Uses of Class
com.imsl.stat.ARMA.ResidualsTooLargeException
Packages that use ARMA.ResidualsTooLargeException
-
Uses of ARMA.ResidualsTooLargeException in com.imsl.stat
Methods in com.imsl.stat that throw ARMA.ResidualsTooLargeExceptionModifier and TypeMethodDescriptionvoidARAutoUnivariate.compute()Determines the autoregressive model with the minimum AIC by fitting autoregressive models from 0 tomaxlaglags using the method of moments or an estimation method specified by the user throughsetEstimationMethod.final voidARMA.compute()Computes least-square estimates of parameters for an ARMA model.final voidARMAOutlierIdentification.compute(int[] model) Detects and determines outliers and simultaneously estimates the model parameters for the given time series.voidARSeasonalFit.compute()Computes the minimum AIC and optimum values for s and d based upon the candidates provided insInitialanddInitial, and computes the values for the transformed series, \(W_t(s,d)\).final voidAutoARIMA.compute(int maxlag) Estimates potential missing values, detects and determines outliers and simultaneously fits an optimum model from a set of different \( \text{ARIMA}(p,0,0)\times(0,d,0)_s\) models to the outlier free time series.final voidAutoARIMA.compute(int[] arOrders, int[] maOrders) Estimates potential missing values, detects and determines outliers and simultaneously fits an optimum model from a set of different \( \text{ARIMA}(p,0,q)\times(0,d,0)_s\) models to the outlier free time series.final voidAutoARIMA.compute(int p, int q, int s, int d) Estimates potential missing values, detects and determines outliers and simultaneously fits an \(\text{ARIMA}(p,0,q)\times(0,d,0)_s \) model to the outlier free time series.double[][]ARAutoUnivariate.forecast(int nForecast) Returns forecasts and associated confidence interval offsets.doubleARAutoUnivariate.getAIC()Returns the final estimate for Akaike's Information Criterion (AIC) at the optimum.double[]ARAutoUnivariate.getAR()Returns the final auto regressive parameter estimates at the optimum AIC using the estimation method specified insetEstimationMethod.double[]ARSeasonalFit.getAR()Returns the final autoregressive parameter estimates at the optimum in the transformed series \(W_t\).double[]ARMAEstimateMissing.getCompleteTimeSeries()Returns adoubleprecision vector of lengthtpoints[tpoints.length-1]-tpoints[0]+1containing the observed values in the time serieszplus estimates for missing values in gaps identified intpoints.doubleARAutoUnivariate.getConstant()Returns the estimate for the constant parameter in the ARMA series.double[]ARAutoUnivariate.getForecast(int nForecast) Returns forecastsdoubleARAutoUnivariate.getInnovationVariance()Returns the final estimate for the innovation variance.doubleARAutoUnivariate.getLikelihood()Returns the final estimate for \(L=e^{-(\mbox{AIC} - 2p)/2} \), where p is the AR order, AIC is Akaike's Information Criterion, and L is the likelihood function evaluated for the optimum autoregressive model.doubleARAutoUnivariate.getMean()Returns the mean used to center the time seriesz.intARSeasonalFit.getNLost()Returns the number of values in the initial part of the series lost to differencing.int[]ARSeasonalFit.getOptimumD()Returns the optimum values for d selected among the candidates indInitial.int[]ARSeasonalFit.getOptimumS()Returns the optimum values for s selected among the candidates insInitial.intARAutoUnivariate.getOrder()Returns the order of the AR model selected with the minimum AIC.double[]ARAutoUnivariate.getTimsacAR()Returns the final auto regressive parameter estimates at the optimum AIC estimated by the original TIMSAC routine (UNIMAR).doubleARAutoUnivariate.getTimsacConstant()Returns the estimate for the constant parameter in the ARMA series.doubleARAutoUnivariate.getTimsacVariance()Returns the final estimate for the innovation variance calculated by the TIMSAC automatic AR modeling routine (UNIMAR).double[]ARSeasonalFit.getTransformedTimeSeries()Returns the transformed series, \(W_t(s,d)\).