Chapter 8: Airy Functions

BIDE

This function evaluates the exponentially scaled derivative of the Airy function of the second kind.

Function Return Value

BIDE — Function value.   (Output)
The derivative of the Airy function of the second kind for negative arguments and the exponentially scaled derivative of the Airy function of the second kind, eζBiʹ(X), for positive arguments where

Required Arguments

X — Argument for which the Airy function value is desired.   (Input)

FORTRAN 90 Interface

Generic:                              BIDE (X)

Specific:                             The specific interface names are S_BIDE and D_BIDE.

FORTRAN 77 Interface

Single:                                BIDE (X)

Double:                              The double precision name is DBIDE.

Description

The exponentially scaled derivative of the Airy function of the second kind is defined to be

If , then the answer will have no precision. If , then the answer will be less accurate than half precision. Here, ε = AMACH(4) is the machine precision.

Example

In this example, BIDE(0.49) is computed and printed.

 

      USE BIDE_INT

      USE UMACH_INT

 

      IMPLICIT   NONE

!                                 Declare variables

      INTEGER    NOUT

      REAL       VALUE, X

!                                 Compute

      X     = 0.49

      VALUE = BIDE(X)

!                                 Print the results

      CALL UMACH (2, NOUT)

      WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BIDE(', F6.3, ') = ', F6.3)

      END

Output

 

BIDE( 0.490) = 0.430



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260