Example 3: Minimum of a multivariate function
The minimum of is found using function evaluations and a user supplied Hessian.
import com.imsl.math.*;
public class MinUnconMultiVarEx3 {
static class MyFunction implements MinUnconMultiVar.Hessian {
public double f(double[] x) {
return 100.*((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +
(1. - x[0]) * (1. - x[0]);
}
public void gradient(double[] x, double[] gp) {
gp[0] = -400. * (x[1] - x[0] * x[0]) * x[0] - 2. * (1. - x[0]);
gp[1] = 200. * (x[1] - x[0]*x[0]);
}
public void hessian(double[] x, double[][] hess)
{
hess[0][0] = -4.e2*x[1] + 1.2e3*x[0]*x[0] + 2.e0;
hess[1][0] = -4.e2*x[0];
hess[0][1] = hess[1][0];
hess[1][1] = 2.e2;
}
}
public static void main(String args[]) throws Exception {
MinUnconMultiVar solver = new MinUnconMultiVar(2);
solver.setGuess(new double[]{-1.2, 1.0});
double x[] = solver.computeMin(new MyFunction());
System.out.println("Minimum point is (" +x[0] +", "+x[1]+")");
}
}
Output
Minimum point is (1.0000000139452756, 1.0000000143547352)
Link to Java source.