Uses of Enum Class
com.imsl.datamining.PredictiveModel.VariableType
Packages that use PredictiveModel.VariableType
Package
Description
Data mining and machine learning.
Decision trees.
Support vector machines.
-
Uses of PredictiveModel.VariableType in com.imsl.datamining
Methods in com.imsl.datamining that return PredictiveModel.VariableTypeModifier and TypeMethodDescriptionPredictiveModel.getPredictorTypes()Returns an array ofVariableTypeobjects that correspond to the predictor data types inxy.LogisticRegressionModelObject.getResponseVariableType()Returns the variable type of the response variable.PredictiveModel.getResponseVariableType()Returns the variable type of the response variable.PredictiveModel.getVariableType()Returns an array containing the variable types inxy.static PredictiveModel.VariableTypeReturns the enum constant of this class with the specified name.static PredictiveModel.VariableType[]PredictiveModel.VariableType.values()Returns an array containing the constants of this enum class, in the order they are declared.Methods in com.imsl.datamining with parameters of type PredictiveModel.VariableTypeModifier and TypeMethodDescriptionvoidPredictiveModel.setPredictorTypes(PredictiveModel.VariableType[] predVarType) Sets theVariableTypeobjects that correspond to the predictor data types inxy.voidGradientBoosting.setTrainingData(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Sets up the training data for the predictive model.voidPredictiveModel.setTrainingData(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Sets up the training data for the predictive model.voidPredictiveModel.setVariableType(PredictiveModel.VariableType[] varType) Sets the variable types for the data.Constructors in com.imsl.datamining with parameters of type PredictiveModel.VariableTypeModifierConstructorDescriptionGradientBoosting(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aGradientBoostingobject for a single response variable and multiple predictor variables.LogisticRegression(double[][] x, double[][] y, PredictiveModel.VariableType[] predictorVarType, PredictiveModel.VariableType responseVarType) Constructs a logistic regression predictive model.LogisticRegression(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs a logistic regression predictive model.protectedPredictiveModel(double[][] x, double[][] y, PredictiveModel.VariableType[] predictorVarType, PredictiveModel.VariableType responseVarType) Constructs aPredictiveModelobject for a single response variable and multiple predictor variables.protectedPredictiveModel(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aPredictiveModelobject for a single response variable and multiple predictor variables. -
Uses of PredictiveModel.VariableType in com.imsl.datamining.decisionTree
Methods in com.imsl.datamining.decisionTree that return PredictiveModel.VariableTypeModifier and TypeMethodDescriptionTree.getPredictorType(int i) Returns thePredictiveModel.VariableTypeof a predictor variable.Tree.getResponseType()Returns thePredictiveModel.VariableTypeof the response variable.Constructors in com.imsl.datamining.decisionTree with parameters of type PredictiveModel.VariableTypeModifierConstructorDescriptionALACART(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs anALACARTdecision tree for a single response variable and multiple predictor variables.C45(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aC45object for a single response variable and multiple predictor variables.CHAID(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aCHAIDobject for a single response variable and multiple predictor variables.DecisionTree(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aDecisionTreeobject for a single response variable and multiple predictor variables.DecisionTreeInfoGain(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aDecisionTreeobject for a single response variable and multiple predictor variables.QUEST(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aQUESTobject for a single response variable and multiple predictor variables.RandomTrees(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs aRandomTreesrandom forest ofALACARTdecision trees.Tree(int nRows, int minObsAllowedInChild, int maxNumberOfCategories, int maxNumberOfNodes, int nClasses, int nPreds, PredictiveModel.VariableType varType, int[] predNValues, PredictiveModel.VariableType[] predType, int nyMissing) Deprecated.Update to the other constructor that accepts the predictor indices in argument 10.Tree(int nRows, int minObsAllowedInChild, int maxNumberOfCategories, int maxNumberOfNodes, int nClasses, int nPreds, PredictiveModel.VariableType varType, int[] predNValues, PredictiveModel.VariableType[] predType, int[] predIdx, int nyMissing) Creates the root node of a decision tree and contains information about the relationship of child nodes. -
Uses of PredictiveModel.VariableType in com.imsl.datamining.supportvectormachine
Constructors in com.imsl.datamining.supportvectormachine with parameters of type PredictiveModel.VariableTypeModifierConstructorDescriptionSupportVectorMachine(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs a support vector machine for a single response variable and multiple predictor variables.SupportVectorMachine(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k) Constructs a support vector machine for a single response variable and multiple predictor variables.SVClassification(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs a support vector machine for classification (SVC).SVClassification(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k) Constructs a support vector machine for classification (SVC).SVOneClass(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs a one class support vector machine.SVOneClass(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k) Constructs a one class support vector machine.SVRegression(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType) Constructs a support vector machine for regression (SVR).SVRegression(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k) Constructs a support vector machine for regression (SVR).