Chapter 7: Tests of Goodness of Fit

randomness_test

Performs a test for randomness.

Synopsis

#include <imsls.h>

float imsls_f_randomness_test (int n_observations, float x[],
int n_run..., 0)

The type double function is imsls_d_randomness_test.

Required Arguments

int n_observations   (Input)
Number of observations in x.

float x[]   (Input)
Array of size n_observations  containing the data.

int n_run   (Input)
Length of longest run for which tabulation is desired.  For optional arguments IMSLS_PAIRS, IMSLS_DSQUARE, and IMSLS_DCUBE, n_run stands for the number of equiprobable cells into which the statistics are to be tabulated.

Return Value             

The probability of a larger chi-squared statistic for testing the null hypothesis of a uniform distribution.

Synopsis with Optional Arguments

#include <imsls.h>

float imsls_f_randomness_test (int n_observations_x, float x[], int n_run, ...

        IMSLS_RUNS, float **runs_countfloat **covariances,

   IMSLS_RUNS_USER, float runs_count[], float covariances[],
IMSLS_PAIRS, int pairs_lagfloat **pairs_count,

   IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[],

   IMSLS_DSQUARE, float **dsquare_count,

   IMSLS_DSQUARE_USER, float dsquare_count[],

   IMSLS_DCUBE, float **dcube_count,

   IMSLS_DCUBE_USER, float dcube_count[],

   IMSLS_RUNS_EXPECT, float **runs_expect,

   IMSLS_RUNS_EXPECT_USER, float runs_expect[],

   IMSLS_EXPECT, float *expect,

   IMSLS_CHI_SQUARED, float *chi_squared,

   IMSLS_DF, float *df,

   IMSLS_RETURN USER, float *pvalue,

    0)

Optional Arguments

IMSLS_RUNS, float **runs_count, float **covariances, (Output)  or

IMSLS_PAIRS, int pairs_lag   (Input),   float **pairs_count,(Output) or

IMSLS_DSQUARE, float **dsquare_count,   (Output) or

IMSLS_DCUBE, float **dcube_count,   (Output)

        IMSLS_RUNS indicates the runs test is to be performed.  Array of length n_run containing the counts of the number of runs up of each length is returned in *runs_counts. n_run by n_observations matrix containing the variances and covariances of the counts is returned in *covariancesIMSLS_RUNS is the default test, however, to return the counts and covariances IMSLS_RUNS argument must be used.

   IMSLS_PAIRS indicates the pairs test is to be performed.  The lag to be used in computing the pairs statistic is stored in pairs_lag.  Pairs (X[i], X[i + pairs_lag]) for i = 0,, N – pairs_lag -1 are tabulated, where N is the total sample size. n_run by n_run matrix containing the count of the number of pairs in each cell is returned in pairs_user.

   IMSLS_DSQUARE indicates the d2 test is to be performed.  **dsquare_counts is an address of a pointer to an internally allocated array of length n_run containing the tabulations for the d2 test.

   IMSLS_DCUBE indicates the triplets test is to be performed.  **dcube_counts is an address of a pointer to an internally allocated array of length n_run by n_run by n_run containing the tabulations for the triplets test.

IMSLS_RUNS_USER, float runs_counts[], float covariances[] (Output)
Storage for
runs_counts and covariances is provided by the user.  See IMSLS_RUNS.

IMSLS_PAIRS_USER, int pairs_lag, float pairs_counts[] (Output)
Storage for
pairs_lag and pairs_counts is provided by the user.  See IMSLS_PAIRS.

IMSLS_DSQUARE_USER, float dsquare_count[] (Output)
Storage for
dsquare_count is provided by the user. 
See
IMSLS_DSQUARE.

IMSLS_DCUBE_USER, float dcube_count[] (Output)
Storage for
dcube_count is provided by the user.  See IMSLS_DCUBE.

IMSLS_CHI_SQUARED, float *chi_squared  (Output)
Chi-squared statistic for testing the null hypothesis of a uniform distribution.

IMSLS_DF, float *df  (Output)
Degrees of freedom for chi-squared.

IMSLS_RETURN_USER, float *pvalue  (Output)
If specified, pvalue returns the probability of a larger chi-squared statistic for testing the null hypothesis of a uniform distribution.

        If IMSLS_RUNS is specified:        

IMSLS_RUNS_EXPECTfloat **runs_expect  (Output)
The address of a pointer to an internally allocated array of length
n_run containing the expected number of runs of each length.

IMSLS_RUNS_EXPECT_USERfloat runs_expect[]  (Output)
Storage for runs_expect is provided by the user. 
See
IMSLS_RUNS_EXPECT.

        If IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is specified: 

IMSLS_EXPECT, float **expect  (Output)
Expected number of counts for each cell.  This argument is optional only if one of
IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is used.

Description

Runs Up Test

Function imsls_f_randomness_test performs one of four different tests for randomness. Optional argument IMSLS_RUNS computes statistics for the runs up test. Runs tests are used to test for cyclical trend in sequences of random numbers. If the runs down test is desired, each observation should first be multiplied by -1 to change its sign, and IMSLS_RUNS called with the modified vector of observations.

IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each desired length. For i = 1, K, r - 1, where r = n_run, runs_count[i] contains the number of runs of length i. runs_count[n_run] contains the number of runs of length n_run or greater. As an example of how runs are counted, the sequence (1, 2, 3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, IMSLS_RUNS computes the
expected values and the covariances of the counts according to methods given by Knuth (1981, pages 65-67). Let R denote a vector of length n_run containing
the number of runs of each length so that the i-th element of R, ri, contains the count of the runs of length i. Let SR denote the covariance matrix of R under the null hypothesis of randomness, and let mR denote the vector of expected values for R under this null hypothesis, then an approximate chi-squared statistic with n_run degrees of freedom is given as

In general, the larger the value of each element of mR, the better the chi-squared approximation.

Pairs Test

IMSLS_PAIRS computes the pairs test (or the Good’s serial test) on a hypothesized sequence of uniform (0,1) pseudorandom numbers. The test proceeds as follows. Subsequent pairs (X(i), X(i + pairs_lag)) are tallied into a k ´ k matrix, where
k = n_run. In this tally, element (j, m) of the matrix is incremented, where

where l = pairs_lag, and the notation ë û represents the greatest integer function, ëYû is the greatest integer less than or equal to Y, where Y is a real number. If l = 1, then
i = 1, 3, 5, K, n - 1. If l > 1, then i = 1, 2, 3, ¼, n - l, where n is the total number of pseudorandom numbers input on the current invocation of IMSLS_pAIRS
(i.e., n = n_observations).

Given the tally matrix in pairs_count, chi-squared is computed as

where e = åoij/k2, and oij is the observed count in cell (i, j) (oij = pairs_count(i, j)).

Because pair statistics for the trailing observations are not tallied on any call, the user should call IMSLS_PAIRS with n_observations as large as possible. For pairs_lag < 20 and  n_observations = 2000, little power is lost.

d 2 Test

IMSLS_DSQAR computes the d2 test for succeeding quadruples of hypothesized pseudorandom uniform (0, 1) deviates. The d2 test is performed as follows. Let X, X2, X3, and X4 denote four pseudorandom uniform deviates, and consider

D2 = (X3 -X1)2 + (X4 - X2)2

The probability distribution of D2 is given as

when D2 1, where p denotes the value of pi. If D2 > 1, this probability is given as

See Gruenberger and Mark (1951) for a derivation of this distribution.

For each succeeding set of 4 pseudorandom uniform numbers input in X, d2 and the cumulative probability of d2 (Pr(D2 £ d2)) are computed. The resulting probability is tallied into one of k = n_run equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total number of observations/4). Then, under the null hypothesis that the numbers input are random uniform (0, 1) numbers, the expected value for each element in dsquare_count is
e = n/k. An approximate chi-squared statistic is computed as

where oi = dsquare_count(i) is the observed count. Thus, c2 has k - 1 degrees of freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is rejected if c2 is too large. As n increases, the chi-squared approximation becomes better. A useful generalization is that e > 5 yields a good chi-squared approximation.

Triplets Test

IMSLS_DCUBE computes the triplets test on a sequence of hypothesized pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows:

Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3 equal sized cubes, where m = n_run. Let i = [mX1] + 1, j = [mX2] + 1, and
k = [mX3] +  1. For the triplet (X1, X2, X3), dcube_count(i, j, k) is incremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells are equally probable and each has expected value e = n/m3, where n is the number of triplets tallied. An approximate chi-squared statistic is computed as

where oijk = dcube_count(i, j, k).

The computed chi-squared has m3 - 1 degrees of freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is rejected if c2 is too large.

Examples

Example 1

The following example illustrates the use of the runs test on 104 pseudo-random uniform deviates. In the example, 2000 deviates are generated for each call to IMSLS_RUNS. Since the probability of a larger chi-squared statistic is 0.1872, there is no strong evidence to support rejection of this null hypothesis of randomness.

#include <imsls.h>

#include <stdio.h>

void main()

{

       int nran = 10000, n_run = 6;

       char *fmt = "%8.1f";

       float *x, pvalue, *runs_counts, *runs_expect, chisq, df;

       imsls_random_seed_set(123457);   

       x = imsls_f_random_uniform(nran, 0);

       pvalue = imsls_f_randomness_test(nran, x, n_run,

                                  IMSLS_CHI_SQUARED, &chisq,

                                  IMSLS_DF, &df,

                                  IMSLS_RUNS_EXPECT, &runs_expect,

                                  IMSLS_RUNS, &runs_counts, &covariances,

                                  0);

       imsls_f_write_matrix("runs_counts", 1, n_run, runs_counts, 0);

       imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect,

                                  IMSLS_WRITE_FORMAT, fmt,

                                  0);

       imsls_f_write_matrix("covariances", n_run, n_run, covariances,

                                  IMSLS_WRITE_FORMAT, fmt,

                                  0);

       printf("chisq  =  %f\n", chisq);

       printf("df     =  %f\n", df);

       printf("pvalue =  %f\n", pvalue);

 

}

Output

                runs_count 
     1        2        3        4        5        6
1709.0   2046.0    953.0    260.0     55.0      4.0

                  runs_expect
     1        2        3        4        5        6
1667.3   2083.4    916.5    263.8     57.5     11.9

                  covariances
         1        2        3        4        5        6
1   1278.2   -194.6   -148.9    -71.6    -22.9     -6.7
2   -194.6   1410.1   -490.6   -197.2    -55.2    -14.4
3   -148.9   -490.6    601.4   -117.4    -31.2     -7.8
4    -71.6   -197.2   -117.4    222.1    -10.8     -2.6
5    -22.9    -55.2    -31.2    -10.8     54.8     -0.6
6     -6.7    -14.4     -7.8     -2.6     -0.6     11.7
chisq   =     8.76514
df      =     6.00000
pvalue  =    0.187225

Example 2

The following example illustrates the calculations of the IMSLS_pAIRS statistics when a random sample of size 104 is used and the pairs_lag is 1. The results are not significant. IMSL routine imsls_f_random_uniform (Chapter 12, “Random Number Generation.p<.STCH18.DOC!RNUN;55555;) is used in obtaining the pseudorandom deviates.

#include <imsls.h>

#include <stdio.h>

void main()

{

       int nran = 10000, n_run = 10;

       float *x, pvalue, *pairs_counts, expect, chisq, df;

       imsls_random_seed_set(123467);   

       x = imsls_f_random_uniform(nran, 0);

       pvalue = imsls_f_randomness_test(nran, x, n_run,

                                  IMSLS_CHI_SQUARED, &chisq,

                                  IMSLS_DF, &df,

                                  IMSLS_EXPECT, &expect,

                                  IMSLS_PAIRS, 5, &pairs_counts,

                                  0);

       imsls_f_write_matrix("pairs_counts", n_run, n_run, pairs_counts, 0);

       printf("expect =  %8.2f\n", expect);

       printf("chisq  =  %8.2f\n", chisq);

       printf("df     =  %8.2f\n", df);

       printf("pvalue =  %10.4f\n", pvalue);

}

Output

pairs_counts

      1     2     3     4     5     6     7     8     9     10
 1   112    82    95   118   103   103   113   84    90     74

 2   104   106   109   108   101    98   102   92    109    88

 3    88   111    86   106   112    79   103  105    106   101

 4    91   110   108   92     88   108   113   93    105   114

 5   104   105   103   104   101    94    96   87     93   104

 6    98   104   103   104    79    89    92   104    92   100

 7   103    91    97   101   116    83   118   118   106    99

 8   105   105   111    91    93    82   100   104   110    89

 9    92   102    82   101    94    128  102   110   125    98

10    79    99   103    98   104    101   93    93    98   105

 

expect =     99.95

chisq  =    104.86

df     =     99.00

pvalue =      0.3242

Example 3

In the following example, 2000 observations generated via  IMSL routine imsls_f_random_uniform (Chapter 12, “Random Number Generation.p<.STCH18.DOC!RNUN;55;) are input to IMSLS_DSQAR in one call. In the example, the null hypothesis of a uniform distribution is not rejected.

 

#include <imsls.h>

#include <stdio.h>

void main()

{

 int nran = 2000, n_run = 6;

       float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df;

       imsls_random_seed_set(123457);   

       x = imsls_f_random_uniform(nran, 0);

       pvalue = imsls_f_randomness_test(nran, x, n_run,

                                  IMSLS_CHI_SQUARED, &chisq,

                                  IMSLS_DF, &df,

                                  IMSLS_EXPECT, &expect,

                                  IMSLS_DSQUARE, &dsquare_counts,

                                  0);

       imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0);

       printf("expect = %10.4f\n", expect);

       printf("chisq  = %10.4f\n", chisq);

       printf("df     = %8.2f\n", df);

       printf("pvalue = %10.4f\n", pvalue);

}

Output

             dsquare_counts
    1       2       3       4       5       6
   87      84      78      76      92      83
expect   =     83.3333
chisq    =      2.0560
df       =      5.00
pvalue   =      0.8413

Example 4

In the following example, 2001 deviates generated by IMSL routine imsls_f_random_uniform (Chapter 12, “Random Number Generation.p<.STCH18.DOC!RNUN;;) are input to IMSLS_DCUBE, and tabulated in 27 equally sized cubes. In the example, the null hypothesis is not rejected.

 

#include <imsls.h>

#include <stdio.h>

void main()

{

       int nran = 2001, n_run = 3;

       float *x, pvalue, *dcube_counts, expect, chisq, df;

       imsls_random_seed_set(123457);   

       x = imsls_f_random_uniform(nran, 0);

       pvalue = imsls_f_randomness_test(nran, x, n_run,

                                  IMSLS_CHI_SQUARED, &chisq,

                                  IMSLS_DF, &df,

                                  IMSLS_EXPECT, &expect,

                                  IMSLS_DCUBE, &dcube_counts,

                                  0);

imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run,         &dcube_counts[n_run*n_run], 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run, &dcube_counts[2*n_run*n_run], 0);

       printf("expect = %10.4f\n", expect);

       printf("chisq  = %10.4f\n", chisq);

       printf("df     = %8.2f\n", df);

       printf("pvalue = %10.4f\n", pvalue);

}

Output

      dcube_counts
        1      2      3
1      26     27     24
2      20     17       32
3      30     18        21

      dcube_counts
        1      2      3
1      20     16        26
2      22     22        27
3      30     24        26

      dcube_counts
       1       2      3
1      28     30        22
2      23     24        22
3      33     30     27
expect =     24.7037
chisq  =     21.7631
df     =     26.0000
pvalue =    0.701586

 


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260