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Usage Notes

Unconstrained Minimizationxe "minimization"
The unconstrained minimization problem can be stated as follows: 
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where f : Rn ( R is continuous and has derivatives of all orders required by the algorithms. The functions for unconstrained minimization are grouped into three categories: univariate functions, multivariate functions, and nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function imsl_f_min_uncon_multivar. The default is to use a finite-difference approximation of the gradient of f(x). Here, the gradient is defined to be the vector 
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However, when the exact gradient can be easily provided, the keyword IMSL_GRAD should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The most common application of the function is the nonlinear data-fitting problem where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function may have many local minima. Try different initial points and intervals to obtain a better local solution.

Double-precision arithmetic is recommended for the functions when the user provides only the function values.

Linearly Constrained Minimizationxe "minimization"
The linearly constrained minimization problem can be stated as follows:
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where f : Rn ( R, A1 and A2 are coefficient matrices, and b1 and b2 are vectors. If 
f(x) is linear, then the problem is a linear programming problem. If f(x) is quadratic, 
the problem is a quadratic programming problem.

The function imsl_f_linear_programming uses an active set strategy to solve linear programming problems, and is intended as a replacement for the function imsl_f_lin_prog.  The two functions have similar interfaces, which should help facilitate migration from imsl_f_lin_prog to imsl_f_linear_programming.  In general, the function imsl_f_linear_programming should be expected to perform more efficiently than imsl_f_lin_prog.  Both imsl_f_linear_programming and imsl_f_lin_prog are intended for use with  small- to medium-sized linear programming problems. No sparsity is assumed since the coefficients are stored in full matrix form. 

The function imsl_f_quadratic_prog is designed to solve convex quadratic programming problems using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then imsl_f_quadratic_prog modifies it to be positive definite. In this case, output should be interpreted with care because the problem has been changed slightly. Here, the Hessian of f(x) is defined to be the 
n ( n matrix
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Nonlinearly Constrained Minimizationxe "minimization"
The nonlinearly constrained minimization problem can be stated as follows:
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where f : Rn ( R and gi : Rn ( R, for i = 1, 2, (, m.

The function imsl_f_constrained_nlp uses a sequential equality constrained quadratic programming algorithm to solve this problem. A more complete discussion of this algorithm can be found in the documentation.

min_uncon

xe "minimization"Find the minimum point of a smooth function f(x) of a single variable using only function evaluations.

Synopsis

#include <imsl.h>

float imsl_f_min_uncon (float fcn(), float a, float b, (, 0)
The type double function is imsl_d_min_uncon.

Required Arguments

float fcn(float x)   (Input/Output)
User-supplied function to compute the value of the function to be minimized where x is the point at which the function is evaluated, and fcn is the computed function value at the point x. 

float a   (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be located.

float b   (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be located.

Return Value

The point at which a minimum value of fcn is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float imsl_f_min_uncon (float fcn(), float a, float b,
IMSL_XGUESS, float xguess, 
IMSL_STEP, float step, 
IMSL_ERR_ABS, float err_abs, 
IMSL_MAX_FCN, int max_fcn, 
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess   (Input)
An initial guess of the minimum point of fcn.
Default: xguess = (a + b)∕2

IMSL_STEP, float step   (Input)
An order of magnitude estimate of the required change in x. 
Default: step = 1.0

IMSL_ERR_ABS, float err_abs   (Input)
The required absolute accuracy in the final value of x. On a normal return, there are points on either side of x within a distance err_abs at which fcn is no less than fcn at x.
Default: err_abs = 0.0001

IMSL_MAX_FCN, int max_fcn   (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FCN_W_DATA, float fcn(float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description

The function imsl_f_min_uncon uses a safeguarded quadratic interpolation method to find a minimum point of a univariate function. Both the code and the underlying algorithm are based on the subroutine ZXLSF written by M.J.D. Powell at the University of Cambridge.

The function imsl_f_min_uncon finds the least value of a univariate function, f, which is specified by the function fcn. Other required data are two points a and b that define an interval for finding a minimum point from an initial estimate of the solution, x0 where x0 = xguess. The algorithm begins the search by moving from 
x0 to x = x0 + s where s = step is an estimate of the required change in x and may be positive or negative. The first two function evaluations indicate the direction to the minimum point and the search strides out along this direction until a bracket on a minimum point is found or until x reaches one of the endpoints a or b. During this stage, the step length increases by a factor of between two and nine per function evaluation. The factor depends on the position of the minimum point that is predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we have three points,

x1, x2, x3, with x1 < x2 < x3, f(x1) ( f(x2), and f(x2) ≤ f(x3).

There are three main rules in the technique for choosing the new x from these three points. They are (i) the estimate of the minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance parameter η, which depends on the closeness of f to a quadratic, and (iii) whether x2 is near the center of the range between x1 and x3 or is relatively close to an end of this range. In outline, the new value of x is as near as possible to the predicted minimum point, subject to being at least 
ɛ from x2, and subject to being in the longer interval between x1 and x2, or x2 and x3, when x2 is particularly close to x1 or x3.

The algorithm is intended to provide fast convergence when f has a positive and continuous second derivative at the minimum. Also, the algorithim avoids gross inefficiencies in pathological cases, such as

f(x) = x + 1.001|x|

The algorithm can automatically make ɛ large in the pathological cases. In this case, it is usual for a new value of x to be at the midpoint of the longer interval that is adjacent to the least-calculated function value. The midpoint strategy is used frequently when changes to f are dominated by computer rounding errors, which will almost certainly happen if the user requests an accuracy that is less than the square root of the machine precision. In such cases, the subroutine claims to have achieved the required accuracy if it decides that there is a local minimum point within distance δ of x, where δ = err_abs, even though the rounding errors in f may cause the existence of other local minimum points nearby. This difficulty is inevitable in minimization routines that use only function values, so high precision arithmetic is recommended.

Examples

Example 1

A minimum point of f(x) = ex − 5x is found.

#include <imsl.h>
#include <math.h>

float           fcn(float);

void main ()
{ 
    float       a = -100.0;
    float       b = 100.0;
    float       fx, x;

    x = imsl_f_min_uncon (fcn, a, b, 0);
    fx = fcn(x);

    printf ("The solution is:  %8.4f\n", x);
    printf ("The function evaluated at the solution is:  %8.4f\n", fx);
}


float fcn(float x)
{
    return exp(x) - 5.0*x;
} 

Output

The solution is:    1.6094
The function evaluated at the solution is:   -3.0472

Example 2

A minimum point of f(x) = x(x3 − 1) + 10 is found with an initial guess x0 = 3.

#include <imsl.h>

float          fcn(float);

void main ()
{ 
    int         max_fcn =  50;    
    float       a       = -10.0;
    float       b       =  10.0;
    float       xguess  =   3.0;
    float       step    =   0.1;
    float       err_abs =   0.001;
    float       fx, x;

    x = imsl_f_min_uncon (fcn, a, b,
                          IMSL_XGUESS, xguess,
                          IMSL_STEP, step,
                          IMSL_ERR_ABS, err_abs,
                          IMSL_MAX_FCN, max_fcn,
                          0);
    fx = fcn(x);

    printf ("The solution is:  %8.4f\n", x);
    printf ("The function evaluated at the solution is:  %8.4f\n", fx);
}
 
float fcn(float x)
{
    return x*(x*x*x-1.0) + 10.0;
}

Output

The solution is:    0.6298
The function evaluated at the solution is:    9.5275

Warning Errors

IMSL_MIN_AT_BOUND
The final value of x is at a bound.

IMSL_NO_MORE_PROGRESS
Computer rounding errors prevent further refinement of x.

IMSL_TOO_MANY_FCN_EVAL
Maximum number of function evaluations exceeded.

min_uncon_deriv

xe "minimization"Finds the minimum point of a smooth function f(x) of a single variable using both function and first derivative evaluations.

Synopsis

#include <imsl.h>

float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b, (, 0)
The type double function is imsl_d_min_uncon_deriv.

Required Arguments

float fcn (float x)   (Input/Output)
User-supplied function to compute the value of the function to be minimized where x is the point at which the function is evaluated, and fcn is the computed function value at the point x.

float grad (float x)   (Input/Output)
User-supplied function to compute the first derivative of the function where 
x is the point at which the derivative is evaluated, and grad is the computed value of the derivative at the point x.

float a   (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be located.

float b   (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be located.

Return Value

The point at which a minimum value of fcn is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b, 
IMSL_XGUESS, float xguess, 
IMSL_ERR_REL, float err_rel, 
IMSL_GRAD_TOL, float grad_tol, 
IMSL_MAX_FCN, int max_fcn, 
IMSL_FVALUE, float *fvalue, 
IMSL_GVALUE, float *gvalue, 
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GRADIENT_W_DATA, float grad(), void *data,
 0)

Optional Arguments

IMSL_XGUESS, float xguess   (Input)
An initial guess of the minimum point of fcn.
Default: xguess = (a + b)∕2

IMSL_ERR_REL, float err_rel   (Input)
The required relative accuracy in the final value of x. This is the first stopping criterion. On a normal return, the solution x is in an interval that contains a local minimum and is less than or equal to 
max (1.0, |x|) * err_rel. When the given err_rel is less than zero,
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is used as err_rel where ɛ is the machine precision.
Default:
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IMSL_GRAD_TOL, float grad_tol   (Input)
The derivative tolerance used to decide if the current point is a local minimum. This is the second stopping criterion. x is returned as a solution when grad is less than or equal to grad_tol. grad_tol should be nonnegative; otherwise, zero would be used.
Default:
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where ɛ is the machine precision

IMSL_MAX_FCN, int max_fcn   (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FVALUE, float *fvalue   (Output)
The function value at point x.

IMSL_GVALUE, float *gvalue   (Output)
The derivative value at point x.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

IMSL_GRADIENT_W_DATA, float grad (float x, void *data), void *data, (Input)
User supplied function to compute the first derivative of the function, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the  n, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description

The function f_min_uncon_deriv uses a descent method with either the secant method or cubic interpolation to find a minimum point of a univariate function. It starts with an initial guess and two endpoints. If any of the three points is a local minimum point and has least function value, the function terminates with a solution. Otherwise, the point with least function value will be used as the starting point.

From the starting point, say xc, the function value fc = f(xc), the derivative value gc = g(xc), and a new point xn defined by xn = xc − gc are computed. The function fn = f(xn), and the derivative gn = g(xn) are then evaluated. If either 
fn ( fc or gn has the opposite sign of gc, then there exists a minimum point between 
xc and xn, and an initial interval is obtained. Otherwise, since xc is kept as the point that has lowest function value, an interchange between xn and xc is performed. The secant method is then used to get a new point
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Let xn = xs, and repeat this process until an interval containing a minimum is found or one of the convergence criteria is satisfied. The convergence criteria are as follows:

Criterion 1: |xc − xn| ( ɛc
Criterion 2: |gc| ( (g
where ɛc = max {1.0, |xc|} ɛ, ɛ is an error tolerance, and ɛg is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. Function and derivative are then evaluated at that point, and accordingly a smaller interval that contains a minimum point is chosen. A safeguarded method is used to ensure that the interval be reduced by at least a fraction of the previous interval. Another cubic interpolation is then performed, and this function is repeated until one of the stopping criteria is met.

Examples

Example 1

In this example, a minimum point of f(x) = ex − 5x is found.

#include <imsl.h>
#include <math.h>

float           fcn(float);
float           deriv(float);

void main ()
{ 
    float       a = -10.0;
    float       b = 10.0;
    float       fx, gx, x; 

    x = imsl_f_min_uncon_deriv (fcn, deriv, a, b, 0);
    fx = fcn(x);
    gx = deriv(x);

    printf ("The solution is:  %7.3f\n", x);
    printf ("The function evaluated at the solution is:  %9.3f\n", fx);
    printf ("The derivative evaluated at the solution is:  %7.3f\n", gx);
}
 

float fcn(float x)
{
      return exp(x) - 5.0*(x);
}


float deriv (float x)
{
     return exp(x) - 5.0;
}

Output

The solution is:    1.609
The function evaluated at the solution is:     -3.047
The derivative evaluated at the solution is:   -0.001

Example 2

A minimum point of f(x) = x(x3 − 1) + 10 is found with an initial guess x0 = 3.

#include <imsl.h>
#include <stdio.h>

float           fcn(float);
float           deriv(float);

void main ()
{ 
    int         max_fcn = 50;
    float       a = -10.0;
    float       b = 10.0;
    float       xguess = 3.0;
    float       fx, gx, x; 

    x = imsl_f_min_uncon_deriv (fcn, deriv, a, b,
                                IMSL_XGUESS, xguess, 
                                IMSL_MAX_FCN, max_fcn,
                                IMSL_FVALUE, &fx,
                                IMSL_GVALUE, &gx,
                                0);
     printf ("The solution is:  %7.3f\n", x);
     printf ("The function evaluated at the solution is:  %7.3f\n", fx);
      printf ("The derivative evaluated at the solution is:  %7.3f\n", gx);
}
 
float fcn(float x)
{
      return x*(x*x*x-1) + 10.0;
}

float deriv(float x)
{
    return  4.0*(x*x*x) - 1.0;
}

Output

The solution is:    0.630
The function evaluated at the solution is:    9.528
The derivative evaluated at the solution is:    0.000

Warning Errors

IMSL_MIN_AT_LOWERBOUND
The final value of x is at the lower bound.

IMSL_MIN_AT_UPPERBOUND
The final value of x is at the upper bound.

IMSL_TOO_MANY_FCN_EVAL
Maximum number of function evaluations exceeded.

.p>.CMCH8.DOC!MIN_UNCON_MULTIVAR;min_uncon_multivar

xe "minimization"

xe "quasi-Newton method"Minimizes a function f(x) of n variables using a quasi-Newton method.

Synopsis

#include <imsl.h>

float *imsl_f_min_uncon_multivar (float fcn(), int n, (, 0)
The type double function is imsl_d_min_uncon_multivar.

Required Arguments

float fcn (int n, float x[])   (Input/Output)
User-supplied function to evaluate the function to be minimized where n is the size of x, x is the point at which the function is evaluated, and fcn is the computed function value at the point x.

int n   (Input)
Number of variables.

Return Value

A pointer to the minimum point x of the function. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float *imsl_f_min_uncon_multivar (float fcn(), int n,
IMSL_XGUESS, float xguess[],
IMSL_GRAD, void grad(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale,
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_MAX_STEP, float max_step,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_GRAD, int max_grad,
IMSL_INIT_HESSIAN, int ihess,
IMSL_RETURN_USER, float x[],
IMSL_FVALUE, float *fvalue,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess[]   (Input)
Array with n components containing an initial guess of the computed solution.
Default: xguess = 0

IMSL_GRAD, void grad (int n, float x[], float g[])   (Input/Output)
User-supplied function to compute the gradient at the point x where n is the size of x, x is the point at which the gradient is evaluated, and g is the computed gradient at the point x.

IMSL_XSCALE, float xscale[]   (Input)
Array with n components containing the scaling vector for the variables. xscale is used mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more details.
Default: xscale[] = 1.0

IMSL_FSCALE, float fscale   (Input)
Scalar containing the function scaling. fscale is used mainly in scaling the gradient. See keyword IMSL_GRAD_TOL for more details.
Default: fscale = 1.0

IMSL_GRAD_TOL, float grad_tol   (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is calculated as
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where g = ( f(x), s = xscale, and fs = fscale.
Default: 
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in double where ɛ is the machine precision.

IMSL_STEP_TOL, float step_tol   (Input)
Scaled step tolerance. The i-th component of the scaled step between two points x and y is computed as
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where s = xscale.
Default: step_tol = ɛ2/3
IMSL_MAX_STEP, float max_step   (Input)
Maximum allowable step size.
Default: max_step = 1000max (ɛ1, ɛ2) where,
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ɛ2 = ||s||2, s = xscale, and t = xguess.

IMSL_GOOD_DIGIT, int ndigit   (Input)
Number of good digits in the function. The default is machine dependent.

IMSL_MAX_ITN, int max_itn   (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn   (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_GRAD, int max_grad   (Input)
Maximum number of gradient evaluations.
Default: max_grad = 400

IMSL_INIT_HESSIAN, int ihess   (Input)
Hessian initialization parameter. If ihess is zero, the Hessian is initialized to the identity matrix; otherwise, it is initialized to a diagonal matrix containing
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on the diagonal where t = xguess, fs = fscale, and s = xscale.
Default: ihess = 0

IMSL_RETURN_USER, float x[]   (Output)
User-supplied array with n components containing the computed solution.

IMSL_FVALUE, float *fvalue   (Output)
Address to store the value of the function at the computed solution.

IMSL_FCN_W_DATA, float fcn (int n, float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

IMSL_GRADIENT_W_DATA, void grad (int n, float x[], float g[], void *data), void *data, (Input)
User supplied function to compute the gradient at the point x, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description

The function f_min_uncon_multivar uses a quasi-Newton method to find the minimum of a function f(x) of n variables. The problem is stated as follows:
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Given a starting point xc, the search direction is computed according to the formula 

 
[image: image17.wmf]1

dBgc

=--


where B is a positive definite approximation of the Hessian, and gc is the gradient evaluated at xc. A line search is then used to find a new point 

xn = xc + λd, λ > 0
such that

f(xn) ≤ f(xc) + (gTd,
α ( (0, 0.5)

Finally, the optimality condition ||g(x)|| ≤ ɛ is checked where ɛ is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula 
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where s = xn − xc and y = gn − gc. Another search direction is then computed to begin the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for imsl_f_min_uncon_multivar occurs when the norm of the gradient is less than the given gradient tolerance grad_tol. The second stopping criterion for imsl_f_min_uncon_multivar occurs when the scaled distance between the last two steps is less than the step tolerance step_tol.

Since by default, a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended; the keyword IMSL_GRAD should be used to provide more accurate gradient evaluation.


[image: image19.wmf]
Figure 8- 1   Plot of the Rosenbrock Function

Examples

Example 1

The function 
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is minimized. In the following plot, the solid circle marks the minimum.

#include <stdio.h>
#include <imsl.h>

void main()
{
        int             i, n=2;
        float           *result, fx;
        static float    rosbrk(int, float[]);
                                /* Minimize Rosenbrock function */

        result = imsl_f_min_uncon_multivar(rosbrk, n, 0);
        fx = rosbrk(n, result);

                                /* Print results */

        printf("  The solution is       ");
        for (i = 0; i < n; i++) printf("%8.3f", result[i]);
        printf("\n\n  The function value is %8.3f\n", fx);
}                                /* end of main */


static float rosbrk(int n, float x[])
{
        float   f1, f2;

        f1 = x[1] - x[0]*x[0];
        f2 = 1.0 - x[0];

        return 100.0 * f1 * f1 + f2 * f2;
}                                /* end of function */

Output

The solution is          1.000   1.000

The function value is    0.000

Example 2

The function
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is minimized with the initial guess x = (−1.2, 1.0). The initial guess is marked with an open circle in the figure on page 15.

#include <stdio.h>
#include <imsl.h>

void main()
{
        int             i, n=2;
        float           *result, fx;
        static float    rosbrk(int, float[]);
        static void     rosgrd(int, float[], float[]);
        static float    xguess[2] = {-1.2e0, 1.0e0};  
        static float    grad_tol = .0001;

/* Minimize Rosenbrock function using initial guesses of -1.2 and 1.0 */

        result = imsl_f_min_uncon_multivar(rosbrk, n, IMSL_XGUESS, xguess,
                                           IMSL_GRAD, rosgrd,
                                           IMSL_GRAD_TOL, grad_tol, 
                                           IMSL_FVALUE, &fx, 0);

/* Print results */

        printf("  The solution is       ");
        for (i = 0; i < n; i++) printf("%8.3f", result[i]);
        printf("\n\n  The function value is %8.3f\n", fx);
}                                /* End of main */


static float rosbrk(int n, float x[])
{
        float   f1, f2;

        f1 = x[1] - x[0]*x[0];
        f2 = 1.0e0 - x[0];

        return 100.0 * f1 * f1 + f2 * f2;
}                                /* End of function */

static void rosgrd(int n, float x[], float g[])
{

        g[0] = -400.0*(x[1]-x[0]*x[0])*x[0] - 2.0*(1.0-x[0]);
        g[1] = 200.0*(x[1]-x[0]*x[0]);

}                                /* End of function */

Output

  The solution is          1.000   1.000

  The function value is    0.000

Informational Errors

IMSL_STEP_TOLERANCE
Scaled step tolerance satisfied. The current point may be an approximate local solution, but it is also possible that the algorithm is making very slow progress and is not near a solution, or that step_tol is too big.

Warning Errors

IMSL_TOO_MANY_ITN
Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL
Maximum number of function evaluations exceeded.

IMSL_TOO_MANY_GRAD_EVAL
Maximum number of gradient evaluations exceeded.

IMSL_UNBOUNDED
Five consecutive steps have been taken with the maximum step length.

IMSL_NO_FURTHER_PROGRESS
The last global step failed to locate a lower point than the current x value.

Fatal Errors

IMSL_FALSE_CONVERGENCE
False convergence—The iterates appear to be converging to a noncritical point. Possibly incorrect gradient information is used, or the function is discontinuous, or the other stopping tolerances are too tight.

.p>.CMCH8.DOC!NONLIN_LEAST_SQUARES;nonlin_least_squares

xe "minimization"

xe "nonlinear least squares"

xe "least-squares fit"Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithmxe "Levenberg-Marquardt algorithm".

Synopsis

#include <imsl.h>

float *imsl_f_nonlin_least_squares (void fcn(), int m, int n, (, 0)
The type double function is imsl_d_nonlin_least_squares.

Required Arguments

void fcn (int m, int n, float x[], float f[])   (Input/Output)
User-supplied function to evaluate the function that defines the least-squares problem where x is a vector of length n at which point the function is evaluated, and f is a vector of length m containing the function values at point x.

int m   (Input)
Number of functions.

int n   (Input)
Number of variables where n ≤ m.

Return Value

A pointer to the solution x of the nonlinear least-squares problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float *imsl_f_nonlin_least_squares (void fcn(), int m, int n,
IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol, 
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_TOLERANCE, float tolerance,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_RANK, int *rank,
IMSL_JTJ_INVERSE, float **jtj_inv,
IMSL_JTJ_INVERSE_USER, float jtj_inv[],
IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess[]   (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[],
int fjac_col_dim)(Input)
User-supplied function to compute the Jacobian where x is a vector of length n at which point the Jacobian is evaluated, fjac is the computed m ( n Jacobian at the point x, and fjac_col_dim is the column dimension of fjac. 
Note that each derivative (fi/(xj should be returned in fjac[(i1)*fjac_col_dim+j-1]

IMSL_XSCALE, float xscale[]   (Input)
Array with n components containing the scaling vector for the variables. xscale is used mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more detail. 
Default: xscale[] = 1

IMSL_FSCALE, float fscale[]   (Input)
Array with m components containing the diagonal scaling matrix for the functions. The i-th component of fscale is a positive scalar specifying the reciprocal magnitude of the i-th component function of the problem.
Default: fscale[] = 1

IMSL_GRAD_TOL, float grad_tol   (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is calculated as
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where g = ( F(x), s = xscale, and
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Default:
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 in double where ɛ is the machine precision

IMSL_STEP_TOL, float step_tol   (Input)
Scaled step tolerance. The i-th component of the scaled step between two points x and y is computed as
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where s = xscale.
Default: step_tol = ɛ2/3 where ɛ is the machine precision.

IMSL_REL_FCN_TOL, float rfcn_tol   (Input)
Relative function tolerance.
Default: rfcn_tol = max (10-10, ɛ2/3), max (10-20, ɛ2/3) in double, where ɛ is the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol   (Input)
Absolute function tolerance.
Default: afcn_tol = max (10-20, ɛ2), max (10-40, ɛ2) in double, where ɛ is the machine precision.

IMSL_MAX_STEP, float max_step   (Input)
Maximum allowable step size.
Default: max_step = 1000 max (ɛ1, ɛ2) where,
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s = xscale, and t = xguess
IMSL_INIT_TRUST_REGION, float trust_region   (Input)
Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSL_GOOD_DIGIT, int ndigit   (Input)
Number of good digits in the function.
Default: machine dependent

IMSL_MAX_ITN, int max_itn   (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn   (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian   (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSL_INTERN_SCALE
Internal variable scaling option. With this option, the values for xscale are set internally.

IMSL_TOLERANCE, float tolerance   (Input)
The tolerance used in determining linear dependence for the computation of the inverse of JTJ. For imsl_f_nonlin_least_squares, if IMSL_JACOBIAN is specified, then tolerance = 100 ( imsl_d_machine(4) is the default. Otherwise, the square root of imsl_f_machine(4) is the default. For imsl_d_nonlin_least_ squares, if IMSL_JACOBIAN is specified, then tolerance = 100 ( imsl_machine(4) is the default. Otherwise, the square root of imsl_d_machine(4) is the default. 
See imsl_f_machine (Chapter 12, “Utilities”;).

IMSL_RETURN_USER, float x[]   (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec   (Output)
The address of a pointer to a real array of length m containing the residuals at the approximate solution. On return, the necessary space is allocated by imsl_f_nonlin_least_squares. Typically, float *fvec is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[]   (Output)
A user-allocated array of size m containing the residuals at the approximate solution.

IMSL_FJAC, float **fjac   (Output)
The address of a pointer to an array of size m ( n containing the Jacobian at the approximate solution. On return, the necessary space is allocated by imsl_f_nonlin_least_squares. Typically, float *fjac is declared, and &fjac is used as an argument.

IMSL_FJAC_USER, float fjac[]   (Output)
A user-allocated array of size m ( n containing the Jacobian at the approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim   (Input)
The column dimension of fjac.
Default: fjac_col_dim = n
IMSL_RANK, int *rank   (Output)
The rank of the Jacobian is returned in *rank.

IMSL_JTJ_INVERSE, float **jtj_inv   (Output)
The address of a pointer to an array of size n ( n containing the inverse matrix of JTJ  where the J is the final Jacobian. If JTJ is singular, the inverse is a symmetric g2 inverse of JTJ. (See imsl_f_lin_sol_nonnegdef in Chapter 1, 
“Linear Systems”  for a discussion of generalized inverses and definition of the 
g2 inverse.) On return, the necessary space is allocated by imsl_f_nonlin_least_squares.

IMSL_JTJ_INVERSE_USER, float jtj_inv[]   (Output)
A user-allocated array of size n ( n containing the inverse matrix of JTJ where the J is the Jacobian at the solution.

IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim   (Input)
The column dimension of jtj_inv.
Default: jtj_inv_col_dim = n
IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data), void *data  (Input)
User supplied function to evaluate the function that defines the least-squares problem, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float fjac[], int fjac_col_dim, void *data), void *data  (Input)
User supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description

The function imsl_f_nonlin_least_squares is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least-squares problems. The problem is stated as follows:
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where m ( n, F : Rn ( Rm, and fi(x) is the i-th component function of F(x). From a current point, the algorithm uses the trust region approach,
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to get a new point xn, which is computed as

xn = xc − (J(xc)T J(xc) + μcI)-1 J(xc)T F(xc)

where μc = 0 if δc ( ||(J(xc)T J(xc))-1 J(xc)T F(xc)||2 and μc > 0, otherwise. The value 
μc is defined by the function. The vector and matrix F(xc) and J(xc) are the function values and the Jacobian evaluated at the current point xc, respectively. This function is repeated until the stopping criteria are satisfied.

The first stopping criterion for imsl_f_nonlin_least_squares occurs when the norm of the function is less than the absolute function tolerance fcn_tol. The second stopping criterion occurs when the norm of the scaled gradient is less than the given gradient tolerance grad_tol. The third stopping criterion for imsl_f_nonlin_least_squares occurs when the scaled distance between the last two steps is less than the step tolerance step_tol. For more details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).
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Figure 8-1   Plot of the Nonlinear Fit
Examples

Example 1

In this example, the nonlinear data-fitting problem found in Dennis and Schnabel (1983, p. 225),
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where
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is solved with the data t = (1, 2, 3) and y = (2, 4, 3).

#include <stdio.h>
#include <imsl.h>
#include <math.h>

void            fcn(int, int, float[], float[]);

void main()
{
        int             m=3, n=1;
        float           *result, fx[3];

        result = imsl_f_nonlin_least_squares(fcn, m, n, 0);
        fcn(m, n, result, fx);

/* Print results */

        imsl_f_write_matrix("The solution is", 1, 1, result, 0);
        imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
}                                /* End of main */


void fcn(int m, int n, float x[], float f[])
{
     int   i;
     float y[3] = {2.0, 4.0, 3.0};
     float t[3] = {1.0, 2.0, 3.0};

     for (i=0; i<m; i++)
          f[i] =  exp(x[0]*t[i]) - y[i];

}                                /* End of function */

Output

 The solution is
      0.4401
 
      The function values are
         1           2           3
    -0.447      -1.589       0.744

Example 2

In this example, imsl_f_nonlin_least_squares is first invoked to fit the following nonlinear regression model discussed by Neter et al. (1983, pp. 475−478):
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where the (i’s are independently distributed each normal with mean zero and variance σ2. The estimate of σ2 is then computed as
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where ei is the i-th residual and J is the Jacobian. The estimated asymptotic variance-covariance matrix of 
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 is computed as
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Finally, the diagonal elements of this matrix are used together with imsl_f_t_inverse_cdf (see Chapter 9, Special Functions) to compute 95% confidence intervals on θ1 and θ2.

#include <math.h>
#include <imsl.h>

void            exampl(int, int, float[], float[]);

void main()
{
        int             i, j, m=15, n=2, rank;
        float           a, *result, e[15], jtj_inv[4], s2, dfe;
        char            *fmt="%12.5e";
        static float    xguess[2] = {60.0, -0.03};  
        static float    grad_tol = 1.0e-3;


        result = imsl_f_nonlin_least_squares(exampl, m, n, 
                                         IMSL_XGUESS, xguess,
                                         IMSL_GRAD_TOL, grad_tol,
                                         IMSL_FVEC_USER, e,
                                         IMSL_RANK, &rank, 
                                         IMSL_JTJ_INVERSE_USER, jtj_inv,
                                         0);
        dfe = (float) (m - rank);
        s2  = 0.0;
        for (i=0; i<m; i++)
            s2 += e[i] * e[i];
        s2 = s2 / dfe;
        j = n * n;
        for (i=0; i<j; i++) 
             jtj_inv[i] = s2 * jtj_inv[i];
                                  /* Print results */

        imsl_f_write_matrix (
                    "Estimated Asymptotic Variance-Covariance Matrix",
                    2, 2, jtj_inv, IMSL_WRITE_FORMAT, fmt, 0);
        printf(" \n           95%% Confidence Intervals   \n    ");
        printf("   Estimate  Lower Limit  Upper Limit \n ");
        for (i=0; i<n; i++) {
            j = i * (n+1);
            a = imsl_f_t_inverse_cdf (0.975, dfe) * sqrt(jtj_inv[j]);
            printf("  %10.3f %12.3f %12.3f \n", result[i], 
                    result[i] - a, result[i] + a);
      }
}                                /* End of main */


void exampl(int m, int n, float x[], float f[])
{
     int   i;
     float y[15]     = { 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 
                         18.0, 13.0,  8.0, 11.0,  8.0,  4.0,  6.0 };
     float xdata[15] = {  2.0,  5.0,  7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
                         34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0 };


     for (i=0; i<m; i++) 
          f[i] = y[i] - x[0]*exp(x[1]*xdata[i]);

}                                /* End of function */

Output

Estimated Asymptotic Variance-Covariance Matrix
                       1             2
         1   2.17524e+00  -1.80141e-03
         2  -1.80141e-03   2.97216e-06
 
          95% Confidence Intervals   
      Estimate  Lower Limit  Upper Limit 
       58.608       55.422       61.795 
       -0.040       -0.043       -0.036 

Informational Errors

IMSL_STEP_TOLERANCE
Scaled step tolerance satisfied. The current point may be an approximate local solution, but it is also possible that the algorithm is making very slow progress and is not near a solution, or that step_tol is too big.

Warning Errors

IMSL_LITTLE_FCN_CHANGE
Both the actual and predicted relative reductions in the function are less than or equal to the relative function tolerance.

IMSL_TOO_MANY_ITN
Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL
Maximum number of function evaluations exceeded.

IMSL_TOO_MANY_JACOBIAN_EVAL
Maximum number of Jacobian evaluations exceeded.

IMSL_UNBOUNDED
Five consecutive steps have been taken with the maximum step length.

Fatal Errors

IMSL_FALSE_CONVERGE
The iterates appear to be converging to a noncritical point.

read_mps

Reads an MPS file containing a linear programming problem or a quadratic programming problem.

Synopsis

#include <imsl.h>

imsl_f_mps* imsl_f_read_mps(char* filename, …, 0)
void imsl_f_free_mps(imsl_f_msp *mps)
The type double function is imsl_d_read_mps.

Required Argument

char* filename (Input)
Name of the MPS file to be read. It may be NULL if the optional argument IMSL_FILE is used.

Return Value

A pointer to a structure containing the data read from the MPS file. To release this space use imsl_f_free_mps.

The returned structure contains the following fields.

	Field
	Description

	char* filename
	Name of the MPS file.

	char name[9]
	Name of the problem.

	int nrows
	Number of rows in the constraint matrix.

	int ncolumns
	Number of columns in the constraint matrix. This is also the number of variables.

	int nonzeros
	Number of non-zeros in the constraint matrix.

	int nhessian
	Number of non-zeros in the Hessian matrix. If zero, then there is no Hessian matrix.

	int ninteger
	Number of variables required to be integer. This includes binary variables.

	int nbinary
	Number of variables required to be binary (0 or 1). 

	float* objective
	A float array of length ncolumns containing the objective vector.

	Imsl_f_sparse_elem* constraint
	A imsl_f_sparse_elem array of length nonzeros containing the sparse matrix representation of the constraint matrix. See below for details.

	Imsl_f_sparse_elem* hessian
	A imsl_f_sparse_elem array of length nhessian containing the sparse matrix representation of the Hessian matrix. If nhessian is zero, then this field is NULL.

	float* lower_range
	A float array of length nrows containing the lower constraint bounds. If a constraint is unbounded below, the corresponding entry in lower_range is set to negative_infinity, defined below.

	float* upper_range
	A float array of length nrows containing the upper constraint bounds. If a constraint is unbounded above, the corresponding entry in upper_range is set to positive_infinity, defined below.

	float* lower_bound
	A float array of length ncolumns containing the lower variable bounds. If a variable is unbounded below, the corresponding entry in lower_bound is set to negative_infinity, defined below. 

	float* upper_bound
	A float array of length ncolumns containing the upper variable bounds. If a variable is unbounded above, the corresponding entry in upper_bound is set to positive_infinity, defined below.

	int* variable_type
	An int array of length ncolumns containing the type of each variable. Variable types are:

	
	0
	Continous 

	
	1
	Integer

	
	2
	Binary (0 or 1)

	
	3
	Semicontinuous 

	char name_objective[9]
	Name of the set in ROWS used for the objective row.

	char name_rhs[9]
	Name of the RHS set used.

	char name_ranges[9]
	Name of the RANGES set used or the empty string if no RANGES section in the file.

	char name_bounds[9]
	Name of the BOUNDS set used or the empty string if no BOUNDS section in the file.

	char** name_row
	Array of length nrows containing the row names. The name of the i-th constraint row is name_row[i].

	char** name_column
	Array of length ncolumns containing the column names. The name of the i-th column and variable is name_column[i].

	float positive_infinity
	Value used for a constraint or bound upper limit when the constraint or bound is unbounded above. This can be set using an optional argument. Default is 1.0e+30.

	float negative _infinity
	Value used for a constraint or bound lower limit when the constraint or bound is unbounded below. This can be set using an optional argument. Default is -1.0e+30.


This structure stores the constraint and Hessian matrices in a simple sparse matrix format. For each non-zero element in the matrix, a row index, a column index and a value are given. The following code fragment expands the sparse constraint matrix in the structure pointed to by mps into a dense matrix:

/* allocate a matrix */

int nr = mps->nrows;

int nc = mps->ncolumns;

float* matrix = (float*)calloc(nr*nc, sizeof(float));

 

/* expand the sparse matrix */

for (k = 0;  k < mps->nonzeros;  k++) {

      i = mps->constraint[k].row;

      j = mps->constraint[k].col;

      matrix[nc*i+j] = mps->constraint[k].val;

}

Optional Arguments

IMSL_FILE, FILE, FILE* file, (Input)
Handle for MPS file. The file is read but not closed. This option overrides the filename required argument.

IMSL_NAME_RHS, char* name_rhs (Input)
Name of the RHS set to be used. An MPS file can contain multiple RHS sets. 
By default, the first RHS set in the MPS file is used. This name is case sensitive.

IMSL_NAME_RANGES, char* name_ranges (Input)
Name of the RANGES set to be used. An MPS file can contain multiple RANGES sets. 
By default, the first RANGES set in the MPS file is used. This name is case sensitive.

IMSL_NAME_BOUNDS, char* name_bounds (Input)
Name of the BOUNDS set to be used. An MPS file can contain multiple BOUNDS sets. 
By default, the first BOUNDS set in the MPS file is used. This name is case sensitive.

IMSL_POSITIVE_INFINITY, float positive_infinity (Input)
Value used for a constraint or bound upper limit when the constraint or bound is unbounded above. 
Default: 1.0e+30.

IMSL_NEGATIVE_INFINITY, float negative_infinity (Input)
Value used for a constraint or bound lower limit when the constraint or bound is unbounded below. 
Default: -1.0e+30.

Description

An MPS file defines a linear or quadratic programming problem. 

A linear programming problem is assumed to have the form:
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A quadratic programming problem is assumed to have the form:
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The following table maps this notation into the fields in the structure returned by the reader:

	C
	Objective

	A
	Constraint matrix

	Q
	Hessian matrix
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If the MPS file specifies an equality constraint or bound, the corresponding lower and upper values in the returned structure will be exactly equal.

The problem formulation assumes that the constraints and bounds are two-sided. If a particular constraint or bound has no lower limit, then the corresponding entry in the structure is set to -1.0e+30. If the upper limit is missing, then the corresponding entry in the structure is set to +1.0e+30.

MPS File Format

There is some variability in the MPS format. This section describes the MPS format accepted by this reader.

An MPS file consists of a number of sections. Each section begins with a name in column 1. With the exception of the NAME section, the rest of this line is ignored. Lines with a ‘*’ or ‘$’ in column 1 are considered comment lines and are ignored.

The body of each section consists of lines divided into fields, as follows:

	Field Number
	Columns
	Contents

	1
	2-3
	Indicator

	2
	5-12
	Name

	3
	15-22
	Name

	4
	25-36
	Value

	5
	40-47
	Name

	6
	50-61
	Value


The format limits MPS names to 8 characters and values to 12 characters. The names in fields 2, 3 and 5 are case sensitive. Leading and trailing blanks are ignored, but internal spaces are significant.

The sections in an MPS file are as follows.

· NAME

· ROWS

· COLUMNS

· RHS

· RANGES (optional)

· BOUNDS (optional)

· QUADRATIC (optional)

· ENDATA

Sections must occur in the above order.

MPS keywords, section names and indicator values, are case insensitive. Row, column and set names are case sensitive.

NAME Section

The NAME section contains the single line. A problem name can occur anywhere on the line after NAME and before columns 62. The problem name is truncated to 8 characters. 

ROWS Section

The ROWS section defines the name and type for each row. Field 1 contains the row type and field 2 contains the row name. Row type values are not case sensitive. Row names are case sensitive. The following row types allowed:

	Row Type
	Meaning 

	E
	Equality Constraint.

	L
	Less than or equal constraint.

	G
	Greater than or equal constraint.

	N
	Objective or a free row.


COLUMNS Section

The COLUMNS section defines the nonzero entries in the objective and the constraint matrix. The row names here must have been defined in the ROWS section.

	Field
	Contents

	2
	Column name.

	3
	Row name.

	4
	Value for the entry whose row and column are given by fields.

	5
	Row name.

	6
	Value for the entry whose row and column are given by fields 5 and 2.


NOTE: Fields 5 and 6 are optional.

The COLUMNS section can also contain markers. These are indicated by the name ‘MARKER’ (with the quotes) in field 3 and the marker type in field 4 or 5.

Marker type ‘INTORG’ (with the quotes) begins an integer group. The marker type ‘INTEND’ (with the quotes) ends this group. The variables corresponding to the columns defined within this group are required to be integer.

RHS Section

The RHS section defines the right-hand side of the constraints. An MPS file can contain more than one RHS set, distinguished by the RHS set name. The row names here must be defined in the ROWS section.

	Field
	Contents

	2
	RHS set name.

	3
	Row name.

	4
	Value for the entry whose set and row are given by fields 2 and 3.

	5
	Row name.

	6
	Value for the entry whose set and row are given by fields 2 and 5.


NOTE: Fields 5 and 6 are optional.

RANGES Section

The optional RANGES section defines two-sided constraints. An MPS file can contain more than one range set, distinguished by the range set name. The row names here must have been defined in the ROWS section.

	Field
	Contents

	2
	Range set name. 

	3
	Row name.

	4
	Value for the entry whose set and row are given by fields 2 and 3.

	5
	Row name.

	6
	Value for the entry whose set and row are given by fields 2 and 5.


NOTE: Fields 5 and 6 are optional.

Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints. The two-sided constraint for row i depends on the range value, 
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, is defined in the RHS section. The two-sided constraints for row i are given in the following table: 

	Row Type
	Lower Constraint
	Upper Constraint

	G
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BOUNDS Section

The optional BOUNDS section defines bounds on the variables. By default, the bounds are
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. The bounds can also be used to indicate that a variable must be an integer. 

More than one bound can be set for a single variable. For example, to set 
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use a LO bound with value 2 to set 
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and an UP bound with value 6 to add the condition
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An MPS file can contain more than one bounds set, distinguished by the bound set name.

	Field
	Contents

	1
	Bounds type. 

	2
	Bounds set name.

	3
	Column name

	4
	Value for the entry whose set and column are given by fields 2 and 3.

	5
	Column name. 

	6
	Value for the entry whose set and column are given by fields 2 and 5.


NOTE: Fields 5 and 6 are optional.

The bound types are as follows. Here
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are the bound values defined in this section, the 
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	Bounded Type
	Definition
	Formula

	LO
	Lower bound
	
[image: image62.wmf]ji

bx

£



	UP
	Upper bound
	
[image: image63.wmf]ii

xb

£



	FX
	Fixed variable
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	FR
	Free variable
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	MI
	Lower bound is minus infinity
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	PL
	Upper bound is positive infinity
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	BV
	Binary variable (variable must be 0 or 1).
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	UI
	Upper bound and integer
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	LI
	Lower bound and integer
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	SC
	Semicontinuous
	0 or 
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The bound type names are not case sensitive.

If the bound type is UP or UI and 
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then the lower bound is set to
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QUADRATIC Section

The optional QUADRATIC section defines the Hessian for quadratic programming problems. The names HESSIAN, QUADS, QUADOBJ, QSECTION and QMATRIX are also recognized as beginning the QUADRATIC section.

	Field
	Contents

	2
	Column name. 

	3
	Column name

	4
	Value for the entry whose row and column are given by fields 2 and 3.

	5
	Column name.

	6
	Value for the entry whose row and column are given by fields 2 and 4.


NOTE: Fields 5 and 6 are optional.

ENDATA Section

The ENDATA section ends the MPS file.

linear_programming

xe "minimization"

xe "simplex algorithm"Solves a linear programming XE "linear programming"  problem.

Synopsis

#include <imsl.h>

double *imsl_d_linear_programming (int m, int n, double a[], double b[], 
double c[], (, 0)
Required Arguments

int m   (Input)
Number of constraints.

int n   (Input)
Number of variables.

double a[]   (Input)
Array of size m ( n containing a matrix with coefficients of the m constraints.

double b[]   (Input)
Array with m components containing the right-hand side of the constraints; if there are limits on both sides of the constraints, then b contains the lower limit of the constraints.

double c[]   (Input)
Array with n components containing the coefficients of the objective function.

Return Value

A pointer to the solution x of the linear programming problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
double *imsl_d_linear_programming (int m, int n, double a[], double b[], 
double c[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_UPPER_LIMIT, double bu[],
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, double xlb[],
IMSL_UPPER_BOUND, double xub[],
IMSL_REFINEMENT, 
IMSL_EXTENDED_REFINEMENT, 
IMSL_OBJ, double *obj,
IMSL_RETURN_USER, double x[],
IMSL_DUAL, double **y,
IMSL_DUAL_USER, double y[],
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim   (Input)
The column dimension of a.
Default: a_col_dim = n
IMSL_UPPER_LIMIT, double bu[]   (Input)
Array with m components containing the upper limit of the constraints that have both the lower and the upper bounds. If no such constraint exists, then 
bu is not needed.

IMSL_CONSTR_TYPE, int irtype[]   (Input)
Array with m components indicating the types of general constraints in the matrix a. Let ri = ai1x1 + ( + ainxn. Then, the value of irtype[I] signifies the following:

	Irtype[I]
	Constraint

	0
	ri = bi

	1
	ri ( bui

	2
	ri ( bi

	3
	bi ( ri ( bui

	4
	Ignore this constraint


Default: irtype = 0

IMSL_LOWER_BOUND, double xlb[]   (Input)
Array with n components containing the lower bound on the variables. If there is no lower bound on a variable, then 1030 should be set as the lower bound.
Default: xlb = 0

IMSL_UPPER_BOUND, double xub[]   (Input)
Array with n components containing the upper bound on the variables. If there is no upper bound on a variable, then −1030 should be set as the upper bound.
Default: no upper bound

IMSL_REFINEMENT (Input)
The coefficient matrices and other data are saved at the beginning of the computation.  When finished this data together with the solution obtained is checked for consistency. If the discrepancy is too large, the solution process is restarted using the problem data just after processing the equalities, but with the final x values and final active set. 
Default: Refinement is not performed.

IMSL_EXTENDED_REFINEMENT   (Input)
This is similar to IMSL_REFINEMENT, except it iterates until there is a sign that no further progress is possible (recommended if  all the accuracy possible is desired) .
Default: Extended refinement is not performed.

IMSL_OBJ, double *obj   (Output)
Optimal value of the objective function.

IMSL_ITERATION_COUNT, int *iterations   (Output)
Number of iterations.

IMSL_RETURN_USER, double x[]   (Output)
Array with n components containing the primal solution.

IMSL_DUAL, double **y   (Output)
The address of a pointer y to an array with m components containing the dual solution. On return, the necessary space is allocated by imsl_d_linear_programming. Typically, double *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, double y[]   (Output)
A user-allocated array of size m. On return, y contains the dual solution.

Description

The function imsl_d_linear_programming uses an active set strategy XE "linear programming:active set strategy" 

 XE "active set strategy"  to solve linear programming problems, i.e., problems of the form
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where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, and xu are the lower and upper bounds on the constraints and the variables, respectively.

Examples

Example 1

The linear programming problem in the standard form
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is solved.

#include <imsl.h>

main()
{
    int         m = 4;
    int         n = 6;
    double       a[ ] = {1.0, 1.0, 1.0,  0.0, 0.0, 0.0, 
                        1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
                        1.0, 0.0, 0.0,  0.0, 1.0, 0.0,
                        0.0, 1.0, 0.0,  0.0, 0.0, 1.0};
    double       b[ ] = {1.5, 0.5, 1.0, 1.0};
    double       c[ ] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
    double       *x;
                                /* Solve the LP problem  */

    x = imsl_d_linear_programming (m, n, a, b, c, 0);
                                /* Print x */
    imsl_d_write_matrix ("x", 1, 6, x, 0);
}

Output

                                   x
         1           2           3           4           5           6
       0.5         1.0         0.0         1.0         0.5         0.0

Example 2

This example demonstrates how the function imsl_d_read_mps can be used together with imsl_d_linear_programming to solve a linear programming problem defined in an MPS XE "MPS"  file.  The MPS file used in this example is an uncompressed version of the file ‘afiro’, available from http://www.netlib.org/lp/data/.  This example also demonstrates the use of the optional argument IMSL_REFINEMENT to activate iterative refinement in imsl_d_linear_programming. 


#include <stdio.h>

#include <malloc.h>

#include <imsl.h>

void main()

{

#define A(I, J) a[(I)*problem->ncolumns+J]


Imsl_d_mps*     problem;


int

i, j, k, *irtype;


double          *x, objective, *a, *b, *bl, *bu, *xlb, *xub;


/* Read the MPS file. */


problem = imsl_d_read_mps("afiro", 0);


/*


 * Setup constraint type array.


 */


irtype = (int*)malloc(problem->nrows*sizeof(int));


for (i = 0; i < problem->nrows; i++)


  irtype[i] = 3;


/*


 * Setup the constraint matrix.


 */


a = (double*)calloc(problem->nrows*problem->ncolumns*sizeof(double),

                           sizeof(double));


for (k = 0;  k < problem->nonzeros;  k++) {



i = problem->constraint[k].row;



j = problem->constraint[k].col;



A(i, j) = problem->constraint[k].val;


}


/*


 * Setup constraint bounds.


 */


bl = (double*)malloc(problem->nrows*sizeof(double));


bu = (double*)malloc(problem->nrows*sizeof(double));


for (i = 0; i < problem->nrows; i++) {


  bl[i] = problem->lower_range[i];


  bu[i] = problem->upper_range[i];


}


/*


 * Setup variable bounds.  Be sure to account for


 * how unbounded variables should be set.


 */


xlb = (double*)malloc(problem->ncolumns*sizeof(double));


xub = (double*)malloc(problem->ncolumns*sizeof(double));


for (i = 0; i < problem->ncolumns; i++) {


  xlb[i] = (problem->lower_bound[i] == problem->negative_infinity)?


    1.0e30:problem->lower_bound[i];


  xub[i] = (problem->upper_bound[i] == problem->positive_infinity)?


    -1.0e30:problem->upper_bound[i];


}


/*


 * Solve the LP problem.


 */


x = imsl_d_linear_programming(problem->nrows, problem->ncolumns, 





      a, bl, problem->objective, 





      IMSL_UPPER_LIMIT, bu,





      IMSL_CONSTR_TYPE, irtype,





      IMSL_LOWER_BOUND, xlb,





      IMSL_UPPER_BOUND, xub,




      IMSL_REFINEMENT,





      IMSL_OBJ, &objective,





      0);


/* 


 * Output results.


 */


printf("Problem Name: %s\n", problem->name);


printf("objective   : %e\n", objective);


imsl_d_write_matrix("Solution", problem->ncolumns, 1, x, 0);


/* 


 * Free memory.


 */


imsl_d_mps_free(problem);


free(irtype);


free(a);


free(bu);


free(bu);


free(xlb);


free(xub);

}

Output

Problem Name: AFIRO    

objective   : -4.647531e+02

   Solution

 1         80.0

 2         25.5

 3         54.5

 4         84.8

 5         57.9

 6          0.0

 7          0.0

 8          0.0

 9          0.0

10          0.0

11          0.0

12          0.0

13         18.2

14         39.7

15         61.3

16        500.0

17        475.9

18         24.1

19          0.0

20        215.0

21        363.9

22          0.0

23          0.0

24          0.0

25          0.0

26          0.0

27          0.0

28          0.0

29        339.9

30         20.1

31        156.5

32          0.0

Note Errors

IMSL_MULTIPLE_SOLUTIONS
Multiple solutions giving essentially the same minimum exist.

Warning Errors

IMSL_SOME_CONSTRAINTS_DISCARDED
Some constraints were discarded because they were too linearly dependent on other active constraints.

IMSL_ALL_CONSTR_NOT_SATISFIED
All constraints are not satisfied.  If a feasible solution is possible then try using refinement by supplying optional argument IMSL_REFINEMENT.

IMSL_CYCLING_OCCURRING
The algorithm appears to be cycling. Using refinement may help.

Fatal Errors

IMSL_PROB_UNBOUNDED
The problem is unbounded.

IMSL_PIVOT_NOT_FOUND
An acceptable pivot could not be found.

lin_prog

xe "minimization"

xe "simplex algorithm"Solves a linear programming problem using the revised simplex algorithm.

NOTE: For double precision, the function lin_prog has generally been superseded by the function linear_programming.  Function lin_prog remains in place to ensure compatibility of existing calls.

Synopsis

#include <imsl.h>

float *imsl_f_lin_prog (int m, int n, float a[], float b[], 
float c[], (, 0)
The type double function is imsl_d_lin_prog.

Required Arguments

int m   (Input)
Number of constraints.

int n   (Input)
Number of variables.

float a[]   (Input)
Array of size m ( n containing a matrix with coefficients of the m constraints.

float b[]   (Input)
Array with m components containing the right-hand side of the constraints; if there are limits on both sides of the constraints, then b contains the lower limit of the constraints.

float c[]   (Input)
Array with n components containing the coefficients of the objective function.

Return Value

A pointer to the solution x of the linear programming problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float *imsl_f_lin_prog (int m, int n, float a[], float b[], float c[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_UPPER_LIMIT, float bu[],
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, float xlb[],
IMSL_UPPER_BOUND, float xub[],
IMSL_MAX_ITN, int max_itn,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim   (Input)
The column dimension of a.
Default: a_col_dim = n
IMSL_UPPER_LIMIT, float bu[]   (Input)
Array with m components containing the upper limit of the constraints that have both the lower and the upper bounds. If no such constraint exists, then 
bu is not needed.

IMSL_CONSTR_TYPE, int irtype[]   (Input)
Array with m components indicating the types of general constraints in the matrix a. Let ri = ai1x1 + ( + ainxn. Then, the value of irtype(i) signifies the following:

	irtype(i)
	Constraint

	0
	ri = bi

	1
	ri ( bui

	2
	ri ( bi

	3
	bi ( ri ( bui


Default: irtype = 0

IMSL_LOWER_BOUND, float xlb[]   (Input)
Array with n components containing the lower bound on the variables. If there is no lower bound on a variable, then 1030 should be set as the lower bound.
Default: xlb = 0

IMSL_UPPER_BOUND, float xub[]   (Input)
Array with n components containing the upper bound on the variables. If there is no upper bound on a variable, then −1030 should be set as the upper bound.
Default: xub = (
IMSL_MAX_ITN, int max_itn   (Input)
Maximum number of iterations.
Default: max_itn = 10000

IMSL_OBJ, float *obj   (Output)
Optimal value of the objective function.

IMSL_RETURN_USER, float x[]   (Output)
Array with n components containing the primal solution.

IMSL_DUAL, float **y   (Output)
The address of a pointer y to an array with m components containing the dual solution. On return, the necessary space is allocated by imsl_f_lin_prog. Typically, float *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[]   (Output)
A user-allocated array of size m. On return, y contains the dual solution.

IMSL_USE_UPDATED_LP_ALGORITHM (Input)
Calls the function imsl_d_linear_programming to solve the problem.  If this optional argument is present, then the optional argument IMSL_MAX_ITN is ignored. This optional argument is only valid in double precision. 

Description

The function imsl_f_lin_prog uses a revised simplex method to solve linear programming problems, i.e., problems of the form
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where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, and xu are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

Examples

Example 1

The linear programming problem in the standard form
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is solved.

#include <imsl.h>

main()
{
    int         m = 4;
    int         n = 6;
    float       a[ ] = {1.0, 1.0, 1.0,  0.0, 0.0, 0.0, 
                        1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
                        1.0, 0.0, 0.0,  0.0, 1.0, 0.0,
                        0.0, 1.0, 0.0,  0.0, 0.0, 1.0};
    float       b[ ] = {1.5, 0.5, 1.0, 1.0};
    float       c[ ] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
    float       *x;
                                /* Solve the LP problem  */

    x = imsl_f_lin_prog (m, n, a, b, c, 0);
                                /* Print x */
    imsl_f_write_matrix ("x", 1, 6, x, 0);
}

Output

                                   x
         1           2           3           4           5           6
       0.5         1.0         0.0         1.0         0.5         0.0

Example 2

The linear programming problem in the previous example can be formulated as follows:
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This problem can be solved more efficiently.

#include <imsl.h>

main()
{
    int         irtype[ ] = {3};
    int         m = 1;
    int         n = 2;
    float       xub[ ] = {1.0, 1.0};
    float       a[ ]   = {1.0, 1.0};
    float       b[ ]   = {0.5};
    float       bu[ ]  = {1.5};
    float       c[ ]   = {-1.0, -3.0};
    float       d[1];
    float       obj, *x;
                                /* Solve the LP problem  */

    x = imsl_f_lin_prog (m, n, a, b, c,
                         IMSL_UPPER_LIMIT, bu, 
                         IMSL_CONSTR_TYPE, irtype,
                         IMSL_UPPER_BOUND, xub,
                         IMSL_DUAL_USER, d,
                         IMSL_OBJ, &obj,
                         0);
                                /* Print x */
    imsl_f_write_matrix ("x", 1, 2, x, 0);
                                /* Print d */ 
    imsl_f_write_matrix ("d", 1, 1, d, 0);
    printf("\n obj = %g \n", obj);
}

Output

           x
         1           2
       0.5         1.0
 
     d
        -1

 obj = -3.5 

Warning Errors

IMSL_PROB_UNBOUNDED
The problem is unbounded.

IMSL_TOO_MANY_ITN
Maximum number of iterations exceeded.

IMSL_PROB_INFEASIBLE
The problem is infeasible.

Fatal Errors

IMSL_NUMERIC_DIFFICULTY
Numerical difficulty occurred (moved to a vertex that is poorly conditioned). If float is currently being used, using double precision may help.

IMSL_BOUNDS_INCONSISTENT
The bounds are inconsistent.

.p>.CMCH8.DOC!QUADRATIC_PROG;quadratic_prog

xe "minimization"

xe "quadratic programming"Solves a quadratic programming problem subject to linear equality or inequality constraints.

Synopsis

#include <imsl.h>

float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[], float g[], float h[], (, 0)
The type double function is imsl_d_quadratic_prog.

Required Arguments

int m   (Input)
The number of linear constraints.

int n   (Input)
The number of variables.

int meq   (Input)
The number of linear equality constraints.

float a[]   (Input)
Array of size m ( n containing the equality constraints in the first meq rows, followed by the inequality constraints.

float b[]   (Input)
Array with m components containing right-hand sides of the linear constraints.

float g[]   (Input)
Array with n components containing the coefficients of the linear term of the objective function.

float h[]   (Input)
Array of size n ( n containing the Hessian matrix of the objective function. It must be symmetric positive definite. If h is not positive definite, the algorithm attempts to solve the QP problem with h replaced by h + diag* I such that h + diag* I is positive definite.

Return Value

A pointer to the solution x of the QP problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h> 

float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[], float g[], float h[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_H_COL_DIM, int h_col_dim,

       IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
IMSL_ADD_TO_DIAG_H, float *diag,
IMSL_OBJ, float *obj,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim   (Input)
Leading dimension of A exactly as specified in the dimension statement of the calling program.
Default: a_col_dim = n
IMSL_H_COL_DIM, int h_col_dim   (Input)
Leading dimension of h exactly as specified in the dimension statement of the calling program.
Default: n_col_dim = n
IMSL_RETURN_USER, float x[]   (Output)
Array with n components containing the solution.

IMSL_DUAL, float **y   (Output)
The address of a pointer y to an array with m components containing the Lagrange multiplier estimates. On return, the necessary space is allocated by imsl_f_quadratic_prog. Typically, float *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[]   (Output)
A user-allocated array with m components. On return, y contains the Lagrange multiplier estimates.

IMSL_ADD_TO_DIAG_H, float *diag   (Output)
Scalar equal to the multiple of the identity matrix added to h to give a positive definite matrix.

IMSL_OBJ, float *obj   (Output) 
The optimal object function found.

Description

The function imsl_f_quadratic_prog is based on M.J.D. Powell’s implementation of the Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP problems subject to general linear equality/inequality constraints (Goldfarb and Idnani 1983); i.e., problems of the form
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given the vectors b1, b2, and g, and the matrices H, A1, and A2. H is required to be positive definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is not positive definite, a positive definite perturbation of H is used in place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, H + (I, is used in the QP problem, then H + (I also should be used in the definition of the Lagrange multipliers.

Examples

Example 1

The quadratic programming problem 
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is solved.

#include <imsl.h>

main()
{
    int         m = 2;
    int         n = 5;
    int         meq = 2;
    float       *x;
    float       h[ ] =  {2.0, 0.0, 0.0, 0.0, 0.0,
                         0.0, 2.0,-2.0, 0.0, 0.0,
                         0.0,-2.0, 2.0, 0.0, 0.0,
                         0.0, 0.0, 0.0, 2.0,-2.0,
                         0.0, 0.0, 0.0,-2.0, 2.0};
    float       a[ ] =  {1.0, 1.0, 1.0, 1.0, 1.0,
                         0.0, 0.0, 1.0,-2.0,-2.0};
    float       b[ ] =  {5.0, -3.0};
    float       g[ ] =  {-2.0, 0.0, 0.0, 0.0, 0.0};
                                /* Solve the QP problem  */
    x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h, 0);
                                /* Print x */
    imsl_f_write_matrix ("x", 1, 5, x, 0);
}

Output

                             x
         1           2           3           4           5
         1           1           1           1           1

Example 2

Another quadratic programming problem
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is solved.

#include <imsl.h>

float    h[ ] = {2.0, 0.0, 0.0,
                 0.0, 2.0, 0.0,
                 0.0, 0.0, 2.0};
float    a[ ] = {1.0,  2.0, -1.0,
                 1.0, -1.0,  1.0};
float    b[ ] = {4.0, -2.0};
float    g[ ] = {0.0,  0.0, 0.0};
main()
{
    int           m = 2;
    int           n = 3;
    int           meq = 2;
    float         obj;
    float         d[2];
    float        *x;
                                    /* Solve the QP problem  */

    x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h, 
            IMSL_OBJ,           &obj, 
            IMSL_DUAL_USER,   d, 
            0);
                                    /* Print x */
    imsl_f_write_matrix ("x", 1, 3, x, 0);
                                    /* Print d */ 
    imsl_f_write_matrix ("d", 1, 2, d, 0); 
    printf("\n obj = %g \n", obj); 
}

Output

                 x
         1           2           3
     0.286       1.429      -0.857
 
           d
         1           2
     1.143      -0.571

 obj = 2.85714 

Warning Errors

IMSL_NO_MORE_PROGRESS
Due to the effect of computer rounding error, a change in the variables fail to improve the objective function value; usually the solution is close to optimum.

Fatal Errors

IMSL_SYSTEM_INCONSISTENT
The system of equations is inconsistent. There is no solution.

.p>.CMCH8.DOC!MIN_CON_GEN_LIN;min_con_gen_lin

xe "minimization"Minimizes a general objective function subject to linear equality/inequality constraintsxe "equality/inequality constraints".

Synopsis

#include <imsl.h>
float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int neq, float a[], float b[], float xlb[], float xub[], ..., 0)

The type double function is imsl_d_min_con_gen_lin.

Required Arguments 
void fcn (int n, float x[], float *f ) (Input/Output)
User-supplied function to evaluate the function to be minimized. Argument x is a vector of length n at which point the function is evaluated, and f contains the function value at x.

int nvar   (Input)
Number of variables.

int ncon   (Input)
Number of linear constraints (excluding simple bounds).

int neq   (Input)
Number of linear equality constraints.

float a[]   (Input)
Array of size ncon ( nvar containing the equality constraint gradients in the first neq rows followed by the inequality constraint gradients.

float b[]   (Input)
Array of size ncon containing the right-hand sides of the linear constraints. Specifically, the constraints on the variables 
xi, i = 0, nvar ( 1, are ak,0x0 + ( + ak,nvar-1xnvar-1 = bk, k = 0, (, 
neq ( 1 and ak,0x0 + ( + ak,nvar-1xnvar-1 ( bk, k = neq, (, ncon ( 1. Note that the data that define the equality constraints come before the data of the inequalities.

float xlb[]   (Input)
Array of length nvar containing the lower bounds on the variables; choose a very large negative value if a component should be unbounded below or set xub[i] = xub[i] to freeze the i-th variable. Specifically, these simple bounds are xlb[i] ( xi, for i = 1, (, nvar.

float xub[]   (Input)
Array of length nvar containing the upper bounds on the variables; choose a very large positive value if a component should be unbounded above. Specifically, these simple bounds are xi ( xub[i], for i = 1, nvar.

Return Value

A pointer to the solution x. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h> 

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int a, float b, float xlb[], float xub[],
IMSL_XGUESS, float xguess[],
IMSL_GRADIENT, void gradient(),
IMSL_MAX_FCN, int max_fcn,
IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact,
IMSL_ACTIVE_CONSTRAINT, int **iact,
IMSL_ACTIVE_CONSTRAINT_USER, int *iact_user,
IMSL_LAGRANGE_MULTIPLIERS, float **lagrange,
IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user,
IMSL_TOLERANCE, float tolerance,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess[]   (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_GRADIENT, void gradient (int n, float x[], float g[])   (Input)
User-supplied function to compute the gradient at the point x, where x is a vector of length n, and g is the vector of length n containing the values of the gradient of the objective function.

IMSL_MAX_FCN, int max_fcn   (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact   (Output)
Final number of active constraints.

IMSL_ACTIVE_CONSTRAINT, int **iact   (Output)
The address of a pointer to an int, which on exit, points to an array containing the nact indices of the final active constraints.

IMSL_ACTIVE_CONSTRAINT_USER, int *iact_user   (Output)
A user-supplied array of length at least ncon + 2*nvar containing the indices of the final active constraints in the first nact locations.

IMSL_LAGRANGE_MULTIPLIERS, float **lagrange   (Output)
The address of a pointer, which on exit, points to an array containing the Lagrange multiplier estimates of the final active constraints in the first nact locations.

IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user   (Output)
A user-supplied array of length at least nvar containing the Lagrange multiplier estimates of the final active constraints in the first nact locations.

IMSL_TOLERANCE, float tolerance   (Input)
The nonnegative tolerance on the first order conditions at the calculated solution.
Default: tolerance = 
[image: image84.wmf]e

, where ( is machine epsilon

IMSL_OBJ, float *obj   (Output)
The value of the objective function.

IMSL_RETURN_USER, float x[]   (Output)
User-supplied array with nvar components containing the computed solution.

IMSL_FCN_W_DATA, void fcn (int n, float x[], float *f , void *data), void *data  (Input)
User supplied function to compute the value of the function to be minimized, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

IMSL_GRADIENT_W_DATA, void gradient (int n, float x[], float g[],void *data) , void *data (Input)
User-supplied function to compute the gradient at the point x, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description 

The function imsl_f_min_con_gen_lin is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained optimization problems, i.e., problems of the form

min f (x)

subject to
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given the vectors b1, b2, xl ,and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality constraints are consistent, the method will revise x0, the initial guess, to satisfy
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Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be the set of indices of active constraints. The following quadratic programming problem
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is solved to get (dk, (k) where aj is a row vector representing either a constraint in 
A1 or A2 or a bound constraint on x. In the latter case, the aj = ei for the bound constraint xi ( (xu)i and aj = (ei for the constraint (xi ( (xl)i. Here, ei is a vector with 1 as the i-th component, and zeros elsewhere. Variables (k are the Lagrange multipliers, and Bk is a positive definite approximation to the second derivative (2 f(xk).

After the search direction dk is obtained, a line search is performed to locate a better point. The new point xk+1 = xk +(kdk has to satisfy the conditions
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and


[image: image90.wmf](

)

(

)

(

)

(

)

0.7

TT

KkkkkK

dfxddfx

a

Ñ+³Ñ


The main idea in forming the set Jk is that, if any of the equality constraints restricts the step-length (k, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation BK, is updated by the BFGS formula, if the condition
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holds. Let xk ( xk+1, and start another iteration.

The iteration repeats until the stopping criterion
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is satisfied. Here ( is the supplied tolerance. For more details, see Powell (1988, 1989). 

Since a finite difference method is used to approximate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, if the gradient can be easily provided, the option IMSL_GRADIENT should be used.

Example 1

In this example, the problem
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is solved.

#include "imsl.h"


main()

{

        void            fcn(int, float *, float *);

        int             neq = 2;

        int             ncon = 2;

        int             nvar = 5;


        float           a[] = {1.0, 1.0, 1.0, 1.0, 1.0,

                               0.0, 0.0, 1.0, -2.0, -2.0};

        float           b[] = {5.0, -3.0};

        float           xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};

        float           xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};

        float          *x;


        x = imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub, 

                                   0);


        imsl_f_write_matrix("Solution", 1, nvar, x, 0);

}


void fcn(int n, float *x, float *f)

{

        *f = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] + x[4]*x[4]

             - 2.0*x[1]*x[2] - 2.0*x[3] * x[4] - 2.0*x[0];

}

Output

                         Solution

         1           2           3           4           5

         1           1           1           1           1

Example 2

In this example, the problem from Schittkowski (1987)
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is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.

#include "imsl.h"


main()

{

        void            fcn(int, float *, float *);

        void            grad(int, float *, float *);

        int             neq = 0;

        int             ncon = 2;

        int             nvar = 3;

        int             lda = 2;

        float           obj, x[3];

        float           a[] = {-1.0, -2.0, -2.0,

                               1.0, 2.0, 2.0};

        float           xlb[] = {0.0, 0.0, 0.0};

        float           xub[] = {20.0, 11.0, 42.0};

        float           xguess[] = {10.0, 10.0, 10.0};

        float           b[] = {0.0, 72.0};

        imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,

                               IMSL_GRADIENT, grad,

                               IMSL_XGUESS, xguess,

                               IMSL_OBJ, &obj,

                               IMSL_RETURN_USER, x,

                               0);


        imsl_f_write_matrix("Solution", 1, nvar, x, 0);

        printf("Objective value = %f\n", obj);

}


void fcn(int n, float *x, float *f)

{

        *f = -x[0] * x[1] * x[2];

}


void grad(int n, float *x, float *g)

{

        g[0] = -x[1]*x[2];

        g[1] = -x[0]*x[2];

        g[2] = -x[0]*x[1];

}

Output

             Solution

         1           2           3

        20          11          15

Objective value = -3300.000000

.p>.CMCH8.DOC!BOUNDED_LEAST_SQUARES;bounded_least_squares

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm.

Synopsis

#include <imsl.h> 

float *imsl_f_bounded_least_squares (void fcn(), int m, int n, int ibtype, float xlb[], float xub[], ..., 0)

The type double function is imsl_d_bounded_least_squares.

Required Arguments

void fcn (int m, int n, float x[], float f[])   (Input/Output)
User-supplied function to evaluate the function that defines the least-squares problem where x is a vector of length n at which point the function is evaluated, and f is a vector of length m containing the function values at point x.

int m   (Input)
Number of functions.

int n   (Input)
Number of variables where n ( m.

int ibtype   (Input)
Scalar indicating the types of bounds on the variables.

	ibtype
	Action

	0
	User will supply all the bounds.

	1
	All variables are nonnegative

	2
	All variables are nonpositive.

	3
	User supplies only the bounds on 1st variable, all other variables will have the same bounds


float xlb[]   (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3) 

If there is no lower bound on a variable, then the corresponding xlb value should be set to −106.

float xub[]   (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3) 

If there is no upper bound on a variable, then the corresponding xub value should be set to 106.

Return Value

A pointer to the solution x of the nonlinear least-squares problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float *imsl_f_bounded_least_squares (void fcn(), int m, int n, int ibtype, float xlb[], float xub[],
IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol, 
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments

IMSL_XGUESS, float xguess[]   (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[], int fjac_col_dim)   (Input)
User-supplied function to compute the Jacobian where x is a vector of length n at which point the Jacobian is evaluated, fjac is the computed m × n Jacobian at the point x, and fjac_col_dim is the column dimension of fjac. Note that each derivative fi∕xj should be returned in fjac[(i(1)*fjac_col_dim+j(1].
IMSL_XSCALE, float xscale[]   (Input)
Array with n components containing the scaling vector for the variables. Argument xscale is used mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more details. 
Default: xscale[] = 1

IMSL_FSCALE, float fscale[]   (Input)
Array with m components containing the diagonal scaling matrix for the functions. The i-th component of fscale is a positive scalar specifying the reciprocal magnitude of the i-th component function of the problem.
Default: fscale[] = 1

IMSL_GRAD_TOL, float grad_tol   (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is calculated as
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where g = ∇ F(x), s = xscale, and 
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Default: grad_tol = 
[image: image97.wmf]3
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 in double where ɛ is the machine precision

IMSL_STEP_TOL, float step_tol   (Input)
Scaled step tolerance. The i-th component of the scaled step between two points x, and y, is computed as
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where s = xscale.
Default: step_tol = ɛ2/3, where ɛ is the machine precision

IMSL_REL_FCN_TOL, float rfcn_tol   (Input)
Relative function tolerance.
Default: rfcn_tol = max(10-10, ɛ2/3), max(10-20, ɛ2/3) in double, where ɛ is the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol   (Input)
Absolute function tolerance.
Default: afcn_tol = max(10-20, ɛ2), max(10-40, ɛ2) in double, where ɛ is the machine precision

IMSL_MAX_STEP, float max_step   (Input)
Maximum allowable step size.
Default: max_step = 1000 max(ɛ1, ɛ2), where 


[image: image99.wmf](

)

2

122

1

,||||

n

ii

i

sts

ee

=

==

å


for s = xscale and t = xguess.

IMSL_INIT_TRUST_REGION, float trust_region   (Input)
Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

IMSL_GOOD_DIGIT, int ndigit   (Input)
Number of good digits in the function.
Default: machine dependent

IMSL_MAX_ITN, int max_itn   (Input)
Maximum number of iterations.
Default: max_itn = 100
IMSL_MAX_FCN, int max_fcn   (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian   (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSL_INTERN_SCALE
Internal variable scaling option. With this option, the values for xscale are set internally.

IMSL_RETURN_USER, float x[]   (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec   (Output)
The address of a pointer to a real array of length m containing the residuals at the approximate solution. On return, the necessary space is allocated by imsl_f_bounded_least_squares. Typically, float *fvec is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[]   (Output)
A user-allocated array of size m containing the residuals at the approximate solution.

IMSL_FJAC, float **fjac   (Output)
The address of a pointer to an array of size m ( n containing the Jacobian at the approximate solution. On return, the necessary space is allocated by imsl_f_bounded_least_squares. Typically, float *fjac is declared, and &fjac is used as an argument.

IMSL_FJAC_USER, float fjac[]   (Output)
A user-allocated array of size m ( n containing the Jacobian at the approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim   (Input)
The column dimension of fjac.
Default: fjac_col_dim = n
IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data), void *data, (Input)
User-supplied function to evaluate the function that defines the least-squares problem, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float fjac[], int fjac_col_dim, void *data), void *data, (Input)
User-supplied function to compute the Jacobian, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description

The function imsl_f_bounded_least_squares uses a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear least-squares problems subject to simple bounds on the variables. The problem is stated as follows:
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subject to l ( x ( u
where m ( n, F : Rn ( Rm, and fi(x) is the i-th component function of F(x). From a given starting point, an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a “free variable” if it is not in the active set. The routine then computes the search direction for the free variables according to the formula

d = ((JTJ + ( I)-1 JTF

where ( is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with respect to the free variables. The search direction for the variables in IA is set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality conditions are checked. The conditions are

||g (xi)|| ( (, li < xi < ui
g (xi) < 0, xi = ui
g (xi) >0, xi = li
where ( is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single-precision calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a noncritical point. In such cases, high-precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided, the option IMSL_JACOBIAN should be used.

Examples

Example 1

In this example, the nonlinear least-squares problem
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is solved with an initial guess ((1.2, 1.0).

#include "imsl.h"

#include <math.h>


#define M       2

#define N       2

#define LDFJAC  2


main()

{

        void    rosbck(int, int, float *, float *);

        int 
ibtype = 0;

        float   xlb[N] = {-2.0, -1.0};

        float   xub[N] = {0.5, 2.0};

        float  *x;


        x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb,
                                          xub, 0);


        printf("x[0] = %f\n", x[0]);

        printf("x[1] = %f\n", x[1]);

}


void rosbck (int m, int n, float *x, float *f)

{

        f[0] = 10.0*(x[1] - x[0]*x[0]);

        f[1] = 1.0 - x[0];

}

Output

x[0] = 0.500000

x[1] = 0.250000

Example 2

This example solves the nonlinear least-squares problem
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where
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This time, an initial guess ((1.2, 1.0) is supplied, as well as the analytic Jacobian. The residual at the approximate solution is returned.

#include "imsl.h"

#include <math.h>


#define M       2

#define N       2

#define LDFJAC  2


main()

{

        void    rosbck(int, int, float *, float *);

        void    jacobian(int, int, float *, float *, int);

        int     ibtype = 0;

        float   xlb[N] = {-2.0, -1.0};

        float   xub[N] = {0.5, 2.0};

        float   xguess[N] = {-1.2, 1.0};

        float  *fvec;

        float  *x;


        x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,

                                          IMSL_JACOBIAN, jacobian,

                                          IMSL_XGUESS, xguess, 

                                          IMSL_FVEC, &fvec,

                                          0);


        printf("x[0] = %f\n", x[0]);

        printf("x[1] = %f\n\n", x[1]);

        printf("fvec[0] = %f\n", fvec[0]);

        printf("fvec[1] = %f\n\n", fvec[1]);

}


void rosbck (int m, int n, float *x, float *f)

{

        f[0] = 10.0*(x[1] - x[0]*x[0]);

        f[1] = 1.0 - x[0];

}


void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)

{

        fjac[0] = -20.0*x[0];

        fjac[1] = 10.0;

        fjac[2] = -1.0;

        fjac[3] = 0.0;

}

Output

x[0] = 0.500000

x[1] = 0.250000


fvec[0] = 0.000000

fvec[1] = 0.500000

constrained_nlpxe "constrained quadratic programming"
Solves a general nonlinear programmingxe "Constrained_nlp:nonlinear programming" problemxe "nonlinear programming problem"

xe "minimization" using a sequential equality constrained quadratic programming method.

Synopsis

#include <imsl.h>

float *imsl_f_constrained_nlp (void fcn(), int m, int meq, int n, int ibtype, float xlb[], float xub[], …, 0)
The type double function is imsl_d_constrained_nlp.

Required Arguments

void fcn(int n, float x[], int iact,  float *result, int *ierr)  (Input)
User supplied  function to evaluate the objective function and constraints at a given point.

int n (Input)
Number of variables.

float x[] (Input)
The point at which the objective function or a constraint is evaluated.

int iact  (Input)
Integer indicating whether evaluation of the function is requested or evaluation of a constraint is requested.  If iact is zero, then an objective function evaluation is requested.  If iact is nonzero then the value of iact indicates the index of the constraint to evaluate.

float result[] (Output)
If iact is zero,  then result is the computed objective function at the point x.   If iact is nonzero, then result is the requested constraint value at the point x.

int *ierr (Output)
Address of an integer.  On input ierr is set to 0.  If an error or other undesirable condition occurs during evaluation, then ierr should be set to 1.  Setting ierr to 1 will result in the step size being reduced and the step being tried again.  (If ierr is set to 1 for xguess, then an error is issued.)

int m  (Input)
Total number of constraints.

int meq  (Input)
Number of equality constraints.

int n  (Input)
Number of variables. 

int ibtype   (Input)
Scalar indicating the types of bounds on variables.


	ibtype
	Action

	0
	User will supply all the bounds.

	1
	All variables are nonnegative.

	2
	All variables are nonpositive.

	3
	User supplies only the bounds on first variable, all other variables will have the same bounds.


float xlb[]   (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3) 


If there is no lower bound on a variable, then the corresponding xlb value should be set to imsl_f_machine(8).

float xub[]   (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3) 


If there is no upper bound on a variable, then the corresponding xub value should be set to imsl_f_machine(7).

Return Value


A pointer to the solution x of the nonlinear programming problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arugments

#include <imsl.h>

float *imsl_f_constrained_nlp (void fcn(), int m, int meq, int n, i int nt ibtype, float xlb[], float xub[],
IMSL_GRADIENT, void grad(),
IMSL_PRINT, int iprint,
IMSL_XGUESS, float xguess[],
IMSL_ITMAX, int itmax,
IMSL_TAU0, float tau0,
IMSL_DEL0, float del0,
IMSL_SMALLW, float smallw,
IMSL_DELMIN, float delmin,
IMSL_SCFMAX, float scfmax,
IMSL_RETURN_USER, float x[],
IMSL_OBJ, float *obj,
IMSL_DIFFTYPE, int difftype,
IMSL_XSCALE, float xscale[],
IMSL_EPSDIF, float epsdif,
IMSL_EPSFCN, float epsfcn,
IMSL_TAUBND, float taubnd,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
 0)

Optional Arguments

IMSL_GRADIENT, void grad(int n, float x[], int iact,  float result[]) (Input)
User-supplied function to evaluate the gradients at a given point where 

int n (Input)
Number of variables.

float x[] (Input)
The point at which the gradient of the objective function or gradient of a constraint is evaluated

int iact (Input)
Integer indicating whether evaluation of the function gradient is requested or evaluation of a constraint gradient is requested.  If iact is zero, then an objective function gradient evaluation is requested.  If iact is nonzero then the value of iact indicates the index of the constraint gradient to evaluate.

float result[] (Output)
If iact is zero,  then result is the computed gradient of the objective function at the point x.  If iact is nonzero, then result is the computed gradient of the requested constraint value at the point x.

IMSL_PRINT, int iprint  (Input)
Parameter indicating the desired output level.   (Input)

	Iprint
	Action

	0
	No output printed.

	1
	One line of intermediate results is printed in each iteration.

	2
	Lines of intermediate results summarizing the most important data  for each step are printed.

	3
	Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking and etc are printed

	4
	Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking, the gradients in the working set, the quasi-Newton updated and etc are printed.



Default: iprint = 0.

IMSL_XGUESS, float xguess[]  (Input)
Array of length n containing an initial guess of the solution.   (Input)
Default: xguess = X, (with the smallest value of [image: image105.wmf]x

2

) that satisfies the bounds.

IMSL_ITMAX, int itmax  (Input)
Maximum number of iterations allowed.   (Input)
Default: itmax = 200.

IMSL_TAU0, float tau0  (Input)
A universal bound describing how much the unscaled penalty-term may deviate from zero. (Input) 
imsl_f_constrained_nlp assumes that within the region described by
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all functions may be evaluated safely. The initial guess, however, may violate these requirements. In that case an initial feasibility improvement phase is run by imsl_f_constrained_nlp until such a point is found. A small tau0  diminishes the efficiency of  imsl_f_constrained_nlp, because the iterates then will follow the boundary of the feasible set closely. Conversely, a large tau0  may degrade the reliability of the code. 
Default tau0  = 1.0.

IMSL_DEL0, float del0  (Input)
In the initial phase of minimization a constraint is considered binding if
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Good values are between .01 and 1.0. If del0 is chosen too small then identification of the correct set of binding constraints may be delayed. Contrary, if del0  is too large, then the method will often escape to the full regularized SQP method, using individual slack variables for any active constraint, which is quite costly. For well-scaled problems del0 = 1.0 is reasonable.  
Default: del0  = .5* tau0  

IMSL_SMALLW, float smallw  (Input)
Scalar containing the error allowed in the multipliers.  For example, a negative multiplier of an inequality constraint is accepted (as zero) if its absolute value is less than smallw .    
Default: smallw  = exp(2*log(eps/3)) where eps is the machine precision.

IMSL_DELMIN, float delmin  (Input)
Scalar which defines allowable constraint violations of the final accepted result.   Constraints are satisfied if |gi(x)| 
[image: image108.wmf]£

delmin for equality constraints, and gi(x) 
[image: image109.wmf]³

(-delmin ) for equality constraints. 
Default: delmin = min(.1*del0, max(epsdif, max(1.e-6*del0, smallw))

IMSL_SCFMAX, float scfmax  (Input)
Scalar containing the bound for the internal automatic scaling of the objective function.   (Input) 
Default: scfmax = 1.0e4

IMSL_RETURN_USER, float x[]  (Output)
A user allocated array of length n containing the solution x.

IMSL_OBJ, float *obj  (Output)
Scalar containing the value of the objective function at the computed solution. 

IMSL_LAGRANGE_MULTIPLIERS, float **lagrange  (Output)
The address of a pointer, which on exit, points to an array containing the Lagrange multiplier estimates of the constraints.

IMSL_LAGRANGE_MULTIPLIERS_USER, float lagrange_user[]  (Output)
A user-supplied array of length ncon containing the Lagrange multiplier estimates of the constraints.

IMSL_CONSTRAINT_RESIDUALS, float **const_res  (Output)
The address of a pointer, which on exit, points to an array containing the constraints residuals.

IMSL_CONSTRAINT_RESIDUALS_USER, float const_res_user[]  (Output)
A user-supplied array of length ncon containing the constraint residuals.

IMSL_FCN_W_DATA, void fcn(int n, float x[], int iact,  float *result, int *ierr, void *data), void *data, (Input)
User supplied  function to evaluate the objective function and constraints at a given point, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

IMSL_GRADIENT_W_DATA, void grad(int n, float x[], int iact,  float result[], void *data), void *data, (Input)
User-supplied function to evaluate the gradients at a given point, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.


The following optional arguments are valid only if IMSL_GRADIENT is not supplied.

IMSL_DIFFTYPE, int difftype  (Input)
Type of numerical differentiation to be used.
Default: difftype = 1

	Difftype
	Action

	1
	Use a forward difference quotient with discretization stepsize   0.1(epsfcn)1∕2 componentwise relative.

	2
	Use the symmetric difference quotient with discretization stepsize 0.1(epsfcn)1∕3 componentwise relative.

	3
	Use the sixth order approximation computing a Richardson extrapolation of three symmetric difference quotient values.  This uses a discretization stepsize 0.01(epsfcn)1∕7.


IMSL_XSCALE, float xscale[]  (Input)
Vector of length n setting the internal scaling of the variables.  The initial value given and the objective function and gradient evaluations however are always in the original unscaled variables.  The first internal variable is obtained by dividing values x[i] by xscale[i].  (Input)
In the absence of other information, set all entries to 1.0.
Default: xscale[] = 1.0.

IMSL_EPSDIF, float epsdif  (Input)
Relative precision in gradients. 
Default: epsdif  = ( where ( is the machine precision.

IMSL_EPSFCN, float epsfcn  (Input)
Relative precision of the function evaluation routine. (Input)
Default: epsfcn  = ( where ( is the machine precision

IMSL_TAUBND, float taubnd  (Input)
Amount by which bounds may be violated during  numerical differentiation.  Bounds are violated by taubnd  (at most) only if a variable is on a bound  and finite differences are taken taken for gradient evaluations.  (Input)
Default: taubnd  = 1.0

Description

The function constrained_nlp provides an interface to a licensed version of subroutine DONLP2, a code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic programming method with an active set technique, and an alternative usage of a fully regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in the following two papers: 

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:
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Although default values are provided for optional input arguments, it may be necessary to adjust these values for some problems. Through the use of optional arguments, imsl_f_constrained_nlp allows for several parameters of the algorithm to be adjusted to account for specific characteristics of problems.   The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies for maximizing the perfomance of the algorithm.  The DONLP2 Users Guide is available in the “help” subdirectory of the main IMSL product installation directory. In addition, the following are a number of guidelines to consider when using imsl_f_constrained_nlp.

· A good initial starting point is very problem specific and should be provided by the calling program whenever possible.  See optional argument  IMSL_XGUESS.

· Gradient approximation methods can have an effect on the success of imsl_f_constrained_nlp.  Selecting a higher order approximation method may be necessary for some problems. See optional argument  IMSL_DIFFTYPE.

· If a two sided constraint 
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, or at least try to provide an estimate for that value.  This will increase the efficiency of the algorithm.  See optional argument  IMSL_DEL0.

· The parameter ierr provided in the interface to the user supplied function fcn can be very useful in cases when evaluation is requested at a point that is not possible or reasonable.   For example, if evaluation at the requested point would result in a floating point exception, then setting ierr to 1 and returning without performing the evaluation will avoid the exception.   imsl_f_constrained_nlp will then reduce the stepsize and try the step again.  Note, if ierr is set to 1 for the initial guess, then an error is issued.

Example 

The problem
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is solved.

include "imsl.h"

#define M 2

#define ME 1

#define N 2

void grad(int n, float x[], int iact, float result[]);

void fcn(int n, float x[], int iact, float *result, int *ierr);

void main()

{

  int ibtype = 0;

  float *x, ans[2];

  static float xlb[N], xub[N];

  xlb[0] = xlb[1] = imsl_f_machine(8);

  xub[0] = xub[1] = imsl_f_machine(7);

  x = imsl_f_constrained_nlp(fcn, M, ME, N, ibtype, xlb, xub, 0);

  imsl_f_write_matrix ("The solution is", 1, N, x, 0);

}

             /* Himmelblau problem 1 */

void fcn(int n, float x[], int iact, float *result, int *ierr)

{

  float  tmp1, tmp2;

  tmp1 = x[0] - 2.0e0;

  tmp2 = x[1] - 1.0e0;

  switch (iact) {

  case 0:

    *result = tmp1 * tmp1 + tmp2 * tmp2;

    break;

  case 1:

    *result = x[0] - 2.0e0 * x[1] + 1.0e0;

    break;

  case 2:

    *result = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;

    break;

  default: ;

    break;

  }

  *ierr = 0;

  return;

}
Output

    The solution is

         1           2

    0.8229      0.9114
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