Chapter 11: Probability Distribution Functions and Inverses

ALNDF

This function evaluates the lognormal cumulative probability distribution function.

Function Return Value

ALNDF — Function value, the probability that a standard lognormal random variable takes a value less than or equal to X.   (Output)

Required Arguments

X — Argument for which the lognormal cumulative distribution function is to be evaluated.   (Input)

AMU — Location parameter of the lognormal cumulative distribution function.   (Input)

SIGMA — Shape parameter of the lognormal cumulative distribution function.  SIGMA must be greater than 0.  (Input)
                               

FORTRAN 90 Interface

Generic:                              ALNDF (X, AMU, SIGMA)

Specific:                             The specific interface names are S_ALNDF and D_ALNDF.

FORTRAN 77 Interface

Single:                                ALNDF (X, AMU, SIGMA)

Double:                              The double precision name is DLNDF.

Description

The function ALNDF evaluates the lognormal cumulative probability distribution function, defined as

 

Example

In this example, we evaluate the probability distribution function at X = 0.7137, AMU = 0.0,
SIGMA = 0.5.

 

      USE UMACH_INT
      USE ALNDF_INT
      IMPLICIT NONE

      INTEGER NOUT

      REAL X, AMU, SIGMA, PR

      CALL UMACH(2, NOUT)

      X = .7137

      AMU = 0.0

      SIGMA = 0.5

      PR = ALNDF(X, AMU, SIGMA)

      WRITE (NOUT, 99999) X, AMU, SIGMA, PR

99999 FORMAT (' ALNDF(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)

      END

Output

 

ALNDF(  0.71, 0.00, 0.50) = 0.2500



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260