Chapter 9: Special Functions

bessel_K0

Evaluates the real modified Bessel function of the second kind of order zero K0(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_K0 (float x)

The type double procedure is imsl_d_bessel_K0.

Required Arguments

float x   (Input)
Point at which the modified Bessel function is to be evaluated. It must be positive.

Return Value

The value of the modified Bessel function

If no solution can be computed, then NaN is returned.

Description

Since K0(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_K0 is defined only for x > 0. For large x, imsl_f_bessel_K0 will underflow.

Figure 9- 12   Plot of K0(x) and K1(x)

Example

The Bessel function K0(1.5) is evaluated.

#include <imsl.h>

main()
{
    float       x = 1.5;
    float       ans;

    ans = imsl_f_bessel_K0(x);
    printf("K0(%f) = %f\n", x, ans);
}

Output

K0(1.500000) = 0.213806

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW                The argument x must not be so large that the result (approximately equal to

                                                                                     underflows.


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260