LFTSF

Computes the U DUT factorization of a real symmetric matrix.

Required Arguments

AN by N symmetric matrix to be factored.   (Input)
Only the upper triangle of A is referenced.

FACTN by N matrix containing information about the factorization of the symmetric matrix A.   (Output)
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.   (Output)

Optional Arguments

N — Order of the matrix.   (Input)
Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.   (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling program.   (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic:                              CALL LFTSF (A, FACT, IPVT [,…])

Specific:                             The specific interface names are S_LFTSF and D_LFTSF.

FORTRAN 77 Interface

Single:                                CALL LFTSF (N, A, LDA, FACT, LDFACT, IPVT)

Double:                              The double precision name is DLFTSF.

Description

Routine LFTSF performs a U DUT factorization of a real symmetric indefinite coefficient matrix. The U DUT factorization is called the diagonal pivoting factorization.

LFTSF fails if A is singular or very close to a singular matrix.

The U DUT factors are returned in a form that is compatible with routines LFISF, LFSSF and LFDSF. To solve systems of equations with multiple right-hand-side vectors, use LFTSF followed by either LFISF or LFSSF called once for each right-hand side. The routine LFDSF can be called to compute the determinant of the coefficient matrix after LFTSF has performed the factorization.

The underlying code is based on either LINPACK or LAPACK code depending upon which supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments

Informational error

Type       Code

4                   2          The input matrix is singular.

Example

The inverse of a 3 × 3 matrix is computed. LFTSF is called to factor the matrix and to check for singularity. LFSSF is called to determine the columns of the inverse.

 

      USE LFTSF_INT
      USE LFSSF_INT
      USE WRRRN_INT
!                                 Declare variables

      PARAMETER  (LDA=3, N=3)

      INTEGER    IPVT(N)

      REAL       A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N)

!

!                                 Set values for A

!                                 A = (  1.0  -2.0   1.0)

!                                     ( -2.0   3.0  -2.0)

!                                     (  1.0  -2.0   3.0)

!

      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

!                                 Factor A

      CALL LFTSF (A, FACT, IPVT)

!                                 Set up the columns of the identity

!                                 matrix one at a time in RJ

      RJ = 0.0E0

      DO 10  J=1, N

         RJ(J) = 1.0E0

!                                 RJ is the J-th column of the identity

!                                 matrix so the following LFSSF

!                                 reference places the J-th column of

!                                 the inverse of A in the J-th column

!                                 of AINV

         CALL LFSSF (FACT, IPVT, RJ, AINV(:,J))

         RJ(J) = 0.0E0

   10 CONTINUE

!                                 Print the inverse

      CALL WRRRN ('AINV', AINV)

      END

Output

 

            AINV
        1       2       3
1  -2.500  -2.000  -0.500
2  -2.000  -1.000   0.000
3  -0.500   0.000   0.500


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260