CSAKM

Computes the Akima cubic spline interpolant.

Required Arguments

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces. (Output)

Optional Arguments

NDATA — Number of data points. (Input)
Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface

Generic: CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF [])

Specific: The specific interface names are S_CSAKM and D_CSAKM.

FORTRAN 77 Interface

Single: CALL CSAKM (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSAKM.

Description

The routine CSAKM computes a C1 cubic spline interpolant to a set of data points (xifi) for i = 1, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth (say C4) function f, i.e. fi = f(xi), then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies

 

where

 

 

The routine CSAKM is based on a method by Akima (1970) to combat wiggles in the interpolant. The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear polynomials are reproduced.)

Comments

1. Workspace may be explicitly provided, if desired, by use of C2AKMD/C2AKM. The reference is:

CALL C2AKM (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK)

The additional argument is:

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL; its derivative can be evaluated using CSDER.

3. Note that column NDATA of CSCOEF is used as workspace.

Example

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values.

 

USE CSAKM_INT

USE UMACH_INT

USE CSVAL_INT

 

IMPLICIT NONE

INTEGER NDATA

PARAMETER (NDATA=11)

!

INTEGER I, NINTV, NOUT

REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&

FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)

INTRINSIC FLOAT, SIN

! Define function

F(X) = SIN(15.0*X)

! Set up a grid

DO 10 I=1, NDATA

XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

FDATA(I) = F(XDATA(I))

10 CONTINUE

! Compute cubic spline interpolant

CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF)

! Get output unit number

CALL UMACH (2, NOUT)

! Write heading

WRITE (NOUT,99999)

99999 FORMAT (13X, 'X', 9X, 'Interpolant', 5X, 'Error')

NINTV = NDATA - 1

! Print the interpolant on a finer grid

DO 20 I=1, 2*NDATA - 1

X = FLOAT(I-1)/FLOAT(2*NDATA-2)

WRITE (NOUT,'(2F15.3,F15.6)') X, CSVAL(X,BREAK,CSCOEF),&

F(X) - CSVAL(X,BREAK,&

CSCOEF)

20 CONTINUE

END

 

Output

 

X Interpolant Error

0.000 0.000 0.000000

0.050 0.818 -0.135988

0.100 0.997 0.000000

0.150 0.615 0.163487

0.200 0.141 0.000000

0.250 -0.478 -0.093376

0.300 -0.978 0.000000

0.350 -0.812 -0.046447

0.400 -0.279 0.000000

0.450 0.386 0.064491

0.500 0.938 0.000000

0.550 0.854 0.068274

0.600 0.412 0.000000

0.650 -0.276 -0.043288

0.700 -0.880 0.000000

0.750 -0.889 -0.078947

0.800 -0.537 0.000000

0.850 0.149 0.033757

0.900 0.804 0.000000

0.950 0.932 0.061260

1.000 0.650 0.000000