AIDE

This function evaluates the exponentially scaled derivative of the Airy function.

Function Return Value

AIDE — Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially scaled derivative of the Airy function, eζAiʹ(X), for positive arguments where

 

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: AIDE (X)

Specific: The specific interface names are S_AIDE and D_AIDE.

FORTRAN 77 Interface

Single: AIDE (X)

Double: The double precision name is DAIDE.

Description

The exponentially scaled derivative of the Airy function is defined to be

 

If , then the answer will have no precision. If , then the answer will be less accurate than half precision. Here, ɛ = AMACH(4) is the machine precision.

Example

In this example, AIDE(0.49) is computed and printed.

 

USE AIDE_INT

USE UMACH_INT

 

IMPLICIT NONE

! Declare variables

INTEGER NOUT

REAL VALUE, X

! Compute

X = 0.49

VALUE = AIDE(X)

! Print the results

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' AIDE(', F6.3, ') = ', F6.3)

END

Output

 

AIDE( 0.490) = -0.284