Example 2: Nonlinear Regression with User-supplied Derivatives
In this example a nonlinear model is fitted. The derivatives are supplied by the user.
import com.imsl.stat.*;
import com.imsl.math.*;
public class NonlinearRegressionEx2 {
public static void main(String args[])
throws NonlinearRegression.TooManyIterationsException,
NonlinearRegression.NegativeFreqException,
NonlinearRegression.NegativeWeightException {
NonlinearRegression.Derivative deriv =
new NonlinearRegression.Derivative() {
double ydata[] = {54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,
18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0};
double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
38.0, 45.0, 52.0, 53.0, 60.0, 65.0};
boolean iend;
int nobs = 15;
public boolean f(double theta[], int iobs, double frq[], double wt[],
double e[]){
if(iobs < nobs){
wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.exp(theta[1]
* xdata[iobs]);
} else {
iend = false;
}
return iend;
}
public boolean derivative(double theta[], int iobs, double frq[],
double wt[], double de[]){
if(iobs < nobs){
wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
de[0] = -Math.exp(theta[1]*xdata[iobs]);
de[1] = -theta[0] * xdata[iobs] * Math.exp(theta[1]
* xdata[iobs]);
} else {
iend = false;
}
return iend;
}
};
int nparm = 2;
double theta[] = {60.0, -0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.setGuess(theta);
double coef[] = regression.solve(deriv);
System.out.println("The computed regression coefficients are {" +
coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();
System.out.println("The computed rank is "+rank);
double dfe = regression.getDFError();
System.out.println("The degrees of freedom for error are "+dfe);
double sse = regression.getSSE();
System.out.println("The sums of squares for error is "+sse);
double r[][] = regression.getR();
new PrintMatrix("R from the QR decomposition ").print(r);
}
}
Output
The computed regression coefficients are {58.60656292541919, -0.039586447277524736}
The computed rank is 2
The degrees of freedom for error are 13.0
The sums of squares for error is 49.45929986247219
R from the QR decomposition
0 1
0 1.874 1,139.928
1 0 1,139.798
Link to Java source.