package com.imsl.test.example.math;
import com.imsl.math.*;
import java.text.*;
/**
*
* Approximates one component of the gradient using numerical differentiation.
*
*
* This example uses the same data as in example
* {@link NumericalDerivativesEx1}. In this case, numerical differentiation is
* used for \(y_1\) and the analytical derivative is used for \(y_2\). The input
* array options
specifies that numerical differentiation with
* respect to \(y_2\) is skipped. This example illustrates using mixed numerical
* and analytical derivatives. Using analytical derivatives where possible helps
* improve accuracy.
*
*
* @see Code
* @see Output
*/
public class NumericalDerivativesEx2 {
static private int m = 1, n = 2;
static private double a, b, c;
public static void main(String args[]) {
int[] options = new int[n];
double u;
double[] y = new double[n];
double[] valueF = new double[m];
double[] scale = new double[n];
double[][] actual = new double[m][n];
double[] re = new double[2];
// Define data and point of evaluation:
a = 2.5e6;
b = 3.4e0;
c = 4.5e0;
y[0] = 2.1e0;
y[1] = 3.2e0;
// Precision, for measuring errors
u = Math.sqrt(2.220446049250313e-016);
// Set scaling:
scale[0] = 1.e0;
// Increase scale to account for large value of a.
scale[1] = 8.e3;
// compute true values of partials.
actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1];
actual[0][1] = 2 * c * y[0] * y[1];
options[0] = NumericalDerivatives.ONE_SIDED;
options[1] = NumericalDerivatives.SKIP;
valueF[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1];
NumericalDerivatives.Jacobian fcn
= new NumericalDerivatives.Jacobian() {
@Override
public double[] f(int varIndex, double[] y) {
double[] tmp = new double[m];
tmp[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1];
return tmp;
}
@Override
public double[][] jacobian(double[] y) {
double[][] tmp = new double[m][n];
// The second component partial is skipped,
// since it is known analytically
tmp[0][1] = 2.e0 * c * y[0] * y[1];
return tmp;
}
};
NumericalDerivatives derv = new NumericalDerivatives(fcn);
derv.setDifferencingMethods(options);
derv.setScalingFactors(scale);
derv.setInitialF(valueF);
double[][] jacobian = derv.evaluateJ(y);
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(2);
nf.setMinimumFractionDigits(2);
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(nf);
new PrintMatrix("Numerical gradient:").print(pmf, jacobian);
new PrintMatrix("Analytic gradient:").print(pmf, actual);
jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0];
jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1];
re[0] = jacobian[0][0];
re[1] = jacobian[0][1];
System.out.println("Relative accuracy:");
System.out.println("df/dy_1 df/dy_2");
System.out.printf(" %.2fu %.2fu\n", re[0] / u, re[1] / u);
System.out.printf("(%.3e) (%.3e)\n", re[0], re[1]);
}
}