Chapter 11: Probability Distribution Functions and Inverses > non_central_t_inv_cdf

non_central_t_inv_cdf

Evaluates the inverse of the noncentral Student’s t distribution function.

Synopsis

#include <imsls.h>

float imsls_f_non_central_t_inv_cdf (float p, int df , float delta)

The type double function is imsls_d_non_central_t_inv_cdf.

Required Arguments

float p   (Input)
A Probability for which the inverse of the noncentral Student’s t distribution function is to be evaluated
p must be in the open interval (0.0, 1.0).

int df   (Input)
Number of degrees of freedom of the noncentral Student’s t  distribution. Argument
df must be greater than or equal to 0.0

float delta   (Input)
The noncentrality parameter.

Return Value

The probability that a noncentral Student’s t random variable takes a value less than or equal to t is p.

Description

Function imsls_f_non_central_t_inv_cdf evaluates the inverse distribution function of a noncentral t random variable with df degrees of freedom and noncentrality parameter delta; that is, with P = p, v = df, and δ = delta, it determines t0 (= imsls_f_non_central_t_inv_cdf (pdf, delta)), such that

where Γ(⋅) is the gamma function. The probability that the random variable takes a value less than or equal to t0 is P. See imsls_f_non_central_t_cdf for an alternative definition in terms of normal and chi-squared random variables. The function imsls_f_non_central_t_inv_cdf uses bisection and modified regula falsi to invert the distribution function, which is evaluated using function imsls_f_non_central_t_cdf.

Example

In this example, we find the 95-th percentage point for a noncentral t random variable with 6 degrees of freedom and noncentrality parameter 6.

 

#include <imsls.h>

#include <stdio.h>

 

int main()

{

    int df = 6;

    float p = 0.95, delta = 6.0, t;

 

    t = imsls_f_non_central_t_inv_cdf(p, df, delta);

    printf("The %4.2f noncentral t critical value is "

        "%6.4f.\n", 1.0-p, t);

}

Output

The 0.05 noncentral t critical value is 11.995.


RW_logo.jpg
Contact Support