NumericalDerivatives
is shown. The gradient of the function is required for values , , , , .The numerical gradient is compared to the analytic gradient, cast as a 1 by 2 Jacobian:
import com.imsl.math.*; import java.text.*; public class NumericalDerivativesEx1 { static int m = 1, n = 2; static double a, b, c; public static void main(String args[]) { double u; double[] y = new double[n]; double[] scale = new double[n]; double[][] actual = new double[m][n]; double[] re = new double[2]; // Define data and point of evaluation: a = 2.5e6; b = 3.4e0; c = 4.5e0; y[0] = 2.1e0; y[1] = 3.2e0; // Precision for measuring errors u = Math.sqrt(2.220446049250313e-016); // Set scaling: scale[0] = 1.e0; // Increase scale to account for large value of a. scale[1] = 8.e3; // Compute true values of partials. actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1]; actual[0][1] = 2 * c * y[0] * y[1]; // This sets the function value used in forming one-sided // differences. NumericalDerivatives.Function fcn = new NumericalDerivatives.Function() { public double[] f(int varIndex, double[] y) { double[] tmp = new double[m]; tmp[0] = a * Math.exp(b * y[0]) + c * y[0] * y[1] * y[1]; return tmp; } }; NumericalDerivatives derv = new NumericalDerivatives(fcn); derv.setScalingFactors(scale); double[][] jacobian = derv.evaluateJ(y); NumberFormat nf = NumberFormat.getInstance(); nf.setMaximumFractionDigits(2); nf.setMinimumFractionDigits(2); PrintMatrixFormat pmf = new PrintMatrixFormat(); pmf.setNumberFormat(nf); new PrintMatrix("Numerical gradient:").print(pmf, jacobian); new PrintMatrix("Analytic gradient:").print(pmf, actual); // Check the relative accuracy of one-sided differences. // They should be good to about half-precision. jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0]; jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1]; re[0] = jacobian[0][0]; re[1] = jacobian[0][1]; System.out.println("Relative accuracy:"); System.out.println("df/dy_1 df/dy_2"); System.out.printf(" %.2fu %.2fu\n", re[0]/u, re[1]/u); System.out.printf("(%.3e) (%.3e)\n", re[0], re[1]); } }
Numerical gradient: 0 1 0 10,722,141,696.00 60.48 Analytic gradient: 0 1 0 10,722,141,353.42 60.48 Relative accuracy: df/dy_1 df/dy_2 2.14u -0.00u (3.195e-08) (-1.175e-16)Link to Java source.