Chapter 10: Statistics and Random Number Generation

.p>.CMCH10.DOC!RANKS;ranks

Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis

#include <imsl.h>

float *imsl_f_ranks (int n_observations, float x[], ¼, 0)

The type double function is imsl_d_ranks.

Required Arguments

int n_observations   (Input)
The number of observations.

float x[]   (Input)
Array of length n_observations containing the observations to be ranked.

Return Value

A pointer to a vector of length n_observations containing the rank (or optionally, a transformation of the rank) of each observation.

Synopsis with Optional Arguments

#include <imsl.h>

float* imsl_f_ranks (int n_observations, float x[],
IMSL_AVERAGE_TIE,
IMSL_HIGHEST,
IMSL_LOWEST,
IMSL_RANDOM_SPLIT,
IMSL_FUZZ, float fuzz_value,
IMSL_RANKS,
IMSL_BLOM_SCORES,
IMSL_TUKEY_SCORES,
IMSL_VAN_DER_WAERDEN_SCORES,
IMSL_EXPECTED_NORMAL_SCORES,
IMSL_SAVAGE_SCORES,
IMSL_RETURN_USER, float ranks[],
0)

Optional Arguments

IMSL_AVERAGE_TIE, or

IMSL_HIGHEST, or

IMSL_LOWEST, or

 

IMSL_RANDOM_SPLIT
Exactly one of these optional arguments may be used to change the method used to assign a score to tied observations.

Keyword

Method

IMSL_AVERAGE_TIE

average of the scores of the tied observations (default)

IMSL_HIGHEST

highest score in the group of ties

IMSL_LOWEST

lowest score in the group of ties

IMSL_RANDOM_SPLIT

tied observations are randomly split using a random number generator.

IMSL_FUZZ, float fuzz_value   (Input)
Value used to determine when two items are tied. If abs(x[i]-x[j]) is less than or equal to fuzz_value, then x[i] and x[j] are said to be tied. The default value for fuzz_value is 0.0.

IMSL_RANKS, or

IMSL_BLOM_SCORES, or

IMSL_TUKEY_SCORES, or

IMSL_VAN_DER_WAERDEN_SCORES, or

IMSL_EXPECTED_NORMAL_SCORES, or

IMSL_SAVAGE_SCORES
Exactly one of these optional arguments may be used to specify the type of values returned.

Keyword

Result

IMSL_RANKS

ranks (default)

IMSL_BLOM_SCORES

Blom version of normal scores

IMSL_TUKEY_SCORES

Tukey version of normal scores

IMSL_VAN_DER_WAERDEN_SCORES

Van der Waerden version of normal scores

IMSL_EXPECTED_NORMAL_SCORES

expected value of normal order statistics (For tied observations, the average of the expected normal scores.)

IMSL_SAVAGE_SCORES

Savage scores (the expected value of exponential order statistics)

IMSL_RETURN_USER, float ranks[]   (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation of the ranks) of the data in x. If x[i] has the smallest value among the values in x and there is no other element in x with this value, then ranks[i] = 1. If both x[i] and x[j] have the same smallest value, then the output value depends upon the option used to break ties.

Keyword

Result

IMSL_AVERAGE_TIE

ranks[i] = ranks[j] = 1.5

IMSL_HIGHEST

ranks[i] = ranks[j] = 2.0

IMSL_LOWEST

ranks[i] = ranks [j] = 1.0

IMSL_RANDOM_SPLIT

ranks[i] = 1.0 and ranks[j] = 2.0

or, randomly,

ranks[i] = 2.0 and ranks[j] = 1.0

When the ties are resolved randomly, the function imsl_f_random_uniform is used to generate random numbers. Different results may occur from different executions of the program unless the “seed” of the random number generator is set explicitly by use of the function imsl_random_seed_set.

The Scores

Normal and other functions of the ranks can optionally be returned. Normal scores can be defined as the expected values, or approximations to the expected values, of order statistics from a normal distribution. The simplest approximations are obtained by evaluating the inverse cumulative normal distribution function, imsl_f_normal_inverse_cdf, at the ranks scaled into the open interval (0,1). In the Blom version (see Blom 1958), the scaling transformation for the rank
ri (1  ri  n where n is the sample size, n_observations) is (ri - 3/8)/(n + 1/4).
The Blom normal score corresponding to the observation with rank ri is

where Φ(×) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if x[i] equals x[j] (within fuzz_value) and their value is the k-th smallest in the data set, the Blom normal scores are determined for ranks of k and k + 1. Then, these normal scores are averaged or selected in the manner specified. (Whether the transformations are made first or ties are resolved first makes no difference except when IMSL_AVERAGE is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank
ri is (ri  1/3)/(n + 1/3). The Tukey normal score corresponding to the observation with rank ri is

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation for the rank ri is ri/(n + 1). The Van der Waerden normal score corresponding to the observation with rank ri is

Ties are handled in the same way as for the Blom normal scores.

When option IMSL_EXPECTED_NORMAL_SCORES is used, the output values are the expected values of the normal order statistics from a sample of size n_observations. If the value in x[i] is the k-th smallest, then the value output in ranks[i] is E(zk) where E(×) is the expectation operator, and zk is the k-th order statistic in a sample of size n_observations from a standard normal distribution. Ties are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a sample of size n_observations. These values are called Savage scores because of their use in a test discussed by Savage (1956) (see Lehmann 1975). If the value in x[i] is the
k-th smallest, then the value output in ranks[i] is E(yk) where yk is the k-th order statistic in a sample of size n_observations from a standard exponential distribution. The expected value of the k-th order statistic from an exponential sample of size n (n_observations) is

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1  

The data for this example, from Hinkley (1977), contains 30 observations. Note that the fourth and sixth observations are tied, and that the third and twentieth observations are tied.

#include <imsl.h>

#define N_OBSERVATIONS          30

main()
{
    float       *ranks;
    float       x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
                       3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
                       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
                       4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

    ranks = imsl_f_ranks(N_OBSERVATIONS, x, 0);
    imsl_f_write_matrix("Ranks" , 1, N_OBSERVATIONS, ranks, 0);
}

Output

                            Ranks
  1           2           3           4           5           6
5.0        18.0         6.5        11.5        21.0        11.5
 
  7           8           9          10          11          12
2.0        15.0        29.0        24.0        27.0        28.0
 
  13          14          15          16          17          18
16.0        23.0         3.0        17.0        13.0         1.0
 
 19          20          21          22          23          24
4.0         6.5        26.0        19.0        10.0        14.0
 
  25          26          27          28          29          30
30.0        25.0         9.0        20.0         8.0        22.0

Example 2

This example uses all of the score options with the same data set, which contains some ties. Ties are handled in several different ways in this example.

#include <imsl.h>

#define N_OBSERVATIONS          30

void main()
{
    float       fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
    float       x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
                       3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
                       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
                       4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
    char        *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
                                 "Expected Value"};

                                /* Blom scores using largest ranks */
                                /* for ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_HIGHEST,
                 IMSL_BLOM_SCORES,
                 IMSL_RETURN_USER,   &score[0][0],
                 0);
                                /* Tukey normal scores using smallest */
                                /* ranks for ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_LOWEST,
                 IMSL_TUKEY_SCORES,
                 IMSL_RETURN_USER,  &score[1][0],
                 0);
                                /* Van der Waerden scores using */
                                /* randomly resolved ties */
    imsl_random_seed_set(123457);
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_RANDOM_SPLIT,
                 IMSL_VAN_DER_WAERDEN_SCORES,
                 IMSL_RETURN_USER, &score[2][0],
                 0);
                                /* Expected value of normal order */
                                /* statistics using averaging to */
                                /* break ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                 IMSL_EXPECTED_NORMAL_SCORES,
                 IMSL_RETURN_USER, &score[3][0],
                 0);
    imsl_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
                        (float *)score,
                        IMSL_ROW_LABELS, row_labels,
                        0);
                                /* Savage scores using averaging */
                                /* to break ties */
    ranks = imsl_f_ranks(N_OBSERVATIONS, x,
                         IMSL_SAVAGE_SCORES,
                         0);
    imsl_f_write_matrix("Expected values of exponential order "
                        "statistics", 1,
                        N_OBSERVATIONS, ranks,
                        0);
}

Output

                          Normal Order Statistics
                      1           2           3           4           5
Blom             -1.024       0.209      -0.776      -0.294       0.473
Tukey            -1.020       0.208      -0.890      -0.381       0.471
Van der Waerden  -0.989       0.204      -0.753      -0.287       0.460
Expected Value   -1.026       0.209      -0.836      -0.338       0.473
 
                      6           7           8           9          10
Blom             -0.294      -1.610      -0.041       1.610       0.776
Tukey            -0.381      -1.599      -0.041       1.599       0.773
Van der Waerden  -0.372      -1.518      -0.040       1.518       0.753
Expected Value   -0.338      -1.616      -0.041       1.616       0.777
 
                     11          12          13          14          15
Blom              1.176       1.361       0.041       0.668      -1.361
Tukey             1.171       1.354       0.041       0.666      -1.354
Van der Waerden   1.131       1.300       0.040       0.649      -1.300
Expected Value    1.179       1.365       0.041       0.669      -1.365
 
                     16          17          18          19          20
Blom              0.125      -0.209      -2.040      -1.176      -0.776
Tukey             0.124      -0.208      -2.015      -1.171      -0.890
Van der Waerden   0.122      -0.204      -1.849      -1.131      -0.865
Expected Value    0.125      -0.209      -2.043      -1.179      -0.836
 
                     21          22          23          24          25
Blom              1.024       0.294      -0.473      -0.125       2.040
Tukey             1.020       0.293      -0.471      -0.124       2.015
Van der Waerden   0.989       0.287      -0.460      -0.122       1.849
Expected Value    1.026       0.294      -0.473      -0.125       2.043
 
                     26          27          28          29          30
Blom              0.893      -0.568       0.382      -0.668       0.568
Tukey             0.890      -0.566       0.381      -0.666       0.566
Van der Waerden   0.865      -0.552       0.372      -0.649       0.552
Expected Value    0.894      -0.568       0.382      -0.669       0.568
 
            Expected values of exponential order statistics
         1           2           3           4           5           6
     0.179       0.892       0.240       0.474       1.166       0.474
 
         7           8           9          10          11          12
     0.068       0.677       2.995       1.545       2.162       2.495
 
        13          14          15          16          17          18
     0.743       1.402       0.104       0.815       0.555       0.033
 
        19          20          21          22          23          24
     0.141       0.240       1.912       0.975       0.397       0.614
 
        25          26          27          28          29          30
     3.995       1.712       0.350       1.066       0.304       1.277


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260