mat_add_coordinate

Performs element-wise addition on two real matrices stored in coordinate format, C ←αAβB.

Synopsis

#include <imsl.h>

Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float alpha, Imsl_f_sparse_elem a[], int nz_b, float beta, Imsl_f_sparse_elem b[], int *nz_c, ..., 0)

The type double function is imsl_d_mat_add_coordinate.

Required Arguments

int n (Input)
The order of the matrices A and B.

int nz_a (Input)
Number of nonzeros in the matrix A.

float alpha (Input)
Scalar multiplier for A.

Imsl_f_sparse_elem a[] (Input)
Vector of length nz_a containing the location and value of each nonzero entry in the matrix A.

int nz_b (Input)
Number of nonzeros in the matrix B.

float beta (Input)
Scalar multiplier for B.

Imsl_f_sparse_elem b[] (Input)
Vector of length nz_b containing the location and value of each nonzero entry in the matrix B.

int *nz_c (Output)
The number of nonzeros in the sum αA + βB.

Return Value

A pointer to an array of type Imsl_f_sparse_elem containing the computed sum. In the event of an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float alpha, Imsl_f_sparse_elem a[], int nz_b, float beta, Imsl_f_sparse_elem b[], int *nz_c,

IMSL_A_TRANSPOSE,

IMSL_B_TRANSPOSE,

0)

Optional Arguments

IMSL_A_TRANSPOSE,
Replace A with AT in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression αA + βB.

Description

The function imsl_f_mat_add_coordinate forms the sum αA + βB, given the scalars α and β, and the matrices A and B in coordinate format. The transpose of A and/or B may be used during the computation if optional arguments are specified. The method starts by storing A in a linked list data structure, and performs the multiply by α. Next the data in matrix B is traversed and if the coordinates of a nonzero element correspond to those of a nonzero element in A, that entry in the linked list is updated. Otherwise, a new node in the linked list is created. The multiply by β occurs at this time. Lastly, the linked list representation of C is converted to coordinate representation, omitting any elements that may have become zero through cancellation.

Examples

 

Example 1

Add two real matrices of order 4 stored in coordinate format. Matrix A has five nonzero elements. Matrix B has seven nonzero elements.

 

#include <imsl.h>

#include <stdio.h>

 

int main ()

{

Imsl_f_sparse_elem a[] =

{0, 0, 3,

0, 3, -1,

1, 2, 5,

2, 0, 1,

3, 1, 3};

Imsl_f_sparse_elem b[] =

{0, 1, -2,

0, 3, 1,

1, 0, 3,

2, 2, 5,

2, 3, 1,

3, 0, 4,

3, 1, 3};

int nz_a = 5, nz_b = 7, nz_c;

int n = 4, i;

float alpha = 1.0, beta = 1.0;

Imsl_f_sparse_elem *c;

 

c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,

nz_b, beta, b, &nz_c,

0);

 

printf(" row column value\n");

for (i = 0; i < nz_c; i++)

printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);

 

imsl_free(c);

}

Output

 

row column value

0 0 3.00

0 1 -2.00

1 0 3.00

1 2 5.00

2 0 1.00

2 2 5.00

2 3 1.00

3 0 4.00

3 1 6.00

Example 2

Compute 2*AT + 2*BT, where

 

 

#include <imsl.h>

#include <stdio.h>

 

int main ()

{

Imsl_f_sparse_elem a[] =

{0, 0, 3,

0, 3, -1,

1, 2, 5,

2, 0, 1,

3, 1, 3};

Imsl_f_sparse_elem b[] =

{0, 1, -2,

0, 3, 1,

1, 0, 3,

2, 2, 5,

2, 3, 1,

3, 0, 4,

3, 1, 3};

int nz_a = 5, nz_b = 7, nz_c;

int n = 4, i;

float alpha = 2.0, beta = 2.0;

Imsl_f_sparse_elem *c;

 

c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,

nz_b, beta, b, &nz_c,

IMSL_A_TRANSPOSE,

IMSL_B_TRANSPOSE,

0);

 

printf(" row column value\n");

 

for (i = 0; i < nz_c; i++)

printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);

imsl_free(c);

}

Output

 

row column value

0 0 6.00

0 1 6.00

0 2 2.00

0 3 8.00

1 0 -4.00

1 3 12.00

2 1 10.00

2 2 10.00

3 2 2.00