package com.imsl.test.example.stat; import java.util.*; import com.imsl.stat.*; /** *

* Searches for the best fitting non-seasonal \( * \text{ARIMA} \). *

*

* This example uses time series LNU03327709 from the US Department of Labor, * Bureau of Labor Statistics. It contains the unadjusted special unemployment * rate, taken monthly from January 1994 through September 2005. The values * 01/2004 - 03/2005 are used by class autoARIMA for outlier * detection and parameter estimation. Technique 1, invoked by * autoARIMA.compute(int maxlag) is chosen to find an appropriate * \(\text{ARIMA}(p,d,0)\) model. That is, the algorithm searches for the best * fitting parameters while it is assumed that \(q = 0\). With the selected * model, forecasts are generated for the following six months and compared with * the actual values 04/2005 - 09/2005. *

* * @see Code * @see Output */ public class AutoARIMAEx1 { public static void main(String args[]) throws Exception { int nOutliers; double aic, RSE, constant; int[] optimumModel; int[][] outlierStatistics; double[] outlierForecast, ar, ma; double[] psiWeights, probabilityLimits; double[] x = { 12.8, 12.2, 11.9, 10.9, 10.6, 11.3, 11.1, 10.4, 10.0, 9.7, 9.7, 9.7, 11.1, 10.5, 10.3, 9.8, 9.8, 10.4, 10.4, 10.0, 9.7, 9.3, 9.6, 9.7, 10.8, 10.7, 10.3, 9.7, 9.5, 10.0, 10.0, 9.3, 9.0, 8.8, 8.9, 9.2, 10.4, 10.0, 9.6, 9.0, 8.5, 9.2, 9.0, 8.6, 8.3, 7.9, 8.0, 8.2, 9.3, 8.9, 8.9, 7.7, 7.6, 8.4, 8.5, 7.8, 7.6, 7.3, 7.2, 7.3, 8.5, 8.2, 7.9, 7.4, 7.1, 7.9, 7.7, 7.2, 7.0, 6.7, 6.8, 6.9, 7.8, 7.6, 7.4, 6.6, 6.8, 7.2, 7.2, 7.0, 6.6, 6.3, 6.8, 6.7, 8.1, 7.9, 7.6, 7.1, 7.2, 8.2, 8.1, 8.1, 8.2, 8.7, 9.0, 9.3, 10.5, 10.1, 9.9, 9.4, 9.2, 9.8, 9.9, 9.5, 9.0, 9.0, 9.4, 9.6, 11.0, 10.8, 10.4, 9.8, 9.7, 10.6, 10.5, 10.0, 9.8, 9.5, 9.7, 9.6, 10.9, 10.3, 10.4, 9.3, 9.3, 9.8, 9.8, 9.3, 8.9, 9.1, 9.1, 9.1, 10.2, 9.9, 9.4 }; double[] exactForecast = {8.7, 8.6, 9.3, 9.1, 8.8, 8.5}; int[] times = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135 }; AutoARIMA autoArima = new AutoARIMA(times, x); autoArima.setCriticalValue(3.8); autoArima.compute(5); autoArima.forecast(6); nOutliers = autoArima.getNumberOfOutliers(); aic = autoArima.getAIC(); optimumModel = autoArima.getOptimumModelOrder(); outlierStatistics = autoArima.getOutlierStatistics(); RSE = autoArima.getResidualStandardError(); outlierForecast = autoArima.getForecast(); psiWeights = autoArima.getPsiWeights(); probabilityLimits = autoArima.getDeviations(); constant = autoArima.getConstant(); ar = autoArima.getAR(); ma = autoArima.getMA(); System.out.printf("%nMethod 1: Automatic AR model selection" + ", no differencing%n"); System.out.printf("%nOptimum Model: p=%d, q=%d, s=%d, d=%d%n", optimumModel[0], optimumModel[1], optimumModel[2], optimumModel[3]); System.out.printf("%nNumber of outliers:%3d%n%n", nOutliers); System.out.printf("Outlier statistics:%n"); System.out.printf(" Time%4sType%n", " "); for (int i = 0; i < nOutliers; i++) { System.out.printf("%5d%8d%n", outlierStatistics[i][0], outlierStatistics[i][1]); } System.out.printf(Locale.ENGLISH, "%nAIC:%12.6f%n", aic); System.out.printf(Locale.ENGLISH, "RSE:%12.6f%n%n", RSE); System.out.printf("%6sParameters%n", " "); System.out.printf(Locale.ENGLISH, " constant:%12.6f%n", constant); for (int i = 0; i < ar.length; i++) { System.out.printf(Locale.ENGLISH, " ar[%d]:%15.6f%n", i, ar[i]); } for (int i = 0; i < ma.length; i++) { System.out.printf(Locale.ENGLISH, " ma[%d]:%15.6f%n", i, ma[i]); } System.out.printf("%n%n%6s* * * Forecast Table * * *%n", " "); System.out.printf("%2sExact%3sforecast%5slimits%8spsi%n", " ", " ", " ", " "); for (int i = 0; i < outlierForecast.length; i++) { System.out.printf(Locale.ENGLISH, "%7.4f%11.4f%11.4f%11.4f%n", exactForecast[i], outlierForecast[i], probabilityLimits[i], psiWeights[i]); } } }