This example illustrates the K-M procedure. Assume 20 units are on life test and 6 failures occur at the following times: 10, 32, 56, 98, 122, and 181 hours. There were 4 working units removed from the test for other experiments at the following times: 50, 100, 125, and 150 hours. The remaining 10 working units were removed from the test at 200 hours. The K-M estimates for this life test are:
R(10) = 19/20
R(32) = 19/20 x 18/19
R(56) = 19/20 x 18/19 x 16/17
R(98) = 19/20 x 18/19 x 16/17 x 15/16
R(122) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14
R(181) = 19/20 x 18/19 x 16/17 x 15/16 x 13/14 x 10/11
import com.imsl.stat.*; import com.imsl.math.*; public class KaplanMeierECDFEx1 { public static void main(String args[]) { double y[] = {10.0, 32.0, 56.0, 98.0, 122.0, 181.0, 50.0, 100.0, 125.0, 150.0, 200.0}; int freq[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10}; int censor[] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1}; KaplanMeierECDF km = new KaplanMeierECDF(y); km.setFrequency(freq); km.setCensor(censor); double[] fx = km.evaluateCDF(); int ntimes = km.getNumberOfPoints(); System.out.println("Number of points = " + ntimes); double[] x = km.getTimes(); PrintMatrix p = new PrintMatrix("CDF = 1 - survival of life test subjects"); p.print(fx); p.setTitle("Times of change in CDF"); p.print(x); } }
Number of points = 6 CDF = 1 - survival of life test subjects 0 0 0.05 1 0.1 2 0.153 3 0.206 4 0.263 5 0.33 Times of change in CDF 0 0 10 1 32 2 56 3 98 4 122 5 181Link to Java source.