This function evaluates the natural logarithm of the complete beta function for positive arguments.
ALBETA — Function
value. (Output)
ALBETA returns ln β(A, B) = ln(G(A) G(B))/ G(A + B).
A — The first
argument of the BETA
function. (Input)
For real arguments, A must be greater than zero.
B — The second
argument of the BETA
function. (Input)
For real arguments, B must be greater than zero.
Generic: ALBETA (A, B)
Specific: The specific interface names are S_ALBETA, D_ALBETA, and C_ALBETA.
Double: The double precision function name is DLBETA.
Complex: The complex name is CLBETA.
ALBETA computes ln β(a, b) = ln β(b, a). See BETA for the definition of β(a, b).
For real arguments, the function ALBETA is defined for a > 0 and b > 0. It returns accurate results even when a or b is very small. It can overflow for very large arguments; this error condition is not detected except by the computer hardware.
For complex arguments, the arguments a, b and a + b must not be close to negative integers (even though some combinations ought to be allowed). The arguments should not be so large that the logarithm of the gamma function overflows (presumably an improbable condition).
Note that ln β(A, B) = ln β(B, A).
In this example, ln β(2.2, 3.7) is computed and printed.
WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (' ALBETA(', F6.3, ',', F6.3, ') = ', F8.4)
ALBETA( 2.200, 3.700) = -3.0928
In this example, ln β(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed.
WRITE (NOUT,99999) A, B, VALUE
99999 FORMAT (' ALBETA((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3, &
')) = (', F6.3, ',', F6.3, ')')
ALBETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-3.280,-2.659)
|
Visual Numerics, Inc. PHONE: 713.784.3131 FAX:713.781.9260 |