Chapter 7: Kelvin Functions

AKEI0

This function evaluates the Kelvin function of the second kind, kei, of order zero.

Function Return Value

AKEI0 — Function value.   (Output)

Required Arguments

X — Argument for which the function value is desired.   (Input)
It must be nonnegative and less than 119.

FORTRAN 90 Interface

Generic:                              AKEI0 (X)

Specific:                             The specific interface names are S_AKEI0 and D_AKEI0.

FORTRAN 77 Interface

Single:                                AKEI0 (X)

Double:                              The double precision name is DKEI0.

Description

The modified Kelvin function kei0(x) is defined to be K0(xeπi4). The Bessel function K0(x) is defined in BSK0. Function AKEI1 is based on the work of Burgoyne (1963).

In AKEI0, x must satisfy 0 ≤ x < 119. If x < 0, then NaN (not a number) is returned. If x ≥ 119, then zero is returned.

Example

In this example, kei0(0.4) is computed and printed.

 

      USE AKEI0_INT

      USE UMACH_INT

 

      IMPLICIT   NONE

!                                 Declare variables

      INTEGER    NOUT

      REAL       VALUE, X

!                                 Compute

      X     = 0.4

      VALUE = AKEI0(X)

!                                 Print the results

      CALL UMACH (2, NOUT)

      WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' AKEI0(', F6.3, ') = ', F6.3)

      END

Output

 

AKEI0( 0.400) = -0.704



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260