geneig


   more...

Computes the generalized eigenexpansion of a system Ax = λBx, with A and B real.

Synopsis

#include <imsl.h>

void imsl_f_geneig (int n, float *a, float *b, f_complex *alpha, float *beta, ..., 0)

The double analogue is imsl_d_geneig.

Required Arguments

int n (Input)
Number of rows and columns in A and B.

float *a (Input)
Array of size n  × n containing the coefficient matrix A.

float *b (Input)
Array of size n  × n containing the coefficient matrix B.

f_complex *alpha (Output)
Vector of size n containing scalars αi. If βi  0, λi = αi/βi for i = 0, n   1 are the eigenvalues of the system.

float *beta (Output)
Vector of size n .

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_geneig (int n, float *a, float *b,

IMSL_VECTORS, f_complex **evec,

IMSL_VECTORS_USER, f_complex evecu[],

IMSL_A_COL_DIM, int a_col_dim,

IMSL_B_COL_DIM, int b_col_dim,

IMSL_EVECU_COL_DIM, int evecu_col_dim,

0)

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the problem. Each vector is normalized to have Euclidean length equal to the value one. On return, the necessary space is allocated by the function. Typically, f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n× n containing the matrix of generalized eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length equal to the value one.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n .

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description

The function imsl_f_geneig uses the QZ algorithm to compute the eigenvalues and eigenvectors of the generalized eigensystem Ax = λBx, where A and B are real matrices of order n. The eigenvalues for this problem can be infinite, so α and β are returned instead of λ. If β is nonzero, λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_f_geneig is based on the QZ algorithm due to Moler and Stewart (1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).

Examples

 

Example 1

In this example, the eigenvalue, λ, of system Ax = λBx is computed, where

 

 

 

#include <imsl.h>

#include <stdio.h>

 

int main()

{

int n = 3;

f_complex alpha[3];

float beta[3];

int i;

f_complex eval[3];

 

float a[] =

{1.0, 0.5, 0.0,

-10.0, 2.0, 0.0,

5.0, 1.0, 0.5};

 

float b[] =

{0.5, 0.0, 0.0,

3.0, 3.0, 0.0,

4.0, 0.5, 1.0};

 

/* Compute eigenvalues */

imsl_f_geneig (n, a, b, alpha, beta,

0);

 

for (i=0; i<n; i++)

if (beta[i] != 0.0)

eval[i] = imsl_c_div(alpha[i],

imsl_cf_convert(beta[i], 0.0));

else

printf ("Infinite eigenvalue\n");

 

/* Print eigenvalues */

imsl_c_write_matrix ("Eigenvalues", 1, n, eval,

0);

}

Output

 

Eigenvalues

1 2 3

( 0.833, 1.993) ( 0.833, -1.993) ( 0.500, 0.000)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

 

#include <imsl.h>

#include <stdio.h>

 

int main()

{

int n = 3;

f_complex alpha[3];

float beta[3];

int i;

f_complex eval[3];

f_complex *evec;

 

float a[] =

{1.0, 0.5, 0.0,

-10.0, 2.0, 0.0,

5.0, 1.0, 0.5};

 

float b[] =

{0.5, 0.0, 0.0,

3.0, 3.0, 0.0,

4.0, 0.5, 1.0};

 

imsl_f_geneig (n, a, b, alpha, beta,

IMSL_VECTORS, &evec,

0);

 

for (i=0; i<n; i++)

if (beta[i] != 0.0)

eval[i] = imsl_c_div(alpha[i],

imsl_cf_convert(beta[i], 0.0));

else

printf ("Infinite eigenvalue\n");

 

/* Print eigenvalues */

imsl_c_write_matrix ("Eigenvalues", 1, n, eval,

0);

 

/* Print eigenvectors */

imsl_c_write_matrix ("Eigenvectors", n, n, evec,

0);

}

Output

 

Eigenvalues

1 2 3

( 0.833, 1.993) ( 0.833, -1.993) ( 0.500, -0.000)

 

Eigenvectors

1 2 3

1 ( -0.197, 0.150) ( -0.197, -0.150) ( -0.000, 0.000)

2 ( -0.069, -0.568) ( -0.069, 0.568) ( -0.000, 0.000)

3 ( 0.782, 0.000) ( 0.782, 0.000) ( 1.000, 0.000)