package com.imsl.test.example.math; import com.imsl.math.*; import java.text.*; /** *

* Approximates one component of the gradient using numerical differentiation.

* *

* This example uses the same data as in example * {@link NumericalDerivativesEx1}. In this case, numerical differentiation is * used for \(y_1\) and the analytical derivative is used for \(y_2\). The input * array options specifies that numerical differentiation with * respect to \(y_2\) is skipped. This example illustrates using mixed numerical * and analytical derivatives. Using analytical derivatives where possible helps * improve accuracy. *

* * @see Code * @see Output */ public class NumericalDerivativesEx2 { static private int m = 1, n = 2; static private double a, b, c; public static void main(String args[]) { int[] options = new int[n]; double u; double[] y = new double[n]; double[] valueF = new double[m]; double[] scale = new double[n]; double[][] actual = new double[m][n]; double[] re = new double[2]; // Define data and point of evaluation: a = 2.5e6; b = 3.4e0; c = 4.5e0; y[0] = 2.1e0; y[1] = 3.2e0; // Precision, for measuring errors u = Math.sqrt(2.220446049250313e-016); // Set scaling: scale[0] = 1.e0; // Increase scale to account for large value of a. scale[1] = 8.e3; // compute true values of partials. actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1]; actual[0][1] = 2 * c * y[0] * y[1]; options[0] = NumericalDerivatives.ONE_SIDED; options[1] = NumericalDerivatives.SKIP; valueF[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1]; NumericalDerivatives.Jacobian fcn = new NumericalDerivatives.Jacobian() { @Override public double[] f(int varIndex, double[] y) { double[] tmp = new double[m]; tmp[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1]; return tmp; } @Override public double[][] jacobian(double[] y) { double[][] tmp = new double[m][n]; // The second component partial is skipped, // since it is known analytically tmp[0][1] = 2.e0 * c * y[0] * y[1]; return tmp; } }; NumericalDerivatives derv = new NumericalDerivatives(fcn); derv.setDifferencingMethods(options); derv.setScalingFactors(scale); derv.setInitialF(valueF); double[][] jacobian = derv.evaluateJ(y); NumberFormat nf = NumberFormat.getInstance(); nf.setMaximumFractionDigits(2); nf.setMinimumFractionDigits(2); PrintMatrixFormat pmf = new PrintMatrixFormat(); pmf.setNumberFormat(nf); new PrintMatrix("Numerical gradient:").print(pmf, jacobian); new PrintMatrix("Analytic gradient:").print(pmf, actual); jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0]; jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1]; re[0] = jacobian[0][0]; re[1] = jacobian[0][1]; System.out.println("Relative accuracy:"); System.out.println("df/dy_1 df/dy_2"); System.out.printf(" %.2fu %.2fu\n", re[0] / u, re[1] / u); System.out.printf("(%.3e) (%.3e)\n", re[0], re[1]); } }