LFDRT

Computes the determinant of a real triangular matrix.

Required Arguments

AN by N matrix containing the triangular matrix. (Input)
The matrix can be either upper or lower triangular.

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface

Generic: CALL LFDRT (A, DET1, DET2 [])

Specific: The specific interface names are S_LFDRT and D_LFDRT.

FORTRAN 77 Interface

Single: CALL LFDRT (N, A, LDA, DET1, DET2)

Double: The double precision name is DLFDRT.

Description

Routine LFDRT computes the determinant of a real triangular coefficient matrix. The determinant of a triangular matrix is the product of the diagonal elements

 

LFDRT is based on the LINPACK routine STRDI; see Dongarra et al. (1979).

Comments

Informational error

 

Type

Code

Description

3

1

The input triangular matrix is singular.

Example

The determinant is computed for a 3 × 3 lower triangular matrix.

 

USE LFDRT_INT

USE UMACH_INT

! Declare variables

PARAMETER (LDA=3)

REAL A(LDA,LDA), DET1, DET2

INTEGER NOUT

! Set values for A

! A = ( 2.0 )

! ( 2.0 -1.0 )

! ( -4.0 2.0 5.0)

!

DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

!

! Compute the determinant of A

CALL LFDRT (A, DET1, DET2)

! Print results

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) DET1, DET2

99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)

END

Output

 

The determinant of A is -1.000 * 10**1.