Usage Notes
Mathieu’s equation is
It arises from the solution, by separation of variables, of Laplace’s equation in elliptical coordinates, where a is the separation constant and q is related to the ellipticity of the coordinate system. If we let t = cos v, then Mathieu’s equation can be written as
For various physically important problems, the solution
y(
t) must be periodic. There exist, for particular values of
a, periodic solutions to Mathieu’s equation of period
kπ for any integer
k. These particular values of
a are called
eigenvalues or
characteristic values. They are computed using the routine
MATEE.
There exist sequences of both even and odd periodic solutions to Mathieu’s equation. The even solutions are computed by
MATCE. The odd solutions are computed by
MATSE.
Published date: 03/19/2020
Last modified date: 03/19/2020