Dense Matrix Functions

For a detailed description of MPI Capability see “Dense Matrix Parallelism Using MPI.”  

Several decompositions and functions required for numerical linear algebra follow. The convention of enclosing optional quantities in brackets, “[ ]” is used. The functions that use MPI for parallel execution of the box data type are marked in bold.

 

Defined Array Functions

Matrix Operation

S=SVD(A [,U=U, V=V])

E=EIG(A [[,B=B, D=D],

V=V, W=W])

(AV = VE), AVD = BVE

(AW = WE), AWD = BWE

R=CHOL(A)

Q=ORTH(A [,R=R])

U=UNIT(A)

F=DET(A)

Det(A) = determinant

K=RANK(A)

rank(A) = rank

P=NORM(A[,[type=]i])

C=COND(A)

Z=EYE(N)

A=DIAG(X)

X=DIAGONALS(A)

Y=FFT (X,[WORK=W]); X=IFFT(Y,[WORK=W])

Discrete Fourier Transform, Inverse

Y=FFT_BOX (X,[WORK=W]); X=IFFT_BOX(Y,[WORK=W])

Discrete Fourier Transform for Boxes, Inverse

A=RAND(A)

Random numbers, 0 < A < 1

L=isNaN(A)

Test for NaN, if (l) then

In certain functions, the optional arguments are inputs while other optional arguments are outputs. To illustrate the example of the box SVD function, a code is given that computes the sin­gular value decomposition and the reconstruction of the random matrix box, A, using the computed factors, R = USVT. Mathematically R = A, but this will be true, only approximately, due to rounding errors. The value units_of_error = ||AR||/(||A||ɛ), shows the merit of this approximation.


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260