This function evaluates the beta probability density function.
BETPR — Function value, the value of the probability density function. (Output)
X — Argument for which the beta probability density function is to be evaluated. (Input)
PIN — First beta
distribution parameter. (Input)
PIN must be
positive.
QIN — Second beta
distribution parameter. (Input)
QIN must be
positive.
Generic: BETPR (X, PIN, QIN)
Specific: The specific interface names are S_BETPR and D_BETPR.
Single: BETPR (X, PIN, QIN)
Double: The double precision name is DBETPR.
The function BETPR evaluates the beta probability density function with parameters PIN and QIN. Using x = X, a = PIN and b = QIN, the beta distribution is defined as
The reciprocal of the beta function used as the normalizing factor is computed using IMSL function BETA (see Special Functions/Chapter 4, Gamma and Related Funtions).
In this example, we evaluate the probability function at X = 0.75, PIN = 2.0, QIN = 0.5.
USE
UMACH_INT
USE
BETPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, PIN, QIN, PR
CALL UMACH(2, NOUT)
X = .75
PIN = 2.0
QIN = 0.5
PR = BETPR(X, PIN, QIN)
WRITE (NOUT, 99999) X, PIN, QIN, PR
99999 FORMAT (' BETPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END
BETPR(0.75, 2.00, 0.50) = 1.1250
PHONE: 713.784.3131 FAX:713.781.9260 |