FFT2D

Computes Fourier coefficients of a complex periodic two-dimensional array.

Required Arguments

ANRA by NCA complex matrix containing the periodic data to be transformed.   (Input)

COEFNRA by NCA complex matrix containing the Fourier coefficients of A.   (Output)

Optional Arguments

NRA — The number of rows of A.   (Input)
Default: NRA = size (A,1).

NCA — The number of columns of A.   (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.   (Input)
Default: LDA = size (A,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement of the calling program.   (Input)
Default: LDCOEF = size (COEF,1).

FORTRAN 90 Interface

Generic:          CALL FFT2D (A, COEF [,…])

Specific:         The specific interface names are S_FFT2D and D_FFT2D.

FORTRAN 77 Interface

Single:            CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF)

Double:          The double precision name is DFFT2D.

Description

The routine FFT2D computes the discrete complex Fourier transform of a complex two dimensional array of size (NRA = N) ´ (NCA = M). The method used is a variant of the Cooley-Tukey algorithm , which is most efficient when N and M are each products of small prime factors. If N and M satisfy this condition, then the computational effort is proportional to N M log N M. This considerable savings has historically led people to refer to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N ´ M array a, FFT2D returns in c = COEF

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

Finally, note that an unnormalized inverse is implemented in FFT2B. The routine FFT2D is based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Comments

1.         Workspace may be explicitly provided, if desired, by use of F2T2D/DF2T2D. The reference is:

CALL F2T2D (NRA, NCA, A, LDA, COEF, LDCOEF, WFF1, WFF2, CWK, CPY)

 

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRA + 15 initialized by FFTCI. The initialization depends on NRA.   (Input)

WFF2 — Real array of length 4 * NCA + 15 initialized by FFTCI. The initialization depends on NCA.   (Input)

CWK — Complex array of length 1.   (Workspace)

CPY — Real array of length 2 * MAX(NRA, NCA).   (Workspace)

2.         The routine FFT2D is most efficient when NRA and NCA are the product of small primes.

3.         The arrays COEF and A may be the same.

4.         If FFT2D/FFT2B is used repeatedly, with the same values for NRA and NCA, then use FFTCI to fill WFF1(N = NRA) and WFF2(N = NCA). Follow this with repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls to FFT2D/FFT2B.

Example

In this example, we compute the Fourier transform of the pure frequency input for a 5 ´ 4 array

for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 4 using the IMSL routine FFT2D. The result

has all zeros except in the (3, 4) position.

 

      USE FFT2D_INT

      USE CONST_INT

      USE WRCRN_INT

 

      IMPLICIT   NONE

      INTEGER    I, IR, IS, J, NCA, NRA

      REAL       FLOAT, TWOPI

      COMPLEX    A(5,4), C, CEXP, CMPLX, COEF(5,4), H

      CHARACTER  TITLE1*26, TITLE2*26

      INTRINSIC  CEXP, CMPLX, FLOAT

!

      TITLE1 = 'The input matrix is below '

      TITLE2 = 'The output matrix is below'

      NRA    = 5

      NCA    = 4

      IR     = 3

      IS     = 4

!                                 Fill A with initial data

      TWOPI = CONST('PI')

      TWOPI = 2.0*TWOPI

      C     = CMPLX(0.0,1.0)

      H     = CEXP(TWOPI*C)

      DO 10  I=1, NRA

         DO 10  J=1, NCA

            A(I,J) = CEXP(TWOPI*C*((FLOAT((I-1)*(IR-1))/FLOAT(NRA)+ &

                    FLOAT((J-1)*(IS-1))/FLOAT(NCA))))

   10 CONTINUE

!

      CALL WRCRN (TITLE1, A)

!

      CALL FFT2D (A, COEF)

!

      CALL WRCRN (TITLE2, COEF)

!

      END

Output

 

                The input matrix is below
                1                2                3                4
1  ( 1.000, 0.000)  ( 0.000,-1.000)  (-1.000, 0.000)  ( 0.000, 1.000)
2  (-0.809, 0.588)  ( 0.588, 0.809)  ( 0.809,-0.588)  (-0.588,-0.809)
3  ( 0.309,-0.951)  (-0.951,-0.309)  (-0.309, 0.951)  ( 0.951, 0.309)
4  ( 0.309, 0.951)  ( 0.951,-0.309)  (-0.309,-0.951)  (-0.951, 0.309)
5  (-0.809,-0.588)  (-0.588, 0.809)  ( 0.809, 0.588)  ( 0.588,-0.809)

                 The Output matrix is below
                1                2                3                4
1  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)
2  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)
3  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  ( 20.00,  0.00)
4  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)
5  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)  (  0.00,  0.00)


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260