Chapter 10: Elliptic and Related Functions

CWPQ

This function evaluates the Weierstrass' function in the equianharmonic case for complex argument with unit period parallelogram.

Function Return Value

CWPQ — Complex function value.   (Output)

Required Arguments

Z — Complex argument for which the function value is desired.   (Input)

FORTRAN 90 Interface

Generic:                              CWPQ (Z)

Specific:                             The specific interface names are C_CWPQ and Z_CWPQ.

FORTRAN 77 Interface

Complex:                            CWPQ (Z)

Double complex:               The double complex name is ZWPQ.

Description

The Weierstrass' function, (z) = (z | ω, ωʹ), is an elliptic function of order two with periods 2ω and 2 ωʹ and a double pole at z = 0. CWPQ(Z) computes (z | ω, ωʹ) with

The input argument is first reduced to the fundamental parallelogram of all z satisfying

 

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest floating-point number, is returned. If the argument has modulus greater than 10 ε1, then NaN (not a number) is returned. Here, ε = AMACH(4) is the machine precision.

Function CWPQ is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this example, (0.25 + 0.14437567i) is computed and printed.

 

      USE CWPQ_INT

      USE UMACH_INT

 

      IMPLICIT   NONE

!                                 Declare variables

      INTEGER    NOUT

      COMPLEX    VALUE, Z

!                                 Compute

      Z     = (0.25, 0.14437567)

      VALUE = CWPQ(Z)

!                                 Print the results

      CALL UMACH (2, NOUT)

      WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' CWPQ(', F6.3, ',', F6.3, ') = (', &

           F7.3, ',', F7.3, ')')

      END

Output

 

CWPQ( 0.250, 0.144) = ( 5.895,-10.216)



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260