NORM

 


   more...

Computes the norm of an array.

Function Return Value

Norm of A. This is a scalar for the case where A is rank 1 or rank 2. For rank-3 arrays, the norms of each rank-2 array, in dimension 3, are computed. (Output)

Required Argument

A — An array of rank-1, rank-2, or rank-3, containing the values for which the norm is to be computed. It may be real, double, complex, or double complex. (Input)

Optional Arguments, Packaged Options

TYPE —Integer indicating the type of norm to be computed.
1 = l1
2 = l2 (default)
huge(1) = l

Use of the option number ?_reset_default_norm will switch the default from the l2 to the l1 or l norms. (Input)

The option and derived type names are given in the following tables:

Option Names for NORM

Option Value

?_norm_for_lin_sol_svd

1

?_reset_default_norm

2

 

Name of Unallocated Option Array to Use for Setting Options

Use

Derived Type

?_norm_options(:)

Use when setting options for calls hereafter.

?_options

?_norm_options_once(:)

Use when setting options for next call only.

?_options

For a description on how to use these options, see Matrix Optional Data Changes. See LIN_SOL_SVD in Chapter 1, “Linear Systems” for the specific options for these routines.

FORTRAN 90 Interface

NORM (A [])

Description

Computes the l2, l1, or l norm. The l1 and l norms are likely to be less expensive to compute than the l2 norm.

 

If the l2 norm is required, this function uses LIN_SOL_SVD (see Chapter 1, “Linear Systems”), to compute the largest singular value of A. For the other norms, Fortran 90 intrinsics are used.

Examples

Example 1

 

Compute three norms of an array

 

use norm_int

real (kind(1e0)) A(5), n_1, n_2, n_inf

A = rand (A)

! I1

n_1 = norm(A, TYPE=1)

write (*,*) n_1

! I2

n_2 = norm(A)

write (*,*) n_2

! I infinity

n_inf = norm(A, TYPE=huge(1))

write (*,*) n_inf

end

Parallel Example (parallel_ex15.f90)

A “Polar Decomposition” of several matrices are computed. The box data type and the SVD() function are used. Orthogonality and small residuals are checked to verify that the results are correct.

 

use linear_operators

use mpi_setup_int

implicit none

 

! This is Parallel Example 15 using operators and

! functions for a polar decomposition.

integer, parameter :: n=33, nr=3

real(kind(1d0)) :: one=1d0, zero=0d0

real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, &

S_D(n,nr), U_D, V_D

real(kind(1d0)) TEMP1(nr), TEMP2(nr)

 

! Setup for MPI:

mp_nprocs = mp_setup()

 

! Generate a random matrix.

if(mp_rank == 0) A = rand(A)

 

! Compute the singular value decomposition.

S_D = SVD(A, U=U_D, V=V_D)

 

! Compute the (left) orthogonal factor.

P = U_D .xt. V_D

 

! Compute the (right) self-adjoint factor.

Q = V_D .x. diag(S_D) .xt. V_D

! Check the results for orthogonality and

! small residuals.

TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p))

TEMP2 = NORM(A -(P .X. Q)) / NORM(A)

if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. &

ALL(TEMP2 <= sqrt(epsilon(one)))) then

if(mp_rank == 0)&

write (*,*) 'Parallel Example 15 is correct.'

end if

 

! See to any error messages and exit MPI.

mp_nprocs = mp_setup('Final')

 

end