Chapter 11: Probability Distribution Functions and Inverses

CHIPR

This function evaluates the chi-squared probability density function.

Function Return Value

CHIPR — Function value, the value of the probability density function.   (Output)

Required Arguments

X — Argument for which the chi-squared probability density function is to be evaluated.   (Input)

DF — Number of degrees of freedom of the chi-squared distribution.   (Input)

FORTRAN 90 Interface

Generic:                              CHIPR (X, DF)

Specific:                             The specific interface names are S_CHIPR and D_CHIPR.

FORTRAN 77 Interface

Single:                                CHIPR (X, DF)

Double:                              The double precision name is DCHIPR.

Description

The function CHIPR evaluates the chi-squared probability density function.  The chi-squared distribution is a special case of the gamma distribution and is defined as

.

Example

In this example, we evaluate the probability function at X = 3.0, DF = 5.0.

 

      USE UMACH_INT
      USE CHIPR_INT
      IMPLICIT NONE

      INTEGER NOUT

      REAL X, DF, PR

      CALL UMACH(2, NOUT)

      X = 3.0

      DF = 5.0

      PR = CHIPR(X, DF)

      WRITE (NOUT, 99999) X, DF, PR

99999 FORMAT (' CHIPR(', F4.2, ', ', F4.2, ') = ', F6.4)

      END

Output

 

 CHIPR(3.00, 5.00) = 0.1542



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260