Example 3: Solve a Small Linear System Stored in Sparse Form
A solution to a small linear system in which the coefficient matrix has been stored in SparseMatrix
form is found. An initial guess of ones is set before solving the system.
import com.imsl.math.*;
public class GenMinResEx3 implements GenMinRes.Function {
static private SparseMatrix A;
static private double a[] = {6.0, 10.0, 15.0, -3.0, 10.0,
-1.0, -1.0, -3.0, -5.0, 1.0,
10.0, -1.0, -2.0, -1.0, -2.0};
static private double b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
static private double xguess[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
static private int irow[] = {5, 1, 2, 1, 3, 3, 4,
4, 4, 4, 0, 5, 5, 1, 3};
static private int jcol[] = {5, 1, 2, 2, 3, 4, 0,
5, 3, 4, 0, 0, 1, 3, 0};
public void amultp(double p[], double z[]) {
double[] result;
result = A.multiply(A,p);
System.arraycopy(result, 0, z, 0, z.length);
}
public static void main(String args[]) throws Exception {
int n = 6;
A = new SparseMatrix(n,n);
for (int i=0; i<a.length;i++) {
A.set(irow[i], jcol[i], a[i]);
}
GenMinResEx3 atp = new GenMinResEx3();
// Construct a GenMinRes object
GenMinRes gnmnrs = new GenMinRes(n, atp);
gnmnrs.setGuess(xguess);
// Solve Ax = b
new PrintMatrix("x").print(gnmnrs.solve(b));
}
}
Output
x
0
0 1
1 2
2 3
3 4
4 5
5 6
Link to Java source.