NR2RR

Computes the Frobenius norm of a real rectangular matrix.

Required Arguments

A — Real NRA by NCA rectangular matrix. (Input)

ANORM — Frobenius norm of A. (Output)

Optional Arguments

NRA — Number of rows of A. (Input)
Default: NRA = SIZE (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = SIZE (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
Default: LDA = SIZE (A,1).

FORTRAN 90 Interface

Generic: CALL NR2RR (A, ANORM [])

Specific: The specific interface names are S_NR2RR and D_NR2RR.

FORTRAN 77 Interface

Single: CALL NR2RR (NRA, NCA, A, LDA, ANORM)

Double: The double precision name is DNR2RR.

Description

The routine NR2RR computes the Frobenius norm of a real rectangular matrix A. If m = NRA and n = NCA, then the Frobenius norm of A is

 

Example

Compute the Frobenius norm of a 3 ×  4 real rectangular matrix.

 

USE NR2RR_INT

USE UMACH_INT

 

IMPLICIT NONE

! Declare variables

INTEGER LDA, NCA, NRA

PARAMETER (LDA=3, NCA=4, NRA=3)

!

INTEGER NOUT

REAL A(LDA,NCA), ANORM

!

! Set values for A

! A = ( 1.0 0.0 2.0 0.0 )

! ( 3.0 4.0 -1.0 0.0 )

! ( 2.0 1.0 2.0 1.0 )

!

DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0, &

1.0/

!

! Compute Frobenius norm of A

CALL NR2RR (A, ANORM)

! Print results

CALL UMACH (2, NOUT)

WRITE (NOUT,*) ' The Frobenius norm of A is ', ANORM

END

Output

 

The Frobenius norm of A is 6.40312