gauss_quad_rule

Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions.

Synopsis

#include <imsl.h>

void imsl_f_gauss_quad_rule (int n, float weights[], float points[], , 0)

The type double procedure is imsl_d_gauss_quad_rule.

Required Arguments

int n (Input)
Number of quadrature points.

float weights[] (Output)
Array of length n containing the quadrature weights.

float points[] (Output)
Array of length n containing quadrature points. The default action of this routine is to produce the Gauss Legendre points and weights.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_gauss_quad_rule (int n, float weights[], float points[],

IMSL_CHEBYSHEV_FIRST,

IMSL_CHEBYSHEV_SECOND,

IMSL_HERMITE,

IMSL_COSH,

IMSL_JACOBI, float alpha, float beta,

IMSL_GEN_LAGUERRE, float alpha,

IMSL_FIXED_POINT, float a,

IMSL_TWO_FIXED_POINTS, float a, float b,

0)

Optional Arguments

IMSL_CHEBYSHEV_FIRST
Compute the Gauss points and weights using the weight function

 

on the interval (1, 1).

IMSL_CHEBYSHEV_SECOND
Compute the Gauss points and weights using the weight function

 

on the interval (1, 1).

IMSL_HERMITE
Compute the Gauss points and weights using the weight function exp (x2) on the interval (−∞).

IMSL_COSH
Compute the Gauss points and weights using the weight function 1 ∕  (cosh (x)) on the interval (−∞).

IMSL_JACOBI, float alpha, float beta (Input)
Compute the Gauss points and weights using the weight function (1  x)a (1 + x)b on the interval (1, 1).

IMSL_GEN_LAGUERRE, float alpha (Input)
Compute the Gauss points and weights using the weight function exp (x)xa on the interval (0, ).

IMSL_FIXED_POINT, float a (Input)
Compute the Gauss-Radau points and weights using the specified weight function and the fixed point a. This formula will integrate polynomials of degree less than 2n  1 exactly.

IMSL_TWO_FIXED_POINTS, float a, float b (Input)
Compute the Gauss-Lobatto points and weights using the specified weight function and the fixed points a and b. This formula will integrate polynomials of degree less than 2n  2 exactly.

Description

The function imsl_f_gauss_quad_rule produces the points and weights for the Gauss, Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most popular weights. The default weight is the weight function identically equal to 1 on the interval (1, 1). In fact, it is slightly more general than this suggests, because the extra one or two points that may be specified do not have to lie at the endpoints of the interval. This function is a modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969).

In the default case, the function returns points in x = points and weights in w = weights so that

 

for all functions f that are polynomials of degree less than 2n.

If the keyword IMSL_FIXED_POINT is specified, then one of the above xi is equal to a. Similarly, if the keyword IMSL_TWO_FIXED_POINTS is specified, then two of the components of x are equal to a and b. In general, the accuracy of the above quadrature formula degrades when n increases. The quadrature rule will integrate all functions f that are polynomials of degree less than 2n  F, where F is the number of fixed points.

Examples

 

Example 1

The three-point Gauss Legendre quadrature points and weights are computed and used to approximate the integrals

 

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In general, the Gauss rules with k points integrate polynomials with degree less than 2k exactly.

 

#include <imsl.h>

#include <stdio.h>

#include <math.h>

 

#define QUADPTS 3

#define POWERS 7

 

int main()

{

int i, j;

float weights[QUADPTS], points[QUADPTS], s[POWERS];

 

/* Produce the Gauss Legendre */

/* quadrature points */

imsl_f_gauss_quad_rule (QUADPTS, weights, points,

0);

 

/* integrate the functions */

/* 1, x, ..., pow(x,POWERS-1) */

for(i = 0; i < POWERS; i++) {

s[i] = 0.0;

for(j = 0; j < QUADPTS; j++) {

s[i] += weights[j]*imsl_fi_power(points[j], i);

}

}

printf("The integral from -1 to 1 of pow(x, i) is\n");

printf("Function Quadrature Exact\n\n");

 

for(i = 0; i < POWERS; i++){

float z;

 

z = (1-i%2)*2./(i+1.);

printf("pow(x, %d) %10.3f %10.3f\n", i, s[i], z);

}

}

 

Output

 

The integral from -1 to 1 of pow(x, i) is

Function Quadrature Exact

 

pow(x, 0) 2.000 2.000

pow(x, 1) 0.000 0.000

pow(x, 2) 0.667 0.667

pow(x, 3) 0.000 0.000

pow(x, 4) 0.400 0.400

pow(x, 5) 0.000 0.000

pow(x, 6) 0.240 0.286

Example 2

The three-point Gauss Laguerre quadrature points and weights are computed and used to approximate the integrals

 

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In general, the Gauss rules with k points integrate polynomials with degree less than 2k exactly.

 

#include <imsl.h>

#include <stdio.h>

 

#define QUADPTS 3

#define POWERS 7

 

int main()

{

int i, j;

float weights[QUADPTS], points[QUADPTS], s[POWERS], z;

 

/* Produce the Gauss Legendre */

/* quadrature points */

imsl_f_gauss_quad_rule (QUADPTS, weights, points,

IMSL_GEN_LAGUERRE, 1.0,

0);

 

/* Integrate the functions */

/* 1, x, ..., pow(x,POWERS-1) */

for(i = 0; i < POWERS; i++) {

s[i] = 0.0;

for(j = 0; j < QUADPTS; j++){

s[i] += weights[j]*imsl_fi_power(points[j], i);

}

}

printf("The integral from 0 to infinity of pow(x, i)*x*exp(x) is\n");

printf("Function Quadrature Exact\n\n");

 

for(z = 1.0, i = 0; i < POWERS; i++){

z *= (i+1);

printf("pow(x, %d) %10.3f %10.3f \n", i, s[i], z);

}

}

Output

 

The integral from 0 to infinity of pow(x, i)*x*exp(x) is

Function Quadrature Exact

 

pow(x, 0) 1.000 1.000

pow(x, 1) 2.000 2.000

pow(x, 2) 6.000 6.000

pow(x, 3) 24.000 24.000

pow(x, 4) 120.000 120.000

pow(x, 5) 720.000 720.000

pow(x, 6) 4896.000 5040.000