SRCH

Searches a sorted vector for a given scalar and return its index.

Required Arguments

VALUE — Scalar to be searched for in Y. (Input)

X — Vector of length N * INCX. (Input)
Y is obtained from X for I = 1, 2, , N by Y(I) = X(1 + (I  1) * INCX). Y(1), Y(2), , Y(N) must be in ascending order.

INDEX — Index of Y pointing to VALUE. (Output)
If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not found in Y.

 

INDEX

Location of VALUE

1 thru N

VALUE = Y(INDEX)

1

VALUE < Y(1) or N = 0

‑N thru 2

Y(‑INDEX  1) < VALUE < Y(INDEX)

(N + 1)

VALUE > YN

Optional Arguments

N — Length of vector Y. (Input)
Default: N = (size (X,1)) / INCX.

INCX — Displacement between elements of X. (Input)
INCX must be greater than zero.
Default: INCX = 1.

FORTRAN 90 Interface

Generic: CALL SRCH (VALUE, X, INDEX [])

Specific: The specific interface names are S_SRCH and D_SRCH.

FORTRAN 77 Interface

Single: CALL SRCH (N, VALUE, X, INCX, INDEX)

Double: The double precision name is DSRCH.

Description

Routine SRCH searches a real vector x (stored in X), whose n elements are sorted in ascending order for a real number c (stored in VALUE). If c is found in x, its index i (stored in INDEX) is returned so that xi = c. Otherwise, a negative number i is returned for the index. Specifically,

 

if 1 i n

then xi = c

if i = 1

then c < x1 or n = 0

if n i  2

then xi1< c < xi

if i = (n + 1)

then c > xn

The argument INCX is useful if a row of a matrix, for example, row number I of a matrix X, must be searched. The elements of row I are assumed to be in ascending order. In this case, set INCX equal to the leading dimension of X exactly as specified in the dimension statement in the calling program. With X declared

REAL X(LDX,N)

the invocation

CALL SRCH (VALUE, X(I, 1), INDEX, N=N, INCX=LDX)

returns an index that will reference a column number of X.

Routine SRCH performs a binary search. The routine is an implementation of algorithm B discussed by Knuth (1973, pages 407411).

Example

This example searches a real vector sorted in ascending order for the value 653.0. The problem is discussed by Knuth (1973, pages 407409).

 

USE SRCH_INT

USE UMACH_INT

 

IMPLICIT NONE

INTEGER N

PARAMETER (N=16)

!

INTEGER INDEX, NOUT

REAL VALUE, X(N)

!

DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0, &

512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/

!

VALUE = 653.0

CALL SRCH (VALUE, X, INDEX)

!

CALL UMACH (2, NOUT)

WRITE (NOUT,*) 'INDEX = ', INDEX

END

Output

 

INDEX = 11