FPS3H

 


   more...

Solves Poisson’s or Helmholtz’s equation on a three-dimensional box using a fast Poisson solver based on the HODIE finite-difference scheme on a uniform mesh.

Required Arguments

PRHS — User-supplied FUNCTION to evaluate the right side of the partial differential equation. The form is PRHS(X, Y, Z), where

X – The x-coordinate value. (Input)

Y – The y-coordinate value. (Input)

Z – The z-coordinate value. (Input)

PRHS – Value of the right side at (X, Y, Z). (Output)

PRHS must be declared EXTERNAL in the calling program.

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary conditions. The form is BRHS(ISIDE, X, Y, Z), where

ISIDE – Side number. (Input)

See IBCTY for the definition of the side numbers.

X – The x-coordinate value. (Input)

Y – The y-coordinate value. (Input)

Z – The z-coordinate value. (Input)

BRHS – Value of the right side of the boundary condition at (X, Y, Z). (Output)

BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the x-direction. (Input)
NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the y-direction. (Input)
NY must be at least 4. See Comment 2 for further restrictions on NY.

NZ — Number of grid lines in the z-direction. (Input)
NZ must be at least 4. See Comment 2 for further restrictions on NZ.

AX — Value of X along the left side of the domain. (Input)

BX — Value of X along the right side of the domain. (Input)

AY — Value of Y along the bottom of the domain. (Input)

BY — Value of Y along the top of the domain. (Input)

AZ — Value of Z along the front of the domain. (Input)

BZ — Value of Z along the back of the domain. (Input)

IBCTY — Array of size 6 indicating the type of boundary condition on each face of the domain or that the solution is periodic. (Input)
The sides are numbers 1 to 6 as follows:

Side

Location

- Right

(X = BX)

- Bottom

(Y = AY)

- Left

(X = AX)

- Top

(Y = BY)

- Front

(Z = BZ)

- Back

(Z = AZ)

There are three boundary condition types.

IBCTY

Boundary Condition

1

Value of U is given. (Dirichlet)

2

Value of dU/dX is given (sides 1 and/or 3). (Neumann)
Value of dU/dY is given (sides 2 and/or 4).
Value of dU/dZ is given (sides 5 and/or 6).

3

Periodic.

U — Array of size NX by NY by NZ containing the solution at the grid points. (Output)

Optional Arguments

IORDER — Order of accuracy of the finite-difference approximation. (Input)
It can be either 2 or 4. Usually, IORDER = 4 is used.
Default: IORDER = 4.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling program. (Input)
Default: LDU = size (U,1).

MDU — Middle dimension of U exactly as specified in the dimension statement of the calling program. (Input)
Default: MDU = size (U,2).

FORTRAN 90 Interface

Generic: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, BZ, IBCTY, U [])

Specific: The specific interface names are S_FPS3H and D_FPS3H.

FORTRAN 77 Interface

Single: CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, BZ, IBCTY, IORDER, U, LDU, MDU)

Double: The double precision name is DFPS3H.

Description

Let c = COEFU, ax = AX, bx = BX, nx = NX, ay = AY, by = BY, ny = NY, az = AZ, bz = BZ, and nz = NZ.

FPS3H is based on the code HFFT3D by Boisvert (1984). It solves the equation

 

on the domain (axbx× (ayby× (azbz) (a box) with a user-specified combination of Dirichlet (solution prescribed), Neumann (first derivative prescribed), or periodic boundary conditions. The six sides are numbered as shown in the following diagram.

 

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any constant may be added to the solution to obtain another solution to the problem. In this case, the solution of minimum‑norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-difference approximation of the continuous equation. The resulting system of linear algebraic equations is solved using fast Fourier transform techniques. The algorithm relies upon the fact that nx  1 and nz  1 are highly composite (the product of small primes). For details of the algorithm, see Boisvert (1984). If nx  1 and nz  1 are highly composite, then the execution time of FPS3H is proportional to

 

If evaluations of p(xyz) are inexpensive, then the difference in running time between IORDER = 2 and IORDER = 4 is small.

Comments

1. Workspace may be explicitly provided, if desired, by use of F2S3H/DF2S3H. The reference is:

CALL F2S3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, BZ, IBCTY, IORDER, U, LDU, MDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2 by NZ + 2. If the actual dimensions of U are large enough, then U and UWORK can be the same array.

WORK — Work array of length (NX + 1)(NY + 1)(NZ + 1)(IORDER  2)/2 + 2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY + 1) + MAX(2 * NX * NY, 2 * NX + NY + 4 * NZ + (NX + NZ)/2 + 29)

2. The grid spacing is the distance between the (uniformly spaced) grid lines. It is given by the formulas

HX = (BX  AX)/(NX  1),

HY = (BY  AY)/(NY  1), and

HZ = (BZ  AZ)/(NZ  1).

The grid spacings in the X, Y and Z directions must be the same, i.e., NX, NY and NZ must be such that HX = HY = HZ. Also, as noted above, NX, NY and NZ must all be at least 4. To increase the speed of the Fast Fourier transform, NX  1 and NZ  1 should be the product of small primes. Good choices for NX and NZ are 17, 33 and 65.

3. If -COEFU is nearly equal to an eigenvalue of the Laplacian with homogeneous boundary conditions, then the computed solution might have large errors.

Example

This example solves the equation

 

with the boundary conditions u/z = 2 sin(3x + y  2z exp(x  z) on the front side and u = cos(3x + y  2z) + exp(x z) + 1 on the other five sides. The domain is the box [0, 1/4] × [0, 1/2] × [0, 1/2]. The output of FPS3H is a 9 × 17 × 17 table of U values. The quadratic interpolation routine QD3VL is used to print a table of values.

 

USE FPS3H_INT

USE UMACH_INT

USE QD3VL_INT

 

IMPLICIT NONE

! SPECIFICATIONS FOR PARAMETERS

INTEGER LDU, MDU, NX, NXTABL, NY, NYTABL, NZ, NZTABL

PARAMETER (NX=5, NXTABL=4, NY=9, NYTABL=3, NZ=9, &

NZTABL=3, LDU=NX, MDU=NY)

!

INTEGER I, IBCTY(6), IORDER, J, K, NOUT

REAL AX, AY, AZ, BRHS, BX, BY, BZ, COEFU, FLOAT, PRHS, &

U(LDU,MDU,NZ), UTABL, X, ERROR, TRUE, &

XDATA(NX), Y, YDATA(NY), Z, ZDATA(NZ)

INTRINSIC COS, EXP, FLOAT

EXTERNAL BRHS, PRHS

! Define domain

AX = 0.0

BX = 0.125

AY = 0.0

BY = 0.25

AZ = 0.0

BZ = 0.25

! Set boundary condition types

IBCTY(1) = 1

IBCTY(2) = 1

IBCTY(3) = 1

IBCTY(4) = 1

IBCTY(5) = 2

IBCTY(6) = 1

! Coefficient of U

COEFU = 10.0

! Order of the method

IORDER = 4

! Solve the PDE

CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ, &

BZ, IBCTY, U)

! Set up for quadratic interpolation

DO 10 I=1, NX

XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1)

10 CONTINUE

DO 20 J=1, NY

YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1)

20 CONTINUE

DO 30 K=1, NZ

ZDATA(K) = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZ-1)

30 CONTINUE

! Print the solution

CALL UMACH (2, NOUT)

WRITE (NOUT,'(8X,5(A,11X))') 'X', 'Y', 'Z', 'U', 'Error'

DO 60 K=1, NZTABL

DO 50 J=1, NYTABL

DO 40 I=1, NXTABL

X = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1)

Y = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1)

Z = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZTABL-1)

UTABL = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,U, CHECK=.false.)

TRUE = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0

ERROR = UTABL - TRUE

WRITE (NOUT,'(5F12.4)') X, Y, Z, UTABL, ERROR

40 CONTINUE

50 CONTINUE

60 CONTINUE

END

!

REAL FUNCTION PRHS (X, Y, Z)

REAL X, Y, Z

!

REAL COS, EXP

INTRINSIC COS, EXP

! Right side of the PDE

PRHS = -4.0*COS(3.0*X+Y-2.0*Z) + 12*EXP(X-Z) + 10.0

RETURN

END

!

REAL FUNCTION BRHS (ISIDE, X, Y, Z)

INTEGER ISIDE

REAL X, Y, Z

!

REAL COS, EXP, SIN

INTRINSIC COS, EXP, SIN

! Boundary conditions

IF (ISIDE .EQ. 5) THEN

BRHS = -2.0*SIN(3.0*X+Y-2.0*Z) - EXP(X-Z)

ELSE

BRHS = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0

END IF

RETURN

END

Output

 

X Y Z U Error

0.0000 0.0000 0.0000 3.0000 0.0000

0.0417 0.0000 0.0000 3.0348 0.0000

0.0833 0.0000 0.0000 3.0558 0.0001

0.1250 0.0000 0.0000 3.0637 0.0001

0.0000 0.1250 0.0000 2.9922 0.0000

0.0417 0.1250 0.0000 3.0115 0.0000

0.0833 0.1250 0.0000 3.0175 0.0000

0.1250 0.1250 0.0000 3.0107 0.0000

0.0000 0.2500 0.0000 2.9690 0.0001

0.0417 0.2500 0.0000 2.9731 0.0000

0.0833 0.2500 0.0000 2.9645 0.0000

0.1250 0.2500 0.0000 2.9440 -0.0001

0.0000 0.0000 0.1250 2.8514 0.0000

0.0417 0.0000 0.1250 2.9123 0.0000

0.0833 0.0000 0.1250 2.9592 0.0000

0.1250 0.0000 0.1250 2.9922 0.0000

0.0000 0.1250 0.1250 2.8747 0.0000

0.0417 0.1250 0.1250 2.9211 0.0010

0.0833 0.1250 0.1250 2.9524 0.0010

0.1250 0.1250 0.1250 2.9689 0.0000

0.0000 0.2500 0.1250 2.8825 0.0000

0.0417 0.2500 0.1250 2.9123 0.0000

0.0833 0.2500 0.1250 2.9281 0.0000

0.1250 0.2500 0.1250 2.9305 0.0000

0.0000 0.0000 0.2500 2.6314 -0.0249

0.0417 0.0000 0.2500 2.7420 -0.0004

0.0833 0.0000 0.2500 2.8112 -0.0042

0.1250 0.0000 0.2500 2.8609 -0.0138

0.0000 0.1250 0.2500 2.7093 0.0000

0.0417 0.1250 0.2500 2.8153 0.0344

0.0833 0.1250 0.2500 2.8628 0.0237

0.1250 0.1250 0.2500 2.8825 0.0000

0.0000 0.2500 0.2500 2.7351 -0.0127

0.0417 0.2500 0.2500 2.8030 -0.0011

0.0833 0.2500 0.2500 2.8424 -0.0040

0.1250 0.2500 0.2500 2.8735 -0.0012