Chapter 9: Elliptic Integrals

ELRF

This function evaluates Carlson's incomplete elliptic integral of the first kind RF(X, Y, Z).

Function Return Value

ELRF — Function value.   (Output)

Required Arguments

X — First variable of the incomplete elliptic integral.   (Input)
It must be nonnegative

Y — Second variable of the incomplete elliptic integral.   (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral.   (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic:                              ELRF (X, Y, Z)

Specific:                             The specific interface names are S_ELRF and D_ELRF.

FORTRAN 77 Interface

Single:                                ELRF (X, Y, Z)

Double:                              The double precision name is DELRF.

Description

The Carlson's complete elliptic integral of the first kind is defined to be

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, x + z, and
y + z must be greater than or equal to 5s. Should any of these conditions fail, ELRF is set to b. Here, b = AMACH(2) is the largest and s = AMACH(1) is the smallest representable floating-point number.

The function ELRF is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

In this example, RF(0, 1, 2) is computed and printed.

 

      USE ELRF_INT

      USE UMACH_INT

 

      IMPLICIT   NONE

!                               Declare variables

      INTEGER    NOUT

      REAL       VALUE, X, Y, Z

!                                 Compute

      X     = 0.0

      Y     = 1.0

      Z     = 2.0

      VALUE = ELRF(X, Y, Z)

!                                 Print the results

      CALL UMACH (2, NOUT)

      WRITE (NOUT,99999) X, Y, Z, VALUE

99999 FORMAT (' ELRF(', F6.3, ',', F6.3, ',', F6.3, ') = ', F6.3)

      END

Output

 

ELRF( 0.000, 1.000, 2.000) = 1.311



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260