Chapter 8: Time Series and Forecasting

ts_outlier_identification

Detects and determines outliers and simultaneously estimates the model parameters in a time series whose underlying outlier free series follows a general seasonal or nonseasonal ARMA model.

Synopsis

#include <imsls.h>

float  *imsls_f_ts_outlier_identification (int n_obs, int model[],
float
w[],…,0)

The type double function is imsls_d_ts_outlier_identification.

Required Arguments

int n_obs (Input)
Number of observations in the time series.

int model[] (Input)
Vector of length 4 containing the numbers p, q, s, d of the ARIMA model the outlier free series is following.

float w[] (Input)
An array of length n_obs containing the time series.

Return Value

Pointer to an array of length n_obs containing the outlier free time series.
If an error occurred, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>

float  *imsls_f_ts_outlier_identification (int n_obs,
int model[], float w[],
IMSLS_RETURN_USER, float x[],
IMSLS_DELTA, float delta,
IMSLS_CRITICAL, float critical,
IMSLS_EPSILON, float epsilon,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_RESIDUAL_SIGMA, float *res_sigma,
IMSLS_NUM_OUTLIERS, int *num_outliers,
IMSLS_OUTLIER_STATISTICS, int **outlier_stat,
IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[],
IMSLS_TAU_STATISTICS, float **tau_stat,
IMSLS_TAU_STATISTICS_USER, float tau_stat[],
IMSLS_OMEGA_WEIGHTS, float **omega,
IMSLS_OMEGA_WEIGHTS_USER, float omega[],
IMSLS_ARMA_PARAM, float **parameters,
IMSLS_ARMA_PARAM_USER, float parameters[],
IMSLS_AIC, float *aic,
0)

Optional Arguments

IMSLS_RETURN_USER, float x[]  (Output)
A user supplied array of length n_obs containing the outlier free series.

IMSLS_DELTA, float delta (Input)
The dampening effect parameter used in the detection of a Temporary Change Outlier (TC), 0<delta < 1.
Default: delta = 0.7

IMSLS_CRITICAL, float critical  (Input)
Critical value used as a threshold for outlier detection, critical > 0.
Default: critical = 3.0

IMSLS_EPSILON, float epsilon  (Input)
Positive tolerance value controlling the accuracy of parameter estimates during outlier detection.
Default: epsilon = 0.001

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for the nonlinear equation solver used in function imsls_f_arma.
Default:  relative_error = .

IMSLS_RESIDUAL, float **residual  (Output)
Address of a pointer to an internally allocated array of length n_obs containing the residuals for the outlier free series.

IMSLS_RESIDUAL_USER, float residual[]  (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RESIDUAL_SIGMA, float *res_sigma  (Output)
Residual standard error of the outlier free series.

IMSLS_NUM_OUTLIERS, int *num_outliers  (Output)
The number of outliers detected.

IMSLS_OUTLIER_STATISTICS, int **outlier_stat  (Output)
Address of a pointer to an internally allocated array of length num_outliers ´ 2 containing  outlier statistics.  The first column contains the time at which the outlier was observed (t=1,2,...,n_obs) and the second column contains an identifier indicating the type of outlier observed. 
Outlier types fall into one of five categories:

0

Innovational Outliers (IO)

1

Additive outliers (AO)

2

Level Shift Outliers (LS)

3

Temporary Change Outliers (TC)

4

Unable to Identify (UI).

            Use IMSLS_NUM_OUTLIERS to obtain IMSLS_NUM_OUTLIERS, the number of detected outliers. If num_outliers = 0, NULL is returned.

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[]  (Output)
A user allocated array of length n_obs ´ 2 containing outlier statistics in the first num_outliers locations.  See IMSLS_OUTLIER_STATISTICS.
If num_outliers = 0, outlier_stat stays unchanged.

IMSLS_TAU_STATISTICS, float **tau_stat  (Output)
Address of a pointer to an internally allocated array of length num_outliers containing the t value for each detected outlier.
If num_outliers = 0, NULL is returned.

IMSLS_TAU_STATISTICS_USER, float tau_stat[] (Output)
A user allocated array of length n_obs containing the t value for each detected outlier in its first num_outliers locations.
If num_outliers = 0, tau_stat stays unchanged.

IMSLS_OMEGA_WEIGHTS, float **omega (Output)
Address of a pointer to an internally allocated array of length num_outliers containing the computed weights for the detected outliers.
If num_outliers = 0, NULL is returned.

IMSLS_OMEGA_WEIGHTS_USER   float omega[] (Output)
A user allocated array of length n_obs containing the computed weights for the detected outliers in its first num_outliers locations.
If num_outliers = 0, omega stays unchanged.

IMSLS_ARMA_PARAM,   float **parameters (Output)
Address of a pointer to an internally allocated array of length 1+p+q containing the estimated constant, AR and MA parameters.

IMSLS_ARMA_PARAM_USER   float parameters[] (Output)
A user allocated array of length 1+p+q containing the estimated constant, AR and MA parameters.

IMSLS_AIC, float   *aic (Output)
Akaike’s information criterion (AIC).

Description

Consider a univariate time series that can be described by the following multiplicative seasonal ARIMA model of order :

Here, ,  .  is the lag operator, ,  is a white noise process, and  denotes the mean of the series .

In general,  is not directly observable due to the influence of outliers. Chen and Liu (1993) distinguish between four types of outliers: innovational outliers (IO), additive outliers (AO), temporary changes (TC)  and level shifts (LS). If an outlier occurs as the last observation of the series, then Chen and Liu’s algorithm is unable to determine the outlier’s classification. In imsls_f_ts_outlier_identification, such an outlier is called a UI (unable to identify) and is treated as an innovational outlier.

In order to take the effects of multiple outliers occurring at time points  into account, Chen and Liu consider the following model:

Here,  is the observed outlier contaminated series, and  and  denote the magnitude and dynamic pattern of outlier , respectively.   is an indicator function that determines the temporal course of the outlier effect, ,  otherwise. Note that  operates on  via .

The last formula shows that the outlier free series  can be obtained from the original series  by removing all occurring outlier effects:

.

The different types of outliers are charaterized by different values for :

1.     for an innovational outlier,

2.     for an additive outlier,

3.     for a level shift outlier and

4.     for a temporary change outlier.

Function imsls_f_ts_outlier_identification is an implementation of Chen and Liu’s algorithm. It determines the coefficients in  and the outlier effects in the model for the observed series jointly in three stages. The magnitude of the outlier effects is determined by least squares estimates. Outlier detection itself is realized by examination of the maximum value of the standardized statistics of the outlier effects. For a detailed description, see Chen and Liu’s original paper (1993).

Intermediate and final estimates for the coefficients in  and  are computed by functions imsls_f_arma and imsls_f_max_arma.  If the roots of or  lie on or within the unit circle, then the algorithm stops with an appropriate error message. In this case, different values for p and q should be tried.

Examples

Example 1

This example is based on estimates of the Canadian lynx population. Function imsls_f_ts_outlier_identification is used to fit an ARIMA(2,2,0) model of the form, , Gaussian White noise, to the given series. Function ts_outlier_identification computes parameters  and  and identifies a LS outlier at time point .

 

#include <imsls.h>

#include <stdlib.h>

#include <stdio.h>

 

void main()

{

  float series[114]={

   0.24300E01,0.25060E01,0.27670E01,0.29400E01,0.31690E01,0.34500E01,

   0.35940E01,0.37740E01,0.36950E01,0.34110E01,0.27180E01,0.19910E01,

   0.22650E01,0.24460E01,0.26120E01,0.33590E01,0.34290E01,0.35330E01,

   0.32610E01,0.26120E01,0.21790E01,0.16530E01,0.18320E01,0.23280E01,

   0.27370E01,0.30140E01,0.33280E01,0.34040E01,0.29810E01,0.25570E01,

   0.25760E01,0.23520E01,0.25560E01,0.28640E01,0.32140E01,0.34350E01,

   0.34580E01,0.33260E01,0.28350E01,0.24760E01,0.23730E01,0.23890E01,

   0.27420E01,0.32100E01,0.35200E01,0.38280E01,0.36280E01,0.28370E01,

   0.24060E01,0.26750E01,0.25540E01,0.28940E01,0.32020E01,0.32240E01,

   0.33520E01,0.31540E01,0.28780E01,0.24760E01,0.23030E01,0.23600E01,

   0.26710E01,0.28670E01,0.33100E01,0.34490E01,0.36460E01,0.34000E01,

   0.25900E01,0.18630E01,0.15810E01,0.16900E01,0.17710E01,0.22740E01,

   0.25760E01,0.31110E01,0.36050E01,0.35430E01,0.27690E01,0.20210E01,

   0.21850E01,0.25880E01,0.28800E01,0.31150E01,0.35400E01,0.38450E01,

   0.38000E01,0.35790E01,0.32640E01,0.25380E01,0.25820E01,0.29070E01,

   0.31420E01,0.34330E01,0.35800E01,0.34900E01,0.34750E01,0.35790E01,

   0.28290E01,0.19090E01,0.19030E01,0.20330E01,0.23600E01,0.26010E01,

   0.30540E01,0.33860E01,0.35530E01,0.34680E01,0.31870E01,0.27230E01,

   0.26860E01,0.28210E01,0.30000E01,0.32010E01,0.34240E01,0.35310E01};

 

  int n_obs = 114;

  float *parameters = NULL, *result = NULL;

  float res_sigma, aic;

  int *outlier_stat = NULL;

  int num_outliers;

 

  model[0] = 2;

  model[1] = 0;

  model[2] = 1;

  model[3] = 2;

 

  result = imsls_f_ts_outlier_identification(n_obs, model, series,

                            IMSLS_CRITICAL, 3.5,

                            IMSLS_NUM_OUTLIERS, &num_outliers,

                            IMSLS_OUTLIER_STATISTICS, &outlier_stat,

                            IMSLS_ARMA_PARAM, &parameters,

                            IMSLS_RESIDUAL_SIGMA, &res_sigma,

                            IMSLS_AIC, &aic,

                            0);

                           

  printf("Number of outliers: %d\n\n", num_outliers);

  printf("Outlier statistics:\n");

  printf("Time point\t\tOutlier type\n");

  for (i=0; i<num_outliers; i++)

     printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]);

    

  printf("\n\n");

  printf("ARMA parameters:\n");

  for (i=0; i<=model[0]+model[1]; i++)

      printf("%d\t\t%lf\n", i, parameters[i]);

 

  printf("\n\n");

  printf("RSE:%lf\n", res_sigma);

  printf("\n\n");

  printf("AIC:%lf\n", aic);

 

  if (parameters)

  {

    free(parameters);

    parameters = NULL;

  }

 

  if (outlier_stat)

  {

    free(outlier_stat);

    outlier_stat = NULL;

  }

 

  if (result)

  {

    free(result);

    result = NULL;

  }


  return;

}

 

 

Output

ARMA parameters:

0               0.000000

1               0.123609

2               -0.178963

 

Number of outliers: 1

 

Outlier statistics:

Time point      Outlier type

16              2

 

RSE:0.319653

AIC:282.997314

 

Extract from the series:

 

time point      original series         outlier free series

 

1                 2.430000                2.430000

2                 2.506000                2.506000

3                 2.767000                2.767000

4                 2.940000                2.940000

5                 3.169000                3.169000

6                 3.450000                3.450000

7                 3.594000                3.594000

8                 3.774000                3.774000

9                 3.695000                3.695000

10                3.411000                3.411000

11                2.718000                2.718000

12                1.991000                1.991000

13                2.265000                2.265000

14                2.446000                2.446000

15                2.612000                2.612000

16                3.359000                2.702106

17                3.429000                2.772106

18                3.533000                2.876106

19                3.261000                2.604106

20                2.612000                1.955106

21                2.179000                1.522106

22                1.653000                0.996106

23                1.832000                1.175106

24                2.328000                1.671106

25                2.737000                2.080106

26                3.014000                2.357106

27                3.328000                2.671106

28                3.404000                2.747107

29                2.981000                2.324106

30                2.557000                1.900106

31                2.576000                1.919106

32                2.352000                1.695106

33                2.556000                1.899106

34                2.864000                2.207107

35                3.214000                2.557106

36                3.435000                2.778106

Example 2

This example is an artificial realization of an ARMA(1,1) process via formula  Gaussian white noise, .

An additive outlier with  was added at time point , a temporary change outlier with  was added at time point .

 

#include <imsls.h>

#include <stdlib.h>

#include <stdio.h>

 

void main()

 

  int i, n_obs = 300;

  float parameters_user[300], result_user[300];

  float res_sigma, aic;

  int  outlier_stat[600];

  int num_outliers;

  int outlier_stat_user[300];

  float omega_user[300];

  int model[4];

 

  float series[300]={

    50.0000000,50.2728081,50.6242599,51.0373917,51.9317627,50.3494759,

    51.6597252,52.7004929,53.5499802,53.1673279,50.2373505,49.3373871,

    49.5516472,48.6692696,47.6606636,46.8774185,45.7315445,45.6469727,

    45.9882355,45.5216560,46.0479660,48.1958656,48.6387749,49.9055367,

    49.8077278,47.7858467,47.9386749,49.7691956,48.5425873,49.1239853,

    49.8518791,50.3320694,50.9146347,51.8772049,51.8745689,52.3394470,

    52.7273712,51.4310036,50.6727448,50.8370399,51.2843437,51.8162918,

    51.6933670,49.7038231,49.0189247,49.455703,50.2718010,49.9605980,

    51.3775749,50.2285385,48.2692299,47.6495590,49.2938499,49.1924858,

    49.6449242,50.0446815,51.9972496,54.2576981,52.9835434,50.4193535,

    50.3617897,51.8276901,53.1239929,54.0682144,54.9238319,55.6877632,

    54.8896332,54.0701065,52.2754097,52.2522354,53.1248703,51.1287193,

    50.5003815,49.6504173,47.2453079,45.4555626,45.8449707,45.9765129,

    45.7682228,45.2343674,46.6496811,47.0894432,49.3368340,50.8058052,

    49.9132500,49.5893288,48.2470627,46.9779968,45.6760864,45.7070389,

    46.6158409,47.5303612,47.5630417,47.0389214,46.0352287,45.8161545,

    45.7974396,46.0015373,45.3796463,45.3461685,47.6444016,49.3327446,

    49.3810692,50.2027817,51.4567032,52.3986320,52.5819206,52.7721825,

    52.6919098,53.3274345,55.1345940,56.8962631,55.7791634,55.0616989,

    52.3551178,51.3264084,51.0968323,51.1980476,52.8001442,52.0545082,

    50.8742943,51.5150337,51.2242050,50.5033989,48.7760124,47.4179192,

    49.7319527,51.3320541,52.3918304,52.4140434,51.0845947,49.6485748,

    50.6893463,52.9840813,53.3246994,52.4568024,51.9196091,53.6683121,

    53.4555359,51.7755814,49.2915611,49.8755112,49.4546776,48.6171913,

    49.9643021,49.3766441,49.2551308,50.1021881,51.0769119,55.8328133,

    52.0212708,53.4930801,53.2147255,52.2356453,51.9648819,52.1816330,

    51.9898071,52.5623627,51.0717278,52.2431946,53.6943054,54.3752098,

    54.1492615,53.8523254,52.1093712,52.3982697,51.2405128,50.3018112,

    51.3819618,49.5479546,47.5024452,47.4447708,47.8939056,48.4070015,

    48.2440681,48.7389755,49.7309227,49.1998024,49.5798340,51.1196213,

    50.6288414,50.3971405,51.6084099,52.4564743,51.6443901,52.4080658,

    52.4643364,52.6257210,53.1604691,51.9309731,51.4137230,52.1233368,

    52.9867249,53.3180733,51.9647636,50.7947655,52.3815842,50.8353729,

    49.4136009,52.8355217,52.2234840,51.1392517,48.5245132,46.8700218,

    46.1607285,45.2324257,47.4157829,48.9989090,49.6230736,50.4352913,

    51.1652985,50.2588654,50.7820129,51.0448799,51.2880516,49.6898804,

    49.0288200,49.9338837,48.2214432,46.2103348,46.9550171,47.5595894,

    47.7176018,48.4502945,50.9816895,51.6950073,51.6973495,52.1941261,

    51.8988075,52.5617599,52.0218391,49.5236053,47.9684906,48.2445183,

    48.8275146,49.7176971,51.5649338,52.5627213,52.0182419,50.9688835,

    51.5846901,50.9486771,48.8685837,48.5600624,48.4760094,48.5348396,

    50.4187813,51.2542381,50.1872864,50.4407692,50.6222687,50.4972000,

    51.0036087,51.3367500,51.7368202,53.0463791,53.6261253,52.0728683,

    48.9740753,49.3280830,49.2733917,49.8519020,50.8562126,49.5594254,

    49.6109200,48.3785629,48.0026474,49.4874268,50.1596375,51.8059540,

    53.0288620,51.3321075,49.3114815,48.7999306,47.7201881,46.3433914,

    46.5303612,47.6294632,48.6012459,47.8567657,48.0604057,47.1352806,

    49.5724792,50.5566483,49.4182968,50.5578079,50.6883736,50.6333389,

    51.9766159,51.0595245,49.3751640,46.9667702,47.1658173,47.4411278,

    47.5360374,48.9914742,50.4747620,50.2728043,51.9117165,53.7627792};

 

 

  model[0] = 1;

  model[1] = 1;

  model[2] = 1;

  model[3] = 0;

 

  imsls_f_ts_outlier_identification(n_obs, model, series,

                            IMSLS_NUM_OUTLIERS, &num_outliers,

                            IMSLS_OUTLIER_STATISTICS_USER, outlier_stat_user,

                            IMSLS_OMEGA_WEIGHTS_USER, omega_user,

                            IMSLS_ARMA_PARAM_USER, parameters_user,

                            IMSLS_RETURN_USER, result_user,

                            IMSLS_RESIDUAL_SIGMA, &res_sigma,

                            IMSLS_AIC, &aic,

                            IMSLS_RELATIVE_ERROR, 1.0e-05,

                            0);

                           

   printf("\n");

   printf("ARMA parameters:\n");

   for (i=0; i<=model[0]+model[1]; i++)

      printf("%d\t\t%lf\n", i, parameters_user[i]);

 

   printf("\nNumber of outliers: %d\n\n", num_outliers);

   printf("Outlier statistics:\n");

   printf("Time point\tOutlier type\n");

   for (i=0; i<num_outliers; i++)

     printf("%d\t\t%d\n", outlier_stat_user[2*i], outlier_stat_user[2*i+1]);

 

  printf("\nOmega statistics:\n");

  printf("Time point\tomega\n");

  for (i=0; i<num_outliers; i++)

     printf("%d\t%18.6f\n", outlier_stat_user[2*i], omega_user[i]);

 

  printf("\n");

  printf("RSE:%lf\n", res_sigma);

  printf("AIC:%lf\n\n", aic);

 

  return;
}

 Output

ARMA parameters:

0               10.808282

1               0.785631

2               -0.496392

 

Number of outliers: 2

 

Outlier statistics:

Time point      Outlier type

150             1

200             3

 

Omega statistics:

Time point      omega

150               4.477811

200               3.382051

 

RSE:1.007220

AIC:1417.042480


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260