matrix_det (complex)
Computes the determinant of a square, complex matrix.
Synopsis
#include <imsl.h>
f_complex imsl_c_matrix_det (int n, f_complex a[], ..., 0)
The type d_complex function is imsl_z_matrix_det.
Required Arguments
int n (Input)
The number of rows and columns in matrix A.
float a[] (Input)
Matrix for which the determinant is calculated.
Return Value
The determinant of a. If IMSL_RETURN_LOG is specified, the log of the absolute value of the determinant. If the return value cannot be computed, NaN is returned.
Synopsis with Optional Arguments
#include <imsl.h>
f_complex imsl_c_matrix_det (int n, f_complex a[],
IMSL_HERMITIAN,
IMSL_TOLERANCE, float tol,
IMSL_RETURN_LOG, f_complex *s,
0)
Optional Arguments
IMSL_HERMITIAN,
If specified, the input matrix is expected to be Hermitian, and this property will be exploited in the calculation of the eigenvalues.
IMSL_TOLERANCE, float tol (Input)
Scalar containing the tolerance used to determine when an eigenvalue is negligible and replaced by the value zero. A zero or negligible eigenvalue implies that the input matrix is singular and has zero determinant.
Default: tol = 100.0 * imsl_f_machine(4)
IMSL_RETURN_LOG, f_complex *s (Output)
If specified, the log of the modulus of the determinant log(|det A|)) is returned in the return value and the sign is returned in the variable s. The determinant is recovered by det(A) = s*exp log(|det A|)), where the multiplication is for complex numbers. See example 3, below.
Description
Let A be a complex-valued square matrix with n rows and columns. The determinant of A, denoted by det(A) or |A|, is a scalar function that characterizes the matrix and its behavior as a linear operator. There are several ways to calculate the determinant. Based on the characteristic equation that is used to find the eigenvalues of a matrix, it follows that
where λi are the n (real or complex) eigenvalues of A. This function first finds the eigenvalues and then takes their product to obtain the determinant of A. See imsl_c_eig_gen and imsl_c_eig_herm for further details.
Example 1
The following example finds the determinant of a 4x4 complex matrix.
#include <imsl.h>
#include <stdio.h>
int main()
{
f_complex deta = {1.0, 0.0};
int n = 4;
f_complex a[] = {
{5.0, 9.0}, {5.0, 5.0}, {-6.0, -6.0}, {-7.0, -7.0},
{3.0, 3.0}, {6.0, 10.0}, {-5.0, -5.0}, {-6.0, -6.0},
{2.0, 2.0}, {3.0, 3.0}, {-1.0, 3.0}, {-5.0, -5.0},
{1.0, 1.0}, {2.0, 2.0}, {-3.0, -3.0}, {0.0, 4.0} };
deta = imsl_c_matrix_det(n, a, 0);
imsl_c_write_matrix("Example 1 determinant:", 1, 1, &deta, 0);
}
Output
Example 1 determinant:
( 400, -2160)
Example 2
The following example finds the determinant of a 3x3 complex Hermitian matrix.
#include <imsl.h>
#include <stdio.h>
int main()
{
int n = 3;
f_complex deta = { 1.0,0.0 };
f_complex a[] = {
{1.0, 0.0}, {1.0, -7.0}, {0.0, -1.0},
{1.0, 7.0}, {5.0, 0.0}, {10.0, -3.0},
{0.0, 1.0}, {10.0, 3.0}, {-2.0, 0.0}};
deta = imsl_c_matrix_det(n, a, IMSL_HERMITIAN, 0);
imsl_c_write_matrix("Example 2 determinant:", 1, 1, &deta, 0);
}
Output
Example 2 determinant:
( 122, 0)
Example 3
The following example finds the determinant of a 3x3 and a 1x1 complex matrix using the option, IMSL_LOG_RETURN.
#include <imsl.h>
#include <stdio.h>
int main()
{
f_complex ldeta = { 1.0, 0.0 };
f_complex deta = { 0.0, 0.0 };
f_complex s;
int n = 3;
f_complex a[9] = {
{1.0, 2.0}, {3.0, 4.0}, {21.0, 22.0},
{43.0, 44.0}, { 13.0, 14.0}, {15.0, 16.0},
{5.0, 6.0}, {7.0, 8.0}, {25.0, 26.0} };
ldeta = imsl_c_matrix_det(n, a, IMSL_RETURN_LOG, &s, 0);
deta.re = exp(ldeta.re);
deta = imsl_c_mul(deta, s);
imsl_c_write_matrix("Example 3a log determinant", 1, 1, &ldeta, 0);
imsl_c_write_matrix("Example 3a determinant", 1, 1, &deta, 0);
n = 1;
ldeta = imsl_c_matrix_det(n, a, IMSL_RETURN_LOG, &s, 0);
deta.re = exp(ldeta.re);
deta.im = 0.0;
deta = imsl_c_mul(deta, s);
imsl_c_write_matrix("Example 3b log determinant", 1, 1, &ldeta, 0);
imsl_c_write_matrix("Example 3b determinant", 1, 1, &deta, 0);
}
Output
Example 3a log determinant
( 8.725, 0.000)
Example 3a determinant
( -4352, 4352)
Example 3b log determinant
( 0.8047, 0.0000)
Example 3b determinant
( 1, 2)
Fatal Errors
IMSL_ZERO_DETERMINANT |
The input matrix is singular. NaN is returned for the log determinant. |