Evaluates Carlson’s elliptic integral of the first kind RF(x, y, z).
#include <imsl.h>
float imsl_f_elliptic_integral_RF (float x, float y, float z)
The type double function is imsl_d_elliptic_integral_RF.
float x
(Input)
First variable of the incomplete elliptic integral. It must be
nonnegative.
float y
(Input)
Second variable of the incomplete elliptic integral. It must be
nonnegative.
float z
(Input)
Third variable of the incomplete elliptic integral. It must be
nonnegative.
The complete elliptic integral RF(x, y, z)
Carlson’s elliptic integral of the first kind is defined to be

The arguments must be nonnegative and less than or equal to
b/5. In addition,
x + y, x + z, and
y + z must be greater than or equal to 5s. Should any of
these conditions fail, imsl_f_elliptic_integral_RF
is set to b. Here,
b = imsl_f_machine(2) is the largest and s
= imsl_f_machine(1) is the smallest
representable number.
The function imsl_f_elliptic_integral_RF is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).
The integral RF(0, 1, 2) is computed.
#include <imsl.h>
main()
{
float x = 0.0;
float y = 1.0;
float z = 2.0;
float ans;
x =
imsl_f_elliptic_integral_RF (x, y, z);
printf ("RF(0,
1, 2) = %f\n", x);
}
RF(0, 1, 2) = 1.311029
|
Visual Numerics, Inc. PHONE: 713.784.3131 FAX:713.781.9260 |