package com.imsl.test.example.stat; import com.imsl.stat.*; import com.imsl.math.*; /** *

* Fits a logit and probit categorical model to beetle mortality * data.

* * The first example is from Prentice (1976) and involves the mortality of * beetles after exposure to various concentrations of carbon disulphide. Both a * logit and a probit fit are produced for linear model \(\mu + \beta x\). The * data is given as *
* * * * * * * * * * *
Concentration (x)Ny
1.690596
1.7246013
1.7556218
1.7845628
1.8116352
1.8365953
1.8616261
1.8836060

*
* * @see Code * @see Output */ public class CategoricalGenLinModelEx1 { public static void main(String argv[]) throws Exception { // Set up a PrintMatrix object for later use. PrintMatrixFormat mf; PrintMatrix p; p = new PrintMatrix(); mf = new PrintMatrixFormat(); mf.setNoRowLabels(); mf.setNoColumnLabels(); double[][] x = { {1.690, 59.0, 6.0}, {1.724, 60.0, 13.0}, {1.755, 62.0, 18.0}, {1.784, 56.0, 28.0}, {1.811, 63.0, 52.0}, {1.836, 59.0, 53.0}, {1.861, 62.0, 61.0}, {1.883, 60.0, 60.0} }; CategoricalGenLinModel CATGLM3, CATGLM4; // MODEL3 CATGLM3 = new CategoricalGenLinModel(x, CategoricalGenLinModel.MODEL3); CATGLM3.setLowerEndpointColumn(2); CATGLM3.setOptionalDistributionParameterColumn(1); CATGLM3.setInfiniteEstimateMethod(1); CATGLM3.setModelIntercept(1); int[] nvef = {1}; int[] indef = {0}; CATGLM3.setEffects(indef, nvef); CATGLM3.setUpperBound(1); System.out.println("MODEL3"); p.setTitle("Coefficient Statistics"); p.print(CATGLM3.solve()); System.out.println("Log likelihood " + CATGLM3.getOptimizedCriterion()); p.setTitle("Asymptotic Coefficient Covariance"); p.setMatrixType(1); p.print(CATGLM3.getCovarianceMatrix()); p.setMatrixType(0); p.setTitle("Case Analysis"); p.print(CATGLM3.getCaseAnalysis()); p.setTitle("Last Coefficient Update"); p.print(CATGLM3.getLastParameterUpdates()); p.setTitle("Covariate Means"); p.print(CATGLM3.getDesignVariableMeans()); p.setTitle("Observation Codes"); p.print(CATGLM3.getExtendedLikelihoodObservations()); System.out.println("Number of Missing Values " + CATGLM3.getNRowsMissing()); // MODEL4 CATGLM4 = new CategoricalGenLinModel(x, CategoricalGenLinModel.MODEL4); CATGLM4.setLowerEndpointColumn(2); CATGLM4.setOptionalDistributionParameterColumn(1); CATGLM4.setInfiniteEstimateMethod(1); CATGLM4.setModelIntercept(1); CATGLM4.setEffects(indef, nvef); CATGLM4.setUpperBound(1); CATGLM4.solve(); System.out.println("MODEL4"); System.out.println("Log likelihood " + CATGLM4.getOptimizedCriterion()); p.setTitle("Coefficient Statistics"); p.print(CATGLM4.getParameters()); } }