BS2IG

This function evaluates the integral of a tensor-product spline on a rectangular domain, given its tensor-product B-spline representation.

Function Return Value

BS2IG — Integral of the spline over the rectangle (A, B) by (C, D).
(Output)

Required Arguments

A — Lower limit of the X-variable. (Input)

B — Upper limit of the X-variable. (Input)

C — Lower limit of the Y-variable. (Input)

D — Upper limit of the Y-variable. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction. (Input)
YKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

Optional Arguments

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)
Default: NXCOEF = size (XKNOT,1) - KXORD.

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)
Default: NYCOEF = size (YKNOT,1) - KYORD.

FORTRAN 90 Interface

Generic: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, BSCOEF [])

Specific: The specific interface names are S_BS2IG and D_BS2IG.

FORTRAN 77 Interface

Single: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF)

Double: The double precision function name is DBS2IG.

Description

The function BS2IG computes the integral of a tensor-product two-dimensional spline given its B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT, the order kx = KXORD, ky = KYORD, the coefficients β = BSCOEF, the number of coefficients nx = NXCOEF, ny = NYCOEF and a rectangle [ab] by [cd], BS2IG returns the value

 

where

 

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot sequences) that the first and last k knots are stacked, that is,t1 =  = tk and tn + 1 =  = tn + k, where k is the order of the spline in the x or y direction.

Comments

1. Workspace may be explicitly provided, if desired, by use of B22IG/DB22IG. The reference is:

CALL B22IG(A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 4 * (MAX(KXORD, KYORD) + 1) + NYCOEF.

2. Informational errors

 

Type

Code

Description

3

1

The lower limit of the X-integration is less than XKNOT(KXORD).

3

2

The upper limit of the X-integration is greater than XKNOT(NXCOEF + 1).

3

3

The lower limit of the Y-integration is less than YKNOT(KYORD).

3

4

The upper limit of the Y-integration is greater than YKNOT(NYCOEF + 1).

4

13

Multiplicity of the knots cannot exceed the order of the spline.

4

14

The knots must be nondecreasing.

Example

We integrate the two-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) spline that interpolates x3 + xy at the points {(i/10, j/5)  : i =  10, , 10 and j = 0, , 5} over the rectangle [0, 1] × [.5, 1]. The exact answer is 5/16.

 

USE BS2IG_INT

USE BSNAK_INT

USE BS2IN_INT

USE UMACH_INT

 

IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT

PARAMETER (KXORD=5, KYORD=2, NXDATA=21, NYDATA=6, LDF=NXDATA,&

NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD)

!

INTEGER I, J, NOUT, NXCOEF, NYCOEF

REAL A, B, BSCOEF(NXDATA,NYDATA), C , D, F,&

FDATA(LDF,NYDATA), FI, FLOAT, VAL, X, XDATA(NXDATA),&

XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT)

INTRINSIC FLOAT

! Define function and integral

F(X,Y) = X*X*X + X*Y

FI(A,B,C ,D) = .25*((B**4-A**4)*(D-C )+(B*B-A*A)*(D*D-C *C ))

! Set up interpolation points

DO 10 I=1, NXDATA

XDATA(I) = FLOAT(I-11)/10.0

10 CONTINUE

! Generate knot sequence

CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)

! Set up interpolation points

DO 20 I=1, NYDATA

YDATA(I) = FLOAT(I-1)/5.0

20 CONTINUE

! Generate knot sequence

CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)

! Generate FDATA

DO 40 I=1, NYDATA

DO 30 J=1, NXDATA

FDATA(J,I) = F(XDATA(J),YDATA(I))

30 CONTINUE

40 CONTINUE

! Interpolate

CALL BS2IN (XDATA, YDATA, FDATA, KXORD,&

KYORD, XKNOT, YKNOT, BSCOEF)

! Integrate over rectangle

! [0.0,1.0] x [0.0,0.5]

NXCOEF = NXDATA

NYCOEF = NYDATA

A = 0.0

B = 1.0

C = 0.5

D = 1.0

VAL = BS2IG(A,B,C ,D,KXORD,KYORD,XKNOT,YKNOT,BSCOEF)

! Get output unit number

CALL UMACH (2, NOUT)

! Print results

WRITE (NOUT,99999) VAL, FI(A,B,C ,D), FI(A,B,C ,D) - VAL

99999 FORMAT (' Computed Integral = ', F10.5, /, ' Exact Integral '&

, '= ', F10.5, /, ' Error '&

, '= ', F10.6, /)

END

Output

 

Computed Integral = 0.31250

Exact Integral = 0.31250

Error = 0.000000