The following example uses the same data as in example 1. Now, all the statistics are displayed.
import java.text.*; import com.imsl.*; import com.imsl.stat.*; import com.imsl.math.PrintMatrix; public class WilcoxonRankSumEx2 { public static void main(String args[]) { double[] x = {7.3, 6.9, 7.2, 7.8, 7.2}; double[] y = {7.4, 6.8, 6.9, 6.7, 7.1}; String[] labels = { "Wilcoxon W statistic ......................", "2*E(W) - W ................................", "p-value ................................... ", "Adjusted Wilcoxon statistic ...............", "Adjusted 2*E(W) - W .......................", "Adjusted p-value .......................... ", "W statistics for averaged ranks............", "Standard error of W (averaged ranks) ...... ", "Standard normal score of W (averaged ranks) ", "Two-sided p-value of W (averaged ranks) ... " }; WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y); NumberFormat nf = NumberFormat.getInstance(); nf.setMinimumFractionDigits(3); // Trun off printing of warning messages. Warning.setOut(null); wilcoxon.compute(); double[] stat = wilcoxon.getStatistics(); for (int i = 0; i < 10; i++) { System.out.println(labels[i] + " " + nf.format(stat[i])); } } }
Wilcoxon W statistic ...................... 34.000 2*E(W) - W ................................ 21.000 p-value ................................... 0.110 Adjusted Wilcoxon statistic ............... 35.000 Adjusted 2*E(W) - W ....................... 20.000 Adjusted p-value .......................... 0.075 W statistics for averaged ranks............ 34.500 Standard error of W (averaged ranks) ...... 4.758 Standard normal score of W (averaged ranks) 1.471 Two-sided p-value of W (averaged ranks) ... 0.141Link to Java source.