Example 3: Accumulation Of A Component
This example uses the same data as in the One-Sided Differences example. An alternate examination of the function shows that the first term on the right-hand side need be evaluated just when computing the first partial. The additive term occurs when computing the partial with respect to . Also the first term does not depend on the second variable. Thus the first term can be left out of the function evaluation when computing the partial with respect to , potentially avoiding cancellation errors. The input values of array options
allow NumericalDerivatives
to use these facts and obtain greater accuracy using a minimum number of computations of the exponential function.
import com.imsl.math.*;
import java.text.*;
public class NumericalDerivativesEx3 {
static int m = 1, n = 2;
static double a, b, c, f2 = 0.0;
public static void main(String args[]) {
int[] options = new int[n];
double u;
double[] y = new double[n];
double[] valueF = new double[m];
double[] scale = new double[n];
double[][] actual = new double[m][n];
double[] re = new double[2];
// Define data and point of evaluation:
a = 2.5e6;
b = 3.4e0;
c = 4.5e0;
y[0] = 2.1e0;
y[1] = 3.2e0;
// Precision, for measuring errors
u = Math.sqrt(2.220446049250313e-016);
// Set scaling:
scale[0] = 1.e0;
// Increase scale to account for large value of a.
scale[1] = 8.e3;
// Compute true values of partials.
actual[0][0] = a * b * Math.exp(b * y[0]) + c * y[1] * y[1];
actual[0][1] = 2 * c * y[0] * y[1];
options[0] = NumericalDerivatives.ACCUMULATE;
options[1] = NumericalDerivatives.ONE_SIDED;
valueF[0] = a * Math.exp(b * y[0]);
scale[1] = 1.e0;
NumericalDerivatives.Jacobian fcn = new NumericalDerivatives.Jacobian() {
public double[] f(int varIndex, double[] y) {
double[] tmp = new double[m];
if (varIndex != 2) {
tmp[0] = a * Math.exp(b * y[0]);
} else {
// This is the function value for the partial wrt y_2.
tmp[0] = c * y[0] * y[1] * y[1];
}
return tmp;
}
public double[][] jacobian(double[] y) {
double[][] tmp = new double[m][n];
// Start with part of the derivative that is known.
tmp[0][0] = c * y[1] * y[1];
return tmp;
}
};
NumericalDerivatives derv = new NumericalDerivatives(fcn);
derv.setDifferencingMethods(options);
derv.setScalingFactors(scale);
derv.setInitialF(valueF);
double[][] jacobian = derv.evaluateJ(y);
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(2);
nf.setMinimumFractionDigits(2);
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(nf);
new PrintMatrix("Numerical gradient:").print(pmf, jacobian);
new PrintMatrix("Analytic gradient:").print(pmf, actual);
jacobian[0][0] = (jacobian[0][0] - actual[0][0]) / actual[0][0];
jacobian[0][1] = (jacobian[0][1] - actual[0][1]) / actual[0][1];
re[0] = jacobian[0][0];
re[1] = jacobian[0][1];
System.out.println("Relative accuracy:");
System.out.println("df/dy_1 df/dy_2");
System.out.printf(" %.2fu %.2fu\n", re[0]/u, re[1]/u);
System.out.printf("(%.3e) (%.3e)\n", re[0], re[1]);
}
}
Output
Numerical gradient:
0 1
0 10,722,141,710.08 60.48
Analytic gradient:
0 1
0 10,722,141,353.42 60.48
Relative accuracy:
df/dy_1 df/dy_2
2.23u -0.51u
(3.326e-08) (-7.569e-09)
Link to Java source.