QD3DR

This function evaluates the derivative of a function defined on a rectangular three-dimensional grid using quadratic interpolation.

Function Return Value

QD3DR — Value of the appropriate derivative of the function at (X, Y, Z). (Output)

Required Arguments

IXDER — Order of the x-derivative. (Input)

IYDER — Order of the y-derivative. (Input)

IZDER — Order of the z-derivative. (Input)

Xx-coordinate of the point at which the function is to be evaluated. (Input)

Yy-coordinate of the point at which the function is to be evaluated. (Input)

Zz-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the x-direction. (Input)
XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the y-direction. (Input)
YDATA must be increasing.

ZDATA — Array of length NZDATA containing the location of the data points in the z-direction. (Input)
ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values. (Input)
FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)).

Optional Arguments

NXDATA — Number of data points in the x-direction. (Input)
NXDATA must be at least three.
Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.
Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)
NZDATA must be at least three.
Default: NZDATA = size (ZDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the calling program. (Input)
LDF must be at least as large as NXDATA.
Default: LDF = size (FDATA,1).

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension statement of the calling program. (Input)
MDF must be at least as large as NYDATA.
Default: MDF = size (FDATA,2).

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is required or .FALSE. if checking is not required. (Input)
Default: CHECK = .TRUE.

FORTRAN 90 Interface

Generic: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, XDATA, YDATA, ZDATA, FDATA [])

Specific: The specific interface names are S_QD3DR and D_QD3DR.

FORTRAN 77 Interface

Single: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA, LDF, MDF, CHECK)

Double: The double precision function name is DQD3DR.

Description

The function QD3DR interpolates a table of values, using quadratic polynomials, returning an approximation to the partial derivatives of the tabulated function. Let

(xiyjzkfijk)

for i = 1, , nxj = 1, ny, and k = 1, nz be the tabular data. Given a point (xyz) at which an interpolated value is desired, we first find the nearest interior grid point (xiyjzk). A trivariate quadratic interpolant q is then formed. Ten points are needed for this purpose. Seven points have the form

 

The last three points are drawn from the vertices of the octant containing (xyz). There are four of these vertices remaining, and we choose to exclude the vertex farthest from the center. This has the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners of the table. The value q(p,r,t)(xyz) is returned by QD3DR, where p = IXDER, r = IYDER, and t = IZDER.

Comments

1. Informational errors

 

Type

Code

Description

4

9

The XDATA values must be strictly increasing.

4

10

The YDATA values must be strictly increasing.

4

11

The ZDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of any derivative is greater than two, then the returned value is zero.

Example

In this example, the derivatives of sin(x + y + z) at x = y = z = π/5 are approximated by using QD3DR on a grid of size 21 × 42 × 18 equally spaced values on the cube [0, 2]3.

 

USE IMSL_LIBRARIES

 

IMPLICIT NONE

INTEGER LDF, MDF, NXDATA, NYDATA, NZDATA

PARAMETER (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,&

MDF=NYDATA)

!

INTEGER I, IXDER, IYDER, IZDER, J, K, NOUT

REAL F, FDATA(NXDATA,NYDATA,NZDATA), FLOAT, FU,&

FUNC, PI, Q, SIN, X, XDATA(NXDATA), Y,&

YDATA(NYDATA), Z, ZDATA(NZDATA)

INTRINSIC FLOAT, SIN

EXTERNAL FUNC

! Define function

F(X,Y,Z) = SIN(X+Y+Z)

! Set up X-grid

DO 10 I=1, NXDATA

XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))

10 CONTINUE

! Set up Y-grid

DO 20 J=1, NYDATA

YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1))

20 CONTINUE

! Set up Z-grid

DO 30 K=1, NZDATA

ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1))

30 CONTINUE

! Evaluate function on grid

DO 40 I=1, NXDATA

DO 40 J=1, NYDATA

DO 40 K=1, NZDATA

FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K))

40 CONTINUE

! Get output unit number

CALL UMACH (2, NOUT)

! Write heading

WRITE (NOUT,99999)

! Get value for PI and set X, Y, and Z

PI = CONST('PI')

X = PI/5.0

Y = PI/5.0

Z = PI/5.0

! Compute derivatives at (X,Y,Z)

! and print results

DO 50 IXDER=0, 1

DO 50 IYDER=0, 1

DO 50 IZDER=0, 1

Q = QD3DR(IXDER,IYDER,IZDER,X,Y,Z,XDATA,YDATA,ZDATA,FDATA)

FU = FUNC(IXDER,IYDER,IZDER,X,Y,Z)

WRITE (NOUT,99998) X, Y, Z, IXDER, IYDER, IZDER, FU, Q,&

(FU-Q)

50 CONTINUE

!

99998 FORMAT (3F7.4, 3I5, 4X, F7.4, 8X, 2F10.4)

99999 FORMAT (39X, '(IDX,IDY,IDZ)', /, 6X, 'X', 6X, 'Y', 6X,&

'Z', 3X, 'IDX', 2X, 'IDY', 2X, 'IDZ', 2X, 'F ',&

'(X,Y,Z)', 3X, 'QD3DR', 5X, 'ERROR')

END

!

REAL FUNCTION FUNC (IX, IY, IZ, X, Y, Z)

INTEGER IX, IY, IZ

REAL X, Y, Z

!

REAL COS, SIN

INTRINSIC COS, SIN

!

IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN

! Define (0,0,0) derivative

FUNC = SIN(X+Y+Z)

ELSE IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN

! Define (0,0,1) derivative

FUNC = COS(X+Y+Z)

ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN

! Define (0,1,0,) derivative

FUNC = COS(X+Y+Z)

ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN

! Define (0,1,1) derivative

FUNC = -SIN(X+Y+Z)

ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN

! Define (1,0,0) derivative

FUNC = COS(X+Y+Z)

ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN

! Define (1,0,1) derivative

FUNC = -SIN(X+Y+Z)

ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN

! Define (1,1,0) derivative

FUNC = -SIN(X+Y+Z)

ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN

! Define (1,1,1) derivative

FUNC = -COS(X+Y+Z)

ELSE

FUNC = 0.0

END IF

RETURN

END

Output

 

(IDX,IDY,IDZ)

X Y Z IDX IDY IDZ F (X,Y,Z) QD3DR ERROR

0.6283 0.6283 0.6283 0 0 0 0.9511 0.9511 -0.0001

0.6283 0.6283 0.6283 0 0 1 -0.3090 -0.3080 -0.0010

0.6283 0.6283 0.6283 0 1 0 -0.3090 -0.3088 0.0002

0.6283 0.6283 0.6283 0 1 1 -0.9511 -0.9587 0.0077

0.6283 0.6283 0.6283 1 0 0 -0.3090 -0.3078 -0.0012

0.6283 0.6283 0.6283 1 0 1 -0.9511 -0.9348 -0.0162

0.6283 0.6283 0.6283 1 1 0 -0.9511 -0.9613 0.0103

0.6283 0.6283 0.6283 1 1 1 0.3090 0.0000 0.3090