package com.imsl.test.example.stat; import java.text.*; import com.imsl.stat.*; /** *

Computes empirical quantiles for rainfall data. *

*

* In this example, five empirical quantiles from a sample of size \(30\) are * obtained. Notice that the \(0.5\) quantile corresponds to the sample median. The * data are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the * measurements (in inches) of precipitation in Minneapolis/St. Paul during the * month of March for \(30\) consecutive years.

* * * @see Code * @see Output */ public class EmpiricalQuantilesEx1 { public static void main(String args[]) { String fmt = "0.00"; DecimalFormat df = new DecimalFormat(fmt); double[] x = { 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05 }; double[] qProp = {0.01, 0.5, 0.90, 0.95, 0.99}; EmpiricalQuantiles eq = new EmpiricalQuantiles(x, qProp); double[] Q = eq.getQ(); double[] XLo = eq.getXLo(); double[] XHi = eq.getXHi(); System.out.println(" Smaller " + "Empirical Larger"); System.out.println(" Quantile Datum " + "Quantile Datum"); for (int i = 0; i < qProp.length; i++) { System.out.println(df.format(qProp[i]) + " " + df.format(XLo[i]) + " " + df.format(Q[i]) + " " + df.format(XHi[i])); } } }