package com.imsl.test.example.stat;
import java.util.*;
import com.imsl.stat.*;
/**
*
* Searches for the best fitting non-seasonal \(
* \text{ARIMA} \).
*
*
* This example uses time series LNU03327709 from the US Department of Labor,
* Bureau of Labor Statistics. It contains the unadjusted special unemployment
* rate, taken monthly from January 1994 through September 2005. The values
* 01/2004 - 03/2005 are used by class autoARIMA
for outlier
* detection and parameter estimation. Technique 1, invoked by
* autoARIMA.compute(int maxlag)
is chosen to find an appropriate
* \(\text{ARIMA}(p,d,0)\) model. That is, the algorithm searches for the best
* fitting parameters while it is assumed that \(q = 0\). With the selected
* model, forecasts are generated for the following six months and compared with
* the actual values 04/2005 - 09/2005.
*
*
* @see Code
* @see Output
*/
public class AutoARIMAEx1 {
public static void main(String args[]) throws Exception {
int nOutliers;
double aic, RSE, constant;
int[] optimumModel;
int[][] outlierStatistics;
double[] outlierForecast, ar, ma;
double[] psiWeights, probabilityLimits;
double[] x = {
12.8, 12.2, 11.9, 10.9, 10.6, 11.3, 11.1, 10.4, 10.0, 9.7, 9.7, 9.7,
11.1, 10.5, 10.3, 9.8, 9.8, 10.4, 10.4, 10.0, 9.7, 9.3, 9.6, 9.7,
10.8, 10.7, 10.3, 9.7, 9.5, 10.0, 10.0, 9.3, 9.0, 8.8, 8.9, 9.2,
10.4, 10.0, 9.6, 9.0, 8.5, 9.2, 9.0, 8.6, 8.3, 7.9, 8.0, 8.2,
9.3, 8.9, 8.9, 7.7, 7.6, 8.4, 8.5, 7.8, 7.6, 7.3, 7.2, 7.3,
8.5, 8.2, 7.9, 7.4, 7.1, 7.9, 7.7, 7.2, 7.0, 6.7, 6.8, 6.9,
7.8, 7.6, 7.4, 6.6, 6.8, 7.2, 7.2, 7.0, 6.6, 6.3, 6.8, 6.7,
8.1, 7.9, 7.6, 7.1, 7.2, 8.2, 8.1, 8.1, 8.2, 8.7, 9.0, 9.3,
10.5, 10.1, 9.9, 9.4, 9.2, 9.8, 9.9, 9.5, 9.0, 9.0, 9.4, 9.6,
11.0, 10.8, 10.4, 9.8, 9.7, 10.6, 10.5, 10.0, 9.8, 9.5, 9.7, 9.6,
10.9, 10.3, 10.4, 9.3, 9.3, 9.8, 9.8, 9.3, 8.9, 9.1, 9.1, 9.1,
10.2, 9.9, 9.4
};
double[] exactForecast = {8.7, 8.6, 9.3, 9.1, 8.8, 8.5};
int[] times = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135
};
AutoARIMA autoArima = new AutoARIMA(times, x);
autoArima.setCriticalValue(3.8);
autoArima.compute(5);
autoArima.forecast(6);
nOutliers = autoArima.getNumberOfOutliers();
aic = autoArima.getAIC();
optimumModel = autoArima.getOptimumModelOrder();
outlierStatistics = autoArima.getOutlierStatistics();
RSE = autoArima.getResidualStandardError();
outlierForecast = autoArima.getForecast();
psiWeights = autoArima.getPsiWeights();
probabilityLimits = autoArima.getDeviations();
constant = autoArima.getConstant();
ar = autoArima.getAR();
ma = autoArima.getMA();
System.out.printf("%nMethod 1: Automatic AR model selection"
+ ", no differencing%n");
System.out.printf("%nOptimum Model: p=%d, q=%d, s=%d, d=%d%n",
optimumModel[0], optimumModel[1],
optimumModel[2], optimumModel[3]);
System.out.printf("%nNumber of outliers:%3d%n%n", nOutliers);
System.out.printf("Outlier statistics:%n");
System.out.printf(" Time%4sType%n", " ");
for (int i = 0; i < nOutliers; i++) {
System.out.printf("%5d%8d%n", outlierStatistics[i][0],
outlierStatistics[i][1]);
}
System.out.printf(Locale.ENGLISH, "%nAIC:%12.6f%n", aic);
System.out.printf(Locale.ENGLISH, "RSE:%12.6f%n%n", RSE);
System.out.printf("%6sParameters%n", " ");
System.out.printf(Locale.ENGLISH, " constant:%12.6f%n", constant);
for (int i = 0; i < ar.length; i++) {
System.out.printf(Locale.ENGLISH, " ar[%d]:%15.6f%n", i, ar[i]);
}
for (int i = 0; i < ma.length; i++) {
System.out.printf(Locale.ENGLISH, " ma[%d]:%15.6f%n", i, ma[i]);
}
System.out.printf("%n%n%6s* * * Forecast Table * * *%n", " ");
System.out.printf("%2sExact%3sforecast%5slimits%8spsi%n",
" ", " ", " ", " ");
for (int i = 0; i < outlierForecast.length; i++) {
System.out.printf(Locale.ENGLISH, "%7.4f%11.4f%11.4f%11.4f%n",
exactForecast[i], outlierForecast[i],
probabilityLimits[i], psiWeights[i]);
}
}
}