package com.imsl.test.example.math; import com.imsl.math.*; import java.text.*; /** *

* Approximates the gradient using central * divided differences. *

* * This example uses the same data as in example {@link NumericalDerivativesEx3}. * Instead of the one-sided difference, the central difference method is used. * * Agreement should be approximately the two-thirds power of machine precision. * That agreement is achieved here. Generally this is the most accuracy * one can expect using central divided differences. Note that using central * differences requires essentially twice the number of evaluations of the * function compared with obtaining one-sided differences. This can be a * significant issue for functions that are expensive to evaluate. This example * shows how to override evaluateF. * * @see Code * @see Output */ public class NumericalDerivativesEx4 extends NumericalDerivatives { static private int m = 1, n = 2; static private double a, b, c, v = 0.0; public NumericalDerivativesEx4(NumericalDerivatives.Function fcn) { super(fcn); } // Override evaluateF. public double[] evaluateF(int varIndex, double[] y) { double[] valueF = new double[m]; valueF[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1]; return valueF; } public static void main(String args[]) { int[] options = new int[n]; double u; double[] y = new double[n]; double[] scale = new double[n]; double[][] actual = new double[m][n]; double[] re = new double[2]; // Define data and point of evaluation: a = 2.5e6; b = 3.4e0; c = 4.5e0; y[0] = 2.1e0; y[1] = 3.2e0; // Machine precision, for measuring errors u = 2.220446049250313e-016; v = Math.pow(3.e0 * u, 2.e0 / 3.e0); // Set scaling: scale[0] = 1.e0; // Increase scale to account for large value of a. scale[1] = 8.e3; // Compute true values of partials. actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1]; actual[0][1] = 2 * c * y[0] * y[1]; options[0] = NumericalDerivatives.CENTRAL; options[1] = NumericalDerivatives.CENTRAL; // Set the increment used at the default value. scale[1] = 8.e3; NumericalDerivatives.Function fcn = new NumericalDerivatives.Function() { public double[] f(int varIndex, double[] y) { return new double[m]; } }; NumericalDerivativesEx4 derv = new NumericalDerivativesEx4(fcn); derv.setDifferencingMethods(options); derv.setScalingFactors(scale); double[][] jacobian = derv.evaluateJ(y); NumberFormat nf = NumberFormat.getInstance(); nf.setMaximumFractionDigits(2); nf.setMinimumFractionDigits(2); PrintMatrixFormat pmf = new PrintMatrixFormat(); pmf.setNumberFormat(nf); new PrintMatrix("Numerical gradient:").print(pmf, jacobian); new PrintMatrix("Analytic gradient:").print(pmf, actual); // Since the function is never evaluated at the // initial point, hold back until the request is made. // Check the relative accuracy of central differences. // They should be good to about two thirds-precision. jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0]; jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1]; re[0] = jacobian[0][0]; re[1] = jacobian[0][1]; System.out.println("Relative accuracy:"); System.out.println("df/dy_1 df/dy_2"); System.out.printf(" %.2fv %.2fv\n", re[0] / v, re[1] / v); System.out.printf("(%.3e) (%.3e)\n", re[0], re[1]); } }