spline_2d_integral

Evaluates the integral of a tensor-product spline on a rectangular domain.

Synopsis

#include <imsl.h>

float imsl_f_spline_2d_integral (float a, float b, float c, float d, Imsl_f_spline *sp)

The type double function is imsl_d_spline_2d_integral.

Required Arguments

float a (Input)
The lower integration limit for the first variable of the tensor-product spline.

float b (Input)
The upper integration limit for the first variable of the tensor-product spline.

float c (Input)
The lower integration limit for the second variable of the tensor-product spline.

float d (Input)
The upper integration limit for the second variable of the tensor-product spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value

The value of the integral of the tensor-product spline over the rectangle [ab× [cd]. If no value can be computed, NaN is returned.

Description

The function imsl_f_spline_2d_integral computes the integral of a tensor-product spline. If s is the spline, then this function returns

 

This function uses the (univariate integration) identity (22) in de Boor (1978, p. 151)

 

where t0  x  tr.

It assumes (for all knot sequences) that the first and last k knots are stacked, that is, t0 = … = tk-1 and tn = … = tn+k-1 , where k is the order of the spline in the x or y direction.

Example

This example integrates a two-dimensional, tensor-product spline over the rectangle [0, x× [0, y].

 

#include <imsl.h>

#include <stdio.h>

#include <math.h>

 

#define NDATA 11

#define OUTDATA 2

/* Define function */

#define F(x,y) (float)(x*x*x+y*y)

/* The integral of F from 0 to x */

/* and 0 to y */

#define FI(x,y) (float)(y*x*x*x*x/4. + x*y*y*y/3.)

 

int main()

{

int i, j, num_xdata, num_ydata;

float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];

float x, y, z;

Imsl_f_spline *sp;

/* Set up grid */

for (i = 0; i < NDATA; i++) {

xdata[i] = ydata[i] = (float) i / ((float)(NDATA-1));

}

for (i = 0; i < NDATA; i++) {

for (j = 0; j < NDATA; j++) {

fdata[i][j] = F(xdata[i],ydata[j]);

}

}

num_xdata = num_ydata = NDATA;

/* Compute tensor-product interpolant */

sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,

ydata, fdata, 0);

/* Print results */

printf(" x y FI(x, y) Integral Error\n");

for (i = 0; i < OUTDATA; i++) {

x = (float) (1+i) / (float) (OUTDATA+1);

for (j = 0; j < OUTDATA; j++) {

y = (float) (1+j) / (float) (OUTDATA+1);

z = imsl_f_spline_2d_integral(0.0, x, 0.0, y, sp);

printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",

x, y, FI(x, y), z, fabs(FI(x,y)-z));

}

}

}

 

Output

 

x y FI(x, y) Integral Error

0.333 0.333 0.005 0.005 0.0000

0.333 0.667 0.035 0.035 0.0000

0.667 0.333 0.025 0.025 0.0000

0.667 0.667 0.099 0.099 0.0000

Warning Errors

IMSL_SPLINE_LEFT_ENDPT

The left endpoint of X integration is not within the knot sequence. Integration occurs only from torder-1 to b.

IMSL_SPLINE_RIGHT_ENDPT

The right endpoint of X integration is not within the knot sequence. Integration occurs only from torder-1 to a.

IMSL_SPLINE_LEFT_ENDPT_1

The left endpoint of X integration is not within the knot sequence. Integration occurs only from b to tspline_space_dim1.

IMSL_SPLINE_RIGHT_ENDPT_1

The right endpoint of X integration is not within the knot sequence. Integration occurs only from a to tspline_space_dim1.

IMSL_SPLINE_LEFT_ENDPT_2

The left endpoint of Y integration is not within the knot sequence. Integration occurs only from torder-1 to d.

IMSL_SPLINE_RIGHT_ENDPT_2

The right endpoint of Y integration is not within the knot sequence. Integration occurs only from torder-1 to c.

IMSL_SPLINE_LEFT_ENDPT_3

The left endpoint of Y integration is not within the knot sequence. Integration occurs only from d to tspline_space_dim1.

IMSL_SPLINE_RIGHT_ENDPT_3

The right endpoint of Y integration is not within the knot sequence. Integration occurs only from c to tspline_space_dim1.

Fatal Errors

IMSL_KNOT_MULTIPLICITY

Multiplicity of the knots cannot exceed the order of the spline.

IMSL_KNOT_NOT_INCREASING

The knots must be nondecreasing.