, 0);
}

Output

INPUT TRAINING PATTERNS
Y Nom1 Nom2 X0 X1
0 0 0 0.000000 0.000000
0 0 1 0.020000 0.020000
0 0 2 0.040000 0.040000
0 1 0 0.060000 0.060000
0 1 1 0.080000 0.080000
0 1 2 0.100000 0.100000
1 2 0 0.120000 0.120000
1 2 1 0.140000 0.140000
1 2 2 0.160000 0.160000
1 3 0 0.180000 0.180000
1 3 1 0.200000 0.200000
1 3 2 0.220000 0.220000
0 0 0 0.240000 0.280000
0 0 1 0.260000 0.300000
0 0 2 0.280000 0.320000
0 1 0 0.300000 0.340000
0 1 1 0.320000 0.360000
0 1 2 0.340000 0.380000
1 2 0 0.360000 0.400000
1 2 1 0.380000 0.420000
1 2 2 0.400000 0.440000
1 3 0 0.420000 0.460000
1658

 Data Mining mlff_initialize_weights
1 3 1 0.440000 0.480000
1 3 2 0.460000 0.500000

- NETWORK WEIGHTS INITIALIZED USING
- RANDOM WEIGHTS
- Input Attributes: 9
- Nominal: 2
- Nominal(encoded): 7
- Continuous: 2
- Output Attributes: 1
- Layers: 3
- Perceptrons: 6
- Weights: 41
- Patterns: 24

------------- HIDDEN LAYER 1 -------------
--- Perceptron 0 ---
Link from Input Node Weight
N0 0.937069
N1 -0.547569
N2 1.468248
N3 0.107160
N4 -0.884992
N5 -0.814069
N6 -1.979680
X7 -0.041228
X8 -1.368315
Bias 3.3099
--- Perceptron 1 ---
Link from Input Node Weight
N0 -0.308421
N1 -1.058450
N2 -0.981207
N3 1.040820
N4 -0.033493
N5 -0.575732
N6 0.571939
X7 0.811886
X8 -0.415498
Bias 0.573286
--- Perceptron 2 ---
Link from Input Node Weight
N0 -1.117744
N1 0.620799
N2 0.174895
N3 -0.100458
N4 -0.961071
N5 0.854179
N6 0.046423
X7 0.880998
X8 -0.903982
Bias 1.00437

------------- HIDDEN LAYER 2 -------------
1659

 Data Mining mlff_initialize_weights
--- Perceptron 0 ---
Link from Input Node Weight
P0 0.333333
P1 0.333333
P2 0.333333
Bias 0
--- Perceptron 1 ---
Link from Input Node Weight
P0 0.333333
P1 0.333333
P2 0.333333
Bias 0

------------- OUTPUT LAYER -------------
--- Perceptron 0 ---
Link from Input Node Weight
P3 0.500000
P4 0.500000
Bias 0

Example 2

This example illustrates the discriminant weights initialization algorithm for a three layer network with one
output. The first and second hidden layers contain three and two perceptrons for a total of five network percep-
trons, respectively.

The data are the same as Example 1, and the network structure is the same except that all nominal input attri-
butes are removed. This was necessary since the discriminant weights algorithm only works when all input
attributes are continuous.

The discriminant weights algorithm initializes the weights in the first hidden layer to the coefficients of the dis-
criminant functions. Since this example is a binary classification example, the number of discriminant functions is
equal to the number of classes, two, but there are three perceptrons in the first layer. The weights for the first
two perceptrons in this layer are the discriminant function coefficients, including the bias weight. The weights for
the last perceptron in this layer were determined randomly.

#include <stdio.h>
#include <imsls.h>
int main(){
 Imsls_f_NN_Network *network;
 int i, j, k, m;
 int n_patterns =24; /* no. of training patterns */
 int n_continuous =2; /* 2 continuous input attributes */
 int classification[24] = {
 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
 };
1660

 Data Mining mlff_initialize_weights
 float *weights;
 float continuous[2*24] =
 {
 0.00,0.00,0.02,0.02,0.04,0.04,0.06,0.06,0.08,0.08,0.10,0.10,
 0.12,0.12,0.14,0.14,0.16,0.16,0.18,0.18,0.20,0.20,0.22,0.22,
 0.24,0.28,0.26,0.30,0.28,0.32,0.30,0.34,0.32,0.36,0.34,0.38,
 0.36,0.40,0.38,0.42,0.40,0.44,0.42,0.46,0.44,0.48,0.46,0.50
 };

 printf("\tINPUT TRAINING PATTERNS\n");
 printf("\tY X0 X1 \n");
 for(i=0; i<n_patterns; i++){
 printf("\t%d %f %f \n", classification[i],
 continuous[i*2], continuous[i*2+1]);
 }
 /* Binary classification network 2 inputs 1 output = 2 classes */
 network = imsls_f_mlff_network_init(2, 1);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3, 0);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 2,
 IMSLS_LINK_ALL, 0);

 /* Discriminant weights */
 /* Set seed for consistent results */
 imsls_random_seed_set(12357);
 weights = imsls_f_mlff_initialize_weights(network, n_patterns,
 0, n_continuous, NULL, continuous,
 IMSLS_METHOD, IMSLS_DISCRIMINANT,
 IMSLS_CLASSIFICATION, classification,
 IMSLS_PRINT, 0);
}

Output

 INPUT TRAINING PATTERNS
 Y X0 X1
 0 0.000000 0.000000
 0 0.020000 0.020000
 0 0.040000 0.040000
 0 0.060000 0.060000
 0 0.080000 0.080000
 0 0.100000 0.100000
 1 0.120000 0.120000
 1 0.140000 0.140000
 1 0.160000 0.160000
 1 0.180000 0.180000
 1 0.200000 0.200000
 1 0.220000 0.220000
 0 0.240000 0.280000
 0 0.260000 0.300000
 0 0.280000 0.320000
 0 0.300000 0.340000
 0 0.320000 0.360000
 0 0.340000 0.380000
 1 0.360000 0.400000
 1 0.380000 0.420000
1661

 Data Mining mlff_initialize_weights
 1 0.400000 0.440000
 1 0.420000 0.460000
 1 0.440000 0.480000
 1 0.460000 0.500000
Discriminant Analysis Classification Error Rate = 0.000000

- NETWORK WEIGHTS INITIALIZED USING
- DISCRIMINANT WEIGHTS
- Input Attributes: 2
- Nominal: 0
- Nominal(encoded): 0
- Continuous: 2
- Output Attributes: 1
- n_classes: 2
- Layers: 3
- Perceptrons: 6
- Weights: 20
- Patterns: 24

------------- HIDDEN LAYER 1 -------------
 --- Perceptron 0 ---
 Link from Input Node Weight
 X0 229.165253
 X1 -189.879715
 Bias -2.13362
 --- Perceptron 1 ---
 Link from Input Node Weight
 X0 889.167236
 X1 -755.595703
 Bias -12.5051
 --- Perceptron 2 ---
 Link from Input Node Weight
 X0 -4.495886
 X1 -0.976032
 Bias 6.07217

------------- HIDDEN LAYER 2 -------------
 --- Perceptron 0 ---
 Link from Input Node Weight
 P0 0.333333
 P1 0.333333
 P2 0.333333
 Bias 0
 --- Perceptron 1 ---
 Link from Input Node Weight
 P0 0.333333
 P1 0.333333
 P2 0.333333
 Bias 0

------------- OUTPUT LAYER -------------
1662

 Data Mining mlff_initialize_weights
 --- Perceptron 0 ---
 Link from Input Node Weight
 P3 0.500000
 P4 0.500000
 Bias 0

1663

 Data Mining mlff_network_trainer
mlff_network_trainer

more...

Trains a multilayered feedforward neural network.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *network, int n_patterns,

int n_nominal, int n_continuous, int nominal[], float continuous[], float output[], ...,
0)

The type double function is imsls_d_mlff_network_trainer.

Required Arguments
Imsls_f_NN_Network *network (Input/Output)

Pointer to a structure of type Imsls_f_NN_Network containing the feedforward network. See
imsls_f_mlff_network. On return, the weights and bias values are updated.

int n_patterns (Input)
Number of network training patterns.

int n_nominal (Input)
Number of nominal attributes. n_nominal + n_continuous must equal n_inputs, where
n_inputs is the number of input attributes in the network. n_inputs = network->n_in-
puts. For more details, see imsls_f_mlff_network.

int n_continuous (Input)
Number of continuous attributes. n_nominal + n_continuous must equal n_inputs, where
n_inputs is the number of input attributes in the network. n_inputs = network->n_in-
puts. For more details, see imsls_f_mlff_network.

int nominal[] (Input)
Array of size n_patterns by n_nominal containing values for the nominal input attributes. The i-
th row contains the nominal input attributes for the i-th training pattern.
1664

 Data Mining mlff_network_trainer
float continuous[] (Input)
Array of size n_patterns by n_continuous containing values for the continuous input attri-
butes. The i-th row contains the continuous input attributes for the i-th training pattern.

float output[] (Input)
Array of size n_patterns by n_outputs containing the output training patterns, where
n_outputs is the number of output perceptrons in the network.
n_outputs = network->n_outputs. For more details, see imsls_f_mlff_network.

Return Value
An array of length 5 containing the summary statistics from the network training, organized as follows:

This space can be released by using the imsls_free function.

If training is unsuccessful, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *network, int n_patterns,
int n_nominal, int n_continuous, float nominal[], int continuous[], float output[],

IMSLS_STAGE_I, int n_epochs, int epoch_size,

IMSLS_NO_STAGE_II,

IMSLS_MAX_STEP, float max_step,

IMSLS_MAX_ITN, int max_itn,

IMSLS_MAX_FCN, int max_fcn,

IMSLS_REL_FCN_TOL, float rfcn_tol,

IMSLS_GRAD_TOL, float grad_tol,

IMSLS_TOLERANCE, float tolerance,

Element Training Statistics

0 Error sum of squares at the optimum.

1 Total number of Stage I iterations.

2 Smallest error sum of squares after Stage I training.

3 Total number of Stage II iterations.

4 Smallest error sum of squares after Stage II training.
1665

 Data Mining mlff_network_trainer
IMSLS_WEIGHT_INITIALIZATION_METHOD, int method,

IMSLS_PRINT,

IMSLS_RESIDUAL, float **residuals,

IMSLS_RESIDUAL_USER, float residuals[],

IMSLS_GRADIENT, float **gradients,

IMSLS_GRADIENT_USER, float gradients[],

IMSLS_FORECASTS, float **forecasts,

IMSLS_FORECASTS_USER, float forecasts[],

IMSLS_RETURN_USER, float z[],

0)

Optional Arguments
IMSLS_STAGE_I, int n_epochs, int epoch_size (Input)

Argument n_epochs is the number epochs used for Stage I training and argument epoch_size
is the number of patterns used during each epoch. If epoch training is not needed, set
epoch_size = n_patterns and n_epochs = 1. Stage I is implemented using Quasi-Newton
optimization and steepest ascent with gradients estimated using the backward propagation method.

Default: n_epochs=15, epoch_size = n_patterns.

IMSLS_NO_STAGE_II, (Input)
Specifies no Stage II training is performed. Stage II is implemented using Quasi-Newton optimization
with numerical gradients.

Default: Stage II training is performed.

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size in the optimizer.

Default: max_step = 1000.

IMSLS_MAX_ITN, int max_itn (Input)
Maximum number of iterations in the optimizer, per epoch.

Default: max_itn = 1000.

IMSLS_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations in the optimizer, per epoch.

Default: max_fcn = 400.
1666

 Data Mining mlff_network_trainer
IMSLS_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance in the optimizer.

Default: rfcn_tol = max (10-10, ɛ2/3), where ɛ is the machine precision, max (10-20, ɛ2/3) is used in
double precision.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance in the optimizer.

Default: grad_tol = ɛ1/2, where ɛ is the machine precision, ɛ1/3 is used in double precision.

IMSLS_TOLERANCE, float tolerance (Input)
Absolute accuracy tolerance for the sum of squared errors in the optimizer.

Default: tolerance = 0.1.

IMSLS_WEIGHT_INITIALIZATION_METHOD, int method[] (Input)
The method to use for initializing network weights prior to network training. One of the following four
values is accepted:

See imsls_f_mlff_initialize_weights for a detailed description of the initialization methods.

Default: method = IMSLS_RANDOM.

IMSLS_PRINT, (Input)
Intermediate results are printed during network training.

Default: No printing is performed.

IMSLS_RESIDUAL, float **residuals (Output)
The address of a pointer to the internally allocated array of size n_patterns by n_outputs con-
taining the residuals for each observation in the training data, where n_outputs is the number of
output perceptrons in the network.

n_outputs = network->n_outputs.
IMSLS_RESIDUAL_USER, float residuals[] (Output)

Storage for array residuals provided by user. See IMSLS_RESIDUAL.

method Algorithm

IMSLS_EQUAL Equal weights.

IMSLS_RANDOM Random weights.

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights.

IMSLS_NN_NETWORK No initialization method will be
performed.
Weights in imsls_f_NN_Network
structure network will be used instead.
1667

 Data Mining mlff_network_trainer
IMSLS_GRADIENT, float **gradients (Output)
The address of a pointer to the internally allocated array of size n_links + n_nodes-n_inputs
to store the gradients for each weight found at the optimum training stage, where
n_links = network->n_links, n_nodes = network->n_nodes, and
n_inputs = network->n_inputs.

IMSLS_GRADIENT_USER, float gradients[] (Output)
Storage for array gradients provided by user. See IMSLS_GRADIENT.

IMSLS_FORECASTS, float **forecasts (Output)
The address of a pointer to the internally allocated array of size n_patterns by n_outputs,
where n_outputs is the number of output perceptrons in the network.
n_outputs = network->n_outputs. The values of the i-th row are the forecasts for the out-
puts for the i-th training pattern.

IMSLS_FORECASTS_USER, float forecasts[] (Output)
Storage for array forecasts is provided by user. See IMSLS_FORECASTS.

IMSLS_RETURN_USER, float z[] (Output)
User-supplied array of length 5. Upon completion, z contains the return array of training statistics.
See Return Value for details.

Description
Function imsls_f_mlff_network_trainer trains a multilayered feedforward neural network returning
the forecasts for the training data, their residuals, the optimum weights and the gradients associated with those
weights. Linkages among perceptrons allow for skipped layers, including linkages between inputs and percep-
trons. The linkages and activation function for each perceptron, including output perceptrons, can be individually
configured. For more details, see optional arguments IMSLS_LINK_ALL, IMSLS_LINK_LAYER, and
IMSLS_LINK_NODE in imsls_f_mlff_network.

Training Data
Neural network training patterns consist of the following three types of data:

1. nominal input attributes

2. continuous input attributes

3. continuous output
1668

 Data Mining mlff_network_trainer
The first data type contains the encoding of any nominal input attributes. If binary encoding is used, this encod-
ing consists of creating columns of zeros and ones for each class value associated with every nominal attribute. If
only one attribute is used for input, then the number of columns is equal to the number of classes for that attri-
bute. If more columns appear in the data, then each nominal attribute is associated with several columns, one for
each of its classes.

Each column consists of zeros, if that classification is not associated with this case, otherwise, one if that classifi-
cation is associated. Consider an example with one nominal variable and two classes: male and female (male,
male, female, male, female). With binary encoding, the following matrix is sent to the training engine to represent
this data:

Continuous input and output data are passed to the training engine using two double precision arrays:
continuous and output. The number of rows in each of these matrices is n_patterns. The number of
columns in continuous and output, corresponds to the number of input and output variables, respectively.

Network Configuration
The network configuration consists of the following:

 the number of inputs and outputs,

 the number of hidden layers,

 a description of the number of perceptrons in each layer,

 and a description of the linkages among the perceptrons.

This description is passed into imsls_f_mlff_network_trainer using the structure Imsls_f_NN_Network.
See imsls_f_mlff_network.

Training Efficiency
The training efficiency determines the time it takes to train the network. This is controlled by several factors. One
of the most important factors is the initial weights used by the optimization algorithm. These are taken from the
initial values provided in the structure Imsls_f_NN_Network, network->links[i].weight. Equally important
are the scaling and filtering applied to the training data.

nominalAtt =

1 0
1 0
0 1
1 0
0 1
1669

 Data Mining mlff_network_trainer
In most cases, all variables, particularly output variables, should be scaled to fall within a narrow range, such as
[0, 1]. If variables are unscaled and have widely varied ranges, then numerical overflow conditions can terminate
network training before an optimum solution is calculated.

Output
Output from imsls_f_mlff_network_trainer consists of scaled values for the network outputs, a corre-
sponding forecast array for these outputs, a weights array for the trained network, and the training statistics. The
Imsls_f_NN_Network structure is updated with the weights and bias values and can be used as input to
imsls_f_mlff_network_forecast.

The trained network can be saved and retrieved using imsls_f_mlff_network_write and
imsls_f_mlff_network_read.

Example
This example trains a two-layer network using 100 training patterns from one nominal and one continuous input
attribute. The nominal attribute has three classifications which are encoded using binary encoding. This results in
three binary network input columns. The continuous input attribute is scaled to fall in the interval [0,1].

The network training targets were generated using the relationship:

Y = 10*X

1

 + 20*X

2

 + 30*X

3

 + 20*X

4

,

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of the nominal attribute, and

X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons in the hidden
layer and one in the output layer. The following figure illustrates this structure:
1670

 Data Mining mlff_network_trainer
Figure 34, A 2-layer, Feedforward Network with 4 Inputs and 1 Output

There are a total of 15 weights and 4 bias weights in this network. The activation functions are all linear.

Since the target output is a linear function of the input attributes, linear activation functions guarantee that the
network forecasts will exactly match their targets. Of course, the same result could have been obtained using
multiple regression. Printing is turned on to show progress during the training session.

#include <imsls.h>
#include <stdio.h>
int main()
{
 /* A 2D matrix of values for the nominal training attribute. In this
 * example, the single nominal attribute has 3 categories that are
 * encoded using binary encoding for input into the network.
 *
 * {1,0,0} = category 1
 * {0,1,0} = category 2
 * {0,0,1} = category 3
 */
 int nominal[300] =
 {
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
 0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
 0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
 0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
1671

 Data Mining mlff_network_trainer
 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1
 };
 /* A matrix of values for the continuous training attribute */
 float continuous[100] = {
 4.007054658,7.10028447,4.740350984,5.714553211,6.205437459,
 2.598930065,8.65089967,5.705787357,2.513348184,2.723795955,
 4.1829356,1.93280416,0.332941608,6.745567628,5.593588463,
 7.273544478,3.162117939,4.205381208,0.16414745,2.883418275,
 0.629342241,1.082223406,8.180324708,8.004894314,7.856215418,
 7.797143157,8.350033996,3.778254431,6.964837082,6.13938006,
 0.48610387,5.686627923,8.146173848,5.879852653,4.587492779,
 0.714028533,7.56324211,8.406012623,4.225261454,6.369220241,
 4.432772218,9.52166984,7.935791508,4.557155333,7.976015058,
 4.913538616,1.473658514,2.592338905,1.386872932,7.046051685,
 1.432128376,1.153580985,5.6561491,3.31163251,4.648324851,
 5.042514515,0.657054195,7.958308093,7.557870384,7.901990083,
 5.2363088,6.95582150,8.362167045,4.875903563,1.729229471,
 4.380370223,8.527875685,2.489198107,3.711472959,4.17692681,
 5.844828801,4.825754155,5.642267843,5.339937786,4.440813223,
 1.615143829,7.542969339,8.100542684,0.98625265,4.744819569,
 8.926039258,8.813441887,7.749383991,6.551841576,8.637046998,
 4.560281415,1.386055087,0.778869034,3.883379045,2.364501589,
 9.648737525,1.21754765,3.908879368,4.253313879,9.31189696,
 3.811953836,5.78471629,3.414486452,9.345413015,1.024053777
 };
 /* A 2D matrix containing the training outputs for this network.
 In this case there is an exact linear relationship between these
 outputs and the inputs: output = 10*X1 +20*X2 + 30*X3 +2*X4,
 where X1-X3 are the categorical variables and X4 is the continuous
 attribute variable. Output is unscaled.
 */
 float output[100];
 Imsls_f_NN_Network *network;
 float *stats;
 int n_patterns= 100, n_nominal=3, n_continuous=1;
 int i,j,k, wIdx;
 float *residuals, *forecasts;
 float bias, coef1, coef2, coef3, coef4;
 int hidActFcn[3] = {IMSLS_LINEAR,IMSLS_LINEAR,IMSLS_LINEAR};
 /* Scale continuous attribute into the interval [0, 1]
 and generate outputs */
 for(i=0; i < 100; i++)
 {
 continuous[i] = continuous[i]/10.0;
 output[i] = (10 * nominal[i*3]) + (20 * nominal[i*3+1]) +
 (30 * nominal[i*3+2]) + (20 * continuous[i]);
 }
 /* Create network */
 network = imsls_f_mlff_network_init(4,1);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 3,
 IMSLS_ACTIVATION_FCN, 1, &hidActFcn,
 IMSLS_LINK_ALL, 0);
1672

 Data Mining mlff_network_trainer
 /* Set initial weights */
 for (j=network->n_inputs; j < network->n_nodes ; j++)
 {
 for (k=0; k < network->nodes[j].n_inLinks; k++)
 {
 wIdx = network->nodes[j].inLinks[k];
 /* set specific layer weights */
 if (network->nodes[j].layer_id == 1) {
 network->links[wIdx].weight = 0.25;
 } else if (network->nodes[j].layer_id == 2) {
 network->links[wIdx].weight = 0.33;
 }
 }
 }

 /* Initialize seed for consisten results */
 imsls_random_seed_set(12345);
 stats = imsls_f_mlff_network_trainer(network, n_patterns,
 n_nominal, n_continuous, nominal, continuous, output,
 IMSLS_STAGE_I, 10, 100,
 IMSLS_MAX_FCN, 1000,
 IMSLS_REL_FCN_TOL, 1.0e-20,
 IMSLS_GRAD_TOL, 1.0e-20,
 IMSLS_MAX_STEP, 5.0,
 IMSLS_TOLERANCE, 1.0e-5,
 IMSLS_PRINT,
 IMSLS_RESIDUAL, &residuals,
 IMSLS_FORECASTS, &forecasts,
 0);
 printf("Predictions for Last Ten Observations: \n");
 for(i=90; i < 100; i++){
 printf("observation[%d] %f Prediction %f Residual %f \n", i,
 output[i], forecasts[i], residuals[i]);
 }
 /* hidden layer nodes bias value * link weight */
 bias = network->nodes[network->n_nodes-4].bias *
 network->links[12].weight +
 network->nodes[network->n_nodes-3].bias *
 network->links[13].weight +
 network->nodes[network->n_nodes-2].bias *
 network->links[14].weight;
 /* the bias of the output node */
 bias += network->nodes[network->n_nodes-1].bias;
 coef1 = network->links[0].weight * network->links[12].weight;
 coef1 += network->links[1].weight * network->links[13].weight;
 coef1 += network->links[2].weight * network->links[14].weight;
 coef2 = network->links[3].weight * network->links[12].weight;
 coef2 += network->links[4].weight * network->links[13].weight;
 coef2 += network->links[5].weight * network->links[14].weight;
 coef3 = network->links[6].weight * network->links[12].weight;
 coef3 += network->links[7].weight * network->links[13].weight;
 coef3 += network->links[8].weight * network->links[14].weight;
 coef4 = network->links[9].weight * network->links[12].weight;
 coef4 += network->links[10].weight * network->links[13].weight;
 coef4 += network->links[11].weight * network->links[14].weight;
 coef1 += bias;
 coef2 += bias;
1673

 Data Mining mlff_network_trainer
 coef3 += bias;
 printf("Bias: %f \n", bias);
 printf("X1: %f \n", coef1);
 printf("X2: %f \n", coef2);
 printf("X3: %f \n", coef3);
 printf("X4: %f \n", coef4);
 imsls_f_mlff_network_free(network);
}

Output

TRAINING PARAMETERS:
 Stage II Opt. = 1
 n_epochs = 10
 epoch_size = 100
 max_itn = 1000
 max_fcn = 1000
 max_step = 5.000000
 rfcn_tol = 1e-020
 grad_tol = 1e-020
 tolerance = 0.000010
STAGE I TRAINING STARTING
Stage I: Epoch 1 - Epoch Error SS = 3870.44 (Iterations=7)
Stage I: Epoch 2 - Epoch Error SS = 7.41238e-011 (Iterations=74)
Stage I Training Converged at Epoch = 2

STAGE I FINAL ERROR SS = 0.000000
OPTIMUM WEIGHTS AFTER STAGE I TRAINING:
weight[0] = 2.29881 weight[1] = 4.67622 weight[2] = 5.82167
weight[3] = 2.01955 weight[4] = 3.02815 weight[5] = 5.61873
weight[6] = 9.46591 weight[7] = 7.44722 weight[8] = 1.82561
weight[9] = 6.08981 weight[10] = 11.1714 weight[11] = 5.30152
weight[12] = 2.15733 weight[13] = 2.26835 weight[14] = -0.23573
weight[15] = -3.4723 weight[16] = 0.100865 weight[17] = 2.71152
weight[18] = 6.50345
STAGE I TRAINING CONVERGED
STAGE I ERROR SS = 0.000000

GRADIENT AT THE OPTIMUM WEIGHTS
g[0] = 0.000014 weight[0] = 2.298808
g[1] = 0.000045 weight[1] = 4.676218
g[2] = -0.000012 weight[2] = 5.821669
g[3] = 0.000026 weight[3] = 2.019547
g[4] = 0.000015 weight[4] = 3.028149
g[5] = 0.000048 weight[5] = 5.618728
g[6] = -0.000013 weight[6] = 9.465913
g[7] = 0.000027 weight[7] = 7.447217
g[8] = -0.000002 weight[8] = 1.825613
g[9] = -0.000005 weight[9] = 6.089811
g[10] = 0.000001 weight[10] = 11.171391
1674

 Data Mining mlff_network_trainer
g[11] = -0.000003 weight[11] = 5.301523
g[12] = 0.000028 weight[12] = 2.157330
g[13] = 0.000176 weight[13] = 2.268351
g[14] = 0.000199 weight[14] = -0.235730
g[15] = 0.000047 weight[15] = -3.472301
g[16] = 0.000050 weight[16] = 0.100865
g[17] = -0.000005 weight[17] = 2.711518
g[18] = 0.000022 weight[18] = 6.503448
Training Completed
Predictions for Last Ten Observations:
observation[90] 49.297478 Prediction 49.297474 Residual -0.000004
observation[91] 32.435097 Prediction 32.435093 Residual -0.000004
observation[92] 37.817757 Prediction 37.817760 Residual 0.000004
observation[93] 38.506630 Prediction 38.506630 Residual 0.000000
observation[94] 48.623795 Prediction 48.623795 Residual 0.000000
observation[95] 37.623909 Prediction 37.623909 Residual 0.000000
observation[96] 41.569431 Prediction 41.569431 Residual 0.000000
observation[97] 36.828972 Prediction 36.828972 Residual 0.000000
observation[98] 48.690826 Prediction 48.690830 Residual 0.000004
observation[99] 32.048107 Prediction 32.048107 Residual 0.000000
Bias: -1.397840
X1: 10.000000
X2: 20.000000
X3: 30.000000
X4: 20.000000
1675

 Data Mining mlff_network_forecast
mlff_network_forecast
Calculates forecasts for trained multilayered feedforward neural network.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *network, int n_nominal,

int n_continuous, int nominal[], float continuous[], ..., 0)

The type double function is imsls_d_mlff_network_forecast.

Required Arguments
Imsls_f_NN_Network *network (Input)

Pointer to a structure of type Imsls_f_NN_Network containing the trained feedforward network. See
imsls_f_mlff_network.

int n_nominal (Input)
Number of nominal attributes.

int n_continuous (Input)
Number of continous attributes.

int nominal[] (Input)
Array of size n_nominal containing the nominal input variables.

float continuous[] (Input)
Array of size n_continuous containing the continuous input variables.

Return Value
Pointer to an array of size n_outputs containing the forecasts, where n_outputs is the number of output
perceptrons in the network. n_outputs = network->n_outputs. This space can be released by using the
imsls_free function.
1676

 Data Mining mlff_network_forecast
Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *network, int n_nominal,
int n_continuous, int nominal[], float continuous[],

IMSLS_RETURN_USER, float forecasts[],
0)

Optional Arguments
IMSLS_RETURN_USER, float forecasts[] (Output)

If specified, the forecasts for the trained network is stored in a user-supplied array forecasts of
size n_outputs, where n_outputs is the number of perceptrons in the network,
n_outputs = network->n_outputs.

Description
Function imsls_f_mlff_network_forecast calculates a forecast for a previously trained multilayered
feedforward neural network using the same network structure and scaling applied during the training. The struc-
ture Imsls_f_NN_Network describes the network structure used to originally train the network. The weights, which
are the key output from training, are used as input to this routine. The weights are stored in the Imsls_f_NN_Net-
work structure.

In addition, two one-dimensional arrays are used to describe the values of the nominal and continuous attributes
that are to be used as network inputs for calculating the forecast.

Training Data
Neural network training data consists of the following three types of data:

1. nominal input attribute data

2. continuous input attribute data

3. continuous output data
1677

 Data Mining mlff_network_forecast
The first data type contains the encoding of any nominal input attributes. If binary encoding is used, this encod-
ing consists of creating columns of zeros and ones for each class value associated with every nominal attribute. If
only one attribute is used for input, then the number of columns is equal to the number of classes for that attri-
bute. If more columns appear in the data, then each nominal attribute is associated with several columns, one for
each of its classes.

Each column consists of zeros, if that classification is not associated with this case, otherwise, one if that classifi-
cation is associated. Consider an example with one nominal variable and two classes: male and female (male,
male, female, male, female). With binary encoding, the following matrix is sent to the training engine to represent
this data:

Continuous input and output data are passed to the training engine using two double precision arrays:
continuous and output. The number of rows in each of these matrices is n_patterns. The number of
columns in continuous and output, corresponds to the number of input and output variables, respectively.

Network Configuration
The configuration of the network consists of a description of the number of perceptrons for each layer, the num-
ber of hidden layers, the number of inputs and outputs, and a description of the linkages among the
perceptrons. This description is passed into this forecast routine through the structure Imsls_f_NN_Network. See
imsls_f_mlff_network.

Forecast Calculation
The forecast is calculated from the input attributes, network structure and weights provided in the structure
Imsls_f_NN_Network.

Example
This example trains a two-layer network using 90 training patterns from one nominal and one continuous input
attribute. The nominal attribute has three classifications which are encoded using binary encoding. This results in
three binary network input columns. The continuous input attribute is scaled to fall in the interval [0,1].

The network training targets were generated using the relationship:

nominal =

1 0
1 0
0 1
1 0
0 1
1678

 Data Mining mlff_network_forecast
Y = 10*X

1

 + 20*X

2

 + 30*X

3

 + 20*X

4

,

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of the nominal attribute, and

X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes ands two layers, with three perceptrons in the hidden
layer and one in the output layer. The following figure illustrates this structure:

Figure 35, A 2-layer, Feedforward Network with 4 Inputs and 1 Output

There are a total of 100 outputs. The first 90 outputs use imsls_f_mlff_network_trainer to train the net-
work and the last 10 outputs use imsls_mlff_network_forecast to forecast and compare the actual
outputs.
1679

 Data Mining mlff_network_forecast
#include <imsls.h>
#include <stdio.h>
int main ()
{
 int nominal[300] = {
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
 };
 float continuous[100] = {
 4.007054658, 7.10028447, 4.740350984, 5.714553211, 6.205437459,
 2.598930065, 8.65089967, 5.705787357, 2.513348184, 2.723795955,
 4.1829356, 1.93280416, 0.332941608, 6.745567628, 5.593588463,
 7.273544478, 3.162117939, 4.205381208, 0.16414745, 2.883418275,
 0.629342241, 1.082223406, 8.180324708, 8.004894314, 7.856215418,
 7.797143157, 8.350033996, 3.778254431, 6.964837082, 6.13938006,
 0.48610387, 5.686627923, 8.146173848, 5.879852653, 4.587492779,
 0.714028533, 7.56324211, 8.406012623, 4.225261454, 6.369220241,
 4.432772218, 9.52166984, 7.935791508, 4.557155333, 7.976015058,
 4.913538616, 1.473658514, 2.592338905, 1.386872932, 7.046051685,
 1.432128376, 1.153580985, 5.6561491, 3.31163251, 4.648324851,
 5.042514515, 0.657054195, 7.958308093, 7.557870384, 7.901990083,
 5.2363088, 6.95582150, 8.362167045, 4.875903563, 1.729229471,
 4.380370223, 8.527875685, 2.489198107, 3.711472959, 4.17692681,
 5.844828801, 4.825754155, 5.642267843, 5.339937786, 4.440813223,
 1.615143829, 7.542969339, 8.100542684, 0.98625265, 4.744819569,
 8.926039258, 8.813441887, 7.749383991, 6.551841576, 8.637046998,
 4.560281415, 1.386055087, 0.778869034, 3.883379045, 2.364501589,
 9.648737525, 1.21754765, 3.908879368, 4.253313879, 9.31189696,
 3.811953836, 5.78471629, 3.414486452, 9.345413015, 1.024053777
 };
 float output[100] = {
 18.01410932, 24.20056894, 19.48070197, 21.42910642, 22.41087492,
 15.19786013, 27.30179934, 21.41157471, 15.02669637, 15.44759191,
 18.3658712, 13.86560832, 10.66588322, 23.49113526, 21.18717693,
 24.54708896, 16.32423588, 18.41076242, 10.3282949, 15.76683655,
 11.25868448, 12.16444681, 26.36064942, 26.00978863, 25.71243084,
 25.59428631, 26.70006799, 17.55650886, 23.92967416, 22.27876012,
 10.97220774, 21.37325585, 26.2923477, 21.75970531, 19.17498556,
 21.42805707, 35.12648422, 36.81202525, 28.45052291, 32.73844048,
 28.86554444, 39.04333968, 35.87158302, 29.11431067, 35.95203012,
 29.82707723, 22.94731703, 25.18467781, 22.77374586, 34.09210337,
 22.86425675, 22.30716197, 31.3122982, 26.62326502, 29.2966497,
 30.08502903, 21.31410839, 35.91661619, 35.11574077, 35.80398017,
1680

 Data Mining mlff_network_forecast
 30.4726176, 33.91164302, 36.72433409, 29.75180713, 23.45845894,
 38.76074045, 47.05575137, 34.97839621, 37.42294592, 38.35385362,
 41.6896576, 39.65150831, 41.28453569, 40.67987557, 38.88162645,
 33.23028766, 45.08593868, 46.20108537, 31.9725053, 39.48963914,
 47.85207852, 47.62688377, 45.49876798, 43.10368315, 47.274094,
 39.1205628, 32.77211017, 31.55773807, 37.76675809, 34.72900318,
 49.29747505, 32.4350953, 37.81775874, 38.50662776, 48.62379392,
 37.62390767, 41.56943258, 36.8289729, 48.69082603, 32.04810755
 };
 /* 2D Array Definitions */
#define NOMINAL(i,j) nominal[i*n_nominal+j]
#define NOMINALOBS(i,j) nominalObs[i*n_nominal+j]
 Imsls_f_NN_Network *network;
 float *stats;
 int n_patterns = 100, n_nominal = 3, n_continuous = 1;
 int i, j, k, wIdx;
 float *forecasts;
 /* for forecasting */
 int nominalObs[3] = { 0, 0, 0 };
 float continuousObs[1] = { 0 };
 float x, y;
 float *cont;
 /* Scale continuous attribute to the interval [0, 1] */
 cont = imsls_f_scale_filter (n_patterns, continuous, 1,
 IMSLS_SCALE_LIMITS, 0.0, 10.0, 0.0, 1.0, 0);
 network = imsls_f_mlff_network_init (4, 1);
 imsls_f_mlff_network (network,
 IMSLS_CREATE_HIDDEN_LAYER, 3, IMSLS_LINK_ALL, 0);
 for (j=network->n_inputs; j < network->n_nodes ; j++)
 {
 for (k=0; k < network->nodes[j].n_inLinks; k++)
 {
 wIdx = network->nodes[j].inLinks[k];
 /* set specific layer weights */
 if (network->nodes[j].layer_id == 1) {
 network->links[wIdx].weight = 0.25;
 } else if (network->nodes[j].layer_id == 2) {
 network->links[wIdx].weight = 0.33;
 }
 }
 }
 imsls_random_seed_set (12345);
 stats = imsls_f_mlff_network_trainer (network, n_patterns - 10,
 n_nominal, n_continuous, nominal, continuous, output,
 0);
 printf ("Predictions for Observations 90 to 100: \n");
 for (i = 90; i < 100; i++)
 {
 continuousObs[0] = continuous[i];
 for (j = 0; j < n_nominal; j++)
 {
 NOMINALOBS (0, j) = NOMINAL (i, j);
 }
 forecasts = imsls_f_mlff_network_forecast (network, n_nominal,
 n_continuous, nominalObs, continuousObs, 0);
1681

 Data Mining mlff_network_forecast
 x = output[i];
 y = forecasts[0];
 printf("observation[%d] %8.4f Prediction %8.4f ", i, x, y);
 printf("Residual %8.4f \n", x - y);
 }
 imsls_f_mlff_network_free (network);
#undef NOMINAL
#undef NOMINALOBS
}

Output

Predictions for Observations 90 to 100:
observation[90] 49.2975 Prediction 49.1823 Residual 0.1152
observation[91] 32.4351 Prediction 32.4410 Residual -0.0059
observation[92] 37.8178 Prediction 37.7998 Residual 0.0179
observation[93] 38.5066 Prediction 38.4955 Residual 0.0111
observation[94] 48.6238 Prediction 48.5475 Residual 0.0763
observation[95] 37.6239 Prediction 37.6043 Residual 0.0196
observation[96] 41.5694 Prediction 41.5935 Residual -0.0241
observation[97] 36.8290 Prediction 36.8038 Residual 0.0251
observation[98] 48.6908 Prediction 48.6110 Residual 0.0798
observation[99] 32.0481 Prediction 32.0631 Residual -0.0150

NOTE: Because multiple optima are possible during training, the output of this example may vary by
platform.
1682

 Data Mining mlff_classification_trainer
mlff_classification_trainer

more...

Trains a multilayered feedforward neural network for classification.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_classification_trainer (Imsls_f_NN_Network *network,

int n_patterns, int n_nominal, int n_continuous, int classification[],
int nominal[], float continuous[], ..., 0)

The type double function is imsls_d_mlff_classification_trainer.

Required Arguments
Imsls_f_NN_Network *network (Input/Output)

Pointer to a structure of type Imsls_f_NN_Network containing the feedforward network’s architecture,
including network weights and bias values. For more details, see imsls_f_mlff_network. When
network training is successful, the weights and bias values in network are replaced with the values
calculated for the optimum trained network.

int n_patterns (Input)
Number of network training patterns.

int n_nominal (Input)
Number of nominal input attributes. Note that n_nominal + n_continuous must be equal to
the total number of input attributes in the network, network->n_inputs. For more details, see
imsls_f_mlff_network.

int n_continuous (Input)
Number of continuous input attributes, including ordinal attributes encoded to percentages. Note
that n_nominal + n_continuous must equal the total number of input attributes in the net-
work, network->n_inputs. For more details, see imsls_f_mlff_network.
1683

 Data Mining mlff_classification_trainer
int classification[] (Input)
Array of size n_patterns containing the target classifications for the training patterns. These must
be numbered sequentially from 0 to n_classes-1, where n_classes is the number of target categories.
For binary classification problems, n_classes = 2. For other problems, n_classes = n_outputs =
network->n_outputs. For more details, see imsls_f_mlff_network.

int nominal[] (Input)
Array of size n_patterns by n_nominal containing values for the nominal input attributes. The i-
th row contains the nominal input attributes for the i-th training pattern. If n_nominal = 0, this
argument is ignored.

float continuous[] (Input)
Array of size n_patterns by n_continuous containing values for the continuous input attri-
butes. The i-th row contains the continuous input attributes for the i-th training pattern. If
n_continuous = 0, this argument is ignored.

Return Value
An array of training statistics, containing six summary statistics from the classification neural network, organized
as follows:

The classification error rate is calculated using the ratio n_errors/n_patterns, where n_errors is the number of
patterns that are incorrectly classified using the trained neural network. For each training pattern, the probability
that it belongs to each of the target classes is calculated from the trained network. A pattern is considered incor-
rectly classified if the classification probability for its target classification is not the largest among that pattern’s
classification probabilities.

A classification error of zero indicates that all training patterns are correctly classified into their target classifica-
tions. A value near one indicates that most patterns are not classified into their target classification.

If training is unsuccessful, NULL is returned.

Element Training Statistics

0 Minimum Cross-Entropy at the optimum.

1 Total number of Stage I iterations.

2 Minimum Cross-Entropy after Stage I training.

3 Total number of Stage II iterations.

4 Minimum Cross-Entropy after Stage II
training.

5 Classification error rate from optimum
network.
1684

 Data Mining mlff_classification_trainer
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_mlff_classification_trainer (Imsls_f_NN_Network *network,

int n_patterns, int n_nominal, int n_continuous, int classification[],
int nominal[], float continuous[],

IMSLS_STAGE_I, int n_epochs, int epoch_size,

IMSLS_NO_STAGE_II,

IMSLS_MAX_STEP, float max_step,

IMSLS_MAX_ITN, int max_itn,

IMSLS_MAX_FCN, int max_fcn,

IMSLS_REL_FCN_TOL, float rfcn_tol,

IMSLS_GRAD_TOL, float grad_tol,

IMSLS_TOLERANCE, float tolerance,

IMSLS_PRINT,

IMSLS_WEIGHT_INITIALIZATION_METHOD, int method,

IMSLS_LOGISTIC_TABLE,

IMSLS_PREDICTED_CLASS, int **predicted_class,

IMSLS_PREDICTED_CLASS_USER, int predicted_class[],

IMSLS_GRADIENT, float **gradients,

IMSLS_GRADIENT_USER, float gradients[],

IMSLS_PREDICTED_CLASS_PROB, float **predicted_class_prob,

IMSLS_PREDICTED_CLASS_PROB_USER, float predicted_class_prob[],

IMSLS_CLASS_ERROR, float **class_error,

IMSLS_CLASS_ERROR_USER, float class_error[],

IMSLS_RETURN_USER, float trainStat[],

0)
1685

 Data Mining mlff_classification_trainer
Optional Arguments
IMSLS_STAGE_I, int n_epochs, int epoch_size (Input)

Argument n_epochs is the number epochs used for Stage I training and argument epoch_size
is the number of observations used during each epoch. If epoch training is not needed, set
epoch_size = n_patterns and n_epochs=1. Stage I training is implemented using steepest
ascent optimization and backward propagation for gradient calculations.

Default: n_epochs=15, epoch_size = n_patterns.

IMSLS_NO_STAGE_II, (Input)
Specifies no Stage II training is needed. Stage II training is implemented using Quasi-Newton optimi-
zation with numerical gradients.

Default: Stage II training is performed.

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size in the optimizer.

Default: max_step = 10.

IMSLS_MAX_ITN, int max_itn (Input)
Maximum number of iterations in the optimizer, per epoch.

Default: max_itn=1000.

IMSLS_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations in the optimizer, per epoch.

Default: max_fcn=1000.

IMSLS_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance in the optimizer.

Default: rfcn_tol = max (10-10, ɛ2/3), where ɛ is the machine precision.

rfcn_tol = max (10-20, ɛ2/3) in double.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance in the optimizer.

Default: grad_tol = ɛ1/2, where ɛ is the machine precision.

grad_tol = ɛ1/3 in double.

IMSLS_TOLERANCE, float tolerance (Input)
Absolute accuracy tolerance for the entropy. If the network entropy for an epoch during Stage I train-
ing falls below tolerance, the network is considered optimized, training is halted and the network
with the minimum entropy is returned.
1686

 Data Mining mlff_classification_trainer
Default: tolerance = ɛ1/3, where ɛ is the machine precision tolerance = ɛ2/3 in double.

IMSLS_PRINT, (Input)
Intermediate results are printed during network training.

Default: No printing is performed.

IMSLS_WEIGHT_INITIALIZATION_METHOD, int method (Input)
The method to use for initializing network weights prior to network training. One of the following five
values is accepted:

Default: method = IMSLS_RANDOM.

IMSLS_LOGISTIC_TABLE, (Input)
If this option is selected, during Stage I optimization all logistic activation functions in the hidden lay-
ers are calculated using a table lookup approximation to the logistic function. This reduces the time
for Stage I training with logistic activation. However, during Stage II optimization this setting is
ignored.

Default: All logistic activations are calculated without table lookup.

IMSLS_PREDICTED_CLASS, int **predicted_class (Output)
The address of a pointer to an array of size n_patterns containing the predicted classification for
each training pattern.

IMSLS_PREDICTED_CLASS_USER, int predicted_class[] (Output)
Storage for array predicted_class provided by user. See IMSLS_PREDICTED_CLASS.

IMSLS_GRADIENT, float **gradients (Output)
The address of a pointer to an array of size
network->n_links + network->n_nodes - network->n_inputs containing the gra-
dients for each weight in the optimum network.

IMSLS_GRADIENT_USER, float gradients[] (Output)
Storage for array gradients provided by user. See IMSLS_GRADIENT.

method Algorithm

IMSLS_EQUAL Equal weights.

IMSLS_RANDOM Random weights.

IMSLS_PRINCIPAL_COMPONENTS Principal Component Weights.

IMSLS_DISCRIMINANT Discriminant Analysis Weights.

IMSLS_NN_NETWORK No initialization method will be per-
formed. Weights in Imsls_f_NN_Network
structure network will be used instead.
1687

 Data Mining mlff_classification_trainer
IMSLS_PREDICTED_CLASS_PROB, float **predicted_class_prob (Output)
The address of a pointer to an array of size n_patterns by n_classes, where n_classes is the number
of target classes in the network. For binary classification problems, n_classes = 2, but for all other
problems n_classes = n_outputs, where n_outputs is the number of outputs in the network,
network->n_outputs. The values of the i-th row are the predicted probabilities associated with
the target classes. For binary classification, predicted_class_prob[i] is the predicted proba-
bility that the i-th pattern is associated with class = 0. For other classification problems values in
the i-th row of predicted_class_prob are the predicted probabilities that this pattern belongs
to each of the target classes.

IMSLS_PREDICTED_CLASS_PROB_USER, float predicted_class_prob[] (Output)
Storage for array predicted_class_prob provided by user. See
IMSLS_PREDICTED_CLASS_PROB for a description.

IMSLS_CLASS_ERROR float, **class_error (Output)
The address of a pointer to an array with n_patterns containing the classification probability
errors for each pattern in the training data. The classification error for the i-th training pattern is
equal to 1-predicted_class[k] where k=classification[i].

IMSLS_CLASS_ERROR_USER, float class_error[] (Output)
Storage for array class_error provided by user. See IMSLS_CLASS_ERROR for a description.

IMSLS_RETURN_USER, float trainStat[] (Output)
User-supplied array of length 6. Upon completion, trainStat contains the return array of training
statistics.

Description
Function imsls_f_mlff_classification_trainer trains a multilayered feedforward neural network
for classifying patterns. It returns training summaries, the classification probabilities associated with training pat-
terns, their classification errors, the optimum network weights and gradients. Linkages among perceptrons allow
for skipped layers, including linkages between inputs and output perceptrons. Except for output perceptrons, the
linkages and activation function for each perceptron can be individually configured. For more details, see optional
arguments IMSLS_LINK_ALL, IMSLS_LINK_LAYER, and IMSLS_LINK_NODE in
imsls_f_mlff_network.

Binary classification is handled differently from classification problems involving more than two classes. Binary
classification problems only have two target classes, which must be coded as either zero or one. This is repre-
sented using a single network output with logistic activation. The output is an estimate of the probability that the
pattern belongs to class = 0. The probability associated with class = 1 can be calculated from the relationship
P(class = 1) = 1- P(class = 0).
1688

 Data Mining mlff_classification_trainer
Networks designed to classify patterns into more than two categories use one output for each target class, i.e.
n_classes = n_outputs. The first output predicts P(class = 0), the second P(class = 1), etc. All output per-
ceptrons are normalized using softmax activation. This ensures that the estimated class probabilities are
between zero and one, and that they always sum to one.

Training Patterns
Neural network training patterns consist of the following three types of data:

1. nominal input attributes

2. continuous input attributes, including encoded ordinal attributes,

3. pattern classifications numbered 0, 1, …, n_classes -1

The first data type, nominal data, contains the encoding of nominal input attributes, if any. Nominal input attri-
butes must be encoded into multiple columns for network input. Although not required, binary encoding is
typically used to create these input columns. Binary encoding consists of creating columns of zeros and ones for
each class value associated with every nominal attribute. If only one attribute is used for input, then the number
of columns is equal to the number of classes for that attribute. If several nominal attributes appear in the data,
then each attribute is associated with several columns, one for each of its classes.

The imsls_f_unsupervised_nominal_filter can be used to generate these columns. For a nominal
attribute with m classes, imsls_f_unsupervised_nominal_filter returns an n_patterns by m
matrix. Each column of this matrix consists of zeros and ones. The column value is set to zero if the pattern is not
associated with this classification; otherwise, the value is set to one indicating that this pattern is associated with
this classification.

Consider an example with one nominal variable that has two classes: male and female and five training patterns:
male, male, female, male, female. With binary encoding, the following matrix is used as nominal network input to
represent these patterns:

Continuous input attribute data, including ordinal data encoded to cumulative percentages, are passed to this
routine in a separate floating point array, continuous. The number of rows in this array is n_patterns. The
number of columns is n_continuous. If the continuous input attributes have widely different ranges, then typ-

nominal =

1 0
1 0
0 1
1 0
0 1
1689

 Data Mining mlff_classification_trainer
ically it is advantageous to scale these attributes before using them in network training. The routine
imsls_f_scale_filter can be used for scaling continuous input attributes before using it in network training.
Ordinal attributes can be encoded using imsls_f_unsupervised_ordinal_filter.
It is important to note that if input attributes are encoded or scaled for network training, then the network
weights are calculated for that encoding and scaling. Subsequent pattern classifications using these weights must
also use the identical encoding and scaling used during training.

Training pattern classification targets are stored in the one-dimensional integer array classification. The i-
th value in this array is the class assignment for the i-th training pattern. Class assignments must be represented
using the integers 0, 1, …, n_classes - 1. This encoding is arbitrary, but it should be consistent. For example, if the
class assignments correspond to the colors red, white and blue, then they must be encoded as zero, one, and
two. However, it is arbitrary whether red gets assigned to class = 0, 1 or 2 provided that assignment is used for
every pattern.

Network Configuration
The network configuration consists of the following:

 number of inputs and outputs,

 number of hidden layers,

 description of the number of perceptrons in each layer,

 description of the linkages among the perceptrons, and

 initial values for network weights, including bias weights.

This description is passed into imsls_f_mlff_classification_trainer using the structure Imsls_f_N-
N_Network. See imsls_f_mlff_network.

Training Efficiency
INITIAL NETWORK WEIGHTS: The training efficiency determines the speed of network training. This is controlled
by several factors. One of the most important factors is the initial weights used by the optimization algorithm. By
default, these are set randomly. Other options can be specified through the optional argument
IMSLS_INITIALIZE_WEIGHTS_METHOD. See imsls_f_mlff_initialize_weights for a detailed
description of the available initialization methods.
1690

 Data Mining mlff_classification_trainer
Initial weights are scaled to reduce the possibility of perceptron saturation during the initial phases of network
training. Saturation occurs when initial perceptron potential calculations are so large, or so small, that the activa-
tion calculation for a potential is driven to the largest or smallest possible values that can be represented on the
computer in the stated precision (single or double). If saturation occurs, warning messages may appear indicating
that network training did not converge to an optimum solution.

The scaled initial weights are modified prior to every epoch by adding noise to these base values. The noise com-
ponent is uniformly distributed over the interval [-0.5,+0.5].

SCALING INPUTS: Although automatic scaling of network weights protects against saturation during initial training
iterations, the training algorithm can push the weights into regions that may cause saturation. Typically this
occurs when input attributes have widely different scaling. For that reason, it is recommended to also scale all
continuous input attributes to z-scores or a common interval, such as
[-1, +1]. The routine imsls_f_scale_filter can be used to scale continuous input attributes to z-scores or a
common interval.

LOGISTIC CALCULATIONS: If Stage I training is slow, the optional argument IMSLS_LOGISTIC_TABLE can
reduce this time by using a table lookup for calculating the logistic activation function in hidden layer perceptrons.
This option is ignored during Stage II training. If Stage II training is used, then weights for the optimum network
will be calculated using exact calculations for any logistic activation functions. If Stage II training is not used and
the IMSLS_LOGISTIC_TABLE option is invoked, care must be taken to ensure that this option is also used for
any network classification predictions using imsls_f_mlff_pattern_classification.

NUMBER OF EPOCHS AND EPOCH SIZE: To ensure that a globally optimum network results from the training, sev-
eral training sessions are conducted and compared. Each session is referred to as an epoch. The training for each
epoch is conducted using all of the training patterns or a random sample of all available patterns.

Both the number of epochs and epoch size can be set using the IMSLS_STAGE_I option. By default the num-
ber of epochs during Stage I training is 15 and the epoch size is equal to the total number of training patterns.
Increasing the number of epochs increases the training time, but it can result in a more accurate classification
network.

During Stage I training, the network entropy is calculated after each epoch. If that value is smaller than
tolerance Stage I training will stop since it is assumed that a network with entropy that low is acceptably accu-
rate, and it is not necessary to continue training. The value for tolerance can be set using the
IMSLS_TOLERANCE option. Setting this to a larger value, such as 0.001, is useful for initially evaluating alternate
network architectures.

NETWORK SIZE AND VALIDATION: The network architecture, the number of perceptrons and network layers, also
play a key role in network training. Larger networks with many inputs and perceptrons have a larger number of
weights. Large networks can provide very accurate classifications, driving the misclassification error rate for the
training patterns to zero. However networks with too many weights can take too long to train, and can be inaccu-
rate for classifying patterns not adequately represented among the training patterns.
1691

 Data Mining mlff_classification_trainer
A starting point is to ensure the total number of network weights is approximately equal to the number of train-
ing patterns. A trained network of this size typically has a low misclassification error rate when calculated for the
training patterns. That is, it is able to accurately reproduce the training data. However, it might be inaccurate for
classifying other patterns.

One approach to this validation is to split the total number of training patterns into two or more subsets then
train the network using only one of the subsets and classify the remaining data using the trained network. The
misclassification error rate for the data not used in training will be a better estimate of the true classification error
rate for this network.

However, this approach to validation is only possible when the number of training patterns is large.

Output
Output from imsls_f_mlff_classification_trainer consists of classification probabilities calcu-
lated for each training pattern, a classification error array for these patterns, predicted classifications, weights and
their associated gradients for the trained network, and the training statistics. The Imsls_f_NN_Network structure is
automatically updated with the weights, gradients and bias values for use as input to
imsls_f_mlff_pattern_classification.

The trained network can be saved and retrieved using imsls_f_mlff_network_write and
imsls_f_mlff_network_read. For more details about the weights and bias values, see Table 50. These func-
tions allow the functions of network training and classification to be implemented in different languages.
Networks trained in CNL can be transferred into other IMSL libraries, such as JMSL and C# Numerical Library, for
pattern classification.

Examples

Example 1

This example trains a three-layer network using 48 training patterns with two nominal and two continuous input
attributes. The first nominal attribute has three classifications and the second has four. Classifications for the
nominal attributes are encoded using imsls_f_unsupervised_nominal_filter. This function uses binary
encoding, generating a total of 7 input attributes to represent the two nominal attributes. The two additional con-
tinuous attributes increase the total number of network inputs to 9.

In this example, the target classification is binary, either zero or one. The continuous input attribute was scaled to
the interval [0,1].
1692

 Data Mining mlff_classification_trainer
The structure of the network consists of nine input attributes in the input layer and three other layers. There are

three perceptrons in the 1st hidden layer, and two in the 2nd. Since the classification target in this example is
binary, there is only one perceptron in the output layer.

All perceptrons use the logistic function for activation, including the output perceptron. Since logistic activation
values are always between 0 and 1, the output from this network can be interpreted directly as the estimated
probability, P(0), that a pattern belongs to target classification 0.

The following figure illustrates this structure:

Figure 36, A Binary 3-layer, Classification Network with 7 Inputs and 6 Perceptrons

There are a total of 41 weights in this network. Six are bias weights and the remaining 35 are the weights for the
input links to every perceptron, e.g. 35 = 9*3+3*2+2.
1693

 Data Mining mlff_classification_trainer
Printing is turned on to show progress during the training session.

#include <stdio.h>
#include <imsls.h>
int main(){
 float *trainStats;
 int i, j, k, m;
 int n_patterns =48; /* # of training patterns */
 int n_inputs =9; /* 2 nominal (7 classes) and 2 continuous */
 int n_nominal =7; /* 2 attributes with 3 and 4 classes each */
 int n_continuous =2; /* 2 continuous input attributes */
 int n_outputs =1; /* binary classification */
 int classification[48];
 int nominalAtt[48*7];
 int n_cat = 2;
 int nomTempIn[48], *nomTempOut, nClass;
 float inputData[5*48] =
 {
 0.00, 0.00, 0, 0, 0, 0.02, 0.02, 0, 1, 0, 0.04, 0.04, 0, 2, 0,
 0.06, 0.06, 0, 3, 0, 0.08, 0.08, 1, 0, 0, 0.10, 0.10, 1, 1, 0,
 0.12, 0.12, 1, 2, 0, 0.14, 0.14, 1, 3, 0, 0.16, 0.16, 2, 0, 0,
 0.18, 0.18, 2, 1, 0, 0.20, 0.20, 2, 2, 0, 0.22, 0.22, 2, 3, 0,
 0.24, 0.28, 0, 0, 0, 0.26, 0.30, 0, 1, 0, 0.28, 0.32, 0, 2, 0,
 0.30, 0.34, 0, 3, 0, 0.32, 0.36, 1, 0, 0, 0.34, 0.38, 1, 1, 0,
 0.36, 0.40, 1, 2, 0, 0.38, 0.42, 1, 3, 0, 0.40, 0.44, 2, 0, 0,
 0.42, 0.46, 2, 1, 0, 0.44, 0.48, 2, 2, 0, 0.46, 0.50, 2, 3, 0,
 0.52, 0.48, 0, 0, 0, 0.54, 0.50, 0, 1, 1, 0.56, 0.52, 0, 2, 1,
 0.58, 0.54, 0, 3, 1, 0.60, 0.56, 1, 0, 1, 0.62, 0.58, 1, 1, 1,
 0.64, 0.60, 1, 2, 1, 0.66, 0.62, 1, 3, 1, 0.68, 0.64, 2, 0, 0,
 0.70, 0.66, 2, 1, 0, 0.72, 0.68, 2, 2, 0, 0.74, 0.70, 2, 3, 0,
 0.76, 0.76, 0, 0, 1, 0.78, 0.78, 0, 1, 1, 0.80, 0.80, 0, 2, 1,
 0.82, 0.82, 0, 3, 1, 0.84, 0.84, 1, 0, 1, 0.86, 0.86, 1, 1, 1,
 0.88, 0.88, 1, 2, 1, 0.90, 0.90, 1, 3, 1, 0.92, 0.92, 2, 0, 0,
 0.94, 0.94, 2, 1, 0, 0.96, 0.96, 2, 2, 0, 0.98, 0.98, 2, 3, 0
 };
 float contAtt[2*48];
 float *classProb;
 char *colLabels[] = {"Pattern", "Class=0", "Class=1"};
 Imsls_f_NN_Network *network;
 printf("\n***********************************\n");
 printf("* BINARY CLASSIFICATION EXAMPLE *\n");
 printf("***********************************\n\n");
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /* Setup Continuous Input Attributes and
 * Classification Target Arrays
 */
 for(i=0; i<n_patterns; i++){
 /* Assign input to array for continuous input attributes */
 contAtt[2*i] = inputData[i*5];
 contAtt[2*i+1] = inputData[i*5+1];
 /* Assign input to classification target array*/
 classification[i] = (int) inputData[i*5+4];
 }
 /* Setup Nominal Input Attributes Using Binary Encoding */
1694

 Data Mining mlff_classification_trainer
 m=0;
 for(i=0; i<n_cat; i++){
 for(j=0; j<n_patterns; j++){
 nomTempIn[j] = (int) inputData[j*5+n_continuous+i]+1;
 }
 nomTempOut = imsls_unsupervised_nominal_filter(n_patterns,
 &nClass, nomTempIn, 0);
 for(k=0; k<nClass; k++){
 for(j=0; j<n_patterns; j++){
 nominalAtt[j*n_nominal+m] = nomTempOut[j*nClass+k];
 }
 m++;
 }
 imsls_free(nomTempOut);
 }
 printf("\t TRAINING PATTERNS\n");
 printf("\tY N1 N2 Z1 Z2 \n");
 for(i=0; i<n_patterns; i++){
 j = (int) inputData[i*5+2];
 k = (int) inputData[i*5+3];
 printf("\t%d %d %d %g %g \n", classification[i], j, k,
 contAtt[i*2], contAtt[i*2+1]);
 }
 printf("\n");
 network = imsls_f_mlff_network_init(n_inputs, n_outputs);
 imsls_f_mlff_network(network,
 IMSLS_CREATE_HIDDEN_LAYER, 3,
 0);
 imsls_f_mlff_network(network,
 IMSLS_CREATE_HIDDEN_LAYER, 2,
 IMSLS_LINK_ALL,
 0);
 /* Note the following statement is for repeatable output */
 imsls_random_seed_set(5555);
 /* Train Classification Network */
 printf("STARTING NETWORK TRAINING\n");
 trainStats = imsls_f_mlff_classification_trainer (network,
 n_patterns, n_nominal, n_continuous, classification,
 nominalAtt, contAtt,
 IMSLS_PRINT,
 IMSLS_PREDICTED_CLASS_PROB, &classProb,
 0);
 /* Print class predictions*/
 imsls_f_write_matrix("Predicted Classification Probabilities",
 n_patterns, n_outputs , classProb,
 IMSLS_ROW_NUMBER,
 IMSLS_COL_LABELS, colLabels,
 0);
}

1695

 Data Mining mlff_classification_trainer
Output

Notice that although by default the maximum number of epoch iterations in Stage I training is 15, in this case
Stage I optimization is halted after the first epoch. This occurs because the minimum entropy for that epoch is
less than the default tolerance.

* BINARY CLASSIFICATION EXAMPLE *

 TRAINING PATTERNS
 Y N1 N2 Z1 Z2
 0 0 0 0 0
 0 0 1 0.02 0.02
 0 0 2 0.04 0.04
 0 0 3 0.06 0.06
 0 1 0 0.08 0.08
 0 1 1 0.1 0.1
 0 1 2 0.12 0.12
 0 1 3 0.14 0.14
 0 2 0 0.16 0.16
 0 2 1 0.18 0.18
 0 2 2 0.2 0.2
 0 2 3 0.22 0.22
 0 0 0 0.24 0.28
 0 0 1 0.26 0.3
 0 0 2 0.28 0.32
 0 0 3 0.3 0.34
 0 1 0 0.32 0.36
 0 1 1 0.34 0.38
 0 1 2 0.36 0.4
 0 1 3 0.38 0.42
 0 2 0 0.4 0.44
 0 2 1 0.42 0.46
 0 2 2 0.44 0.48
 0 2 3 0.46 0.5
 0 0 0 0.52 0.48
 1 0 1 0.54 0.5
 1 0 2 0.56 0.52
 1 0 3 0.58 0.54
 1 1 0 0.6 0.56
 1 1 1 0.62 0.58
 1 1 2 0.64 0.6
 1 1 3 0.66 0.62
 0 2 0 0.68 0.64
 0 2 1 0.7 0.66
 0 2 2 0.72 0.68
 0 2 3 0.74 0.7
 1 0 0 0.76 0.76
 1 0 1 0.78 0.78
 1 0 2 0.8 0.8
 1 0 3 0.82 0.82
 1 1 0 0.84 0.84
 1 1 1 0.86 0.86
 1 1 2 0.88 0.88
 1 1 3 0.9 0.9
 0 2 0 0.92 0.92
 0 2 1 0.94 0.94
1696

 Data Mining mlff_classification_trainer
 0 2 2 0.96 0.96
 0 2 3 0.98 0.98
STARTING NETWORK TRAINING
TRAINING PARAMETERS:
 Stage II Opt. = 1
 n_epochs = 15
 epoch_size = 48
 maxIterations = 1000
 maxFunctionEval = 1000
 maxStep = 10.000000
 functionTol = 2.42218e-005
 gradientTol = 0.000345267
 accuracy = 0.000345267
 n_inputs = 9
 n_continuous = 2
 n_nominal = 7
 n_classes = 2
 n_outputs = 1
 n_patterns = 48
 n_layers = 3
 n_perceptrons = 6
 n_weights = 41
STAGE I TRAINING STARTING
Stage I: Epoch 1 - Cross-Entropy Error = 1.03973e-005 (Iterations=58)
(CPU Min.=0.000260)
Stage I Training Converged at Epoch = 1

STAGE I FINAL CROSS-ENTROPY ERROR = 0.000010 (CPU Min.=0.000260)
OPTIMUM WEIGHTS AFTER STAGE I TRAINING:
weight[0] = -0.634574 weight[1] = 3.10432
weight[2] = 0.753153 weight[3] = 3.26621
weight[4] = 0.873874 weight[5] = 0.564623
weight[6] = 0.574684 weight[7] = 2.03545
weight[8] = 2.11041 weight[9] = 4.53693
weight[10] = 3.17946 weight[11] = -10.908
weight[12] = -1.12353 weight[13] = 0.915452
weight[14] = -0.737025 weight[15] = -0.44498
weight[16] = 11.1242 weight[17] = 8.99682
weight[18] = 2.17726 weight[19] = 1.82712
weight[20] = -8.49784 weight[21] = -3.14366
weight[22] = -0.0180527 weight[23] = 0.618158
weight[24] = -0.243258 weight[25] = 13.5949
weight[26] = 11.9534 weight[27] = -4.83385
weight[28] = -18.9217 weight[29] = -9.0807
weight[30] = -7.01863 weight[31] = -15.0597
weight[32] = -17.7305 weight[33] = 23.6268
weight[34] = 11.2716 weight[35] = -6.76151
weight[36] = -13.0134 weight[37] = -14.1513
weight[38] = 17.8283 weight[39] = 21.7138
weight[40] = -19.8484
STAGE I TRAINING CONVERGED
STAGE I CROSS-ENTROPY ERROR = 0.000010
0 PATTERNS OUT OF 48 INCORRECTLY CLASSIFIED
1697

 Data Mining mlff_classification_trainer
GRADIENT AT THE OPTIMUM WEIGHTS
-->g[0] = 0.000000 weight[0] = -0.634574
-->g[1] = -0.000001 weight[1] = 3.104319
-->g[2] = 0.000000 weight[2] = 0.753153
-->g[3] = -0.000001 weight[3] = 3.266206
-->g[4] = 0.000000 weight[4] = 0.873874
-->g[5] = 0.000000 weight[5] = 0.564623
-->g[6] = 0.000000 weight[6] = 0.574684
-->g[7] = -0.000000 weight[7] = 2.035449
-->g[8] = -0.000000 weight[8] = 2.110413
-->g[9] = 0.000000 weight[9] = 4.536931
-->g[10] = -0.000005 weight[10] = 3.179461
-->g[11] = 0.000000 weight[11] = -10.908046
-->g[12] = -0.000005 weight[12] = -1.123529
-->g[13] = 0.000000 weight[13] = 0.915452
-->g[14] = 0.000000 weight[14] = -0.737025
-->g[15] = 0.000000 weight[15] = -0.444980
-->g[16] = -0.000003 weight[16] = 11.124193
-->g[17] = -0.000003 weight[17] = 8.996821
-->g[18] = 0.000000 weight[18] = 2.177265
-->g[19] = -0.000004 weight[19] = 1.827117
-->g[20] = 0.000000 weight[20] = -8.497839
-->g[21] = -0.000004 weight[21] = -3.143664
-->g[22] = 0.000000 weight[22] = -0.018053
-->g[23] = 0.000000 weight[23] = 0.618158
-->g[24] = 0.000000 weight[24] = -0.243258
-->g[25] = -0.000002 weight[25] = 13.594892
-->g[26] = -0.000002 weight[26] = 11.953360
-->g[27] = 0.000001 weight[27] = -4.833848
-->g[28] = 0.000000 weight[28] = -18.921690
-->g[29] = 0.000000 weight[29] = -9.080699
-->g[30] = 0.000001 weight[30] = -7.018632
-->g[31] = 0.000001 weight[31] = -15.059658
-->g[32] = 0.000000 weight[32] = -17.730463
-->g[33] = -0.000010 weight[33] = 23.626806
-->g[34] = -0.000010 weight[34] = 11.271611
-->g[35] = -0.000001 weight[35] = -6.761511
-->g[36] = -0.000005 weight[36] = -13.013445
-->g[37] = -0.000004 weight[37] = -14.151301
-->g[38] = 0.000001 weight[38] = 17.828314
-->g[39] = 0.000001 weight[39] = 21.713770
-->g[40] = -0.000010 weight[40] = -19.848421
Training Completed - leaving training engine (CPU Min.=0.000260)

Predicted Classification Probabilities
 Pattern Class=0
 1 1
 2 1
 3 1
 4 1
 5 1
 6 1
 7 1
 8 1
 9 1
 10 1
1698

 Data Mining mlff_classification_trainer
 11 1
 12 1
 13 1
 14 1
 15 1
 16 1
 17 1
 18 1
 19 1
 20 1
 21 1
 22 1
 23 1
 24 1
 25 1
 26 0
 27 0
 28 0
 29 0
 30 0
 31 0
 32 0
 33 1
 34 1
 35 1
 36 1
 37 0
 38 0
 39 0
 40 0
 41 0
 42 0
 43 0
 44 0
 45 1
 46 1
 47 1
 48 1

Example 2

Fisher’s (1936) Iris data is often used for benchmarking discriminant analysis and classification solutions. It is part
of the IMSL data sets and consists of the following continuous input attributes and classification target:

Continuous Attributes – X1(sepal length), X2(sepal width), X3(petal length), and X4(petal width)

Classification Target (Iris Type) – Setosa, Versicolour or Virginica.

These data consist of 150 patterns. Since all pattern input attributes are continuous, linear discriminant analysis
can be used for classifying these patterns, see Example 1 of imsls_f_discriminant_analysis. Linear
discriminant analysis is able to correctly classify 98% of the training patterns. In this example, the simple neural
network illustrated in the following figure is able to achieve 100% accuracy.
1699

 Data Mining mlff_classification_trainer
Figure 37, A 2-layer, Classification Network with 4 Inputs 5 Perceptrons and a Target Classification
with 3 Classes

The hidden layer in this example consists of only two perceptrons with logistic activation. Since the target attri-
bute in this example has three classes, the network output layer consists of three perceptrons, one for each
class.

There are a total of 19 weights in this network. Fourteen of the weights are assigned to the input links, i.e., 4 × 2
+ 2 × 3 = 14. The last five weights are the bias weights for each of the five network perceptrons. All weights were
initialized using principal components, i.e. method = IMSLS_PRINCIPAL_COMPONENTS.

Although in these data the continuous attributes have similar ranges, they were scaled using z-score scaling to
make network training more efficient. For more details, see imsls_f_scale_filter.

For non-binary classification problems, imsls_f_mlff_classification_trainer uses softmax activa-
tion for output perceptrons. This ensures that the estimates of the classification probabilities sum to one, i.e.

Note that the default setting for IMSLS_MAX_STEP was changed from 10 to 1000. The default setting con-
verged to a network with 100% classification accuracy. However, the following warning message appeared:

∑
i=0

2

P class = i = 1
1700

 Data Mining mlff_classification_trainer
*** WARNING Error IMSLS_UNBOUNDED from imsls_d_mlff_classification_trainer.
*** Five consecutive steps of length "max_step" have been taken;
*** either the function is unbounded below, or has a finite
*** asymptote in some direction or the maximum allowable step size
*** "max_step" is too small.

In addition, the number of iterations used for each epoch were well below the default maximum (1000), and the
gradients at the optimum solution for this network were not zero.

STAGE I TRAINING STARTING
Stage I: Epoch 1 - Cross-Entropy Error = 5.50552 (Iterations=40) (CPU
Min.=0.000260)
Stage I: Epoch 2 - Cross-Entropy Error = 5.65875 (Iterations=69) (CPU
Min.=0.000260)
Stage I: Epoch 3 - Cross-Entropy Error = 4.83886 (Iterations=81) (CPU
Min.=0.000260)
Stage I: Epoch 4 - Cross-Entropy Error = 5.94979 (Iterations=108) (CPU
Min.=0.000521)
Stage I: Epoch 5 - Cross-Entropy Error = 5.54461 (Iterations=47) (CPU
Min.=0.000260)
Stage I: Epoch 6 - Cross-Entropy Error = 6.04163 (Iterations=51) (CPU
Min.=0.000260)
Stage I: Epoch 7 - Cross-Entropy Error = 5.95148 (Iterations=151) (CPU
Min.=0.000521)
Stage I: Epoch 8 - Cross-Entropy Error = 5.5646 (Iterations=55) (CPU Min.=0.000260)
Stage I: Epoch 9 - Cross-Entropy Error = 5.94914 (Iterations=442) (CPU
Min.=0.001563)
Stage I: Epoch 10 - Cross-Entropy Error = 5.94381 (Iterations=271) (CPU
Min.=0.001302)
Stage I: Epoch 11 - Cross-Entropy Error = 5.41955 (Iterations=35) (CPU
Min.=0.000000)
Stage I: Epoch 12 - Cross-Entropy Error = 6.01766 (Iterations=48) (CPU
Min.=0.000260)
Stage I: Epoch 13 - Cross-Entropy Error = 4.20551 (Iterations=112) (CPU
Min.=0.000521)
Stage I: Epoch 14 - Cross-Entropy Error = 5.95085 (Iterations=103) (CPU
Min.=0.000260)
Stage I: Epoch 15 - Cross-Entropy Error = 5.9596 (Iterations=55) (CPU
Min.=0.000260)
Stage I: Epoch 16 - Cross-Entropy Error = 5.96131 (Iterations=59) (CPU
Min.=0.000260)
Stage I: Epoch 17 - Cross-Entropy Error = 4.83231 (Iterations=74) (CPU
Min.=0.000260)
Stage I: Epoch 18 - Cross-Entropy Error = 17.1345 (Iterations=30) (CPU
Min.=0.000260)
Stage I: Epoch 19 - Cross-Entropy Error = 5.95569 (Iterations=92) (CPU
Min.=0.000260)
Stage I: Epoch 20 - Cross-Entropy Error = 3.15336 (Iterations=46) (CPU
Min.=0.000260)
GRADIENT AT THE OPTIMUM WEIGHTS
-->g[0] = 0.675632 weight[0] = 0.075861
-->g[1] = -0.953480 weight[1] = -0.078585
-->g[2] = 1.065184 weight[2] = 2.841074
-->g[3] = 0.535531 weight[3] = -0.941049
-->g[4] = -0.019011 weight[4] = -10.638772
-->g[5] = 0.001459 weight[5] = -14.573394
-->g[6] = -0.031098 weight[6] = 6.037813
-->g[7] = -0.035305 weight[7] = 72.382073
-->g[8] = 0.011015 weight[8] = -73.564433
-->g[9] = 0.000000 weight[9] = -14.853988
1701

 Data Mining mlff_classification_trainer
-->g[10] = -0.074332 weight[10] = 2.057743
-->g[11] = 0.000522 weight[11] = -39.952435
-->g[12] = 0.063316 weight[12] = 73.164141
-->g[13] = -0.000522 weight[13] = 57.065975
-->g[14] = 1.279914 weight[14] = -0.661036
-->g[15] = -0.043097 weight[15] = -61.171894
-->g[16] = 0.003227 weight[16] = 24.236722
-->g[17] = -0.108146 weight[17] = 14.968424
-->g[18] = 0.104919 weight[18] = -39.079343

Combined, this information suggests that either the default tolerances were too high or the maximum step size
was too small. As shown in the output below, when the maximum step size was changed to 1000, the number of
iterations increased, the gradients went to zero and the warning message for step size disappeared.
#include <stdio.h>
#include <imsls.h>
/* **
 * Two Layer Feed-Forward Network with 4 inputs, all
 * continuous, and 3 classification categories.
 *
 * This is a well known database to be found in the pattern
 * recognition literature. Fisher's paper is often cited.
 * The data set contains 3 classes of 50 instances each,
 * where each class refers to a type of iris plant. One class is
 * linearly separable from the other 2; the latter are NOT linearly
 * separable from each other.
 *
 * Predicted attribute: class of iris plant.
 * 1=Iris Setosa, 2=Iris Versicolour, and 3=Iris Virginica
 *
 * Input Attributes (4 Continuous Attributes)
 * X1: Sepal length,
 * X2: Sepal width,
 * X3: Petal length,
 * and X4: Petal width
 *
 ***/
int main(){
 float *predicted_class_prob, *class_error, *trainStats;
 int i, j;
 int n_patterns = 150;
 int n_inputs = 4; /* all continuous inputs*/
 int n_nominal = 0; /* no nominal */
 int n_continuous = 4;
 int n_outputs = 3;
 int *nominalAtt=NULL;
 int *predicted_class;
 int act_fcn[3] = {1, 1, 1};
 int classification[150];
 float unscaledX[150], scaledX[150];
 float contAtt[4*150];
 float *irisData;
 float mean[4], s[4], center, spread;
 double startTime, endTime;
 char *colLabels[] = {"Pattern", "Class=0", "Class=1", "Class=2"};
 char prtLabel[] =
 "Predicted_Class | P(0) P(1) P(2) | Class_Error";
 char dashes[] =
 "---";
1702

 Data Mining mlff_classification_trainer
 char *filename = "iris_classification.txt";
 /* Declare mlff network structure */
 Imsls_f_NN_Network *network;
 printf("***\n");
 printf("* IRIS CLASSIFICATION EXAMPLE *\n");
 printf("***\n");
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 /*
 * irisData[]: The raw data matrix. This is a 2-D matrix with 150
 * rows and 5 columns. The last 4 columns are the
 * continuous input attributes and the 1st column is
 * the classification category (1-3). These data
 * contain no nominal input attributes.
 */
 irisData = imsls_f_data_sets(3,0);
 /*
 * Setup the continuous attribute input array, contAtt[], and the
 * network target classification array, classification[], using the
 * above raw data matrix.
 */
 for(i=0; i < n_patterns; i++){
 classification[i] = (int)irisData[i*5]-1;
 for(j=1; j<5; j++){
 contAtt[i*4+j-1] = irisData[i*5+j];
 }
 }
 /* Scale continuous input attributes using z-score method */
 for(j=0; j<n_continuous; j++){
 for(i=0; i<n_patterns; i++)
 unscaledX[i] = contAtt[i*n_continuous+j];
 imsls_f_scale_filter(n_patterns, unscaledX, 2,
 IMSLS_RETURN_USER, scaledX,
 IMSLS_RETURN_CENTER_SPREAD, ¢er, &spread, 0);
 for(i=0; i<n_patterns; i++)
 contAtt[i*n_continuous+j] = scaledX[i];
 mean[j] = center;
 s[j] = spread;
 }
 printf("Scale Parameters: \n");
 for(j=0; j<n_continuous; j++){
 printf("Var %d Mean = %f S = %f \n",j+1, mean[j], s[j]);
 }
 network = imsls_f_mlff_network_init(n_inputs, n_outputs);
 imsls_f_mlff_network(network, IMSLS_CREATE_HIDDEN_LAYER, 2,
 IMSLS_LINK_ALL, 0);
 /* Note the following statement is for repeatable output */
 imsls_random_seed_set(5555);
 /* Train Classification Network */
 startTime = imsls_ctime();
 trainStats = imsls_f_mlff_classification_trainer (network,
 n_patterns,
 n_nominal,
 n_continuous,
 classification,
1703

 Data Mining mlff_classification_trainer
 nominalAtt,
 contAtt,
 IMSLS_PRINT,
 IMSLS_STAGE_I, 20, 150,
 IMSLS_WEIGHT_INITIALIZATION_METHOD, IMSLS_PRINCIPAL_COMPONENTS,
 IMSLS_MAX_STEP, 1000.0,
 IMSLS_PREDICTED_CLASS, &predicted_class,
 IMSLS_PREDICTED_CLASS_PROB, &predicted_class_prob,
 IMSLS_CLASS_ERROR, &class_error,
 0);
 endTime = imsls_ctime();
 printf("%s\n", dashes);
 printf("Minimum Cross-Entropy Error: %g\n", trainStats[0]);
 printf("Classification Error Rate: %f\n", trainStats[5]);
 printf("Execution Time (Sec.): %f\n\n", (endTime-startTime));
 printf("%s\n",prtLabel);
 printf("%s\n",dashes);
 for(i=0; i<n_patterns; i++){
 printf(" %d ", predicted_class[i]);
 printf(" | %f %f %f | %f\n", predicted_class_prob[i*3],
 predicted_class_prob[i*3+1], predicted_class_prob[i*3+2],
 class_error[i]);
 if(i==49 || i==99){
 printf("%s\n",prtLabel);
 printf("%s\n",dashes);
 }
 }
 imsls_f_mlff_network_write(network, filename, IMSLS_PRINT, 0);
}

Output

Note that the misclassification error rate is zero and Stage I training halts automatically at the 16th epoch

because the cross-entropy error after the 16th epoch is below the default tolerance.

* IRIS CLASSIFICATION EXAMPLE *

Scale Parameters:
Var 1 Mean = 5.843334 S = 0.828065
Var 2 Mean = 3.057333 S = 0.435866
Var 3 Mean = 3.758000 S = 1.765298
Var 4 Mean = 1.199333 S = 0.762238
TRAINING PARAMETERS:
 Stage II Opt. = 1
 n_epochs = 20
 epoch_size = 150
 maxIterations = 1000
 maxFunctionEval = 1000
 maxStep = 1000.000000
 functionTol = 2.42218e-005
 gradientTol = 0.000345267
 accuracy = 0.000345267
 n_inputs = 4
 n_continuous = 4
1704

 Data Mining mlff_classification_trainer
 n_nominal = 0
 n_classes = 3
 n_outputs = 3
 n_patterns = 150
 n_layers = 2
 n_perceptrons = 5
 n_weights = 19
STAGE I TRAINING STARTING
Stage I: Epoch 1 - Cross-Entropy Error = 4.92197 (Iterations=77)
(CPU Min.=0.000260)
Stage I: Epoch 2 - Cross-Entropy Error = 5.95334 (Iterations=234)
(CPU Min.=0.001042)
Stage I: Epoch 3 - Cross-Entropy Error = 5.95312 (Iterations=237)
(CPU Min.=0.000781)
Stage I: Epoch 4 - Cross-Entropy Error = 74.9249 (Iterations=30)
(CPU Min.=0.000260)
Stage I: Epoch 5 - Cross-Entropy Error = 4.92196 (Iterations=130)
(CPU Min.=0.000260)
Stage I: Epoch 6 - Cross-Entropy Error = 5.9565 (Iterations=208)
(CPU Min.=0.000781)
Stage I: Epoch 7 - Cross-Entropy Error = 4.92199 (Iterations=99)
(CPU Min.=0.000521)
Stage I: Epoch 8 - Cross-Entropy Error = 4.92197 (Iterations=117)
(CPU Min.=0.000260)
Stage I: Epoch 9 - Cross-Entropy Error = 5.06757 (Iterations=500)
(CPU Min.=0.001302)
Stage I: Epoch 10 - Cross-Entropy Error = 5.94276 (Iterations=136)
(CPU Min.=0.000260)
Stage I: Epoch 11 - Cross-Entropy Error = 4.92198 (Iterations=80)
(CPU Min.=0.000260)
Stage I: Epoch 12 - Cross-Entropy Error = 4.92199 (Iterations=100)
(CPU Min.=0.000260)
Stage I: Epoch 13 - Cross-Entropy Error = 4.92199 (Iterations=87)
(CPU Min.=0.000260)
Stage I: Epoch 14 - Cross-Entropy Error = 5.95085 (Iterations=245)
(CPU Min.=0.000781)
Stage I: Epoch 15 - Cross-Entropy Error = 5.95099 (Iterations=165)
(CPU Min.=0.001042)
Stage I: Epoch 16 - Cross-Entropy Error = 2.5034e-005 (Iterations=134)
(CPU Min.=0.000521)
Stage I Training Converged at Epoch = 16

STAGE I FINAL CROSS-ENTROPY ERROR = 0.000025 (CPU Min.=0.008854)
OPTIMUM WEIGHTS AFTER STAGE I TRAINING:
weight[0] = 0.3079 weight[1] = -0.12877
weight[2] = 4.51303 weight[3] = -1.90144
weight[4] = -14.3699 weight[5] = -519.855
weight[6] = 1317.12 weight[7] = 2756.14
weight[8] = -3454.11 weight[9] = -193.738
weight[10] = 116.785 weight[11] = -1310.03
weight[12] = 3339.35 weight[13] = 1505.56
weight[14] = 1.01363 weight[15] = -3010.6
weight[16] = 1785.05 weight[17] = 682.292
weight[18] = -2467.38
STAGE I TRAINING CONVERGED
STAGE I CROSS-ENTROPY ERROR = 0.000025
1705

 Data Mining mlff_classification_trainer
0 PATTERNS OUT OF 150 INCORRECTLY CLASSIFIED
GRADIENT AT THE OPTIMUM WEIGHTS
-->g[0] = 0.001389 weight[0] = 0.307900
-->g[1] = 0.001205 weight[1] = -0.128770
-->g[2] = 0.000713 weight[2] = 4.513030
-->g[3] = 0.000269 weight[3] = -1.901438
-->g[4] = 0.000000 weight[4] = -14.369907
-->g[5] = 0.000000 weight[5] = -519.854919
-->g[6] = 0.000000 weight[6] = 1317.116821
-->g[7] = 0.000000 weight[7] = 2756.140625
-->g[8] = 0.000000 weight[8] = -3454.105713
-->g[9] = 0.000000 weight[9] = -193.738205
-->g[10] = -0.000002 weight[10] = 116.785263
-->g[11] = 0.000000 weight[11] = -1310.028076
-->g[12] = 0.000002 weight[12] = 3339.346680
-->g[13] = 0.000000 weight[13] = 1505.561646
-->g[14] = -0.000807 weight[14] = 1.013626
-->g[15] = 0.000000 weight[15] = -3010.596680
-->g[16] = 0.000002 weight[16] = 1785.052979
-->g[17] = -0.000003 weight[17] = 682.292419
-->g[18] = 0.000002 weight[18] = -2467.379395
Training Completed - leaving training engine (CPU Min.=0.008854)

Minimum Cross-Entropy Error: 2.5034e-005
Classification Error Rate: 0.000000
Execution Time (Sec.): 0.531250
Predicted_Class | P(0) P(1) P(2) | Class_Error

 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
1706

 Data Mining mlff_classification_trainer
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
 0 | 1.000000 0.000000 0.000000 | 0.000000
Predicted_Class | P(0) P(1) P(2) | Class_Error

 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 0.999999 0.000001 | 0.000001
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 0.999994 0.000006 | 0.000006
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 0.999994 0.000006 | 0.000006
 1 | 0.000000 1.000000 0.000000 | 0.000000
1707

 Data Mining mlff_classification_trainer
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000000 1.000000 0.000000 | 0.000000
 1 | 0.000002 0.999998 0.000000 | 0.000002
 1 | 0.000000 1.000000 0.000000 | 0.000000
Predicted_Class | P(0) P(1) P(2) | Class_Error

 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000011 0.999989 | 0.000011
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
1708

 Data Mining mlff_classification_trainer
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
 2 | 0.000000 0.000000 1.000000 | 0.000000
Opening iris_classification.txt for writing network data structure
Writing Neural Network... 55 Lines written to network file.
File iris_classification.txt closed.
1709

 Data Mining mlff_pattern_classification
mlff_pattern_classification
Calculates classifications for trained multilayered feedforward neural networks.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_pattern_classification (Imsls_f_NN_Network *network,

int n_patterns,int n_nominal, int n_continuous, int nominal[], float continuous[], ...,
0)

The type double function is imsls_d_mlff_pattern_classification.

Required Arguments
Imsls_f_NN_Network *network (Input)

Pointer to a structure of type Imsls_f_NN_Network containing the trained feedforward network. See
imsls_f_mlff_network.

int n_patterns (Input)
Number of patterns to classify.

int n_nominal (Input)
Number of nominal input attributes.

int n_continuous (Input)
Number of continuous attributes, including ordinal attributes encoded using cumulative percentage.

int nominal[] (Input)
Array of size n_patterns by n_nominal containing the nominal input variables.

float continuous[] (Input)
Array of size n_patterns by n_continuous containing the continuous and scaled ordinal input
variables.
1710

 Data Mining mlff_pattern_classification
Return Value
Pointer to an array of size n_patterns by n_classes containing the predicted class probabilities associated with
each input pattern, where n_classes is the number of possible target classifications.
n_classes = network->n_outputs for non-binary classification categories. For binary classification,
n_classes = 2. This space can be released by using the imsls_free function.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_mlff_pattern_classification (Imsls_f_NN_Network *network,
int n_patterns, int n_nominal, int n_continuous, int nominal[], float continuous[],

IMSLS_LOGISTIC_TABLE,
IMSLS_PREDICTED_CLASS, int **pred_class,
IMSLS_PREDICTED_CLASS_USER, int pred_class[],
IMSLS_RETURN_USER, float class_prob[],
0)

Optional Arguments
IMSLS_LOGISTIC_TABLE, (Input)

This option specifies that all logistic activation functions are calculated using the table lookup approx-
imation. This is only needed when a network is trained with this option and Stage II training is
bypassed. If Stage II training was not bypassed during network training, weights were based upon the
optimum network from Stage II which never uses a table lookup approximation to calculate logistic
activations.

IMSLS_PREDICTED_CLASS, int **pred_class (Output)
The address of a pointer to an array of size n_patterns containing the predicted classification for
each pattern.

IMSLS_PREDICTED_CLASS_USER, int pred_class[] (Output)
Storage for array pred_class provided by user. See IMSLS_PREDICTED_CLASS.

IMSLS_RETURN_USER, float class_prob[] (Output)
If specified, the classification probabilities for the input patterns are stored in the two-dimensional
matrix class_prob of size n_patterns by n_classes, where n_classes is the number of target
classes used to train the network. For binary classification problems, n_classes = 2. For all others,
n_classes = n_outputs = network->n_outputs.
1711

 Data Mining mlff_pattern_classification
Description
Function imsls_f_mlff_pattern_classification calculates classification probabilities from a previ-
ously trained multilayered feedforward neural network using the same network structure and scaling applied
during the training. The structure Imsls_f_NN_Network describes the network structure used to originally train the
network. The weights, which are the key output from training, are used as input to this function. The weights are
stored in the Imsls_f_NN_Network structure.

In addition, two two-dimensional arrays are used to describe the values of the nominal and continuous attributes
that are to be used as network inputs for calculating classification probabilities. Optionally, it can also return the
predicted classifications in pred_class. The predicted classification is the target class with the highest proba-
bility, class_prob.

Function imsls_f_mlff_pattern_classification returns classification probabilities for the network
input patterns.

Pattern Classification Attributes
Neural network classification inputs consist of the following types of attributes:

1. nominal input attributes, and

2. continuous attributes, including ordinal attributes encoded to cumulative percentages.

The first data type contains the encoding of any nominal input attributes. If binary encoding is used, this encod-
ing consists of creating columns of zeros and ones for each class value associated with every nominal attribute.
The function imsls_f_unsupervised_nominal_filter can be used for this encoding.

When only one nominal attribute is used for input, then the number of binary encoded columns is equal to the
number of classes for that attribute. If more nominal attributes appear in the data, then each nominal attribute is
associated with several columns, one for each of its classes. Each column consists of zeros and ones. The column
value is zero if that classification is not associated with this pattern; otherwise, it is equal to one if it is assigned to
this pattern.

Consider an example with one nominal variable and two classes: male and female and the following five patterns:
male, male, female, male, female. With binary encoding, the following 5 by 2 matrix is sent to the pattern classifi-
cation to request classification probabilities for these patterns:
1712

 Data Mining mlff_pattern_classification
The second category of input attributes corresponds to continuous attributes. They are passed to this classifica-
tion function via the floating point array continuous. The number of rows in this matrix is n_patterns, and
the number of columns is n_continuous, corresponding to the number of continuous input attributes.

Ordinal input attributes, if used, are typically encoded to cumulative percentages. Since these are floating point
values, they are placed into a column of the continuous array and n_continuous is set equal to the num-
ber of columns in this array.

In some cases, one of these types of input attributes may not exist. In that case, either n_nominal = 0 or
n_continuous = 0 and their corresponding input matrix is ignored.

Network Configuration
The configuration of the network consists of a description of the number of perceptrons for each layer, the num-
ber of hidden layers, the number of inputs and outputs, and a description of the linkages among the
perceptrons. This description is passed into this training routine through the structure Imsls_f_NN_Network. See
imsls_f_mlff_network. For binary problems there is only a single output since the probability P(class = 0)
is equal to 1-P(class = 1). For other classification problems, however, n_outputs = n_classes and
P(class = j) is equal to the classification probabilities in the j + 1 column of class_prob[].

Classification Probabilities
Classification probabilities are calculated from the input attributes, network structure and weights provided in
network.

Classification probabilities are returned in a two-dimensional array, class_prob, with n_patterns rows
and n_classes columns. The values in the i-th column are estimated probabilities for the
class = (i-1).

nominal =

1 0
1 0
0 1
1 0
0 1
1713

 Data Mining mlff_pattern_classification
Examples

Example 1

Fisher’s (1936) Iris data is often used for benchmarking discriminant analysis and classification solutions. It is part
of the IMSL data sets and consists of the following continuous input attributes and classification target:

Continuous Attributes – X1(sepal length), X2(sepal width), X3(petal length), and X4(petal width)

Classification Target (Iris Type) – Setosa, Versicolour or Virginica.

The input attributes were scaled to z-scores using imsls_f_scale_filter. The hidden layer contained only 2
perceptrons and the output layer consisted of three perceptrons, one for each classification target.

Example 2 for imsls_f_mlff_classification_trainer used the following network structure for the
150 patterns in these data:

Figure 38, A 2-layer, Classification Network with 4 Inputs 5 Perceptrons and a Target Classification
with 3 Classes

imsls_f_mlff_classification_trainer found the following 19 weights for this network:

W1 = -0.109866 W2 = -0.0534655 W3 = 4.92944 W4 = -2.04734W5 = 10.2339 W6 = -1495.09 W7 = 3336.49 W8 = 7372.98W9 = -9143.53 W10 = 48.8937 W11 = 240.958 W12 = -3386.21W13 = 8904.6 W14 = 3339.1 W15 = 0.874638 W16 = -7978.42
1714

 Data Mining mlff_pattern_classification
W17 = 4586.22 W18 = 1931.89 W19 = -6518.14
The association of these weights with the calculation of the potentials for each perceptron is described in the fol-
lowing table:

The potential calculations for each perceptron are activated using the assigned activation function. In this exam-
ple, default activations were used, e.g. logistic for H1,1 and H1,2 and softmax for the output perceptrons H2,1, H2,2

and H2,3.

Note that in this case the network weights were retrieved from a file named iris_classfication.txt
using imsls_f_mlff_network_read. This retrieves the trained network from
mlff_classification_trainer described in Example 2. These were passed directly to
imsls_f_mlff_pattern_classification in the Imsls_f_NN_Network structure.

#include <stdio.h>
#include <imsls.h>
/* **
* Three Layer Feed-Forward Network with 4 inputs, all
* continuous, and 3 classification categories.
*
* This is perhaps the best known database to be found in the pattern
* recognition literature. Fisher's paper is a classic in the
* field. The data set contains 3 classes of 50 instances each,
* where each class refers to a type of iris plant. One class is
* linearly separable from the other 2; the latter are NOT linearly
* separable from each other.
*
* Predicted attribute: class of iris plant.
* 1=Iris Setosa, 2=Iris Versicolour, and 3=Iris Virginica
*
* Input Attributes (4 Continuous Attributes)
* X1: Sepal length,
* X2: Sepal width,
* X3: Petal length,
* and X4: Petal width
**/
int main(){
 float *classProb;
 int i, j;
 int n_patterns =150;

Table 52 – Association of Network Weights with Perceptron Calculations

PERCEPTRON POTENTIAL ACTIVATION

H1,1 W15 + X1W1 + X2W2 + X3W3 + X4W4 LOGISTIC

H1,2 W16 + X1W5 + X2W6 + X3W7 + X4W8 LOGISTIC

H2,1 W17 + H1,1W9 + H1,2W10 SOFTMAX

H2,2 W18 + H1,1W11 + H1,2W12 SOFTMAX

H2,3 W19 + H1,1W13 + H1,2W14 SOFTMAX
1715

 Data Mining mlff_pattern_classification
 int n_inputs =4; /* four inputs, all continuous */
 int n_nominal =0; /* no nominal input attributes */
 int n_continuous =4; /* one continuous input attribute */
 int n_outputs =3; /* total number of output perceptrons */
 int *predicted_class;
 int act_fcn[3] = {1, 1, 1};
 int classification[150];
 float unscaledX[150], scaledX[150];
 float contAtt[4*150];
 float *irisData;
 float mean[4], s[4], center, spread;
 char *colLabels[] = {"Pattern", "Class=0", "Class=1", "Class=2"};
 char filename[] = "iris_classification.txt";
 char prtLabel[] ="\nPredicted_Class | P(0) P(1) P(2)";
 char dashes[] = "---";
 /* Declare mlff network structure */
 Imsls_f_NN_Network *network;
 printf("**\n");
 printf(" IRIS CLASSIFICATION EXAMPLE - PATTERN CLASSIFICATION \n");
 printf("**\n");
 irisData = imsls_f_data_sets(3,0);
 /*
 * Setup the continuous attribute input array, contAtt[], and the
 * network target classification array, classification[], using
 * the above raw data matrix.
 */
 for(i=0; i < n_patterns; i++){
 classification[i] = (int)irisData[i*5]-1;
 for(j=1; j<5; j++){
 contAtt[i*4+j-1] = irisData[i*5+j];
 }
 }
 /* Scale continuous input attributes using z-score method */
 for(j=0; j<n_continuous; j++){
 for(i=0; i<n_patterns; i++)
 unscaledX[i] = contAtt[i*n_continuous+j];
 imsls_f_scale_filter(n_patterns, unscaledX, 2,
 IMSLS_RETURN_USER, scaledX,
 IMSLS_RETURN_CENTER_SPREAD, ¢er, &spread, 0);
 for(i=0; i<n_patterns; i++)
 contAtt[i*n_continuous+j] = scaledX[i];
 mean[j] = center;
 s[j] = spread;
 }
 printf("Scale Parameters: \n");
 for(j=0; j<n_continuous; j++){
 printf("Var %d Mean = %f S = %f \n",j+1, mean[j], s[j]);
 }
 network = imsls_f_mlff_network_read(filename, IMSLS_PRINT,0);
 /* Use pattern classification routine to classify training
 * patterns using trained network.
 */
 classProb = imsls_f_mlff_pattern_classification (network,
 n_patterns, n_nominal, n_continuous, NULL, contAtt,
 IMSLS_PREDICTED_CLASS, &predicted_class, 0);
1716

 Data Mining mlff_pattern_classification
 /* Print class predictions */
 printf("\n%s\n",prtLabel);
 printf("%s\n",dashes);
 for(i=0; i<n_patterns; i++){
 printf(" %d ", predicted_class[i]);
 printf(" | %f %f %f \n", classProb[i*3], classProb[i*3+1],
 classProb[i*3+2]);
 if(i==49 || i==99){
 printf("\n%s\n",prtLabel);
 printf("%s\n",dashes);
 }
 }
}

Output

The output for this example reproduces the 100% classification accuracy found during network training. For
details, see Example 2 of imsls_f_mlff_classification_trainer.

**
IRIS CLASSIFICATION EXAMPLE - PATTERN CLASSIFICATION
**
Scale Parameters:
Var 1 Mean = 5.843334 S = 0.828065
Var 2 Mean = 3.057333 S = 0.435866
Var 3 Mean = 3.758000 S = 1.765298
Var 4 Mean = 1.199333 S = 0.762238
Attempting to open iris_classification.txt for
reading network data structure
File iris_classification.txt Successfully Opened
File iris_classification.txt closed

Predicted_Class | P(0) P(1) P(2)

 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
1717

 Data Mining mlff_pattern_classification
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000
 0 | 1.000000 0.000000 0.000000

Predicted_Class | P(0) P(1) P(2)

 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 0.999999 0.000001
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 0.999994 0.000006
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
1718

 Data Mining mlff_pattern_classification
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 0.999994 0.000006
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000000 1.000000 0.000000
 1 | 0.000002 0.999998 0.000000
 1 | 0.000000 1.000000 0.000000

Predicted_Class | P(0) P(1) P(2)

 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000011 0.999989
 2 | 0.000000 0.000000 1.000000
1719

 Data Mining mlff_pattern_classification
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000
 2 | 0.000000 0.000000 1.000000

Example 2

Pattern classification is often used for pattern recognition, including playing simple games such as tic-tac-toe. The
University of California at Irvine maintains a repository of data mining data, http://kdd.ics.uci.edu/. One consists of
958 patterns for board positions in tic-tac-toe donated by David Aha. See
http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame for access to the actual data.

Each of the 958 patterns is described by nine nominal input attributes and one classification target. The nine
nominal input attributes are the nine board positions in the game. Each has three classifications: X occupies the
position, O occupies the position and vacant.

The target class is binary. A value of one indicates that the X player has one of eight possible wins in the next
move. A value of zero indicates that this player does not have a winning position. 65.3% of the 958 patterns have
a class = 1.

The nine nominal input attributes are mapped into 27 binary encoded columns, three for each of the nominal
attributes. This makes a total of 27 input columns for the network. In this example, a neural network with one hid-
den layer containing ten perceptrons was found to provide 100% classification accuracy. This configuration is
illustrated in the following figure.
1720

http://kdd.ics.uci.edu/
http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

 Data Mining mlff_pattern_classification
Figure 39, A 2-layer, Binary Classification Network for Playing Tic-Tac-Toe

All hidden layer perceptrons used the default activation, logistic, and since the classification target is binary only
one perceptron with logistic activation is used to calculate the probability of a loss for X, i.e. P(class = 0). All logistic
activations are calculated using the IMSLS_LOGISTIC_TABLE option, which can reduce Stage I training time.
Since Stage II training is bypassed, this option must also be used with the
imsls_f_mlff_pattern_classification routine. This is the only time this option is used. If Stage II
training was part of the network training, the final network weights would have been calculated without using the
logistic table to approximate the calculations.

This structure results in a network with 27× 8 + 8 + 9 = 233 weights. It is surprising that with this small a number
of weights relative to the number of training patterns, the trained network achieves 100% classification accuracy.
1721

 Data Mining mlff_pattern_classification
Unlike Example 1 in which the network was trained previously and retrieved using
imsls_f_mlff_network_read, this example first trains the network and then passes the network structure
network into imsls_f_mlff_pattern_classification.

#include <imsls.h>
#include <stdio.h>
#include <stdlib.h>
int main (){
 int i, j, k, m, n_patterns, n_var;
 int n_cat =9; /* 9 nominal input attributes */
 int n_categorical =27; /* 9 Encoded = 27 categorical inputs */
 int n_classes =2; /* positive or negative */
 float *classProb;
 float *trainStats;
 int *predictedClass;
 int classification[958];
 float *inputData;
 int *categoricalAtt, *nomTempIn, *nomTempOut, nClass;
 Imsls_f_NN_Network *network;
 /* get tic tac toe data */
 inputData = imsls_f_data_sets (10,
 IMSLS_N_OBSERVATIONS, &n_patterns,
 IMSLS_N_VARIABLES, &n_var,
 0);
 printf("\n\n");
 printf("***\n");
 printf("* TIC-TAC-TOE BINARY CLASSIFICATION EXAMPLE *\n");
 printf("***\n");
 /* allocate memory for categoricalATT array */
 categoricalAtt = (int*) malloc(958 * n_categorical * sizeof(int));
 /* populate categorical Att from catAtt using binary encoding */
 nomTempIn = (int*) malloc(n_patterns * sizeof(int));
 m=0;
 for(i=0; i<n_cat; i++)
 {
 for(j = 0; j < n_patterns; j++)
 nomTempIn[j] = (int) inputData[j * n_var + i] + 1;
 nomTempOut = imsls_unsupervised_nominal_filter(n_patterns,
 &nClass, nomTempIn,
 0);
 for(k = 0; k < nClass; k++)
 {
 for(j = 0; j < n_patterns; j++)
 categoricalAtt[j * n_categorical + m] =
 nomTempOut[j * nClass + k];
 m++;
 }
 imsls_free(nomTempOut);
 }
 free(nomTempIn);
1722

 Data Mining mlff_pattern_classification
 /* Setup the classification array, classification[] */
 for(i = 0; i < n_patterns; i++)
 classification[i] = (int)inputData[(i * n_var) + n_var - 1];
 network = imsls_f_mlff_network_init(27, 1);
 imsls_f_mlff_network(network,
 IMSLS_CREATE_HIDDEN_LAYER, 8,
 IMSLS_LINK_ALL,
 0);
 imsls_random_seed_set(5555);
 /* Train Classification Network */
 trainStats = imsls_f_mlff_classification_trainer (network,
 n_patterns, n_categorical, 0, classification, categoricalAtt,
 NULL,
 IMSLS_STAGE_I, 30, n_patterns,
 IMSLS_NO_STAGE_II,
 IMSLS_LOGISTIC_TABLE,
 IMSLS_WEIGHT_INITIALIZATION_METHOD,
 IMSLS_EQUAL,
 0);
 /* Use pattern classification routine to classify training patterns
 * using trained network. This will reproduce the results returned
 * in predicted_class[] */
 classProb = imsls_f_mlff_pattern_classification (network,
 n_patterns, n_categorical, 0, categoricalAtt, NULL,
 IMSLS_LOGISTIC_TABLE,
 IMSLS_PREDICTED_CLASS, &predictedClass,
 0);
 /* Printing Classification Predictions */
 printf("***\n");
 printf("Classification Minimum Cross-Entropy Error: %f\n",
 trainStats[0]);
 printf("Classification Error Rate: %f \n", trainStats[5]);
 printf("***\n");
 printf("\nPRINTING FIRST TEN PREDICTIONS FOR EACH TARGET CLASS\n");
 printf("***\n");
 printf(" |TARGET|PREDICTED| | *\n");
 printf("PATTERN |CLASS | CLASS | P(class=0) | P(class=1) *\n");
 printf("***\n");
 for(k = 0; k < 2; k++){
 for(i = k * 627; i < k * 627 + 10; i++){
 printf(" %d\t| %d | %d | ", i+1,
 classification[i], predictedClass[i]);
 printf("%f | %f \n", classProb[i * n_classes],
 classProb[i * n_classes + 1]);
 }
 printf("\n");
 }
 k=0;
 for(i = 0; i < n_patterns; i++)
 if(classification[i] != predictedClass[i])
1723

 Data Mining mlff_pattern_classification
 k++;
 if(k==0) {
 printf("All %d predicted classifications agree ", n_patterns);
 printf("with target classifications\n");
 }
}

Output

The output for this example demonstrates how imsls_f_mlff_pattern_classification reproduces
the 100% classification accuracy found during network training.

* TIC-TAC-TOE BINARY CLASSIFICATION EXAMPLE *

Classification Minimum Cross-Entropy Error: 0.000022
Classification Error Rate: 0.000000

PRINTING FIRST TEN PREDICTIONS FOR EACH TARGET CLASS

 |TARGET|PREDICTED| | *
PATTERN |CLASS | CLASS | P(class=0) | P(class=1) *

 1 | 1 | 1 | 0.000000 | 1.000000
 2 | 1 | 1 | 0.000000 | 1.000000
 3 | 1 | 1 | 0.000000 | 1.000000
 4 | 1 | 1 | 0.000000 | 1.000000
 5 | 1 | 1 | 0.000000 | 1.000000
 6 | 1 | 1 | 0.000000 | 1.000000
 7 | 1 | 1 | 0.000000 | 1.000000
 8 | 1 | 1 | 0.000000 | 1.000000
 9 | 1 | 1 | 0.000000 | 1.000000
 10 | 1 | 1 | 0.000000 | 1.000000
 628 | 0 | 0 | 1.000000 | 0.000000
 629 | 0 | 0 | 1.000000 | 0.000000
 630 | 0 | 0 | 1.000000 | 0.000000
 631 | 0 | 0 | 1.000000 | 0.000000
 632 | 0 | 0 | 1.000000 | 0.000000
 633 | 0 | 0 | 1.000000 | 0.000000
 634 | 0 | 0 | 1.000000 | 0.000000
 635 | 0 | 0 | 1.000000 | 0.000000
 636 | 0 | 0 | 1.000000 | 0.000000
 637 | 0 | 0 | 1.000000 | 0.000000
All 958 predicted classifications agree with target classifications.
1724

 Data Mining scale_filter
scale_filter
Scales or unscales continuous data prior to its use in neural network training, testing, or forecasting.

Synopsis
#include <imsls.h>
float *imsls_f_scale_filter (int n_patterns, float x[], int method, …, 0)

The type double function is imsls_d_scale_filter.

Required Arguments
int n_patterns (Input)

Number of observations.

float x[] (Input)
An array of length n_patterns. The values in x are either the scaled or unscaled values of a con-
tinuous variable. Missing values are allowed, and are indicated by placing a NaN (not a number) in x.
See imsls_f_machine(6).

int method (Input)
The scaling method to apply to each variable. The association of the value in method and the scaling
algorithm is summarized in the table below. The sign of method determines whether the values in x
are scaled or unscaled. If method is positive then values in x are scaled. If method is negative then
values in x are unscaled.

method Algorithm

0 No scaling.

±1 Bounded scaling and unscaling.

±2 Unbounded z-score scaling using the mean and stan-
dard deviation.

±3 Unbounded z-score scaling using the median and
mean absolute difference.

±4 Bounded z-score scaling using the mean and standard
deviation.

±5 Bounded z-score scaling using the median mean
absolute difference.
1725

 Data Mining scale_filter
Return Value
A pointer to an internally allocated array of length n_patterns containing either the scaled or unscaled value
of x, depending upon whether method is positive or negative, respectively. If errors are encountered, NULL is
returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_scale_filter (int n_patterns, float x[], int method,

IMSLS_RETURN_USER, float z[],
IMSLS_SCALE_LIMITS, float real_min, float real_max, float target_min,

float target_max,
IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread,
IMSLS_RETURN_CENTER_SPREAD, float *center, float *spread,
0)

Optional Arguments
IMSLS_RETURN_USER, float z[] (Output)

A user-supplied array of length n_patterns containing either the scaled or unscaled values of x,
depending upon whether method is positive or negative, respectively.

IMSLS_SCALE_LIMITS, float real_min, float real_max, float target_min, float target_max
(Input)
The real and target limits for x. This optional argument is required when bounded scaling is per-
formed, i.e., method=±1, ±4, or ±5. real_min is the lowest value expected for each input variable
in x. real_max is the largest value expected. target_min is lowest value allowed for the output
variable, z. target_max is the largest value allowed for the output variable.

IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread (Input)
The values center and spread are only used for z-score scaling or unscaling of x, that is, when
method is one of ±2, ±3, ±4, and ±5. The value of center is either the mean or median, and the
value of spread is either the standard deviation or mean absolute difference. When method is
positive, this optional argument can be used to supply a user-defined center and spread rather than
allowing imsls_f_scale_filter to compute the center and spread from the data in x. When
method is one of -2, -3, -4, or -5, this optional argument must be used to supply the center and
spread used during scaling.
1726

 Data Mining scale_filter
IMSLS_RETURN_CENTER_SPREAD, float *center, float *spread (Output)
Pointers to scalars containing the computed center and spread of x. The values center and
spread are only used for z-score scaling or unscaling of x. These methods, ±2, ±3, ±4, and ±5,
require two numbers, either the mean or median, and either the standard deviation, or mean abso-
lute difference. The value of center is either the mean or median for x. The value of spread is
either the standard deviation or mean absolute difference.

Description
The function imsls_f_scale_filter is designed to either scale or unscale a continuous variable using one
of four methods prior to their use as neural network input or output.

The specific encoding computations employed are specified by argument method. Scaling limits are supplied
with the optional argument IMSLS_SCALE_LIMITS, and are required for the bounded scaling methods, i.e.,
method=±1, ±4, or ±5. Bounded scaling ensures that the scaled values in the returned array fall between a lower
and upper bound.

If method=1 then the bounded method of scaling and unscaling is applied to x using the scaling limits in
scale_limit.

If method=±2, ±3, ±4, or ±5, then the z-score method of scaling is used. These calculations are based upon the
following scaling calculation:

where a is a measure of center for x, and b is a measure of the spread of x.

If method=±2 or ±4, then by default a and b are the arithmetic average and sample standard deviation of the
training data. These values can be overridden using the optional argument
IMSLS_SUPPLY_CENTER_SPREAD.

If method=±3 or ±5, then by default a and b are the median and , where is a robust estimate of the popula-
tion standard deviation:

, where MAD is the Mean Absolute Deviation

Again, the values of a and b can be overridden using the optional argument
IMSLS_SUPPLY_CENTER_SPREAD.

z i =
x i − a

b

s~ s~

s~ = MAD
0.6745

MAD = median ∣x j − median x ∣
1727

 Data Mining scale_filter
Method ±1: Bounded Scaling and Unscaling
If method=1, then the optional argument IMSLS_SCALE_LIMITS is required and a scaling operation is con-
ducted using the scale limits for x using the following calculation:

where

If method=-1, then optional argument IMSLS_SCALE_LIMITS is required and an unscaling operation is con-
ducted by inverting the following calculation:

Method +2 or +3: Unbounded z-score Scaling
If method=2 or method=3, then a scaling operation is conducted using the scale limits of x using a z-score
calculation:

If either center or spread are missing, (a NaN), then appropriate values are calculated from the non-missing
values of x. If method=2, then center is set equal to the arithmetic average , and spread is set equal to the
sample standard deviation, .

If method=3, then center is set equal to the median , and spread is set equal to the Mean Absolute Differ-
ence (MAD).

Method -2 or -3: Unbounded z-score Unscaling
If method=-2 or method=-3, then an unscaling operation is conducted using the inverse calculation for the
equation shown in the above section, “Method +2 or +3: Unbounded z-score Scaling.”

z i = r x i − real_min + target_min

r =
target_max − target_min

real_max − real_min

x i =
z i − target_min

r + real_min

z i =
x i − center

spread

x─

s

m~
1728

 Data Mining scale_filter
For these values of method, missing values for center and spread are not allowed. If method=-2, then
center and spread are assumed to be equal to the arithmetic average and standard deviation, respectively.
These values would normally be the same used in scaling the variable with method=+2. If method= -3, then
center and spread are assumed to be equal to the median and mean absolute difference, respectively. These
values would normally be the same used in scaling the variable with method=+3.

Method +4 or +5: Bounded z-score Scaling
This method is essentially the same as the z-score calculation described for method=+2 and method=+3 with
additional scaling or unscaling using the scale limits. If method=4, then the optional argument
IMSLS_SCALE_LIMITS is required and a scaling operation is conducted using the scale limits for x using the
widely known z-score calculation:

If either center or spread are missing, (a NaN), then appropriate values are calculated from the non-missing
values in x. If center is missing and method=+4, then center is set equal to the arithmetic average , and
spread is set equal to the Sample Standard Deviation, . If center is missing and method=+5, then center
is set equal to the median , and spread is set equal to the MAD.

In bounded scaling, if z[i] exceeds its bounds, it is set to the boundary it exceeded.

Method -4 or -5: Bounded z-score unscaling
If method=-4 or method=-5, then the optional argument IMSLS_SCALE_LIMITS is required and an unscal-
ing operation is conducted using the inverse calculation for the equation below.

For these values of method, missing values for center and spread are not allowed. If method=-4, then
center and spread are assumed to be equal to the arithmetic average and standard deviation, respectively.
These values would normally be the same used in scaling x with method=+4. If method=-5, then center and
spread are assumed to be equal to the median and mean absolute difference, respectively. These values would
normally be the same used in scaling the x with method=+5.

x i = spread • z i + center

z i =
r • x i − center

spread − r • real_min + target_min

x─

s
m~

x i =
spread • z i − target_min

r + spread • real_min + center
1729

 Data Mining scale_filter
Example
In this example two data sets are filtered using bounded z-score scaling.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n_patterns=5;
 float x1[] = {3.5, 2.4, 4.4, 5.6, 1.1};
 float x2[] = {3.1, 1.5, - 1.5, 2.4, 4.2};
 float *z1, *z2;
 float *y1, *y2;
 float center1, spread1;
 float center2, spread2;
 z1 = imsls_f_scale_filter(n_patterns, x1, 4,
 IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0,
 IMSLS_RETURN_CENTER_SPREAD, ¢er1, &spread1,
 0);
 z2 = imsls_f_scale_filter(n_patterns, x2, 5,
 IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0,
 IMSLS_RETURN_CENTER_SPREAD, ¢er2, &spread2,
 0);
 imsls_f_write_matrix("z1", n_patterns, 1, z1, 0);
 printf("Center = %f\nSpread = %f\n", center1, spread1);
 imsls_f_write_matrix("z2", n_patterns, 1, z2, 0);
 printf("Center = %f\nSpread = %f\n", center2, spread2);

 /* Un-scale z1 and z2. */
 y1 = imsls_f_scale_filter(n_patterns, z1, -4,
 IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0,
 IMSLS_SUPPLY_CENTER_SPREAD, center1, spread1,
 0);
 y2 = imsls_f_scale_filter(n_patterns, z2, -5,
 IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0,
 IMSLS_SUPPLY_CENTER_SPREAD, center2, spread2,
 0);
 imsls_f_write_matrix("y1", n_patterns, 1, y1, 0);
 imsls_f_write_matrix("y2", n_patterns, 1, y2, 0);
}

Output

 z1
1 0.0287
2 -0.2870
3 0.2870
4 0.6314
5 -0.6601
Center = 3.400000
Spread = 1.742125
 z2
1 0.525
2 -0.674
1730

 Data Mining scale_filter
3 -2.923
4 0.000
5 1.349
Center = 2.400000
Spread = 1.334342
 y1
1 3.5
2 2.4
3 4.4
4 5.6
5 1.1
 y2
1 3.1
2 1.5
3 -1.5
4 2.4
5 4.2
1731

 Data Mining time_series_filter
time_series_filter
Converts time series data to the format required for processing by a neural network.

Synopsis
#include <imsls.h>
float *imsls_f_time_series_filter (int n_patterns, int n_var, int max_lag, float x[], …,0)

The type double function is imsls_d_time_series_filter.

Required Arguments
int n_patterns (Input)

Number of observations. The number of observations must be greater than n_lags.

int n_var (Input)
Number of variables (columns) in x. The number of variables must be one or greater, n_var ≥ 1.

int max_lag (Input)
The number of lags. The number of lags must be one or greater, max_lag ≥ 1 and less than or
equal to n_patterns.

float x[] (Input)
An array of size n_patterns by n_var. All data must be sorted in chronological order from most
recent to oldest observation.

Return Value
A pointer to an internally allocated array of size (n_patterns-max_lag) by n_var×(max_lag+1)) If errors
are encountered, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_time_series_filter (int n_patterns, int n_var, int max_lag, float x[],

IMSLS_RETURN_USER, float z[],
1732

 Data Mining time_series_filter
0)

Optional Arguments
IMSLS_RETURN_USER, float z[] (Output)

User supplied array of size (n_patterns-max_lag) by n_var×(max_lag+1) containing the fil-
tered data.

Description
Function imsls_f_time_series_filter accepts a data matrix and lags every column to form a new data
matrix. The input matrix, x, contains n_var columns. Each column is transformed into (max_lag+1) columns
by lagging its values.

Since a lag of zero is always included in the output matrix z, the total number of lags is n_lags = max_lag+1.

The output data array, z, can be represented symbolically as:

z = |x(0) : x(1) : x(2) : … : x(max_lag)|,

where x(i) is the i-th lag of the incoming data matrix, x. For example, if x={1, 2, 3, 4, 5} and n_var=1, then
n_patterns=5, and x(0)=x, x(1)={2, 3, 4, 5}, x(2)={3, 4, 5}, etc.

Consider, an example in which n_patterns = 2 and n_var = 2 with all variables having continuous input attri-
butes. It is assumed that the most recent observations are in the first row and the oldest are in the last row.

If max_lag=1, then the number of columns will be n_var*(max_lag+1)=2*2=4, and the number of rows will
be n_patterns–max_lag=5-1=4:

If max_lag=2, then the number of columns will be n_var*(max_lag+1)=2*3=6. , and the number of rows will
be n_patterns–max_lag=5-2=3:

x =

1 6
2 7
3 8
4 9
5 10

z =

1 6 2 7
2 7 3 8
3 8 4 9
4 9 5 10
1733

 Data Mining time_series_filter
Example
In this example, the matrix x with 5 rows and 2 columns is lagged twice, i.e. max_lag=2. This produces an out-
put two-dimensional matrix with (n_patterns-max_lag)=5-2=3 rows, but 2*3=6 columns. The first two
columns correspond to lag=0, which simply places the original data into these columns. The 3rd and 4th columns
contain the first lags of the original 2 columns and the 5th and 6th columns contain the second lags. Note that
the number of rows for the output matrix z is less than the number for the input matrix x.

#include <imsls.h>
int main()
{
#define N_PATTERNS 5
#define N_VAR 2
#define MAX_LAG 2
 float x[N_PATTERNS*N_VAR] = {1, 6,
 2, 7,
 3, 8,
 4, 9,
 5, 10};

 float *z;
 z = imsls_f_time_series_filter(N_PATTERNS, N_VAR, MAX_LAG, (float*)x, 0);
 imsls_f_write_matrix("X", N_PATTERNS, N_VAR, (float*)x, 0);
 imsls_f_write_matrix("Z", N_PATTERNS-MAX_LAG, N_VAR*(MAX_LAG+1), z, 0);
}

Output

 X
 1 2
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10
 Z
 1 2 3 4 5 6
1 1 6 2 7 3 8
2 2 7 3 8 4 9
3 3 8 4 9 5 10

z =
1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10
1734

 Data Mining time_series_class_filter
time_series_class_filter
Converts time series data sorted within nominal classes in decreasing chronological order to a useful format for
processing by a neural network.

Synopsis
#include <imsls.h>
float *imsls_f_time_series_class_filter (int n_patterns, int n_lags, int n_classes,

intinti_class[], floatintx[], …, 0)

The type double function is imsls_d_time_series_class_filter.

Required Arguments
int n_patterns (Input)

Number of observations. The number of observations must be greater than max_lags.

int n_lags (Input)
The number of lags. The number of lags must be one or greater.

int n_classes (Input)
The number of classes associated with these data. The number of classes must be one or greater.

int i_class[] (Input)
An array of length n_patterns. The i-th element in i_class is equal to the class associated with
the i-th element of x. The classes must be numbered from 1 to n_classes.

float x[] (Input)
A sorted array of length n_patterns. This array is assumed to be sorted first by class designations
and then descending by chronological order, i.e., most recent observations appear first within a class.

Return Value
A pointer to an internally allocated array of size n_patterns by n_lags columns. If errors are encountered,
then NULL is returned.
1735

 Data Mining time_series_class_filter
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_time_series_class_filter (int n_patterns, int n_lags, int n_classes,

int i_class[], float x[],

IMSLS_LAGS, int lag[],
IMSLS_RETURN_USER, float z[],
0)

The type double function is imsls_d_time_series_class_filter.

Optional Arguments
IMSLS_LAGS, int lag[] (Input)

An array of length n_lags. The i-th element in lag is equal to the lag requested for the i-th column
of z. Every lag must be non-negative.

Default: lag[i]=i
IMSLS_RETURN_USER, float z[] (Output)

A user-supplied array of size n_patterns by n_lags. The i-th column contains the lagged values
of x for a lag equal to the number of lags in lag[i].

Description
The function imsls_f_time_series_class_filter accepts a data array, x[], and returns a new data
array, z[], containing n_lags columns, each containing a lagged version of x.

The output data array, z, can be represented symbolically as:

z = |x(0) : x(1) : x(2) : … : x(n_lags-1)|,

where x(i) is the i-th lagged column of the incoming data array, x. Notice that n_lags is the number of lags and
not the maximum lag. The maximum number of lags is max_lag= n_lags-1, unless the optional input lag[]
is given, the highest lag is max_lags. If n_lags =2 and the optional input lag[] is not given, then the output
array contains the lags 0, 1.

Consider, an example in which n_patterns=10, n_lags =2 and

If and

xT = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

lagT = 0, 2
1736

 Data Mining time_series_class_filter
then, n_classes=1 and z would contain 2 columns and 10 rows:

Note that since lagT = [0,1], the first column of z is formed using a lag of zero and the second is formed using a
lag of two. A zero lag corresponds to no lag, which is why the first column of z in this example is equal to the orig-
inal data in x.

On the other hand, if the data were organized into two classes with

then z is still a 2 by 10 matrix, but with the following values:

The first 5 rows of z are the lagged columns for the first class, and the last five are the lagged columns for the
second class.

Example
Suppose that the training data to the neural network is represented by the following data matrix consisting of a
single nominal variable coded into two binary columns and a single time series variable:

i_classT = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

z =

1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 NaN
10 NaN

i_classT = 1, 1, 1, 1, 1, 2, 2, 2, 2, 2

z =

1 3
2 4
3 5
4 NaN
5 NaN
6 8
7 9
8 10
9 NaN
10 NaN
1737

 Data Mining time_series_class_filter
In this case, n_patterns=8 and n_classes=2. If we wanted to lag the 3rd column by 2 time lags, i.e.,
n_lags=2,

The resulting data matrix would have 8 rows and 2 columns:

#include <imsls.h>
#define N_PATTERNS 8
#define N_LAGS 2
int main()
{
 float x[N_PATTERNS] = {2.1, 2.3, 2.4, 2.5, 1.1, 1.2, 1.3, 1.4};
 float *z;
 int n_classes = 2;
 int i_class[] = {1,1,1,1,2,2,2,2};
 z = imsls_f_time_series_class_filter(N_PATTERNS, N_LAGS, n_classes,
 i_class, x,
 0);
 imsls_f_write_matrix("z", N_PATTERNS, N_LAGS, (float*)z,

0 1 2.1
0 1 2.3
0 1 2.4
0 1 2.5
1 0 1.1
1 0 1.2
1 0 1.3
1 0 1.4

lagT = 0, 1

i_classT = 1, 1, 1, 1, 2, 2, 2, 2

xT = 2.1, 2.3, 2.4, 2.5, 1.1, 1.2, 1.3, 1.4

z = x 0 x 1 =

2.1 2.3
2.3 2.4
2.4 2.5
2.5 NaN
1.1 1.2
1.2 1.3
1.3 1.4
1.4 NaN
1738

 Data Mining time_series_class_filter
 0);
 return 0;
}

Output

 z
 1 2
1 2.1 2.3
2 2.3 2.4
3 2.4 2.5
4 2.5
5 1.1 1.2
6 1.2 1.3
7 1.3 1.4
8 1.4
1739

 Data Mining unsupervised_nominal_filter
unsupervised_nominal_filter
Converts nominal data into a series of binary encoded columns for input to a neural network. Optionally, it can
also reverse the binary encoding, accepting a series of binary encoded columns and returning a single column of
nominal classes.

Synopsis
#include <imsls.h>
int *imsls_unsupervised_nominal_filter (int n_patterns, int n_classes, int x[], …, 0)

Required Arguments
int n_patterns (Input)

Number of observations.

int *n_classes (Input/Output)
A pointer to the number of classes in x[]. n_classes is output for IMSLS_ENCODE and input
for IMSLS_DECODE.

int x[] (Input)
A one or two-dimensional array depending upon whether encoding or decoding is requested. If
encoding is requested, x is an array of length n_patterns containing the categories for a nominal
variable numbered from 1 to n_classes. If decoding is requested, then x is an array of size
n_patterns by n_classes. In this case, the columns contain only zeros and ones that are inter-
preted as binary encoded representations for a single nominal variable.

Return Value
A pointer to an internally allocated array, z[]. The values in z are either the encoded or decoded values for x,
depending upon whether IMSLS_ENCODE or IMSLS_DECODE is requested. If errors are encountered, NULL is
returned.

Synopsis with Optional Arguments
#include <imsls.h>
1740

 Data Mining unsupervised_nominal_filter
int *imsls_f_unsupervised_nominal_filter (int n_patterns, int n_classes, int x[],

IMSLS_ENCODE, or
IMSLS_DECODE,
IMSLS_RETURN_USER, int z[],

0)

Optional Arguments
IMSLS_ENCODE, (Input)

Specifies binary encoding. Classes must be numbered sequentially from 1 to n_classes. Optional
Arguments IMSLS_ENCODE and IMSLS_DECODE are mutually exclusive.

Default: IMSLS_ENCODE.

or

IMSLS_DECODE, (Input)
Specifies that x will be decoded. The values in each column should be zeros and ones. The values in
the i-th column of x are associated with the i-th class of the nominal variable. Optional Arguments
IMSLS_ENCODE and IMSLS_DECODE are mutually exclusive.

Default: IMSLS_ENCODE.

IMSLS_RETURN_USER, int z[] (Output)
A user-supplied array of size n_patterns by n_classes. If IMSLS_DECODE is specified, then z
should be length n_patterns. The value in z[i] is either the encoded or decoded value for x[i],
depending upon whether IMSLS_ENCODE or IMSLS_DECODE is specified.

Description
The function imsls_unsupervised_nominal_filter is designed to either encode or decode nominal
variables using a simple binary mapping.

Binary Encoding: IMSLS_ENCODE
In this case, x[] is an input array to which a binary filter is applied. Binary encoding takes each category in x[],
and creates a column in z[], the output matrix, containing all zeros and ones. A value of zero indicates that this
category is not present and a value of one indicates that it is present.

For example, if x[]={2,1,3,4,2,4} then n_classes=4, and
1741

 Data Mining unsupervised_nominal_filter
Notice that the number of columns in z is equal to the number of distinct classes in x. The number of rows in z
is equal to the length of x.

Binary Decoding: IMSLS_DECODE
Binary decoding takes each column in x[], and returns the appropriate class in z[].

For example, if x[] is the same as described above:

then z[] would be returned as z[]={2, 1, 3, 4, 2, 4}. Notice this is the same as the original array because classes
are numbered sequentially from 1 to n_classes. This ensures that the i-th column of x[] is associated with
the i-th class in the output array.

Example
This example illustrates nominal binary encoding and decoding for x = {3, 3, 1, 2, 2, 1, 2}.

#include <imsls.h>
#include <stdio.h>
int main ()
{
#define N_PATTERNS 7
 int x[N_PATTERNS] = {3, 3, 1, 2, 2, 1, 2};
 int *x2;
 int *z, n_classes;
 /* Binary Filtering. */
 z = imsls_unsupervised_nominal_filter(N_PATTERNS, &n_classes, x,
 0);
 printf("n_classes = %d\n",n_classes);

z =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

x =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1
1742

 Data Mining unsupervised_nominal_filter
 imsls_i_write_matrix("X", N_PATTERNS, 1, (int*)x,
 0);
 imsls_i_write_matrix("Z", N_PATTERNS, n_classes, z,
 0);
 /* Binary Unfiltering. */
 x2 = imsls_unsupervised_nominal_filter(N_PATTERNS, &n_classes, z,
 IMSLS_DECODE,
 0);
 imsls_i_write_matrix("Unfiltering result", N_PATTERNS, 1, x2,
 0);
}

Output
7 n_classes = 3
8
9 X
10 1 3
11 2 3
12 3 1
13 4 2
14 5 2
15 6 1
16 7 2
17
18 Z
19 1 2 3
20 1 0 0 1
21 2 0 0 1
22 3 1 0 0
23 4 0 1 0
24 5 0 1 0
25 6 1 0 0
26 7 0 1 0
27
28 Unfiltering result
29 1 3
30 2 3
31 3 1
32 4 2
33 5 2
34 6 1
35 7 2
1743

 Data Mining unsupervised_ordinal_filter
unsupervised_ordinal_filter
Converts ordinal data into proportions. Optionally, it can also reverse encoding, accepting proportions and con-
verting them into ordinal values.

Synopsis
#include <imsls.h>
void imsls_f_unsupervised_ordinal_filter (int n_patterns, int x[], float z[], …, 0)

The type double function is imsls_d_unsupervised_ordinal_filter.

Required Arguments
int n_patterns (Input)

Number of observations.

int x[] (Input/Output)
An array of length n_patterns containing the classes for the ordinal data. Classes must be num-
bered 1 to IMSLS_N_CLASSES. This is an output argument if IMSLS_DECODE is specified,
otherwise it is input.

float z[] (Input/Output)
An array of length n_patterns containing the encoded values for x represented as cumulative
proportions associated with each ordinal class (values between 0.0 and 1.0 inclusive). This is an input
argument if IMSLS_DECODE is specified, otherwise it is output.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_unsupervised_ordinal_filter (int n_patterns, int x[], float z[],

IMSLS_ENCODE or

IMSLS_DECODE,

IMSLS_NO_TRANSFORM, or

IMSLS_SQUARE_ROOT, or

IMSLS_ARC_SIN,
1744

 Data Mining unsupervised_ordinal_filter
IMSLS_N_CLASSES, int *n_classes,

0)

The type double function is imsls_d_unsupervised_ordinal_filter.

Optional Arguments
IMSLS_ENCODE, (Input)

Specifies z as an output array and x an input array that is filtered by converting each ordinal class
value into a cumulative proportion (a value between 0.0 and 1.0 inclusive). Optional Arguments
IMSLS_ENCODE and IMSLS_DECODE are mutually exclusive.

Default: IMSLS_ENCODE.

or

IMSLS_DECODE, (Input)
Specifies x as an output array and z an input array that contains transformed cumulative propor-
tions. In this case, the transformed cumulative proportions are converted into ordinal class values
using the coding class=1, 2, … etc. Optional Arguments IMSLS_ENCODE and IMSLS_DECODE are
mutually exclusive.

Default: IMSLS_ENCODE.

IMSLS_NO_TRANSFORM, (Input)
Indicates that the cumulative proportions used to encode the ordinal variable are not transformed.
Optional Arguments IMSLS_NO_TRANSFORM, IMSLS_SQUARE_ROOT, and IMSLS_ARC_SIN
are mutually exclusive.

Default: IMSLS_NO_TRANSFORM.

 or

IMSLS_SQUARE_ROOT, (Input)
Indicates cumulative proportions are transformed using the square root transformation. Optional
Arguments IMSLS_NO_TRANSFORM, IMSLS_SQUARE_ROOT, and IMSLS_ARC_SIN are mutu-
ally exclusive.

Default: IMSLS_NO_TRANSFORM.

or

IMSLS_ARC_SIN, (Input)
Indicates cumulative proportions are transformed using the arcsin of the square root of the cumula-
tive proportions. Optional Arguments IMSLS_NO_TRANSFORM, IMSLS_SQUARE_ROOT, and
IMSLS_ARC_SIN are mutually exclusive.
1745

 Data Mining unsupervised_ordinal_filter
Default: IMSLS_NO_TRANSFORM.

IMSLS_N_CLASSES, int *n_classes (Output)
The number of ordinal classes in x and the number of unique proportions in z.

Description
The function imsls_f_unsupervised_ordinal_filter is designed to either encode or decode ordinal
variables. Filtering consists of transforming the ordinal classes into proportions, with each proportion being equal
to the proportion of the data at or below this class.

Ordinal Filtering: IMSLS_ENCODE
In this case, x is an input array that is filtered by converting each ordinal class value into a cumulative proportion.

For example, if x[]={2,1,3,4,2,4,1,1,3,3} then n_patterns=10 and IMSLS_N_CLASSES=4. This
function then fills z with cumulative proportions represented as proportions displayed in the table below. Cumu-
lative proportions are equal to the proportion of the data in this class or a lower class.

If IMSLS_NO_TRANSFORM is specified, then the equivalent proportions in z are

z[]={0.50, 0.30, 0.80, 1.00, 0.50, 1.00, 0.30, 0.30, 0.80, 0.80}.

If IMSLS_SQUARE_ROOT is specified, then the square root of these values is returned, i.e.,

z[]={0.71, 0.55 , 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89};

Ordinal Class Frequency Cumulative Proportion

1 3 30%

2 2 50%

3 3 80%

4 2 100%

z i =
z i
100
1746

 Data Mining unsupervised_ordinal_filter
If IMSLS_ARC_SIN is specified, then the arcsin square root of these values is returned using the following
calculation:

Ordinal UnFiltering: IMSLS_DECODE
Ordinal Unfiltering takes the transformed cumulative proportions in z and converts them into ordinal class values
using the coding class=1, 2, … etc.

For example, if IMSLS_NO_TRANSFORM is specified and
z[]={0.20, 1.00, 0.20, 0.40, 1.00, 1.00, 0.40, 0.10, 1.00, 1.00} then upon return, the output array would consist of
the ordinal classes x[]={2, 4, 2, 3, 4, 4, 3, 1, 4, 4}.

If one of the transforms is specified, the same operation is performed since the transformations of the propor-
tions are monotonically increasing. For example, if the original observations consisted of {2.8, 5.6, 5.6, 1.2, 4.5,
7.1}, then input x for encoding would be x[]={2, 4, 4, 1, 3, 5} and output IMSLS_N_CLASSES=5. The output
array x after decoding would consist of the ordinal classes x[]={2, 4, 4, 1, 3, 5}.

Example
A taste test was conducted yielding the following data:

The data in the table above would have the coded values shown below. This assumes that the rating scale is: very
poor, poor, good, and very good.

x={2, 3, 4, 1, 4}

The returned values are:

z={0.40, 0.60, 1.00, 0.20, 1.00}.

#include <imsls.h>
#include <stdio.h>

Individual Rating

1 Poor

2 Good

3 Very Good

4 Very Poor

5 Very Good

z i = arcsin
z i
100
1747

 Data Mining unsupervised_ordinal_filter
int main () {
#define N_PATTERNS 5
 int x[N_PATTERNS] = {2,3,4,1,4};
 int x2[N_PATTERNS], n_classes;
 float z[N_PATTERNS];
 /* Filtering. */
 imsls_f_unsupervised_ordinal_filter(N_PATTERNS, x, z,
 IMSLS_N_CLASSES, &n_classes,
 0);
 printf("n_classes = %d\n", n_classes);
 imsls_i_write_matrix("x", N_PATTERNS, 1, x, 0);
 imsls_f_write_matrix("z", N_PATTERNS, 1, z, 0);
 /* Unfiltering. */
 imsls_f_unsupervised_ordinal_filter(N_PATTERNS, x2, z,
 IMSLS_DECODE,
 IMSLS_N_CLASSES, &n_classes,
 0);
 printf("\nn_classes = %d\n", n_classes);
 imsls_i_write_matrix("x-unfiltered", N_PATTERNS, 1, x2, 0);
}

Output

n_classes = 4
 x
1 2
2 3
3 4
4 1
5 4
 z
1 0.4
2 0.6
3 1.0
4 0.2
5 1.0
n_classes = 4
x-unfiltered
 1 2
 2 3
 3 4
 4 1
 5 4
1748

 Data Mining kohonenSOM_trainer
kohonenSOM_trainer

more...

Trains a Kohonen network.

Synopsis
#include <imsls.h>

Imsls_f_kohonenSOM *imsls_f_kohonenSOM_trainer (float fcn(), float lcn(), int dim,
int nrow, int ncol, int nobs, float data[], …, 0)

The type double function is imsls_d_kohonenSOM_trainer.

Required Arguments
float fcn (int nrow, int ncol, int total_iter, int t, float d) (Input/Output)

User-supplied neighborhood function. In the simplest form, the neighborhood function h(d, t) is 1 for
all nodes closest to the BMU and 0 for others, but a Gaussian function is also commonly used. For
example:

where r represents the neighborhood radius at index t

Arguments

int nrow (Input)
The number of rows in the node grid.

int ncol (Input)
The number of columns in the node grid.

int total_iter (Input)
The number of iterations for training.

int t (Input)
The current iteration of the training.

float d (Input)
The lattice distance between the best matching node and the current node.

Return Value
The computed neighborhood function value.

h(d,t) = e
−d2

2r2
1749

 Data Mining kohonenSOM_trainer
float lcn (int nrow, int ncol, int total_iter, int t) (Input/Output)
User supplied learning coefficient function. The monotonically decreasing learning coefficient func-
tion α(t) is a scalar factor that defines the size of the update correction. The value of α(t) decreases
with the step index t. Typical forms are linear, power, and inverse time/step. For example:

power:

where t=t, T=total_iter, α
0
 = initial learning coefficient, αT = final learning coefficient

inverse time:

where A and B are user determined constants
Arguments

int nrow (Input)
The number of rows in the node grid.

int ncol (Input)
The number of columns in the node grid.

int total_iter (Input)
The number of iterations for training.

int t (Input)
The current iteration of the training.

Return Value
The computed learning coefficient.

int dim (Input)
The number of weights for each node in the node grid. dim must be greater than zero.

int nrow (Input)
The number of rows in the node grid. nrow must be greater than zero.

int ncol (Input)
The number of columns in the node grid. ncol must be greater than zero.

int nobs (Input)
The number of observations in data. nobs must be greater than zero.

float data[] (Input)
An nobs × dim array containing the data to be used for training the Kohonen network.

α(t) = α0
αT
α0

t T

α(t) = A
t + B
1750

 Data Mining kohonenSOM_trainer
Return Value
A pointer to a Imsls_f_kohonenSOM data structure containing the trained Kohonen network. This space can
be released by using the imsls_free function. Please see Data Structures for a description of this data
structure.

Synopsis with Optional Arguments
#include <imsls.h>
Imsls_f_kohonenSOM imsls_f_kohonenSOM_trainer (float fcn(), float lcn(), int dim, int nrow,

int ncol, int nobs, float data[],

IMSLS_RECTANGULAR, or
IMSLS_HEXAGONAL,
IMSLS_VON_NEUMANN, or
IMSLS_MOORE,
IMSLS_WRAP_AROUND,
IMSLS_RANDOM_SEED, int seed,
IMSLS_ITERATIONS, int total_iter,
IMSLS_INITIAL_WEIGHTS, float weights[],
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_LCN_W_DATA, float lcn(), void *data,
IMSL_RECONSTRUCTION_ERROR, float *error,
0)

Optional Arguments
IMSLS_RECTANGULAR, (Input)

Specifies a rectangular grid should be used. Optional Arguments IMSLS_RECTANGULAR and
IMSLS_HEXAGONAL are mutually exclusive.

Default: A rectangular grid is used.

or

Argument Action

IMSLS_RECTANGULAR Use a rectangular grid.

IMSLS_HEXAGONAL Use a hexagonal grid.
1751

 Data Mining kohonenSOM_trainer
IMSLS_HEXAGONAL
Specifies a hexagonal grid should be used. Optional Arguments IMSLS_RECTANGULAR and
IMSLS_HEXAGONAL are mutually exclusive.

Default: A rectangular grid is used.

IMSLS_VON_NEUMANN, (Input)
Use the Von Neumann neighborhood type. Optional Arguments IMSLS_VON_NEUMAN and
IMSLS_MOORE are mutually exclusive.

Default: The Von Neumann neighborhood type is used.

or

IMSLS_MOORE
Use the Moore neighborhood type. Optional Arguments IMSLS_VON_NEUMAN and
IMSLS_MOORE are mutually exclusive.

Default: The Von Neumann neighborhood type is used.

IMSLS_WRAP_AROUND, (Input)
Wrap around the opposite edges. A hexagonal grid must have an even number of rows to wrap
around.
Default: Do not wrap around the opposite edges.

IMSLS_RANDOM_SEED, int seed (Input)
The seed of the random number generator used in generating the initial weights. If seed is 0, a value
is computed using the system clock; hence, the results may be different between different calls with
the same input.
Default: seed = 0.

Argument Action

IMSLS_RECTANGULAR Use a rectangular grid.

IMSLS_HEXAGONAL Use a hexagonal grid.

Argument Action

IMSLS_VON_NEUMANN Use the Von Neumann neighborhood type.

IMSLS_MOORE Use the Moore neighborhood type.

Argument Action

IMSLS_VON_NEUMANN Use the Von Neumann neighborhood type.

IMSLS_MOORE Use the Moore neighborhood type.
1752

 Data Mining kohonenSOM_trainer
IMSLS_ITERATIONS, int total_iter (Input)
The number of iterations to be used for training.
Default: total_iter = 100.

IMSLS_INITIAL_WEIGHTS, float weights[] (Input)
The initial weights of the nodes.
Default: Initial weights are generated internally using random uniform number generator.

IMSL_FCN_W_DATA, float fcn (int nrow, int ncol, int total_iter, int t, float d, void *data),
void *data (Input)

float fcn (int nrow, int ncol, int total_iter, int t, float d, void *data) (Input)
User supplied neighborhood function, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function.

Arguments
int nrow (Input)

The number of rows in the node grid.
int ncol (Input)

The number of columns in the node grid.
int total_iter (Input)

The number of iterations for training.
int t (Input)

The current iteration of the training.
float d (Input)

The lattice distance between the best matching node and the current node.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.
Return Value

The computed neighborhood function value.
void *data (Input)

A pointer to the data to be passed to the user-supplied function.

IMSL_LCN_W_DATA, float lcn (int nrow, int ncol, int total_iter, int t, void *data), void *data
(Input)

float lcn (int nrow, int ncol, int total_iter, int t, void *data) (Input)
User supplied learning coefficient function, which also accepts a pointer to data that is sup-
plied by the user. data is a pointer to the data to be passed to the user-supplied function.

Arguments
int nrow (Input)

The number of rows in the node grid.
int ncol (Input)

The number of columns in the node grid.
int total_iter (Input)

The number of iterations for training.
1753

 Data Mining kohonenSOM_trainer
int t (Input)
The current iteration of the training.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

Return Value
The computed learning coefficient.

void *data (Input)
A pointer to the data to be passed to the user-supplied function.

IMSLS_RECONSTRUCTION_ERROR, float *error (Output)
The sum of the Euclidean distance between the input, data, and the nodes in the trained Kohonen
network.

Description
A self-organizing map (SOM), also known as a Kohonen map or Kohonen SOM, is a technique for gathering high-
dimensional data into clusters that are constrained to lie in low dimensional space, usually two dimensions. A
Kohonen map is a widely used technique for the purpose of feature extraction and visualization for very high
dimensional data in situations where classifications are not known beforehand. The Kohonen SOM is equivalent
to an artificial neural network having inputs linked to every node in the network. Self-organizing maps use a
neighborhood function to preserve the topological properties of the input space.

In a Kohonen map, nodes are arranged in a rectangular or hexagonal grid or lattice. The input is connected to
each node, and the output of the Kohonen map is the zero-based (i, j) index of the node that is closest to the
input. A Kohonen map involves two steps: training and forecasting. Training builds the map using input examples
(vectors), and forecasting classifies a new input.

During training, an input vector is fed to the network. The input's Euclidean distance from all the nodes is calcu-
lated. The node with the shortest distance is identified and is called the Best Matching Unit, or BMU. After
identifying the BMU, the weights of the BMU and the nodes closest to it in the SOM lattice are updated towards
the input vector. The magnitude of the update decreases with time and with distance (within the lattice) from the
BMU. The weights of the nodes surrounding the BMU are updated according to:

Wt

+1

=Wt+α(t) ∗ h(d,t) ∗ (Dt-Wt)

where Wt represents the node weights, α(t) is the monotonically decreasing learning coefficient function, h(d,t) is

the neighborhood function, d is the lattice distance between the node and the BMU, and Dt is the input vector.

The monotonically decreasing learning coefficient function α(t) is a scalar factor that defines the size of the
update correction. The value of α(t) decreases with the step index t.
1754

 Data Mining kohonenSOM_trainer
The neighborhood function h(d,t) depends on the lattice distance d between the node and the BMU, and rep-
resents the strength of the coupling between the node and BMU. In the simplest form, the value of h(d,t) is 1 for
all nodes closest to the BMU and 0 for others, but a Gaussian function is also commonly used. Regardless of the
functional form, the neighborhood function shrinks with time (Hollmén, 15.2.1996). Early on, when the neighbor-
hood is broad, the self-organizing takes place on the global scale. When the neighborhood has shrunk to just a
couple of nodes, the weights converge to local estimates.

Note that in a rectangular grid, the BMU has four closest nodes for the Von Neumann neighborhood type, or
eight closest nodes for the Moore neighborhood type. In a hexagonal grid, the BMU has six closest nodes.

During training, this process is repeated for a number of iterations on all input vectors.

During forecasting, the node with the shortest Euclidean distance is the winning node, and its (i, j) index is the
output.

Data Structures

Example
This example creates a Kohonen network with 40 × 40 nodes. Each node has three weights, representing the RGB
values of a color. This network is trained with eight colors using 500 iterations. Then, the example prints out a
forecast result. Initially, the image of the nodes is:

Table 53 – The data structure Imsls_f_kohonenSOM

Field Description

int grid 0 = rectangular grid. Otherwise, hexagonal
grid.

int type 0 = Von Neumann neighborhood type. Other-
wise, Moore neighborhood type.

int wrap 0 = do not wrap-around node edges.
Otherwise, wrap-around node edges.

int dim Number of weights in each node.

int nrow Number of rows in the node grid.

int ncol Number of columns in the node grid.

float *weights Array of length nrow x ncol x dim contain-
ing the weights of the nodes.
1755

 Data Mining kohonenSOM_trainer
After the training, the image is:
1756

 Data Mining kohonenSOM_trainer
#include <stdio.h>
#include <math.h>
#include <imsls.h>
float fcn(int nrow, int ncol, int total_iter, int t, float d);
float lcn(int nrow, int ncol, int total_iter, int t);
int main() {
 Imsls_f_kohonenSOM *kohonen=NULL;
 int dim=3, nrow=40, ncol=40, nobs=8;
 float data[8][3] = {
 {1.0, 0.0, 0.0},
 {0.0, 1.0, 0.0},
 {0.0, 0.0, 1.0},
 {1.0, 1.0, 0.0},
 {1.0, 0.0, 1.0},
 {0.0, 1.0, 1.0},
 {0.0, 0.0, 0.0},
 {1.0, 1.0, 1.0}
 };
 int *forecasts = NULL;
 float fdata[1][3] = {
 {0.25, 0.5, 0.75}
 };
 float error;
 kohonen = imsls_f_kohonenSOM_trainer(fcn, lcn, dim, nrow, ncol,
 nobs, &data[0][0],
 IMSLS_RANDOM_SEED, 123457,
 IMSLS_ITERATIONS, 500,
 IMSLS_RECONSTRUCTION_ERROR, &error,
 0);
 forecasts =
 imsls_f_kohonenSOM_forecast(kohonen, 1, &fdata[0][0], 0);
 printf("The output node is at (%d, %d).\n",
 forecasts[0], forecasts[1]);
 printf("Reconstruction error is %f.\n", error);
 /* Free up memory. */
 imsls_free(kohonen->weights);
 imsls_free(kohonen);
 imsls_free(forecasts);
}

float fcn(int nrow, int ncol, int total_iter, int t, float d) {
 float factor, c;
 int max;
 max = nrow > ncol ? nrow : ncol;
 /* A Gaussian function. */
 factor = max / 4.0;
 c = (float) (total_iter - t) / ((float) total_iter / factor);
 return exp(-(d * d) / (2.0 * c * c));
 }
1757

 Data Mining kohonenSOM_trainer
float lcn(int nrow, int ncol, int total_iter, int t) {
 float initialLearning = 0.07;
 return initialLearning * exp(-(float) t / (float) total_iter);
}

Output
The output node is at (25, 11).
Reconstruction error is 13589.462891.
1758

 Data Mining kohonenSOM_forecast
kohonenSOM_forecast
Calculates forecasts using a trained Kohonen network.

Synopsis
#include <imsls.h>

int *imsls_f_kohonenSOM_forecast (Imsls_f_kohonenSOM *kohonen, int nobs, float data[],
..., 0)

The type double function is imsls_d_kohonenSOM_forecast.

Required Arguments
Imsls_f_kohonenSOM *kohonen (Input)

Pointer to a structure of type Imsls_f_kohonenSOM containing the trained Kohonen network. See the
Remarks section of imsls_f_kohonenSOM_trainer for a description of this structure.

int nobs (Input)
The number of observations in data. nobs must be greater than zero.

float data[] (Input)
An nobs × dim array containing the input data for forecasts, where dim is the number of weights
for each node in the node grid specified during training.

Return Value
An nobs × 2 array containing the (i, j) index of the winning nodes for the input data. This space can be released
by using the imsls_free function.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_kohonenSOM_forecast (Imsls_f_kohonenSOM *kohonen, int nobs, float data[],

IMSLS_RETURN_USER, int forecasts[],
0)
1759

 Data Mining kohonenSOM_forecast
Optional Arguments
IMSLS_RETURN_USER, int forecasts[] (Output)

If specified, the forecasts are returned in the user-supplied array forecasts.

Description
Function imsls_f_kohonenSOM_forecast calculates forecasts for a previously trained Kohonen network
from imsls_f_kohonenSOM_trainer. The structure Imsls_f_kohonenSOM describes the network structure
used to originally train the network. The weights, which are the key output from training, are used as input to this
function. The weights are stored in the Imsls_f_kohonenSOM structure.

Example
See imsls_f_kohonenSOM_trainer.

Output
See imsls_f_kohonenSOM_trainer.
1760

 Data Mining Support Vector Machines – An Overview
Support Vector Machines – An Overview
Support Vector Machines (SVM) are a class of learning algorithms for classification, regression, and distribution
estimation motivated by results of statistical learning theory (Vapnik, 1995). Classification problems are character-
ized by separating data into training and testing sets. Each pattern, or instance in the training set, contains one
“target classification value” (i.e. one of the class values) and several “attributes” (i.e. the features or observed vari-
ables). The goal of SVM is to produce a model based on the training data that predicts the target values of the
test data.

If (xi,yi) are the instance-label pairs for a given training set, and i = 1, …, l, where l is the number of training pat-

terns, xi ∈ ℝn and yi ∈ {1,-1}, the support vector machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995)

solves the following primal optimization problem:

The quantities w and b are the weight vector and bias. C > 0 is the penalty parameter of the error term ξi. The

training vectors xi are mapped into a higher (maybe infinite) dimensional space by the function φ(xi), called the

input features. SVM finds a linear separating hyperplane of maximal margin in this higher dimensional space.
Rather than applying SVM using the original input attributes xi, the new features φ(xi) are passed to the learning

algorithm. K(x,y), an inner product defined as K(xi,xj) ≡ φ(xi)
Tφ(xj), is the kernel function. Often, even though φ(x)

itself may be very expensive to calculate (perhaps because it is an extremely high-dimensional vector), K(xi,xj) may

be very inexpensive to calculate. Without ever having to explicitly find or represent vectors φ(x), using K(xi,xj) is an

efficient way for SVMs to learn in the high-dimensional feature space. Four popular kernels for classification and
regression are:

 linear: K(xi , xj) = xi
Txj

 polynomial: K(xi , xj) = (xi
Txj + r)d, > 0

 radial basis function (RBF): K(xi , xj) = exp (- ∥xi - xj∥2), > 0

 sigmoid: K(xi , xj) = tanh(xi
Txj + r)

where , r, and d are kernel parameters.

min
w,b,ξ

1
2w
Tw + C∑

i=1

l
ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, … , l

γ γ

γ γ

γ

γ

1761

 Data Mining Support Vector Machines – An Overview
SVM classification algorithms determine an optimal large-margin linear decision boundary for the given training
data. The SVM formulation for classification could be for either two-class or multi-class classifications. Multiple
binary classifiers are combined for multi-class classification. If the class information is not provided for the train-
ing data then the distribution estimation algorithm one-class SVM is used to estimate the support vectors of a
high-dimensional distribution. The support vector methodology can also be applied to the regression problem by
seeking to optimize the generalization bounds for regression which rely on defining a loss function that ignores
errors within a certain distance of the true value. The following classification algorithms are supported.

 SVC (Support Vector Classification): Two-class and multi-class. This is the standard SVM algorithm
used to classify two-class or multi-class data.

 One-class SVM: This algorithm assumes that the data is available from only one class. For example,
the data comes from some unknown underlying probability distribution, P.

 SVR (Support Vector Regression): This algorithm applies the features of the SVM algorithm to the
regression problem.

A typical use involves these steps:

 Scale the data. Typically, the data is linearly scaled to the range [-1, 1] or [0, 1]. The same scaling
parameters must be used on both the training data and the test data. You may find
imsls_f_scale_filter useful for this step.

 Apply the trainer to the scaled training data set using one of the available kernel types to obtain a
model. The RBF kernel is a good kernel type to start with.

 Use cross-validation to find the best model parameters.

 Use the resulting model with the best model parameters to predict information about the scaled
testing data set.

For SVC and SVR, the classifier can calculate probability estimates. Function
imsls_f_support_vector_trainer is used to train a classifier from a set of training patterns with values of
both the input attributes and target classes. This function stores the trained classifier model into an Imsls_f_svm_-
model data structure.

Unknown classifications of new patterns can be predicted by passing the trained classifier model data structure,
Imsls_f_svm_model, to imsls_f_support_vector_classification. If necessary, memory allocated to the
trained classifier model can be released using imsls_f_svm_classifier_free.
1762

 Data Mining support_vector_trainer
support_vector_trainer
Trains a Support Vector Machines (SVM) classifier.

Synopsis
#include <imsls.h>
Imsls_f_svm_model *imsls_f_support_vector_trainer (int n_patterns, int n_classes,

int n_attributes, float classification[], float x[], ..., 0)

The type double function is imsls_d_support_vector_trainer.

Required Arguments
int n_patterns (Input)

Number of training patterns.

int n_classes (Input)
Number of unique target classification values.

int n_attributes (Input)
Number of attributes.

float classification[] (Input)
Array of length n_patterns containing the target classification values for each of the training
patterns.

float x[] (Input)
Array of length n_patterns by n_attributes containing the training data matrix.

Return Value
A pointer to a structure of type Imsls_f_svm_model containing the trained support vector classifier model. If train-
ing is unsuccessful, NULL is returned. To release this space, use imsls_f_svm_classifier_free.

Synopsis with Optional Arguments
#include <imsls.h>
1763

 Data Mining support_vector_trainer
Imsls_f_svm_model *imsls_f_support_vector_trainer (int n_patterns, int n_classes,
int n_attributes, float classification[], float x[],

IMSLS_SVM_C_SVC_TYPE, float C, int nr_weight, float weight_class[],
float weight[], or

IMSLS_SVM_NU_SVC_TYPE, float nu, or
IMSLS_SVM_ONE_CLASS_TYPE, float nu, or
IMSLS_SVM_EPSILON_SVR_TYPE, float C, float p, or
IMSLS_SVM_NU_SVR_TYPE, float C, float nu,
IMSLS_SVM_WORK_ARRAY_SIZE, float work_size,
IMSLS_SVM_EPSILON, float epsilon,
IMSLS_SVM_NO_SHRINKING,
IMSLS_SVM_TRAIN_ESTIMATE_PROB,
IMSLS_SVM_KERNEL_LINEAR, or
IMSLS_SVM_KERNEL_POLYNOMIAL, int degree, float gamma, float coef0, or
IMSLS_SVM_KERNEL_RADIAL_BASIS, float gamma, or
IMSLS_SVM_KERNEL_SIGMOID, float gamma, float coef0, or
IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[],
IMSLS_SVM_CROSS_VALIDATION, int n_folds, float **target, float *result
IMSLS_SVM_CROSS_VALIDATION_USER, int n_folds, float target[], float *result,
0)

Optional Arguments
IMSLS_SVM_C_SVC_TYPE, float C, int nr_weight, float weight_class[], float weight[]

(Input)
Specifies that the C-support vector classification (C-SVC) algorithm is to be used to create the classifi-
cation model. This is the default type of SVM used.

float C (Input)
The regularization parameter. C must be greater than 0. By default, the penalty parameters
are set to the regularization parameter C. The penalty parameters can be changed by scaling
C by the values specified in weight below.

int nr_weight (Input)
The number of elements in weight and weight_class used to change the penalty
parameters.

float weight_class[] (Input)
An array of length nr_weight containing the target classification values that are to be
weighted.

float weight[] (Input)
An array of length nr_weight containing the weights corresponding to the target classifica-
tion values in weight_class to be used to change the penalty parameters.
1764

 Data Mining support_vector_trainer
Default: C-SVC is the default SVM type used with C = 5.0, nr_weight = 0,
weight_class = NULL, and weight = NULL.

or

IMSLS_SVM_NU_SVC_TYPE, float nu (Input)
Specifies that the ν-support vector classification (ν-SVC) algorithm is to be used to create the classifi-
cation model.

float nu (Input)
The parameter nu controls the number of support vectors and nu ∈ (0,1].

or

IMSLS_SVM_ONE_CLASS_TYPE, float nu (Input)
Specifies that the distribution estimation (one-class SVM) algorithm is to be used to create the classi-
fication model.

float nu (Input)
The parameter nu controls the number of support vectors and nu ∈ (0,1].

or

IMSLS_SVM_EPSILON_SVR_TYPE, float C, float p (Input)
Specifies that the ɛ-support vector regression (ɛ-SVM) algorithm is to be used to create the classifica-
tion model.

float C (Input)
The regularization parameter. C must be greater than 0.

float p (Input)
The insensitivity band parameter p must be positive.

or

IMSLS_SVM_NU_SVR_TYPE, float C, float nu (Input)
Specifies that the ν-support vector regression (ν-SVR) algorithm is to be used to create the classifica-
tion model.

float C (Input)
The regularization parameter. C must be greater than 0.

float nu (Input)
The parameter nu controls the number of support vectors and nu ∈ (0,1].

IMSLS_SVM_WORK_ARRAY_SIZE, float work_size (Input)
This work array size argument sets the number of megabytes allocated for the work array used
during the decomposition method. A larger work array size can reduce the computational time of the
decomposition method.
Default: work_size = 1.0.
1765

 Data Mining support_vector_trainer
IMSLS_SVM_EPSILON, float epsilon (Input)
The absolute accuracy tolerance for termination criterion. The algorithm uses the SMO algorithm in
solving the optimization problem. When the Lagrange multipliers used in the SMO algorithm satisfy
the Karush-Kuhn-Tucker (KKT) conditions within epsilon, convergence is assumed.
Default: epsilon = 0.001.

IMSLS_SVM_NO_SHRINKING, (Input)
Use of this argument specifies that the shrinking technique is not to be used in the SMO algorithm.
The shrinking technique tries to identify and remove some bounded elements during the application
of the SMO algorithm, so a smaller optimization problem is solved.
Default: Shrinking is performed.

IMSLS_SVM_TRAIN_ESTIMATE_PROB, (Input)
Instructs the trainer to include information in the resultant classifier model to enable you to obtain
probability estimates when invoking imsls_f_support_vector_classification.
Default: Information necessary to obtain probability estimates is not included in the model.

IMSLS_SVM_KERNEL_LINEAR, (Input)
This argument specifies that the inner-product kernel type

K(xi , xj) = xi
Txj

is to be used. This kernel type is best used when the relation between the target classification values
and attributes is linear or when the number of attributes is large (for example, 1000 attributes).

or

IMSLS_SVM_KERNEL_POLYNOMIAL, int degree, float gamma, float coef0 (Input)
This argument specifies that the polynomial kernel type

K(xi , xj) = (xi
Txj + r)d

is to be used. Use this argument when the data are not linearly separable.

int degree (Input)
Parameter degree specifies the order of the polynomial kernel. degree = d in the equa-
tion above.

float gamma (Input)
Parameter gamma must be greater than 0. gamma = in the equation above.

float coef0 (Input)
Parameter coef0 corresponds to r in the equation above.

or

IMSLS_SVM_KERNEL_RADIAL_BASIS, float gamma (Input)
This argument specifies that the radial basis function kernel type

K(xi , xj) = exp (- ∥xi - xj∥2)

γ

γ

γ

1766

 Data Mining support_vector_trainer
is to be used. Use this kernel type when the relation between the class labels and attributes is nonlin-
ear, although it can also be used when the relation between the target classification values and
attributes is linear. This kernel type exhibits fewer numerical difficulties. If no kernel type is specified,
this is the kernel type used.

float gamma (Input)
Parameter gamma must be greater than 0. gamma = in the equation above.

or

IMSLS_SVM_KERNEL_SIGMOID, float gamma, float coef0 (Input)
This argument specifies that the sigmoid kernel type

K(xi , xj) = tanh(xi
Txj + r)

is to be used.

float gamma (Input)
Parameter gamma = in the equation above.

float coef0 (Input)
Parameter coef0 corresponds to r in the equation above.

or

IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[] (Input)
Use of this argument indicates that the kernel function values have been precomputed for the train-
ing and testing data sets. If IMSLS_SVM_KERNEL_PRECOMPUTED is used, the required argument
x is ignored.

float kernel_values[] (Input)
An array of length n_patterns by n_patterns containing the precomputed kernel
function values. Assume there are L training instances x1, x2, …, xL and let K(x,y) be the kernel
function value of two instances x and y. Row i of the testing or training data set would be rep-
resented by K(xi,x1) K(xi,x2)…K(xi,xL). All kernel function values, including zeros, must be
provided.

Default: IMSLS_SVM_KERNEL_RADIAL_BASIS, gamma = 1.0/n_attributes
IMSLS_SVM_CROSS_VALIDATION, int n_folds, float **target, float *result (Input/Output)

Conducts cross validation on n_folds folds of the data.
imsls_f_random_uniform_discrete is used during the cross validation step. See the
Description section for more information on cross validation. See the Usage Notes in Chapter 12,
“Random Number Generation” for instructions on setting the seed to the random number generator if
different seeds are desired.

 int n_folds (Input)
The number of folds of the data to be used in cross validation. n_folds must be greater
than 1 and less than n_patterns.

γ

γ

γ

1767

 Data Mining support_vector_trainer
float **target (Output)
The address of a pointer to an array of length n_patterns containing the predicted labels

float *result (Output)
If the SVM type used is SVR, result contains the mean squared error. For all other SVM
types result contains the accuracy percentage.
Default: Cross validation is not performed.

IMSLS_SVM_CROSS_VALIDATION_USER, int n_folds, float target[], float *result
(Input/Output)
Storage for array target is provided by the user. See IMSLS_SVM_CROSS_VALIDATION for a
description.

Description
Function imsls_f_support_vector_trainer trains an SVM classifier for classifying data into one of
n_classes target classes. There are several SVM formulations that are supported through the optional argu-
ments for classification, regression, and distribution estimation. The C-support vector classification (C-SVC) is the
fundamental algorithm for the SVM optimization problem and its primal form is given as

Where (xi, yi) are the instance-label pairs for a given training set, where l is the number of training examples, and

xi ∈ Rn and yi ∈ {1,-1}. ξi are the slack variables in optimization and is an upper bound on the number of errors.

The regularization parameter C > 0 acts as a tradeoff parameter between error and margin. This is the default
algorithm used and can be controlled through the use of the IMSLS_SVM_C_SVC_TYPE optional argument.

The ν-support vector classification (ν-SVC) algorithm presents a new parameter ν ∈ (0,1] which acts as an upper
bound on the fraction of training errors and a lower bound on the fraction of support vectors. The use of this
algorithm is triggered through the use of the IMSLS_SVM_NU_SVC_TYPE optional arguement. The primal
optimization problem for the binary variable y ∈ {1,-1} is

min
w,b,ξ

1
2w
Tw + C∑

i=1

l
ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, … , l

min
w,b,ξ,ρ

1
2w
Tw − υρ + 1l ∑

i=1

l
ξi

subject to yi(w
Tϕ (xi) + b) ≥ ρ − ξi,

ξi ≥ 0, i = 1, … , l, ρ ≥ 0
1768

 Data Mining support_vector_trainer
The one-class SVM algorithm estimates the support of a high-dimensional distribution without any class informa-
tion. Control of this algorithm is through the use of the IMSLS_SVM_ONE_CLASS_TYPE optional argument.
The primal problem of one-class SVM is

If zi is the target output and given the parameters C > 0, ɛ > 0, the standard form of ɛ-support vector regression

(ɛ-SVR) is

where the two slack variables ξi and ξi
* are introduced, one for exceeding the target value by more than ɛ and

the other for being more than ɛ below the target. The use of this algorithm is triggered through the use of the
IMSLS_SVM_EPSILON_SVR_TYPE optional argument.

Similar to ν-SVC, in ν-support vector regression (ν-SVR) the parameter ν ∈ (0,1] controls the number of support
vectors. Use IMSLS_SVM_NU_SVR_TYPE to trigger this algorithm. The ν-SVR primal problem is

The decomposition method used to solve the dual formulation of these primal problems is an SMO-type
(sequential minimal optimization) decomposition method proposed by Fan et. al. (2005).

min
w,ξ,ρ

1
2w
Tw − ρ + 1

υl ∑
i=1

l
ξi

subject to wTϕ (xi) ≥ ρ − ξi,
ξi ≥ 0, i = 1, … , l

min
w,b,ξ,ξ*

1
2w
Tw + C∑

i=1

l
ξi + C∑

i=1

l
ξi
*

subject to wTϕ(xi) + b − zi ≤ ɛ + ξi,

zi − w
Tϕ(xi) − b ≤ ɛ + ξi

*,

ξi,ξi
* ≥ 0, i = 1, … , l

min
w,b,ξ,ξ*,ɛ

1
2w
Tw + C(νɛ + 1l ∑

i=1

l
(ξi + ξi

*))

subject to (wTϕ(xi) + b) − zi ≤ ɛ + ξi,

zi − (w
Tϕ(xi) + b) ≤ ɛ + ξi

*,

ξi,ξi
* ≥ 0, i = 1, … , l, ɛ ≥ 0
1769

 Data Mining support_vector_trainer
The IMSLS_SVM_CROSS_VALIDATION optional argument allows one to estimate how accurately the result-
ing training model will perform in practice. The cross validation technique partitions the training data into
n_folds complementary subsets. Each of the subsets is subsequently used in training and validated against
the remaining subsets. The validation results of the rounds are then averaged. The result is usually a good indica-
tor of how the trained model will perform on unclassified data.

Function imsls_f_support_vector_trainer is based on LIBSVM, Copyright (c) 2000-2013, with permis-
sion from the authors, Chih-Chung Chang and Chih-Jen Lin, with the following disclaimer:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

In this example, we use a subset of the Fisher Iris data to train the classifier. The default values of
imsls_f_support_vector_trainer are used in the training. The resultant classifier model, stored in
svm_classifier, is then used as input to imsls_f_support_vector_classification to classify all of
the patterns in the Fisher Iris data set. Results of the classification are then printed. In the Fisher Iris data set, the
first column is the target classification value, 1=Setosa, 2=Versicolour, and 3=Virginica. Columns 2 through 5 con-
tain the attributes sepal length, sepal width, petal length, and petal width.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i, ii, j, jj, k, kk, method=1;
 int n_patterns =150; /* 150 total patterns */
 int n_patterns_train =30; /* 30 training patterns */
 int n_attributes =4; /* four attributes */
 int n_classes =3; /* three classification categories */
 int *class_errors=NULL;
 float classification[150], *predictedClass=NULL, *xx=NULL;
 float x[150*4], training_data[30*4], training_classification[150];
 float *irisData=NULL; /* Fishers Iris Data */
 float real_min=0.0, real_max=10.0, target_min=0.0, target_max=1.0;
 char *classLabel[] = {"Setosa ", "Versicolour", "Virginica "};
 char dashes[] = {
1770

 Data Mining support_vector_trainer
 "--"
 };
 char wspace[] = {" "};
 Imsls_f_svm_model *svm_classifier=NULL;
 /* irisData[]: The raw data matrix. This is a 2-D matrix with 150 */
 /* rows and 5 columns. The first column is the target */
 /* classification value (1-3), and the last 4 columns */
 /* are the continuous input attributes. These data */
 /* contain no categorical input attributes. */
 irisData = imsls_f_data_sets(3,0);
 /* Data corrections described in the KDD data mining archive */
 irisData[5*34+4] = 0.1;
 irisData[5*37+2] = 3.1;
 irisData[5*37+3] = 1.5;
 /* Set up the required input arrays from the data matrix */
 for(i=0; i<n_patterns; i++){
 classification[i] = irisData[i*5];
 for(j=1; j<=n_attributes; j++) {
 x[i*n_attributes+j-1] = irisData[i*5+j];
 }
 }
 /* Scale the data */
 xx = imsls_f_scale_filter(n_attributes*n_patterns, x, method,
 IMSLS_SCALE_LIMITS, real_min, real_max, target_min, target_max,
 0);
 /* Use a subset of the data for training */
 ii = 0;
 jj = 0;
 printf(" The Input Classification and Training Data \n\n\n");
 printf("Classification Sepal Sepal Petal Petal\n");
 printf(" Value Length Width Length Width\n\n");
 for(i=0;i<3;i++){
 kk = 0;
 for(j=0;j<10;j++){
 training_classification[ii] = classification[(i*50)+j];
 printf(" %8.4f ", training_classification[ii]);
 ii++;
 for(k=0; k<4; k++){
 training_data[jj] = xx[(i*200)+kk++];
 printf("%8.4f ", training_data[jj]);
 jj++;
 }
 printf("\n");
 }
 }
 /* Train with the training data */
 svm_classifier = imsls_f_support_vector_trainer(
 n_patterns_train, n_classes, n_attributes,
 training_classification, training_data, 0);
 /* Classify the entire test set */
 predictedClass = imsls_f_support_vector_classification(
1771

 Data Mining support_vector_trainer
 svm_classifier, n_patterns, xx,
 IMSLS_CLASS_ERROR, classification, &class_errors,
 0);
 printf("\n\n\n Some Output Classifications\n\n");
 printf("Pattern Predicted Actual\n");
 printf("Number Classification Classification\n\n");
 for (i = 0; i < 10; i++) {
 printf("%2s%d%10s%8.4f%11s%8.4f\n\n",wspace,i,wspace,
 predictedClass[i],wspace,classification[i]);
 }
 printf("\n\n Iris Classification Error Rates\n");
 printf("%s\n",dashes);
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 class_errors[0], class_errors[1],
 class_errors[2], class_errors[3], class_errors[4],
 class_errors[5], class_errors[6], class_errors[7]);
 printf("%s\n\n", dashes);
 if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
 if (predictedClass) imsls_free(predictedClass);
 if (class_errors) imsls_free(class_errors);
 if (irisData) imsls_free(irisData);
 if (xx) imsls_free(xx);
}

Output

 The Input Classification and Training Data
Classification Sepal Sepal Petal Petal
 Value Length Width Length Width
 1.0000 0.5100 0.3500 0.1400 0.0200
 1.0000 0.4900 0.3000 0.1400 0.0200
 1.0000 0.4700 0.3200 0.1300 0.0200
 1.0000 0.4600 0.3100 0.1500 0.0200
 1.0000 0.5000 0.3600 0.1400 0.0200
 1.0000 0.5400 0.3900 0.1700 0.0400
 1.0000 0.4600 0.3400 0.1400 0.0300
 1.0000 0.5000 0.3400 0.1500 0.0200
 1.0000 0.4400 0.2900 0.1400 0.0200
 1.0000 0.4900 0.3100 0.1500 0.0100
 2.0000 0.7000 0.3200 0.4700 0.1400
 2.0000 0.6400 0.3200 0.4500 0.1500
 2.0000 0.6900 0.3100 0.4900 0.1500
 2.0000 0.5500 0.2300 0.4000 0.1300
 2.0000 0.6500 0.2800 0.4600 0.1500
 2.0000 0.5700 0.2800 0.4500 0.1300
 2.0000 0.6300 0.3300 0.4700 0.1600
 2.0000 0.4900 0.2400 0.3300 0.1000
 2.0000 0.6600 0.2900 0.4600 0.1300
 2.0000 0.5200 0.2700 0.3900 0.1400
 3.0000 0.6300 0.3300 0.6000 0.2500
 3.0000 0.5800 0.2700 0.5100 0.1900
 3.0000 0.7100 0.3000 0.5900 0.2100
1772

 Data Mining support_vector_trainer
 3.0000 0.6300 0.2900 0.5600 0.1800
 3.0000 0.6500 0.3000 0.5800 0.2200
 3.0000 0.7600 0.3000 0.6600 0.2100
 3.0000 0.4900 0.2500 0.4500 0.1700
 3.0000 0.7300 0.2900 0.6300 0.1800
 3.0000 0.6700 0.2500 0.5800 0.1800
 3.0000 0.7200 0.3600 0.6100 0.2500

 Some Output Classifications
Pattern Predicted Actual
Number Classification Classification
 0 1.0000 1.0000
 1 1.0000 1.0000
 2 1.0000 1.0000
 3 1.0000 1.0000
 4 1.0000 1.0000
 5 1.0000 1.0000
 6 1.0000 1.0000
 7 1.0000 1.0000
 8 1.0000 1.0000
 9 1.0000 1.0000
 Iris Classification Error Rates
--
 Setosa Versicolour Virginica | TOTAL
 0/50 4/50 5/50 | 9/150
--

Example 2

In this example we use a subset of the Fisher Iris data to train the classifier and use the cross-validation option
with various combinations of C and gamma to find a combination which yields the best results on the training
data. The best combination of C and gamma are then used to get the classification model, stored in
svm_classifier. This model is then used as input to imsls_f_support_vector_classification to
classify all of the patterns in the Fisher Iris data set. Results of the classification are then printed.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int i, ii, j, jj, k, kk, method=1;
 int n_patterns_train =30; /* 30 training patterns */
 int n_patterns =150; /* 150 total patterns */
 int n_attributes =4; /* four attributes */
 int n_classes =3; /* three classification categories */
 int nr_weight =0;
 int n_folds =3;
 int degree=0;
 int *class_errors=NULL;
 float C, gamma, coef0=0.0, best_accuracy, best_C, best_gamma, result;
 float *weight_class=NULL;
1773

 Data Mining support_vector_trainer
 float *weight=NULL;
 float classification[150], *predictedClass=NULL, *xx=NULL;
 float x[150*4], training_data[150*4];
 float training_classification[30];
 float *irisData=NULL; /* Fishers Iris Data */
 float *target=NULL;
 float real_min=0.0, real_max=10.0, target_min=0.0, target_max=1.0;
 char *classLabel[] = {"Setosa ", "Versicolour", "Virginica "};
 char dashes[] = {
 "--"
 };
 Imsls_f_svm_model *svm_classifier=NULL;
 /* irisData[]: The raw data matrix. This is a 2-D matrix with 150 */
 /* rows and 5 columns. The first column is the target */
 /* classification value (1-3), and the last 4 columns */
 /* are the continuous input attributes. These data */
 /* contain no categorical input attributes. */
 irisData = imsls_f_data_sets(3,0);
 /* Data corrections described in the KDD data mining archive */
 irisData[5*34+4] = 0.1;
 irisData[5*37+2] = 3.1;
 irisData[5*37+3] = 1.5;
 /* Set up the required input arrays from the data matrix */
 for(i=0; i<n_patterns; i++){
 classification[i] = irisData[i*5];
 for(j=1; j<=n_attributes; j++) {
 x[i*n_attributes+j-1] = irisData[i*5+j];
 }
 }
 /* Scale the data */
 xx = imsls_f_scale_filter(n_attributes*n_patterns, x, method,
 IMSLS_SCALE_LIMITS, real_min, real_max, target_min, target_max,
 0);
 /* Use a subset of the data for training */
 ii = 0;
 jj = 0;
 for(i=0;i<3;i++){
 kk = 0;
 for(j=0;j<10;j++){
 training_classification[ii++] = classification[(i*50)+j];
 for(k=0; k<4; k++){
 training_data[jj] = xx[(i*200)+kk];
 kk++;
 jj++;
 }
 }
 }
 C = 2.0;
 /* Try different combinations of C and gamma to settle on model parameters */
 best_accuracy = 0.0;
 best_C = 0.0;
 best_gamma = 0.0;
 for(i=0;i<10;i++){
 gamma = .1;
1774

 Data Mining support_vector_trainer
 for(j=0;j<5;j++){
 svm_classifier = imsls_f_support_vector_trainer(
 n_patterns_train, n_classes, n_attributes, training_classification,
 training_data,
 IMSLS_SVM_C_SVC_TYPE, C, nr_weight, weight_class, weight,
 IMSLS_SVM_KERNEL_RADIAL_BASIS, gamma,
 IMSLS_SVM_CROSS_VALIDATION, n_folds, &target, &result,
 0);
 if(result > best_accuracy){
 best_accuracy = result;
 best_C = C;
 best_gamma = gamma;
 }
 gamma = gamma*2.0;
 imsls_f_svm_classifier_free(svm_classifier);
 if(target) imsls_free(target);
 }
 C = C*2.0;
 }
 /* Train with the best resultant parameters */
 svm_classifier = imsls_f_support_vector_trainer(
 n_patterns_train, n_classes, n_attributes, training_classification,
 training_data,
 IMSLS_SVM_C_SVC_TYPE, best_C, nr_weight, weight_class, weight,
 IMSLS_SVM_KERNEL_RADIAL_BASIS, best_gamma,
 0);
 /* Call SUPPORT_VECTOR_CLASSIFICATION on the entire test set */
 predictedClass = imsls_f_support_vector_classification(
 svm_classifier, n_patterns, xx,
 IMSLS_CLASS_ERROR, classification, &class_errors,
 0);
 printf(" Iris Classification Error Rates\n");
 printf("%s\n",dashes);
 printf(" Setosa Versicolour Virginica | TOTAL\n");
 printf(" %d/%d %d/%d %d/%d | %d/%d\n",
 class_errors[0], class_errors[1],
 class_errors[2], class_errors[3], class_errors[4],
 class_errors[5], class_errors[6], class_errors[7]);
 printf("%s\n\n", dashes);
 if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
 if (predictedClass) imsls_free(predictedClass);
 if (class_errors) imsls_free(class_errors);
 if (irisData) imsls_free(irisData);
 if (xx) imsls_free(xx);
}

Output

 Iris Classification Error Rates
--
 Setosa Versicolour Virginica | TOTAL
 0/50 1/50 3/50 | 4/150
1775

 Data Mining support_vector_trainer
Example 3

One thousand uniform deviates from a uniform distribution are used in the training data set of this example.
IMSLS_SVM_ONE_CLASS_TYPE is used to produce the model during training. A test data set of one hundred
uniform deviates is produced and contaminated with ten normal deviates.
imsls_f_support_vector_classification is then called in an attempt to pick out the contaminated data
in the test data set. The suspect observations are printed.

#include <stdio.h>
#include <imsls.h>
#define N_PATTERNS_TRAIN 1000
#define N_PATTERNS_TEST 100
#define N_PATTERNS_TEN 10
#define N_CLASSES 1
#define N_ATTRIBUTES 1
int main()
{
 int i;
 float *target=NULL;
 float classification_train[N_PATTERNS_TRAIN];
 float classification_test[N_PATTERNS_TEST];
 float *x_train;
 float *x_test;
 float *x_test_contaminant;
 Imsls_f_svm_model *svm_classifier=NULL;
 /* Create the training set from a uniform distribution */
 imsls_random_seed_set(123457);
 x_train = imsls_f_random_uniform(N_PATTERNS_TRAIN, 0);
 for(i=0;i<N_PATTERNS_TRAIN;i++)
 classification_train[i] = 1.0;
 svm_classifier = imsls_f_support_vector_trainer(N_PATTERNS_TRAIN, N_CLASSES,
 N_ATTRIBUTES, classification_train, x_train,
 IMSLS_SVM_ONE_CLASS_TYPE, .001,
 0);
 /* Create a testing set from a uniform distribution */
 x_test = imsls_f_random_uniform(N_PATTERNS_TEST, 0);
 for(i=0;i<N_PATTERNS_TEST;i++)
 classification_test[i] = 1.0;
 /* Contaminate the testing set with deviates from a normal distribution */
 x_test_contaminant = imsls_f_random_normal(N_PATTERNS_TEN,
 IMSLS_MEAN, .1,
 IMSLS_VARIANCE, .2,
 0);
 for(i=0;i<N_PATTERNS_TEN;i++)
 x_test[i*10] = x_test_contaminant[i];
1776

 Data Mining support_vector_trainer
 target = imsls_f_support_vector_classification(svm_classifier,
 N_PATTERNS_TEST, x_test, 0);
 printf("\n\n\n Classification Results \n\n");
 for(i=0; i<N_PATTERNS_TEST; i++){
 if (target[i]!=1.0){
 printf("The %d-th observation may not to belong to the",i);
 printf(" target distribution.\n");
 }
 }
 if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
 if (target) imsls_free(target);
 if (x_train) imsls_free(x_train);
 if (x_test) imsls_free(x_test);
 if (x_test_contaminant) imsls_free(x_test_contaminant);
}

Output

 Classification Results
The 0-th observation may not belong to the target distribution.
The 20-th observation may not belong to the target distribution.
The 30-th observation may not belong to the target distribution.
The 40-th observation may not belong to the target distribution.
The 60-th observation may not belong to the target distribution.
The 70-th observation may not belong to the target distribution.

Example 4

This example uses IMSLS_SVM_NU_SVR_TYPE to create a regression model which is used by
imsls_f_support_vector_classification in an attempt to predict values in the test data set. The pre-
dicted values are printed.

#include <stdio.h>
#include <imsls.h>
#define N_PATTERNS_TRAIN 10
#define N_PATTERNS_TEST 4
#define N_CLASSES 2
#define N_ATTRIBUTES 2
int main()
{
 int i;
 float C=50., nu=.01, diff, mse=0.0, *target=NULL;
 float classification_train[] = {1.0,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0,2.0};
 float classification_test[] = {1.0,1.0,2.0,2.0};
1777

 Data Mining support_vector_trainer
 float x_train[] = { 0.19, 0.61,
 0.156, 0.564,
 0.224, 0.528,
 0.178, 0.51,
 0.234, 0.578,
 0.394, 0.296,
 0.478, 0.254,
 0.454, 0.294,
 0.48, 0.358,
 0.398, 0.336};
 float x_test[] = {
 0.316, 0.556,
 0.278, 0.622,
 0.562, 0.336,
 0.522, 0.412};
 Imsls_f_svm_model *svm_classifier=NULL;
 svm_classifier = imsls_f_support_vector_trainer(N_PATTERNS_TRAIN,
 N_CLASSES, N_ATTRIBUTES, classification_train, x_train,
 IMSLS_SVM_NU_SVR_TYPE, C, nu,
 0);
 target = imsls_f_support_vector_classification(svm_classifier,
 N_PATTERNS_TEST, x_test, 0);
 mse = 0.0;
 printf("Predicted Actual Difference \n");
 for(i=0;i<N_PATTERNS_TEST;i++){
 diff = (target[i] - classification_test[i]);
 printf("%f %f %f \n",target[i], classification_test[i], diff);
 mse = mse + (diff*diff);
 }
 mse = mse/N_PATTERNS_TEST;
 printf("\n The Mean squared error for the predicted values is %f \n",
 mse);
 if (svm_classifier) imsls_f_svm_classifier_free(svm_classifier);
 if (target) imsls_free(target);
}

Output

Predicted Actual Difference
1.443569 1.000000 0.443569
1.397248 1.000000 0.397248
1.648531 2.000000 -0.351469
1.598311 2.000000 -0.401689
The Mean squared error for the predicted values is 0.159861
1778

 Data Mining support_vector_trainer
Warning Errors
IMSLS_OPTION_NOT_SUPPORTED The optional argument # is not supported for #.

IMSLS_LABEL_NOT_FOUND The class label # specified in “weight” not found.

IMSLS_INADEQUATE_MODEL The model used contains inadequate information to
compute the requested probability.

IMSLS_TWO_CLASS_LINE_SEARCH The line search failed in a two-class probability esti-
mation while performing cross validation.

IMSLS_VALIDATION_MAX_ITERATIONS The maximum number of iterations was reached in
a
#-class probability estimation while performing
cross validation.
1779

 Data Mining support_vector_classification
support_vector_classification
Classifies unknown patterns using a previously trained Support Vector Machines (SVM) model computed by
imsls_f_support_vector_trainer.

Synopsis
#include <imsls.h>
float *imsls_f_support_vector_classification (Imsls_f_svm_model *svm_classifier,

int n_patterns, float x[], …, 0)

The type double function is imsls_d_support_vector_classification.

Required Arguments
Imsls_f_ svm_model *svm_classifier (Input)

Pointer to a structure of type Imsls_f_svm_model from imsls_f_support_vector_trainer.

int n_patterns (Input)
Number of patterns to classify.

float x[] (Input)
An array of length n_patterns by n_attributes containing the data matrix where
n_attributes is the number of attributes as specified in
imsls_f_support_vector_trainer.

Return Value
Pointer to an array of length n_patterns containing the predicted classification associated with each input
pattern for a classification model, or the calculated function value for a regression model. If classification is unsuc-
cessful, NULL is returned. To release this space, use imsls_free.

Synopsis with Optional Arguments
#include <imsls.h>
1780

 Data Mining support_vector_classification
float *imsls_f_support_vector_classification (Imsls_f_svm_model *svm_classifier,
int n_patterns, float x[],

IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[],
IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob,
IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[],
IMSLS_SVR_PROBABILITY, float *svr_probability,
IMSLS_CLASS_ERROR, float classification[], int **class_errors,
IMSLS_CLASS_ERROR_USER, float *classification, int class_errors[],
IMSLS_DECISION_VALUES, int i, float **dec_values,
IMSLS_DECISION_VALUES_USER, int i, float dec_values[],
IMSLS_RETURN_USER, float predicted_labels[],
0)

Optional Arguments
IMSLS_SVM_KERNEL_PRECOMPUTED, float kernel_values[] (Input)

Use of this argument indicates that the kernel function values have been precomputed for the train-
ing and testing data sets. If IMSLS_SVM_KERNEL_PRECOMPUTED is used, the required argument
x is ignored.

float kernel_values[] (Input)
An array of length n_patterns by n_patterns containing the precomputed kernel
function values. Assume there are L testing instances x1, x2, …, xL and let K(x,y) be the kernel
function value of two instances x and y. Row i of the testing or training data set would be rep-
resented by K(xi,x1) K(xi,x2) … K(xi,xL). All kernel function values, including zeros, must be
provided.

IMSLS_PREDICTED_CLASS_PROB, float **pred_class_prob (Output)
The address of a pointer to an array of length n_patterns by n_classes, where n_classes is
the number of target classifications. The values in the i-th row are the predicted classification proba-
bilities associated with the target classes. pred_class_prob[i*n_classes+j] is the
estimated probability that the i-th pattern belongs to the j-th target class.

For regression and one-class SVMs, the array pred_class_prob is NULL.

To release this space, use imsls_free.

IMSLS_PREDICTED_CLASS_PROB_USER, float pred_class_prob[] (Output)
Storage for array pred_class_prob is provided by the user. See
IMSLS_PREDICTED_CLASS_PROB for a description.
1781

 Data Mining support_vector_classification
IMSLS_SVR_PROBABILITY, float *svr_probability (Output)
For a regression model with probability information, this option outputs a value σ > 0. For the test
data, we consider the probability model as

target value = predicted value + z

where z is distributed according to Laplace with zero-mean density function p(x) = e-|x|/σ/2σ .
svr_probability contains σ on output. If the model is not for SVR or does not contain the
required probability information, 0 is returned.

IMSLS_CLASS_ERROR, float classification[], int **class_errors (Output)
Returns classification error counts.

float classification[] (Input)
An array of length n_patterns containing the known classifications for each of the
patterns.

int **class_errors (Output)
The address of a pointer to an array of length (n_classes+1) by 2 containing the num-
ber of classification errors and the number of non-missing classifications for each target
classification, plus the overall totals for these errors. For i < n_classes, the i-th row con-
tains the number of classification errors for the i-th class and the number of patterns with
non-missing classifications for that class. The last row contains the number of classification
errors totaled over all target classifications, and the total number of patterns with non-miss-
ing target classifications. To release this space, use imsls_free.

IMSLS_CLASS_ERROR_USER, float classification[], int class_errors[] (Output)
Storage for class_errors is provided by the user. See IMSLS_CLASS_ERROR for a description.

IMSLS_DECISION_VALUES, int i, float **dec_values (Output)
Gives decision values on row i of data matrix x. The decision values are used to predict the target
classification value. For binary class problems, decision values are signed values used to determine
which side of the decision boundary the observation in question lays. Recall that SVM combines mul-
tiple binary classifiers for multi-class classification. The magnitudes of the decision values are
essentially meaningless as only the sign is used to determine whether the point is more likely to
belong to class[i] versus class[j] (a positive value) or less likely to belong to class[i] versus class[j] (a
negative value). See the Description section for more on how the decision values are used to predict
the target classification value.

For a classification model with n_classes classes, this function gives n_classes*(n_classes-1)/2 decision
values in the array dec_values. The order is class[0] vs. class[1], …, class[0] vs. class[n_classes-1],
class[1] vs. class[2], …, class[1] vs. class[n_classes-1], …, class[n_classes-2] vs. class[n_classes-1], where
class contains the target classification values.

For a regression model, only 1 value is returned. dec_values[0] is the function value of row i of x
calculated using the model. For a one-class model, dec_values[0] is the decision value of row i
of x. To release this space, use imsls_free
1782

 Data Mining support_vector_classification
IMSLS_DECISION_VALUES_USER, int i, float dec_values[] (Output)
Storage for array dec_values is provided by the user. See IMSLS_DECISION_VALUES for a
description.

IMSLS_RETURN_USER, float predicted_labels[] (Output)
Storage for the return values is provided by the user in array predicted_labels.
predicted_labels must be at least of length n_patterns.

Description
Function imsls_f_support_vector_classification estimates classification probabilities from a pre-
viously trained SVM model. This function does classification or regression on a test vector x using the SVM model
output from imsls_f_support_vector_trainer. For a classification model, the predicted class for x is
returned. For a regression model, the function value of x calculated using the model is returned. For a one-class
model, +1 or -1 is returned signifying that the observation belongs to (+1) or does not belong to (-1) the expected
class. The predicted classification returned by this function is the class with the largest estimated classification
probability. The classification probability estimates for each pattern can be obtained using the optional argument
IMSLS_PREDICTED_CLASS_PROB.

The decision values which are returned through the use of optional argument IMSLS_DECISION_VALUES are
used to cast votes for the target classification value. Only the sign of the decision value is used in casting votes.
For a decision value for class[i] versus class[j], a positive value is interpreted as class[i] being more likely than
class[j], so class[i] would get a vote. A negative value is interpreted as class[i] being less likely than class[j], so
class[j] would get a vote. The votes along a row of decision values are tallied to elect the class with the most votes
as the target classification value. In case of a tie, the first class encountered with the highest number of votes in a
row of decision values is the predicted class for that row.

Function imsls_f_support_vector_classification is based on LIBSVM, Copyright (c) 2000-2013,
with permission from the authors, Chih-Chung Chang and Chih-Jen Lin with the following disclaimer:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1783

 Data Mining support_vector_classification
Examples
See Examples in imsls_f_support_vector_trainer.

Warning Errors
IMSLS_INADEQUATE_MODEL The model used contains inadequate information to

compute the requested probability.
1784

 Data Mining svm_classifier_free
svm_classifier_free
Frees memory allocated to an Imsls_f_svm_model data structure.

Synopsis
#include <imsls.h>
void imsls_f_svm_classifier_free (Imsls_f_svm_model *svm_classifier)

The type double function is imsls_d_svm_classifier_free.

Required Arguments
Imsls_f_svm_model *svm_classifier (Input)

Pointer to a structure of the type Imsls_f_svm_model from imsls_f_support_vector_trainer.

Description
An Imsls_f_svm_model data structure is created by imsls_f_support_vector_trainer. Function
imsls_f_svm_classifier_free is used to free the memory allocated to this structure when the struc-
ture is no longer needed.
1785

 Printing Functions Functions
Printing Functions

Functions

Print a matrix or vector . write_matrix 1787
Set the page width and length . page 1794
Set the printing options . write_options 1796
1786

 Printing Functions write_matrix
write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis
#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[], …, 0)

For int a[], use imsls_i_write_matrix.

For double a[], use imsls_d_write_matrix.

Required Arguments
char *title (Input)

Matrix title. Use \n within a title to create a new line. Long titles are automatically wrapped.

int nra (Input)
Number of rows in the matrix.

int nca (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size nra × nca containing the matrix to be printed.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[],

IMSLS_TRANSPOSE,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
1787

 Printing Functions write_matrix
IMSLS_PRINT_UPPER_NO_DIAG,
IMSLS_WRITE_FORMAT, char *fmt,
IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or
IMSLS_ROW_NUMBER_ZERO, or
IMSLS_ROW_LABELS, char *rlabel[],
IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[],
0)

Optional Arguments
IMSLS_TRANSPOSE, (Input)

Print aT.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of a.

Default: a_col_dim = nca
IMSLS_PRINT_ALL,

or

IMSLS_PRINT_LOWER,

or

IMSLS_PRINT_UPPER,

or

IMSLS_PRINT_LOWER_NO_DIAG,

or
1788

 Printing Functions write_matrix
IMSLS_PRINT_UPPER_NO_DIAG
Exactly one of these optional arguments can be specified to indicate that either a triangular part of
the matrix or the entire matrix is to be printed. If omitted, the entire matrix is printed.

Default: IMSLS_PRINT_ALL.

IMSLS_WRITE_FORMAT, char *fmt (Input)
Character string containing a list of C conversion specifications (formats) to be used when printing
the matrix. Any list of C conversion specifications suitable for the data type can be given. For exam-
ple, fmt = "%10.3f" specifies the conversion character f for the entire matrix. For the conversion
character f, the matrix must be of type float or double.
Alternatively,fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the conversion charac-
ter e for columns 1 and 2 and the conversion character f for columns 3, 4, and 5. If the end of fmt is
encountered and if some columns of the matrix remain, format control continues with the first con-
version specification in fmt.

Aside from restarting the format from the beginning, other exceptions to the usual C formatting rules
are as follows:

Characters not associated with a conversion specification are not allowed. For example, in the format
fmt = "1%d2%d", the characters 1 and 2 are not allowed and result in an error.

A conversion character d can be used for floating-point values (matrices of type float or double). The
integer part of the floating-point value is printed.

For printing numbers whose magnitudes are unknown, the conversion character g is useful; how-
ever, the decimal points will generally not be aligned when printing a column of numbers. The w (or
W) conversion character is a special conversion character used by this function to select a conversion
specification so that the decimal points will be aligned. The conversion specification ending with w is
specified as "%n.dw". Here, n is the field width and d is the number of significant digits generally
printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2, …, n − 2. If fmt specifies one con-
version specification ending with w, all elements of a are examined to determine one conversion
specification for printing. If fmt specifies more than one conversion specification, separate conver-

Keyword Action

IMSLS_PRINT_ALL Entire matrix is printed (the default).

IMSLS_PRINT_LOWER Lower triangle of the matrix is printed,
including the diagonal.

IMSLS_PRINT_UPPER Upper triangle of the matrix is printed,
including the diagonal.

IMSLS_PRINT_LOWER_NO_DIAG Lower triangle of the matrix is printed,
without the diagonal.

IMSLS_PRINT_UPPER_NO_DIAG Upper triangle of the matrix is printed,
without the diagonal.
1789

 Printing Functions write_matrix
sion specifications are generated for each conversion specification ending with w. Set
fmt = "10.4w" for a single conversion specification selected automatically with field width 10 and
with four significant digits.

IMSLS_NO_ROW_LABELS, (Input)
Indicates that no row labels are used.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the
row labels whenever nra > 1. If nra = 1, the default is no row labels.

or

IMSLS_ROW_NUMBER, (Input)
Indicates the numbers 1, 2, 3, …, nra are used for the row labels.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the
row labels whenever nra > 1. If nra = 1, the default is no row labels.

or

IMSLS_ROW_NUMBER_ZERO, (Input)
Indicates the numbers 1, 2, 3, …, nra-1 are used for the row labels.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the
row labels whenever nra > 1. If nra = 1, the default is no row labels.

or

IMSLS_ROW_LABELS, char *rlabel[] (Input)
Indicates rlabel is a vector of length nra containing pointers to the character strings comprising
the row labels. Here, nra is the number of rows in the printed matrix. Use \n within a label to create
a new line. Long labels are automatically wrapped.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nra are used for the
row labels whenever nra > 1. If nra = 1, the default is no row labels.

IMSLS_NO_COL_LABELS, (Input)
Indicates that no column labels are used.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the
column labels whenever nca > 1. If nca = 1, the default is no column labels.

or

IMSLS_COL_NUMBER, (Input)
Indicates the numbers 1, 2, 3, …, nca are used for the column labels.
1790

 Printing Functions write_matrix
Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the
column labels whenever nca > 1. If nca = 1, the default is no column labels.

or

IMSLS_COL_NUMBER_ZERO, (Input)
Indicates the numbers 1, 2, 3, …, nca-1 are used for the column labels.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the
column labels whenever nca > 1. If nca = 1, the default is no column labels.

or

IMSLS_COL_LABELS, char *clabel[] (Input)
Indicates clabel is a vector of length nca + 1 containing pointers to the character strings compris-
ing the column headings. The heading for the column labels is clabel [0]; clabel [i],
i = 1, …, nca, is the heading for the i-th column. Use \n within a label to create a new line. Long
labels are automatically wrapped.

Default: If none of these optional arguments is used, the numbers 1, 2, 3, …, nca are used for the
column labels whenever nca > 1. If nca = 1, the default is no column labels.

Description
Function imsls_write_matrix prints a real rectangular matrix (stored in a) with optional row and column

labels (specified by rlabel and clabel, respectively, regardless of whether a or aT is printed). An optional for-
mat, fmt, can be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the upper or lower triangles of a
matrix by using the IMSLS_PRINT_UPPER, IMSLS_PRINT_LOWER, IMSLS_PRINT_UPPER_NO_DIAG,
and IMSLS_PRINT_LOWER_NO_DIAG options. Generally, these options are used with symmetric matrices,
but this is not required. Vectors can be printed by specifying a row or column dimension of 1.

Output is written to the file specified by the function imsls_output_file (Chapter 15, Utilities). The default
output file is standard output (corresponding to the file pointer stdout). A page width of 78 characters is used.
Page width and page length can be reset by invoking function imsls_page.

Horizontal centering, the method for printing large matrices, paging, the method for printing NaN (Not a Num-
ber), and whether or not a title is printed on each page can be selected by invoking function
imsls_write_options.
1791

 Printing Functions write_matrix
Examples

Example 1

This example is representative of the most common situation in which no optional arguments are given.

#include <imsls.h>
#define NRA 3
#define NCA 4
int main()
{
 int i, j;
 float a[NRA][NCA];
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }
 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, (float*) a, 0);
}

Output

 Matrix
 A
 1 2 3 4
1 1.1 1.2 1.3 1.4
2 2.1 2.2 2.3 2.4
3 3.1 3.2 3.3 3.4

Example 2

In this example, some of the optional arguments available in the imsls_write_matrix functions are
demonstrated.

#include <imsls.h>
#define NRA 3
#define NCA 4
int main()
{
 int i, j;
 float a[NRA][NCA];
 char *fmt = "%10.6W";
 char *rlabel[] = {"row 1", "row 2", "row 3"};
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};
1792

 Printing Functions write_matrix
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }
 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_ROW_LABELS, rlabel,
 IMSLS_COL_LABELS, clabel,
 IMSLS_PRINT_UPPER_NO_DIAG,
 0);
}

Output

 Matrix
 a
 col 2 col 3 col 4
row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4

Example 3

In this example, a row vector of length four is printed.

#include <imsls.h>
#define NRA 1
#define NCA 4
int main()
{
 int i;
 float a[NCA];
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};
 for (i = 0; i < NCA; i++) {
 a[i] = i + 1;
 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, a,
 IMSLS_COL_LABELS, clabel,
 0);
}

Output
 Matrix
 a
 col 1 col 2 col 3 col 4
 1 2 3 4
1793

 Printing Functions page
page
Sets or retrieves the page width or length.

Synopsis
#include <imsls.h>
void imsls_page (Imsls_page_options option, int *page_attribute)

Required Arguments
Imsls_page_options option (Input)

Option giving which page attribute is to be set or retrieved. Possible values are shown below.

int *page_attribute (Input, if the attribute is set; Output, otherwise.)
The value of the page attribute to be set or retrieved. The page width is the number of characters per
line of output (default 78), and the page length is the number of lines of output per page (default 60).
Ten or more characters per line and 10 or more lines per page are required.

Example
The following example illustrates the use of imsls_page to set the page width to 40 characters. Function
imsls_f_write_matrix is then used to print a 3 × 4 matrix A, where aij = i + j/10.

#include <imsls.h>
#define NRA 3
#define NCA 4
int main()
{
 int i, j, page_attribute;
 float a[NRA][NCA];

Keyword Description

IMSLS_SET_PAGE_WIDTH Sets the page width.

IMSLS_GET_PAGE_WIDTH Retrieves the page width.

IMSLS_SET_PAGE_LENGTH Sets the page length.

IMSLS_GET_PAGE_LENGTH Retrieves the page length.
1794

 Printing Functions page
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 page_attribute = 40;
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_attribute);
 imsls_f_write_matrix("a", NRA, NCA, (float *)a,
 0);
}

Output

 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
 4
1 1.4
2 2.4
3 3.4
1795

 Printing Functions write_options
write_options
Sets or retrieves an option for printing a matrix.

Synopsis
#include <imsls.h>
void imsls_write_options (Imsls_write_options option, int *option_value)

Required Arguments
Imsls_write_options option (Input)

Option giving the type of the printing attribute to set or retrieve.

int *option_value (Input, if option is to be set; Output, otherwise)
Value of the option attribute selected by option. The values to be used when setting attributes are
described in a table in the description section.

Description
Function imsls_write_options allows the user to set or retrieve an option for printing a matrix. Options
controlled by imsls_write_options are horizontal centering, method for printing large matrices, paging,
method for printing NaN, method for printing titles, and the default format for real and complex numbers. (NaN
can be retrieved by functions imsls_f_machine and imsls_d_machine (Chapter 15, Utilities).

Keyword for Setting Keyword for Retrieving Attribute Description

IMSLS_SET_DEFAULTS uses the default settings
for all parameters

IMSLS_SET_CENTERING IMSLS_GET_CENTERING horizontal centering

IMSLS_SET_ROW_WRAP IMSLS_GET_ROW_WRAP row wrapping

IMSLS_SET_PAGING IMSLS_GET_PAGING paging

IMSLS_SET_NAN_CHAR IMSLS_GET_NAN_CHAR method for printing NaN

IMSLS_SET_TITLE_PAGE IMSLS_GET_TITLE_PAGE whether or not titles
appear on each page

IMSLS_SET_FORMAT IMSLS_GET_FORMAT default format for real and
complex numbers
1796

 Printing Functions write_options
The following values can be used for the attributes:

The w conversion character used by the FORMAT option is a special conversion character that can be used to
automatically select a pretty C conversion specification ending in either e, f, or d. The conversion specification
ending with w is specified as "%n.dw". Here, n is the field width, and d is the number of significant digits gener-
ally printed.

Keyword Value Meaning

CENTERING 0

1

Matrix is left justified.
Matrix is centered.

ROW_WRAP 0

m

Complete row is printed before the next row is printed. Wrapping is used
if necessary.

Here, m is a positive integer. Let n1 be the maximum number of columns
that fit across the page, as determined by the widths in the conversion
specifications starting with column 1. First, columns 1 through n1 are
printed for rows 1 through m. Let n2 be the maximum number of columns
that fit across the page, starting with column n1+1. Second, columns n1+1
through n1+n2 are printed for rows 1 through m. This continues until the
last columns are printed for rows 1 through m. Printing continues in this
fashion for the next m rows, etc.

PAGING -2

-1

0

k

No paging occurs.

Paging is on. Every invocation of an function imsls_write_matrix
begins on a new page, and paging occurs within each invocation as is
needed.

Paging is on. The first invocation of an imsls_f_write_f_matrix func-
tion begins on a new page, and subsequent paging occurs as is needed.
Paging occurs in the second and all subsequent calls to an
imsls_f_write_matrix function only as needed.

Turn paging on and set the number of lines printed on the current page to
k lines. If k is greater than or equal to the page length, then the first invo-
cation of an imsls_write_matrix function begins on a new page. In any
case, subsequent paging occurs as is needed.

NAN_CHAR 0

1

. is printed for NaN.
A blank field is printed for NaN.

TITLE_PAGE 0

1

Title appears only on first page.
Title appears on the first page and all continuation pages.

FORMAT 0

1

2

Format is "%10.4x".
Format is "%12.6w".
Format is "%22.5e".
1797

 Printing Functions write_options
Function imsls_write_options can be invoked repeatedly before using a function
imsls_f_write_matrix to print a matrix. The matrix printing functions retrieve the values set by
imsls_write_options to determine the printing options. It is not necessary to call
imsls_write_options if a default value of a printing option is desired. The defaults are as follows:

Example
The following example illustrates the effect of imsls_write_options when printing a 3 × 4 real matrix A
with function imsls_f_write_matrix, where aij = i + j/10. The first call to imsls_write_options sets

horizontal centering so that the matrix is printed centered horizontally on the page. In the next invocation of
imsls_f_write_matrix, the left-justification option has been set by function imsls_write_options so
the matrix is left justified when printed.

#include <imsls.h>
#define NRA 4
#define NCA 3
int main()
{
 int i, j, option_value;
 float a[NRA][NCA];
 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 /* Activate centering option */
 option_value = 1;
 imsls_write_options (IMSLS_SET_CENTERING, &option_value);
 /* Write a matrix */
 imsls_f_write_matrix ("a", NRA, NCA, (float*) a,
 0);
 /* Activate left justification */
 option_value = 0;
 imsls_write_options (IMSLS_SET_CENTERING, &option_value);
 imsls_f_write_matrix ("a", NRA, NCA, (float*) a,

Keyword Default Value Meaning

CENTERING 0 left justified

ROW_WRAP 1000 lines before wrapping

PAGING −2 no paging

NAN_CHAR 0

TITLE_PAGE 0 title appears only on the first page

FORMAT 0 %10.4w
1798

 Printing Functions write_options
 0);
}

Output

 a
 1 2 3
 1 1.1 1.2 1.3
 2 2.1 2.2 2.3
 3 3.1 3.2 3.3
 4 4.1 4.2 4.3
 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3
1799

 Utilities Functions
Utilities

Functions
Set Output Files

Sets output files . output_file 1802
Gets library version and license number .version 1806

Error Handling
Error message options. error_options 1808
Gets error code .error_code 1815
Gets error type. error_type 1817
Gets error message . error_message 1818
Initializes error handling system . initialize_error_handler 1820
Stops the current algorithm and returns to the

calling program .set_user_fcn_return_flag 1823

C Runtime Library
Frees memory . free 1828
Opens a file . fopen 1830
Closes a file . fclose 1832
Reads ASCII files. ascii_read 1833

OpenMP
OpenMP options . omp_options 1852

Constants
Integer machine constants. machine (integer) 1854
Float machine constants .machine (float) 1857
Common data sets. .data_sets 1860

Mathematical Support
Matrix-vector, matrix-matrix,

vector-vector products .mat_mul_rect 1864
Rearrange elements of vector . permute_vector 1868
Interchange rows and columns of matrices . permute_matrix 1870
Locate and optionally replace dependent variable missing

values with nearest neighbor estimates . impute_missing 1873
Evaluate the binomial coefficient .binomial_coefficient 1883
Evaluate the complete beta function . beta 1885
Evaluate the real incomplete beta function . beta_incomplete 1888
1800

 Utilities Functions
Evaluate the log of the real beta function .log_beta 1890
Evaluate the real gamma function . gamma 1892
Evaluate the incomplete gamma function . gamma_incomplete 1895
Evaluate the logarithm of the absolute value

of the gamma function . log_gamma 1898
Return the number of CPU seconds used . ctime 1901
1801

 Utilities output_file
output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_output_file (

IMSLS_SET_OUTPUT_FILE, FILE *ofile,
IMSLS_GET_OUTPUT_FILE, FILE **pofile,
IMSLS_SET_ERROR_FILE, FILE *efile,
IMSLS_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments
IMSLS_SET_OUTPUT_FILE, FILE *ofile (Input)

Sets the output file to ofile.

Default: ofile = stdout
IMSLS_GET_OUTPUT_FILE, FILE **pofile (Output)

Sets the FILE pointed to by pofile to the current output file.

IMSLS_SET_ERROR_FILE, FILE *efile (Input)
Sets the error message output file to efile.

Default: efile = stderr
IMSLS_GET_ERROR_FILE, FILE **pefile (Output)

Sets the FILE pointed to by pefile to the error message output file.

Description
This function allows the file used for printing by IMSL functions to be changed.

If multiple threads are used then default settings are valid for each thread. When using threads it is possible to
set different output files for each thread by calling imsls_output_file from within each thread. See
Example 2 for more details.
1802

 Utilities output_file
Examples

Example 1

This example opens the file myfile and sets the output file to this new file. Function imsls_f_write_matrix
then writes to this file.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern int imsls_fclose(FILE* file);
int main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};
 imsls_f_write_matrix ("x (default file)", 1, 3, x,
 0);
 ofile = imsls_fopen("myfile", "w");
 imsls_output_file(IMSLS_SET_OUTPUT_FILE, ofile,
 0);
 imsls_f_write_matrix ("x (myfile)", 1, 3, x,
 0);
 imsls_fclose(ofile);
}

Output

 x (default file)
 1 2 3
 3 2 1

File myfile

x (myfile)
1 2 3
3 2 1

Example 2

This example illustrates how to direct output from IMSL routines that run in separate threads to different files.
First, two threads are created, each calling a different IMSL function, then the results are printed by calling
imsls_f_write_matrix from within each thread. Note that imsls_output_file is called from within
each thread to change the default output file.

#include <pthread.h>
1803

 Utilities output_file
#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>
void *ex1(void* arg);
void *ex2(void* arg);
extern FILE* imsls_fopen(char* filename, char* mode);
extern int imsls_fclose(FILE* file);
int main()
{
 pthread_t thread1;
 pthread_t thread2;
 /* Create two threads. */
 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 /* Wait for threads to finish. */
 if (pthread_join(thread1, NULL) != 0)
 perror("pthread_join"),exit(1);
 if (pthread_join(thread2, NULL) != 0)
 perror("pthread_join"),exit(1);
}
void *ex1(void *arg)
{
 float *rand_nums = NULL;
 FILE *file_ptr;
 /* Open a file to write the result in. */
 file_ptr = imsls_fopen("ex1.out", "w");
 /* Set the output file for this thread. */
 imsls_output_file(
 IMSLS_SET_OUTPUT_FILE, file_ptr,
 0);
 /* Compute 5 random numbers. */
 imsls_random_seed_set(12345);
 rand_nums = imsls_f_random_uniform(5,
 0);
 /* Output random numbers. */
 imsls_f_write_matrix("Random Numbers", 5, 1, rand_nums,
 0);
 if (rand_nums)
 imsls_free(rand_nums);
 imsls_fclose(file_ptr);
}
void *ex2(void *arg)
{
 int n_intervals=10;
 int n_observations=30;
 float *table;
 float x[] = {
1804

 Utilities output_file
 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05
 };
 FILE *file_ptr;
 /* Open a file to write the result in. */
 file_ptr = imsls_fopen("ex2.out", "w");
 /* Set the output file for this thread. */
 imsls_output_file(
 IMSLS_SET_OUTPUT_FILE, file_ptr,
 0);
 table = imsls_f_table_oneway (n_observations, x, n_intervals,
 0);
 imsls_f_write_matrix("counts", 1, n_intervals, table,
 0);
 if (table)
 imsls_free(table);
 imsls_fclose(file_ptr);
}

Output

The content of the file ex1.out is shown below.

Random Numbers
1 0.4919
2 0.3909
3 0.2645
4 0.1814
5 0.7546

The content of the file ex2.out is shown below.

 counts
 1 2 3 4 5 6
 4 8 5 5 3 1
 7 8 9 10
 3 0 0 1
1805

 Utilities version
version
Returns information describing the version of the library, serial number, operating system, and compiler.

Synopsis
#include <imsls.h>
char *imsls_version (Imsls_keyword code)

Required Arguments
Imsls_keyword code (Input)

Index indicating which value is to be returned. It must be IMSLS_LIBRARY_VERSION,
IMSLS_OS_VERSION, IMSLS_COMPILER_VERSION, or IMSLS_LICENSE_NUMBER.

Return Value
The requested value is returned. If code is out of range, then NULL is returned. Use imsls_free to release the
returned string.

Description
Function imsls_version returns information describing the version of the library, the version of the operat-
ing system under which it was compiled, the compiler used, and the IMSL serial number.

Example
This example prints all the values returned by imsls_version on a particular machine. The output is omitted
because the results are system dependent.

#include <imsls.h>
#include <stdio.h>
int main()
{
 char *library_version, *os_version;
 char *compiler_version, *license_number;
1806

 Utilities version
 library_version = imsls_version(IMSLS_LIBRARY_VERSION);
 os_version = imsls_version(IMSLS_OS_VERSION);
 compiler_version = imsls_version(IMSLS_COMPILER_VERSION);
 license_number = imsls_version(IMSLS_LICENSE_NUMBER);
 printf("Library version = %s\n", library_version);
 printf("OS version = %s\n", os_version);
 printf("Compiler version = %s\n", compiler_version);
 printf("Serial number = %s\n", license_number);
 return 0;
}

1807

 Utilities error_options
error_options
Sets various error handling options.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_error_options (

IMSLS_SET_PRINT, Imsls_error type, int setting,
IMSLS_SET_STOP, Imsls_error type, int setting,
IMSLS_SET_TRACEBACK, Imsls_error type, int setting,
IMSLS_FULL_TRACEBACK, int setting,
IMSLS_GET_PRINT, Imsls_error type, int *psetting,
IMSLS_GET_STOP, Imsls_error type, int *psetting,
IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting,
IMSLS_SET_ERROR_FILE, FILE *file,
IMSLS_GET_ERROR_FILE, FILE **pfile,
IMSLS_ERROR_MSG_PATH, char *path,
IMSLS_ERROR_MSG_NAME, char *name,
IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc,
0)

Optional Arguments
IMSLS_SET_PRINT, Imsls_error type, int setting (Input)

Printing of type type error messages is turned off if setting is 0; otherwise, printing is turned on.

Default: Printing turned on for IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL,
IMSLS_FATAL_IMMEDIATE, and IMSLS_WARNING_IMMEDIATE messages

IMSLS_SET_STOP, Imsls_error type, int setting (Input)
Stopping on type type error messages is turned off if setting is 0; otherwise, stopping is turned
on.

Default: Stopping turned on for IMSLS_FATAL and IMSLS_TERMINAL and
IMSLS_FATAL_IMMEDIATE messages
1808

 Utilities error_options
IMSLS_SET_TRACEBACK, Imsls_error type, int setting (Input)
Printing of a traceback on type type error messages is turned off if setting is 0; otherwise, print-
ing of the traceback turned on.

Default: Traceback turned off for all message types

IMSLS_FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if setting is 0; otherwise, internal function
names also are listed.

Default: Full traceback turned off

IMSLS_GET_PRINT, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of type type error
messages.

IMSLS_GET_STOP, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for stopping on type type error
messages.

IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of a traceback for type
type error messages.

IMSLS_SET_ERROR_FILE, FILE *file (Input)
Sets the error output file.

Default: file = stderr
IMSLS_GET_ERROR_FILE, FILE **pfile (Output)

Sets the FILE * pointed to by pfile to the error output file.

IMSLS_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-separated list of directories to be
searched for the file containing the error messages.

Default: system dependent

IMSLS_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.

Default: file = "imsls_e.bin"

IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the form void print_proc
(Imsls_error type, long code, char *function_name, char *message).
1809

 Utilities error_options
In this case, type is the error message type number (IMSLS_FATAL, etc.), code is the error mes-
sage code number (IMSLS_MAJOR_VIOLATION, etc.), function_name is the name of the
function setting the error, and message is the error message to be printed. If print_proc is NULL,
then the default error printing function is used.

Return Value
The return value is void.

Description
This function allows the error handling system to be customized.

If multiple threads are used then default settings are valid for each thread but can be altered for each individual
thread. See Example 3 and Example 4 for multithreaded examples.

Examples

Example 1

In this example, the IMSLS_TERMINAL print setting is retrieved. Next, stopping on IMSLS_TERMINAL errors
is turned off, output to standard output is redirected, and an error is deliberately caused by calling
imsls_error_options with an illegal value.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int setting;
 /* Turn off stopping on IMSLS_TERMINAL */
 /* error messages and write error */
 /* messages to standard output */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_ERROR_FILE, stdout,
 0);
 /* Call imsls_error_options() with */
 /* an illegal value */
 imsls_error_options(-1);
 /* Get setting for IMSLS_TERMINAL */
 imsls_error_options(IMSLS_GET_PRINT, IMSLS_TERMINAL, &setting,
 0);
 printf("IMSLS_TERMINAL error print setting = %d\n", setting);
}

1810

 Utilities error_options
Output

*** TERMINAL Error from imsls_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.
IMSLS_TERMINAL error print setting = 1

Example 2

In this example, IMSL’s error printing function has been substituted for the standard function. Only the first four
lines are printed below.

#include <imsls.h>
#include <stdio.h>
void print_proc(Imsls_error, long, char*, char*);
int main()
{
 /* Turn off tracebacks on IMSLS_TERMINAL */
 /* error messages and use a custom */
 /* print function */
 imsls_error_options(IMSLS_ERROR_PRINT_PROC, print_proc,
 0);
 /* Call imsls_error_options() with an */
 /* illegal value */
 imsls_error_options(-1);
}
void print_proc(Imsls_error type, long code, char *function_name,
 char *message)
{
 printf("Error message type %d\n", type);
 printf("Error code %d\n", code);
 printf("From function %s\n", function_name);
 printf("%s\n", message);
}

Output

Error message type 5
Error code 103
From function imsls_error_options
There is an error with argument number 1. This may be caused by an incorrect number
of values following a previous optional argument name.

Example 3

In this example, two threads are created and error options is called within each thread to set the error handling
options slightly different for each thread. Since we expect to generate terminal errors in each thread, we must
turn off stopping on terminal errors for each thread. See Example 4 for a similar example, using WIN32 threads.
Note since multiple threads are executing, the order of the errors output may differ on some systems.
1811

 Utilities error_options
#include <pthread.h>
#include <stdio.h>
#include <imsls.h>
void *ex1(void* arg);
void *ex2(void* arg);
int main()
{
 pthread_t thread1;
 pthread_t thread2;
 /* Create two threads. */
 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);

 /* Wait for threads to finish. */
 if (pthread_join(thread1, NULL) != 0)
 perror("pthread_join"),exit(1);
 if (pthread_join(thread2, NULL) != 0)
 perror("pthread_join"),exit(1);

}
void *ex1(void* arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0);
 res = imsls_f_beta(-1.0, .5);
}
void *ex2(void* arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSLS_TERMINAL errors.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 0);
 res = imsls_f_gamma(-1.0);
}

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+00.
Here is a traceback of the calls in reverse order.
1812

 Utilities error_options
 Error Type Error Code Routine
 ---------- ---------- -------
IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma

Example 4

In this example the WIN32 API is used to demonstrate the same functionality as shown in Example 3 above. Note
since multiple threads are executing, the order of the errors output may differ on some systems.

#include <windows.h>
#include <stdio.h>
#include <imsls.h>
DWORD WINAPI ex1(void *arg);
DWORD WINAPI ex2(void *arg);

int main(int argc, char* argv[])
{
 HANDLE thread[2];
 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);
 WaitForMultipleObjects(2, thread, TRUE, INFINITE);

}
DWORD WINAPI ex1(void *arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 0);
 res = imsls_f_beta(-1.0, .5);
 return(0);
}
DWORD WINAPI ex2(void *arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSLS_TERMINAL errors.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1,
 0);
 res = imsls_f_gamma(-1.0);
 return(0);
}

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+000 and "y" =
*** 5.000000e-001 must be greater than zero.
1813

 Utilities error_options
*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+000.
Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma USER
1814

 Utilities error_code
error_code
Gets the code corresponding to the error message from the last function called.

Synopsis
#include <imsls.h>
long imsls_error_code ()

Return Value
This function returns the error message code from the last function called. The include file imsls.h defines a name
for each error code.

Example
In this example, stopping on IMSLS_TERMINAL error messages is turned off and an error is then generated by
calling function imsls_error_options with an illegal value for IMSLS_SET_PRINT. The error message code
number is then retrieved and printed. In imsls.h, IMSLS_INTEGER_OUT_OF_RANGE is defined to be 132.

#include <imsls.h>
#include <stdio.h>
int main()
{
 long code;
 /* Turn off stopping IMSLS_TERMINAL */
 /* messages and print error messages */
 /* on standard output */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_ERROR_FILE, stdout,
 0);
 /* Call imsls_error_options() with */
 /* an illegal value */
 imsls_error_options(IMSLS_SET_PRINT, 100, 0,
 0);
 /* Get the error message code */
 code = imsls_error_code();
 printf("error code = %d\n", code);
}

1815

 Utilities error_code
Output

*** TERMINAL error from imsls_error_options. "type" must be between 1 and
*** 5, but "type" = 100.
error code = 132
1816

 Utilities error_type
error_type
Gets the type corresponding to the error message from the last function called.

Synopsis
#include <imsls.h>

Imsls_error imsls_error_type ()

Return Value
An Imsls_error enum value is returned.

Description
The Imsls_error enum type has seven values: IMSLS_NOTE, IMSLS_ALERT, IMSLS_WARNING,
IMSLS_FATAL, IMSLS_TERMINAL, IMSLS_WARNING_IMMEDIATE and IMSLS_FATAL_IMMEDIATE.
See Kinds of Errors and Default Actions for more details.

Example
See error_message for an example.
1817

 Utilities error_message
error_message
Gets the text of the error message from the last function called.

Synopsis
#include <imsls.h>
char *imsls_error_message ()

Return Value
Returns the current error message.

Description
If the current error type is positive then the last error message set is returned. It does not matter if the error mes-
sage was printed or not. The current error type is the number returned by imsls_error_type. If the current
error type is zero then NULL is returned.

The returned string can be freed using imsls_free.

Example
This example retrieves the error message from a call to imsls_f_wilcoxon_rank_sum with an illegal
argument.

#include <imsls.h>
#include <stdio.h>
int main(void)
{
 char *msg;
 float x[] = {0, 1, 2};
 float y[] = {0, 1, 2};
 float p;
 p = imsls_f_wilcoxon_rank_sum (3, x, 3, y, 0);
 msg = imsls_error_message();
 printf("type = %d\ncode = %d\nmsg = %s\n",
 imsls_error_type(), imsls_error_code(), msg);
 imsls_free(msg);
1818

 Utilities error_message
}

Output

*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.
type = 3
code = 11123
msg = At least one tie is detected between the samples.
1819

 Utilities initialize_error_handler
initialize_error_handler
Initializes the IMSL C Stat Library error handling system.

Synopsis
#include <imsls.h>
int imsls_initialize_error_handler ()

Return Value
If the initialization succeeds, zero is returned. If there is an error, a nonzero value is returned.

Description
This function is used to initialize the IMSL C Stat Library error handling system for the current thread. It is not
required, but is always allowed.

Use of this function is advised if the possibility of low heap memory exists when calling IMSL C Stat Library for the
first time in the current thread. A successful return from imsls_initialize_error_handler confirms
that the IMSL C Stat Library error handling system has been initialized and is operational. The effects of calling
imsls_initialize_error_handler are limited to the calling thread only.

If imsls_initialize_error_handler is not called and initialization of the error handling system fails, an
error message is printed to stderr, and execution is stopped.

Example
In this example, the IMSL C Stat Library error handler is initialized prior to calling multiple other IMSL C Stat
Library functions. Often this is not required, but is advised if the possibility of low heap memory exists. Even if not
required, the initialization call is always allowed.

The computations performed in this example are based on Example 1 for
imsls_f_regression_prediction.

#include <imsls.h>
#include <stdio.h>
1820

 Utilities initialize_error_handler
int main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1
 int status;
 float *y_hat, *coefficients;
 Imsls_f_regression *regression_info;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 /* Initialize the IMSL C Math Library error handler. */
 status = imsls_initialize_error_handler();
 /*
 * Verify successful error handler initialization before
 * continuing.
 */
 if (status == 0) {
 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);
 /* Generate case statistics */
 y_hat = imsls_f_regression_prediction(regression_info,
 N_OBSERVATIONS, (float*)x, 0);
 /* Print results */
 imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,
 y_hat, 0);
 } else {
 printf("Unable to initialize IMSL C Math Library error handler.\n");
 }
}

1821

 Utilities initialize_error_handler
Output

 Predicted Responses
 1 2 3 4 5 6
 78.5 72.8 106.0 89.3 95.6 105.3
 7 8 9 10 11 12
 104.1 75.7 91.7 115.6 81.8 112.3
 13
 111.7
1822

 Utilities set_user_fcn_return_flag
set_user_fcn_return_flag
Indicates a condition has occurred in a user-supplied function necessitating a return to the calling function.

Synopsis
#include <imsls.h>

void imsls_set_user_fcn_return_flag (int code)

Required Arguments
int code (Input)

A user-defined number that indicates the reason for the return from the user-supplied function.

Description
Given a certain condition in a user-supplied function, imsls_set_user_fcn_return_flag stops execut-
ing any IMSL algorithm that has called the function, and returns to the calling function or main program. On
invocation of imsls_set_user_fcn_return_flag, a flag is set in the IMSL error handler. On returning
from the user-supplied function, the error IMSLS_STOP_USER_FCN is issued with severity IMSLS_FATAL.
Typically, if you use this function, you would disable stopping on IMSL C STAT errors, thus gaining greater con-
trol in situations where you need to prematurely return from an algorithm. (See Programming Notes.)

Programming Notes
1. Since the default behavior of IMSL error handling is to stop execution on IMSLS_TERMINAL and

IMSLS_FATAL errors, execution of the main program stops when the IMSLS_STOP_USER_FCN
error message is issued unless you alter this behavior by turning stopping off using
imsls_error_options.

2. In a user-supplied function, the user is responsible for checking error conditions such as memory
allocation, return status for any function calls, valid return values, etc.

3. Use of this function is valid only if called from within a user-supplied function.
1823

 Utilities set_user_fcn_return_flag
Examples

Example 1

This example is based on imsls_f_kolmogorov_one. In this example, the user, for any hypothetical reason,
wants to stop the evaluation of the user-supplied function, cdf when x is greater 0.5.

#include <imsls.h>
#include <stdio.h>
float cdf(float);
int main()
{
 float *statistics = NULL, *diffs = NULL, *x = NULL;
 int nobs = 100, nmiss;
 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nobs, 0);
 /* Turn off stopping on IMSLS_FATAL errors. */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_FATAL, 0, 0);
 statistics = imsls_f_kolmogorov_one(cdf, nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_DIFFERENCES, &diffs,
 0);
 /* The following lines will be executed because
 stopping is turned off. */
 if (statistics) {
 printf("D = %8.4f\n", diffs[0]);
 printf("D+ = %8.4f\n", diffs[1]);
 printf("D- = %8.4f\n", diffs[2]);
 printf("Z = %8.4f\n", statistics[0]);
 printf("Prob greater D one sided = %8.4f\n", statistics[1]);
 printf("Prob greater D two sided = %8.4f\n", statistics[2]);
 printf("N missing = %d\n", nmiss);
 } else {
 printf("\"statistics\" is NULL.\n");
 }
}
float cdf(float x)
{
 float mean = .5, std = .2886751, z, result;
 /* For a hypothetical reason, stop execution when x > 0.5. */
 if (x > 0.5) {
 imsls_set_user_fcn_return_flag(1);
 return 0;
 }
 z = (x-mean)/std;
 result = imsls_f_normal_cdf(z);
1824

 Utilities set_user_fcn_return_flag
 return result;
}

Output

*** FATAL Error IMSLS_STOP_USER_FCN from imsls_f_kolmogorov_one. Request
*** from user supplied function to stop algorithm. User flag = "1".
"statistics" is NULL.

Example 2

This example is based on imsls_f_chi_squared_test, Example 3. This example demonstrates how to handle
the error condition if the user-supplied function calls a C Stat Library function. In this example, THETA is set to 0
to force an error condition in calling the imsls_f_poisson_cdf function in the user-supplied function.

#include <imsls.h>
#include <stdio.h>
#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 0.0
float user_proc_cdf(float);
int main()
{
 int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};
 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7",
 "8", "9"};
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};
 /* Turn off stopping on IMSLS_FATAL errors. */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_FATAL, 0, 0);
 imsls_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsls_random_poisson(N_NUMBERS, 5.0, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];
 chi_squared_statistics[2] =
1825

 Utilities set_user_fcn_return_flag
 imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS,
 N_CATEGORIES, x,
 IMSLS_CUTPOINTS_USER, cutpoints,
 IMSLS_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSLS_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* The following lines will be executed because
 stopping is turned off. */
 if (chi_squared_statistics[2] != chi_squared_statistics[2]) {
 printf("p-value = NaN\n");
 } else {
 imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSLS_ROW_LABELS, cell_row_labels,
 IMSLS_COL_LABELS, cell_col_labels,
 IMSLS_WRITE_FORMAT, "%9.1f",
 0);
 }
}

float user_proc_cdf(float k)
{
 float cdf_v;
 int setting;
 /* The user is responsible for checking error conditions in the
 user-supplied function, even if the user-supplied function
 is calling an IMSL function.
 For theta = 0.0 (an invalid input), imsls_f_poisson_cdf issues
 an IMSLS_TERMINAL error. Thus, stopping is turned off on
 IMSLS_TERMINAL eorror. */
 /* Get the current terminal error stopping setting which will be
 used for restoring the setting later. */
 imsls_error_options(IMSLS_GET_STOP, IMSLS_TERMINAL, &setting, 0);
 /* Disable stopping on terminal error. */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0);
 cdf_v = imsls_f_poisson_cdf ((int) k, THETA);
 /* If there is terminal error, stop and return to main. */
 if (imsls_error_type() == IMSLS_TERMINAL) {
 imsls_set_user_fcn_return_flag(1);
 return 0;
 }
 /* Restore stopping setting */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, setting, 0);
1826

 Utilities set_user_fcn_return_flag
 return cdf_v;
}

Output

*** TERMINAL Error from imsls_f_poisson_cdf. The mean of the Poisson
*** distribution, "theta" = 0.000000e+000, must be positive.

*** FATAL Error IMSLS_STOP_USER_FCN from imsls_f_chi_squared_test.
*** Request from user supplied function to stop algorithm. User
*** flag = "1".
p-value = NaN
1827

 Utilities free
free
Frees memory returned from an IMSL C Stat Library function.

Synopsis
#include <imsls.h>
void imsls_free (void *data)

Required Arguments
void *data (Input)

A pointer to data returned from an IMSL C Stat Library function.

Description
The function imsls_free frees memory using the C runtime library used by the IMSL C Stat Library for alloca-
tion. It is a wrapper around the standard C runtime function free.

Function imsls_free can always be used to free memory allocated by the IMSL C Stat Library, but is required if
an application has linked to multiple copies of the C runtime library, with each copy having its own set of heap
allocation structures. In this situation, using the C runtime function free can result in memory being allocated
with one copy of the C runtime library and freed with a different copy, which may cause abnormal termination.
Using imsls_free ensures that the same C runtime library is used for both allocation and freeing.

Example
This example computes a set of random numbers, prints them, and then frees the array returned from the ran-
dom number generation function.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int seed = 123457;

Note that imsls_free should be used only to free memory that was allocated by IMSL C Stat Library.
1828

 Utilities free
 int n_random = 5;
 float *r;

 imsls_random_seed_set (seed);
 r = imsls_f_random_normal(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
 imsls_free(r);
}

Output

Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145
1829

 Utilities fopen
fopen
Opens a file using the C runtime library used by the IMSL C Stat Library.

Synopsis
#include <imsls.h>
#include <stdio.h>
FILE *imsls_fopen (char *filename, char *mode)

Required Arguments
char *filename (Input)

The name of the file to be opened.

char *mode (Input)
The type of access to be permitted to the file. This string is passed to the C runtime function fopen,
which determines the valid mode values.

Return Value
A pointer to the file structure, FILE, defined in stdio.h. To close the file, use imsls_fclose.

Description
The function imsls_fopen opens a file using the C runtime library used by the IMSL C Stat Library. It is a wrap-
per around the standard C runtime function fopen.

Function imsls_fopen can always be used to open a file which will be used by the IMSL C Stat Library, but is
required if an application has linked to multiple copies of the C runtime library, with each copy having its own set
of file instructions. In this situation, using the C runtime function fopen can result in a file being opened with one
copy of the C runtime library and reading or writing to it with a different copy, which may cause abnormal behav-
1830

 Utilities fopen
ior or termination. Using imsls_fopen ensures that the same C runtime library is used for both the open
operation and reading and writing within an IMSL C Stat Library function to which the file pointer has been
passed as an input argument.

Example
This example writes a matrix to the file matrix.txt. The function imsls_fopen is used to open a file. This
function returns a file pointer, which is passed to imsls_output_file. The matrix is written by
imsls_f_write_matrix, which uses the file pointer from imsls_output_file. The function
imsls_fclose is then used to close the file.

#include <imsls.h>
#include <stdio.h>
extern FILE* imsls_fopen(char* filename, char* mode);
extern void imsls_fclose(FILE* file);
int main()
{
 FILE *file;
 float a[] = {
 1.1, 2.4, 3.6,
 4.3, 5.1, 6.7,
 7.2, 8.9, 9.3
 };
 file = imsls_fopen("matrix.txt", "w");

 imsls_output_file(IMSLS_SET_OUTPUT_FILE, file,
 0);
 imsls_f_write_matrix("Matrix written matrix.txt",
 3, 3, a, 0);
 imsls_fclose(file);
}

Output

The content below is stored in the matrix.txt file.
 Matrix written to matrix.txt
 1 2 3
1 1.1 2.4 3.6
2 4.3 5.1 6.7
3 7.2 8.9 9.3

Note: The function imsls_fopen should only be used to open a file whose file pointer will be input to an
IMSL C Stat Library function. Use imsls_fclose to close files opened with imsls_fopen.

Note: This function is not prototyped in imsls.h. This is to avoid including stdio.h within imsls.h. An
extern declaration should be explicitly used to assure compatibility with linkers.
1831

 Utilities fclose
fclose
Closes a file opened by imsls_fopen.

Synopsis
#include <imsls.h>
#include <stdio.h>
int imsls_fclose (FILE *file)

Required Arguments
FILE *file (Input/Output)

A file pointer returned from imsls_fopen.

Return Value
The return value is zero if the file is successfully closed. If there is an error, EOF is returned. EOF is defined in
stdio.h.

Description
The function imsls_fclose is a wrapper around the standard C runtime function fclose. It is used to close
files opened with imsls_fopen.

Example
See imsls_fopen for an example of its use.

Note: The function imsls_fopen should only be used to open a file whose file pointer will be input to an
IMSL C Stat Library function. Use imsls_fclose to close files opened with imsls_fopen.

Note: This function is not prototyped in imsls.h. This is to avoid including stdio.h within imsls.h. An
extern declaration should be explicitly used to assure compatibility with linkers.
1832

 Utilities ascii_read
ascii_read
Reads freely-formatted ASCII files.

Synopsis
#include <imsls.h>
int imsls_ascii_read (char *filename, …, 0)

Required Arguments
char *filename (Input)

A string containing the pathname and filename of the file containing the data.

Return Value
The return value is the status of the read operation. The return value is set to 0 for success and 1 for failure.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_ascii_read (char *filename,

IMSLS_SHORT, long *n_vals, short **var,
IMSLS_SHORT_USER, long *n_vals, short var[],
IMSLS_INT, long *n_vals, int **var,
IMSLS_INT_USER, long *n_vals, int var[],
IMSLS_LONG, long *n_vals, long **var,
IMSLS_LONG_USER, long *n_vals, long var[],
IMSLS_FLOAT, long *n_vals, float **var,
IMSLS_FLOAT_USER, long *n_vals, float var[],
IMSLS_DOUBLE, long *n_vals, double **var,

NOTE: In addition to filename, at least one data type, array length, and array name triplet optional argu-
ment is required. A Terminal error will be issued when the triplet is missing. See Optional Arguments for
more information.
1833

 Utilities ascii_read
IMSLS_DOUBLE_USER, long *n_vals, double var[],
IMSLS_CHAR, long *n_vals, char **var,
IMSLS_CHAR_USER, long *n_vals, char var[][],
IMSLS_DATETIME, long *n_vals, struct tm**var,
IMSLS_DATETIME_USER, long *n_vals, struct tmvar[],
IMSLS_TIME_VAL, long *n_vals, Imsls_time_val **var,
IMSLS_TIME_VAL_USER, long *n_vals, Imsls_time_val var[],
IMSLS_COLUMNS, or
IMSLS_ROWS,
IMSLS_DELIM, int n_delimiters, char delimiters[],
IMSLS_DATETIME_FORMAT, int n_formats, int datetime_format[],
IMSLS_FILTERS, int n_filters, char filters[],
IMSLS_COLUMN_INDEX, int n_columns, int columns[],
IMSLS_IGNORE, int n_ignore, char *ignore[],
IMSLS_IGNORE_BAD_DATETIME,
IMSLS_REPLACEMENT_NUMBERS, int n_repl_nums, char *miss_vals[],

float repl_nums[],
IMSLS_REPLACEMENT_STRINGS, int n_repl_strs,

char *miss_vals[],char *repl_strs[],
IMSLS_NRECS, int n_recs,
IMSLS_NSKIP, int n_skip,
IMSLS_VALS_PER_REC, int vals_per_rec,
IMSLS_NO_BINARY_CHECK,
IMSLS_ALLOW_CHARS, int n_allow, char allow_chars[],

0)

Optional Arguments
IMSLS_SHORT, long *n_vals, short **var (Output)

IMSLS_INT, long *n_vals, int **var (Output)

IMSLS_LONG, long *n_vals, long **var (Output)

IMSLS_FLOAT, long *n_vals, float **var (Output)

IMSLS_DOUBLE, long *n_vals, double **var (Output)

IMSLS_CHAR, long *n_vals, char **var (Output)

IMSLS_DATETIME, long *n_vals, struct tm **var (Output)
1834

 Utilities ascii_read
IMSLS_TIME_VAL, long *n_vals, Imsls_time_val **var (Output)

The above optional argument triplets are used to read data from an ASCII file. Each optional argu-
ment is a comma-separated list of data type, array length, and array name describing the output
variable to read from filename. At least one triplet is required. In each of the above cases,
n_vals is output only and is the number of elements read.

IMSLS_SHORT_USER, long *n_vals, short var[] (Output)

IMSLS_INT_USER, long *n_val, int var[] (Output)

IMSLS_LONG_USER, long *n_vals, long var[] (Output)

IMSLS_FLOAT_USER, long *n_vals, float var[] (Output)

IMSLS_DOUBLE_USER, long *n_vals, double var[] (Output)

IMSLS_CHAR_USER, long *n_vals, char var[][] (Output)

IMSLS_DATETIME_USER, long *n_vals, struct tm var[] (Output)

IMSLS_TIME_VAL_USER, long *n_vals, Imsls_time_val var[] (Output)
The above optional argument triplets allow users to provide storage for variables to be read from an
ASCII file. In each of the above cases, n_vals is the length of var on input and is the number of ele-
ments read on output.

IMSLS_COLUMNS, (Input)

or

IMSLS_ROWS, (Input)
Specifies the file format organization. IMSLS_COLUMNS indicates that the data is column-oriented
(processing of the file is done reading down columns in the file). IMSLS_ROWS indicates that the
data is row-oriented (processing of the file is done reading left to right).

Default: It is assumed that the data is column-oriented.

IMSLS_DELIM, int n_delimiters, char delimiters[] (Input)
An array of length n_delimiters containing single-character field delimiters used to delineate col-
umns or rows in the data file. If character fields contain delimiter characters, the string will be
interpreted as more than one string, and the data in the file will not match the variable list. Use the
decimal value 9 or “\t” to identify the TAB character.

Default: A comma - or space- delimited file is assumed.

NOTE: As many as 1024 variables can be read from an input data file. Optional arguments may be
repeated to read the same type of data from multiple columns.
1835

 Utilities ascii_read
IMSLS_DATETIME_FORMAT, int n_formats, int datetime_format[] (Input)
An array of length n_formats containing the date and time formats to be used for interpreting
date or time data within the file. A single value is used for each datetime_format variable. Based
on the data within the file, positive datetime_format numbers refer to date formats; negative
datetime_format numbers refer to time formats. For a table of valid date and time formats see
the discussion in the Description and Example 5.

Default: It is assumed that the data is in neither date nor time format.

IMSLS_FILTERS, int n_filters, char filters[] (Input)
An array of length n_filters containing the one-character strings that imsls_ascii_read
should check and filter out as it reads the data. Any character found on the keyboard can be used.
For example, to filter characters “,” and “;” specify

 int n_filters = 2;

 char filters[] = {',', ';'};

A special character not found on the keyboard is specified by ASCII code.

Default: Nothing is filtered out.

IMSLS_COLUMN_INDEX, int n_columns, int columns[] (Input)
An array of length n_columns containing integers indicating column numbers to read from the file.
IMSLS_COLUMN_INDEX defines an array of column numbers (starting with the first column as col-
umn 1) that corresponds with data type variable name pairs supplied in the optional argument. For
example, if an array, columns=[5, 1, 3], is supplied with the list of variables a1, a2, a3, then the
values in the IMSLS_COLUMN_INDEX array are automatically sorted before reading the columns,
resulting in a1 = column #1, a2 = column #3, a3 = column #5.

Default: All columns are read.

IMSLS_IGNORE, int n_ignore, char *ignore[] (Input)
An array of length n_ignore containing strings to be ignored. If any of these strings are encoun-
tered, imsls_ascii_read skips the entire line and starts reading data from the next line. Any
character is allowed. For example, to skip lines containing either of the character strings “abc” or
“def” specify

int n_ignore = 2;
char *ignore[] = {“abc”, “def”};

Adding the special string $BAD_DATE_TIME in the ignore array has the effect of skipping lines
where invalid date/time data is found.

Default: Nothing is ignored.
1836

 Utilities ascii_read
IMSLS_IGNORE_BAD_DATETIME, (Input)
Skip lines where invalid date/time data is found.

Default: Do not ignore invalid date/time data.

IMSLS_REPLACEMENT_NUMBERS, int n_repl_nums, char *miss_vals[], float repl_nums[]
(Input)
n_repl_nums is the length of arrays miss_vals and repl_nums. miss_vals contains
strings representing missing data in the file. Each value in the repl_nums array corresponds to a
string in the miss_vals array. As the input data file is read, occurrences of values that match those
in miss_vals are replaced by the corresponding element of repl_nums for numerical output. If
the output variable is of type IMSLS_CHAR, repl_nums is ignored. See Example 3.

Default: Nothing is replaced.

IMSLS_REPLACEMENT_STRINGS, int n_repl_strs, char *miss_vals[], char *repl_strs[]
(Input)
n_repl_strs is the length of arrays miss_vals and repl_strs. miss_vals contains
strings representing missing data in the file. Each of the strings in repl_strs corresponds to a
string in the miss_vals array. As the input data file is read, occurrences of strings that match those
in miss_vals are replaced by the corresponding string in repl_strs for IMSLS_CHAR output.
If the output variable is not of type IMSLS_CHAR, repl_strs is ignored. See Example 8.

Default: Nothing is replaced.

IMSLS_NRECS, int n_recs (Input)
Number of records to read for row or column oriented data. If n_recs is not provided or is set to
zero (0), the entire file is read. For more information about records, see the Physical Records versus
Logical Records topic in Description.

Default: n_recs = 0.

IMSLS_NSKIP, int n_skip (Input)
Number of physical records in the file to skip before data is read. If n_skip is not provided or is set
to zero (0), no records are skipped.

Default: n_skip = 0.

IMSLS_VALS_PER_REC, int vals_per_rec (Input)
An integer that specifies how many values comprise a single record in the input data file. If not pro-
vided, each line of data in the file is treated as a new record. See Example 4.

Default: vals_per_rec = 0.

NOTE: IMSLS_REPLACEMENT_NUMBERS and IMSLS_REPLACEMENT_STRINGS may be used simultaneously
when reading data written into output variables of mixed types such as IMSLS_CHAR and IMSLS_INT.
1837

 Utilities ascii_read
IMSLS_NO_BINARY_CHECK (Input)
ASCII decimal or hex values 0 to 127 are allowed. If binary characters above the 127 decimal value
are found, the file is considered binary and reading is terminated. If IMSLS_NO_BINARY_CHECK is
specified, the check for binary characters is omitted.

Default: A check for binary characters is performed.

IMSLS_ALLOW_CHARS, int n_allow, char allow_chars[] (Input)
allow_chars is an array of length n_allow, containing the octal representation of ASCII values
outside of the 0 to 127 decimal range preceded with a backwards slash. Characters specified in
allow_chars are treated as ASCII characters instead of binary characters. For example, to allow
imsls_ascii_read to accept characters 130 and 150 (octal values 202 and 226), set the
allow_chars array as follows:

char allow_chars[2] = {"\202\226"};

Default: Binary characters are not allowed.

Description
Function imsls_ascii_read is adept at reading both row-oriented and column-oriented data files. The
steps that imsls_ascii_read performs when reading a file include:

1. Open the file.

2. Assign the file a file descriptor.

3. Compose a format string that describes the organization of the data.

4. Close the file when reading of the data has been completed.

imsls_ascii_read needs to know which delimiters to expect in the file; comma and space are the default
delimiters. imsls_ascii_read easily reads data values separated by any combination of commas and spaces
or any other delimiters one explicitly defines using IMSLS_DELIM.

If neither IMSLS_ROWS nor IMSLS_COLUMNS is provided, the file is assumed to be organized by columns.

Physical Records versus Logical Records

In an ASCII text file, the end-of-line is signified by the presence of either a CTRL-J (linefeed) or a CTRL-M (return)
character, and a record extends from one end-of-line character to the next. However, there are actually two kinds
of records; physical records and logical records.
1838

 Utilities ascii_read
For column-oriented files, the amount of data in a physical record is often sufficient to provide exactly one value
for each element in the data array, and then it is a logical record, as well. For row-oriented files, the concept of
logical records is not relevant, since data is read as contiguous values separated by delimiters, and the
end-of-line is interpreted as another delimiter.

Changing the Logical Record Size

IMSLS_VALS_PER_REC can be used to explicitly define a different logical record size; In most cases, this
optional argument does not need to be provided. For an example of how to use IMSLS_VALS_PER_REC, see
Example 4.

Filtering and Substitution While Reading Data

IMSLS_FILTERS can be used to filter certain characters from the data as it is read. Each character (or
sequence of digits that represents the ASCII code for a character) must be enclosed with single quotes. For exam-
ple, either of the following is a valid specification:

‘,’ or ‘44’

Furthermore, the two specifications shown above are equivalent to one another. For an example of using filters,
see Example 4.

Characters that match one of the values in filters are treated as if they are not present; in other words, these
characters are not treated as data and do not contribute to the size of the logical record, if one has been defined
using IMSLS_VALS_PER_REC.

NOTE: IMSLS_NRECS counts by logical records, if IMSLS_VALS_PER_REC has been defined.
IMSLS_NSKIP, on the other hand, counts by physical records, regardless of any logical record size that
has been defined.

NOTE: By default, imsls_ascii_read considers the physical record to be one line in the file, and the
concept of a logical record is not needed. When using logical records, the physical records in the file must
all contain the same number of values. IMSLS_VALS_PER_REC can be specified only with column-ori-
ented data files.

NOTE: Do not filter characters that are used as delimiters. The delimiters enable imsls_ascii_read to
discern where one data value ends and another one begins.

NOTE: IMSLS_IGNORE can be used to supply multi-character strings instead of individual characters.
However, a character that matches filters is simply discarded, and filtering resumes from that point, while
a string that matches ignore causes that entire line to be skipped.
1839

 Utilities ascii_read
When reading a data file that contains a value such as #$*10.00**, and it is preferred that the entire line be
skipped, filter the characters individually with filters = [‘#’,’$’,’*’] instead of collectively with
ignore = [‘#$*’,’**’].

Delimiters in the Input File

Values in the file can be separated by commas, spaces, and any other delimiter characters specified with
IMSLS_DELIM. Characters not specified with IMSLS_DELIM are treated as data and type conversion is
attempted. If type conversion is not possible, imsls_ascii_read results in a terminal error.

Reading Row-Oriented Files

When reading row-oriented data (IMSLS_ROWS) provide only a single data triplet. The file is read using the
delimiter (or the default delimiters if IMSLS_DELIM is omitted) to return an array of length n, where n is the
number of values in the file. Providing IMSLS_NRECS allows the control of how many rows (lines) in the file are
transferred into the returned array.

Using IMSLS_ROWS and a single data triplet is an easy way to read the entire content of the file and the result is
a single array of data that contains all valid data found within the file.

Reading Column-Oriented Files

When IMSLS_COLUMNS is used, imsls_ascii_read views the data file as a series of columns with a one-to-
one correspondence between columns in the file and variables. For example, for a file containing three columns
of data values and with three output arrays defined as var1, var2, and var3; the values from the first record
of the file will be transferred to var1[0], var2[0], and var3[0]. The three values from the second record of
the file will be transferred to var1[1], var2[1], and var3[1], and so forth, until all of the data in the file has
been read. The exception is if IMSLS_NRECS is provided in which case transfer of data stops when
imsls_ascii_read reaches the number of records to be read.

The length of the individual output arrays is specified by n_vals.

NOTE: Date and time data, such as months, days, hours, and minutes, may only contain the separation
characters slash (/), colon (:), hyphen (-), and comma (,). These four characters may not be used as delim-
iters for data containing dates and times.
1840

 Utilities ascii_read
Date and Time Formats

IMSLS_DATETIME_FORMAT is used to describe the format of the input string data by specifying a format to
use as the data is read. These formats are:

The abbreviations used in the format descriptions in Table 54 are:

Table 54 – Date/Time Formats

datetime_format[i] Date Format Time Format

–1 NA HH*MnMn*SS[.SSSS]
–2 NA HHMnMn
1 MM*DD*YY[YY] NA
2 DD*MM*YY[YY] NA
3 ddd*YY[YY] NA
4 DD*mmm[mmmmmm]*YY[YY] NA
5 [YY]YY*MM*DD NA
6 MM*DD*YY[YY] HH*MnMn*SS[.SSSS]
7 MM*DD*YY[YY] HHMnMn
8 DD*MM*YY[YY] HH*MnMn*SS[.SSSS]
9 DD*MM*YY[YY] HHMnMn
10 ddd*YY[YY] HH*MnMn*SS[.SSSS]
11 ddd*YY[YY] HHMnMn
12 DD*mmm[mmmmmm]*YY[YY] HH*MnMn*SS[.SSSS]
13 DD*mmm[mmmmmm]*YY[YY] HHMnMn
14 [YY]YY*MM*DD HH*MnMn*SS[.SSSS]
15 [YY]YY*MM*DD HHMnMn

Abbreviations Description

MM The numerical month. The month does
not need to occupy two spaces. For
example, you can enter a 1 for the
month of January.

DD The numerical day of the month. The
day does not need to occupy two
spaces. For example, for May 5, the
numerical day can be 5.

[YY]YY The numerical year. For example, 1992
can be entered as 92 or 1992.
1841

 Utilities ascii_read
imsls_ascii_read supports two time value structures. The standard struct tm C type is obtained with
optional argument IMSLS_DATETIME. A time structure that includes a Julian value is accessible with optional
argument IMSLS_TIME_VAL. A description of IMSLS_TIME_VAL follows.

Imsls_time_val

imsls_ascii_read uses the structure Imsls_time_val, provided in the standard header <imsls.h>, to rep-
resent an Imsls_time_val variable and is declared as follows:

struct Imsls_time_val {
 short year;
 unsigned char month;
 unsigned char day;
 unsigned char hour;
 unsigned char minute;
 float second ;
 double julian_dt;
 unsigned char recalc;
};

Ddd The numerical day of the year. The day
does not need to occupy three spaces.
For example, February 1 is 32.

mmm[mmmmmm] The full name of the month or its three
character abbreviation.

* Represents a delimiter that separates
the different fields of
datetime_format data. The valid
datetime_format delimiters can be a
slash (/), a colon (:), a hyphen (–), period
(.), or a comma (,).

HH The numerical hour based on a 24-hour
clock. For example, 14 is 2 o’clock in the
afternoon. For the –1 format, both
spaces do not need to be occupied.
However, the −2 format requires that
both spaces be occupied. For example,
1:00 in the morning must be entered as
01.

Mn The number of minutes in the hour. For
the –1 format, both spaces do not need
to be occupied. However, the –2 format
requires that both spaces be occupied.
For example, 6 minutes must be
entered as 06.

SS[.SSS] The number of seconds in the minute. A
decimal part of a second is optional.

Abbreviations Description
1842

 Utilities ascii_read
Examples

Example 1

The data file shown below is a freely-formatted ASCII file named monotonic.dat:

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

To read the entire contents of the file into a single array, the simplest approach is:

#include <imsls.h>
int main()
{
 int status;
 float *var;
 long n_vals;
 status = imsls_ascii_read("monotonic.dat",
 IMSLS_FLOAT, &n_vals, &var,
 IMSLS_ROWS,
 0);
 imsls_f_write_matrix("var", 1, (int) n_vals, var, 0);
}

Output

 var
 1 2 3 4 5 6
 1 2 3 4 5 6
 7 8 9 10 11 12
 7 8 9 10 11 12
 13 14 15 16 17 18
 13 14 15 16 17 18
 19 20
 19 20

Example 2

Using the same data file (monotonic.dat), our goal in this example is to read only the second and fourth col-
umn of data from the file. This time we use the default column-organized format. The code is:

#include <imsls.h>
int main()
{

 int i, status, getcols[2] = {2, 4};
1843

 Utilities ascii_read
 int *var1, *var2;
 long n_vals1, n_vals2;
 status = imsls_ascii_read("monotonic.dat",

 IMSLS_INT, &n_vals1, &var1,
 IMSLS_INT, &n_vals2, &var2,
 IMSLS_COLUMN_INDEX, 2, getcols,
0);

 imsls_i_write_matrix("var1", 1, (int) n_vals1, var1, 0);
 imsls_i_write_matrix("var2", 1, (int) n_vals2, var2, 0);

}

Output

 var1
 1 2 3 4
 2 7 12 17

 var2
 1 2 3 4
 4 9 14 19

Example 3

The data file shown below is a freely-formatted ASCII file named intake.dat:

 151-182-BADX-214-515
 316-197-BADY-199-206

This example replaces “BADX” and “BADY” with float type numbers -9999.0 and 9999.0, respectively.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int status, i;
 long n_vals, *var;
 char *miss_vals[] = {"BADX", "BADY"}, delimiters[] = "-";
 float repl_nums[] = {-9999.0, 9999.0};
 status = imsls_ascii_read("intake.dat",
 IMSLS_LONG, &n_vals, &var,
 IMSLS_REPLACEMENT_NUMBERS, 2, miss_vals, repl_nums,
 IMSLS_ROWS,
 IMSLS_DELIM, 1, delimiters,
 0);
 for (i = 0; i < n_vals; i++)
 printf("var[%d] = %ld\n", i, var[i]);
}

1844

 Utilities ascii_read
Output

var[0] = 151
var[1] = 182
var[2] = -9999
var[3] = 214
var[4] = 515
var[5] = 316
var[6] = 197
var[7] = 9999
var[8] = 199
var[9] = 206

Example 4

The data file shown below is a freely-formatted ASCII file named level.dat. This data file uses the semicolon (;)
and the slash (/) as delimiters, and the comma (,) to separate the thousands digit from the hundreds digit. This file
has three logical records on every line; at the end of each logical record is a slash:

 5,992;17,121/8,348;17,562/5,672;19,451/
 5,459;18,659/7,088;17,052/8,541;13,437/
 6,362;15,894/8,992;17,509/7,785;14,796/

Optional argument IMSLS_FILTERS is provided to filter the commas out of the data.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int status, i;
 long n_vals1, n_vals2, *gap, *bar;
 char delimiters[] = ";/", filter[] = {','};
 status = imsls_ascii_read("level.dat",
 IMSLS_LONG, &n_vals1, &gap,
 IMSLS_LONG, &n_vals2, &bar,
 IMSLS_COLUMNS,
 IMSLS_DELIM, 2, delimiters,
 IMSLS_FILTERS, 1, filter,
 IMSLS_VALS_PER_REC, 2,
 0);
 for (i = 0; i < n_vals1; i++)
 printf("gap[%d] = %ld\n", i, gap[i]);
 printf("\n");
 for (i = 0; i < n_vals2; i++)
 printf("bar[%d] = %ld\n", i, bar[i]);
}

1845

 Utilities ascii_read
Output

gap[0] = 5992
gap[1] = 8348
gap[2] = 5672
gap[3] = 5459
gap[4] = 7088
gap[5] = 8541
gap[6] = 6362
gap[7] = 8992
gap[8] = 7785
bar[0] = 17121
bar[1] = 17562
bar[2] = 19451
bar[3] = 18659
bar[4] = 17052
bar[5] = 13437
bar[6] = 15894
bar[7] = 17509
bar[8] = 14796

Example 5

Assume that you have a file, events.dat, that contains some data values and also some chronological infor-
mation about when those data values were recorded:

 01/01/92 5:45:12 10 01-01-92 3276
 02/01/92 10:10:10 15.89 06-15-91 99
 05/15/91 2:02:02 14.2 12-25-92 876

The date/time formats used to transfer this data have the following definitions:

 Format Number = 6— MM*DD*YY (* = any delimiter) HH*MM*SS (* = any delimiter)

 Format Number = 1— MM*DD*YY (* = any delimiter)

To read the date and time from the first and third column into Imsls_ time_val variable and read the fourth column
of floating point data into another variable:

#include <imsls.h>
#include <stdio.h>
int main()
{

 int status, j, datetimeformat[1] = {6};
 long n_vals1, n_vals2;
 float *var;
 char delimiters[] = " ";
 Imsls_time_val *date;
 status = imsls_ascii_read("events.dat",

IMSLS_TIME_VAL, &n_vals1, &date,
 IMSLS_FLOAT, &n_vals2, &var,
 IMSLS_DATETIME_FORMAT, 1, datetimeformat,
1846

 Utilities ascii_read
 IMSLS_DELIM, 1, delimiters,
0);

 imsls_f_write_matrix("var", 1, (int) n_vals2, var, 0);
 printf("\n");
 for (j=0; j<n_vals1; j++){

 printf("var[%d] year: %d\n", j, date[j].year);
 printf("date[%d].month: %d\n", j, date[j].month);
 printf("date[%d].day: %d\n", j, date[j].day);
 printf("date[%d]a.hour: %d\n", j, date[j].hour);
 printf("date[%d].minute: %d\n", j, date[j].minute);
 printf("date[%d].second: %f\n\n", j, date[j].second);

 }
}

Output

var
 1 2 3

 10.00 15.89 14.20
var[0] year: 1992
date[0].month: 1
date[0].day: 1
date[0]a.hour: 5
date[0].minute: 45
date[0].second: 12.000000
var[1] year: 1992
date[1].month: 2
date[1].day: 1
date[1]a.hour: 10
date[1].minute: 10
date[1].second: 10.000000
var[2] year: 1991
date[2].month: 5
date[2].day: 15
date[2]a.hour: 2
date[2].minute: 2
date[2].second: 2.000000

Example 6

To read the first, third, and fourth columns of events.dat, define an integer array and a second
Imsls_time_val variable, and change the call to imsls_ascii_read as shown below.

Notice there are two different date/time formats for column 1 and column 3 in the events.dat file. For column
1, format 6 is used to read the date data into date1. For column 3, format 1 is used to read date data into
date2. In the case where the date/time format is the same for all columns, provide only one date/time format to
be reused by all columns.
1847

 Utilities ascii_read
#include <imsls.h>
#include <stdio.h>
int main()
{
 int status, j, *calib, datetimeformat[2] = {6, 1},
 getcolumns[4] = {1, 3, 4};
 long n_vals1, n_vals2, n_vals3;
 char delimiters[] = " ";
 char* ignore[] = {"$BAD_DATE_TIME"};
 Imsls_time_val *date1, *date2;
 status = imsls_ascii_read("events.dat",
 IMSLS_TIME_VAL, &n_vals1, &date1,
 IMSLS_TIME_VAL, &n_vals2, &date2,
 IMSLS_INT, &n_vals3, &calib,
 IMSLS_DELIM, 1, delimiters,
 IMSLS_COLUMN_INDEX, 3, getcolumns,
 IMSLS_DATETIME_FORMAT, 2, datetimeformat,
 0);
 for (j=0; j<n_vals1; j++){
 printf("date1[%d] year: %d\n", j, date1[j].year);
 printf("date1[%d].month: %d\n", j, date1[j].month);
 printf("date1[%d].day: %d\n", j, date1[j].day);
 printf("date1[%d].hour: %d\n", j, date1[j].hour);
 printf("date1[%d].minute: %d\n", j, date1[j].minute);
 printf("date1[%d].second: %f\n\n", j, date1[j].second);
 }
 for (j=0; j<n_vals2; j++){
 printf("date2[%d] year: %d\n", j, date2[j].year);
 printf("date2[%d].month: %d\n", j, date2[j].month);
 printf("date2[%d].day: %d\n", j, date2[j].day);
 printf("date2[%d].hour: %d\n", j, date2[j].hour);
 printf("date2[%d].minute: %d\n", j, date2[j].minute);
 printf("date2[%d].second: %f\n\n", j, date2[j].second);
 }
 imsls_i_write_matrix("calib", 1, (int) n_vals3, calib, 0);
}

Output

date1[0] year: 1992
date1[0].month: 1
date1[0].day: 1
date1[0].hour: 5
date1[0].minute: 45
date1[0].second: 12.000000
date1[1] year: 1992
date1[1].month: 2
date1[1].day: 1
date1[1].hour: 10
date1[1].minute: 10
date1[1].second: 10.000000
1848

 Utilities ascii_read
date1[2] year: 1991
date1[2].month: 5
date1[2].day: 15
date1[2].hour: 2
date1[2].minute: 2
date1[2].second: 2.000000
date2[0] year: 1992
date2[0].month: 1
date2[0].day: 1
date2[0].hour: 0
date2[0].minute: 0
date2[0].second: 0.000000
date2[1] year: 1991
date2[1].month: 6
date2[1].day: 15
date2[1].hour: 0
date2[1].minute: 0
date2[1].second: 0.000000
date2[2] year: 1992
date2[2].month: 12
date2[2].day: 25
date2[2].hour: 0
date2[2].minute: 0
date2[2].second: 0.000000

 calib
 1 2 3
3276 99 876

Example 7

The following data file is a freely-formatted ASCII file named num.dat in which a value is missing:

 0,1,,3,4
 5,6,7,8,9

The missing value is replaced with 99.0.

#include <imsls.h>
int main()
{
 int status, *var, getcol[1] = {3};
 long n_vals;
 char *miss_str[] = {""};
 float repl_nums[] = {99.0};
 status = imsls_ascii_read("num.dat",
 IMSLS_INT, &n_vals, &var,
 IMSLS_COLUMN_INDEX, 1, getcol,
 IMSLS_REPLACEMENT_NUMBERS, 1, miss_str, repl_nums,
 0);
1849

 Utilities ascii_read
 imsls_i_write_matrix("var", 1, (int) n_vals, var, 0);
}

Output

 var
 1 2
99 7

Example 8

The data file shown below is a freely-formatted ASCII file named char.dat:

 a,b,c,d
 e,BAD,g,h

The string GOOD is substituted for the missing value represented as BAD.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int status, i, getcol[1] = {2};
 long n_vals;
 char *miss_val[] = {"BAD"}, *rep_str[] = {"GOOD"}, **var;
 status = imsls_ascii_read("char.dat",
 IMSLS_CHAR, &n_vals, &var,
 IMSLS_COLUMN_INDEX, 1, getcol,
 IMSLS_REPLACEMENT_STRINGS, 1, miss_val, rep_str,
 0);
 for(i=0; i<n_vals; i++)
 printf("var[%d] = %s\n", i, var[i]);
}

Output

var[0] = b
var[1] = GOOD

Example 9

The data file shown below is a freely-formatted ASCII file named chemicals.dat:

 Elemental Carbon
 Sulfate
 Benzo[e]pyrene
 Indeno[1,2,3-cd]pyrene
 n-Heptadecanoic acid
1850

 Utilities ascii_read
Note that the first and fourth lines contain a space and commas respectively. Since the default delimiters are
comma and space, in order to read the first and fourth lines of the data as single entities, a delimiter which does
not occur as a character in the data file must be specified using IMSLS_DELIM. For this example, we know that
there are no TAB characters, so TAB is specified as the delimiter (ASCII byte value 9 specified as a hex value). How-
ever, another single character could be specified, such as ‘$’ or ‘Q’.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int status,i;
 long n_vals;
 char **var, delimiters[] = {"\x9"};
 status = imsls_ascii_read("chemicals.dat",
 IMSLS_CHAR, &n_vals, &var,
 IMSLS_ROWS,
 IMSLS_DELIM, 1, delimiters,
 0);
 for (i=0; i<n_vals; i++)
 printf("var[%d] = %s\n", i, var[i]);
}

Output

var[0] = Elemental Carbon
var[1] = Sulfate
var[2] = Benzo[e]pyrene
var[3] = Indeno[1,2,3-cd]pyrene
var[4] = n-Heptadecanoic acid

Warning Errors
IMSLS_M_INVALID_BINARY_CHAR A binary character may have been detected.
1851

 Utilities omp_options
omp_options
Sets various OpenMP options.

Synopsis
#include <imsls.h>
void imsls_omp_options(…, 0)

Return Value
The return value for this function is void.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_omp_options

(IMSLS_SET_FUNCTIONS_THREAD_SAFE, int setting, (Input)
IMSLS_GET_FUNCTIONS_THREAD_SAFE, int *psetting, (Output)
0)

Optional Arguments
IMSLS_SET_FUNCTIONS_THREAD_SAFE, int setting (Input)

If nonzero, user supplied functions are assumed to be thread-safe. This allows user functions to be
evaluated in parallel with different arguments.

Default: User supplied functions are not assumed to be thread-safe and will not be evaluated in par-
allel by IMSL C Stat Library functions.

IMSLS_GET_FUNCTIONS_THREAD_SAFE, int *psetting (Output)
Sets the integer pointed to by psetting to zero if user functions are not assumed to be thread-
safe and to one if they are assumed to be thread-safe.
1852

 Utilities omp_options
Description
The performance of some IMSL C Stat Library functions can be improved if they evaluate user supplied functions
in parallel. Unfortunately, incorrect results can occur if the user supplied functions are not thread-safe. By default,
the IMSL C Stat Library assumes user supplied functions are not thread-safe and thus will not evaluate them in
parallel. To change this assumption, use the optional argument IMSLS_SET_FUNCTIONS_THREAD_SAFE
with its argument equal to one.

This function can be used multiple times in an application to change the thread-safe assumption.

Example
This example performs a chi-squared test on a randomly generated sample. A call to the function
imsls_omp_options is used to indicate that function cdf is thread-safe and so can be safely evaluated by
multiple, simultaneous threads.

#include <imsls.h>
static float cdf(float x);
#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000
int main()
{
 float *x, p_value;
 imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);
 imsls_random_seed_set(SEED);
 x = imsls_f_random_normal (N_OBSERVATIONS, 0);
 p_value = imsls_f_chi_squared_test (cdf, N_OBSERVATIONS,
 N_CATEGORIES, x, 0);
 printf ("p-value = %7.4f\n", p_value);
}
static float cdf(float x)
{
 return imsls_f_normal_cdf(x);
}

Output

p-value = 0.1546
1853

 Utilities machine (integer)
machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis
#include <imsls.h>
long imsls_i_machine (int n)

Required Arguments
int n (Input)

Index indicating which value is to be returned. It must be between 0 and 12.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_i_machine returns information describing the computer’s arithmetic. This can be used to
make programs machine independent.

imsls_i_machine(0) = Number of bits per byte

Assume that integers are represented in M-digit, base-A form as

where σ is the sign and 0 ≤ xk < A for k = 0, …, M. Then,

n Definition

0 C, bits per character

1 A, the base

2 Ms, the number of base-A digits in a short int

σ∑
k=0

M

xkA
k

1854

 Utilities machine (integer)
Assume that floating-point numbers are represented in N-digit, base B form as

where σ is the sign and 0 ≤ xk < B for k = 1, …, N and Emin ≤ E ≤ Emax. Then

Example
In this example, all the values returned by imsls_i_machine on a 32-bit machine with IEEE (Institute for Elec-
trical and Electronics Engineer) arithmetic are printed.

#include <imsls.h>
#include <stdio.h>
int main() {
 int n;
 long ans;
 for (n = 0; n <= 12; n++) {
 ans = imsls_i_machine(n);
 printf("imsls_i_machine(%d) = %ld\n", n, ans);
 }
}

3 the largest short int

4 M1 the number of base-A digits in a long int

5 the largest long int

n Definition

6 B, the base

7 Nf, the number of base-B digits in float

8 the smallest float exponent

9 the largest float exponent

10 Nd, the number of base-B digits in double

11 the largest long int

12 the number of base-B digits in double

n Definition

AMs − 1,

AMl − 1,

σBE∑
k−1

N

xkB
−k

Emin f ,

Emax f ,

Emax f ,

Emaxd,
1855

 Utilities machine (integer)
Output

imsls_i_machine(0) = 8
imsls_i_machine(1) = 2
imsls_i_machine(2) = 15
imsls_i_machine(3) = 32767
imsls_i_machine(4) = 31
imsls_i_machine(5) = 2147483647
imsls_i_machine(6) = 2
imsls_i_machine(7) = 24
imsls_i_machine(8) = -125
imsls_i_machine(9) = 128
imsls_i_machine(10) = 53
imsls_i_machine(11) = -1021
imsls_i_machine(12) = 1024
1856

 Utilities machine (float)
machine (float)
Returns information describing the computer’s floating-point arithmetic.

Synopsis
#include <imsls.h>

float imsls_f_machine (int n)

The type double function is imsls_d_machine.

Required Arguments
int n (Input)

Index indicating which value is to be returned. The index must be between 1 and 8.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_f_machine returns information describing the computer’s floating-point arithmetic. This can
be used to make programs machine independent. In addition, some of the functions are also important in setting
missing values.

Assume that float numbers are represented in Nf-digit, base B form as

where σ is the sign; 0 ≤ xk < B for k = 1, 2, …, Nf; and

Note that B = imsls_i_machine(6); Nf = imsls_i_machine(7);

σBE∑
k=1

N f

xkB
−k

Emin f ≤ E ≤ Emax f
1857

 Utilities machine (float)
and

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result of various otherwise illegal opera-
tions, such as computing 0/0. On computers that do not support NaN, a value larger than
imsls_d_machine(2) is returned for imsls_f_machine(6). On computers that do not have a special rep-
resentation for infinity, imsls_f_machine(2) returns the same value as imsls_f_machine(7).

Function imsls_f_machine is defined by the following table:

Function imsls_d_machine retrieves machine constants that define the computer’s double arithmetic. Note
that for double B = imsls_i_machine(6), Nd = imsls_i_machine(10),

and

Missing values in functions are always indicated by NaN. This is imsls_f_machine(6) in single precision and
imsls_d_machine(6) in double precision. There is no missing-value indicator for integers. Users will almost
always have to convert from their missing value indicators to NaN.

n Definition

1

2

3
 the smallest relative spacing

4
 the largest relative spacing

5 log10(B)

6 NaN

7 Positive machine infinity

8 negative machine infinity

Emin f = imsls_i_machine 8

Emax f = imsls_i_machine 9

B
Emin f

−1

, the smallest positive number

B
Emax f 1 − B

−N f , the largest number

B
−N f ,

B
1−N f ,

Emind = imsls_i_machine 11

Emaxd = imsls_i_machine 12
1858

 Utilities machine (float)
Example
In this example, all eight values returned by imsls_f_machine and by imsls_d_machine on a machine
with IEEE arithmetic are printed.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int n;
 float fans;
 double dans;
 for (n = 1; n <= 8; n++) {
 fans = imsls_f_machine(n);
 printf("imsls_f_machine(%d) = %g\n", n, fans);
 }
 for (n = 1; n <= 8; n++) {
 dans = imsls_d_machine(n);
 printf("imsls_d_machine(%d) = %g\n", n, dans);
 }
 return 0;
}

Output

imsls_f_machine(1) = 1.17549e-38
imsls_f_machine(2) = 3.40282e+38
imsls_f_machine(3) = 5.96046e-08
imsls_f_machine(4) = 1.19209e-07
imsls_f_machine(5) = 0.30103
imsls_f_machine(6) = NaN
imsls_f_machine(7) = Inf
imsls_f_machine(8) = -Inf
imsls_d_machine(1) = 2.22507e-308
imsls_d_machine(2) = 1.79769e+308
imsls_d_machine(3) = 1.11022e-16
imsls_d_machine(4) = 2.22045e-16
imsls_d_machine(5) = 0.30103
imsls_d_machine(6) = NaN
imsls_d_machine(7) = Inf
imsls_d_machine(8) = -Inf
1859

 Utilities data_sets
data_sets
Retrieves a commonly analyzed data set.

Synopsis
#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice, ..., 0)

The type double function is imsls_d_data_sets.

Required Arguments
int data_set_choice (Input)

Data set indicator. Set data_set_choice = 0 to print a description of all fourteen data sets. In
this case, any optional arguments are ignored.

data_set_choic
e n_observations n_variables Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins Series G

5 13 5 Draper and Smith Appendix B

6 197 1 Box and Jenkins Series A

7 296 2 Box and Jenkins Series J

8 100 4 Robinson Multichannel Time
Series

9 113 34 Afifi and Azen Data Set A

10 958 10 Tic-Tac-Toe Endgame

11 4601 58 Spambase Data Set

12 690 16 Credit Approval

13 20000 17 Letter Recognition Data

14 366 35 Dermatology Database
1860

 Utilities data_sets
Return Value
If data_set_choice ≠ 0, the requested data set is returned. If data_set_choice = 0 or an error occurs,
NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_N_VARIABLES, int *n_variables,
IMSLS_PRINT_NONE,
IMSLS_PRINT_BRIEF,
IMSLS_PRINT_ALL,
IMSLS_RETURN_USER, float x[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of user allocated space.

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Number of observations or rows in the output matrix.

IMSLS_N_VARIABLES, int *n_variables (Output)
Number of variables or columns in the output matrix.

IMSLS_PRINT_NONE
No printing is performed. This option is the default.

IMSLS_PRINT_BRIEF
Rows 1 through 10 of the data set are printed.

IMSLS_PRINT_ALL
All rows of the data set are printed.

IMSLS_RETURN_USER, float x[] (Output)
User-supplied array containing the data set.
1861

 Utilities data_sets
Description
Function imsls_f_data_sets retrieves a standard data set frequently cited in statistics text books or in this
manual. The following table gives the references for each data set:

Example
In this example, imsls_f_data_sets is used to copy the Draper and Smith (1981, Appendix B) data set into
x.

#include <imsls.h>
int main()
{
 float *x;
 x = imsls_f_data_sets (5, 0);
 imsls_f_write_matrix("Draper and Smith, Appendix B", 13, 5, x, 0);
}

data_set_choice Reference

1 Longley (1967)

2 Anderson (1971, p.660)

3 Fisher (1936); Mardia et al. (1979, Table 1.2.2)

4 Box and Jenkins (1976, p. 531)

5 Draper and Smith (1981, pp. 629-630)

6 Box and Jenkins (1976, p. 525)

7 Box and Jenkins (1976, pp. 532-533)

8 Robinson (1976, p. 204)

9 Afifi and Azen (1979, pp. 16-22)

10 Aha, D. W. (1991, pp. 117-121), and Asuncion, A.
& Newman, D.J. (2007)

11 Asuncion, A. & Newman, D.J. (2007)

12 Quinlan (1987, pp. 221-234, 1997), and Asun-
cion, A. & Newman, D.J. (2007)

13 P. W. Frey and D. J. Slate, (Machine Learning Vol
6 #2 March 91), and Asuncion, A. & Newman,
D.J. (2007)

14 G. Demiroz, H. A. Govenir, and N. Ilter, (Artificial
Intelligence in Medicine), and Asuncion, A. &
Newman, D.J. (2007)
1862

 Utilities data_sets
Output

 Draper and Smith, Appendix B
 1 2 3 4 5
 1 7.0 26.0 6.0 60.0 78.5
 2 1.0 29.0 15.0 52.0 74.3
 3 11.0 56.0 8.0 20.0 104.3
 4 11.0 31.0 8.0 47.0 87.6
 5 7.0 52.0 6.0 33.0 95.9
 6 11.0 55.0 9.0 22.0 109.2
 7 3.0 71.0 17.0 6.0 102.7
 8 1.0 31.0 22.0 44.0 72.5
 9 2.0 54.0 18.0 22.0 93.1
10 21.0 47.0 4.0 26.0 115.9
11 1.0 40.0 23.0 34.0 83.8
12 11.0 66.0 9.0 12.0 113.3
13 10.0 68.0 8.0 12.0 109.4
1863

 Utilities mat_mul_rect
mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, a bilinear form, or any tri-
ple product.

Synopsis
#include <imsls.h>
float *imsls_f_mat_mul_rect (char *string, ..., 0)

The type double function is imsls_d_mat_mul_rect.

Required Arguments
char *string (Input)

String indicating operation to be performed. See the Description section below for more details.

Return Value
The result of the operation. This is always a pointer to a float, even if the result is a single number. If no answer
was computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_mat_mul_rect (char *string,

IMSLS_A_MATRIX, int nrowa, int ncola, float a[],
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[],
IMSLS_B_COL_DIM, int b_col_dim,
IMSLS_X_VECTOR, int nx, float *x,
IMSLS_Y_VECTOR, int ny, float *y,
IMSLS_RETURN_USER, float ans[],
IMSLS_RETURN_COL_DIM, int return_col_dim,
0)
1864

 Utilities mat_mul_rect
Optional Arguments
IMSLS_A_MATRIX, int nrowa, int ncola, float a[] (Input)

The nrowa × ncola matrix A.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of A.

Default: a_col_dim = ncola
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[] (Input)

The nrowb × ncolb matrix A.

IMSLS_B_COL_DIM, int b_col_dim (Input)
Column dimension of B.

Default: b_col_dim = ncolb
IMSLS_X_VECTOR, int nx, float *x (Input)

Vector x of size nx.

IMSLS_Y_VECTOR, int ny, float *y (Input)
Vector y of size ny.

IMSLS_RETURN_USER, float ans[] (Output)
User-allocated array containing the result.

IMSLS_RETURN_COL_DIM, int return_col_dim (Input)
Column dimension of the answer.

Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple
product according to the specification given by string. For example, if “A*x” is given, Ax is computed. In
string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with
trans, indicating transpose. The vectors x and y are treated as n × 1 matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the array, or its transpose, is
returned. If string contains one multiplication, such as “A*x” or “B*A”, then the indicated product is returned.
Some other legal values for string are “trans(y)*A”, “A*trans(B)”, “x*trans(y)”, or “trans(x)*y”.

The matrices and/or vectors referred to in string must be given as optional arguments. If string is “B*x”,
then IMSLS_B_MATRIX and IMSLS_X_VECTOR must be given.
1865

 Utilities mat_mul_rect
Example
Let A, B, x, and y equal the following matrices:

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT and xTAy are computed and printed.

#include <imsls.h>
int main()
{
 float A[] = {1, 2, 9,
 5, 4, 7};
 float B[] = {3, 2,
 7, 4,
 9, 1};
 float x[] = {7, 2, 1};
 float y[] = {3, 4, 2};
 float *ans;
 ans = imsls_f_mat_mul_rect("trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 0);
 imsls_f_write_matrix("trans(A)", 3, 2, ans, 0);
 ans = imsls_f_mat_mul_rect("A*x",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_X_VECTOR, 3, x,
 0);
 imsls_f_write_matrix("A*x", 1, 2, ans, 0);
 ans = imsls_f_mat_mul_rect("trans(x)*trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_X_VECTOR, 3, x,
 0);
 imsls_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);
 ans = imsls_f_mat_mul_rect("A*B",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_B_MATRIX, 3, 2, B,
 0);
 imsls_f_write_matrix("A*B", 2, 2, ans, 0);
 ans = imsls_f_mat_mul_rect("trans(B)*trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_B_MATRIX, 3, 2, B,
 0);
 imsls_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);
 ans = imsls_f_mat_mul_rect("trans(x)*y",
 IMSLS_X_VECTOR, 3, x,
 IMSLS_Y_VECTOR, 3, y,
 0);

A = 1 2 9
5 4 7

B =
3 2
7 4
9 1

x =
7
2
1

y =
3
4
2

1866

 Utilities mat_mul_rect
 imsls_f_write_matrix("trans(x)*y", 1, 1, ans, 0);
 ans = imsls_f_mat_mul_rect("x*trans(y)",
 IMSLS_X_VECTOR, 3, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("x*trans(y)", 3, 3, ans, 0);
 ans = imsls_f_mat_mul_rect("trans(x)*A*y",
 IMSLS_A_MATRIX, 2, 3, A,
 /* use only the first 2 components of x */
 IMSLS_X_VECTOR, 2, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Output

 trans(A)
 1 2
1 1 5
2 2 4
3 9 7
 A*x
 1 2
 20 50
 trans(x)*trans(A)
 1 2
 20 50
 A*B
 1 2
1 98 19
2 106 33
 trans(B)*trans(A)
 1 2
1 98 106
2 19 33
trans(x)*y
 31
 x*trans(y)
 1 2 3
1 21 28 14
2 6 8 4
3 3 4 2
trans(x)*A*y
 293
1867

 Utilities permute_vector
permute_vector
Rearranges the elements of a vector as specified by a permutation.

Synopsis
#include <imsls.h>
float *imsls_f_permute_vector (int n_elements, float x[], int permutation[],

Imsls_permute permute, .…, 0)

The type double function is imsls_d_permute_vector.

Required Arguments
int n_elements (Input)

Number of elements in the input vector x.

float x[] (Input)
Array of length n_elements to be permuted.

int permutation[] (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either
IMSLS_FORWARD_PERMUTATION or IMSLS_BACKWARD_PERMUTATION. If
IMSLS_FORWARD_PERMUTATION is specified, then a forward permutation is performed, i.e.,
x[permutation[i]] is moved to location i in the return vector. If
IMSLS_BACKWARD_PERMUTATION is specified, then a backward permutation is performed, i.e.,
x[i] is moved to location permutation[i] in the return vector.

Return Value
An array of length n_elements containing the input vector x permuted.

Synopsis with Optional Arguments
#include <imsls.h>
1868

 Utilities permute_vector
float *imsls_f_permute_vector (int n_elements, float x[], int permutation[],
Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[](Output)

User-allocated array containing the result of the permutation.

Description
Function imsls_f_permute_vector rearranges the elements of a vector according to a permutation vec-
tor. The function can perform both forward and backward permutation.

Example
This example rearranges the vector x using permutation. A forward permutation is performed.

#include <imsls.h>
int main()
{
 float x[] = {5.0, 6.0, 1.0, 4.0};
 int permutation[] = {2, 0, 3, 1};
 float *output;
 int n_elements = 4;
 output = imsls_f_permute_vector (n_elements, x, permutation,
 IMSLS_FORWARD_PERMUTATION, 0);
 imsls_f_write_matrix ("permuted result", 1, n_elements, output,
 IMSLS_COL_NUMBER_ZERO, 0);
}

Output

 permuted result
 0 1 2 3
 1 5 4 6
1869

 Utilities permute_matrix
permute_matrix
Permutes the rows or columns of a matrix.

Synopsis
#include <imsls.h>
float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[], int permutation[],

Imsls_permute permute, …, 0)

The type double function is imsls_d_permute_matrix.

Required Arguments
int n_rows (Input)

Number of rows in the input matrix a.

int n_columns (Input)
Number of columns in the input matrix a.

float a[] (Input)
Matrix of size n_rows × n_columns to be permuted.

int permutation[] (Input)
Array of length n containing the permutation permutation[0], …, permutation[n-1] of the
integers 0, …, n, where n = n_rows if the rows of a are to be permuted and n = n_columns if the
columns of a are to be permuted.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either IMSLS_PERMUTE_ROWS, if the
rows of a are to be interchanged, or IMSLS_PERMUTE_COLUMNS, if the columns of a are to be
interchanged.

Return Value
Array of size n_rows × n_columns containing the permuted input matrix a.
1870

 Utilities permute_matrix
Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[], int permutation[],

Imsls_permute permute,

IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[] (Output)

User-allocated array of size n_rows × n_columns containing the result of the permutation.

Description
Function imsls_f_permute_matrix interchanges the rows or columns of a matrix using a permutation
vector. The function permutes a column (row) at a time using function imsls_f_permute_vector. This pro-
cess is continued until all the columns (rows) are permuted. On completion, let B = result and
pi = permutation [i], then Bij = Apij for all i, j.

Example
This example permutes the columns of a matrix a.

#include <imsls.h>
int main()
{
 float a[] = {3.0, 5.0, 1.0, 2.0, 4.0,
 3.0, 5.0, 1.0, 2.0, 4.0,
 3.0, 5.0, 1.0, 2.0, 4.0};
 int permutation[] = {2, 3, 0, 4, 1};
 float *output;
 int n_rows = 3;
 int n_columns = 5;
 output = imsls_f_permute_matrix (n_rows, n_columns, a, permutation,
 IMSLS_PERMUTE_COLUMNS,
 0);
 imsls_f_write_matrix ("permuted matrix", n_rows, n_columns, output,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_COL_NUMBER_ZERO,
 0);
}

1871

 Utilities permute_matrix
Output

 permuted matrix
 0 1 2 3 4
0 1 2 3 4 5
1 1 2 3 4 5
2 1 2 3 4 5
1872

 Utilities impute_missing
impute_missing
Locate and optionally replace dependent variable missing values with nearest neighbor estimates.

Synopsis
#include <imsls.h>

int imsls_f_impute_missing (int n_observations, int n_variables, int n_independent,
int indind[], float x[], …, 0)

The type double function is imsls_d_impute_missing.

Required Arguments
int n_observations (Input)

Number of observations.

int n_variables (Input)
Number of variables.

int n_independent (Input)
Number of independent variables.

int indind[] (Input)
Array of size n_independent designating the indices of the columns of x containing the indepen-
dent variables.

float x[] (Input)
Array of size n_observations × n_variables containing the observations. Missing values of
the dependent variables may be imputed as functions of the independent variables, but if any of the
independent variables have missing values, then imputation will not be performed and a warning will
be issued. If one of the optional arguments, IMSLS_REPLACEMENT_VALUE,
IMSLS_IMPUTE_METHOD, or IMSLS_PURGE is supplied, x_imputed (see optional argument
IMSLS_X_IMPUTED) contains the imputed data on output.

Return Value
The number of missing values (n_miss) in the data array x.
1873

 Utilities impute_missing
Synopsis with Optional Arguments
#include <imsls.h>

int imsls_f_impute_missing (int n_observations, int n_variables, int n_independent,
int indind[], float x[],

IMSLS_MISSING_VALUE, float mval,
IMSLS_METRIC_DIAG, float g[],
IMSLS_REPLACEMENT_VALUE, float replacement_value, or
IMSLS_IMPUTE_METHOD, int method, int k, or
IMSLS_PURGE, int *n_missing_rows, int **missing_row_indices,
IMSLS_MISSING_INDEX, int **indices,
IMSLS_X_IMPUTED, float **x_imputed,
IMSLS_X_IMPUTED_USER, float x_imputed[],
0)

Optional Arguments
IMSLS_MISSING_VALUE, float mval, (Input)

Scalar value (other than NaN) representing a missing value. NaN always represents a missing value,
so if mval is not NaN it will be treated as a second type of missing value.

IMSLS_METRIC_DIAG, float g[] (Input)
Array of length n_independent defining a diagonal metric for independent variable space. This
scales the independent variables in the distance calculations used to determine nearest neighbors.
The default measure of distance is Euclidean (g[i] = 1 for all i).

IMSLS_REPLACEMENT_VALUE, float replacement_value (Input)
Replace missing values in x with replacement_value. Output data array is returned in
x_imputed. Requires optional argument IMSLS_X_IMPUTED or IMSLS_X_IMPUTED_USER.

or

IMSLS_IMPUTE_METHOD, int method, int k (Input)
The method to be used for imputing missing values using k nearest neighbors. Replace missing value
of dependent variable y at point x in the space of independent variables with the mode, mean,
median, geometric mean, or linear regression (method) of y on those k nearest neighbors of x
which have no missing values. To use all of the data and eliminate the need to compute neighbor-
hoods, set k ≥ n_observations. If there are no independent variables, set
k ≥ n_observations. Imputed data is returned in x_imputed. Requires optional argument
IMSLS_X_IMPUTED or IMSLS_X_IMPUTED_USER.
1874

 Utilities impute_missing
Valid values for method are:

or

IMSLS_PURGE, int *n_missing_rows, int **missing_row_indices (Output)
All rows with missing values are removed from x and the resulting data array is returned in
x_imputed. n_missing_rows is the number of rows that were removed.
missing_row_indices are the indices of the rows that were removed. Requires optional argu-
ment IMSLS_X_IMPUTED or IMSLS_X_IMPUTED_USER.

IMSLS_MISSING_INDEX, int **indices (Output)
Address of a pointer to the internally allocated array of size n_miss, containing the indices of x
where missing values occur. n_miss is the function return value. If the data has no missing values,
the pointer is returned as NULL.

IMSLS_X_IMPUTED, float ** x_imputed (Output)
Array containing imputed data. This argument is required when IMSLS_REPLACEMENT_VALUE,
IMSLS_IMPUTE_METHOD, or IMSLS_PURGE is supplied. For options
IMSLS_REPLACEMENT_VALUE and IMSLS_IMPUTE_METHOD, x_imputed contains all data
from x with missing values replaced in the dependent variable columns. For option IMSLS_PURGE,
x_imputed is an array of size n_observations - n_missing_rows × n_variables, con-
taining the data from x with the rows of missing data removed.

IMSLS_X_IMPUTED_USER, float x_imputed[] (Output)
Storage for array x_imputed is provided by the user. See IMSLS_X_IMPUTED. The size of this
array must be the same as x, n_observations × n_variables. For the IMSLS_PURGE
option, use only the first n_observations - n_missing_rows × n_variables values on
output.

method Description

IMSLS_MODE_METH Mode

IMSLS_MEAN_METH Mean

IMSLS_MEDIAN_METH Median

IMSLS_GEOMEAN_METH Geometric mean

IMSLS_LINEAR_METH Linear regression
1875

 Utilities impute_missing
Description
Function imsls_f_impute_missing locates missing values, and optionally, replaces them with estimated
values. This replacement process, called imputation, applies only to dependent variables. If x denotes an arbitrary
point in independent variable space and y denotes a dependent variable with a missing value at x = xi, then y at xi

is estimated as y(xi) = f(xi) where f(x) is some function of x in some neighborhood of xi.

imsls_f_impute_missing provides five options (see IMSLS_IMPUTE_METHOD) for the form of f(x), and
each option allows neighborhood size to be specified in terms of some given number of nearest neighbors. The
neighbors exclude observations with missing values and are determined by distance, the norm relative to metric
G,

By default, G = I, but the IMSLS_METRIC_DIAG option can be used to specify any other diagonal metric G. A
sixth option, IMSLS_REPLACEMENT_VALUE, allows the user to specify one value to be used as a replacement
for all missing values.

Instead of being used for imputation, imsls_f_impute_missing can be used to simply remove all observa-
tions which contain missing values. This is accomplished with the option IMSLS_PURGE. With this option, all
rows with missing values are removed from the input data matrix. Unlike imputation, this option is not limited to
dependent variables and can be used to handle missing values in the independent variables.

Usually either imputation or deletion will be performed, but imsls_f_impute_missing can be used for the
more basic task of returning the indices of missing values. The indices could then be used to implement other
imputation methods.

Following the standard practice, missing data values are always represented by NaN. Option
IMSLS_MISSING_VALUE allows the user to also specify a second value to represent missing values.

Examples

Example 1

Count the missing values in a data set, where the only valid missing value is NaN.

#include <imsls.h>
#include <stdio.h>
#define N_OBSERVATIONS 20
#define N_VARIABLES 4
int main()
{
 float x[N_OBSERVATIONS][N_VARIABLES];
 int count, i, j;

∥x∥ = xTGx .
1876

 Utilities impute_missing
 /* create the test data */
 for(i=0;i<N_OBSERVATIONS;i++) {
 for(j=0;j<N_VARIABLES;j++) {
 x[i][j]= (float)((i*N_VARIABLES)+j);
 }
 }
 /* replace some of the data values */

 x[3][1] = imsls_f_machine(6); /* NaN */
 x[5][2] = imsls_f_machine(6); /* NaN */
 x[7][2] = imsls_f_machine(7); /* positive infinity */
 x[9][3] = imsls_f_machine(8); /* negative infinity */

 /* declare no independent variables */
 /* note +/-inf are not considered 'missing' */
 count = imsls_f_impute_missing (N_OBSERVATIONS, N_VARIABLES, 0,
 NULL, (float*)x,
 0);
 printf("number of missing values = %d\n", count);
}

Output

number of missing values = 2

Example 2

Set the value 20 to represent a missing value and find the indices in x which contain the missing value.

#include <imsls.h>
#include <stdio.h>
#define N_OBSERVATIONS 20
#define N_VARIABLES 4

int main()
{
 float x[N_OBSERVATIONS][N_VARIABLES];
 float mval;
 int n_independent, count, i, j;
 int indind[2];
 int *indices;
 /* declare 2 independent variables */
 n_independent = 2;
 indind[0] = 2; /* declare that column 2 is independent */
 indind[1] = 3; /* declare that column 3 is independent */
 /* missing value is represented by 20 */
 /* and will be located at x[5][0] */
 mval = 20.0;
1877

 Utilities impute_missing
 /* create the test data */
 for(i=0;i<N_OBSERVATIONS;i++) {
 for(j=0;j<N_VARIABLES;j++) {
 x[i][j] = (float)((i*N_VARIABLES)+j);
 }
 }

 count = imsls_f_impute_missing (N_OBSERVATIONS, N_VARIABLES,
 n_independent, indind, (float*)x,
 IMSLS_MISSING_VALUE, mval,
 IMSLS_MISSING_INDEX, &indices,
 0);
 printf("number of missing values = %d\n", count);
 for (i=0; i<count;i++) {
 printf("indices[%d] = %d\n", i, indices[i]);
 }
}

Output

number of missing values = 1
indices[0] = 20

Example 3

In this example both NaN and infinity represent missing values in the original data. In the first call to
imsls_f_impute_missing, missing values are replaced by negative infinity. In the second call to
imsls_f_impute_missing, negative infinity is set to represent missing values and the rows containing the
missing values are purged for the final output.

#include <imsls.h>
#include <stdio.h>
#define N_ROWS 6
#define N_COLS 4
int main()
{
 float *x_imputed, *x_purged;
 float mval, replacement_value;
 float data[N_ROWS][N_COLS];
 int n_independent, count, npurge, i, j;
 int indind[1];
 int *bad_obs;
 char *fmt="%6.2f";
 /* create the test data */
 for(i=0;i<N_ROWS;i++) {
 for(j=0;j<N_COLS;j++) {
 data[i][j] = (float)((i*N_COLS)+j);
 }
1878

 Utilities impute_missing
 }
 /* insert bad values into data */
 data[1][1] = imsls_f_machine(6); /* NaN */
 data[2][2] = imsls_f_machine(7); /* positive infinity */
 data[3][3] = imsls_f_machine(8); /* negative infinity */

 imsls_f_write_matrix ("Original data with missing values",
 N_ROWS, N_COLS, (float*)data,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 /* set the missing value to be +inf */
 mval = imsls_f_machine(7);
 /* replace missing values with neg inf */
 replacement_value = imsls_f_machine(8);
 /* declare one independent variable */
 n_independent = 1;
 indind[0] = 0;

 /* replace Nan and +inf values with -inf */
 count = imsls_f_impute_missing (N_ROWS, N_COLS, n_independent,
 indind, (float*)data,
 IMSLS_MISSING_VALUE, mval,
 IMSLS_REPLACEMENT_VALUE, replacement_value,
 IMSLS_X_IMPUTED, &x_imputed,
 0);
 imsls_f_write_matrix ("Data with values replaced",
 N_ROWS, N_COLS, x_imputed,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 /* now purge all rows containing -inf */
 mval = imsls_f_machine(8);
 count = imsls_f_impute_missing (N_ROWS, N_COLS, n_independent,
 indind, x_imputed,
 IMSLS_MISSING_VALUE, mval,
 IMSLS_PURGE, &npurge, &bad_obs,
 IMSLS_X_IMPUTED, &x_purged,
 0);
 printf("\n number missing = %d, number of rows purged = %d\n",
 count, npurge);
 printf("\n Purged row numbers:\n");
 for(i=0;i<npurge;i++) {
 printf(" %d ",bad_obs[i]);
 }
 printf ("\n");
 imsls_f_write_matrix ("New data with bad rows purged",
 N_ROWS-npurge, N_COLS, x_purged,
 IMSLS_WRITE_FORMAT, fmt,
 0);
}

1879

 Utilities impute_missing
Output

Original data with missing values
 1 2 3 4
1 0.00 1.00 2.00 3.00
2 4.00 6.00 7.00
3 8.00 9.00 ++++++ 11.00
4 12.00 13.00 14.00 ------
5 16.00 17.00 18.00 19.00
6 20.00 21.00 22.00 23.00
 Data with values replaced
 1 2 3 4
1 0.00 1.00 2.00 3.00
2 4.00 ------ 6.00 7.00
3 8.00 9.00 ------ 11.00
4 12.00 13.00 14.00 ------
5 16.00 17.00 18.00 19.00
6 20.00 21.00 22.00 23.00
number missing = 3, number of rows purged = 3
Purged row numbers:
 1 2 3
 New data with bad rows purged
 1 2 3 4
1 0.00 1.00 2.00 3.00
2 16.00 17.00 18.00 19.00
3 20.00 21.00 22.00 23.00

Example 4

Replace missing values computed using the mean of the 3 nearest neighbors.

#include <imsls.h>
#define N_ROWS 10
#define N_COLS 4
int main()
{
 float *x_imputed;
 float data[N_ROWS][N_COLS];
 int n_independent, count, i, j;
 int indind[2];
 char *fmt="%6.2f";
 /* create the test data */
 for(i=0;i<N_ROWS;i++) {
 for(j=0;j<N_COLS;j++) {
 data[i][j] = (float)((i*N_COLS)+j);
 }
 }
 data[1][3] = imsls_f_machine(6); /* insert NaN at row 1 col 3 */
 data[4][2] = imsls_f_machine(6); /* insert NaN at row 4 col 2 */
1880

 Utilities impute_missing
 imsls_f_write_matrix ("Original data with missing values", N_ROWS,
 N_COLS, (float*) data,
 IMSLS_WRITE_FORMAT, fmt,
 0);
 /* declare two independent variables */
 n_independent = 2;
 indind[0] = 0;
 indind[1] = 1;
 /* replace missing values using mean method */
 count = imsls_f_impute_missing (N_ROWS, N_COLS, n_independent,
 indind, (float*)data,
 IMSLS_IMPUTE_METHOD,
 IMSLS_MEAN_METH, 3,
 IMSLS_X_IMPUTED, &x_imputed,
 0);
 imsls_f_write_matrix ("Imputed data (using mean method)", N_ROWS,
 N_COLS, x_imputed,
 IMSLS_WRITE_FORMAT, fmt,
 0);
}

Output
 Original data with missing values
 1 2 3 4
 1 0.00 1.00 2.00 3.00
 2 4.00 5.00 6.00
 3 8.00 9.00 10.00 11.00
 4 12.00 13.00 14.00 15.00
 5 16.00 17.00 19.00
 6 20.00 21.00 22.00 23.00
 7 24.00 25.00 26.00 27.00
 8 28.00 29.00 30.00 31.00
 9 32.00 33.00 34.00 35.00
10 36.00 37.00 38.00 39.00

 Imputed data (using mean method)
 1 2 3 4
 1 0.00 1.00 2.00 3.00
 2 4.00 5.00 6.00 9.67
 3 8.00 9.00 10.00 11.00
 4 12.00 13.00 14.00 15.00
 5 16.00 17.00 20.67 19.00
 6 20.00 21.00 22.00 23.00
 7 24.00 25.00 26.00 27.00
 8 28.00 29.00 30.00 31.00
 9 32.00 33.00 34.00 35.00
10 36.00 37.00 38.00 39.00
1881

 Utilities impute_missing
Warning Errors
IMSLS_NO_GOOD_ROW Each row contains missing values. No imputation is

performed.

IMSLS_INDEP_HAS_MISSING At least one of the independent variables contains a
missing value. No imputation is performed.
1882

 Utilities binomial_coefficient
binomial_coefficient
Evaluates the binomial coefficient.

Synopsis
#include <imsls.h>
float imsls_f_binomial_coefficient (int n, int m)

The type double procedure is imsls_d_binomial_coefficient.

Required Arguments
int n (Input)

First parameter of the binomial coefficient. Argument n must be nonnegative.

int m (Input)
Second parameter of the binomial coefficient. Argument m must be nonnegative.

Return Value

The binomial coefficient is returned.

Description
The binomial function is defined to be

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example, is computed and printed.

n
m

n
m = n!

m! n − m !

9
5

1883

 Utilities binomial_coefficient
#include <stdio.h>
#include <imsls.h>
int main()
{
 int n = 9;
 int m = 5;
 float ans;

 ans = imsls_f_binomial_coefficient(n, m);
 printf("binomial coefficient = %.1f\n", ans);
}

Output

binomial coefficient = 126.0
1884

 Utilities beta
beta
Evaluates the complete beta function.

Synopsis
#include <imsls.h>
float imsls_f_beta (float a, float b)

The type double procedure is imsls_d_beta.

Required Arguments
float a (Input)

First beta parameter. It must be positive.

float b (Input)
Second beta parameter. It must be positive.

Return Value
The value of the beta function β(a, b). If no result can be computed, then NaN is returned.

Description
The beta function, β(a, b), is defined to be

Example
Evaluate the beta function β(0.5, 0.2).

#include <imsls.h>
#include <stdio.h>
int main()

β a,b =
Γ a Γ b
Γ a + b = ∫0

1

t a−1 1 − t b−1dt
1885

 Utilities beta
{
 float x = 0.5;
 float y = 0.2;
 float ans;
 ans = imsls_f_beta(x, y);
 printf("beta(%f,%f) = %f\n", x, y, ans);
 return 0;
}

Output

beta(0.500000,0.200000) = 6.268653

Figure 40, Plot of β (x, b)

The beta function requires that a > 0 and b > 0. It underflows for large arguments.
1886

 Utilities beta
Alert Errors

Fatal Errors

IMSLS_BETA_UNDERFLOW The arguments must not be so large that the result
underflows.

IMSLS_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the
result overflows.
1887

 Utilities beta_incomplete
beta_incomplete
Evaluates the real regularized incomplete beta function.

Synopsis
#include <imsls.h>
float imsls_f_beta_incomplete (float x, float a, float b)

The type double function is imsls_d_beta_incomplete.

Required Arguments
float x (Input)

Argument at which the regularized incomplete beta function is to be evaluated.

float a (Input)
First shape parameter.

float b (Input)
Second shape parameter.

Return Value
The value of the regularized incomplete beta function.

Description
The regularized incomplete beta function Ix (a, b) is defined

where

is the incomplete beta function,

I x a, b = Bx a, b / B a, b

Bx a,b = ∫
0

x

t a−1 1 − t)b−1dt
1888

 Utilities beta_incomplete
is the (complete) beta function, and is the gamma function.

The regularized incomplete beta function imsls_f_beta_incomplete (x, a, b) is identical to the beta prob-
ability distribution function imsls_f_beta_cdf (x, a, b) which represents the probability that a beta random
variable X with shape parameters a and b takes on a value less than or equal to x. The regularized incomplete
beta function requires that 0 ≤ x ≤ 1, a > 0, and b > 0 and it underflows for sufficiently small x and large a. This
underflow is not reported as an error. Instead, the value zero is returned.

Example
Suppose X is a beta random variable with shape parameters a = b =12 (X has a symmetric distribution). This
example finds the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6. (Since X is a
symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsls.h>
#include <stdio.h>
int main()
{

 float a = 12, b = 12, x = 0.6, p;
 p = imsls_f_beta_incomplete(x, a, b);
 printf("The probability that X is less than %3.1f is "

 "%6.4f\n", x, p);
 x = 0.5;
 p -= imsls_f_beta_incomplete(x, a, b);
 printf("The probability that X is between %3.1f and"

 " 0.6 is %6.4f\n", x, p);
}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

B a, b = B1 a, b =
Γ a Γ b
Γ a + b

Γ a
1889

 Utilities log_beta
log_beta
Evaluates the logarithm of the real beta function ln β(x, y).

Synopsis
#include <imsls.h>
float imsls_f_log_beta (float x, float y)

The type double procedure is imsls_d_log_beta.

Required Arguments
float x (Input)

Point at which the logarithm of the beta function is to be evaluated. It must be positive.

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be positive.

Return Value
The value of the logarithm of the beta function β(x, y).

Description
The beta function, β(x, y), is defined to be

and imsls_f_log_beta returns ln β(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for very large arguments.

Example
Evaluate the log of the beta function ln β(0.5, 0.2).

β x,y =
Γ x Γ y
Γ x + y = ∫0

1

t x−1 1 − t y−1dt
1890

 Utilities log_beta
#include <imsls.h>
#include <stdio.h>
int main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;
 ans = imsls_f_log_beta(x, y);
 printf("log beta(%f,%f) = %f\n", x, y, ans);
}

Output

log beta(0.500000,0.200000) = 1.835562

Warning Errors
IMSLS_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one precision

because the expression−x/(x + y) is too close to
−1.
1891

 Utilities gamma
gamma
Evaluates the real gamma function.

Synopsis
#include <imsls.h>
float imsls_f_gamma (float x)

The type double procedure is imsls_d_gamma.

Required Arguments
float x (Input)

Point at which the gamma function is to be evaluated.

Return Value
The value of the gamma function Γ(x).

Description
The gamma function, Γ(x), is defined to be

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows for x << 0 and overflows
for large x. It also overflows for values near negative integers.

Γ x = ∫0
∞

t x−1e−tdt
1892

 Utilities gamma
Figure 41, Plot of Γ(x) and 1/Γ(x)

Example
In this example, Γ(1.5) is computed and printed.

#include <stdio.h>
#include <imsls.h>
int main()
{
 float x = 1.5;
 float ans;

 ans = imsls_f_gamma(x);
 printf("Gamma(%f) = %f\n", x, ans);
}

Output

Gamma(1.500000) = 0.886227
1893

 Utilities gamma
Alert Errors

Warning Errors

Fatal Errors

IMSLS_SMALL_ARG_UNDERFLOW The argument x must be large enough that Γ(x) does not
underflow. The underflow limit occurs first for arguments
close to large negative half integers. Even though other
arguments away from these half integers may yield
machine-representable values of Γ(x), such arguments are
considered illegal.

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision
because x is too close to a negative integer.

IMSLS_ZERO_ARG_OVERFLOW The argument for the gamma function is too close to zero.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to a negative
integer.

IMSLS_LARGE_ARG_OVERFLOW The function overflows because x is too large.

IMSLS_CANNOT_FIND_XMIN The algorithm used to find x
min
 failed. This error should never occur.

IMSLS_CANNOT_FIND_XMAX The algorithm used to find x
max
 failed. This error should never occur.
1894

 Utilities gamma_incomplete
gamma_incomplete
Evaluates the incomplete gamma function γ(a, x).

Synopsis
#include <imsls.h>
float imsls_f_gamma_incomplete (float a, float x)

The type double procedure is imsls_d_gamma_incomplete.

Required Arguments
float a (Input)

Parameter of the incomplete gamma function is to be evaluated. It must be positive.

float x (Input)
Point at which the incomplete gamma function is to be evaluated. It must be nonnegative.

Return Value
The value of the incomplete gamma function γ(a, x).

Description
The incomplete gamma function, γ(a, x), is defined to be

for x > 0. The incomplete gamma function is defined only for a > 0. Although γ(a, x) is well defined for x > −∞,
this algorithm does not calculate γ(a, x) for negative x. For large a and sufficiently large x, γ(a, x) may overflow.
γ(a, x) is bounded by Γ(a), and users may find this bound a useful guide in determining legal values for a.

γ a,x = ∫0
x

t a−1e−tdt
1895

 Utilities gamma_incomplete
Figure 42, Contour Plot of γ(a, x)

Example
Evaluates the incomplete gamma function at a = 1 and x = 3.

#include <stdio.h>
#include <imsls.h>
int main()
{
 float x = 3.0;
 float a = 1.0;
 float ans;
 ans = imsls_f_gamma_incomplete(a, x);
 printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}

Output

incomplete gamma(1.000000,3.000000) = 0.950213
1896

 Utilities gamma_incomplete
Fatal Errors
IMSLS_NO_CONV_200_TS_TERMS The function did not converge in 200 terms of Taylor

series.

IMSLS_NO_CONV_200_CF_TERMS The function did not converge in 200 terms of the
continued fraction.
1897

 Utilities log_gamma
log_gamma
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|.

Synopsis
#include <imsls.h>
float imsls_f_log_gamma (float x)

The type double procedure is imsls_d_log_gamma.

Required Arguments
float x (Input)

Point at which the logarithm of the absolute value of the gamma function is to be evaluated.

Return Value
The value of the logarithm of gamma function log |Γ(x)|.

Description
The logarithm of the absolute value of the gamma function log |Γ(x)| is computed.
1898

 Utilities log_gamma
Figure 43, Plot of log|Γ(x)|

Example
In this example, log |Γ(3.5)| is computed and printed.

#include <stdio.h>
#include <imsls.h>
int main()
{
 float x = 3.5;
 float ans;
 ans = imsls_f_log_gamma(x);
 printf("log gamma(%f) = %f\n", x, ans);
}

Output

log gamma(3.500000) = 1.200974
1899

 Utilities log_gamma
Warning Errors

Fatal Errors

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half precision
because x is too close to a negative integer.

IMSLS_NEGATIVE_INTEGER The argument for the function cannot be a negative
integer.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to a nega-
tive integer.

IMSLS_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the result overflows.
1900

 Utilities ctime
ctime
Returns the number of CPU seconds used.

Synopsis
#include <imsls.h>
double imsls_ctime()

Return Value
The number of CPU seconds used by the program.

Example
The CPU time needed to compute

is obtained and printed. The time needed is machine dependent. The CPU time needed varies slightly from run to
run on the same machine.

#include <imsls.h>
#include <stdio.h>
int main()
{
 int k;
 double sum, time;
 /* Sum 1 million values */
 for (sum=0, k=1; k<=1000000; k++)
 sum += k;
 /* Get amount of CPU time used */
 time = imsls_ctime();
 printf("sum = %f\n", sum);
 printf("time = %f\n", time);
 return 0;
}

∑
k=0

1, 000, 000

k

1901

 Utilities ctime
Output

sum = 500000500000.000000
time = 0.820000
1902

 Reference Material Contents
Reference Material

Contents
User Errors

What Determines Error Severity . 1903
Kinds of Errors and Default Actions. 1904
Errors in Lower-level Functions . 1905
Functions for Error Handling . 1905
Threads and Error Handling . 1906
Use of Informational Error to Determine Program Action . 1906
Additional Examples . 1906

User Errors
IMSL functions attempt to detect user errors and handle them in a way that provides as much information to the
user as possible. To do this, various levels of severity of errors are recognized, and the extent of the error in the
context of the purpose of the function also is considered; a trivial error in one situation can be serious in another.
IMSL attempts to report as many errors as can reasonably be detected. Multiple errors present a difficult prob-
lem in error detection because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of limitations of the computer arith-
metic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the assessed
degree of accuracy determines the severity of the error. In cases where the function computes several output
quantities, some are not computable but most are, an error condition exists. The severity of the error depends
on an assessment of the overall impact of the error.
1903

 Reference Material Contents
Kinds of Errors and Default Actions
Five levels of severity of errors are defined in IMSL C Stat Library. Each level has an associated PRINT attribute and
a STOP attribute. These attributes have default settings (YES or NO), but they may also be set by the user. The
purpose of having multiple error types is to provide independent control of actions to be taken for errors of dif-
ferent levels of severity. Upon return from an IMSL function, exactly one error state exists. (A code 0 “error” is no
error.) Even if more than one informational error occurs, only one message is printed (if the PRINT attribute is
YES). Multiple errors for which no corrective action within the calling program is reasonable or necessary result in
the printing of multiple messages (if the PRINT attribute for their severity level is YES). Errors of any of the severity
levels except IMSLS_TERMINAL may be informational errors. The include file, imsls.h, defines each of
IMSLS_NOTE, IMSLS_ALERT, IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL,
IMSLS_WARNING_IMMEDIATE, and IMSLS_FATAL_IMMEDIATE as enumerated data type Imsls_error.

IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or simply to provide information about
the computations.
Default attributes: PRINT=NO, STOP=NO

IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to underflow.
Default attributes: PRINT=NO, STOP=NO

IMSLS_WARNING. A warning indicates the existence of a condition that may require corrective action by the
user or calling function. A warning error may be issued because the results are accurate to only a few decimal
places; because some of the output may be erroneous, but most of the output is correct; or because some
assumptions underlying the analysis technique are violated. Usually no corrective action is necessary, and the
condition can be ignored.
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL. A fatal error indicates the existence of a condition that may be serious. In most cases, the user
or calling function must take corrective action to recover.
Default attributes: PRINT=YES, STOP=YES

IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an incorrect specification, such as spec-
ifying a negative number as the number of equations. These errors can also be caused by various programming
errors impossible to diagnose correctly in C. The resulting error message may be perplexing to the user. In such
cases, the user is advised to compare carefully the actual arguments passed to the function with the dummy
argument descriptions given in the documentation. Special attention should be given to checking argument order
and data types.

A terminal error is not an informational error, because corrective action within the program is generally not rea-
sonable. In normal use, execution is terminated immediately when a terminal error occurs. Messages relating to
more than one terminal error are printed if they occur.
Default attributes: PRINT=YES, STOP=YES
1904

 Reference Material Contents
IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a warning error, except it is printed
immediately.
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, except it is printed immedi-
ately.
Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling function imsls_error_options as described in Chapter
15, Utilities.

Errors in Lower-level Functions
It is possible that a user’s program may call an IMSL function that in turn calls a nested sequence of lower-level
IMSL functions. If an error occurs at a lower level in such a nest of functions and if the lower-level function cannot
pass the information up to the original user-called function, then a traceback of the functions is produced. The
only common situation in which this can occur is when an IMSL function calls a user-supplied routine that in turn
calls another IMSL function.

Functions for Error Handling
The user may interact in three ways with the IMSL error-handling system:

1. Change the default actions.

2. Determine the code of an informational error so as to take corrective action.

3. Initialize the error handling systems.

The functions that support these actions are:

 imsls_error_options
Sets the actions to be taken when errors occur.

 imsls_error_type
Retrieves the Imsl_error enum error type value.

 imsls_error_code
Retrieves the integer code for an informational error.

 imsls_error_message
Retrieves the error message string.
1905

 Reference Material Contents
 imsls_initialize_error_handler
Initializes the IMSL C Stat Library error handling system for the current thread. This function is not required
but is always allowed. Use of this function is advised if the possibility of low heap memory exists when calling
the IMSL C Stat Library for the first time in the current thread.

These functions are documented in Chapter 15, Utilities.

Threads and Error Handling
If multiple threads are used then default settings are valid for each thread but can be altered for each individual
thread. When using threads it is necessary to set options using imsls_error_options for each thread by call-
ing imsls_error_options from within each thread.

See Example 3 and Example 4 of imsls_error_options for multithreaded examples.

Use of Informational Error to Determine Program Action
In the program segment below, a factor analysis is to be performed on the matrix covariances. If it is determined
that the matrix is singular (and often this is not immediately obvious), the program is to take a different branch.

x = imsls_f_factor_analysis (nobs, covariances,
 n_factors, 0);

if (imsls_error_code() == IMSLS_COV_IS_SINGULAR) {
/* Handle a singular matrix */

}

Additional Examples
See functions imsls_error_options and imsls_error_code in Chapter 15, Utilities for additional examples.
1906

Appendix AReferences

Abdi

Abdi, Herve (2010), Partial least squares regression and projection on latent structure regression (PLS regression), Wiley
Interdisciplinary Reviews: Computational Statistics, 2, 97-106.

Abe

Abe, S. (2001) Pattern Classification: Neuro-Fuzzy Methods and their Comparison, Springer-Verlag.

Abramowitz and Stegun

Abramowitz, Milton and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Afifi and Azen

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented Approach, 2d ed., Academic Press, New York.

Agrawal and Srikant

Agrawal, R. and Srikant, R. (1994), “Fast algorithms for mining association rules,” Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, Santiago, Chile, August 29 - September 1, 1994.

Agresti, Wackerly, and Boyette

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional tests for cross-classifications:
Approximation of attained significance levels, Psychometrika, 44, 75-83.

Aha

Aha, D. W. (1991). Incremental constructive induction: An instance-based approach. Proceedings of the Eighth Inter-
national Workshop on Machine Learning (pp. 117--121). Evanston, ILL: Morgan Kaufmann.

Ahrens and Dieter

Ahrens, J.H. and U. Dieter (1974), Computer methods for sampling from gamma, beta, Poisson, and binomial dis-
tributions, Computing, 12, 223-246.
1907

Ahrens, J.H., and U. Dieter (1985), Sequential random sampling, ACM Transactions on Mathematical Software, 11,
157-169.

Akaike

Akaike, H., (1978), Covariance Matrix Computation of the State Variable of a Stationary Gaussian Process, Ann. Inst.
Statist. Math. 30, Part B, 499-504.

Akaike, H. (1980), Seasonal Adjustment by Bayesian Modeling, Journal of Time Series Analysis, Vol 1, 1-13.

Akaike et al

Akaike, H. , Kitagawa, G., Arahata, E., Tada, F., (1979), Computer Science Monographs No. 13, The Institute of Sta-
tistical Mathematics, Tokyo.

Anderberg

Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic Press, New York.

Anderson

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons, New York.

Anderson, T. W. (1994) The Statistical Analysis of Time Series, John Wiley & Sons, New York.

Anderson and Bancroft

Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill Book Company, New York.

Asuncion and Newman

Asuncion, A.and Newman, D.J. (2007), UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml/. Irvine, CA: University of California, School of Information and Com-
puter Science.

Atkinson

Atkinson, A.C. (1979), A Family of Switching Algorithms for the Computer Generation of Beta Random Variates,
Biometrika, 66, 141-145.

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press, Oxford.
1908

http://archive.ics.uci.edu/ml/

Baker

Baker, J. E. (1987), Reducing Bias and Inefficiency in the Selection Algorithm. Genetic Algorithms and their Applica-
tions: Proceeding of the Second international Conference on Genetic Algorithms, 14-21.

Barrodale and Roberts

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L1 approximation, SIAM Journal on

Numerical Analysis, 10, 839-848.

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system of equations in the l1 norm, Com-

munications of the ACM, 17, 319-320.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an overdetermined system of linear equations in
the Chebyshev norm, ACM Transactions on Mathematical Software, 1, 264-270.

Bartlett, M. S.

Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal Statistics Society Supplement, 2, 248-252.

Bartlett, M. S. (1937) Some examples of statistical methods of research in agriculture and applied biology, Supple-
ment to the Journal of the Royal Statistical Society, 4, 137-183.

Bartlett, M. (1937), The statistical conception of mental factors, British Journal of Psychology, 28, 97–104.

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of autocorrelated time series, Sup-
plement to the Journal of the Royal Statistical Society, 8, 27–41.

Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press, Cambridge.

Bays and Durham

Bays, Carter and S.D. Durham (1976), Improving a poor random number generator, ACM Transactions on Mathe-
matical Software, 2, 59-64.

Bendel and Mickey

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices for sampling experiments, Communi-
cations in Statistics, B7, 163-182.

Berry

Berry, M. J. A. and Linoff, G. (1997) Data Mining Techniques, John Wiley & Sons, Inc.
1909

Best and Fisher

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises distribution, Applied Statistics, 28, 152-157.

Bishop

Bishop, C. M. (1995) Neural Networks for Pattern Recognition, Oxford University Press.

Bishop et al

Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975), Discrete Multivariate Analysis: Theory and
Practice, MIT Press, Cambridge, Mass.

Bjorck and Golub

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing Angles Between Subspaces, Mathemat-
ics of Computation, 27, 579-594.

Blom

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John Wiley & Sons, New York.

Bosten and Battiste

Bosten, Nancy E. and E.L. Battiste (1974), Incomplete beta ratio, Communications of the ACM, 17, 156-157.

Box and Jenkins

Box, George E.P. and Gwilym M. Jenkins (1970) Time Series Analysis: Forecasting and Control, Holden-Day, Inc.

Box, George E.P. and Gwilym M. Jenkins (1976), Time Series Analysis: Forecasting and Control, revised ed., Holden-
Day, Oakland.

Box and Pierce

Box, G.E.P., and David A. Pierce (1970), Distribution of residual autocorrelations in autoregressive-integrated mov-
ing average time series models, Journal of the American Statistical Association, 65, 1509–1526.

Box and Tidwell

Box, G.E.P. and P.W. Tidwell (1962), Transformation of the Independent Variables, Technometrics, 4, 531-550.
1910

Box et al.

Box, George E.P., Jenkins,Gwilym M. and Reinsel G.C., (1994) Time Series Analysis, Third edition, Prentice Hall, Engle-
wood Cliffs, New Jersey.

Boyette

Boyette, James M. (1979), Random RC tables with given row and column totals, Applied Statistics, 28, 329-332.

Bradley

Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New Jersey.

Breiman

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and Regression Trees, Chapman & Hall.
For the latest information on CART visit: https://www.salford-systems.com/cart.php.

Breiman

Breiman, Leo (2001) Random Forests, Statistics Department, University of California, Berkeley. See
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf.

Breslow

Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics, 30, 89-99.

Bridel

Bridle, J. S. (1990), Probabilistic Interpretation of Feedforward Classification Network Outputs, with relationships
to statistical pattern recognition, in F. Fogelman Soulie and J. Herault (Eds.), Neuralcomputing: Algorithms, Architec-
tures and Applications, Springer-Verlag, 227-236.

Brown

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-measures of association and the log-
linear model (complete and incomplete tables), in BMDP Statistical Software, 1983 Printing with Additions, (edited by
W.J. Dixon), University of California Press, Berkeley.

Brockwell and Davis

Brockwell, Peter J. and Davis, Richard A. (1977), Time Series: Theory and Methods, Springer Series in Statistics
1911

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf

Brown and Benedetti

Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and tests for correlation in two-way con-
tingency tables, Journal of the American Statistical Association, 42, 309-315.

Calvo

Calvo, R. A. (2001), Classifying Financial News with Neural Networks, Proceedings of the 6th Australasian Document
Computing Symposium.

Chang and Lin

Chang, Chih-Chung; Lin, Chih-Jen (2011). "LIBSVM: A library for support vector machines". ACM Transactions on
Intelligent Systems and Technology 2 (3).

Chatfield and Yar

Chatfield, C., Yar, M. (1988), Holt-Winters Forecasting; Some Practical Issues, J. Royal Stat. Soc., Series D. 7, (2), 129-
140.

Chatfield, C., Yar, M. (1991), Prediction intervals for multiplicative Holt-Winters, International Journal of Forecasting.
No. 7,31-37.

Chen and Liu

Chen, C. and Liu, L., Joint Estimation of Model Parameters and Outlier Effects in Time Series, Journal of the Ameri-
can Statistical Association, Vol. 88, No.421, March 1993.

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters, Communications of the ACM,
21, 317-322.

Chiang

Chiang, Chin Long (1968), Introduction to Stochastic Processes in Statistics, John Wiley & Sons, New York.

Clarkson and Jenrich

Clarkson, Douglas B. and Robert B Jenrich (1991), Computing extended maximum likelihood estimates for linear
parameter models, submitted to Journal of the Royal Statistical Society, Series B, 53, 417-426.
1912

Coley

Coley, D. A. (1999), An Introduction to Genetic Algorithms for Scientists and Engineers, World Scientific Publishing Co.

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & Sons, New York.

Conover and Iman

Conover, W.J. and Ronald L. Iman (1983), Introduction to Modern Business Statistics, John Wiley & Sons, New York.

Conover, W. J., Johnson, M. E., and Johnson, M. M

Conover, W. J., Johnson, M. E., and Johnson, M. M. (1981) A comparative study of tests for homogeneity of vari-
ances, with applications to the outer continental shelf bidding data, Technometrics, 23, 351-361.

Cook and Weisberg

Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in Regression, Chapman and Hall, New York.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied Statistics, 17, 190-192.

Cox

Cox, David R. (1970), The Analysis of Binary Data, Methuen, London.

Cox, D.R. (1972), Regression models and life tables (with discussion), Journal of the Royal Statistical Society, Series B,
Methodology, 34, 187–220.

Cox and Lewis

Cox, D.R., and P.A.W. Lewis (1966), The Statistical Analysis of Series of Events, Methuen, London.

Cox and Oakes

Cox, D.R., and D. Oakes (1984), Analysis of Survival Data, Chapman and Hall, London.

Cox and Stuart

Cox, D.R., and A. Stuart (1955), Some quick sign tests for trend in location and dispersion, Biometrika, 42, 80-95.
1913

Cranley and Patterson

Cranley, R. and Patterson, T.N.L. (1976), Randomization of Number Theoretic Methods for Multiple Integration,
SIAM Journal of Numerical Analysis, 13, 904-914.

D'Agostino and Stevens

D'Agostino, Ralph B. and Michael A. Stevens (1986), Goodness-of-Fit Techniques, Marcel Dekker, New York.

Dallal and Wilkinson

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the distribution of Lilliefor's test statis-
tic for normality, The American Statistician, 40, 294-296.

Davis and Rabinowitz

Davis, P.J. and Rabinowitz, P. (1984), Methods of Numerical Integration, Academic Press, 482-483.

De Jong

De Jong, K. A. (1975), An Analysis of the Behavior of a Class of Genetic Adaptive Systems. (Doctoral dissertation,
Univ. of Michigan). Dissertation Abstracts International 36(10), 5140B. (University Microfilms No. 76-9381).

De Jong

de Jong, Sijmen (1993), SIMPLS: An alternative approach to partial least squares regression, Chemometrics and Intelli-
gent Laboratory Systems, 18, 251-263.

Demiroz et al.

Demiroz, G., H. A. Govenir, and N. Ilter (1988), “Learning Differential Diagnosis of Eryhemato-Squamous Diseases
using Voting Feature Intervals”, Artificial Intelligence in Medicine.

Dennis and Schnabel

Dennis, J.E., Jr. and Robert B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Devore

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences, Brooks/Cole Publishing Company, Mon-
terey, Calif.
1914

Doornik

Doornik, J.A. (2005), An Improved Ziggurat Method to Generate Normal Random Samples,
http://www.doornik.com/research/ziggurat.pdf., University of Oxford.

Draper and Smith

Draper, N.R. and H. Smith (1981), Applied Regression Analysis, 2d ed., John Wiley & Sons, New York.

Dunnett and Sobel

Dunnett, C. W. and Sobel, M. (1955), Approximations to the Probability Integral and Certain Percentage Points of a
Multivariate analogue of Student’s t-distribution. Biometrika, 42, 258-260.

Durbin

Durbin, J. (1960), The fitting of time series models, Revue Institute Internationale de Statistics, 28, 233–243.

Efroymson

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods for Digital Computers, Volume 1,
(edited by A. Ralston and H. Wilf), John Wiley & Sons, New York, 191-203.

Ekblom

Ekblom, Hakan (1973), Calculation of linear best Lp-approximations, BIT, 13, 292-300.

Ekblom, Hakan (1987), The L1-estimate as limiting case of an Lp or Huber-estimate, in Statistical Data Analysis

Based on the L1-Norm and Related Methods (edited by Yadolah Dodge), North-Holland, Amsterdam, 109-116.

Elandt-Johnson and Johnson

Elandt-Johnson, Regina C., and Norman L. Johnson (1980), Survival Models and Data Analysis, John Wiley & Sons,
New York, 172-173.

Elman

Elman, J. L. (1990) Finding Structure in Time, Cognitive Science, 14, 179-211.

Emmett

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum likelihood, British Journal of Psychology, Sta-
tistical Section, 2, 90-97.
1915

http://www.doornik.com/research/ziggurat.pdf

Engle

Engle, C. (1982), Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation,
Econometrica , 50, 987-1008.

Engle, R.F. and C.W.J. Granger

Engle, R.F. and C.W.J. Granger. Long-run Economic Relationships: Readings in Cointegration. Advanced Texts in
Econometrics. Oxford University Press. New York, 1991.

Fan, Chen, and Joachims

Fan, Rong-en, Pai-hsuen Chen and Thorsten Joachims, Working Set Selection Using Second Order Information for
Training SVM, Journal of Machine Learning Research, 2005.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, The Annals of Eugenics, 7, 179-188.

Fishman

Fishman, George S. (1978), Principles of Discrete Event Simulation, John Wiley & Sons, New York.

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of multiplicative congruential random num-
ber generators with modulus , Journal of the American Statistical Association, 77, 129-136.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital computer, SIAM
Journal on Applied Mathematics, 5, 74-88.

Frank and Friedman

Frank, Ildiko E., and Jerome J. Friedman (1993), A Statistical View of Some Chemometrics Regression Tools, Technomet-
rics, Volume 35, Issue 2, pp. 109-135.

Friedman

Friedman, Jerome J. (2002), Stochastic Gradient Boosting, Computational Statistics & Data Analysis, 38 (4), 367-378.
1916

Frey and Slate

Frey, P. W. and D. J. Slate. (1991), “Letter Recognition using Holland-style Adaptive Classifiers”. (Machine Learning
Vol 6 #2).

Fuller

Fuller, Wayne A. (1976), Introduction to Statistical Time Series, John Wiley & Sons, New York.

Furnival and Wilson

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds, Technometrics, 16, 499-511.

Fushimi

Fushimi, Masanori (1990), Random number generation with the recursion Xt = Xt−3p ⊕Xt−3q, Journal of Computa-

tional and Applied Mathematics, 31, 105-118.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear least squares problems,
Applied Statistics, 23, 448-454.

Genz

Genz, A. (1992), Numerical Computation of Multivariate Normal Probabilities. J. Comp. Graph Stat., 1, 141-149.

Gibbons

Gibbons, J.D. (1971), Nonparametric Statistical Inference, McGraw-Hill, New York.

Girschick

Girschick, M.A. (1939), On the Sampling Theory of Roots of Determinantal Equations, Annals of Mathematical Sta-
tistics, 10, 203-224.

Gnanadesikan

Gnanadesikan, R. Methods for Statistical Data Analysis of Multivariate Observations. Wiley. New York. (1977).
1917

Goldberg

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Pub-
lishing Co.

Goldberg, D. E. and Deb, K. (1991), A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In G.
Rawlins, Ed., Foundations of Genetic Algorithms. Morgan Kaufmann.

Golub and Van Loan

Golub, Gene H. and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins University Press, Baltimore,
Md.

Gonin and Money

Gonin, Rene, and Arthur H. Money (1989), Nonlinear Lp-Norm Estimation, Marcel Dekker, New York.

Goodnight

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American Statistician, 33, 149-158.

Graybill

Graybill, Franklin A. (1976), Theory and Application of the Linear Model, Duxbury Press, North Scituate, Mass.

Griffin and Redish

Griffin, R. and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal stor-
age, Communications of the ACM, 13, 54.

Gross and Clark

Gross, Alan J., and Virginia A. Clark (1975), Survival Distributions: Reliability Applications in the Biomedical Sciences,
John Wiley & Sons, New York.

Gruenberger and Mark

Gruenberger, F., and A.M. Mark (1951), The d2 test of random digits, Mathematical Tables and Other Aids in Compu-
tation, 5, 109-110.
1918

Guerra et al.

Guerra, Victor O., Richard A. Tapia, and James R. Thompson (1976), A random number generator for continuous
random variables based on an interpolation procedure of Akima, Proceedings of the Ninth Interface Symposium on
Computer Science and Statistics, (edited by David C. Hoaglin and Roy E. Welsch), Prindle, Weber & Schmidt, Boston,
228-230.

Giudici

Giudici, P. (2003) Applied Data Mining: Statistical Methods for Business and Industry, John Wiley & Sons, Inc.

Haldane

Haldane, J.B.S. (1939), The mean and variance of x2 when used as a test of homogeneity, when expectations are
small, Biometrika, 31, 346.

Hamilton

Hamilton, James D., Time Series Analysis, Princeton University Press, Princeton (NewJersey), 1994.

Harman

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of Chicago Press, Chicago.

Hart et al

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, John R. Rice, Henry G. Thacher,
Jr., and Christoph Witzgall (1968), Computer Approximations, John Wiley & Sons, New York.

Hartigan

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan and Wong

Hartigan, J.A. and M.A. Wong (1979), Algorithm AS 136: A K-means clustering algorithm, Applied Statistics, 28, 100-
108.
1919

Hastie et al

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome (2009). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. 2nd ed. Springer, New York.

Hayter

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is
conservative, Annals of Statistics, 12, 61-75.

Hebb

Hebb, D. O. (1949) The Organization of Behaviour: A Neuropsychological Theory, John Wiley.

Heiberger

Heiberger, Richard M. (1978), Generation of random orthogonal matrices, Applied Statistics, 27, 199-206.

Hemmerle.

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer, Blaisdell Publishing Company,
Waltham, Mass.

Herraman

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics, 17, 289-292.

Hill

Hill, G.W. (1970), Student's t-distribution, Communications of the ACM, 13, 617-619.

Hill, G.W. (1970), Student's t-quantiles, Communications of the ACM, 13, 619-620.

Hinkelmann, K and Kemthorne

Hinkelmann, K and Kemthorne, O (1994) Design and Analysis of Experiments – Vol 1, John Wiley.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, Applied Statistics, 26, 67-69.
1920

Hoaglin and Welsch

Hoaglin, David C. and Roy E. Welsch (1978), The hat matrix in regression and ANOVA, The American Statistician, 32,
17-22.

Hocking

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one should be used?, Technometrics, 14,
967-970.

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American Statistician, 27, 148-152.

Hocking, R.R. (1985), The Analysis of Linear Models, Brooks/Cole Publishing Company, Monterey, California.

Hollmén

Hollmén, Jaakko, “Process Modeling Using the Self-Organizing Map,” 15.2.1996, Helsinki University of Technology.

Hopfield

Hopfield, J. J. (1987) Learning Algorithms and Probability Distributions in Feed-Forward and Feed-Back Networks,
Proceedings of the National Academy of Sciences, 84, 8429-8433.

Holland

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press.

Hosmer and Lemeshow

Hosmer, D W. and Lemeshow, S (2000), Applied Logistic Regression, 2nd ed., John Wiley & Sons, New York.

Huber

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hutchinson

Hutchinson, J. M. (1994) A Radial Basis Function Approach to Financial Timer Series Analysis, Ph.D. dissertation, Mas-
sachusetts Institute of Technology.
1921

Hughes and Saw

Hughes, David T., and John G. Saw (1972), Approximating the percentage points of Hotelling’s generalized sta-
tistic, Biometrika, 59, 224-226.

Hwang

Hwang, J. T. G. and Ding, A. A. (1997) Prediction Intervals for Artificial Neural Networks, Journal of the American Sta-
tistical Society, 92(438) 748-757.

Iman and Davenport

Iman, R.L., and J.M. Davenport (1980), Approximations of the critical region of the Friedman statistic, Communica-
tions in Statistics, A9(6), 571-595.

Jacobs

Jacobs, R. A., Jorday, M. I., Nowlan, S. J., and Hinton, G. E. (1991) Adaptive Mixtures of Local Experts, Neural Compu-
tation, 3(1), 79-87.

Jennrich and Robinson

Jennrich, R.I. and S.M. Robinson (1969), A Newton-Raphson algorithm for maximum likelihood factor analysis, Psy-
chometrika, 34, 111-123.

Jennrich and Sampson

Jennrich, R.I. and P.F. Sampson (1966), Rotation for simple loadings, Psychometrika, 31, 313-323.

Johansen

Johansen, S. (1988). Statistical Analysis of Cointegration Vectors. Journal of Economic Dynamics and Control. v 12 ,
pp 231-54.

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press,
Oxford.

John

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments, Macmillan Company, New York.

T 0
2

1922

Jöhnk

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufallszahlen, Metrika, 8, 5-15.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton Mifflin Company, Boston.

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate Distributions-2, John Wiley & Sons, New York.

Johnson and Kotz

Johnson, N.L. and Kotz, S. (1972), Distributions in Statistics: Continuous Multivariate Distributions, John Wiley & Sons,
Inc., New York.

Johnson and Welch

Johnson, D.G., and W.J. Welch (1980), The generation of pseudo-random correlation matrices, Journal of Statistical
Computation and Simulation, 11, 55-69.

Jonckheere

Jonckheere, A.R. (1954), A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 133-143.

Jöreskog

Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood methods, Statistical Methods for
Digital Computers, (edited by Kurt Enslein, Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York, 125-
153.

Kachitvichyanukul

Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial, and hypergeometric random variates,
Ph.D. dissertation, Purdue University, West Lafayette, Indiana.

Kaiser

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by C. Harris), University of Wisconsin
Press, Madison, Wis.
1923

Kaiser and Caffrey

Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30, 1-14.

Kalbfleisch and Prentice

Kalbfleisch, John D., and Ross L. Prentice (1980), The Statistical Analysis of Failure Time Data, John Wiley & Sons, New
York.

Kass

Kass, G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data, Applied Statistics, Vol.
29, No. 2 (1980), pp. 119-127.

Keast

Keast, P. (1973) Optimal Parameters for Multidimensional Integration, SIAM Journal of Numerical Analysis, 10, 831-
838.

Kemp

Kemp, A.W., (1981), Efficient generation of logarithmically distributed pseudo-random variables, Applied Statistics,
30, 249-253.

Kendall and Stuart

Kendall, Maurice G. and Alan Stuart (1973), The Advanced Theory of Statistics, Volume 2: Inference and Relationship,
3d ed., Charles Griffin & Company, London.

Kendall, Maurice G. and Alan Stuart (1979), The Advanced Theory of Statistics, Volume 2: Inference and Relationship,
4th ed., Oxford University Press, New York.

Kendall et al.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory of Statistics, Volume 3: Design and
Analysis, and Time Series, 4th ed., Oxford University Press, New York.

Kennedy and Gentle

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New York.
1924

Kohonen

Kohonen, T. (1995), Self-Organizing Maps, Third Edition. Springer Series in Information Sciences., New York.

Kuehl, R. O.

Kuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd edition, Duxbury
Press.

Kim and Jennrich

Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling distribution of the two sample Kolmogorov-Smirnov
criterion Dmn (m < n), in Selected Tables in Mathematical Statistics, Volume 1, (edited by H. L. Harter and D.B. Owen),

American Mathematical Society, Providence, Rhode Island.

Kinderman and Ramage

Kinderman, A.J., and J.G. Ramage (1976), Computer generation of normal random variables, Journal of the Ameri-
can Statistical Association, 71, 893-896.

Kinderman et al.

Kinderman, A.J., J.F. Monahan, and J.G. Ramage (1977), Computer methods for sampling from Student’s t distribu-
tion, Mathematics of Computation 31, 1009-1018.

Kinnucan and Kuki

Kinnucan, P. and H. Kuki (1968), A Single Precision INVERSE Error Function Subroutine, Computation Center, Univer-
sity of Chicago.

Kirk

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral Sciences, 2d ed., Brooks/Cole Publishing
Company, Monterey, Calif.

Kitagawa and Akaike

Kitagawa, G. and Akaike, H., A Procedure for the modeling of non-stationary time series, Ann. Inst. Statist. Math. 30
(1978), Part B, 351-363.
1925

Konishi and Kitagawa

Konishi, S. and Kitagawa, G (2008), Information Criteria and Statistical Modeling, Springer, New York.

Knuth

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2d ed., Addison-
Wesley, Reading, Mass.

Kshirsagar

Kshirsagar, Anant M. (1972), Multivariate Analysis, Marcel Dekker, New York.

Lachenbruch

Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Lai

Lai, D. (1998a), Local asymptotic normality for location-scale type processes. Far East Journal of Theorectical Statis-
tics, (in press).

Lai, D. (1998b), Asymptotic distributions of the correlation integral based statistics. Journal of Nonparametric Statis-
tics, (in press).

Lai, D. (1998c), Asymptotic distributions of the estimated BDS statistic and residual analysis of AR Models on the
Canadian lynx data. Journal of Biological Systems, (in press).

Laird and Oliver

Laird, N.M., and D. Fisher (1981), Covariance analysis of censored survival data using log-linear analysis tech-
niques, JASA 76, 1231-1240.

Lawless

Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data, John Wiley & Sons, New York.

Lawley and Maxwell

Lawley, D.N. and A.E. Maxwell (1971), Factor Analysis as a Statistical Method, 2d ed., Butterworth, London.
1926

Lawrence et al

Lawrence, S., Giles, C. L, Tsoi, A. C., Back, A. D. (1997) Face Recognition: A Convolutional Neural Network Approach,
IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, 8(1), 98-113.

Learmonth and Lewis

Learmonth, G.P. and P.A.W. Lewis (1973), Naval Postgraduate School Random Number Generator Package LLRANDOM,
NPS55LW73061A, Naval Postgraduate School, Monterey, Calif.

Lee

Lee, Elisa T. (1980), Statistical Methods for Survival Data Analysis, Lifetime Learning Publications, Belmont, Calif.

Lehmann

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, San Francisco.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of Applied Mathe-
matics, 2, 164-168.

Levene, H.

Levene, H. (1960) In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, I. Olkin et al. edi-
tors, Stanford University Press, 278-292.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number generator for the System/360, IBM
Systems Journal, 8, 136-146.

Li

Li, L. K. (1992) Approximation Theory and Recurrent Networks, Proc. Int. Joint Conf. On Neural Networks, vol. II,
266-271.

Liffiefors

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with mean and variance unknown, Journal of
the American Statistical Association, 62, 534-544.
1927

Lippmann

Lippmann, R. P. (1989) Review of Neural Networks for Speech Recognition, Neural Computation, I, 1-38.

Ljung and Box

Ljung, G.M., and G.E.P. Box (1978), On a measure of lack of fit in time series models, Biometrika, 65, 297–303.

Loh

Loh, W.-Y. and Shih, Y.-S. (1997) Split Selection Methods for Classification Trees, Statistica Sinica, 7, 815-840. For
information on the latest version of QUEST see: http://www.stat.wisc.edu/~loh/quest.html.

Longley

Longley, James W. (1967), An appraisal of least-squares programs for the electronic computer from the point of
view of the user, Journal of the American Statistical Association, 62, 819-841.

Lütkepohl

Lutkepohl, New Introduction to Multiple Time Series Analysis. Springer. 2007, Chapter 12.

Matsumoto and Nishimure

Makoto Matsumoto and Takuji Nishimura, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1,
January 1998, Pages 3–30.

Mandic

Mandic, D. P. and Chambers, J. A. (2001) Recurrent Neural Networks for Prediction, John Wiley & Sons, LTD.

Manning

Manning, C. D. and Schütze, H. (1999) Foundations of Statistical Natural Language Processing, MIT Press.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal distribution, Technometrics, 6, 101-102.

Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings of the National Academy of Sciences,
61, 25-28.
1928

http://www.stat.wisc.edu/~loh/quest.html

Marsaglia, G. (1972), The structure of linear congruential sequences, in Applications of Number Theory to Numerical
Analysis, (edited by S. K. Zaremba), Academic Press, New York, 249-286.

Marsaglia, George (1972), Choosing a point from the surface of a sphere, The Annals of Mathematical Statistics, 43,
645-646.

Marsaglia and Tsang

Marsaglia, G. and Tsang, W. W. (2000), The Ziggurat Method for Generating Random Variables, Journal of Statistical
Software, 5-8, 1-7.

Martens and Martens

Martens, Harald, and Magni Martens (2000), Modified Jack-knife estimation of parameter uncertainty in bilinear mod-
elling by partial least squares regression (PLSR), Food Quality and Preference, 11(1-2), 5-16.

McCulloch

McCulloch, W. S. and Pitts, W. (1943), A Logical Calculus for Ideas Imminent in Nervous Activity, Bulletin of Mathe-
matical Biophysics, 5, 115-133.

McKean and Schrader

McKean, Joseph W., and Ronald M. Schrader (1987), Least absolute errors analysis of variance, in Statistical Data
Analysis Based on the L1-Norm and Related Methods (edited by Yadolah Dodge), North-Holland, Amsterdam, 297-

305.

McKeon

McKeon, James J. (1974), F approximations to the distribution of Hotelling’s , Biometrika, 61, 381-383.

McCullagh and Nelder

McCullagh, P., and J.A. Nelder, (1983), Generalized Linear Models, Chapman and Hall, London.

Maindonald

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.

T 0
2

1929

Marazzi

Marazzi, Alfio (1985), Robust affine invariant covariances in ROBETH, ROBETH-85 document No. 6, Division de
Statistique et Informatique, Institut Universitaire de Medecine Sociale et Preventive, Laussanne.

Mardia et al.

Mardia, K.V. (1970), Measures of multivariate skewness and kurtosis with applications, Biometrics, 57, 519-530.

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic Press, New York.

Mardia and Foster

Mardia, K.V. and K. Foster (1983), Omnibus tests of multinormality based on skewness and kurtosis, Communica-
tions in Statistics A, Theory and Methods, 12, 207-221.

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied
Mathematics, 11, 431-441.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal distribution, Technometrics, 6, 101-102.

Marsaglia and Bray

Marsaglia, G. and T.A. Bray (1964), A convenient method for generating normal variables, SIAM Review, 6, 260-264.

Marsaglia et al.

Marsaglia, G., M.D. MacLaren, and T.A. Bray (1964), A fast procedure for generating normal random variables,
Communications of the ACM, 7, 4-10.

Merle and Spath

Merle, G., and H. Spath (1974), Computational experiences with discrete Lp approximation, Computing, 12, 315-

321.

Miller

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed., Springer-Verlag, New York.
1930

Milliken and Johnson

Milliken, George A. and Dallas E. Johnson (1984), Analysis of Messy Data, Volume 1: Designed Experiments, Van Nos-
trand Reinhold, New York.

Mitchell

Mitchell, M. (1996), An Introduction to Genetic Algorithms, MIT Press.

Moran

Moran, P.A.P. (1947), Some theorems on time series I, Biometrika, 34, 281-291.

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for [4] MINPACK-1, Argonne National Labo-
ratory Report ANL-80_74, Argonne, Ill.

Morrison

Morrison, Donald F. (1976), Multivariate Statistical Methods, 2nd. ed. McGraw-Hill Book Company, New York.

Muller

Muller, M.E. (1959), A note on a method for generating points uniformly on N-dimensional spheres, Communica-
tions of the ACM, 2, 19-20.

Nelson

Nelson, D. B. (1991), Conditional heteroskedasticity in asset returns: A new approach. Econometrica, , 59, 347-370.

Nelson

Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous Confidence Intervals, Journal of Quality
Technology, 21, 232-241.

Neter

Neter, John (1983), Applied Linear Regression Models, Richard D. Irwin, Homewood, Ill.

Neter and Wasserman

Neter, John and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin, Homewood, Ill.
1931

Noether

Noether, G.E. (1956), Two sequential tests against trend, Journal of the American Statistical Association, 51, 440-450.

Otto et al

Otto, M.C., Bell, W.R. and Burman, J.P. (1987), “An Iterative GLS Approach to Maximum Likelihood Estimation of Regres-
sion Models With ARIMA Errors,” American Statistical Association, Proceedings of the Business and Economics Statistics
Section, 632-637.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company, Reading, Mass.

Owen, D.B. (1965), A Special Case of the Bivariate Non-central t Distribution, Biometrika, 52, 437-446.

Ozaki and Oda

Ozaki, T and Oda H (1978) Nonlinear time series model identification by Akaike's information criterion. Information
and Systems, Dubuisson eds, Pergamon Press. 83-91.

Pao

Pao, Y. (1989) Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing.

Palm

Palm, F. C. (1996), GARCH models of volatility. In Handbook of Statistics, Vol. 14, 209-240. Eds: Maddala and Rao.
Elsevier,New York.

Parker

Parker, D. B., (1985), Learning Logic. Technical Report TR-47, Cambridge, MA: MIT Center for Research in computa-
tional Economics and Management Science.

Patefield

Patefield, W.M. (1981), An efficient method of generating R × C tables with given row and column totals, Applied
Statistics, 30, 91-97.
1932

Patefield and Tandy

Patefield, W.M. and Tandy, D. (2000), Fast and Accurate Calculation of Owen’s T-Function, J. Statistical Software, 5,
Issue 5, 1-25.

Peixoto

Peixoto, Julio L. (1986), Testable hypotheses in singular fixed linear models, Communications in Statistics: Theory
and Methods, 15, 1957-1973.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, Communica-
tions of the ACM, 13, 624.

Pillai

Pillai, K.C.S. (1985), Pillai’s trace, in Encyclopedia of Statistical Sciences, Volume 6, (edited by Samuel Kotz and Nor-
man L. Johnson), John Wiley & Sons, New York, 725-729.

Poli

Poli, I. and Jones, R. D. (1994) A Neural Net Model for Prediction, Journal of the American Statistical Society, 89(425)
117-121.

Pregibon

Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics, 9, 705-724.

Prentice

Prentice, Ross L. (1976), A generalization of the probit and logit methods for dose response curves, Biometrics, 32,
761-768.

Priestley

Priestley, M.B. (1981), Spectral Analysis and Time Series, Volumes 1 and 2, Academic Press, New York.

Quinlan

Quinlan, J. R. (1993). C4.5 Programs for Machine Learning, Morgan Kaufmann. For the latest information on Quin-
lan’s algorithms see http://www.rulequest.com/.
1933

http://www.rulequest.com/

Quinlan (1987). Simplifying Decision Trees. Int J Man-Machine Studies 27, pp. 221-234.

Rajaraman and Ullman

Rajaraman Anand and Ullman, Jeffrey David (2011), Mining of Massive Datasets, Cambridge University Press, Cam-
bridge, UK.

Rao

Rao, C. Radhakrishna (1973), Linear Statistical Inference and Its Applications, 2d ed., John Wiley & Sons, New York.

Reed

Reed, R. D. and Marks, R. J. II (1999) Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
The MIT Press, Cambridge, MA.

Ripley

Ripley, B. D. (1994) Neural Networks and Related Methods for Classification, Journal of the Royal Statistical Society B,
56(3), 409-456.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks, Cambridge University Press.

Robinson

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital Computer Programs, Holden-Day, San
Francisco.

Rosenblatt

Rosenblatt, F. (1958) The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,
Psychol. Rev., 65, 386-408.

Royston

Royston, J.P. (1982a), An extension of Shapiro and Wilk's W test for normality to large samples, Applied Statistics, 31,
115-124.

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176-180.

Royston, J.P. (1982c), Expected Normal Order Statistics (exact and approximate), Applied Statistics, 31, 161-165.

Royston, J. P. (1991), Approximating the Shapiro-Wilk W-test for non-normality, Statistics and Computing, 2, 117-
119.
1934

Rumelhart

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning Representations by Back-Propagating Errors,
Nature, 323, 533-536.

Rumelhart, D. E. and McClelland, J. L. eds. (1986) Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, 1, 318-362, MIT Press.

Sallas

Sallas, William M. (1990), An algorithm for an Lp norm fit of a multiple linear regression model, American Statistical

Association 1990 Proceedings of the Statistical Computing Section, 131-136.

Sallas and Lionti

Sallas, William M. and Abby M. Lionti (1988), Some useful computing formulas for the nonfull rank linear model with
linear equality restrictions, IMSL Technical Report 8805, IMSL, Houston.

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics-the two-sample case, Annals of Math-
ematical Statistics, 27, 590-615.

Savasere, Omiecinski, and Navathe

Savasere, Ashok; Omiecinski, Edward; and Navathe, Shamkant (1995), “An Efficient Algorithm for Mining Association
Rules in Large Databases”, Proceedings of the 21st International Conference on Very Large Data Bases, Zurich, Switzer-
land, 1995

Scheffe

Scheffe, Henry (1959), The Analysis of Variance, John Wiley & Sons, New York.

Schmeiser

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete random variates, Computer
Science and Statistics: Proceedings of the Fifteenth Symposium on the Interface, (edited by James E. Gentle), North-Hol-
land Publishing Company, Amsterdam, 154-160.

Schmeiser and Babu

Schmeiser, Bruce W. and A.J.G. Babu (1980), Beta variate generation via exponential majorizing functions, Opera-
tions Research, 28, 917-926.
1935

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce and Voratas Kachitvichyanukul (1981), Poisson Random Variate Generation, Research Memoran-
dum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, Ind.

Schmeiser and Lal

Schmeiser, Bruce W. and Ram Lal (1980), Squeeze methods for generating gamma variates, Journal of the Ameri-
can Statistical Association, 75, 679-682.

Searle

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Seber

Seber, G.A.F. (1984), Multivariate Observations, John Wiley & Sons, New York.

Shampine

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM, 18, 179-180.

Siegal

Siegal, Sidney (1956), Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York.

Singleton

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of
the ACM, 12, 185-187.

Smirnov

Smirnov, N.V. (1939), Estimate of deviation between empirical distribution functions in two independent samples
(in Russian), Bulletin of Moscow University, 2, 3-16.

Smith and Dubey

Smith, H., and S. D. Dubey (1964), "Some reliability problems in the chemical industry", Industrial Quality Control,
21 (2), 1964, 64-70.
1936

Smith

Smith, M. (1993) Neural Networks for Statistical Modeling, New York: Van Nostrand Reinhold.

Snedecor and Cochran

Snedecor, George W. and William G. Cochran (1967), Statistical Methods, 6th ed., Iowa State University Press,
Ames, Iowa.

Snedecor and Cochran

Snedecor, George W. and Cochran, William G. (1967) Statistical Methods, 6th edition, Iowa State University Press,
296-298.

Snedecor, George W. and Cochran, William G. (1967) Statistical Methods, 6th edition, Iowa State University Press,
432-436.

Sposito

Sposito, Vincent A. (1989), Some properties of Lp-estimators, in Robust Regression: Analysis and Applications (edited

by Kenneth D. Lawrence and Jeffrey L. Arthur), Marcel Dekker, New York, 23-58.

Spurrier and Isham

Spurrier, John D. and Steven P. Isham (1985), Exact simultaneous confidence intervals for pairwise comparisons of
three normal means, Journal of the American Statistical Association, 80, 438-442.

Stablein, Carter, and Novak

Stablein, D.M, W.H. Carter, and J.W. Novak (1981), Analysis of survival data with nonproportional hazard functions,
Controlled Clinical Trials, 2, 149–159.

Stahel

Stahel, W. (1981), Robuste Schatzugen: Infinitesimale Opimalitat und Schatzugen von Kovarianzmatrizen, Disser-
tation no. 6881, ETH, Zurich.

Steel and Torrie

Steel and Torrie (1960) Principles and Procedures of Statistics, McGraw-Hill.
1937

Stephens

Stephens, M.A. (1974), EDF statistics for goodness of fit and some comparisons, Journal of the American Statistical
Association, 69, 730-737.

Stephens, M.A. (1986): Tests based on EDF statistics. In: D’Agostino, R.B. and Stephens, M.A., eds.: Goodness-of-Fit
Techniques. Marcel Dekker, New York.

Stirling

Stirling, W.D. (1981), Least squares subject to linear constraints, Applied Statistics, 30, 204-212. (See correction, p.
357.)

Stoline

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous estimation of all pairwise compari-
sons in one-way ANOVA designs, The American Statistician, 35, 134-141.

Story

Storey, John D. (2003). “The Positive False Discovery Rate: A Bayesian Interpretation and the q-value.” The Annals
of Statistics. Vol. 31, No. 6, pp 2013-2035.

Storey, John D. (2002). “A Direct Approach to False Discovery Rates.” Journal of the Royal Statistical Society, Series B.
64, part 3, pp 479-498.

Storey, John D. and Robert Tibshirani (2003). “Statistical Significance for Genomewide Studies.” PNAS. Vol. 100,
No. 16. pp 9440-9445.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics of Computation, 22,
144-158.

Studenmund

Studenmund, A. H. (1992) Using Economics: A Practical Guide, New York: Harper Collins.

Swingler

Swingler, K. (1996) Applying Neural Networks: A Practical Guide, Academic Press.
1938

Tanner and Wong

Tanner, Martin A., and Wing H. Wong (1983), The estimation of the hazard function from randomly censored data
by the kernel method, Annals of Statistics, 11, 989–993.

Tanner, Martin A., and Wing H. Wong (1984), Data-based nonparametric estimation of the hazard function with
applications to model diagnostics and exploratory analysis, Journal of the American Statistical Association, 79, 123–
456.

Taylor and Thompson

Taylor, Malcolm S., and James R. Thompson (1986), Data based random number generation for a multivariate dis-
tribution via stochastic simulation, Computational Statistics & Data Analysis, 4, 93-101.

Tesauro

Tesauro, G. (1990) Neurogammon Wins Computer Olympiad, Neural Computation, 1, 321-323.

Tezuka

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic Publishers, Boston.

Thisted

Thisted, Ronald. A. (1988). Elements of Statistical Computing: Numerical Computation. Chapman & Hall, New York.

Thompson

Thompson, James R, (1989), Empirical Model Building, John Wiley & Sons, New York.

Tong

Tong, Y. L. (1990), The Multivariate Normal Distribution, Springer-Verlag, New York.

Tucker and Lewis

Tucker, Ledyard and Charles Lewis (1973), A reliability coefficient for maximum likelihood factor analysis, Psycho-
metrika, 38, 1-10.

Tukey

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical Statistics, 33, 1-67.
1939

Velleman and Hoaglin

Velleman, Paul F. and David C. Hoaglin (1981), Applications, Basics, and Computing of Exploratory Data Analysis, Dux-
bury Press, Boston.

Verdooren

Verdooren, L. R. (1963), Extended tables of critical values for Wilcoxon's test statistic, Biometrika, 50, 177-186.

Wallace

Wallace, D.L. (1959), Simplified Beta-approximations to the Kruskal-Wallis H-test, Journal of the American Statistical
Association, 54, 225-230.

Warner

Warner, B. and Misra, M. (1996) Understanding Neural Networks as Statistical Tools, The American Statistician,
50(4) 284-293.

Weisberg

Weisberg, S. (1985), Applied Linear Regression, 2d ed., John Wiley & Sons, New York.

Werbos

Werbos, P. (1974) Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science, PhD thesis, Har-
vard University, Cambridge, MA.

Werbos, P. (1990) Backpropagation Through Time: What It Does and How to do It, Proc. IEEE, 78, 1550-1560.

Wetzel

Wetzel, A. (1983), Evaluation of the Effectiveness of Genetic Algorithms in Combinatorial Optimization, Unpublished
manuscript, Univ. of Pittsburg, Pittsburg.

Williams

Williams, R. J. and Zipser, D. (1989) A Learning Algorithm for Continuously Running Fully Recurrent Neural Net-
works, Neural Computation, 1, 270-280.
1940

Witten

Witten, I. H. and Frank, E. (2000) Data Mining: Practical Machine Learning Tools and Techniques with Java Implementa-
tions, Morgan Kaufmann Publishers.

Wold, Sjöström and Eriksson

Wold, Svante, Michael Sjöström, and Lennart Eriksson (2001), PLS-regression: a basic tool of chemometrics,
Chemometrics and Intelligent Laboratory Systems, Volume 58, 109-130.

Woodfield

Woodfield, Terry J. (1990), Some notes on the Ljung-Box portmanteau statistic, American Statistical Association
1990 Proceedings of the Statistical Computing Section, 155–160.

Wu

Wu, S-I (1995) Mirroring Our Thought Processes, IEEE Potentials, 14, 36-41.

Xi et al

Ruibin X., Lin N., and Chen Y., (2008), “Compression and Aggregation for Logistic Regression Analysis in Data
Cubes,” IEEE Transactions on Knowledge and Data Engineering. Vol. 1, No. 1.

Yates, F.

Yates, F. (1936) A new method of arranging variety trials involving a large number of varieties. Journal of Agricul-
tural Science, 26, 424-455.

Yoav and Hochberg

Benjamini, Y., Hochberg, Y., (1995), “Controlling the False Discovery Rate: A Practical and Powerful approach to
Multiple Testing.” Journal of the Royal Statistical Society, Series B. Vol. 57, No. 1., pp . 289-300.
1941

Appendix BAlphabetical Summary of
Functions
[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]
1942

A

Function Purpose Statement

ad_normality_test Performs an Anderson-Darling test for
normality.

ancovar Analyzes a one-way classification model
with covariates.

anova_balanced Analyzes a balanced complete experi-
mental design for a fixed, random, or
mixed model.

anova_factorial Analyzes a balanced factorial design
with fixed effects.

anova_nested Analyzes a completely nested random
model with possibly unequal numbers
in the subgroups.

anova_oneway Analyzes a one-way classification model.

apriori Computes the frequent itemsets in a
transaction set.

aggr_apriori Computes the frequent itemsets in a
transaction set using aggregation.

arma Computes least-square estimates of
parameters for an ARMA model.

arma_forecast Computes forecasts and their associ-
ated probability limits for an ARMA
model.

ascii_read Reads freely-formatted ASCII files.

autocorrelation Computes the sample autocorrelation
function of a stationary time series.

auto_arima Automatically identifies time series out-
liers, determines parameters of a
multiplicative seasonal ARIMA

 model and produces
forecasts that incorporate the effects of
outliers whose effects persist beyond
the end of the series.

(p,0,q) × (0,d,0)s
1943

auto_parm Estimates structural breaks in non-sta-
tionary univariate time series.

auto_uni_ar Automatic selection and fitting of a uni-
variate autoregressive time series
model.
1944

B

Function Purpose Statement

bayesian_seasonal_adj Decomposes a time series into trend,
seasonal, and an error component.

beta Evaluates the complete beta function.

beta_cdf Evaluates the beta probability distribu-
tion function.

beta_incomplete Evaluates the real incomplete beta
function.

beta_inverse_cdf Evaluates the inverse of the beta distri-
bution function.

binomial_cdf Evaluates the binomial distribution
function.

binomial_coefficient Evaluates the binomial coefficient.

binomial_pdf Evaluates the binomial probability
function.

bivariate_normal_cdf Evaluates the bivariate normal distribu-
tion function.

box_cox_transform Performs a Box-Cox transformation.
1945

C

Function Purpose Statement

canonical_correlation Given an input array of deviate values,
generates a canonical correlation array.

categorical_glm Analyzes categorical data using logistic,
Probit, Poisson, and other generalized
linear models.

chi_squared_cdf Evaluates the chi-squared distribution
function.

chi_squared_inverse_cdf Evaluates the inverse of the chi-squared
distribution function.

chi_squared_normality_test Performs a chi-squared test for
normality.

chi_squared_test Performs a chi-squared goodness-of-fit
test.

cluster_hierarchical Performs a hierarchical cluster analysis
given a distance matrix.

cluster_k_means Performs a K-means (centroid) cluster
analysis.

cluster_number Computes cluster membership for a
hierarchical cluster tree.

cochran_q_test Performs a Cochran Q test for related
observations.

complementary_chi_squared_cdf Calculates the complement of the chi-
squared distribution.

complementary_F_cdf Calculates the complement of the F dis-
tribution function.

complementary_non_central_F_cdf Evaluates the complementary noncen-
tral F cumulative distribution function
(CDF).

complementary_t_cdf Calculates the complement of the Stu-
dent's t distribution function.

contingency_table Performs a chi-squared analysis of a
two-way contingency table.

continuous_table_setup Sets up a table to generate pseudoran-
dom numbers from a general
continuous distribution.
1946

covariances Computes the sample variance-covari-
ance or correlation matrix.

cox_stuart_trends_test Performs the Cox and Stuart’ sign test
for trends in location and dispersion.

crd_factorial Analyzes data from balanced and unbal-
anced completely randomized
experiments.

crosscorrelation Computes the sample cross-correlation
function of two stationary time series.

cvm_normality_test Performs a Cramer-von-Mises test for
normality.
1947

D

Function Purpose Statement

data_sets Retrieves a commonly analyzed data
set.

decision_tree Generates a decision tree for a single
response variable and two or more pre-
dictor variables.

decision_tree_predict Computes predicted values using a deci-
sion tree.

decision_tree_print Prints a decision tree.

decision_tree_free Frees the memory associated with a
decision tree.

difference Differences a seasonal or nonseasonal
time series.

discrete_table_setup Sets up a table to generate pseudoran-
dom numbers from a general discrete
distribution.

discrete_uniform_cdf Evaluates the discrete uniform cumula-
tive distribution function (CDF).

discrete_uniform_inverse_cdf Evaluates the inverse of the discrete
uniform cumulative distribution func-
tion (CDF).

discrete_uniform_pdf Evaluates the discrete uniform probabil-
ity density function (PDF).

discriminant_analysis Performs discriminant function analysis.

dissimilarities Computes a matrix of dissimilarities (or
similarities) between the columns (or
rows) of a matrix.
1948

E

Function Purpose Statement

empirical_quantiles Computes empirical quantiles.

error_code Returns the code corresponding to the
error message from the last function
called.

error_message Gets the text of the error message from
the last function called.

error_options Sets various error handling options.

error_type Gets the type corresponding to the error
message from the last function called.

estimate_missing Estimates missing values in a time
series.

exact_enumeration Computes exact probabilities in a two-
way contingency table, using the total
enumeration method.

exact_network Computes exact probabilities in a two-
way contingency table using the net-
work algorithm.

exponential_cdf Evaluates the exponential cumulative
distribution function (CDF).

exponential_inverse_cdf Evaluates the inverse of the exponential
cumulative distribution function (CDF).

exponential_pdf Evaluates the exponential probability
density function (PDF).
1949

F

Function Purpose Statement

factor_analysis Extracts initial factor-loading estimates
in factor analysis.

false_discovery_rates Calculate the False Discovery Rate (FDR)
q-values corresponding to a set of p-
values from multiple simultaneous
hypothesis tests.

faure_next_point Computes a shuffled Faure sequence.

fclose Closes a file opened by imsls_fopen.

fopen Opens a file using the C runtime library
used by the IMSL C Stat Library.

free Frees memory returned from an IMSL C
Stat Library function.

free_apriori_itemsets Frees the memory allocated within a fre-
quent itemsets structure.

free_association_rules Frees the memory allocated within an
association rules structure.

friedmans_test Performs Friedman’s test for a random-
ized complete block design.
1950

G

Function Purpose Statement

ga_chromosome Codes and decodes binary information
from phenotypes to a chromosome.

ga_clone_chromosome Returns a new copy of an existing
chromosome.

ga_clone_individual Returns a new copy of an existing
individual.

ga_clone_population Returns a new copy of an existing
population.

ga_copy_chromosome Copies the contents of one chromo-
some into another chromosome.

ga_copy_individual Copies the contents of one individual
into another individual.

ga_copy_population Copies the contents of one population
into another population.

ga_decode Decodes an individual’s chromosome
into its binary, nominal, integer and real
phenotypes.

ga_encode Encodes an individual’s binary, nominal,
integer and real phenotypes into its
chromosome.

ga_free_individual Frees memory allocated to an existing
individual.

ga_free_population Frees memory allocated to an existing
population.

ga_grow_population Adds individuals to an existing
population.

ga_individual Creates an Imsls_f_individual data struc-
ture from user supplied phenotypes.

ga_merge_population Creates a new population by merging
two populations with identical chromo-
some structures.

ga_mutate Performs the mutation operation on an
individual’s chromosome.

ga_population Creates an Imsls_f_population data struc-
ture from user supplied individuals.
1951

ga_random_population Creates an Imsls_f_population data struc-
ture from randomly generated
individuals.

gamma Evaluates the real gamma functions.

gamma_cdf Evaluates the gamma distribution
function.

gamma_incomplete Evaluates the incomplete gamma
function.

gamma_inverse_cdf Evaluates the inverse of the gamma dis-
tribution function.

garch Computes estimates of the parameters
of a GARCH (p, q) model.

genetic_algorithm Optimizes a user defined fitness func-
tion using a tailored genetic algorithm.

geometric_cdf Evaluates the discrete geometric cumu-
lative distribution function (CDF).

geometric_inverse_cdf Evaluates the inverse of the discrete
geometric cumulative distribution func-
tion (CDF).

geometric_pdf Evaluates the discrete geometric proba-
bility density function (PDF).
1952

H

Function Purpose Statement

homogeneity Conducts Bartlett’s and Levene’s tests of
the homogeneity of variance assump-
tion in analysis of variance.

hw_time_series Calculates parameters and forecasts
using the Holt-Winters Multiplicative or
Additive forecasting method for sea-
sonal data.

hypergeometric_cdf Evaluates the hypergeometric distribu-
tion function.

hypergeometric_pdf Evaluates the hypergeometric probabil-
ity function.

hypothesis_partial Constructs a completely testable
hypothesis.

hypothesis_scph Sums of cross products for a multivari-
ate hypothesis.

hypothesis_test Tests for the multivariate linear
hypothesis.
1953

I

Function Purpose Statement

impute_missing Locates and optionally replaces depen-
dent variable missing values with
nearest neighbor estimates.

initialize_error_handler Initializes the IMSL C Stat Library error
handling system.
1954

K

Function Purpose Statement

kalman Performs Kalman filtering and evaluates
the likelihood function for the state-
space model.

kaplan_meier_estimates Computes Kaplan-Meier estimates of
survival probabilities in stratified
samples.

kohonenSOM_forecast Calculates forecasts using a trained
Kohonen network.

kohonenSOM_trainer Trains a Kohonen network.

kolmogorov_one Performs a Kolmogorov-Smirnov’s one-
sample test for continuous
distributions.

kolmogorov_two Performs a Kolmogorov-Smirnov’s two-
sample test.

kruskal_wallis_test Performs a Kruskal-Wallis’s test for iden-
tical population medians.

k_trends_test Performs k-sample trends test against
ordered alternatives.
1955

L

Function Purpose Statement

lack_of_fit Performs lack-of-fit test for an univari-
ate time series or transfer function
given the appropriate correlation
function.

latin_square Analyzes data from latin-square
experiments.

lattice Analyzes balanced and partially-bal-
anced lattice experiments.

life_tables Produces population and cohort life
tables.

lilliefors_normality_test Performs a Lilliefors test for normality.

Lnorm_regression Fits a multiple linear regression model
using criteria other than least squares.

log_beta Evaluates the log of the real beta
function.

log_gamma Evaluates the logarithm of the absolute
value of the gamma function.

logistic_regression Fits a binomial or multinomial logistic
regression model using iteratively
reweighted least squares.

logistic_reg_predict Predicts a binomial or multinomial out-
come given an estimated model and
new values of the independent
variables.

lognormal_cdf Evaluates the lognormal cumulative dis-
tribution function (CDF).

lognormal_inverse_cdf Evaluates the inverse of the lognormal
cumulative distribution function (CDF).

lognormal_pdf Evaluates the lognormal probability
density function (PDF).
1956

M

Function Purpose Statement

machine (float) Returns information describing the
computer's floating-point arithmetic.

machine (integer) Returns integer information describing
the computer's arithmetic.

mat_mul_rect Computes the transpose of a matrix, a
matrix-vector product, a matrix-matrix
product, a bilinear form, or any triple
product.

max_arma Exact maximum likelihood estimation of
the parameters in a univariate ARMA
(autoregressive, moving average) time
series model.

max_likelihood_estimates Calculates maximum likelihood esti-
mates for the parameters of one of
several univariate probability
distributions.

mlff_classification_trainer Trains a multilayered feedforward neu-
ral network for classification.

mlff_initialize_weights Initializes weights for multilayered feed-
forward neural networks prior to
network training using one of four user
selected methods.

mlff_network Creates a multilayered feedforward
neural network.

mlff_network_forecast Calculates forecasts for trained multilay-
ered feedforward neural networks.

mlff_network_free Frees memory allocated for an
Imsls_f_NN_Network data structure.

mlff_network_init Initializes a data structure for training a
neural network.

mlff_network_read Retrieves a neural network from a file
previously saved.

mlff_network_trainer Trains a multilayered feedforward neu-
ral network.

mlff_network_write Writes a trained neural network to an
ASCII file.
1957

mlff_pattern_classification Calculates classifications for trained
multilayered feedforward neural
networks.

multi_crosscorrelation Computes the multichannel cross-cor-
relation function of two mutually
stationary multichannel time series.

multiple_comparisons Performs Student-Newman-Keuls multi-
ple comparisons test.

multivar_normality_test Computes Mardia’s multivariate mea-
sures of skewness and kurtosis and
tests for multivariate normality.

multivariate_normal_cdf Computes the cumulative distribution
function for the multivariate normal
distribution.
1958

N

Function Purpose Statement

naive_bayes_classification Classifies unknown patterns using a
previously trained Naïve Bayes classifier.

naive_bayes_trainer Trains a Naïve Bayes classifier.

nb_classifier_free Frees memory allocated to an
Imsls_f_nb_classifier data structure.

nb_classifier_read Retrieves a Naive Bayes Classifier previ-
ously filed using
imsls_f_nb_clssifier_write.

nb_classifier_write Writes a Naive Bayes Classifier to an
ASCII file for later retrieval using
imsls_f_nb_classifier_read.

noether_cyclical_trend Performs a Noether’s test for cyclical
trend.

non_central_beta_cdf Evaluates the noncentral beta cumula-
tive distribution function (CDF).

non_central_beta_inverse_cdf Evaluates the inverse of the noncentral
beta cumulative distribution function
(CDF).

non_central_beta_pdf Evaluates the noncentral beta probabil-
ity density function (PDF).

non_central_chi_sq Evaluates the noncentral chi-squared
distribution function.

non_central_chi_sq_inv Evaluates the inverse of the noncentral
chi-squared function.

non_central_chi_sq_pdf Evaluates the noncentral chi-squared
probability density function.

non_central_F_cdf Evaluates the noncentral F cumulative
distribution function.

non_central_F_inverse_cdf Evaluates the inverse of the noncentral
F cumulative distribution function.

non_central_F_pdf Evaluates the noncentral F probability
density function.

non_central_t_cdf Evaluates the noncentral Student’s t dis-
tribution function.
1959

non_central_t_inv_cdf Evaluates the inverse of the noncentral
Student’s t distribution function.

non_central_t_pdf Evaluates the noncentral Student's t
probability density function.

nonlinear_optimization Fits a nonlinear regression model using
Powell's algorithm.

nonlinear_regression Fits a nonlinear regression model.

nonparam_hazard_rate Performs nonparametric hazard rate
estimation using kernel functions and
quasi-likelihoods.

normal_cdf Evaluates the standard normal (Gauss-
ian) distribution function.

normal_inverse_cdf Evaluates the inverse of the standard
normal (Gaussian) distribution function.

normal_one_sample Computes statistics for mean and vari-
ance inferences using a sample from a
normal population.

normal_two_sample Computes statistics for mean and vari-
ance inferences using samples from two
normal populations.
1960

O

Function Purpose Statement

omp_options Sets various OpenMP options.

output_file Sets the output file or the error mes-
sage output file.
1961

P

Function Purpose Statement

page Sets or retrieves the page width or
length.

pareto_cdf Evaluates the Pareto cumulative proba-
bility distribution function.

pareto_pdf Evaluates the Pareto probability density
function.

partial_autocorrelation Computes the sample partial autocor-
relation function of a stationary time
series.

partial_covariances Computes partial covariances or partial
correlations from the covariance or cor-
relation matrix.

permute_matrix Permutes the rows or columns of a
matrix.

permute_vector Rearranges the elements of a vector as
specified by a permutation.

pls_regression Performs partial least squares regres-
sion for one or more response variables
and one or more predictor variables.

poisson_cdf Evaluates the Poisson distribution
function.

poisson_pdf Evaluates the Poisson probability
function.

poly_prediction Computes predicted values, confidence
intervals, and diagnostics after fitting a
polynomial regression model.

poly_regression Performs a polynomial least-squares
regression.

pooled_covariances Computes a pooled variance-covariance
from the observations.

principal_components Computes principal components.

prop_hazards_gen_lin Analyzes time event data via the propor-
tional hazards model.
1962

R

Function Purpose Statement

random_arma Generates pseudorandom ARMA pro-
cess numbers.

random_beta Generates pseudorandom numbers
from a beta distribution.

random_binomial Generates pseudorandom binomial
numbers.

random_cauchy Generates pseudorandom numbers
from a Cauchy distribution.

random_chi_squared Generates pseudorandom numbers
from a chi-squared distribution.

random_exponential Generates pseudorandom numbers
from a standard exponential
distribution.

random_exponential_mix Generates pseudorandom mixed num-
bers from a standard exponential
distribution.

random_gamma Generates pseudorandom numbers
from a standard gamma distribution.

random_general_continuous Generates pseudorandom numbers
from a general continuous distribution.

random_general_discrete Generates pseudorandom numbers
from a general discrete distribution
using an alias method or optionally a
table lookup method.

random_geometric Generates pseudorandom numbers
from a geometric distribution.

random_GFSR_table_get Retrieves the current table used in the
GFSR generator.

random_GFSR_table_set Sets the current table used in the GFSR
generator.

random_hypergeometric Generates pseudorandom numbers
from a hypergeometric distribution.

random_logarithmic Generates pseudorandom numbers
from a logarithmic distribution.

random_lognormal Generates pseudorandom numbers
from a lognormal distribution.
1963

random_MT32_init Initializes the 32-bit Mersenne Twister
generator using an array.

random_MT32_table_get Retrieves the current table used in the
32-bit Mersenne Twister generator.

random_MT32_table_set Sets the current table used in the 32-bit
Mersenne Twister generator.

random_MT64_init Initializes the 64-bit Mersenne Twister
generator using an array.

random_MT64_table_get Retrieves the current table used in the
64-bit Mersenne Twister generator.

random_MT64_table_set Sets the current table used in the 64-bit
Mersenne Twister generator.

random_multinomial Generates pseudorandom numbers
from a multinomial distribution.

random_mvar_from_data Generates pseudorandom numbers
from a multivariate distribution deter-
mined from a given sample.

random_mvar_gaussian_copula Given a Cholesky factorization of a cor-
relation matrix, generates
pseudorandom numbers from a Gauss-
ian Copula distribution.

random_mvar_t_copula Given a Cholesky factorization of a cor-
relation matrix, generates
pseudorandom numbers from a Stu-
dent’s t Copula distribution.

random_neg_binomial Generates pseudorandom numbers
from a negative binomial distribution.

random_normal Generates pseudorandom numbers
from a normal, N (μ, σ2), distribution.

random_normal_multivariate Generates pseudorandom numbers
from a multivariate normal distribution.

random_npp Generates pseudorandom numbers
from a nonhomogeneous Poisson
process.

random_option Selects the uniform (0, 1) multiplicative
congruential pseudorandom number
generator.

random_option_get Retrieves the uniform (0, 1) multiplica-
tive congruential pseudorandom
number generator.
1964

random_order_normal Generates pseudorandom order statis-
tics from a standard normal
distribution.

random_order_uniform Generates pseudorandom order statis-
tics from a uniform (0, 1) distribution.

random_orthogonal_matrix Generates a pseudorandom orthogonal
matrix or a correlation matrix.

random_permutation Generates a pseudorandom
permutation.

random_poisson Generates pseudorandom numbers
from a Poisson distribution.

random_sample Generates a simple pseudorandom
sample from a finite population.

random_sample_indices Generates a simple pseudorandom
sample of indices.

random_seed_get Retrieves the current value of the seed
used in the IMSL random number
generators.

random_seed_set Initializes a random seed for use in the
IMSL random number generators.

random_sphere Generates pseudorandom points on a
unit circle or K-dimensional sphere.

random_stable Generates pseudorandom numbers
from a stable distribution.

random_student_t Generates pseudorandom Student's t.

random_substream_seed_get Retrieves a seed for the congruential
generators that do not do shuffling that
will generate random numbers begin-
ning 100,000 numbers farther along.

random_table_get Retrieves the current table used in the
shuffled generator.

random_table_set Sets the current table used in the shuf-
fled generator.

random_table_twoway Generates a pseudorandom two-way
table.

random_triangular Generates pseudorandom numbers
from a triangular distribution.

random_uniform Generates pseudorandom numbers
from a uniform (0, 1) distribution.
1965

random_uniform_discrete Generates pseudorandom numbers
from a discrete uniform distribution.

random_von_mises Generates pseudorandom numbers
from a von Mises distribution.

random_weibull Generates pseudorandom numbers
from a Weibull distribution.

randomness_test Performs a test for randomness.

ranks Computes the ranks, normal scores, or
exponential scores for a vector of
observations.

rcbd_factorial Analyzes data from balanced and unbal-
anced randomized complete-block
experiments.

regression Fits a multiple linear regression model
using least squares.

regression_arima Fits a univariate, non-seasonal ARIMA
time series model with the inclusion of
one or more regression variables.

regression_prediction Computes predicted values, confidence
intervals, and diagnostics after fitting a
regression model.

regression_selection Selects the best multiple linear regres-
sion models.

regression_stepwise Builds multiple linear regression models
using forward selection, backward selec-
tion or stepwise selection.

regression_summary Produces summary statistics for a
regression model given the information
from the fit.

regressors_for_glm Generates regressors for a general lin-
ear model.

robust_covariances Computes a robust estimate of a covari-
ance matrix and mean vector.
1966

S

Function Purpose Statement

scale_filter Scales or unscales continuous data prior
to its use in neural network training,
testing, or forecasting.

seasonal_fit Estimates the optimum seasonality
parameters for a time series using an
autoregressive model, AR(p), to repre-
sent the time series.

set_user_fcn_return_flag Indicates a condition has occurred in a
user-supplied function necessitating a
return to the calling function.

shapiro_wilk_normality_test Performs the Shapiro-Wilk test for
normality.

sign_test Performs a sign test.

simple_statistics Computes basic univariate statistics.

sort_data Sorts observations by specified keys,
with option to tally cases into a multi-
way frequency table.

split_plot Analyzes a wide variety of split-plot
experiments with fixed, mixed or ran-
dom factors.

split_split_plot Analyzes data from split-split-plot
experiments.

strip_plot Analyzes data from strip-plot
experiments.

strip_split_plot Analyzes data from strip-split-plot
experiments.

support_vector_trainer Trains a Support Vector Machines
classifier

support_vector_classification Classifies patterns using a previously
trained Support Vector Machines
classifier

survival_estimates Estimates using various parametric
models.
1967

survival_glm Analyzes survival data using a general-
ized linear model.

svm_classifier_free Frees memory allocated for a Support
Vector Machines classifier
1968

T

Function Purpose Statement

t_cdf Evaluates the Student's t distribution
function.

t_inverse_cdf Evaluates the inverse of the Student's t
distribution function.

table_oneway Tallies observations into one-way fre-
quency table.

table_twoway Tallies observations into a two-way fre-
quency table.

tie_statistics Computes tie statistics for a sample of
observations.

time_series_class_filter Converts time series data sorted with
nominal classes in decreasing chrono-
logical order to useful format for
processing by a neural network.

time_series_filter Converts time series data to the format
required for processing by a neural
network.

ts_outlier_forecast Computes forecasts, their associated
probability limits and -weights for an
outlier contaminated time series whose
underlying outlier free series follows a
general seasonal or nonseasonal ARMA
model.

ts_outlier_identification Detects and determines outliers and
simultaneously estimates the model
parameters in a time series whose
underlying outlier free series follows a
general seasonal or nonseasonal ARMA
model.

ψ

1969

U

Function Purpose Statement

unsupervised_nominal_filter Converts nominal data into a series of
binary encoded columns for input to a
neural network.

unsupervised_ordinal_filter Converts ordinal data into percentages.
1970

V

Function Purpose Statement

version Returns integer information describing
the version of the library, license num-
ber, operating system, and compiler.

vector_autoregression Estimates a vector auto-regressive time
series model with optional moving aver-
age components.
1971

W

Function Purpose Statement

wilcoxon_rank_sum Performs a Wilcoxon rank sum test.

wilcoxon_sign_rank Performs a Wilcoxon sign rank test.

write_apriori_itemsets Prints frequent itemsets.

write_association_rules Prints association rules.

write_matrix Prints a rectangular matrix (or vector)
stored in contiguous memory locations.

write_options Sets or retrieves an option for printing
a matrix.
1972

1973

 Product Support Contacting IMSL Support

Product Support

Contacting IMSL Support
Users within support warranty may contact Rogue Wave Software regarding the use of the
IMSL C Numerical Library. IMSL Support can consult on the following topics:

 Clarity of documentation

 Possible IMSL-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of your program.

See https://www.imsl.com/support for IMSL product support.

The following describes the procedure for consultation with IMSL Support:

1. Include your IMSL license number.

2. Include the product name and version number.

3. Include compiler and operating system version numbers.

4. Include the name of the routine for which assistance is needed and a description of the problem.

https://www.imsl.com/support

Index

A
additive (AO) 756

AIC 748, 749

Airline Data 749

Akaike’s information criterion 739

alpha factor analysis 955

Analysis of Covariance 328

ANCOVAR 322, 328
one-way classification

model 322

ARIMA models 773
forecasts 708
least squares estimates 744
least-square estimates 688
method of moments 690
method of moments

estimates 704
method of moments

estimation 692
multiplicative seasonal 780

ARIMA models XE 744

ARIMA time series 716

ARMA model 701

asciiRead Function
column-oriented files 1840
delimiters 1840
filtering and substitution 1839
physical vs. logical

records 1838
row-oriented files 1840

Autoregressive Moving Average
Model 682

B
balanced 359

balanced experimental design 359

beta distribution function
inverse 1094

beta functions 1885, 1888, 1890

binary encoded 1740

binomial coefficient 1883

binomial distribution 1066, 1193,
1195

binomial distributions 1215, 1225,
1237, 1282

binomial probability 1068

bivariate normal distribution
function 1105

Bonferroni method 316

bounded scaling 1725

Box-Cox transformation 812

C
C Language

imsld_ascii_read function 1833

Cartesian coordinates 1300

cauchy distributions 1246

chi-squared distribution
function 1107, 1110, 1112

chi-squared distributions 1248

chi-squared goodness-of-fit
test 628

chi-squared statistics 513, 518

chi-squared test 627

classification model
one-way 311

cluster analysis 913

cluster membership 927

cluster_hierarchical 921

cluster_number 927

Cochran Q test 617

coefficient
excess (kurtosis) 25
skewness 25

column-oriented ASCII files 1840

confidence intervals 195
mean 26

constants 1854, 1857

constrained non-linear
optimization 1202

contingency coefficient 518

contingency tables 528, 531
two-way 514

correlation matrix 264, 1290

counts 26, 66

covariates 322

Cox and Stuart sign test 594

CPU 1901

Cramer’s V 518

Cramer-von Mises test 665

Crd factorial
factorial experiments 377
pooled location

interaction 377
unbalanced 371
unbalanced completely ran-

domized experiments 371

crd factorial 371

crosscorrelation 829

cross-correlation function 829, 836,
992, 999, 1045, 1055

cubic spline interpolation 858

D
data

ASCII, column-oriented
files 1840

ASCII, delimiters 1840
ASCII, filtering and substitution

while reading 1839
ASCII, row-oriented files 1840

data sets 1860

datetime format
C Structure 1842
in Python 1841

datetime structure 1842

detection 755

deviation, standard 25

diagnostic checking 682

discrete uniform
distributions 1230

dissimilarities 916
1974

INDEX
distribution functions
beta 1092
chi-squared 1107, 1112
chi-squared, noncentral 1115

inverse 1119
F_cdf

inverse 1130, 1135
F_inverse_cdf 1133
inverse 1174

Dunn-Sidák method 316

E
eigensystem analysis 913

empirical quantiles 35
median 37

empirical tests 1213

error handling 8, 1808, 1815, 1903

estimate of scale
simple robust 30

excess 30

exponential smoothing 804, 865

F
F statistic 50

factor analysis 913, 945

factorial 336

factorial design
analysis 336

false discovery rates 492

Faure 1374

Faure sequence 1372
faure_next_point 1373

finite population 1342

Fisher's information 1203

Fisher’s LSD 317

forecasting 682

forecasts 764
ARMA models 764
GARCH 764, 873

frequency tables 60

Friedman’s test 612

G
gamma distribution function 1152

gamma functions 1892, 1895, 1898

gamma_inverse_cdf 1155

Gaussian distribution
functions 1163

general continuous
distribution 1279

general discrete distribution 1232,
1233, 1237, 1282

general distributions 627

Generalized Feedback Shift
Register 1211

generalized feedback shift register
method 1210

generalized linear models 513

Genetic Algorithm
Alleles 1483
Chromosome

Base-2 encoding 1483
decoding 1483
encoding 1483
Gray encoding 1483
Mutation 1486

Crossover 1488
Inversion 1488
Multiple crossovers 1540
Partially matched

(PMX) 1488, 1540
Examples

N-Queens 1553
Traveling De Jong 1544
Traveling salesman 1553

Individual 1484
chromosome 1485

Performance
Off-line 1542
On-line 1542
Velocity 1542

Phenotype 1483
Popluation 1486

Chromosome 1486
Generation 1486

Reproduction 1490
Reproduction Model

Selection 1487
Scaling

Linear 1544
Sigma 1544

Genetic Alorithm
Chromosome 1483

geometric distributions 1218

GFSR 1346

GFSR generator 1211, 1357, 1358

goodness-of-fit tests 627

gradient_boosting 1459

Gray code 1375

H
Haar measure 1291

hierarchical cluster analysis 921

hierarchical cluster tree 927

Holt-Winters method 863

homogeneity 479

hypergeometric distribution
function 1076

hypergeometric distributions 1220

hypergeometric_pdf 1079

hyper-rectangle 1372

hypothesis 152

I
image analysis 955

imsld_ascii_read function 1833,
1842
optional arguments 1834
required arguments 1833
return value 1833

innovational (AO) 782

innovational (IO) 756, 782

integrated rate function 1336

iterative generalized least
squares 722, 734

K
Kalman filtering 879

Kaplan_meier estimates 993

Kaplan_meier_estimates 992

Kaplan-Meier estimates
computes 992

Kappa analysis 513

K-dimensional sphere 1300

kernel functions 991, 1045

K-means analysis 932

Kolmogorov one-sample test 649

Kolmogorov two-sample test 653

Kruskal-Wallis test 609

k-sample trends test 621
1975

INDEX
L
lack-of-fit test 851

lack-of-fit tests 93

latent structures 253

latin square 392

Lattice
3x3 balanced-lattice 406
balanced lattice

experiments 405
intra-Block Error 406
partially-balanced lattice

experiments 401, 405

lattice 401

Least Absolute Value 96, 229, 233,
242

Least Maximum Value 96, 229

Least Squares
Alternatives

Least Absolute Value 96
Lp Norm 96

Lebesque measure 1374

level Shift (LS) 756

level shift (LS) 782

likelihood function 684

linear dependence 89

linear discriminant function
analysis 965

linear regression
multiple 84

logarithmic distributions 1223

logical records 1838

logistic regression 555

low-discrepancy 1375

Lp Norm 96, 234

M
Mardia’s multivariate

measures 659

Mardia’s multivariate tests 657

matrices 916, 1864

matrix of dissimilarities 916

matrix storage modes 22

maximum 26, 30

maximum likelihood
estimates 885, 1202

maximum likelihood

estimation 1197

mean 25, 29, 38, 40

measures of association 513, 519

measures of prediction 520

median 30
absolute deviation 30

memory allocation 9

Mersenne Twister 1362, 1363, 1366,
1367, 1368, 1371

method of moments 1202

minimum 26, 30

missing values 96

MLE 1197

models 205
general linear 97, 729
nonlinear regression 90

module
datetime

datetime module 1841

Monte Carlo applications 1213

multinomial distribution 1297

Multiple comparisons 486

multiple comparisons 486

Multiple comparisons test
Bonferroni, Tukey’s 486
Student-Newman-Keuls 486

multiple linear regression
models 107, 165, 176, 229, 345,
359, 586, 590, 594, 600, 612, 649,
653, 847

multiple_crosscorrelation 836

multiplicative congruential
generator 1210

multiplicative generator 1210

multivariate distribution 1293

multivariate functions
multivariate normal 1166

multivariate general linear
hypothesis 157

multivariate normal distribution
function 1166

multivariate normal distribution,
simulation 1286

N
Naive Bayes

Classification 1559
Continuous

attributes 1559
Nominal attributes 1559

Count Table 1568
Error rate 1559, 1560, 1569
Fisher’s Iris classification

problem 1571
Missing Values 1581
Probability Density Function

(PDF) 1564
Gamma 1566
Gaussian 1564
Log-Normal 1565
Poisson 1566
User defined 1566, 1567,

1582
Smoothing Parameter 1570
Smoothing Zero

Correction 1571
Zero Correction 1564

nested 345

nested random model 345, 350

network 1624

Neural Network Classification
continuous attributes 1653
nominal attributes 1653
target attributes 1700
Weight initialization 1651

Noether test 590

noncentral chi-squared distribu-
tion function 1115
inverse 1119

noncentral Student’s t distribution
function 1185, 1188

nonhomogeneous Poisson
process 1334

nonlinear model 218

nonlinear regression models 90

nonparam_hazard_rate 1045

nonparametric hazard rate
estimation 1045

nonuniform generators 1212

normality test 640, 643, 646

O
one-step-ahead forecasts 856

oneway 311
1976

INDEX
one-way frequency table 55

order statistics 1323, 1326

orthogonal matrix 1290

outlier
description 782

outlier contaminated series 764

output files 1802

overflow 8

P
parameter estimation 682

partial covariances 273

partial least squares
regression 253

partially tested hypothesis 145

permutations 1868, 1870

phi 518

physical records 1838

PLS
PRESS 255

PLSR
cross-validation 255
PRESS 255
SIMPLS 254

Poisson distribution function 1081

Poisson distribution,
simulation 1228

poisson_pdf 1084

polynomial models 85

polynomial regression 186

pooled variance-covariance 279

population 1055

principal components 938

printing
matrices 1787
options 1796
retrieving page size 1794

probability limits
ARMA models 764
outlier contaminated

series 766

prop_hazards_gen_lin 999

pseudorandom number
generators 627

pseudorandom numbers 1233,
1237, 1258, 1267, 1274, 1276,

1282

pseudorandom permutation 1338

pseudorandom sample 1340

PsLSR
k-fold 254

p-values 519

PyIMSL Studio
allowable datetime

formats 1841

R
random number generator 1362,

1363, 1366, 1367, 1368, 1371

random numbers
beta distribution 1243
exponential distribution 1250
gamma distribution 1255
seed

current value 1349
initializing 1353

selecting generator 1346, 1348

random numbers generators 1261

random_MT32_init 1362

random_MT32_table_get 1363

random_MT32_table_set 1366

random_MT64_init 1367

random_MT64_table_get 1368

random_MT64_table_set 1371

randomness test 668

range 26, 30

rcbd factorial 382

records, physical vs. logical 1838

regression arima 721, 729, 733

regression models 84, 124, 133

robust covariances 286

row-oriented ASCII files 1840

S
sample autocorrelation

function 823

sample correlation function 682

sample partial autocorrelation
function 847

scale filter 1725

Scheffé method 316

scores

normal 75

seasonal adjustment 746

seasonality parameters 745

Seed 1211

seed 1351

serial number 1806

shuffled generator 1354, 1355

sign test 582

simulation of random
variables 1210

skewness 29

Split plot
blocking factor 425
completely randomized 417
completely randomized

design 425
experiments 417
fixed effects 425
IMSLS_RCBD default

setting 425
random effects 426
randomized complete block

design 417, 425
randomizing whole-plots 425
split plot factor 426
split plot factors 425
whole plot 425
whole plot factor 425
whole plot factors 425

split plot 417

Split Plots
whole-plots 417

Split-split plot
split-plot factors 431
split-split-plot

experiments 431
sub-plot factors 431
whole plot factors 431

split-split plot 431

stable distribution 1264

standard deviation 40

state vector 879

statespace model 879

stationary/stationarity 705

strip plot 447

strip-split plot 458

Student’s t distribution
1977

INDEX
function 1176, 1181
inverse 1179

summary statistics 91

survival probabilities 992, 993

T
t statistic 49

temporary change (TC) 756, 783

tests for randomness 627

Thread Safe 15
multithreaded application 15
single-threaded application 15
threads and error

handling 1906

tie statistics 600

time domain methodology 682

time event data 999

Time series 729

time series 682, 1329
difference 817

time series class filter 1735

time series filter 1732

transformation 682

transformations 95

triangular distributions 1269

Tukey method 315

Tukey-Kramer method 316

two-way contingency table 1304

two-way table 1303

U
unable to identify (UI) 756, 783

underflow 8

uniform distribution,
simulation 1271

unit sphere 1301

univariate statistics 25, 538, 1014,
1038, 1252

unscales 1725

unsupervised nominal filter 1740

unsupervised ordinal filter 1744

update equations 880

V
variable selection 85

variables

datetime structure 1842

variance 25, 29
for two normal populations 43

variation, coefficient of 30

W
weighted least squares 90

white noise
Gaussian 759, 761, 768
process 757

white noise process 704

Wilcoxon rank sum test 603, 1590

Wilcoxon signed rank test 586

Wilcoxon two-sample test 610

Wolfer Sunspot series 705, 742

Y
yates 500

Z
zeros of a function 1832

z-score scaling 1725
1978

	Contents
	Introduction
	IMSL C Stat Library
	Organization of the Documentation
	Finding the Right Function
	Naming Conventions
	Getting Started and the imsls.h file
	Getting Started
	The imsls.h File

	Error Handling, Underflow, Overflow, and Document Examples
	Memory Allocation for Output Arrays
	Printing Results
	Missing Values
	Passing Data to User-Supplied Functions
	Return Values from User-Supplied Functions
	Example

	Thread Safe Usage
	Error Handling
	Routines that Produce Output

	OpenMP Usage
	Vendor Supplied Libraries Usage
	C++ Usage
	Matrix Storage Modes
	General Mode
	Rectangular Mode
	Symmetric Mode

	Basic Statistics
	Functions
	Usage Notes
	simple_statistics
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	empirical_quantiles
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	normal_one_sample
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	normal_two_sample
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	table_oneway
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Examples

	table_twoway
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Examples

	sort_data
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	ranks
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	Regression
	Functions
	Usage Notes
	Simple and Multiple Linear Regression
	No Intercept Model
	Variable Selection
	Polynomial Model
	Specification of X for the General Linear Model
	Functions for Fitting the Model
	Linear Dependence and the R Matrix
	Nonlinear Regression Model
	Weighted Least Squares
	Summary Statistics
	Tests for Lack-of-Fit
	Transformations
	Alternatives to Least Squares
	Missing Values

	regressors_for_glm
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples

	regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	regression_summary
	Synopsis
	Required Argument
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example

	regression_prediction
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	hypothesis_partial
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	hypothesis_scph
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	hypothesis_test
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	regression_selection
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Examples
	Warning Errors
	Fatal Errors

	regression_stepwise
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Errors

	poly_regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	poly_prediction
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	nonlinear_regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Examples
	Informational Errors
	Warning Errors
	Fatal Errors

	nonlinear_optimization
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	Lnorm_regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	pls_regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Comments
	Examples
	Warning Errors

	Correlation and Covariance
	Functions
	Usage Notes
	covariances
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Usage Notes
	Examples
	Warning Errors

	partial_covariances
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	pooled_covariances
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	robust_covariances
	Synopsis
	Required Argument
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	Analysis of Variance and Designed Experiments
	Functions
	Usage Notes
	Completely Randomized Experiments
	Factorial Experiments
	Blocking
	Multiple Locations
	Split-Plot Designs – Nesting and Restricted Randomization
	Strip-Plot Designs
	Split-Split Plot and Strip-Split Plot Experiments
	Validating Key Assumptions in Anova
	Multiple Testing
	Missing Observations

	anova_oneway
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	ancovar
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	anova_factorial
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	anova_nested
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	anova_balanced
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	crd_factorial
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	rcbd_factorial
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	latin_square
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	lattice
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	split_plot
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	split_split_plot
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	strip_plot
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	strip_split_plot
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	homogeneity
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	multiple_comparisons
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	false_discovery_rates
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	yates
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example

	Categorical and Discrete Data Analysis
	Functions
	Usage Notes
	contingency_table
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Notation
	Chi-squared Statistic
	Measures Related to Chi-squared (Phi, Contingency Coefficient, and Cramer’s V)
	Standard Errors and p-values for Some Measures of Association
	Measures of Association for Ranked Rows and Columns
	Measures of Prediction and Uncertainty
	Examples
	Warning Errors

	exact_enumeration
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	exact_network
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	categorical_glm
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Remarks
	Description
	Computational Details
	Programming Notes
	Examples
	Fatal Errors

	logistic_regression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples
	Warning Errors
	Fatal Errors

	logistic_reg_predict
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	Nonparametric Statistics
	Functions
	Usage Notes
	Missing Values
	Tied Observations

	sign_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	wilcoxon_sign_rank
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	noether_cyclical_trend
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	cox_stuart_trends_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Location Test
	Dispersion Test
	Ties
	Hypothesis Tests
	Assumptions
	Example

	tie_statistics
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	wilcoxon_rank_sum
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Hypothesis Tests
	Assumptions
	Example
	Warning Errors
	Fatal Errors

	kruskal_wallis_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	friedmans_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Assumptions
	Example

	cochran_q_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Assumptions
	Hypothesis
	Remarks
	Example
	Warning Errors
	Fatal Errors

	k_trends_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Computational Procedure
	Assumptions
	Hypothesis tests
	Example

	Tests of Goodness of Fit
	Functions
	Usage Notes
	chi_squared_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Examples
	Warning Errors
	Fatal Errors

	shapiro_wilk_normality_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	lilliefors_normality_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Errors

	chi_squared_normality_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	kolmogorov_one
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Example
	Warning Errors
	Fatal Errors

	kolmogorov_two
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	multivar_normality_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	ad_normality_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Informational Errors
	Fatal Errors

	cvm_normality_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Informational Errors
	Fatal Errors

	randomness_test
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	Time Series and Forecasting
	Functions
	Usage Notes
	Model Construction and Evaluation Utilties
	ARIMA Models
	ARIMA Model (Autoregressive Integrated Moving Average)
	Regression in Autoregressive Integrated Moving Average
	Automatic ARIMA Selection and Fitting Utilities
	Exponential Smoothing Methods
	Garch Models
	State-Space Models

	arma
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Method of Moments Estimation
	Least-squares Estimation
	Examples
	Warning Errors
	Fatal Errors

	max_arma
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	arma_forecast
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	arima
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples

	regression_arima
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples

	auto_uni_ar
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	seasonal_fit
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	ts_outlier_identification
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	ts_outlier_forecast
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	auto_arima
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	auto_parm
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example
	Warning Errors

	bayesian_seasonal_adj
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	box_cox_transform
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	difference
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	autocorrelation
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	crosscorrelation
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	multi_crosscorrelation
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	partial_autocorrelation
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	lack_of_fit
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	estimate_missing
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	hw_time_series
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Errors

	garch
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	kalman
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	vector_autoregression
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Comments
	Examples

	Multivariate Analysis
	Functions
	Usage Notes
	Cluster Analysis
	Principal Components
	Factor Analysis

	dissimilarities
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	cluster_hierarchical
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Comments
	Example

	cluster_number
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	cluster_k_means
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	principal_components
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	factor_analysis
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Principal Component and Principal Factor Methods
	Least-squares and Maximum Likelihood Methods
	Image Analysis Method
	Alpha-factor Analysis Method
	Rotation Methods
	Factor Structure and Variance
	Comments
	Examples
	Warning Errors
	Fatal Errors

	discriminant_analysis
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Comments
	Description
	Examples
	Warning Errors
	Fatal Errors

	Survival and Reliability Analysis
	Functions
	Usage Notes
	kaplan_meier_estimates
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	prop_hazards_gen_lin
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Example

	survival_glm
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Comments
	Description
	Computational Details
	Programming Notes
	Examples
	Warning Errors
	Fatal Errors

	survival_estimates
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Errors

	nonparam_hazard_rate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Example
	Fatal Errors

	life_tables
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Probability Distribution Functions and Inverses
	Functions
	Usage Notes
	Discrete Distributions
	Continuous Distributions
	Parameter Notation and Estimation
	Additional Comments

	binomial_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors

	binomial_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Examples

	geometric_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	geometric_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	geometric_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	hypergeometric_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	hypergeometric_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	poisson_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors

	poisson_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	discrete_uniform_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	discrete_uniform_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	discrete_uniform_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	beta_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	beta_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_beta_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_beta_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_beta_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	bivariate_normal_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	chi_squared_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors
	Alert Errors

	chi_squared_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors

	complementary_chi_squared_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors

	non_central_chi_sq
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_chi_sq_inv
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_chi_sq_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	exponential_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	exponential_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	exponential_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	F_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	F_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Fatal Errors

	complementary_F_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_F_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_F_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	complementary_non_central_F_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_F_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	gamma_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	gamma_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	lognormal_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	lognormal_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	lognormal_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	normal_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	multivariate_normal_cdf
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors
	Fatal Errors

	normal_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	t_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	t_inverse_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Informational Errors

	complementary_t_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_t_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_t_inv_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	non_central_t_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	pareto_cdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	pareto_pdf
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	max_likelihood_estimates
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples
	Warning Errors

	Random Number Generation
	Functions
	Usage Notes
	Overview of Random Number Generation
	Basic Uniform Generators
	The Multiplicative Congruential Generators
	Shuffled Generators
	The Generalized Feedback Shift Register Generator
	Setting the Seed
	Timing Considerations
	Distributions Other than the Uniform
	Tests
	Copula Generators and Canonical Correlation

	random_binomial
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_geometric
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_hypergeometric
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	random_logarithmic
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_neg_binomial
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_poisson
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_uniform_discrete
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_general_discrete
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	discrete_table_setup
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	random_beta
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_cauchy
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_chi_squared
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_exponential
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_exponential_mix
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_gamma
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_lognormal
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_normal
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example

	random_stable
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_student_t
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_triangular
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_uniform
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_von_mises
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_weibull
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	random_general_continuous
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	continuous_table_setup
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	random_normal_multivariate
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2

	random_orthogonal_matrix
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_mvar_from_data
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_multinomial
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_sphere
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_table_twoway
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_mvar_gaussian_copula
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example: Using Gaussian Copulas to Imprint and Extract Correlation Information

	random_mvar_t_copula
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example: Using Student’s t Copulas to Imprint and Extract Correlation Information

	canonical_correlation
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example: Using Gaussian Copulas to Imprint and Extract Correlation Information

	random_order_normal
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_order_uniform
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_arma
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	random_npp
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	random_permutation
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_sample_indices
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_sample
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	random_option
	Synopsis
	Required Arguments
	Description
	Example

	random_option_get
	Synopsis
	Return Value
	Description

	random_seed_get
	Synopsis
	Return Value
	Description
	Example

	random_substream_seed_get
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	random_seed_set
	Synopsis
	Required Arguments
	Description
	Example

	random_table_set
	Synopsis
	Required Arguments
	Description
	Example

	random_table_get
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_GFSR_table_set
	Synopsis
	Required Arguments
	Description
	Example

	random_GFSR_table_get
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_MT32_init
	Synopsis
	Required Arguments
	Description
	Example

	random_MT32_table_get
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_MT32_table_set
	Synopsis
	Required Arguments
	Description
	Example

	random_MT64_init
	Synopsis
	Required Arguments
	Description
	Example

	random_MT64_table_get
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_MT64_table_set
	Synopsis
	Required Arguments
	Description
	Example

	faure_next_point
	Synopsis
	Required Arguments for imsls_faure_sequence_init
	Return Value for imsls_faure_sequence_init
	Required Arguments for imsls_faure_next_point
	Return Value for imsls_faure_next_point
	Required Arguments for imsls_faure_sequence_free
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Data Mining
	Functions
	Data Mining Usage Notes
	Apriori
	Decision Trees
	Random Decision Trees
	Gradient Boosting
	Genetic Algorithms
	Naive Bayes
	Neural Networks
	Data Filtering
	Kohonen Self-organizing Map
	Support Vector Machines

	apriori
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Data Structures
	Example
	Warning Errors
	Fatal Errors

	aggr_apriori
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Data Structures
	Example
	Warning Errors
	Fatal Errors

	write_apriori_itemsets
	Synopsis
	Required Arguments
	Description
	Example

	write_association_rules
	Synopsis
	Required Arguments
	Description
	Example

	free_apriori_itemsets
	Synopsis
	Required Arguments
	Description
	Example

	free_association_rules
	Synopsis
	Required Arguments
	Description
	Example

	Decision Trees – An Overview
	decision_tree
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Structure Definitions
	Examples
	Warning Errors
	Fatal Errors

	decision_tree_predict
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Comments
	Example
	Warning Errors

	decision_tree_print
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Comments
	Example

	decision_tree_free
	Synopsis
	Required Arguments
	Description
	Example

	bagged_trees_free
	Synopsis
	Required Arguments
	Description
	Example

	gradient_boosting
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	Genetic Algorithms – An Overview
	Data Structures
	The Genetic Algorithm
	Artificial Populations

	ga_chromosome
	Synopsis
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	ga_copy_chromosome
	Synopsis
	Required Arguments
	Description

	ga_clone_chromosome
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	ga_individual
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	ga_copy_individual
	Synopsis
	Required Arguments
	Description

	ga_clone_individual
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	ga_mutate
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	ga_decode
	Synopsis
	Required Arguments
	Description

	ga_encode
	Synopsis
	Required Arguments
	Description

	ga_free_individual
	Synopsis
	Required Arguments
	Description
	Example

	ga_population
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	ga_random_population
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	ga_copy_population
	Synopsis
	Required Arguments
	Description

	ga_clone_population
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	ga_grow_population
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	ga_merge_population
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	ga_free_population
	Synopsis
	Required Arguments
	Description
	Example

	genetic_algorithm
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	Naive Bayes – An Overview
	naive_bayes_trainer
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	naive_bayes_classification
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	nb_classifier_free
	Synopsis
	Required Arguments
	Description

	nb_classifier_write
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	nb_classifier_read
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	Neural Networks – An Overview
	Neural Networks – History and Terminology
	Network Applications

	Multilayer Feedforward Neural Networks
	Neural Network Error Calculations

	mlff_network_init
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	mlff_network
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments for imsls_f_mlff_network
	Description
	Examples

	mlff_network_free
	Synopsis
	Required Arguments
	Description
	Example

	mlff_network_write
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	mlff_network_read
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Fatal Errors

	mlff_initialize_weights
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	mlff_network_trainer
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Training Data
	Network Configuration
	Training Efficiency
	Output
	Example

	mlff_network_forecast
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Training Data
	Network Configuration
	Forecast Calculation
	Example

	mlff_classification_trainer
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Training Patterns
	Network Configuration
	Training Efficiency
	Output
	Examples

	mlff_pattern_classification
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Pattern Classification Attributes
	Network Configuration
	Classification Probabilities
	Examples

	scale_filter
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Method ±1: Bounded Scaling and Unscaling
	Method +2 or +3: Unbounded z-score Scaling
	Method -2 or -3: Unbounded z-score Unscaling
	Method +4 or +5: Bounded z-score Scaling
	Method -4 or -5: Bounded z-score unscaling
	Example

	time_series_filter
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	time_series_class_filter
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	unsupervised_nominal_filter
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Binary Encoding: IMSLS_ENCODE
	Binary Decoding: IMSLS_DECODE
	Example

	unsupervised_ordinal_filter
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Ordinal Filtering: IMSLS_ENCODE
	Ordinal UnFiltering: IMSLS_DECODE
	Example

	kohonenSOM_trainer
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Data Structures
	Example
	Output

	kohonenSOM_forecast
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	Support Vector Machines – An Overview
	support_vector_trainer
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	support_vector_classification
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	svm_classifier_free
	Synopsis
	Required Arguments
	Description

	Printing Functions
	Functions
	write_matrix
	Synopsis
	Required Arguments
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	page
	Synopsis
	Required Arguments
	Example

	write_options
	Synopsis
	Required Arguments
	Description
	Example

	Utilities
	Functions
	output_file
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples

	version
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	error_options
	Synopsis with Optional Arguments
	Optional Arguments
	Return Value
	Description
	Examples

	error_code
	Synopsis
	Return Value
	Example

	error_type
	Synopsis
	Return Value
	Description
	Example

	error_message
	Synopsis
	Return Value
	Description
	Example

	initialize_error_handler
	Synopsis
	Return Value
	Description
	Example

	set_user_fcn_return_flag
	Synopsis
	Required Arguments
	Description
	Programming Notes
	Examples

	free
	Synopsis
	Required Arguments
	Description
	Example

	fopen
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	fclose
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	ascii_read
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	omp_options
	Synopsis
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	machine (integer)
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	machine (float)
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	data_sets
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	mat_mul_rect
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	permute_vector
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	permute_matrix
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	impute_missing
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Warning Errors

	binomial_coefficient
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	beta
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	beta_incomplete
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	log_beta
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors

	gamma
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Warning Errors
	Fatal Errors

	gamma_incomplete
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Fatal Errors

	log_gamma
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	ctime
	Synopsis
	Return Value
	Example

	Reference Material
	Contents
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-level Functions
	Functions for Error Handling
	Threads and Error Handling
	Use of Informational Error to Determine Program Action
	Additional Examples

	References
	Alphabetical Summary of Functions
	Product Support
	Contacting IMSL Support

	Index

